
HAL Id: tel-01407258
https://theses.hal.science/tel-01407258v1

Submitted on 1 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motion in action : optical flow estimation and action
localization in videos

Philippe Weinzaepfel

To cite this version:
Philippe Weinzaepfel. Motion in action : optical flow estimation and action localization in videos.
Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. �NNT :
2016GREAM013�. �tel-01407258�

https://theses.hal.science/tel-01407258v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques, Sciences et Technologies de l’Information

Arrêté ministériel : 7 août 2006

Présentée par

Philippe WEINZAEPFEL

Thèse dirigée par Cordelia SCHMID
et codirigée par Zaid HARCHAOUI

préparée au sein d’ Inria Grenoble
et de l’école doctorale MSTII : Mathématiques, Sciences et Technolo-
gies de l’Information, Informatique

Le mouvement en action: estima-
tion du flot optique et localisation
d’actions dans les vidéos
Motion in action: optical flow estimation and
action localization in videos

Thèse soutenue publiquement le 23 septembre 2016,
devant le jury composé de :

Pr. Jean Ponce
Ecole Normale Supérieure, Paris, France, Président
Pr. Martial Hebert
Carnegie Mellon University, Pittsburgh, PA, USA, Rapporteur
Dr. Ivan Laptev
Inria Paris, France, Rapporteur
Pr. Jitendra Malik
University of California at Berkeley, Berkeley, CA, USA, Examinateur
Dr. Cordelia Schmid
Inria Grenoble, Montbonnot, France, Directeur de thèse
Pr. Zaid Harchaoui
University of Washington, Seattle, WA, USA, Co-Directeur de thèse

i

Abstract

With the recent overwhelming growth of digital video content, automatic
video understanding has become an increasingly important issue. This thesis
introduces several contributions on two automatic video understanding tasks:
optical �ow estimation and human action localization.

Optical �ow estimation consists in computing the displacement of every
pixel in a video and faces several challenges including large non-rigid dis-
placements, occlusions and motion boundaries. We �rst introduce an optical
�ow approach based on a variational model that incorporates a new matching
method. The proposed matching algorithm is built upon a hierarchical multi-
layer correlational architecture and e�ectively handles non-rigid deformations
and repetitive textures. It improves the �ow estimation in the presence of
signi�cant appearance changes and large displacements. We also introduce a
novel scheme for estimating optical �ow based on a sparse-to-dense interpola-
tion of matches while respecting edges. This method leverages an edge-aware
geodesic distance tailored to respect motion boundaries and to handle oc-
clusions. Furthermore, we propose a learning-based approach for detecting
motion boundaries. Motion boundary patterns are predicted at the patch
level using structured random forests. We experimentally show that our ap-
proach outperforms the �ow gradient baseline on both synthetic data and
real-world videos, including an introduced dataset with consumer videos.

Human action localization consists in recognizing the actions that occur
in a video, such as `drinking' or `phoning', as well as their temporal and
spatial extent. We �rst propose a novel approach based on Deep Convolu-
tional Neural Network. The method extracts class-speci�c tubes leveraging
recent advances in detection and tracking. Tube description is enhanced
by spatio-temporal local features. Temporal detection is performed using
a sliding window scheme inside each tube. Our approach outperforms the
state of the art on challenging action localization benchmarks. Second, we
introduce a weakly-supervised action localization method, i.e., which does
not require bounding box annotation. Action proposals are computed by ex-
tracting tubes around the humans. This is performed using a human detector
robust to unusual poses and occlusions, which is learned on a human pose
benchmark. A high recall is reached with only several human tubes, allowing
to e�ectively apply Multiple Instance Learning. Furthermore, we introduce
a new dataset for human action localization. It overcomes the limitations
of existing benchmarks, such as the diversity and the duration of the videos.
Our weakly-supervised approach obtains results close to fully-supervised ones
while signi�cantly reducing the required amount of annotations.

Keywords: optical �ow, action localization, convolutional neural network,
video analysis, computer vision, machine learning

ii

Résumé

Avec la récente et importante croissance des contenus vidéos, la compré-
hension automatique de vidéos est devenue un problème majeur. Ce mémoire
présente plusieurs contributions sur deux tâches de la compréhension auto-
matique de vidéos : l'estimation du �ot optique et la localisation d'actions
humaines.

L'estimation du �ot optique consiste à calculer le déplacement de chaque
pixel d'une vidéo et fait face à plusieurs dé�s tels que les grands déplace-
ments non rigides, les occlusions et les discontinuités du mouvement. Nous
proposons tout d'abord une méthode pour le calcul du �ot optique, basée sur
un modèle variationnel qui incorpore une nouvelle méthode d'appariement.
L'algorithme d'appariement proposé repose sur une architecture corrélation-
nelle hiérarchique à plusieurs niveaux et gère les déformations non rigides
ainsi que les textures répétitives. Il permet d'améliorer l'estimation du �ot
en présence de changements d'apparence signi�catifs et de grands déplace-
ments. Nous présentons également une nouvelle approche pour l'estimation
du �ot optique basée sur une interpolation dense de correspondences clairse-
mées tout en respectant les contours. Cette méthode tire pro�t d'une distance
géodésique basée sur les contours qui permet de respecter les discontinuités du
mouvement et de gérer les occlusions. En outre, nous proposons une approche
d'apprentissage pour détecter les discontinuités du mouvement. Les motifs de
discontinuité du mouvement sont prédits au niveau d'un patch en utilisant
des forêts aléatoires structurées. Nous montrons expérimentalement que notre
approche surclasse la méthode basique construite sur le gradient du �ot tant
sur des données synthétiques que sur des vidéos réelles. Nous présentons à
cet e�et une base de données contenant des vidéos d'utilisateurs.

La localisation d'actions humaines consiste à reconnaître les actions pré-
sentes dans une vidéo, comme `boire' ou `téléphoner', ainsi que leur étendue
temporelle et spatiale. Nous proposons tout d'abord une nouvelle approche
basée sur les réseaux de neurones convolutionnels profonds. La méthode passe
par l'extraction de tubes dépendants de la classe à détecter, tirant parti des
dernières avancées en matière de détection et de suivi. La description des
tubes est enrichie par des descripteurs spatio-temporels locaux. La détection
temporelle est e�ectuée à l'aide d'une fenêtre glissante à l'intérieur de chaque
tube. Notre approche surclasse l'état de l'art sur des bases de données di�-
ciles de localisation d'actions. Deuxièmement, nous présentons une méthode
de localisation d'actions faiblement supervisée, c'est-à-dire qui ne nécessite
pas l'annotation de boîtes englobantes. Des candidats de localisation d'ac-
tions sont calculés en extrayant des tubes autour des humains. Cela est fait
en utilisant un détecteur d'humains robuste aux poses inhabituelles et aux
occlusions, appris sur une base de données de poses humaines. Un rappel
élevé est atteint avec seulement quelques tubes, permettant d'appliquer un
apprentissage à plusieurs instances. En outre, nous présentons une nouvelle

iii

base de données pour la localisation d'actions humaines. Elle surmonte les li-
mitations des bases existantes, telles la diversité et la durée des vidéos. Notre
approche faiblement supervisée obtient des résultats proches de celles totale-
ment supervisées alors qu'elle réduit signi�cativement l'e�ort d'annotations
requis.

Mots-clefs : �ot optique, localisation d'actions, réseaux de neurones convo-
lutionnels, analyse de vidéos, vision par ordinateur, apprentissage machine

v

Acknowledgements

It was an exceptional chance to work in this great environment with
fantastic colleagues. First of all, I would like to thank my supervisors,
Cordelia Schmid and Zaid Harchaoui, for their invaluable guidance, sup-
port and drive for excellence. In particular, Cordelia's experience, intu-
ition and vision have been extremely precious during all these years and
Zaid's openness, contagious enthusiasm and scienti�c culture have made
me pushed past my boundaries and allowed me to technically and scien-
ti�cally progress throughout all projects. Furthermore, I am grateful to
Professor Jitendra Malik for o�ering me the chance to visit UC Berkeley.
I would also like to thank my co-authors Jérome Revaud and Xavier Mar-
tin. Daily discussions with Jérome have lead to exciting work in optical
�ow estimation. The collaboration with Xavier has been extremely pre-
cious, especially for solving the numerous challenges when collecting the
DALY dataset. Without them, this work will not exist in this form. Be-
sides my supervisors and co-authors, I would like to thank the interns I
have supervised during my PhD, Quentin Cormier and Erwan Le Roux.
This experience was extremely valuable. Many thanks go to my jury mem-
bers � Professor Martial Hebert, Doctor Ivan Laptev, Professor Jitendra
Malik and Professor Jean Ponce � for agreeing to evaluate my work. I am
also grateful to all the colleagues I met over the past few years. They are
too many to be exhaustively cited here. My special thanks go to Mattis
Paulin, Nicolas Chesneau, Gregory Rogez, Guillaume Fortier, and to my
o�ce mates Thomas Mensink, Zeynep Akata, Dan Oneata, Shreyas Sax-
ena, Vicky Kalogeiton and Valentin Thomas, for the valuable and daily
discussions we had and their support during these years. I would also like
to thank Nathalie Gillot who helped me in all administrative tasks. I �nally
cannot express how grateful I am to my family and friends for their tireless
and unconditional support.

Contents

Contents vii

1 Introduction 1
1.1 Goals . 3
1.2 Context . 7
1.3 Contributions . 10

I Optical Flow Estimation in Re-
alistic Videos 17

2 Related Work on Optical Flow 18
2.1 Optical Flow . 19
2.2 Variational approaches . 22
2.3 Other optical �ow approaches 27
2.4 Image matching in optical �ow estimation 29
2.5 Datasets and evaluation . 31

3 DeepFlow: Large Displacement Optical Flow with Deep-
Matching 35
3.1 Introduction . 35
3.2 DeepMatching . 38
3.3 Extensions of DeepMatching 52
3.4 DeepFlow . 54
3.5 Experiments . 56
3.6 Conclusion . 75

4 EpicFlow: Edge-Preserving Interpolation of Correspon-
dences for Optical Flow 76
4.1 Introduction . 76
4.2 Sparse-to-dense interpolation 80

vii

CONTENTS viii

4.3 Optical Flow Estimation . 85
4.4 Experiments . 86
4.5 Conclusion . 95

5 Learning to Detect Motion Boundaries 96
5.1 Introduction . 96
5.2 Learning motion boundary detection 100
5.3 Datasets and evaluation protocol 103
5.4 Experimental results . 107
5.5 Conclusion . 115

IIAction Localization in Uncon-
trolled Videos 117

6 Related Work on Action Localization 118
6.1 Video classi�cation . 118
6.2 Action localization . 122
6.3 Datasets and metrics . 124

7 Action-speci�c Tracks for Action Localization 128
7.1 Introduction . 128
7.2 Overview of the approach 130
7.3 Detailed description of the approach 131
7.4 Experimental results . 137
7.5 Conclusion . 144

8 Human Tracks for Weakly-Supervised Action Localization146
8.1 Introduction . 146
8.2 Dataset and evaluation . 150
8.3 Building human tubes . 151
8.4 Weakly-supervised human tube classi�er 156
8.5 Experimental results . 161
8.6 Conclusion . 165

9 Conclusion 166
9.1 Summary of contributions 166
9.2 Perspectives for future research 170

Bibliography 178

CONTENTS ix

A Computation of optical �ow using variational models 198
A.1 Optimization . 199
A.2 Linear solver . 202
A.3 Summary of the algorithm 204

B The DALY dataset 206
B.1 Dataset collection . 206
B.2 Dataset statistics . 208

Chapter 1

Introduction

Contents

1.1 Goals . 3

1.2 Context . 7

1.3 Contributions . 10

1.3.1 Optical �ow estimation 10

1.3.2 Human action localization 13

Automatic video understanding is increasingly relevant as the number
and the quality of capturing devices have signi�cantly grown over the past
few years. For instance, in 2014, YouTube has more than one billion visitors
watching hundreds of millions of hours of videos every day 1. In 2015,
YouTube's CEO revealed that more than 400 hours of videos are uploaded
every minute 2. In 2019, videos are expected to represent 80% of the internet
tra�c, and it would take one person over 5 million years to watch the
amount of videos that will cross global IP networks each month 3. With the
overwhelming amount of video data, designing an automatic tool to analyze
and understand this content has become a critical issue.

An example of application is illustrated in Figure 1.1. A user may need
to retrieve a particular video instant in his personal collection which con-
tains a huge number of photos and videos, captured by various devices such
as cameras, smartphones, tablets or action cameras (e.g . GoPro). Such
clip retrieval will require to identify people and to recognize the performed
actions as well as their extent in the videos. Signi�cant progress has been
made in computer vision over the past few years, in particular in face recog-
nition (detection, identi�cation, veri�cation) and in image analysis (object

1. https://www.youtube.com/yt/press/statistics.html
2. http://www.reelseo.com/
3. http://www.cisco.com/

1

CHAPTER 1. INTRODUCTION 2

personal videos collection

request:
`John playing harmonica'

Figure 1.1 � Illustration of requesting for a particular video instant in a col-
lection. Based on the search John playing harmonica, the system retrieves
video clips in which this happens.

detection and segmentation, image captioning). As an example, Facebook
automatically identi�es people in newly uploaded photos and Google Photos
allows to organize or search photos by people, places or objects. Neverthe-
less, the generalization to videos requires tools to e�ciently analyze video
content, and in particular human actions.

Videos span a wide range of sources and applications: indexing and
retrieving videos from personal cameras, internet content platforms (e.g .
YouTube, Facebook, Dailymotion), TV shows or movies; analyzing the
surrounding environment for autonomous robots (e.g . autonomous cars,
drones) or enhancing connected objects (e.g . augmented reality glasses);
recognizing poses and motion for human-machine interfaces (e.g . Kinect);
recognizing and predicting actions as well as behaviors for video-surveillance;
tracking players and recognizing �ne-grained actions in sports videos.

Making computers able to understand and interpret a huge amount of
videos is thus fundamental. Compared to images, videos also convey the
dynamics of a real-world scene over a given period of time that can vary
from few milliseconds to multiple hours. This dynamic is a rich source of
information, and analyzing it is what separates video understanding from
image understanding. This explains why most video representation models
[Laptev, 2005, Wang et al., 2013, Simonyan and Zisserman, 2014] integrate a
component which describes the motion in the scene. For instance, Figure 1.2
illustrates a pipeline for action recognition [Wang et al., 2013] in which

CHAPTER 1. INTRODUCTION 3

classificationdescriptortrajectory
extraction

motion
estimation

drinking

Figure 1.2 � Illustration of an action recognition pipeline [Wang et al., 2013].
First, the motion is estimated and used to extract trajectories. Then, a
video description is built, based on static and motion cues. Finally, the
description is fed to a classi�er to predict the label.

timetime

Figure 1.3 � Example of spatio-temporal action localization of the class
drinking from the DALY dataset [Weinzaepfel et al., 2016]. The boxes in
yellow represent the ground-truth spatial localization of the action during
its temporal extent.

estimated motion is used for extracting trajectories and describing them.
Our work focuses on human actions and in particular on the problem of
localizing them in uncontrolled videos. For instance, Figure 1.3 shows an
example of localization in space and time of the drinking action from the
DALY dataset [Weinzaepfel et al., 2016]. As recently shown by Jhuang
et al. [2013] and Varol et al. [2016], the quality of the estimated motion
in the video representation has an impact on the performance. We hence
study the problem of optical �ow estimation, in particular in the case of
non-rigid large displacements, such as the motion of human limbs. Indeed,
state-of-the-art optical �ow methods tend to perform poorly on fast motion,
as highlighted by the MPI-Sintel dataset [Butler et al., 2012].

1.1 Goals

This dissertation addresses two important problems in video under-
standing. The �rst one is low-level and consists in estimating optical �ow in
realistic videos, i.e., with fast non-rigid motion such as human motion. The
second task is higher-level and consists in detecting generic human actions

CHAPTER 1. INTRODUCTION 4

image occlusion map

ground-truth optical �ow color coding

Figure 1.4 � Example optical �ow from the MPI-Sintel dataset [Butler et al.,
2012] with the image (top left), the ground-truth �ow (bottom left) using
the color code shown in bottom right, and the occluded pixels represented
in red (top right).

in uncontrolled videos. We now brie�y present these two tasks, as well as
the challenges involved in each.

Optical �ow estimation in realistic videos

Optical �ow estimation consists in computing a motion vector for ev-
ery pixel in a video. Figure 1.4 shows an example of ground-truth optical
�ow from the MPI-Sintel dataset [Butler et al., 2012]. Despite signi�cant
progress over the past decades, optical �ow estimation in videos remains
challenging, especially in the case of fast motion of small parts [Brox and
Malik, 2011]. Such motion typically appears for deformable objects such as
humans (see the limbs of the leftmost character in Figure 1.4). This dis-
sertation is thus concerned with estimating optical �ow in realistic videos,
i.e., with possibly fast non-rigid motion. Estimating optical �ow in realistic
videos also implies facing challenges, such as motion discontinuities, occlu-
sions, large displacements and varying lighting conditions. We now present
these challenges in more detail.

The �rst one consists in respectingmotion discontinuity. The motion
of a complex scene can be decomposed into independent moving objects,
i.e., layers, each one with smooth motion. Detecting the motion disconti-
nuities is thus capital for an accurate optical �ow estimation. Incorporating

CHAPTER 1. INTRODUCTION 5

discontinuities into the motion model is also di�cult as most of the math-
ematical formulations require a continuous function. In addition, modeling
the motion discontinuities and the smooth motion inside each independent
layer at the same time is extremely challenging.

The second di�culty consists in handling occlusions. Since multiple
objects move independently, foreground objects make parts of the back-
ground layers appear and disappear in each frame of the video. In a similar
spirit, objects can enter or leave the �eld-of-view of the camera. For in-
stance, in Figure 1.4, large occluded areas appear at the bottom and right
borders due to camera motion, and at motion discontinuities. Estimating
optical �ow in these areas requires a high-level and long-term understanding
of the motion in the scene.

The third challenge concerns large non-rigid displacements. These
displacements are frequent in real-world videos. A typical example is the
limbs of the humans that have fast motion, especially compared to their size.
For instance, in Figure 1.4, the hands and the feet of the left character have
motion that are not related to his torso. For small objects, few pixels can
be used as evidence for their displacements. Moreover, large displacements
add other di�culties, such as strong discontinuities, motion blur, or wide
changes in shapes and appearances across frames due to video compression.

A fourth di�culty lies in variations of the lighting conditions. The
appearance of a given object may vary throughout the video due to changes
in the lights. In the same spirit, if an object enters in the shadow of another
one, its color appearance will abruptly change. Optical �ow models must
incorporate such cases for accurate estimation.

Finally, optical �ow is a low-level cue used for higher-level tasks such
as action recognition or tracking. Consequently, e�ciency is capital for
computing �ows in a huge amount of videos or for real-time processing.

Human action localization in uncontrolled videos

The second task consists in localizing actions in videos, i.e., recogniz-
ing actions as well as their temporal extent and the spatial extent of the
actor(s). For instance, Figure 1.3 shows one instance for the drinking class
from the DALY dataset [Weinzaepfel et al., 2016] and Figure 1.5 shows an
example video from the same dataset with a human performing multiple
short actions in a long YouTube video. This dissertation addresses hu-
man action localization (called also human action detection), both in space
and time, in uncontrolled videos. This problem faces multiple challenges
such as designing a representation both robust to intra-class variability, and
su�ciently discriminative in order to avoid inter-class confusion, as well as

CHAPTER 1. INTRODUCTION 6

man ironing
folding textile
drinking

0:00 1:00 2:00 3:00

Figure 1.5 � Example of spatio-temporal action localization in a long
untrimmed video from the DALY dataset [Weinzaepfel et al., 2016]. Tem-
poral extent of the actions performed by the man are shown in green.

di�culties due to the localization in space and time. We now describe these
challenges in more detail.

Some di�culties are due to intra-class variability. Appearance and
motion may signi�cantly di�er between instances of a class. This is caused
by di�erences in capturing conditions (e.g . camera motion, wide range of
viewpoint, occlusion and lighting conditions) and variations in the execu-
tion style of an action (e.g . motions, poses, objects involved, speed). All
these variations, highlighted by Figure 1.6, make modeling human action in
uncontrolled videos challenging. Simple assumptions such as constant po-
sition of the human throughout the videos are not adequate for real-world
data.

Another set of challenges are due to inter-class confusion. Di�er-
ent actions may share similar motions (e.g . drinking and smoking), similar
objects (e.g . phoning and taking photo can both be performed with a smart-
phone) or similar poses (e.g . stand up and sitting down). For instance, hand
movement happens near the mouth for the 3 actions shown in Figure 1.6.
Designing an action model which is robust to intra-class variability and
discriminative between classes is thus extremely di�cult.

Localizing actions in addition to recognizing them adds several chal-
lenges. Spatial localization is a di�cult task as the human locations may
vary throughout the videos, or the actors may be partially visible. As a
consequence, per-frame detectors may not have a perfect recall and trackers
may fail. In addition, in the case of crowded scenes, many humans might be
present at the same time with multiple action instances co-occurring. More-
over, each human can perform multiple actions, see Figure 1.5, possibly at
the same time. For instance, one may be phoning while running. Tempo-
ral localization adds other challenges as it requires to accurately detect the
di�erent phases such as starting time and end time. Furthermore, action

CHAPTER 1. INTRODUCTION 7
B
ru
sh
in
g

T
ee
th

P
la
y
in
g

H
ar
m
on
ic
a

D
ri
n
k
in
g

Figure 1.6 � Example frames for 3 classes from the DALY dataset [Weinza-
epfel et al., 2016].

can last only several seconds in videos of multiple minutes, see Figure 1.5.
Finally, the level of supervision required for training an accurate hu-

man action localization approach is important. A fully-supervised model,
i.e. which requires bounding box annotations around the human perform-
ing an action for training, can be extended to many action classes only at
the cost of a huge annotation e�ort. Reducing the supervision, for instance
to video labels or to the temporal extent of the actions in training videos,
is necessary for a better and easier generalization.

1.2 Context

Automatic video understanding is one of the main challenge in com-
puter vision. Making computers able to capture the dynamics of a scene
started in the 1970s. The �rst attempts have mainly studied the prob-
lem of segmenting moving objects in a scene or separating the foreground
from the background [Martin and Aggarwal, 1977, Jain et al., 1977]. Most
of these works rely on the di�erence between consecutive images in a se-
quence [Jain and Nagel, 1979]. Some other approaches proposed models to
estimate the velocity �eld and its discontinuity [Fennema and Thompson,
1979, Nakayama and Loomis, 1974], assuming rigid objects.

More robust models for motion estimation appeared in the 1980s based
on optical �ow. Optical �ow describes the apparent motion of an image
brightness pattern. In general, optical �ow is a projection of the motion

CHAPTER 1. INTRODUCTION 8

�eld that links pixels between 2D frames. Nevertheless, a small di�erence
is that optical �ow may also be due to di�erence in brightness pattern
not related to motion; for instance due to changes in lighting conditions.
Optical �ow and motion estimation are often confused in the literature, in
particular when models integrate a constancy assumption of the gradient,
as this is the case in this dissertation. In their pioneering work, Horn
and Schunck [1981] minimize a global energy composed of a data-�delity
term and a smoothness term to estimate the optical �ow. This formulation
has been improved over the years [Black and Anandan, 1996, Brox et al.,
2004, Bruhn et al., 2005a, Werlberger et al., 2009, Baker et al., 2011, Vogel
et al., 2013a, Sun et al., 2014b] and obtains excellent performance on small
displacements. Integration of image matching [Tola et al., 2008, Brox and
Malik, 2011, Xu et al., 2012] was recently proposed in order to improve
robustness to large displacements, as highlighted by the performance on
MPI-Sintel benchmark [Butler et al., 2012], see Figure 1.7. Optical �ow
has been widely used in computer vision as a motion �eld for a variety of
tasks such as tracking [Mae et al., 1996, Shin et al., 2005], driver assistance
systems [Geiger et al., 2013, Fletcher et al., 2003, Sun et al., 2004], motion
segmentation [Brox and Malik, 2010, Papazoglou and Ferrari, 2013], or
action recognition [Wang et al., 2013, Simonyan and Zisserman, 2014].

Recognizing human actions is a higher-level task in video understand-
ing. First attempts from the 1990s were based on volumetric human mod-
els [Rohr, 1994, Campbell et al., 1996] and then simpli�ed by using 2D
silhouettes [Brand, 1999]. In the same spirit, Bobick and Davis [2001] rep-
resent the temporal evolution of a silhouette using Motion History Images.
Nevertheless, these models are limited to constrained capturing conditions
since they rely on background subtraction or silhouette extraction. Thus,
they can not generalize well to real-world videos. Driven by their success
on image classi�cation, local features [Chomat and Crowley, 1999, Schüldt
et al., 2004, Dollár et al., 2005, Laptev, 2005, Wang et al., 2013] have been
widely used in the 2000s. They either describe the appearance [Kläser
et al., 2008, Gorelick et al., 2007] or the optical �ow [Laptev et al., 2008,
Wang et al., 2013]. Actions are represented by an aggregation of the local
features, for instance based on bag-of-words [Sivic and Zisserman, 2003]
or on Fisher Vectors [Sánchez et al., 2013]. Local feature representations
have been successfully applied in real-world videos thanks to their lack of
global assumptions such as geometric relations. To improve these mod-
els with a more structured description, several extensions were proposed
such as spatio-temporal pyramids [Laptev et al., 2008] or stacking over
supervoxels [Peng et al., 2014]. More recently, the temporal order of the
features [Gaidon et al., 2013, Fernando et al., 2015] has been integrated.

CHAPTER 1. INTRODUCTION 9

2012 2013 2014 2015 2016
5

6

7

8

9

10

Classic+NL

Horn+Schunk

NLTGVLDOF

MDP-Flow

DeepFlow

DeepFlow*

SparseFlowFused

EpicFlow

FlowFields

DiscreteFlow

variational methods

variational methods
with matching

matching interpolation
 + refinement

year

EPE

Figure 1.7 � Schematic view of the advances in optical �ow methods. The
reported results is the average endpoint error (EPE) on the MPI-Sintel
dataset [Butler et al., 2012]. Methods are grouped into 3 categories: vari-
ational methods, variational methods integrating matching, matching in-
terpolation followed by a variational re�nement. Our methods, DeepFlow
(and its improved version DeepFlow∗) and EpicFlow, are shown in bold.
The three areas are shown for better readability but do not rely on any
theoretical limit of the categories.

CHAPTER 1. INTRODUCTION 10

For localizing human actions, the �rst models were either based on
cuboids [Laptev and Pérez, 2007, Cao et al., 2010, Yuan et al., 2009] or
on �gure-centric models [Kläser et al., 2010, Lan et al., 2011]. Cuboids,
i.e., �xed human positions over frames, can not generalize to the case of
moving actors or moving camera. Figure-centric models leverage a human
detector [Kläser et al., 2010] or treat the actor position as a latent vari-
able [Lan et al., 2011]. Moeslund et al. [2006] decompose human action
recognition systems into four stages. The �rst one is an initialization step
which consists in detecting the human at the beginning of a video. The
second step consists in tracking this human throughout the video. Third,
the human track is modeled, using for instance a pose representation. This
modeled feature is �nally used for classi�cation. More recently, other ap-
proaches have been proposed based on extensions of successful methods for
object detection in images, such as part-based models or proposals. For in-
stance, Tian et al. [2013] extend the deformable parts model [Felzenszwalb
et al., 2010] to videos. Proposals have been extended to actions in videos,
for instance based on clustering supervoxels [Jain et al., 2014b, Oneata
et al., 2014a] or trajectories [van Gemert et al., 2015, Marian Puscas et al.,
2015].

1.3 Contributions

1.3.1 Optical �ow estimation

Our work on optical �ow focuses on the case of large displacements, oc-
clusions and discontinuities. After reviewing related work in Chapter 2, we
describe our three contributions. The �rst one is a variational approach
(DeepFlow) that integrates a new matching algorithm (DeepMatching),
leading to a signi�cant boost in performance, see Figure 1.7. The second
contribution is a novel scheme (EpicFlow) for interpolating matches while
respecting the edges, before performing a full-scale variational approach.
EpicFlow has opened a new category of methods based on matches' interpo-
lation, see Figure 1.7. Our third contribution is a learning-based approach
to detect motion boundaries. We now present these three contributions in
more detail.

DeepFlow: Large displacement optical �ow with DeepMatching.
Inspired by the large displacement optical �ow (LDOF) of Brox and Malik
[2011], we introduce DeepFlow which blends a new matching algorithm,
called DeepMatching, with a variational approach for optical �ow. Deep-

CHAPTER 1. INTRODUCTION 11

Figure 1.8 � Illustration of possible matches obtained with DeepMatching.
Left: patch hierarchy in the �rst image: each squared patch is composed of
four quadrants. Right: one possible displacement of corresponding patches
in the second image: each of the four quadrants can move, according to its
parent displacement, in any direction for a limited extent.

Matching relies on a hierarchical, multi-layer, correlational architecture de-
signed for matching images and was inspired by deep convolutional ap-
proaches. The proposed matching algorithm can handle non-rigid deforma-
tions, repetitive textures, and e�ciently determines dense correspondences
in the presence of signi�cant changes between images. Figure 1.8 illustrates
the approach. We evaluate the performance of DeepMatching, in compari-
son with state-of-the-art matching algorithms, on the Mikolajczyk [Mikola-
jczyk et al., 2005], the MPI-Sintel [Butler et al., 2012] and the Kitti [Geiger
et al., 2013] datasets. DeepMatching outperforms the state-of-the-art algo-
rithms and shows excellent results, especially for repetitive textures. For
optical �ow estimation, DeepFlow is competitive with the state of the art
on public benchmarks thanks to additional robustness to large displace-
ments and complex motion obtained by integrating DeepMatching. This
work was published in ICCV'13 [Weinzaepfel et al., 2013], will appear soon
in IJCV [Revaud et al., 2016], and is presented in Chapter 3.

EpicFlow: Edge-Preserving Interpolation of Correspondences for
Optical Flow. We propose a novel approach for optical �ow estimation,
targeted at large displacements with signi�cant occlusions. The method is
based on an edge-preserving dense interpolation of a sparse set of matches.
The sparse-to-dense interpolation relies on an appropriate choice of the dis-
tance, namely an edge-aware geodesic distance. This distance is tailored to
handle occlusions and motion boundaries � two common and di�cult issues
for optical �ow computation. We also propose an approximation scheme for
the geodesic distance to allow fast computation without loss of performance.

CHAPTER 1. INTRODUCTION 12

Contour

Matching

Energy
Minimization

First Image

Second Image

Dense
Interpolation

Figure 1.9 � Overview of EpicFlow. Given two images, we compute matches
using DeepMatching [Revaud et al., 2016] and the edges of the �rst image
using SED [Dollár and Zitnick, 2013]. We combine these two cues to densely
interpolate matches and obtain a dense correspondence �eld. This is used
as initialization of a one-level energy minimization framework.

input patch

Image

Optical flow

Structured output

Figure 1.10 � Illustration of the motion prediction process with our struc-
tured decision tree. Given an input patch from the left image (represented
here by image and �ow channels), we predict a binary boundary mask, i.e.,
a leaf of the tree. Predicted masks are averaged across all trees and all
overlapping patches to yield the �nal soft-response boundary map.

Subsequent to the dense interpolation step, standard one-level variational
energy minimization is carried out to re�ne the �ow estimation. The pro-
posed approach, called Edge-Preserving Interpolation of Correspondences
(EpicFlow) is fast and robust to large displacements. Figure 1.9 summa-
rizes the approach. This work was published in CVPR'15 [Revaud et al.,
2015] and is presented in Chapter 4.

CHAPTER 1. INTRODUCTION 13

Motion boundaries detection. We introduce a learning-based approach
for motion boundaries detection. The proposed method relies on a struc-
tured random forest trained on the ground-truth of the MPI-Sintel dataset.
The random forest leverages several cues at the patch level, namely appear-
ance (RGB color) and motion cues (optical �ow estimated by state-of-the-
art algorithms). Figure 1.10 summarizes the motion boundaries detection
process. Experimental results show that the proposed approach is both
robust and computationally e�cient. It signi�cantly outperforms state-
of-the-art motion-di�erence approaches on the MPI-Sintel and Middlebury
datasets. We compare the results obtained with several state-of-the-art op-
tical �ow approaches and study the impact of the di�erent cues used in the
random forest. Furthermore, we introduce a new dataset, the YouTube Mo-
tion Boundaries dataset (YMB), that comprises 60 sequences taken from
real-world videos with manually annotated motion boundaries. On this
dataset, our approach, although trained on MPI-Sintel, also outperforms
by a large margin state-of-the-art algorithms based on optical �ow. This
work was published in CVPR'15 [Weinzaepfel et al., 2015b] and is presented
in Chapter 5.

1.3.2 Human action localization

Our work on action localization is built upon successful detectors in im-
ages and tracking-by-detection approaches. By combining these two compo-
nents, we obtain candidate localization of the actions, which can be repre-
sented by classical aggregation of local features. Furthermore, we also show
that accurate results can be obtained without spatial supervision. After
reviewing related work in Chapter 6, we introduce the two following contri-
butions: an action-speci�c tracker for fully-supervised action localization,
and a human-speci�c tracker for weakly-supervised action localization. We
now present these two contributions in more detail.

Action-speci�c tracks for fully-supervised action localization. We
propose an e�ective approach for spatio-temporal action localization in re-
alistic videos. The approach �rst detects proposals at the frame-level and
scores them with a combination of static and motion CNN features. It
then tracks high-scoring proposals throughout the video using a tracking-
by-detection approach. Our tracker relies simultaneously on instance-level
and class-level detectors. The tracks are scored using aggregation of local
features in combination with the CNN features. Finally, we perform tempo-
ral localization of the action using a sliding window at the track level. We
outperform the state of the art for spatio-temporal action localization on

CHAPTER 1. INTRODUCTION 14

frame-level candidates
object proposals and CNN action classifiers

time

scoring
CNN + local features

temporal detection
sliding window

tracking best candidates

Figure 1.11 � Overview of our fully-supervised action localization approach.
We detect frame-level object proposals and score them with CNN action
classi�ers. The best candidates, in term of scores, are tracked throughout
the video. We then score the tracks with CNN and local features classi�ers.
Finally, we perform a temporal sliding window for detecting the temporal
extent of the action.

the UCF-Sports, J-HMDB and UCF-101 datasets. This work was published
in ICCV'15 [Weinzaepfel et al., 2015a] and is presented in Chapter 7.

Human-speci�c tracks for weakly-supervised action localization.
We present a novel approach for weakly-supervised action localization, i.e.,
that does not require per-frame spatial annotations for training. We �rst
introduce an e�ective method for extracting human tubes by combining a
state-of-the-art human detector with a tracking-by-detection approach. Our
tube extraction leverages the large amount of annotated humans available
today and outperforms the state of the art by an order of magnitude: with
less than 5 tubes per video, we obtain a recall of 95% on the UCF-Sports
and J-HMDB datasets. Given these human tubes, we perform weakly-
supervised selection based on multi-fold Multiple Instance Learning (MIL)
with dense trajectories and achieve excellent results. We obtain a mAP
of 84% on UCF-Sports, 54% on J-HMDB and 45% on UCF-101, which
outperforms the state of the art for weakly-supervised action localization
and is close to the performance of the best fully-supervised approaches.
In addition, we introduce a new realistic dataset for action localization,
named DALY (Daily Action Localization in YouTube). It contains high
quality temporal and spatial annotations for 10 actions in 31 hours of videos
(3.3M frames), which is an order of magnitude larger than standard action
localization datasets. Figure 1.13 compares the main features of DALY

CHAPTER 1. INTRODUCTION 15

human tubes
extraction

multifold
MIL classifier

T
R
A
I
N
I
N
G

T
E
S
T

human tubes
selection

human tubes
description
(FV+IDT)

+ classification

Kicking

Kicking

Kicking

Diving

Walking

(FV+IDT)

Figure 1.12 � Overview of our weakly-supervised action localization method.
For training, we extract human tubes for all videos using a human detector
and a human-speci�c tracker. These tubes are described using Improved
Dense Trajectories [Wang et al., 2015]. Multiple-Instance Learning is then
used to learn a classi�er from video labels. At test time, human tubes are
extracted with their features and the learned classi�er is used to predict the
label.

CHAPTER 1. INTRODUCTION 16

classes

diversity

video
duration

instances

video
resolution

DALY

classes

diversity

video
duration

instances

video
resolution

UCF-Sports

classes

diversity

video
duration

instances

video
resolution

J-HMDB

classes

diversity

video
duration

instances

video
resolution

UCF-101

classes

diversity

video
duration

instances

video
resolution

MSR-2

Figure 1.13 � Comparison of the DALY dataset [Weinzaepfel et al., 2016]
with existing action detection datasets.

with existing spatio-temporal action localization datasets. On the DALY
dataset, our tubes have a spatial recall of 82%, but the localization task
is extremely challenging, we obtain 10.8% mAP. This work is presented in
Chapter 8.

Part I

Optical Flow Estimation in

Realistic Videos

17

Chapter 2

Related Work on Optical Flow

Contents

2.1 Optical Flow . 19

2.1.1 Optical Flow Constraint 19

2.1.2 Local approach 20

2.1.3 Global approach 21

2.2 Variational approaches 22

2.2.1 Data term . 22

2.2.2 Regularization term 24

2.2.3 Coarse-to-�ne scheme 25

2.2.4 Minimization 26

2.3 Other optical �ow approaches 27

2.3.1 Layered and segmentation-based methods . . . 27

2.3.2 Learning-based methods 28

2.3.3 Discrete optimization 28

2.4 Image matching in optical �ow estimation 29

2.4.1 Image matching 29

2.4.2 Integration of matching in optical �ow estimation 30

2.5 Datasets and evaluation 31

2.5.1 Metrics . 31

2.5.2 Datasets . 32

In this chapter, we review related work on optical �ow estimation and
present the datasets and metrics used for evaluation. We start by intro-
ducing optical �ow in Section 2.1. Most existing optical �ow methods are
based on a variational formulation. We give more details on variational
methods in Section 2.2 and brie�y present other approaches in Section 2.3.

18

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 19

Recently, image matching was integrated into optical �ow formulation. We
review image matching as well as their integration into optical �ow models
in Section 2.4. Finally, Section 2.5 presents the datasets and metrics for
evaluating optical �ow methods.

2.1 Optical Flow

When viewing a sequence of images, e.g . when watching a movie, the
human gets the illusion of motion while objects are simply represented at
di�erent locations in each still image. Motion perception is actually inferred
by illumination changes of a point at the retina with connection to the
neighboring points. Optical �ow denotes these changes of the brightness
pattern over time. It represents the 2D vectors that link points of two
consecutive images together, i.e., it is the 2D projection of the real-world
3D motion. We review in this section the basic concepts of optical �ow.

2.1.1 Optical Flow Constraint

Let I1 and I2 be two consecutive images, de�ned in the space Ω ⊂ R2.
The task consists in estimating the optical �ow w : Ω → R2 between
these two images. For each pixel x = (x, y)> ∈ Ω, the �ow w(x) can be
decomposed in its x− and y− component w(x) = (u(x), v(x))>.

The most basic assumption for optical �ow is the constancy of the bright-
ness along the displacement, for instance used by Horn and Schunck [1981]
and Lucas and Kanade [1981]:

I1

(
x
)

= I2

(
x+w(x)

)
. (2.1)

Assuming that the images are smooth and the displacements are small,
�rst order Taylor expansion can be applied, resulting in: I2

(
x + w(x)

)
=

I2(x) + Ixu(x) + Iyv(x) with Ix = ∂I2
∂x

and Iy = ∂I2
∂y
. If we denote by It the

temporal derivative It = I2 − I1, we obtain:

It + Ixu+ Iyv = 0 = It + (∇>2 I)w = (∇>3 I)W , (2.2)

where ∇2 denotes the 2D partial derivatives, i.e., ∇2 = (∂
∂x
, ∂
∂y

)>, ∇3

denotes the 3D partial derivatives, i.e., ∇3 = (∂
∂x
, ∂
∂y
, ∂
∂t

)>, and W =

(u, v, 1)>. Equation 2.2 is well known as the optical �ow constraint.
This equation with two unknowns is ill-posed. This ambiguity is called

the aperture problem. Consider for instance a moving edge structure seen
through an aperture. The motion can only be estimated along the normal

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 20

Figure 2.1 � Illustration of the aperture problem. Di�erent motions can
explain the repetitive pattern observed in the circle.

of this edge. In the same spirit, if a moving repetitive texture is seen
through the aperture (with the borders out of the �eld of view), its motion
is ambiguous, see Figure 2.1.

Additional constraints must be added to make Equation 2.2 well-posed.
These constraints can be either global or local, resulting in two families of
approaches that we now describe.

2.1.2 Local approach

Local approaches for optical �ow estimate the displacement at one pixel
based only on information around this pixel. A classical example is the work
from Lucas and Kanade [1981]. The optical �ow constraint (Equation 2.2)
is solved for a pixel x based on the assumption that the motion �eld is
constant in the neighborhood N (x) of x. An overdetermined system of
equations is obtained and the �ow can be computed by minimizing the
least squared errors:

E
(
w(x)

)
=

∑
x'∈N (x)

g(x',x)
((
∇>3 I(x')

)
W(x)

)2

, (2.3)

where g is a weighting function which typically decreases when the distance
between x and x' increases. This energy function being convex, the global
minimum of Equation 2.3 is obtained when the derivatives with respect to
the components of the �ow are zeros:

∂E
(
w(x)
)

∂u
=
∑
g
(
ItIx + uI2

x + vIyIx
)

= 0 ,

∂E
(
w(x)
)

∂v
=
∑
g
(
ItIy + uIxIy + vI2

y

)
= 0 .

(2.4)

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 21

This set of equations can be written in a matrix form:(∑
gI2

x

∑
gIxIy∑

gIxIy
∑
gI2

y

)
w(x) =

(∑
gItIx∑
gItIy

)
. (2.5)

LetM be the 2×2 matrix on the left. When rank(M) = 2, the least-squares
estimate is given by inverting Equation 2.5. This is when the local image
structure over the neighborhood contains su�cient information for solving
the aperture problem. The optical �ow can thus be estimated in a sparse
set of points where the problem is well-posed. If a dense �eld is needed, one
can increase the size of the neighborhood at the cost of assuming a constant
displacement over a larger area. This assumption is not valid for realistic
videos. Various modi�cations have thus been proposed over the years, e.g .
using a coarse-to-�ne scheme, more robust penalties or layers. We refer to
[Baker and Matthews, 2004] for an overview of them.

2.1.3 Global approach

A dense optical �ow �eld is required in many applications. In addition,
local approaches can not accurately estimate the �ow in a number of the
image regions such as homogeneous areas. To overcome these limitations,
global approaches were proposed. They leverage a smoothness term to
propagate the �ow in poorly textured areas. The �rst global approach was
proposed in the seminal work of Horn and Schunck [1981]. An energy E,
sum of a data term Edata, that penalizes the violation of the optical �ow
constraint, and of a smoothness term Esmooth, that penalizes a strong optical
�ow gradient, is minimized:

E(w) =

∫
Ω

Edata(w) + αEsmooth(w)dx . (2.6)

Horn and Schunck [1981] use a L2 penalty of the �ow gradient as smoothness
term Esmooth(w) = ‖∇2w‖2

2 and a L2 penalty of the optical �ow constraint
as data term Edata(w) = ((∇>3 I)W)2 = W>J0W with J0 being the tensor
de�ned by J0 = (∇3I)(∇>3 I). This global energy is minimized using a
variational formulation most of the time, i.e. the goal is to �nd the extrema
of a functional. Variational methods have been widely used over the years
and we review related work in the next section. Our proposed optical �ow
models, DeepFlow and EpicFlow, both involve a variational formulation.

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 22

2.2 Variational approaches

Variational models are based on the minimization of a global energy,
composed of a data term and a smoothness term. We review in this section
formulations for both terms, as well as the minimization techniques.

2.2.1 Data term

The data term measures the consistency of the optical �ow with respect
to the input images. Horn and Schunck [1981] use a quadratic penaliza-
tion of the optical �ow constraint, i.e., the linearization of the brightness
constancy assumption. Nevertheless, this assumption is often violated, for
instance in case of illumination changes or moving shadows. The data term
has been improved over the years by adding other constancy assumptions
and by using robust penalizers.

Constancy assumption. When dealing with multi-band images, the
brightness constancy assumption can be replaced by a color constancy as-
sumption. A straightforward way of dealing with color images is to sum
over channels the constancy term of each color. More sophisticated models
[Markandey and Flinchbaugh, 1990, Golland and Bruckstein, 1997, Zimmer
et al., 2009] with multi-banded images have been introduced. For instance,
Zimmer et al. [2009] use separate norms and gradients in the HSV col-
orspace.

Instead of relying on brightness or color constancy, it is also possible to
consider any features based on the images. Such approaches have already
been proposed in the 1980s [Burt et al., 1983, Anandan, 1989]. More re-
cently, Brox et al. [2004] have proposed to use a constancy of the gradient,
combined with the classical color constancy assumption. The gradient has
the advantage of being more robust to illumination changes. Nevertheless,
such constraints assume that the �ow is locally translational. For instance,
the gradient will change in case of rotation or scaling, in contrast to the
color.

More complex constancy assumption can be used, as for instance the
constancy of the Hessian. Papenberg et al. [2006] and Vogel et al. [2013a]
perform a comparison of most of them, see Table 2.1. More recently, more
robust features have been proposed such as SIFT descriptor [Liu et al., 2011]
or the census transform [Zabih and Wood�ll, 1994, Stein, 2004b, Müller
et al., 2011, Hafner et al., 2013] which has shown excellent performance, in
particular in case of illumination changes.

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 23

constancy assumption intensity function
brightness I1(x) = I2(x+w(x))
gradient ∇2I1(x) = ∇2I2(x+w(x))
Hessian H(I1(x)) = H(I2(x+w(x)))
Laplacian ∆I1(x) = ∆I2(x+w(x))

norm of the gradient ‖∇2I1(x)‖ = ‖∇2I2(x+w(x))‖
norm of the Hessian ‖H(I1(x))‖ = ‖H(I2(x+w(x)))‖

determinant of the Hessian detH(I1(x)) = detH(I2(x+w(x)))
census transform C(I1(x)) = C(I2(x+w(x)))

Table 2.1 � Variants of the constancy assumptions [Papenberg et al., 2006,
Vogel et al., 2013a].

The brightness constancy assumption may also be enhanced to incorpo-
rate an illumination change model. This can be done by explicitly estimat-
ing the changes: g(x)I1(x) = I2(x + w(x)) + b(x) where g and b are two
additional unknowns. The problem is thus even more under-constrained,
with 4 unknowns per pixel. Nevertheless, by adding constraints on the il-
lumination changes, the problem can still be solved [Seitz and Baker, 2009,
Negahdaripour, 1998]. Such a formulation can be generalized to model
blur [Seitz and Baker, 2009].

Robust penalizer. The optical �ow constraint provides one error per
pixel. Aggregating them over all pixels can be done in multiple ways. In
their seminal work, Horn and Schunck [1981] use the L2 norm: Edata =∫

Ω
‖WTJ0W‖2

2dx. This implicitly assumes that the errors are Gaussian
and iid. This assumption is violated most of the time, particularly for
occluded pixels, i.e., regions that are present only in one of the two images.
Robust penalization, i.e. di�erent from the L2 norm with less importance
given to outliers, has been proposed, leading to the following data term:
Edata =

∫
Ω

Ψdata(WTJ0W)dx, with Ψdata the robust penalizer. A common
choice [Brox et al., 2004, Wedel et al., 2009b] is to use the L1 norm, or
its di�erentiable approximation, the Charbonnier penalizer: Ψdata(s

2) =√
s2 + ε2 with ε being a small constant. Compared to the L2 norm, L1 norm

gives less importance to outliers. Other penalizers have been proposed such
as Lorentzian [Black and Anandan, 1996], generalized Charbonnier [Sun
et al., 2014b] or Huber-L1 [Werlberger et al., 2009]. Figure 2.2 compares
the di�erent penalizers.

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 24

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L2
L1
Charbonnier
Generalized Charbonnier
Lorentzian
Huber-L1

Figure 2.2 � Variants of robust penalizers.

2.2.2 Regularization term

The regularization term encodes some priors which add constraints to
the under-constrained data term, thus making the problem solvable. A
common choice is a smoothness term which is based on �ow gradient, i.e.,
that favors �ow with small derivatives.

Horn and Schunck [1981] use a L2 penalty on the �ow gradient:
Esmooth(w) =

∫
Ω
‖∇2w(x)‖2

2dx. Again, such a formulation that assumes
Gaussian and iid distribution is often violated. This is why more robust
penalizers have been proposed, such as a Lorentzian penalty [Black and
Anandan, 1996] or the L1 norm and its approximation [Brox et al., 2004,
Wedel et al., 2009b]. In this case, the formulation becomes a Total Variation
(TV) method. Roth and Black [2007] show that logarithmic penalties have
probabilistic interpretations related to the distribution of �ow derivatives.

Even with a robust penalizer, the �ow still tends to be oversmooth
at boundaries. Consequently, adding a spatial weighting to the penalty
has been proposed. A typical example is a weight that depends on image
gradient. This can be used to reduce the weight near image edges, thus
encoding the fact that �ow discontinuities mainly appear at image edges.
Regularization with weights based on image statistics is called image-driven.
Other variants that are oversegmentation-driven [Seitz and Baker, 2009],
�ow-driven [Wedel et al., 2009a] or data-driven [Zimmer et al., 2009] have
been proposed.

The weighting function can also depends on a direction in addition to the
spatial position, resulting in an anisotropic smoothness term. For instance,

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 25

Nagel and Enkelmann [1986] and Werlberger et al. [2009] give less weight
to the direction along the image gradient less than the direction orthogonal
to it.

Instead of relying on �ow gradient, higher-order constraints can be used.
For instance, Anandan and Weiss [1985] and Trobin et al. [2008] favor �ow
with small second-order derivatives. In the same spirit, Ranftl et al. [2014]
apply the generalized total variation framework to optical �ow estimation.
This regularization favors piecewise a�ne solutions. Several other con-
straints can be used, such as an a�ne over-parameterization [Nir et al.,
2008] or a rigidity prior [Adiv, 1985, Wedel et al., 2009a].

In case of image sequences with more than 2 frames, the gradient of
the �ow can be computed in 3D [Black, 1991, Brox et al., 2004], with a
separate weight for the temporal and the spatial derivatives. Nevertheless,
such derivatives are not robust to large displacements. Regularizing along
trajectories is thus necessary [Salgado and Sánchez, 2007, Volz et al., 2011].
In this dissertation, we restrict to the case of optical �ow computation over
2 consecutive frames.

2.2.3 Coarse-to-�ne scheme

Variational formulations rely on the optical �ow constraint, derived from
the brightness constancy assumption using a �rst-order Taylor expansion.
This approximation is only valid for small �ows. To handle larger displace-
ments, a classical strategy consists in using a coarse-to-�ne scheme. Coarse-
to-�ne strategy is also bene�cial from a computational point of view, it was
already used by Lucas and Kanade [1981] and Horn and Schunck [1981] in
their pioneering work.

Figure 2.3 illustrates a coarse-to-�ne scheme. Image pyramids are built
by repeatingly blurring and subsampling [Lucas and Kanade, 1981, Anan-
dan, 1989, Bruhn et al., 2005b, Black and Anandan, 1996]. Optical �ow
is �rst estimated at the coarsest scale. It is then upsampled to be used to
initialize the estimate at the next level. Median �ltering can optionally be
applied at each upsampling: Sun et al. [2014b] show that this is equivalent
to adding a non-local smoothness term to the energy. The second image is
sometimes warped according to the �ow, and only a �ow increment with
respect to the current estimation is computed. This process is repeated
until the last level at original resolution. In a similar spirit, Bruhn et al.
[2006] propose a multigrid strategy where the �ow pass both up and down
in the pyramid hierarchy.

Compared to single-level optimization, a coarse-to-�ne scheme allows to
avoid many local minima and to speed-up the optimization. However, it

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 26

image pyramid

zero flow initialization

estimation

final estimation

estimation

estimation

rescale
estimation

estimation

rescale

rescale

Figure 2.3 � Illustration of a coarse-to-�ne scheme. The images are itera-
tively rescaled and blurred (left). Starting from a zero �ow initialization,
the optical �ow is estimated at the coarsest level. This estimation is rescaled
to the size of the next level where the �ow is updated from this current es-
timation. The process is repeated until the last level at original resolution.

tends to over-smooth �ne structures and fails to capture small objects with
fast motion. Indeed, such objects are not visible at coarse scales and as a
consequence, the initialization tends to ignore their motion.

2.2.4 Minimization

Variational methods. Consider an energy formulation where the global
energy only depends on x, w and its gradient ∇2w:

Eglobal =

∫
Ω

E(u, v, x, y, ux, uy, vx, vy)dxdy , (2.7)

with ux = ∂u
∂x

and similarly for uy, vx, vy. Note that such formulation in-
cludes most energy models [Horn and Schunck, 1981, Brox et al., 2004, Nir
et al., 2008, Bruhn et al., 2005b, Zimmer et al., 2009]. If the �ow is treated
as a 2D continuous function (and not only 2D vectors at each pixel), Eglobal
can be treated as a calculus of variations, explaining the name of variational
methods. Euler-Lagrange equations can be applied, ensuring that at the
minimum: {

∂Eglobal

∂u
− ∂

∂x

∂Eglobal

∂ux
− ∂

∂y

∂Eglobal

∂uy
= 0 ,

∂Eglobal

∂v
− ∂

∂x

∂Eglobal

∂vx
− ∂

∂y

∂Eglobal

∂vy
= 0 .

(2.8)

While these equations are linear in case of Horn and Schunck [1981]'s
energy, this is not the case for more general formulation. As a consequence,

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 27

a �xed point iteration is often used [Brox et al., 2004]. The �ow is decom-
posed into w + dw where w is assumed to be known (from the previous
level of the coarse-to-�ne scheme) and the �ow update dw is computed.
The �ow update is assumed to be small, and by applying Taylor expansion
on w, a set of linear equations on dw is obtained. It is often solved using
a Gauss-Seidel variant, namely the Successive Over Relaxation methods
[Young and Rheinboldt, 1971], or a preconditioned conjugate gradient for
better parallelization [Sundaram et al., 2010]. For better accuracy, the �ow
update is then added to the current �ow estimate, and a new �ow update
is estimated. This process is repeated several times before moving to the
next pyramid level. More details for approximating the solution are given
in Appendix A.

Other approaches. Other minimization approaches rely for instance on
gradient descent [Baker and Matthews, 2004, Black and Anandan, 1996]
but are most of the time limited by the presence of a huge number of local
minima. Another strategy [Wedel et al., 2009b, Trobin et al., 2008] consists
in decoupling the �ow w in the data term wdata and the smoothness term
wsmooth, with an additional penalty on the di�erences between these two
�ows:

Eglobal =

∫
Ω

Edata(wdata)+Esmooth(wsmooth)+γ‖wsmooth−wdata‖2dx . (2.9)

This equation is then minimized iteratively for wdata and wsmooth while
�xing the other one and increasing γ. As a consequence, the two �ows are
closed at the end. The two obtained optimization problems are simpler to
solve.

2.3 Other optical �ow approaches

2.3.1 Layered and segmentation-based methods

The optical �ow �eld can be segmented into regions with coherent mo-
tions, referred to as layers [Darrell and Pentland, 1995, Wang and Adelson,
1994]. Several works have considered the joint estimation of motion layers
and their motions [Brox et al., 2006, Sun et al., 2013, Unger et al., 2012], in
some cases including a depth ordering of the layer. Most methods rely on
locally-connected Markov Random Fields (MRF), resulting in a poor seg-
mentation. More recently, Sun et al. [2013] propose a fully-connected MRF
but limit the labeling to 2 layers. Note that the task of jointly segmenting

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 28

the video into layers and estimating their motions is extremely challenging,
and yields to a complex minimization of non-convex energy functions. As
a consequence, the estimation is unreliable for di�cult, yet common cases,
such as videos with fast motion, large displacements or compression arti-
facts. Moreover, the computational time is usually extremely high, thus
limiting the practical use of layered methods.

2.3.2 Learning-based methods

The data term in the energy formulation relies on various choices such
as the constancy assumptions and the penalizer. Learning techniques have
been applied to justify designs and parameters choices [Roth and Black,
2007, Sun et al., 2008]. Training data are used to build probabilistic models
of the optical �ow.

Another learning approach was proposed by Wul� and Black [2015]
based on principal component analysis (PCA). From a training set, a prin-
cipal component basis is �tted. At test time, a set of sparse matches are
computed and the method then estimates dense �ow by estimating the
weights of the PCA components that best �t the sparse matches.

More recently, Convolutional Neural Network (CNN) has been used to
learn to estimate optical �ow [Dosovitskiy et al., 2015, Teney and Hebert,
2016]. FlowNet architecture is either based either on computing convolu-
tions on the concatenated images, or on a siamese networks that mimic
feature extraction, followed by a correlational layer. Both architectures ob-
tain a similar performance. Deconvolution architecture is also used followed
by a variational re�nement to obtain the �nal estimation. The network
is trained using an arti�cial dataset with moving chairs added on top of
images. Teney and Hebert [2016] rely on 3D convolutions and add invari-
ance properties using various normalizations. The network is trained from
scratch (even on small datasets) to learn to classify the �ow vector at a
pixel among a �xed set of candidates, and then �ne-tuned with a Euclidean
loss on the �ow.

2.3.3 Discrete optimization

Discrete optimization techniques such as graph-cut or belief propagation
has also been applied to optical �ow estimation. Some algorithms assume
that a set of �ow candidates are available for each pixel. The �ow is then
de�ned as an assignment to a candidate at every pixel. For instance, Fu-
sionFlow [Lempitsky et al., 2008] use multiple binary graph-cuts problem to
re�ne the current �ow estimate. More recently, Menze et al. [2015] propose

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 29

to use CRF to obtain a pixel-accurate �ow �eld, which is then re�ned using a
variational method. The CRF is made tractable by restricting to �ow candi-
dates, by using block coordinate descent for optimization and by leveraging
the structure of the regularizer. Chen and Koltun [2016] show that discrete
optimization can be applied to optical �ow estimation without pruning the
�ow candidates despite the large space of possible displacements.

2.4 Image matching in optical �ow estimation

Image matching techniques have recently been integrated in optical �ow
formulation, mainly to give more robustness to the case of small fast-moving
objects [Brox and Malik, 2011] for which variational methods with coarse-
to-�ne schemes tend to miss their motions. Optical �ow can be viewed as
a dense matching approach between consecutive frames of a video. In par-
ticular, our proposed �ow approaches, DeepFlow and EpicFlow, rely on a
proposed matching algorithm named DeepMatching. In this section, we re-
view related work on image matching techniques as well as their integration
in �ow formulation.

2.4.1 Image matching

Image matching based on local features has been extensively studied in
the past decade. It has been applied successfully to various domains, such
as wide baseline stereo matching [Furukawa et al., 2010] or image retrieval
[Philbin et al., 2010]. It consists of two steps: extracting local descriptors
and matching them. Image descriptors are extracted in rigid (generally
square) local areas at sparse invariant image locations [Mikolajczyk et al.,
2005, Szeliski, 2010] or on a dense grid [Wills et al., 2006, Tola et al., 2008,
Brox and Malik, 2011]. Matching is then performed by nearest neighbor
search between descriptors, followed by an optional geometric veri�cation.
Note that a con�dence value can be obtained by computing the uniqueness
of a match, i.e., by looking at the distance of its nearest neighbors [Lowe,
2004, Brox and Malik, 2011]. Despite their excellent performance for match-
ing well-textured rigid objects, local descriptors are not reliable for non-rigid
objects and weakly textured regions.

Recently, fast algorithms for dense patch matching have taken advan-
tage of the redundancy between overlapping patches [Barnes et al., 2010,
Korman and Avidan, 2011, Sun, 2012, Yang et al., 2014]. The main idea is
to propagate good matches to their neighborhood in a loose fashion, yield-
ing dense non-rigid matches. In practice, however, the lack of a smoothness

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 30

constraint leads to highly discontinuous matches. Several works have pro-
posed ways to �x this. HaCohen et al. [2011] reinforce neighboring matches
using an iterative multiscale expansion and contraction strategy, performed
in a coarse-to-�ne manner. Yet, the algorithm matches poorly discrimi-
native patches and, as such, cannot overcome the inherent weaknesses of
patch matching approaches. Yang et al. [2014] include a guided �ltering
stage on top of PatchMatch, which obtains smooth correspondence �elds
by locally approximating a MRF. Finally, Kim et al. [2013] propose a hi-
erarchical matching to obtain dense correspondences, using a coarse-to-�ne
(top-down) strategy. Loopy belief propagation is used to perform inference.

2.4.2 Integration of matching in optical �ow

estimation

In SIFT-Flow, Liu et al. [2011] leverage a data-term based on SIFT
matching in a global energy formulation. This energy is non-di�erentiable
and the optimization is performed using belief propagation. SIFT-Flow
has been mainly developed for the application of matching scenes. Hassner
et al. [2012] improve over SIFT-�ow by using multi-scale patches. However,
this decreases performance when scale invariance is not required.

For optical �ow formulation, Brox and Malik [2011] propose to inte-
grate matching into the energy by adding a matching term. This new
term penalizes the di�erence between precomputed matches and the �ow
estimation, thus guiding the �ow. Brox and Malik [2011] use HOG descrip-
tors [Dalal and Triggs, 2005] with a reciprocal nearest-neighbor veri�cation
to prune most of the false matches. Xu et al. [2012] integrate matching
of SIFT [Lowe, 2004] and PatchMatch [Barnes et al., 2010] to re�ne the
�ow initialization at each level. Promising results are obtained for opti-
cal �ow estimation, yet at the cost of expensive fusion steps [Lempitsky
et al., 2008]. Braux-Zin et al. [2013] used segment features in addition to
keypoints. DeepFlow proposes an e�cient and competitive approach for
large displacement optical �ow by integrating the proposed DeepMatching
algorithm into the approach of Brox and Malik [2011].

Several works have also extended PatchMatch [Barnes et al., 2010] for
optical �ow estimation. Lu et al. [2013] propose a variant of PatchMatch,
which uses SLIC superpixels [Achanta et al., 2012] as basic blocks in order
to better respect image boundaries. The purpose is to produce a nearest-
neighbor-�eld (NNF) which is later translated into a �ow. Similarly, Chen
et al. [2013] propose to compute an approximate NNF, and then estimate
the dominant motion patterns using RANSAC. Next, they use a multi-

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 31

endpoint error

angular error

ground-truth
flow

flow
estimation

Figure 2.4 � Illustration of optical �ow evaluation metrics for a given pixel.

label graph-cut to solve the assignment of each pixel to a motion pattern
candidate. Their multi-label optimization can be interpreted as a motion
segmentation problem or as a layered model [Sun et al., 2010]. These prob-
lems are hard and a small error in the assignment can lead to large errors
in the resulting �ow.

2.5 Datasets and evaluation

In this section, we review the metrics and the datasets used for evalu-
ating optical �ow estimation.

2.5.1 Metrics

To evaluate optical �ow, we use the average endpoint error over all pix-
els, denoted as EPE. The endpoint error is the L2 norm of the di�erence be-
tween the estimated optical �ow and the ground-truth �eld, see Figure 2.4.
More precisely, if the �ow estimation is denoted as w and the ground-truth
�ow as wgt, the EPE is de�ned by:

1

|Ω|
∑
x∈Ω

‖w(x)−wgt(x)‖2 . (2.10)

We also measure EPE on a subset of pixels of interest. For instance,
the `s10-40' variant measures the EPE only for pixels with a ground-truth
displacement between 10 and 40 pixels, and likewise for `s0-10' and `s40+'.
We measure EPE-occ, which is the EPE over occluded pixels, and similarly
EPE-noc for non-occluded pixels. In all cases, scores are averaged over all
corresponding pixels in the dataset to obtain the �nal evaluation result.

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 32

On Kitti, it is standard to report the ratio of missed �ow, i.e., the ratio
of pixels for which the endpoint error is over a threshold δ:

1

|Ω|
∑
x∈Ω

1‖w(x)−wgt(x)‖2<δ . (2.11)

`Out-All 3' denotes the ratio of pixels with an error over 3 pixels over all
pixels and `Out-Occ 3' is only computed for occluded pixels.

On Middlebury, the average angular error (AAE) is also reported. This
is the average over all pixels of the angular di�erence between the estimation
and the ground-truth:

1

|Ω|
∑
x∈Ω

arccos
(
W(x),Wgt(x)

)
. (2.12)

2.5.2 Datasets

We use three datasets for evaluating optical �ow: Middlebury, Kitti and
MPI-Sintel. Note that for all these datasets, the publicly available data on
the test sets are restricted to images and the evaluation runs on a server.
Figure 2.5 shows a few frames from each one. We now present them in more
detail.
• The Middlebury dataset [Baker et al., 2011] contains a training set of 12
short sequences with the ground-truth �ow for the middle frame. The test
consists of 12 other short sequences. The ground-truth �ow is obtained
from hidden texture or by using synthetic data. The dataset contains
complex motions, but most of the displacements are small. Less than 3%
of the pixels have a motion over 20 pixels, and no motion exceeds 25 pixels
(training set). Consequently, optical �ow performance is near saturation
with an EPE around 0.2 pixels for the best performing method.
• The Kitti dataset [Geiger et al., 2013] contains real-world sequences taken
from a driving platform. The dataset includes non-Lambertian surfaces,
di�erent lighting conditions, a large variety of materials and large displace-
ments. More than 16% of the pixels have motion over 20 pixels. We use
the version released in 2012; a newer version has been published in 2015.
There are 194 training and 195 test image pairs in the dataset. The scene
remains limited to the static case and most of the motion �elds correspond
to a zoom e�ect, i.e., a car moving forward in the street.
• The MPI-Sintel dataset [Butler et al., 2012] is a challenging evaluation
benchmark for optical �ow estimation, constructed from realistic computer-
animated �lms. The dataset contains 23 training and 12 test sequences
with large motions and specular re�ections. Each sequence contains up

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 33

Figure 2.5 � Examples of image pairs (�rst two columns) and ground-truth
�ow (right column) with two examples from the Middlebury dataset (two
�rst rows), the Kitti dataset (two middle rows) and the MPI-Sintel dataset
(two last rows).

CHAPTER 2. RELATED WORK ON OPTICAL FLOW 34

to 50 images. In the training set, more than 17.5% of the pixels have a
motion over 20 pixels, approximately 10% over 40 pixels. The images are
available in two rendering versions: `clean' and `�nal'. We use this latter
one which adds realistic rendering e�ects such as motion blur, defocus blur
and atmospheric e�ects. The scene also contains non-rigid objects such as
characters.

Chapter 3

DeepFlow: Large Displacement

Optical Flow with DeepMatching

Contents

3.1 Introduction . 35

3.2 DeepMatching . 38

3.2.1 Overview of the approach 38

3.2.2 Bottom-up correlation pyramid computation . . 40

3.2.3 Top-down correspondence extraction 46

3.2.4 Discussion and Analysis of DeepMatching . . . 48

3.3 Extensions of DeepMatching 52

3.3.1 Approximate DeepMatching 52

3.3.2 Scale and rotation invariant DeepMatching . . . 53

3.4 DeepFlow . 54

3.5 Experiments . 56

3.5.1 Datasets and metrics 56

3.5.2 Matching Experiments 58

3.5.3 Optical Flow Experiments 69

3.6 Conclusion . 75

3.1 Introduction

Although variational methods have shown promising results on small
displacements [Horn and Schunck, 1981, Sun et al., 2014b], recent e�orts
have tried to address the more challenging case of estimating optical �ow
in realistic videos with fast motion [Brox and Malik, 2011, Xu et al., 2012].

35

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 36

Such approaches integrate precomputed matches [Dalal and Triggs, 2005,
Liu et al., 2011, Barnes et al., 2010] into the variational formulation or
the optimization scheme. However, these matching approaches are limited
either to rigid patches [Dalal and Triggs, 2005], thus failing to estimate
motion with weak or repetitive textures as well as non-rigid object, or to
propagation-based approaches [Barnes et al., 2010] which are based on small
patches, making repetitive textures beyond the reach of these methods.

In this chapter we introduce DeepFlow, a variational optical �ow ap-
proach, that integrates a novel matching approach, called DeepMatching,
using a similar formulation as Brox and Malik [2011]. DeepMatching grace-
fully combines the strengths of rigid matching and propagation-based al-
gorithms using a multi-layer architecture which breaks down patches into
a hierarchy of sub-patches. This architecture allows to work at several
scales and handles repetitive textures. Furthermore, within each layer, lo-
cal matches are computed assuming a restricted set of feasible rigid de-
formations. Local matches are then propagated up the hierarchy, which
progressively discards spurious incorrect matches. We called the proposed
matching algorithm DeepMatching, as it is inspired by deep convolutional
approaches.

This chapter presents the three following contributions:
• Dense matching: we propose a matching algorithm, DeepMatching, that
allows to robustly determine dense correspondences between two images. It
explicitly handles non-rigid deformations, with bounds on the deformation
tolerance, and incorporates a multi-scale scoring of the matches, making it
robust to repetitive or weak textures. Furthermore, our approach is based
on gradient histograms, and is thus robust to appearance changes caused
by illumination and color variations.
• Fast, scale/rotation-invariant matching: we propose a computationally ef-
�cient version of DeepMatching, which performs almost as well as exact
DeepMatching, but at a much lower memory cost. Furthermore, this fast
version of DeepMatching can be extended to a scale and rotation-invariant
version, making it an excellent competitor to state-of-the-art descriptor
matching approaches.
• DeepFlow: we propose an optical �ow approach which uses DeepMatching
in the matching term of the large displacement variational energy mini-
mization of Brox and Malik [2011]. We show that DeepMatching is a better
choice compared to the HOG descriptor used by Brox and Malik [2011] and
other state-of-the-art matching algorithms. The approach, named Deep-
Flow, obtains competitive results on public optical �ow benchmarks.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 37

Closest references. DeepFlow is based on the same formulation as Brox
and Malik [2011] to integrate matches into a variational model. Instead of
using rigid matches, the proposed matching algorithm, DeepMatching, is
inspired by non-rigid 2D warping and deep convolutional networks [LeCun
et al., 1998a, Uchida and Sakoe, 1998, Keysers et al., 2007]. This family
of approaches explicitly models non-rigid deformations. We employ a novel
family of feasible warpings that does not enforce monotonicity nor continu-
ity constraints, in contrast to traditional 2D warping [Uchida and Sakoe,
1998, Keysers et al., 2007]. This makes the problem much less expensive in
term of computational cost.

It is also worthwhile to mention the similarity with non-rigid matching
approaches developed for a broad range of applications. Ecker and Ullman
[2009] propose an approach related to ours. Their method computes a hier-
archical alignment of image sub-parts in a bottom-up fashion using dynamic
programming. The minimal hierarchical matching cost is then returned as
a global similarity score. Our approach goes further and produces pixel-
level correspondences by backtracking high-level patch matches. For the
purpose of establishing dense correspondences between images, Wills et al.
[2006] estimated a non-rigid matching by robustly �tting smooth parametric
models (homography and splines) to local descriptor matches. In contrast,
DeepMatching is non-parametric and model-free.

Unlike dense patch matching algorithms based on propagation [Barnes
et al., 2010, Korman and Avidan, 2011, Sun, 2012, Yang et al., 2014], Deep-
Matching proceeds bottom-up �rst and top-down second. Due to its hier-
archical nature, DeepMatching is able to consider patches at several scales,
thus overcoming the lack of distinctiveness that a�ects small patches. The
multi-layer construction also allows to e�ciently perform matching with
semi-rigid local deformations. In addition, DeepMatching can be computed
e�ciently, and can be further accelerated to satisfy low-memory require-
ments with negligible loss in accuracy.

Outline. This chapter is organized as follows. We start by presenting the
proposed matching algorithm, DeepMatching, in Section 3.2. Section 3.3
then describes two extensions of DeepMatching: an approximate and faster
version of DeepMatching (Section 3.3.1), a scale and rotation invariant ver-
sion (Section 3.3.2). Next, we present DeepFlow in Section 3.4, an optical
�ow approach that integrates DeepMatching into a variational formulation.
Finally, we present experimental results in Section 3.5. In particular, we
show that DeepMatching obtains excellent matching performance and can
be e�ectively integrated into an optical �ow approach. DeepFlow outper-

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 38

formed the state of the art at publication time on challenging optical �ow
benchmarks.

Preliminary version. A preliminary version of this work has appeared
in ICCV'13 [Weinzaepfel et al., 2013]. The version presented in this disser-
tation, that will appear in IJCV [Revaud et al., 2016], adds (1) an in-depth
presentation of DeepMatching; (2) an enhanced version of DeepMatching,
which improves the match scoring and the selection of entry points for back-
tracking; (3) proofs on time and memory complexity of DeepMatching as
well as its deformation tolerance; (4) a discussion on the connection between
Deep Convolutional Neural Networks and DeepMatching; (5) a fast approx-
imate version of DeepMatching; (6) a scale and rotation invariant version
of DeepMatching; and (7) an extensive experimental evaluation of Deep-
Matching on several state-of-the-art benchmarks. The code for DeepMatch-
ing as well as DeepFlow are available at http://lear.inrialpes.fr/src/
deepmatching/ and http://lear.inrialpes.fr/src/deepflow/. Note
that we provide a GPU implementation in addition to the CPU one.

3.2 DeepMatching

This section introduces our matching algorithm DeepMatching. Deep-
Matching is a matching algorithm based on correlations at the patch-level,
that proceeds in a multi-layer fashion. The multi-layer architecture relies on
a quadtree-like patch subdivision scheme, with an extra degree of freedom
to locally re-optimize the positions of each quadrant. In order to enhance
the contrast of the spatial correlation maps output by the local correlations,
a non-linear transformation is applied after each layer.

We �rst give an overview of DeepMatching in Section 3.2.1 and show
that it can be decomposed in a bottom-up pass followed by a top-down pass.
We, then, present the bottom-up pass in Section 3.2.2 and the top-down
one in Section 3.2.3. Finally, we analyze DeepMatching in Section 3.2.4.

3.2.1 Overview of the approach

A state-of-the-art approach for matching regions between two images is
based on the SIFT descriptor [Lowe, 2004]. SIFT is a histogram of gradients
with 4× 4 spatial and 8 orientation bins, yielding a robust descriptor R ∈
R4×4×8 that e�ectively encodes a square image region. Note that its 4 × 4
cell grid can also be viewed as 4 so-called `quadrants' of 2 × 2 cells, see
Figure 3.1. We can, then, rewrite R = [R0, R1, R2, R3] with Ri ∈ R2×2×8.

http://lear.inrialpes.fr/src/deepmatching/
http://lear.inrialpes.fr/src/deepmatching/
http://lear.inrialpes.fr/src/deepflow/

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 39

Figure 3.1 � Illustration of moving quadrant similarity: a quadrant is a
quarter of a SIFT patch, i.e., a group of 2× 2 cells. Left: SIFT descriptor
in the �rst image. Middle: second image with optimal standard SIFT
matching (rigid). Right: second image with optimal moving quadrant SIFT
matching. In this example, the patch covers various objects moving in
di�erent directions: for instance the car moves to the right while the cloud to
the left. Rigid matching fails to capture this, whereas the moving quadrant
approach is able to follow each object.

Let R and R′ be the SIFT descriptors of the corresponding regions in
the source and target image. In order to remove the e�ect of non-rigid
motion, we propose to optimize the positions pi ∈ R2 of the 4 quadrants
of the target descriptor R′ (rather than keeping them �xed), in order to
maximize

sim(R,R′) = max
{pi}

1

4

3∑
i=0

sim (Ri,R
′
i(pi)) , (3.1)

where R′i(pi) is the descriptor of a single quadrant extracted at position pi
and sim() a similarity function. Now, sim(R,R′) is able to handle situations
such as the one presented in Figure 3.1, where a region contains multiple
objects moving in di�erent directions. Furthermore, if the four quadrants
can move independently (of course, within some extent), it can be calculated
more e�ciently as:

sim(R,R′) =
1

4

3∑
i=0

max
pi

sim (Ri,R
′
i(pi)) , (3.2)

When applied recursively to each quadrant by subdividing it into 4 sub-
quadrants until a minimum patch size is reached (atomic patches), this
strategy allows for accurate non-rigid matching. Such a recursive decom-
position can be represented as a quad-tree, see Figure 3.2. Given an initial
pair of two matching regions, retrieving atomic patch correspondences is

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 40

Figure 3.2 � Left: Quadtree-like patch hierarchy in the �rst image. Right:
one possible displacement of corresponding patches in the second image.

then done in a top-down fashion (i.e., by recursively applying Equation 3.2
to the quadrant's positions {pi}).

Nevertheless, in order to �rst determine the set of matching regions
between the two images, we need to compute beforehand the matching
scores (i.e., similarity) of all large-enough patches in the two images (as
in Figure 3.1), and keep the pairs with maximum similarity. As indicated
by Equation 3.2, the score is formed by averaging the max-pooled scores
of the quadrants. Hence, the process of computing the matching scores is
bottom-up. In the following, we call correlation map the matching scores
of a single patch from the �rst image at every position in the second image.
Selecting matching patches then corresponds to �nding local maxima in the
correlation maps.

To sum-up, the algorithm can be decomposed in two steps: (i) �rst,
correlation maps are computed using a bottom-up algorithm, as shown in
Figure 3.6. Correlation maps of small patches are �rst computed and then
aggregated to form correlation maps of larger patches; (ii) next, a top-down
method estimates the motion of atomic patches starting from matches of
large patches.

In the remainder of this section, we detail the two steps described above
(Section 3.2.2 and Section 3.2.3), before analyzing the properties of Deep-
Matching in Section 3.2.4.

3.2.2 Bottom-up correlation pyramid computation

Let I and I ′ be two images of resolution W ×H and W ′ ×H ′.

Bottom level. We use patches of size 4× 4 pixels as atomic patches. We
split I into non-overlapping atomic patches, and compute the correlation

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 41

map with image I ′ for each of them, see Figure 3.3. The score between two
atomic patches R and R′ is de�ned as the average pixel-wise similarity:

sim(R,R′) =
1

16

3∑
i=0

3∑
j=0

R>i,jR
′
i,j , (3.3)

where each pixel Ri,j is represented as a histogram of oriented gradients
pooled over a local neighborhood. We detail below how the pixel descriptor
is computed.

Pixel descriptor Ri,j. We rely on a robust pixel representation that is
similar in spirit to SIFT and DAISY [Lowe, 2004, Tola et al., 2010]. Given
an input image I, we �rst apply a Gaussian smoothing of radius ν1 in
order to denoise I from potential artifacts caused for example by JPEG
compression. We then extract the gradient (δx, δy) at each pixel and com-
pute its non-negative projection onto 8 orientations

{
(cos iπ

4
, sin iπ

4
)
}
i=1...8

.
At this point, we obtain 8 oriented gradient maps. We smooth each map
with a Gaussian �lter of radius ν2. Next we cap strong gradients using a
sigmoid x 7→ 2/(1 + exp(−ςx)) − 1, to help canceling out e�ects of vary-
ing illumination. We smooth gradients one more time for each orientation
with a Gaussian �lter of radius ν3. Finally, the descriptor for each pixel is
obtained by the `2-normalized concatenation of 8 oriented gradients and a
ninth small constant value µ. Appending µ amounts to adding a regularizer
that will reduce the importance of small gradients (i.e., noise) and ensures
that two pixels lying in areas without gradient information will still corre-
late positively. Pixel descriptors Ri,j are compared using dot-product and
the similarity function takes value in the interval [0, 1]. In Section 3.5.2, we
evaluate the impact of the parameters of this pixel descriptor.

Bottom-level correlation map. We can express the correlation map
computation obtained from Equation 3.3 more conveniently in a convolu-
tional framework. Let IN,p be a patch of size N × N from the �rst image
centered at p (N ≥ 4 is a power of 2). Let G4 = {2, 6, 10, ...,W − 2} ×
{2, 6, 10, ..., H − 2} be a grid with step 4 pixels. G4 is the set of the centers
of the atomic patches. For each p ∈ G4, we convolve the �ipped patch IF

4,p

over I ′

C4,p = IF
4,p ? I

′ , (3.4)

to get the correlation map C4,p, where .
F denotes an horizontal and vertical

�ip 1. Examples of such correlation maps are shown in Figures 3.3 and 3.4.

1. This amounts to the cross-correlation of the patch and I ′.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 42

Non-overlapping
atomic patches

Correlations

Level 1
correlation maps

Figure 3.3 � Computing the bottom level correlation maps {C4,p}p∈G4 .
Given two images I and I ′, the �rst one is split into non-overlapping atomic
patches of size 4× 4 pixels. For each patch, we compute the correlation at
every location of I ′ to obtain the corresponding correlation map.

Without surprise, we can observe that atomic patches are not discrimina-
tive. Recursive aggregation of patches in subsequent stages will be the key
to create discriminative responses.

Iteration. We then compute the correlation maps of larger patches by
aggregating those of smaller patches. As shown in Figure 3.5, a N × N
patch IN,p is the concatenation of 4 patches of size N/2 ×N/2:

IN,p =
[
IN

2
,p+N

4
oi

]
i=0..3

with

o0 = [−1,−1]> ,

o1 = [−1,+1]> ,

o2 = [+1,−1]> ,

o3 = [+1,+1]> .

(3.5)

They correspond respectively to the bottom-left, top-left, bottom-right and
top-right quadrants. The correlation map of IN,p can thus be computed
using its children's correlation maps. For the sake of clarity, we de�ne the
short-hand notation sN,i = N

4
oi describing the positional shift of a children

patch i ∈ [0, 3] relatively to its parent patch (see Figure 3.5).

Using the above notations, we rewrite Equation 3.2 by replacing sim(R,R′)
def
=

CN,p(p′) (i.e., assuming here that patch R = IN,p and that R′ is centered
at p′ ∈ I ′). Similarly, we replace the similarity between children patches
sim (Ri,R

′
i(p
′
i)) by CN

2
,p+sN,i

(p′i). For each child, we retain the maximum

similarity over a small neighborhood Θi of width and height N
8
centered at

p′ + sN,i. We then obtain:

CN,p(p′) =
1

4

3∑
i=0

max
m′∈Θi

CN
2
,p+sN,i

(m′) . (3.6)

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 43

First image Second image

Close-up of the hand
in the second image

Close-up of the hand
in the first image

Correlation map for a 16x16 patch

Correlation map for a 4x4 patch

Correlation map for a 8x8 patch Correlation map for a 16x16 patch

Figure 3.4 � Correlation maps for patches of di�erent size. Middle-left :
correlation map of a 4x4 patch. Bottom-right : correlation map of a 16x16
patch obtained by aggregating correlation responses of children 8x8 patches
(bottom-left), themselves obtained from 4x4 patches. The map of the 16x16
patch is clearly more discriminative than previous ones despite the change
in appearance of the region.

image1

Figure 3.5 � A patch IN,p from the �rst image (blue box) and one of its 4
quadrants IN

2
,p+N

4
o3

(red box).

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 44

shift by 1 px average

aggregation …

first image

second image

Aggregation details

aggregation

level 1
correlation maps

4x4 atomic patches

level 2
correlation maps level 3

correlation maps

Multi-level correlation pyramids

correlations

3x3 max-pooling
with stride = 2 rectification

Figure 3.6 � Computing the multi-level correlation pyramid. Starting with
the bottom-level correlation maps, see Figure 3.3, they are iteratively ag-
gregated to obtain the upper levels. Aggregation consists of max-pooling,
subsampling, computing a shifted average and a non-linear recti�cation.

We now explain how we can break down Equation 3.6 into a succession
of simple operations. First, let us assume that N = 4×2`, where ` ≥ 1 is the
current iteration. During iteration `, we want to compute the correlation
maps CN,p of every patch IN,p from the �rst image for which correlation
maps of its children have been computed in the previous iteration. Formally,
the position GN of such patches is de�ned according to the position of
children patches GN

2
according to Equation 3.5:

GN = {p | p + sN,i ∈ [0,W − 1]× [0, H − 1] ∧
p + sN,i ∈ GN

2
, i = 0, . . . , 3

}
. (3.7)

We observe that the larger a patch is (i.e., after several iterations), the
smaller the spatial variation of its correlation map (see Figure 3.4). This is
due to the statistics of natural images, in which low frequencies signi�cantly
dominate over high frequencies. As a consequence, we choose to subsample
each map CN,p by a factor 2. We express this with an operator S:

S : C(p′)→ C(2p′) . (3.8)

The subsampling reduces by 4 the area of the correlation maps and, as a
direct consequence, the computational requirements. Instead of computing
the subsampling on top of Equation 3.6, it is actually more e�cient to
propagate it towards the children maps and perform it jointly with max-
pooling. It also makes the max-pooling domain Θi become independent
from N in the subsampled maps, as it exactly cancels out the e�ect of
doubling N = 4× 2` at each iteration. We call P the max-pooling operator

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 45

with the iteration-independent domain Θ = {−1, 0, 1} × {−1, 0, 1}:

P : C(p′)→ max
m∈{−1,0,1}2

C(p′ + m) . (3.9)

For the same reason, the shift sN,i = N
4
oi = 2`oi applied to the correlation

maps in Θi's de�nition becomes simply oi after subsampling. Let Tt be the
shift (or translation) operator on the correlation map:

Tt : C(p′)→ C(p′ − t) . (3.10)

Finally, we incorporate an additional non-linear mapping at each iteration
on top of Equation 3.6 by applying a power transform Rλ [Malik and Per-
ona, 1990, LeCun et al., 1998a]:

Rλ : C(.)→ C(.)λ . (3.11)

This step, commonly referred to as recti�cation, is added in order to better
propagate high correlations after each level, or, in other words, to counter-
balance the fact that max-pooling tends to retain only high scores. Indeed,
its e�ect is to decrease the correlation values (which are in [0, 1]) as we use
λ > 1. Such post-processing is commonly used in deep convolutional net-
works [LeCun et al., 1998b, Bengio, 2009]. In practice, good performance is
obtained with λ ' 1.4, see Section 3.5. The �nal expression of Equation 3.6
is:

CN,p = Rλ

(
1

4

3∑
i=0

(Toi
◦ S ◦ P)

(
CN

2
,p+sN,i

))
. (3.12)

Figure 3.6 illustrates the computation of correlation maps for di�erent
patch sizes and Algorithm 3.1 summarizes our approach. The resulting set
of correlation maps across iterations is referred to as multi-level correlation
pyramid.

Boundary e�ects. In practice, a patch IN,p can overlap with the image
boundary, as long as its center p remains inside the image (from Equa-
tion 3.7). For instance, a patch IN,p0 with center at p0 = (0, 0) ∈ GN has
only a single valid child (the one for which i = 3 as p0 + sN,3 ∈ I). In
such degenerate cases, the average sum in Equation 3.12 is carried out on
valid children only. For IN,p0 , it thus only comprises one term weighted by
1 instead of 1

4
.

Note that Equation 3.12 implicitly de�nes the set of possible displace-
ments of the approach, see Figures 3.2 and 3.9. Given the position of a
parent patch, each child patch can move only within a small extent, equal

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 46

to the quarter of its own size. Figure 3.4 shows the correlation maps for
patches of size 4, 8 and 16. Clearly, correlation maps for larger patches are
more and more discriminative, while still allowing non-rigid matching.

Algorithm 3.1 Computing the multi-level correlation pyramid.

Input: Images I, I ′

For p ∈ G4 do
�� C4,p = IF

4,p ? I
′ (convolution, Equation 3.4)

�� C4,p ← Rλ(C4,p) (recti�cation, Equation 3.11)
N ← 4
While N < max(W,H) do
�� For p ∈ GN do
��� C ′N,p ← (S ◦ P)(CN,p) (max-pooling and subsampling)
�� N ← 2N
�� For p ∈ GN do

��� CN,p = 1
4

∑3
i=0 Toi

(
C ′N

2
,p+sN,i

)
(shift and average)

��� CN,p ← Rλ(CN,p) (recti�cation, Equation 3.11)
Return the multi-level correlation pyramid {CN,p}N,p

3.2.3 Top-down correspondence extraction

A score S = CN,p(p′) in the multi-level correlation pyramid represents
the deformation-tolerant similarity of two patches IN,p and I

′
N,p′ . Since this

score is built from the similarity of 4 matching sub-patches at the lower
pyramid level, we can thus recursively backtrack a set of correspondences
to the bottom level (corresponding to matches of atomic patches). In this
section, we �rst describe this backtracking. We, then, present the procedure
for merging atomic correspondences backtracked from di�erent entry points
in the multi-level pyramid, which constitute the �nal output of DeepMatch-
ing.

Compared to our initial version of DeepMatching [Weinzaepfel et al.,
2013], we have updated match scoring and entry point selection to optimize
the execution time and the matching accuracy. A quantitative comparison
is provided in Section 3.5.2.

Backtracking atomic correspondences. Given an entry point CN,p(p′)
in the pyramid (i.e., a match between two patches IN,p and I ′N,p′

2), we re-

2. Note that I ′N,p′ only roughly corresponds to a N × N square patch centered at

2`p′ in I ′, due to subsampling and possible deformations.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 47

…backtracking backtracking

First
image

Second
image

correspondence
of a big patch

correspondences
of the quadrants

correspondences
of atomic patches

Multi-level
correlation pyramid

Figure 3.7 � Backtracking atomic correspondences from an entry point (red
dot) in the top pyramid level (left). At each level, the backtracking consists
in undoing the aggregation performed previously in order to recover the
position of the four children patches in the lower level. When the bottom
level is reached, we obtain a set of correspondences for atomic patches
(right).

trieve atomic correspondences by successively undoing the steps used to ag-
gregate correlation maps during the pyramid construction, see Figure 3.7.
The entry patch IN,p is itself composed of four moving quadrants I iN,p,
i = 0...3. Due to the subsampling, the quadrant I iN,p = IN

2
,p+sN,i

matches

with IN
2
,2(p′+oi)+mi

where

mi = argmax
m∈{−1,0,1}2

CN
2
,p+sN,i

(2(p′ + oi) + m) . (3.13)

For the sake of clarity, we de�ne the short-hand notations pi = p + sN,i
and p′i = 2(p′ + oi) + mi. Let B be the function that assigns to a tuple
(N,p,p′, s), representing a correspondence between pixel p and p′ for patch
of size N with a score s ∈ R, the set of the correspondences of children
patches:

B(N,p,p′, s) =

{(p,p
′, s)} if N = 4,{(

N
2 ,pi,p

′
i, s+ CN

2
,pi

(p′i)
)}3

i=0
else.

(3.14)

Given a setM of such tuples, let B(M) be the union of the sets B(c) for
all c ∈ M. Note that if all candidate correspondences c ∈ M corresponds
to atomic patches, then B(M) =M.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 48

Thus, the algorithm for backtracking correspondences is the following.
Consider an entry matchM = {(N,p,p′, CN,p(p′))}. We repeatedly apply
B onM. After N = log2(N/4) calls, we get one correspondence for each of
the 4N atomic patches. Furthermore, their score is equal to the sum of all
patch similarities along their backtracking path.

Merging correspondences. We have shown how to retrieve atomic cor-
respondences from a match between two deformable (potentially large)
patches. Despite this �exibility, a single match is unlikely to explain the
complex set of motions that can occur, for example, between two adja-
cent frames in a video, i.e., two objects moving independently with signif-
icantly di�erent motions exceeds the deformation range of DeepMatching.
We quantitatively specify this range in the next subsection.

We thus merge atomic correspondences gathered from di�erent entry
points (matches) in the pyramid. In the initial version of DeepMatching
[Weinzaepfel et al., 2013], entry points were local maxima over all cor-
relation maps. This is now replaced by a faster procedure, that starts
with all possible matches in the top pyramid level (i.e., M = {(N,p,p′,
CN,p(p′))|N = Nmax}). Using this level only results in signi�cantly less
entry points than starting from all maxima in the entire pyramid. We did
not observe any impact on the matching performance, see Section 3.5.2.
BecauseM contains a lot of overlapping patches, most of the computation
during repeated calls to M ← B(M) can be factorized. In other words,
as soon as two tuples in M are equal in terms of N , p and p′, the one
with the lowest score is simply eliminated. We thus obtain a set of atomic
correspondencesM′:

M′ = (B ◦ . . . ◦ B)(M) . (3.15)

that we �lter with reciprocal match veri�cation. The �nal set of correspon-
dencesM′′ is obtained as:

M′′ = {(p,p′, s)|BestAt(p) = BestAt′(p′)}(p,p′,s)∈M′ . (3.16)

where BestAt(p) (resp. BestAt′(p′)) returns the best match in a small
vicinity of 4× 4 pixels around p in I (resp. around p′ in I ′) fromM′.

3.2.4 Discussion and Analysis of DeepMatching

Multi-size patches and repetitive textures. During the bottom-up
pass of the algorithm, we iteratively aggregate correlation maps of smaller

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 49

Figure 3.8 � Matching result between two images with repetitive textures.
Nearly all output correspondences are correct. Wrong matches are due
to occluded areas (bottom-right of the �rst image) or situations where the
deformation tolerance of DeepMatching is exceeded (bottom-left of the �rst
image).

patches to form the correlation maps of larger patches. Doing so, we ef-
fectively consider patches of di�erent sizes (4 × 2`, ` ≥ 0), in contrast to
most existing matching methods. This is a key feature of our approach
when dealing with repetitive textures. As one moves up to upper levels, the
matching problem gets less ambiguous. Hence, our method can correctly
match repetitive patterns, see for instance Figure 3.8.

Quasi-dense correspondences. Our method retrieves dense correspon-
dences for every single match between large regions (i.e., entry point for
the backtracking in the top-level correlation maps), even in weakly tex-
tured areas; this is in contrast to correspondences obtained when matching
descriptors (e.g . SIFT). A quantitative assessment, which compares the
coverage of matches obtained with several matching schemes, is given in
Section 3.5.

Non-rigid deformations. Our matching algorithm is able to cope with
various sources of image deformations: object-induced or camera-induced.
The set of feasible deformations, explicitly de�ned by Equation 3.6, theoret-
ically allows to deal with a scaling factor in the range [1

2
, 3

2
] and rotations

approximately in the range [−26o, 26o]. Note also that DeepMatching is
translation-invariant by construction, thanks to the convolutional nature of
the processing.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 50

Figure 3.9 � Extent of the tolerance of DeepMatching to deformations. From
left to right: up-scale of 1.5x, down-scale of 0.5x, rotation of 26o. The plain
gray (resp. dashed red) square represents the patch in the reference (resp.
target) image. For clarity, only the corner pixels are maximally deformed.

Proof. Given a patch of size N = 4×2` located at level ` > 1, Equation 3.6
allows each of its children patches to move by at most N/8 pixels from their
ideal location in Θi. By recursively summing the displacements at each
level, the maximal displacements for an atomic patch is dN =

∑`
i=1 2i−1 =

2`−1. An example is given in Figure 3.9 with N = 32 and ` = 3. Relatively
to N , we thus have limN→∞ (N+2dN)/N = 3

2
and limN→∞ (N−2dN)/N =

1
2
. For a rotation, the rationale is similar, see Figure 3.9.

Note that the displacement tolerance in Θi from Equation 3.6 could be
extended to x × N/8 pixels with x ∈ {2, 3, . . .} (instead of x = 1). Then
the above formula for computing the lower bound on the scale factor of
DeepMatching generalizes to LB(x) = limN→∞ (N − 2xdN)/N . Hence, for
x ≥ 2 we obtain LB(x) = 0 instead of LB(1) = 1

2
. This implies that the

deformation range is extended to a point where any patch can be matched to
a single pixel, i.e., this results in unrealistic deformations. For this reason,
we choose not to expand the deformation range of DeepMatching.

Built-in smoothing. Furthermore, correspondences generated through
backtracking of a single entry point in the correlation maps are naturally
smooth. Indeed, feasible deformations cannot be too `far' from the identity
deformation. To verify this assumption, we conduct the following experi-
ment. We arti�cially generate two types of correspondences between two
images of size 128× 128. The �rst one is completely random, i.e., for each
atomic patch in the �rst image we assign randomly a match in the second
image. The second one respects the backtracking constraints. Starting from
a single entry point in the top level we simulate the backtracking procedure

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 51

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

2000

4000

6000

8000

10000

Identity (null) warping
Sampled from the set of feasable warpings W
Random warpings over the same region

Figure 3.10 � Histogram over smoothness for identity warping, warping
respecting the built-in constraints in DeepMatching and random warping.
The x-axis indicates the smoothness value. The smoothness value is low
when there are few discontinuities, i.e., the warpings are smooth. The
histogram is obtained with 10,000 di�erent arti�cial warpings. See text for
details.

from Section 3.2.3 by replacing in Equation 3.13 the max operation by a
random sampling over {−1, 0, 1}2. By generating 10,000 sets of possible
atomic correspondences, we simulate a set which respects the deformations
allowed by DeepMatching. Figure 3.10 compares the smoothness of these
two types of arti�cial correspondences. Smoothness is measured by inter-
preting the correspondences as �ow and measuring the gradient �ow norm,
see Equation 3.19. Clearly, the two types of warpings are di�erent by orders
of magnitude. Furthermore, the one which respects the built-in constraints
of DeepMatching is close to the identity warping.

Relation to Deep Convolutional Neural Networks (CNNs). Deep-
Matching relies on a hierarchical, multi-layer, correlational architecture de-
signed for matching images and was inspired by deep convolutional ap-
proaches [LeCun et al., 1998a]. In the following we describe the major
similarities and di�erences.

Deep networks learn from data the weights of the convolutions. In con-
trast, DeepMatching does not learn any feature representations and in-
stead directly computes correlations at the patch level. It uses patches
from the �rst image as convolution �lters for the second one. However, the
bottom-up pipeline of DeepMatching is similar to CNNs. It alternates ag-
gregating channels from the previous layer with channel-wise max-pooling
and subsampling. As in CNNs, max-pooling in DeepMatching allows for
invariance w.r.t . small deformations. Likewise, the algorithm propagates
pairwise patch similarity scores through the hierarchy using non-linear rec-
tifying stages in-between layers. Finally, DeepMatching includes a top-down

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 52

pass which is not present in CNNs. Note that this pass is fundamentally
di�erent from deconvolutional architecture as it does not require additional
parameters.

Time and space complexity. DeepMatching has a complexity O(LL′)
in memory and time, where L = WH and L′ = W ′H ′ are the number of
pixels per image.

Proof. Computing the initial correlations is a O(LL′) operation. Then, at
each level of the pyramid, the process is repeated while the complexity
is divided by a factor 4 due to the subsampling step in the target image
(since the cardinality of |{GN}| remains approximately constant). Thus,
the total complexity of the correlation maps computation is, at worst,
O(
∑∞

n=0 LL
′/4n) = O(LL′). During the top-down pass, most backtrack-

ing paths can be pruned as soon as they cross a concurrent path with a
higher score (see Section 3.2.3). Thus, all correlations will be examined at
most once, and there are

∑∞
n=0 LL

′/4n values in total. However, this anal-
ysis is worst-case. In practice, only correlations lying on maximal paths are
actually examined.

3.3 Extensions of DeepMatching

3.3.1 Approximate DeepMatching

As a consequence of its O(LL′) space complexity, DeepMatching requires
an amount of RAM that is orders of magnitude above other state-of-the-art
matching methods. This could correspond to several gigabytes for images of
moderate size (800×600 pixels); see Section 3.5.2. This section introduces
an approximation of DeepMatching that allows to trade matching quality
for reduced time and memory usage. As shown in Section 3.5.2, near-
optimal results can be obtained at a fraction of the original cost.

Our approximation proposes to compress the representation of atomic
patches {I4,p}. Atomic patches carry little information, and thus are highly
redundant. For instance, in uniform regions, all patches are nearly identical
(i.e., gradient-wise). To exploit this property, we index atomic patches with
a small set of patch prototypes. We substitute each patch with its closest
neighbor in a �xed dictionary of D prototypes. Hence, we need to perform
and store only D convolutions at the �rst level, instead of O(L) (with
D � O(L)). This signi�cantly reduces both memory and time complexity.
Note that higher pyramid levels also bene�t from this optimization. Indeed,

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 53

two parent patches at the second level have the exact same correlation map
in case their children are assigned the same prototypes. The same reasoning
also holds for all subsequent levels, but the gains rapidly diminish due to
statistical unlikeliness of the required condition. This is not really an issue,
since the memory and computational cost mostly rests on the initial levels;
see Section 3.2.4.

In practice, we build the prototype dictionary using k-means, as it is
designed to minimize the approximation error between input descriptors and
resulting centroids (i.e., prototypes). Given a pair of images to match, we
perform on-line clustering of all descriptors of atomic patches {I4,p} = {R}
in the �rst image. Since the original descriptors lie on an hypersphere (each
pixel descriptor Ri,j has norm 1), we modify the k-means approach so as to
project the estimated centroids on the hypersphere at each iteration. We
�nd experimentally that this is important to obtain good results.

3.3.2 Scale and rotation invariant DeepMatching

For a variety of tasks, objects to be matched can appear under image
rotations or at di�erent scales [Lowe, 2004, Mikolajczyk et al., 2005, Szeliski,
2010, HaCohen et al., 2011]. As discussed above, DeepMatching (DM) is
only robust to moderate scale changes and rotations. We now present a
scale and rotation invariant version.

Algorithm 3.2 Scale and rotation invariant version of DeepMatching
(DM). Iσ denotes the image I downsized by a factor σ, and Rθ denotes
rotation by an angle θ.

Input: I, I ′ are the images to be matched
Initialize an empty setM′ = {} of correspondences
For σ ∈ {−2,−1.5, . . . , 1.5, 2} do
�� σ1 ← max (1, 2+σ) # either downsize image 1
�� σ2 ← max (1, 2−σ) # or downsize image 2
�� For θ ∈

{
0, π

4
, . . . , 7π

4

}
do

get raw atomic correspondences (Equation 3.15)
���M′

σ,θ ← DeepMatching
(
Iσ1 ,R−θ ∗ I ′σ2

)
Geometric recti�cation to the input image space

���M′R
σ,θ ←

{
(σ1p, σ2Rθp

′, s) | ∀(p,p′, s) ∈M′
σ,θ

}
Concatenate results

���M′ ←M′⋃M′R
σ,θ

M′′ ← reciprocal(M′) # keep reciprocal matches (Equation 3.16)
ReturnM′′

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 54

The approach is straightforward: we apply DM to several rotated and
scaled versions of the second image. According to the invariance range of
DM, we use steps of π/4 for image rotation and power of

√
2 for scale

changes. While iterating over all combinations of scale changes and rota-
tions, we maintain a listM′ of all atomic correspondences obtained so far,
i.e., corresponding positions and scores. As before, the �nal output corre-
spondences consists of the reciprocal matches in M′. Storing all matches
and �nally choosing the best ones based on reciprocal veri�cation permits
to capture distinct motions possibly occurring together in the same scene
(e.g . one object could have undergone a rotation, while the rest of the scene
did not move). The steps of the approach are described in Algorithm 3.2.

Since we iterate sequentially over a �xed list of rotations and scale
changes, the space and time complexity of the algorithm remains unchanged
(i.e., O(LL′)). In practice, the run-time compared to DM is multiplied by
a constant approximately equal to 25, see Section 3.5.2. Note that the
algorithm permits a straightforward parallelization.

3.4 DeepFlow

We now present our approach for optical �ow estimation, DeepFlow. We
adopt the formulation introduced by Brox and Malik [2011], where a match-
ing term penalizes the di�erences between optical �ow and input matches,
and replace their matching approach by DeepMatching. In addition, we
make a few minor modi�cations introduced recently in the state of the art:
(i) we add a normalization in the data term to downweight the impact of
locations with high spatial image derivatives [Zimmer et al., 2011]; (ii) we
use a di�erent weight at each level to downweight the matching term at �ner
scales [Stoll et al., 2012]; and (iii) the smoothness term is locally weighted
[Xu et al., 2012].

Let I1, I2 : Ω → Rc be two consecutive images de�ned on Ω with c
channels. The goal is to estimate the �ow w = (u, v)> : Ω → R2. We
assume that the images are already smoothed using a Gaussian �lter of
standard deviation σ. The energy we optimize is a weighted sum of a data
term ED, a smoothness term ES and a matching term EM :

E(w) =

∫
Ω

ED + αES + βEMdx . (3.17)

For the three terms, we use a robust penalizer Ψ(s2) =
√
s2 + ε2 with

ε = 0.001 which has shown excellent results [Sun et al., 2014b].

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 55

Data term. The data term is a separate penalization of the color and
gradient constancy assumptions with a normalization factor as proposed by
Zimmer et al. [2011]. We start from the optical �ow constraint assuming
brightness constancy: (∇>3 I)W = 0 with ∇3 = (∂x, ∂y, ∂t)> the spatio-
temporal gradient and W = (u, v, 1)>. A basic way to build a data term
is to penalize it, i.e., ED = Ψ(W>J0W) with J0 the tensor de�ned by
J0 = (∇3I)(∇>3 I). As highlighted by Zimmer et al. [2011], such a data
term adds a higher weight in locations corresponding to high spatial image
derivatives. We normalize it by the norm of the spatial derivatives plus
a small factor to avoid division by zero, and to reduce a bit the in�uence
in tiny gradient locations [Zimmer et al., 2011]. Let J̄0 be the normalized
tensor J̄0 = θ0J0 with θ0 = (‖∇2I‖2 + ζ2)−1. We set ζ = 0.1 in the
following. To deal with color images, we consider the tensor de�ned for
a channel i denoted by upper indices J̄i0 and we penalize the sum over
channels: Ψ(

∑c
i=1 W

>J̄i0W). We consider images in the RGB color space.
We separately penalize the gradient constancy assumption [Bruhn et al.,

2005a]. Let Ix and Iy be the derivatives of the images with respect to the
x and y axis respectively. Let J̄ixy be the tensor for the channel i including
the normalization:

J̄ixy = (∇3I
i
x)(∇>3 I ix)/(‖∇2I

i
x‖2 + ζ2) + (∇3I

i
y)(∇>3 I iy)/(‖∇2I

i
y‖2 + ζ2) .

The data term is the sum of two terms, balanced by two weights δ and γ:

ED = δΨ

(
c∑
i=1

W>J̄i0W

)
+ γΨ

(
c∑
i=1

W>J̄ixyW

)
. (3.18)

Smoothness term. The smoothness term is a robust penalization of the
gradient �ow norm:

ES = Ψ
(
‖∇u‖2 + ‖∇v‖2

)
. (3.19)

The smoothness weight α is locally set according to image derivatives [Wedel
et al., 2009a, Xu et al., 2012] with α(x) = exp(−κ∇2I(x)) where κ is
experimentally set to κ = 5.

Matching term. The matching term encourages the �ow estimation to
be similar to a precomputed vector �eld w′. To this end, we penalize
the di�erence between w and w′ using the robust penalizer Ψ. Since the
matching is not totally dense, we add a binary term c(x) which is equal to
1 if and only if a match is available at x.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 56

We also multiply each matching penalization by a weight φ(x), which
is low in uniform regions where matching is ambiguous and when matched
patches are dissimilar. To that aim, we rely on λ̃(x), the minimum eigen-
value of the autocorrelation matrix multiplied by 10. We also compute the
visual similarity between matches as ∆(x) =

∑c
i=1 |I i1(x)−I i2(x−w′(x))|+

|∇I i1(x) − ∇I i2(x − w′(x))|. We then compute the score φ as a Gaussian
kernel on ∆ weighted by λ̃ with a parameter σM , experimentally set to
σM = 50. More precisely, we de�ne φ(x) at each point x with a match
w′(x) as:

φ(x) =

√
λ̃(x)/(σM

√
2π) exp(−∆(x)/2σM) .

The matching term is then EM = cφΨ(‖w −w′‖2
2).

Minimization. This energy objective is non-convex and non-linear. To
solve it, we use a numerical optimization algorithm similar as Brox et al.
[2004]. An incremental coarse-to-�ne warping strategy is used with a down-
sampling factor η = 0.95. The remaining equations are still non-linear due
to the robust penalizers. We apply 5 inner �xed point iterations where the
non-linear weights and the �ow increments are iteratively updated while
�xing the other. To approximate the solution of the linear system, we use
25 iterations of the Successive Over Relaxation (SOR) method [Young and
Rheinboldt, 1971]. More details about the minimization of the energy are
given in Appendix A.

To downweight the matching term on �ne scales, we use a di�erent
weight βk at each level as proposed by Stoll et al. [2012]. We set βk =
β(k/kmax)

b where k is the current level of computation, kmax the coarsest
level and b a parameter which is optimized together with the other param-
eters, see Section 3.5.3.

3.5 Experiments

This section presents an experimental evaluation of DeepMatching and
DeepFlow. The datasets and metrics used to evaluate DeepMatching and
DeepFlow are introduced in Section 3.5.1. Experimental results are given
in Sections 3.5.2 and 3.5.3 respectively.

3.5.1 Datasets and metrics

In this section, we brie�y introduce the matching and �ow datasets used
in our experiments. Since consecutive frames of a video are well-suited

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 57

to evaluate a matching approach, we use several optical �ow datasets for
evaluating both the quality of matching and �ow, but we rely on di�erent
metrics. We present experimental results for the MPI-Sintel dataset, the
Kitti dataset and the Middlebury dataset. We refer to Section 2.5 for details
about these optical �ow benchmarks.

In addition, we use a matching benchmark, namely the Mikolajczyk
dataset. It was originally proposed by Mikolajczyk et al. [2005] to evaluate
and compare the performance of keypoint detectors and descriptors. It
is one of the standard benchmarks for evaluating matching approaches.
The dataset consists of 8 sequences of 6 images each viewing a scene under
di�erent conditions, such as illumination changes or viewpoint changes. The
images of a sequence are related by homographies. During the evaluation,
we comply to the standard procedure in which the �rst image of each scene
is matched to the 5 remaining ones. Since our goal is to study robustness
of DeepMatching to geometric distortions, we follow HaCohen et al. [2011]
and restrict our evaluation to the 4 most di�cult sequences with viewpoint
changes: bark, boat, graf and wall.

Performance metric for matching. Choosing a performance measure
for matching approaches is delicate. Matching approaches typically do not
return dense correspondences, but output varying numbers of matches. Fur-
thermore, correspondences might be concentrated in di�erent areas of the
image.

Most matching approaches, including DeepMatching, are based on es-
tablishing correspondences between patches. Given a pair of matching
patches, it is possible to obtain a list of pixel correspondences for all pixels
within the patches. We introduce a measure based on the number of cor-
rectly matched pixels compared to the overall number of pixels. We de�ne
`accuracy@T ' as the proportion of `correct' pixels from the �rst image with
respect to the total number of pixels. A pixel is considered correct if its
pixel match in the second image is closer than T pixels to ground-truth.
In practice, we use a threshold of T = 10 pixels, as this represents a suf-
�ciently precise estimation (about 1% of image diagonal for all datasets),
while allowing some tolerance in blurred areas that are di�cult to match
exactly. If a pixel belongs to several matches, we choose the one with the
highest score to predict its correspondence. Pixels which do not belong to
any patch have an in�nite error.

Performance metric for optical �ow. To evaluate optical �ow, we
follow the standard protocol and measure the average endpoint error over

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 58

all pixels, denoted as EPE. The `s10-40' variant measures the EPE only
for pixels with a ground-truth displacement between 10 and 40 pixels, and
likewise for `s0-10' and `s40+'. More details about the optical �ow metrics
can be found in Section 2.5.

3.5.2 Matching Experiments

In this section, we evaluate DeepMatching (DM). We present results for
all datasets presented above but Middlebury, which does not feature long-
range motions, the main di�culty in image matching. When evaluating
on the Mikolajczyk dataset, we employ the scale and rotation invariant
version of DM presented in Section 3.3.2. For all the matching experiments
reported in this section, we use the Mikolajczyk dataset and the training
sets of MPI-Sintel and Kitti.

Impact of the parameters

We optimize the di�erent parameters of DM jointly on all datasets. To
prevent over�tting, we use the same parameters across all datasets.

Pixel descriptor parameters. We �rst optimize the parameters of the
pixel representation (Section 3.2.2): ν1, ν2, ν3 (di�erent smoothing stages),
ς (sigmoid slope) and µ (regularization constant). After performing a grid
search, we �nd that good results are obtained at ν1 = ν2 = ν3 = 1, ς = 0.2
and µ = 0.3 across all datasets. Figure 3.11 shows the accuracy@10 in the
neighborhood of these values for all parameters. Image pre-smoothing seems
to be crucial for JPEG images (Mikolajczyk dataset), as it smooths out
compression artifacts, whereas it slightly degrades performance for uncom-
pressed PNG images (MPI-Sintel and Kitti). As expected, similar �ndings
are observed for the regularization constant µ since it acts as a regularizer
that reduces the impact of small gradients (i.e., noise). In the following,
we thus use low values of ν1 and µ when dealing with PNG images (we set
ν1 = 0 and µ = 0.1, other parameters are unchanged).

Non-linear recti�cation. We also evaluate the impact of the parameter
λ of the non-linear recti�cation obtained by applying power normalization,
see Equation 3.11. Figure 3.12 displays the accuracy@10 for various values
of λ. We can observe that the optimal performance is achieved at λ = 1.4
for all datasets. We use this value in the remainder of our experiments.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 59

0 0.5 1 1.5 2

Pre-smoothing ν1

0.82

0.86

0.90

A
cc

u
ra

cy
@

1
0

Mikolajczyk dataset
MPI-Sintel (final)

Kitti

0 0.5 1 1.5 2 2.5

Mid-smoothing ν2

0.82

0.86

0.90

A
cc

u
ra

cy
@

1
0

Mikolajczyk dataset
MPI-Sintel (final)

Kitti

0 0.5 1 1.5 2

Post-smoothing ν3

0.82

0.86

0.90

A
cc

u
ra

cy
@

1
0

Mikolajczyk dataset
MPI-Sintel (final)

Kitti

0.1 0.15 0.2 0.25 0.3

Sigmoid slope ς

0.82

0.86

0.90

A
cc

u
ra

cy
@

1
0

Mikolajczyk dataset
MPI-Sintel (final)

Kitti

0.1 0.2 0.3 0.4 0.5

Regularization constant µ

0.82

0.86

0.90

A
cc

u
ra

cy
@

1
0

Mikolajczyk dataset
MPI-Sintel (final)

Kitti

Figure 3.11 � Impact of the parameters to compute pixel descriptors on the
di�erent datasets.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Power normalization parameter λ

0.76

0.80

0.84

0.88

0.92

A
cc

u
ra

cy
@

1
0

Mikolajczyk dataset MPI-Sintel (final) Kitti

Figure 3.12 � Impact of the non-linear response recti�cation (Equa-
tion 3.11).

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 60

New BT New scoring accuracy@10 memory matching
R entry points scheme usage time

Mikolajczyk dataset
1/4 0.620 0.9 GB 1.0 min
1/2 0.848 5.5 GB 20 min
1/2 X 0.864 5.5 GB 7.3 min
1/2 X X 0.878 4.4 GB 6.3 min

MPI-Sintel dataset (�nal)
1/4 0.822 0.4 GB 2.4 sec
1/2 0.880 6.3 GB 55 sec
1/2 X 0.890 6.3 GB 16 sec
1/2 X X 0.892 4.6 GB 16 sec

Kitti dataset
1/4 0.772 0.4 GB 2.0 sec
1/2 0.841 6.3 GB 39 sec
1/2 X 0.855 6.3 GB 14 sec
1/2 X X 0.856 4.7 GB 14 sec

Table 3.1 � Detailed comparison between the preliminary and current ver-
sions of DeepMatching in terms of performance, run-time and memory us-
age. R denotes the input image resolution and BT backtracking. Run-times
are computed on 1 core @ 3.6 GHz.

Evaluation of the backtracking and scoring schemes

We now evaluate two improvements of DM with respect to the previous
version published in [Weinzaepfel et al., 2013], referred to as DM*:
• Backtracking (BT) entry points: in DM* we select as entry points local
maxima in the correlation maps from all pyramid levels. The new alterna-
tive is to start from all possible points in the top pyramid level.
• Scoring scheme: In DM* we scored atomic correspondences based on the
correlation values of start and end point of the backtracking path. The new
scoring scheme is the sum of correlation values along the full backtracking
path.

We report results for the di�erent variants in Table 3.1 on each dataset.
The �rst two rows for each dataset correspond to the exact settings used
for DM* (i.e., with an image resolution of 1/4 and 1/2). We observe a
steady increase in performance on all datasets when we add the new scor-
ing and backtracking approach. We can observe that starting from all
possible entry points in the top pyramid level (i.e., considering all possible

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 61

translations) yields slightly better results than starting from local maxima.
This demonstrates that some ground-truth matches are not covered by any
local maximum. By enumerating all possible patch translations on the top-
level, we instead ensure to fully explore the space of all possible matches.
We verify this experimentally for arti�cial images with small objects in fast
motion. One could expect that the old BT scheme is more appropriate for
matching small objects as it produces local maxima at intermediate levels of
the pyramid. However, this is not con�rmed by our experiment. As stated
above a possible explanation is the exhaustive coverage of translations at
the top-level combined with an e�cient backtracking scheme. Note, how-
ever, that the performance of matching small objects with rapid motion is
relatively low compared to matching large areas.

Furthermore, it is interesting to note that memory usage and run-time
signi�cantly decreases when using the new options. This is because (1)
searching and storing local maxima (which are exponentially more numerous
in lower pyramid levels) is not necessary anymore, and (2) the new scoring
scheme allows for further optimization, i.e., early pruning of backtracking
paths (Section 3.2.3).

Approximate DeepMatching

We now evaluate the performance of approximate DeepMatching (Sec-
tion 3.3.1) and report its run-time and memory usage. We evaluate and
compare two di�erent ways of reducing the computational load. The �rst
one simply consists in downsizing the input images, and upscaling the re-
sulting matches accordingly. The second option is the compression scheme
proposed in Section 3.3.1.

We evaluate both schemes jointly by varying the input image size (ex-
pressed as a fraction R of the original resolution) and the size D of the
prototype dictionary (i.e., parameter of k-means in Section 3.3.1). R = 1
corresponds to the original dataset image size (no downsizing). We display
the results in terms of matching accuracy (accuracy@10) against memory
consumption in Figure 3.13 and as a function of D in Figure 3.14. Fig-
ure 3.13 shows that DeepMatching can be computed in an approximate
manner for any given memory budget. Unsurprisingly, too low settings
(e.g . R ≤ 1/8, D ≤ 64) result in a strong loss of performance. It should be
noted that that we were unable to compute DeepMatching at full resolution
(R = 1) for D > 64, as the memory consumption explodes. As a conse-
quence, all subsequent experiments in the chapter are done at R = 1/2. In
Figure 3.14, we observe that good trades-o� are achieved for dictionary sizes
comprised inD ∈ [64, 1024]. For instance, on MPI-Sintel, atD = 1024, 94%

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 62

of the performance of the uncompressed case (D = ∞) is reached for half
the computation time and one third of the memory usage. Detailed timings
of the di�erent stages of DeepMatching are given in Table 3.2. As expected,
only the bottom-up pass is a�ected by the approximation, with a run-time
of the di�erent operations involved (patch correlations, max-pooling, sub-
sampling, aggregation and non-linear recti�cation) roughly proportional to
D (or to |G4|, the actual number of atomic patches, if D = ∞). The
overhead of clustering the dictionary prototypes with k-means appears neg-
ligible, with the exception of the largest dictionary size (D = 4096) for
which it induces a slightly longer run-time than in the uncompressed case.
Overall, the proposed method for approximating DeepMatching is highly
e�ective.

GPU Implementation. We have implemented DM on GPU in the Caffe
framework [Jia et al., 2014]. Using existing Caffe layers like Convolution-
Layer and PoolingLayer, the implementation is straightforward for most
layers. We had to speci�cally code a few layers which are not available in
Caffe (e.g . the backtracking pass 3). For the aggregation layer which con-
sists in selecting and averaging 4 children channels out of many channels, we
relied on the sparse matrix multiplication in the cuSPARSE toolbox. De-
tailed timings are given in Table 3.2 on a GeForce Titan X. Our code runs
in about 0.2s for a pair of MPI-Sintel image. As expected, the computation
bottleneck essentially lies in the computation of bottom-level patch corre-
lations and the backtracking pass. Note that computing patch descriptors
takes signi�cantly more time, in proportion, than on CPU: it takes about
0.024s = 11% of total time (not shown in table). This is because it involves
a succession of many small layers (image smoothing, gradient extraction
and projection, etc.), which causes overhead and is rather ine�cient.

Comparison to the state of the art

We compare DM with several baselines and state-of-the-art matching
algorithms, namely:
• SIFT keypoints extracted with DoG detector [Lowe, 2004] and matched
with FLANN [Muja and Lowe, 2009], referred to as SIFT-NN, 4

• dense HOG matching, followed by nearest-neighbor matching with recip-
rocal veri�cation as done in LDOF [Brox and Malik, 2011], referred to as
HOG-NN 4,

3. Although the backtracking is conceptually close to the back-propagation training
algorithm, it di�ers in term of how the scores are accumulated for each path.

4. We implemented this method ourselves.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 63

0.1 0.2 0.5 1 2 5 10
Memory usage (GB)

0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy
@

1
0

D=4

D=64

D=4

D=64

D=1024
D=∞

D=4 D=64

D=1024D=∞

D=∞

(a) Mikolajczyk dataset

R = 1/1
R = 1/2
R = 1/4
R = 1/8

0.2 0.5 1 2 5 10
Memory usage (GB)

0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy
@

1
0

D=4

D=64

D=4

D=64
D=1024 D=∞

D=4

D=64

D=1024D=∞

D=∞

(b) MPI-Sintel dataset (final version)

R = 1/1
R = 1/2
R = 1/4
R = 1/8

0.2 0.5 1 2 5 10
Memory usage (GB)

0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy
@

1
0

D=4

D=64

D=4

D=64

D=1024 D=∞

D=4

D=64

D=1024
D=∞

D=∞

(c) Kitti dataset

R = 1/1
R = 1/2
R = 1/4
R = 1/8

Figure 3.13 � Trade-o� between memory consumption and matching perfor-
mance for the di�erent datasets. Memory usage is controlled by changing
image resolution R (di�erent curves) and dictionary size D (curve points).

• Generalized PatchMatch (GPM) [Barnes et al., 2010], with default param-
eters, 32x32 patches and 20 iterations (best settings in our experiments) 5,
• Kd-tree PatchMatch (KPM) [Sun, 2012], an improved version of Patch-
Match based on better patch descriptors and kd-trees optimized for corre-
spondence propagation 4,
• Non-Rigid Dense Correspondences (NRDC) [HaCohen et al., 2011], an im-
proved version of GPM based on a multiscale iterative expansion/contraction
strategy 6,

5. We used the online code.
6. We report results from the original paper.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 64

4 8 16 32 64 128 256 512 1024 2048 4096 ∞
0.0

0.2

0.4

0.6

0.8
A

cc
u
ra

cy
@

1
0

Mikolajczyk dataset
MPI-Sintel (final)
Kitti

2

4

6

8

10

12

14

16

18

T
im

e
 s

p
e
n
t

(s
)

o
n
 M

P
I-

S
in

te
l

0

1

2

3

4

5

M
e
m

o
ry

 u
sa

g
e
 (

G
B

)
o
n
 M

P
I-

S
in

te
l

4 8 16 32 64 128 256 512 1024 2048 4096 ∞
Dictionary size

Memory
Time

Figure 3.14 � Performance, memory usage and run-time for di�erent levels
of compression corresponding to the size D of the prototype dictionary (we
set the image resolution to R = 1/2). A dictionary size D =∞ stands for
no compression. Run-times are for a single image pair on 1 core @ 3.6 GHz.

Proc. Patch Patch Max-pooling Aggre- Non-linear Back- Total
Unit R D clustering Correlations +subsampling gation recti�cation tracking time
CPU 1/2 64 0.3 0.2 0.4 0.9 0.8 5.1 7.7
CPU 1/2 1024 1.3 0.7 0.6 1.0 1.3 5.8 10.7
CPU 1/2 ∞ - 4.3 1.6 1.0 3.2 6.2 16.4
GPU 1/2 ∞ - 0.084 0.012 0.017 0.013 0.053 0.213

Table 3.2 � Detailed timings of the di�erent stages of DeepMatching, mea-
sured for a single image pair from MPI-Sintel on CPU (1 core @ 3.6GHz)
and GPU (GeForce Titan X) in seconds. Stages are: patch clustering (only
for approximate DM, see Section 3.3.1), patch correlations (Equation 3.4),
joint max-pooling and subsampling, correlation map aggregation, non lin-
ear recti�cation (resp. S ◦ P , ∑ Toi

, and Rλ in Equation 3.12), and corre-
spondence backtracking (Section 3.2.3). Other operations (e.g . reciprocal
veri�cation of Equation 3.16) have negligible run-time. For operations ap-
plied at several levels like the non-linear recti�cation, a cumulative timing
is given.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 65

• SIFT-�ow [Liu et al., 2011], a dense matching algorithm based on an energy
minimization where pixels are represented as SIFT features and a smooth-
ness term is incorporated to explicitly preserve spatial discontinuities 5,
• Scale-less SIFT (SLS) [Hassner et al., 2012], an improvement of SIFT-�ow
to handle scale changes (multiple sized SIFTs are extracted and combined
to form a scale-invariant pixel representation) 5,
• DaisyFilterFlow (DaisyFF) [Yang et al., 2014], a dense matching approach
that combines �lter-based e�cient �ow inference and the Patch-Match fast
search algorithm to match pixels described using the DAISY representa-
tion [Tola et al., 2010] 5,
• Deformable Pyramid Matching (DSP) [Kim et al., 2013], a dense matching
approach based on a coarse-to-�ne (top-down) strategy where inference is
performed with (inexact) loopy belief propagation 5.
SIFT-NN, HOG-NN and DM output sparse matches, whereas the other
methods output fully dense correspondence �elds. SIFT keypoints, GPM,
NRDC and DaisyFF are scale and rotation invariant, whereas HOG-NN,
KPM, SIFT-�ow, SLS and DSP are not. We, therefore, do not report results
for these latter methods on the Mikolajczyk dataset which includes image
rotations and scale changes.

Statistics about each method (average number of matches per image
and their coverage) are reported in Table 3.3. Coverage is computed as
the proportion of points on a regular grid with 10 pixel spacing for which
there exists a correspondence (in the raw output of the considered method)
within a 10 pixel neighborhood. Thus, it measures how well matches `cover'
the image. Table 3.3 shows that DeepMatching outputs 2 to 7 times more
matches than SIFT-NN and a comparable number to HOG-NN. Yet, the
coverage for DM matches is much higher than for HOG-NN and SIFT-NN.
This shows that DM matches are well distributed over the entire image,
which is not the case for HOG-NN and SIFT-NN, as they have di�culties
estimating matches in regions with weak or repetitive textures.

Quantitative results are listed in Table 3.4, and qualitative results in
Figures 3.15, 3.16 and 3.17. Overall, DM signi�cantly outperforms all other
methods, even when reduced settings are used (e.g . for image resolution R =
1/2 and D = 1024 prototypes). As expected, SIFT-NN performs rather
well in presence of global image transformation (Mikolajczyk dataset), but
yields the worst result for the case of more complex motions (�ow datasets).
Figures 3.16 and 3.17 illustrate the reason: SIFT's large patches are way too
coarse to follow motion boundaries precisely. The same issue also holds for
HOG-NN. Methods predicting dense correspondence �elds return a more
precise estimate, yet most of them (KPM, GPM, SIFT-�ow, DSP) are not
robust to repetitive textures in the Kitti dataset (Figure 3.17) as they rely

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 66

Method
Mikolajczyk MPI-Sintel (�nal) Kitti
coverage # coverage # coverage

SIFT-NN 2084 0.59 836 0.25 1299 0.38
HOG-NN - - 4576 0.39 4293 0.34
KPM - - 446K 1 462K 1
GPM 545K 1 446K 1 462K 1
NRDC 545K 1 446K 1 462K 1

SIFT-�ow - - 446K 1 462K 1
SLS - - 446K 1 462K 1

DaisyFF 545K 1 446K 1 462K 1
DSP - - 446K 1 462K 1

DM (ours) 3120 0.81 5920 0.96 5357 0.88

Table 3.3 � Statistics of the di�erent matching methods. The �#� column
refers to the average number of matches per image, and the coverage to
the proportion of points on a regular grid with 10 pixel spacing that have
a match within a 10px neighborhood. We use the raw matches output by
each method, i.e., without any post-processing. Matches are not necessarily
correct.

on weakly discriminative small patches. Despite this limitation, SIFT-�ow
and DSP are still able to perform well on MPI-Sintel as this dataset contains
little scale changes. Other dense methods, NRDC, SLS and DaisyFF, can
handle patches of di�erent sizes and thus perform better on Kitti. But
in turn this is at the cost of reduced performance on the MPI-Sintel or
Mikolajczyk datasets (qualitative results are in Figure 3.15). In conclusion,
DM outperforms all other methods on the 3 datasets, including DSP which
also relies on a hierarchical matching.

In terms of computing resources, DeepMatching with full settings (R =
1/2, D = ∞) is one of the most costly method (only SLS and DaisyFF
require the same order of memory and longer run-time). The scale and
rotation invariant version of DM, used for the Mikolajczyk dataset, is slow
compared to most other approaches, due to its sequential processing (i.e.,
treating each combination of rotation and scaling sequentially), yet yields
near perfect results. However, running DM with reduced settings is very
competitive to the other approaches. On MPI-Sintel and Kitti, for in-
stance, DM with a quarter resolution has a run-time comparable to the
fastest method, SIFT-NN, with a reasonable memory usage, while still out-
performing nearly all methods in terms of the accuracy@10 measure.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 67

method R D accuracy@10 memory matching
usage time

Mikolajczyk dataset
SIFT-NN 0.674 0.2 GB 1.4 sec
GPM 0.303 0.1 GB 2.4 min
NRDC 0.692 0.1 GB 2.5 min
DaisyFF 0.410 6.1 GB 16 min
DM 1/4 ∞ 0.657 0.9 GB 38 sec
DM 1/2 1024 0.820 1.5 GB 4.5 min
DM 1/2 ∞ 0.878 4.4 GB 6.3 min

MPI-Sintel dataset (�nal)
SIFT-NN 0.684 0.2 GB 2.7 sec
HOG-NN 0.712 3.4 GB 32 sec
KPM 0.738 0.3 GB 7.3 sec
GPM 0.812 0.1 GB 1.1 min
SIFT-�ow 0.890 1.0 GB 29 sec
SLS 0.824 4.3 GB 16 min
DaisyFF 0.873 6.8 GB 12 min
DSP 0.853 0.8 GB 39 sec
DM 1/4 ∞ 0.835 0.3 GB 1.6 sec
DM 1/2 1024 0.869 1.8 GB 10 sec
DM 1/2 ∞ 0.892 4.6 GB 16 sec

Kitti dataset
SIFT-NN 0.489 0.2 GB 1.7 sec
HOG-NN 0.537 2.9 GB 24 sec
KPM 0.536 0.3 GB 17 sec
GPM 0.661 0.1 GB 2.7 min
SIFT-�ow 0.673 1.0 GB 25 sec
SLS 0.748 4.4 GB 17 min
DaisyFF 0.796 7.0 GB 11 min
DSP 0.580 0.8 GB 2.9 min
DM 1/4 ∞ 0.800 0.3 GB 1.6 sec
DM 1/2 1024 0.812 1.7 GB 10 sec
DM 1/2 ∞ 0.856 4.7 GB 14 sec

Table 3.4 � Matching performance, run-time and memory usage for state-
of-the-art methods and DeepMatching (DM). For the proposed method, R
and D denote the input image resolution and the dictionary size (∞ stands
for no compression). Run-times are computed on 1 core @ 3.6 GHz.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 68

GT SIFT-NN GPM NRDC DaisyFF DM

b
ar
k

b
oa
t

gr
af

w
al
l

Figure 3.15 � Comparison of matching results of di�erent methods on the
Mikolajczyk dataset. Each column shows pixels with correct correspon-
dences for di�erent methods with from left to right: ground-truth (GT),
SIFT-NN, GPM, NRDC and DeepMatching (DM). For each scene, we se-
lect two images to match and fade out regions which are unmatched, i.e.,
those for which the matching error is above 15px or can not be matched.
DeepMatching outperforms the other methods, especially on di�cult cases
like graf and wall.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 69

Correspondence �eld Image/Error map Correspondence �eld Image/Error map Correspondence �eld Image/Error map

G
T

S
IF
T
-N
N

H
O
G
-N
N

K
P
M

G
P
M

S
IF
T
-�
ow

S
L
S

D
a
is
y
F
F

D
S
P

D
M

Figure 3.16 � Comparison of di�erent matching methods on three chal-
lenging pairs with non-rigid deformations from MPI-Sintel. Each pair of
columns shows motion maps (left column) and the corresponding error maps
(right column). The top row presents the ground-truth (GT) as well as one
image. For non-dense methods, pixel displacements have been inferred from
matching patches. Areas without correspondences are in black.

3.5.3 Optical Flow Experiments

We now present experimental results for the optical �ow estimation.
Optical �ow is predicted using the variational framework presented in Sec-
tion 3.4 that takes as input a set of matches. In the following, we evaluate
the impact of DeepMatching against other matching methods, and compare
to the state of the art.

Optimization of the parameters

We optimize the parameters of DeepFlow on a subset of the MPI-Sintel
training set (20%), called `small' set, and report results on the remaining
image pairs (80%, called `validation set') and on the training sets of Kitti
and Middlebury. Ground-truth optical �ows for the three test sets are not
publicly available, in order to prevent parameter tuning on the test set.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 70

Correspondence �eld Image/Error map Correspondence �eld Image/Error map

G
T

S
IF
T
-N
N

H
O
G
-N
N

K
P
M

G
P
M

S
IF
T
-�
ow

S
L
S

D
a
is
y
F
F

D
S
P

D
M

Figure 3.17 � Comparison of di�erent matching methods on three chal-
lenging pairs from Kitti. Each pair of columns shows motion maps (left
column) and the corresponding error maps (right column). The top row
presents the ground-truth (GT) as well as one image. For non-dense meth-
ods, pixel displacements have been inferred from matching patches. Areas
without correspondences are in black. To improve visualization, the sparse
Kitti ground-truth is made dense using bilateral �ltering.

We �rst optimize the di�erent �ow parameters (β, γ, δ, σ and b) by
employing a gradient descent strategy with multiple initializations followed
by a local grid search. For the data term, we �nd an optimum at δ =
0, which is equivalent to removing the color constancy assumption. This
can be explained by the fact that the `�nal' version contains atmospheric
e�ects, re�ections, blurs, etc. The remaining parameters are optimal at
β = 300, γ = 0.8, σ = 0.5, b = 0.6. These parameters are used in the
remaining of the experiments for DeepFlow, i.e., using matches obtained
with DeepMatching, except when reporting results on Kitti and Middlebury
test sets in Section 3.5.3. In this case the parameters are optimized on their
respective training set.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 71

Method R D MPI-Sintel Kitti Middlebury
No Match 5.863 8.791 0.274
SIFT-NN 5.733 7.753 0.280
HOG-NN 5.458 8.071 0.273
KPM 5.560 15.289 0.275
GPM 5.561 17.491 0.286
SIFT-�ow 5.243 12.778 0.283
SLS 5.307 10.366 0.288
DaisyFF 5.145 10.334 0.289
DSP 5.493 15.728 0.283
DM 1/2 1024 4.350 7.899 0.320
DM 1/2 ∞ 4.098 4.407 0.328

Table 3.5 � Comparison of average endpoint error on di�erent datasets when
changing the input matches in the �ow computation.

Impact of the matches on the �ow

We examine the impact of di�erent matching methods on the �ow, i.e.,
di�erent matches are used in DeepFlow, see Section 3.4. For all matching
approaches evaluated in the previous section, we use their output as match-
ing term in Equation 3.17. Because these approaches may output matches
with statistics di�erent from DM, we separately optimize the �ow parame-
ters for each matching approach on the small training set of MPI-Sintel 7.

Table 3.5 shows the endpoint error, averaged over all pixels. Clearly,
a su�ciently dense and accurate matching like DM allows to considerably
improve the �ow estimation on datasets with large displacements (MPI-
Sintel, Kitti). In contrast, none of the methods presented have a tangible
e�ect on the Middlebury dataset, where the displacements are small.

The relatively small gains achieved by SIFT-NN and HOG-NN on MPI-
Sintel and Kitti are due to the fact that a lot of regions with large dis-
placements are not covered by any matches, such as the sky or the blurred
character in the �rst and second column of Figure 3.18. Hence, SIFT-NN
and HOG-NN have only a limited impact on the variational approach. On
the other hand, the gains are also small (or even negative) for the dense
methods despite the fact that they output signi�cantly more correspon-
dences. We observe for these methods that the weight β of the matching
term tends to be small after optimizing the parameters, thus indicating
that the matches are found unreliable and noisy during training. The cause

7. Note that this systematically improves the endpoint error compared to using the
raw dense correspondence �elds as �ow.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 72

is clearly visible in Figure 3.17, where large portions containing repetitive
textures (e.g . road, trees) are incorrectly matched. The poor quality of
these matches even leads to a signi�cant drop in performance on the Kitti
dataset.

In contrast, DeepMatching generates accurate matches well covering
the image that enable to boost the optical �ow accuracy in case of large
displacements. Namely, we observe a relative improvement of 30% on MPI-
Sintel and of 50% on Kitti. It is interesting to observe that DM is able
to e�ectively prune false matches arising in occluded areas (black areas in
Figures 3.16 and 3.17). This is due to the reciprocal veri�cation �ltering
incorporated in DM (Equation 3.16). When using the approximation with
1024 prototypes, however, a signi�cant drop is observed on the Kitti dataset,
while the performance remains good on MPI-Sintel. This indicates that
approximating DeepMatching can result in a signi�cant loss of robustness
when matching repetitive textures, that are more frequent in Kitti than in
MPI-Sintel.

Comparison to the state of the art

In this section, we compare DeepFlow to the state of the art on the test
sets of MPI-Sintel, Kitti and Middlebury datasets. For theses datasets, the
results are submitted to a dedicated server which performs the evaluation.
Prior to submitting our results for Kitti and Middlebury test sets, we have
optimized the parameters on the respective training set.

Results on MPI-Sintel. Table 3.6 compares our method to state-of-
the-art algorithms on the MPI-Sintel test set. A comparison with the
preliminary version of DeepFlow [Weinzaepfel et al., 2013], referred to as
DeepFlow*, is also provided. In this early version, we used a constant
smoothness weight instead of a local one here (see Section 3.4) and used
DM* as input matches. We can see that DeepFlow is among the best per-
forming methods on MPI-Sintel, particularly for large displacements. This
is due to the use of a reliable matching term in the variational approach,
and this property is shared by all top performing approaches, e.g . [Revaud
et al., 2015, Leordeanu et al., 2013]. Furthermore, it is interesting to note
that among the top performers on MPI-Sintel, few methods actually employ
DeepMatching. For instance, EpicFlow [Revaud et al., 2015] relies on the
output of DeepMatching to produce a piece-wise a�ne �ow, and Sparse-
FlowFused [Timofte and Van Gool, 2015] combines matches obtained with
DeepMatching and another algorithm.

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 73
Im

a
g
es

G
ro
u
n
d
-T
ru
th

D
M

D
e
e
p
F
lo
w

M
D
P
-F
lo
w
2

L
D
O
F

Figure 3.18 � Each column shows from top to bottom: two consecutive
images, the ground-truth optical �ow, the DeepMatching (DM), our �ow
prediction (DeepFlow), and two state-of-the-art methods, LDOF [Brox and
Malik, 2011] and MDP-Flow2 [Xu et al., 2012].

We refer to the webpage of the MPI-Sintel dataset 8 for complete results
including the `clean' version.

Timings. As mentioned before, DeepMatching at half the resolution takes
15 seconds to compute on CPU and 0.2 second on GPU. The variational
part requires 10 additional seconds on CPU. Note that by implementing it
on GPU, we could obtain a signi�cant speed-up as well. DeepFlow conse-
quently takes 25 seconds in total on a single CPU core @ 3.6 GHz or 10.2s
with GPU+CPU. This is in the same order of magnitude as the fastest
among the best competitors, EpicFlow [Revaud et al., 2015].

8. http://sintel.is.tue.mpg.de/results

http://sintel.is.tue.mpg.de/results

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 74

Method EPE EPE-occ s0-10 s10-40 s40+ Time
FlowFields [Bailer et al., 2015] 5.810 31.799 1.157 3.739 33.890 23s
DiscreteFlow [Menze et al., 2015] 5.810 31.799 1.157 3.739 33.890 180s
EpicFlow [Revaud et al., 2015] 6.285 32.564 1.135 3.727 38.021 16.4s
TF+OFM [Kennedy and Taylor, 2015] 6.727 33.929 1.512 3.765 39.761 ∼400s
DeepFlow 6.928 38.166 1.182 3.859 42.854 25s
SparseFlowFused [Timofte and Van Gool, 2015] 7.189 3.286 1.275 3.963 44.319 20s
DeepFlow* [Weinzaepfel et al., 2013] 7.212 38.781 1.284 4.107 44.118 19s
S2D-Matching [Leordeanu et al., 2013] 7.872 40.093 1.172 4.695 48.782 ∼2000s
LocalLayering [Sun et al., 2014a] 8.043 40.879 1.186 4.990 49.426
Classic+NL-P [Sun et al., 2014b] 8.291 40.925 1.208 5.090 51.162 ∼800s
MDP-Flow2 [Xu et al., 2012] 8.445 43.430 1.420 5.449 50.507 709s
NLTGV-SC [Ranftl et al., 2014] 8.746 42.242 1.587 4.780 53.860
LDOF [Brox and Malik, 2011] 9.116 42.344 1.485 4.839 57.296 30s

Table 3.6 � Results on MPI-Sintel test set (�nal version). EPE-occ is the
EPE on occluded areas. s0-10 is the EPE for pixels with motions between
0 and 10 px and similarly for s10-40 and s40+. DeepFlow* denotes the
preliminary version of DeepFlow published in [Weinzaepfel et al., 2013].

Results on Kitti. Table 3.7 summarizes the main results on the Kitti
benchmark (see o�cial website 9 for complete results), when optimizing the
parameters on the Kitti training set. EPE-Noc is the EPE computed only
in non-occluded areas. `Out-all 3' corresponds to the proportion of incorrect
pixel correspondences for an error threshold of 3 pixels, i.e., it corresponds
to 1 − accuracy@3, and likewise for `Out-Noc 3' for non-occluded areas,
see Section 2.5. In terms of EPE-noc, DeepFlow is on par with the best
approaches, but performs somewhat worse in the occluded areas. This is due
to a speci�city of the Kitti dataset, in which motion is mostly homographic
(especially on the image borders, where most surfaces like roads and walls
are planar). In such cases, �ow is better predicted using an a�ne motion
prior, which locally well approximates homographies (a constant motion
prior is used in DeepFlow). As a matter of facts, all top performing methods
in terms of total EPE output piece-wise a�ne optical �ow, either due to
a�ne regularizers (BTF-ILLUM [Demetz et al., 2014], NLTGB-SC [Ranftl
et al., 2014], TGV2ADCSIFT [Braux-Zin et al., 2013]) or due to local a�ne
estimators (EpicFlow [Revaud et al., 2015]).

Note that the learned parameters on Kitti and MPI-Sintel are close.
In particular, running the experiments with the same parameters as MPI-
Sintel decreases EPE-Noc by only 0.1 pixel on the training set. This shows
that our method does not su�er from over�tting.

9. http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=
flow

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow

CHAPTER 3. DEEPFLOW: LARGE DISPLACEMENT OPTICAL

FLOW WITH DEEPMATCHING 75

Method EPE-noc EPE Out-Noc 3 Out-all 3 Time
DiscreteFlow [Menze et al., 2015] 1.3 3.6 5.77% 16.63% 180s
FlowFields [Bailer et al., 2015] 1.4 3.5 6.23% 14.01% 23s
DeepFlow 1.4 5.3 6.61% 17.35% 22s
BTF-ILLUM [Demetz et al., 2014] 1.5 2.8 6.52% 11.03% 80s
EpicFlow [Revaud et al., 2015] 1.5 3.8 7.88% 17.08% 16s
TGV2ADCSIFT [Braux-Zin et al., 2013] 1.5 4.5 6.20% 15.15% 12s•

DeepFlow* [Weinzaepfel et al., 2013] 1.5 5.8 7.22% 17.79% 17s
NLTGV-SC [Ranftl et al., 2014] 1.6 3.8 5.93% 11.96% 16s•

Data-Flow [Vogel et al., 2013b] 1.9 5.5 7.11% 14.57% 180s
TF+OFM [Kennedy and Taylor, 2015] 2.0 5.0 10.22% 18.46% 350s

Table 3.7 � Results on Kitti test set. EPE-noc is the EPE over non-occluded
areas. Out-Noc 3 (resp. Out 3) refers to the percentage of pixels where
�ow estimation has an error above 3 pixels in non-occluded areas (resp. all
pixels). DeepFlow* denotes the preliminary version of DeepFlow published
in Weinzaepfel et al. [2013]. • denotes the usage of a GPU.

Results on Middlebury. We optimize the parameters on the Middle-
bury training set by minimizing the average angular error with the same
strategy as for MPI-Sintel. We �nd weights quasi-zero for the matching
term due to the absence of large displacements. DeepFlow obtained an av-
erage endpoint error of 0.4 on the test which is competitive with the state
of the art.

3.6 Conclusion

In this chapter we introduced DeepMatching, a dense matching algo-
rithm tailored to optical �ow estimation. The proposed algorithm gracefully
handles complex non-rigid object deformations and regions with repetitive
textures. Integrating DeepMatching into a variational formulation leads to
a performance boost for large displacement optical �ow.

Nevertheless, DeepFlow still su�ers from inherent issues of a variational
formulation optimized with a coarse-to-�ne scheme, such as oversmoothing
or missing small objects with fast motion. Indeed, even in the presence
of correct matches for these objects, the coarse-to-�ne scheme tends to
miss their motion, mainly because the objects overlap at coarse scales and
errors are not recovered at �ner scales. Since DeepMatching already outputs
quasi-dense matches, in the next chapter we propose an alternative to the
coarse-to-�ne scheme which is faster and outputs a more accurate optical
�ow.

Chapter 4

EpicFlow: Edge-Preserving

Interpolation of Correspondences

for Optical Flow

Contents

4.1 Introduction . 76

4.2 Sparse-to-dense interpolation 80

4.2.1 Sparse set of matches 80

4.2.2 Interpolation method 80

4.2.3 Edge-preserving distance 81

4.2.4 Fast approximation 82

4.3 Optical Flow Estimation 85

4.4 Experiments . 86

4.4.1 Input matches 86

4.4.2 Impact of the di�erent parameters 87

4.4.3 EpicFlow versus coarse-to-�ne scheme 91

4.4.4 Comparison with the state of the art 93

4.5 Conclusion . 95

4.1 Introduction

The main challenges towards an accurate optical �ow estimation in real-
world videos are occlusions, motion discontinuities and large displacements.
Large displacement optical �ow approaches [Brox and Malik, 2011, Xu et al.,
2012, Revaud et al., 2016] have recently emerged by integrating matching in

76

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 77

Figure 4.1 � Image edges detected with SED [Dollár and Zitnick, 2013] and
ground-truth optical �ow. Motion discontinuities appear most of the time
at image edges.

a variational formulation. However, they still rely on coarse-to-�ne scheme
in order to obtain a full-scale dense �ow �eld guided by the matches. A
major drawback of coarse-to-�ne schemes is error-propagation, i.e., errors
at coarser levels, where di�erent motion layers can overlap, are propagated
across scales. Even if coarse-to-�ne techniques work well in most cases, we
are not aware of a theoretical guarantee or proof of convergence.

Instead, this chapter introduces a novel approach that simply interpo-
lates a sparse set of matches in a dense manner to initiate the optical �ow
estimation. We then use this estimate to initialize a one-level energy mini-
mization problem, and obtain the �nal optical �ow estimation. This enables
us to leverage recent advances in matching algorithms, which can now out-
put quasi-dense correspondence �elds [Barnes et al., 2010, Revaud et al.,
2016]. In the same spirit as Leordeanu et al. [2013], we perform a sparse-
to-dense interpolation by �tting a local a�ne model at each pixel based
on nearby matches. A major issue arises for the preservation of motion
boundaries. We make the following observation: motion boundaries often
tend to appear at image edges, see Figure 4.1. Consequently, we propose to
exchange the Euclidean distance with a better, i.e., edge-aware, distance
and show that this o�ers a natural way to handle motion discontinuities.
Moreover, we show how an approximation of the edge-aware distance allows
to �t only one a�ne model per input match (instead of one per pixel). This
leads to an important speed-up of the interpolation scheme without loss in
performance.

The obtained interpolated �eld of correspondences is su�ciently accu-
rate to be used as initialization of a one-level energy minimization. Our
work suggests that there may be better initialization strategies than the
well-established coarse-to-�ne scheme, see Figure 4.2. In particular, our ap-
proach, EpicFlow (edge-preserving interpolation of correspondences) shows
excellent performance on the challenging MPI-Sintel dataset [Butler et al.,
2012] and is competitive on Kitti [Geiger et al., 2013] and Middlebury [Baker

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 78

Coarsest levelCoarsest level Flow estimate at coarsest levelFlow estimate at coarsest level

Original frameOriginal frame Flow estimate after coarse-to-fineFlow estimate after coarse-to-fine

Ground-truth flowGround-truth flow EpicFlowEpicFlow

Figure 4.2 � Comparison of coarse-to-�ne �ow estimation and EpicFlow.
Errors at the coarsest level of estimation, due to a low resolution, often
get propagated to the �nest level (right, top and middle). In contrast, our
interpolation scheme bene�ts from an edge prior at the �nest level (right,
bottom).

et al., 2011]. An overview of EpicFlow is given in Figure 4.3. To summarize,
we make three main contributions:
• We propose EpicFlow, a novel sparse-to-dense interpolation scheme of
matches based on an edge-aware distance. We show that it is robust to
motion boundaries, occlusions and large displacements.

• We propose an approximation scheme for the edge-aware distance, leading
to a signi�cant speed-up without loss of accuracy.

• We show empirically that the proposed optical �ow estimation scheme is
more accurate than estimations based on coarse-to-�ne minimization.

Closest references. Several works have proposed to integrate matches in
an optical �ow formulation [Brox and Malik, 2011, Xu et al., 2012, Weinza-
epfel et al., 2013]. However, these methods rely on a coarse-to-�ne scheme,
that su�ers from intrinsic �aws. Namely, details are lost at coarse scales,

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 79

Contour

Matching

Energy
Minimization

First Image

Second Image

Dense
Interpolation

Figure 4.3 � Overview of EpicFlow. Given two images, we compute matches
using DeepMatching [Weinzaepfel et al., 2013] and the edges of the �rst
image using SED [Dollár and Zitnick, 2013]. We combine these two cues to
densely interpolate matches and obtain a dense correspondence �eld. This
is used as initialization of a one-level energy minimization framework.

and thin objects with substantially di�erent motions cannot be detected.
These errors correspond to local minima, hence they cannot be recovered
and are propagated across levels, see Figure 4.2.

In contrast, EpicFlow relies on sparse-to-dense interpolation of matches
while taking into account image edges. In the same spirit, Ren [2008] pro-
poses to use edge-based a�nities to group pixels and estimate a piece-wise
a�ne �ow. Nevertheless, this work relies on a discretization of the optical
�ow constraint, which is valid only for small displacements. Closely re-
lated to EpicFlow, Leordeanu et al. [2013] also investigate sparse-to-dense
interpolation. Their initial matching is obtained through the costly mini-
mization of a global non-convex matching energy. In contrast, we directly
use state-of-the-art matches [Revaud et al., 2016, He and Sun, 2012] as
input. Furthermore, during their sparse-to-dense interpolation, they com-
pute an a�ne transformation independently for each pixel based on its
neighborhood matches, which are found in a Euclidean ball and weighted
by an estimation of occluded areas that involves learning a binary classi�er.
In contrast, we propose to use an edge-preserving distance that naturally
handles occlusions, and can be very e�ciently computed.

Outline. This chapter is organized as follows. We start by presenting the
sparse-to-dense interpolation as well as its approximated scheme in Sec-
tion 4.2. We then describe the energy minimization for optical �ow com-
putation in Section 4.3. Finally, Section 4.4 presents experimental results.
Source code is available online at http://lear.inrialpes.fr/software.

http://lear.inrialpes.fr/software

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 80

4.2 Sparse-to-dense interpolation

The proposed approach, EpicFlow, consists of three steps, as illustrated
in Figure 4.3. First, we compute a sparse set of matches between the two
images, using a state-of-the-art matching algorithm. Second, we perform
a densi�cation of this set of matches, by computing a sparse-to-dense in-
terpolation from the sparse set of matches, which yields an initial estimate
of the optical �ow. Third, we compute the �nal optical �ow estimation
by performing one step of variational energy minimization using the dense
interpolation as initialization, see Section 4.3.

4.2.1 Sparse set of matches

The �rst step of our approach extracts a sparse set of matches, see Fig-
ure 4.3. Any state-of-the-art matching algorithm can be used to compute
the initial set of sparse matches. In our experiments, we compare the results
when using DeepMatching [Weinzaepfel et al., 2013] or a subset of an esti-
mated nearest-neighbor �eld [He and Sun, 2012]. We defer to Section 4.4.1
for a description of these matching algorithms. In both cases, we obtain
∼ 5000 matches for an image of resolution 1024 × 436, i.e., an average of
around one match per 90 pixels. We also evaluate the impact of matching
quality and density on the performance of EpicFlow by generating arti�-
cial matches from the ground-truth in Section 4.4.3. In the following, we
denote by M = {(pm,p′

m)} the sparse set of input matches, where each
match (pm,p

′
m) de�nes a correspondence between a pixel pm in the �rst

image and and a pixel p′m in the second image.

4.2.2 Interpolation method

We estimate a dense correspondence �eld F : I → I ′ between a source
image I and a target image I ′ by interpolating a sparse set of inputs matches
M = {(pm,p′

m)}. The interpolation requires a distance D : I × I → R+

between pixels, see Section 4.2.3. We consider here two options for the
interpolation.
• Nadaraya-Watson (NW) estimation [Wasserman, 2010]. The cor-
respondence �eld FNW (p) is interpolated using the Nadaraya-Watson es-
timator at a pixel p ∈ I and is expressed by a sum of matches weighted

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 81

by their proximity to p:

FNW (p) =

∑
(pm,p′

m)∈M
kD(pm,p)p′

m∑
(pm,p′

m)∈M
kD(pm,p)

, (4.1)

where kD(pm,p) = exp (−aD(pm,p)) is a Gaussian kernel for a distance
D with a parameter a.
• Locally-weighted a�ne (LA) estimation [Hartley and Zisserman,
2003]. The second estimator is based on �tting a local a�ne transfor-
mation. The correspondence �eld FLA(p) is interpolated using a locally-
weighted a�ne estimator at a pixel p ∈ I as FLA(p) = App + t>p , where
Ap and tp are the parameters of an a�ne transformation estimated for the
pixel p. These parameters are computed as the least-square solution of an
overdetermined system obtained by writing two equations for each match
(pm,p

′
m) ∈M weighted as previously:

kD(pm,p)
(
Appm + t>p − p′

m

)
= 0 . (4.2)

Local interpolation. Note that the in�uence of remote matches is either
negligible, or could harm the interpolation, for example when objects move
di�erently. Therefore, we restrict the set of matches used in the interpo-
lation at a pixel p to its K nearest neighbors according to the distance
D, which we denote as NK(p). In other words, we replace the summation
overM in the NW operator by a summation over NK(p), and likewise for
building the overdetermined system to �t the a�ne transformation for FLA.

4.2.3 Edge-preserving distance

Using the Euclidean distance for the interpolation presented above is
possible. However, in this case, the interpolation is simply based on the
position of the input matches and does not respect motion boundaries.
Suppose for a moment that the motion boundaries are known. We can, then,
use a geodesic distance DG based on these motion boundaries. Formally,
the geodesic distance between two pixels p and q is de�ned as the shortest
distance with respect to a cost map C:

DG(p, q) = inf
Γ∈Pp,q

∫
Γ

C(ps)dps , (4.3)

where Pp,q denotes the set of all possible paths between p and q, and C(ps)
the cost of crossing pixel ps (the viscosity in physics). In our settings, C

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 82

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 4.4 � (a-b) two consecutive frames; (c) contour response C from
SED [Dollár and Zitnick, 2013] (the darker, the higher); (d) match po-
sitions {pm} from DeepMatching [Weinzaepfel et al., 2013]; (e-f) geodesic
distance from a pixel p (marked in blue) to all others DG(p, .) (the brighter,
the closer); (g-h) 100 nearest matches, i.e., N100(p) (red) using geodesic dis-
tance DG from the pixel p in blue.

corresponds to the motion boundaries. Hence, a pixel belonging to a motion
layer is close to all other pixels from the same layer according to DG, but
far from everything beyond the boundaries. Since each pixel is interpolated
based on its neighbors, the interpolation will respect the motion boundaries.

In practice, we use an alternative to true motion boundaries, making the
plausible assumption that image edges are a superset of motion boundaries.
This way, the distance between pixels belonging to the same region will
be low. It ensures a proper edge-respecting interpolation as long as the
number of matches in each region is su�cient. Similarly, Criminisi et al.
[2010] showed that geodesic distances are a natural tool for edge-preserving
image editing operations (denoising, texture �attening, etc.) and it was also
used recently to generate object proposals [Krähenbühl and Koltun, 2014].
In practice, we set the cost map C using a recent state-of-the-art edge
detector, namely the `structured edge detector' (SED) [Dollár and Zitnick,
2013] 1. Figure 4.4 shows an example of a SED map, as well as examples of
geodesic distances and neighbor sets NK(p) for di�erent pixels p. Notice
how neighbors are found on the same objects/parts of the image with DG,
in contrast to Euclidean distance (see also Figure 4.6).

4.2.4 Fast approximation

The geodesic distance can be rapidly computed from a point to all other
pixels. For instance, Weber et al. [2008] propose parallel algorithms that
simulate an advancing wavefront. Nevertheless, the computational cost for

1. https://github.com/pdollar/edges

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 83

(a) (b) (c) (d)

1

2

3

4

Figure 4.5 � For the region shown in (a), (b) shows the image edges C
and white crosses representing the match positions {pm}. (c) displays the
assignment L, i.e., geodesic Voronoi cells. We build a graph G from L (see
text). (d) shows the shortest path between two neighbor matches, which
can go through the edge that connects them (3-4) or a shorter path found
by Dijkstra's algorithm (1-2).

computing the geodesic distance between all pixels and all matches (as
required by our interpolation scheme) is high. We now propose an e�cient
approximation D̃G.

A key observation is that neighboring pixels are often interpolated sim-
ilarly, suggesting a strategy that would leverage such local information. In
this section, we employ the term `match' to refer to pm instead of (pm,p

′
m).

Geodesic Voronoi diagram. We �rst de�ne a clustering L, such that
L(p) assigns a pixel p to its closest match according to the geodesic distance,
i.e., we have L(p) = argminpm

DG(p,pm). L de�nes geodesic Voronoi cells,
as shown in Figure 4.5(c).

Approximated geodesic distance. We then approximate the distance
between a pixel p and any match pm as the distance to the closest match
L(p) plus an approximate distance between matches:

D̃G(p,pm) = DG(p, L(p)) +DGG(L(p),pm) , (4.4)

where DGG is a graph-based approximation of the geodesic distance between
two matches. To de�ne DGG we use a neighborhood graph G whose nodes
are {pm}. Two matches pm and pn are connected by an edge if they are
neighbors in L. The edge weight is then de�ned as the geodesic distance be-
tween pm and pn, where the geodesic distance calculation is restricted to the
Voronoi cells of pm and pn. We, then, calculate the approximate geodesic
distance between any two matches pm,pn using Dijkstra's algorithm on G,
see Figure 4.5(d).

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 84

Piecewise �eld. So far, we have built an approximation of the dis-
tance between pixels and match points. We now show that our inter-
polation model results in a piece-wise correspondence �eld (either con-
stant for the Nadaraya-Watson estimator, or piece-wise a�ne for LA). This
property is crucial to obtain a fast interpolation scheme, and experiments
shows that it does not impact the accuracy. Let us consider a pixel p
such that L(p) = pm. The distance between p and any match pn is the
same as the one between pm and pn up to a constant independent from
pn (Equation 4.4). As a consequence, we have NK(p) = NK(pm) and
kD̃G

(p,pn) = kDG
(p,pm)×kDGG(pm,pn). For the Nadaraya-Watson estima-

tor, we thus obtain:

FNW (p) =
∑

(pn,p′n) kD̃G
(p,pn)p′

n∑
(pn,p′n) kD̃G

(p,pn)
(4.5)

=
kDG

(p,pm)
∑

(pn,p′n) kDG
G

(pm,pn)p′
n

kDG
(p,pm)

∑
(pn,p′n) kDG

G
(pm,pn)

= FNW (pm) ,

where all the sums are for (pn,p
′
n) ∈ NK(p) = NK(pm). The same reason-

ing holds for the weighted a�ne interpolator, which is invariant to a multi-
plication of the weights by a constant factor. As a consequence, it su�ces to
compute |M| estimations (one per match) and to propagate it to the pixel
assigned to this match. This is orders of magnitude faster than an indepen-
dent estimation for each pixel, e.g . as done by Leordeanu et al. [2013]. We
summarize the approach in Algorithm 4.1 for Nadaraya-Watson estimator.
The algorithm is similar for LA interpolator (e.g . line 6 becomes `Estimate
a�ne parameters Apm , tpm ' and line 8 `Set WLA(p) = AL(p)p + t>L(p)').

Algorithm 4.1 Interpolation with Nadaraya-Watson.

Input: a pair of images I, I ′, a setM of matches
Output: dense correspondence �eld FNW
1 Compute the cost C for I using SED [Dollár and Zitnick, 2013]
2 Compute the assignment map L
3 Build the graph G from L
4 For (pm,p

′
m) ∈M

5 �� Compute NK(pm) from G using Dijkstra's algorithm
6 �� Compute FNW (pm) from NK(pm) using Equation 4.1
7 For each pixel p
8 �� Set FNW (p) = FNW (L(p))

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 85

4.3 Optical Flow Estimation

Coarse-to-�ne versus EpicFlow. The output of the sparse-to-dense in-
terpolation is a dense correspondence �eld. This �eld is used as initialization
of a variational energy minimization method. In contrast to our approach,
state-of-the-art methods usually rely on a coarse-to-�ne scheme to compute
the full-scale correspondence �eld. To the best of our knowledge, there
exists no theoretical proof or guarantee that a coarse-to-�ne minimization
leads to a consistent estimation that accurately minimizes the full-scale en-
ergy. Thus, the coarse-to-�ne scheme should be considered as a heuristic to
provide an initialization for the full-scale �ow.

Our approach can be thought of as an alternative to the above strategy,
by o�ering a smart heuristic to accurately initialize the optical �ow before
performing energy minimization at the full-scale. This o�ers several advan-
tages over the coarse-to-�ne scheme. First, the cost map C in our method
acts as a prior on boundary location. Such a prior could also be incorpo-
rated by a local smoothness weight in the coarse-to-�ne minimization, but
would then be di�cult to interpret at coarse scales where boundaries might
strongly overlap. In addition, since our method directly works at the full
image resolution, it avoids possible issues related to the presence of thin
objects that could be oversmoothed at coarse scales. Such errors at coarse
scales are propagated to �ner scales as the coarse-to-�ne approach proceeds,
see Figure 4.2.

Variational Energy Minimization. We minimize an energy de�ned as
a sum of a data term and a smoothness term. We use the same data term
as Zimmer et al. [2011], based on a classical color-constancy and gradient-
constancy assumption with a normalization factor. For the smoothness
term, we penalize the �ow gradient norm, with a local smoothness weight
α as in [Wedel et al., 2009a, Xu et al., 2012]: α(x) = exp

(
− κ‖∇2I(x)‖

)
with κ = 5. We have also experimented using SED instead and obtained
similar performance.

For minimization, we initialize the solution with the output of our
sparse-to-dense interpolation and use the approach of Brox et al. [2004]
without the coarse-to-�ne scheme. More precisely, we perform 5 �xed point
iterations, i.e., compute the non-linear weights (that appear when apply-
ing Euler-Lagrange equations [Brox et al., 2004]) and the �ow updates 5
times iteratively. The �ow updates are computed by solving linear systems
using 30 iterations of the successive over relaxation method [Young and
Rheinboldt, 1971].

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 86

4.4 Experiments

In this section, we evaluate EpicFlow on three state-of-the-art datasets:
the MPI-Sintel dataset, the Kitti dataset and the Middlebury dataset. We
refer to Section 2.5 for details about these benchmarks.

As in [Weinzaepfel et al., 2013], we optimize the parameters on a subset
(20%) of the MPI-Sintel training set. We then report average endpoint error
(EPE) on the remaining MPI-Sintel training set (80%), the Kitti training
set and the Middlebury training set. This allows us to evaluate the impact
of parameters on di�erent datasets and avoid over�tting. The parameters
are typically a ' 1 for the coe�cient in the kernel kD, the number of
neighbors is K ' 25 for NW interpolation and K ' 100 when using LA.
Timing is reported for one CPU-core at 3.6GHz.

In the following, we �rst describe two types of input matches in Sec-
tion 4.4.1. Section 4.4.2 then studies the di�erent parameters of our ap-
proach. In Section 4.4.3, we compare our method to a variational approach
with a coarse-to-�ne scheme. Finally, we compare EpicFlow with the state
of the art on the test sets in Section 4.4.4. In this case, the parameters are
optimized on the training set of the corresponding dataset.

4.4.1 Input matches

To generate input matches, we use and compare two recent matching
algorithms. They each produce about 5000 matches per image.
• The �rst one is DeepMatching (DM), used in DeepFlow [Weinzaepfel et al.,
2013], which has shown excellent performance for optical �ow. It builds
correspondences by computing similarities of non-rigid patches, allowing
for some deformations. We use the online code 2 on images downscaled by a
factor 2. A reciprocal veri�cation is included in DM. As a consequence, the
majority of matches in occluded areas are pruned, see matches in Figure 4.6
(left).
• The second one is a recent variant of PatchMatch [Barnes et al., 2010] that
relies on kd-trees and local propagation to compute a dense correspondence
�eld [He and Sun, 2012] (KPM). We use the online code to extract the
dense correspondence �eld 3. It is noisy, as it is based on small patches
without global regularization, as well as often incorrect in case of occlu-
sion. Thus, we perform a two-way matching and eliminate non-reciprocal
matches to remove incorrect correspondences. We also subsample these

2. http://lear.inrialpes.fr/src/deepmatching/
3. http://j0sh.github.io/thesis/kdtree/

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 87

Figure 4.6 � Left: Match positions returned by DeepMatching [Weinzaepfel
et al., 2013] are shown in blue. Red denotes occluded areas. Right: Yellow
(resp. blue) squares correspond to the 100 nearest matches with a Euclidean
(resp. edge-aware geodesic) distance for the occluded pixel shown in red.
All neighbor matches with a Euclidean distance holds to a di�erent object
while the geodesic distance allows to capture matches from the same region,
even in the case of large occluded areas.

pruned correspondences to speed-up the interpolation. We have experi-
mentally veri�ed on several image pairs that this subsampling does not
result in a loss of performance.

Pruning of matches. In both cases, matches are extracted locally and
might be incorrect in regions with low texture. Thus, we remove matches
corresponding to patches with low saliency, which are determined by the
eigenvalues of autocorrelation matrix. Furthermore, we perform a consis-
tency check to remove outliers. We run the sparse-to-dense interpolation
once with the Nadaraya-Watson estimator and remove matches for which
the di�erence to the initial estimate is over 5 pixels.

We also experiment with synthetic sparse matches of various densities
and noise levels in Section 4.4.3, in order to evaluate the sensitivity of
EpicFlow to the quality of the matching approach.

4.4.2 Impact of the di�erent parameters

In this section, we evaluate the impact of the matches and the interpo-
lator. We also compare the quality of the sparse-to-dense interpolation and
EpicFlow. Furthermore, we examine the impact of the geodesic distance
and its approximation as well as the impact of the quality of the contour
detector.

Matches and interpolators. Table 4.1 compares the result of our sparse-
to-dense interpolation, i.e., before energy minimization, and EpicFlow for
di�erent matches (DM and KPM) and for the two interpolation schemes:

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 88

Matching Interpolator MPI-Sintel Kitti Middlebury
In
te
rp
o
la
ti
o
n KPM NW 6.052 15.679 0.765

KPM LA 6.334 12.011 0.776
DM NW 4.143 5.460 0.898
DM LA 4.068 3.560 0.840

E
p
ic
F
lo
w

KPM NW 5.741 15.240 0.388
KPM LA 5.764 11.307 0.315
DM NW 3.804 4.900 0.485
DM LA 3.686 3.334 0.380

Table 4.1 � Comparison of average endpoint error (EPE) for di�erent sparse
matches (DM, KPM) and interpolators (NW, LA) as well as for sparse-
to-dense interpolation (top) and EpicFlow (bottom). The approximated
geodesic distance D̃G is used.

Nadaraya-Watson (NW) and locally-weighted a�ne (LA). The approxi-
mated geodesic distance is used in the interpolation, see Section 4.2.4.

We can observe that KPM is consistently outperformed by DeepMatch-
ing (DM) on MPI-Sintel and Kitti datasets, with a gap of 2 and 8 pixels
respectively. Kitti contains many repetitive textures like trees or roads,
which are often mismatched by KPM. Note that DM is signi�cantly more
robust to repetitive textures than KPM, as it uses a multi-scale scoring
scheme. The results on Middlebury are comparable and below 1 pixel.

We also observe that LA performs better than NW on Kitti, while the
results are comparable on MPI-Sintel and Middlebury. This is due to the
speci�city of the Kitti dataset, where the scene consists of planar surfaces
and, thus, a�ne transformations are more suitable than translations to
approximate the �ow. Based on these results, we use DM matches and LA
interpolation in the remainder of the experimental section.

The interpolation is robust to the neighborhood size K with for instance
an EPE of 4.082, 4.053, 4.068 and 4.076 for K = 50, 100, 160 (optimal value
on the training set), 200 respectively, on MPI-Sintel with the LA estimator
and before variational minimization. We also implemented a variant where
we use all matches closer than a threshold and obtained similar performance.

Sparse-to-dense interpolation versus EpicFlow. We also evaluate
the gain due to the variational minimization using the interpolation as ini-
tialization. We can see in Table 4.1 that this step clearly improves the
performance in all cases. The improvement is around 0.5 pixel. Figure 4.7
presents results for three image pairs with the initialization only and the

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 89

Contour Distance MPI-Sintel Kitti Middlebury Time
SED [Dollár and Zitnick, 2013] Geodesic (approx.) 3.686 3.334 0.380 16.4s
SED [Dollár and Zitnick, 2013] Geodesic (exact) 3.677 3.216 0.393 204s

- Euclidean 4.617 3.663 0.442 40s
SED [Dollár and Zitnick, 2013] mixed 3.975 3.510 0.399 300s
gPb [Arbelaez et al., 2011] Geodesic (approx.) 4.161 3.437 0.430 26s

Canny [Canny, 1986] Geodesic (approx.) 4.551 3.308 0.488 16.4s
‖∇2I‖2 Geodesic (approx.) 4.061 3.399 0.388 16.4s

GT boundaries Geodesic (approx.) 3.588

Table 4.2 � Comparison of the EPE of EpicFlow (with DM and LA) for dif-
ferent distances and di�erent contour extractors. The time (right column)
is reported for a MPI-Sintel image pair.

�nal result of EpicFlow (row three and four). While the �ow images look
similar overall, the minimization allows to further smooth and re�ne the
�ow, explaining the gain in performance. Yet, it preserves discontinuities
and small details, such as the legs in the right column. In the following,
results are reported for EpicFlow, i.e., after the variational minimization
step.

Edge-aware versus Euclidean distances. We now study the impact
of di�erent distances. First, we examine the e�ect of approximating the
geodesic distance (Section 4.2.4). Table 4.2 shows that our approximation
has a negligible impact when compared to the exact geodesic distance. Note
that the exact version performs distance computation as well as local es-
timation per pixel and is, thus, an order of magnitude slower to compute,
see last column of Table 4.2.

Next, we compare the geodesic distance and Euclidean distances. Ta-
ble 4.2 shows that using a Euclidean distance leads to a signi�cant drop in
performance, in particular for the MPI-Sintel dataset, the drop is 1 pixel.
This con�rms the importance of our edge-preserving distance. Note that
the result with the Euclidean distance is reported with an exact version,
i.e., the interpolation is computed pixelwise.

We also compare to a mixed approach, in which the neighbor list NK
is constructed using the Euclidean distance, but weights kD̃(pm,p) are set
according to the approximate geodesic distance. Table 4.2 shows that this
leads to a drop of performance by around 0.3 pixels for MPI-Sintel and Kitti.
Figure 4.6 illustrates the reason: none of the Euclidean neighbor matches
(yellow) belong to the region corresponding to the selected pixel (red), but
all of geodesic neighbor matches (blue) belong to it. This demonstrates
the importance of using an edge-preserving geodesic distance throughout
the whole pipeline, in contrast to Leordeanu et al. [2013] who interpolate

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 90
Im

a
g
es

G
T

In
te
r
p
.

E
p
ic
F
lo
w

D
ee
p
F
lo
w

M
D
P
F
lo
w
2

L
D
O
F

Figure 4.7 � Each column shows from top to bottom: mean of two con-
secutive images, ground-truth �ow (GT), result of sparse-to-dense inter-
polation (Interp.), full method (EpicFlow), and 3 state-of-the-art meth-
ods: DeepFlow [Weinzaepfel et al., 2013], MDPFlow2 [Xu et al., 2012] and
LDOF [Brox and Malik, 2011]. EpicFlow better respects motion bound-
aries, is able to capture small parts like the limbs of the character (right
column) and successfully estimates the �ow in occluded areas (right part of
left column).

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 91

matches found in a Euclidean neighborhood.

Impact of contour detector. We also evaluate the impact of the contour
detector in Table 4.2, i.e., the SED detector [Dollár and Zitnick, 2013] is
replaced by the Berkeley gPb detector [Arbelaez et al., 2011] or the Canny
edge detector [Canny, 1986]. Using gPb leads to a small drop in perfor-
mance (around 0.1 pixel on Kitti and 0.5 on MPI-Sintel) and signi�cantly
increases the computation time. Canny edges perform similar to the Eu-
clidean distance. This can be explained by the insu�cient quality of the
Canny contours. Using the norm of image's gradient improves slightly over
gPb. We found that this is due to the presence of holes when estimating
contours with gPb. Finally, we perform experiments using ground-truth
motion boundaries, computed from the norm of ground-truth �ow gradient,
and obtain an improvement of 0.1 on MPI-Sintel (0.2 before the variational
part). The ground-truth �ow is not dense enough on Middlebury and Kitti
datasets to estimate GT boundaries.

4.4.3 EpicFlow versus coarse-to-�ne scheme

To show the bene�t of our approach, we have carried out a comparison
with a coarse-to-�ne scheme. Our implementation of the variational ap-
proach is the same as in Section 4.3, with a coarse-to-�ne scheme and Deep-
Matching integrated in the energy through a penalization of the di�erence
between �ow and matches [Brox and Malik, 2011, Weinzaepfel et al., 2013].
Table 4.3 compares EpicFlow to the variational approach with coarse-to-
�ne scheme, using exactly the same matches as input. EpicFlow performs
better and is also faster. The gain is around 0.4 pixel on MPI-Sintel and
over 1 pixel on Kitti. The important gain on Kitti might be explained by
the a�ne model used for interpolation, which �ts well the piecewise planar
structure of the scene. On Middlebury, the variational approach achieves
slightly better results, as this dataset does not contain large displacements.

Figure 4.7 shows a comparison to three state-of-the-art methods, all
built upon a coarse-to-�ne scheme. Note how motion boundaries are pre-
served by EpicFlow. Even small details, like the limbs in the right column,
are captured. Similarly, in the case of occluded areas, EpicFlow bene�ts
from the geodesic distance to produce a correct estimation, see the right
part of the left example.

Sensitivity to the matching quality. In order to get a better under-
standing of why EpicFlow performs better than a coarse-to-�ne scheme,

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 92

Flow method MPI-Sintel Kitti Middlebury Time
DM+coarse-to-�ne 4.095 4.422 0.321 25s
DM+EpicFlow 3.686 3.334 0.380 16.4s

Table 4.3 � Comparison of EPE for EpicFlow (with DM + LA) and a
coarse-to-�ne scheme (with DM).

0
.0

0
.0

1
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

.1
5

0
.2

0
.3

0
.4

0
.5

Matching noise

2−4

2−5

2−6

2−7

2−8

2−9

2−10

2−11

2−12M
a
tc

h
in

g
 d

e
n
si

ty DM KPM

AEE for EpicFlow

0
.0

0
.0

1
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

.1
5

0
.2

0
.3

0
.4

0
.5

Matching noise

2−4

2−5

2−6

2−7

2−8

2−9

2−10

2−11

2−12M
a
tc

h
in

g
 d

e
n
si

ty DM KPM

AEE for coarse-to-fine

0

1

2

3

4

5

6

7

8

9

10

Figure 4.8 � Comparison of EPE between EpicFlow (left) and a coarse-to-
�ne scheme (right) for various synthetic input matches with di�erent den-
sities and error levels. For positions above the red line, EpicFlow performs
better.

we have evaluated and compared their performances for di�erent densities
and error rates of the input matches. To that aim, we generated synthetic
matches by taking the ground-truth �ow, removing points in the occluded
areas, subsampling to obtain the desired density and corrupting the matches
to the desired percentage of incorrect matches. For each set of matches with
a given density and quality, we have carefully determined the parameters of
EpicFlow and the coarse-to-�ne method on the MPI-Sintel training subset,
and then evaluated them on the remaining training images.

Results in term of EPE are given in Figure 4.8, where density is rep-
resented vertically as the ratio of #matches / #non-occluded pixels and
matching error is represented horizontally as the ratio of #false matches
/ #matches. We can observe that EpicFlow yields better results provided
that the matching is su�ciently dense for a given error rate. For low-density
or strongly corrupted matches, EpicFlow yields unsatisfactory performance
(Figure 4.8 left), while the coarse-to-�ne method remains relatively robust
(Figure 4.8 right). This shows that our interpolation-based heuristic for
initializing the �ow takes better advantage of the input matches than a

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 93

Method EPE EPE-occ s0-10 s10-40 s40+ Time
FlowFields [Bailer et al., 2015] 4.851 31.799 1.157 3.739 33.890 23s
DiscreteFlow [Menze et al., 2015] 6.077 31.685 1.074 3.832 36.339 180s
EpicFlow 6.285 32.564 1.135 3.727 38.021 16.4s
TF+OFM [Kennedy and Taylor, 2015] 6.727 33.929 1.512 3.765 39.761 ∼400s
DeepFlow [Revaud et al., 2016] 6.928 38.166 1.182 3.859 42.854 25s
S2D-Matching [Leordeanu et al., 2013] 7.872 40.093 1.172 4.695 48.782 ∼2000s
Classic+NLP [Sun et al., 2014b] 8.291 40.925 1.208 5.090 51.162 ∼800s
MDP-Flow2 [Xu et al., 2012] 8.445 43.430 1.420 5.449 50.507 709s
NLTGV-SC [Ranftl et al., 2014] 8.746 42.242 1.587 4.780 53.860
LDOF [Brox and Malik, 2011] 9.116 42.344 1.485 4.839 57.296 30s

Table 4.4 � Results on MPI-Sintel test set (�nal version). EPE-occ is the
EPE on occluded areas. s0-10 is the EPE for pixels whose motions is be-
tween 0 and 10 px and similarly for s10-40 and s40+. Methods in italic has
been published after EpicFlow.

coarse-to-�ne schemes for su�ciently dense matches and is able to recover
from matching failures. We have indicated the position of DeepMatching
and KPM in terms of density and quality on the plots: they lie inside the
area in which EpicFlow outperforms a coarse-to-�ne scheme.

4.4.4 Comparison with the state of the art

Results on MPI-Sintel test set are given in Table 4.4. Parameters are
optimized on the MPI-Sintel training set. EpicFlow was outperforming the
state of the art with at publication time by a gap of 0.5 pixel in EPE com-
pared to the second best performing method, TF+OFM [Kennedy and
Taylor, 2015], and 0.7 pixel compared to the third one, DeepFlow [Revaud
et al., 2016] presented in Chapter 3. In particular, we improve for both
EPE on occluded areas and EPE over all pixels and for all displacement
ranges. In addition, our approach is signi�cantly faster than most of the
methods, e.g . an order of magnitude faster than the second best. Inter-
estingly, more recent approaches such as FlowFields [Bailer et al., 2015] or
DiscreteFlow [Menze et al., 2015] are built upon EpicFlow but change the
input matches, showing the e�ectiveness of our approach.

Table 4.5 reports the results on the Kitti test set for methods that do
not use epipolar geometry or stereo vision. Parameters are optimized on
the Kitti training set. We can see that EpicFlow perform on part with
the state of the art best in terms of EPE on non-occluded areas or per-
centage of erroneous pixels. When comparing the methods on both Kitti
and MPI-Sintel, we outperform TF+OFM [Kennedy and Taylor, 2015] and
DeepFlow [Weinzaepfel et al., 2013] (second and third on MPI-Sintel at

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 94

Method EPE-noc EPE Out-Noc 3 Out-All 3 Time
DiscreteFlow [Menze et al., 2015] 1.3 3.6 5.77% 16.63% 180s
FlowFields [Bailer et al., 2015] 1.4 3.5 6.23% 14.01% 23s
DeepFlow [Revaud et al., 2016] 1.4 5.3 6.61% 17.35% 22s
EpicFlow 1.5 3.8 7.88% 17.08% 16s
BTF-ILLUM [Demetz et al., 2014] 1.5 2.8 6.52% 11.03% 80s
TGV2ADCSIFT [Braux-Zin et al., 2013] 1.5 4.5 6.20% 15.15% 12s (GPU)
NLTGV-SC [Ranftl et al., 2014] 1.6 3.8 5.93% 11.96% 16s (GPU)
Data-Flow [Vogel et al., 2013b] 1.9 5.5 7.11% 14.57% 180s
TF+OFM [Kennedy and Taylor, 2015] 2.0 5.0 10.22% 18.46% 350s

Table 4.5 � Results on Kitti test set. EPE-noc is the EPE over non-occluded
areas. Out-Noc 3 (resp. Out-all 3) refers to the percentage of pixels where
�ow estimation has an error above 3 pixels in non-occluded areas (resp. all
pixels). Methods in italic has been published after EpicFlow.

publication time) on the Kitti dataset, in particular for occluded areas. We
perform on par with NLTGV-SC [Ranftl et al., 2014] and DeepFlow Revaud
et al. [2016] on Kitti that we outperform by 2.5 and 0.7 pixels respectively
on MPI-Sintel. More recent approaches [Bailer et al., 2015, Menze et al.,
2015] based on EpicFlow slightly improves our performance.

On the Middlebury test set, we obtain an EPE below 0.4 pixel. This
is competitive with the state of the art. In this dataset, there are no large
displacements, and consequently, the bene�ts of a matching-based approach
are limited. Note that we have slightly increased the number of �xed point
iterations to 25 in the variational method for this dataset (still using one
level) in order to get an additional smoothing e�ect. This leads to a gain
of 0.1 pixels (measured on the Middlebury training set when setting the
parameters on MPI-Sintel training set).

Timings. While most methods often require several minutes to run on
a single image pair, ours runs in 16.4 seconds for a MPI-Sintel image pair
(1024×436 pixels) on one CPU-core at 3.6Ghz. In detail, computing Deep-
Matching takes 15s, extracting SED edges 0.15s, dense interpolation 0.25s,
and variational minimization 1s. We can observe that 91% of the time is
spent on matching. Note that by using the GPU version of DeepMatching,
our runtime can signi�cantly decrease.

Failure cases. EpicFlow can be incorrect due to errors in the sparse
matches or errors in the contour extraction. Figure 4.9 (left column) shows
an example where matches are missing on thin elements (spear and horns
of the dragon). Thus, the optical �ow takes the value of the surrounding
region for these elements. An example for incorrect contour extraction is

CHAPTER 4. EPICFLOW: EDGE-PRESERVING INTERPOLATION

OF CORRESPONDENCES FOR OPTICAL FLOW 95
Im

ag
es

G
T

E
p
ic
F
lo
w

Figure 4.9 � Failure cases of EpicFlow due to missing matches on spear and
horns of the dragon (left column) and missing contours on the arm (right
column).

presented in Figure 4.9 (right column). The contour of the character's left
arm is poorly detected. As a result, the motion of the arm spreads into the
background.

4.5 Conclusion

This chapter introduced EpicFlow, a novel optical �ow estimation method.
EpicFlow computes a dense correspondence �eld by performing a sparse-to-
dense interpolation from an initial sparse set of matches, leveraging contour
cues using an edge-aware geodesic distance. The resulting dense correspon-
dence �eld is fed as an initial optical �ow estimate to a one-level variational
energy minimization.

Both the sparse set of input matches and the contour estimates are key
to our approach. The approach builds upon the assumption that contours
often coincide with motion discontinuities. The next chapter focuses on the
problem of detecting the motion boundaries.

Chapter 5

Learning to Detect Motion

Boundaries

Contents

5.1 Introduction . 96

5.2 Learning motion boundary detection 100

5.2.1 Structured Random Forests 100

5.2.2 Spatial and Temporal Cues 101

5.3 Datasets and evaluation protocol 103

5.3.1 Optical �ow datasets 103

5.3.2 The YMB dataset 104

5.3.3 Evaluation protocol 106

5.4 Experimental results . 107

5.4.1 Training the forest 107

5.4.2 Impact of the optical �ow algorithm 110

5.4.3 Comparison to a state-of-the-art baseline 110

5.4.4 Impact of the temporal cues 113

5.5 Conclusion . 115

5.1 Introduction

Optical �ow can be simply described as a �eld that consists of large re-
gions with smooth variations, divided by boundaries with abruptly changes.
Yet, energy minimization frameworks assume that the �ow is continuous.
Consequently, while smooth variations of optical �ow are estimated well

96

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 97

(a) Image (b) Ground-truth motion boundaries

(c) Flow gradient (Classic+NL) (d) Proposed method

Figure 5.1 � For the image in (a), we show in (b) its ground-truth motion
boundaries, in (c) motion boundaries computed as gradient of the Clas-
sic+NL [Sun et al., 2014b] �ow, and in (d) our proposed motion boundary
detection. Despite using the Classic+NL �ow as one of our cues, our method
is able to detect motion boundaries even at places where the �ow estimation
failed, such as on the spear or the character's arm.

most of the time, capturing the sharp discontinuities remains more chal-
lenging. In this chapter, we focus on the prediction of such motion bound-
aries, see Figure 5.1. To prevent any ambiguities, we de�ne this notion
precisely as follows: motion boundaries (MB) are the discontinuities of the
ground-truth optical �ow between 2 frames.

Several approaches have been proposed to predict motion boundaries [Birch-
�eld, 1999, Black and Fleet, 2000, Middendorf and Nagel, 2001, Spoerri,
1991]. In particular, motion boundaries have recently been computed us-
ing the norm of the gradient of the optical �ow [Papazoglou and Ferrari,
2013, Wang et al., 2013]. However, even using state-of-the-art optical �ow
estimation [Sun et al., 2014b] as input, such an approach can result in
disappointing results, see Figure 5.1.

Instead, we choose a learning-based approach for the motion boundary
prediction problem. This requires a high volume of training data. Thank-
fully, the MPI-Sintel [Butler et al., 2012] dataset, composed of animated
movies generated using computer graphics, is now available and contains
ground-truth optical �ow. Thus, motion boundaries can be directly com-
puted from the ground-truth �ow. The dataset is large (more than 1000
high resolution training images), and paves the way to the training of so-

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 98

Figure 5.2 � Example of depth discontinuities (in red) and motion bound-
aries (in green, extracted from the ground-truth �ow). Notice how �ow
discontinuities di�er from depth discontinuities. In addition, the presence
of non-rigid objects causes most motion boundaries to form non-closed con-
tours.

phisticated learning algorithms for this task. We choose random forests as
the learning algorithm, as they are are both �exible and stable.

In this chapter, we present the following contributions:
• We propose a learning-based motion boundary prediction approach, using
structured random forests [Dollár and Zitnick, 2013] in combination with
image and optical �ow cues, which accurately estimate motion boundaries.
• We show in experiments that our approach is robust to failure cases of the
input optical �ow.
• We introduce a new dataset, called the YouTube Motion Boundaries (YMB)
dataset, that comprises 60 real-world videos downloaded from YouTube,
for which we provide annotations of the motion boundaries.

Closest references. Most methods for estimating motion boundaries are
based on optical �ow [Papazoglou and Ferrari, 2013, Wang et al., 2013].
The early work of Spoerri [1991] shows that local �ow histograms have
bimodal distributions at motion boundaries. Using statistical tests on his-
tograms and structural saliency based postprocessing, this work develops
a method to recover and segment motion boundaries in synthetic footage.
Similar considerations are used later by Fleet et al. [2000] to propose a
low-level motion boundary detector. This detector measures the squared
error in �tting a local linear parameterized motion model: the �tting error
is larger at motion boundaries. This model is in turn improved by Black
and Fleet [2000] by casting the motion boundaries detection problem into
a probabilistic framework. In their work, local pixel patches are either
modeled with a translational motion or as a motion discontinuity. In the
latter case, di�erent con�gurations of depth ordering are incorporated in
the model. This aspect (depth ordering at discontinuities) is also leveraged

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 99

by Liu et al. [2006] to estimate optical �ow in textureless images. They pro-
pose a bottom-up approach to track and group hypothetical motion edge
fragments. However, their approach heavily depends on the preliminary
detection of edge fragments, and is not applicable to realistic videos with
textures. Furthermore, none of these approaches are based on learning the
relation between local features and motion boundaries.

Closely related to estimating motion boundaries is the task of segment-
ing a video frame into di�erent regions with coherent motion, referred to
as layers [Darrell and Pentland, 1995, Wang and Adelson, 1994]. Recently,
several works have considered the joint estimation of motion layers and op-
tical �ow [Brox et al., 2006, Sun et al., 2013, Unger et al., 2012]. However,
the joint task is challenging, and these methods depend on a complex min-
imization of non-convex energy functions. As a result, the estimation is
unreliable for di�cult, yet common cases, such as videos with fast motion,
large displacements or compression artifacts. More generally, motion layer
segmentation can be ill-de�ned, as there exist cases where motion bound-
aries form non-closed regions, see Figure 5.2.

The related task of occlusion boundary detection has recently received
some attention [Hoiem et al., 2011, Sundberg et al., 2011, Humayun et al.,
2011]. Occlusion boundaries refer to depth discontinuities. They can cor-
respond to motion boundaries, as they can create di�erences in �ow when
the camera or the objects are moving. However, in many cases two regions
of di�erent depth can have the same �ow, see Figure 5.2 where many of
the depth discontinuities actually do not correspond to motion boundaries.
Most approaches for occlusion boundary detection [Sundberg et al., 2011,
Hoiem et al., 2011, Stein and Hebert, 2009] rely on an oversegmentation of
the image, using for instance Arbelaez et al. [2011], followed by a merging
procedure. Like our approach, they all use temporal information as a cue,
e.g . as the di�erence between consecutive images [Sundberg et al., 2011].
Nevertheless, the �nal result highly depends on the optical �ow accuracy,
while our method is robust to failures in the optical �ow.

Our method is also related to recent works on edge and occlusion de-
tection cast into a learning framework [Dollár and Zitnick, 2013, Humayun
et al., 2011]. These approaches rely on a random forest classi�er applied
to features extracted in a local neighborhood. The approach of Humayun
et al. [2011] for occlusion detection takes as input optical �ow estimated
with four di�erent algorithms and learns pixel-wise random forests. In con-
trast, our method leverages information at the patch level and is robust to
failures in the optical �ow by using an estimated �ow error. Dollár and
Zitnick [2013] use structured random forests for edge detection, which is
shown to outperform the state of the art. We build on their approach and

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 100

show how to extend it to motion boundary detection.

Outline. This chapter is organized as follows. We �rst present our ap-
proach for learning motion boundaries in Section 5.2. We then intro-
duce the datasets used in our experiments, including our YMB dataset,
and the evaluation protocol in Section 5.3. Finally, Section 5.4 presents
the experimental results. The dataset and code are available online at
http://lear.inrialpes.fr/research/motionboundaries.

5.2 Learning motion boundary detection

In this section, we �rst present the structured random forests approach.
We then detail the set of cues used for motion boundary detection.

5.2.1 Structured Random Forests

We propose to cast the prediction of local motion boundary masks as
a learning task using structured random forests. Motion boundaries in a
local patch often have similar patterns, e.g . straight lines, parallel lines or T-
junctions. The structured random forest framework leverages this property
by predicting boundaries at the patch level. In practice, several trees are
learned independently with randomization on the feature set, leading to
a forest of decision trees. Each tree takes as input a patch and predicts
a structured output, here a boundary patch. Given an input image, the
predictions of each tree (Figure 5.3) for each (overlapping) local patch are
averaged in order to yield a �nal soft boundary response map. Structured
random forests have a good performance and are extremely fast to evaluate.

We now describe the learning model in more detail. Here, a decision
tree ft(x) is a structured classi�er that takes an N ×N input patch with K
channels, vectorized as x ∈ RKN2

, and returns a corresponding binary edge
map y ∈ BN2

. Internally, each tree ft has a binary structure, i.e., each node
is either a leaf or has two children nodes. During inference, a binary split
function h(x, θj) ∈ {0, 1} associated to each node j is evaluated to decide
whether the sample x descends the left or right branch of the tree until a
leaf is reached. The output y associated to the leaf at training time is then
returned. The whole process is illustrated in Figure 5.3.

The split functions h(x, θ) considered in this work are e�cient decision
stumps of two forms: (i) a thresholding operation on a single component
of x. In this case, θ = (k, τ) and h1(x, θ) = [x(k) < τ], where [.] denotes
the indicator function; (ii) a comparison between two components of x.

http://lear.inrialpes.fr/research/motionboundaries

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 101

input patch

Image

Optical flow

Structured output

Figure 5.3 � Illustration of the prediction process with our structured de-
cision tree. Given an input patch from the left image (represented here by
image and �ow channels), we predict a binary boundary mask, i.e., a leaf of
the tree. Predicted masks are averaged across all trees and all overlapping
patches to yield the �nal soft-response boundary map.

Thus, θ = (k1, k2, τ) and h2(x, θ) = [x(k1)− x(k2) < τ]. We choose the
same training algorithm for learning the random forest model as Dollár
and Zitnick [2013], using the publicly available code 1. The success of our
approach lies in the choice and design of the features, which we now detail.

5.2.2 Spatial and Temporal Cues

We consider here static appearance features and temporal features to
predict motion boundaries. We use the index t to denote the frame for
which we predict the motion boundaries (t+ 1 being the next frame).

Color (13 channels). We use the three RGB channels in addition to
10 gradient maps, computed in the luminance channel from the Lab color
space. We compute the norm of the gradient and oriented gradient maps in
4 directions, both at coarse and �ne scales, resulting in (1+4)×2 channels.

Optical �ow (7 channels). We also use the optical �ow wt,t+1 between
frame t and t + 1. Let u and v be the components of wt,t+1. In addi-
tion to u and v channels, we use an unoriented gradient map computed

1. https://github.com/pdollar/edges

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 102

as
√
‖∇u‖2 + ‖∇v‖2, and oriented gradient maps (again at 4 orientations)

where the gradient orientation is obtained by averaging the orientations of
∇u and ∇v, weighted by their magnitudes. Contrary to the RGB case,
we compute these 5 gradient maps at a coarse scale only. We found that
adding the �ne scale does not improve the results, probably due to the blur
in optical �ow estimation. To compute the optical �ow, we experiment
with di�erent state-of-the-art algorithms and compare their performance in
Section 5.4.

Image warping errors (2 channels). Optical �ow estimation can often
be partially incorrect. For instance, in Figure 5.4(c), some object motions
are missing (spear) and some others are incorrect (feet). To handle these
errors, we propose to add channels indicating where the �ow estimation is
likely to be wrong, see Figure 5.4(d). To this end, we measure how much the
color and gradient constancy assumptions [Brox et al., 2004, Vogel et al.,
2013b] are violated. We compute the image warping error, which is de�ned
at a pixel p as ED(p) = ‖Dt(p)−Dt+1(p + wt,t+1(p))‖2, where D is an
image representation dependent on which constraint (color or gradient) is
considered. For the color case, D corresponds to the Lab color-space, in
which Euclidean distance is closer to perceived color distances. For the
gradient case, D is a pixel-wise histogram of oriented gradients (8 orienta-
tions), individually normalized to unit norm. We set the warping error to
0 for pixels falling outside the image boundaries.

Backward �ow and error (9 channels). There is no reason to consider
that the forward �ow may provide better information for detecting motion
boundaries than the backward �ow. Consequently, we add the same 7
channels of optical �ow and the 2 channels of image warping errors with
the backward �ow wt,t−1.

Summary. By concatenating all these channels, we obtain a feature rep-
resentation at the patch level that combines several cues: appearance, mo-
tion and con�dence in motion. The feature representation includes 31
channels in total. Since the 32 × 32 patches are subsampled by a factor
2 when fed to the classi�ers, the �nal dimension for an input vector x is
(32/2)2 × 31 = 7936.

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 103

(a) image (b) ground-truth �ow

(c) estimated �ow (Classic+NL) (d) image warping error

Figure 5.4 � Illustration of the image warping error (d) computed for the
image in (a) and the estimated �ow in (c). The ground-truth �ow is shown
in (b). Errors in �ow estimation clearly appear in (d), e.g . for the spear,
the dragon's claws or the character's feet.

5.3 Datasets and evaluation protocol

In this section, we �rst present existing optical �ow datasets used to
train and evaluate our approach. We then introduce our YouTube Motion
Boundaries (YMB) dataset and explain the evaluation protocol.

5.3.1 Optical �ow datasets

For training and evaluating our approach, we rely on two state-of-the-
art optical �ow datasets: Middlebury and MPI-Sintel. Both come with
dense ground-truth optical �ow, which allows to extract ground-truth mo-
tion boundaries. We refer to Section 2.5 for details on these datasets. For
MPI-Sintel, we compare results for both `clean' and `�nal' versions in the
experiments, see Section 5.4. We train our model using all sequences, ex-
cept when testing on MPI-Sintel. In this case, we alternatively train on half
of the sequences and test on the other half.

Ground-truth motion boundaries from �ow. For evaluation, we need
to compute binary motion boundaries from ground-truth optical �ow. How-
ever, the resulting boundaries depend on a threshold applied to the norm
of the �ow gradient. We, thus, propose to generate, for each image, several

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 104

Figure 5.5 � From top to bottom: example images, corresponding ground-
truth �ow, ground-truth motion boundaries and motion layers used for
training.

versions of ground-truth boundaries corresponding to di�erent thresholds.
Thresholds are spread regularly on a logarithmic scale. For our experi-
mental evaluation, we have set the lowest threshold to a norm of 0.5 for
Middlebury and to 1 for MPI-Sintel. Note that the threshold for Middle-
bury is lower than for MPI-Sintel, as motions in this dataset are smaller.
Examples for ground-truth motion boundaries (extracted at norm 2) are
shown in Figure 5.5. We refer to Section 5.3.3 for the evaluation protocol.

5.3.2 The YMB dataset

Existing optical �ow benchmarks have several limitations. They are
often restricted to synthetic and high quality videos and have limited vari-

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 105

Figure 5.6 � Illustration of our YMB dataset. The two top examples comes
from YouTube Objects, the three other ones from Sports1M. Left: images.
Middle: human annotations of motion boundaries. Right: our predictions.

Videos from #videos resolution #annotated px max ‖w‖2 mean ‖w‖2

YouTube Objects [Prest et al., 2012b] 30 225×400 700 (0.7%) 16 5
Sports1M [Karpathy et al., 2014] 30 1280×720 3200 (0.3%) 50 8

Table 5.1 � Some statistics of our YMB dataset (averaged across the videos
for each part). w denotes the �ow, here estimated with LDOF [Brox and
Malik, 2011].

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 106

ability. For instance, MPI-Sintel contains 23 synthetic sequences sharing
characters, objects and backgrounds.

Therefore, we propose a new dataset, the YouTube Motion Boundaries
dataset (YMB), composed of 60 real-world videos sequences, ranging from
low to moderate quality, with a great variability of persons, objects and
poses. For each sequence, motion boundaries are manually annotated in one
frame by three independent annotators. The dataset includes two types of
videos: 30 sequences from the YouTube Objects dataset [Prest et al., 2012b],
and 30 others from the Sports1M [Karpathy et al., 2014] dataset.

YouTube Objects dataset [Prest et al., 2012b] is a collection of video
shots representing 10 object categories, such as train, car or dog. For the
sake of diversity, we select 3 shots per category. The annotated frame is the
same as the one annotated by Prest et al. [2012b] for object detection.

Another 30 sequences are sampled from the Sports1M [Karpathy et al.,
2014] dataset. This dataset comprises 487 classes and is dedicated to action
recognition in YouTube videos. We select each video from a di�erent class.
The annotated frame is chosen to be challenging for optical �ow estimation,
see Figure 5.6.

Table 5.1 shows some statistics about image sizes and motions. Videos
from YouTube Objects have a lower resolution (225 × 400) than the ones
from Sports1M (1280× 720). Both datasets contain large motions, some of
them of thin parts, e.g . the limbs of the humans. Note that a supplementary
challenge of the YMB dataset is due to the high compression level of the
videos, which causes many block-like artifacts to appear.

We evaluate the consistency between the annotations. To this end,
we compute precision and recall using the protocol described below (Sec-
tion 5.3.3), using one annotator as ground-truth, another one as estimate,
and averaging across all pairs of annotators. We obtain a precision and
recall over 91%, showing that the annotations are consistent.

5.3.3 Evaluation protocol

We quantitatively evaluate our motion boundary predictions in term of
precision-recall. We use the evaluation code of the BSDS [Martin et al.,
2001] 2 edge detection benchmark. Given a binary ground-truth and a soft-
response motion boundary prediction, we compute the pixel-wise recall and
precision curve (Figure 5.10), where each point of the curve corresponds
to a di�erent threshold on the predicted motion boundary strength. For
instance, a high threshold will lead to few predicted pixels, i.e., a low recall

2. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 107

and high precision. For a lower threshold, the recall will be higher but the
precision will drop. To avoid issues related to the over/under-assignment
of ground-truth and predicted pixels, a non-maxima suppression step is
performed on the predicted motion boundary map, and a bipartite graph
problem is solved to perform a 1-to-1 assignment between each detected
and ground-truth boundary pixel.

Precision-recall curves are �nally averaged for all images and all binary
versions of the ground-truth (i.e., annotations for the YMB dataset, thresh-
olded maps for the �ow benchmarks) to compute mean Average-Precision
(mAP). In other words, for optical �ow benchmarks, the stronger is a mo-
tion boundary, the higher is its impact on the evaluation score.

5.4 Experimental results

In this section, we �rst give details on how we train the structured ran-
dom forest. We then evaluate di�erent aspects of the method, in particular
the impact of optical �ow algorithms and di�erent cues. Furthermore, we
compare our approach to various baselines.

5.4.1 Training the forest

Training random forests typically requires a large number of examples
in order to learn a model that generalizes well. MPI-Sintel constitutes an
excellent choice for training our model, as the dataset is large and comes
with reliable ground-truth �ow.

Generating motion layers. When training each node, Dollár and Zit-
nick [2013] map the output structured labels (i.e., edge map of a patch)
into a set of discrete labels that group similar structured labels. However,
computing similarities between edge maps of patches is not well de�ned.
Consequently, they propose to approximate it by computing a distance
based on the ground-truth segmentation of the image. In the same spirit,
training our motion boundary detector will require a segmentation, i.e.,
motion layers, in addition to the ground-truth motion boundary patches.
We now describe the method we use to compute motion layers from the
ground-truth optical �ow.

We employ a hierarchical clustering approach on �ow pixels, where each
pixel is connected to its 4 neighbors with a connection weight set to the
magnitude of the �ow di�erence between them. From this initial graph,
we then grow regions using average linkage by iteratively merging regions

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 108

Training / Test Middlebury MPI-Sintel clean MPI-Sintel �nal YMB

train on clean 91.1 76.3 68.5 72.2
train on �nal 90.9 74.6 67.6 70.7

Table 5.2 � Comparison of the performance (mAP) of our motion boundary
estimation, when training on the clean or the �nal version of the MPI-Sintel
dataset. The �ow is estimated with Classic+NL [Sun et al., 2014b].

with the lowest connection weight. For each image, we generate 3 segmen-
tations, with di�erent number of target regions and with randomness in the
clustering process. Generating several segmentations helps to deal with the
intrinsic ambiguity of motion layers, whose boundaries only partially cor-
respond to motion boundaries, e.g . in the case of deformable objects, see
Figure 5.2. Examples of the resulting segmentation are shown in Figure 5.5
(bottom).

Random forest parameters. The parameters of the structured random
forest are the following. The forest has 8 trees, each with a maximum
depth of 64 levels. Trees are trained using a pool of 500k patches containing
boundaries and 500k without any boundary. To introduce randomization
in the tree structure, each tree is trained from a random subset (25%) of
all training patches.

Clean versus �nal version. The training set of MPI-Sintel comes in two
di�erent versions (clean and �nal). We conduct an experiment in which we
train two separate models, one for each set. Their performance on the di�er-
ent datasets is evaluated in Table 5.2 using Classic+NL [Sun et al., 2014b]
�ow estimation. It turns out that, surprisingly, results are consistently bet-
ter across all datasets when the model is trained on the clean version of
MPI-Sintel � even when detecting motion boundaries on the �nal version.
This might be explained by the fact that training is a�ected by noise, which
is de facto absent from the clean set. In contrast, noise is clearly present
in the �nal version, in particular in the form of motion blur that tends to
smooth evidence of motion boundaries. This result is con�rmed for all the
optical �ow algorithms evaluated. We, thus, choose the clean version of
MPI-Sintel to train our models in the remainder of the experiments.

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 109

Ground-Truth Farneback

TV-L1 Classic+NL

LDOF DeepFlow

Figure 5.7 � Optical �ow estimated with di�erent methods.

Middlebury MPI-Sintel clean MPI-Sintel �nal YMB
�ow MB ours �ow MB ours �ow MB ours �ow MB ours

Farneback 26.6 66.0 18.4 60.0 19.3 52.2 28.4 59.4
TV-L1 78.4 85.7 44.3 73.0 38.1 62.7 45.4 70.1

Classic+NL 90.5 91.1 68.5 76.3 58.0 68.5 59.4 72.2
LDOF 70.2 86.7 50.7 75.2 42.0 65.6 48.9 70.5

DeepFlow 80.6 89.0 56.9 75.8 46.3 67.7 44.7 68.6

Table 5.3 � Comparison of the performance (mAP) of our approach for
di�erent input �ows. We also compare to a baseline of motion boundaries
directly computed from the �ow (�ow MB).

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 110

5.4.2 Impact of the optical �ow algorithm

Our approach relies on several temporal cues, see Section 5.2.2. These
cues directly depend on the algorithm used to estimate the optical �ow.
We compare �ve di�erent algorithms: Farneback [Farnebäck, 2003], TV-
L1 [Zach et al., 2007], Classic+NL [Sun et al., 2014b], LDOF [Brox and
Malik, 2011] and DeepFlow [Revaud et al., 2016], see Figure 5.7. We can
observe that Farneback's approach results in a noisy estimation and is un-
reliable in untextured regions. The reason is that this approach is local and
does not incorporate a global regularization. The four other approaches
minimize a global energy using a coarse-to-�ne scheme. TV-L1 uses the
dual space for minimizing this energy. A �xed point iterations allows the
three remaining approaches to obtain the linear system of equations de-
rived from the energy. They, thus, produce more accurate �ow estimations,
see Figure 5.7. Classic+NL includes an additional non-local smoothness
term that enhances the sharpness of motion boundaries. For instance, the
contour of the character is better respected than with the other methods.
LDOF and DeepFlow integrate a descriptor matching term, allowing to bet-
ter handle large displacements. This is visible on the spear in Figure 5.7,
whose motion is partially captured. DeepFlow improves over LDOF in the
matching scheme, making it top-performer on MPI-Sintel [Butler et al.,
2012] at publication time. Both DeepFlow and LDOF tend to over-smooth
the �ow: for instance, the motion of the spear spreads in the background.

For each of these �ows, we train a separate model and report mean
Average-Precision (mAP) for all datasets in Table 5.3. The performance
of our approach is rather independent of the �ow algorithm used, with
the exception of Farneback's method which results in a signi�cantly worse
performance. Classic+NL gives the best performance on all datasets. This
can be explained by the sharpness of the �ow boundaries thanks to the
non-local regularization.

5.4.3 Comparison to a state-of-the-art baseline

In Table 5.3, we compare our method to baseline motion boundaries,
extracted as the gradient norm of each �ow. Note that the performance of
our approach largely outperforms this baseline, for all �ow methods and on
all datasets. The gap is especially large for the most challenging datasets
(e.g . +25% in mAP for LDOF on MPI-Sintel and YMB). Note that results
on Middlebury and YMB datasets are obtained with the model trained on
MPI-Sintel. This demonstrates that our approach for motion boundary
estimation performs well on low-resolution YouTube videos despite the fact

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 111

Im
ag
e

G
T
�
ow

G
T
M
B

C
la
ss
ic
+
N
L

C
la
ss
ic
+
N
L
M
B

o
u
rs

Figure 5.8 � Example results from the MPI-Sintel dataset with, from top to
bottom: image, ground-truth �ow, ground-truth motion boundaries, �ow
estimation using Classic+NL [Sun et al., 2014b], norm of the �ow gradient
(Classic+NL MB), and the motion boundaries estimated by our method
(ours).

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 112

Im
ag
e

G
T
M
B

C
la
ss
ic
+
N
L

C
la
ss
ic
+
N
L
M
B

o
u
rs

Figure 5.9 � Example results from the YMB dataset with, from top to
bottom: images, annotated motion boundaries, �ow estimation using Clas-
sic+NL [Sun et al., 2014b], norm of the �ow gradient (Classic+NL MB),
and the motion boundaries estimated by our method (ours).

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 113

channels used Middlebury
MPI-Sintel

YMBclean �nal

SED [Dollár and Zitnick, 2013] 48.8 32.4 30.1 31.3

RGB only 48.0 41.1 37.5 36.3
+Flow 91.8 72.2 66.3 69.6

+Image warping error 91.2 74.2 66.1 70.5
+Backward �ow&error 91.1 76.3 68.5 72.2

Table 5.4 � Importance of temporal cues for predicting motion boundaries.
We also compare to SED [Dollár and Zitnick, 2013] that uses the same
framework, learned on di�erent data.

that it was trained on synthetic high resolution data from MPI-Sintel. In
addition, this shows that our method generalizes well to another dataset
with di�erent content and does not require speci�c tuning.

Figure 5.8 provides qualitative comparisons between Classic+NL �ow
boundaries and our predictions for two images from MPI-Sintel [Butler
et al., 2012]. Some object motions, like the character in the left column, are
missed in the �ow estimation. Likewise, errors due to over-smoothing are
visible at the bottom of the right column. They are well recovered by our
model, which accurately predicts the motion boundaries. The robustness
of our model to incorrect or over-smooth �ow estimates is con�rmed by the
examples from YMB shown in Figure 5.9. The motion of the arm is badly
estimated by the �ow (left) and the motion of the wheels (right) spreads
in the background. In both cases, our model is able to accurately estimate
motion boundaries. This resilience can be explained by the integration of
appearance and �ow con�dence cues (Section 5.2.2) in our model, which
certainly helps the classi�er to recover from errors in the �ow estimation,
as shown in the next section.

5.4.4 Impact of the temporal cues

We conduct an ablative study to determine the importance of the tem-
poral cues used as feature channels by the classi�er. Table 5.4 shows the
improvements resulting from adding one cue at a time. In addition, Fig-
ure 5.10 shows the precision recall curves for the MPI-Sintel dataset. Per-
formance is reported for Classic+NL, but all �ow estimators result in a
similar behavior.

First, we notice that using static cues alone already outperforms the
SED edge detector [Dollár and Zitnick, 2013], which uses the same RGB

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 114

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

Result AP curves on MPI-Sintel (clean version)

SED edges
Ours, RGB only
Ours, +Flow
Ours, +Image warping error
Ours, +Backward flow & error

Figure 5.10 � Precision-recall curves when studying the importance of tem-
poral cues on MPI-Sintel dataset, clean version.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

color gradient flow flow
gradient

BW
flow

BW flow
gradient

co
lo

r
er

ro
r

gr
ad

 e
rr

or

B
W

 c
ol

or
 e

rr
or

B
W

 g
ra

d
er

ro
r

Figure 5.11 � Frequency of each feature channel in the decision stumps of
the random forest learned on MPI-Sintel clean. `BW' refers to backward,
`color error' (resp. `grad error') denotes the color-based (resp. gradient-
based) image warping error. All channels are about equally important.

CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 115

cues and learning approach, but a di�erent training set. This indicates
that, based on appearances cues alone, one is able to `learn' the location
of motion boundaries. After examining the decision tree, we �nd that, in
this case, the classi�er learns that a color di�erence between two objects is
likely to yield a motion boundary.

On Middlebury, using only the �rst two cues (appearance and �ow)
su�ces to accurately predict motion boundaries. The initial �ow estimate
is already very close to the ground-truth for this relatively easy dataset.
On the more challenging datasets (MPI-Sintel and YMB), adding the �ow
con�dence cue (i.e., image warping errors) allows to further gain up to
2% in mean Average-Precision. As shown in Figure 5.4, the error maps
indeed accurately indicate errors in the �ow estimation. Finally, backward
�ow cues lead to an additional gain of 2%. We also conduct an analysis
of the frequency of usage of each channel in the decision stumps of our
learned forest. Figure 5.11 plots the resulting histogram, which con�rms
that, overall, all channels have approximately the same importance.

5.5 Conclusion

In this chapter, we showed that a learning-based approach using struc-
tured random forests is successful for detecting motion boundaries. Thanks
to the integration of diverse appearance and temporal cues, our method is
resilient to errors in �ow estimation. Our approach outputs accurate mo-
tion boundaries and largely outperforms �ow gradient baseline, in particular
on challenging video sequences with large displacements, motion blur and
compression artifacts.

The upcoming question concerns its impact on optical �ow estimation.
While it is not straightforward to integrate it into a coarse-to-�ne scheme,
we perform an experiment in which the edges in EpicFlow are replaced by
the predicted motion boundaries. The gain (in EPE) is limited to 0.01 pixel
on the MPI-Sintel training set. First, we notice that even with ground-truth
motion boundaries, the performance boost is limited to around 0.1 pixel,
see Table 4.2. Second, the matches are more critical than the boundaries
in EpicFlow performance. Indeed, in the presence of edges which are not
motion boundaries, we �nd that the texture carried by the edges allows
to �nd correct correspondences. As a consequence, the performance is not
harmed at these locations. In summary, the question regarding how the pro-
posed motion boundaries detection can help optical �ow estimation remains
open.

Part II

Action Localization in

Uncontrolled Videos

117

Chapter 6

Related Work on Action

Localization

Contents

6.1 Video classi�cation . 118

6.1.1 Local features 119

6.1.2 Deep learning approaches 121

6.2 Action localization . 122

6.2.1 Temporal localization 122

6.2.2 Spatio-temporal localization 123

6.3 Datasets and metrics 124

6.3.1 Datasets . 125

6.3.2 Metrics . 126

In this chapter, we review related work on action localization. We start
by a brief overview of recent advances in video classi�cation in Section 6.1.
We then review the state of the art in action localization in Section 6.2.
Finally, Section 6.3 presents the datasets and the metrics used for evaluating
action localization.

6.1 Video classi�cation

In this section, we brie�y present the main families of methods for video
classi�cation or action recognition. Reviewing all works on video classi�-
cation is far beyond the scope of this thesis. We refer to [Aggarwal and
Ryoo, 2011, Poppe, 2010, Weinland et al., 2011, Herath et al., 2016] for
recent surveys. We �rst propose an overview of methods based on local fea-

118

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 119

tures (Section 6.1.1) and then brie�y present approaches leveraging Deep
Convolutional Neural Networks (Section 6.1.2).

6.1.1 Local features

Most recent methods [Laptev, 2005, Wang et al., 2013] are based on local
features: a video is represented as a collection of descriptors, representing
small volumes or sequences of image patches. In contrast to global repre-
sentation, local features have shown robustness under uncontrolled video
settings thanks to the absence of a strict assumption on the global struc-
ture of the action. In addition, descriptors are directly computed from pixel
values or optical �ows, thus avoiding error-prone processing steps such as
silhouette extraction, segmentation or long-term tracking. These methods
have shown excellent results on a wide variety of video data such as sports
broadcasts [Niebles et al., 2010, Rodriguez et al., 2008], movies [Laptev
et al., 2008, Marszalek et al., 2009], TV broadcasts [Patron et al., 2010] or
consumer videos [Liu et al., 2009, Ikizler-Cinbis et al., 2009].

Spatio-temporal features. Local spatio-temporal features aim at repre-
senting a video by detecting and describing small video volumes. Most ap-
proaches are extensions of successful methods for images. For instance, for
selecting regions that are robust to capturing conditions, Laptev [2005] ex-
tends the Harris cornerness criterion [Harris and Stephens, 1988] to videos.
In a similar spirit, the Hessian detector proposed by Willems et al. [2008] is
an extension of the well-known blob detector [Beaudet, 1978] in images. For
descriptors, Kläser et al. [2008] extend the successful Histogram of Oriented
Gradient (HOG) [Dalal and Triggs, 2005] to video volumes by quantizing
the gradient angles in 3D. It is also common to extract a Histogram of Op-
tical Flow (HOF) [Laptev et al., 2008] or a Motion Boundary Histogram
(MBH) [Wang et al., 2013], which is based on the gradient of the optical
�ow.

Trajectory features. Another way to leverage motion consists in ex-
tracting trajectory features, i.e., the temporal evolution of some point co-
ordinates. The temporal dimension is thus treated separately from the spa-
tial axes. Few approaches [Sand and Teller, 2008, Brox and Malik, 2010,
Lezama et al., 2011] were based on long-term trajectories. However, track-
ing points across many frames is expensive and faces di�erent challenges,
e.g . large displacements or occlusions.

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 120

Consequently, most recent works use an aggregation of short-term tra-
jectories (around 15 frames), often referred to as tracklets [Matikainen et al.,
2009, Wang et al., 2013]. Such trajectories can be directly computed from
the optical �ow [Lucas and Kanade, 1981, Farnebäck, 2003] and are less sen-
sitive to drifting thanks to their short lengths. In addition to their spatial
evolution, a subvolume centered at the trajectory is often described with its
appearance and motion. For instance, Wang et al. [2013] compute a His-
togram of Oriented Gradient (HOG), a Histogram of Optical Flow (HOF)
and a Motion Boundary Histogram (MBH). In contrast to most approaches,
they do not rely on interest points but compute features from trajectories
extracted from a dense grid.

More recently, it has been proposed to cancel out the camera motion
when extracting trajectories and features. For instance, Uemura et al. [2008]
segment the images and use feature matching in order to estimate the cam-
era motion, as well as separate tracks induced by moving objects from those
due to camera motion. Wang et al. [2015] improve the dense trajectories
features by incorporating a camera motion compensation based on matches
from SURF [Bay et al., 2006] and optical �ow. In order to avoid using
matches from the actors, i.e., motion not induced by the camera, a human
detector can be leveraged to remove these correspondences.

Aggregation. For classifying videos, a representation is built by aggre-
gating local features. A typical example is the Bag-of-Words (BoW) ap-
proach [Sivic and Zisserman, 2003, Csurka et al., 2004], which was origi-
nally designed for representing textual documents as word frequencies. For
computer vision, visual words are obtained by clustering a huge number of
local features, e.g . using k-means. The set of visual words is often referred
to as dictionary. An image or video is then represented by the frequency
of assignment of the local features to each visual word. This approach has
been successful in many applications of computer vision, in particular for
videos [Wang et al., 2013], at the cost of using non-linear kernels.

Bag-of-Words only counts the number of occurrences when assigning
features to the dictionary. Improved aggregation techniques have been pro-
posed over the years. For instance, van Gemert et al. [2010] propose a soft
assignment scheme instead of the hard assignment in BoW. Higher-order
statistics can be used. VLAD [Jégou et al., 2012] and super vector cod-
ing [Zhou et al., 2010] model the mean of the feature points assigned to
a visual word. Fisher Vectors [Sánchez et al., 2013] include the second-
order statistics (i.e., the variance) and have obtained state-of-the-art per-
formance [Wang et al., 2015] in video classi�cation, using a linear kernel

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 121

after proper normalization [Sánchez et al., 2013]. In our work, we use the
representation of Wang et al. [2015] based on Fisher Vectors and improved
dense trajectories.

These aggregation techniques do not model any geometric relation be-
tween feature points. Several extensions incorporating local or global rela-
tions between local features have thus been proposed. For instance, Laptev
et al. [2008] extend the spatial pyramid [Lazebnik et al., 2006] to videos: the
aggregation is computed for several video volumes and then concatenated.
In the same spirit, Gaidon et al. [2013] concatenate BoW representations
for 3 sub-actions. Another example is to pool the features over supervoxels
as proposed by Taralova et al. [2014] or Peng et al. [2014].

6.1.2 Deep learning approaches

Driven by the recent success of Deep Convolutional Neural Networks
(CNN) [Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, Szegedy
et al., 2015, He et al., 2016] in image classi�cation and in other computer
vision tasks such as object detection [Girshick et al., 2014] or segmenta-
tion [Chen et al., 2015], extensions to video classi�cation have been pro-
posed. Such approaches can be split in 3 categories. The �rst one leverages
3D convolutions [Ji et al., 2013, Karpathy et al., 2014, Tran et al., 2015].
Karpathy et al. [2014] compare di�erent architectures in which information
over consecutive frames is fused at various levels. Tran et al. [2015] show
that using 3× 3× 3 �lter for all convolution layers performs best in various
tasks such as action classi�cation, action similarity labeling, scene classi�-
cation or object recognition. The second category is built upon recurrent
neural network [Donahue et al., 2015]. Visual features are computed at
every frame and then Long Short-Term Memory (LSTM) units allow to
incorporate temporal modeling in the architecture. In the latter category,
images and optical �ows are processed in two separate streams [Simonyan
and Zisserman, 2014]. For the motion stream, stacking optical �ows over
several frames boosts performance. Most promising results have been ob-
tained by the two-streams architecture. Results obtained with CNN are on
the same order of magnitude as improved dense trajectories [Wang et al.,
2015], and these two approaches can be combined e�ciently [Simonyan and
Zisserman, 2014].

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 122

6.2 Action localization

Action detection, called also action localization, refers to the problem
of recognizing the actions as well as their extent. In this thesis, we focus on
human action localization in space and time. We do not consider actions
performed by animals [Xu et al., 2015]. In this section, we review most
techniques for temporal and spatio-temporal action localization.

6.2.1 Temporal localization

Initial attempts for temporal action localization are based on a sliding-
window scheme and focus on improving the search complexity [Yuan et al.,
2009, Duchenne et al., 2009, Gaidon et al., 2013]. The problem is treated
as a localized classi�cation: uniformly sampled windows are extracted and
the one that obtains the maximum score is considered as the action's loca-
tion. The search space remains acceptable for temporal localization, which
is a 1-dimensional problem. Few improvements have been proposed. For
instance, Gaidon et al. [2013] use a more structured representation by di-
viding actions into 3 sub-actions at the cost of additional annotations for
these sub-actions. Niebles et al. [2010] apply the Deformable Part Mod-
els (DPM) [Felzenszwalb et al., 2010] to the temporal domain by inferring
temporal anchor points and scales for sub-events of each class. To speed-up
the temporal localization, Oneata et al. [2014c] proposed an approximately
normalized Fisher Vector, allowing to replace the sliding window scheme by
a more e�cient branch-and-bound search [Lampert et al., 2009].

Several weakly-supervised approaches have also been proposed [Bojanowski
et al., 2014, Duchenne et al., 2009, Hoai et al., 2014]. Duchenne et al. [2009]
use movie scripts to obtain a coarse localization of the actions. The local-
ization is then re�ned by leveraging discriminative clustering and used to
learn a classi�er. In the same spirit, Satkin and Hebert [2010] �nd discrim-
inative segments in training videos using a max-margin objective function
with temporal extents acting as latent variables. Given an ordered list of
the actions in each clip, Bojanowski et al. [2014] assign temporal segments
to action based on discriminative clustering. The assignment then allows to
learn a detector for each action. More recently, Hoai et al. [2014] extend a
Multiple Instance SVM to time series while allowing discontinuities in the
positive samples.

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 123

6.2.2 Spatio-temporal localization

Sliding window. The set of of spatio-temporal tubes is much too large
to perform sliding window in space and time. Most of the �rst attempts
for spatio-temporal localization [Laptev and Pérez, 2007, Cao et al., 2010]
assume a �xed spatial extent of the action, i.e., output a cuboid. Such
assumption is not realistic for uncontrolled videos in which the camera and
the actor may move. More recently, DPM has been extended to videos.
Tian et al. [2013] replace the HOG features of DPM by its 3D version,
namely HOG-3D proposed by Kläser et al. [2008].

Figure-centric model. Lan et al. [2011] extend the Latent Support Vec-
tor Machine framework used in DPM by considering the actor location as
a latent variable and add a prior to enforce similar locations across time.
Such model centered at human location is often referred to as �gure-centric
model. Prest et al. [2012a] propose to detect humans and objects and then
model their interaction. Kläser et al. [2010] use a human detector and build
human tracks using KLT features tracks. The human tracks are then classi-
�ed with HOG-3D descriptors [Kläser et al., 2008]. Other models centered
on humans often require more supervision. For instance, the pose can be
leveraged to improve action recognition [Jhuang et al., 2013]. For localizing
the action, Wang et al. [2014] �rst use a temporal sliding window and then
model the relations between dynamic-poselets. The authors thus require
pose annotations in training videos.

Action proposals. Driven by the success of proposals for object detec-
tion [Zitnick and Dollár, 2014, Uijlings et al., 2013], several recent methods
for action localization are based on action proposals to reduce the search
complexity. Jain et al. [2014b] and Oneata et al. [2014a] construct action
tubes by hierarchically merging supervoxels based on various features such
as color, texture, motion or their size. They then rely on dense trajectories
features for tube classi�cation. Similarly, van Gemert et al. [2015] propose
to cluster dense trajectories with a similarity measure de�ned by their de-
scriptors (HOG, HOF and MBH) and use the resulting tubes for action
detection. Dense trajectories were also used by Marian Puscas et al. [2015],
to link per-frame proposals, namely SelectiveSearch [Uijlings et al., 2013]
throughout the video. Tubes are then re�ned using transductive learning.
Action proposals from Yu and Yuan [2015] are based on an actionness mea-
sure [Chen et al., 2014], which requires localized training samples.

Recently, Gkioxari and Malik [2015] proposed to use object proposals
and object detector based on CNN [Girshick et al., 2014] for action local-

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 124

ization. Object proposals from SelectiveSearch [Uijlings et al., 2013] are
detected in each frame, scored using features from a two-streams CNN ar-
chitecture, and linked across the video. Our approaches also rely on a per-
frame detector, but we use a tracking-by-detection to obtain tubes, which
is more robust for instance in case of multiple actors.

Weakly-supervised action localization Annotating all videos with
bounding boxes in every frame of an action is not realistic for large-scale
datasets. Weakly-supervised action localization is thus necessary, but has
received little attention so far. Siva and Xiang [2011] de�ne cuboids of
di�erent time lengths around detected humans, describe them with space-
time interest points (STIPs) [Laptev, 2005] and then use Multiple Instance
Learning (MIL). Their method can thus only be used for static humans.
Mosabbeb et al. [2014] use a subspace segmentation clustering approach
applied on groups of trajectories in order to segment videos into parts.
Low-rank matrix completion then estimates the contribution of each cluster
to the di�erent labels. Hence, the approach detects several disjoint action
parts and not one spatio-temporal consistent localization. Ma et al. [2013]
�rst extract a per-frame hierarchical segmentation, which is tracked over
the videos. Using a foreground scoring, they obtain a hierarchy of spatio-
temporal segments where the upper level corresponds to human body loca-
tion candidates. More recently, Chen and Corso [2015] propose to generate
unsupervised proposals by clustering intentional motion based on dense tra-
jectories. A classi�er is then learned using the best proposal of a video as
positive sample. It is thus a weakly-supervised method but which assumes
only one action per video during training. Furthermore, this method is not
robust to nearby motions and assumes signi�cant motion.

Some action classi�cation methods automatically discover discrimina-
tive parts to improve the performance, but do not aim at precisely localizing
the action. For instance, Shapovalova et al. [2012] extend latent SVM to
model pairwise similarities between latent variables, aiming at discovering
common parts for a particular action. Boyraz et al. [2014] optimize jointly
the classi�cation error with the location of a �xed number of discriminative
parts. Lan et al. [2015] leverage a discriminative clustering approach for
parsing complex actions into mid-level action elements.

6.3 Datasets and metrics

In this section, we �rst present the datasets for evaluating human action
localization. We then present the standard evaluation metrics. The DALY

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 125

U
C
F
-S
p
or
ts

J
-H
M
D
B

U
C
F
-1
01

M
S
R
-I
I

Figure 6.1 � Few frames from the existing datasets.

dataset we introduced in this thesis is presented in Chapter 8.

6.3.1 Datasets

We describe the datasets for evaluating action localization, namely UCF-
Sports, J-HMDB, UCF-101 and MSR-II. Figure 6.1 illustrates few frames
from these benchmarks.
• The UCF-Sports dataset [Rodriguez et al., 2008] consists of 150 sports
videos with 10 actions, such as diving or running. The number of videos is
limited, with for instance 4 training and 2 test videos for the class lifting.
Videos are trimmed to the action and every frame is annotated with a
bounding box. For each class, the sequences present similarities in back-
ground, camera viewpoint and actors, which is a limitation of this dataset.
In our experiments, we use the train/test split de�ned by Lan et al. [2011].
• The J-HMDB dataset [Jhuang et al., 2013] contains 928 short videos with
21 actions, including stand up, run and pour. It is a subset of the HMDB

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 126

dataset [Kuehne et al., 2011] for action classi�cation for which additional
annotations such as the pose and the silhouette are provided. The videos
are trimmed to the action, are very short (1.4 sec on average) and contain
only one human most of the time. We use the bounding boxes around the
silhouettes as ground-truth. The dataset has 3 train/test splits.
• The UCF-101 dataset [Soomro et al., 2012] is dedicated to action classi-
�cation with more than 13000 videos and 101 classes. For a subset of 24
sports labels, the spatio-temporal extent of the actions is annotated. This
represents 3207 videos. In contrast to UCF-Sports and J-HMDB, the de-
tection is also temporal but the videos remain short; for half of the classes,
the action lasts for more than 80% of the video duration. Figure 6.2 shows
a histogram of the action durations in the training set, averaged over all 24
classes. Some of the actions are long, such as `soccer juggling' or `ice danc-
ing', whereas others last only few frames, e.g . `tennis swing' or `basketball
dunk'. There are 3 train/test splits.
• The MSR-II dataset [Cao et al., 2010] consists of 54 videos that last
51s on average. Actors alternate between performing 3 arti�cial actions
(namely handwaving, handclapping and handboxing) and walking around
in di�erent realistic places. Annotations consist in a bounding volume
around the moving parts (e.g . the hands) in the action. The standard
protocol [Cao et al., 2010] consists in using the KTH dataset [Schüldt
et al., 2004] for training. The KTH dataset is one of the �rst benchmark
for action recognition. The videos contain a �xed and almost uniform
background with few actors performing a set of 6 actions (including the
three labels from MSR-II) multiple times. This protocol can not be used for
evaluating weakly-supervised approach as the spatial extent of the actions
in the training videos corresponds to the full frames.

6.3.2 Metrics

The standard metric consists in computing the mean Average-Precision
(mAP) at a given threshold δ. A detection is correct if the IoU (Intersection
over Union) with the ground-truth is over a threshold δ. The IoU between
tubes is de�ned as the IoU over the temporal domain, multiplied by the
average of the spatial IoU over all overlapping frames. As this is standard
in detection, duplicate detections are considered as wrong. The average
precision is then computed for each class, with a threshold δ = 50% when
the localization is limited to the spatial domain (UCF-Sports, J-HMDB)
and δ = 20% for spatio-temporal detection (UCF-101). The reported results
are averaged over the classes and the splits.

CHAPTER 6. RELATED WORK ON ACTION LOCALIZATION 127

20 30 40 50 60 70 80 90 100150300450600
duration

0

200

400

600

800

1000

Figure 6.2 � Histogram of action durations (in number of frames) for the 24
classes with spatio-temporal annotations in the UCF-101 dataset (training
set).

When comparing to the state of the art on UCF-Sports, we also plot
ROC curves and report the Area Under the Curve (AUC) as done by pre-
vious work. Note that this metric is impacted by the set of negatives detec-
tions and, thus, may not be suited for a detection task [Everingham et al.,
2011]. Indeed, if one adds many easy negatives, i.e., negatives that are
ranked after all positives, the AUC increases while the mAP remains the
same. Some other works also report the mean-IOU, which is the average
IoU between the best detection in a test video and the ground-truth tube.

Chapter 7

Action-speci�c Tracks for Action

Localization

Contents

7.1 Introduction . 128

7.2 Overview of the approach 130

7.3 Detailed description of the approach 131

7.3.1 Frame-level proposals with CNN classi�ers . . . 131

7.3.2 Tracking . 133

7.3.3 Track descriptor 135

7.3.4 Temporal localization 137

7.4 Experimental results . 137

7.4.1 Impact of the tracker 137

7.4.2 Class selection 139

7.4.3 STMH parameters 140

7.4.4 Comparison to the state of the art 141

7.5 Conclusion . 144

7.1 Introduction

The main challenge in spatio-temporal localization is to accommodate
the uncertainty of per-frame spatial localization and the temporal consis-
tency. If the spatial localization performed independently on each frame is
too selective and at the same time uncertain, then enforcing the temporal
consistency across frames of the localization may fail. In this chapter, we
propose to use a set of per-frame region proposals and enforce temporal

128

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 129

consistency based on a tracker, that simultaneously relies on instance-level
and class-level detectors.

Our approach starts from frame-level proposals extracted with a high-
recall proposal algorithm [Zitnick and Dollár, 2014]. Proposals are scored
using CNN descriptors based on appearance and motion information [Gkioxari
and Malik, 2015]. To ensure the temporal consistency, we propose to track
them with a tracking-by-detection approach combining instance-level and
class-level detectors. We then score the tracks with the CNN features as
well as spatio-temporal local features that capture the dynamics of an ac-
tion. At this stage, the tracks are localized in space, but the temporal
localization needs to be determined. Temporal localization is performed
using a multi-scale sliding-window approach at the track level.

In summary, this chapter introduces an approach for fully-supervised
spatio-temporal action localization with state-of-the-art experimental re-
sults on UCF-Sports, J-HMDB and UCF-101. Spatio-temporal local fea-
tures allow to single out more relevant tracks and temporally localize the
action at the track level. As local features, we compare a proposed spatio-
temporal motion histogram (STMH) descriptor at the track level and the
standard improved dense trajectories (IDT) [Wang et al., 2015]. In the
preliminary version from ICCV'15 [Weinzaepfel et al., 2015a], only results
with STMH were reported.

Closest references. Our proposed method is related to �gure-centric
models. In particular, Kläser et al. [2010] use a human detector. The
detected humans are then tracked across frames using optical �ow and the
track is classi�ed using HOG-3D [Kläser et al., 2008]. Our approach also
relies on tracking, but is more robust to appearance and pose changes by
using a tracking-by-detection approach [Hare et al., 2011, Kalal et al., 2012],
in combination with a class-speci�c detector. In addition, we classify the
tracks using per-frame CNN features and spatio-temporal features.

Recently, Gkioxari and Malik [2015] proposed to use object proposals for
action localization. Object proposals from SelectiveSearch [Uijlings et al.,
2013] are detected in each frame, scored using features from a two-streams
CNN architecture, and linked across the video. Our approach is more ro-
bust since we do not force detections to pass through proposals at every
frame. Moreover, we combine the per-frame CNN features with descriptors
extracted at a spatio-temporal level to capture the dynamics of the actions.

Outline. This chapter is organized as follows. We present an overview of
our approach in Section 7.2 and then give the details in Section 7.3. Finally,

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 130
frame-level candidates

object proposals and CNN action classifiers

time

scoring
CNN + local features

temporal detection
sliding window

tracking best candidates

Figure 7.1 � Overview of our action localization approach. We detect frame-
level object proposals and score them with CNN action classi�ers. The best
candidates, in term of scores, are tracked throughout the video. We then
score the tracks with CNN and spatio-temporal local features classi�ers.
Finally, we perform a temporal sliding window for detecting the temporal
extent of the action.

Section 7.4 presents experimental results.

7.2 Overview of the approach

Our approach for spatio-temporal action localization consists of four
stages, see Figure 7.1. We now brie�y present them and then provide a
detailed description in Section 7.3.

Extracting and scoring frame-level proposals. Our method extracts
a set of candidate regions at the frame level. We use EdgeBoxes [Zitnick and
Dollár, 2014], as they obtain a high recall even when considering relatively
few proposals [Hosang et al., 2015]. Each proposal is represented with CNN
features [Gkioxari and Malik, 2015]. These CNN features leverage both
static and motion information and are trained to discriminate the actions
against background regions. This is capital since most of the proposals do
not contain any action. For each class, a hard negative mining procedure is
performed in order to train an action-speci�c classi�er. Given a test video,
frame-level candidates are scored with these action-speci�c classi�ers.

Tracking best candidates. Given the frame-level candidates of a video,
we select the highest scoring ones per class and track them throughout the
video. Our tracking method is based on a standard tracking-by-detection

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 131

approach leveraging an instance-level detector as well as a class-level classi-
�er. The detector is based on the same CNN features as the �rst stage. We
perform the tracking multiple times for each action, starting from the pro-
posal with the highest score that does not overlap with previous computed
tracks.

Scoring tracks. The CNN features only contain information extracted at
the frame level. Consequently, they are not able to capture the dynamics of
an action across multiple frames. Thus, we propose to use spatio-temporal
local features. We introduce a spatio-temporal motion histogram (STMH).
It is inspired by the success of dense trajectory descriptors [Wang et al.,
2013]. Given a �xed-length chunk from a track, we divide it into spatio-
temporal cells and compute an histogram of gradient, optical �ow and mo-
tion boundaries in each cell. A hard negative mining is employed to learn
a classi�er for each class. We also tried using the classical Fisher Vector
aggregation of improved dense trajectories (IDT) [Wang et al., 2015]. The
�nal score is obtained by combining CNN with STMH or IDT classi�ers.

Temporal localization. To detect the temporal extent of an action, we
use a multi-scale sliding window approach over tracks. At test time, we rely
on temporal windows of di�erent lengths that we slide with a stride of 10
frames over the tracks. We score each temporal window according to CNN
features, local features (STMH or IDT) and a duration prior learned on the
training set. For each track, we then select the window with the highest
score.

7.3 Detailed description of the approach

In this section, we detail the four stages of our action localization ap-
proach. Given a video of T frames {It}t=1..T and a class c ∈ C (C being the
set of classes), the task consists in detecting if the action c appears in the
video and if yes, when and where. In other words, the approach outputs
a set of regions {Rt}t=tb..te with tb (resp. te) the beginning (resp. end) of
the predicted temporal extent of the action c and Rt the detected region in
frame It.

7.3.1 Frame-level proposals with CNN classi�ers

Frame-level proposals. State-of-the-art methods [Girshick et al., 2014]
for object localization replace the sliding-window paradigm used in the past

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 132

decade by object proposals. Instead of scanning the image at every location,
at several scales, object proposals allow to signi�cantly reduce the number
of candidate regions, and narrow down the set to regions that are most
likely to contain an object.

For every frame, we extract EdgeBoxes [Zitnick and Dollár, 2014] using
the online code 1 and keep the best 256 proposals according to the EdgeBox
score. We denote by Pt the set of object proposals for a frame It. In
Section 7.3.2, we introduce a tracking approach that makes our method
robust to missing proposals.

CNN features. Recent work on action recognition [Simonyan and Zisser-
man, 2014] and localization [Gkioxari and Malik, 2015] have demonstrated
the bene�t of CNN feature representations, applied separately on images
and optical �ows. We use the same set of CNN features as Gkioxari and
Malik [2015].

Given a region resized to 227 × 227 pixels, a spatial-CNN operates on
RGB channels and captures the static appearance of the actor and the
scene, while a motion-CNN takes as input optical �ow and captures motion
pattern. The optical �ow signal is transformed into a 3-dimensional image
by stacking the x-component, the y-component and the magnitude of the
�ow. Each image is then multiplied by 16 and converted to the closest
integer between 0 and 255. In practice, optical �ow is estimated using the
online code 2 from Brox et al. [2004]. For a region R, the CNN features
we use are the concatenation of the fc7 layer (4096 dimensions) from the
spatial-CNN and motion-CNN, see Figure 7.2.

CNN training. We use the same architecture and training procedure
as Gkioxari and Malik [2015]. We give a brief presentation below and refer
to their work for more details. The architecture is the same for both net-
works with 5 convolution layers interleaved by pooling and normalization,
and then 3 fully connected layers interleaved with dropout. The last fully
connected layer (fc8) has |C| + 1 outputs, one per class and an additional
output for the background. Similar to Girshick et al. [2014], during train-
ing, the proposals that overlap more than 50% with the ground-truth are
considered as positives, the others as background. Regions are resized to
�t the network size (227 × 227) and randomly �ipped. The spatial-CNN
is initialized with a model trained on full images from ImageNet and �ne-
tuned for object detection on Pascal VOC 2012 [Girshick et al., 2014]. For

1. https://github.com/pdollar/edges
2. http://lmb.informatik.uni-freiburg.de/resources/software.php

https://github.com/pdollar/edges
http://lmb.informatik.uni-freiburg.de/resources/software.php

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 133

CNN features

spatial-CNN

motion-CNN

Figure 7.2 � Illustration of CNN features for a region R. The CNN features
are the concatenation of the fc7 layer from the spatial-CNN and motion-
CNN, i.e., a 2x4096 dimensional descriptor.

the motion-CNN, initialization weights are trained for the task of action
recognition on the UCF-101 dataset [Soomro et al., 2012] with full frames
of the training set of split 1. We then �ne-tune the networks with back-
propagation using Ca�e 3 [Jia et al., 2014] on the proposal regions for each
dataset. Each batch contains 25% of non-background regions.

Action classi�ers. For each action class c ∈ C, we train a linear SVM
using hard negative mining. The positives are given by the ground-truth
annotations and negatives by all proposals whose overlap with a ground-
truth region is below 30%. At test time, we denote by SCNN(c, R) the score
of a region R for the action class c given by the trained classi�er. This
yields a con�dence score for the region R and an action class c.

7.3.2 Tracking

The second stage consists in tracking the best proposals over the video.
We use a tracking-by-detection approach that leverages instance-level and
class-level detectors. Let R be a region in frame Iτ for the class c to be
tracked. As a result, the tracking stage will output a track Tc = {Rt}t=1..T .
The track provides a candidate localization for the action c. We �rst present
how the tracker is initialized. Then, we detail the tracking procedure. Fi-
nally, we explain the selection of the regions to track.

Initialization. Given a region R to be tracked in frame Iτ , the �rst step
is to re�ne the position and size of the region by performing a sliding-

3. http://caffe.berkeleyvision.org/

http://caffe.berkeleyvision.org/

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 134

window search both in scale and space in the neighborhood of R. Let
N (R) be the set of windows scanned with a sliding window around the
region R. The best region according to the action-level classi�er is selected:
Rτ = argmaxr∈N (R) SCNN(c, r). The sliding-window procedure using CNN
features can be performed e�ciently [Giusti et al., 2013, Sermanet et al.,
2014].

Given the re�ned region, we train an instance-level detector using a
linear SVM. The set of negatives comprises the instances extracted from
boxes whose overlap with the original region is less than 10%. The boxes
are restricted to regions in Pτ , i.e., the proposals in frame τ . The set of
positives is restricted to the re�ned region Rτ . This strategy is consistent
with current tracking-by-detection approaches [Hua et al., 2014]. Denote by
Sinst(R) the score of the region R with the instance-level classi�er. We now
present how the tracking proceeds over the video. We �rst do a forward
pass from frame Iτ to the last frame IT , and then a backward pass from
frame Iτ to the �rst frame.

Algorithm 7.1 Class-speci�c tracking.
Input: a region R in frame Iτ to track, a class c
Output: a track Tc = {Rt}t=1..T

Rτ ← argmaxr∈N (R) SCNN(c, r)
Pos← {Rτ}
Neg← {r ∈ Pτ | IoU(r,Rτ) < 0.1}
For i = τ + 1 ... T and τ − 1 ... 1:
�� Learn instance-level classi�er from Pos and Neg

�� Ri ← argmaxr∈N (R′i)
(SCNN(c, r) + Sinst(r))

�� Neg← Neg ∪ {r ∈ Pτ | IoU(r,Ri) < 0.1}
�� Neg← {r ∈ Neg|Sinst(r) ≥ −1} (restrict to hard negatives)
�� Pos← Pos ∪ {Ri}

Update. Given a tracked region Rt in frame It, we now want to �nd the
most likely location in frame It+1. We �rst map the region Rt into R

′
t+1, by

shifting the region with the median of the �ow between frame It and It+1

inside the region Rt. We then select the best region in the neighborhood
of R′t+1 using a sliding window that leverages both class-level and instance-
level classi�ers:

Rt+1 = argmax
r∈N (R′t+1)

Sinst(r) + SCNN(c, r) . (7.1)

In addition, we update the instance-level classi�er by adding Rt+1 as a
positive exemplar and proposals Pt+1 from frame It+1 that do not overlap

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 135

with this region as negatives. Note that at each classi�er update, we restrict
the set of negatives to the hard negatives.

The tracking algorithm is summarized in Algorithm 7.1. By combining
instance-level and class-level information, our tracker is robust to signi�cant
changes in appearance and occlusion. Note that category-speci�c detectors
were previously used in other contexts, such as face [Kalal et al., 2010]
or people [Gall et al., 2010] tracking. We demonstrate the bene�t of such
detectors in our experiments in Section 7.4.

Proposals selection. We now present how we chose the proposals to
track. We �rst select the subset of classes for which the tracking is per-
formed. To this end, we assign a score to the video for each class c ∈ C and
keep the top-5. The score for a class c is de�ned as maxr∈Pt,t=1..T SCNN(c, r),
i.e., we keep the maximum score for c over all proposals of the video.

When generating tracks for the class c, we �rst select the proposal with
the highest score over the entire video. We run the tracker starting from this
region and obtain a �rst track. We then perform the tracking iteratively,
starting a new track from the best proposal that does not overlap with any
previous track from the same class. In practice, we compute 2 tracks for
each selected class.

7.3.3 Track descriptor

So far, we have only used features extracted on individual frames. Clearly,
this does not capture the dynamics of the action over time. To overcome
this issue, we compare two approaches. As a �rst option, we introduce
spatio-temporal motion histogram (STMH) feature at the track level. The
second approach consists in using Fisher Vector on improved dense trajec-
tories (IDT) from a track.

Spatio-temporal motion histogram. Similar to Wang et al. [2013],
we rely on histograms of gradient and motion extracted in spatio-temporal
cells. Given a track Tc = {Rt}t=1..T , it is divided into temporal chunks of
L = 15 frames, with a chunk starting every 5 frames. Each chunk is then
divided into Nt temporal cells, and each region Rt into Ns × Ns spatial
cells, as shown in Figure 7.3. For each spatio-temporal cell, we perform a
quantization of the per-pixel image gradient into an histogram of gradients
(HOG) with 8 orientations. The histogram is then normalized with the
L2-norm. Similarly, we compute HOF, MBHx and MBHy by replacing
the image gradient by the optical �ow and the gradient of its x and y

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 136

Figure 7.3 � Illustration of STMH. A chunk is split into spatio-temporal cells
for which an histogram of gradient, optical �ow and motion boundaries is
computed.

components. For HOF, a bin for an almost zero value is added, with a
threshold at 0.04. In practice, we use 3 temporal cells and 8 × 8 spatial
cells, resulting in 3×8×8×(8+9+8+8) = 6336 dimensions. Note that we
use more spatial cells than Wang et al. [2013], as our regions are on average
signi�cantly larger than the 32× 32 patch they use.

Improved dense trajectories. We compare STMH with the classical
improved dense trajectories (IDT) representation [Wang et al., 2015]. Dense
trajectories are extracted and described using HOG, HOF and MBHx and
MBHy. For a given track, we build a Fisher Vector per descriptor type, using
only the trajectories that start inside the track. Each of the 4 Fisher Vectors
is then independently power-normalized and L2-normalized [Sánchez et al.,
2013]. A tube is �nally described by the concatenation of the 4 normalized
Fisher Vectors, resulting in 102400 dimensions.

Fusion. For each action, we train a linear SVM using hard negative min-
ing. The set of positives is given by features extracted along the ground-
truth annotations, while the negatives are given by cuboids (spatially and
temporally) centered at the proposals that do not overlap with the ground-
truth. Let Sdesc(c, T) be the score according to local features classi�ers. For
IDT, Sdesc(c, T) is the output of the linear classifer for the representation

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 137

extracted from the track T for the action c. For STMH, it is the average
of the scores for all the chunks of length L inside the track.

Given a track T = {Rt}t=1..T , we score it by summing the scores from
the CNN averaged over all frames, and the scores from the local descriptors:

S(T) = σ
(
Sdesc(c, T)

)
+ σ
(T∑
t=1

SCNN(c, Rt)
)
, (7.2)

where σ(x) = 1/(1+e−x). We summarize the resulting approach for spatio-
temporal detection in Algorithm 7.2.

7.3.4 Temporal localization

Similar to the winning approach in the temporal action detection track
of the Thumos 2014 challenge [Oneata et al., 2014b], we use a sliding-
window strategy for temporal localization. However, we apply the sliding
window directly on each track T , while Oneata et al. [2014b] used features
extracted for the full frames. The window length takes values of 20, 30, 40,
50, 60, 70, 80, 90, 100, 150, 300, 450 and 600 frames. The sliding window
has a stride of 10 frames. For each action c, we learn the frequency of
its durations on the training set. We score each window using the score
described above based on CNNs features and spatio-temporal local features
(STMH or IDT), normalized with a sigmoid, and multiply it with the per-
class duration prior. For each track, we keep the top-scoring window as
spatio-temporal detection.

7.4 Experimental results

In this section, we present experiment results on three action localization
approach: UCF-Sports, J-HMDB and UCF-101. We refer to Section 6.3 for
details on these benchmarks as well as the evaluation metrics. We �rst
study the impact of both the tracking and the class selection, and then
provide a parametric study of STMH. Finally, we show that our approach
outperforms the state of the art for spatio-temporal action localization.

7.4.1 Impact of the tracker

The strength of our approach lies in the combination of class-speci�c
and instance-level detectors in the tracker. To measure the bene�t of this
combination, Table 7.1 compares the performance when removing one of

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 138

Algorithm 7.2 Spatio-temporal detection in a test video.
Input: a test video {It}t=1...T

Output: a list of detections (c, T , score)
For t = 1..T
�� Pt = EdgeBoxes(It)
�� For r ∈ Pt
���� Compute SCNN(c, r)
C′ ← class selection (see Sec. 7.3.2)
Detections← []
For c ∈ C′
�� For i = 1...ntracks (we generate ntracks=2 tracks per label, see Sec. 7.3.2)

���� R, τ ← argmaxr∈Pt,t=1..T SCNN(c, r)
(proposal to track without overlap with previous tracks)

���� T ← Tracking(R, Iτ , c) (Algorithm 7.1)
���� score← σ(Sdesc(c, T)) + σ(

∑
Rt∈T SCNN(c,Rt)) (Equation 7.2)

���� Detections← Detections ∪ {(c, T , score)}

Detectors in the tracker
recall-track mAP

UCF-Sports J-HMDB UCF-Sports J-HMDB
instance-level + class-level 98.75% 91.74% 90.50% 59.74%

instance-level only 85.42% 94.59% 74.27% 54.32%
class-level only 92.92% 81.28% 85.67% 53.25%

Table 7.1 � Impact of the detectors used in the tracker. We measure if the
tracks generated for the ground-truth label cover the ground-truth tracks
(recall-track). We also measure the impact of the tracker on the �nal de-
tection performance (mAP). The experiments are done on UCF-Sports and
J-HMDB (split 1 only) using CNN and STMH features.

them. `Recall-tracks' measures if at least one of the 2 generated tracks for
the ground-truth action covers the ground-truth annotations (IoU ≥ 0.5),
i.e., it measures the recall at the track level. We also measure the impact
on the �nal detection performance (mAP) by running our full pipeline with
each tracker.

On UCF-Sports, tracking obtained by combining the detectors leads to
the highest recall. Using the instance-level detector signi�cantly degrades
the recall by 13%. This can be explained by the abrupt changes in pose
and appearance for actions such as diving or swinging. On the other hand,
the instance-level detector performs well on the J-HMDB dataset, which
contains more static actions.

Combining instance-level and class-speci�c classi�ers also gives the best
performance in term of �nal detection results. On UCF-Sports, this is

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 139

CNN CNN + STMH
Linking Tracking Linking Tracking

SelectiveSearch [Uijlings et al., 2013] 75.94% 83.77% 77.1% 84.9%
EdgeBoxes-256 [Zitnick and Dollár, 2014] 79.89% 88.23% 83.2% 90.5%

Table 7.2 � Comparison of tracking and linking, SelectiveSearch and
EdgeBoxes-256 proposals with CNN features only or CNN + STMH on
UCF-Sports (localization in mAP).

mainly due to the higher recall. On J-HMDB, we �nd that using the
instance-level detector only leads to a better recall but the precision de-
creases because there are more tracks from an incorrect label that have a
high score.

Table 7.2 compares the localization mAP on UCF-Sports when using
our proposed tracker or a linking strategy as Gkioxari and Malik [2015].
We experiment with proposals from SelectiveSearch [Uijlings et al., 2013]
(approximately 2700 proposals per frame) or EdgeBoxes [Zitnick and Dollár,
2014] (top-256), with CNN features only or combined with STMH. We can
see that using EdgeBoxes instead of SelectiveSearch leads to a gain of 6%
when using STMH in addition to CNN features. Using a tracking strategy
leads to a further gain of 7%, with in addition a more re�ned localization,
see Figure 7.5. This shows that the tracker is a key component to the
success of our approach.

7.4.2 Class selection

We now study the impact of selecting the top-5 classes based on the
maximum score over all proposals from a video for a given class, see Sec-
tion 7.3.2. We measure the percentage of cases where the correct label is
in the top-k classes and shows the results in Figure 7.4 (blue curve). Most
of the time, the correct class has the highest maximum score (around 85%
on UCF-Sports and 61% on J-HMDB). If we use top-5, we misclassify less
than 10% of the videos on J-HMDB, and 0% on UCF-Sports.

Figure 7.4 also shows that recall (green) is lower than the top-k accuracy
because the generated tracks might not have a su�cient overlap with the
ground-truth due to a failure of the tracker. The di�erence between recall
and top-k accuracy is more important for large k. This can be explained
by the fact that the class-level detector performs poorly in videos for which
the correct label has a low rank, therefore the class-speci�c tracker performs
poorly as well.

In addition, we display in red the evolution of the mAP on UCF-Sports

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 140

1 3 5 7 9 all
Number of selected classes

0

20

40

60

80

100 UCF-Sports

top-k accuracy

recall

mAP

1 3 5 7 9 11 13 15 17 19 all
Number of selected classes

0

20

40

60

80

100 J-HMDB (split 1 only)

top-k accuracy

recall

mAP

Figure 7.4 � Impact of the class selection on UCF-Sports (left) and J-HMDB
(right) datasets. In blue, top-k accuracy is shown, i.e., the percentage
of cases where the correct label is in the top-k classes. The recall when
changing the number of selected classes is shown in green and the mAP in
red (using CNN and STMH features).

and J-HMDB (split 1 only) using CNN and STMH features when chang-
ing the number of selected classes. Initially, the performance signi�cantly
increases as this corrects the cases where the correct label is top-k but not
�rst, i.e., the recall increases. The performance then saturates since, even
in the case where a new correct label is tracked over a video, the �nal score
will be low and will not have an important impact on the precision. As a
summary, selecting the top-k classes performs similar as keeping all classes
while it signi�cantly reduces the computational time.

7.4.3 STMH parameters

We now study the impact of the number of temporal and spatial cells in
STMH. For evaluation, we consider the classi�cation task and learn a linear
SVM on the descriptors extracted from the ground-truth annotations of the
training set. We then predict the label on the test set, assuming the ground-
truth localization is known, and report mean Accuracy. Results are shown
in Table 7.3. We can see that the best performance is obtained with Ns = 8
spatial cells on both datasets, independently of the number of temporal
cells Nt. By increasing the number of cells to a higher value, e.g . 16, the
descriptor becomes too speci�c for a class. When using a unique temporal
cell, i.e., Nt = 1, the performance is signi�cantly worse than for Nt = 3.
We choose Ns = 8 and Nt = 3 in the remainder of the experiments. The

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 141

Nt Ns dimension UCF-Sports J-HMDB

1

2 132 76.07% 38.78%
4 528 80.00% 48.58%
8 2112 82.50% 51.71%
16 8448 81.67% 49.54%

2

2 264 77.98% 41.21%
4 1056 80.00% 49.41%
8 4224 87.50% 52.72%
16 16896 82.50% 48.89%

3

2 396 82.74% 41.38%
4 1584 83.33% 50.52%
8 6336 87.50% 54.26%

16 25344 84.17% 47.98%

5

2 660 79.64% 41.51%
4 2640 80.00% 50.84%
8 10560 88.33% 52.11%
16 42240 84.17% 47.81%

IDT 91.90% 57.99%

Table 7.3 � Comparison of mean-Accuracy when classifying ground-truth
tracks using STMH with di�erent numbers of temporal (Nt) and spatial
(Ns) cells.

resulting STMH descriptor has 6, 336 dimensions.
Using the same protocol, we obtain a slightly better performance of

91.9% for UCF-Sports and 57.99% for J-HMDB using IDT. Note that
STMH is an order of magnitude faster to extract as it does not require
features aggregation and has a lower dimension.

7.4.4 Comparison to the state of the art

In this section, we compare our approach to the state of the art. On
UCF-Sports, past works usually plot ROC curves and report Area Under the
Curve (AUC). Figure 7.5 (left) shows a comparison with the state of the art
using the same protocol for di�erent IoU thresholds δ. We can observe that
our approach outperforms the state of the art. Note that at a low threshold,
all methods obtain a comparable performance, but the gap widens for larger
one, i.e., more precise detections. Indeed, our spatial localization enjoys a
high precision thanks to the tracking: the position of the detected region
is re�ned in each frame using a sliding window. As a consequence, the
IoU between our detected tracks and the ground-truth is high, explaining
why our performance remains constant between a low threshold and a high
threshold δ. Figure 7.6 shows example results. Despite important changes

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 142

0.1 0.2 0.3 0.4 0.5 0.6
IoU threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AU
C

UCF-Sports

ours (CNN+STMH)
ours (CNN+IDT)
Lan et al. [2011]
Wang et al. [2014]
van Gemert et al. [2015]
Gkioxari and Malik [2015]
Chen and Corso [2015]

Method mAP

Gkioxari and Malik [2015] 75.8

ours (CNN only) 88.2
ours (CNN+STMH) 90.5
ours (CNN+IDT) 95.1

Figure 7.5 � Comparison to the state of the art on UCF-Sports. Left: AUC
for varying IoU thresholds. Right: mAP at δ = 50% with di�erent variants
for the features used for scoring tracks.

Figure 7.6 � Example results from the UCF-Sports dataset.

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 143

Basketball

Figure 7.7 � Example of spatio-temporal detection for the Basketball action
on UCF-101.

δ 0.2 0.3 0.4 0.5
Gkioxari and Malik [2015] 53.3

ours (CNN only) 58.1 ± 2.1 58.0 ± 1.9 57.7 ± 2.1 56.5 ± 2.6

ours (CNN + STMH) 63.1 ± 1.8 63.5 ± 1.8 62.2 ± 1.9 60.7 ± 2.7

ours (CNN + IDT) 68.9 ± 1.1 68.7 ± 1.1 68.2 ± 1.2 66.8 ± 1.5

Table 7.4 � Comparison to the state of the art on J-HMDB using mAP for
varying IoU thresholds δ. We also report the standard deviation among the
splits.

δ 0.05 0.1 0.2 0.3

Yu and Yuan [2015] 42.8

ours (CNN + STMH) 54.3 51.7 46.8 37.8
ours (CNN + IDT) 69.7 68.1 60.6 46.3

Table 7.5 � Localization results (mAP) on UCF-101 (split 1) for di�erent
IoU thresholds δ.

in appearance, the actor is successfully tracked throughout the video. For
detection, mAP is more suitable as it does not depend on negatives. Results
are shown in Figure 7.5 (right). We outperform the state of the art with a
margin of 19% and obtain a mAP of 95.1% using CNN and IDT features.
We also compute the mAP when scoring with CNN features only (resp.
with CNN and STMH features), and observe a drop of 7% (resp. 5%).

The results for the J-HMDB dataset are given in Table 7.4. We also
outperform the state of the art by more than 13% on J-HMDB at a standard
threshold δ = 0.5. In particular, adding IDT (resp. STMH) to CNN
features leads to an improvement of 10% (resp. 4%). This shows that
CNN and spatio-temporal local features are complementary. We can also
see that the mAP is stable w.r.t . the threshold δ. This highlights once again
the high precision of the spatial detections, i.e., they all have a high overlap
with the ground-truth, thanks to the tracking.

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 144

Figure 7.8 � Example results from the UCF-101 dataset.

Finally, we report the results for spatio-temporal detection on the UCF-
101 dataset in Table 7.5. We obtain a mAP of more than 61% (resp.
47%) using CNN and IDT (resp. STMH) features at a standard threshold
δ = 20% despite the challenge of detecting an action both spatially and
temporally. At a threshold δ = 5%, we obtain a mAP of 70% compared
to 43% reported by Yu and Yuan [2015]. Figure 7.7 and 7.8 show example
results. We can observe that the result for the action `Basketball' is precise
both in space and time. While most of the 24 action classes cover almost
the entire video, i.e., there is no need for temporal localization, the action
`Basketball' covers on average one fourth of the video, i.e., it has the short-
est relative duration in UCF-101. For this class our temporal localization
approach improves the performance signi�cantly. The AP for Basketball
is 28.6% (δ = 20%) with our full approach. If we remove the temporal
localization step, the performance drops to 9.63%. This shows that our ap-
proach is capable of localizing actions in untrimmed videos. With respect
to tracking in untrimmed videos, tracking starts from the highest scoring
proposal in both directions (forward and backward) and continues even if
the action is no longer present. The temporal sliding window can then
localize the action and removes parts without the action.

7.5 Conclusion

In this chapter, we presented an e�ective approach for action localiza-
tion in both space and time. Our approach builds upon object proposals

CHAPTER 7. ACTION-SPECIFIC TRACKS FOR ACTION

LOCALIZATION 145

extracted at the frame level that we track throughout the video. Tracking is
e�ective, as we combine instance-level and class-level detectors. The result-
ing tracks are scored by combining classi�ers learned on CNN features and
spatio-temporal descriptors. A sliding window �nally performs the tempo-
ral localization of the action. The proposed approach improves on the state
of the art by a large margin on three benchmarks: UCF-Sports, J-HMDB
and UCF-101.

Nevertheless, this approach requires bounding box annotation in the
training videos in order to train the class-speci�c detector. Moreover, the
tracking is performed independently for each class, thus multiplying the
complexity of the approach. The next chapter introduces an approach to
overcome these limitations by leveraging a generic human detector.

Chapter 8

Human Tracks for

Weakly-Supervised Action

Localization

Contents

8.1 Introduction . 146

8.2 Dataset and evaluation 150

8.3 Building human tubes 151

8.3.1 Human detector 151

8.3.2 Human-speci�c tracker 153

8.3.3 Evaluation of our human tube proposals 154

8.4 Weakly-supervised human tube classi�er 156

8.4.1 Human tube features 156

8.4.2 Multi-fold multiple instance learning 158

8.4.3 Temporal supervision and detection 159

8.4.4 Evaluation of our MIL learning 160

8.5 Experimental results . 161

8.5.1 Comparison to the state of the art 161

8.5.2 Evaluation on the DALY dataset 163

8.6 Conclusion . 165

8.1 Introduction

Localizing actions in videos is a challenging task which has received
increasing attention over the past few years. Recently, signi�cant progress

146

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 147

was achieved, see for example [Gkioxari and Malik, 2015, Weinzaepfel et al.,
2015a, Wang et al., 2014]. Nevertheless, these methods require a large
amount of supervision. For instance, per-frame bounding box annotations
are used for training class-speci�c detectors [Gkioxari and Malik, 2015,
Weinzaepfel et al., 2015a]. Wang et al. [2014] additionally require pose
annotations, as they represent actions as a sequence of skeleton models.
Several works have suggested to generate action proposals before classify-
ing them [Marian Puscas et al., 2015, van Gemert et al., 2015]. However,
supervision is still required for learning to classify these hundreds or thou-
sands of proposals. Consequently, all these approaches are restricted to
relatively small datasets because of the supervision cost and can not be
generalized easily to more classes.

In this chapter, we propose a weakly-supervised action localization method,
i.e., that does not require any spatial annotation for training. The �rst step
of our approach consists in extracting human tubes from videos. Using hu-
man tubes for action recognition is not a novel idea [Kläser et al., 2010,
Laptev and Pérez, 2007, Yu and Yuan, 2015]. However, we show for the
�rst time that extracting highly robust human tubes is possible by leverag-
ing a recent state-of-the-art object detection approach [Ren et al., 2015], a
large annotated dataset of humans in a variety of poses [Andriluka et al.,
2014] and state-of-the-art tracking-by-detection [Hare et al., 2011, Kalal
et al., 2012]. We show that a small number of human tubes per video is
su�cient to obtain more than 95% recall on challenging action localization
datasets. Our approach outperforms existing video proposal methods by
an order of magnitude, as shown in Section 8.3.3. As a second step, we
describe human tubes with improved dense trajectories [Wang et al., 2015]
and use multi-fold Multiple Instance Learning (MIL) [Cinbis et al., 2016] to
select human tubes containing the action. This manages to select proposals
corresponding to the annotated action category accurately. During test-
ing, we extract human tubes and we obtain a mAP using classi�ers learned
from the tubes selected in the training videos. Figure 8.1 illustrates our
weakly-supervised action localization method. Our approach signi�cantly
outperforms the state of the art for weakly-supervised action localization
and is only slightly worse than the best fully-supervised methods, with a
mAP of 84% on UCF-Sports, 54% on J-HMDB and 45% on UCF-101.

We also introduce a new action localization dataset, named DALY for
Daily Action Localization in YouTube. It overcomes the limitations of ex-
isting datasets which mostly consist of videos trimmed to the action, have
limited action types, i.e., often sports only, and contain in many cases only
one human per video. The DALY dataset consists of more than 31 hours of
videos from YouTube with high quality spatial and temporal annotations

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 148

human tubes
extraction

multifold
MIL classifier

T
R
A
I
N
I
N
G

T
E
S
T

human tubes
selection

human tubes
description
(FV+IDT)

+ classification

Kicking

Kicking

Kicking

Diving

Walking

(FV+IDT)

Figure 8.1 � Illustration of our weakly-supervised action localization ap-
proach. For training, we extract human tubes in each video and learn a
classi�er with weak supervision using Multiple Instance Learning for select-
ing tubes containing the action. At test time, human tubes are extracted
and scored using the learned classi�ers.

for 10 realistic daily actions. The task is to localize relatively short actions
in long untrimmed videos. Furthermore, it includes videos with multiple
humans performing actions at the same time. On the DALY dataset, our
tubes have a spatial recall of 82%, but the detection task is extremely chal-
lenging, and we obtain 10.8% mAP.

Closest references. Our approach is based on human tubes. In a similar
spirit, Kläser et al. [2010] use a human detector and build human tubes using
KLT features tracks. The human tracks are then classi�ed with HOG-3D
descriptors [Kläser et al., 2008]. Our human tubes are signi�cantly more
robust to huge variations in pose and appearance thanks to a human-speci�c

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 149

tracking-by-detection approach [Hare et al., 2011, Kalal et al., 2012] as well
as recent advances in detectors [Ren et al., 2015] and datasets [Andriluka
et al., 2014]. In addition, our approach is weakly-supervised, i.e., does not
require bounding box annotation for labeling the training samples.

Recently, CNNs for human action localization have emerged [Gkioxari
and Malik, 2015, Weinzaepfel et al., 2015a]. These approaches rely on ap-
pearance and motion CNNs for classifying region proposals in individual
frames. Tracks are obtained by combining class-speci�c detections with
either temporal linking based on proximity [Gkioxari and Malik, 2015] or
by class-speci�c tracking-by-detection [Weinzaepfel et al., 2015a]. Our ap-
proach also relies on tracking-by-detection, but performs generic human
detections and tracking. Thus the complexity is divided by the number of
classes and the tracks can be used for weakly-supervised learning. Further-
more, our tracker is signi�cantly faster, as it uses the region-pooling layer
of faster R-CNN [Ren et al., 2015] for feature computation.

Our human tubes can also be viewed as action proposals [Jain et al.,
2014b, van Gemert et al., 2015, Yu and Yuan, 2015, Marian Puscas et al.,
2015, Oneata et al., 2014a]. While all these methods generate thousands
of proposals and require ground-truth to annotate the proposals used for
training, we obtain only several human tube proposals, thus allowing us to
apply Multiple Instance Learning (MIL) e�ectively. More recently, Mettes
et al. [2016] learn to classify proposals with less supervision, requiring only
several points inside the ground-truth tube.

For weakly-supervised action localization, Siva and Xiang [2011] de�ne
cuboids of di�erent time lengths around detected humans, describe them
with STIPs [Laptev, 2005] and then use Multiple Instance Learning (MIL).
Their method can thus only be used for static humans whereas ours can be
generalized to more complex and realistic motions. Similar to the method
from Chen and Corso [2015], our approach is also based on action proposals
(human tubes in our case). However, in contrast to their method, ours uses
MIL and thus does not assume only one action per video during training.

Outline. This chapter is organized as follows. Section 8.2 presents the
datasets used for evaluation and introduces our DALY dataset. We then de-
scribe our approach for extracting human tubes in a video (Section 8.3) and
our weakly-supervised learning method using multi-fold MIL (Section 8.4).
Finally, experimental results are presented in Section 8.5.

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 150

Figure 8.2 � Example frames from the DALY dataset.

8.2 Dataset and evaluation

Experiments are conducted three existing action localization datasets
(namely UCF-Sports, J-HMDB and UCF-101), described in Section 6.3.
However, these benchmarks are limited by the type of actions (mainly
sports), the lack of diversity in the videos and the duration of the videos,
see Table 8.1 for details. There is a clear need for a realistic dataset for
spatio-temporal action localization. We introduce DALY, a dataset for
Daily Action Localization in YouTube 1. The DALY dataset consists of
31 hours of YouTube videos, with spatial and temporal annotations for 10
everyday human actions: applying make up on lips, brushing teeth, cleaning
�oor, cleaning windows, drinking, folding textile, ironing, phoning, playing
harmonica and taking photos/videos, see Figure 8.2. The videos are col-
lected from YouTube using related queries. We collect 510 videos, i.e., 51
videos per category, representing a total of around 3.3M frames. Each video
lasts between 1 and 20 minutes with an average duration of 3min 45s. We
generate a split with 31 training videos and 20 test videos for each class,
ensuring that videos with the same characters or scenes are in the same set.

Temporal annotations of the 10 actions result in 3724 instances in total.
Actions are short (8 seconds on average) with some classes having very
brief instances (e.g . drinking) or somewhat longer (e.g . brushing teeth).
The actions cover about 25% of the videos. For each instance in the test
set, we annotate the spatial extent, i.e. a bouding box around the actor, for
5 regularly sampled frames. Note that videos can contain simultaneously
multiple actions, see bottom row, middle and right column in Figure 8.2.

1. The DALY dataset is available online at http://pascal.inrialpes.fr/data/

daly/.

http://pascal.inrialpes.fr/data/daly/
http://pascal.inrialpes.fr/data/daly/

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 151

DALY UCF-Sports J-HMDB UCF-101 MSR-II

#classes 10 10 21 24 3
action types everyday sports everyday sports arti�cial
#videos 510 150 928 3207 54

avg resolution 1290x790 690x450 320x240 320x240 320x240
total #frames 3.3M 10k 32k 558k 41k
avg video dur. 3min 45s 5.8s 1.4s 5.8s 51s
avg action dur. 8s 5.8s 1.4s 4.5s 6s
#instances 3724 154 928 4030 203

spatial annotation subset all all all cuboid

Table 8.1 � Comparison of our DALY dataset with existing action localiza-
tion datasets.

More details on the DALY dataset are given in Appendix B.

8.3 Building human tubes

Given a video V with F frames, spatio-temporal action localization aims
at detecting when and where actions are performed. More precisely, for
each instance of an action, a tube T , i.e., a set of bounding boxes T =
{bf}f=fs..fe around the actor is returned, with one box bf per frame f during
the predicted temporal extent of the action between frames fs and fe.

This section presents the human detector (Section 8.3.1) and the human-
speci�c tracker (Section 8.3.2) used to obtain reliable human tubes. We
denote by TV the set of human tubes proposals extracted for a video V .
Section 8.3.3 presents an evaluation of the obtained human tubes and a
comparison with state-of-the-art action proposals.

8.3.1 Human detector

Faster R-CNN detector. We use the state-of-the-art detector Faster
R-CNN [Ren et al., 2015] to train our human detector. Faster R-CNN
integrates a Region Proposals Network (RPN) to produce 300 proposals per
image, that are classi�ed as background or a particular class (here `human').
Detection is extremely fast (around 200ms per image on a GPU) since
convolutions are only computed once and then used both for generating
proposals and for scoring each proposal using a region pooling layer. Faster
R-CNN also includes bounding box regression to overcome the stride of the
network which limits the precision of the estimated localization. We use the

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 152

Figure 8.3 � Examples of bounding boxes (green) estimated from annotated
joints and head (yellow) on the MPII Human Pose dataset.

Figure 8.4 � Example results of our human detector.

variant with end-to-end training 2 using VGG net with 16 layers [Simonyan
and Zisserman, 2015]. Given a frame f , let Bf be the set of bounding
box detections output by the network and sH(b) be the human score after
softmax of a box b ∈ Bf . We now present the data we leverage for training
the network.

External training data. We use the MPII Human Pose dataset [An-
driluka et al., 2014] to leverage training data with su�cient variability. It
contains more than 40k annotated poses, including a bounding box around
the head and joint positions for the full body. The images represent several
frames from around 4000 videos, selected to contain around 500 di�erent
activities. We use the training set for which annotations are publicly avail-
able. It represents 28778 annotated poses in 17372 images. We obtain a
bounding box for each person by taking the box containing the head and
all visible joints, with a �xed additional margin of 20 pixels. The bound-
ing boxes are thus not perfect, see Figure 8.3. For instance, they can be
slightly too large (top of bounding boxes from left image) or may not cover
the extremity of the limbs (hands and feet in the second image). In par-
ticular, the bounding boxes are also cropped if some joints are not visible
(right image). Nevertheless, this dataset remains large enough and o�ers a
huge variability in the poses. It is thus well suited for training an accurate
human detector.

2. https://github.com/rbgirshick/py-faster-rcnn

https://github.com/rbgirshick/py-faster-rcnn

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 153

Qualitative results. Example detections for di�erent action localization
datasets (UCF-Sports and J-HMDB) are shown in Figure 8.4. One can
see that the obtained human detector is robust to unusual poses (�rst two
examples) and to humans that are not fully-visible (third example). Nev-
ertheless, detection are sometimes imprecise, for example not completely
covering the human (second example). Note that there can be multiple
detections when di�erent people are present (fourth example).

8.3.2 Human-speci�c tracker

Once humans are detected, the second step consists in tracking these
humans to build tube proposals. To this end, we design a human-speci�c
tracking-by-detection approach. In the following, we present the di�erent
steps of our approach. It is summarized in Algorithm 8.1.

Boxes to track. The list of boxes to track is initialized with all de-
tected candidates Bf in all frames f . We start by building a �rst track
T = {bf}f=1..F using the detection with the highest human score in the
entire video sequence. Once we have tracked this detection over the whole
sequence, we remove all detections that have an Intersection Over Union
(IoU) above 0.3 with any box bf in this track. We then run the tracker a
second time starting from the remaining detection with the highest human
score and repeat the process until no boxes are left.

Initial box re�nement. Let b be the selected box from frame f . As a
�rst step, we re�ne its position by performing a search for a higher scoring
location in its neighborhood. To this end, we perform a forward pass of
the network on the frame f using the neighborhood N(b) of b, i.e., we
use the network without the region proposal part and the bounding box
regression branch. The neighborhood N(b) of b simulates a sliding window
in scale and space. More precisely, we use the box b plus its translation
with 0,±s,±2s,±3s,±4s where s is the stride of the network, and similarly
for rescaled versions of the box by a factor 0,±10%,±20%. The re�ned
position bf of the initialization box is set to the region of interest b ∈ N(b)
that maximizes the human score sH(b).

Instance-level detector initialization. Based on this box bf , we learn
an instance-level detector using the features from the last fully connected
layer denoted by fc7. More precisely, we learn a linear SVM using as
positive P the feature from the re�ned box P = {bf} and as negatives

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 154

N the features from boxes in Bf that have (almost) no overlap with bf :
N = {b | b ∈ Bf s.t. IoU(b, bf) < 0.1}.

Tracking procedure. Starting from the re�ned box bf , we �rst track it
forward until the end of the sequence. The box bi of the track at a frame i
is set using a sliding window to optimize the human score and the instance-
level score. More precisely, at each frame i, we perform a forward pass of
the network using the boxes in the neighborhood N(bi−1) of the tracked box
from the previous frame. bi is then set to the box b that maximizes the sum
of the human score sH(b) and the instance-level detector probability sI(b),
computed using a sigmoid on the SVM score, among all boxes b ∈ N(bi−1).
We continue until we reach the end of the sequence updating the instance-
level detector on the �y, see next paragraph. At the end of the forward
pass, we reset the instance-level detector and track the initial re�ned box
backward until the beginning of the sequence.

Instance-level detector update. At each frame, we also update the
instance-level detector by adding bi to the set of positive features P and
boxes from Bi with (almost) no overlap with bi to the negatives N . At each
iteration, we furthermore restrict N to the hard negatives.

E�cient computation. Launching the tracker multiple times on a se-
quence can be performed e�ciently. To extract human tubes in a video V ,
we �rst run Faster R-CNN in every frame f to detect humans. We also keep
in cache the results of the last convolution layer denoted by conv5f , which
will be used for the sliding window, and the last fully connected layer fc7f ,
which will be used as feature descriptors for the negatives of the instance-
level detector. Now, when performing a sliding window at frame f using
a forward pass of the network, we do not need to re-compute the convo-
lutions, and we can directly start from conv5f . Similarly, the fc7 feature
descriptors of all detections are cached, so updating the set of negatives
does not require any additional computation.

8.3.3 Evaluation of our human tube proposals

We compare our human tubes to the state-of-the-art action proposals
on the UCF-Sports dataset. Two di�erent metrics are used. The �rst one
is recall@0.5, i.e., the ratio of ground-truth tubes covered by at least one
proposal with average spatial IoU over 0.5, while varying the number of
proposals. The second metric is the recall, computed over all proposals,

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 155

Algorithm 8.1 Extracting human tubes from a video.
Input: a video sequence V with F frames.
Output: a list of human tubes TV = {T} with T = {bf}f=1..F .
TV ← ∅
ToTrack ← ∅
For f = 1 ... F
�� Bf ← FasterRCNN(f) (human detection; cache conv5f and fc7f)

�� ToTrack ← ToTrack ∪{(b, f) | b ∈ Bf}
While ToTrack 6= ∅
�� b, f ← argmax(b,i)∈ToTrack sH(b) (select highest scoring box to track)

�� bf ← argmaxb∈N(b) sH(b) (initial re�nement ; forward from conv5f)

�� P ← {bf}
�� N ← {b | b ∈ Bf s.t. IoU(b, bf) < 0.1} (using cached fc7f)

�� For i = f + 1 ... F and i = f − 1 ... 1
���� Learn a linear SVM with positives P and negatives N
���� bi ← argmaxb∈N(bi±1) sH(b) + sI(b) (sliding window ; forward from conv5i)

���� P ← P ∪ {bi}
���� N ← N ∪ {b | b ∈ Bi s.t. IoU(b, bi) < 0.1} (using cached fc7i)

���� N ← {b | b ∈ N s.t. sI(b) > −1} (restrict to hard negatives)

�� TV ← TV ∪ {T = {bi}i=1..F } (add the track to the tube list)

�� ToTrack ← {(b, i) | (b, i) ∈ ToTrack s.t. IoU(bi, b) < 0.3}
(remove overlapping detections)

1 10 100 1000
Number of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l@

0.
5

UCF-Sports

Oneata et al. [2014]
Jain et al. [2014]
van Gemert et al. [2015]
Puscas et al. [2015]
ours

0.0 0.2 0.4 0.6 0.8 1.0
IoU threshold

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

UCF-Sports

Oneata et al. [2014] (3000)
Jain et al. [2014] (1642)
van Gemert et al. [2015] (1449)
Puscas et al. [2015] (340)
ours (3)

Figure 8.5 � Comparison of our human tubes to state-of-the-art proposals
on the UCF-Sports dataset. Left: Recall@0.5 when varying the number
of proposals. Right: Recall for varying IoU thresholds for a number of
extracted proposals (indicated in parentheses).

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 156

for varying IoU thresholds. Results are presented in Figure 8.5. We can
clearly see that our human tubes outperform the other approaches by a
large margin. Given few proposals (3 on average), we obtain a recall of 95%
at 0.5 IoU, whereas state-of-the-art approaches do not reach this recall with
signi�cantly more proposals (hundreds or thousands).

On J-HMDB, we also reach a recall of 95% for an IoU threshold at 0.5
with 3 proposals on average per video, demonstrating the e�ectiveness of
our approach. For UCF-101, we obtain a recall of 80% at IoU 0.2 and
of 48% at IoU 0.5. The signi�cant decrease in performance is due to the
low quality of the videos, sequences have low-resolution and are strongly
compressed, and humans tend to be small. For our new DALY dataset, we
obtain a spatial recall of 82% at an IoU threshold of 0.5. This is measured
on the test set for which spatial annotations are available for a subset of
frames. The excellent quality of our human tubes is, thus, con�rmed on a
realistic challenging dataset.

Figure 8.6 shows a few examples of the highest scoring human tube for
several sequences of the DALY dataset. The �rst four examples show that
the human tube extraction performs well despite motion of one arm (�rst
row), turning of the person (second and third row), camera motion (third
row) or presence of an animal close to the human (fourth row).

Nevertheless, there are some failure cases due to the fact that the full
body disappears (�fth row). In this case, only the feet remain visible causing
the failure of the human tracker, as the human detector performs poorly
and the instance-level detector is trained on previous frames where the full
body is visible. Other failure cases can be explained by a poor performance
of the human detector, and thus of the human tube (last two rows). This
typically happens when only a small part of the body is visible (sixth row)
and in the case of occlusion (last row).

8.4 Weakly-supervised human tube classi�er

In this section, we �rst introduce the feature descriptor of the human
tubes (Section 8.4.1). We then present the weakly-supervised MIL learning
(Section 8.4.2) and the detection stage (Section 8.4.3). We �nally evaluate
the MIL training procedure (Section 8.4.4).

8.4.1 Human tube features

For each human tube, we extract improved dense trajectories and ag-
gregate them with a Fisher Vector representation [Wang et al., 2015]. We

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 157

Figure 8.6 � Example of human tubes with successful human tube extraction
in the �rst four rows, and some failure cases in the last three rows. Failures
are caused by partial visibility of the human (end of �fth row and sixth row)
and missed human detection caused by an occluding camera (last row).

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 158

start by extracting the trajectories features for the entire video 3. For each
descriptor type (HOG, HOF, MBHx, MBHy), we �rst reduce its initial di-
mension by a factor of 2 using PCA and learn a codebook of 256 Gaussians.
For each tube, we build a Fisher Vector per descriptor type, using only
the trajectories that start inside the track (increased by a margin of 10%).
Each of the 4 Fisher Vectors is then independently power-normalized and
L2-normalized [Sánchez et al., 2013]. A tube is �nally described by the
concatenation of the 4 normalized Fisher Vectors, resulting in 102400 di-
mensions.

8.4.2 Multi-fold multiple instance learning

We use a Multiple Instance Learning (MIL) formulation to learn a de-
tector in a weakly-supervised setting, i.e., given only information about the
presence/absence of a class in the training videos. For a given label, let VP
(resp. VN) be the set of positive (resp. negative) videos. MIL alternates
between inferring the localization of the action in the positive videos VP
and using these locations to train a detector. One issue is that it tends to
lock onto the initial locations [Cinbis et al., 2016], which is particularly the
case for high dimensional descriptors. We therefore resort to the multi-fold
variant proposed by Cinbis et al. [2016]. In the following, we present the
di�erent steps of our approach. It is summarized in Algorithm 8.2.

Initialization. For each video V , we use the track T ∈ TV with the high-
est average human score sH(T) =

∑
bf∈T sH(bf)/F as initial tube. Videos

are positive and negative according to the annotated video labels.

Iteration. At each iteration, we learn a linear SVM using the current
positive and negative tubes, denoted by TP and TN respectively. We then
perform two hard negative mining iterations with negatives being mined
only in negative videos VN . The next step consists in re-estimating the
tube used as positive in each positive video. We randomly split the positive
videos VP into K = 4 folds. For each fold, we learn a linear SVM using the
positives from all other folds and all negatives. This classi�er is then run
on videos from this fold. The new estimated location in each positive video
of this fold is set to the tube with the highest score and will be used as
positive in the next iteration. We perform 10 iterations of multi-fold MIL.

3. https://lear.inrialpes.fr/people/wang/improved_trajectories

https://lear.inrialpes.fr/people/wang/improved_trajectories

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 159

Algorithm 8.2 Learning a classi�er on human tubes with weak supervi-
sion.
Input: a set of positive (VP) and negative (VN) videos, each with a list of tubes.
Output: a linear SVM.
TP ← {argmaxT∈TV SH(T) | V ∈ VP } (initialization with the tube with

TN ← {argmaxT∈TV SH(T) | V ∈ VN} highest human detection score)

For each iteration
�� Learn a linear SVM using all positives TP and all negatives TN
�� Perform 2 hard negative iterations in VN (update TN)
�� Randomly split VP in K folds
�� For each fold k
���� Learn a linear SVM using positives from other folds and all negatives
���� Re-estimate the tube in the videos from fold k (update TP)
Learn a linear SVM using all positives TP and all negatives TN

8.4.3 Temporal supervision and detection

Given a test video, we �rst extract human tubes using the method pre-
sented in Section 8.3. We then extract a feature vector for each tube as
described in Section 8.4.1. Next, we score each tube for all classes using the
classi�er learned in a weakly-supervised setting (Section 8.4.2).

For the UCF-101 dataset, which also requires temporal localization, we
perform in addition a multi-scale temporal sliding window inside each tube.
When training, since the videos are almost trimmed, we �rst perform multi-
fold MIL iterations using features from the whole video. Next, we assume
temporal supervision in the training set and train a new classi�er using as
positive features the descriptors from the track selected by multi-fold MIL,
restricted to the ground-truth temporal extent. At test time, we perform
a sliding window with the same temporal lengths as in [Weinzaepfel et al.,
2015a] ({20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 300, 450, 600} frames) and the
same stride (10 frames). In order to penalize short tubes, we score each tube
using the SVM score minus α/L where α is a parameter experimentally set
to 20 and L is the length of the detection.

For the DALY dataset, we assume temporal supervision during training,
i.e., the start and end time of each action. For training, we thus extract
human tubes only for the temporal extent of the actions. We then run multi-
fold MIL to select the relevant tubes and train the detector. Additional
temporal localization is beyond the scope of this manuscript and would
require an additional step for pre-selecting relevant shots. At test time, we
do not suppose temporal localization given and perform spatio-temporal
localization on the entire test set. We �rst divide the videos into shots using

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 160

Learning
UCF-Sports

CorLoc@0.5 mAP@0.5
(training set) (test set)

Initialization 80.14% -
MIL (K = 1) 80.14% 83.38%

multi-fold MIL (K = 4) 81.99% 83.87%

Kicking

init, MIL
multifold MIL
other tubes

Figure 8.7 � Left: Comparison of multi-fold MIL to standard MIL on UCF-
Sports. Right: an example where multi-fold MIL allows to select the correct
tube. The yellow box is the tube with highest human score used as initial-
ization. The location of the positive tube remains locked to this initializa-
tion when using MIL, while multi-fold MIL allows to move to the human
performing the kicking action (green). Red boxes indicate other human
tubes.

a shot detector 4. We generate human tubes inside each shot and perform a
temporal sliding window inside each tube. Since videos/actions are longer,
we add {900, 1200, 1500, 1800, 2400, 3000, ..., 12000} to the temporal scales
used on UCF-101.

8.4.4 Evaluation of our MIL learning

Figure 8.7 shows an evaluation of our multi-fold MIL algorithm. We
report the mAP@0.5 on the test set, as well as the CorLoc@0.5 on the
training set de�ned as the ratio of selected tubes (i.e., the tube with highest
score in each positive video) which have an IoU with any ground-truth
over 0.5. When using MIL, the CorLoc remains constant: the locations
of the positive tubes do not change. This can be explained by the small
number of positive videos and the high dimensional features. Multi-fold
MIL overcomes this limitation, the CorLoc@0.5 increases and so does the
mAP. The di�erence is moderate, as in many cases only one human is
present in the test videos. An example for an improved selection of the
human performing the action is shown in Figure 8.7 (right).

4. https://github.com/johmathe/Shotdetect

https://github.com/johmathe/Shotdetect

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 161

0.1 0.2 0.3 0.4 0.5 0.6
IoU threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AU
C

UCF-Sports

Lan et al. [2011]
Wang et al. [2014]
van Gemert et al. [2015]
Weinzaepfel et al. [2015]
Gkioxari and Malik [2015]
Chen and Corso [2015]
ours

Figure 8.8 � Comparison of the AUC at various IoU threshold with the
state of the art on the UCF-Sports dataset.

8.5 Experimental results

We have already assessed the quality of the human tubes in Section 8.3.3
and the impact of multi-fold MIL in Section 8.4.4. In this section, we eval-
uate the overall performance of our weakly-supervised action localization
approach and compare to the state-of-the-art weakly- and fully-supervised
approaches (Section 8.5.1). We then propose an evaluation of our approach
on the DALY dataset (Section 8.5.2).

8.5.1 Comparison to the state of the art

UCF-Sports. We �rst evaluate our method and compare to the state
of the art on UCF-Sports. Most of previous works plot ROC curves at
di�erent IoU thresholds until a false positive rate of 0.6 and report the
Area Under the Curve (AUC). We show a comparison to the state of the art
in Figure 8.8. Plain lines indicate weakly-supervised methods and dashed
ones full supervision. Our method outperforms all approaches based on
this metric, even if they leverage supervision. We beat by a large margin
the only other weakly supervised approach [Chen and Corso, 2015] which
reports results for this metric. Interestingly, our performance decreases only

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 162

ours [Mosabbeb et al., 2014] [Ma et al., 2013]

Diving 56.2 43.7 44.3
Golf 50.6 52.3 50.5

Kicking 68.7 52.9 48.3
Lifting 62.4 63.5 41.4
Riding 63.5 32.5 30.6
Run 57.2 30.1 33.1

Skateboard 69.1 43.2 38.5
Swing1 64.3 57.5 54.3
Swing2 68.6 44.1 20.6
Walkg 68.3 47.1 39.0
avg. 62.9 46.7 41.0

Table 8.2 � Comparison of the mean-IOU with the state of the art on the
UCF-Sports dataset.

Method Supervision
UCF-Sports J-HMDB UCF-101 DALY
mAP@0.5 mAP@0.5 mAP@0.05 mAP@0.2 mAP@0.2

Gkioxari and Malik [2015] fully 75.8% 53.3% - - -
Weinzaepfel et al. [2015a] fully 90.5% 60.7% 54.3% 46.8% -
Weinzaepfel et al. [2015a]• fully 95.1% 66.8% 69.7% 60.6% -
van Gemert et al. [2015] fully - - 58.0% 37.8% -
Yu and Yuan [2015] fully - - 42.8% - -

ours weakly 83.9% 54.1% 62.8% 45.4% 10.8%

Table 8.3 � Comparison to the state of the art with mAP@0.5 on the UCF-
Sports and J-HMDB datasets and mAP@0.2 on the UCF-101 (split 1) and
DALY datasets. For UCF-101 we also report mAP@0.05 to compare to Yu
and Yuan [2015]. Weinzaepfel et al. [2015a]• refers to the version with IDT
instead of STMH features.

slowly with respect to the IoU threshold. This indicates the high IoU of
our detections with respect to the ground-truth, thanks to accurate human
detection and tracking. We have also evaluated the mean-IoU, which is the
average IoU between the best detection in a test video and the ground-truth
tube. A comparison with other weakly-supervised approaches [Mosabbeb
et al., 2014, Ma et al., 2013] reporting this metric is shown in Table 8.2. We
outperform them by more than 15%. Finally, we compare with the more
meaningful mAP metric in Table 8.3. We obtain a mAP of 84% which
is close to the state-of-the-art fully-supervised method [Weinzaepfel et al.,
2015a] and better than Gkioxari and Malik [2015], despite the fact that we
use signi�cantly less supervision.

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 163

Figure 8.9 � Example of highly-ranked drinking detections on the DALY
dataset. The two left examples are correct, whereas the two examples on
the right correspond to confusions with playing harmonica and applying
make up on lips.

J-HMDB. Mean Average-Precision (mAP) on the J-HMDB dataset is
shown in Table 8.3. Similar to the UCF-Sports dataset, our method is in
between the two supervised methods from Weinzaepfel et al. [2015a] and
Gkioxari and Malik [Gkioxari and Malik, 2015]. Since the J-HMDB dataset
contains only one human per video, the main challenge actually consists
in classifying the tubes. Thus, a tube description that also leverages CNN
features, in the same spirit as Gkioxari and Malik [2015] and Weinzaepfel
et al. [2015a] would probably increase the performance.

UCF-101. We report results with the standard mAP@0.2 metric for this
dataset in Table 8.3. Our method also obtains a performance slightly below
the state-of-the-art fully-supervised method [Weinzaepfel et al., 2015a]. We
perform better than the 37.8% mAP@0.2 reported by van Gemert et al.
[2015], which extract thousands of proposals before using supervision for
learning a classi�er. Yu and Yuan [2015] report a mAP@0.05 of 42.8%
compared to our 62.8% at this threshold. At this low overlap threshold,
we obtain better results than all other fully-supervised approaches, ex-
cept [Weinzaepfel et al., 2015a] with IDT features presented in Chapter 7.
This can be explained by the fact that our approach obtains less false pos-
itive detections due to the quality of our human tubes. Nevertheless, the
IoU between our detections and the ground-truth tubes are often below 0.2,
due to the low quality of the videos which makes the human tube extraction
challenging.

8.5.2 Evaluation on the DALY dataset

Spatio-temporal action localization. For spatio-temporal action lo-
calization, we obtain a mAP@0.2 of 10.8% and a mAP@0.1 of 15.8%, see
Tables 8.3 and 8.4. These results are obtained by training in a spatially
weakly-supervised setting. Note that the IoU is de�ned as the temporal
IoU multiplied by the spatial IoU obtained by averaging over the annotated

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 164

mAP@0.1 mAP@0.2
clip classi�cation 72.9%

action localization in trimmed clips 49.7% 48.6%
action localization in shots with actions 23.5% 16.1%

action localization 15.8% 10.8%

Table 8.4 � Detailed performance analysis on the DALY dataset. See text
for more details.

keyframes, since spatial annotations are not available at every frame. The
relatively low performance can be explained by several factors. First, tem-
poral detection is di�cult as actions are short in long untrimmed videos.
Moreover, there are many actions that are close in time and our method
tends to return one detection that covers multiple ground-truth short ac-
tions. Second, the di�erent labels have similarities, leading to confusion
between classes, as shown in Figure 8.9. For instance, drinking, playing
harmonica and applying make up on lips all involve poses where the hands
come near the mouth. The relatively low performance highlights the dif-
�culty of the introduced DALY dataset and demonstrates that signi�cant
improvements are necessary to tackle challenging real-world videos.

In order to tease apart the challenges of the DALY dataset, we separately
evaluate class confusion, temporal detection and spatio-temporal detection,
see Table 8.4.

Clip classi�cation. We �rst evaluate the performance of clip classi�ca-
tion, i.e. of video clips trimmed to the duration of the annotated actions.
Each clip is represented by a Fisher Vector of improved dense trajectories
and a linear SVM is learned for clip classi�cation. When learning a linear
SVM for one class, we do not use the clips from other actions that tempo-
rally overlap with this class. For evaluation, we use the mAP metric since
one clip can have multiple labels. As during training, we remove the clips
from other actions that temporally overlap with this class during evalua-
tion. We report a mAP of 73%. This is lower than the IDT+FV results
for video classi�cation on UCF-Sports (88%) and UCF-101 (88%), and in
the same order of magnitude on J-HMDB (65%). Distinguishing the classes
is not straightforward since many classes contain similar motion patterns
(hand moving near the head).

Action localization in trimmed clips. We also evaluate action local-
ization in these trimmed clips. This setting is similar to action localization

CHAPTER 8. HUMAN TRACKS FOR WEAKLY-SUPERVISED

ACTION LOCALIZATION 165

datasets such as J-HMDB or UCF-Sports where clips are trimmed to the
action. We obtain a mAP@0.2 of 48.6% and a mAP@0.5 of 31.7%. This
relatively low performance can be explained by the fact that many instances
are short and can easily be confused.

Action localization in shots containing actions. We run the spatio-
temporal localization only in shots that contain an action. This removes,
compared to the standard setting, the incorrect detections in shots that do
not contain any action, and reduces the total duration from 31 to 21 hours.
The mAP@0.2 decreases to 16.1% when adding this temporal component,
but it is above the result with all shots (10.8%). Once again, the challenge is
to obtain a precise temporal localization without fragmenting long actions
into multiple small temporal parts, which leads to false detections. Note
that this is signi�cantly di�erent from the UCF-101 dataset in which videos
are almost trimmed. Here, the shots can last for multiple minutes while the
actions only last several seconds.

8.6 Conclusion

In this chapter, we introduced a novel approach for extracting human
tubes that outperforms state-of-the-art proposals by a large margin. We
showed that they can be used e�ectively for weakly-supervised action local-
ization, with a performance close to fully-supervised approaches. We also
introduced a new challenging dataset, DALY, that overcomes the limita-
tions of the existing benchmarks and will allow to measure progress in the
�eld over the next few years.

Chapter 9

Conclusion

Contents

9.1 Summary of contributions 166

9.1.1 Optical �ow estimation 166

9.1.2 Human action localization 169

9.2 Perspectives for future research 170

9.2.1 Optical �ow estimation 170

9.2.2 Human action localization 172

In this thesis, we focused on two tasks related to video understand-
ing: optical �ow estimation in realistic videos, i.e., with fast non-rigid mo-
tion, and human action localization in uncontrolled videos. This chapter
is organized as follows. We summarize the contributions of the thesis on
optical �ow estimation in Section 9.1.1 and on action localization in Sec-
tion 9.1.2. We then conclude this dissertation with directions for future
research, on optical �ow estimation (Section 9.2.1) and on action localiza-
tion (Section 9.2.2).

9.1 Summary of contributions

9.1.1 Optical �ow estimation

We have introduced several contributions to improve optical �ow esti-
mation near motion boundaries and in presence of large displacements and
occlusions. We have proposed DeepFlow in Chapter 3, a variational model
that integrates a novel matching algorithm, robust to non-rigid motions and
repetitive textures. In addition, we have introduced EpicFlow in Chapter 4,
a novel scheme for optical �ow estimation based on a sparse-to-dense inter-

166

CHAPTER 9. CONCLUSION 167

polation of matches while respecting edges. Finally, we have shown that a
learning-based method is able to predict motion boundaries, see Chapter 5.
We now present a summary for each of these contributions.

DeepFlow: large displacement optical �ow with DeepMatching.
DeepFlow is a variational approach for optical �ow estimation that inte-
grates a novel matching algorithm, called DeepMatching. DeepMatching
is based on correlations between image patches and relies on a hierarchi-
cal multi-layer architecture. The architecture is inspired by deep convo-
lutional neural network approaches, with interleaved pooling and aggrega-
tion. DeepMatching e�ciently handles non-rigid deformations, repetitive
textures and outputs quasi-dense correspondences, even in cases of signif-
icant change between images. Experiments show that the matching al-
gorithm performs well on matching benchmarks, particularly in terms of
accuracy and coverage. We have also proposed an approximation scheme
to save computational time and memory without signi�cant loss in per-
formance. In addition, we have shown that DeepMatching is well suited
for optical �ow by integrating it into a variational formulation. The re-
sulting optical �ow approach obtains competitive performance on various
benchmarks thanks to the accuracy and coverage of DeepMatching. In par-
ticular, it signi�cantly improves the case of large displacements compared
to previous methods.

DeepMatching and DeepFlow have been used in several recent works.
For instance, Timofte and Van Gool [2015] use DeepFlow with a combi-
nation of DeepMatching and a new matching algorithm based on sparse
decomposition of local patches to improve optical �ow. DeepMatching has
been used in other computer vision tasks such as tracking faces [Aghaei
et al., 2015], in which it is used as a similarity score, and SLAM (Simulta-
neous Localization and Mapping) [Chhaya et al., 2016], for which it is used
as a component for tracking dynamic objects throughout a sequence. Deep-
Flow has been used in many applications of computer vision such as pose
estimation in videos [Jain et al., 2014a, P�ster et al., 2015], SLAM [Reddy
et al., 2015], or object reconstruction from videos [Lebeda et al., 2015]. It
has also been used for style transfer [Ruder et al., 2016] in order to ensure
the consistency of the transfer throughout the video.

EpicFlow: edge-preserving interpolation of correspondences for
optical �ow. EpicFlow operates by densifying quasi-dense input matches,
and leverages an edge-aware geodesic distance tailored to respect motion
boundaries and to handle occlusions. The interpolation step outputs an

CHAPTER 9. CONCLUSION 168

optical �ow estimation, which can be further re�ned using a variational
formulation. We have also introduced an approximation scheme for the
interpolation that signi�cantly speeds up the computation without harm-
ing the performance. Experimental results justify the choice of the pro-
posed edge-aware geodesic distance and its approximation. They also show
that sparse-to-dense interpolation overcomes the limitations of coarse-to-
�ne schemes, such as error propagation across pyramid levels or oversmooth-
ing. At publication time, EpicFlow obtained best performance on the MPI-
Sintel dataset.

EpicFlow with its interpolation scheme has recently been used in many
optical �ow approaches which improve the input matches [Bailer et al.,
2015, Menze et al., 2015, Chen and Koltun, 2016]. Recent state-of-the-art
methods [Menze et al., 2015, Chen and Koltun, 2016] are based on a pixel-
accurate �ow estimation obtained by solving discrete optimization problem.
EpicFlow is then used to re�ne the estimation. EpicFlow is also used in
various applications such as oversegmentation of videos [Khoreva et al.,
2016] or unsupervised learning of edges [Li et al., 2016]. This latter approach
proposes to compute motion edges from a color-coded representation of the
EpicFlow estimation, in order to learn an edge detector without supervision.
Interestingly, this learned edge detector can be used to slightly improve the
result of EpicFlow.

Learning to detect motion boundaries. We have proposed a learning-
based approach for detecting motion boundaries in videos. The method is
based on the structured random forest framework. A forest of multiple
trees is trained to predict the motion boundaries of small patches. A soft
response map is obtained by averaging the results from all trees and overlap-
ping patches at each pixel. In addition, we introduce the YouTube Motion
Boundaries (YMB) dataset which consists of 60 challenging video sequences
with motion boundaries, with a central frame annotated by 3 people. Ex-
periments show that the proposed approach performs signi�cantly better
than the widely used �ow gradient baseline, both on high quality data from
optical �ow benchmarks and on highly compressed videos from YouTube.

Our approach has been used for tracking [Hua et al., 2015], in which
motion boundaries are combined with edges to extract proposals. It has also
been used for discovering parts of articulated objects in videos [Del Pero
et al., 2016], in which the motion boundaries are computed with our method,
instead of the �ow gradient baseline, in order to improve video segmentation
into foreground and background [Papazoglou and Ferrari, 2013].

CHAPTER 9. CONCLUSION 169

9.1.2 Human action localization

We have introduced novel approaches for action localization in videos,
which extract action-speci�c or human-speci�c tubes based on detection
and tracking. In Chapter 7, we have proposed a method leveraging a class-
speci�c detector and tracker based on CNNs. In Chapter 8, we have in-
troduced a weakly-supervised method, i.e., which does not require spatial
supervision, leveraging a human detector together with a human-speci�c
tracker. We now present a summary for each of these contributions.

Action-speci�c tracks for action localization. We have proposed a
novel action localization method based on class-speci�c tubes. These tubes
are extracted using a detector and a tracking-by-detection approach based
on CNN features. Each tube is then described using the CNN features
as well as spatio-temporal local features. We have compared improved
dense trajectories (IDT) using Fisher Vector aggregation, with an intro-
duced descriptor that describes a chunk from a track. Temporal detection
is performed using a sliding window scheme inside each tube. Our approach
outperforms the state of the art by a signi�cant margin on three action lo-
calization benchmarks: UCF-Sports, J-HMDB and UCF-101. Experiments
highlight the bene�ts of tracking compared to an approach in which the
per-frame detections are linked throughout the video. They also show that
local trajectory features such as IDT are well suited for describing tubes
and are complementary to CNN features.

Human tubes for weakly-supervised action localization. The pre-
vious approach requires bounding box annotations in every frame of the
training videos in order to train the class-speci�c detector. Moreover, the
tracking is performed independently for each class. In order to scale to a
higher number of classes, we have introduced a weakly-supervised approach
leveraging existing human annotations available today. More precisely, the
�rst step of the method consists in extracting tubes around the humans. To
this end, a human detector is trained on a human pose database. Thanks to
recent advances in deep learning for object detection, this human detector
is robust to unusual poses and occlusions. We then run a human-speci�c
tracker in order to obtain human tubes. Experiments highlight the bene-
�t of these human tubes: a high recall is reached with only several tubes.
Multiple Instance Learning may then be applied e�ectively. The tubes are
described using Fisher Vector on improved dense trajectories. A multi-fold
variant of MIL is necessary with this high-dimensional representation. Our
approach outperforms other weakly-supervised methods and is close to the

CHAPTER 9. CONCLUSION 170

best fully-supervised approaches on existing benchmarks. In order to val-
idate our approach on more realistic data, we have introduced the DALY
(Daily Action Localization in YouTube) dataset. DALY consists of more
than 31 hours of YouTube videos with spatio-temporal annotations for 10
daily action classes. The diversity and the duration of the videos are un-
precedented in existing spatio-temporal action localization benchmarks. We
obtain 10.8% mAP on DALY with temporal supervision only, i.e., without
spatial supervision. This dataset will allow to measure progress in the �eld
over the next few years.

9.2 Perspectives for future research

In this section, we propose directions for future research based on the
experiments presented in this thesis as well as recent advances in the �eld
of computer vision and machine learning.

9.2.1 Optical �ow estimation

Improved variational modeling. Our variational model used in Deep-
Flow and EpicFlow can bene�t from recent advances in optical �ow estima-
tion. For instance, the regularization assumes a constant �ow by penalizing
its gradient. Nevertheless, this assumption is often violated, such as on
the Kitti dataset in which motion can be mainly modeled by homographies
near image borders. Recently, the Total Generalized Variation framework
has been applied to optical �ow [Ranftl et al., 2014], and models piece-wise
a�ne solutions. In addition, our variational model does not integrate ro-
bust detection and modeling of the occlusions [Xu et al., 2012, Kennedy and
Taylor, 2015, Fortun et al., 2015, Leordeanu et al., 2013]. Occlusions can be
detected by solving a binary classi�cation problem [Leordeanu et al., 2013]
based on various features such as forward-backward consistency, errors in
the data term [Sun et al., 2014b] or mapping uniqueness criterion [Xu et al.,
2012], i.e., counting the number of reference pixels mapped to a particular
position by the �ow. Indeed, if the optical �ow estimation makes multiple
pixels moving to the same location, then most of them (all of them except
one) correspond to occluded pixels. To integrate the occlusions into the
model, a standard approach [Xu et al., 2012] consists in canceling the data
term at these locations. Finally, the data term of our variational model
assumes color and gradient constancy. Recent works [Vogel et al., 2013a,
Stein, 2004a] have shown the e�ectiveness of the Census Transform (and its

CHAPTER 9. CONCLUSION 171

di�erentiable approximation) for optical �ow estimation, in particular for
outdoor scenes.

Structured hierarchical matching. DeepMatching leverages a multi-
scale hierarchical correlational architecture. However, the structure of the
patches is �xed to be a square, itself composed of four squared quadrants.
In particular, issues appear at strong motion boundaries for which the non-
rigidity handled by DeepMatching is insu�cient. One possible solution
consists in weighting the four quadrants di�erently. This can be based for
example on a precomputed segmentation. In the same spirit, Sevilla-Lara
et al. [2016] propose to use semantic segmentation the context of optical �ow
by. Furthermore, in DeepMatching, the parameters of the �rst correlational
layer are given by the �rst image. More recently, deep learning techniques,
in which the parameters are learned from huge training data, have been
applied to optical �ow [Dosovitskiy et al., 2015, Teney and Hebert, 2016].
In particular, for DeepMatching, the descriptor of the atomic patches is
hand-crafted and could be learned instead.

Structured interpolation. In EpicFlow, the interpolation only relies on
a soft boundary map (edges). Consequently, matches from another region
might still have a (slight) impact on the estimation. Hard constraints from a
precomputed segmentation can be added to EpicFlow by setting to in�nity
the weights of the soft boundary map at segmentation boundaries. One
other limitation of EpicFlow concerns non-contiguous regions: if a large
region is split (due to occlusions from foreground objects), the motion is
independently estimated for each of the part. However, it would make sense
to correlate the interpolation of all these parts. Such complex structured
interpolation will require designing an appropriate distance to replace the
geodesic one. In the same spirit, Drayer and Brox [2015] use a discrete
regularization in which non-contiguous regions are connected if the distance
between their color histograms is small.

Discrete optimization. DeepFlow and EpicFlow have shown that state-
of-the-art performance can be obtained from a quasi-dense set of matches.
Many recent works now focus on obtaining such matches, and use EpicFlow
to estimate dense optical �ow from them. As a consequence, discrete op-
timization techniques [Menze et al., 2015, Chen and Koltun, 2016] have
recently shown promising results. Sub-pixel accuracy is then obtained us-
ing EpicFlow.

CHAPTER 9. CONCLUSION 172

Iterative estimation. The estimation of matches and boundaries can
be further re�ned in an iterative scheme. In this scenario, the �ow will
be computed a �rst time. Matches and/or motion boundaries will then be
reestimated and used for re�ning the �ow estimation. This process can be
repeated several times. For boundaries, this has been for instance applied to
learn edges without supervision [Li et al., 2016]: motion edges are extracted
from EpicFlow estimation and used as supervision for training a new edge
detector. Edge maps are reestimated and used to update EpicFlow estima-
tion. A small gain in performance is obtained for the �ow estimation after
several iterations. For matches, DeepMatching tends to miss tiny objects.
This is mainly due to the scoring scheme which depends on scores of patches
at di�erent scales. At the same time, illustrations in Chapter 5 clearly show
that regions with incorrect �ow estimation can be easily identi�ed. These
errors are mainly due to occlusions or missing matches. Thus, DeepMatch-
ing can be run a second time, only in regions in which the �ow estimation
is considered as incorrect. In a similar spirit, Stoll et al. [2012] �rst es-
timate �ow without matches, then identify regions with wrong estimation
and recompute matches at these locations.

9.2.2 Human action localization

Temporal supervision. Our weakly-supervised method for action local-
ization does not require spatial annotation but still needs temporal super-
vision. The next step consists in reducing or even removing the temporal
supervision. Since actions typically last several seconds for videos of mul-
tiple minutes, relying on other sources of data is a more realistic scenario.
First of all, one can assume a semi-supervised setting in which only sev-
eral positive frames are annotated. For each action, a detector can then
be learned with positives from this set of annotated frames and with nega-
tives coming from videos that do not contain the action. A second solution
consists in using webly-supervised data to learn a temporal detector. E�ec-
tiveness of using web data to recognize actions has recently been proven [Ma
et al., 2015, Nguyen et al., 2016] and these works may be extended to the
action localization task. For instance, [Ma et al., 2015] show that CNNs
can be trained on downloaded images obtained by querying for the actions.
[Nguyen et al., 2016] show that a dataset can be automatically built from
a short-form video sharing service, namely Vine. These short videos (5-10
seconds) may also be used to learn an action detector, assuming that the
actions cover the whole temporal extent of the video. Other level of su-
pervision can consist in an ordered list of the actions occurring in training
videos, as used by Bojanowski et al. [2014]. To fully remove the temporal

CHAPTER 9. CONCLUSION 173

supervision, one can rely on ideas from co-segmentation in which similar
patterns from the training videos are found. This can be for instance done
using discriminative clustering, as proposed by Duchenne et al. [2009].

Temporal detection. Experimental results, in particular on the DALY
dataset, show that many failure cases are due to inaccurate temporal de-
tections: in particular, long actions tend to be split into multiple small
detections. This can be explained by the fact that Fisher Vector encoding
is not su�ciently discriminative for an accurate temporal detection of the
actions inside each tube. One way of solving this problem may be to not
only answer the question `is the action occurring' but also `is the action not
occurring just before and after the temporal window'. Currently, the Fisher
Vector aggregates trajectory features that are inside a tube and inside the
temporal window. One way to implement the previous idea is to subtract
to this aggregation the features from the trajectories that are inside the
tube before and after the temporal window of interest. Another solution
consists in relying on other features that might be more robust for �nding
the beginning and the end of the action. For instance, in a fully-supervised
setting, Shou et al. [2016] �rst learn a CNN to classify chunks of videos,
and then �ne-tune the network in order to localize the action in time. More
structured representations might also be helpful. For instance, Gaidon et al.
[2013] represent actions as a �exible sequence of several sub-actions. Ac-
tions can also be temporally decomposed using a deformable part model,
as shown by Niebles et al. [2010].

Modeling pose, objects and interactions. A richer representation
and understanding of the action can be bene�cial for action localization.
For instance, incorporating the pose has shown signi�cant gain for action
recognition [Jhuang et al., 2013, Wang et al., 2014, Chéron et al., 2015].
The main issue is that pose estimator tends to fail in realistic videos, in
particular in case of high compression and occlusion. Nevertheless, pose is
an informative cue, especially for the temporal detection of an action since
many actions last until a particular motion of the hand is performed. For
instance, `brushing teeth' lasts as long as the hand holding the toothbrush is
moving at the mouth. In a similar spirit, other cues can be used such as the
interactions between humans, or between actor and object. Such modeling
has already been proposed in limited settings, for instance by Prest et al.
[2012a], and should bene�t from recent advances in detections and tracking
for a generalization to more realistic data.

CHAPTER 9. CONCLUSION 174

Incorporating segmentation. Another useful cue consists in segment-
ing the humans. In particular, this will allow to focus on features from
trajectories that belong to the human, whereas boxes also contain back-
ground. Jhuang et al. [2013] have shown that the human segmentation helps
the action recognition task. Human segmentation can be obtained without
additional annotation: recent works [Papandreou et al., 2015, Kolesnikov
and Lampert, 2016] show that reasonable segmentation performance can
be obtained in a weakly-supervised setting. CNNs are learned using an
estimation of the ground-truth segmentation based on the current estimate
and priors such as the image or video labels. In addition, segmentation may
help the detection when humans are partially occluded.

Publications

This thesis has led to several publications summarized below.

International Conferences

• P. Weinzaepfel, J. Revaud, Z. Harchaoui, C. Schmid.
DeepFlow: Large displacement optical �ow with DeepMatching.
Proceedings of the IEEE International Conference on Computer Vision
(ICCV) 2013.

• J. Revaud, P. Weinzaepfel, Z. Harchaoui, C. Schmid.
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
Flow.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2015.

• P. Weinzaepfel, J. Revaud, Z. Harchaoui, C. Schmid.
Learning to Detect Motion Boundaries.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2015.

• P. Weinzaepfel, Z. Harchaoui, C. Schmid.
Learning to Track for Spatio-Temporal Action Localization.
Proceedings of the IEEE International Conference on Computer Vision
(ICCV) 2015.

175

CHAPTER 9. CONCLUSION 176

International Journal

• J. Revaud, P. Weinzaepfel, Z. Harchaoui, C. Schmid.
DeepMatching: Hierarchical Deformable Dense Matching.
International Journal of Computer Vision (IJCV), to appear.

Other publication

• P. Weinzaepfel, X. Martin, C. Schmid.
Towards Weakly-Supervised Action Localization.
arXiv 2016.

Softwares and datasets

Several softwares and datasets from this thesis are available online.

Softwares

• Source code for computing DeepMatching on CPU and GPU.

• Source code for computing DeepFlow.

• Source code for computing EpicFlow.

• Source code for detecting motion boundaries using structured random for-
est.

Datasets

• YouTube Motion Boundary (YMB) dataset.

• Daily Action Localization in YouTube (DALY) dataset.

177

Bibliography

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk.
Slic superpixels compared to state-of-the-art superpixel methods. IEEE
Trans. PAMI, 2012. 30

G. Adiv. Determining three-dimensional motion and structure from optical
�ow generated by several moving objects. IEEE Trans. PAMI, 1985. 25

J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM
Computing Surveys, 2011. 118

M. Aghaei, M. Dimiccoli, and P. Radeva. Multi-face tracking by extended
bag-of-tracklets in egocentric videos. Computer Vision and Image Un-
derstanding, 2015. 167

P. Anandan. A computational framework and an algorithm for the mea-
surement of visual motion. IJCV, 1989. 22, 25

P. Anandan and R. Weiss. Introducing a smoothness constraint in a match-
ing approach for the computation of displacement �elds. In Image Un-
derstanding Workshop, 1985. 25

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose
estimation: New benchmark and state of the art analysis. In CVPR,
2014. 147, 149, 152

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and
hierarchical image segmentation. IEEE Trans. PAMI, 2011. 89, 91, 99

C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense Correspondence
Fields for Highly Accurate Large Displacement Optical Flow Estimation.
In ICCV, 2015. 74, 75, 93, 94, 168

S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework.
IJCV, 2004. 21, 27

178

BIBLIOGRAPHY 179

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski.
A database and evaluation methodology for optical �ow. IJCV, 2011. 8,
32, 77

C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein. The gen-
eralized PatchMatch correspondence algorithm. In ECCV, 2010. 29, 30,
36, 37, 63, 77, 86

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
In ECCV, 2006. 120

P. R. Beaudet. Rotationally invariant image operators. In International
Joint Conference on Pattern Recognition, 1978. 119

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2009. 45

S. T. Birch�eld. Depth and motion discontinuities. PhD thesis, Stanford
University, 1999. 97

M. J. Black. Robust dynamic motion estimation over time. In CVPR, 1991.
25

M. J. Black and P. Anandan. The robust estimation of multiple motions:
parametric and piecewise-smooth �ow �elds. Computer Vision and Image
Understanding, 1996. 8, 23, 24, 25, 27

M. J. Black and D. J. Fleet. Probabilistic detection and tracking of motion
boundaries. IJCV, 2000. 97, 98

A. F. Bobick and J. W. Davis. The recognition of human movement using
temporal templates. IEEE Trans. PAMI, 2001. 8

P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, and
J. Sivic. Weakly supervised action labeling in videos under ordering
constraints. In ECCV, 2014. 122, 172

H. Boyraz, S. Z. Masood, B. Liu, M. Tappen, and H. Foroosh. Action
recognition by weakly-supervised discriminative region localization. In
BMVC, 2014. 124

M. Brand. Shadow puppetry. In ICCV, 1999. 8

J. Braux-Zin, R. Dupont, and A. Bartoli. A general dense image matching
framework combining direct and feature-based costs. In ICCV, 2013. 30,
74, 75, 94

BIBLIOGRAPHY 180

T. Brox and J. Malik. Object segmentation by long term analysis of point
trajectories. In ECCV, 2010. 8, 119

T. Brox and J. Malik. Large displacement optical �ow: descriptor matching
in variational motion estimation. IEEE Trans. PAMI, 2011. 4, 8, 10, 29,
30, 35, 36, 37, 54, 62, 73, 74, 76, 78, 90, 91, 93, 105, 110, 204

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical
�ow estimation based on a theory for warping. In ECCV, 2004. 8, 22,
23, 24, 25, 26, 27, 56, 85, 102, 132, 198

T. Brox, A. Bruhn, and J. Weickert. Variational motion segmentation with
level sets. In ECCV, 2006. 27, 99

A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Vari-
ational optical �ow computation in real time. IEEE Trans. on Image
Processing, 2005a. 8, 55

A. Bruhn, J. Weickert, and C. Schnörr. Lucas/kanade meets horn/schunck:
Combining local and global optic �ow methods. IJCV, 2005b. 25, 26

A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid plat-
form for real-time motion computation with discontinuity-preserving vari-
ational methods. IJCV, 2006. 25

P. J. Burt, C. Yen, and X. Xu. Multiresolution �ow-through motion anal-
ysis. In CVPR, 1983. 22

D. J. Butler, J. Wul�, G. B. Stanley, and M. J. Black. A naturalistic open
source movie for optical �ow evaluation. In ECCV, 2012. 3, 4, 8, 9, 11,
32, 77, 97, 110, 113

L. W. Campbell, D. A. Becker, A. Azarbayejani, A. F. Bobick, and A. Pent-
land. Invariant features for 3-d gesture recognition. In International
Conference and Workshops on Automatic Face and Gesture Recognition,
1996. 8

J. Canny. A computational approach to edge detection. IEEE Trans. PAMI,
1986. 89, 91

L. Cao, Z. Liu, and T. S. Huang. Cross-dataset action detection. In CVPR,
2010. 10, 123, 126

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Se-
mantic image segmentation with deep convolutional nets and fully con-
nected crfs. In ICLR, 2015. 121

BIBLIOGRAPHY 181

Q. Chen and V. Koltun. Full �ow: Optical �ow estimation by global opti-
mization over regular grids. In CVPR, 2016. 29, 168, 171

W. Chen and J. J. Corso. Action detection by implicit intentional motion
clustering. In ICCV, 2015. 124, 149, 161

W. Chen, C. Xiong, R. Xu, and J. Corso. Actionness ranking with lattice
conditional ordinal random �elds. In CVPR, 2014. 123

Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical
�ow from nearest neighbor �elds. In CVPR, 2013. 30

G. Chéron, I. Laptev, and C. Schmid. P-cnn: pose-based cnn features for
action recognition. In ICCV, 2015. 173

F. Chhaya, N. D. Reddy, S. Upadhyay, V. Chari, M. Z. Zia, and K. M.
Krishna. Monocular reconstruction of vehicles: Combining slam with
shape priors. In International Conference on Robotics and Automation
(ICRA), 2016. 167

O. Chomat and J. L. Crowley. Probabilistic recognition of activity using
local appearance. In CVPR, 1999. 8

R. G. Cinbis, J. Verbeek, and C. Schmid. Weakly Supervised Object Local-
ization with Multi-fold Multiple Instance Learning. IEEE Trans. PAMI,
2016. 147, 158

A. Criminisi, T. Sharp, C. Rother, and P. Pérez. Geodesic image and video
editing. ACM Trans. Graph., 2010. 82

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual cate-
gorization with bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, 2004. 120

N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In CVPR, June 2005. 30, 36, 119

T. Darrell and A. Pentland. Cooperative robust estimation using layers of
support. IEEE Trans. PAMI, 1995. 27, 99

L. Del Pero, S. Ricco, R. Sukthankar, and V. Ferrari. Discovering the
physical parts of an articulated object class from multiple videos. In
CVPR, 2016. 168

BIBLIOGRAPHY 182

O. Demetz, M. Stoll, S. Volz, J. Weickert, and A. Bruhn. Learning bright-
ness transfer functions for the joint recovery of illumination changes and
optical �ow. In ECCV, 2014. 74, 75, 94

P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In
ICCV, 2013. 12, 77, 79, 82, 84, 89, 91, 98, 99, 101, 107, 113

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition
via sparse spatio-temporal features. In IEEE International Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveil-
lance, 2005. 8

J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. In CVPR, 2015. 121

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical
�ow with convolutional networks. In ICCV, 2015. 28, 171

B. Drayer and T. Brox. Combinatorial regularization of descriptor matching
for optical �ow estimation. In BMVC, 2015. 171

O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce. Automatic anno-
tation of human actions in video. In ICCV, 2009. 122, 173

A. Ecker and S. Ullman. A hierarchical non-parametric method for captur-
ing non-rigid deformations. Image and Vision Computing, 2009. 37

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL VOC Challenge 2011, 2011. 127

G. Farnebäck. Two-frame motion estimation based on polynomial expan-
sion. In Proceedings of the 13th Scandinavian conference on Image anal-
ysis, 2003. 110, 120

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part based models. IEEE Trans.
PAMI, 2010. 10, 122

C. L. Fennema and W. B. Thompson. Velocity determination in scenes
containing several moving objects. Computer Graphics and Image Pro-
cessing, 1979. 7

BIBLIOGRAPHY 183

B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars.
Modeling video evolution for action recognition. In CVPR, 2015. 8

D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jepson. Design and use of
linear models for image motion analysis. IJCV, 2000. 98

L. Fletcher, L. Petersson, and A. Zelinsky. Driver assistance systems based
on vision in and out of vehicles. In Intelligent Vehicles Symposium, 2003.
8

D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local paramet-
ric candidates with exemplar-based occlusion handling for optical �ow.
Computer Vision and Image Understanding, 2015. 170

Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Towards internet-scale
multi-view stereo. In CVPR, 2010. 29

A. Gaidon, Z. Harchaoui, and C. Schmid. Temporal Localization of Actions
with Actoms. IEEE Trans. PAMI, 2013. 8, 121, 122, 173

J. Gall, N. Razavi, and L. Van Gool. On-line adaption of class-speci�c
codebooks for instance tracking. In BMVC, 2010. 135

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The
KITTI dataset. IJRR, 2013. 8, 11, 32, 77

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In CVPR, 2014.
121, 123, 131, 132

A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber. Fast image scanning with deep max-pooling convolutional neural
networks. In ICIP, 2013. 134

G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015. 123, 129,
130, 132, 139, 142, 143, 147, 149, 162, 163

P. Golland and A. M. Bruckstein. Motion from color. Computer Vision and
Image Understanding, 1997. 22

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as
space-time shapes. IEEE Trans. PAMI, 2007. 8

Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski. Non-rigid
dense correspondence with applications for image enhancement. SIG-
GRAPH, 2011. 30, 53, 57, 63

BIBLIOGRAPHY 184

D. Hafner, O. Demetz, and J. Weickert. Scale Space and Variational Meth-
ods in Computer Vision, chapter Why Is the Census Transform Good for
Robust Optic Flow Computation? Springer, 2013. 22

S. Hare, A. Sa�ari, and P. Torr. Struck: Structured output tracking with
kernels. In ICCV, 2011. 129, 147, 149

C. Harris and M. Stephens. A combined corner and edge detector. In Alvey
vision conference, 1988. 119

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, 2003. 81

T. Hassner, V. Mayzels, and L. Zelnik-Manor. On sifts and their scales. In
CVPR, 2012. 30, 65

K. He and J. Sun. Computing nearest-neighbor �elds via propagation-
assisted kd-trees. In CVPR, 2012. 79, 80, 86

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, 2016. 121

S. Herath, M. Harandi, and F. Porikli. Going deeper into action recognition:
A survey. arXiv preprint arXiv:1605.04988, 2016. 118

M. Hoai, L. Torresani, F. De la Torre, and C. Rother. Learning discrimi-
native localization from weakly labeled data. Pattern Recognition, 2014.
122

D. Hoiem, A. Efros, and M. Hebert. Recovering occlusion boundaries from
an image. IJCV, 2011. 99

B. K. P. Horn and B. G. Schunck. Determining Optical Flow. Arti�cial
Intelligence, 1981. 8, 19, 21, 22, 23, 24, 25, 26, 35

J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for e�ective
detection proposals? IEEE Trans. PAMI, 2015. 130

Y. Hua, K. Alahari, and C. Schmid. Occlusion and Motion Reasoning for
Long-term Tracking. In ECCV, 2014. 134

Y. Hua, K. Alahari, and C. Schmid. Online object tracking with proposal
selection. In ICCV, 2015. 168

A. Humayun, O. Mac Aodha, and G. J. Brostow. Learning to Find Occlu-
sion Regions. In CVPR, 2011. 99

BIBLIOGRAPHY 185

N. Ikizler-Cinbis, R. G. Cinbis, and S. Sclaro�. Learning actions from the
web. In ICCV, 2009. 119

A. Jain, J. Tompson, Y. LeCun, and C. Bregler. Modeep: A deep learning
framework using motion features for human pose estimation. In ACCV,
2014a. 167

M. Jain, J. Gemert, H. Jégou, P. Bouthemy, and C. Snoek. Action local-
ization with tubelets from motion. In CVPR, 2014b. 10, 123, 149

R. Jain and H.-H. Nagel. On the analysis of accumulative di�erence pictures
from image sequences of real world scenes. IEEE Trans. PAMI, 1979. 7

R. Jain, D. Militzer, and H.-H. Nagel. Separating non-stationary from sta-
tionary scene components in a sequence of real world TV-images. Institut
für Informatik, Universität Hamburg, 1977. 7

H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid.
Aggregating local image descriptors into compact codes. IEEE Trans.
PAMI, 2012. 120

H. Jhuang, J. Gall, S. Zu�, C. Schmid, and M. J. Black. Towards under-
standing action recognition. In ICCV, 2013. 3, 123, 125, 173, 174

S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for
human action recognition. IEEE Trans. PAMI, 2013. 121

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Ca�e: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 62, 133

Z. Kalal, K. Mikolajczyk, and J. Matas. Face-TLD: Tracking-Learning-
Detection Applied to Faces. In ICIP, 2010. 135

Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. IEEE
Trans. PAMI, 2012. 129, 147, 149

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classi�cation with convolutional neural networks.
In CVPR, 2014. 105, 106, 121

R. Kennedy and C. J. Taylor. Optical �ow with geometric occlusion esti-
mation and fusion of multiple frames. In EMMCVPR, 2015. 74, 75, 93,
94, 170

BIBLIOGRAPHY 186

D. Keysers, T. Deselaers, C. Gollan, and H. Ney. Deformation models for
image recognition. IEEE Trans. PAMI, 2007. 37

A. Khoreva, R. Benenson, F. Galasso, M. Hein, and B. Schiele. Im-
proved image boundaries for better video segmentation. arXiv preprint
arXiv:1605.03718, 2016. 168

J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid
matching for fast dense correspondences. In CVPR, 2013. 30, 65

A. Kläser, M. Marszaªek, and C. Schmid. A spatio-temporal descriptor
based on 3d-gradients. In BMVC, 2008. 8, 119, 123, 129, 148

A. Kläser, M. Marszalek, C. Schmid, and A. Zisserman. Human Focused
Action Localization in Video. In International Workshop on Sign, Ges-
ture, and Activity (SGA), 2010. 10, 123, 129, 147, 148

A. Kolesnikov and C. H. Lampert. Seed, expand and constrain: Three
principles for weakly-supervised image segmentation. In ECCV, 2016.
174

S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011.
29, 37

P. Krähenbühl and V. Koltun. Geodesic object proposals. In ECCV, 2014.
82

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classi�cation with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25, 2012. 121

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a
large video database for human motion recognition. In ICCV, 2011. 126

C. H. Lampert, M. B. Blaschko, and T. Hofmann. E�cient subwindow
search: A branch and bound framework for object localization. IEEE
Trans. PAMI, 2009. 122

T. Lan, Y. Wang, and G. Mori. Discriminative �gure-centric models for
joint action localization and recognition. In ICCV, 2011. 10, 123, 125

T. Lan, Y. Zhu, A. Roshan Zamir, and S. Savarese. Action recognition by
hierarchical mid-level action elements. In ICCV, 2015. 124

I. Laptev. On space-time interest points. IJCV, 2005. 2, 8, 119, 124, 149

BIBLIOGRAPHY 187

I. Laptev and P. Pérez. Retrieving actions in movies. In ICCV, 2007. 10,
123, 147

I. Laptev, M. Marszaªek, C. Schmid, and B. Rozenfeld. Learning realistic
human actions from movies. In CVPR, 2008. 8, 119, 121

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In CVPR,
2006. 121

K. Lebeda, S. Had�eld, and R. Bowden. Dense rigid reconstruction from
unstructured discontinuous video. In ICCV, 2015. 167

Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998a. 37,
45, 51

Y. LeCun, L. Bottou, G. Orr, and K. Muller. E�cient backprop. In Neural
Networks: Tricks of the trade, 1998b. 45

V. S. Lempitsky, S. Roth, and C. Rother. Fusion�ow: Discrete-continuous
optimization for optical �ow estimation. In CVPR, 2008. 28, 30

M. Leordeanu, A. Zan�r, and C. Sminchisescu. Locally a�ne sparse-to-
dense matching for motion and occlusion estimation. In ICCV, 2013. 72,
74, 77, 79, 84, 89, 93, 170

J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future: Spatio-
temporal video segmentation with long-range motion cues. In CVPR,
2011. 119

Y. Li, M. Paluri, J. M. Rehg, and P. Dollár. Unsupervised learning of edges.
In CVPR, 2016. 168, 172

C. Liu, W. T. Freeman, and E. H. Adelson. Analysis of contour motions.
In Advances in Neural Information Processing Systems, 2006. 99

C. Liu, J. Yuen, and A. Torralba. SIFT �ow: Dense correspondence across
scenes and its applications. IEEE Trans. PAMI, 2011. 22, 30, 36, 65

J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos �in
the wild�. In CVPR, 2009. 119

D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 2004. 29, 30, 38, 41, 53, 62

BIBLIOGRAPHY 188

J. Lu, H. Yang, D. Min, and M. Do. Patch match �lter: E�cient edge-aware
�ltering meets randomized search for fast correspondence �eld estimation.
In CVPR, 2013. 30

B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In IJCAI, 1981. 19, 20, 25, 120

S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaro�. Action recognition and
localization by hierarchical space-time segments. In ICCV, 2013. 124,
162

S. Ma, S. A. Bargal, J. Zhang, L. Sigal, and S. Sclaro�. Do less and achieve
more: Training cnns for action recognition utilizing action images from
the web. arXiv preprint arXiv:1512.07155, 2015. 172

Y. Mae, Y. Shirai, J. Miura, and Y. Kuno. Object tracking in cluttered
background based on optical �ow and edges. In ICVPR, 1996. 8

J. Malik and P. Perona. Preattentive texture discrimination with early
vision mechanisms. Journal of the Optical Society of America A: Optics,
Image Science, and Vision, 1990. 45

M. Marian Puscas, E. Sangineto, D. Culibrk, and N. Sebe. Unsupervised
tube extraction using transductive learning and dense trajectories. In
ICCV, 2015. 10, 123, 147, 149

V. Markandey and B. E. Flinchbaugh. Multispectral constraints for optical
�ow computation. In ICCV, 1990. 22

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR,
2009. 119

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human seg-
mented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In ICCV, 2001. 106

W. N. Martin and J. Aggarwal. Dynamic scene analysis: The study of
moving images. Technical report, DTIC Document, 1977. 7

P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recogni-
tion through the motion analysis of tracked features. In ICCV Workshops,
2009. 120

M. Menze, C. Heipke, and A. Geiger. Discrete Optimization for Optical
Flow. In GCPR, 2015. 28, 74, 75, 93, 94, 168, 171

BIBLIOGRAPHY 189

P. Mettes, J. C. van Gemert, and C. G. Snoek. Spot on: Action localization
from pointly-supervised proposals. In ECCV, 2016. 149

M. Middendorf and H. Nagel. Estimation and interpretation of discontinu-
ities in optical �ow �elds. In ICCV, 2001. 97

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Scha�alitzky, T. Kadir, and L. V. Gool. A comparison of a�ne region
detectors. IJCV, 2005. 11, 29, 53, 57

T. B. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-
based human motion capture and analysis. Computer vision and Image
Understanding, 2006. 10

E. A. Mosabbeb, R. Cabral, F. De la Torre, and M. Fathy. Multi-label
discriminative weakly-supervised human activity recognition and local-
ization. In ACCV, 2014. 124, 162

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with auto-
matic algorithm con�guration. In International Conference on Computer
Vision Theory and Application VISSAPP'09). INSTICC Press, 2009. 62

T. Müller, C. Rabe, J. Rannacher, U. Franke, and R. Mester. Illumination-
robust dense optical �ow using census signatures. Pattern Recognition,
2011. 22

H. H. Nagel and W. Enkelmann. An investigation of smoothness constraints
for the estimation of displacement vector �elds from image sequences.
IEEE Trans. PAMI, 1986. 25

K. Nakayama and J. Loomis. Optical velocity patterns, velocity-sensitive
neurons, and space perception: a hypothesis. Perception, 1974. 7

S. Negahdaripour. Revised de�nition of optical �ow: Integration of ra-
diometric and geometric cues for dynamic scene analysis. IEEE Trans.
PAMI, 1998. 23

P. X. Nguyen, G. Rogez, C. Fowlkes, and D. Ramamnan. The open world
of micro-videos. arXiv preprint arXiv:1603.09439, 2016. 172

J. C. Niebles, C.-W. Chen, , and L. Fei-Fei. Modeling temporal structure
of decomposable motion segments for activity classi�cation. In ECCV,
2010. 119, 122, 173

BIBLIOGRAPHY 190

T. Nir, A. M. Bruckstein, and R. Kimmel. Over-parameterized variational
optical �ow. IJCV, 2008. 25, 26

D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-Temporal Object
Detection Proposals. In ECCV, 2014a. 10, 123, 149

D. Oneata, J. Verbeek, and C. Schmid. The LEAR submission at Thumos
2014, 2014b. URL https://hal.inria.fr/hal-01074442. 137

D. Oneata, J. Verbeek, and C. Schmid. E�cient Action Localization with
Approximately Normalized Fisher Vectors. In CVPR, 2014c. 122

G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly- and
semi-supervised learning of a dcnn for semantic image segmentation. In
ICCV, 2015. 174

A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained
video. In ICCV, 2013. 8, 97, 98, 168

N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accu-
rate optic �ow computation with theoretically justi�ed warping. IJCV,
2006. 22, 23

A. Patron, M. Marszalek, A. Zisserman, and I. Reid. High �ve: Recognising
human interactions in tv shows. In BMVC, 2010. 119

X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked
�sher vectors. In ECCV, 2014. 8, 121

T. P�ster, J. Charles, and A. Zisserman. Flowing convnets for human pose
estimation in videos. In ICCV, 2015. 167

J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for
e�cient retrieval. In ECCV, 2010. 29

R. Poppe. A survey on vision-based human action recognition. Image Vision
Computing, 2010. 118

A. Prest, V. Ferrari, and C. Schmid. Explicit modeling of human-object
interactions in realistic videos. IEEE Trans. PAMI, 2012a. 123, 173

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object
class detectors from weakly annotated video. In CVPR, 2012b. 105, 106

R. Ranftl, K. Bredies, and T. Pock. Non-local total generalized variation
for optical �ow estimation. In ECCV, 2014. 25, 74, 75, 93, 94, 170

https://hal.inria.fr/hal-01074442

BIBLIOGRAPHY 191

N. D. Reddy, P. Singhal, V. Chari, and K. M. Krishna. Dynamic body vslam
with semantic constraints. In International Conference on Intelligent
Robots and Systems (IROS), 2015. 167

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NIPS, 2015. 147, 149,
151

X. Ren. Local grouping for optical �ow. In CVPR, 2008. 79

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-
Preserving Interpolation of Correspondences for Optical Flow. In CVPR,
2015. 12, 72, 73, 74, 75

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. DeepMatching:
Hierarchical Deformable Dense Matching. IJCV, 2016. 11, 12, 38, 76, 77,
79, 93, 94, 110

M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach: a spatio-temporal
maximum average correlation height �lter for action recognition. In
CVPR, 2008. 119, 125

K. Rohr. Towards model-based recognition of human movements in image
sequences. CVGIP: Image understanding, 1994. 8

S. Roth and M. J. Black. On the spatial statistics of optical �ow. IJCV,
2007. 24, 28

M. Ruder, A. Dosovitskiy, and T. Brox. Artistic style transfer for videos.
arXiv preprint arXiv:1604.08610, 2016. 167

A. Salgado and J. Sánchez. Temporal constraints in large optical �ow es-
timation. In Computer Aided Systems Theory�EUROCAST 2007, pages
709�716. Springer, 2007. 25

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classi�cation
with the �sher vector: Theory and practice. IJCV, 2013. 8, 120, 121,
136, 158

P. Sand and S. Teller. Particle video: Long-range motion estimation using
point trajectories. IJCV, 2008. 119

S. Satkin and M. Hebert. Modeling the temporal extent of actions. In
ECCV, 2010. 122

BIBLIOGRAPHY 192

C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: a local
svm approach. In ICPR, 2004. 8, 126

S. M. Seitz and S. Baker. Filter �ow. In ICCV, 2009. 23, 24

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using CNN.
In ICLR, 2014. 134

L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical �ow with
semantic segmentation and localized layers. In CVPR, 2016. 171

N. Shapovalova, A. Vahdat, K. Cannons, T. Lan, and G. Mori. Similarity
constrained latent support vector machine: An application to weakly
supervised action classi�cation. In ECCV, 2012. 124

J. Shin, S. Kim, S. Kang, S.-W. Lee, J. Paik, B. Abidi, and M. Abidi. Op-
tical �ow-based real-time object tracking using non-prior training active
feature model. Real-Time Imaging, 2005. 8

Z. Shou, D. Wang, and S.-F. Chang. Temporal action localization in
untrimmed videos via multi-stage cnns. In CVPR, 2016. 173

K. Simonyan and A. Zisserman. Two-stream convolutional networks for
action recognition in videos. In NIPS, 2014. 2, 8, 121, 132

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015. 121, 152

P. Siva and T. Xiang. Weakly supervised action detection. In BMVC, 2011.
124, 149

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In ICCV, 2003. 8, 120

K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild. In CRCV-TR-12-01, 2012.
126, 133

A. Spoerri. The Early Detection of Motion Boundaries. PhD thesis. Mas-
sachusetts Institute of Technology, Department of Brain and Cognitive
Sciences, 1991. 97, 98

A. Stein and M. Hebert. Occlusion boundaries from motion: Low-level
detection and mid-level reasoning. IJCV, 2009. 99

BIBLIOGRAPHY 193

F. Stein. E�cient computation of optical �ow using the census transform.
Pattern recognition, 2004a. 170

F. Stein. E�cient Computation of Optical Flow Using the Census Trans-
form. In Proceedings of the 26th DAGM Symposium, Lecture Notes in
Computer Science, 2004b. 22

M. Stoll, S. Volz, and A. Bruhn. Adaptive integration of feature matches
into variational optical �ow methods. In ACCV, 2012. 54, 56, 172

D. Sun, S. Roth, J. P. Lewis, and M. J. Black. Learning optical �ow. In
ECCV, 2008. 28

D. Sun, E. B. Sudderth, and M. J. Black. Layered image motion with
explicit occlusions, temporal consistency, and depth ordering. In NIPS,
2010. 31

D. Sun, J. Wul�, E. Sudderth, H. P�ster, and M. Black. A fully-connected
layered model of foreground and background �ow. In CVPR, 2013. 27,
99

D. Sun, C. Liu, and H. P�ster. Local layering for joint motion estimation
and occlusion detection. In CVPR, 2014a. 74

D. Sun, S. Roth, and M. Black. A quantitative analysis of current practices
in optical �ow estimation and the principles behind them. IJCV, 2014b.
8, 23, 25, 35, 54, 74, 93, 97, 108, 110, 111, 112, 170

J. Sun. Computing nearest-neighbor �elds via propagation-assisted kd-
trees. In CVPR, 2012. 29, 37, 63

Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection using optical
sensors: A review. In Intelligent Transportation Systems, 2004. 8

N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by gpu-
accelerated large displacement optical �ow. In ECCV, 2010. 27, 203

P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik. Occlusion
boundary detection and �gure/ground assignment from optical �ow. In
CVPR, 2011. 99

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
CVPR, 2015. 121

BIBLIOGRAPHY 194

R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.
29, 53

E. H. Taralova, F. De la Torre, and M. Hebert. Motion words for videos.
In ECCV, 2014. 121

D. Teney and M. Hebert. Learning to extract motion from videos in con-
volutional neural networks. arXiv preprint arXiv:1601.07532, 2016. 28,
171

Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part
models for action detection. In CVPR, 2013. 10, 123

R. Timofte and L. Van Gool. Sparse �ow: Sparse matching for small to large
displacement optical �ow. In Applications of Computer Vision (WACV),
2015. 72, 74, 167

E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for dense matching.
In CVPR, 2008. 8, 29

E. Tola, V. Lepetit, and P. Fua. DAISY: An E�cient Dense Descriptor
Applied to Wide Baseline Stereo. IEEE Trans. PAMI, 2010. 41, 65

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In ICCV, 2015.
121

W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order
prior for high-accuracy motion estimation. Pattern Recognition, 2008. 25,
27

S. Uchida and H. Sakoe. A monotonic and continuous two-dimensional
warping based on dynamic programming. In ICPR, 1998. 37

H. Uemura, S. Ishikawa, and K. Mikolajczyk. Feature tracking and motion
compensation for action recognition. In BMVC, 2008. 120

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search
for object recognition. IJCV, 2013. 123, 124, 129, 139

M. Unger, M. Werlberger, T. Pock, and H. Bischof. Joint motion estima-
tion and segmentation of complex scenes with label costs and occlusion
modeling. In CVPR, 2012. 27, 99

J. C. van Gemert, C. J. Veenman, A. W. Smeulders, and J.-M. Geusebroek.
Visual word ambiguity. IEEE Trans. PAMI, 2010. 120

BIBLIOGRAPHY 195

J. C. van Gemert, M. Jain, E. Gati, and C. G. Snoek. Apt: Action local-
ization proposals from dense trajectories. In BMVC, 2015. 10, 123, 147,
149, 162, 163

G. Varol, Y. Laptev, and C. Schmid. Long-term Temporal Convolutions
for Action Recognition. arXiv preprint arXiv:1604.04494, 2016. 3

C. Vogel, S. Roth, and K. Schindler. An evaluation of data costs for optical
�ow. In GCPR, 2013a. 8, 22, 23, 170

C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene �ow. In ICCV,
2013b. 75, 94, 102

S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coher-
ence for optical �ow. In ICCV, 2011. 25

H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and
motion boundary descriptors for action recognition. IJCV, 2013. 2, 3, 8,
97, 98, 119, 120, 131, 135, 136

H. Wang, D. Oneata, J. Verbeek, and C. Schmid. A robust and e�cient
video representation for action recognition. IJCV, 2015. 15, 120, 121,
129, 131, 136, 147, 156

J. Wang and E. Adelson. Representing moving images with layers. IEEE
Trans. Image Processing, 1994. 27, 99

L. Wang, Y. Qiao, and X. Tang. Video action detection with relational
dynamic-poselets. In ECCV, 2014. 123, 147, 173

L. Wasserman. All of Statistics: A Concise Course in Statistical Inference.
Springer, 2010. 80

O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel.
Parallel algorithms for approximation of distance maps on parametric
surfaces. ACM Trans. Graph., 2008. 82

A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure-and motion-
adaptive regularization for high accuracy optic �ow. In ICCV, 2009a. 24,
25, 55, 85

A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved al-
gorithm for tv-l 1 optical �ow. In Statistical and Geometrical Approaches
to Visual Motion Analysis, 2009b. 23, 24, 27

BIBLIOGRAPHY 196

D. Weinland, R. Ronfard, and E. Boyer. A survey of vision-based meth-
ods for action representation, segmentation and recognition. Computer
Vision and Image Understanding, 2011. 118

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deep�ow: Large
displacement optical �ow with deep matching. In ICCV, 2013. 11, 38,
46, 48, 60, 72, 74, 75, 78, 79, 80, 82, 86, 87, 90, 91, 93

P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to track for spatio-
temporal action localization. In ICCV, 2015a. 14, 129, 147, 149, 159,
162, 163

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Learning to Detect
Motion Boundaries. In CVPR, 2015b. 13

P. Weinzaepfel, X. Martin, and C. Schmid. Towards Weakly-Supervised
Action Localization. arXiv preprint arXiv:1605.05197, 2016. 3, 5, 6, 7,
16

M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof.
Anisotropic Huber-L1 optical �ow. In BMVC, 2009. 8, 23, 25

G. Willems, T. Tuytelaars, and L. Van Gool. An e�cient dense and scale-
invariant spatio-temporal interest point detector. In ECCV, 2008. 119

J. Wills, S. Agarwal, and S. Belongie. A feature-based approach for dense
segmentation and estimation of large disparity motion. IJCV, 2006. 29,
37

J. Wul� and M. J. Black. E�cient sparse-to-dense optical �ow estimation
using a learned basis and layers. In CVPR, 2015. 28

C. Xu, S.-H. Hsieh, C. Xiong, and J. J. Corso. Can humans �y? action
understanding with multiple classes of actors. In CVPR, 2015. 122

L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical �ow
estimation. IEEE Trans. PAMI, 2012. 8, 30, 35, 54, 55, 73, 74, 76, 78,
85, 90, 93, 170

H. Yang, W. Lin, and J. Lu. DAISY �lter �ow: A generalized discrete
approach to dense correspondences. In CVPR, 2014. 29, 30, 37, 65

D. M. Young and W. Rheinboldt. Iterative solution of large linear systems.
Academic Press, New York, NY, 1971. 27, 56, 85, 203

BIBLIOGRAPHY 197

G. Yu and J. Yuan. Fast action proposals for human action detection and
search. In CVPR, 2015. 123, 143, 144, 147, 149, 162, 163

J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search for e�cient
action detection. In CVPR, 2009. 10, 122

R. Zabih and J. Wood�ll. Non-parametric local transforms for computing
visual correspondence. In ECCV, 1994. 22

C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime
tv-l 1 optical �ow. Pattern Recognition, 2007. 110

X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classi�cation using
super-vector coding of local image descriptors. In ECCV, 2010. 120

H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn,
and H.-P. Seidel. Complementary optic �ow. In EMM-CVPR, 2009. 22,
24, 26

H. Zimmer, A. Bruhn, and J. Weickert. Optic �ow in harmony. IJCV, 2011.
54, 55, 85

C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from
edges. In ECCV, 2014. 123, 129, 130, 132, 139

Appendix A

Computation of optical �ow

using variational models

Contents

A.1 Optimization . 199

A.2 Linear solver . 202

A.3 Summary of the algorithm 204

In this appendix, we explain the minimization technique used for in-
stance by Brox et al. [2004], to estimate the optical �ow based on Euler-
Lagrange equation. Assume that the energy to minimize has a data term
with brightness and gradient constancy assumptions, a smoothness term
that penalizes the norm of �ow gradient, and a matching term to penalize
the di�erence between �ow and input matches:

E(w) =

∫
Ω

δΨD(W TJ0W) + γΨD(W TJxyW)dx︸ ︷︷ ︸
Data term

+

∫
Ω

ΨS(‖∇2w‖2
2)dx︸ ︷︷ ︸

Smoothness term

+ β

∫
Ω

ρΨM

(
‖w −wmatch‖2

2

)
dx︸ ︷︷ ︸

Matching term

, (A.1)

with β, γ and δ some positive weights, J0 = (∇3I)(∇>3 I) and Jxy = Jx +
Jy = (∇3Ix)(∇>3 Ix) + (∇3Iy)(∇>3 Iy) the tensors for brightness and gradient
constancy assumptions, Ψ∗ some robust penalizers, wmatch the displacement

198

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 199

estimated by a matching approach and ρ a per-matching weight with zero
value at pixel without precomputed match.

By treating this energy as a calculus of variations, the Euler-Lagrange
equation ensures that at the minimum:{

∂E
∂u
− ∂

∂x
∂E
∂ux
− ∂

∂y
∂E
∂uy

= 0,
∂E
∂v
− ∂

∂x
∂E
∂vx
− ∂

∂y
∂E
∂vy

= 0.
(A.2)

This leads to the following equations for each pixel:

δΨ′D(I2
t)ItIx + γΨ′D(I2

xt + I2
yt)(IxxIxt + IxyIyt)

+ βρΨ′M (‖w −wmatch‖22)(u− umatch)

− div(Ψ′S(‖∇2w‖22)∇u) = 0

δΨ′D(I2
t)ItIy + γΨ′D(I2

xt + I2
yt)(IxyIxt + IyyIyt)

+ βρΨ′M (‖w −wmatch‖22)(v − vmatch)

− div(Ψ′S(‖∇2w‖22)∇v) = 0

, (A.3)

where Ψ′∗ is the derivative of Ψ∗ with respect to its argument.

A.1 Optimization

Equation A.3 leads to a non-linear and highly non-convex problem. The
�rst idea to approximate the solution consists in using a �xed point iteration
on w. Since the function is highly non-convex, the risk to fall into local
minima is high. To this end, the �xed point iteration is not su�cient, we
consequently use the classical coarse-to-�ne scheme. A pyramid of images is
built using smoothing and downsampling with a factor η ∈ (0, 1). We �rst
initialize the �ow with zero values at each pixel. We compute the �ow at
the coarsest level. It is then used to initialize the �ow computation at the
next level and so on. This strategy has shown powerful properties. It has
the advantage to �rst capture the motion of big parts and then to re�ne the
�ow of smallest structures contained into them. Moreover, since the images
at the �rst levels have only few pixels, the computation is fast.

Let wk be the computed �ow at level k. We de�ne also the warped
image derivatives at this level:

Ikx (x) =
∂I2
(
x + wk(x)

)
∂x

Iky (x) =
∂I2

(
x+wk(x)

)
∂y

Ikxx(x) =
∂2I2

(
x + wk(x)

)
∂x2

Ikxy(x) =
∂2I2

(
x+wk(x)

)
∂x∂y Ikyy(x) =

∂2I2
(
x + wk(x)

)
∂y2

Ikt (x) = I2
(
x + wk(x)

)
− I1

(
x
)

Ikxt(x) = ∂It(x)
∂x Ikyt(x) =

∂It(x)

∂y
. (A.4)

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 200

While warping, some pixels can fall outside the image boundaries. For these
pixels, we remove the data term. Spatial image derivatives are computed
using the mean of the two images and a �ve-point stencil resulting in a
fourth-order approximation, i.e., with a (1,−8, 0, 8,−1)>/12 �lter. wk+1 is
now given by solving:

δΨ′D
(
(Ik+1
t)2

)
Ik+1
t Ikx + γΨ′D

(
(Ik+1
xt)2 + (Ik+1

yt)2
)(
IkxxI

k+1
xt + IkxyI

k+1
yt

)
+ βρΨ′M(‖wk+1 −wk+1

match‖2
2)(uk+1 − uk+1

match)

− div(Ψ′S(‖∇2w
k+1‖2

2)∇uk+1) = 0

δΨ′D
(
(Ik+1
t)2

)
Ik+1
t Iky + γΨ′D

(
(Ik+1
xt)2 + (Ik+1

yt)2
)(
IkxyI

k+1
xt + IkyyI

k+1
yt

)
+ βρΨ′M(‖wk+1 −wk+1

match‖2
2)(vk+1 − vk+1

match)

−div(Ψ′S(‖∇2w
k+1‖2

2)∇vk+1) = 0

.

(A.5)
This new system is still non-linear because of the Ψ′∗ terms and of Ik+1

∗
containing temporal derivative. To this last issue, we can use a �rst-order
Taylor expansion. However this is valid only under the assumption that
the displacement is small. Consequently, we use an incremental method,
by splitting wk+1 into two terms, wk+1 = wk + dwk. If the η parameter is
su�ciently close to 1, dwk will be small. The �rst-order Taylor expansion
gives:

Ik+1
t ' Ikt + Ikxdu

k +Iky dvk, (A.6)

Ik+1
xt ' Ikxt+ Ikxxdu

k +Ikxy dvk,

Ik+1
yt ' Ikyt+ Ikxydu

k +Ikyy dvk.

This leads to a new system of equations where the unknown are now
duk and dvk:

δΨ′k1
(
Ikx(Ikt + Ikxdu

k + Iky dv
k)
)

+ γΨ′k2
(
Ikxx(Ikxt + Ikxxdu

k + Ikxydv
k) + Ikxy(I

k
yt + Ikxydu

k + Ikyydv
k)
)

+ βρΨ′k3
(
uk + duk − ukmatch

)
− div

(
Ψ′k4 ∇(uk + duk)

)
= 0

δΨ′k1
(
Iky (Ikt + Ikxdu

k + Iky dv
k)
)

+ γΨ′k2
(
Ikxy(I

k
xt + Ikxxdu

k + Ikxydv
k) + Ikyy(I

k
yt + Ikxydu

k + Ikyydv
k)
)

+ βρΨ′k3
(
vk + dvk − vkmatch

)
− div

(
Ψ′k4 ∇(vk + dvk)

)
= 0

,

(A.7)

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 201

with:

Ψ′k1 = Ψ′D
(
(Ikt + Ikxdu

k + Iky dv
k)2
)
,

Ψ′k2 = Ψ′D
(
(Ikxt + Ikxxdu

k + Ikxydv
k)2 + (Ikyt + Ikxydu

k,l + Ikyydv
k)2
)
,

Ψ′k3 = Ψ′M
(
(uk + duk − ukmatch)2 + (vk + dvk − vkmatch)2

)
,

Ψ′k4 = Ψ′S
(
‖∇2(uk + duk)‖2

2 + ‖∇2(vk + dvk)‖2
2

)
. (A.8)

This system is still non-linear due to the Ψ′∗. We so use another inner
�xed point iteration: at each level, we alternatively compute the Ψ′∗ coe�-
cients with the current �ow and update the incremental �ow while Ψ′∗ values
are �xed. In practice, we perform ninner = 5 iterations of this strategy.

We denote by l the index of this inner iteration and by dwk,l the �ow
increment after l inner iterations at level k. We start with w0 and dw0,0

with full zeroes, compute the Ψ′0,0∗ coe�cients with the �ow w0,0 = w0 +
dw0,0, we solve the linear system to compute a �ow increment dw0,1. It is
used to update the Ψ′0,1∗ values, and so on until dw0,ninner . Then w1 is set
to the sum of w0 and dw0,ninner and we start the next level with dw1,0 set
to 0.

Concerning the smoothing term, we compute the �ow gradient using the
�lter (−1, 1)>. For a pixel x, let N (x) be the 4-neighborhood of x. We
discretize the divergence operator div(fu,v∇u) by:∑

j∈N (i)

fu,v(i) + fu,v(j)

2

(
u(j)− u(i)

)
. (A.9)

This results in a linear system with 2 × nk equations and unknowns,
where nk denotes the number of pixels of the level k. For an image of
resolution 640 × 480, this gives more than 600000 constraints. The size of
the system is too huge to �nd an exact solution. Consequently, we use an
iterative method to approximate the solution. For each pixel i ∈ Ω, we
obtain the following two equations, where the indices i is only written in
the smoothness for a better readability:

δΨ′k,l1

(
Ikx (Ikt + Ikxdu

k,l+1 + Iky dv
k,l)
)

+ γΨ′k,l2

(
Ikxx(Ikxt + Ikxxdu

k,l+1 + Ikxydv
k,l) + Ikxy(Ikyt + Ikxydu

k,l+1 + Ikyydv
k,l+1)

)
+ βρΨ′k,l3

(
uk + duk,l+1 − uk

match

)
−
∑

j∈N (i)

Ψ
′k,l
4 (i)+Ψ

′k,l
4 (j)

2
(uk(j) + duk,l+1(j) − uk(i) − duk,l+1(i)) = 0

δΨ′k,l1

(
Iky (Ikt + Ikxdu

k,l+1 + Iky dv
k,l+1)

)
+ γΨ′k,l2

(
Ikxy(Ikxt + Ikxxdu

k,l+1 + Ikxydv
k,l) + Ikyy(Ikyt + Ikxydu

k,l+1 + Ikyydv
k,l+1)

)
+ βρΨ′k,l3

(
vk + dvk,l+1 − vkmatch

)
−
∑

j∈N (i)

Ψ
′k,l
4 (i)+Ψ

′k,l
4 (j)

2
(vk(j) + dvk,l+1(j) − vk(i) − dvk,l+1(i)) = 0

,

(A.10)

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 202

Figure A.1 � Structure of the matrix for the linear system. The blue blocks
represent the diagonal submatrices while the green blocks correspond to
submatrices de�ning the smoothness between neighborhood pixels. For
an isotropic smoothness term, the green matrices are the identity times a
coe�cient. The other block matrices are all-zeroes.

with:

Ψ′k,l1 = Ψ′D
(
(Ikt + Ikxdu

k,l + Iky dv
k,l)2

)
,

Ψ′k,l2 = Ψ′D
(
(Ikxt + Ikxxdu

k,l + Ikxydv
k,l)2 + (Ikyt + Ikxydu

k,l + Ikyydv
k,l)2

)
,

Ψ′k,l3 = Ψ′M
(
(uk + duk,l − ukmatch)2 + (vk + dvk,l − vkmatch)2

)
,

Ψ′k,l4 = Ψ′S
(
‖∇(uk + duk,l)‖22 + ‖∇(vk + dvk,l)‖22

)
. (A.11)

A.2 Linear solver

The set of equations can also be written as a linear system Ak,lx =
Bk,l. If we use a row-wise order on the pixels, and if we de�ne x by the
concatenation of vectors (uk,l+1, vk,l+1)T for each pixel, Ak,l has the structure
shown in Figure A.1. We decompose the matrix into 2×2 blocks. Let Ai,j be
the block at position (i, j). We have the following structure for the diagonal

block Ai,i at position (i, i), 1 6 i 6 nk, with Ψ′k,l4,i =
∑

j∈N (i)
Ψ′k,l4 (j)+Ψ′k,l4 (i)

2
:

(
δΨ′k,l1 Ikx

2
+ γΨ′k,l2 (Ikxx

2
+ Ikxy

2
) + βρΨ′k,l3 + Ψ′k,l4,i δΨ′k,l1 IkxI

k
y + γΨ′k,l2 (IkxxI

k
xy + IkxyI

j
yy)

δΨ′k,l1 IkxI
k
y + γΨ′k,l2 (IkxxI

k
xy + IkxyI

j
yy) δΨ′k,l1 Iky

2
+ γΨ′k,l2 (Ikxy

2
+ Ikyy

2
) + βρΨ′k,l3 + Ψ′k,l4,i

)
(A.12)

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 203

For the non-diagonal block Ai,j, i.e. with j ∈ N (i), we obtain:(
−Ψ′k,l4 (j)+Ψ′k,l4 (i)

2
0

0 −Ψ′k,l4 (j)+Ψ′k,l4 (i)

2

)
. (A.13)

And �nally for the right hand side bi:
−δΨ′k,l1 IkxI

k
t − γΨ′k,l2 (IkxxI

k
xt + IkxyI

k
yt)− βρΨ′k,l3 (uk − ukmatch)

+
∑

j∈N (i)
Ψ′k,l4 (j)+Ψ′k,l4 (i)

2

(
uk(j)− uk(i)

)
−δΨ′k,l1 Iky I

k
t − γΨ′k,l2 (IkyyI

k
yt + IkxyI

k
xt)− βρΨ′k,l3 (vk − vkmatch)

+
∑

j∈N (i)
Ψ′k,l4 (j)+Ψ′k,l4 (i)

2

(
vk(j)− vk(i)

)
 . (A.14)

Since A is highly dimensional (2 equations per pixel), only iterative
solvers can be applied. Note that A is sparse: there are 6 non-zero values
per row/column (or 10 in case of an anisotropic smoothness term). More-
over, A is structured as a 7-diagonal matrix and as a 5-diagonal 2×2 blocks,
see FigureA.1. A is positive semi-de�nite and also block diagonally dom-
inant [Sundaram et al., 2010] if the robust penalizers are increasing. The
diagonal blocks are positive de�nite. These properties are su�cient to prove
the convergence of most solvers.

The most used ones are the Successive Over Relaxation (SOR) [Young
and Rheinboldt, 1971] which is a relaxation of Gauss-Seidel method, and
a conjugate gradient descent with an appropriate preconditioner. Let n be
the dimension of the problem and xk the estimation after k iterations of the
iterative solver. The SOR algorithm is sequential, making it ine�cient for a
GPU implementation, see Algorithm A.1. With SOR, the �ow component
u and v are not updated simultaneously. We consequently use a coupled
version of the algorithm in which the sequential update operates on 2 × 2
sub-matrices, see Algorithm A.2.

Algorithm A.1 Successive Over Relaxation (SOR) method. ω is a param-
eter.
For k from 1 to nsolver
�� For i from 1 to n

2

��� xk(i) = (1− ω)xk−1(i)
+ ω

A(i,i)

(
b(i)−∑j>iA(i, j)xk−1(j)−∑j<iA(i, j)xk(j)

)
For a GPU implementation, conjugate gradient descent (see Algorithm A.3)

is better suited [Sundaram et al., 2010] as it only involves matrix opera-
tions. A preconditioning with block-Jacobi preconditioner is necessary for
fast convergence.

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 204

Algorithm A.2 Coupled variant of Successive Over Relaxation (SOR)
method. ω is a parameter.

For k from 1 to nsolver
�� For i from 1 to n
��� xki = (1− ω)xk−1

i

+ωA−1
i,i

(
bi −

∑
j>iAi,jx

k−1
j −∑j<iAi,jx

k
j

)
Algorithm A.3 Preconditioned Conjugate Gradient (PCG) with a pre-
conditioner M .
r0 = b− Ax0

z0 = M−1r0

p0 = z0

For k from 0 to nsolver − 1

�� αk =
rTk zk
pTk Apk

�� xk+1 = xk + αkpk
�� rk+1 = rk + αkApk
�� zk+1 = M−1rk+1

�� βk =
zTk+1rk+1

zTk rk

�� pk+1 = zk+1 + βkpk

A.3 Summary of the algorithm

Algorithm A.4 summarizes the whole optimization process. Note that
we perform a last iteration with β = 0 as Brox and Malik [2011]. Indeed,
descriptors matching is important at the beginning to encourage the �ow
estimate to follow the matching. Once the initialization is well done, this
is less important to integrate it into the equation's system.

APPENDIX A. COMPUTATION OF OPTICAL FLOW USING

VARIATIONAL MODELS 205

Algorithm A.4 Variational estimation of optical �ow.
Input: I1, I2

Output: w
Presmooth images with Gaussian �lter
Compute descriptor matches wmatch and their weights ρ
Build image pyramids with factor η
Initialize w0 to 0 (size of the coarsest level)
For k from 0 to nlevel (from coarsest to �nest level)
�� Warp second images according to wk

�� Resize matches and weights to the current level size
�� Compute image derivative Ik∗
�� Initialize dwk,0 to 0 (size of current level)
�� For l from 0 to ninner − 1
���� Compute Ψ

′k,l
∗

���� Build system matrix Ak,l and Bk,l
���� Apply linear solver to obtain dwk,l+1

�� wk+1 ← wk + dwk,l+1 (add the increment to the current estimation)
�� Resize wk+1 to the size of the next level
Perform a last iteration with β = 0

Appendix B

The DALY dataset

Contents

B.1 Dataset collection . 206

B.2 Dataset statistics . 208

In this appendix, we describe how DALY was collected. Section B.1
details action class selection, video �ltering and spatio-temporal annotation
of action instances. Section B.2 presents per-class statistics for the dataset.

B.1 Dataset collection

Picking action classes. In order to allow precise annotation, we choose
action classes with clearly de�ned temporal boundaries. For instance, the
brushing teeth action is de�ned as `toothbrush inside the mouth'. Another
example is cleaning windows for which the moment where `the tool is in
contact with the window' is annotated.

Some of the classes are chosen to contain similar motion patterns, in
order to make the class distinction di�cult. Several of our action classes
imply motion of the hands near the head (taking photos, phoning) or the
mouth (playing harmonica, drinking, brushing teeth, applying make up on
lips).

In summary, we kept the following 10 actions: applying make up on
lips, brushing teeth, cleaning �oor, cleaning windows, drinking, folding tex-
tile, ironing, phoning, playing harmonica and taking photos/videos, see Fig-
ure B.1.

Video collection. The videos are gathered from YouTube using manu-
ally designed queries related to the selected action classes. For the class

206

APPENDIX B. THE DALY DATASET 207

applying make up brushing cleaning cleaning
drinking

on lips teeth �oor windows

folding
ironing phoning

playing taking
textile harmonica photos/videos

Figure B.1 � One example frame for each of the 10 classes of the DALY
dataset.

cleaning �oor, the queries include `sweeping �oor', `mopping �oor', `clean-
ing �oor', etc. We only keep videos with a duration between 1 and 20
minutes. A minimum duration of 1 min ensures that temporal localization
will be meaningful (shorter videos contain only one action from the begin-
ning to the end in most cases), and a maximum duration of 20 minutes
avoids issues related to computational time or memory consumption.

Videos are �ltered to remove cartoons, slideshows, actions performed by
animals and �rst-person viewpoints. We also remove videos in which the
human is not visible when the action occurs, for instance when the camera
focuses on the mop while performing the cleaning �oor action.

51 videos are selected for each action class such that they contain at least
one instance of the action class. In total this corresponds to 31 hours of
video, or 3.3 million frames. Videos from a given action class often contain
multiple instances of the main action, and may contain instances of other
action classes, which we annotate exhaustively.

Temporal annotation. Selected videos are carefully watched by mem-
bers of our research team in order to catch all actions, including those
happening in the background. The begin and end time is annotated for all
instances found. Precise guidelines are established prior to annotation. For
example, the phoning action lasts as long as the phone remains close to the
actor's ears. In case of a shot change during an action, we annotate it as
two separate instances and set a `shotcut' �ag. DALY contains 3724 action
instances in total, with an average duration of 8 seconds.

Spatial annotation. There are more than 700k frames containing at least
one action. Annotating all of them is a tall order, as it would take a year

APPENDIX B. THE DALY DATASET 208

A
pp

ly
in

gM
ak

eU
pO

nL
ip

s

B
ru

sh
in

gT
ee

th

C
le

an
in

gF
lo

or

C
le

an
in

gW
in

do
w

s

D
rin

ki
ng

Fo
ld

in
gT

ex
til

e

Iro
ni

ng

P
ho

ni
ng

P
la

yi
ng

H
ar

m
on

ic
a

Ta
ki

ng
P

ho
to

sO
rV

id
eo

s

Number of videos containing at least one instance of a class

ApplyingMakeUpOnLips

BrushingTeeth

CleaningFloor

CleaningWindows

Drinking

FoldingTextile

Ironing

Phoning

PlayingHarmonica

TakingPhotosOrVideos

M
ai

n
cl

as
s

of
vi

de
os

51 1

51 25 1 1 1

51 1 1 1

1 51 6 1 2

51 1 1

1 51 1

1 9 51 1

1 3 51

1 51

1 2 1 7 51

class avg video dur. #inst. avg inst. dur.
ApplyingMakeUpOnLips 376.8s ± 265.1 421 3.7s ± 3.3

BrushingTeeth 176.0s ± 120.3 277 9.3s ± 15.9
CleaningFloor 194.2s ± 128.7 200 14.1s ± 15.2

CleaningWindows 196.2s ± 131.9 468 7.1s ± 10.0
Drinking 202.4s ± 130.9 304 2.6s ± 3.0

FoldingTextile 184.1s ± 150.1 257 14.6s ± 22.4
Ironing 233.2s ± 183.8 424 7.2s ± 8.2
Phoning 217.9s ± 140.7 514 9.9s ± 30.2

PlayingHarmonica 190.2s ± 139.8 306 13.8s ± 21.4
TakingPhotosOrVideos 283.0s ± 207.3 553 3.1s ± 3.5

all 225.4s ± 175.7 3724 7.8s ± 16.4

Figure B.2 � Left: Statistics of multiple classes per video. Each row con-
siders the 51 videos downloaded for a given class, each column counts the
videos containing at least one instance of the column class. Right: Statis-
tics for each class on the video duration (average and standard deviation),
the number of instances, and the instance duration (average and standard
deviation).

and a half for one annotator to complete this task, assuming 15 seconds per
annotation and a 40-hour week. Of course this does not include verifying
the results which, albeit quicker, is also time consuming when you need to
outsource the job. Thus, we subsample frames to be annotated, such that
enough information is present for a reliable evaluation of spatio-temporal
detections.

For each temporal instance in the test set, we pick 5 uniformly sampled
frames, with a maximum of 1 frame per second. For each frame, annotators
are asked to draw a bounding box around the actor. Some of the spatial
annotations are carried out by external workers. In all cases, the bounding
boxes are reviewed and adjusted by members of our research team.

B.2 Dataset statistics

The selected action classes are su�ciently common such that multiple
action classes can be found in a single video, see Figure B.2, left. The
matrix should be read row by row, each row considers only the 51 videos
selected for a given class. For example, out of the 51 videos selected for the
class brushing teeth, 51 videos contain brushing teeth instances, 25 contain

APPENDIX B. THE DALY DATASET 209

1 1:30 2 3 4 5 7:30 10 12:30 15 17:30 20
Video duration (minutes)

0

100

200

300

400

500

600

N
um

be
ro

fv
id

eo
s

DALY - Histogram of video duration

0 1 2 3 4 5 10 20 30 45 60 90 120180240300
Instance duration (seconds)

0

100

200

300

400

500

600

700

N
um

be
ro

fi
ns

ta
nc

es

DALY - Histogram of instance duration

Figure B.3 � Histogram of duration of the videos (left) and instances (right).

drinking instances, etc.
Some classes have expected overlap such as brushing teeth and drink-

ing, ironing and folding textile. There is also overlap between taking pho-
tos/videos and phoning, which can be explained by the fact that taking
photos is mostly performed outdoors, where other people are phoning.

Figure B.3 shows the histogram of video duration and instance duration.
Per-class statistics are presented in Figure B.2, right. One can see that
most of the videos last several minutes (less than 10). Videos are longest in
average for ApplyingMakeUpOnLips, mainly because this action is present
in a multitude of full-face make-up tutorials. Concerning the instances,
most of them are shorter than 10 seconds. Nevertheless, DALY also contains
instances of several minutes, especially for actions such as brushing teeth,
playing harmonica or folding textile. In some cases, short instance duration
for actions can be explained by video editing. The uploader may cut the
action to a few seconds and include it in a long video. Instances are shortest
on average for drinking and taking photos, simply because drinking and
taking a photo tend to take a short time (put the cup to the mouth and
back for drinking, press the button to take a photo).

	Contents
	Introduction
	Goals
	Context
	Contributions

	Optical Flow Estimation in Realistic Videos
	Related Work on Optical Flow
	Optical Flow
	Variational approaches
	Other optical flow approaches
	Image matching in optical flow estimation
	Datasets and evaluation

	DeepFlow: Large Displacement Optical Flow with DeepMatching
	Introduction
	DeepMatching
	Extensions of DeepMatching
	DeepFlow
	Experiments
	Conclusion

	EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
	Introduction
	Sparse-to-dense interpolation
	Optical Flow Estimation
	Experiments
	Conclusion

	Learning to Detect Motion Boundaries
	Introduction
	Learning motion boundary detection
	Datasets and evaluation protocol
	Experimental results
	Conclusion

	Action Localization in Uncontrolled Videos
	Related Work on Action Localization
	Video classification
	Action localization
	Datasets and metrics

	Action-specific Tracks for Action Localization
	Introduction
	Overview of the approach
	Detailed description of the approach
	Experimental results
	Conclusion

	Human Tracks for Weakly-Supervised Action Localization
	Introduction
	Dataset and evaluation
	Building human tubes
	Weakly-supervised human tube classifier
	Experimental results
	Conclusion

	Conclusion
	Summary of contributions
	Perspectives for future research

	Bibliography
	Computation of optical flow using variational models
	Optimization
	Linear solver
	Summary of the algorithm

	The DALY dataset
	Dataset collection
	Dataset statistics

