
HAL Id: tel-01407336
https://theses.hal.science/tel-01407336

Submitted on 3 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Recommendation Systems in a Sequential Context
Frédéric Guillou

To cite this version:
Frédéric Guillou. On Recommendation Systems in a Sequential Context. Machine Learning [cs.LG].
Université Lille 3, 2016. English. �NNT : �. �tel-01407336�

https://theses.hal.science/tel-01407336
https://hal.archives-ouvertes.fr

École Doctorale Sciences Pour l’Ingénieur

THÈSE DE DOCTORAT

préparée au sein de

et du centre de recherche Lille - Nord Europe

co-financée par et

Spécialité : Informatique

présentée par

Frédéric GUILLOU

ON RECOMMENDATION SYSTEMS
IN A SEQUENTIAL CONTEXT

sous la direction de Philippe PREUX
et le co-encadrement de Romaric GAUDEL et Jérémie MARY

Soutenue publiquement à Villeneuve d’Ascq, le 02 décembre 2016 devant le jury composé de :

M. Massih-Reza AMINI Université Grenoble Alpes Rapporteur
M. Younès BENNANI Université Paris 13 Rapporteur
M. Romaric GAUDEL Université Lille 3 Examinateur
M. Jérémie MARY Université Lille 3 Examinateur
M. Mohamed NADIF Université Paris-Descartes Examinateur
M. Vianney PERCHET ENS Cachan Examinateur
M. Philippe PREUX Université Lille 3 Directeur

iii

UNIVERSITÉ LILLE 3

Abstract

On Recommendation Systems in a Sequential Context

by Frédéric GUILLOU

This thesis is dedicated to the study of Recommendation Systems under
a sequential setting, where the feedback given by users on items arrive one
after another in the system. After each feedback, the system has to integrate
it and try to improve future recommendations. Many techniques or evalu-
ation methods have already been proposed to study the recommendation
problem. Despite that, such sequential setting, which is more realistic and
represent a closer framework to a real Recommendation System evaluation,
has surprisingly been left aside. Under a sequential context, recommenda-
tion techniques need to take into consideration several aspects which are
not visible for a fixed setting. The first one is the exploration-exploitation
dilemma: the model making recommendations needs to find a good bal-
ance between gathering information about users’ tastes or items through
exploratory recommendation steps, and exploiting its current knowledge
of the users and items to try to maximize the feedback received. We high-
light the importance of this point through the first evaluation study and
propose a simple yet efficient approach to make effective recommendation,
based on Matrix Factorization and Multi-Armed Bandit algorithms. The
second aspect emphasized by the sequential context appears when a list of
items is recommended to the user instead of a single item. In such a case,
the feedback given by the user includes two parts: the explicit feedback as
the rating, but also the implicit feedback given by clicking (or not clicking)
on other items of the list. By integrating both feedback into a Matrix Fac-
torization model, we propose an approach which can suggest better ranked
list of items, and we evaluate it in a particular setting.

Keywords. Recommendation Systems, Sequential Recommendation, Col-
laborative Filtering, Matrix Factorization, Multi-Armed Bandits, Sequential
Feedback, Learning to Rank

HTTPS://WWW.UNIV-LILLE3.FR/

v

UNIVERSITÉ LILLE 3

Résumé

Des Systèmes de Recommandation dans un Contexte Séquentiel

par Frédéric GUILLOU

Cette thèse porte sur l’étude des Systèmes de Recommandation dans
un cadre séquentiel, où les retours des utilisateurs sur des articles arrivent
dans le système l’un après l’autre. Après chaque retour utilisateur, le sys-
tème doit le prendre en compte afin d’améliorer les recommandations fu-
tures. De nombreuses techniques de recommandation ou méthodologies
d’évaluation ont été proposées par le passé pour les problèmes de recom-
mandation. Malgré cela, l’évaluation séquentielle, qui est pourtant plus
réaliste et se rapproche davantage du cadre d’évaluation d’un vrai système
de recommandation, a été laissée de côté. Le contexte séquentiel néces-
site de prendre en considération différents aspects non visibles dans un
contexte fixe. Le premier de ces aspects est le dilemme dit d’exploration
vs. exploitation: le modèle effectuant les recommandations doit trouver le
bon compromis entre recueillir de l’information sur les goûts des utilisa-
teurs à travers des étapes d’exploration, et exploiter la connaissance qu’il
a à l’heure actuelle pour maximiser le feedback reçu. L’importance de ce
premier point est mise en avant à travers une première évaluation, et nous
proposons une approche à la fois simple et efficace, basée sur la Factori-
sation de Matrice et un algorithme de Bandit Manchot, pour produire des
recommandations appropriées. Le second aspect pouvant apparaître dans
le cadre séquentiel surgit dans le cas où une liste ordonnée d’articles est
recommandée au lieu d’un seul article. Dans cette situation, le feedback
donné par l’utilisateur est multiple: la partie explicite concerne la note don-
née par l’utilisateur concernant l’article choisi, tandis que la partie implicite
concerne les articles cliqués (ou non cliqués) parmi les articles de la liste.
En intégrant les deux parties du feedback dans un modèle d’apprentissage,
nous proposons une approche basée sur la Factorisation de Matrice, qui
peut recommander de meilleures listes ordonnées d’articles, et nous éval-
uons cette approche dans un contexte séquentiel particulier pour montrer
son efficacité.

Keywords. Systèmes de Recommandation, Recommandation Séquentielle,
Filtrage Collaboratif, Factorisation de Matrice, Bandit Manchot, Feedback
Séquentiel, Apprentissage de Classement

HTTPS://WWW.UNIV-LILLE3.FR/

vii

Acknowledgements
First, I would like to express my gratitude to my supervisors, Philippe

Preux, Romaric Gaudel and Jérémie Mary. I am grateful for your guidance,
your patience, and for the research insight or all advices shared with me
during these three years. The help and encouragement you provided al-
lowed me to pursue my research and finish this thesis, and I thank you for
it.

Then, I would like to thank Massih-Reza Amini and Younès Bennani
who kindly agreed to review my PhD thesis, as well as Mohamed Nadif
and Vianney Perchet for having accepted to be part of my committee.

Thanks to Professor Jo at Inha University, where I got my first research
experience, and which encouraged me to start a PhD.

Merci à toute l’équipe SequeL et ses membres (passés ou présents) pour
leur sympathie et aide: Amir, Gergely, Prashanth, Balázs, Alessandro, Bi-
lal, Marta, Hadrien, Michal, Tomáš, Daniele (special thanks for the useful
script on the Grid!), Florian, Ronan, Julien, Alexandre, Jean-Bastien, Emilie,
Olivier, Daniil, ainsi qu’Amélie.

Merci à l’Inria pour le soutien financier et logistique, au Ministère de la
Recherche et de l’Enseignement Supérieur, au FUI Hermès et à la région
des Hauts-de-France pour leur participation financière à ma thèse.

Merci à l’équipe pédagogique de l’université Lille 3 pour son accueil et
leur bonne collaboration durant mes activités d’enseignement.

Merci à la plateforme d’essai Grid’5000, soutenue par un groupement
d’intérêt scientifique incluant l’INRIA, le CNRS, RENATER et plusieurs
universités ainsi que des organisations (voir https://www.grid5000.fr), qui
m’a permis de réaliser la plupart des expériences rapportées dans cette
thèse.

Merci à toute ma famille pour le soutien et les encouragements. Special
thanks to현정 who gave me a lot of support during these last two years of
my PhD.

viii

ix

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Overview of the thesis . 5

2 Recommendation Systems 7

2.1 Definition: The Recommendation Problem 8

2.1.1 Feedback . 8

2.1.2 Representation and Solutions 9

2.1.3 Goals of Recommendation Systems 11

2.1.4 Applications . 12

2.2 Approaches to Recommendation 13

2.2.1 Content-Based Filtering 14

2.2.2 Demographic Filtering 15

2.2.3 Knowledge-Based Recommendation 15

2.2.4 Neighborhood-Based Collaborative Filtering 15

2.3 Collaborative Filtering: Matrix Factorization Techniques . . 17

2.3.1 Matrix Factorization and Low-Rank Approximation . 17

2.3.2 Matrix Factorization Methods 19

Objective . 19

Optimization Methods 20

Incorporating Bias . 23

Other Models . 24

2.3.3 Limitations . 27

2.4 Cold Start Issue . 28

2.4.1 Hybrid Recommendation Systems 28

x

2.4.2 Active Learning . 28

2.5 Incorporate Contextual Information 29

2.6 Evaluation of Recommendation Systems 30

2.6.1 Metrics . 30

2.6.2 Evaluation Scenarios 36

2.7 Learning to Rank . 39

2.8 Conclusion . 40

3 Recommendation as a Multi-Armed Bandit 43

3.1 Sequential Recommendation 44

3.1.1 Formulation of the Sequential Recommendation Sce-

nario . 45

3.2 Related Work . 46

3.3 Multi-Armed Bandits . 48

3.3.1 Setting . 48

3.3.2 Approaches . 49

3.4 Explore-exploit Recommendation System 51

3.5 Experimental Investigation 54

3.5.1 Experimental Setting and Remarks 54

Datasets . 55

3.5.2 Baselines . 57

3.5.3 Impact of Exploration 57

3.5.4 Impact of the Update Strategy 60

3.6 Concluding Remarks . 62

4 Ranking Using (No-)Click Implicit Feedback 63

4.1 Sequential Recommendation of Multiple Items 64

4.2 Related Work . 65

4.2.1 Online Ranking in Information Retrieval 65

4.2.2 Recommendation with Ranking Approaches 66

4.2.3 Mixing Explicit and Implicit Data 67

4.3 Ranking Recommender System Using Click Feedback 67

4.3.1 Setting . 68

xi

4.3.2 Feature Engineering 69

4.3.3 Dual Matrix Factorization 72

4.4 Experimental Investigation with ERR Click Model 74

4.4.1 Evaluation Metrics . 74

4.4.2 Datasets . 75

4.4.3 Baselines . 76

4.4.4 Results and Discussion 78

4.5 Experimentation with Other Click Models 81

4.5.1 The navigational click model 82

4.5.2 The informational click model 84

4.5.3 The almost random click model 86

4.6 Concluding Remarks . 88

5 About Challenges in Real Recommendation Systems 89

5.1 Some Aspects of Real-world RS 90

5.1.1 Power-law Distributions 90

5.1.2 "Replay" Aspect . 91

5.1.3 Large Set of Possible Recommendations 91

5.1.4 Stock Availability . 93

5.1.5 Past and New Users/Items 93

5.1.6 The Influence of the Recommendation System 94

5.2 Realistic Offline Sequential Recommendation 94

5.2.1 Setting . 94

5.2.2 Results and Discussion 95

Impact of Exploration 96

Update of the Model 100

5.2.3 Final Remarks . 100

5.3 Some Lessons from a Real Case RS Challenge 102

5.3.1 RecSys Challenge 2014: Data and Protocol 102

5.3.2 Method . 105

5.3.3 Experiments and Discussion 107

Experimental Results 107

xii

Relevant Features . 109

Discussions . 111

5.4 Concluding Remarks . 112

6 Conclusion 113

6.1 Thesis Contributions . 113

6.2 Future Work . 114

A About UCB1 and Popular baselines 117

Bibliography 119

xiii

List of Figures

1.1 Diagram explaining Reinforcement Learning. 2

2.1 Example of a matrix of preferences used in a RS, for five users

and six items and with a 1 to 5 stars rating. 9

2.2 The recommendation process, with every type of informa-

tion the RS can eventually use. 13

2.3 Representation of Matrix Factorization. 18

2.4 Example of Factorization Machine input (user and item bi-

nary representation, and external or contextual information)

and output rating. 26

3.1 The sequential recommendation process. After the RS rec-

ommends an item, the user gives back a feedback, and the

RS possibly update its model. 44

3.2 Impact of exploration on the cumulative regret score, evalu-

ated on five datasets. 59

3.3 Impact of the update strategy on the final cumulative regret

score, evaluated on five datasets. 61

4.1 The sequential recommendation process with a list of items.

After the RS recommends the item, the user looks at the items

one by one and picks one, then gives back a feedback about

the item picked, and the RS possibly update its model. . . . 65

4.2 Evaluation of algorithms on three datasets and three metrics

with the ERR click model (from the left column to the right

one: Abandonment, ERR@5, NDCG@5). 79

xiv

4.3 Evaluation of algorithms on three datasets and three metrics

with the navigational click model (from the left column to

the right one: Abandonment, ERR@5, NDCG@5). 83

4.4 Evaluation of algorithms on three datasets and three metrics

with the informational click model (from the left column to

the right one: Abandonment, ERR@5, NDCG@5). 85

4.5 Evaluation of algorithms on three datasets and three metrics

with the almost random click model (from the left column to

the right one: Abandonment, ERR@5, NDCG@5). 87

5.1 The power law distributions for the ratings from users and

on items in the Movielens1M dataset. 90

5.2 Impact of exploration on the cumulative regret score when

replay is not allowed, evaluated on five datasets. 97

5.3 Average reward received by the RS through time, when re-

play is allowed. 98

5.4 Average reward received by the RS through time, when re-

play is not allowed. 98

5.5 Impact of the update strategy on the final cumulative regret

score when replay is not allowed, evaluated on five datasets. 101

5.6 Distribution of the user engagement of successful tweets in

the training dataset. 103

5.7 Distribution of the number of tweets per user in the training

dataset. 104

5.8 NDCG@10 on test set, from the linear combination of Lamb-

daMART, WrapRF and WrapLin. Their weight is respectively

α, β and 1− α− β. 109

5.9 Relevance of features. 110

A.1 An example to compare UCB1 and Popular approaches. . . . 118

xv

List of Tables

2.1 Some examples of products to recommend and some compa-

nies using RS for these products. 12

2.2 An example to calculate NDCG score. 33

2.3 An example on how to calculate ERR score. 35

3.1 Characteristics of the five datasets used for experiments on

sequential recommendation using MAB. 56

4.1 Characteristics of the three datasets used for experiments on

sequential ranking with (no)-click feedback. 76

4.2 The four different click models used in experiments. 82

5.1 Training data statistics . 103

5.2 About retweets in the training dataset 104

5.3 NDCG@10 on test dataset . 108

xvii

List of Algorithms

1 A recommendation algorithm. 10

2 Stochastic Gradient Descent. 21

3 Alternating Least Squares. 22

4 UCB1. 50

5 ε-greedy. 50

6 ALS-WR: finds a solution to Equation (3.7) with an alternating

least square approach. 52

7 SeALS: recommends in a sequential context. 52

8 mBALS-WR: mini-batch version of ALS-WR. 53

9 ERRClickModel: models the interaction between a user and

the RS presenting a ranked list of items. 68

10 SVD+-: sequentially recommends a list of items using click

feedback. 71

11 DualMF: sequentially recommends a list of items using click

feedback. 73

1

Chapter 1

Introduction

1.1 Motivations

Despite their omnipresence online on e-commerce, news, social website,
Recommendation Systems are still part of a relatively recent field. The re-
search about this topic indeed started to grow significantly at the end of
the 90’s (Resnick and Varian, 1997) with the growth of e-commerce applica-
tions, and even more since the Netflix Challenge (Bennett et al., 2007) which
was only set up ten years ago. The importance of implementing accurate
Recommendation Systems has been widely acknowledged by the industrial
world in the last two decades, and it has quickly become one of the most
popular applications of Machine Learning or Data Mining techniques.

Facing the abundance of products and information available to him, the
customer usually feels disoriented about making a choice, and implement-
ing an efficient system that can help and guide the customer toward items
he would like can translate for the company in a great increase of the traffic
or sales. With the era of Big Data, making effective systems has become a
complex task due to the high number of users, items and information avail-
able. Two main approaches have emerged to solve this problem. The first
type of recommendation technique is based on existing information about
the users or items, like demographic information or textual description.
This is referred as Content-Based Recommendation (Pazzani and Billsus,
2007). The second type exclusively relies on the feedback collected from the
past and is referred as Collaborative Filtering (Ekstrand et al., 2011). The
idea behind it is that users with similar behavior (based on their feedback)
in the past will also have similar behavior in the future. Among Collabora-
tive Filtering approaches, Matrix Factorization methods (Koren et al., 2009)
have been the major focus on the Recommendation Systems field, because
they allow for a high level of abstraction inside the recommendation mod-
els, while being able to provide accurate suggestions to users.

Aside from Recommendation Systems, Reinforcement Learning (RL) (Sut-
ton and Barto, 1998) has been very recently under the spotlight among Ma-
chine Learning approaches due to some dazzling success (combined with
the use of Deep Learning) in several public-friendly domains, such as video
games or the game of Go. Programs able to play Atari Games better than

2 Chapter 1. Introduction

human (Mnih et al., 2013), or capable of playing Go against human and
beat them with the example of AlphaGo (Silver et al., 2016), have been im-
plemented by formulating the problem trying to be solved as a RL problem
and requiring the program to learn "how" to play properly.

Reinforcement Learning methods more generally target at solving se-
quential decision-making problems, where the decision is taken under un-
certainty. In a typical RL setting, an agent is considered to interact with
its environment. At each time step, the "system" made of the agent and its
environment is in a given state. The agent perceives this state, and de-
cides on an action to perform; once the action has been performed, the
agent observes the consequences of its action and the new state. Techni-
cally, these consequences are named a "return": it may be beneficial to the
agent (a "reward") or not (a "cost"). The state transition function is unknown
to the agent, as well as the mapping from a (state, action) pair to the re-
turn. These two functions (the transition function, and the return function)
are unknown to the agent and are stochastic. Usually, these functions are
constant in time (stationary). A fundamental assumption is that the state
contains all the information necessary to find the best action to perform in
this state. If not, the problem is said to be "partially observable". The goal
is for the agent to learn an optimal policy, which is a mapping from the set
of states to the set of actions; the policy is optimal in the sense that some
functions of the returns are optimized.

In this setting, the agent needs to learn from the consequences of its
actions rater than being taught explicitly as would happen in a supervised
learning scenario.

The Figure 1.1 describes the RL setup.

AgentEnvironment

State

Reward

Action

FIGURE 1.1: Diagram explaining Reinforcement Learning.

From the reward signal given by the environment, the goal for the agent
is then to find an optimal policy, meaning the agent needs to find the se-
quence of actions such that the reward obtained through time will be maxi-
mized. Reinforcement Learning problems are usually modelled as Markov
Decision Process (MDP) and solved using Reinforcement Learning algo-
rithms or Dynamic Programming (Szepesvári, 2010; Gosavi, 2009).

1.1. Motivations 3

A specific sub-field of the Reinforcement Learning is known as Multi-
Armed Bandits. Similarly to the standard RL setting, the agent also learns
from the reward received from the environment, but in this case the MDP
does not have any state transitions: the environment is only formed of one
state, and the reward only depends on which action is taken by the learning
agent. In such a case, the agent only has to explore the set of actions and
find the best set of actions to maximize the reward, but there is no notion of
a sequence of states anymore.

Despite its recent successes, the field of applications for RL is still limited
to top-end research companies in specific domains such as military appli-
cations (helicopter control), robotics, or games (Go, poker, video games. . .),
but most commercial companies using Machine Learning applications do
not view the problem they target from a Reinforcement Learning point of
view, either due to their unawareness of the RL aspect of the problem they
tackle, or due to the complexity of applying such approaches.

While many approaches have been proposed for Recommendation Sys-
tems, and even though the view of the industrial world have recently ac-
knowledged the importance of RL in applications, there has yet been little
to no study about fitting the recommendation problem into a Reinforce-
ment Learning setting (Shani et al., 2005). And yet, the RL approach would
suit perfectly to embed the one characteristic which remains difficult to
grasp and implement in a real-world Recommendation System: the need
for adaptability.

In the field of Recommendation Systems, some trends are emerging ev-
ery day while others are fading away, new customers are starting to use
the system, some customer’s tastes change through time or depending on
the context or location, some new items are released while other disappear
from the recommendation application. . . In some applications like news rec-
ommendation, the system needs to adapt at every moment given the fickle-
ness of trendy news. Moreover, the recommendations made by the system
itself also potentially influence the user and can change his tastes, which
is an highly complex effect to quantify. Surprisingly, most researches still
study the recommendation problem within a fixed, batch setting perspec-
tive, where the data used to learn the model and the data used to make
the evaluation are split and fixed, while using a RL setting would allow to
tackle the issue coming from the inherent online and sequential context of
the recommendation problem.

We focus on this thesis on the aspects related to sequential recommen-
dation and set up an offline sequential evaluation methodology accord-
ingly. Consequently from studying recommendation as a sequential pro-
cess, some important aspects inherent to the Recommendation Systems ap-
pear. Due to the traditional evaluation settings using a batch setting, only
little research has been made on these aspects, and we propose here simple
techniques to take them into account in the implementation of the Recom-
mendation System.

We study specifically two aspects of Recommendation Systems ensuing
from the sequential context:

4 Chapter 1. Introduction

1. The exploration-exploitation dilemma: this is a direct consequence
of a RL setting. In a RL problem, the learning agent needs to explore
states and actions in order to gather feedback as reward, but also ex-
ploit the knowledge it gathered until now to optimize its policy. We
do not consider in this thesis the system as a Markov Decision Pro-
cess which is the complex form of Reinforcement Learning, but re-
strict to the point of view of the Multi-Armed Bandit setting, where
there is only one state. The RS here only has to tackle the exploration-
exploitation dilemma about the set of actions to take (i.e. about the set
of recommendation to make to users).

A good example of exploration-exploitation dilemma emerges when
a new customer (or item) enters the system: at this point in time,
there is little to no knowledge available about him (or it). This is-
sue is known as the cold-start issue. In the Recommendation System
case, the dilemma can be seen as finding the balance between the ex-
ploration, needed to discover the user’s tastes (or the item’s features,
to know to which kind of user it would be suitable to recommend it),
and the exploitation, which means recommending items according to
the current information available (possibly not entirely reliable since
the knowledge about users or items is not perfect). This dilemma also
appears for long-term users, because their tastes can change through
time, and exploration is then needed to avoid recommending follow-
ing the past interests of the user which are not conform to his current
tastes.

2. The impact of the feedback given by users. Recommendation models
need to learn and adapt quickly to the user’s tastes to make accurate
suggestions. For this reason, any feedback bringing information has
to be taken into consideration. Some Recommendation Systems are
based only on feedback given by the user in the form of a rating on
items, while other systems also make use of implicit feedback gath-
ered from the webpage (for instance clicks on items, or the time spent
by the user on the page). Some feedback implied by the behavior
of the user can increase the convergence of the learning for the algo-
rithm. A good example is when a Recommendation Systems is dis-
playing a ranked list of items from top to bottom of the screen to the
user (such as Youtube videos for example): in such a case, the feed-
back given by clicking on one item in this list implicitly implies a pref-
erence on this item over non-clicked items which were viewed higher
on the list, since the user scrolled down without clicking on them. The
use of this information inside the learning model of the Recommen-
dation System can lead to lists of items ranked more appropriately for
future recommendations, and increase user’s satisfaction.

Even though these two aspects are studied separately in this thesis, they
are both related to the need of adaptability for real-world Recommenda-
tion Systems, and are attempting at reducing the cold start effect by learn-
ing faster and more efficiently when only a small fraction of information is
available. They also highlight the need of a sequential evaluation to exhibit
such effect, since a fixed evaluation setting would not be relevant to study
them.

1.2. Overview of the thesis 5

1.2 Overview of the thesis

This thesis is structured as follows:

• The Chapter 2 gives a definition of the recommendation problem, the
type of feedback possibly received by the system, the various goals
that need to be achieved by the system, and the field of applications in
which Recommendation Systems are used. A detailed state of the art
about recommendations techniques is given, with a special attention
given to Collaborative Filtering methods based on Matrix Factoriza-
tion, which are used in other chapters of this thesis. A section is finally
dedicated to evaluation metrics and scenarios used traditionally.

• The Chapter 3 studies Recommendation Systems from a sequential
point of view and brings another more realistic evaluation methodol-
ogy. By incorporating Multi-Armed Bandits algorithm into a Collabo-
rative Filtering approach, we present a simple yet efficient algorithm
to tackle the recommendation problem in such a sequential context.
We make extensive experiments on large datasets to show that the ap-
proach can perform accurate recommendations in a very short time.
Since the model is studied sequentially and needs to be updated, we
also study how the performance is affected depending on how often
or on how much data the update is performed.

• Chapter 4 takes another point of view by considering an expanded
setting, where a list of items is suggested to the user instead of a sin-
gle item. The recommendation setting brings the need to tackle the
problem from a ranking point of view, as items need to be ordered
correctly, to put items preferred by the user on the top of the recom-
mended list. By representing the interaction between the user and the
RS in the form of a click on items in the recommended list, the setting
also raises other questions and brings new possibilities to tackle the
recommendation issue more efficiently, by considering the feedback
on both the item chosen by the user and those not chosen among the
list. We integrate these possibilities into our approach and provide a
method which outperforms several state of the art algorithms.

• Chapter 5 gives a discussion on difficulties and challenges related to
real data and evaluation. The first part of this chapter highlights some
intrinsic aspects of Recommendation Systems and the issues emerg-
ing when trying to evaluate them. Then, we set up a more realistic
setting than the one described in Chapter 3 for an offline sequen-
tial evaluation, and discuss about the results. Finally, some insight
is given on aspects to be careful about when building real-world Rec-
ommendation Sytems. This insight is built from our successful paper
in a Recommendation System Challenge (Guillou et al., 2014), on a
real-world dataset.

• Finally, some conclusions are drawn on Chapter 5, and lines of future
work are drawn, to possibly extend research beyond the frame of this
thesis.

7

Chapter 2

Recommendation Systems

In this chapter, we first present and define Recommendation Systems (RS):
their goals, the variety of data they use for their tasks, and their applica-
tions. An overview is given over the wide range of approaches traditionally
applied to perform recommendation. An emphasis is especially put on Col-
laborative Filtering (CF) methods based on Matrix Factorization, which are
the most popular among RS methods, and will be used in our approaches in
the following chapters of this thesis. The second focus is put on evaluation
metrics and scenarios commonly used in the field of RS, since our evalua-
tion scheme will distinctly differ from these traditional methodologies.

Contents
2.1 Definition: The Recommendation Problem 8

2.1.1 Feedback . 8
2.1.2 Representation and Solutions 9
2.1.3 Goals of Recommendation Systems 11
2.1.4 Applications . 12

2.2 Approaches to Recommendation 13
2.2.1 Content-Based Filtering 14
2.2.2 Demographic Filtering 15
2.2.3 Knowledge-Based Recommendation 15
2.2.4 Neighborhood-Based Collaborative Filtering . . . 15

2.3 Collaborative Filtering: Matrix Factorization Techniques 17
2.3.1 Matrix Factorization and Low-Rank Approximation 17
2.3.2 Matrix Factorization Methods 19
2.3.3 Limitations . 27

2.4 Cold Start Issue . 28
2.4.1 Hybrid Recommendation Systems 28
2.4.2 Active Learning . 28

2.5 Incorporate Contextual Information 29
2.6 Evaluation of Recommendation Systems 30

2.6.1 Metrics . 30
2.6.2 Evaluation Scenarios 36

2.7 Learning to Rank . 39
2.8 Conclusion . 40

8 Chapter 2. Recommendation Systems

2.1 Definition: The Recommendation Problem

Recommendation (or Recommender) Systems (RS) are techniques or soft-
ware programs which aim at providing accurate or useful suggestions of
some items to a user (Resnick and Varian, 1997). User is the general term to
designate the entity to which the recommendation is provided, while Item
labels the product being recommended. Depending on the field of applica-
tion for the system, the user is usually an individual, but this term can also
designate a group of people, a company. . . while recommended items can
be as various as a computer to buy, a movie to watch, a song to listen to, a
news to read, etc.

After the user navigated on the RS or accepted a recommendation, some
feedback (a rating for example) is given to the system about the item pur-
chased or consumed. In order to suggest more personalized and appropri-
ate recommendations in future appearances of this user, the RS will make
use of all past interactions and feedback of the user. If available, the system
can potentially use as input other diverse sources of data, such as informa-
tion about the user or item. For instance, demographic information given
by the user to fill in his profile, like his age, gender, profession can be used
as User Model, while information about the item like the genre of a movie
or its director and actors can be used to build an Item Model. Social net-
work of a given user and his relations to other users can also be a source
of information. Finally, some information coming from the context, like the
location of the user or temporal information (the season, the current time of
the day. . .) can be included to improve the model and the recommendation
accuracy. A survey about the use of this additional information is available
in (Shi et al., 2014). However, the main information leading to personalized
recommendation to the user resides in the feedback he gives to the RS.

2.1.1 Feedback

Once an item has been recommended, a feedback is usually requested from
the RS to the user, in order to improve its model and make future recom-
mendations more accurate. The feedback given by a user to the RS can take
various forms and is usually divided into two sorts:

• The explicit Feedback is a feedback directly given by the user to the
system: the user’s involvement is thus required to obtain such infor-
mation. It is often given in the form of a rating on a numerical scale
such as the one-five stars scale often used in movie RS. Other forms
of explicit feedback exist (Schafer et al., 2007): a unary (or binary) an-
swer such as a "like" (and possibly "dislike") button, or on an ordinal
scale like "strongly disagree / disagree / neutral / agree / strongly
agree" answer to a questionnaire. Another possible explicit feedback
consists in a tag or a text comment about an item: this is possibly a
more helpful form of feedback for the system or other users as it con-
tains more information than a simple rating. However, such type of
feedback is more complex to integrate into the model.

2.1. Definition: The Recommendation Problem 9

• The implicit Feedback (Oard et al., 1998) can be collected without the
user giving directly his opinion to the system. It can be inferred from
any detectable user’s behavior, such as clicking on an item, book-
marking a page or news, putting an item into the basket, watching
a video or listening to a song entirely. . . The main advantage of im-
plicit feedback is that it does not require the user’s involvement, but
it can be more noisy than explicit feedback and needs to be treated
more carefully.

Notice that implicit feedback is more abundant than explicit feedback
due to its nature, but it is also less reliable as the true user’s preferences
are not directly expressed. Moreover, a feedback (especially implicit one)
usually needs to be preprocessed to be used correctly by algorithms.

2.1.2 Representation and Solutions

The feedback given by the user is usually represented in the form of a ma-
trix of ratings, where each user is a row of the matrix, each item is a column
of the matrix, and the entry in the matrix represents the rating given by the
user on a given item.

We now introduce some notations for the following sections about the
recommendation problem. We consider :

• N = {u1, . . . , uN} is the set of N users,

• M = {i1, . . . , iM} is the set of M items,

• R of size N ×M is the matrix of ratings representing users’ prefer-
ences,

• ru,i in R represents the tastes of user u with regards to item i,

• S designates the set of known entries of R,

• I(u) is the set of items i for which (u, i) ∈ S (the items for which the
user u gave a rating),

• J (i) is the set of users u for which (u, i) ∈ S (the users who have rated
item i).

The illustration in Figure 2.1 displays a recommendation scenario with
N = 5 and M = 6.

FIGURE 2.1: Example of a matrix of preferences used in a
RS, for five users and six items and with a 1 to 5 stars rating.

10 Chapter 2. Recommendation Systems

In this example, I(u3) = {i1, i2, i3, i5} and J (i3) = {u2, u3}. An empty
rating in the matrix signifies that no preference were given by the user on
the item (for example, user u1 did not indicate his preference about item
i3). The matrix of ratings is actually usually very sparse: the number of
items and users in a real-word RS grows very large, and a user will give his
preferences about a small fraction of all the items in the system.

From all the information available, the RS has to maximize a utility func-
tion f over the set Lu of items which can be recommended for each user u.
This function predicts how much a user would like the items. Algorithm 1
displays an algorithm for recommendation.

Algorithm 1: A recommendation algorithm.
Input: the user u,

the set of possible items to recommend Lu,
the size of the recommendation list s

1 1. Predict the score of the utility function f(u, i) for each item i ∈ Lu;
2 2. Create a list L′u by selecting the top s items with the highest value

for f(u, i);
3 3. Return L′u to recommend;

The set of possible items to recommend depends on the type of appli-
cation, and an item already rated does not always imply it cannot be rec-
ommended again. In a movie RS for example, it is not really advisable to
recommend movies for which the feedback has already been given recently,
as it is unlikely that people would want to watch the same movie one more
time right after watching it. On the opposite, a music RS can recommend
a song for which a high rating has recently been given, as the user would
probably like to listen to the song again if it suits his mood or current tastes.

Once the RS has a user and the list of possible items to recommend as in-
put, the recommendation problem is usually solved following two possible
sort of techniques:

• The first way is by doing Matrix completion, which means filling the
empty entries in the matrix of ratings. This is the most widespread
approach. The system will first make a prediction of the rating value
for every recommendable item for the target user, and then provide
the recommendation based on these predictions. In this case, the util-
ity function in the Algorithm 1 attempts to predict the rating.

• Another way is by using Ranking approaches, which is detailed in Sec-
tion 2.7. These approaches tackle the problem from a different per-
spective, assuming there is no need to predict a rating for all items.
In fact, only finding the correct order of preferences between items
which are being recommended is sufficient to satisfy the user. Rank-
ing approaches and evaluation are starting to gain ground due to the
flaws noticed in predictive evaluation (cf. Section 2.6 for more de-
tails).

2.1. Definition: The Recommendation Problem 11

Note that it is possible to create a ranking approach from the first method
which predicts ratings, simply by ranking items based on the predicted rat-
ings. However, there are more natural methods directly targeting at op-
timizing the order of recommended items. Regardless of the perspective
used, all Recommendation Systems aim to achieve the same goals which
are detailed in the next section.

2.1.3 Goals of Recommendation Systems

From a business point of view, the primary goal of a RS is of course to
increase the profit of the company, through a higher number of sales. To
reach this objective, the system has to be able to meet some requirements:

• Know what the user wants / Relevance: quite obviously, the RS has to
suggest items that are relevant to the users’ tastes, because users are
more likely to buy or consume items they have interest in. However,
solving this task alone is not sufficient to satisfy a user, as it is ex-
plained in the next point.

• Diversity, Novelty and Serendipity: firstly, if the RS always suggests
items of the same sort to a user, there is a risk that this user would
get bored or would not like any item. Thus, the system has to pay at-
tention to put items of different types, bringing diversity. Advertising
more diverse items also helps the system to gather feedback about a
wider set of products, and can be beneficial for future recommenda-
tion.

Secondly, even if it can be relevant, the recommended item also has to
be something the user has not already bought or experienced in the
past: some novelty is required.

Lastly, the serendipity implies to surprise the user by recommend-
ing items he does not expect. Compared to novelty, the suggested
item would belong to a category the user did not expect at all. This
can sometimes lead the user to widen its area of interest, and help
to increase sales diversity. Serendipity is tightly related to the explo-
ration/exploitation dilemma addressed in Chapter 3.

• User satisfaction and fidelity: finally, another goal of the RS is to in-
crease the user satisfaction and fidelity. A good user interface and
accurate recommendations might encourage the user to connect and
use the site again. Giving explanations about why a specific recom-
mendation has been provided is also usually appreciated by users.
User fidelity to a RS implies more feedback is received from this user,
leading to more refined knowledge of his tastes and consequently to
better recommendations for this particular user.

These key goals are common to all RS in any application case, and they
need to be integrated carefully during the implementation of the system.

12 Chapter 2. Recommendation Systems

2.1.4 Applications

The range of applications where recommendations can be done is wide and
diverse (Schafer et al., 2001). Here are the main fields in which recommen-
dation are applied nowadays:

1. E-commerce: the system is recommending to consumers some prod-
ucts they are likely to buy, like CDs or books (Linden et al., 2003).

2. Entertainment: the system recommends to the user items like movies
(Miller et al., 2003) , music. . . The profit is usually made from adver-
tising or subscription to the website.

3. Services: for example, the recommendation of apartments to rent, of
doctors, of travel packages. The service usually makes money by tak-
ing some fees out of the payment.

4. Social: recommendation of possible friends or online dating are the
two main uses of social recommendation. The profit is usually made
through advertising or subscription.

5. Content: examples are online news (Das et al., 2007), recommendation
of web pages, tweets (Chen et al., 2012), or display of ads.

The Table 2.1 displays a list of examples, with famous companies where
RS are used and the categories of items they recommend.

TABLE 2.1: Some examples of products to recommend and
some companies using RS for these products.

Item to recommend Company
Movies, TV shows Netflix, IMDb

Books, DVDs, Electronic supplies. . . Amazon
Online videos YouTube

News Google News
Music Deezer, Pandora, last.fm

Restaurants Yelp
Travel Tripadvisor

Room, Apartments Airbnb
Advertisements Google Search

Friends Facebook
Job offers or People LinkedIn

Each of these RS has its own characteristics and specific goals depending
on items to offer, and they all differ on the information available to build
the RS: sometimes the RS only uses the feedback, in other cases there can
be demographic information or item information. The feedback received
from users also depends on the application (for Music, it will usually be a
"like/dislike" explicit feedback and some implicit feedback from the listen-
ing behavior on songs, while for travel, it will be an explicit feedback made
of a textual comment and one or several ratings on a ordinal scale).

2.2. Approaches to Recommendation 13

Finally, to conclude this section, the Figure 2.2 makes an overview of the
recommendation process.

User profile Items information

Contextual
information

Recommendation

System

Past interaction /
 feedback

[
5 5 1 2 4

3 4
3 1 4 2
5 1 3 4

4 3 4 5
]

⏟
R

Recommended
item(s)

Prediction /

Ranking

1.

2.

3.

FIGURE 2.2: The recommendation process, with every type
of information the RS can eventually use.

All frames in blue represent the possible information taken as input, but
recommendation approaches do not necessarily use all of them. For ex-
ample, the Collaborative Filtering approaches usually only make their rec-
ommendations based on previous feedback. The red frame represents the
output of the RS. In this case, it consists in a list large of three items, but the
size of the list can potentially go from one to a high number of items.

In the next section, we now focus on the techniques used in the black
box in this Figure, which will make the prediction or Ranking. We give an
overview over traditional recommendation approaches in the next section.

2.2 Approaches to Recommendation

A large range of methods have been proposed to make accurate recommen-
dations. We give in this section a brief overview of the main categories of
algorithms, except the Collaborative Filtering (CF) methods using Matrix
Factorization. A specific section will be dedicated to these methods, as they
are the most successful and are also used in our approaches in the following
chapters. As this is only a short overview over the classical approaches, the
reader interested in more details can look into (Adomavicius and Tuzhilin,
2005; Shapira et al., 2011).

14 Chapter 2. Recommendation Systems

2.2.1 Content-Based Filtering

Content-Based Filtering methods use external information about the items,
such as keywords, tags, or profile written as texts in actual language to
perform recommendation (Lops et al., 2011). By using item features, the
system can provide recommendations of non-experienced items that have
a similar thematic to those he liked in the past. For example, if a user gives
a positive feedback about a musical artist where the description contains
the tags "rock" and "90s", the RS is able to recommend other artists with the
exact same tags (or similar ones), because the user will be likely to have an
interest in them too.

Content-based approaches make an analysis of the set of items for which
the user expressed a preference in the past. Based on the description of
these items, these approaches can build a profile of the user’s interests.
Then, this user profile is matched against other items’ description to decide
which item to recommend.

There are several advantages using these approaches:

• They only make use of the ratings of the target user to perform rec-
ommendation, they do not need ratings from other users.

• A new item in the RS can be recommended based on its features, even
if it has not been rated by any user. This solves the issue called item
cold-start (cf. Section 2.4).

• It is easy to provide an explanation to the user about why this item has
been recommended, since the content about the items like keywords
or textual profile is accessible to the system.

However, Content-Based recommendation techniques also come with im-
portant drawbacks:

• These methods cannot perform good recommendation for new users
who have perform little to no recommendation, as they need to have
information about which items the user likes before the first recom-
mendation. This is referred as user cold-start.

• The serendipity goal cannot be reached with such approaches, as they
tend to over-specialize over a set of items with similar content for a
given user.

• Finally, the biggest issue is that a good knowledge over the domain
of items is required to create the content used in the recommendation
process. Sometimes, only a partial knowledge can be captured by
the content, or even worse, it is also possible that no information is
available at all.

For more information about Content-Based Filtering, see (Pazzani and
Billsus, 2007; Lops et al., 2011)

2.2. Approaches to Recommendation 15

2.2.2 Demographic Filtering

This type of systems assumes the possibility of partitioning the set of users
based on their demographic profile (Krulwich, 1997; Pazzani, 1999). The
demographic features such as the country or age of each user will decide to
which class he belongs to. Then, a set of rules decides which recommenda-
tion to perform depending on the class to which the user belongs.

This type of approaches is similar to classification or regression tech-
niques in which the input features are the demographic features and the
output is the user’s preferences. They usually do not perform very well as
users’ tastes cannot be inferred solely from their demographic features, but
they can add some predictive power if combined with other methods, in
hybrid methods for example (cf. Section 2.4.1).

2.2.3 Knowledge-Based Recommendation

A Knowledge-Based RS (Trewin, 2000) acts in a specific context, where the
user is requesting a specific content he wants. This adds a constraint to
which recommendation has to be provided. These methods are particu-
larly used in applications where the interaction with the user is rare, like
RS about cars or travel packages, since in most cases the user will only use
the Recommendation System one to very few times. They aim at solving
the lack of ratings given by the user by asking him to give some constraints
to restrict the set of possible recommendations.

Methods used for Knowledge-Based recommendation are close to the
ones used in Content-Based recommendation, with the main difference be-
ing the previous feedback or interactions of the user would not be useful as
in the Content-Based case. The system will rather find similarity between
the user’s current request or needs, and the description of the items.

2.2.4 Neighborhood-Based Collaborative Filtering

These approaches are part of Collaborative Filtering (CF) algorithms, but
are often referred as "Memory-based" methods, as opposed to the "Model-
based" methods among which lies Matrix Factorization techniques.

The basic idea behind CF, whether the approach is Memory-based or
Model-based, is that users who adopted the same behavior in the past will
also tend to agree in the future. The term "Collaborative" is used here to
signify that the model will discover underlying relations between users and
items, and use it to provide personalized recommendations for each user.

CF methods usually only rely on past interactions and feedback (either
implicit or explicit) to build their model, which explains their popularity in
the RS field. Compared to previous methods like Demographic or Content-
Based Filtering, no additional information or knowledge about items is
needed to perform recommendation. Another advantage is that the effec-
tiveness of the RS also increases as the user provides more feedback.

16 Chapter 2. Recommendation Systems

Neighborhood-Based Approaches were among the first approaches at
the beginning of the research on RS. They are usually defined in two ways
(Desrosiers and Karypis, 2011):

• User-based CF The assumption here is that similar users share similar
interests, and as a consequence, the rating for a user u on an item i
which has not been experienced yet can be estimated from the ratings
of users similar to u. These similar users are called "neighbors". To
discover neighbors, a similarity function is used between the active
user and others (e.g. the rows of the rating matrix).

• Item-based CF (Deshpande and Karypis, 2004) In a similar way, one
can estimate the rating for a user u on the item i from the ratings
given by the user on items similar to i. In this case, the "neighbors"
are the items similar to i. They are found based on the similarity score
computed between the current item and other items rated by the user
(e.g. the columns of the rating matrix).

After the closest neighbors have been discovered, the score for an item is
computed by weighting every neighbor’s rating by its similarity score. For
example, with the User-based method, the predicted rating r̂u,i would be

r̂u,i =

∑
v∈N(u) sim(u, v) ∗ rv,i∑

v∈N(u) sim(u, v)
, (2.1)

where N(u) represents the set of neighbors of u, and sim(u, v) is the score
of similarity between user u and user v. A close neighbor will then have
more importance in the final prediction.

Similarity measures play here a key role, as they are both used to find
neighbors and act as weight in the prediction of the rating. The most widely
used similarity functions are Pearson Correlation, Cosine, or Adjusted Co-
sine, but other similarity measures have also been proposed due to some
drawbacks of these three measures (Ahn, 2008; Liu et al., 2014)

The normalization of the rating is another aspect which has been studied
about the Neighborhood-Based methods (Herlocker et al., 2002), as users
might rate items in different scale: some users might rate all items with a
low score while others might have an higher average rating. For this reason,
the rating in the prediction equation is often replaced by the mean-centered
rating (Breese et al., 1998), which is equal to the rating minus the mean
rating for a user (or item depending on the neighborhood method used).
Another variant of the prediction function is using Z-score by further di-
viding the mean-centered rating by the standard deviation of the user’s (or
item’s) observed ratings, for User-based (or Item-based) approaches (Her-
locker et al., 2002)

Finally, if K-nearest-neighbors (K-NN) is the standard approach to find
neighbors of the user or item, it is possible to add a filtering method to ex-
clude from the neighbors those who are too weakly correlated to the target
user or item. Other methods to find the neighborhood have also been in-
vestigated: for example, graph-based methods which aim at determining
neighbors from user-item or user-user graphs have been discussed in (Ag-
garwal et al., 1999; Fouss et al., 2007).

2.3. Collaborative Filtering: Matrix Factorization Techniques 17

Among the User-based and Item-based methods, the Item-based would
often provide more relevant recommendations since the user’s own ratings
are used to predict the score of other items, rather than using other user’s
preferences. Indeed, other users might have overlapping interests but also
different ones from the target user. On the other hand, in some cases, this as-
pect of User-Based methods can also bring some diversity by recommend-
ing items outside of the interests of the user.

Neighborhood-Based Recommendation has the advantage to be easily
tuned as few parameters are used in this technique. They are also intu-
itive for the developer of the RS to implement, and a simple explanation
can be given to the user at the time he receives the recommendation (such
as showing statements like "Users who liked this item also liked this" or
"We recommended these movies because you watched and liked [title of a
movie]").

However, the Neighbor-Based approaches show some drawbacks: first,
enough ratings need to be collected, otherwise the step of finding neighbors
would be unsuccessful, and the coverage of rating prediction might be very
small. Then, as the number of users or items grows to become very large,
computing similarity becomes impractical. For these reasons, the second
sort of CF approaches are often preferable in RS applications.

2.3 Collaborative Filtering: Matrix Factorization Tech-
niques

Apart from the Memory-Based methods which find neighbors based on the
previous ratings, another sort of Collaborative Filtering emerged, known as
Model-Based approaches. Instead of using all previous ratings to make a
prediction, they first build a model from theses ratings, and use this model
to make further predictions and recommendations.

Various approaches can be used to build the model, such as clustering
(Ungar and Foster, 1998; George and Merugu, 2005), Bayesian methods
(Miyahara and Pazzani, 2000), or Neural Networks (Salakhutdinov et al.,
2007). However, this section will only give on overview on Matrix Factor-
ization (MF) methods for recommendation, which are part of Latent Factor
Models. A more detailed presentation will be made compared to previ-
ous sections, as they are the most popular techniques, and our methods
described in further chapters are based on MF.

2.3.1 Matrix Factorization and Low-Rank Approximation

The main idea behind MF is that overall preferences of each user can be
decomposed into a set of features that represent and weight the interaction
between the tastes of the user and the items. They are part of Collabora-
tive Filtering approaches as they suppose that a large portion of rows and
columns of the rating matrix are highly correlated.

18 Chapter 2. Recommendation Systems

The central hypothesis of Matrix Factorization is that a true rating ru,i
made by a user u on an item v is the product between a user feature vector
U∗u and an item feature vector V∗Ti . As a consequence, the data in the ma-
trix can be well-estimated using a low-rank approximation, by projecting
the users and items features into a low dimension space.

The low-rank approximation provides a lower dimensional representa-
tion of the original high-dimensional rating matrix R of size N ×M . If we
consider a low-rank approximation of size k, the matrix U as the users la-
tent features, of size N × k and the matrix V as the items latent features of
size M × k, then the rating of a user u on an item i is estimated as

r̂u,i = UuV
T
i , (2.2)

where Uu and Vi correspond respectively to the line of user u in U and the
line of item i in V. Here, each row of U corresponds to a user and represents
the factors influencing this user’s choice, while each row of V maps an item
into the same k-dimensional space.

The Figure 2.3 represents how Matrix Factorization works. The blue-
filled rectangles represent an estimated rating in the matrix and its corre-
sponding feature vectors for the user u and item i in U and V.

R U

VT

N ≈

Mk

r̂u , i U u

V i

M

k

N

FIGURE 2.3: Representation of Matrix Factorization.

Let us take a concrete example to understand this concept: if each fea-
ture of a row in V represents a movie genre, then the values in a row of
V would represent for a movie its affinity to each genre. Similarly, each
value of U would give an affinity score representing how much a user likes
a genre. Then, the rating of the user on this movie is estimated as the sum
of all products between the affinity of the user to a given genre and the
affinity of the item to this same genre. This example is given to understand
the concept of latent user and item features, but in practice, it is often not
possible to interpret the semantic of each latent factor.

Compared to Neighbor-based methods, MF techniques have a number
of advantages:

2.3. Collaborative Filtering: Matrix Factorization Techniques 19

• Speed: the model learned with MF is learned very quickly compared
to neighborhood-based models, where the similarity computation is
quadratic in number of users or items. Furthermore, the representa-
tion learned through MF is compact since the dimension is reduced,
and the prediction can be made quickly.

• Space: the low-rank approximation allows to gain space to store the
model.

• More generalization power: by using regularization during the learn-
ing phase of the model, Model-based approaches can reduce overfit-
ting of the data.

In the Section 2.3.2, we describe the main models of Matrix Factoriza-
tion, which mostly differ by the nature of the objective function, or by the
constraint imposed on U and V.

2.3.2 Matrix Factorization Methods

Several approaches have been used to obtain a low-rank representation of
the matrix of ratings. We present here a few of them which are among the
most popular to perform MF.

Objective

In Matrix Factorization, the users and items feature matrices U and V have
to be found by minimizing the squared error over known ratings in the set
S:

(U,V) = argmin
U,V

∑
∀(u,i)∈S

(
ru,i −UuV

T
i

)2
. (2.3)

However, since a large part of the ratings in the matrix are unknown,
usual models built for RS are adding a regularization term to solve the fol-
lowing equation, e.g.:

(U,V) = argmin
U,V

∑
∀(u,i)∈S

(
ru,i −UuV

T
i

)2
+ λ(||U||2F + ||V||2F) , (2.4)

where ‖ · ‖2F denotes the squared Frobenius norm, and λ is a regularization
parameter.

When trying to solve the minimization problem in Equation (2.4), the
second term defining the regularization has received a particular attention
in research (Srebro et al., 2004). Since only few entries of the ratings ma-
trix are available for the model to learn, the model can easily overfit or be
influenced by extreme values. The goal of the regularization is to reduce
chances of large values of features for values in U and V. Thus, choosing
an adapted regularization is a crucial aspect in MF methods.

In the following, we describe the three main approaches which adopt
the perspective of solving this minimization problem.

20 Chapter 2. Recommendation Systems

Optimization Methods

We present in this section three approaches that received a lot of attention
in the field of RS to solve the minimization problem: Singular Value De-
composition, Stochastic Gradient Descent and Alternating Least Squares.

SVD The Singular Value Decomposition (SVD) of a full matrix R with N
users and M items is defined as

R = PΣQT , (2.5)

where P is aN×N orthogonal matrix, Q is aM×M orthogonal matrix, and
Σ is aN×M rectangular diagonal matrix with non-increasing non-negative
singular values on the diagonal.

The properties of SVD assure that solving the Equation (2.3) for the ma-
trix R with SVD gives the best low-rank linear approximation (from the
Eckart-Young theorem (Eckart and Young, 1936)): the approximation found
is thus optimal in Frobenius norm. From the SVD decomposition, the ma-
trix R can be approximated by choosing the first k singular values of Σ and
reducing the matrices P and Q to their first k columns.

The application of standard SVD in the case of RS raises the issue of
sparsity. The SVD method requires a full matrix to be used, while the ma-
trix of ratings contains many (user-item) couples for which no preference
has been specified. For this reason, some solutions have been applied in
the RS literature, such as filling the entries in the matrix with some default
values, for example zero or the average rating of each item or each user
(Kurucz et al., 2007). The imputation in practice can be very expensive as it
significantly increases the amount of data, and that inaccurate filling of the
matrix might distort the data.

Some works done at the end of the 2000s have shown that it is more ef-
ficient to find the decomposition by only using observed ratings (Paterek,
2007; Takács et al., 2007; Koren, 2008), which is the focus of SGD and ALS
methods described thereafter. Since the problem is solved only using ob-
served ratings, regularization is always used, so we consider all approaches
in the following to target the minimization problem described in Equation
(2.4).

SGD Stochastic Gradient Descent (SGD) first initializes user and item la-
tent features U and V randomly. Then, for a given number of training
rounds or until convergence, the algorithm loops through all observed en-
tries in the matrix. The prediction error is calculated for each entry:

eu,i = ru,i −UuV
T
i , (2.6)

and then, the latent features are updated with the following update rules:

Uu ← Uu + α · (eu,i ·Vi − λ ·Uu) , (2.7)

2.3. Collaborative Filtering: Matrix Factorization Techniques 21

Vi ← Vi + α · (eu,i ·Uu − λ ·Vi) , (2.8)

where α is the learning rate of the gradient descent, and λ is a regulariza-
tion parameter to avoid overfitting. The algorithm of SGD is described in
Algorithm 2. The stopping criterion is satisfied after a given number of it-
erations, but the algorithm can also be stopped prematurely if the overall
error (between the predicted ratings and the actual ratings) goes below a
given level.

Algorithm 2: Stochastic Gradient Descent.
Input : Matrix of observed ratings: R,

Set of known ratings: S,
regularization parameter: λ,

Output: User features matrix: U
Item features matrix: V

1 Initialize U and V (with randomized values for example) ;
2 while Stopping criterion not met do
3 for (u, i) ∈ S do
4 eu,i = ru,i −UuV

T
i ;

5 Uu ← Uu + α · (eu,i ·Vi − λ ·Uu);
6 Vi ← Vi + α · (eu,i ·Uu − λ ·Vi);
7 end
8 end

The complexity of SGD per iteration is O(|S| k), with k being the size
of the approximation. The SGD method is efficient but is sensitive to the
parameter chosen for the learning rate, and also to the initialization of U
and V. Some work has been done to select an adaptive α through each
iteration to avoid local minima and make the convergence faster (Gemulla
et al., 2011). Finally, SGD can be parallelized, and a variety of ways have
been proposed such as (Gemulla et al., 2011; Recht et al., 2011). However,
the parallelization remains challenging, especially compared to the one of
ALS presented below.

ALS Alternating Least Squares (ALS) (Jain et al., 2013) also aim at solving
the Equation (2.4). Because both U and V are unknown, the objective func-
tion to minimize in Equation (2.4) is non-convex. The idea behind ALS is to
solve the problem in an iterative manner, by repeatedly executing the two
following steps:

1. Holding the item latent matrix V fixed and solving the quadratic
equation for the user matrix U.

2. Holding the user latent matrix U fixed and solving the least-square
problem for the item matrix V.

When one of these two is taken as a constant, the optimization problem
is indeed quadratic and can be optimally solved. The algorithm loops be-
tween these two steps until convergence or for a given number of iterations.

22 Chapter 2. Recommendation Systems

This approach is considered more stable than SGD, since ALS does not
need a learning rate parameter and usually requires less iterations to obtain
a good enough model. The reason behind that is that at each step of ALS,
the exact minimum is found: for example, repeating step 1 two times in a
row will have no effect on U as the minimum with the item latent matrix
V fixed has already been found. It means that generally, a single iteration
of ALS will move much further than a single iteration of SGD, and fewer
iteration will be needed for convergence.

When V is considered fixed, then U is determined by solving a regular-
ized linear least squares and the optimal value for V is given by

U = (VVT + λI)−1VRT , (2.9)

where I is the identity matrix. Similarly, the solution for V when U is fixed
is given by

V = (UUT + λI)−1UR . (2.10)

The analytical solution can be computed since it involves inverting a
small k×k matrix and multiplication of sparse matrices. With I(u) denoting
the set of items rated by user u and J (i) denoting the set of users who rated
item i, the ALS is described in detail in Algorithm 3.

Algorithm 3: Alternating Least Squares.
Input : Matrix of observed ratings: R,

Set of known ratings: S,
regularization parameter: λ,

Input/Output: User features matrix: U
Item features matrix: V

1 Initialize U and V (with randomized values for example);
2 while Stopping criterion not met do
3 for u ∈ 1, . . . N do
4 Uu ← (

∑
i∈I(u)ViV

T
i + λI)−1

∑
i∈I(u)ViR

T
u,i;

5 end
6 for i ∈ 1, . . .M do
7 Vi ← (

∑
u∈J (i)UuU

T
u + λI)−1

∑
u∈J (i)UuRu,i;

8 end
9 end

The stopping criterion can either be triggered when a given number of
iterations is reached, or when a satisfying score on an evaluation measure
(like RMSE) is reached on a probe dataset. Remark that it is almost always
faster to solve the linear system

∑
i∈I(u)ViV

T
i + λI =

∑
i∈I(u)ViR

T
u,i in-

stead of inverting the matrix (
∑

i∈I(u)ViV
T
i + λI) as written in the algo-

rithm (and similarly for the inversion in the update of V).

Updating each user vector Uu costs O(|I(u)|k2 + k3) and updating each
item vector Vi costs O(|J (i)|k2 + k3), which gives a total complexity for
one iteration of ALS of O(|S|k2 + (N +M)k3). Although this is a high time
complexity, ALS is well-suited for parallelization as shown in (Zhou et al.,
2008).

2.3. Collaborative Filtering: Matrix Factorization Techniques 23

There are several well-known extensions of ALS: one is called Alternat-
ing Least Squares with Weighted-Lambda-Regularization (ALS-WR), de-
scribed in (Zhou et al., 2008), and which uses a specific regularization. The
ALS-WR algorithm is given in detail in Chapter 3 as we use this variant of
ALS in our approach. Another application of ALS with a weighted version
suits particularly well in the setting where the feedback is implicit, with
many zero values (Hu et al., 2008).

Incorporating Bias

The MF minimization problem as described in Equation (2.4) has many
variations to make more complex models and add some terms to capture a
specific effect. A popular variation of the MF is to add some term capturing
the bias embedded in the ratings.

Suppose a RS where the rating scale ranges from 1 to 5 stars. Let us
consider two users u1 and u2 whose respective average ratings on items
are 1.5 and 4.5. Then, if u1 gives a rating of 3 to an item, the meaning of
this rating is really different than if the user u2 was rating the same item
with the same rating of 3. More generally, explicit feedback data is highly
biased: some users rate more extremely than others, some items tend to
get higher ratings than others. . . Regularization is then not enough to make
good generalization and a solution is to explicitly model biases into the
model (Koren et al., 2009).

A standard way to incorporate the biases is to incorporate the rating bias
into the prediction. A first-order approximation of the bias bui for a user u
and an item i is defined as

bui = µ+ bi + bu , (2.11)

where µ represents the overall average rating in the whole dataset, bu rep-
resent the observed deviation of user u and bi is the observed deviation of
the item i. For example, if the overall average rating in a dataset is 3.2 stars,
if a user u rates in average 0.5 stars higher than other users, and if an item
i receives in average 1.5 stars less than other items, then the estimate for
the bias would be bui = 3.2 + 0.5 − 1.5. The system then minimizes the
following squared error function:

(U,V) = argmin
U,V

∑
∀(u,i)∈S

(
ru,i − µ− bi − bu −UuV

T
i

)2
+ λ(||U||2F + ||V||2F) .

(2.12)

Apart from the bias on ratings, other aspects can also be added into the
function to minimize: some examples are (Koren, 2010) which is tackling
the temporal dynamics, or (Hu et al., 2008) which targets a problem with a
dataset containing implicit feedback.

24 Chapter 2. Recommendation Systems

Other Models

Other particular models have been proposed to manage MF, which are spe-
cific due to their perspective to approach the problem, like PMF which is
designed from a probabilistic view, or NMF which add constraints to the
optimization problem. Another way to represent the problem is also to use
Factorization Machine, which is a generalization of previous models and
can possibly integrate extra information (cf. Section 2.5).

PMF Another possible approach for Matrix Factorization is the proba-
bilistic one, such as the Probabilistic Matrix Factorization (PMF) (Salakhut-
dinov and Mnih, 2008b). In this case, Gaussian priors are put on user and
item feature vectors, with respective hyperparameters σ2U and σ2V :

U ∼ N (0, σ2UI) , (2.13)

V ∼ N (0, σ2V I) , (2.14)

and rating are generated according to a Gaussian with hyperparameter σ2

as:
ri,j |U,V ∼ N (UT

i Vj , σ
2) . (2.15)

If the matrix R is of sizeN ×M , k is the dimension of the latent features,
and Iu,i is defined as 1 if ru,i is a known rating and 0 otherwise. The log of
the posterior distribution over user and movie features is given by:

ln p(U,V|R, σ2, σ2V , σ2U) =− 1

2σ2

N∑
u=1

M∑
i=1

Iu,i(ru,i −UuV
T
i)2

− 1

2σ2U

N∑
u=1

UT
uUu −

1

2σ2V

M∑
i=1

VT
i Vi

− 1

2

(
κ lnσ2 +Nk lnσ2U +Mk lnσ2V

)
+ C ,

(2.16)
where κ is the number of known entries, C is a constant independent of the
parameters, . Maximizing the log-posterior over movie and user features is
equivalent to minimizing the objective function:

E =
1

2

 ∑
∀(u,i)∈S

Iu,i(ru,i −UuV
T
i)2 + λU

N∑
u=1

‖Uu‖2F + λV

M∑
i=1

‖Vi‖2F

 ,

(2.17)
where λU = σ2/σ2U and λV = σ2/σ2V . A gradient descent in U and V can
then be used to find a local minimum of this objective function.

While we recover an objective function similar to the one in Equation
(2.4) (the only difference is that there are specific regularizations λU and λV
for the user and item features respectively, instead of a single regulariza-
tion parameter), the probabilistic point of view allows for extensions of this
formulation such as a Bayesian version BPMF (Salakhutdinov and Mnih,
2008a), or the use of side information (Ma et al., 2011).

2.3. Collaborative Filtering: Matrix Factorization Techniques 25

NMF Non-negative Matrix Factorization (NMF) adds a constraint about
U and V on the optimization formulation, where both matrices have to be
non-negative (i.e. have no negative elements). NMF approaches are mostly
used in RS in the case where the feedback stored in the rating matrix is an
implicit feedback with unary ratings (for example, we only know the user
listened to a song, or bought an item, which are represented by a rating of
1 in the matrix, but other preferences are all unknown).

NMF can be solved iteratively by using the following rules to update the
matrices U and V (Lee and Seung, 2001):

ui,j ← ui,j
(RV)i,j

(UV TV)i,j
∀i ∈ 1 . . . N,∀j ∈ 1 . . . k , (2.18)

vi,j ← vi,j
(RTU)i,j

(V UTU)i,j
∀i ∈ 1 . . .M,∀j ∈ 1 . . . k . (2.19)

In order to prevent divisions by 0, small values are sometimes added
to the denominator of both update equations. The entries of U and V are
initialized to random values in [0,1] and the update rules are executed until
the convergence of both matrices.

As in other types of MF, a regularization can be used to improve the
quality of the solution (Pauca et al., 2006). Finally, NMF can also be per-
formed through ALS instead of using Gradient Descent, such as in (Kim
and Park, 2008).

NMF methods do not show any particular improvement in accuracy
compared to other methods, but they have the advantage to be more in-
terpretable than standard MF models, as all features of U and V are non-
negative. For specific applications of Non-Negative Matrix Factorization in
the field of RS, see (Hofmann, 2004; Zhang et al., 2006).

Factorization Machine Factorization Machines (FM) (Rendle, 2012) are a
generalization of latent factor approaches, and approaches such as SVD can
be viewed as special cases of this approach. They have shown a lot of suc-
cess in online competitions about Recommendation Systems or Machine
Learning in general. The idea behind FM is to model the rating as a linear
combination of interactions between input variables: as such the FM can
be compared to Support Vector Machines (SVM) with a polynomial kernel,
which allows the FM to perform well on sparse data.

For a set of N users and M items, the input for FM can be considered
as a flatten version of users and items of dimension P = N + M , where
each training row is a concatenation between a binary representation of
the active user and a binary representation for the active item. The output
target to learn is then the rating for this user on this item. Every training
example represents a given rating for one user and one item. The power
of FM is that additional information such as external information about the
user, the item, or context information can be added really easily by simply
concatenating it to the training example.

26 Chapter 2. Recommendation Systems

The Figure 2.4 gives an example of training data for FM, with some ad-
ditional information. Refer to Section 2.5 for more information about inte-
grating contextual information in models.

1 0 0 ... 1 0 0 0 ... 40 0 1 ... 0 1 0 ... 7

1 0 0 ... 0 0 1 0 ... 40 0 1 ... 1 0 0 ... 21

0 1 0 ... 1 0 0 0 ... 24 0 1 ... 0 1 0 ... 19

0 0 1 ... 0 0 0 1 ... 35 1 0 ... 1 0 1 ... 15

0 0 1 ... 0 1 0 0 ... 35 1 0 ... 0 0 1 ... 16

0 0 1 ... 0 0 1 0 ... 35 1 0 ... 1 0 0 ... 19

u1 u2 u3 ... i1 i2 i3 i4 ... age M F ... SF Act Com ... hour

User User information Item information Time

x
1

x
2

x
3

x
4

x
5

x
6

y
1

y
2

y
3

y
4

y
5

y
6

5

3

3

4

1

2

Feature vector x Target y

FIGURE 2.4: Example of Factorization Machine input (user
and item binary representation, and external or contextual

information) and output rating.

Factorization Machine have strong expressiveness power and efficiency,
as they can take in input an arbitrary feature space, and make the rating
prediction by using pairwise interactions between the factors. The model
equation for FM of degree 2, where only the second order interaction are
learned, is defined as

ŷ(x) = w0 +
P∑
i=1

wixi +
P∑
i=1

P∑
j=i+1

〈vi, vj〉xixj , (2.20)

where the model parameters are w0 representing the global bias, wi mod-
eling the strength of the i-th variable, and ŵi,j = 〈vi, vj〉 which models the
interaction between the i-th and the j-th variable. Even though the number
of interaction terms seems large, most of them would be evaluated to zero
in the sparse settings. This is why FM are sometimes considered not well
adapted to dense setting, and mostly suit a sparse input.

Through feature engineering, the FM can mimic some of the best spe-
cialized MF models such as SVD++. Several methods of optimization can
be used to solve the optimization problem, and Rendle introduced three
of them in (Rendle, 2012): the Stochastic Gradient Descent, the Alternating
Least-Squares, and the Markov Chain Monte Carlo inference, which are all
implemented in the library libFM to use FM models 1.

1http://www.libfm.org/

2.3. Collaborative Filtering: Matrix Factorization Techniques 27

2.3.3 Limitations

MF-based methods have been among the most popular models for RS since
the Netflix prize (Bennett et al., 2007). However, these do not come without
limitations, which we list here briefly.

1. Cold-start: The cold-start issue happens when new items or new users
enter the system. The CF recommendation engine cannot provide
suggestions to unknown users, or about unknown items in such cases
because they use only the past feedback provided by users or about
the items (a CF RS would have no past feedback for a user or an item
which are unknown until now). The Section 2.4 gives more details
about the cold-start issue, and introduce some of the solutions found
to reduce it.

2. Item trend and obsolescence: In dynamical systems, items are pos-
sibly inserted and deleted quickly, or they see their trend grow or
decrease quickly through time. A good example for this situation are
RS targeting at news. The RS model needs to update and adapts very
quickly, and the maintenance of the model via incremental update or
recalculation is required. The use of the contextual information (time
for example) as depicted in Section 2.5 can sometimes help to inte-
grate such effects into the model.

3. Metrics to optimize: The CF methods presented in the previous sec-
tion target at predicting unknown ratings, and aim at optimizing the
quadratic error between the predicted rating and the real rating. Yet,
in real recommendation, the user’s satisfaction only depends on the
RS being able to detect the top preferences of the user, as he bears in-
terest only in the top items which are recommended to him. For this
reason, in recent years, the interest of the RS community has shifted
from trying to predict accurately ratings to being able to rank items
correctly, and Learning to Rank methods have started to emerge. A
good example of this shift is the Challenge organized by the Rec-
sys conference in 2014, where the evaluation focused on optimizing a
rank measure instead of a prediction metric, and where our approach
mostly based on Learning To Rank algorithm obtained the best re-
sults (Guillou et al., 2014). Refer to Section 2.6.1 for a description of
prediction and ranking metrics, and go to Section 2.7 for an overview
of Learning to Rank approaches.

4. Security: In collaborative RS, some users may try to influence the sys-
tem by creating fake profiles and affect the system by giving either
high ratings to some items, making them more likely to be recom-
mended, or by lowering the ratings of competitor’s items, making
them less likely to be suggested by the RS. The protection of the RS
against attacks to build trustworthy systems is addressed for example
in (Mobasher et al., 2007)

In the next sections, we focus on these limitations and solutions that
have been proposed to solve them.

28 Chapter 2. Recommendation Systems

2.4 Cold Start Issue

The cold start issue appears due to the lack of information for the system
about a user or an item. These two situations are often referred as user
cold-start and item cold-start respectively. It is usually the most challenging
situation for CF Matrix Factorization approaches, since these methods rely
purely on the collected ratings about user and items. As a consequence, two
fields of research have looked into this issue and propose some solution.
The first one created some RS called Hybrid RS, by combining CF methods
with Content-Based recommendation to reduce the cold-start by using ex-
ternal information. The second one is the field of Active Learning, which
considers the problem from a different point of view and aims at learning
the profile of the user as quickly as possible by requesting the user to rate
at the beginning some items which would bring as much information as
possible to learn the user features.

2.4.1 Hybrid Recommendation Systems

As CF approaches work with the preferences of users, and Content-Based
methods rely on users or items information (or Demographic methods us-
ing user’s demographic information), they all use different sources of input
to make prediction, and have their own advantages or weaknesses. Hy-
brid RS (Burke, 2002) make the assumption that various sources of input
are available at the same time, which allow to make use of different recom-
mendation approaches inside one recommendation framework, and com-
bine them to minimize their disadvantages.

The combination of models can either be designed as an ensemble (mul-
tiple predictions from different RS are combined into a single prediction)
like in (Jahrer et al., 2010; Wu, 2007), or can integrate directly the differ-
ent methods into one more complex RS structure to make the prediction
(Claypool et al., 1999). Finally, in the situation where a list of items is rec-
ommended, the RS can simply make use of each model separately and com-
bine their recommendation to form the list. A good example of this latter
approach is the Amazon website, where different parts of the screen indi-
cate a recommendation performed by one kind of algorithm (for example:
"Similar products" based on Content-Based methods and "The client who
bought this item also bought . . . " based on Neighborhood CF approach).

2.4.2 Active Learning

Before being used in Recommendation Systems, Active Learning is origi-
nally a technique used in semi-supervised machine learning, where a learn-
ing algorithm has a limited budget about the number of training points to
learn a model, and has to query a user about a limited number of training
examples. These data points have to be chosen in order to maximize the
prediction accuracy of the algorithm.

2.5. Incorporate Contextual Information 29

The problem is very similar in RS in the cold-start situation for a user:
the system has to query the user to model his preferences, but cannot re-
quire him to give a rating to many items, as the process of acquiring rating
is time-consuming and users are not willing to provide some ratings with-
out benefit. Active learning approaches focus on finding which items to
recommend at first to gather as much information as possible about the
user’s preferences. For more details about Active Learning, the reader can
refer to (Rubens et al., 2011).

2.5 Incorporate Contextual Information

In a similar fashion to Hybrid RS, some RS have attempted to use as much
as possible information available to them by integrating contextual infor-
mation into their model (Adomavicius and Tuzhilin, 2011). The main ex-
amples of contextual information are:

• Social information: in the case of a movie RS, a user might want dif-
ferent recommendations depending on when he is with his friends or
when he is with his family.

• Temporal information: it is a well-known phenomena that some sales
depend on the season, especially in the clothing industry. Depending
on the time of the day, on the day of the week, or on the season, users
do not always have the same preferences concerning their recommen-
dation, and including such information can help to greatly improve
the recommendation accuracy. (Campos et al., 2014) (Koren, 2010)

• Location information: more and more users are installing mobile ap-
plications to listen to music, search for a restaurant, or buy items on-
line. The location information is thus tightly related to the rise of rec-
ommendation on mobile platforms. Through the GPS, the location of
user is available and can be used by the RS (Levandoski et al., 2012;
Yang et al., 2008). For instance, some users might want to listen to a
specific kind of music when resting at home, and a different one when
being at the office.

Compared to usual MF approaches, the use of the context adds a di-
mension to the input space, and the rating data does not consists in a rat-
ing matrix anymore but is rather a 3-dimensional cuboid corresponding to
user, item and context. If several contexts are used at the same time, then
the space of the representation for ratings would become multidimensional
(Adomavicius et al., 2005). There are several ways to solve the recommen-
dation problem with this sort of input. The first one is the use of Factoriza-
tion Machine presented in Section 2.3 as they can easily integrate context
(Rendle et al., 2011). Other approaches often make use of tensor factor-
ization, with the largest part of the research focusing on the integration of
temporal dynamic. (Karatzoglou et al., 2010; Xiong et al., 2010).

30 Chapter 2. Recommendation Systems

2.6 Evaluation of Recommendation Systems

To evaluate the performance of RS, some criteria or metrics are necessary, as
well as a proper evaluation methodology (Herlocker et al., 2004; Shani and
Gunawardana, 2011). This is a crucial step in the recommendation process,
as a misleading evaluation of the RS could lead to the loss of customers and
profit for a company. In this section, we first go over the range of evalua-
tion metrics, and then describe the evaluation methodologies and scenarios
traditionally set up.

2.6.1 Metrics

A broad range of measures have been used throughout the research on RS.
All these measures focus on a different utility function and goal. It is possi-
ble, and even recommended to evaluate a RS on different measures to test
its robustness on different criteria.

Prediction Accuracy

As described before, the CF approaches have historically aimed at predict-
ing ratings through Matrix Completion methods. As a consequence, pre-
diction accuracy metrics have been massively used in the field for a long
period to perform the evaluation of RS.

Given a set of hidden ratings in a test set T , the RS is evaluated through
its prediction for these hidden ratings, by comparing how close they are
from the real ones. We denote the predicted rating on the item i by the user
u as r̂u,i, and ru,i is the real rating. The most widely adopted measures are:

• The Mean Absolute Error (MAE) measures the average absolute de-
viation between a real and a predicted rating. It is easy to compute,
but does not penalize large errors:

MAE =
1

|T |
∑

(u,i)∈T

|ru,i − r̂u,i| . (2.21)

• The Mean Squared Error (MSE). Compared to MAE, MSE empha-
sizes large errors.

MSE =
1

|T |
∑

(u,i)∈|T |

(ru,i − r̂u,i)2 . (2.22)

• The Root Mean Squared Error (RMSE) is the square-root of the MSE
value, and it is often employed instead. It was the standard metric
adopted for the Netflix Prize (Bennett et al., 2007), and has been used
in a large number of Collaborative Filtering papers.

RMSE =
√
MSE . (2.23)

2.6. Evaluation of Recommendation Systems 31

For all these measures, the lower the score, the better the predictive
power of the system is. However, such metrics put a strong emphasis on
popular items, and items with few ratings would not have much influence
on the final evaluation score. For example, a system in which almost all rat-
ings are around 3 in a 1 to 5 stars scale would get a good evaluation score
by predicting a 3 for every item, while it would be more important from
the point of view of the user to put more weight on high ratings to be able
to correctly predict them. For a more detailed review on the advantages or
disadvantages of MAE and RMSE, see (Willmott and Matsuura, 2005; Chai
and Draxler, 2014).

These prediction accuracy measures have been targeted for the evalu-
ation in a high proportion of RS papers in the 2000s, but some researches
have pointed the fact that focusing on accuracy can hurt the user’s expe-
rience (McNee et al., 2006), and evaluation metrics have slowly shifted to
other measures.

Information Retrieval measures

If prediction accuracy metrics measure how well the system can estimate
ratings, they do not focus on the user’s satisfaction (i.e. does the user re-
ceive recommendation on which he will give a high rating?). Information
Retrieval measures evaluate on the other hand more precisely how the RS
is capable of making relevant recommendations, by comparing the list of
recommended items by the RS with the ground-truth of the user’s prefer-
ences.

The relevancy of an item can be determined in different ways: if the
feedback considered in the dataset is an implicit one, and represents the
click on items, an item can be considered relevant if the user clicks on it.
Otherwise, if the feedback is an explicit one represented by a rating in a
numerical scale, a threshold is usually defined to judge whether an item is
relevant or not (for instance, a rating strictly higher than 3 for a 1 to 5 stars
rating scale).

Suppose the algorithm recommends a list of s items to a user, and the
set of recommendation is denoted as L(s) (the size of the recommendation
list can change). Let R denote the set of relevant items for this user among
all items. Then, two metrics can be defined:

• the Precision measures the fraction of relevant items recommended
in the list, as

Precision(l) =
|L(s) ∩R|
|L(s)|

, (2.24)

• the Recall measures which fraction of the relevant items have been
recovered in the set of recommendation:

Recall(l) =
|L(s) ∩R|
|R|

. (2.25)

32 Chapter 2. Recommendation Systems

Let us consider a user uwith a set of relevant items consisting in 5 items:
R(u) = {i1, i3, i4, i6, i8}. If the list of size is s = 3, and L(3) = {i1, i2, i3} is
recommended to this user, then the Precision score is

|{i1, i2, i3} ∩ {i1, i3, i4, i6, i8}|
|{i1, i2, i3}|

=
2

3
,

and the Recall score is

|{i1, i2, i3} ∩ {i1, i3, i4, i6, i8}|
|{i1, i3, i4, i6, i8}|

=
2

5
.

Scores for precision and recall are averaged over all users to measure the
performance of the system.

The scores of Precision and Recall can be conflicting, as increasing the
size of recommendation can increase the recall (a longer recommendation
list gives more chance to recommend more relevant items), but decreases
the precision at the same time. A solution to evaluate the balance between
the two is to calculate the F1 score:

F1 = 2 · Precision ·Recall
Precision+Recall

. (2.26)

Finally, if A represents the set of all available items for the RS, the Re-
ceiver Operating Characteristic (ROC) curve (Fawcett, 2006) characterizes
the trade-off between the False Positive Rate FPR = |L(s)\R|

|A\R| (which rep-
resents the ratio between non-relevant items which are recommended to
the user and all the non-relevant items), and the True Positive Rate TPR =
|L(s)∩R|
|R| (which is the same as the Recall: it is the ratio between items rec-

ommended and all the possible relevant items). By gradually varying the
length s of the list recommended to users, we can obtain several values of
these two values, and get the ROC curve by plotting the FPR on the hori-
zontal axis and the TPR on the vertical axis.

Rank Accuracy

In most real-world RS, the user actually receives a list of recommendation
containing the top-k items predicted by the RS. In general, items must have
a ranking in accordance with the user’s preference, with highly-rated items
ranked higher in the list. To measure how well a RS is able to conform to
this need, ranking metrics have been used for evaluation. They allow to
define how well a RS can generate a personalized ordering of items that
matches the true user’s ordering of preferred items.

For all ranking measures defined below, let us consider a user u, to
which the list of items i1, . . . , i` of size ` has been recommended. r∗u,i is
the true rating of user u with regard to item i. We assume the ratings range
from 0 to rmax.

2.6. Evaluation of Recommendation Systems 33

The first two ranking measures are rank correlation coefficients, and
are named the Kendall coefficient and the Spearman coefficient (Kendall,
1948).

To calculate the Kendall coefficient, we define first the coefficient C(i, j)
which is equal to +1 if items i and j are in the same relative order in the
ranked list and in the ranking predicted by the RS (concordant pair), and
equal to -1 if the items are in a different relative order (discordant pair). If
items are tied, then the value of C(i, j) is 0. The Kendall correlation for a
user u is computed as the number of concordant pairs minus the number of
discordant pairs, over all the pairs of items in the recommendation list:

τu =

∑
i<j C(i, j)

`(`− 1)/2
. (2.27)

The Spearman coefficient is equal to the Pearson correlation coefficient
applied to the ranked variables (calculated between the ground truth rank-
ing and the ranking predicted by the RS). The range of the computed value
is from -1 to 1, where the best value is 1 when both ranking are equal.

Other measures have been defined, putting more emphasis on the top of
the recommendation list, as the user pays much more attention to the top-
ranked items. These measures are the Normalized Discounted Cumulative
Gain, the Mean Reciprocal Rank, and the Expected Reciprocal Rank.

• The Discounted Cumulative Gain at ` (Burges et al., 2005) is first de-
fined as

DCG@` =
∑̀
r=1

2r
∗
u,ir − 1

log2(r + 1)
. (2.28)

The Normalized Discounted Cumulative Gain (NDCG) at ` is

NDCG@` =
DCG@`

DCG∗@`
, (2.29)

where DCG∗ is the best possible DCG (the DCG score obtained for
the best possible ranking). For a theoretical analysis of the NDCG
measure, the interested reader can refer to (Wang et al., 2013).

Let us take an example where a list of items of size l = 5 is recom-
mended to a user, and where relevance scores range from 1 to 5 stars.
The user provides the following scores for the recommended items:
{3, 5, 2, 3, 1}. The DCG score is calculated based on the Table 2.2.

TABLE 2.2: An example to calculate NDCG score.

r r∗u,ir log2(r + 1) 2
r∗u,ir−1

log2(r+1)

1 3 1.0 7
2 5 1.585 19.56
3 2 2.0 1.5
4 3 2.322 3.01
5 1 2.585 0.39

34 Chapter 2. Recommendation Systems

The DCG is the sum of the last column of the Table:

DCG@5 =

5∑
r=1

2r
∗
u,ir − 1

log2(r + 1)
= 31.46 .

Let us now suppose that, for the same user, the higher possible rele-
vance scores reached when a list of 5 items is recommended are the
following scores: {5, 5, 4, 4, 3}. Using a similar table to Table 2.2, the
best possible DCG would be DCG∗@5 = 67.23. The NDCG obtained
for this user is then

NDCG@5 =
DCG@5

DCG∗@5
=

31.46

67.23
= 0.468 .

• The notion of "reciprocal rank" in the Mean Reciprocal rank (MRR) is
defined usually for binary relevancy (the rating on items is either 0 or
1), but can also be defined if the relevancy of an item is defined for
a numerical scale (for example, in a 1 to 5 rating scale, any item with
a score higher than 3 is considered to be relevant). The MRR score
consists in the reciprocal of the rank at which the first relevant item is
detected. The reciprocal rank is 1 if the first item is relevant in the list
of recommended items. For a number N of users, it is defined as:

MRR =
1

N

N∑
u=1

1

ranku
, (2.30)

where ranku is the rank position of the first relevant item for user u.
For example, let us consider a RS which contains 3 users and recom-
mends lists of items of size l = 5. If the binary relevancy scores for
each user are respectively: {0, 0, 1, 1, 0}, {0, 0, 0, 1, 0} and {1, 1, 0, 1, 0},
the rank of the first relevant item in the lists of the users are respec-
tively 3, 4 and 1. Thus, the MRR score is:

MRR =
1

3

3∑
u=1

1

ranku
=

1

3
· (1

3
+

1

4
+

1

1
) = 0.527 .

• The Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) also uses
the reciprocal rank, but is a bit more complex metric. It makes the
assumption of a cascade model for the user behavior, meaning that
the user will look at each item of the ranked list one after another
until he picks one. The user sweeps through the recommended items
from the first item to the one it chooses, but stops looking at the list
once he picked an item. The ERR for a list of size l is defined as follow:

ERR@l =
∑̀
r=1

1

r
p(u, ir)

r−1∏
s=1

(1− p(u, is)) , (2.31)

with

p(u, i) =
2r
∗
u,i − 1

2rmax
. (2.32)

2.6. Evaluation of Recommendation Systems 35

The probability p(u, i) in Equation (2.32) defines a probability for the
user to be satisfied by an item. The ERR in Equation (2.31) is the ex-
pectation of the reciprocal of the position of a result at which a user
stops. The product in the equation represents the probability of not
having been satisfied by any of the items seen until the item r.

Let us take an example where a list of items of size l = 3 is recom-
mended to a user, and where relevance scores range from 1 to 5 stars
(rmax = 5). The user provides the following scores for the recom-
mended items: {3, 5, 2}.

The Table 2.3 provides the way to compute the ERR score, where
p(stop at item r) is the same as p(u, ir)

∏r−1
s=1(1 − p(u, is)) in Equation

(2.31).

TABLE 2.3: An example on how to calculate ERR score.

r 1/r r∗u,ir p(u, i) p(stop at item r)

1 1/1 3 7/32 7/32
2 1/2 5 31/32 31/32 · (1− 7/32)
3 1/3 2 3/32 3/32 · (1− 31/32) · (1− 7/32)

The ERR score is obtained by multiplying the reciprocal rank with the
stop probabilities:

ERR@3 =
1

1
· 7

32
+

1

2
· 31

32
· (1− 7

32
)+

1

3
· 3

32
· (1− 31

32
) · (1− 7

32
) = 0.598 .

Other Evaluation Measures

The metrics defined previously are important for evaluation to compare
mathematically different recommendation techniques, but they are not fo-
cused on how the user perceives the recommendations produced by the
RS (Vargas and Castells, 2011). Several key metrics allow to measure such
an effect, and are gaining importance in the RS field. Since these criteria
are more complex to evaluate and several formulas have been given in the
literature, we refer to the main papers for each metric to get more details.

• Novelty. This is related to RS which should recommend items of
which the user is not aware. For example, recommending a Star Wars
movie to a Science-Fiction fan is not a novel suggestion, since the user
is surely already aware of this movie. See (Celma and Herrera, 2008;
Zhou et al., 2010; Vargas and Castells, 2011) for examples of how to
measure novelty in RS.

• Diversity. This measures to which extent the RS is capable of suggest-
ing items that are "different" from each other. Often, a RS would rec-
ommend very similar items to a user (for example, books by the same
author), while a good RS should recommend items that span over the
whole user’s interest. The diversity has been measured with differ-
ent definition: for example (Ziegler et al., 2005) measures the average
pairwise dissimilarity between recommended items, while (Zhang
and Hurley, 2008) addresses diversification by optimizing jointly two
objective functions reflecting preference similarity and item diversity.

36 Chapter 2. Recommendation Systems

• Serendipity. It measures the capability of a RS to suggest items that
would surprise the user while still matching his/her tastes. Indeed,
a good RS should not recommend too obvious recommendations but
also offer unexpected items to the user. Some measures to evaluate
serendipity can be seen in (Ge et al., 2010; Murakami et al., 2007).

• Coverage. This measure focuses on the percentage of elements (users,
items or ratings) for which the RS is able to provide recommenda-
tions. Several coverages can be defined: for example, the user cov-
erage measures how large is the set of users for which the RS can
perform recommendations, while the catalog coverage measure the
percentage of (user-item) pairs for which prediction can be made over
the set of all (user-item) pairs. Coverage can also help to notice if the
RS is biased towards some specific subset of users or items (Ge et al.,
2010).

• Abandonment The abandonment metric is used when a list of items
is suggested to the user. A user is said to "abandon" the system when
none of the items recommended in the list are relevant for him. The
abandonment is the probability for a user to leave the system within
a session, and should be minimized by the RS (Radlinski et al., 2008;
Kohli et al., 2013).

2.6.2 Evaluation Scenarios

After choosing the evaluation measure, a proper evaluation scenario and
experimental settings must be set to judge of the success of the designed
recommendation method. There are three categories into which the evalua-
tion methodology usually falls into: the online setting, the user studies and
the offline setting.

Online Evaluation

The online evaluation is only possible when the RS implementation team
has a direct access to a real system deployed online. In this case, the RS
evaluation can use real users to gather feedback and be evaluated with lit-
tle bias, as users are directly using the system. Usually, in case of successive
refinements and implementations of the system, a RS prototype would be
displayed and tested only on a subset of randomly selected users in the sys-
tem while other users would still use the more stable and previous version
of the RS. This allows to avoid having too much of an impact on the website
reputation in case the new RS has some unseen flaws.

To compare several algorithms, most companies set up a method called
A/B testing. Let us suppose there are two algorithms: users are first di-
vided into two groups A and B, and each group see recommendations gen-
erated by one of the two RS algorithms. Then, at the end of the testing
phase, both methods can be compared on some metrics, for example the
conversion rate which evaluates how many user ended up choosing an item
appearing in the recommendation list.

2.6. Evaluation of Recommendation Systems 37

Another perspective is to use a Multi-Armed Bandit (MAB) algorithm,
which aims to find the best algorithm among a set of RS algorithms. The
basic idea is to select one of these algorithms each time a user requests a
recommendation. The selection is either

• an exploration step, where the algorithm is chosen at random (or
based on its uncertainty)

• or an exploitation step, where the knowledge accumulated until the
current time step is used to choose the best recommendation algo-
rithm until now

This approach allows to converge to the best RS after a certain number of
recommendations.

However, the issue with online studies is that commercial RS are not
publicly accessible and test on these systems can only be performed by peo-
ple to which the access is granted. This implies online tests are not repli-
cable by other researchers. Another issue is that a high number of users is
necessary to compare several algorithms and have a significant evaluation.
For these reasons, researchers usually turn to the two other possibilities de-
scribed below.

User studies

If the online evaluation cannot be conducted because it is too risky or be-
cause no access is given to a real-world application, the user study is an-
other possible choice to get results from real users. In this case, a small
number of users are recruited and requested to interact with the RS being
tested. A controlled experiment is set up to evaluate the system.

User studies allow researchers to collect information about the users’ in-
teraction with the system, and ask them about their experience afterwards.
Hence, the system can be judged on more criteria compared to online or
offline studies where no qualitative answer is given by the user. However,
the small number of users can introduce a bias in the data being retrieved.
The awareness of the user about being tested to evaluate a RS can also in-
troduce another bias. Results of user study need to be carefully considered
and trusted.

Offline Evaluation

At last, the offline evaluation consists in comparing several RS algorithms
on some datasets to compare their performance, without needing users to
interact with the RS. One or several of the metrics defined in Section 2.6.1
are used to judge the performance of each approach. Usually, the datasets
are either made of private collected data or are publicly available datasets,
the most popular example being the Movielens dataset 2. Offline evaluation
is among the most popular setting in research since evaluation frameworks,

2http://grouplens.org/datasets/movielens/

38 Chapter 2. Recommendation Systems

metrics and datasets have been developed and are easily accessible to repli-
cate or compare approaches with other algorithms.

As there is no real interaction between the RS and users, using offline
experiments will make the assumption that the behavior of the users at the
time the data was collected and the future behavior of these users will be
similar. The data is often divided into three distinct parts: the training set,
used to build the model of the RS, the validation set which is used for the
model selection and parameter tuning, and the testing set which is built to
evaluate the chosen metric of the final model. The separation of the sets is
usually done by selecting at random a given percentage of ratings for each
set (for example 80% for the training set, 10% for the validation set and 10%
for the testing set), using a hold-out method. This means a rating chosen in
a set can only belong to this set. This is meant to avoid learning the model
and evaluating the RS on the same data.

If the temporal information is available about the rating, it is also pos-
sible to divide the set by taking only ratings which were given before a
time threshold in the train and validation set, and evaluate on ratings given
after this threshold, to simulate more realistic conditions about the user’s
preferences.

Some experiments evaluate on a specific scheme about the user train set:
for each user, they select a given number n of items to build the train set
and learn the model, and then the evaluation is done on all the remaining
items. This approach is usually described with the annotation "Given n". In
the case where a low value is selected for n, this setting allows to test the
RS robustness to a user cold-start situation where only little information is
known about users.

Finally, an evaluation in the Multi-Armed Bandits perspective in the of-
fline case is introduced in (Li et al., 2011).

Despite most researches using an offline protocol for evaluation, they
have some serious drawbacks:

• Firstly, there is no certainty that results obtained from offline evalu-
ation would always align with actual results in a real-world RS. The
behavior of user in the real RS might be different from the one sup-
posed in the offline setting.

• Secondly, there are various metrics which can be used in offline met-
rics, and all evaluate the performance based on past preferences of the
users, but these metrics cannot measure the real impact of recommen-
dations on real user activity.

• At last, the treatment given to missing ratings is problematic. How
should they be considered? Does it mean the user does not like the
items which he did not rate? Does it means he does not know them,
or that he does not care?

The only solution to these drawbacks is to test algorithms online to confirm
or reject results obtained offline.

2.7. Learning to Rank 39

2.7 Learning to Rank

All models described previously treat the Recommendation Problem using
a prediction technique, where the squared error of the rating prediction is
minimized. However, this approach has an important flaw, as in real-world
Recommendation, only the top-k items are displayed to the user, and it is
not important for the RS to have a good prediction accuracy on items that
are not recommended.

A simple example to explain why prediction accuracy does not target
the correct objective is to imagine a Recommendation System making very
accurate predictions on the items with low or medium ranking, but bad
predictions on items reaching the highest ratings. The average performance
of such RS from a prediction accuracy point of view would not be too bad,
as only the highest scores would obtain a high error and these top-rated
items are not a majority among all items. However, from the point of view
of the user, it would greatly hurt his experience of the system, as items
which match the best his tastes would not be recommended.

For these reasons, some approaches have focused on optimizing the or-
der of the list of recommendation instead of focusing on predicting correct
ratings (Liu, 2009). Such methods are usually divided into three categories:

• Pointwise approaches: this is the simplest way to tackle the Learn-
ing to Rank problem. It consists in using techniques trying to opti-
mize prediction accuracy metric (for example, using Matrix Factoriza-
tion techniques presented in Section 2.3.2), and simply ranking items
based on the rating predictions made by the algorithm. As a conse-
quence, pointwise approaches do not target directly a ranking opti-
mization, and other approaches are often preferred when solving a
ranking problem.

• Pairwise approaches: these methods use pairs of items as input for
training data instead of single rating. For a user u, a pair of item (i, i′)
is used as training data only if both ratings ru,i and ru,i′ are known.
Each pair of items brings information about whether the user showed
more preference for item i compared to item i′, or the opposite case.
If the first case happens, then the pair is labeled with a +1, otherwise
with a -1.

• Listwise approaches: finally, listwise rank methods make use of the
entire list of known ratings and focus on optimizing a ranking-based
objective function. Example of such functions are the NDCG and
the MRR ranking measures. However, compared to prediction tasks
in which the objective function is smooth, ranking functions are of-
ten non-smooth, which makes it hard to optimize. For this reason,
a smooth approximation of the non-smooth objective function is of-
ten adopted to simplify the problem. The ranking accuracy of the
algorithm will then depend on the quality of the approximation. Ex-
amples of listwise Learning to Rank algorithms applied for RS are
(Weimer et al., 2008; Shi et al., 2010; Shi et al., 2012; Shi et al., 2013).
These approaches are described in more details in Chapter 4.

40 Chapter 2. Recommendation Systems

If features are available for the RS to learn, other popular Machine Learn-
ing exist in the Learning To Rank field to solve the recommendation prob-
lem as a traditional Machine Learning regression problem (Burges et al.,
2005). The most popular ones are approaches developed by C. Burges based
on Gradient Boosted Trees and described in (Burges, 2010). These meth-
ods have shown especially a good success in Learning To Rank recommen-
dation challenges where methods have access to attributes (Chapelle and
Chang, 2011; Guillou et al., 2014).

2.8 Conclusion

This chapter aimed at giving some background knowledge about RS: the
sort of data they use, their goals, the possible approaches and how they are
evaluated. Among all techniques, Matrix Factorization approaches have
been shown to be among the most efficient and widely used in the indus-
trial world, and several algorithms have been proposed to incorporate the
effect of social factor, time factor, location factor. . .

In the following parts of this thesis, we will focus on two of the current
challenges in RS:

• How to reduce the cold start effect and learn user or item’s profile
as quickly as possible?

Many solutions have been proposed to use external information about
the user, the item, the context. . . or to do Active Learning to query the
user before the recommendation process to model him. However, in
practice, asking the user is expensive and it is sometimes not possible
to get external information other than the past feedback.

• How to evaluate properly the recommendation process?

The question of which evaluation metric to use has been a hot topic
in recent years, with the metrics used in research slowly shifting from
prediction metrics like RMSE to ranking metric such as NDCG. How-
ever, almost all of the approaches evaluated offline still use a split
method between train and test data and evaluate their approaches in
a fixed setting, which is not a close evaluation to the real process of
recommendation in a real-world RS.

The reason behind the choice of these two topics is that both the chal-
lenge of cold-start and the challenge of evaluation appear from a different
perspective in a sequential context. First, in such context, the cold-start sit-
uation becomes more integrated into the recommendation problem, where
the model of the RS has to continuously gather information and provide ac-
curate recommendation to the users. Second, when evaluated in a sequen-
tial manner, the evaluation metric needs to be optimized through time, to
be maximized (or minimized) in the long-term instead of retrieving a single
score for a fixed point in time.

Since recommendations are provided sequentially in a real-world RS, we
argue in the following chapters that the problem should be viewed within
the sequential context and also evaluated as such. Some intrinsic questions

2.8. Conclusion 41

and issues related to sequential learning, that are not usually taken into con-
sideration in the RS field, are raised and studied. In the next chapter, we in-
troduce one of these issues known as the exploration-exploitation dilemma,
and propose a model aiming at tackling this dilemma for RS, based on Ma-
trix Factorization and Multi-Armed Bandits.

43

Chapter 3

Recommendation as a
Multi-Armed Bandit

In this chapter 1, we set up a framework to study recommendation as a
sequential process, and we propose SeALS, an approach which is based on
Matrix Factorization (MF) methods for Collaborative Filtering (CF), seen in
Section 2.3 in the previous chapter, and on a Multi-Armed Bandits (MAB)
algorithm. We introduce the first sequential CF-based RS which:

1. makes a good trade-off between exploration and exploitation through
time, by incorporating the use of MAB algorithm in a simple way into
the recommendation process;

2. is able to properly scale. As the potential number of user and items in
RS is really high, a scalable method is a necessity.

We conduct extensive experiments on real-world datasets of millions of rat-
ings to highlight the need for a trade-off between exploration and exploita-
tion for RS, and to study how efficient is our approach time wise.

Contents
3.1 Sequential Recommendation 44

3.1.1 Formulation of the Sequential Recommendation
Scenario . 45

3.2 Related Work . 46
3.3 Multi-Armed Bandits . 48

3.3.1 Setting . 48
3.3.2 Approaches . 49

3.4 Explore-exploit Recommendation System 51
3.5 Experimental Investigation 54

3.5.1 Experimental Setting and Remarks 54
3.5.2 Baselines . 57
3.5.3 Impact of Exploration 57
3.5.4 Impact of the Update Strategy 60

3.6 Concluding Remarks . 62

1This chapter is an extended version of a preliminary work presented at a NIPS work-
shop (Guillou et al., 2015) and two papers published in PACIS (Guillou et al., 2016b) and
MOD (Guillou et al., 2016a)

44 Chapter 3. Recommendation as a Multi-Armed Bandit

3.1 Sequential Recommendation

A RS built with a CF algorithm recommends items to users based on each
user’s tastes as inferred from past user behavior and feedback. The past
feedback is stored in a matrix of ratings R∗, where only a few entries are
known. In the context of CF, the RS recovers unknown values in R∗ and
the traditional evaluation is performed by splitting log data into two parts:
the train-set is used to define the training matrix which is completed by
the RS algorithm, while the test-set is used to measure the quality of the
matrix returned by the RS. Common measures of that quality are prediction
accuracy metrics like MAE and RMSE on the test-set.

While such a static batch evaluation makes sense to measure the quality
of the matrix-completion step of Collaborative Filtering, it does not evalu-
ate the quality of the final recommendation. A CF based RS works in reality
in a sequential manner and loops through the following steps:

1. Build a model of the users’ tastes from past feedback;

2. Recommend an item to a user using this model;

3. Gather feedback from user about recommended product.

This loop is represented in the Figure 3.1.

User

Recommender
System

Update

Recommends an
item

Gives
Feedback

FIGURE 3.1: The sequential recommendation process. After
the RS recommends an item, the user gives back a feedback,

and the RS possibly update its model.

Note that the model built at step 1 heavily depends on the feedback
gathered at previous iterations. This feedback only exists for items which
were chosen by the model itself. As such, at step 2, one faces the explo-
ration/exploitation dilemma, which means the RS can either:

• Exploit: recommend an item which led to the best feedback in the
past.

• Explore: recommend an item which hopefully brings information on
the user’s tastes.

3.1. Sequential Recommendation 45

This dilemma is the core point of Multi-Armed Bandit Theory (Auer
et al., 2002). It is already studied in a sub-field of RS which has access to a
representation of the context (the user, the webpage . . .) (Tang et al., 2014).
Typical applications are the selection of news or ads to show on a web-page.
The corresponding RS builds upon contextual bandits which are supported
by strong theoretical results.

In contrast with these studies, we focus on the setting where these rep-
resentations are unknown and have to be inferred solely from users’ feed-
back. In particular, we want to emphasize that we do not use any side
information, neither about users, nor items. That field of research is almost
empty and the few attempts therein leave out computational complexity
constraints (Kawale et al., 2015).

3.1.1 Formulation of the Sequential Recommendation Scenario

Let us focus on a particular recommendation scenario, which illustrates
more accurately how typical Recommendation Systems work.

We consider a RS with N users, M items, and the unknown matrix R∗

of size N ×M such that r∗u,i is the tastes of user u with regards to item i. At
each time step t,

1. a user ut requests a recommendation from the RS,

2. the RS selects an item it among the set of available items,

3. user ut returns a feedback rt ∼ D(r∗ut,it
) for item it.

In this chapter, we assume the mean of distributionD(r∗ut,it
) to be r∗ut,it

. See
(Koren and Sill, 2011) for an example of a more refined observation/noise
model.

In the second step, it is mentioned that the RS can play only among avail-
able items. For one user, the set of items among which the RS will select the
recommendations can indeed be restricted to items which are available in
stock for a e-commerce website for example (cf. Chapter 5 for a more de-
tailed discussion on this topic). In this chapter, we will not consider any
stock or restriction about availability.

We refer to applications where the feedback rt corresponds to the quan-
tity that has to be optimized, aka. the reward. This denomination comes
from the Reinforcement Learning, where the learning agent receives a re-
ward to learn about future actions to be taken. Compared to a fixed set-
ting where the evaluation metric is usually optimized for a situation corre-
sponding to a precise and unique time step, the aim of the RS in a sequential
context is to maximize the reward accumulated along time steps, which is
denoted as cumulative reward and given by Equation (3.1):

CumRewT =

T∑
t=1

rt . (3.1)

46 Chapter 3. Recommendation as a Multi-Armed Bandit

Another measure used in a Multi-Armed Bandit problem is the cumula-
tive pseudo-regret RT described in Equation (3.2), which consists in a cumu-
lative score, obtained by measuring how much the system loses by recom-
mending a sub-optimal item at each time step:

RT =
T∑
t=1

max
i
r∗ut,i − E[rt] =

T∑
t=1

max
i
r∗ut,i − r

∗
ut,it . (3.2)

We will propose in the following a solution which aims at minimizing
this cumulative pseudo-regret.

Along this chapter, we use the following notations:

• We denote Rt the partially known N ×M matrix such that rus,is = rs
for any s 6 t.

• We note St the set of known entries of Rt:

St = {(us, is); s ≤ t} .

• It(u) the set of items i for which u gave his preferences until time t:

It(u) = {i; (u, i) ∈ St} .

• Jt(i) the set of users u which gave their preferences on item i until
time t:

Jt(i) = {u; (u, i) ∈ St} .

For the sake of readability, the subscript t is omitted in the following.
Finally, for any matrix M, we denote Mi the i-th row of M.

We introduce in Section 3.4 a Recommendation System which handles
sequential recommendations and aim at maximizing the ratings received
through time. This RS is composed of two main ingredients:

1. a model built using Matrix Factorization, to infer an estimate R̂∗ of
the matrix R∗ from known values in R,

2. a strategy to choose the item to recommend given R̂∗

This strategy aims at balancing exploration and exploitation, and builds on
Multi-Armed Bandits for this task. For the state of the art for Matrix Factor-
ization, see the Section 2.3 in the previous chapter. Before reviewing state
of the art approaches for Multi-Armed Bandits, described in the Section 3.3,
we first review the work related to our approach in the next section.

3.2 Related Work

To the best of our knowledge, only few papers consider a RS setting sim-
ilar to the one presented in this chapter, where exploration/exploitation
dilemma is tackled with ratings only (Zhao et al., 2013; Xing et al., 2014;
Nakamura, 2014; Kawale et al., 2015; Mary et al., 2015).

3.2. Related Work 47

(Zhao et al., 2013) propose an approach called Interactive Collaborative
Filtering (ICF), which combines Probabilistic Matrix Factorization with var-
ious bandits algorithms. However, they perform an evaluation where they
split between train and test set, because they require for their approaches
to learn in advance the item feature vectors (these feature vectors are con-
sidered as known and fixed during the test phase). In our work, we assume
no prior knowledge about neither users nor items.

(Xing et al., 2014) combines Matrix Factorization with Bayes-UCB ap-
proach for Multi-Armed Bandit specifically for music recommendation, but
only evaluate with a user study on eighteen people and 200 time steps of
recommendation which is a very small window of time. (Nakamura, 2014)
considers a UCB-like strategy to a specific problem (called the "direct mail
problem") which is different from our setting. The direct mail problem ap-
pears when a systems has to select appropriately each day a set of (user-
item) pairs to send a recommendation mail of item i to user u. In this prob-
lem, a user can only receive one recommendation per day, and the number
of pairs selected every day is restricted to some number. Then, (Mary et al.,
2015) also focus on a different recommendation setting where an item can
be recommended one time only per user. Their approach builds upon ALS
Matrix Factorization framework and extends linear bandits (Li et al., 2010)
to handle the exploration/exploitation dilemma. The use of linear bandit
framework prevents this approach from scaling to a high number of recom-
mendations.

Finally, the approach PTS is the most recent one and is introduced in
(Kawale et al., 2015), tackles the exact same problem as our approach. PTS
is based on Thompson Sampling (Chapelle and Li, 2011) and Particle Fil-
tering. However, their approach requires a huge computing time (cf. at the
end of Section 3.4). As a consequence, (Kawale et al., 2015) only provides
experiments on “small" datasets, with k = 2. SeALS is the first approach
which both tackles the exploration/exploitation dilemma and scales up
well to large datasets and high number of recommendations, while build-
ing an accurate representation of users and items (k � 2).

Apart from methods quoted above which tackle the non-contextual case,
the exploration vs. exploitation dilemma is already well-studied in the field
of RS which has access to a representation of the context (Tang et al., 2014).
Compared to them, we focus on the setting where these representations are
unknown and have to be inferred from users feedback.

Some papers focusing on the cold-start setting also focuses on the need
for exploration (Agarwal et al., 2008; Bhagat et al., 2014): the goal in this
case is to deal with new users or new items. While some approaches look at
external information on the user (Agarwal et al., 2008), some papers rewrite
the problem as an Active Learning problem (Bhagat et al., 2014): in this case,
the goal is to perform recommendation in order to gather information on
the user as quickly as possible. Targeted applications would first “explore”
the user and then “exploit” him. Unlike Active Learning strategies, (i) we
spread the cost of exploration along time, and (ii) we handle the need for a
never-ending exploration to reach optimality (Auer et al., 2002).

48 Chapter 3. Recommendation as a Multi-Armed Bandit

Salah et al. (Salah et al., 2015) propose an incremental neighborhood-
based CF RS based on weighted clustering approach suitable for incre-
mental update of the RS, while other methods like the ones proposed by
Rendle and Schmidt-Thieme (Rendle and Schmidt-Thieme, 2008) or Luo et
al. (Luo et al., 2012) focus on online Matrix Factorization using a stochas-
tic gradient descent to solve Equation (3.7), but they all omit the explo-
ration/exploitation dilemma.

Finally, some researches focus on a ranking algorithm instead of trying
to target a good RMSE score. Cremonesi et al. (Cremonesi et al., 2010)
compare state of the art recommendation algorithms with respect to a rank-
based scoring and shows that winning algorithms are not the ones which
reach the smallest RMSE score. Following the same guideline, (Rendle et al.,
2009; Shi et al., 2012; Weston et al., 2013) propose RS which directly target
a good ranking of the top items instead of a full-completion of the matrix.
During the training phase, they replace the L2 loss of Equation (3.7) by
rank-based losses (AUC, MRR, NDCG. . .). While targeting a rank-based
measure during the training phase could increase the accuracy of the RS,
(Garcin et al., 2014) and (Said and Bellogin, 2014) show that the cumulative
reward/regret is the unique good metric to evaluate the recommendation
algorithm.

3.3 Multi-Armed Bandits

A RS works in a sequential context: as a consequence, while the recommen-
dation made at time step t aims at collecting a good reward at the present
time, it affects the information that is collected, and therefore also the fu-
ture recommendations and rewards. Specifically, in the context of sequen-
tial decision under uncertainty problems, an algorithm which focuses only
on short term reward loses w.r.t. expected long term reward. This Section
recalls standard strategies to handle this short term vs. long term dilemma.
For ease of understanding, the setting used in this Section is much simpler
than the one faced in this thesis.

3.3.1 Setting

We consider the well-studied Multi-Armed Bandits (MAB) setting (Auer
et al., 2002; Bubeck and Cesa-Bianchi, 2012): we face a bandit machine with
M independent arms {i1, . . . iM}. At each time step, we pull an arm i and
receive a feedback (aka. reward) drawn from [0, 1] which follows a proba-
bility distribution νi. Let µi denote the mean of νi, i∗ = argmaxi µi be the
best arm and µ∗ = maxi µi = µi∗ be the best expected reward. The parame-
ters {νi}, {µi}, i∗ and µ∗ are unknown.

We play T consecutive times and aim at maximizing the cumulative re-
ward

CumRewT =

T∑
t=1

rt , (3.3)

3.3. Multi-Armed Bandits 49

where rt denotes the reward collected at time step t while pulling arm it.
As the parameters are unknown, at each time step (except the last one), we
face the dilemma:

• either focus on short-term reward (aka. exploit) by pulling the arm
which was the best at previous time steps;

• or focus on long-term reward (aka. explore) by pulling an arm to im-
prove the estimation of its parameters.

Neither of these strategies is optimal. On one hand, an algorithm which
acts greedily by only exploiting is likely to miss the optimal arm.2 On
the other hand, the pure-explore strategy only plays the optimal arm with
probability 1/M . To be optimal, a strategy has to balance exploration and
exploitation. We review briefly in the following some of the well-known
strategies tackling this issue.

3.3.2 Approaches

Upper Confidence Bound P. Auer (Auer et al., 2002) introduces an ap-
proach to handle this exploration vs. exploitation dilemma: the Upper Con-
fidence Bound strategy (UCB). UCB balances exploration and exploitation
by playing the arm it such that:

it = argmax
i

µ̂i(t) +

√
2 ln t

Ti(t)
, (3.4)

where Ti(t) corresponds to the number of pulls of arm i since the first time
step and µ̂i(t) denotes the empirical mean reward obtained from arm i up
to time t.

This equation embodies the exploration vs. exploitation trade-off: while
µ̂i(t) promotes exploitation of the arm which looks like optimal, the second
term of the sum promotes exploration of less played arms.

At the beginning of the algorithm, since no arm was played and the
number of pulls Ti(t) = 0 for all arms, each of the arm is play once to get
initial values for the empirical mean reward. If the number M of arms is
really high, it means that the number of times the algorithm will play needs
to be far greater than M to converge to good results. Algorithm of UCB1 is
described in Algorithm 4.

While UCB is optimal up to a constant, there exists several flavors of
UCB-like algorithms (Audibert et al., 2009; Garivier and Cappé, 2011; Li
et al., 2010) aiming at a strategy closer to the optimal one or aiming at a
strategy which benefits from different constraints on the reward distribu-
tion.

2Remind that the rewards are random; as a consequence the first pulls of the optimal arm
may yield rewards smaller than µ∗. In the worst case, these rewards are small enough so
that a sub-optimal arm i to seem optimal and be chosen. As the optimal arm is not pulled,
its empirical mean remains small, and this arm is no more pulled.

50 Chapter 3. Recommendation as a Multi-Armed Bandit

Algorithm 4: UCB1.
Input: Set of M arms

1 Play each of the M arms once, giving initial values for the empirical
mean reward of each arm i and put Ti = 1 for each arm;

2 for t = M,M + 1 . . . do
3 Play it = argmaxi µ̂i(t) +

√
2 ln t
Ti(t)

;

4 Observe the reward rt for arm it ;
5 Update the empirical mean: µ̂i ← µ̂i + rt;
6 Update the number of times the arm i was played: Ti ← Ti + 1;
7 end

Epsilon-Greedy ε-greedy is an even simpler but efficient approach to bal-
ance exploration and exploitation (Auer et al., 2002). It consists in choosing
the arm to play with the greedy strategy (it = argmaxi µ̂i(t)) (exploitation)
with a probability 1− ε and in pulling an arm at random otherwise (explo-
ration). Algorithm of ε-greedy is described in Algorithm 5.

Algorithm 5: ε-greedy.
Input: Set of M arms

1 for t = 1, . . . do
2 if p ∼ U(0, 1) < ε then
3 Play the arm: it ← random(i ∈ {i1, . . . iM});
4 else
5 Play the arm it ← argmax

i∈{i1,...iM}
µ̂i(t);

6 end
7 Observe the reward rt for arm it ;
8 Update the empirical mean: µ̂i ← µ̂i + rt;
9 end

If ε is set to a constant, exploration will be scattered across all iterations
permanently, but usually it is preferable to explore more at the beginning
when arms are unknown and exploit further after. Instead of a fixed ε,
εn-greedy uses an εt in line 2 of Algorithm 5. εt is a function of t, for ex-
ample α/t with α a constant which depends on N . This makes exploration
stronger at the beginning, with more exploitation afterward.

Thompson Sampling Another well-known approach to solve the explo-
ration vs. exploitation dilemma in a Bayesian way is Thompson Sampling
(Thompson, 1933; Bubeck and Cesa-Bianchi, 2012).

With θ denoting the set of parameters of the distribution of the reward,
and D being the past observations currently available, the system chooses
the arm i with probability:∫

I[E[r|i, θ] = maxi′E[r|i′, θ]]P (θ|D)dθ , (3.5)

3.4. Explore-exploit Recommendation System 51

where I[a = b] stands for 1 when a = b and 0 otherwise. This is usually
implemented by sampling θ from the posterior P (θ|D) and choosing the
arm which maximizes the expected reward given the parameters and the
action taken i = argmaxi′ E[r|i′, θ]. While there are few theoretical results
related to these strategies (Kaufmann et al., 2012), they demonstrate good
empirical results on some occasions (Chapelle and Li, 2011).

3.4 Explore-exploit Recommendation System

In this section, we introduce a RS which handles the sequential aspect of
recommendation. More specifically, the proposed approach works in the
context presented in Section 3.1 and aims at minimizing the pseudo cu-
mulative regret RT defined in Equation (3.2). As needed, the proposed
approach balances exploration and exploitation.

We first define the model of our RS, making use of Matrix Factorization
model (Koren et al., 2009): the unknown matrix R∗ is assumed to be of low
rank. Namely, there exist U and V such that

R∗ = UVT , (3.6)

where

• U is a matrix of size N × k representing users features,

• V is a matrix of size M × k representing items features,

• k is the rank of R∗, and k � max(N,M).

Thereafter, the estimator of R∗ is defined as R̂∗ = ÛV̂T where (Û, V̂) is the
solution of

argmin
U,V

∑
∀(u,i)∈S

(
ru,i −UuV

T
i

)2
+ λ · Ω(U,V) . (3.7)

We choose in our approach to build the MF model by using ALS-WR
(Zhou et al., 2008), which regularizes users and items according to their
respective importance in the matrix of ratings:

Ω(U,V) =
∑
u

#I(u)||Uu||2 +
∑
i

#J (i)||Vi||2 . (3.8)

This regularization is known to have a good empirical behavior — which
means a limited overfitting, an easy tuning of λ and k, and a low RMSE.
This is also the default one in Mahout3, an open-source platform about Rec-
ommendations Systems providing CF algorithms, which is widely used in
real-world systems worldwide. The algorithm of ALS-WR is given in de-
tails in Algorithm 6.

3https://mahout.apache.org/

52 Chapter 3. Recommendation as a Multi-Armed Bandit

Algorithm 6: ALS-WR: finds a solution to Equation (3.7) with an alter-
nating least square approach.

Input : Matrix of observed ratings: R,
Set of known ratings: S,
regularization parameter: λ,

Input/Output: User features matrix: Û
Item features matrix: V̂

1 for u ∈ 1, . . . N do
2 Ûu ← argminU

∑
i∈I(u)(ru,i −UV̂T

i)2 + λ ·#I(u)||U||;
3 end
4 for i ∈ 1, . . .M do
5 V̂i ← argminV

∑
u∈J (i)(ru,i − ÛuV

T)2 + λ ·#J (i)||V||;
6 end

Aside from the model of our RS which is built upon ALS-WR Matrix
Completion approach, we integrate an εn-greedy strategy to tackle the ex-
ploration/exploitation dilemma during the recommendation process. We
name this approach SeALS (for Sequential ALS-WR) and describe it in Al-
gorithm 7.

Algorithm 7: SeALS: recommends in a sequential context.
Input : period of the update: Tu,

proportion for the size of mini-batch update: p,
regularization parameter: λ,
exploration parameter: α

Input/Output: Matrix of observed ratings: R,
Set of known ratings: S

1 (Û, V̂)← ALS-WR(R,S, λ);
2 for t = 1, 2, . . . do
3 get user ut and set Lt of allowed items;
4 if p ∼ U(0, 1) < ε then
5 it ← random(i ∈ Lt);
6 else
7 it ← argmax

i∈Lt
Ûut · V̂T

i ;

8 end
9 recommend item it and receive rating rt = rut,it ;

10 update R and S;
11 if t ≡ 0 mod Tu then
12 (Û, V̂)← mBALS-WR(Û, V̂,R,S, λ, p);
13 end
14 end

The algorithm first creates Û and V̂ by using ALS-WR on the matrix of
ratings R on line 1. At a time step t, for a given user ut, ALS-WR associates
an expected reward r̂ut,i = Ûut · V̂T

i to each item i. Then the item to recom-
mend it is chosen by an εn-greedy strategy, described in lines 4 - 8. Despite
its simplicity, εn-greedy strategy is extremely efficient in such context.

3.4. Explore-exploit Recommendation System 53

Obviously, ALS-WR requires too large computation times to be run at
each time step to recompute user and item features. A solution consists
in running ALS-WR every Tu time steps as written in lines 11-13 of Algo-
rithm 7. While such a strategy works well when Tu is small enough, RT

drastically increases otherwise (cf. Section 3.5.4). Taking inspiration from
Stochastic Gradient Descent approaches (Bottou and Bousquet, 2007), we
solve that problem by designing a mini-batch version of ALS-WR, denoted
mBALS-WR (cf. Algorithm 8).

Algorithm 8: mBALS-WR: mini-batch version of ALS-WR.
Input : Matrix of observed ratings: R (of size N ×M),

Set of known ratings: S
regularization parameter: λ,
exploration parameter: α
proportion for the size of mini-batch update: p

Input/Output: Matrix of users’ features: Û,
Matrix of items’ features: V̂

1 Sample randomly p ·N users among all users, to insert in a list lusers;
2 Sample randomly p ·M items among all items, to insert in a list litems;

3 ∀u ∈ lusers, Ûu ← argminU

∑
i∈I(u)

(
ru,i −UV̂T

i

)2
+ λ ·#It(u)‖U‖;

4 ∀i ∈ litems, V̂i ← argminV

∑
u∈J (i)

(
ru,i − ÛuV

T
)2

+ λ ·#Jt(i)‖V‖;

mBALS-WR is designed to work in a sequential context where the matrix
decomposition slightly changes between two consecutive calls. As a con-
sequence, there are three main differences between ALS-WR and mBALS-
WR. First, instead of computing Û and V̂ from scratch, mBALS-WR up-
dates both matrices. Second, mBALS-WR performs only one pass on the
data. And third, mBALS-WR updates only a fixed percentage of the line of
Û and V̂, decided by the parameter p. This parameter is in the range from 0
to 1, and represents the proportion of the matrix which should be updated.
When the parameter p is set to 1, mBALS-WR is a one-pass ALS-WR.

The main advantage of mBALS-WR is in spreading the computing bud-
get along time steps which means Û and V̂ are more often up to date. On
one hand, ALS-WR consumes a huge computing budget every thousands of
time steps; in between two updates, it selects the items to recommend based
on an outdated decomposition. On the other hand, mBALS-WR makes fre-
quent updates of the decomposition. In the extreme case, updates can be
done at each time step.

For mBALS-WR, updating each user vector Uu costs O(|I(u)|k2 + k3)
and updating each item vector Vi costsO(|J (i)|k2+k3), but we update only
a given proportion of the total number of users and items and do a single
iteration. For each call of mBALS-WR, the total complexity is O(|S|k2 +
p(N +M)k3).

For a total number of recommendations T , the complexity for calling
mBALS-WR in SeALS would be O(T

Tu
(|S|k2 + p(N + M)k3)), as mBALS-

WR is called every Tu time steps, but either Tu is typically large with a high
value of p (the update happens rarely, but for a large portion of the users

54 Chapter 3. Recommendation as a Multi-Armed Bandit

and items), or Tu is smaller but with a smaller value of p (the model is up-
dated often for a small part of the users and items). In either case, this
makes the overall complexity lower. In comparison, PTS has a complexity
at each time step of O(((N̂ + M̂)k2 + k3)D), where N̂ and M̂ are the max-
imum number of users who have rated the same item and the maximum
number of items rated by the same user respectively, and where D is the
number of particles of the particles filter. This complexity also has one term
in k2 and one in k3, but compared to SeALS, the update is done at every
time step which gives an overall high complexity.

Finally, no analysis about the regret for our algorithm is provided yet.
However, we want to emphasize that this a difficult task and that, at current
time, no existing work on bandits and RS manages to prove regret bounds
on their algorithms. The only proof available for bandits applied to RS is
the one of PTS (Kawale et al., 2015), but the regret bound only holds in a
specific case when the rank of the matrix is supposed to be k = 1, which is
a very simplistic and non-realistic setting for RS (for example, in this case,
the highest-rated item in expectation is the same for all users).

3.5 Experimental Investigation

In this section, we empirically evaluate the algorithms in the sequential set-
ting on large real-world datasets. Ideally, an online evaluation would be
the best choice to observe the sequential aspect of RS, but since we do not
have access to a real application, we build here our experimental setting
for datasets offline. Two series of experiments emphasize two different as-
pects of the sequential RS: Section 3.5.3 shows that exploration improves
the quality of the RS model and compares our model with several base-
lines, while Section 3.5.4 focuses on the influence of the method updating
the matrix model on the pseudo cumulative regret and the running time.

3.5.1 Experimental Setting and Remarks

We use the same setting as the one used in the paper by Kawale et al.
(Kawale et al., 2015). For each dataset, we start with an empty matrix R to
simulate an extreme cold-start scenario where no information is available
at all. Then, for a given number of time steps, we loop on the following
procedure:

1. we select a user ut uniformly at random,

2. the algorithm chooses an item it to recommend,

3. we reveal the value of rt = r∗ut,it
and increment the pseudo-regret

score as in Equation (3.2).

We assume that R∗ corresponds to the values in the dataset. To compute
the regret, the maximization term maxi r

∗
ut,i

is taken w.r.t. the known values
in the full matrix (selected among i ∈ I∗(u), where I∗(u) represents the set
of all items for which the rating ru,i from user u is in the dataset). We do not
put any constraint about items already recommended to a user: it is allowed

3.5. Experimental Investigation 55

to play an arm several times, and an item already recommended in previous
iterations is not discarded from the set of future possible recommendations.
In other words, an item can be recommended several times to the same user.
The goal for all algorithms is to minimize the cumulative regretRT defined
in Equation (3.2), for any time step t.

Datasets

We consider five real-world datasets for our experiments. Except Movie-
lens1M, these datasets are among the largest ones available to evaluate RS,
and items are as various as movies, artists or even people to date.

1. Movielens1M (Harper and Konstan, 2015): this dataset was collected
by GroupLens Research and contains ratings on movies from Movie-
Lens users who joined MovieLens in 2000. This dataset was released
in February 2003 and has since been widely used in most of the re-
search papers dealing with RS which use and offline evaluation. All
users in the dataset have at least 20 ratings on movies. Note that some
additional information is available, such as demographic data about
the users, as well as the title and genre information about the movies.
We do not integrate here any of this information and only use the rat-
ings data.

2. Movielens20M (Harper and Konstan, 2015): these data were also cre-
ated by Grouplens Research group, and extracted from ratings on
movies by Movielens users between January 09, 1995 and March 31,
2015. This dataset was generated on March 31, 2015, and is the most
recent and largest stable Movielens dataset. All selected users also
have rated at least 20 movies. Contrary to Movielens1M, no demo-
graphic information about users is included, but tagging information
made freely by users on movies is available. Notice that the rating
scale of Movielens changed through time: the rating scale at the re-
lease was an integer scale of 1-5 and changed from a half-integer from
0.5 to 5. As the range of the time at which ratings were collected goes
from 1995 to 2015, ratings from the old scale notation and the new
ones are mixed in this dataset.

3. LibimSeTi (Brozovsky and Petricek, 2007): this dataset was extracted
from the LibimSeTi dating website by Charles University. This is an
interesting dataset as "items" in this case are other users of the web-
site. Once again, only users who provided at least 20 ratings were
included. Moreover, users who provided constant ratings were ex-
cluded. Note that ratings were originally on an integer 1-10 scale, but
we scaled them to a (float) 1-5 scale. The gender information about
users was included in the dataset but is not used in our experiments.

4. Douban (Ma et al., 2011): this is also a dataset about ratings on movies
extracted from the Douban website, which is a Chinese Web 2.0 web-
site providing user review and recommendation services for movies,
books, and music. This dataset also contains the social friend network
as this network was used in the paper made by researchers who re-
leased this dataset.

56 Chapter 3. Recommendation as a Multi-Armed Bandit

5. Yahoo! Music user ratings of musicalartists4: this dataset is pro-
vided by the Yahoo! Research Alliance Webscope program. It rep-
resents a sample of (anonymized) Yahoo! users’ ratings of musical
artists, gathered over a thirty-day period sometime prior to March
2004. The ratings are integers ranging from 0 to 100. There is an ex-
ception with the score of 255 which indicates the user noticed the sys-
tem "never play again" about the recommended artist. Note that the
Yahoo! dataset used in our experiments is taken from the originally
larger dataset from which we extracted users with at least 20 ratings.
We also rescaled ratings from a 0-100 integer scale to a 1-5 scale (with
floating points), and assigned a score of 0.5 when the rating was the
255 value.

Some basic characteristics about the dataset as we use them in our ex-
periments are reported in Table 3.1. The statistics about mean rating and
standard deviation of the ratings are calculated from ratings after rescaling
for LibimSeTi and Yahoo! dataset.

TABLE 3.1: Characteristics of the five datasets used for ex-
periments on sequential recommendation using MAB.

Movielens1M◦ Movielens20M◦ LibimSeTi ◦ * Douban Yahoo! ◦ *†

#users 6,040 138,493 135,359 129,490 1,065,258
#items 3,706 26,744 168,791 58,541 98,209
#ratings 1,000,209 20,000,263 17,359,346 16,830,839 109,485,914
Density 4.47% 0.54% 0.076% 0.22% 0.1%
Rating scale 1-5 0.5-5 1-5 1-5 0.5-5
#ratings/user 165.6 144.4 128.2 130 102.8
#ratings/item 269.9 747.8 102.9 287.5 1114.8
Mean rating 3.58 3.53 3.19 3.84 3.03
STD of ratings 1.12 1.05 1.38 0.91 1.61

◦ at least 20 ratings * rescaled † filtered

Some difficulties arise when using real-world datasets: in most cases,
the ground truth is unknown, and only a very small fraction of ratings is
known, since users only gave ratings to items they have purchased (or lis-
tened to or watched. . . depending on the type of RS). This makes the eval-
uation of algorithms uneasy considering we need in advance the reward of
items we include in the list of possible recommendations. This is the case
in our experiments, as we do not have access to the full matrix R in all
datasets.

This issue is solved in the case of contextual bandits by using reject sam-
pling (Li et al., 2011): the algorithm chooses an arm (item), and if the arm
does not appear in logged data, the choice is discarded, as if the algorithm
had not been called at all. For a well collected dataset, this estimator has
no bias and has a known bound on the decrease of the error rate (Langford
et al., 2008). With our setting, we need no more to rely on reject sampling:
we restrict the possible choices for a user at time step t to the items with a
known rating in the dataset.

4https://webscope.sandbox.yahoo.com/

3.5. Experimental Investigation 57

3.5.2 Baselines

The SeALS algorithm is compared to the following baselines:

Random At each iteration, a random item is recommended to the user
(chosen only among the ones rated by the user in the full dataset).

Popular This approach assumes we know the most popular items based
on the ground truth matrix. At each iteration, the most popular item (re-
stricted to the items rated by the user on the dataset) is recommended. Re-
mark that this is a strong "oracle" baseline as it knows beforehand which
items have the highest average ratings. However, it is not an optimal strat-
egy as it does not perform any personalization for users: recommended
items are based only on the average popular preferences.

UCB1 This bandit approach considers each reward rut,it as an indepen-
dent realization of a distribution νit . In other words, it recommends an
item without taking into account the identity of the user requesting the rec-
ommendation. The average rating µi(t) is computed from all ratings given
on the item i by any user until t, and the number of times the item was
seen represented by Ti(t) also denotes how many times the item was rec-
ommended in total to any user.

PTS (Kawale et al., 2015) This approach builds upon a statistical model of
the matrix R, using the Probabilistic Matrix Factorization model (Salakhut-
dinov and Mnih, 2008b). The recommendations are done after a Thompson
Sampling strategy (Chapelle and Li, 2011) which is implemented with a
Particle Filter. We present the results obtained with the non-Bayesian ver-
sion, as it obtains very similar results with the Bayesian one.

Greedy This approach is SeALS built with α = 0 which implies no explo-
ration is done during the recommendation process. This is the approach
traditionally used in RS, where no Multi-Armed Bandits is integrated into
the recommendation phase.

Remark that, despite what one could think at first sight, the UCB1 ap-
proach which eventually will recommend the items with the highest esti-
mated average rating does not necessarily converges to the same solution
as the Popular baseline, as the average rating it estimates can be different.
The interested reader can see an example in Appendix A.

3.5.3 Impact of Exploration

The first set of experiments compares two strategies to recommend an item:
SeALS with α > 0, and SeALS with α = 0 (denoted Greedy) which corre-
sponds to the greedy strategy. As this experiment does not target the study
of the update parameter, both strategies use the maximum possible value
for this parameter p (p = 1), which means we update all the users and items
every Tu time steps.

58 Chapter 3. Recommendation as a Multi-Armed Bandit

The values of Tu used are the same for SeALS and Greedy, and Tu was
set to 1,000 for Movielens1M, 10,000 for Douban and Movielens20M and
250,000 for Yahoo!. These values of Tu are chosen since they allow the up-
date to happen often enough to obtain good results, and since setting a
higher period of update would not give much better results (cf. Section
3.5.4). We set the regularization parameter λ = 0.1 for Greedy and λ = 0.15
for SeALS. Parameter k is set to 15. These values are chosen from a grid
search during experiments as they give high stable results on all datasets.

We also compare these two approaches with PTS. By fixing the value of
the parameters of PTS as mentioned in (Kawale et al., 2015) (30 particles
and k = 2), the experimental results we obtain are not as good as the ones
presented in that paper. We increase k to 15 to be on par with the number
of features used in SeALS, and we obtain results more similar to the ones
presented in (Kawale et al., 2015). We use that value of k for all results of
the PTS approach we are displaying.

Figure 3.2 displays the pseudo-regretRT obtained by the Recommenda-
tion System after a given number of iterations (all results are averaged over
100 runs). Results on all datasets demonstrate the need of exploration dur-
ing the recommendation process: by properly fixing α, SeALS gets lower
pseudo-regret value than Greedy. SeALS also obtains the best results on
all datasets among algorithms which does not know the ground truth (con-
trary to Popular). Other methods aiming at tackling the exploration vs.
exploitation dilemma, like PTS or UCB1 (which does not even provide per-
sonalized recommendations) reach a lower cumulative regret than Greedy,
which highlights the importance of the exploration.

Notice that results on LibimSeti indicates a very low cumulative regret
for all algorithms except Random. Popular approach in particular reaches
the best results with an extremely low cumulative regret: this indicates that
"items" (in this case, people to date) in the dataset are likely to match the
tastes of every user, and can be recommended to anyone. Thus, detecting
these users is sufficient to perform good recommendations. Exploration
is still necessary to detect them more quickly: in a case where the regret of
Popular is close to the optimal, then UCB1 is the most adapted algorithm as
it also aims at finding the best items in average over all users by exploring
them. However, note also that the goal of the RS in the dating site would
be to find a couple of people who match well mutually (in our case, this
would mean the "user" also have to match the tastes of the "item"), which is
a more complex task than the one we tackle.

The PTS method which tackles the exploration/exploitation dilemma
appears only on the Movielens1M evaluation as this method does not scale
well on large datasets (cf. Section 3.5.4 for the running time of PTS on
Movielens1M). However, it is important to note that on the original PTS
paper, this approach performs only comparably or slightly better than the
Popular baseline on the evaluation provided on all small datasets, while
our approach consistently performs much better than this baseline. One
can reasonably assume that SeALS would perform better than PTS even if
the latter one didn’t have a scaling issue.

3.5. Experimental Investigation 59

0.0 0.2 0.4 0.6 0.8 1.0

Time-steps (×106)

0

2

4

6

8

10

12

14

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
5

)

Random

Popular

PTS

UCB1

Greedy

SeALS, α=1.1 ·104

(A) Movielens1M

0 5 10 15 20

Time-steps (×106)

0

5

10

15

20

25

30

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
6

)

Random

Popular

UCB1

Greedy

SeALS, α=2.3 ·105

(B) Movielens20M

0 2 4 6 8 10 12 14 16 18

Time-steps (×106)

0

5

10

15

20

25

30

35

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
6

)

Popular

Random

UCB1

Greedy

SeALS, α=1.0 ·105

(C) LibimSeti

0 2 4 6 8 10 12 14 16 18

Time-steps (×106)

0

2

4

6

8

10

12

14

16

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
6

)

Popular

UCB1

Random

Greedy

SeALS, α=1.6 ·105

(D) Douban

0 20 40 60 80 100 120

Time-steps (×106)

0

2

4

6

8

10

12

14

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
7

)

UCB1

Popular

Random

Greedy

SeALS, α=2.0 ·106

(E) Yahoo

FIGURE 3.2: Impact of exploration on the cumulative regret
score, evaluated on five datasets.

60 Chapter 3. Recommendation as a Multi-Armed Bandit

3.5.4 Impact of the Update Strategy

To evaluate the impact of the method used to update the model as well as
the period at which updates take place, we set up a different evaluation
display for this second experiment. For each RS, we run experiments as
presented in Section 3.5.1, and we store the final running time as well as
the pseudo-regret at the end of all iterations. Such evaluation methodology
allows finding which size of mini-batch and update period leads to the best
trade-off between the final pseudo-regret score and the total running time.
This is an important point as a recommendation should both (i) be accurate
and (ii) be quickly provided to the user in a real-word RS.

Figure 3.3 displays the results of this experiment (averaged over 100
runs). Each curve corresponds to a fixed size of mini-batch p, and every
point of a same curve represents a specific value of the update period Tu. A
point located at a high running time results from a small value of Tu (mean-
ing the model was updated very often). Note that for SeALS, we display
the results for each p (i.e. each curve) with the value of α reaching the low-
est pseudo cumulative regret. Thus, each curve can have a different value
of α. Note that in theory, each point of each curve could also potentially
reach its best score with a different value of α, but it would make it hard
to read the figure. We also display the results of other baselines for which
we cannot control the running time such as Random or UCB1, and exhibit
these results with a single point in the figure.

For SeALS with p = 1, the period Tu of the updates varies in the range
[1 103; 2 105] for Movielens1M, [104; 5 106] for Douban and Movielens20M,
and [2.5 105; 107] for Yahoo!. For p = 0.1 and p = 0.001, the considered
periods are the same ones as for p = 1, but respectively divided by 10 and
103 in order to obtain comparable running times. Indeed, since we update
a smaller portion of the matrix, it is possible to run this update more often
and choose a small period Tu. For each value of p, we display the curve with
the value of α (for the exploration) which reaches the lowest pseudo-regret.

Three main conclusions are drawn from this experiment:

• The results on Movielens1M highlight the non-scalability of the PTS
algorithm, which takes several hours to complete 1 million iterations
while SeALS only takes a few minutes. PTS does not seem to be an
appropriate algorithm to provide quick recommendations as it takes
too long updating the model.

• On every dataset, the curve representing SeALS quickly decreases:
there is a rapid transition from a poor score to a good pseudo-regret.
This means finding the appropriate period of update is sufficient to
obtain a good RS.

• Third, on the large datasets, decreasing the portion of the users and
items to update with a smaller p results in a worse score when using
large update periods, but leads to a slightly better trade-off between
the pseudo-regret and the running time at some point, when the up-
dates are happening more often. One has to notice the best results
for smaller values of p are obtained with a slightly smaller value of
α, which implies that less steps of exploration have been done during

3.5. Experimental Investigation 61

100 101 102 103 104 105

Total Running Time (in sec., log-scale)

0

2

4

6

8

10

12

14

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
1
05

)

Random

Popular

PTS

UCB1

SeALS, p=0.001 , α=9.0 ·103

SeALS, p=0.1 , α=1.1 ·104

SeALS, p=1 , α=1.1 ·104

(A) Movielens1M

102 103 104 105

Total Running Time (in sec., log-scale)

5

10

15

20

25

30

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

6
)

Random

Popular

UCB1

SeALS, p=0.001 , α=1.8 ·105

SeALS, p=0.1 , α=1.8 ·105

SeALS, p=1 , α=2.3 ·105

(B) Movielens20M

102 103 104 105

Total Running Time (in sec., log-scale)

0

5

10

15

20

25

30

35

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

6
)

Random

Popular

UCB1

SeALS, p=0.001 , α=4.0 ·104

SeALS, p=0.1 , α=4.0 ·104

SeALS, p=1 , α=1.0 ·105

(C) LibimSeti

102 103 104 105

Total Running Time (in sec., log-scale)

2

4

6

8

10

12

14

16

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

6
)

Random

Popular

UCB1

SeALS, p=0.001 , α=1.2 ·105

SeALS, p=0.1 , α=1.2 ·105

SeALS, p=1 , α=1.6 ·105

(D) Douban

103 104 105

Total Running Time (in sec., log-scale)

2

4

6

8

10

12

14

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
1
07

)

Random

Popular

UCB1

SeALS, p=0.001 , α=1.5 ·106

SeALS, p=0.1 , α=1.7 ·106

SeALS, p=1 , α=2.0 ·106

(E) Yahoo

FIGURE 3.3: Impact of the update strategy on the final cu-
mulative regret score, evaluated on five datasets.

62 Chapter 3. Recommendation as a Multi-Armed Bandit

the experiments. It is likely that some sort of exploration is added in
the system by not updating every user and every item at each time
step as it happens when p = 1 is chosen: while the whole model is not
updated, it does not play optimally, which means it explores.

Finally, we want to highlight that UCB1 is a reasonable approach to apply
in a RS if only a small time budget can be allowed, as it obtains good results
on most datasets in a very small running time.

3.6 Concluding Remarks

In this chapter, we handle Recommender Systems based on Matrix Com-
pletion in the suitable context: an endless loop which alternates (i) learning
of the model and (ii) recommendations given the model. Our proposed ap-
proach, SeALS, meets both challenges which arise in such a context. First,
SeALS handles both short-term and long-term reward by balancing explo-
ration and exploitation. Second, SeALS handles constraints on computing
budget by adapting mini-batch strategy to alternating least square opti-
mization. Experiments on real-life datasets show that (i) exploration is a
necessary evil to acquire information and eventually improve the perfor-
mance of the RS, and (ii) SeALS runs in an acceptable amount of time (less
than a millisecond per iteration).

However, in this setting, we only focused on the recommendation of one
item, where the feedback is directly given by the user. In a real-world RS,
the user usually has a list of items proposed to him, where he can decide to
pick (or not) an item and gives feedback on it. We study this setting in the
next chapter of this thesis.

63

Chapter 4

Ranking Using (No-)Click
Implicit Feedback

In this chapter 1, we study a different recommendation setting. The previ-
ous chapter introduced a RS aiming at handling sequential recommenda-
tion, where one item is recommended at a time and an explicit feedback is
received in the form of a rating. We study in this chapter an extended set-
ting where, at each time step, multiple items are recommended to the user
in the form of an ordered list of items. In this case, the feedback received by
the RS is both implicit and explicit. We describe a specific setting modeling
the interaction between the user and the RS, and propose two approaches
using the two sorts of feedback to improve faster the quality of the recom-
mendation list. Our approach is evaluated on real-world datasets.

Contents
4.1 Sequential Recommendation of Multiple Items 64
4.2 Related Work . 65

4.2.1 Online Ranking in Information Retrieval 65
4.2.2 Recommendation with Ranking Approaches . . . 66
4.2.3 Mixing Explicit and Implicit Data 67

4.3 Ranking Recommender System Using Click Feedback . 67
4.3.1 Setting . 68
4.3.2 Feature Engineering 69
4.3.3 Dual Matrix Factorization 72

4.4 Experimental Investigation with ERR Click Model . . . 74
4.4.1 Evaluation Metrics 74
4.4.2 Datasets . 75
4.4.3 Baselines . 76
4.4.4 Results and Discussion 78

4.5 Experimentation with Other Click Models 81
4.5.1 The navigational click model 82
4.5.2 The informational click model 84
4.5.3 The almost random click model 86

4.6 Concluding Remarks . 88

1This chapter is an extended version of a publication in ICONIP (Guillou et al., 2016c)

64 Chapter 4. Ranking Using (No-)Click Implicit Feedback

4.1 Sequential Recommendation of Multiple Items

In most real-world Recommendation Systems, the system does not want to
recommend only one item as described in Chapter 3, since there is a high
risk to disappoint the user if this item does not suit his tastes. Moreover,
the explicit feedback on a recommended item is not always collected as the
user has the choice to rate this item or not.

For these reasons, the system wants to let the user choose which item(s)
he wants to buy/read/listen to. . . , and thus most commercial RS recom-
mend an ordered list of items in which the user can pick one or several
items.

In this chapter, we focus on such RS, which aim to recommend a list of
items. Standard approaches in that setting discuss which loss is the most
adapted and how to optimize that loss (Weimer et al., 2008; Balakrishnan
and Chopra, 2012; Shi et al., 2013). In their attempts to do so, they omit one
effect deriving from recommending a list of items: we could expect more
feedback than a rating on a single item. For example, we could have ac-
cess to the list of items which have been seen by the user, the list of items
on which he clicked, etc. In a few words, we are confronted to a mix of
explicit and implicit feedback. Despite its more acute noisiness compared
to explicit feedback, implicit feedback can be useful for the system to learn
about the user’s preferences: for example the RS can use the implicit infor-
mation when the user does not select any of the items recommended in the
list to improve its model even if no rating is explicitly given by the user.

Several RS approaches have already been developed to handle implicit
feedback (Rendle et al., 2009; Shi et al., 2012; Takács and Tikk, 2012), but
surprisingly, none is considering negative implicit feedback: "the user u
did not click on item j". Most of the time, the implicit feedback is limited
to unary rating, such as "the user put the item in the purchasing basket" or
"the user listened to one song", but not to "negative" implicit feedback.

The feedback gathered depends on the model of interaction for users.
The first contribution in this chapter is to propose two approaches to han-
dle the feedback involved by the interaction model discussed in (Chapelle
et al., 2009). These two approaches lead to relevant recommendation lists
for three real-life datasets.

The second contribution of our work relates to the experimental setting.
The data used by a RS depend on previous recommendations. This means
two different RS should recommend based on two different sets of feed-
back. As a consequence, the evaluation of the RS traditionally done in a
fixed, batch setting does not make sense. In this part, we propose a proper
experimental setting which mimics the interaction between the RS and the
users. This evaluation setting extend the one used in Chapter 3, and we
represent the sequential loop of recommendation for this chapter in Figure
4.1, which can be compared to Figure 3.1 from previous chapter to assess
the difference.

4.2. Related Work 65

User

Recommender
System

Update

list of

Gives
Feedback

1.

2.

3.

4.

5.

items
Recommends a ranked

1.

2.

3.

4.

5.

Picks
an item

FIGURE 4.1: The sequential recommendation process with
a list of items. After the RS recommends the item, the user
looks at the items one by one and picks one, then gives back
a feedback about the item picked, and the RS possibly up-

date its model.

4.2 Related Work

In this section, we briefly review related work in RS about several aspects
included in our approach. The first aspect is related to Online Ranking in
Information Retrieval, the second one is about ranking methods applied in
the context of RS, while the last aspect is the mixing of both explicit and
implicit feedback.

4.2.1 Online Ranking in Information Retrieval

A field in Information Retrieval focuses on online Learning to Rank, where
the goal is for a web search engine to provide a good ranking of documents
and improve the performance of the system as the user chooses documents
or not and gives feedback. In all these researches, only the implicit feed-
back given by the user’s click (when he chooses one or several documents)
is used in the model to improve the ranking, since in web search no ex-
plicit feedback is given by user about the web page or the document. In
(Radlinski et al., 2008), a Multi-Armed Bandit (MAB) approach is used to
provide diverse ranking, by running a MAB instance for each position in
the ranked list. Each MAB instance is treated independently and only the
MAB instance corresponding to the documents clicked by the user are up-
dated.

The modelization of the problem as a Dueling Bandits Problem is intro-
duced in (Yue and Joachims, 2009), where the only actions are comparisons
between two points (in the case of web search, the comparison refers to the
portion of users who preferred results provided by a retrieval function w
over those of another function w′). The authors define a regret accordingly

66 Chapter 4. Ranking Using (No-)Click Implicit Feedback

and propose a Gradient Descent method with theoretical guarantees about
this regret.

Finally, (Hofmann et al., 2013b) extends pairwise or listwise learning by
adding mechanism to balance exploration-exploitation. They both use an
exploitative list, predicted by a Stochastic Gradient Descent approach, and
an exploratory list with elements selected at random, and make the final
ranking of documents by using an idea derived from ε-greedy where each
element of the final list is picked with a probability ε from the exploratory
list or otherwise from the exploitative list.

The field of Information Retrieval and the field of RS is tightly related,
and we also study here the problem as a sequential process with click made
on items of the list. However, compared to these methods, the RS used
in our setting receives both explicit and implicit feedback, and we do not
integrate the exploration-exploitation aspect in our approaches.

4.2.2 Recommendation with Ranking Approaches

Approaches recommending a list of items are looking at a the best loss func-
tion. These approaches replace the squared loss on ratings by a loss mea-
suring the ranking ability of the model learned.

Some methods of ranking focus only a rating matrix filled with im-
plicit binary feedback, such as CliMF in (Shi et al., 2012) which is a vari-
ant of latent factor Collorative Filtering, optimizing a lower bound of the
smoothed reciprocal rank of "relevant" items in ranked recommendation
lists. Bayesian Personalized Ranking (BPR) in (Rendle et al., 2009) provides
an optimization criterion BPR-Opt which is the maximum posterior estima-
tor derived from a Bayesian analysis of the pairwise ranking problem, and
proposes an algorithm based on Stochastic Gradient Descent to optimize
this criterion. Finally, RankALS presented in (Takács and Tikk, 2012) intro-
duces an Alternating Least Square approach where the objective function is
a ranking function using pairwise preferences.

Other approaches have been built to handle the explicit feedback with
multiple level of relevancy. CoFiRank is one of the first approach handling
this type of ratings and was introduced in (Weimer et al., 2008). It is based
on Maximum Margin Matrix Factorization (a matrix factorization technique
with a trace norm regularization on the factors), and it optimizes various
losses including a smooth approximation of the Normalized Discounted Cu-
mulative Gain (NDCG).

Collaborative ranking approach described in (Balakrishnan and Chopra,
2012) first learns user and item features using Probabilistic Matrix Factor-
ization. From these features, the authors can apply Learning to Rank point-
wise and pairwise methods such as the ones described in (Burges, 2010)
which needs input features. A very similar approach is used in (Volkovs
and Zemel, 2012), where a Learning To Rank algorithm is applied after a
PMF matrix factorization step, but this paper adds one more step of fea-
ture construction by using neighborhood approach to reduce the parameter

4.3. Ranking Recommender System Using Click Feedback 67

space. (Shi et al., 2013) is an extension of CliMF to handle ratings with mul-
tiple level of relevance and optimizes a smooth approximations of the Ex-
pected Reciprocal Rank (ERR). Finally, more recent work in (Liu and Aberer,
2014), and (Lee et al., 2014) respectively optimize a pairwise learning to
rank loss, and a structured output loss.

These approaches only handle either explicit or implicit feedback. How-
ever, when recommending a list of items, a mix of both kinds of feedback is
often to be expected: the rating of selected items (explicit), the list of items
which have not been clicked despite having been shown to the user (im-
plicit), the list of items which have been selected but not purchased, etc.

4.2.3 Mixing Explicit and Implicit Data

Only few approaches have attempted to mix explicit and implicit feedback
for Collaborative Filtering approaches. The most famous approach among
these approach is SVD++ (Koren, 2008). It integrates implicit feedback in
the representation of a user and limits itself to a restrictive kind of implicit
feedback: a list of clicked items. The model of the SVD++ is described by
Equation (4.1), giving the rating r̂u,i given by user u on item i:

r̂u,i = µ+ bu + bi +

pu +
1√
|N(u)|

∑
j∈N(u)

yj

T

qi , (4.1)

where µ, bu and bi are respectively the general, the user and the item bias,
|N(u)| is the set of implicit information (items rated by the user u), yj is a
factor vector to represent the implicit part, and pu and qi represent the user
and item features.

Another approach, Co-Rating (Liu et al., 2010), considers implicit feed-
back as complementary values to fit. As such, Co-Rating manages any kind
of implicit data. Still, it assumes that explicit and implicit feedback equal
themselves as soon as they are scaled to [0, 1]. SVD++ and Co-Rating both
learn by optimizing a squared loss.

In the remainder of the chapter, we develop an approach which properly
handles any kind of feedback, and therefore leads to better experimental
results.

4.3 Ranking Recommender System Using Click Feed-
back

Before building the model to handle both explicit and implicit feedback,
we have to express and define the model of interaction we will use in what
follows. This model governs the feedback which is gathered, and is used to
build our second approach (in Section 4.3.3).

68 Chapter 4. Ranking Using (No-)Click Implicit Feedback

4.3.1 Setting

The recommendation setting we consider is the one described in the paper
from Chapelle et al. (Chapelle et al., 2009). Let us consider N users and M
items and the unknown matrix R∗ of size N ×M such that r∗u,i is the rating
of user u with regard to item i. We assume the ratings range from 0 to R.

From R∗, a relevance probability p(u, i) is derived, and represents how
much a user u is eager to select an item i:

p(u, i) =
2r
∗
u,i − 1

2R
. (4.2)

Then we set up the interaction between the RS, the users and the items.
At each time-step t, a user ut requests ` items, and the RS provides the
ranked list L(t) = (i

(t)
1 , . . . , i

(t)
`). As defined in the Cascading model, the

interaction model supposes several characteristics:

• The user observes the list from top to bottom, one item after another;

• While observing the s-ith item, the user has a chance to pick it with
probability p(ut, i

(t)
s);

• Once an item is picked (denoted it), the user stops observing the list.
Thus, note that the user does not observe items ranked after the item
picked.

In our interaction model, the explicit feedback is collected at the time t for
the item it which is picked by the user ut in the list, as the rating r∗ut,it

We define the function ERRClickModel(ut, L
(t)) which takes as input a

user and a ranked list of items, and is described in Algorithm 9. Following
the setting specified above, it returns the position of the item clicked, or
`+ 1 if no item was clicked.

Algorithm 9: ERRClickModel: models the interaction between a user
and the RS presenting a ranked list of items.

Input : A user: u,
A list of items of size `: L = (i1, . . . , i`),
The maximum possible rating R

Output: The position of the item clicked: pclicked
1 pclicked ← `+ 1;
2 s← 1;
3 while s ≤ ` and pclicked = `+ 1 do

4 p(u, is) =
2r
∗
u,is − 1

2R
;

5 if P ∼ U(0, 1) < p(u, is) then
6 pclicked ← s;
7 else
8 s← s+ 1;
9 end

10 end

4.3. Ranking Recommender System Using Click Feedback 69

This setting implies two types of feedback are received at every recom-
mendation list displayed:

1. the implicit feedback: it consists in the list of skipped items (even-
tually empty if the first item in the list was picked), and the clicked
item (eventually none if no click was made by the user during the
recommendation step)

2. the explicit feedback: this is the rating of the clicked item. If no item
was clicked, then this part of the feedback is retrieved.

Note that the rank (in the recommendation list) of the clicked item brings
only information about items ranked above in the list: we know these items
were skipped. On the contrary, no information is gathered about items
placed below the clicked one, as the user did not observe them according
to our setting.

The two following sections describe two different approaches attempt-
ing to use these types of feedback to improve recommendations.

In the following, we use shared notations, where:

• We denote Rt the partially known N ×M matrix such that rus,is = rs
for any s 6 t.

• We note St the set of known entries of Rt:

St = {(us, is); s ≤ t} .

• At denote the matrix of size N ×M which stores for each user u and
item i the number of clicks received by item iwhen presented to u, up
to time t.

• St denote the matrices of size N × M which stores for each user u
and item i the number of times i was skipped when shown to u on a
recommendation list, up to time t.

• Finally, for any matrix M, we denote Mi the vector corresponding to
the i-th row of M, and Mi,j correspond to the entry in the i-th row
and j-th column.

For the sake of readability, the subscript t is omitted in the following.

4.3.2 Feature Engineering

The first method denoted SVD+- assumes that we can embed the implicit
feedback into features of the model. Following the steps of SVD++, where
the ratings is represented as in Equation (4.1) and the implicit feedback is
modeled through the sum 1√

|N(u)|

∑
j∈N(u) yj , we extend this implicit part

as C
∑

j∈N(u) yj , where C consists in:

Cu,s =
Au,s − Su,s∑M

s′=1Au,s′ + Su,s′
. (4.3)

70 Chapter 4. Ranking Using (No-)Click Implicit Feedback

C gives a value to every item based on how many times it was clicked
or skipped out of all interactions for a user. This value ranges from -1 to
1. The score in the numerator represents how much the item was clicked
or skipped, while the denominator ponder this score by all the interactions
made until now by the user. The denominator would grow for all items in
C. This helps to not penalize too much an item s which has been recom-
mended in a list only one time and skipped at this first recommendation.
The score Cu,s of this item would increase as time goes by, and it will even-
tually make its chance to be recommended high again.

A rating ru,i given by user u on item i is modeled by SVD+- as:

r̂u,i = µ+ bu + bi +

pu + C
∑

j∈N(u)

yj

T

qi . (4.4)

Notice that this representation does not generalize SVD++.

To learn our model, we build upon Factorization Machine (FM) in this
way: following the data representation used for FM and described in the
paper (Rendle, 2010), we associate to any user-item couple (u, i) a repre-
sentation φ1(u, i) and we look at a function f s.t. f(φ1(u, i)) = r∗u,i. The
representation of the data is the following:

φ1(u, i) = (0, . . . , 1, 0, . . . ,︸ ︷︷ ︸
N

0, . . . , 1, 0, . . . ,︸ ︷︷ ︸
M

Cu,1, . . . ,Cu,s, . . . ,Cu,M︸ ︷︷ ︸
M

) , (4.5)

where the first section indexes u, the second section indexes i, and the last
one embed the implicit information gathered on items for the user u.

Our RS algorithm is called SVD+- as it uses both click and no-click feed-
back, and it takes as input R filled with known values, A, S, the set of items
S, and a size of recommendation list `.

From that feature model, the Factorization Machine learns the function

f̂1(φ1(u, i)) = w0 + wu + wi + vu.v
T
i +

(
M∑
s=1

Cu,svs

)
· vTi

+ vu ·

(
M∑
s=1

Cu,isvs

)T

+

M∑
s=1

Cu,isws

+

(
M∑
s=1

Cu,svs

)
·

(
M∑
s=1

Cu,svs

)T

,

wherew0, wi, wj and (ws)16s6M are real values, and v0, vu, vi and (vs)16s6M

are feature vectors of size k. These parameters are chosen to optimize a
trade-off between (i) the average square loss with respect to known values
in R∗ and (ii) the L2 norm of the parameters.

Note that optimizing the objective function f̂1 would not necessarily re-
quire to use Factorization Machine, but we choose this tool as it is both
efficient and has shown good results in RS applications.

4.3. Ranking Recommender System Using Click Feedback 71

SVD+- is described in Algorithm 10. It takes as input a size of recom-
mendation for the list and a period of update for the model, and the matrix
of observed ratings. It provides recommendations sequentially to users of
the RS.

Algorithm 10: SVD+-: sequentially recommends a list of items using
click feedback.

Input : size of recommendation list: `
period of update for the MF model: tupdate

Input/Output: Matrix of observed ratings: R,
Matrix containing the number of clicks: A,
Matrix containing the number of no-clicks: S,
Set of items rated: S

1 for t = 1, 2, . . . do
2 get user ut and set At of allowed items;
3 Cut =

Aut−Sut∑
i∈{1..M}Aut,i+Sut,i

;

4 for p = 1 . . . ` do
5 fill the list of items at position p:

L(t)[p]← argmaxi∈At
f̂1(φ1(ut, i));

6 At ← At \ {L(t)[p]};
7 end
8 Simulate user click: pclicked ← ClickModel(ut, L

(t));
9 for p = 1 . . . (pclicked − 1) do

10 Sut,L(t)[p] ← Sut,L(t)[p] + 1;
11 end
12 if p_clicked ≤ ` then
13 the item clicked is: it ← L(t)[pclicked];
14 Aut,it ← Aut,it + 1;
15 recommend it and receive rating rt = rut,it ;
16 update R and S;
17 end
18 if t ≡ 0 (mod tupdate) then
19 update model based on R (input is triplet (u, i,Cu));
20 end
21 end

From the lines 4 to 7, the algorithm fills the list of items to recommend
according to the predictions of the FM. Then, in line 8, the user clicks on
one item and we get the position of this item in the list.

Lines 9 to 11 represent the update of the matrix S for items which were
ranked higher than the clicked item, while lines 12 to 17 represent the up-
date of the matrix A for the clicked item, its recommendation to the user
and the reception of the explicit rating. Finally, lines 18 to 20 show the up-
date of the model at some specific time.

72 Chapter 4. Ranking Using (No-)Click Implicit Feedback

4.3.3 Dual Matrix Factorization

From another perspective, we design a second approach called DualMF,
which considers both types of feedback as values to fit. More specifically,
we look at a low rank approximation R̂ = U.VT of R∗, where U and V are
matrices of respective sizes N × k and M × k. Obviously, we want R̂ to fit
known values in R (aka. explicit feedback).

But we also make use of implicit feedback. Based on the model of the
probability of click p(u, i), we can build a biased estimator r̂imp

u,i of r∗u,i for
any user-item couple (u, i) s.t. item i has been clicked or skipped at least
one time by user u:

r̂imp
u,i = log2

(
1 + 2R

Au,i + 0.5

Au,i + Su,i + 1

)
. (4.6)

The 0.5 added at the numerator and the 1 added at the denominator
act similarly to a prior and help the model to not penalize too much items
for which only little information has yet been collected. Implicit estimated
ratings are stored in Rimp distinctively from explicit ratings.

Overall, the approach DualMF looks for a matrix R̂ fitting both known
values in R, and Rimp values, and the objective function f̂2 of this problem
is learned by solving the minimization problem:

min
R̂=U.VT

µ
∑

(u,i)∈S

(r̂u,i−r∗u,i)2+
∑

(u,i):Au,i+Su,i 6=0

(r̂u,i− r̂imp
u,i)2+λ(‖U‖2+‖V‖2) ,

(4.7)
where µ and λ are non-negative real values. µ controls the impact of explicit
data compared to implicit one, and λ weights the regularization term.

We choose again to use a Factorization Machine model to solve Equation
(4.7). Compared to SVD+-, the representation of the data φ2(u, i) does not
include the information about implicit feedback, and the input is simply:

φ2(u, i) = (0, . . . , 1, 0, . . . ,︸ ︷︷ ︸
N

0, . . . , 1, 0, . . . ,︸ ︷︷ ︸
M

) . (4.8)

The representation of the input is simpler, as input vectors do not contain
any additional features based on C. However more data points are used
for training, as the model is trying to fit both the explicit rating r(u, i) and
the estimated rating from implicit feedback r̂imp

u,i .

The approach DualMF is described in Algorithm 11. Note that we use
Factorization Machine algorithm to solve Equation (4.8) and learn the ob-
jective function f̂2, but it is only one possible way and other models could
have been used instead. The algorithm is not too different from Algorithm
10 of SVD+-: the biggest difference is in line 11, where the implicit rating
of Rimp is estimated, and on line 21 where the model uses the implicit esti-
mated ratings to update.

4.3. Ranking Recommender System Using Click Feedback 73

Algorithm 11: DualMF: sequentially recommends a list of items using
click feedback.

Input : size of recommendation list: `
period of update for the MF model: tupdate

Input/Output: Matrix of observed ratings: R,
Matrix of implicit ratings: Rimp,
Matrix containing the number of clicks: A,
Matrix containing the number of no-clicks: S,
Set of items rated: S

1 for t = 1, 2, . . . do
2 get user ut and set At of allowed items;
3 for p = 1 . . . ` do
4 fill the list of items at position p:

L(t)[p]← argmaxi∈At
f̂2(φ(ut, i));

5 At ← At \ {L(t)[p]};
6 end
7 Simulate user click: pclicked ← ClickModel(ut, L

(t));
8 for p = 1 . . . (pclicked − 1) do
9 ip ← L(t)[p];

10 Sut,ip ← Sut,L(t)[p] + 1;

11 r̂imp
ut,ip

= log2

(
1 + 2R

Aut,ip+0.5

Aut,ip+Sut,ip+1

)
;

12 update Rimp;
13 end
14 if p_clicked ≤ ` then
15 the item clicked is: it ← L(t)[pclicked];
16 Aut,it ← Aut,it + 1;
17 recommend it and receive rating rt = rut,it ;
18 update R and S;
19 end
20 if t ≡ 0 (mod tupdate) then
21 update model based on R and Rimp;
22 end
23 end

74 Chapter 4. Ranking Using (No-)Click Implicit Feedback

4.4 Experimental Investigation with ERR Click Model

We empirically evaluate the two proposed algorithms in a sequential set-
ting on three real-world datasets. For each dataset, we start with an empty
matrix R to simulate an extreme cold-start scenario where no information
is available at all. Then, a list of items is recommended for each user ac-
cording to the following procedure:

1. we select a user it uniformly at random among possible users (the
ones to which no recommendation list was displayed yet),

2. the algorithm chooses a list of 5 items to recommend,

3. the user observes the list, clicks or not on an item it according to the
setting described in Section 3.1. The value of rut,it is revealed if there
was a click. The user is then discarded from possible users.

When all users have been shown a recommendation list once, we rein-
tegrate all of them in the list of possible users, and loop on this procedure
again, while keeping all feedback gathered until now. These steps are done
up to 50 recommendations shown for every user. As the ground truth is
unknown for every item (users only rated a small portion of all the items in
the dataset), we restrict the possible choices for a user at each time-step to
the items with a known rating in the dataset.

Note also that it is allowed to include an item in the list of recommen-
dations for a user even if it has already been rated in the past by him. This
is actually an essential point to our algorithms as value in A and S are up-
dated depending on the number of times the item was accepted or rejected.
This situation where items can be recommended several times is more likely
to happen in music RS, where a song can be recommended several times,
or in a video RS with short videos such as Youtube.

4.4.1 Evaluation Metrics

Metrics used for the evaluation are abandonment, ERR@5 and NDCG@5,
which we recall now. Let us consider a user i, to which the list of items
i1, . . . , i` has been recommended.

The abandonment metric represents the probability

∏̀
r=1

(1− p(u, ir)) ,

for a user not to be satisfied by any item in the list (no click), and the RS
should attempt to minimize it, since as few users as possible should end up
with a non-satisfying list of items.

While the abandonment assesses that the algorithm suggests at least one
item satisfying the user in the recommended list, the ERR and NDCG depict
how adequate is the full list of items suggested by the RS regarding the
user’s tastes.

4.4. Experimental Investigation with ERR Click Model 75

The ERR is based on the click probability defined by Eq. (4.2) and should
be maximized:

ERR@`(u, (i1, . . . , i`)) =
∑̀
r=1

1

r
p(u, ir)

r−1∏
s=1

(1− p(u, is)) . (4.9)

The formula used for the Discounted Cumulative Gain at ` (Burges et al.,
2005) is:

DCG@`(u, (i1, . . . , i`)) =
∑̀
r=1

2r
∗
u,ir − 1

log2(r + 1)
. (4.10)

The NDCG is the DCG divided by the best possible DCG and should be
maximized. As we have no access to the ground-truth matrix R∗ in our
experiments, the NDCG is computed w.r.t. the known values in R. This
means that the ideal DCG for a user u is calculated based on items i such
that (u, i) ∈ S: the best l ratings of the user u in the full dataset are retrieved
and ordered to find the best possible DCG.

4.4.2 Datasets

We consider three real-world datasets for our experiments:

1. Movielens1M (Harper and Konstan, 2015): this dataset is the same as
the one described and used in the Chapter 3.

2. Yahoo! Music user ratings of musical artists2: the original dataset is
the same as the one used in previous chapter, but we build this time
a different subset. To build this subset, we first select the 10,000 most
rated artists, and then the 50,000 users who rated the highest number
of artists. We also rescale the ratings from the range 0-100 to 1-5 and
assign the ratings with 255 score (meaning "do not recommend this
ever again") to 0.5.

3. Yahoo! Music ratings for User Selected and Randomly Selected
songs3: this dataset differs from the previous one as it contains rat-
ings for songs (instead of artists), with data collected from two dif-
ferent sources. The first source consists of ratings supplied by users
during normal interaction with Yahoo! Music services, and the sec-
ond source consists of ratings for randomly selected songs collected
during an online survey conducted by Yahoo! Research (participants
were asked to rate 10 songs selected at random from a fixed set of
1,000 songs). 5,400 survey participants were randomly selected for in-
clusion in this data set on the condition that they had at least 10 exist-
ing ratings in the Yahoo! Music rating database restricted to the fixed
set of 1,000 songs used in the survey. An additional set of 10,000 users
was randomly selected for inclusion in the data set from among all
non-survey participants with at least 10 existing ratings in the Yahoo!
Music rating database. The dataset has around 300,000 user supplied
ratings and exactly 54,000 ratings for randomly selected songs.

2https://webscope.sandbox.yahoo.com/
3https://webscope.sandbox.yahoo.com/

76 Chapter 4. Ranking Using (No-)Click Implicit Feedback

Characteristics of these three datasets are reported in Table 4.1, with the
mean rating and the standard deviation being calculated for the rescaled
version of the dataset for the Yahoo! artists dataset.

TABLE 4.1: Characteristics of the three datasets used for ex-
periments on sequential ranking with (no)-click feedback.

Movielens1M ◦ Yahoo! artists *† Yahoo! songs
#users 6,040 50,000 15,400
#items 3,706 10,000 1,000

#ratings 1,000,209 32,997,016 365,703
Density 4.47% 6.60% 2.37%

Rating scale 1-5 0.5-5 1-5
#ratings / user 165.6 659.94 23.7
#ratings / item 269.9 3299.7 365.7

Mean rating 3.58 2.15 2.73
STD of ratings 1.12 1.46 1.56

◦ at least 20 ratings * rescaled † filtered

Movielens1M is a standard dataset to compare RS approaches, so we in-
cluded it in our experiments. However, it contains mostly high ratings and
has a lower standard deviation. Since items to recommend are chosen only
among the ones for which we have ratings, the Movielens1M dataset is less
interesting from a ranking point of view because it is harder to distinguish
between algorithms. On the other hand, the Yahoo! datasets contain a lot
more low ratings, which allows for more realistic experiments, especially
the Yahoo! songs dataset where some ratings for randomly selected songs
are included in the matrix. Note that the two Yahoo! datasets also suit more
to the experimental setting we use, as the replay is allowed (an item can be
recommended to a user even if it has been rated before). This setting is
closer to a real-world music RS where songs or artists can be recommended
to a user several times, but it is not really desirable effect in a movie RS, as it
is rarer users want to watch again movie they have already seen and rated.

4.4.3 Baselines

Our two approaches relate to two main aspects of a RS, evaluated in a se-
quential context: the ranking aspect and the combined use of implicit and
explicit feedback. Thus, a lot of methods can possibly be compared with
our algorithm. We split the baselines in several categories.

Basic baselines These baselines are here to assess the worst or best scores
reachable for a RS algorithm:

• Oracle: this strategy knows the ground truth matrix and makes rec-
ommendation accordingly, with the list of best possible items for each
user. Note that the Oracle will always reach a NDCG score of 1 since it
achieves the ideal "reachable" score, but perfect abandonment or ERR
score are not necessarily reached, as some users in the dataset might
have only low scores (this implies that the probability of a click in the
list of recommendations is not guaranteed).

4.4. Experimental Investigation with ERR Click Model 77

• Random: at each iteration, a random list of items is recommended
to the user. This method allows to judge the bias of ratings observed
in the dataset: if the random method achieves a good NDCG, ERR
or abandonment score, it is due to high proportion of high ratings in
the dataset, since we can only perform recommendation among these
known ratings.

• Popular: it is assumed we know the most popular items based on the
ground-truth matrix, where the popularity is calculated as the mean
rating given by users on this item. At each iteration, the 5 most pop-
ular items (restricted to the items rated by the user on the dataset)
are recommended. This approach does not integrate any personaliza-
tion as it only recommends items based on their average popularity
among all users.

• ALS: Alternating Least Squares method (Zhou et al., 2008) does not
use implicit feedback, but performs a Matrix Factorization based on
observed ratings in order to optimize the prediction accuracy. We use
a Factorization Machine implementation to mimic ALS.

Ranking methods These methods aim at optimizing the order of the rec-
ommended list only using one kind of feedback (in this case, both methods
use only explicit feedback):

• xCliMF (Shi et al., 2013): this algorithm is a listwise Learning to Rank
approach, built by optimizing the ERR on explicit ratings. It is the
generalization of CliMF (Shi et al., 2012) from binary ratings to rat-
ings with multiple levels of relevance. xCliMF does not use implicit
features but targets an appropriate ranking of items. The algorithm
decomposes the matrix with known ratings into a user features and
item features matrices, where the predicted score does not attempt
at optimizing the prediction accuracy, but only serve the purpose of
sorting the items by predicted preference for each user.

• CoFiRank (Weimer et al., 2008): CoFiRank is based on Maximum
Margin Matrix Factorization (Rennie and Srebro, 2005) and optimizes
a ranking measure using explicit features. In the original paper, CoFi-
Rank can optimize in three different ways: the first one is based on a
convex upper bound of the NDCG, the second one is optimizing the
RMSE for Regression, and the last one is the Ordinal Regression. In
our experiments, we use the version optimizing the ordinal regression
as it displays the best results.

Methods using both types of feedback These methods integrate both im-
plicit and explicit feedback to perform recommendations

• SVD++ (Koren, 2008): this approach also consists in a FM with data
arranged to make the model mimic SVD++ (while adding pairwise
interactions between features), as described in (Rendle, 2010). It also
incorporates both explicit data and implicit data, but only implicit
data about the item clicked.

78 Chapter 4. Ranking Using (No-)Click Implicit Feedback

• Co-Rating (Liu et al., 2010): this approach tries to unify explicit and
implicit feedback. To do so, it first normalizes both explicit and im-
plicit scores between 0 and 1 and combines them when solving the
minimization problem, using ALS. The main difference with DualMF
is that it does not assume any model behind the observed clicks. In
order to compare fairly with DualMF, we also use a FM to learn the
model, and choose the implicit score to be

r̂imp
u,i =

Au,i + 0.5

Au,i + Su,i + 1
. (4.11)

Exploration-Exploitation approach Since we use a sequential setting, we
also add a baseline tackling the problem from an exploration/exploitation
point of view. The baseline approach is PTS (Kawale et al., 2015), the
method presented in the Chapter 3 (once again, we use the non-Bayesian
version). Compared to SeALS also introduced in the previous chapter,
PTS can predict a list of items where each prediction embed the explo-
ration/exploitation dilemma. It would be harder to decide how to include
the exploration step with SeALS in the case of the recommendation of mul-
tiple items: at a random step of the algorithm, should the whole list of items
be selected at random? Or only the first item in the list? For this reason, we
only include PTS in the comparison. Note that this approach updates after
every recommendation done compared to other approaches (see below).

Since most state of the art algorithms are not designed to handle the
sequential aspect which implies frequent updates, we makes use of a batch
update, where the model of each approach is updated each time 50% of the
users have been recommended a list of items. IfN is the number of users in
the RS, T is the number of recommendations that should be done for every
user (T = 50 in our experiments), and t denotes the time related to one step
recommendation, then according to our setting t ranges from 1 to T ·N , and
the update is done every time t ≡ 0 (mod N

2). In our case, each algorithm
will have 100 updates spread along the 50 recommendations.

4.4.4 Results and Discussion

Results of all algorithms are averaged over 200 runs, and are shown on
Figure 4.2. We use existing implementation called fastFM4 for models using
Factorization Machines (ALS, SVD++, SVD+-, Co-Rating, DualMF).

For Co-Rating and DualMF, we give different weights to explicit and
implicit feedback when training the model, and best results are obtained by
giving twice more weight to explicit feedback for DualMF and five times
more weight to explicit feedback for Co-Rating.

Plotted values for each metric correspond to the average score for a user,
obtained while recommending a list of items. In other words, each point in
the curve correspond to one iteration of recommendations over all users:
a number N of recommendations has been made (one per user), and the
value plotted is the metric score obtained during this one iteration, aver-
aged over N .

4http://ibayer.github.io/fastFM/

4.4. Experimental Investigation with ERR Click Model 79

0 10 20 30 40 50
Number of recommended items for each user

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Abandonment

0 60400 120800 181200 241600 302000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 ERR@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

(A) Movielens1M

0 10 20 30 40 50
Number of recommended items for each user

0.05

0.10

0.15

0.20

0.25

0.30
Abandonment

0 154000 308000 462000 616000 770000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.5

0.6

0.7

0.8

0.9 ERR@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

(B) Yahoo! songs

0 10 20 30 40 50
Number of recommended items for each user

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Abandonment

0 500000 1000000 1500000 2000000 2500000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 ERR@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

(C) Yahoo! artists

Random
xCliMF
PTS

Popular
CoFiRank

Oracle
ALS

SVD++
Co-Rating

SVD+-
DualMF

FIGURE 4.2: Evaluation of algorithms on three datasets and
three metrics with the ERR click model (from the left col-
umn to the right one: Abandonment, ERR@5, NDCG@5).

80 Chapter 4. Ranking Using (No-)Click Implicit Feedback

For all algorithms learning matrices of features to represent users and
items, we fix the number of columns of these matrices to 15. All algorithms
using FM use a L2 penalty weight of λ = 5.0 for both pairwise coefficients
and linear coefficients, and do one more step of learning at each update:
they update their model learned previously by doing one pass on all data.
CoFiRank and xCliMF do from 20 to 50 steps of learning at each update
depending on the dataset, but relearn from scratch due to implementation.
All these parameters are chosen following a grid-search on the datasets, and
are the ones giving the most stable results on the three datasets. For PTS, we
use a number of particles of 30 as in the original paper from (Kawale et al.,
2015). We also do not apply PTS approach on the Yahoo! artists dataset due
to the scalability issue already mentioned in Chapter 3.

From the results of experiments, we can draw three main conclusions:

About the use of both explicit and implicit feedback The three methods
learning from both explicit and implicit feedback (which are DualMF, Co-
Rating and SVD+-) perform significantly better than all other approaches
on all datasets. In particular, our approach DualMF reaches the best perfor-
mance on Movielens1M and Yahoo! songs, and is on par with Co-Rating on
Yahoo! artists except on the NDCG@5 metric.

Note that the implicit score given during the learning phase by DualMF
comes directly from the click model we defined: we know p(u, i) defined in
Equation (4.2) and we build directly a consistent estimator r̂imp

u,i . In practice,
it would not be possible to access such knowledge and it would have to
be inferred. Results of these three methods emphasizes the importance of
using any feedback given by the user.

About ranking approaches The two approaches targeting specifically a
good ranking by optimizing ranking loss (xCliMF and CoFiRank) surpris-
ingly performs the worst, even compared to those using only explicit feed-
back like ALS. Aiming at the solving the learning to rank aspect does not
seem to be a priority to reach a good performance.

About exploration/exploitation The approach PTS trying to tackle the ex-
ploration vs. exploitation dilemma does not reach good performance. On
Movielens1M dataset, the ERR and NDCG scores are not increasing for the
first recommendations, and the Abandonment score is even getting worse.
The algorithm is even worse than Random at the first dozen of iterations.

The reason behind this behavior is that PTS encourages the recommen-
dation of items with high uncertainty at the top of the list, since the algo-
rithm tries to "explore" these items and gather information about them. At
the beginning of the experiment, no information at all is available about any
items, but the algorithm will quickly get feedback about items with high av-
erage ratings. However, users might never click on items with low average
rating if they do not match their tastes, because the ERR click model is very
punitive for items with low relevance. The algorithm fails to gather feed-
back about them, and since PTS does not consider the implicit feedback,

4.5. Experimentation with Other Click Models 81

the algorithm will keep recommending these items at the top of the list un-
til feedback is gathered, which might take long time given the probability
of click is very low.

The reason why the curve of PTS is increasing more quickly in Yahoo!
songs is due to the two datasets’ characteristics: there are fewer items in this
dataset and also more users. At each point of the curve, there are twice more
ratings received in the matrix of ratings for Yahoo! songs dataset, on items
which are more than three times less numerous. This means information
is gathered far more quickly about items in Yahoo! songs and this helps
greatly PTS to increase its performance from the beginning.

4.5 Experimentation with Other Click Models

In the experimental setting described previously, we make the assumption
about the click model and consider that it follows the model defined as in
the ERR equation. However, in real-world, the click model followed by
users is not precisely known and probabilities of click on items on the list
might differ noticeably from the ERR model. It is even likely that some
users would follow one click model while other users would follow an-
other one inside the same system, or that a user would behave differently
depending on his mood or on the context he is in. In this section, we only
consider that all users follow the same click model, but we apply click mod-
els different from the ERR click model to simulate the user interaction with
the system, and we evaluate results of the same approaches as in previous
section.

To define the other click models, we take inspiration from K. Hoffmann
et al. (Hofmann et al., 2013a), who specified several models derived from
the Dependent Click Model (DCM), which is a generalization of the Cas-
cade Click Model. These models are themselves inspired from the analysis
in (Guo et al., 2009a; Guo et al., 2009b). These click models were defined
originally for the field of web-search and the recommendation of a list of
documents which are ordered to their presupposed relevance, but they are
also relevant to be applied in our experiments.

In the DCM, the user can click on several items on the list, and there is
both a click probability and a stop probability for each level of relevance for
the rating. The stop probability defines the chance of stopping to observe
the list after having looked at the item. However, here we only study the
Cascade Click Model with one click, so we only define the probability of
clicking on an item, not the probability to stop observing the list, as the
user stops as soon as he clicked on one item.

We evaluate algorithms on three more click models, referred as the nav-
igational model, the informational model and the almost random model.

We first give in Table 4.2 the click probability of all models depending
on the relevance rating of the item (the rating r∗u,i given by the user u on the
item i in R∗), with a rating scale from 1 to 5.

82 Chapter 4. Ranking Using (No-)Click Implicit Feedback

TABLE 4.2: The four different click models used in experi-
ments.

Relevance rating 1 2 3 4 5

ERR model 1/32 3/32 7/32 15/32 31/32

navigational model 0.1 0.3 0.5 0.7 0.9

informational model 0.5 0.6 0.7 0.8 0.9

almost random model 0.4 0.45 0.5 0.55 0.6

Note that compared to the ERR model, where the probability of click de-
creases exponentially as the rating decreases, the other three models prob-
ability decreases linearly. We give an explicit description of each model in
the next sections, as well as results obtain from experiments performed fol-
lowing the same procedure as the one described in Section 4.4 (except for
the click model representing the interaction between the user and the RS),
with also same parameters for all algorithms.

4.5.1 The navigational click model

Description The navigational model simulates a user who is navigating on
the RS application and who has a good knowledge of his own preferences.
The user is focusing on items which match his tastes and interests. Thus,
the probability of click is high for relevant items, and decreases quickly as
the relevance level decreases. In this case, it is easy to make the difference
between interactions (clicks) on items matching the user’s tastes and items
in which the user has no interest. The navigational model is the closest to
the ERR click model out of the three click models used in this section, as
the ERR model also gives a high chance of click on relevant items and a low
probability of click on irrelevant items.

Results and discussion Results of all algorithms on the datasets for the
navigational model are shown on Figure 4.3.

The navigational click model differs from the ERR model by the linear
decrease of the probability of click depending on the relevance of the item,
but it still strongly emphasizes the top items. As such, results are not too
different, and DualMF is still performing well especially in general on the
ERR metric and on the Yahoo! songs dataset, but it decreases on the two
other ones since the model learned based on Rimp does not match the click
model. Note also that the performance of CoFiRank increases, probably
because items with lower rating have more chance to be clicked on than
compared to the ERR model (the model receives more diverse levels of rel-
evance of ratings to learn the pairwise relation). This also causes an increase
in the performance of PTS: the algorithm still performs below others, but it
is visible that information is gathered more quickly by the algorithm, espe-
cially on Movielens1M, as the algorithm surpasses Random more quickly
than with the ERR click model.

4.5. Experimentation with Other Click Models 83

0 10 20 30 40 50
Number of recommended items for each user

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
Abandonment

0 60400 120800 181200 241600 302000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 ERR@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

(A) Movielens1M

0 10 20 30 40 50
Number of recommended items for each user

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Abandonment

0 154000 308000 462000 616000 770000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.5

0.6

0.7

0.8

0.9 ERR@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

(B) Yahoo! songs

0 10 20 30 40 50
Number of recommended items for each user

0.00

0.05

0.10

0.15

0.20
Abandonment

0 500000 1000000 1500000 2000000 2500000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 ERR@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

(C) Yahoo! artists

Random
xCliMF
PTS

Popular
CoFiRank

Oracle
ALS

SVD++
Co-Rating

SVD+-
DualMF

FIGURE 4.3: Evaluation of algorithms on three datasets
and three metrics with the navigational click model (from
the left column to the right one: Abandonment, ERR@5,

NDCG@5).

84 Chapter 4. Ranking Using (No-)Click Implicit Feedback

4.5.2 The informational click model

Relevance rating 1 2 3 4 5

informational model 0.5 0.6 0.7 0.8 0.9

Description The informational model simulates a user who is less aware of
what he is exactly looking for compared to the navigational click model, or
who is searching for to gain some information in other items which may be
less relevant. Considering the example of a music Recommendation Sys-
tem, it would signify that the user knows which artists or songs he likes,
but is also willing to widen his interests and accept the recommendations
about other artists which might not suit his tastes.

This characteristic results in a high probability of click on highly relevant
items in the list, but the probability of click decreases slowly, as the user is
not really sure if items suit his tastes or not. For example, an item who does
not match the user’s tastes at all (relevance rating of 1) still has one chance
out of two to be clicked on.

Results and discussion Results of all algorithms on the datasets for the
informational click model are shown on Figure 4.4.

With this model, there is a higher probability of clicking on items with
low relevance. It is harder for the algorithms including the implicit feed-
back into their model to capture the information embodied in the implicit
feedback, since an item which has been clicked by the user does not nec-
essarily implies the item is matching the user’s tastes. The models of al-
gorithms using implicit feedback have integrated this feedback optimisti-
cally, as a click is considered as a sign of preference for the user toward the
item, which is not necessarily the case here. For this reason, all models us-
ing implicit feedback have a decreasing performance on ERR and NDCG
compared to the navigational click model. DualMF on the Yahoo! songs
dataset and Co-Rating on the Yahoo! artists dataset still reach the best per-
formance, but their performances are on par with ALS which does not use
implicit feedback.

Finally, due to the higher chance to click on items with lower relevance
compared to the ERR or the navigational click model, even more informa-
tion is gathered about all items (even about items which have lower rele-
vance). For this reason, the performance of CoFiRank is also high like in
the results of the navigational click model. PTS also sees its performance
increase even more compared to the navigational model. It even eventu-
ally reaches the best performance on the NDCG measure on Yahoo! songs
dataset.

4.5. Experimentation with Other Click Models 85

0 10 20 30 40 50
Number of recommended items for each user

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012
Abandonment

0 60400 120800 181200 241600 302000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 ERR@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

(A) Movielens1M

0 10 20 30 40 50
Number of recommended items for each user

0.001

0.002

0.003

0.004

0.005

0.006

0.007
Abandonment

0 154000 308000 462000 616000 770000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.5

0.6

0.7

0.8

0.9 ERR@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

(B) Yahoo! songs

0 10 20 30 40 50
Number of recommended items for each user

0.000

0.002

0.004

0.006

0.008

0.010

0.012
Abandonment

0 500000 1000000 1500000 2000000 2500000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 ERR@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

(C) Yahoo! artists

Random
xCliMF
PTS

Popular
CoFiRank

Oracle
ALS

SVD++
Co-Rating

SVD+-
DualMF

FIGURE 4.4: Evaluation of algorithms on three datasets
and three metrics with the informational click model (from
the left column to the right one: Abandonment, ERR@5,

NDCG@5).

86 Chapter 4. Ranking Using (No-)Click Implicit Feedback

4.5.3 The almost random click model

Relevance rating 1 2 3 4 5

almost random model 0.4 0.45 0.5 0.55 0.6

Description Finally, the almost random model supposes that the user barely
has any knowledge about what he is exactly looking for, or does not look
for anything in particular: it could mean he is willing to expand his tastes.
Taking the example of a music RS again, we could imagine a user who
does not really seek for any particular artists, and is willing to click on any
suggestion in the recommendation list in order to discover new artists, but
is not really more inclined to click on items which are more relevant to his
tastes.

Therefore, the click model assumes the difference of click probability
between a relevant and a non-relevant item is small, and the probabilities
of clicking on an item are very close to each other no matter what the level
of relevance of the item is.

Results and discussion Results of all algorithms on the datasets for the
almost random click model are shown on Figure 4.5.

With this last click model, the average abandonment score is higher for
every dataset since the chance of clicking on an item is at best 60% for an
item with the highest relevance. However, the ERR and NDCG can still
get a high score as more information is received about user’s tastes on all
levels of relevance, and this can help to model accurately the user (this is
especially visible with ALS). Our approach DualMF is still better on Ya-
hoo! song, but its performance on the two other datasets decreases strongly,
especially on Movielens1M. ALS reaches the best performance on Movie-
lens1M and Yahoo! artists.

The only approach incorporating feedback which reaches a good per-
formance is SVD+-, since it uses a more careful way to integrate feedback
by including it in the feature input, and does not put any prior. The rea-
son why algorithms incorporating implicit feedback still succeed on Yahoo!
songs is maybe due to the higher standard deviation among ratings, which
helps the differentiation between items during the ranking (the difference
of picking an item with highest rating and one with lowest rating is still
20%). It is also possible the weight given to implicit and explicit rating in
Co-Rating and DualMF may need some adjustments depending on dataset.
Finally, PTS reaches a performance similar to the one in the informational
click model, since in this case, information is once again received about
items with low average relevance.

4.5. Experimentation with Other Click Models 87

0 10 20 30 40 50
Number of recommended items for each user

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024
Abandonment

0 60400 120800 181200 241600 302000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 ERR@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 60400 120800 181200 241600 302000

Total number of recommendations made

(A) Movielens1M

0 10 20 30 40 50
Number of recommended items for each user

0.015

0.020

0.025

0.030

0.035

0.040
Abandonment

0 154000 308000 462000 616000 770000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.5

0.6

0.7

0.8

0.9 ERR@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 154000 308000 462000 616000 770000

Total number of recommendations made

(B) Yahoo! songs

0 10 20 30 40 50
Number of recommended items for each user

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050
Abandonment

0 500000 1000000 1500000 2000000 2500000
Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 ERR@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

0 10 20 30 40 50
Number of recommended items for each user

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NDCG@5
0 500000 1000000 1500000 2000000 2500000

Total number of recommendations made

(C) Yahoo! artists

Random
xCliMF
PTS

Popular
CoFiRank

Oracle
ALS

SVD++
Co-Rating

SVD+-
DualMF

FIGURE 4.5: Evaluation of algorithms on three datasets and
three metrics with the almost random click model (from
the left column to the right one: Abandonment, ERR@5,

NDCG@5).

88 Chapter 4. Ranking Using (No-)Click Implicit Feedback

Discussion from all results

One observation from results on the three click models is that the more
the click model supposes that the user makes a clear distinction between
items with high and low relevance, the more the implicit feedback brings
information to the model. Indeed, in this case, the click on the item implies
that the item has a high relevance, and that non-clicked items which had a
higher position in the ranked list do not have a high relevance (which is a
useful information for the system), and a clear separation can be made by
the model between good or bad items to recommend.

However, even though they are less realistic, noisy click models like the
almost random one highlight the caution needed when incorporating im-
plicit feedback. In this case, it may seem better to only use explicit feedback
as incorporating implicit feedback brings a lot of noise. But keep in mind
that the implicit feedback is not incorporated correctly in the case of an
Almost random click model by DualMF or Co-Rating, as our prior on the
information brought by a click or no-click is optimistic (a click implies that
the implicit rating r̂imp

u,i is high). A more careful tune of the way the implicit
feedback is integrated could still improve slightly the model compared to
using only explicit feedback.

The exploration-exploitation approach with PTS brings interesting re-
sults, and another perspective from Chapter 3. The success of exploration-
exploitation strategies also relies on the click behavior of the user: if the
user is willing to give feedback on items which does not suit his tastes (an
informational behavior for example), then only in this way the algorithm
can gather information and reduce the exploration to exploit more. This
highlights the necessity to use the implicit feedback in addition to only the
explicit feedback, to avoid the algorithm being stuck in a exploratory phase.

4.6 Concluding Remarks

We study in this chapter Recommendation Systems from a novel point of
view, where at every step a list of recommendation is provided to the user,
who looks at items one by one following their order and pick one item
(or none). For this setting, the system receives explicit feedback from the
picked items and implicit feedback from the (no-)clicks. This model of in-
teraction impacts the learning algorithm but also the experimental setting
and results.

We provide a case study for a specific interaction model based on the
ERR metric for which we propose two approaches, tackling the problem
from two distinct perspectives. We evaluate various state of the art meth-
ods on several metrics and also several click models, and results on ex-
periments display how considering both implicit and explicit feedback can
significantly improve the performance, but also raises the issue of carefully
incorporating them into the RS model.

89

Chapter 5

About Challenges in Real
Recommendation Systems

On the previous chapters, experiments were made by simulating the se-
quential context of the RS: in Chapter 3, we supposed that the user was
giving his explicit preference on the recommended item at each recommen-
dation made, while in Chapter 4 the behavior of the user was simulated
through his (no-)click on items in a list of recommendations. The second ex-
perimental section with various simulations of user click’s behavior gave a
first glimpse about the difficulty of modeling the behavior of users to make
the evaluation similar to a live RS: offline simulations cannot grasp for all
aspects of a real-world RS. In this chapter, after introducing several aspects
of real RS, we discuss about offline evaluation for sequential RS. Finally, we
give a broader discussion about building a real RS, from our results in a
Challenge organized by the main conference on RS1.

Contents
5.1 Some Aspects of Real-world RS 90

5.1.1 Power-law Distributions 90
5.1.2 "Replay" Aspect . 91
5.1.3 Large Set of Possible Recommendations 91
5.1.4 Stock Availability 93
5.1.5 Past and New Users/Items 93
5.1.6 The Influence of the Recommendation System . . 94

5.2 Realistic Offline Sequential Recommendation 94
5.2.1 Setting . 94
5.2.2 Results and Discussion 95
5.2.3 Final Remarks . 100

5.3 Some Lessons from a Real Case RS Challenge 102
5.3.1 RecSys Challenge 2014: Data and Protocol 102
5.3.2 Method . 105
5.3.3 Experiments and Discussion 107

5.4 Concluding Remarks . 112

1This part of the chapter is extracted from our paper at the Recsys Challenge workshop
in 2014 (Guillou et al., 2014)

90 Chapter 5. About Challenges in Real Recommendation Systems

5.1 Some Aspects of Real-world RS

In Chapter 3, we described a simple sequential evaluation setting also used
in (Kawale et al., 2015). However, several aspects of real-world RS are not
integrated into this setting and should be taken into consideration when
building a real Recommendation System. In this section, we describe sev-
eral aspects of real-world RS and emphasize their importance especially in
the context of a sequential evaluation.

5.1.1 Power-law Distributions

The first aspect in a real-world RS is that users do not request recommen-
dations nor rate items uniformly. Some users are more active than others
and will use the RS more often. This also usually means that they provide
more feedback for the RS to use, and their tastes can be modeled better. The
distribution of ratings per user for RS is represented by a power-law dis-
tribution, with a long tail meaning that most users only provide little to no
feedback to the RS.

Likewise for items, few items receive most of the attention from users:
some are very popular and collect a lot of ratings, while others receive
barely no ratings. The number of ratings received by each item also fol-
lows a power-law distribution.

An example of power-law distributions for users and items is given in
Figure 5.1, which displays for the Movielens1M dataset the number of items
rated per user, as well as the number of ratings received per item. Remark
that power-law distributions of other datasets used in this thesis are even
more severe. As such, the sequential offline settings described in Chapter
3 and Chapter 4 are not realistic since the selection of the user to which the
recommendation is provided is made uniformly at random.

0 1000 2000 3000 4000 5000 6000

Index of the user

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f

it
e
m

s
ra

te
d
 b

y
 t

h
e
 u

se
r

0 500 1000 1500 2000 2500 3000 3500

Index of the item

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

o
f

ra
ti

n
g
s

re
ce

iv
e
d
 b

y
 t

h
e
 i
te

m

FIGURE 5.1: The power law distributions for the ratings
from users and on items in the Movielens1M dataset.

5.1. Some Aspects of Real-world RS 91

5.1.2 "Replay" Aspect

We denote by "replay" the action for the RS to recommend the same item
several times to one user after feedback is received. Except for some spe-
cific domains of recommendation like music or short videos (such as in
Youtube), the recommendation of the same item to the same user would
usually lead the user to abandon the system and is not advised inside a
RS. Indeed, a user usually does not wish to be recommended repeatedly
the same movie or computer to buy for instance, especially if he already
watched the movie or bought the computer. For this reason, items for which
feedback have already been given, or items which have been ignored sev-
eral times by the user (when being recommended) are often discarded from
the set of possible future recommendations.

As mentioned above, the only exception relates to music or short videos,
since consumers are likely to listen to a song or watch a short video several
times. However, even in these cases, the RS should carefully be tuned so
that the item is not being recommended continuously.

In this regard, the setting described in Chapter 3 is also not realistic as
items recommended are not discarded from the set of possible future rec-
ommendations. This is due to the Multi-Armed Bandit view of the prob-
lem, where usually, the replay of arms is allowed in the evaluation phase.
The setting used in Chapter 4 also allows items to be recommended several
times, but the approaches proposed in this setting are built more appropri-
ately for RS which allow such behavior like music RS.

5.1.3 Large Set of Possible Recommendations

In a real-world RS, the number of items can be extremely large, and usu-
ally there is no restriction to the set of items among which the model can
choose the recommendations for any user. The set of items that may be rec-
ommended to the user at a time step t (denoted At(u)) is usually equal to
the set Mt of all items in the system at this time step. Items already rec-
ommended to the user, in the set It(u), are eventually discarded, such that
At(u) =Mt \ It(u).

As the set of possible items to recommend is very large in some domains
like e-commerce websites, the domain of possible recommendations can
be restricted using items previously rated by the user: for example, a RS
can select items to recommend among the items which are similar to the
ones already rated by the user, based on some content information or on a
clustering technique. Eventually, some exploration can be done to explore
beyond these similar items.

However, a problem occurs in offline sequential evaluation, as not all
items have been rated by the user in the dataset. The situation is even op-
posite to this case as only a very small fraction of ratings in the whole matrix
are known. Since the real preferences for most of the (user-item) pairs are
unknown, we have to restrict greatly the set of possible recommendations
for a given user u, by only allowing the RS to pick recommendations among
items i for which the rating ru,i is known.

92 Chapter 5. About Challenges in Real Recommendation Systems

Three ideas to circumvent this issue would be:

• Build an artificial dataset with a full matrix of preferences. In this
case, all preferences are known and any item can be recommended to
any user. The problem with this solution is that the artificial dataset
built does not match real world, and results obtained by recommen-
dation techniques on such dataset offer less guarantees for real-world
applications.

• Select a subset of users and items to constitute a more dense matrix
of ratings, by selecting the users who have rated the highest number
of items, and items that have been the most rated. This is a simple
solution, and this is also the procedure we followed in the Chapter 4
to build Yahoo! artists dataset. However this introduces a bias toward
users who are very active or items which receive a lot of attention.

The filtering on Yahoo! artists dataset is a good example of this bias:
we added an additional filtering between the Chapter 3 and 4 by se-
lecting the most 50,000 active users out of 1,065,258 users, and the
most 10,000 popular items out of the 98,209 items. This made the av-
erage rating in the matrix drop from 3.03 to 2.15: the reason in this
case is probably that users who rated a lot of items were very active
users of the Yahoo application, and they received of lot of suggestions
about artists which they dislike. This leaded to a lot of really low rat-
ings in the set of items rated by these active users. It is also possible
that restricting to only very popular artists made the average rating
of the dataset drop, as some very "popular" artists divide the public
opinion and are disliked highly from a portion of the users.

• Use a sparse real-world dataset and fill the empty entries artificially.
For example, a Matrix Factorization model could be learnt on all the
known entries in the dataset, and this model could be used to fill all
empty entries with its predictions. The issue in such a case is to find
an appropriate model to perform this task. Even then, the entries in-
troduced artificially into the matrix of preferences may introduce a
strong bias, and lead to misleading results for the sequential evalua-
tion.

As such, no proper solution for this aspect can be found for the offline
sequential evaluation. This section also brings to light the problem of bias in
RS datasets: as all datasets contains items which have been rated freely by
the user (or following a recommendation), most datasets are highly biased
toward high ratings. However, in an offline evaluation, we restrict the set
of possible recommendations to known ratings. If all known ratings for
a user are only high ratings, then it is harder to evaluate realistically: our
algorithm would have to choose only items liked by the user, while in a real-
life setting, the RS should choose among a set of items where preferences
are highly different. To our knowledge, the only dataset bringing more
various ratings is Yahoo! songs used in Chapter 4, as it introduces some
ratings on items presented randomly to the user.

5.1. Some Aspects of Real-world RS 93

5.1.4 Stock Availability

The stock availability refers to the fact that not all items are always avail-
able for recommendation. This problem arises especially in e-commerce
websites, where an inventory of items is available to the RS. The quantity
of items left in the inventory also affects the recommendation, as the RS
should decide to which user it would be more appropriate to recommend
an item, especially when the supply of this item is getting low. Another
example of this aspects is a DVD rental website, where items come and go
into the RS as users rent them.

This aspect concerns mostly the RS side, to improve the model provid-
ing recommendations: for example, when only a small stock of an item is
left, it is preferable to recommend this item to users who are demanding
and not so flexible about their choices. It is also interesting for the RS to rec-
ommend this item to users who are likely to give a lot of information about
it, as the RS will also benefit more from this feedback to improve future
recommendations.

As no inventory is available with common RS datasets, this aspect can
only be simulated but cannot be targeted realistically. Note that the "Re-
play" aspect described in Section 5.1.2 is somehow related to the stock avail-
ability, as the setting where the RS discards an item from the possible future
recommendations after it is recommended could be considered as a specific
"stock" setting where the item would be available in the inventory only one
time for each user.

5.1.5 Past and New Users/Items

In a real-world RS, new items can be released at a specific time, or old ones
can disappear from a RS. In a similar way, new users can enter or leave the
system. From this point of view, the sequential offline evaluation setting
we set in Chapter 3 made several hypotheses:

1. At the beginning of the evaluation, every user or item is considered
"new", as the situation is a complete cold-start.

2. Since the user to which the recommendation is made at time t is se-
lected uniformly at random, the phenomena of "a new user enters the
RS" is considered. However, as users are selected uniformly, and it
is allowed to recommend continuously the same items to a user, the
phenomena "a user leaves the system" would never happen if t tends
to infinity (because there will always be items to recommend to any
user, and the probability to select a user is non-zero and fixed).

3. We did not consider any temporal information about when items (like
movies for example) were released, and allowed the recommendation
to be made in the whole set of items (restricted to the ones for which
the preferences are known for a given user). For this reason, the effect
of a "new item" or "disappearing item" never appears.

94 Chapter 5. About Challenges in Real Recommendation Systems

The temporal information about when item were released could be used
to recreate the arrival of new items in the dataset and simulate the recom-
mendation process at a specific timestamp: in this case, the set of possible
items would be restricted to items which are available at this timestamp.
We did not consider this in our setting, as this would reduce even more
the set of possible recommendations which is already small for most of the
users.

5.1.6 The Influence of the Recommendation System

Finally, the last aspect relates to the RS action: by recommending items to
users in a specific sequential order, it also potentially influences them and
their preferences. This aspect is linked to Reinforcement Learning (RL): if a
Recommendation System is considered as a learning agent in a RL problem
modeled as a Markov Decision Process (MDP), then the action of recom-
mending an item to a user would be an action of the agent in the environ-
ment. This action gives back a reward to the RS and also results potentially
in a change of state.

In our setting with a Multi-Armed Bandit formulation, the action of the
RS has no effect on the user: his tastes are not changing depending on the
action of the RS. We did not consider the problem of recommendation as a
MDP, and almost no research has been done yet on this topic except (Shani
et al., 2005; Mahmood and Ricci, 2009), as it is a more complex task to for-
mulate and evaluate offline RS as a MDP.

5.2 Realistic Offline Sequential Recommendation

We described in the previous section several aspects of real-world RS. We
incorporate some of these aspects in our offline evaluation setting, to make
it more realistic. We perform experiments similar to the ones done in Chap-
ter 3, but in a setting where items cannot be recommended several times
and where the arrival of users in the RS follow a power-law distribution.
These experiments highlight some issues of offline sequential evaluation.

5.2.1 Setting

We carry out again the two experiments done in the Chapter 3 in the section
3.5, about both the impact of exploration and the update of the model for
SeALS algorithm.

However, we modify the setting for the evaluation in order to make for
a more realistic evaluation scenario, by adding the power-law distribution
of users described in Section 5.1.1 and by forbidding the "Replay" aspect
explained in 5.1.2. More precisely, the setting is the following: for each
dataset, we start with an empty matrix R to simulate an extreme cold-start
scenario where no information is available at all.

5.2. Realistic Offline Sequential Recommendation 95

Then, for a given number of time-steps, we loop on the following proce-
dure:

1. we select a user ut following the power-law distribution,

2. the algorithm chooses an item it to recommend,

3. we reveal the value of rt = r∗ut,it
and increment the pseudo-regret

score as in Equation (3.2),

4. we discard the item it from the set of possible items to recommend for
user ut.

5. If the set of possible items for the user ut is empty, we delete this user
from the possible users to recommend to.

To represent the power-law effect in step 1, we give to each user a prob-
ability to be picked, depending on the number of ratings from this user in
the full true ratings matrix R∗. The probability is simply the proportion
|I∗(u)|
|S∗| normalized between 0 and 1, where I∗(u) is the set of items rated by
u in R∗, and S∗ is the set of known (user-item) pairs in R∗.

At step 4, we take care of the "Replay" aspect, by deleting the recom-
mended item from the set of "available" items for future recommendations
to this user. Note that deleting items from the set of future recommenda-
tion also leads to another effect: as we delete items from the set of possible
items, the set for some users will eventually become empty. In such a case,
the RS cannot provide any recommendation and we decide to discard the
user from the future iterations, as described in step 5. By some means, it cre-
ates the effect of past/new users described in Section 5.1.5, as some users
will disappear from the system.

Note that the formula used for the cumulative pseudo regret is also dif-
ferent from the one defined in Chapter 3. As items are deleted from the
set of possible recommendations, the best possible choice for a given user
might change through time. If we denoteA(u) the set of items available for
recommendation for user u, the regret is defined as

RT =
T∑
t=1

max
i∈A(ut)

r∗ut,it − E[rt] =
T∑
t=1

max
i∈A(ut)

r∗ut,it − r
∗
ut,it . (5.1)

5.2.2 Results and Discussion

We carry experiments on the same datasets as in Chapter 3, and compare
with the same baselines (cf. Section 3.5.2 for details). However, note that we
do not perform as many iterations of recommendation: we perform 500, 000
iterations for Movielens1M, 107 iterations for Movielens20M, LibimSeti and
Douban, and 25 · 106 iterations for Yahoo. Indeed, if the RS was to perform
a high number of iterations, the set of possible recommendations would
decrease too much for any user in the RS, and results would not be signifi-
cant anymore as the choice for the RS would be too restricted (the RS would
have to choose among a set of very few items for each user as most possible
items would have been recommended before).

96 Chapter 5. About Challenges in Real Recommendation Systems

Impact of Exploration

We first study the results about the impact of exploration, given in Figure
5.2, to compare to Figure 3.2 in Chapter 3. The values of Tu used for the
period of the update are the same for SeALS and Greedy, and Tu was set
to 250 for Movielens1M, 10,000 for Douban and Movielens20M and 50,000
for Yahoo! dataset. We set the regularization parameter λ = 0.1 for Greedy
and λ = 0.15 for SeALS, as well as the parameter k set to 15, which are the
same values as in Chapter 3.

The experiments display very different results from the ones in Chapter
3. Except for Yahoo, all curves exhibits either a linear or increasing regret
through time, except at the very beginning of the iterations (this is partic-
ularly visible on LibimSeti). Moreover, even if SeALS still appears as the
best approach, the difference between algorithms is far less visible than in
Chapter 3. This is due to the high sparsity of the matrix of ratings: if a user
has very few ratings and it is forbidden to play items more than once, the
task of learning users’ tastes becomes more complex, and it becomes harder
to make the difference between a good or a bad algorithm as both have lit-
tle information and strong restrictions to perform their recommendation.
Even if it eventually reaches a good model, PTS on Movielens1M also takes
a long time to converge to this model: previous experiments showed that it
does not reach good performance as quickly as SeALS, and forbidding the
"replay" seem to affect it even more.

Notice that the value of α for the exploration in SeALS to get the best
results is lower than the one used previously. There are several reasons
behind this decrease:

• We do not perform as many iterations of recommendation. The op-
timal score of α depends on how many recommendations are per-
formed: if a high number of recommendations are made by the RS,
then a stronger exploration is necessary to keep exploring longer and
minimize the regret.

• The choice of the user following a power-law distribution also has an
impact about how exploration should be done. By choosing an εn-
greedy strategy, a lot of exploration is done at the beginning, and the
RS can benefit a lot from this choice when users are chosen uniformly
at random, as exploration is performed on a large set of users and in-
formation is gathered quickly. In the case of a power-law distribution,
the exploration at the beginning will be done on a smaller number of
users, who will rate a high number of items. By emphasizing explo-
ration too much at the start, even if the preferences of this small set of
users have been explored enough, there is a risk that the RS will miss
the target to recommend accurate items to these users.

• the last reason is that items are deleted from possible recommenda-
tions after being recommended to a user. The exploration in the case
where the "replay" is allowed brings more information about which
item to play as all items are always available to be recommended in
the future. In the current setting, the exploration will still bring infor-
mation, but this information has to be used only on a different set of
items, which reduce slightly its importance.

5.2. Realistic Offline Sequential Recommendation 97

0.0 0.1 0.2 0.3 0.4 0.5

Time-steps (×106)

0

1

2

3

4

5

6

7

8

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
5
)

UCB1

Random

Popular

PTS

Greedy

SeALS, α= 3. 0 · 103

(A) Movielens1M

0 2 4 6 8 10

Time-steps (×106)

0

2

4

6

8

10

12

14

16

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
6
)

UCB1

Popular

Random

Greedy

SeALS, α= 5. 0 · 104

(B) Movielens20M

0 2 4 6 8 10

Time-steps (×106)

0

2

4

6

8

10

12

14

16

18

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
6
)

UCB1

Popular

Random

Greedy

SeALS, α= 6. 0 · 104

(C) LibimSeti

0 2 4 6 8 10

Time-steps (×106)

0

2

4

6

8

10

12
C

u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
6
)

UCB1

Popular

Random

Greedy

SeALS, α= 5. 0 · 104

(D) Douban

0 5 10 15 20 25

Time-steps (×106)

0

1

2

3

4

5

C
u
m

u
la

ti
v
e
 R

e
g
re

t
(×

10
7
)

Random

UCB1

Popular

Greedy

SeALS, α= 2. 0 · 105

(E) Yahoo

FIGURE 5.2: Impact of exploration on the cumulative re-
gret score when replay is not allowed, evaluated on five

datasets.

98 Chapter 5. About Challenges in Real Recommendation Systems

Then, we also display in Figure 5.3 and Figure 5.4 the curve of the aver-
age reward received by the RS, respectively in the setting of Chapter 3 and
for the current setting. This allow to compare from another perspective the
two offline settings.

In both Figures, each point in time is the average rating of the last 200,000
and 100,000 iterations done before this point, for Yahoo and Movielens20M
respectively.

0 5 10 15 20

Time-steps (×106)

3.6

3.8

4.0

4.2

4.4

4.6

4.8

A
v
e
ra

g
e
 r

e
w

a
rd

 r
e
ce

iv
e
d
 b

y
 t

h
e
 R

S

Random

Popular

UCB1

Greedy

SeALS, α= 2. 3 · 105

(A) Movielens20M

0 20 40 60 80 100 120

Time-steps (×106)

3.6

3.8

4.0

4.2

4.4

4.6

A
v
e
ra

g
e
 r

e
w

a
rd

 r
e
ce

iv
e
d
 b

y
 t

h
e
 R

S

UCB1

Popular

Random

Greedy

SeALS, α= 2. 0 · 106

(B) Yahoo

FIGURE 5.3: Average reward received by the RS through
time, when replay is allowed.

0 2 4 6 8 10

Time-steps (×106)

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

A
v
e
ra

g
e
 r

e
w

a
rd

 r
e
ce

iv
e
d
 b

y
 t

h
e
 R

S

UCB1

Popular

Random

Greedy

SeALS, α= 5. 0 · 104

(A) Movielens20M

0 5 10 15 20 25

Time-steps (×106)

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A
v
e
ra

g
e
 r

e
w

a
rd

 r
e
ce

iv
e
d
 b

y
 t

h
e
 R

S

Random

UCB1

Popular

Greedy

SeALS, α= 2. 0 · 105

(B) Yahoo

FIGURE 5.4: Average reward received by the RS through
time, when replay is not allowed.

As one can see, the learning curve of the algorithms is obvious in the case
where the "replay" is allowed as all techniques except Random and Popular
baselines see their average reward growing through time. On the opposite,
the curves in the current setting display a stranger behavior which needs to
be explained.

5.2. Realistic Offline Sequential Recommendation 99

The comparison between the two figures lead to several conclusions:

• In the Figure 5.3, we observe that Greedy performance grows slightly
at the beginning and remains stuck in a solution bringing low reward
afterward. It reaches even worse performance than Popular or UCB1
approaches. On the contrary, forbidding the replay of the same item
somehow forces the Greedy algorithm to "explore" and play other
items, and it is able to reach a better score.

• For Popular or UCB1 approaches: in Figure 5.3, they both reach a
good performance, and UCB1 is even able to reach better performance
on both datasets. Then, in Figure 5.4, we observe that they both per-
form well initially and gather high feedback. This is because they ei-
ther know in advance (Popular), or discover (UCB1) which items are
popular for most users, and recommending these items brings high
average reward. However, both scores decrease quickly because the
two algorithms lacks personalization to perform good recommenda-
tion afterward.

• The most important effect is the decrease of the reward received by
Greedy or SeALS in Figure 5.4 (which also happens for Popular and
UCB1). It happens very quickly on Movielens20M dataset, and after
about 10 millions recommendations for the Yahoo dataset. The mean-
ing of this phenomena is that good items for some users have already
almost all been recommended, and the RS is forced to pick an item
to recommend from a set of items bringing lower reward. There are
still some items bringing high reward among the ones to pick for the
RS, since the regret is still increasing in Figure 5.2, but it is likely that
the RS has already recommended all the "obvious" good items for the
users (the items for which the preference of the user is obvious). The
RS then has to recommend good items which are harder to detect,
which explains why the average reward received by the RS decreases
and why the regret increases even further in Figure 5.2.

Remark that this effect also applies to UCB1 and Popular to explain
the decrease of their results (since they recommended good items at
the start), but the decrease appears more quickly in the recommenda-
tion process, and is stronger due to the lack of personalization.

At last, we want to emphasize the fact that results are sequential, and
as such, a curve of an algorithm "crossing" another one and going above
does not mean it would be preferable to change the stategy from the first
algorithm to the second one. For example, SeALS is going under Popular,
UCB1, and Greedy at the end of the experiment on Movielens20M, but this
does not signify that it is advised to switch from the SeALS strategy to a
UCB1 one at this point: at a specific iteration, for each user the set of possi-
ble items to recommend is different for every algorithms as this set results
from the choices made before this iteration.

100 Chapter 5. About Challenges in Real Recommendation Systems

Update of the Model

We also study the update of the model, and display the results in Figure
5.5. Results are this time more similar to the ones obtained in Figure 3.3 in
Chapter 3. Three observations can be made on this figure:

1. Updating the model more often benefits as much to the RS as in the
case when the replay is allowed, as the cumulative regret is decreasing
strongly if the model is updated more often. It even seems that it
decreases slightly faster than in the experiments in Chapter 3. This
might be due to the power-law distribution: a set of users receives
recommendations more often and updating slightly more frequently
this small set of users is sufficient to get good results.

2. There is little to no difference at changing the proportion of user to
update p. Only the two larger datasets Movielens20M and Yahoo dis-
play a small improvement when choosing to update a smaller portion
of the users and items. We only investigated the update of a propor-
tion of users and items chosen at random uniformly in the Chapter 3
and in the current setting, but it might be more efficient both for the
score and running time to choose which users or items to update in a
smarter way.

3. While some results for different values of p were using different val-
ues of α in Chapter 3, it is not necessary here to tune α and reducing it
does not bring any visible change. The reason may be that the value of
exploration is already small, so reducing the exploration for smaller
value of p would only lead the system to do almost no exploration at
all.

5.2.3 Final Remarks

Results on this sections highlight the difficulty of carrying on an offline
evaluation of RS in a more realistic sequential setting. The main issue is
the sparsity and lack of ratings to simulate the no-"Replay" aspect where
the RS is not allowed to recommend an item to a user more than one time.

This section brings to light the need for real-world RS datasets adapted
to sequential recommendation. Most of the datasets available to public
research were built during the years where prediction accuracy mattered
the most to researchers in the field of RS, but they are not well adapted to
simulate offline a sequential evaluation, which requires a high number of
preferences known for the user on items randomly selected. Having some
temporal information available could also benefit to perform more realistic
offline evaluation, by simulating the arrival of new users or new items into
the RS according to these information.

In the next section, we give some more general thoughts about real RS,
which do not only apply to the sequential evaluation.

5.2. Realistic Offline Sequential Recommendation 101

100 101 102 103 104 105

Total Running Time (in sec., log-scale)

5.0

5.5

6.0

6.5

7.0

7.5

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

5
)

Random

Popular

PTS

UCB1

SeALS, p= 0. 001 , α= 3. 0 · 103

SeALS, p= 0. 1 , α= 3. 0 · 103

SeALS, p= 1 , α= 3. 0 · 103

(A) Movielens1M

102 103 104 105

Total Running Time (in sec., log-scale)

9

10

11

12

13

14

15

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
1
0

6
)

Random

Popular

UCB1

SeALS, p= 0. 001 , α= 5. 0 · 104

SeALS, p= 0. 1 , α= 5. 0 · 104

SeALS, p= 1 , α= 5. 0 · 104

(B) Movielens20M

102 103 104 105

Total Running Time (in sec., log-scale)

9

10

11

12

13

14

15

16

17

18

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

6
)

Random

Popular

UCB1

SeALS, p= 0. 001 , α= 6. 0 · 104

SeALS, p= 0. 1 , α= 6. 0 · 104

SeALS, p= 1 , α= 6. 0 · 104

(C) LibimSeti

102 103 104 105

Total Running Time (in sec., log-scale)

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

6
)

Random

Popular

UCB1

SeALS, p= 0. 001 , α= 5. 0 · 104

SeALS, p= 0. 1 , α= 5. 0 · 104

SeALS, p= 1 , α= 5. 0 · 104

(D) Douban

102 103 104 105

Total Running Time (in sec., log-scale)

3.0

3.5

4.0

4.5

C
u
m

u
la

ti
v
e
 R

e
g
re

t
a
ft

e
r

a
ll

ti
m

e
-s

te
p
s

(×
10

7
)

Random

Popular

UCB1

SeALS, p= 0. 001 , α= 2. 0 · 105

SeALS, p= 0. 1 , α= 2. 0 · 105

SeALS, p= 1 , α= 2. 0 · 105

(E) Yahoo

FIGURE 5.5: Impact of the update strategy on the final cu-
mulative regret score when replay is not allowed, evaluated

on five datasets.

102 Chapter 5. About Challenges in Real Recommendation Systems

5.3 Some Lessons from a Real Case RS Challenge

This section is built after the results on real data from the RecSys Challenge
2014 (Said et al., 2014) on which we reached the highest score. Conclusions
drawn from the method used to win this challenge highlight some inter-
esting aspects of building a real RS. Note that this Challenge did not target
any sequential evaluation, but investigated a specific recommendation task:
find items with the highest user engagement. Specifically, the objective was
to rank a set of tweets after the (unknown) number of times they will be
favorited or retweeted (Dooms et al., 2013). This problem came within the
scope of a Learning To Rank point of view (cf. Section 2.7 in Chapter 2),
since each user could be considered as a query, and each tweet associated
to each user as an item.

We describe first in the following section the goal of the Challenge.

5.3.1 RecSys Challenge 2014: Data and Protocol

This challenge uses a traditional evaluation of Recommendation Systems,
by splitting a large dataset chronologically in three subsets: a training set, a
test set, and an evaluation set. The percentage for each of these subsets is re-
spectively around 80%, 10% and 10%. Contestants of the Recsys Challenge
were provided on the training and test sets in order to build their models
and algorithms, while the evaluation set was kept for the final evaluation
in order to decide on the winner of the challenge.

The dataset is an extended version of MovieTweetings dataset (Dooms
et al., 2013), so data originated from users of the IMDb app, where they
can rate movies and share the rating on Twitter. Tweets and information
related to them were collected by querying the Twitter API on a daily basis
for tweets containing the keywords ’I rated IMDb’.

As input features for each tweet, the challenge dataset contains metadata
of the tweets as provided by the Twitter API. These metadata include infor-
mation about the user, the movie or the tweet itself. The retweets and fa-
vorites counts are also included in the metadata, in order to evaluate tweets
by their engagement and rank them.

Data characteristics and statistics Each dataset contains tweets, which
are represented as follow: (twitter user id, IMDb item id, rating given by
the user to the movie, scraping timestamp, tweet data). We present in Table
5.1 some statistics about the training dataset. We denote a tweet which ob-
tains a non-zero engagement as a successful tweet, and a user who have had
at least one successful tweet as a successful user.

These statistics give us some important information: first, the number
of successful tweets is really low, i.e. most tweets have no success and do
not get any retweet or are put as favorite by other users. As a consequence,
most users in the dataset only have tweets with an engagement of 0.

5.3. Some Lessons from a Real Case RS Challenge 103

TABLE 5.1: Training data statistics

Metric Value
Tweets 170,285

Unique users 22,079
Unique items 13,618

Tweets with zero engagement 162,107 (95.2%)
Unsuccessful users 17,502 (79.27%)

Successful tweets receive an average engagement of 4.41 but 80% of
these tweets have only a user engagement of 1 (cf. Figure 5.6). Overall,
most of the tweets have an engagement of either 0 or 1, which means the
challenge is almost a binary classification problem. In fact, as shown in
(Loiacono et al., 2014), the binary oracle, i.e. the classifier that only gives
the score 1 to tweets with positive engagement and the score 0 to remaining
tweets, gets an overall result of 0.9877 on the test set, where the maximum
possible score is 1.

79.9

11.7

3.4
1.3
1.70.51.6

Engagement of successful tweets

1
2
3
4
5-14
15-51
185,496

FIGURE 5.6: Distribution of the user engagement of suc-
cessful tweets in the training dataset.

Secondly, part of these tweets are retweets (cf. Table 5.2). The engage-
ment of a retweeted tweet is a specific case in the dataset, since such tweets
share their retweet count with the original tweet (but do not share their fa-
vorite count). Every retweet necessarily has a strictly positive engagement.
Given that both the retweet and favorite counts of the original tweet are
available on the metadata, this distinctive feature has to be taken into ac-
count in the model. These tweets have not been originally posted by the
user that we evaluate, so the user engagement of retweets can cause a dis-
torted evaluation. On the 4,577 users who are considered successful, only
3,321 have successful tweets that have been posted by themselves, the rest
of these users can be considered as "artificial" successful users since they
only received a positive user engagement by retweeting, but not on their
own tweets.

104 Chapter 5. About Challenges in Real Recommendation Systems

TABLE 5.2: About retweets in the training dataset

Metric Value
Number of retweets 1,808

Percentage among successful tweets 22.10%
"Artificial" successful users 28.44%

About User Engagement as Evaluation This challenge focuses on a dif-
ferent way of evaluating models and recommendations. The goal of the
algorithm is to determine the best ranking for each user after the engage-
ment that each of his tweets receives. The user engagement for one tweet
is calculated as the sum of the number of times it has been retweeted and
the number of times it has been marked as favorite. In order to measure the
performance of this ranking, the information retrieval measure used is the
Normalized Discounted Cumulative Gain (NDCG), computed on the top
10 elements for each user. The overall evaluation is obtained by averaging
the NDCG@10 of each user.

However, following the previous section which described characteristics
of the dataset, some details have to be mentioned concerning the use of the
NDCG measure. Firstly, most of the users don’t have any successful tweet
among their tweets. For these users, any ranking of the tweets is equivalent
since all items have the same relevance.

42.9

13.2

26.3
8.3

9.2
Number of tweets

1
2
3-10
11-20
>20

FIGURE 5.7: Distribution of the number of tweets per user
in the training dataset.

Secondly, if we restrict ourselves to remaining users who have at least
one successful tweets, it is also possible that any ranking will give the max-
imum NDCG score. This case can happen if the user only has one tweet in
total (cf. Figure 5.7), or if all of his tweets have the same positive user en-
gagement, for example a user with three tweets with an engagement of 1.
Then the ranking provided by the model would not have any consequence
on the NDCG score for this user, and the NDCG would always be 1.0 since
any ranking would be considered perfect.

Overall, 2,792 users provide a clean ranking (after removal of the retweet
effect). While these users represent only 13% of the total number of users,

5.3. Some Lessons from a Real Case RS Challenge 105

they still gather 44% of the whole tweets, and 8% of their tweets are true
successful tweets.

Input features for the model We use several features that seem relevant
to predict the ranking or the user engagement of a tweet. Each of these
features is contained in the dataset or is extracted separately to enhance
the model. Each of these features enters into one of three categories: user
features, movie features, and tweet features.

User features are given in the original dataset. These features include
the number of followers, the number of friends, the number of tweet put as
favorites, the number of statuses posted and the number of lists in which
the user is included. User features can change through time, since a user
might follow more people or get more followers, and feature values for
each tweet are the one extracted at the exact time the tweet was posted. As
for the movie features, we extract some features from IMDb website such
as the IMDb rating, the IMDb votes, the budget of the movie or its release
date.

Finally, we include also the features that are related to the tweet itself,
such as the rating given to movie by the user, the date the tweet was posted,
the time difference between the release date of the movie and the post of the
tweet, or other information about hashtags, lang, retweet, image inside the
tweet...

5.3.2 Method

After a brief description of each method used, we discuss how to combine
different rankers, and then explain our approach.

LambdaMART model LambdaMART (Burges, 2010) uses a listwise ap-
proach: it considers the whole lists of items as instances in learning, and
tries to optimize directly a performance measure.
LambdaMART has been created by combining two previous algorithms,
MART and LambdaRank. MART is a pointwise ranking approach, based
on a boosted tree model in which the output of the model is a linear com-
bination of the output of a set of regression trees. It can be viewed as per-
forming gradient descent in function space using regression trees. Lamb-
daRank is a method based on neural networks, which expresses gradients
based on the ranks of the documents, and modifies the weight in the neu-
ral net according to these gradients. The λ terms in LambdaRank can be
seen as rules defining how to change the ranks of items in a ranked list
in order to optimize the performance. Gradients of costs to optimize di-
rectly a performance measure are hard to compute since these measure
are non-differentiable. Instead, the λ terms are considered to be gradients
with contributions from all other items that have a different relevance label.
LambdaMART combines both approaches by using the idea of λ terms from
LambdaRank and MART’s boosted regression trees. LambdaMART mod-
els have shown great efficiency in ranking problems and won the Yahoo!
Learning to Rank Challenge (Burges et al., 2011).

106 Chapter 5. About Challenges in Real Recommendation Systems

Random Forests Random Forest (Breiman, 2001) is a kind of ensemble
learning algorithm which combines predictions from an ensemble of ran-
dom trees. Bagging is used to reduce the correlation between each pair of
random trees in the ensemble. Compared to LambdaMART, the Random
Forest method belongs to pointwise methods as it is a regression model.
Each of the trees in the ensemble forest votes for the output value, and the
predicted output is then determined by all the trees in the ensemble. This
method has shown high performance and has been applied successfully in
various different fields, including LTR competitions (Chapelle and Chang,
2011).

Description of the Approach Here we describe the models we use in our
overall approach, and how we combined them. At first we built a Lamb-
daMART model on a modified train dataset, in which we removed users
who would have the same NDCG without regard to the ranking given by
the algorithm. As a consequence, the training dataset for LambdaMART
is very small. We tried to artificially augment the dataset as showed in
(Burges et al., 2011) by sampling some percentage of tweets for each user
and inserting these data in the training set. For example, instead of learn-
ing the ordering A>B>C for three tweets, sampling from these tweets and
removing B help the model not to overfit and manage to learn that A>C
without the condition of B lying between them. However, training on aug-
mented models did not show any improvement on the evaluation. This is
due to the characteristics of the data where only very few tweets, are suc-
cessful for a given user, i.e. in most cases, the ranking problem is reduced to
identify that one or two tweets will generate higher engagement than other
tweets. These characteristics are highlighted by the almost perfect score of
the binary oracle.

Such result encourages to also consider simpler algorithms, such as re-
gression models. In Section 5.3.3 we present the results obtained with Lin-
ear Regression, and with Random Forests. One advantage of regression
models is that they allow to easily correct the effect of retweeted tweets: (i)
remove the retweet count of the original tweet from the features, (ii) while
learning the model, modify the user engagement by subtracting the retweet
count of the original tweet, and (iii) add the retweet count of the original
tweet to the result returned by the learned model. In other words, the user
engagement of any tweet that was not originally posted by the user, is re-
duced to its "true" user engagement, by dropping the retweet count that
actually belongs to the user who posted the original tweet. At the contrary,
the effect of such cleaning is less clear while using LambdaMART. In fact,
LambdaMART model returns a value that does not target the engagement
score as it focuses on the ranking of tweets. Hence, adding the retweet
count of the original tweet to that value is meaningless.

Finally, we also explore various ways to combine these models. It is usu-
ally not an easy task to decide which method to keep in the final model if
several methods perform similarly well, and combining rankers can be a
way to minimize the chance of achieving poor results on an eventual new
test dataset, because the diversification of methods will provide more ro-
bustness to the final model. Since the values returned by LambdaMART

5.3. Some Lessons from a Real Case RS Challenge 107

and regression models are not at the same scale, we standardize both pre-
dictions. After this step, the combination of rankers can be done in var-
ious ways. We apply both a simple averaging method, and a method to
perform an optimal linear combination of rankers described in (Wu et al.,
2010). Given a pair of rankers who respectively gave the score si1 and si2 for
a item i, the idea is to combined them convexly as:

sicomb = αsi1 + (1− α)si2 , (5.2)

where a parameter α is sweeping from 0 to 1. By enumerating all values
of α for which the NDCG will change, it is possible to identify the value of
this parameter for which the two rankers are linearly optimally combined.

5.3.3 Experiments and Discussion

In this section we partially answer two questions:

• While the challenge is a Learn To Rank problem, should we learn a
ranking model or not?

• Is there an efficient way to combine ranking models with other mod-
els?

These questions are answered in the light of the results obtained on the
data of the challenge. We consider both (i) the NDCG score obtained by
the models discussed in the paper and (ii) the importance of features in the
learned forests.

Hyper-parameters of simple models are selected through 10-fold cross-
validation on the training dataset, with NDCG as objective function. These
parameters include the number of trees, the number of leaves in each tree,
and the learning rate of LambdaMART. Parameters found were 500 for the
number of trees, 10 for the number of leaves and a learning rate of 0.05.
We chose for Random Forest algorithm to use 2000 trees with a maximum
depth of 5.

Experimental Results

While this strategy is subject to overfitting, models are compared after their
NDCG@10 score on the test set. Results are given in Table 5.3 where λ-
MART, RF and Lin stand respectively for LambdaMART, Random Forest
and linear regression. Retweet is the model which predicts as a score the
number of retweets of the original tweet (0, when the tweet is an original
one, not a retweet).

The suffix Wrap indicates that the corresponding regression model is
used on dataset for which retweet effect has been cleaned. Specifically, dur-
ing the training phase, the number of retweets of the original tweet is re-
moved from the features and is subtracted to the user engagement. During
the test phase, this number is added to the engagement predicted by the
learned model.

108 Chapter 5. About Challenges in Real Recommendation Systems

TABLE 5.3: NDCG@10 on test dataset

Model NDCG@10
Retweet 0.806
λ-MART 0.838

RF / WrapRF 0.823 / 0.858
Lin / WrapLin 0.806 / 0.843

Mean(λ-MART, Retweet) 0.876
Mean(λ-MART, WrapRF, WrapLin) 0.874

OptAvg(λ-MART, WrapRF, WrapLin) 0.876
OptAvg(λ-MART, RF, Retweet) 0.878

Finally, Mean stands for the meta-model which uses the average pre-
dicted score to rank tweets, and OptAvg stands for the meta-model using
the best linear combination2. Notice that these best linear combinations are
selected after the NDCG@10 score on the test set.

The first remark on the results is the importance of the retweet score. For
example, this score alone is enough to reach an NDCG of 0.806. Similarly,
the combination of Retweet with other models (through linear combination
or wrapping) increases the NDCG score of these models to the extent of
0.035. Finally, any of the best models uses the retweet score.

The second important remark is that a ranking model is also needed to
achieve the best NDCG score. LambdaMART is used by any model with an
NDCG greater than 0.87, and the simple solution Mean(λ-MART, Retweet)
has almost the best NDCG score. However, the wrapping strategy allows
regression models to outclass LambdaMART. This suggests that ranking
model are more promising as soon as the data are cleaned from the retweet
effect.

Notice also that the linear combination of simple models works surpris-
ingly well. LambdaMART is a ranking model, but it is based on a boosted
Forest which predicts the inclination for tweet to have a better score than an
other one. Then, LambdaMART mixes well with Random Forests or with
Retweet.

Finally, Figure 5.8 gives the NDCG after the linear combination of Lamb-
daMART, WrapRF and WrapLin. We observe a large plateau of NDCG
around the arithmetic mean. Moreover, the careful selection of the linear
combination of simple models only increases the NDCG to an extent of
a few thousandth. This tiny increase in NDCG, and the large plateau of
equivalent linear combination indicates that the arithmetic mean is a safer
approach. A similar analysis of OptAvg(λ-MART, RF, Retweet) leads to the
same conclusion.

5.3. Some Lessons from a Real Case RS Challenge 109

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

beta

 0.83

 0.85

 0.87

 0.89

 0.835

 0.84

 0.845

 0.85

 0.855

 0.86

 0.865

 0.87

 0.875

 0.88

FIGURE 5.8: NDCG@10 on test set, from the linear combina-
tion of LambdaMART, WrapRF and WrapLin. Their weight

is respectively α, β and 1− α− β.

Relevant Features

The relevance of features has been measured on different sets of Random
Forests to observe which effect has the removal of one or several features. In
order to measure the relevance, we can use the relative depth at which the
feature appears in a tree. A feature which appears at the top is contributing
more to the final prediction as there is a larger fraction of input samples
going through this node. The estimate used to measure the importance of a
feature is thus the expected fraction of the samples to which this feature will
contribute. Figure 5.9a presents the feature relevance on original data: we
keep all input features, including the retweet count of the original tweet,
and we do not modify the user engagement of the tweet. We notice in
this case the features related to the original tweet, such as the number of
favorites or retweet of the original tweet are the features contributing the
most to the prediction. This contribution again highlights the importance
of the original retweet count to build an efficient model.

Figure 5.9b exhibits the relevance of features on data cleaned from the
retweet effect: the retweet count of the original tweet is removed from input
features and user engagement is modified as mentioned previously. We
observe that after removal of the retweet effect, the Random Forest makes a
prediction about the user engagement mostly based on user features, such
as the number of followers, the number of favorites, or the number of lists
in which the user is. A user who has a higher number of followers or is
included in more lists is more likely to receive higher engagement on his

2The best linear combinations are
0.48×λ-MART + 0.08×WrapRF + 0.44×WrapLin and
0.3×λ-MART + 0.12×RF + 0.58×Retweet

110 Chapter 5. About Challenges in Real Recommendation Systems

0.0 0.1 0.2 0.3 0.4 0.5 0.6

created_at

release_date

votes

rating

lang_ar

retweeted_status

followers_count

listed_count

retweeted_retweet

retweeted_fav

(A) Relevance of features using all features and unmodi-
fied user engagement.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

created_at

time_tweet_scrap

user_mentions

friends_count

media

rating

lang_ar

favourites_count

listed_count

followers_count

(B) Relevance of features after cleaning the retweet effect.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

votes

lang_fa

time_tweet_scrap

budget

user_mentions

media

release_date

time_tweet_movierelease

lang_ar

rating

(C) Relevance of features after cleaning the retweet effect
and removing user features.

FIGURE 5.9: Relevance of features.

5.3. Some Lessons from a Real Case RS Challenge 111

tweets. However, focusing mostly on user features sounds inappropriate
for the challenge, as the tweets to rank are always emitted by the same user.
While comparing two tweets, the only difference in user properties comes
from the fact that both tweets were not emitted at the same date.

In the last case (cf. Figure 5.9c), we evaluate the importance of all fea-
tures except user features. Since the NDCG score is computed for each user
and user features seem not to change a lot along time, it would be interest-
ing to observe which movie or tweet features are influencing the regression
prediction. Remark that the most relevant features sound reasonable: the
rating given by the user in the tweet, one language feature (arabic), the
time passed between the release of the movie and the tweet post, the date
at which the movie was released.

Discussions

We discuss on this section some conclusions that can be drawn from results
of the approach in the Challenge and which can be generalized to most
real-world RS.

Problems are often simple, be smart A lot of data was available for the
Challenge, but a simple attribute of the input data decided of most of the
score obtained by the algorithm. In the era of Big Data, a lot of complex
algorithms are built trying to make use of most of the data available. How-
ever, problems can often be solved using some specific attributes which
give most of the information.

No need to use all examples Our approach in this Challenge only used
some examples to build its model (the training set for LambdaMART was
really small), as others would mostly bring noise or no information at all.
Reducing the size of the data on a relevant subset of examples is necessary
to build a significant model in a short amount of time, and saving time
during the learning of the model is a valuable characteristic for a real-world
RS.

Build simple models Recommendation problems are often considered as
Learning to Rank problem, but sometimes building a simple model and
focusing on the prediction only is sufficient to reach a good performance.
Here the Random Forest model alone reaches already a good performance
compared to LambdaMART. The same remark can be done about Chapter
3, where our simple approach SeALS achieves better results than PTS, and
also about Chapter 4, where Learning to Rank approaches actually perform
worse than a simple Matrix Factorization approach like ALS.

Do not forget temporal and sequential aspect Several temporal aspects
can influence the model prediction and evaluation, and the importance of

112 Chapter 5. About Challenges in Real Recommendation Systems

the sequential aspect has been displayed in previous Chapters. In this Chal-
lenge, some important temporal or sequential features of the problem were
forgotten:

• The time interval from which the tweets were posted for both the train
set and the test/evaluation set were strongly different, even if a user
has more chance throughout a long period of time to gather new fol-
lowers who could bring potentially a higher engagement on his future
tweets.

• Movies corresponding to tweets with the highest engagement were
mostly popular movies which have been released recently at the time
the tweet was extracted. Taking a small interval of time for a dataset
can also modify the structure of data on this part since popular movies
are often released at a specific period of time during the year.

• Finally, the evolution of a user in the Twitter environment, or the re-
lease of movies can be seen as sequential problems, but this challenge
did not consider any sequential context for this Challenge.

5.4 Concluding Remarks

We study in this chapter some aspects and challenges of real-world Rec-
ommendation Systems. The first part described several important charac-
teristics of real RS. We integrated some of these characteristics in an offline
sequential evaluation setting, more realistic than the one in Chapter 3. Re-
sults show that some simple aspects of real-world RS can make the sequen-
tial evaluation far more complex to set offline, and highlight the need for
datasets adapted to perform such tasks. Finally, our results on a RS Chal-
lenge on real-world data also emphasizes that smart and simple models are
the target to aim at when building a real-world RS, but that these models
need to be built while considering the temporal aspects and the inherent
sequential context in which RS perform their recommendations.

113

Chapter 6

Conclusion

In this thesis, we focused on the recommendation problem seen as a sequen-
tial process, where recommendations are provided to the user one after an-
other and feedback is gathered progressively through time. By changing
the perspective into which Recommendation Systems are usually studied,
several crucial aspects that the system needs to target appear.

6.1 Thesis Contributions

We focused on two aspects resulting from the sequential setting, by consid-
ering two different possible recommendation process:

• In Chapter 3, we focused on a setting where one item is recommended
by the RS at each time step to the user, and the feedback is gath-
ered after each recommendation. We made the relation of this set-
ting to the Multi-Armed Bandit setting, where each item is a possi-
ble arm to recommend to the user, and showed that the exploration-
exploitation dilemma raises in the recommendation problem. We pro-
posed a simple and efficient approach to provide appropriate recom-
mendations by combining a Collaborative Filtering method with a
Multi-Armed Bandit approach and evaluated the system in a proper
sequential offline setting compared to fixed batch setting. Empiri-
cal studies showed that embedding the exploration vs. exploitation
dilemma into the algorithm helps the system to maximize the ratings
received by the system through time. Finally, since the system also
needs to learn through time, we also studied the model update in or-
der to make the system able to provide recommendations as accurate
as possible without losing too much time to update itself.

• In Chapter 4, we extended the sequential setting to a recommenda-
tion process where several items are suggested to the user at each
time step. The RS has to optimize the order of the items in the recom-
mended list, in order to put items with highest chances of matching
the user’s tastes at the top of the list. In the case of a list of items,
the feedback provided by the user can take the form of explicit rat-
ing about the chosen item, but also the form of implicit feedback on

114 Chapter 6. Conclusion

items that were chosen or not in the list. The implicit feedback also
provides some sort of information about which item is preferred to
another through the click. By choosing a case study and modeling
the user’s interaction with the system through a click model, we then
proposed two methods to integrate both explicit and implicit feed-
back into the model, to learn more quickly about the user’s tastes and
provide better ordering of the recommended items. Empirical studies
on several datasets showed that the inclusion of both types of feed-
back indeed allows better performance. Experiments with other click
models also confirm the necessity of using implicit feedback, but also
highlight the need for caution in the way the implicit feedback is in-
cluded and the weight that is given to it.

• In Chapter 5, we discussed about some challenges in real-world RS.
We first described some important aspects observed in real RS, and
made the link between these aspects and the sequential offline evalu-
ation. Then, we modified the setting established in Chapter 3 to make
it more realistic, by applying a power-law distribution for the arrival
of users into the RS, and by forbidding the system to recommend the
same item several times to a user. The evaluation in such sequential
setting highlighted the difficulty of evaluating RS in a sequential con-
text only based on offline datasets. Finally, some results obtained on
a real-world dataset during a RS Challenge emphasized that having a
lot of data and searching for a complex model to perform recommen-
dation is sometimes misleading.

The aspects treated in chapters above, which are the exploration vs. ex-
ploitation dilemma, the update of the model, and the integration of multi-
ple type of feedback are emphasized due to the sequential evaluation set-
tings set up in this thesis, and are central issues that need to be targeted in
real-world RS.

6.2 Future Work

There are numerous directions in which the work in this thesis can be ex-
tended. The first direction is related to the extension of our approaches to
integrate external information, the second one regards the integration of
Multi-Armed bandits algorithms in the recommendation process to solve
the cold start issue, and finally, the last two directions target the improve-
ment of the RS when multiple items are received, either through the im-
provement of the click model integration, or through explore-exploit strate-
gies.

Mix feedback information with contextual or external information

In this whole thesis, we considered only systems learning from explicit
feedback (in Chapter 3) or from a mix of explicit and implicit feedback (in
Chapter 4). There have been a lot of research in RS about adding external in-
formation about the users or the items, or including contextual information

6.2. Future Work 115

to improve the performance of the system or reduce the cold start effect.
Such information could actually easily be included into the Factorization
Model used in Chapter 4 by simply adding the additional information into
the input feature vector.

Extend RS algorithms using Multi-Armed Bandits approach for
the cold start on users and/or items

We developed in Chapter 3 a simple and efficient approach to tackle the
explore-exploit dilemma in RS. However, more complex approaches would
allow to judge the uncertainty on users and items and use this information
to improve performance. In particular, we focused in the experimental set-
ting on the user side, where the RS tries to recommend items matching the
user’s tastes as much as possible, but the decrease of the uncertainty from
the items’ perspective should also be considered (gather information about
items quickly to recommend them to adequate users in the future). The
combined use of uncertainty on both the users and the items to tackle user
and items cold start would allow the system to perform better recommen-
dation.

Infer click model in RS recommending several items

We built in Chapter 4 one approach (DualMF) directly based on a click
model but the performance of this approach directly depends on the click
model used in the offline evaluation to represent the interaction between
the user and the system. A more appropriate solution would be to infer the
click model directly as new feedback is received, to incorporate the implicit
feedback correctly into the model.

Incorporate explore-exploit strategies into the ranking problem for
multiple-recommendations RS

As seen in Chapter 3, a sequential setting also raises concerns about finding
good balance between gathering information about the user and provid-
ing good recommendations, a.k.a. the exploration-exploitation dilemma.
We integrated an approach which considers this issue in Chapter 4, in the
case where multiple items are recommended but results showed that ex-
ploration vs. exploitation dilemma needs to be carefully included in this
context. The inclusion of explore-exploit strategies when multiple items are
recommended seems to be the most promising field of research: some im-
plicit goals of ranking RS and explore-exploit are indeed tightly connected.
For example, explore-exploit strategies aim at gathering information on
items and user for which little knowledge is known, while suggesting a di-
verse list of recommendations is usually advised for ranking RS. It is likely
that using both the implicit or explicit feedback given by user on a diverse
set of items in only one recommendation step would increase greatly the
knowledge about both the user and the items. However, the integration of
explore-exploit strategies in ranking approaches is almost an empty field:

116 Chapter 6. Conclusion

should the exploration be emphasized at the beginning or at the end of the
list of items? Should it be spread along the whole list? These questions are
left for future research.

117

Appendix A

About UCB1 and Popular
baselines

This Appendix gives a simple example about the UCB1 and Popular base-
lines, to explain why UCB1 does not necessarily converge to the solution
given by Popular in the setting described in Chapter 3.

Let us consider the matrix of ratings R with 3 users {u1, u2, u3} and 3
items {i1, i2, i3}:

R =

 1 NA 2
5 NA 5
NA 5 1


where each line represents a user, each column represents an item, and NA
represents an unknown rating.

The average rating for each item is respectively 3, 5 and 2.66 for i1, i2
and i3. Starting from an empty matrix, the Popular strategy yet knows in
advance the average rating for all items, and it will recommend accordingly
to users (among items for which the rating exists in the dataset). In this case,
this means that Popular will always recommend i1 for u1, i1 for u2 and i2
for u3. This action will bring a regret of 1 each time a recommendation is
made for u1, as the best possible recommendation would be i3.

On the contrary, UCB1 starts with no knowledge about the items’ mean
ratings. In this example, UCB1 will play items with no prior knowledge,
and eventually find that it is a better strategy to play i3 for both u1 and u2
(and play i2 for u3). The average rating for Popular gives an equal weight
to every rating made by any user (it considers every user with a rating on
an item in the dataset played this item one time only), while for UCB1, the
mean rating to which it will converge will be different, as the item i3 will
be played many times for user u1 and u2, but almost never for u3.

We display in Figure A.1 the cumulative regret (over 50runs) for 300
recommendations over this example. We also display on the curves the
standard deviation of the cumulative regret.

We observe that UCB1 indeed reaches a lower cumulative regret than
Popular. The standard deviation of UCB1 is also much larger than the one
in Popular: this is because the time necessary for the algorithm to discover
that i3 is a better choice than i1 for both u1 and u2 will depend on the order

118 Appendix A. About UCB1 and Popular baselines

0 50 100 150 200 250 300

Time-steps

20

0

20

40

60

80

100

120

C
u
m

u
la

ti
v
e
 R

e
g
re

t

Popular

UCB1

FIGURE A.1: An example to compare UCB1 and Popular
approaches.

of the users selected to receive the recommendation, and this selection is
done randomly (for example, if u1 is selected often at the beginning of the
evaluation, the algorithm will find out quickly that playing i3 is a better
strategy overall than i1).

119

Bibliography

Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A. (2005).
Incorporating contextual information in recommender systems using a
multidimensional approach. ACM Transactions on Information Systems
(TOIS), 23(1):103–145.

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible ex-
tensions. IEEE transactions on knowledge and data engineering, 17(6):734–
749.

Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender sys-
tems. In Recommender systems handbook, pages 217–253. Springer.

Agarwal, D., Chen, B.-C., Elango, P., Motgi, N., Park, S.-T., Ramakrishnan,
R., Roy, S., and Zachariah, J. (2008). Online models for content op-
timization. In Advances in Neural Information Processing Systems, Proc.
of the 22nd Annual Conference on Neural Information Processing Systems
(NIPS), pages 17–24.

Aggarwal, C. C., Wolf, J. L., Wu, K.-L., and Yu, P. S. (1999). Horting hatches
an egg: A new graph-theoretic approach to collaborative filtering. In
Proceedings of the fifth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 201–212. ACM.

Ahn, H. J. (2008). A new similarity measure for collaborative filtering
to alleviate the new user cold-starting problem. Information Sciences,
178(1):37–51.

Audibert, J.-Y., Munos, R., and Szepesvári, C. (2009). Exploration-
exploitation tradeoff using variance estimates in multi-armed bandits.
Theor. Comput. Sci., 410(19):1876–1902.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47:235–256.

Balakrishnan, S. and Chopra, S. (2012). Collaborative ranking. In Proc. of
the fifth ACM int. conf. on Web Search and Data Mining (WSDM’12), pages
143–152. ACM.

Bennett, J., Lanning, S., and Netflix (2007). The Netflix prize. In KDD Cup
and Workshop.

Bhagat, S., Weinsberg, U., Ioannidis, S., and Taft, N. (2014). Recommend-
ing with an agenda: Active learning of private attributes using matrix
factorization. In Proc. of the 8th ACM Conf. on Recommender Systems (Rec-
Sys’14), pages 65–72.

120 BIBLIOGRAPHY

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning.
In Proc. of the 21st Annual Conf. on Neural Information Processing Systems
(NIPS’07), pages 161–168.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the
Fourteenth conference on Uncertainty in artificial intelligence, pages 43–52.
Morgan Kaufmann Publishers Inc.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brozovsky, L. and Petricek, V. (2007). Recommender system for online dat-
ing service. In Proceedings of Conference Znalosti 2007, Ostrava. VSB.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. CoRR, abs/1204.5721.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
and Hullender, G. (2005). Learning to rank using gradient descent. In
Proc. of the 22nd int. conf. on Machine Learning (ICML’05), pages 89–96.
ACM.

Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An
overview. Microsoft Research Technical Report MSR-TR-2010-82.

Burges, C. J., Svore, K. M., Bennett, P. N., Pastusiak, A., and Wu, Q. (2011).
Learning to rank using an ensemble of lambda-gradient models. In
Yahoo! Learning to Rank Challenge, pages 25–35.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4):331–370.

Campos, P. G., Diez, F., and Cantador, I. (2014). Time-aware recommender
systems: a comprehensive survey and analysis of existing evaluation
protocols. User Modeling and User-Adapted Interaction, 24(1-2):67–119.

Celma, Ò. and Herrera, P. (2008). A new approach to evaluating novel rec-
ommendations. In Proceedings of the 2008 ACM conference on Recom-
mender systems, pages 179–186. ACM.

Chai, T. and Draxler, R. R. (2014). Root mean square error (rmse) or mean
absolute error (mae)?–arguments against avoiding rmse in the litera-
ture. Geoscientific Model Development, 7(3):1247–1250.

Chapelle, O. and Chang, Y. (2011). Yahoo! learning to rank challenge
overview. In Yahoo! Learning to Rank Challenge, pages 1–24.

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sam-
pling. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Wein-
berger, K., editors, Proc. of the 25th Annual Conference on Neural Informa-
tion Processing Systems (NIPS’11), pages 2249–2257. Curran Associates,
Inc.

Chapelle, O., Metlzer, D., Zhang, Y., and Grinspan, P. (2009). Expected
reciprocal rank for graded relevance. In Proc. of the 18th ACM conf. on
Information and knowledge management (CIKM’09), pages 621–630. ACM.

BIBLIOGRAPHY 121

Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., and Yu, Y. (2012). Collabo-
rative personalized tweet recommendation. In Proceedings of the 35th
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 661–670. ACM.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin,
M. (1999). Combining content-based and collaborative filters in an on-
line newspaper. In Proceedings of ACM SIGIR workshop on recommender
systems, volume 60. Citeseer.

Cremonesi, P., Koren, Y., and Turrin, R. (2010). Performance of recom-
mender algorithms on top-N recommendation tasks. In Proc. of Rec-
Sys’10, pages 39–46.

Das, A. S., Datar, M., Garg, A., and Rajaram, S. (2007). Google news per-
sonalization: scalable online collaborative filtering. In Proceedings of the
16th international conference on World Wide Web, pages 271–280. ACM.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems (TOIS), 22(1):143–
177.

Desrosiers, C. and Karypis, G. (2011). A comprehensive survey of
neighborhood-based recommendation methods. In Recommender sys-
tems handbook, pages 107–144. Springer.

Dooms, S., De Pessemier, T., and Martens, L. (2013). Movietweetings: a
movie rating dataset collected from twitter. In Workshop on Crowdsourc-
ing and Human Computation for Recommender Systems, CrowdRec at Rec-
Sys, volume 2013.

Eckart, C. and Young, G. (1936). The approximation of one matrix by an-
other of lower rank. Psychometrika, 1(3):211–218.

Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011). Collaborative filter-
ing recommender systems. Foundations and Trends in Human-Computer
Interaction, 4(2):81–173.

Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters,
27(8):861–874.

Fouss, F., Pirotte, A., Renders, J.-M., and Saerens, M. (2007). Random-walk
computation of similarities between nodes of a graph with application
to collaborative recommendation. IEEE Transactions on knowledge and
data engineering, 19(3):355–369.

Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C., and Huber,
A. (2014). Offline and online evaluation of news recommender systems
at swissinfo.ch. In Proc. of RecSys’14, pages 169–176. ACM.

Garivier, A. and Cappé, O. (2011). The KL-UCB algorithm for bounded
stochastic bandits and beyond. In Proc. of the 24th Annual Conference on
Learning Theory (COLT’11), pages 359–376.

122 BIBLIOGRAPHY

Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010). Beyond accuracy:
evaluating recommender systems by coverage and serendipity. In Pro-
ceedings of the fourth ACM conference on Recommender systems, pages 257–
260. ACM.

Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y. (2011). Large-scale
matrix factorization with distributed stochastic gradient descent. In
Proceedings of the 17th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 69–77. ACM.

George, T. and Merugu, S. (2005). A scalable collaborative filtering frame-
work based on co-clustering. In Fifth IEEE International Conference on
Data Mining (ICDM’05), pages 4–pp. IEEE.

Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent
advances. INFORMS Journal on Computing, 21(2):178–192.

Guillou, F., Gaudel, R., Mary, J., and Preux, P. (2014). User engagement as
evaluation: a ranking or a regression problem? In Proceedings of the
2014 Recommender Systems Challenge, page 7. ACM.

Guillou, F., Gaudel, R., and Preux, P. (2015). Collaborative filtering as a
multi-armed bandit. In NIPS’15 Workshop: Machine Learning for eCom-
merce.

Guillou, F., Gaudel, R., and Preux, P. (2016a). Large-scale bandit recom-
mender systems. In Proc. of the Second International Workshop on Machine
Learning, Optimization and Big Data (MOD), LNCS. Springer.

Guillou, F., Gaudel, R., and Preux, P. (2016b). Scalable explore-exploit col-
laborative filtering. In Proc. of the 20th Pacific Asia Conference on Infor-
mation Systems (PACIS).

Guillou, F., Gaudel, R., and Preux, P. (2016c). Sequential collaborative rank-
ing using (no-)click implicit feedbacks. In Proc. of the 23rd International
Conference on Neural Information Processing (ICONIP), LNCS. Springer.

Guo, F., Li, L., and Faloutsos, C. (2009a). Tailoring click models to user
goals. In Proceedings of the 2009 workshop on Web Search Click Data, pages
88–92. ACM.

Guo, F., Liu, C., and Wang, Y. M. (2009b). Efficient multiple-click models in
web search. In Proceedings of the Second ACM International Conference on
Web Search and Data Mining, pages 124–131. ACM.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TiiS),
5(4):19.

Herlocker, J., Konstan, J. A., and Riedl, J. (2002). An empirical analysis of de-
sign choices in neighborhood-based collaborative filtering algorithms.
Information retrieval, 5(4):287–310.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Eval-
uating collaborative filtering recommender systems. ACM Transactions
on Information Systems (TOIS), 22(1):5–53.

BIBLIOGRAPHY 123

Hofmann, K. et al. (2013a). Fast and reliable online learning to rank for informa-
tion retrieval. PhD thesis, University of Amsterdam.

Hofmann, K., Whiteson, S., and de Rijke, M. (2013b). Balancing exploration
and exploitation in listwise and pairwise online learning to rank for
information retrieval. Information Retrieval, 16(1):63–90.

Hofmann, T. (2004). Latent semantic models for collaborative filtering.
ACM Transactions on Information Systems (TOIS), 22(1):89–115.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining, pages 263–272. Ieee.

Jahrer, M., Töscher, A., and Legenstein, R. (2010). Combining predictions
for accurate recommender systems. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 693–702. ACM.

Jain, P., Netrapalli, P., and Sanghavi, S. (2013). Low-rank matrix completion
using alternating minimization. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 665–674. ACM.

Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. (2010). Multi-
verse recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of the fourth ACM conference
on Recommender systems, pages 79–86. ACM.

Kaufmann, E., Korda, N., and Munos, R. (2012). Thompson sampling:
An asymptotically optimal finite-time analysis. In Bshouty, N., Stoltz,
G., Vayatis, N., and Zeugmann, T., editors, Algorithmic Learning The-
ory, volume 7568 of Lecture Notes in Computer Science, pages 199–213.
Springer Berlin Heidelberg.

Kawale, J., Bui, H., Kveton, B., Thanh, L. T., and Chawla, S. (2015). Efficient
thompson sampling for online matrix-factorization recommendation.
In NIPS’15.

Kendall, M. G. (1948). Rank correlation methods. Griffin.

Kim, H. and Park, H. (2008). Nonnegative matrix factorization based
on alternating nonnegativity constrained least squares and active set
method. SIAM journal on matrix analysis and applications, 30(2):713–730.

Kohli, P., Salek, M., and Stoddard, G. (2013). A fast bandit algorithm for
recommendation to users with heterogenous tastes. In Proc. of the 27th
AAAI Conference on Artificial Intelligence (AAAI 2013). AAAI.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 426–
434. ACM.

Koren, Y. (2010). Collaborative filtering with temporal dynamics. Commu-
nications of the ACM, 53(4):89–97.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37.

124 BIBLIOGRAPHY

Koren, Y. and Sill, J. (2011). Ordrec: An ordinal model for predicting per-
sonalized item rating distributions. In Proceedings of the Fifth ACM Con-
ference on Recommender Systems, RecSys ’11, pages 117–124, New York,
NY, USA. ACM.

Krulwich, B. (1997). Lifestyle finder: Intelligent user profiling using large-
scale demographic data. AI magazine, 18(2):37.

Kurucz, M., Benczúr, A. A., and Csalogány, K. (2007). Methods for large
scale svd with missing values. In Proceedings of KDD cup and workshop,
volume 12, pages 31–38. Citeseer.

Langford, J., Strehl, A., and Wortman, J. (2008). Exploration scavenging.
In McCallum, A. and Roweis, S., editors, Proc. of the 25th Annual In-
ternational Conference on Machine Learning (ICML 2008), pages 528–535.
Omnipress.

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems, pages
556–562.

Lee, J., Bengio, S., Kim, S., Lebanon, G., and Singer, Y. (2014). Local col-
laborative ranking. In Proc. of the 23rd int. conf. on World Wide Web
(WWW’14), pages 85–96.

Levandoski, J. J., Sarwat, M., Eldawy, A., and Mokbel, M. F. (2012). Lars:
A location-aware recommender system. In 2012 IEEE 28th International
Conference on Data Engineering, pages 450–461. IEEE.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit
approach to personalized news article recommendation. In Proc. of the
19th international conference on World Wide Web (WWW), pages 661–670,
New York, NY, USA. ACM.

Li, L., Chu, W., Langford, J., and Wang, X. (2011). Unbiased offline eval-
uation of contextual-bandit-based news article recommendation algo-
rithms. In Proc. of Web Search and Data Mining (WSDM’11), pages 297–
306. ACM.

Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80.

Liu, H., Hu, Z., Mian, A., Tian, H., and Zhu, X. (2014). A new user similarity
model to improve the accuracy of collaborative filtering. Knowledge-
Based Systems, 56:156–166.

Liu, N. N., Xiang, E. W., Zhao, M., and Yang, Q. (2010). Unifying explicit
and implicit feedback for collaborative filtering. In Proceedings of the
19th ACM international conference on Information and knowledge manage-
ment, pages 1445–1448. ACM.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3):225–331.

Liu, X. and Aberer, K. (2014). Towards a dynamic top-n recommendation
framework. In Proc. of the 8th conf. on Recommender Systems (RecSys’14),
pages 217–224.

BIBLIOGRAPHY 125

Loiacono, D., Lommatzsch, A., and Turrin, R. (2014). An analysis of the
2014 recsys challenge. In Proceedings of the 2014 Recommender Systems
Challenge, page 1. ACM.

Lops, P., De Gemmis, M., and Semeraro, G. (2011). Content-based recom-
mender systems: State of the art and trends. In Recommender systems
handbook, pages 73–105. Springer.

Luo, X., Xia, Y., and Zhu, Q. (2012). Incremental Collaborative Filtering
recommender based on Regularized Matrix Factorization. Knowledge-
Based Systems, 27:271 – 280.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Recommender
systems with social regularization. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 287–296.
ACM.

Mahmood, T. and Ricci, F. (2009). Improving recommender systems with
adaptive conversational strategies. In Proceedings of the 20th ACM con-
ference on Hypertext and hypermedia, pages 73–82. ACM.

Mary, J., Gaudel, R., and Preux, P. (2015). Bandits and Recommender Sys-
tems. In Proc. of International Workshop on Machine Learning, Optimiza-
tion and big Data (MOD’15), LNCS, Taormina, Sicily, Italy. Springer.

McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being accurate is not
enough: how accuracy metrics have hurt recommender systems. In
CHI’06 extended abstracts on Human factors in computing systems, pages
1097–1101. ACM.

Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., and Riedl, J. (2003). Movie-
lens unplugged: experiences with an occasionally connected recom-
mender system. In Proceedings of the 8th international conference on Intel-
ligent user interfaces, pages 263–266. ACM.

Miyahara, K. and Pazzani, M. J. (2000). Collaborative filtering with the sim-
ple bayesian classifier. In Pacific Rim International conference on artificial
intelligence, pages 679–689. Springer.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

Mobasher, B., Burke, R., Bhaumik, R., and Williams, C. (2007). Toward
trustworthy recommender systems: An analysis of attack models and
algorithm robustness. ACM Transactions on Internet Technology (TOIT),
7(4):23.

Murakami, T., Mori, K., and Orihara, R. (2007). Metrics for evaluating
the serendipity of recommendation lists. In Annual Conference of the
Japanese Society for Artificial Intelligence, pages 40–46. Springer.

Nakamura, A. (2014). A ucb-like strategy of collaborative filtering. In Proc.
of ACML’14.

126 BIBLIOGRAPHY

Oard, D. W., Kim, J., et al. (1998). Implicit feedback for recommender sys-
tems. In Proceedings of the AAAI workshop on recommender systems, pages
81–83.

Paterek, A. (2007). Improving regularized singular value decomposition for
collaborative filtering. In Proceedings of KDD cup and workshop, volume
2007, pages 5–8.

Pauca, V. P., Piper, J., and Plemmons, R. J. (2006). Nonnegative matrix fac-
torization for spectral data analysis. Linear algebra and its applications,
416(1):29–47.

Pazzani, M. J. (1999). A framework for collaborative, content-based and
demographic filtering. Artificial Intelligence Review, 13(5-6):393–408.

Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation sys-
tems. In The adaptive web, pages 325–341. Springer.

Radlinski, F., Kleinberg, R., and Joachims, T. (2008). Learning diverse rank-
ings with multi-armed bandits. In Proceedings of the 25th international
conference on Machine learning, pages 784–791. ACM.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free ap-
proach to parallelizing stochastic gradient descent. In Advances in Neu-
ral Information Processing Systems, pages 693–701.

Rendle, S. (2010). Factorization machines. In Data Mining (ICDM), 2010
IEEE 10th International Conference on, pages 995–1000. IEEE.

Rendle, S. (2012). Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST), 3(3):57.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009).
BPR: Bayesian personalized ranking from implicit feedback. In Pro-
ceedings of the twenty-fifth conference on uncertainty in artificial intelligence,
pages 452–461. AUAI Press.

Rendle, S., Gantner, Z., Freudenthaler, C., and Schmidt-Thieme, L. (2011).
Fast context-aware recommendations with factorization machines. In
Proceedings of the 34th international ACM SIGIR conference on Research
and development in Information Retrieval, pages 635–644. ACM.

Rendle, S. and Schmidt-Thieme, L. (2008). Online-updating Regularized
Kernel Matrix Factorization Models for Large-scale Recommender Sys-
tems. In Proc. of ACM Conference on Recommender Systems (RecSys’08),
RecSys ’08, pages 251–258, New York, NY, USA. ACM.

Rennie, J. D. and Srebro, N. (2005). Fast maximum margin matrix factoriza-
tion for collaborative prediction. In Proceedings of the 22nd international
conference on Machine learning, pages 713–719. ACM.

Resnick, P. and Varian, H. R. (1997). Recommender systems. Communica-
tions of the ACM, 40(3):56–58.

Rubens, N., Kaplan, D., and Sugiyama, M. (2011). Active learning in rec-
ommender systems. In Recommender systems handbook, pages 735–767.
Springer.

BIBLIOGRAPHY 127

Said, A. and Bellogin, A. (2014). Comparative recommender system eval-
uation: benchmarking recommendation frameworks. In Proceedings of
the 8th ACM Conference on Recommender systems, pages 129–136. ACM.

Said, A., Dooms, S., Loni, B., and Tikk, D. (2014). Recommender systems
challenge 2014. In Proceedings of the eighth ACM conference on Recom-
mender systems, RecSys ’14, New York, NY, USA. ACM.

Salah, A., Rogovschi, N., and Nadif, M. (2015). An efficient incremental
collaborative filtering system. In International Conference on Neural In-
formation Processing, pages 375–383. Springer.

Salakhutdinov, R. and Mnih, A. (2008a). Bayesian probabilistic matrix fac-
torization using markov chain monte carlo. In Proceedings of the 25th
international conference on Machine learning, pages 880–887.

Salakhutdinov, R. and Mnih, A. (2008b). Probabilistic matrix factorization.
In Proc. of NIPS’08.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann
machines for collaborative filtering. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 791–798. ACM.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative
filtering recommender systems. In The adaptive web, pages 291–324.
Springer.

Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). E-commerce recommenda-
tion applications. In Applications of Data Mining to Electronic Commerce,
pages 115–153. Springer.

Shani, G. and Gunawardana, A. (2011). Evaluating recommendation sys-
tems. In Recommender systems handbook, pages 257–297. Springer.

Shani, G., Heckerman, D., and Brafman, R. I. (2005). An mdp-based recom-
mender system. Journal of Machine Learning Research, 6(Sep):1265–1295.

Shapira, B., Ricci, F., Kantor, P. B., and Rokach, L. (2011). Recommender
Systems Handbook. Springer.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., and Hanjalic, A. (2013).
xclimf: optimizing expected reciprocal rank for data with multiple lev-
els of relevance. In Proceedings of the 7th ACM conference on Recommender
systems, pages 431–434. ACM.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., and Hanjalic,
A. (2012). CLiMF: learning to maximize reciprocal rank with collabo-
rative less-is-more filtering. In Proc. of RecSys’12, pages 139–146.

Shi, Y., Larson, M., and Hanjalic, A. (2010). List-wise learning to rank
with matrix factorization for collaborative filtering. In Proceedings of the
fourth ACM conference on Recommender systems, pages 269–272. ACM.

Shi, Y., Larson, M., and Hanjalic, A. (2014). Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future chal-
lenges. ACM Computing Surveys (CSUR), 47(1):3.

128 BIBLIOGRAPHY

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al. (2016). Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489.

Srebro, N., Rennie, J., and Jaakkola, T. S. (2004). Maximum-margin matrix
factorization. In Advances in neural information processing systems, pages
1329–1336.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning Series. Mit Press.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lec-
tures on artificial intelligence and machine learning, 4(1):1–103.

Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2007). Major components
of the gravity recommendation system. ACM SIGKDD Explorations
Newsletter, 9(2):80–83.

Takács, G. and Tikk, D. (2012). Alternating least squares for personalized
ranking. In Proceedings of the sixth ACM conference on Recommender sys-
tems, pages 83–90. ACM.

Tang, L., Jiang, Y., Li, L., and Li, T. (2014). Ensemble contextual bandits for
personalized recommendation. In Proc. of ACM Conf. on Recommender
Systems (RecSys’14), RecSys’14, Foster City, Silicon Valley, USA. ACM.

Thompson, W. R. (1933). On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):285–294.

Trewin, S. (2000). Knowledge-based recommender systems. Encyclopedia of
library and information science, 69(Supplement 32):180.

Ungar, L. H. and Foster, D. P. (1998). Clustering methods for collaborative
filtering. In AAAI workshop on recommendation systems, volume 1, pages
114–129.

Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diver-
sity metrics for recommender systems. In Proceedings of the fifth ACM
conference on Recommender systems, pages 109–116. ACM.

Volkovs, M. and Zemel, R. S. (2012). Collaborative ranking with 17 pa-
rameters. In Advances in Neural Information Processing Systems, pages
2294–2302.

Wang, Y., Wang, L., Li, Y., He, D., Chen, W., and Liu, T.-Y. (2013). A theoreti-
cal analysis of ndcg ranking measures. In Proceedings of the 26th Annual
Conference on Learning Theory (COLT 2013).

Weimer, M., Karatzoglou, A., Le, Q. V., and Smola, A. J. (2008). Cofi rank
- maximum margin matrix factorization for collaborative ranking. In
Advances in Neural Information Processing Systems 20, pages 1593–1600.

Weston, J., Yee, H., and Weiss, R. J. (2013). Learning to rank recommen-
dations with the k-order statistic loss. In Proceedings of the 7th ACM
conference on Recommender systems (RecSys 2013), pages 245–248. ACM.

BIBLIOGRAPHY 129

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean absolute
error (mae) over the root mean square error (rmse) in assessing average
model performance. Climate research, 30(1):79–82.

Wu, M. (2007). Collaborative filtering via ensembles of matrix factoriza-
tions. In Proceedings of KDD Cup and Workshop, volume 2007.

Wu, Q., Burges, C. J., Svore, K. M., and Gao, J. (2010). Adapting boosting
for information retrieval measures. Information Retrieval, 13(3):254–270.

Xing, Z., Wang, X., and Wang, Y. (2014). Enhancing Collaborative Filtering
Music Recommendation by Balancing Exploration and Exploitation. In
Proc. of the 15th International Society for Music Information Retrieval Con-
ference (ISMIR’14), pages 445–450, Taipei, Taiwan.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonell, J. G. (2010).
Temporal collaborative filtering with bayesian probabilistic tensor fac-
torization. In Proceedings of the SIAM International Conference on Data
Mining (SIAM), pages 211–222. SIAM.

Yang, W.-S., Cheng, H.-C., and Dia, J.-B. (2008). A location-aware recom-
mender system for mobile shopping environments. Expert Systems with
Applications, 34(1):437–445.

Yue, Y. and Joachims, T. (2009). Interactively optimizing information re-
trieval systems as a dueling bandits problem. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 1201–1208.
ACM.

Zhang, M. and Hurley, N. (2008). Avoiding monotony: improving the di-
versity of recommendation lists. In Proceedings of the 2008 ACM confer-
ence on Recommender systems, pages 123–130. ACM.

Zhang, S., Wang, W., Ford, J., and Makedon, F. (2006). Learning from in-
complete ratings using non-negative matrix factorization. In SDM, vol-
ume 6, pages 548–552. SIAM.

Zhao, X., Zhang, W., and Wang, J. (2013). Interactive collaborative filtering.
In CKIM’13, pages 1411–1420.

Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., and Zhang,
Y.-C. (2010). Solving the apparent diversity-accuracy dilemma of rec-
ommender systems. Proceedings of the National Academy of Sciences,
107(10):4511–4515.

Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. (2008). Large-scale par-
allel collaborative filtering for the netflix prize. In Proc. of the 4th inter-
national conference on Algorithmic Aspects in Information and Management
(AAIM), pages 337–348, Berlin, Heidelberg. Springer-Verlag.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improv-
ing recommendation lists through topic diversification. In Proceedings
of the 14th international conference on World Wide Web, pages 22–32. ACM.

	Introduction
	Motivations
	Overview of the thesis

	Recommendation Systems
	Definition: The Recommendation Problem
	Feedback
	Representation and Solutions
	Goals of Recommendation Systems
	Applications

	Approaches to Recommendation
	Content-Based Filtering
	Demographic Filtering
	Knowledge-Based Recommendation
	Neighborhood-Based Collaborative Filtering

	Collaborative Filtering: Matrix Factorization Techniques
	Matrix Factorization and Low-Rank Approximation
	Matrix Factorization Methods
	Objective
	Optimization Methods
	Incorporating Bias
	Other Models

	Limitations

	Cold Start Issue
	Hybrid Recommendation Systems
	Active Learning

	Incorporate Contextual Information
	Evaluation of Recommendation Systems
	Metrics
	Evaluation Scenarios

	Learning to Rank
	Conclusion

	Recommendation as a Multi-Armed Bandit
	Sequential Recommendation
	Formulation of the Sequential Recommendation Scenario

	Related Work
	Multi-Armed Bandits
	Setting
	Approaches

	Explore-exploit Recommendation System
	Experimental Investigation
	Experimental Setting and Remarks
	Datasets

	Baselines
	Impact of Exploration
	Impact of the Update Strategy

	Concluding Remarks

	Ranking Using (No-)Click Implicit Feedback
	Sequential Recommendation of Multiple Items
	Related Work
	Online Ranking in Information Retrieval
	Recommendation with Ranking Approaches
	Mixing Explicit and Implicit Data

	Ranking Recommender System Using Click Feedback
	Setting
	Feature Engineering
	Dual Matrix Factorization

	Experimental Investigation with ERR Click Model
	Evaluation Metrics
	Datasets
	Baselines
	Results and Discussion

	Experimentation with Other Click Models
	The navigational click model
	The informational click model
	The almost random click model

	Concluding Remarks

	About Challenges in Real Recommendation Systems
	Some Aspects of Real-world RS
	Power-law Distributions
	"Replay" Aspect
	Large Set of Possible Recommendations
	Stock Availability
	Past and New Users/Items
	The Influence of the Recommendation System

	Realistic Offline Sequential Recommendation
	Setting
	Results and Discussion
	Impact of Exploration
	Update of the Model

	Final Remarks

	Some Lessons from a Real Case RS Challenge
	RecSys Challenge 2014: Data and Protocol
	Method
	Experiments and Discussion
	Experimental Results
	Relevant Features
	Discussions

	Concluding Remarks

	Conclusion
	Thesis Contributions
	Future Work

	About UCB1 and Popular baselines
	Bibliography

