
HAL Id: tel-01408035
https://theses.hal.science/tel-01408035v2

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Évaluation dynamique de risque et calcul de réponses
basés sur des modèles d’attaques bayésiens

François-Xavier Aguessy

To cite this version:
François-Xavier Aguessy. Évaluation dynamique de risque et calcul de réponses basés sur des modèles
d’attaques bayésiens. Réseaux et télécommunications [cs.NI]. Institut National des Télécommunica-
tions, 2016. Français. �NNT : 2016TELE0016�. �tel-01408035v2�

https://theses.hal.science/tel-01408035v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT CONJOINT TELECOM SUDPARIS et
L’UNIVERSITE PIERRE ET MARIE CURIE

Spécialité

École doctorale : Informatique

Présentée par
François-Xavier AGUESSY

Pour obtenir le grade de
DOCTEUR DE TELECOM SUDPARIS

Évaluation Dynamique de Risque et Calcul de Réponses
Basés sur des Modèles d’Attaques Bayésiens

Soutenue le 22 09 2016
devant le jury composé de :

Eric TOTEL
Professeur, Centrale-Supélec / rapporteur

Radu STATE
Professeur, Université du Luxembourg / rapporteur

Bruno DEFUDE
Professeur, Telecom SudParis / examinateur

Guillaume DOYEN
Maitre de conférences, Université de Technologie de Troyes / examinateur

Grégory BLANC
Maitre de conférences, Télécom SudParis / examinateur

Olivier BETTAN
Responsable du laboratoire de cybersécurité, Thales Services / encadrant de thèse

Hervé DEBAR
Professeur, Télécom SudParis / directeur de thèse

Vania CONAN
HDR, Thales Communications & Security / co-directeur de thèse

Thèse No : 2016TELE0016

Acknowledgements

First, I would like to warmly thank my thesis director, Hervé, for his trust since the beginning of
my PhD, and for his kind support during these three years. He has advised my scientific research
with great expertise and involvement.

Many thanks to Olivier that has supervised my work at Thales. In addition to being a friendly
manager, he has always found the right balance between proposing new projects to get new ideas
and preserving time to make the PhD work progress.

Thanks to Vania, my thesis co-director in Thales. His advice has always been precious to be
capable of getting the bigger picture, even when day-to-day work was absorbing.

Thanks to each one of my Thales’s colleagues from both Gennevilliers and Palaiseau. They have
been a real motivation to continue this work with perseverance. Thanks for the rich discussions we
had to imagine how to make the world a better place.

Thanks to my research team of Telecom SudParis. Thank you to Gregory for his numerous
detailed proofreading and continual enhancement proposal. Many thanks to the other PhD student
for their precious advice.

I could not end these acknowledgements without thanking my family, and in particular my
beloved wife Sarah. She has been the most important daily support I could imagine. Thanks to
Capucine, that came into the world at the end of this work and which illuminates our lives. She
immediately slept through the night, which made much easier this thesis writing.

Abstract

Information systems concentrate invaluable resources, generally composed of the computers, and
servers that process the data of an organisation. They constitute an increasingly attractive target
for attackers. Given the number and complexity of attacks, security teams need to focus their
actions on the most important attacks, in order to select the most efficient security controls. Because
of the threat posed by advanced multi-step attacks, it is difficult for security operators to fully
defend against all vulnerabilities when deploying countermeasures. Deploying intrusion detection
sensors to monitor attacks exploiting residual vulnerabilities is not sufficient and new tools are
needed to assess the risk associated with the security events produced by these sensors. In this
PhD thesis, we build a complete framework for static and dynamic risk assessment, leveraging prior
knowledge on the information system (e.g., network topology, vulnerabilities, etc.) and dynamic
events (e.g., intrusion alerts, attack detection, etc.), to propose responses to prevent future attacks.

First, we study how to remediate the potential attacks that can happen in a system, using
logical attack graphs. We build a remediation methodology to remove the most relevant attack
paths extracted from a logical attack graph. In order to help an operator to choose between several
remediation candidates, we rank them according to a cost of remediation combining operational
and impact costs. We implement this method using MulVAL attack graphs and several publicly
available sets of data.

Then, we study the dynamic attacks that can occur in a system. Although attack graphs were
proposed to represent known multi-step attacks that may occur, they are not directly suited for
dynamic risk assessment. Several extensions of static risk assessment models have been proposed in
the literature to accommodate dynamic risk assessment, but they suffer from common limitations,
such as existing cycles. We present how static risk assessment models can be generalised in a
Generic Attack Model. Then, we present how to extend Generic Attack Models to build two new
dynamic risk assessment models to evaluate the attacks that are the most likely. First, the Bayesian
Attack Model (BAM), a Bayesian network-based extension to the Generic Attack Model, built to
handle cycles and to suit various information system configurations. Then, we extend the Bayesian
Attack Model as the Hybrid Risk Assessment Model (HRAM). This hybrid model is subdivided in
two complementary models : (1) Dynamic Risk Correlation Models, correlating a chain of alerts
with the knowledge on the system to analyse ongoing attacks and provide the hosts’ compromise
probabilities, and (2) Future Risk Assessment Models, taking into account existing vulnerabilities
and current attack status to assess the most likely future attacks. We study the sensitivity of their
probabilistic parameters and of the parameters of the input Generic Attack Model. Finally, we
validate the accuracy and usage of both these dynamic risk assessment models in the domain of
cybersecurity, by building them from topological attack graphs.

iii

Résumé

Les systèmes d’information sont d’une valeur inestimable, car ils rassemblent l’intégralité des sys-
tèmes utilisés pour le stockage et le traitement des données d’une organisation. Ils représentent
donc une cible de plus en plus attractive pour les attaquants. Les opérateurs de sécurité doivent
se concentrer sur les attaques les plus importantes pour sélectionner les mesures de sécurité les
plus efficaces. Cependant, ils n’arrivent pas à se protéger de toutes les vulnérabilités, notamment à
cause de la menace des attaques multi étapes. Il n’est pas suffisant de déployer des sondes de détec-
tion pour surveiller l’exploitation de ces vulnérabilités résiduelles et les opérateurs de sécurité ont
besoin de nouveaux outils pour évaluer le risque associé aux événements remontés par ces sondes.
Dans cette thèse de doctorat, nous construisons une méthodologie complète d’analyse statique et
dynamique de risque prenant en compte la connaissance à priori d’un système avec les événements
dynamiques, afin de proposer des réponses permettant d’empêcher les attaques futures.

Tout d’abord, nous étudions comment corriger les attaques potentielles qui peuvent arriver dans
un système, en s’appuyant sur les graphes d’attaque logique. Nous proposons une méthodologie de
remédiation qui consiste à corriger les chemins d’attaque les plus significatifs extraits du graphe
d’attaque logique. Les remédiations candidates sont classées en fonction de leur coût opérationnel
et leur impact sur le système. Cette méthodologie est mise en oeuvre à partir des graphes d’attaque
générés par MulVAL et en s’appuyant sur des sources ouvertes de données.

Bien que les graphes d’attaques permettent de représenter précisément les attaques multi étapes
connues qui peuvent se produire dans un système d’information, ils ne peuvent pas être directe-
ment utilisés pour supporter l’évaluation dynamique de risque. Plusieurs extensions de ces modèles
statiques ont été proposées dans l’état de l’art, mais celles-ci possèdent des limitations, par exemple
la gestion des cycles. Nous présentons donc, tout d’abord, comment les modèles statiques d’ana-
lyse de risque peuvent être généralisés dans un modèle d’attaque générique. Nous pouvons alors
étendre ce modèle pour construire deux modèles d’analyse dynamique de risque. Le premier mo-
dèle, le modèle d’attaque bayésien, est une extension du modèle d’attaque générique basé sur des
réseaux bayésiens, mais capable de gérer les cycles et donc applicable à n’importe quel système.
Le deuxième modèle, le modèle hybride d’évaluation de risque en est une extension. Celui-ci est
divisé en deux modèles complémentaires : (1) les modèles de corrélation de risque, qui corrèlent
un ensemble d’alertes avec la connaissance sur le système pour analyser les attaques en cours et
fournir les probabilités de compromission des états du système. (2) les modèles d’évaluation du
risque futur, qui prennent en compte les vulnérabilités existantes et l’état courant des attaques,
pour évaluer les attaques futures les plus probables. La sensibilité des paramètres probabilistes et
des paramètres du modèle d’attaque générique pris en entrée est évaluée sur les deux modèles.
Enfin, nous validons l’exactitude des résultats et l’utilisation de ces deux modèles d’évaluation
dynamique de risque en les construisant à partir de graphes d’attaque topologiques.

v

Contents

Abstract iii

Résumé v

Contents vi

1 Introduction 1
1.1 Context and objective . 1
1.2 Challenges in current security approaches . 3
1.3 Thesis statement . 4

2 State of the art of attack models 7
2.1 Graph-based models . 7
2.2 Attack models . 14
2.3 Comparison of attack models . 20
2.4 Analysis of the state of the art of attack models . 26
2.5 Introducing a Generic Attack Model . 28
2.6 Conclusion . 30

3 Response computation using attack models 31
3.1 Definition of response, remediation and countermeasures 31
3.2 Corrective remediations . 32
3.3 Passive responses . 34
3.4 Active responses . 36
3.5 Computing and ranking responses using attack models 37
3.6 Response selection criteria . 40
3.7 Response selection methodologies . 41
3.8 Metrics to balance damage and response cost . 43
3.9 Analysis and conclusion . 44

4 Remediating the logical attack paths of an attack graph 47
4.1 Attack paths and preconditions . 47
4.2 Remediation of an attack path . 50
4.3 Costs of remediations . 53
4.4 Validation . 55
4.5 Related work . 59
4.6 Conclusion . 60

5 Bayesian Attack Model 61
5.1 Bayesian Attack Model architecture . 61
5.2 Complete Bayesian Attack Model . 63
5.3 Conditional probability tables . 68

vi

CONTENTS

5.4 Impact analysis . 69
5.5 Bayesian Attack Model complexity evaluation . 69
5.6 Bayesian Attack Model performance evaluation . 70
5.7 Parameter sensitivity analysis . 70
5.8 Related work . 88
5.9 Summary and conclusion . 88

6 Hybrid Risk Assessment Model 91
6.1 Hybrid Risk Assessment Model architecture . 92
6.2 Dynamic Risk Correlation Model . 92
6.3 Future Risk Assessment Model . 99
6.4 Impact analysis . 101
6.5 Hybrid Risk Assessment Model complexity evaluation 102
6.6 Hybrid Risk Assessment Model performance evaluation 103
6.7 Parameter sensitivity analysis . 104
6.8 Related work . 128
6.9 Summary and conclusion . 128

7 Application to cybersecurity: topological attack graphs 131
7.1 Topological attack graph generation . 131
7.2 Building a Generic Attack Model from a topological attack graph 135
7.3 Experimental validation of the dynamic risk assessment models for cybersecurity . 137
7.4 Computation of cybersecurity responses using dynamic risk assessment models . . 142
7.5 Conclusion . 145

8 Conclusion and perspectives 149
8.1 Contributions . 149
8.2 Perspectives and future work . 152

List of Figures 154

List of Tables 156

Glossary of Acronyms 157

Bibliography 159

Author’s publications 167

A French abstract - Résumé français 171
A.1 Introduction . 171
A.2 État de l’art . 172
A.3 Calcul de remédiations aux chemins d’attaque logiques 175
A.4 BAM, le modèle d’attaque bayésien . 177
A.5 HRAM, le modèle hybride d’évaluation dynamique de risque 179
A.6 Application au domaine de la sécurité informatique 182
A.7 Conclusion . 184

vii

Chapter 1
Introduction

1.1 Context and objective

According to the National Institute of Standards and Technology (NIST), an information system
is a “discrete set of information resources organised for the collection, processing, maintenance,
use, sharing, dissemination, or disposition of information” [Kis13]. Thus, an information system
concentrates invaluable information resources, generally composed of the computers and servers
that process the data of an organisation. Information systems are increasingly complex: they
contain heterogeneous equipment having specific vulnerabilities, protected by complex security
policies implemented on distributed policy enforcement points (e.g., firewalls, intrusion prevention
systems). Given the number and complexity of attacks, security teams need to focus their actions
on the most important attacks, in order to select the most efficient security controls. In critical
environments, security operators generally know most of the vulnerabilities of their information
system thanks to the regular use of a vulnerability scanner, a software assessing locally or remotely
the vulnerabilities of equipment or software. Unfortunately, many vulnerabilities are not patched,
either because patching may disrupt critical services, or because these vulnerabilities are not a high
priority for system administrators, regarding the general security policy and the limited resources
(time and money) available. As a result, security operators need to regularly assess the level of
security of their information system, taking into account the newly detected vulnerabilities, to
prevent the most critical or likely attacks.

According to Mandiant [Man16], in 2015, only 47% of breaches were detected internally. This
is due to the fact that the most impacting attacks are advanced attacks composed of several
successive steps. Each step in itself may be illegitimate (e.g., the exploitation of a vulnerability
in software) or legitimate (e.g., a user with administrators privilege accessing sensitive data). For
example, an attacker first subverts a client computer using a spear-phishing email exploiting a
software vulnerability, then attacks the Active Directory using another software vulnerability to
obtain administrator privileges, and, thanks to these privileges, accesses with legitimate credentials
a database server that contains sensitive data. Even if a few single attack steps of such attacks
are detected, they are not perceived as critical on their own. In order to defend against the
complete sequence of steps and assess the associated risks, we need to model multi-step attacks
showing that the sequence of steps results in a greater impact than the sum of its individual
vulnerabilities. However, risk assessment, and in particular dynamic risk assessment (i.e., regular
update of risk assessment at operational time, according to the occurring attacks) is difficult. In
order to formalise such multi-step attacks, several models have been proposed, mainly tree- or
graph-based models. An attack graph, for example, is a risk analysis model containing all the

1

CHAPT 1. INTRODUCTION

paths an attacker may follow in an information system. Attack graphs have been studied for more
than 15 years. So, they are reaching to be industrialised and several tools generate attack graphs.
Their use is attractive because they use already available information (vulnerability scans and
network topology). However, they scale with difficulty and thus are applicable mainly to small and
medium networks.

As a first line of defence, security operators deploy protection measures (e.g., software patches
and perimeter access control with firewalls) to prevent attacks. Unfortunately, there are always
possible bypasses. So, as a second line of defence, security operators deploy sensors (e.g., Host or
Network Intrusion Detection Systems) generating alerts when an attacker attempts to exploit a vul-
nerability. When these sensors produce security events, operators need to evaluate the risk brought
by ongoing attacks, to respond appropriately: this process is called dynamic risk assessment. Oper-
ators currently lack automated tools to correlate this dynamic data with the prior-knowledge they
have about their information system. This correlation is done manually, with the only support of
security dashboards to visually concentrate such information. The impact analysis being left to
the operators skills and knowledge about the system. It is thus limited and cannot apply to the
complexity of large-scale information systems.

According to the National Information Assurance Glossary [oNSS10], a risk is “a measure of the
extent to which an entity is threatened by a potential circumstance or event, and typically a function
of 1) the adverse impacts that would arise if the circumstance or event occurs; and 2) the likelihood
of occurrence”. As a result, the risk is generally considered in Information Security Management
Systems (ISMS) as the combination of the likelihood of the exploitation of vulnerabilities and
their impact on the system. According to NIST in [Nat12], the determination of the likelihood of
occurrence of the attacks takes as input the potential threat sources and the attack predisposing
conditions (e.g., the vulnerabilities). Once the likelihood of attacks has been assessed, the next step
is to determine their magnitude of impact. Finally, from likelihood and impact, we can compute
the risk. In order to make risk assessment dynamic, the process is maintained over time and its
results have to be communicated regularly to security management operators.

Once either static or dynamic risk assessment has been performed by security operators, they
have to find means to decrease the risk, by deploying responses. The deployment of responses
has to take into account from one side the potential attacks that have to be remediated and their
impact. On the other side, it has to take into account the response itself and the impacts it might
have on the whole system (whether good or bad). This is also done manually, since there is no
comprehensive tool to dynamically assess the risk of multi-step attacks and evaluate responses to
decrease this risk.

This PhD thesis is in the field of information system security. It aims at providing a complete
framework for static and dynamic risk assessment including prior knowledge on the information
system (e.g., network topology, vulnerabilities, etc.) and dynamic events (e.g., intrusion alerts,
attack detection, etc.), and proposing responses. In this framework, we focus on the likelihood
component of the risk, for both attacks and responses. Indeed, methodologies to estimate likelihood
do not depend on the system in which they are implemented, contrary to the impact assessment
which may require adaptation for the target organisation. This framework applies to information
systems that are (1) targeted by complex attacks, (2) where system administrators have a relatively
good knowledge of their information system: they know the system cartography, most of the
vulnerabilities thanks to vulnerability scanners and (3) in which they have deployed detection
mechanisms. This framework may apply to different types of environments, in which a high level
of security is needed, e.g., critical information systems, cyberphysical-systems or even industrial
systems.

2

1.2. Challenges in current security approaches

1.2 Challenges in current security approaches

Building a framework for static and dynamic risk assessment brings four main scientific challenges.
The first challenge is the methodology to build a dynamic risk assessment model merging different
information sources: the prior-knowledge of network configurations and vulnerabilities, and the
dynamic security events. The second challenge is the scalability of the model generation and pro-
cessing. The third challenge is the expressiveness of the model, to take advantage of the interesting
properties of each possible representation of the model (topological, logical, probabilistic), without
suffering from the associated drawbacks with respect to the previous scalability objectives. The
last main challenge is the usability of the model, in order to make it useful for security operators,
in particular by enabling the computation of responses to the attacks.

1.2.1 Challenge 1 : methodology to build a dynamic risk assessment
model

The first main scientific challenge of this PhD thesis is the definition of a methodology to build a
dynamic risk assessment model merging different information sources. In order to enable dynamic
risk assessment, the model has to take into account, from one side, the prior-knowledge that
security operators have one their system (e.g., the network topology, the vulnerabilities and their
exploitability metrics). On the other side, it has to take into account the dynamic security events
happening in the system (e.g., correlated alerts, human reports). The initial models of the state
of the art (e.g., attack trees [Sch99, Ing09] or attack graphs [PS98, OGA05a, JNO05, Art02])
have been designed for static risk assessment, so they do not contain information about attack
detections, nor do they represent attack status (see sections from 2.2.1 to 2.2.3 for more details).
These models have been extended to dynamic risk assessment models (e.g., attack nets [McD00]
or Bayesian attack graphs [LM05, FW08, FWSJ08], see sections 2.2.4 and 2.2.5 for more details).
However, these extensions have limitations, such as the ability to handle topological cycles, and
thus are not applicable for information systems of arbitrary topologies and size. Thus, the state
of the art misses a dynamic risk assessment model that can apply to any information systems, to
correlate the prior-knowledge with dynamic events.

1.2.2 Challenge 2 : scalability

The second challenge we face when using attack graphs-based models for risk assessment is scal-
ability. This challenge already occurs for static risk assessment. It is much more important and
is a barrier for dynamic risk assessment adoption. An attack graph is a model defined globally
for an information system, containing all attacks that can be carried out. Thus, it can be huge
for a real system. When we transform this model for dynamic risk assessment, new nodes are
added (e.g., places and transitions of attack nets [McD00, DMCR06] or attack action nodes and
local observation nodes of Bayesian Networks for Cyber Security [XLO+10], see sections 2.2.4 and
2.2.5 for more details). Moreover, in probabilistic models, the graph structure must be acyclic to
compute the probabilities of attacks, which is generally not the case of attack graphs (e.g., [LM05]
and [PDR12] mention the challenge of cycles in Bayesian attack graphs). One solution to the cycle
challenge is to explode the cycles (e.g., this solution is mentioned in [OBM06] and the explosion of
an attack graph in several attack paths is described in [KCBC+09]), but it strongly increases the
size of the model, thus the scalability challenges. Thus, the state of the art misses a dynamic risk
assessment model that is scalable, even if the input attack model contains cycles.

3

CHAPT 1. INTRODUCTION

1.2.3 Challenge 3 : expressiveness

Several approaches exist to represent the attacks that can happen in an information system. First,
the logical models represent an attack as a logical predicate requiring successful preconditions
for the attack to be possible. This is the case, for example, of attack trees and its extensions
[Sch99, BP03, RP05, CY07], logical attack graphs [PS98, SHJ+02, OGA05a] and attack nets and
its extensions [McD00, DMCR06, PML09] (see sections from 2.2.1 to 2.2.4 for more details). This
type of model accurately represents the process by which humans estimate whether or not an
attack is possible. However, they are very verbose and even for information systems of a few
machines, they can be huge and grow rapidly with the number of components of the information
system. As a result, they become quickly inappropriate for humans or even machine processing.
Topological models provide a higher-level view of the attacks possible in an information system,
by representing an attack as a way to gain access from a machine to a new one. This is the case,
for example, of topological attack graphs [JNO05, JNK+11, Art02] (see subsection 2.2.3 for more
details). However, topological models do not explain with details how attacks are done and thus
are less accurate. Finally, probabilistic models assign probabilities to hosts or attack steps in the
information system. This is the case, for example, of Bayesian attack graph and its extensions
[QL04, DLK04, LM05, FW08, XLO+10] (see subsection 2.2.5 for more details). However, these
models generally have strong requirements in their structure (e.g., they must not have any cycle).
So, there exist at least three main representation of attacks in the state of the art. Each one has
advantages and drawbacks. Thus, the state of the art misses a dynamic risk assessment model
that can take advantage of the interesting properties of each type of attack representation, without
suffering the associated drawbacks.

1.2.4 Challenge 4 : usability

Once we have succeeded in building a usable dynamic risk assessment model, the last significant
challenge is the usability of this model, in order to make it useful for security operators. In the
state of the art, the attack models are generally used to support the computation of responses. For
example, we can use them to improve the detection [NJ08, GTHM14] or to select the best hard-
ening configurations to deploy [NJOJ03], to measure the risk reduction after applying a response
[MBFB06] or even to compute all hardening options in a network [WNJ06] (see section 3.5 for
more details). Selecting the response to deploy is not an easy task, as it must take into account,
both the attack to be remediated, and the impact the response may have on the system. So, the
last challenge is to exploit the new opportunities brought by the dynamic risk assessment model,
to improve the selection of responses.

1.3 Thesis statement

In order to solve the challenges described above, we propose in this thesis a risk assessment and
response framework that brings together three contributions: dynamic risk assessment model,
scalability improvement and support to response computation. The first one is the building of
a dynamic risk assessment model. We define an explicit model and process for handling cycles.
This process is supported by a clear definition of a set of model parameters. The sensitivity of the
model toward these parameters is studied in the validation. Second, we provide a significant per-
formance improvement in terms of number of nodes and vulnerabilities that an explicit model can
include, over the existing state of the art. While classic Bayesian attack graph models are usually
demonstrated over a few nodes and vulnerabilities, we show that our model can be realistically
computed at the scale of an enterprise information system. Third, we detail how the use of the

4

1.3. Thesis statement

risk assessment model can support the computation of responses. From a logical model, we build
a methodology to select the best set of remediations that should be deployed to prevent an attack.
We also show how a probabilistic risk assessment model enriches the granularity of probability of
potential or occurring attacks, thus improving the selection of efficient responses.

1.3.1 Contribution 1: dynamic risk assessment model

The first contribution of this PhD is the definition of a risk assessment model, correlating the
alerts and a priori-knowledge on the system, to assess the current risk status of an information
system and predict possible futures. This contribution aims at partially resolving the first and third
challenge of sections 1.2.1 and 1.2.3 and is detailed in chapter 5 and chapter 6. This contribution
has been highlighted in the conference paper Hybrid Risk Assessment Model based on Bayesian
Networks presented in the 11th International Workshop on Security [ABBCD16] and was awarded
best student paper.

The model we build is capable of representing the attacks that may occur and the ones that
are ongoing. It outputs probabilities that attacks have succeeded and that assets may have been
compromised. These probabilities provide security operators with the capability to manage prior-
ities according to the criticality of ongoing attacks. This model can either be used for static risk
assessment, to predict the attacks that are the most likely to happen, or for dynamic risk assess-
ment, by taking into account the correlated alerts that are received with the known attack steps
and vulnerabilities. In order to take advantage of the multiple representations of attack models
(logical, topological, and probabilistic). The model we define forms a topological representation,
but is based on a probabilistic model, to represent both the logical conditions necessary to carry
out the attacks, and the probabilities of occurrence of the attacks according to the context.

1.3.2 Contribution 2: scalability improvement

The second main contribution is the scalability improvements of the risk assessment model. This
contribution aims at resolving the second challenge of subsection 1.2.2 and is detailed in chap-
ter 5 and chapter 6. This contribution has been highlighted in the conference paper Hybrid Risk
Assessment Model based on Bayesian Networks presented in the 11th International Workshop on
Security [ABBCD16].

In this PhD thesis, we present models supporting dynamic risk assessment. They contain all
the attack paths that could be followed by an attacker in a system. Due to the cycle breaking
process, redundancy is introduced in the models, according to possible sources or destinations of
attacks. As a result, there are a huge number of paths in the models from which most are very
unlikely to have been followed by attackers. So, in our models, we add pruning functions allowing
to select for further exploration the paths that are the most likely to have been exploited or likely
to happen and thus the analysis is efficient even for medium-sized information systems. Moreover,
with the gathering of hosts or servers that are similar for the attack model (same vulnerabilities
and authorised accesses), the risk assessment model can even apply to bigger information systems.

1.3.3 Contribution 3: support to response computation

The last main contribution of this PhD is the ability to use risk assessment models to support
the computation of responses. This contribution aims at partially resolving the fourth challenge of
subsection 1.2.4 and is detailed in chapter 4 and at the end of chapter 7. This contribution has been
highlighted in the conference paper Remediating Logical Attack Paths Using Information System

5

CHAPT 1. INTRODUCTION

Simulated Topologies presented in the Computer & Electronics Security Applications Rendez-vous
2014 [AGBC14] (i.e., computation of remediations for logical attack paths) and in the conference
paper Adjustable Fusion to support Cyber Security Operators presented in the Human Aspects of
Information Security, Privacy, and Trust: Third International Conference, Held as Part of HCI
International 2015 [AODLLF15] (i.e., usability for cybersecurity operators of the analyses based
on attack graphs).

The risk assessment model gives the attacks that are the most likely to happen and the possible
futures for those that are happening. Then the responses are evaluated regarding their ability to
prevent those likely attacks. Finally, the costs and impacts of the responses are taken into account
to choose the best response candidates that will be proposed to the operators. We develop in
chapter 4 a methodology to compute remediations relying on a static attack model: logical attack
graphs. Then, at the end of chapter 7, we present how we can extend this methodology to compute
responses to occurring attacks, by leveraging the advantages of dynamic risk assessment models.

This thesis is organised as follows: chapter 2 presents the state of the art of attack models.
Chapter 3 presents the state of the art of the computation of responses using attack models. Then,
chapter 4 introduces a methodology to compute remediations to potential attacks using logical
attack graphs. Chapters 5 and 6 presents two dynamic risk assessment models: the Bayesian
Attack Model and the Hybrid Risk Assessment Model. Chapter 7 validates these models in the
domain of cybersecurity, by building them from topological attack graphs. Chapter 8 concludes
this work and presents future work.

6

Chapter 2
State of the art of

attack models

At an organisational level, several methods help to analyse the risk of information systems and
keep those systems secure. For example, ISO/IEC 27000 [ISO14] is the Information Security Man-
agement Systems (ISMS) Family of Standards providing recommendations on security, risk and
control in an information system. In particular, ISO/IEC 27005 [ISO11a] describes a methodology
to manage the risks while implementing an ISMS. Another well-known method for the analysis
of risks in information systems is EBIOS (Expression of Needs and Identification of Security Ob-
jectives) [Sec04]. These standards present global methodologies to manage risks in organisations.
They generally combine (1) technical tools (e.g., vulnerability scanner) to assess, for example, the
vulnerabilities of the target system and the likelihood of attacks and (2) organisational method-
ologies (e.g., stakeholder interviews) to identify the critical assets and consequences of successful
attacks. The technical tools may rely on a model of the system to represent all the legitimate or
attack actions that are possible in the modelled system. In this PhD thesis, we focus on those
technical approaches. Thus, in this first chapter, we survey the state of the art of attack models
in the literature. This study aims at evaluating the limitations of the usage of attack models for
dynamic risk assessment.

From this state of the art, we build a Generic Attack Model, an attack model generalising the
most interesting properties of the attack models of the state of the art and that can apply to any
domain. This will be the main input from which we build the Bayesian Attack Model described in
chapter 5 and the Hybrid Risk Assessment Model described in chapter 6.

2.1 Graph-based models

As a many attack models are based on graphical models (e.g., in the last 20 years, more than
30 papers present a new graph-based attack model), such as trees, graphs, Bayesian networks or
Petri nets, we will first present in this section the main definitions and the notations regarding the
graph-based models. These concepts are directly used in section 2.2, to describe the attack models
of the state of the art.

7

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

2.1.1 Graphs

2.1.1.1 Graphs, directed graphs and directed acyclic graphs

According to the Encyclopedia of Mathematics [Haz89],:

Definition 1 A graph is a set V of vertices and a set E of unordered and ordered pairs of
vertices; denoted by G(V,E). An unordered pair of vertices is said to be an edge, while an ordered
pair is said to be an arc. A graph containing edges alone is said to be non-oriented or undirected;
a graph containing arcs alone is said to be oriented or directed.

Starting from this definition of graph we define additional notations that will be useful all along
this thesis:

• A loop l is an edge which begins and ends at the same vertex:
l = (ve, ve) ∈ E, with ve ∈ V .
For example, in the graph of Figure 2.1a, there is a loop on the vertex v6.

• The degree deg(v) of a vertex v ∈ V is the number of edges and arcs incident to the vertex
(i.e., v is one of the two vertices of the edge):
deg(v) = Card({e = (v, vi) ∈ E,∀vi ∈ V }

⋃
{e = (vi, v) ∈ E,∀vi ∈ V })

For example, in the graph of Figure 2.1a, deg(v0) = 2, deg(v1) = 3 and deg(v2) = 4.
• A path from v1 ∈ V to vn ∈ V is a sequence of edges in which all vertices vi are different
except the starting and ending vertices:
{ei = (vi, vi+1) ∈ E, i ∈ {1..n− 1},∀i, j ∈ {2..n− 2}, vi 6= vj}.
The definition is identical for directed paths in directed graphs.
For example, in the graph of Figure 2.1a, a path from v5 to v3 is displayed in red. It is
composed of the three edges (v5, v2), (v2, v4), (v4, v3).

• A graph is connected if any pair of distinct vertices is connected by at least one path:
∀(v1, vn) ∈ V × V, v1 6= vn =⇒ ∃p = {ei = (vi, vi+1) ∈ E, i ∈ {1..n − 1},∀i, j ∈
{2..n− 2}, vi 6= vj}.
Figure 2.1a shows an example of a connected graph of 7 vertices (vi, i ∈ {1..7}).

• A graph is fully-connected or complete if any pair of distinct vertices is connected by at least
one edge: ∀(v1, v2) ∈ V × V, v1 6= v2 =⇒ ∃e = (v1, v2) ∈ E.
In Figure 2.1a, the subgraph constituted of nodes v0, v1 and v2 and the green edges is fully
connected.

• A (simple) cycle is a non-empty closed path (i.e., a path from vn ∈ V to vn):
{ei = (vi, vi+1) ∈ E, i ∈ {1..n − 1}, v1 = vn,∀i, j ∈ {2..n − 2}, vi 6= vj} The definition is
identical for directed cycles in directed graphs.
For example, in the graph of Figure 2.1a, a cycle from and to v2 is displayed in green. It is
composed of the three edges (v2, v0), (v0, v1), (v1, v2).

In a directed graph G(V,A),

• The parent or source of an arc (v1, v2) ∈ A, v1 ∈ V, v2 ∈ V , is v1.
In Figure 2.1b, the vertex v1 is the parent of the arc (v1, v2)

• The child or destination of an arc (v1, v2) ∈ A, v1 ∈ V, v2 ∈ V , is v2.
In Figure 2.1b, the vertex v2 is the child of the arc (v1, v2)

• The incoming arcs of a node v are all the arcs for which v is the child:
∀a = (v1, v) ∈ A, with v1 ∈ V .
Figure 2.1c shows an example of a graph in which the node v has 3 incoming arcs: a1, a2
and a3.

8

2.1. Graph-based models

• The outgoing arcs of a node v are all the arcs for which v is the parent:
∀a = (v, v2) ∈ A, with v2 ∈ V .
Figure 2.1d shows an example of a graph in which the node v has 3 outgoing arcs: a1, a2
and a3.

• the indegree deg−(v) of a vertex v ∈ V is the number of arcs in A whose destination is the
vertex v:
deg−(v) = Card({vi,∀vi ∈ V, (vi, v) ∈ A})
In Figure 2.1c, deg−(v) = 3.

• the outdegree deg+(v) of a vertex v ∈ V is the number of arcs in A whose source is the vertex
v:
deg+(v) = Card({vi,∀vi ∈ V, (v, vi) ∈ A})
In Figure 2.1d, deg+(v) = 3

• a root is a vertex v ∈ V for which deg−(v) = 0 (no incoming arc).
In the example of Figure 2.1e, there are two roots: v0 and v1.

• a sink is a vertex v ∈ V for which deg+(v) = 0 (no outgoing arc).
In the example of Figure 2.1e, there are three sinks: v3, v4 and v5.

A directed acyclic graph is a directed graph in which there are no cycles.

The example of Figure 2.1e is a directed acyclic graph.

2.1.1.2 AND-OR graphs

An AND-OR graph is a directed graph in which each vertex is either an OR or an AND. It is the
graphical representation of the reduction of objectives into conjunction and disjunction of sub-
objectives. A vertex represents a sub-objective and according to its type (AND or OR), it requires
either the conjunction or disjunction of its children, to be fulfilled. A root node of an AND-OR graph
can be called precondition as it does not require any other node to be fulfilled.

Figure 2.2 shows an example of an AND-OR graph with 6 nodes (v0 to v5). Nodes v0, v1 and
v2 are preconditions, they do not require any previous node to be fulfilled. Nodes v3 and v4 are
AND nodes, they require the verification of all their parents to be fulfilled. For example, the node
v3 requires the verification of both v1 and v2 to be fulfilled. Nodes v5 is an OR node, it requires
the verification of at least one of its parents to be fulfilled. For example, the node v5 requires the
verification of v3 or v4 to be fulfilled.

2.1.1.3 Trees, directed trees and polytrees

According to the Encyclopedia of Mathematics [Haz89],

Definition 2 A tree is a connected non-oriented graph which does not contain cycles.

Thus, a tree T (E, V) is a graph in which any two vertices are connected by exactly one path. In
a tree, a leaf l is a vertex with one incident edge: l ∈ E, deg(l) = 1. Figure 2.3 shows an example
of a tree with 5 vertices (v1 to v5). It contains 3 leaves, the red vertices: v1, v4 and v5.

A directed tree is a directed graph which would be a tree if the directions of the edges were
ignored.

A polytree is a directed acyclic graph in which the related undirected graph is a tree. In other
words, it is a directed acyclic graph for which there are no undirected cycles either.

9

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

Figure 2.1 – Graph definition examples

(a) Connected graph
(b) Parent and child
in a directed graph

(c) Incoming arcs (d) Outgoing arcs

(e) Roots and sinks

Figure 2.4 shows an example of a polytree with 7 vertices (v1 to v7). Figure 2.4a shows the
polytree with its directed acyclic graph structure, whereas Figure 2.4b shows the related undirected
tree. Each new arc in Figure 2.4b would create an undirected cycle and prevent the undirected
graph to be a tree. Thus, any new directed arc in the directed acyclic graph of Figure 2.4a would
prevent this graph of being a polytree.

A AND-OR tree is an AND-OR graph which is a directed tree.

10

2.1. Graph-based models

Figure 2.2 – Example AND-OR graph

Figure 2.3 – Example of a tree with its leaves displayed in red

2.1.2 Bayesian networks

A Bayesian network, also called belief or causal network, is a probabilistic graphical model in-
troduced by Judea Pearl [Pea86]. It can be modelled as a Directed Acyclic Graph, where nodes
represent random variables that can be in mutually exclusive states, and edges represent causal
dependencies among variables. For discrete random variables, these dependencies can be specified
using a conditional probability table associated with each child node, enumerating its probability,
according to the states of its parents.

Definition 3 A conditional probability table of a discrete random variable child, toward a
set of discrete random variables parents is a table containing the probabilities of each state of the
child, according to all possible values of all parents.

Bayesian networks are specially interesting for bidirectional inference, i.e. computing the prob-
ability of each state of all nodes of the network, given evidence, i.e. nodes that have been set to a
specific state. In the general case, exact inference is a NP-hard problem and can be done efficiently
only on small networks, using the algorithm of Lauritzen and Spiegelhalter [LS88]. However, if
the structure of the graph is a polytree, it can be done in quasi-linear time, using Pearl’s Belief
Propagation Algorithm [Pea88]. It is also possible to do approximate inference using methods
based on Monte-Carlo sampling [Pea87].

11

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

Figure 2.4 – Polytree example

(a) Polytree (b) Related tree

Figure 2.5 shows a famous simple example of Bayesian network. It describes the causal rela-
tionship of wet grass in a garden with the weather and the running of a sprinkler.

Figure 2.5 – Example of a Bayesian network

This network contains 4 nodes representing random variables:

Cloudy: The random variable representing whether or not the weather is cloudy.

Sprinkler: The random variable representing whether or not the sprinkler was on during the
night.

Rain: The random variable representing whether or not it has rained during the night.

Wet Grass: The random variable representing whether or not the grass is wet this morning.

12

2.1. Graph-based models

Each node is associated with its conditional probability table describing its relation toward its
parent(s). Each node may be observed and the observations (evidence) can be used to compute
the probabilities of the other random variables. For example, if we observe that the grass is wet,
and the weather is not cloudy, we fix the states of the Wet Grass node to true and Cloudy node
to false. Then the Bayesian inference gives:

P (Sprinkler = True|WetGrass = True ∩ Cloudy = False) = 0.959 (2.1)

P (Rain = True|WetGrass = True ∩ Cloudy = False) = 0.145 (2.2)

Thus, in this case, it is much more likely that the sprinkler was on during the night, rather than
it has rained.

A Bayesian network is a direct representation of the world, not a reasoning process [PR98].
Contrary to, for example, AND/OR graphs in which an arc represents a logical deduction and the
flow of information goes in the direction of the arc, in a Bayesian network, an arc represents a
causal dependency and, during inference, the reasoning process can propagate in any direction
(either prediction or abduction)

2.1.3 Petri nets

According to the Encyclopedia of Mathematics [Haz89],

Definition 4 A Petri net is a mathematical model of discrete dynamical systems [...] introduced
by C. Petri in the 1960-s. A Petri net is a set N = (T, P, F,M0), where T is a finite set of symbols
called transitions, P is a finite set of symbols called places, P ∩T = ∅, F : T ×P ∪P ×T → {0, 1},
is an incidence function and M0 : P → {0, 1, ...} is an initial marking.

A Petri net is generally represented with an oriented graph where places are represented by
circle vertices, transitions by rectangle vertices and token by dots located on places, as shown in
Figure 2.6. This example Petri net contains 3 places (p1, p2 and p3) and 4 transitions (a, b, c and
d). One token is on place p1 and another on place p2.

Figure 2.6 – Example of a Petri net [Haz89]

PETERSON SURFACE

and a hyperbolic paraboloid for a surface of transla-
tion). These surfaces were first considered by K.M.
Peterson as examples of surfaces allowing of a deforma-
tion over a principal base.

I.Kh. Sabitov

Editorial comments. For references see also Peterson
correspondence.

AMS 1980 Subject Classification: 53A05

PETRI NET - A mathematical model of discrete
dynamical systems, including data systems (parallel
programs, operating systems, computers and their
equipments, and computer networks), which is oriented
to the qualitative analysis and synthesis of such systems
(discovering deadlocks or conflict situations and
bottlenecks, computer-aided synthesis of parallel pro-
grams and computer components, etc.). It was intro-
duced by C. Petri in the 1960-s. A Petri net is a set
N=(T, P, F, M o), where T is a finite set of symbols
called transitions, P is a finite set of symbols called
places, P n T = 0, F is an incidence function:

F: TXP U PX T {O, I},

and M 0 is an initial marking

Mo:P {O, I, ... }.

Informally speaking, a Petri net is a labelled oriented
graph having a set of vertices T U P (see Fig.).

From a place-vertex pEP, represented by a
there runs an arc to a transition-vertex
represented by a rectangle, if and only if

F(p, t) = 1

circle,
tET,

(p is the input place for t; in the figure P={Pl,P2,P3},
T= {a, b, c, d}). From a transition-vertex t there runs
an arc to the place-vertex p if and only if

F(t,p) = 1

(p is an output place for n. The place P can be marked
with a marking Mo(p)7'=0, which is frequently
represented by a corresponding number of tokens.

The dynamics of the modelled system is described in
terms of the functioning of the Petri net. The net
operates in discrete time by passing from marking to
marking. Each marking is a function
M: P--4{O, I, ... }: a change in the marking (bcginning
with ,\1IJ) is performed by a net transition. A transition
t E T can fire with marking M if for any pEP.

144

M(P)-F(P, t);:;;' 0,

i.e. if each input place of it has at least one token. The
firing of t given M replaces the latter by M' in accor-
dance with the following rule: for any pEP,

M"(p) = M(P)-F(P, t)+F(t,p),

i.e. t removes a token from each input place, and adds
a token to each output place. If several transitions can
fire, some one of them fires. The net halts if at some
marking (a deadlock marking) none of the transitions
can fire. For a given initial marking, a Petri net can
generate by virtue of its indeterminate operation vari-
ous sets of firing sequences. These form words over the
alphabet T, and the set of all words generated by the
Petri net is called its language. Two Petri nets are
equivalent if they generate the same language.

Research on Petri nets is conducted along two lines.
The mathematical theory is advanced by a formal
analysis of their properties. The most interesting prob-
lems include recognizing deadlock situations, recogniz-
ing equivalence of nets from the languages they gen-
erate, evaluating complexity of nets, and comparing the
expressive power for various subclasses of Petri nets
and their extensions. It has been found that the
deadlock problem is solvable, and the properties of the
class of languages generated by Petri nets have been
examined. This class is strictly contained in the class of
recursively-enumerable languages and strictly includes
the class of regular languages, while it partially inter-
sects with the class of context-free languages. The
second line is the use of Petri nets as the basis of
models for discrete dynamical systems in information
technology, economics, digital engineering, etc.

In distinction to finite automata (cf. Automaton, fin-
ite), which are used to describe global changes in the
states of a system, Petri nets concentrate on local
events (these correspond to transitions), local condi-
tions (these correspond to places), and local links
between events and conditions. Therefore, one can give
a more adequate simulation of distributed asynchro-
nous systems in terms of Petri nets rather than auto-
mata.
References

[I] PETERSON. 1.L.: Perri neT Theon' and The modelling 0lIT.lrems.
Prentice Hall. 1'181.

[2] KOTOV, V.E.: Petri nets, Moscow. 1986 (in Russian).
[3] STARKE. P.H.: Petri-Nelze. Deutsch. Verlag Wissenschaft..

1981.
[4] REISSIG. W.: Pelri nm. Springer. 1985.

VE. Kotov

Editorial comments. Being a baSIC model of parallel
computations, Petri nets have been studied very extensively
during recent years. There is a yearly conference on Petri
nets. The best overview of currently active research is con-
tained in the proceedings of thiS conference, published by
Springer. The monograph [A 1] contains a brief account on

13

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

The places represent conditions and the transitions the events that may occur. The incidence
function, representing the arcs between places and transitions describe which places are post- or
pre-conditions of a transition. From an initial state of the conditions (M0), the net operates by
passing markings from place to place, when transitions are fired, in discrete time. The number of
marks of a place is generally called token. A transition may be fired, if it is enabled, i.e. when they
are sufficient tokens on its inputs places.

Petri nets are generally used for simulations, with or without an execution policy determining
the behaviour of the simulation. They are non-deterministic as any enabled transition may fire.

Many extensions of the elementary Petri Nets (as presented above) exists: coloured Petri nets,
deterministic timed transitions Petri nets, Stochastic Petri nets, etc. Each extension enriches the
Petri formalism to answer new issues.

For example, one of the most used extensions of Petri Nets are coloured Petri Nets [Jen87]. It
adds the support of values contained in each token. With memory, tokens can contain information
about past states and this information (colour) can be used to validate transitions. Moreover,
coloured Petri Nets generalise most important properties of Petri Nets.

A disjunction Petri net is very close to a base Petri net. The only exception is that only one
of all the incoming arcs is necessary to enable a transition.

A deterministic timed transition Petri net (DTTPN), is a coloured Petri net where transitions
represent a time delay to go from one place to another.

An interval timed coloured Petri net is an extension of coloured Petri nets where timestamps
are associated with tokens and transitions with firing delay.

2.2 Attack models

Having presented the main definitions and concepts of graph-based models, we now survey the
attack models of the state of the art. Note that in this state of the art, we will not enter into the
details of attack-response models, as these models rely on the usual attack models (i.e., the ones
that will be presented here) and only add new nodes, or new features to include responses into the
model. As a result, they do not bring new capabilities to represent potential nor occurring attacks.

The first models for multi-step attack modelling of the state of the art are tree-based models
such as attack trees. They have been quickly extended by graph-based models such as attack
graphs. However such models are not directly suited for dynamic risk modelling. As a result, Petri
net extensions such as attack nets and Bayesian network extensions such as Bayesian attack graphs
include ongoing attack probabilities and add new nodes for dynamic risk modelling.

2.2.1 Attack trees and models based on trees

Schneier presents in [Sch99] the attack trees: AND-OR trees in which nodes represent security relevant
attack actions that can be refined recursively until they become atomic actions. Attack trees have
been formalised by Mauw and Oostdijk in [MO05]. In [Ing09], Ingoldsby details how attack trees
can be used for Threat Risk Analysis. Paul proposes in [Pau14] a systematic approach to automate
the construction and maintenance of big attack trees and applies this methodology to industrial use
cases, such as the Galileo risk assessment program. In an attack tree, there is only one attacker’s
main goal: the root of the tree. It is a static model, as it cannot model dependencies between
nodes: an arc leads to a more accurate description of an attack element.

As attack trees have been inspired by research in safety and reliability, Brooke and Paige

14

2.2. Attack models

extends in [BP03] fault trees applicability to security. It is an increment of attack trees. This
model includes well-known concepts from safety analysis: additional connectors (e.g., priority AND,
exclusive OR), specific nodes type (e.g., basic events, conditioning events, undeveloped events, etc.)
and transfer symbols used to break up large trees into several smaller ones. However it has the
same limitations as attack trees.

Ray and Poolsapassit extend attack trees as augmented attack tree [RP05], to model how far an
attacker has progressed in an information system. The main difference with a standard attack tree
is a couple of integers associated with each node of the augmented attack tree. The first element
of this couple represents the current attack status of a node. It can vary in time when the attacks
happen. The second element represents the least effort to compromise the related node. The ratio
between the two integers give the current compromise probability. This model is thus dynamic
and can model the progression of an attacker, but applies to only one main attack.

Ordered Weighted averaging (OWA) trees are used by Yager in [Yag06] to represent attacks in
a way very similar to attack trees. OWA operators are more expressive than the AND-OR operators
of attack trees. In OWA trees, operators can represent quantifiers such as most, some, half of,
etc. which model better uncertainty. They have the same limitations as attack trees.

Enhanced Attack Trees are a model presented by Camtepe and Yener in [CY07] which adds
the support of temporal dependencies between components and expiration of attack elements.
In order to do that, a new type of node is introduced: Ordered-AND. Several attributes are
added to each node: Time-To-Live which defines a lifetime for actions, Attack Level and Attack
Probability which define the ratio of accomplished actions and the probability of attacks completed
of a subgoal. This model comes with the Enhanced Tree Automaton whose goal is to take as
input a stream of aggregated alerts messages and to output the corresponding enhanced attack
tree. This automaton can be extended into an Enhanced Parallel Automaton, in order to handle
complex attacks which are combinations of several enhanced attack trees. Arnold et al. also extends
attack trees with a sequential operator in [AHPS14]. When each leaf of such a Time-dependant
Attack Tree is annotated with a probability distribution of the time needed for this step, it can be
propagated in the entire tree to obtain the time distribution for the whole attack. The sequential
operator is formally defined by conjunctive nodes with a notion of progress of time. Jhawar et al.
give in [JKM+15] the first formal description of an equivalent of Enhanced Attack Trees without
explicit notion of time, but a more abstract notion of causality. This model is called SAND attack
trees as Sequential-AND is another name for Ordered-AND. These models enhance attack trees
with more accurate operators, but are still static and allow to represent only one main attack.

In a nutshell, the tree structure is the first to model accurately successive attack elements. It is
thus the basis of nearly all the other attack models. The tree structure is very simple, it is
thus generally too simple to model exactly complex succession of elements. Original attack
trees are not very convenient to model progress of attackers in an information system for
at least 3 reasons: (1) they do not provide the ability to model the position of an attacker
(or of several attackers) in the model, (2) they do not describe the dependencies between
attack elements , (3) they do not allow to model several attacks. Thus they have been
extended in several models, to represent dependencies between attack elements (Fault Trees
for Security), or to model the progression of an attacker (Augmented attack trees). However,
without additional models such as the automaton and the list of trees in the enhanced attack
trees, the models based on trees are not rich enough to represent occurring attacks.

2.2.2 Models based on direct acyclic graphs

A cryptographic direct acyclic graph presented by Meadows in [Mea98] is a graph-based model
defined for visual description of cryptographic protocol attacks. The nodes represent the attack

15

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

stages and the arcs model dependencies between the stages toward an attacker’s objective. Visual
methods are used to represent the difficulty of each stage. Cryptographic DAGs are an informal
model, in which nodes contain an unstandardized text describing the attack stages. However it is
one of the first to model dependencies between attack actions. But, as in attack trees and their
extensions, a cryptographic DAG does not provide the ability to model the position of an attacker
and was not designed to model several attacks.

In a nutshell, the direct acyclic graph structure is a logical evolution of the tree structure, in
order to model more complex elements. It is more powerful than trees, but does not allow
to model all attacks, particularly because it does not contain cycles.

2.2.3 Attack graphs and models based on directed graphs

The main limitation of attack trees is that they only describe one main attack, they cannot represent
several different attacks in the same model. On the contrary, an attack graph is an attack model
containing several different attacks using a graph rather than a tree.

An attack graph is a model regrouping all the paths an attacker may follow in an information
system. It has been first introduced by Phillips and Swiler in [PS98]. This widely used formalism
covers many heterogeneous models. There are two major types of attack graphs: logical attack
graphs and topological attack graphs. Logical attack graphs are closer to attack trees. They are
based on AND-OR logical directed graphs. The nodes are logical facts describing the actions that can
be carried out by an attacker, or the pre-requisites to carry them out, and the edges represent the
dependency relations between the nodes. Topological attack graphs are based on directed graphs.
The nodes represent topological assets (host, IP address, etc.) and the edges represent possible
attacks between such nodes. A summary of the state of the art on the early papers about attack
graphs (from 2002 to 2005) has been presented by Lippmann and Ingols [LI05], a more recent one
by Kordy et al. [KPCS13]. Shandilya et al. also discuss in [SSS14] the state of the art of attack
graph generation and their use in security systems

In [SPEC01], Swiler et al. present how to generate an attack graph from security attributes and
vulnerabilities in computer networks. Sheyner et al. present in [SHJ+02] an automated technique
to build an attack graph using symbolic model checking. Thus, contrary to the work of Swiler
et al. that concentrates on malicious events, it can also take into account benign system events
that can be part of an attack. Moreover, this symbolic model checking technique works backward
(starting from the initial state) and thus do not explore unreachable paths or vulnerabilities. One
difficulty to build an attack graph is to have an accurate description of the vulnerabilities as input.
In [SMC09], Schuppenies et al. present a data structure to specify vulnerability information used
for attack graph generation. They also detail how they fill this data structure with information
from the National Vulnerability Database1 using the Common Vulnerabilities and Exposures2,
the Common Vulnerability Scoring System [FIR15], and the Open Vulnerability and Assessment
Language 3.

The tools that have been developed to automatically generate attack graphs from network
topology, service description and vulnerability scans are called attack graph engines. There are
three engines of note: MulVal, TVA and NetSPA. MulVAL, The Multi-host, Multi-stage Vulner-
ability Analysis Language tool is an open-source logical attack graph engine created by Ou et al.
[OGA05a, OBM06]. It uses Datalog, a logic programming language, in order to generate an attack
graph (XML file) in which nodes are related to each other with logical relations (OR or AND). As for

1NIST National Vulnerability Database, https://nvd.nist.gov/
2MITRE Common Vulnerabilities and Exposures, https://cve.mitre.org/
3NIST Open Vulnerability and Assessment Language http://oval.mitre.org/

16

https://nvd.nist.gov/
https://cve.mitre.org/
http://oval.mitre.org/

2.2. Attack models

topological attack graphs, the two main engines are Topological Vulnerability Analysis tool (TVA)
presented by Jajodia et al. [JNO05, JNK+11] (later commercialised under the name Cauldron)
and Artz’s NetSPA [Art02].

McQueen et al. present in [MBFB06] the compromise graphs, based on directed graphs. They
use this model to assess the efficiency of technical security measures (e.g., system hardening or
addition of firewalls) on risk reduction and apply it on SCADA Control Systems. The nodes of
the compromise graphs represent the stages of an attack, detailing how a given target can be
compromised. The edges are weighted according to the estimated time required to complete the
compromise. This time is modelled thanks to a random process and is used to compare several
paths in the graph. This model does not take into account the dependencies between identical
vulnerabilities on different machines.

An example of the implementation of attack graphs containing information about attackers has
been presented by Wu et al. in [WFM+07, Wu09]: the Incident Graph (I-Graph). This model is
a type of attack graph in which each intrusion goal is represented by a node in an AND-OR/Quo-
rum graph. The I-Graph is generated semi-automatically using two types of data: vulnerability
descriptions and system services description. The system services are described within a direct
graph where nodes represent services and edges represents an intrusion-centric channel, i.e., if
the origin node of an edge is compromised, the destination can spread to the destination node.
Then, when an attack occurs, attack sub-graph instances are created and updated at runtime, to
model happening concurrent or overlapping attacks. The I-Graph is then used in the 3 versions
of ADEPTS. ADEPTS I provides automated response to multi-stage security attacks (treats only
survivability challenges). ADEPTS II proposes a means to compute efficiently optimal responses
to these attacks. Then, ADEPTS III adds the consideration in this model of 0-day attacks.

In a nutshell, attack trees and attack graphs are very similar models enabling the representation
of multi-step attacks with respectively one or several attack goals. They contain very accurate
description of attacks (with logical attack graphs/trees) or more high-level vision of attacks
(with topological attack graphs/trees). However, these models alone are not adapted to
directly represent ongoing attacks, to contain multiple attackers or to be triggered by alerts
and detections. To model ongoing attacks, attack graphs models have been completed with
incident graphs, built during runtime when attack elements occur.

2.2.4 Attack nets and models based on Petri nets

An attack net is a multi-step attack model which was presented by McDermott et al. in [McD00].
It is based on a disjunctive Petri net in which (1) places represent security states of entities in the
system, (2) transitions represent events, commands or data that causes the change of state of one
entity, (3) tokens indicate the progress of an attack. The place of the token represents the fact that
the attacker has gained control of the corresponding entity, in the state represented by the place.
To change place, an attacker must be in the previous place(s) and validate the transition(s).

In [DMCR06], Dalton et al. present a method to build a Generalised Stochastic Petri net from
an attack tree. The basic operations on attack trees (conjunction and disjunction) can indeed be
very easily modelled using Petri nets. Places model a goal or subgoal of an attack, and transitions
model a means used to achieve a goal, associated with its difficulty and estimated duration. It is
also possible to add in the model the probability of success or failure of attack elements, and then,
with the simulation of the Petri net, to estimate which attacks are more likely to happen.

The model presented by Dahl and Wolthusen in [DW06] is based on interval timed coloured
Petri nets. It is an extension McDermott’s attack nets in which transitions are associated with an
interval of time. It is applicable to multi-agent and multi-stage attacks.

17

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

In [PML09], Pudar et al. propose a novel model based on attack nets to extend attack trees:
PENET. The models used in PENET are Deterministic Timed Transitions Petri Nets, a model close
to the one used in Attack nets, but a bit simpler, because the time of a transition is deterministic,
rather than a random variable. Places represent attacker places of interest, subgoals and main goal,
and transitions represent the time delay needed to compromise the next goal. A specific colour
(attack precondition) may be required to pass a transition. If a transition is fired, its time delay is
the time for an attacker to compromise next state. Two main computations can be done from this
model: (1) the build of the coverability tree, to find the most likely attack and (2) time-domain
analyses (time to reach the root place, number of possible intrusion in a time period, etc.).

The Key-Challenge Petri Net model described in [KVK09] by Kiviharju et al., is based on
coloured and stochastic Petri nets in which places represent the protected information security
items with one or several of the following properties: Confidentiality, Integrity and Availability.
Tokens represent players (attackers or defenders) and transitions represent a challenge an attacker
must answer before entering a new place (i.e., an attack).

The topological model presented by Henry et al. in [HLZ10] is based on simple Petri nets. Places
model privileges acquired by an attacker. Transitions model escalation of privileges succeeded
thanks to an attack. It defines new metrics to quantify risk.

In a nutshell, the main advantage of attack models based on Petri nets compared to graphs or
trees is that they allow to model concurrency and progress of several attacks with labelled
tokens in the same model. However, the models have the following limitations: (1) it cannot
be used to model several privileges for an attacker (a token can only be at one place), (2) it
is not easy to adapt the model to take into account the addition of tokens during runtime,
according to a detection or alert, (3) the Petri net formalism cannot be changed or adapted.
It has been created to know if states are accessible, by simulation, not to represent complex
attack behaviour.

2.2.5 Bayesian attack graphs and models based on Bayesian networks

Qin et al. present in [QL04] an extension of attack trees using a Bayesian network. They describe
this model as especially adapted to evaluate the likelihood of attack goals or to predict future
attacks. What is quite interesting in their approach is that they use class/type of attacks rather
than exact attack description, which can decrease significantly the size of the model. This model
can describe accurately dependencies between attack elements, but cannot model the position of
attackers and attack elements are too general to describe a real attack. Moreover, this formalism
can describe only one attack in the same model.

Halfway between attack graphs and Bayesian networks, the behaviour based Bayesian network
introduced by Dantu et al. in [DLK04] is a model that takes into account the estimated behaviour of
an attacker, according to its attack profile, to improve the vulnerability analysis. It uses an attack
graph to represent relations between attack steps, and a Bayesian network for risk inference, using
probabilities taking into account the attacker behaviour. This model is not really adapted for
modelling ongoing attacks, but is rather used to analyse a risk level.

A Bayesian attack graph, introduced by Liu and Man in [LM05], is built of nodes which are
random variables representing a host in a specific system state (a true state means that the host is
compromised) and edges representing possible exploits that can be instantiated from a source host
to a target node. The major concern of building such a Bayesian network from an attack graph is
due to the structure of a Bayesian network: it must be acyclic, while attack graphs often contain
cycles. To avoid cycles, this paper assumes that an attacker will never backtrack once reaching
a compromised state, but does not detail how such assumption is used to build the model. This

18

2.2. Attack models

model is well adapted to compute the posterior probability (how likely an attacker may carry out
an attack) and giving an observation to deduce the most probable attack paths that may have
been followed by the attacker. However, it is not easy to represent the path of several attackers in
the same model.

The knowledge-based Bayesian Model of Althebyan and Panda is constructed thanks to two
complementary models: a knowledge graph and a dependency graph [AP08]. It has been designed
to describe only insider attacks (an insider being defined as someone who has access to and has
some knowledge about an organisation information system). A knowledge graph is a graph that
represents knowledge units of an insider. The Dependency Graph is a hierarchical graph that
shows all dependencies among objects in the system. The knowledge Bayesian attack graph is
a kind of attack graph which is built with data from the two previous models. For each node,
which represents an object in the system, is assigned a probability value. The knowledge Bayesian
attack graph models relations between knowledge elements of the information system. It is thus
not really practical to describe precisely where an attacker is located and which privilege he may
have acquired. But the information contained in this model are complementary and may help to
describe how a privilege could be acquired. Moreover, the Bayesian model allows to model precisely
the propagation of probabilities in the graph, since the probabilities are not only attached to a
node (object disclosure likelihood) but can also be attached to arcs (probability of one or more
nodes given the knowledge of one or more nodes).

Frigault andWang present in [FW08] how Bayesian Attack Graphs are used to calculate security
metrics in an information system. They later extend this model in [FWSJ08] to continuously
measure security level in a dynamic environment. This model adds temporal factors such as the
availability of exploits or patches, to represent the evolution of the severity of a vulnerability. This
model also represents dependencies among exploits, to remove the hypothesis that the exploitation
of different vulnerabilities are independent. The base model used is a Dynamic Bayesian network,
a sequence of Bayesian networks representing a time slice, allowing to monitor and update the
system as time proceeds and even predict further behaviour of the system. This model adds the
possibility to take into account the evolution of the exploitability of a vulnerability according to
the time.

The Bayesian network model presented by Xie et al. in [XLO+10] models the uncertainty of
occurring attacks. This model improves the usual process to build a Bayesian network from a
logical attack graph with three properties: (1) it identifies several types of uncertainty, (2) most
of its parameters can be computed automatically, and (3) it is not sensitive to perturbations in
the parameters choice. This model adds two new types of nodes dedicated to dynamic security
modelling. The addition of the attack action node, parent of attack nodes, models whether or not
an action of the attacker has been done. This node is completed with a local observation node
modelling inaccurate observations (IDS alerts, logs, etc.). This model also takes into account the
possible existence of 0-day vulnerabilities via residual probabilities.

Cole [Col13] uses a Credal network (a Bayesian network with imprecise probabilities) to rep-
resent parameters uncertainty and detect attack paths. He demonstrates that the uncertainty is
too high for single-step attacks. However, for multi-step attacks, it is possible to achieve high con-
fidence in the detections. The key limitation is scalability. The computational cost of inferences
in a Credal network is prohibitive for real network topologies. He thus applies this methodology
only on linear topologies (i.e., a linear sequence of exploits that can be followed to accomplish a
specific attack goal).

In a nutshell, the Bayesian networks add to the advantages of direct acyclic graphs powerful
tools to compute and propagate probabilities between nodes of the graph. Moreover, the
dependencies between nodes are not anymore AND or OR relations, but are probabilities of
occurrence with a set of predecessors, which is much more expressive. Finally, when a

19

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

state is set as compromised for an attacker (high probability), the attacker can leave again
from this node even after several other actions. It is thus a very interesting model as it
can model complex dependencies and provide tools to make efficient calculations on this
model. However, two important challenges arise when we want to use Bayesian network
for modelling ongoing multi-step attacks. First, performance challenges can occur, as the
conditional probability table size is exponential in the number of parents for a node. Secondly,
a Bayesian network must be based on an acyclic graph which is generally not the case of
attack graphs (an attacker can come back to a machine he has already exploited). Heuristics
allow to suppress cycles, but they suppress paths that could be followed by an attacker.

2.2.6 Other models

This section presents other attack models that are not directly based on attack trees, attack graphs,
attack nets or Bayesian attack graphs, but that are close enough to those models to be interesting
in this taxonomy of attack models.

In [PCB10], Piètre-Cambacédès et al. present how the boolean logic driven Markov processes
(BDMP) model, that was rather created for reliability and availability, can be adapted to security
modelling. This model is similar to an attack tree with two more elements: a new kind of link
(triggers) and leaves representing attack steps or security events, which are associated with Markov
processes. This allows for sequences and simple dependencies modelling, while enabling efficient
quantification. This model allows to compute for example the probability for the attacker to reach
his objective in a given time or the probability of a sequence of elements. The major advantage
of BDMP is that they are dynamic, contrary to attack trees which are static. So, they can model
accurately sequence of attack events and can be used for time-dependent analysis. BDMP is also
presented as less complicated (and thus more efficient) than Petri nets. However, BDMP does not
offer the possibility to model the progress of different attackers in the model and as it is based on
a tree is aimed for only one attack goal.

Wang et al. present in [WZK13] a framework exploring an attack graph with a Hidden Markov
Model (HMM) to represent the probabilistic interactions between system observations and states.
The Hidden Markov Model estimates the attack states (consequence of attack on the system),
according to uncertain observations. Observations represent the observable subjects that can be
used to characterise attack states. Hidden Markov Model presents the same advantages as BDMP,
over attack trees. But as this model is built from an attack graph rather than a tree, it can in
addition apply to several attacks of a system.

2.3 Comparison of attack models

Table 2.1 summarises the attack models that have been presented in section 2.2. Horizontal lines in
the table represent a different family of base-model. The first group on entries contains tree-based
attack models, the second one graph-based attack models, the third one Petri net-based models, the
fourth one Bayesian network-based models and the last one the Markov processes-based models.

For each model identified by its reference, authors, date and name, 7 elements are presented and
compared: (1) the base model used, (2) the model operators, (3) whether the model is logical or
topological (column “Topo / Logical”), (4) the maximum number of scenarios that can be contained
in a model (column “Max nb scen.”), (5) how the temporal dependency between steps is modelled
(column “Temp depend.”), (6) the maximum number of attackers that can be represented in the
model (column “Position of attacker”), (7) the probability propagation in the model (column “Prob.
propag.”).

20

2.3. Comparison of attack models

2.3.1 Basic model

The basic model represents the graph-based model used as the basis of the attack model.

The possible values are:

Tree: The attack model is based on a tree.

DAG: The attack model is based on a Directed Acyclic Graph.

DG: The attack model is based on a Directed Graph (that may contain cycles).

PN: The attack model is based on a Petri net or one of its extensions (disjunctive Petri net, gener-
alised stochastic Petri net, interval timed coloured Petri net, deterministic timed transitions
Petri net, coloured and stochastic Petri net).

BN: The attack model is based on a Bayesian network or one of its extensions (Dynamic Bayesian
network).

CN: The attack model is based on a credal network, an extension of Bayesian networks with
imprecise probabilities.

MP: The attack model is based on Markov processes.

HMM: The attack model is based on a Hidden Markov Model.

2.3.2 Model operators

The next column compares the operators that can be expressed within the model. Operators can
be grouped in 3 categories: simple node dependencies, logical operators, probabilistic operators.

2.3.2.1 Simple dependencies

A simple dependency in a graph-based model is represented by an arc, a directed edge.

Node dependency: The node dependency is the simplest dependency modelled by an arc that
represents that a node requires its parent to be achieved.

Weighted dependency: The weighted dependency is an extension of the node dependency in
which each arc is also associated with a weight representing, for example, the difficulty or
duration of an attack from the parent node to the child node.

2.3.2.2 Logical operators

Logical operators are generally used in logical graph-based models. In such models, each node
contains a logical fact and represents a logical operator. This operator describes how the fact is
deduced or can be reached from the facts of its children, according to the model. The leaves, the
nodes with no children, are generally the starting facts or preconditions from which other facts are
deduced.

AND: The AND operator describes the requirement of the achievement of all the facts of its children
for the logical fact of a node to be achieved.

21

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

OR: The OR operator describes the requirement of the achievement of at least one fact of its children
for the logical fact of a node to be achieved.

OAND: The ORDEREDAND or PRIORITYAND operator describes the requirement of the achievement of
all the facts of its children in a specified order for the logical fact of a node to be achieved.

XOR: The XOR operator describes the requirement of the achievement of exactly one fact of its
children for the logical fact of a node to be achieved.

Quorum: The Quorum operator describes the requirement of the achievement of at least N facts of
its children for the logical fact of a node to be achieved. The minimum required quorum N
being attached to each Quorum node.

OWA Operators: The Ordered Weighted Averaging (OWA) operators are a generalisation of the
AND-OR operators providing a class of operators between AND and OR (e.g., defining formally
most, at least half, some, etc.).

2.3.2.3 Probabilistic dependencies

Bayesian networks specify the probabilistic dependencies between nodes using conditional proba-
bility tables. Each node is associated with a conditional probability table giving the probability of
a node according to the states of its parents.

2.3.3 Topological or logical model

This column compares whether a model has a topological or logical representation of the attacks
in an information system. A logical representation of an attack is made of logical facts that are
linked together by operators (e.g., as it is done in AND/OR trees or graphs). These models generally
detail with great accuracy the proceedings of an attack. However, they can be very big and cannot
easily be processed by machines nor humans. On the contrary, topological models of attacks follow
the topology of the system modelled and represent an attack as a way to exploit a topological asset
from another one. Thus, they are less detailed, but, for real systems, are much easier to process
or understand by humans.

2.3.4 Maximum number of scenarios in a model

This column describes the maximum number of scenarios that can be represented in the model.
Some models (e.g., models based on attack trees) can only represent one main attack scenario.
Other models (e.g., models based on attack graphs) can represent several attack scenarios.

2.3.5 Temporal dependency

This column describes how temporal dependencies between nodes are represented in the model. The
temporal dependency can describe either the potential attacks (i.e., the duration of the potential
fact of a node or the transition between two nodes) or the attacks that have occurred (i.e., the
exact time when attack events happened).

The possible values are:

22

2.3. Comparison of attack models

None: There is no temporal dependency between the nodes of the model. Generally, child nodes
contain a more accurate description or a way to realise the fact contained in their parent
nodes.

Steps: The temporal dependency is modelled by the succession of nodes in models. For example, a
directed arc represents that the parent node happened before the child node, or, the children
of a OAND node specify the order in which the events should happen.

Time: The model contains temporal information allowing to describe the duration or the time
when the fact of a node happened. Thanks to that the temporal dependency can be described
accurately using time.

2.3.6 Position of attacker

This column describes the maximum number of attackers that can be represented in the model.

The possible values are:

None: No information about attackers or occurring attacks is contained in the model.

One attacker: The model represents all the attacks that are made by one attacker, or it represents
all the attacks that are happening in a system, but without distinguishing attacks of separate
attackers.

Several attackers: The model can represent the attacks of several distinct attackers concurrently.

2.3.7 Probability propagation

This column describes how the attack probabilities can be propagated in the model. According to
the model, probabilities represent either the probabilities of potential attacks, or the compromise
status of assets of a system, according to the occurring attacks.

The possible values are:

None: No probabilities are contained in the model.

Simple: Probabilities may be associated with nodes of the model and simple propagation of
probabilities between nodes are possible.

Complex: Each node of the model is associated with both a probability and a table of probability
or distribution function describing accurately how the probabilities propagate on this node.
Complex mathematical algorithms are also proposed to compute and propagate, both forward
and backward, the probabilities of each node of the model.

23

C
H
A
P
T

2.ST
A
T
E

O
F
T
H
E

A
R
T

O
F
A
T
T
A
C
K

M
O
D
E
LS

Table 2.1 – Summary chart comparing attack models

Reference Authors Year Model Name Basic
Model

Model
Operators

Topo /
Logical

Max
nb
scen.

Temp
de-
pend.

Position
of
attacker

Prob.
Propag.

[Sch99] Schneier 1999 Attack trees Tree AND / OR Logical One None None None

[BP03] Brooke and
Paige 2003 Fault Trees for

Security Tree AND / OR / PAND /
XOR

Logical One None None Simple

[RP05] Ray and
Poolsapassit 2005 Augmented

Attack trees Tree AND / OR Logical One Steps One
attacker Simple

[Yag06] Yager 2006 OWA Trees Tree OWA Operators Logical One None None None

[CY07] Camtepe and
Yener 2007 Enhanced Attack

Trees Tree AND / OR / PAND Logical Several Steps Several
attackers Simple

[AHPS14] Arnold et al. 2014 Time-dependant
Attack Tree Tree AND / OR / PAND Logical One Time None None

[JKM+15] Jhawar et al. 2015 SAND attack
trees Tree AND / OR / PAND Logical One Steps None None

[Mea98] Meadows 1998 Cryptographic
DAG DAG Node dependency Logical Several Steps None None

[OGA05a] Ou et al. 2005 MulVAL DG AND / OR Logical Several Steps None Simple
[JNO05] Jajodia et al. 2005 TVA DG Node dependency Topo Several Steps None None
[Art02] Artz 2002 NetSPA DG Node dependency Topo Several Steps None None

[MBFB06] McQueen et
al. 2006 Compromise

Graphs DG Weighted
dependency Topo Several Time None Simple

[WFM+07] Wu et al. 2007 Incident Graph DG AND / OR /
Quorum Logical Several Time Several

attackers Simple

[McD00] McDermott
et al. 2000 Attack nets PN AND / OR Logical One Steps Several

attackers None

[DMCR06] Dalton et al. 2006
Generalised
Stochastic Petri
Nets

PN AND / OR Logical One Time Several
attackers Simple

[DW06] Dahl and
Wolthusen 2006

Interval Timed
Colored Petri
Nets

PN AND / OR Logical One Time Several
attackers None

[PML09] Pudar et al. 2009 PENET PN AND / OR / PAND /
XOR

Logical One Time Several
attackers None

[KVK09] Kiviharju et
al. 2009 Key-Challenge

Petri Net PN AND / OR Logical Several Time Several
attackers None

24

2.3.C
om

parison
of

attack
m
odels

Table 2.1 – Summary chart comparing attack models

Reference Authors Year Model Name Basic
Model

Model
Operators

Topo /
Logical

Max
nb
scen.

Temp
de-
pend.

Position
of
attacker

Prob.
Propag.

[HLZ10] Henry et al. 2010 Coupled Petri
Nets PN Node dependency Topo Several Steps Several

attackers Simple

[QL04] Qin et al. 2004
Bayesian
Networks for
security

BN Probabilistic
dependencies Logical One None None Complex

[DLK04] Dantu et al. 2004
Behavior based
Bayesian
networks

BN Probabilistic
dependencies Logical Several Steps One

attacker Complex

[LM05] Liu and Man 2005 Bayesian attack
graph BN Probabilistic

dependencies Topo Several Steps One
attacker Complex

[AP08] Althebyan
and Panda 2008

Knowledge
Bayesian Attack
Graph

BN Probabilistic
dependencies Logical Several None One

attacker Complex

[XLO+10] Xie et al. 2010
Bayesian
Networks for
Cyber Security

BN Probabilistic
dependencies Logical Several Steps One

attacker Complex

[FWSJ08] Frigault and
Wang 2008

Dynamic
Bayesian
Network

BN Probabilistic
dependencies Logical Several Steps One

attacker Complex

[PCB10]
Piètre-
Cambacédès
et al.

2010
Boolean logic
Driven Markov
Processes

MDP AND / OR Logical One Time One
attacker Simple

[WZK13] Wang et al. 2013 AG-HMM HMM AND / OR Logical Several Steps One
attacker Complex

25

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

2.4 Analysis of the state of the art of attack models

2.4.1 Analysis of the existing attack models of the state of the art

We have seen in this chapter that many graph-based attack models have been proposed in the
state of the art. These models are mainly based on trees, graphs, Petri nets or Bayesian networks.
First, attack trees and other models based on trees have been proposed in the literature, issuing
from the research in safety and reliability e.g., [Sch99, BP03]. However, these models contain only
one main attack refined in several steps or actions. Thus, they are too simple to represent all the
possible attacks in a system.

Attack graphs and models based on directed graphs extend attack trees. Their goal is to
represent all the attacks that can happen in an information system. They give either a very
accurate description of attacks (with logical attack graphs [OGA05a]) or more high-level vision of
attacks (with topological attack graphs [JNK+11]). However, these models alone are not adapted
to directly represent ongoing attacks, to represent multiple attackers or to be triggered by alerts
and detections.

Attack nets [McD00] and models based on Petri nets add to those models the ability to model
the concurrency and progress of several attacks in the same model. However they cannot model
several privileges for an attacker and cannot be used in runtime with real alerts and detections.

Finally, models based on Bayesian attack graphs [LM05] and Bayesian networks add powerful
tools to compute and propagate compromise probabilities in the graph. They model complex
dependencies and can be used in runtime to represent the evolution of attacks according to real
alerts or detections. Thus it seems to be the most interesting base model of the state of the art
for supporting dynamic risk assessment using prior knowledge.

2.4.2 Challenges and limitations of the models based on Bayesian net-
works

Two important challenges arise when we want to use the models based on Bayesian networks for
modelling ongoing multi-step attacks: (1) a possible low performance, and (2) a Bayesian network
must be based on an acyclic graph, which is generally not the case of attack models.

2.4.2.1 Low performances

The first main challenge is due to at least two reasons. The first cause of the performance challenge
is the size of the conditional probability tables (CPT), associated with each node of the network.
This size is sp, where s is the number of states of the node (generally s = 2 for the states
compromised/not-compromised) and p is the number of parents of the node, which can be big
in an attack graph, as it usually represents the number of hosts that can attack the node. Thus
the size of each conditional probability table can be huge. The second cause of the performance
challenge is that the exact inference of the whole network in the general case is NP-hard. In such
a network, as soon as there are more than hundreds of nodes, the inference is infeasible.

2.4.2.2 Cycles challenge

Attack models are defined globally for a system, containing all potential attacks that can happen.
It thus almost always contains cycles, especially inside local networks in which any host can attack

26

2.4. Analysis of the state of the art of attack models

any other one. For example, a host h1 may be able to attack another host h2 that can also attack
h1 (directly or in several steps). A simple example of a cycle is shown in Figure 2.7. This figure
shows an attack graph with 3 vertices (s1, s2 and s3). As s1 can attack s2, s2 can attack s3 and
s3 can attack s1, this graph forms a cycle (each vertex can attack himself in 3 steps).

Figure 2.7 – A cycle in an attack graph

A common assumption to break cycles in attack graphs is that an attacker will not backtrack,
i.e., come back on a node he has already successfully exploited. This is reasonable because back-
tracking does not bring new information about attack paths. It has been properly justified by
Ammann et al. in [AWK02] and by Liu and Man in [LM05]. However, the solutions of the state
of the art for Bayesian modelling of an attack graph such as the ones of Liu and Man [LM05]
and Poolsappasit et al. [PDR12] use this assumption to delete arbitrary possible attack steps. In
reality, it is thus impossible to know a priori which path the attacker can choose. Deleting paths in
the Bayesian model thus suppresses possible attacker actions. Ou et al. also end at this conclusion
in [OBM06] for logical attack graphs and explain that it also applies to other attack graph models
as well, even if this challenge has not yet been properly addressed.

2.4.3 Key features of the models of the state of the art

From the comparison of the models of the state of the art of Table 2.1, we gather the seven features
of the models of the state of the art that may be interesting to apply to Bayesian networks.
First, for the model operators, all logical operators (Node dependencies, AND, OR, XOR, Quorum,
a subset of OWA operators) can be represented with the probabilistic dependencies of Bayesian
networks. However, the ordered dependencies (PAND, PAND) cannot be represented directly in a
Bayesian network node. So, these dependencies should be represented by the succession of nodes
representing the order between the attack steps.

The logical representation of attacks is interesting because it details the logical preconditions
and how they are used by an attacker to carry out an attack. However this representation is
very verbose and it causes the model to be huge for real systems. The topological representation
is much more concise and easy to understand for an operator and to process by a computer.
However, it does not represent the details of the attacks. The ideal would be to have a hybrid view
of attacks, with the conciseness of topological representation of attacks, and the details of the use
of preconditions of logical representations.

It is much more interesting to have a model that can contain all possible attack scenarios,
because it mutualises the attack steps that can happen in different scenarios. Moreover, when
attack steps are detected, they cannot always be attached to a specific attack scenario. Thus, in
models that include several attack scenarios, the detected attack steps will highlight iteratively the
scenario that is used by the attacker.

The temporal dependency modelled using successive nodes is the one used in Bayesian at-
tack graphs. It represents simply the succession of attack steps. Time dependencies, using either
deterministic or random functions is an interesting addition. However, time parameters and func-

27

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

tions are particularly difficult to predict (e.g., how long would it take to an attacker to exploit a
vulnerability ?).

The ability to represent the position of attackers is the fundamental requirement of a dynamic
risk assessment model. It should at least be able to represent a compromise status of several nodes
of an information system. It is even better if the model allows to differentiate the propagation
of several attackers, each one having different privileges on several hosts of the system, and being
able to attack the system, starting from each of these hosts.

Finally, the ability to propagate complex compromise or attack probabilities in the model is a big
bonus that is brought directly by the models based on Bayesian networks. Even if this propagation
has important computational costs, it is a very interesting feature for security operators to be able
to know the most likely attacks that have happened or the steps that may happen next.

2.5 Introducing a Generic Attack Model

Sections 2.2 to 2.4 show that there is a rich variety of attack models in the state of the art. These
models have different levels of detail, allow to represent more or less accurately attack elements
with several kinds of operators (logical, probabilistic, etc.). There is thus a real need to define a
Generic Attack Model, an attack model that generalises most of the attack models of the state of
the art and applies to any domain. Having this Generic Attack Model as entry point will allow
us to be able to have a single type of input while being able to apply our process to any type of
attack model (attack tree, logical or topological attack graph, etc.) and apply to any application
domain, with the level of detail wanted by the security operator. The structure of the Generic
Attack Model is based on a graph. The building of the Generic Attack Model has three stages.

2.5.1 First stage: states and transitions

The first stage of a Generic Attack Model is the addition of nodes and edges, the basis of all risk
models of the state of the art that are based on a graph. Thus, the Generic Attack Model can be
represented as a directed graph with nodes and edges. In the Generic Attack Model, we call the
nodes states, and the edges transitions.

Definition 5 A state s ∈ S of the Generic Attack Model, with S the set of all states, is a node
representing a state of an attacker.

A state is, for example, a privilege on a host, the possession of specific data, a physical or
logical location of the attacker, etc.

Definition 6 A transition t(ssrc, sdst) ∈ T , with ssrc ∈ S, sdst ∈ S and T the set of all transi-
tions is an edge from a source state to a destination state, representing that a transition allows
an attacker to move from the source state to the destination state.

• Each transition has a required type of transition, describing how or why the attacker can
move between states.

A transition may be done deliberately by the attacker (e.g., exploitation of a vulnerability, data
or credential thief, physical movement, etc.) or the attacker may have no part in it (e.g., change
in the context, etc.).

The first stage of the building of the Generic Attack Model is the minimum necessary to
represent the attacks that an attacker can do in a system within a graph (nodes and edges).

28

2.5. Introducing a Generic Attack Model

Definition 7 A Generic Attack Model GAM is a directed graph GAM(S,T) where:

• S is a set of states and,
• T is a set of transitions.

2.5.2 Second stage: conditions and requirements

The second stage to enrich the Generic Attack Model is the addition of conditions on the states
and of conditional probability tables.

Definition 8 A condition c is a fact that, if verified, impacts the enabling of a transition. It is
associated with a probability of success P(c).

Property 1 A transition can be associated with a set of conditions. In such case, a
conditional probability table (cf., Def. 3) specifies the requirements of the transition towards the
conditions.

For the most common and simplest cases of attack models, the conditional probability table of
a transition toward its conditions can be specified as a special simple conditional probability table,
such as an OR, an AND, a XOR, or a Quorum table.

Property 2 A state can be associated with a conditional probability table specifying the
requirements of the state towards its incoming transitions.

In the same way, for the most common and simplest cases of attack models, the conditional
probability table of a state toward its incoming transitions can be specified as a special simple
conditional probability table, such as an OR, an AND, a XOR, or a Quorum table.

With the addition of these elements, the Generic Attack Model is able to represent most of the
attack models of the state of the art:

• attack trees and attack graphs and most of their extensions, only with AND-OR conditional
probability tables

• Bayesian networks and Petri net-based models, using conditional probability tables.

Conditions are not required as a transition may not need another fact to be possible. If the
conditional probability tables are not filled in, we consider by default in the Generic Attack Model
that a transition represents an AND (it requires all its conditions to be possible) and that a state
represents an OR (it requires at least one transition to be possible).

2.5.3 Third stage: detection sensors

The addition of detection sensors is the last stage to enrich the Generic Attack Model and to enable
its use for dynamic risk assessment.

Definition 9 A sensor of a state, transition, or condition is an oracle issuing an alert when
the related element (state, transition or condition) has been detected. It is associated with a false
negative and a false positive rate.

A sensor represents, for example, an Intrusion Detection System, a System Event Management,
or a human report.

29

CHAPT 2. STATE OF THE ART OF ATTACK MODELS

Even if, in the literature, the models generally associate sensors with either transitions or
states, the Generic Attack Model can associate a sensor with any other element of the model (e.g.,
a condition).

2.6 Conclusion

In this chapter, we have surveyed the state of the art of attack models. These models are based
on trees, graphs, Petri nets or Bayesian networks. The first models that were proposed were static
and, thus, only fit for static risk assessment (e.g., attack trees, attack graphs). The ones that
followed were able to represent the propagation of attackers in the system and were, thus, suitable
for dynamic risk assessment.

To the best of our knowledge at the time of this survey, models based on Bayesian networks are
the most promising for dynamic risk assessment, since they provide powerful tools to compute and
propagate probabilities in the graph. They allow the modelling of complex dependencies, which
make them appropriate to represent the evolution of attacks according to real alerts or detections
at runtime. However, they raise two challenges when we want to use these models for modelling
ongoing multi-step attacks: (1) a possible low performance, and (2) a Bayesian network must be
based on an acyclic graph, which is generally not the case of attack models.

From this state of the art, we also gather six features of attack models that are relevant
to dynamic risk assessment: (1) the probabilistic dependencies and succession of nodes allowing
to represent any other operators, (2) a hybrid representation of attacks combining logical and
topological representation of attacks, (3) an attack model containing all possible attack scenarios,
(4) a temporal dependency represented either by succession of nodes or by time parameters, (5) the
ability to represent the position of several attackers, and (6) the ability to propagate complex attack
probabilities in the model.

Finally, as there are many different types of attack models in the state of the art which can
be used to represent different kinds of attacks with different granularity, we present the Generic
Attack Model, a generalisation of most of the other attack models. This model can be created from
the other existing models (e.g., attack tree, logical or topological attack graph) and defines a single
format that can be used as starting point to build a dynamic risk assessment model, regardless of
the granularity and domain of application of the model. We will present in chapter 7 how we can
build a Generic Attack Model from an attack graph.

We will present in the next chapter how papers of the state of the art leverage attack models,
to support the computation of responses.

30

Chapter 3
Response computation

using attack models

An attack model describes the prior-knowledge about a system and the potential attacks that may
occur inside. Moreover, some of them take into account dynamic information such as alerts or logs,
to contain the status of ongoing attacks. Thus, the attack models are particularly interesting to
compute responses that are either remediations (security measures allowing to reduce a potential
risk) or counter-measures (security measures allowing to reduce an occurring attack).

Remediations and countermeasures to an attack can be grouped in three categories: corrective,
active and passive. The only way to really correct a vulnerability is to apply a patch, a piece of
software fixing the vulnerability. If such correction to a vulnerability cannot be applied, security
operators can choose to apply automatic real-time responses changing the likelihood or the conse-
quences of the exploitation of the vulnerability. Real-time response to intrusion is a major research
topic, that is why, since 1996, there are a lot of papers on this subject and different approaches
exist. According to the type of responses provided by a system, different names can be found in
the literature [SSEJJ12]: (1) Intrusion Detection System (IDS), for a system that only provides
passive responses (alerts, reports, logs...), (2) Intrusion Prevention System (IPS), for a system
that also provides a capability to filter infected flows, (3) Intrusion Response System (IRS), more
generally, to a system that provides other types of responses to an intrusion.

In this chapter we present the state of the art of the response computation based on attack
models. In order to do that, we first present the three main types of responses: corrective, passive
or active responses. Then, we survey the techniques to compute possible responses to prevent
attacks relying on attack models. Finally, we study the criteria and metrics that can be used to
choose a response among several candidates. We use this state of the art of response computation
using attack models in chapter 4.

3.1 Definition of response, remediation and countermeasures

We use the term response to represent an action or group of actions aiming at what is called “risk
treatment” in the standard ISO 27000 [ISO14]:

risk treatment: process to modify risk. Risk treatment can involve:

1. avoiding the risk by deciding not to start or continue with the activity that gives

31

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

rise to the risk;

2. taking or increasing risk in order to pursue an opportunity;

3. removing the risk source;

4. changing the likelihood;

5. changing the consequences;

6. sharing the risk with another party or parties (including contracts and risk financ-
ing); and

7. retaining the risk by informed choice.

Risk treatments that deal with negative consequences are sometimes referred to as “risk
mitigation”, “risk elimination”, “risk prevention” and “risk reduction”. Risk treatment
can either create new risks or modify existing risks.

Note that in our context, as we detail in the next sections, the responses rather focus on 1. avoid-
ing the risk, 3. removing the risk source, 4. changing the likelihood, 5. changing the consequences
or 7. retaining the risk by informed choice.

A response can be called in different ways, according to the context in which it is deployed. A
remediation is a response used to treat a risk that is latent, a vulnerability is present in a system,
but has not yet been exploited. On the contrary, a counter-measure is a response used to treat an
on-going risk, toward an occurring attack, exploiting existing vulnerabilities.

3.2 Corrective remediations

The first type of response that we will present is the correction of the exploitable vulnerability.
It is a remediation, rather than a countermeasure, as this kind of response is always deployed to
treat a latent risk that has been identified, when operators have the possibility (time-wise, patch
availability, etc.) to deploy it.

The correction of vulnerabilities is generally implemented by patch management software, help-
ing system administrators to deploy patches. Many commercial products already exists to help
automate the deployment of patches. Moreover, it has been standardised by several national or in-
ternational institutes, such as the National Institute of Standards and Technology (NIST) in [Nat05]
or the International Organization for Standardization (ISO) in [ISO11b]. So, this technology can
be considered mature.

NIST defines in [Nat05] the principles and methodologies organisations can use to manage ex-
posure to vulnerabilities through the deployment of patches. It also provides guidance about how
to prioritise, obtain, test, and apply patches. To implement a patch and vulnerability management
program, NIST advise creating a group of people called the Patch and Vulnerability Group (PVG).
The duties of the PVG are: (1) create a system inventory, (2) monitor for vulnerabilities reme-
diations and threats, (3) prioritise vulnerability remediation, (4) create an organisation-specific
remediation database, (5) conduct generic testing of remediations, (6) deploy vulnerability remedi-
ations, (7) distribute vulnerability and remediation information to local administrators, (8) perform
automated deployment of patches, (9) configure automatic update of applications whenever possi-
ble and appropriate, (10) verify vulnerability remediation through network and host vulnerability
scanning, and (11) train administrators on how to apply vulnerability remediation. This standard
also defines security metrics for patch and vulnerability management, to measure the effective-
ness of the patch and vulnerability management program and apply corrective action as necessary.
There are three types of patch and vulnerability metrics:

32

3.2. Corrective remediations

The susceptibility to an attack: For example, the number of patches, of vulnerabilities or of
network services.

Mitigation response time: For example, the response time for vulnerability and patch identifi-
cation, for patch application or for emergency configuration changes.

Cost: For example, the cost of the Patch and Vulnerability Group, of system administrators, of
enterprise patch and vulnerability management tools, or cost of program failures.

According to White [Whi06], existing vulnerability and patch management products can be
grouped in 4 main categories:

Patch management software: A patch management software (e.g., IBM Tivoli Endpoint Man-
agement for Patch Management, Hercules AVR Security Target) is used to manage patches
on a complete information system, even for heterogeneous systems.

Configuration managers: A configuration manager (e.g., Microsoft Systems Management Sys-
tems or Puppet) is used to centrally manage a park of machines. Those managers can
generally deploy patches on the whole park of machines, from a central point.

Package managers: Generally used on UNIX-based operating systems, package managers (e.g.,
APT, RPM) are used to install and update software. They are totally adapted to install
security patches, especially because they have efficient tools to resolve dependencies.

Vulnerability scanners: A vulnerability scanner (e.g., Nessus1 or OVAL2) is a software that
automatically detects, either remotely or locally the vulnerabilities of other software. In
order to that, it first looks for the installed software and try to find their exact version. Then
it compares the list of software to a knowledge base of vulnerabilities to deduce the probable
vulnerabilities. In addition to listing the vulnerabilities of software, vulnerability scanners
can also list the patches, when they are available, that can correct those vulnerabilities.

In addition to existing products, research papers have also proposed to enhance patch man-
agement. In [CTT05], Chang et al. describe an architecture of an automated patch management
system for company with a large scale heterogeneous information system. Patch deployment is
done in 5 steps: (1) receive information about vulnerabilities and patches, (2) find impacted equip-
ment, (3) plan deployment and tests, (4) test patches on copies of production machines on which
they will be applied (e.g., on virtual machines) (5) automatically deploy patches on all machines.

In [NGGT10], Nunez et al. present a distributed system to deploy patches. This solves one
main challenge of current patch management systems, centralisation. A centralised system is a
single point of failure (SPOF) and the deployment of patches with a centralised system can be very
slow. The distributed patch management security system is constituted of client nodes receiving
updates from several distributed server nodes. The distribution of a patch takes place in two steps.
The first one is to divide the set of hosts in the system in groups of around 10 hosts. The patch
is sent to one machine of each group, which will be the patch server relay. The second step is the
transfer of the patch from each server relay to other machines of the group. Then, the patch can
be installed by each machine.

The patch management technology is quite mature but it suffers from limitations detailed by
Cavusoglu et al. in [CCZ08]:

Patches side effects: The patched application or another application of the information system
may not work correctly after the application of a patch. Many tests have to be performed

1Tenable Nessus, http://www.tenable.com/products/nessus
2NIST Open Vulnerability and Assessment Language, http://oval.mitre.org/

33

http://www.tenable.com/products/nessus
http://oval.mitre.org/

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

(often manually) on all platforms to prevent conflicts or functionality changes before applying
a patch.

Service restart after patching: Often, the restart of the service (or even the host) is not pos-
sible for production services, while being required after applying a patch.

Difficulty to apply patches: Sometimes, the application of a patch needs several manual ac-
tions and rather seems like a migration. So, it has to be done carefully, to prevent data
loss.

Time lag between vulnerability disclosure and patch availability: The duration between
a vulnerability disclosure and the availability of the patch fixing it can be long and depends
on the software vendor. So there is a long period or time during which the system stays
vulnerable.

Unmaintained software: When software is no longer maintained, because it is too old or its
vendor does not exist any more, it has no longer patches or updates, even for known vulner-
abilities.

Dependencies on older versions of software: There exists sometimes a dependency on an
older version of software (e.g., a web browser) that is required to use a specific business
application.

Lack of standard: There is currently no standard for applying patches for different vendors on
different platforms. Each software vendor and operating system has its own policies to
propose and install patches.

Lack of roll-back: The roll-back mechanism after the installation of a patch is not available or
possible for numerous patches. It prevents easy cancellation of the installation of a patch.

The main consequence of these limitations is that patch deployment still requires human inter-
vention. So, there are too many vulnerabilities to patch and system administrators have to select
which patches should be deployed in priority.

3.3 Passive responses

As the correction of vulnerabilities using patch management is not always possible, for example on
machines hosting critical services that cannot be restarted, security operators may choose to use
other types of responses to be protected against exploitation of vulnerabilities. These responses are
generally done during exploitation by Intrusion Detection, Prevention or Response systems when
they detect that a vulnerability is exploited. The first component necessary to build a system that
can detect or respond to intrusion is the installation and configuration of an intrusion detection
system. The main goal of such a system is to provide the capability to detect what looks suspicious
in network flows, on applications or on a system. Bhuyan et al. summarise in [BBK14] the detection
techniques that have been proposed in the literature. There are two main mechanisms to detect
attacks:

Misuse detection Misuse detection [Axe00] is a knowledge-based detection that generally uses
rules or signatures (i.e., a pattern describing precisely what should be detected). Misuse
detection has many advantages: it is fast and accurate on known attacks, it describes precisely
the intrusion detected and it has very few false positive errors. However, signatures must be
very precise, to limit false positive, but they also must not be too numerous, for performance

34

3.3. Passive responses

reasons. As a result, signatures often may not detect all the attack variants that exploit
a given vulnerability. The second issue is that there are many vulnerabilities that are not
known, and for such vulnerabilities, there are no signatures, so no detection. The last issue is
that writing an appropriate signature for an attack or a vulnerability is long and sometimes
not possible. So, attacks may not have any signature and they will not be detected by such
a system.

Anomaly detection The dual detection method is anomaly detection [BBK14]. It is a behaviour-
based detection that uses a model of the normal system behaviour and detects deviations,
when a behavioural anomaly happens. Anomaly detection requires periodic measurements,
compared to a model. Contrary to misuse detection, anomaly detection can detect unknown
attacks and does not necessarily need signatures, but sometimes a training period for the
system to learn the habits of the normal behaviour. However, anomaly detection also has
several drawbacks. The first one is that it is very difficult to model precisely the normal
behaviour of a system. Even with models that include a training period, the training period
may contain attacks (which should be abnormal activities) or not contain a rare legitimate
activity. And if the model does not represent perfectly the normal behaviour, the detection
system will trigger false negatives and false positive alerts. The other drawback of anomaly
detection is that it obviously detects only anomalies, but does not know whether or not there
is an attack and which attack it is. So the detection is much less informative than a misuse
detection.

In conclusion, misuse-based detection must be accurate enough to avoid false positives but
must also detect all the variations of attacks related to a vulnerability which is not trivial and
sometimes not possible. Moreover, some known attacks and all unknown attacks (0-days) cannot
be detected by a misuse-based IDS. Conversely, behaviour-based detection is difficult to configure
and produces a lot of false positives. Hybrid techniques use both misuse and anomaly-based
techniques to attempt to detect known as well as unknown attacks.

Once an attack has been detected by a misuse-based or behaviour-based Intrusion Detection
System, different kinds of responses may be taken. The passive responses regroup the simplest
actions that can be done after a detection, aiming at alerting an operator or better detecting an
attack. These responses do not aim at stopping the attack. This is generally the first kind of
responses deployed by operators, as it can help security operators to know what happened in their
information system. A system that only provides passive responses (alerts, reports, logs, etc.) is
generally called Intrusion Detection System (IDS). Tucker et al. present in [TFGB07] a taxonomy
of Intrusion Detection Systems.

Using taxonomies of Carver [Car00], Stakhanova et al. [SBW07b] and Tanachaiwiwat et al.
[THC02], here is a list of possible passive responses to an intrusion:

Generate an alert: It is the first obvious response of an automatic system, it informs the security
operator that an attack is happening. Alerts could be emails, notifications on a dedicated
platform, sending a text message, etc..

Generate a detailed report: This report can contain much information allowing an operator to
know what really happened during the intrusion (e.g., the time of the intrusion, the attack
severity, the exploit used, the IP address or the account used, etc.).

Enable extra logging: When the behaviour of a user is unclear, an appropriate response is to
enable extra logging, to collect more information about his activity. This can lead to two
advantages. If the attack is proven during the intrusion, the attacker may be stopped. If the
attack is proven after the intrusion, the security team may know exactly, thanks to the logs,
what has been done.

35

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

Enable additional intrusion detection systems: If the intrusion is not sure, it’s possible to
enable additional intrusion detection systems that are not always enabled because they may
be too heavy or slow. These systems may allow the system to ensure if this is really being
attacked.

Saving logs on an external storage: During several attacks, the logs could be modified or
deleted by the attacker. It may be a good idea to save the logs on a read-only support,
to know precisely what the attacker did, after the attack.

3.4 Active responses

The active responses regroup the actions preventing the exploitation of a vulnerability that still ex-
ists, after the deployment of the response. They generally use techniques validating the interactions
between the attacker and the system. This is for example the case of simple filtering by a firewall
or an Intrusion Prevention System. An IPS is a component that adds to the detection functions
of an IDS the ability to block packets or flows. An IPS blocks an illegitimate traffic flow that has
been flagged as abnormal thanks to a signature or due to its statistical behaviour [SBW07c]. Two
kinds of IPS exist: Host Intrusion Prevention Systems (HIPS) and Network Intrusion Prevention
Systems (NIPS) that monitor and block respectively the process, files and network flows on a host,
or the packets on the network.

More generally, an Intrusion Response System (IRS) is a system that provides other types of
responses to a detection. This is a currently active research topic and many recent papers treat
this subject, as summarised by Shameli-Sendi et al. in [SSEJJ12].

Using taxonomies of Carver [Car00], Stakhanova et al. [SBW07b] and Tanachaiwiwat et al.
[THC02], here is a list of possible active responses to an intrusion:

• System-based responses

Deactivate ports or services: If a compromised network service is the relay of an attack,
stopping it or blocking its port may stop the attack.

Delete a process of a user: If an illegal process is launched on a host, killing the process
will prevent its execution.

Limit the capabilities of users: When a user is suspicious, it is possible to forbid him
the use of commands that are potentially damageable to the system.

Freeze the account of a user: If a user account may have been compromised, an appro-
priate answer is to block the user account to make sure that he may not be the origin
of another attack.

Force an additional authentication factor: On infected machines, forcing the users to
use an additional authentication factor is a good was to stop an attack, without inter-
rupting services.

Change passwords: When a password has been compromised, changing it may prevent
the attacker to get into the information system.

Shutdown an infected machine: Sometimes, it is the only means to stop an attack. How-
ever, this response is often not the best to have for several reasons. The first one is that
stopping a machine could stop very not-compromised and important services. Moreover,
shutting down the machine delete the memory and loose very important information for
post-mortem analysis. Finally, when rebooting the exploited vulnerability will be still
there and the attacker could start again the same attack.

36

3.5. Computing and ranking responses using attack models

Create backups: Even if it is often too late when the attack has begun, doing backup
may be useful to know what has been modified by the attacker and to restore the files
changed by the attacker

Reinstall the OS: To restart on a clean configuration, it is possible after an infection to
reinstall an operating system automatically. This is obviously easier with virtual ma-
chines when it is possible to launch a clean template where software is already installed
and configured.

Use Temporary Shadow Files: These are copies of original files which are encrypted.
During the attack, system files which are modified could then be restored. It is a means
to assure the integrity of the attacked system.

Give access to false files: By using technologies like honeypot, it is possible to trap an
attacker by giving him false data.

Warn the attacker: Sometimes, the only fact on warning the attacker that he has been
detected will stop him.

• Network-based responses:

Terminate the TCP connexion: To immediately stop an attacker connexion, it is possi-
ble to send a TCP packet with RST flag to the attacker and/or victim.

Block an IP address: If the IP address of the attacker can be identified, blocking this
address may be enough to stop the attack.

Trace back the attacker connection: If possible, it is useful to know who and where the
attacker is, in order to prevent him from starting again an attack.

So, many different responses are possible to stop and attack or prevent its expansion. Those re-
sponses are either system-based or network-based and may more or less disrupt legitimate services.
First an intrusion response system has to compute the responses that can prevent an attack. Then,
in the set of those candidate responses it has to select the best response(s) to stop the attack.

3.5 Computing and ranking responses using attack models

The selection of a response by an IPS or IRS is generally static (the same response is always
assigned to a detection) but is sometimes adaptive (the response can change according to the
context or experience). When the selection of the response is static, it has been manually set by a
security operator. We will thus discuss in this section the possible means used by adaptive IRS to
compute responses and to rank them, in order to select the most appropriate one.

3.5.1 Computing responses using attack models

Several papers of the state-of-the-art propose techniques to compute or select responses using
attack models. Those techniques rely on an attack model to configure the detection mechanisms
for passive responses or to select and prioritise corrective remediations or active responses.

3.5.1.1 Configuration of detection for passive responses

Attack graphs are used by Noel and Jajodia [NJ08] to compute the optimal locations to deploy
IDSs in an information system: they allow to minimise the cost of sensors while keeping a complete
coverage of potential attack paths. First, they use TVA attack graphs to predict all the possible
ways to reach critical assets in a network. Then, they aggregate the graph according to the network

37

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

accesses, to decrease the complexity. Finally, they find the minimum number of positions of IDS
to cover the attack graph with an efficient greedy algorithm.

In [GTHM14], Godefroy et al. present how they compute correlation rules automatically from
extended attack trees, to detect complex attack scenarios. In the transformation process from an
attack tree to the corresponding correlation rule, the only manual process is the first step, the
identification of the elementary attack actions that can be attached to the leaves of the attack tree.
This technique also relies on a knowledge base containing the system cartography, the available
sensors and their configuration etc.. Thus, it separates the expert knowledge needed to create the
correlation rules in three low-coupled domains: attack scenario specification, system cartography
and sensors modelling.

3.5.1.2 Selection of corrective remediations or active responses

In [NJOJ03], Noel et al. present a methodology to compute hardening options from an exploit
dependency graph, a type of attack graph. They start from the attack goals and do a backward
traversal of the graph to compute the minimal sets of necessary initial conditions. Then, they
minimise hardening costs of responses by choosing the minimal hardening measures.

In [MBFB06], McQueen et al. use a compromise graph to measure the risk reduction of a
security measure. They generate a compromise graph on the currently deployed system and on a
enhanced system, the same system with a security measure deployed. Once the compromise graphs
have been generated, they estimate in each graph the dominant attack path, the path with lowest
time to compromise. Then, they compare the dominant attack path in the current system with
the one on the enhanced system to measure the improvement of the enhanced system.

In [CAB+06], Cuppens et al. describe how the LAMBDA language (LAnguage to Model a
dataBase for Detection of Attacks), can be used to model attacks. An attack in LAMBDA is
composed by (1) a precondition, describing the state of the system required to do the attack, (2) a
post-condition, describing the state of the system after the attack, (3) a detection, describing the
expected alerts when the attack occurs, and (4) a verification, describing a condition to check
that the attack actually occurred. The LAMBDA language can also model countermeasures. A
countermeasure in LAMBDA is composed by (1) a precondition, describing the state of the system
required for the countermeasure, (2) a post-condition, describing the state of the system after
applying the countermeasure, (3) an action, describing the actions to apply the counter-measure,
and (4) a verification, describing a condition to check that the counter-measure has actually been
applied. Then, using the concept of anti-correlation, the LAMBDA language allows to compute
the appropriate countermeasures for an attack.

Kijsanayothin and Hewett present in [KH10] a methodology based on a static analysis of attack
graphs using logical expressions in order to select cost-effective countermeasures. This methodology
relies on a conditional preference network, a graphical model representing preference relationships
among decision variables. This network allows to know among two decisions the one that best
fit the preferences. Kijsanayothin and Hewett use it to choose the most preferred countermeasure
among the set of possible countermeasures computed by logical expressions

In [WNJ06], Wang et al. base their analysis on the initial conditions of a logical attack graph to
compute all hardening options for a network. The initial conditions represent the logical conditions
that are not a consequence of another exploit in the attack graph. They can thus be disabled by
responses independently of the other exploits. In order to compute possible responses, they start
from the goal condition, describing the state they want to protect, and travel backward along the
graph, until finding sufficient and necessarily set of initial conditions to remediate. This approach
has been improved by Albanese et al. in [AJN12] with a near-optimal algorithm more efficient
and cost-sensitive. This algorithm is a near-optimal approximation algorithm, which thus scales

38

3.5. Computing and ranking responses using attack models

almost linearly with the size of the attack graph. They remove the usual assumption that hardening
actions are independent. In addition to the attack graph, they also add a cost model which takes
into account the impact of interdependent actions.

Dewri et al. present in [DPRW07] a methodology to compute the optimal security hardening
responses from an attack tree, using a multi-objective optimisation algorithm. It aims at addressing
the administrators’ dilemma: how to select the appropriate hardening measures with a minimum
cost and being under a fixed budget constraint.

In [NJ09], Noel and Jajodia describe several methods to prioritise the deployment of patches
depending on a TVA topological attack graph. They present three different kinds of recommen-
dations to harden a network: (1) at the attack source, to prevent other attacks from this source,
(2) at the attack goal, to protect a specific attack goal, (3) a minimum-cost hardening, to deploy
the minimum of patches in the network while protecting an attack goal from an attack source.
They also use TVA attack graphs to correlate intrusion alarms based on attack causality.

In [HLZ10] Henry et al. use Petri nets to identify high-value risk mitigation opportunities
to use an informed search over the coverability set. The coverability set gathers the places and
transitions representing the industrial process failure and attacker actions that cause these failures.
First, they sort the process failure modes of the coverability set by decreasing severity. Then, they
identify the first-order, second-order, third-order and fourth-order transitions, i.e. the transitions
of coverability set allowing to enter a process failure in respectively one, two, three or four steps.
Finally, they identify the risk mitigation opportunities as the host resources or global resources
control failure models that are preconditions of first-, second-, third or fourth order transitions.

Wang et al. uses in [WZK13] a Hidden Markov Model to infer the optimal security hardening
measures. In order to do that, they apply a heuristic algorithm on the HMM to compute the
optimal measures.

In [MRT15], Miehling et al. use a Bayesian attack graph to compute optimal defences policies to
protect a critical subset of resources of a computer network. They assume that the input Bayesian
attack graph has already been computed (by the techniques of Frigault and Wang [FW08] or Xie
et al. [XLO+10]). The countermeasures are modelled by a set of binary actions that can prevent
attacker actions Then, they use a partially observable Markov decision process to formulate and
resolve the defender challenge that can partially observe the attacker’s actions.

3.5.1.3 Conclusion

We have seen in this subsection that we can use the attack models to support the computation
of responses. First, attack models allow to optimise the configuration and deployment of passive
responses, for example by using attack graphs to find the optimal locations to deploy IDSs. Or
we can also use these models (e.g., attack trees) to compute the correlation rules that will be used
to configure sensors to detect more complex attack scenarios. We can also use attack models to
compute corrective remediations or active responses. For example, the attack graphs can support
the computation of the minimal set of responses to deploy in order to protect attack goals, to
compute all hardening options for a network, or even to prioritise the deployment of patches in a
system. We can also used Petri nets, Markov Model and Bayesian attack graphs to identify the
best possible risk mitigations to protect a subset of critical resources.

3.5.2 Topological and functional models of an information system

Many response selection methodologies require a topological or functional model of the information
system, in order to select the right response to deploy and assess its impact. Recent developments

39

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

show that topological models of an information system can be created automatically from network
scans.

In [MMDD09], Morin et al. present M4D4, a data model formalising the topology and security
systems of a network. It stores contextual information (e.g., topology and cartography), attack
and vulnerabilities, analysers (e.g., detection probes, firewall, vulnerability scanners) and events
and alerts. It can also interact with external relational databases to retrieve other types of facts.
Then, it can be queried with simple queries to retrieve topological information or more advanced
ones to perform alert correlation.

In [JN10], Jajodia and Noel detail how to build a network model of the information system
(all authorised connections throughout the network) from vulnerability scans targeting the entire
network, performed from each of the subnets. It can also be created by importing the configuration
of network devices as it is done in commercial solutions such as in Skybox Security 3. The model
should be as accurate as possible to be exploitable. Nevertheless, its completeness is not guaranteed
by the currently available technology.

The functional model of an information system is complementary to the topological one. It con-
tains the dependencies between components of the information system and can be used to improve
the automation of the deployment of remediations. In [TK02], Toth and Kruegel present a depen-
dency model allowing to determine the impact of remediations on the whole system. In [KCBCD10],
Kheir et al. present a dependency graph modelling dependencies between system resources. The
graph is built manually or preferably automatically and contains all system resources (networks,
machines, services, user groups) and their dependencies. In this graph, each resource has a level
of confidentiality (C), integrity (I) and availability (A). Then, changes (either attack or response
effects) are simulated by spreading C-I-A values into the graph, according to dependencies, to see
their impact on system resources.

Functional models also help the impact analysis of cyber-defence missions. In this domain,
missions are decomposed in tasks, relying on information system assets. In [SSL15], Sun et al. build
a System Object Dependency Graph (SODG) and a Mission-Task-Asset (MTA) map, associating
the missions and tasks with their related assets (system objects, processes, files, etc.). Both
models are used to build a Bayesian network inferring the probabilities of tasks and missions of
being impacted by intrusions collected by evidences (logs, security sensors, etc.). Thanks to that,
they can evaluate the impact of attacks on tasks and missions.

3.6 Response selection criteria

According to Carver [Car00] and Mu et al. [MSL10], the selection of an appropriate response to
respond to an intrusion detection can take into account several criteria.

• Criteria related to the attack :

Type of attack: The response depends on the type of attack that the defender has to deal
with (protocol and applications used, vulnerability exploited, etc.).

Timing: According to the point in which the attack is (before an attack, during an attack
or after an attack), some responses will be more appropriate.

Type of attacker: If the type of attacker can be known, the response has to be chosen
according to the type of attacker and his skills. For example, the response to a bot
script will be different to the response to a targeted attack by a high-level attacker.

Attack severity: According to the importance of the damages that can be caused by an

3Skybox security, inc., http://www.skyboxsecurity.com/

40

http://www.skyboxsecurity.com/

3.7. Response selection methodologies

attack, the response will be different. For example, the same attack on machines that
are not as much critical can have different responses.

Goals of the attack: Even if it is often very difficult to know it a priori, it is much easier
to protect an information system when only few machines need to be protected.

Confidence in the alert: Sensors are not entirely reliable and can have false positives. It
is thus good to take into account this uncertainty in the received alerts and take the
responses accordingly.

Number of alerts: The number of alerts received in a short period of time or that are
part of the same attack scenario is often an indicator of the power of the attack, the
confidence in the alerts, or may allow to identify the type of attacker.

• Criteria related to the response:

Effectiveness of the response: A response will be chosen to stop an attack. Its ability to
effectively block the attack has to be considered in the selection process.

Probability of failure of the response: Strongly related to the effectiveness of the re-
sponse, the probability that the response fails and does not stop the attacker has to be
taken into account to compare responses.

Intensity of the response: A stronger answer is more likely to stop an attacker, but it
might also have bigger side effects.

Negative impacts of the response: All responses have negative impacts on the informa-
tion system. Those impact must be taken into account, because they are sometimes
more harmful than the attack itself.

Cost of the response: The operational costs of deploying a response or the duration to
implement it can be strong limitations to select a response.

Durability of the response: This criterion is less important for a short-term response,
but it can be balanced with the operational costs, as a long-term response, event more
expensive to deploy can be a better choice.

• Criteria related to the target :

Vulnerability exposure: If the asset targeted by an attack is not vulnerable to the used
vulnerability, it is irrelevant to deploy a response.

Confidentiality, Integrity and Availability constraints: If the target of the attack or
of the host has strong constraints of Confidentiality, Integrity or Availability, the re-
sponse selection has to take into account those constraints.

Environmental constraints: There may also be many constraints external to the infor-
mation system itself, which may need to be taken into account to select an appropriate
response to an attack (e.g. legal or ethical constraints).

3.7 Response selection methodologies

Several methodologies have been proposed in the state of the art to select the responses to deploy.

The Analytic Hierarchy Process (AHP) has been used by Wu et al. in [WXX+08] to select the
responses to deploy. It is a structured technique to take complex decisions to take into account
several criteria. The 4 criteria taken into account to select the responses are: (1) the effectiveness
of the response, (2) the influence of the response on other services, (3) the time needed to deploy

41

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

the response, and (4) the resources necessary to deploy it. The main advantage of the AHP is that
the administrator only has to compare two responses on each criterion to quantify the importance
of each criterion for a response selection, rather than setting arbitrary values. Then, the priorities
to give to the criteria are deducted from the eigenvector of the matrix containing these values.
In [KLI08], Kim et al. also propose a method based on the AHP to find a higher ROSI (see
section 3.8.4 for more details about ROSI).

It is also possible to select a remediation using a dependency graph implementing three main
steps: (1) Build the model. This step consists to put in the graph all system resources (networks,
machines, services, user groups) and their dependencies. This can be built manually or preferably
automatically. (2) Update the model with current system state. Information is gathered from
monitoring and surveillance systems to specify the confidentiality, integrity or availability value
of the monitored resources. Then we use the dependency graph to propagate these values to all
resources of the model. (3) Compare response to an attack. The last step begins with the simulation
in the dependency graph of the effects of each response (after simulating or detecting an attack).
Then, thanks to a comparison operator of a model state, we can compare possible responses and
know which is the better to deploy. In [KDCB+09a, KCBCD10], Kheir et al. propose a framework
modelling dependencies which handles both confidentiality, integrity and availability. This model
represents a network with a graph where nodes are resources. They are linked together with arcs
modelling dependencies relations between these resources. Each node can have values representing
the level of confidentiality (C), integrity (I) and availability (A) of the resource. These values are
computed by taking into account the intrinsic state of the resource then by propagating the values
of the other nodes, according to the dependencies, by using an algorithm described in the article.
The possible responses (eventually “do nothing”) are finally applied on the current state of the
system and are compared using a function that matches a value representing the quality of user
experience (QoE) to the current state.

Another approach to choose a response based on game theory is presented by Zhu et al.
in [ZLYS10]. The attacker and defender are modelled as two players with opposite objectives
interacting with the same system. This model allows to take into account both the damage of the
attacker with the collateral damages of the responses of the defender and can also consider risk fac-
tors such as sensors errors. The approach of the Response and Recovery Engine (RRE) introduced
by Zonouz et al. in [ZKSY09, AZ12] is also based on game theory. Using a attack-response tree,
RRE takes into account the uncertainty of the IDS alerts to estimate the system security level. It
can also predict the attacker next step, in order to propose the most appropriate response.

The MITRE proposes in its Systems Engineering Guide [MIT14] the Cyber Risk Remediation
Analysis (RRA), a method to choose among responses, in order to reduce the compromise prob-
ability of an asset. It integrates in the global process of Mission Assurance Engineering whose
goals are: (1) to define the most important assets of an information system, with a Crown Jew-
els Analysis (CJA), (2) to find their risks with a Cyber Threat Susceptibility Assessment (TSA),
(3) and decrease these risks with the RRA. The RRA’s goal is to establish a list of responses
mitigating the attacks, with minimal costs. The starting point of RRA is the output of TSA, a
Threat Susceptibility Matrix ranking potential attacks on an asset on a risk scale from 1 to 5. The
first step of the RRA is to identify in the matrix which attacks to mitigate on which assets. Then,
for each asset, a table mapping each attack with possible responses associated with their effects
and effectiveness on the attack and their cost is used to choose the responses allowing to decrease
all selected attacks, with a minimal cost.

42

3.8. Metrics to balance damage and response cost

3.8 Metrics to balance damage and response cost

Besides the methods used to select a response, many metrics can be used to compare responses
with each other. We will now list the main metrics that can be used to compare responses.

3.8.1 Intrusion response cost assessment

[SSBW09] describes a method to compute a response cost. Three criteria are used:

the operational cost of the response (OC): The cost related to deploy and maintain the re-
sponse

the response goodness (RG): Represents the prevention or attenuation of damage that can do
the response

the response impact on the system (RSI): Quantifies the negative effect that response may
have on the system

So, the cost of the response is RC = OC + RSI − RG. Seven steps are necessary to estimate
this total cost. The method presented in [SBW07a] is similar, a bit less accurate, but has fewer
steps.

3.8.2 Return on investment

The Return of Investment (ROI) is a simple index that represents the efficiency of an investment.
Generally, to calculate the ROI, the benefit of an investment is divided by the cost of the investment.
A ROI for attack mitigation is often defined by the following formula [CM05]:

ALEbeforeS −ALEafterS

cost of security measure
(3.1)

where ALE is the Annual Loss Expectancy, the expected impact cost due to the attack.

3.8.3 Return on attack

In [CM05], Cremonini et al. present a new index to improve the simple return on investment: the
Return-on-Attack (ROA) index. The goal of the ROA index is to reflect the average and supposed
impact of a security solution on attackers’ behaviours. The ROA is defined as

Gain from successful attack
cost before measure− loss caused by measure

(3.2)

The attacker wants to maximise this index, whereas the defender wants to minimise it. The
ROA adds to the ROI the representation of the impacts that solutions have on attackers’ be-
haviours.

3.8.4 Return on security investment

The Return of Investment for a security investment (ROSI) is defined in [SAS06] as

(Risk Exposure× RM)− Cost of measure
Cost of measure

(3.3)

43

CHAPT 3. RESPONSE COMPUTATION USING ATTACK MODELS

where Risk Exposure = ALE = SLE×ARO (ALE stands for the Annual Loss Exposure, SLE for
Single Loss Exposure and ARO for the Annual Rate of Occurrence). The ALE has already been
defined in 3.8.2. The SLE represents the estimated cost due to one exploitation of a security flaw
during one year. The ARO represents the estimated number of times this security flaw will be
exploited. RM stands for Risk Mitigation, it is a level (06RM61) that represents the effectiveness
of the measure to protect against the exposure.

3.8.5 Return on response investment

RORI (Return-On-Response-Investment) is an index defined in [KCBCD10, Khe10] as:

RORI =
RG− (CD +OC)

CD +OC
(3.4)

where RG is the Response Goodness, it measures the ability of the response to reduce the cost of
the attack. CD is the response collateral damages, it represents the cost added by the response to
the other services and OC is the response operational costs, the costs to deploy the response.

This index is one of the first to consider not only the response collateral damages (modelled by
the CD) but also the response effects on intrusion (modelled by RG).

An improved RORI has been proposed by Granadillo et al. in [GDJ+12]. This index handles
the choice of applying no countermeasure to compare with the results when applying a security
measure. This index is also relative to the size of the infrastructure, it is thus easier comparable
in different environments. Here is the formula to compute the improved RORI :

RORI =
(ALE ×RM)−ARC

ARC +AIV
× 100 (3.5)

where ALE the Annual Loss of Exposure and RM the Risk Mitigation are defined as in 3.8.4, ARC,
the Annual Response Cost represents OC+CD in standard RORI, the cost incurred by implement-
ing the countermeasure. AIV, the Annual Infrastructure Value is the global cost expected to have
on the system in a year.

This improved RORI can be extended, as described in the same article, to apply to combined
countermeasure selection for a single attack or multiple attacks.

3.9 Analysis and conclusion

The state of the art of computation of responses to protect a system is very large. Responses aim
at handling risk. There are three types of responses. The remediations are corrective responses
that correct the vulnerability in order to prevent its further exploitation. They are generally im-
plemented by patch management software and this technology is mature, but suffers from several
limitations that cause that patch deployment still requires human intervention and cannot be fully
automated. As a result, security administrators generally have to prioritise the deployment of
patches. When corrective remediations are not possible, the second type of responses that is gen-
erally used by administrators is active response. An active response groups the actions preventing
the exploitation of a vulnerability, but without correcting it. This is generally implemented by
filtering, at the network layer, the packets bearing signs of an attempted or successful vulnerability
exploitation (e.g., by an Intrusion Prevention System). But it can also be many other types of
actions that are grouped under the name Intrusion Response Systems. Finally, the passive reme-
diations group the detection of the exploitation and its report. This is a last resort but is widely

44

3.9. Analysis and conclusion

used, as it can assist security operators in getting insights on what happened in their information
system. A system that only provides passive responses (e.g., alerts, reports) is generally called
Intrusion Detection System.

In order to select the responses to deploy for risk handling, it is possible to rely on attack models.
An attack model can support the configuration or deployment of passive responses (e.g., using an
attack graph to find the optimal locations to deploy IDSs or to compute the correlation rules used
to configure sensors to detect complex attack scenarios). We can also use an attack model to
compute corrective remediations or active responses. For example, attack graphs can support the
computation of all hardening options for a network, or even to prioritise the deployment of patches
in a system. We can also use Petri nets, Markov Models and Bayesian attack graphs to identify the
best possible risk mitigations to protect a subset of critical resources. On the contrary, topological
and functional models are generally used to analyse the impacts of the responses to deploy. There
are several either topological or functional models that have been proposed in the state of the
art and their usage is generally complementary to attack models. Rather than describing all the
attacks that are possible in a network, they describe the legitimate services or missions of the
system and describe how the services depends on each other.

Finally, to select the responses to deploy, several criteria can be taken into account, either
related to the attack, either related to the response, or related to the target of the attack. Then,
methodologies to select the responses generally rely on metrics allowing to balance damage and
responses cost. These metrics generally take into account both the positive (i.e., against the
potential attack, for example with the help of an attack model) and negative effects of the responses
(i.e., its negative impact on the system, for example with the help of a functional model), in addition
to the cost of the response.

To conclude, several criteria can be taken into account when computing/selecting a response and
this decision can rely on the use of several models, either attack or topological models. As a result,
in order to select the attacks to respond to, the first step is to conduct a proper risk assessment.
Either a static risk assessment for the computation of remediations for potential attacks, either a
dynamic risk assessment to compute active responses for occurring attacks. However, these risk
assessment methods lack a comprehensive methodology to compute remediations that could apply
to any type of attack, with any kind of remediations that are proposed by the security operators.

45

Chapter 4
Remediating the logical

attack paths of an attack graph

Chapter 3 showed that one main usage of risk assessment models is to support the computation of
responses in order to prevent or mitigate the risk of attacks. It also shows that the risk assessment
methods lack a comprehensive methodology to compute remediations that could apply to any type
of attack, with any kind of remediations.

In this chapter, we present the use of an existing static attack model, the logical attack graphs,
to compute remediations to potential attacks. This is the first necessary step to understand how
a multi-step attack model is valuable to compute responses. It will also allow to identify the
elements required in a dynamic risk assessment model to support the computation of responses in
operational time. Operational time in our context means the time needed for a human to properly
understand a situation and take a decision (i.e., a few minutes).

We design in this chapter a generic remediation process correcting the most relevant attack
paths extracted from a logical attack graph. The method to remediate these paths consists in
(1) selecting the set of preconditions necessary to reach the attack path target, (2) building the set
of remediation candidates to correct the set of necessary preconditions, if possible, and (3) rank
the remediation candidates according to a cost function considering both operational and impact
costs. It relies on a generic remediation database matching vulnerabilities with their remediations.
This process corrects only the most relevant attack paths rather than the whole attack graph which
is generally too complex to analyse.

This chapter is part of the contribution described in subsection 1.3.3, the use of risk assessment
models to support the computation of responses, and tackles the challenge described in subsec-
tion 1.2.4: the usability of attack models.

4.1 Attack paths and preconditions

The main model on which we build this remediation process is a logical attack graph from which
we extract attack paths. First, we introduce the formal representation of these models.

47

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

4.1.1 Attack path representation

Definition 10 A logical attack graph G is a directed AND-OR graph represented by G(V,A)
where:

• V is a set of vertices that describe logical facts. Each vertex could be an AND (respectively
an OR) vertex, meaning that this vertex needs the conjunction (resp. the disjunction) of its
incoming arcs to be true.

• A is a set of directed arcs that represent a logical dependency from the child vertex to the
parent one.

Definition 11 A precondition in a logical attack graph is a vertex whose indegree is 0, deg−(v) =
0 (no incoming arcs).

Figure 4.1 shows an example of a simple logical attack graph generated with the attack graph
engine MulVAL [OGA05a, OBM06]. Ellipse vertices represent AND and diamond vertices represent
OR. The rectangle vertices are the preconditions. This graph shows how an attacker on the
Internet can exploit the vulnerability CVE-2016-0001 on the application app1 on host host1 to
get the privilege app1_user on this machine. From the Internet, or from the already exploited
host1, the attacker can exploit the vulnerability CVE-2016-0002 on the application app2 on host
host2 to get the privilege app2_user on this machine.

Figure 4.1 – Example of logical attack graph

In an attack graph as defined above, security operators can choose attack targets. These are
the vertices describing important final steps for an attacker. For example, in Figure 4.1, the targets
are the nodes in red. They represent the acquisition of a new privilege on a host, represented by
the execCode primitive.

Based on these targets we build attack paths using a bottom-up approach from the target to
the upper preconditions of the attack graph. They can be ranked according to their impact and
probability of occurrence, but we will not enter into much detail as this subject has been already
discussed many times in the state of the art. For example, in [MBZ+06], Mehta et al. propose
two algorithms to rank the states of an attack graph, in order to concentrate only on relevant
subgraphs. In [SO08], Sawilla and Ou generalise Google’s Page Rank algorithm as AssetRank and

48

4.1. Attack paths and preconditions

apply it to MulVAL’s attack graph to extract from the attack graph the most vertices. Birkholz
et al. present in [BEJS10] how to extract from a vulnerability graph (a kind of attack graph) what
they call attack trees (which are equivalent to our definition of attack path here). In order to do
that, they apply a modified version of the Dijkstra algorithm to detect the highly vulnerable attack
paths. So, from a logical attack graph, we can extract ranked attack paths, as defined below.

Definition 12 An attack path is an acyclic and logically valid subgraph of an attack graph with
one target and several preconditions.

Definition 13 The target of an attack path is the vertex whose outdegree is 0, deg+(v) = 0 (no
outgoing arcs).

Definition 14 A subgraph S of an attack graph G is logically valid if S contains at least one
vertex and for each vertex v ∈ S, v ∈ G and
if deg−G(v) > 0 (more than one incoming arc in G):

• if v is an AND, all the parents and incoming arcs of v in G are in S,
• if v is an OR, at least one parent of v and its incoming arc in G is in S.

An attack path may have several intermediate goals but has only one main goal: the target of
the attack path. It contains one, several or all the possible paths in the attack graph allowing to
compromise this target.

Figure 4.2 shows two attack paths extracted from the two targets of the logical attack graph of
Figure 4.1. The attack path of Figure 4.2a is built from the target node execCode(host1, app1_user)
and contains 8 nodes of the original graph. The attack path of Figure 4.2b is built from the target
node execCode(host2, app2_user) and contains 17 nodes of the original graph. The attack path
of Figure 4.2a is included in the one of Figure 4.2b. Indeed, the target node of the first one is an
intermediate target of the second one.

4.1.2 Remediations and sufficient preconditions

Proposing remediations to an attack path is searching the means to prevent the attacks and
protect its target. An attack path is a logical graph: a fact is true if and only if the conjunction or
disjunction (according to the type of node) of its parents is also true. As a precondition does not
have any parent, it is not deducted from any other vertex. As a result, we build our remediation
using this axiom:

Axiom 1 Preconditions are the first conditions from which all other vertices are deducted and thus
the only vertices for which remediations can be applied.

The attack path contains one target that remediations has to protect. As the attack path
is an AND-OR graph, it is possible to compute all conjunctions of to-be-remediated preconditions,
sufficient to protect the target. This logical expression SP can be represented with a set of
disjunctions containing conjunctions as following:

SP =
∨
i

SPi =
∨
i

∧
j

SPi,j (4.1)

where
∨

is logical OR,
∧

is logical AND, SPi is a conjunction of preconditions sufficient to protect
the target (i indexing the conjunction of preconditions) and SPi,j is a precondition to remediate
(j indexing the preconditions).

49

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

Figure 4.2 – Examples of attack paths

(a) Attack path 1

(b) Attack path 2

In fact, computing SP is identical to find all the conjunctions of preconditions sufficient to
delete the target vertex according to the AND/OR formalism.

Definition 15 A conjunction of precondition SPi is sufficient to delete the target t of an attack
path AP if the deletion of each precondition SPi,j ∈ SPi and its propagation in AP imply that
henceforth t /∈ AP .

Figure 4.3 shows the recursive algorithm computing SP . We call this algorithm on the target
of the attack path and it follows recursively along the arcs. All conjunctions of preconditions
computed with this algorithm allow to prevent the access to the target, if remediated. Of course
all preconditions cannot be remediated. If this is the case in a conjunction, the entire set of
preconditions will not be usable to successfully protect the target of the attack path.

4.2 Remediation of an attack path

Figure 4.4 shows a diagram summarising the remediation process. The remediation process starts
with an attack graph that generates the logical attack graph from a topological model of an
information system. Then, attack paths are extracted from the attack graph and scored. For each
scored attack path, we compute remediations by, (1) remediating the preconditions individually
(potentially by using a remediation database and a network simulation tool), and (2) identifying

50

4.2. Remediation of an attack path

Figure 4.3 – Recursive algorithm computing the conjunctions of sufficient pre-
conditions

1: function computeSP(Vertex v) � Returns the list SP to delete the vertex v

2: if v is a precondition then � v has no parent
3: return [[v]] � it is the only precondition
4: else if v is an AND then
5: res←[[]]
6: for each parent p of v do
7: res← res;computeSP(p)
8: end for
9: return res �

∨

p∈{parents of v}
computeSP(p)

10: else if v is an OR then
11: res←computeSP(first parent of v)
12: for each other parents p of v do
13: res←conjunctionOfSets(res,computeSP(p))
14: end for
15: return res �

∧

p∈{parents of v}
computeSP(p)

16: end if
17: end function
18: function conjunctionOfSets(A, B) � Makes the conjunction of sets A and B
19: result← [[]] � A and B are Or/And sets: A =

∨

i
Ai, Ai =

∧

k
Ai,k

20: for i = 1 to size(B) do
21: buildingResult← A
22: for j = 1 to size(buildingResult) do
23: buildingResult[j]← buildingResult[j];B[i]
24: end for
25: result← result; buildingResult
26: end for
27: return result � (

∨

i
Ai) ∧ (

∨

j
Bj) =

∨

i,j
(Ai ∧Bj)

28: end function

the sets of preconditions that are sufficient to protect the attack path target. From both these
results, the remediation candidates algorithm build sets of remediation candidates. The ranking
of these remediation candidates is done by two cost functions: (1) the impact cost function that
assess the cost of the impact of this remediation on the system, according to a functional model and
the network simulation tool, and (2) the operational cost function that assess the cost associated
with the deployment of this remediation (e.g., manpower, remediation cost).

Figure 4.4 – Remediation process based on attack paths

51

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

4.2.1 Remediate a precondition

A precondition contains a logical fact describing what can be used by an attacker. We detail real
preconditions and their remediations in subsubsection 4.4.2.3, but will first describe two general
methodologies that can be applied to preconditions.

4.2.1.1 Simple remediations to preconditions

The first case appearing when remediating a precondition is a simple remediation that can be
applied to negate this precondition. This usually corresponds to the corrective responses presented
in the state of the art. It requires a database that makes the link between the precondition (e.g.,
the vulnerability) and how we can remediate it (e.g., a patch).

4.2.1.2 Remediations using the network topology

Some remediations require more advanced techniques. This is the case of those which try to
prevent the exploitation of a vulnerability. It corresponds to the active responses of the state of
the art. Computing such remediations requires an accurate knowledge of the flows exchanged on
the network and thus require to simulate the network topology.

4.2.2 Remediation candidates for an attack path

Each remediation potentially contains several elementary actions. More formally, for each attack
path, we have succeeded in computing:

• A disjunction of conjunctions of sufficient preconditions to remediate, in order to protect
the target of the attack path: SP

• A disjunction of conjunctions of remediation actions sufficient to prevent a precondition
p:

RA(p) =
∨
i

RAi(p) =
∨
i

∧
j

RAi,j(p) (4.2)

where RAi(p) is a conjunction of remediation actions allowing to prevent the precondition p
(i indexing each conjunction) and RAi,j(p) is a remediation action (j indexing each action of
the conjunction) each remediation action RAi,j is constituted of the tuple (action to apply,
machine to deploy it).

We need to combine SP and RA to compute a disjunction of remediation candidates con-
taining the actions that allow to protect the target:

RC =
∨
i

RCi =
∨
i

∧
j

RCi,j (4.3)

where RCi is a remediation candidate (i indexing the number of candidates) and RCi,j is a reme-
diation action (j indexing the number of actions in the candidate).

Figure 4.5 shows an algorithm computing such remediation candidates.

52

4.3. Costs of remediations

Figure 4.5 – Algorithm computing the remediation candidates

1: function computeCandidates(SP , RA) . Returns all remediation candidates protecting an attack
path.

2: res←[[]]
3: for SPi in SP do
4: res← res ; computeRemedsToPreconds(SPi, 1, RA)
5: end for
6: return res
7: end function
8: function computeRemedsToPreconds(SPi, j, RA) . Returns all conjunctions of actions

allowing to remediate the preconditions of SPi starting from j.
9: SPi,j ← SPi[j] . jth precondition to remediate

10: RAj ← RA[SPi,j] . Remediations of jth precond
11: if empty(RAj) then . jth precondition cannot be remediated
12: return [[]]
13: else
14: if j=size(SPi) then . Terminaison of recursion
15: return RAj

16: else
17: RAj+1..n ←computeRemedsToPreconds(SPi, j + 1, RA)
18: return conjunctionOfSets(RAj , RAj+1..n)
19: end if
20: end if
21: end function

4.3 Costs of remediations

The last essential point for our remediation method is to estimate the cost of a candidate. This
helps an operator to choose between several candidates remediating the same attack path. We have
identified two principal sources of cost that must be considered: the operational and the impact
costs.

4.3.1 Operational cost

The first important cost for an operator deploying a remediation is the operational cost (OC). It
represents the difficulty to implement the remediation on the assets and to maintain it. For each
remediation action RCi,j that should be applied, we identified four categories in which this cost
can be split.

1. Remediation cost (RC): This is the cost of the input required to apply the remediation,
for example, the price of a patch or of a signature.

2. Deployment costs (DC): This is the cost representing the workload to apply the remedi-
ation on the concerned machine.

3. Test costs (TC): This is the cost to test that all important features of the information
system are still working as expected, after the deployment.

4. Maintenance costs (MC): This is the cost per year of the maintenance induced by the
remediation. It reflects for example the increase of CPU, memory, storage and treatment of
logs that will be induced.

53

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

These elements can be expressed in a monetary unit and we detail in Subsection 4.4.2.5 how
to compute them. The operational cost of a remediation action is the sum of all these elements as
shown in Equation 4.4.

OC(RCi,j) = RC +DC + TC +MC (4.4)

To simplify the estimation of the operational costs of a candidate containing several remediation
actions, we made the assumption that these actions are independent. This assumption has been
introduced and justified by Gonzalez-Granadillo et al. in [GJDC12] as Axiom 1. This is, moreover,
the most common case, as the remediation actions are usually deployed on different machines or
are of different types. With this assumption, the operational cost of a candidate is the sum of the
operational costs of its actions, as shown in Equation 4.5.

OC(RCi) =
∑
j

OC(RCi,j) (4.5)

4.3.2 Impact cost

As this subject has been frequently treated in the state of the art (for example, see in subsec-
tion 3.5.2), and we prefer to focus in this work on the methodology which is independent of the
system studied, we propose here a basic impact cost (IC) function that measures the loss due to
the unavailability of services after the deployment of a remediation. This function uses a list of
(1) dependencies of business applications toward services, (2) services toward network accesses and
(3) interdependencies between services. In addition to this are added cost values related to the
temporary and permanent unavailability (UC) of business applications.

Thanks to those parameters, we can compute the cost of unavailability of all business applica-
tions before (on the real system) and after (on a simulated system) deploying a candidate RCi, by
checking recursively that the service dependencies is verified as shown in Equation 4.6.

IC(RCi) =
∑

ba∈businessApp

isImpactedBy(RCi, ba) ∗ UC(ba) (4.6)

The impact cost is certainly the most important part to take into account when deploying
a remediation but it is perhaps also the most difficult to quantify, as it is hard to estimate the
cost if a business application is unavailable and to know which applications will be disrupted by a
remediation candidate. It is therefore very important to provide security operators with indications
about such a cost, to help them choose at best the remediation to deploy.

4.3.3 Ranking remediation candidates

These costs allow us to attach a global cost C to a candidate as shown below:

C(RCi) = OC(RCi) + IC(RCi) (4.7)

The candidate cost function can be considered as a ranking function taking as input an unsorted
set of remediation candidates and that outputs a set of the same candidates sorted according to
their cost. This allows a security operator to select one of the candidates that has the lowest cost.

54

4.4. Validation

As the remediation candidates cost function is only used to compare candidates with each
other, even if the cost parameters are not assigned exactly, it does not change significantly the
order between them. Thus, the details of the cost model parameters are not required, but only
need to represent a tendency, in order to conserve the ranking between candidates. This assumption
has also already been justified by Gonzalez-Granadillo et al. in [GJDC12].

4.4 Validation

4.4.1 Complexity

What must be well understood before talking about the complexity of our algorithms is that in
this chapter, we propose remediations to attack paths and not to a whole attack graph. We thus
have smaller complexity issues. Indeed, an attack graph is usually a large graph whereas, an attack
path is smaller, because it focuses only on the most impacting or the most likely ways to access a
target.

The complexity of the algorithm computing the candidates is not a significant issue, because
(1) it is linear in the number of conjunctions of preconditions and (2) the number of remediations for
one precondition is generally low. The algorithm computing SP depends highly on the structure
of the input attack path, especially on the number of parents of each vertex. In the best case
(each vertex has only one parent) this algorithm is linear in the number of vertices. In the worst
case (each vertex has several parents), the complexity is exponential in the number of parents
of OR vertices. This is the factor that most influences the complexity. We made simulations on
non-realistic graphs with different varying parameters (number of parents, OR nodes, AND nodes,
preconditions...) to validate these results. Nevertheless, in practice on several real use cases, we
found that the number of parents for OR vertices in attack paths is generally low: an average of
1.7 per OR vertex in attack paths produced by MulVAL. This can be simply explained knowing
that, in an attack path, as explained above, we only have few different possibilities to compromise
a target, alternatives creating disjunctions in the attack path. It implies that this methodology
generally scales well, if the attack paths are properly generated.

4.4.2 Experimental validation

4.4.2.1 Simulation of the network topology

In order to compute remediations to attack paths, we need a simulated network topology represent-
ing the target IS. Thus, we created a network simulator that accurately reproduces simple network
behaviours of hosts: we are able to simulate exchanges between hosts, calculate routes, test if a
packet can pass firewall rules, etc. We designed a pivot file in which we put the topological infor-
mation needed by the simulator. We also created connectors to automatically build such a file. The
first connector we built was a python server that gathered the topological information collected by
agents deployed on Linux machines into the pivot format. The second connector was built for the
European Research Project PoSecCo1, where we had an ontology containing the network topology
We thus implemented a connector that was querying in the ontology for the information needed.
It has been extended for FI-WARE2 as CyberCAPTOR and is available on Github3.

1PoSecCo Research Project, http://www.posecco.eu
2FI-WARE Research Project, https://www.fiware.org/
3CyberCAPTOR, https://github.com/fiware-cybercaptor/cybercaptor-server

55

http://www.posecco.eu
https://www.fiware.org/
https://github.com/fiware-cybercaptor/cybercaptor-server

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

Table 4.1 – Main MulVAL preconditions and their remediations

Preconditions Description Possible remediations

hacl(src, dst, port, protocol) The host src has access to dst
on port using protocol

Deploy a firewall rule

vulExists(host, vulID, pro-
gram)

program on host has a vulner-
ability vulID

Apply a patch or deploy a
Snort rule

networkServiceInfo(host, pro-
gram, protocol, port, user)

program on host launched as
user open port using protocol

Stop this network service

hasAccount(user, host, ac-
count)

user has account on host Disable this account

4.4.2.2 Generation of attack paths

We use the open source attack graph engine MulVAL [OGA05b]. It requires three types of inputs:
topological, filtering and vulnerability information. We combine our simulated topology with a
vulnerability scan done with Nessus4 by merging the information about services and their vulner-
abilities extracted from the scanner report into our topology. MulVAL inputs are stored in a file
using the Datalog language. It outputs an XML file containing the logical attack graph computed
thanks to its engine from which the attack paths are extracted.

4.4.2.3 Preconditions in MulVAL and their remediations

The main preconditions proposed by MulVAL to model attacks and their remediations is shown
in Table 4.1. This table describes, for 4 types of MulVAL preconditions (networkServiceInfo,
hacl, vulExists and hasAccount), their description and possible remediations. We will focus here
only on three relevant types of remediation for an enterprise: applying a patch, deploying a rule on
an IPS (preventing vulExists()) and deploying a firewall rule (preventing hacl()), because the two
other preconditions (networkServiceInfo() and hasAccount()) have no realistic remediations (e.g.,
deleting a user account or uninstalling an application is generally not a viable solution).

4.4.2.3.1 Application of a patch In order to propose the right patch to a vulnerability, we use
the parameter in the fact of the precondition vulExists containing the identifier of a vulnerability,
generally a CVE (Common Vulnerabilities and Exposures) 5. We use this identifier to look for
known patches in the remediation database we describe in Subsection 4.4.2.4.

4.4.2.3.2 Deployment of a firewall rule To compute the firewall rule that should be de-
ployed, we use all the parameters of the fact hacl(src, dst, port, protocol). This precondition
explains the network access the attacker needs for his attack. So, it should be negated by the rule
to deploy, which should have the following form:

DROP FROM sr c TO dst : port USING pro to co l

It can be generated according to the type of firewall aimed. For example, we propose an
automatic generation of iptables 6 firewall rules.

The last challenge we need to deal with for the firewall rules proposal is where it should be
deployed. We use here the topology simulation presented in subsubsection 4.2.1.2 to determine

4Tenable Nessus, http://www.tenable.com/products/nessus
5MITRE Common Vulnerabilities and Exposures, https://cve.mitre.org/
6Netfilter iptables, http://www.netfilter.org/projects/iptables/index.html

56

http://www.tenable.com/products/nessus
https://cve.mitre.org/

4.4. Validation

the route followed by packets between src and dest:port. We then deduce on which machine the
firewall rule can be deployed.

4.4.2.3.3 Deployment of an IPS rule The last type or remediation we will detail is the
deployment of IPS rules for Snort [R+99] which prevent the exploitation of a vulnerability. For
each vulExists related to a hacl, we know (1) The Snort rules that may exist to prevent the
exploitation of the vulnerability by searching its identifier in the remediation database presented
in Subsection 4.4.2.4, and (2) the network routes that may be used by the attacker to exploit
this vulnerability, by using the simulation of the network and a deduction process similar to the
calculation of the firewall rules. On each route, we must have a Network IPS where we can deploy
the rule. Otherwise, the remediation is not possible. The rules we propose here must be used with
Snort in inline mode and they begin with the drop keyword, meaning that we use it as an IPS.

4.4.2.4 Filling the remediation database

One challenge of the proposition of remediation is the ability to build a remediation database
automatically. We will describe here how we solve it.

Database model We use a relational model stored in a SQLite file. We choose to use a model
similar to the one used in the National Vulnerability Database7 to represent vulnerabilities.
Then, we added two tables corresponding to the types of remediations. In order to have a N-
to-N association with the vulnerabilities, we also add a join table for each kind of remediation.

Patches We used the NVD8 to find the links toward patches that correct vulnerabilities. Among
the attributes related to a CVE, a reference can point to a website describing how to patch
the vulnerability. So, we parse the dumps of the NVD, extract the links toward patches and
store it in the database. Around 20% of the CVE have a “PATCH” reference attached.

Snort rules In the standard format of a Snort rule, there is an option “reference” which often
contains a CVE. In the freely available database of rules provided by Sourcefire9, nearly 50%
of the rules are related to a CVE.

4.4.2.5 Providing the cost parameters

Operational costs Operational costs depend largely on the company and on the remediation.
So, we choose in our prototype to assign parameters per types of remediation. Generally, the
difference of operational costs between remediations of the same type is low, but it may also
be possible to add the cost parameters into the remediation database, in order to be able to
attach to each remediation specific operational costs parameters.

Impact costs The description of dependencies used for impact costs is also totally dependent
on the information system and has to be provided by the security operator. To describe
these dependencies, we use an XML file in which the dependencies relations are described
according to a dependency graph.

7NIST National Vulnerability Database, https://nvd.nist.gov/
8NIST National Vulnerability Database, https://nvd.nist.gov/
9Sourcefire, https://www.snort.org/products

57

https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.snort.org/products

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

4.4.2.6 Simple experiment scenario

In order to validate the whole remediation method described in this chapter, we applied it on
several test topologies. We will present the remediations on a simple scenario implementing the
main concepts.

4.4.2.6.1 Network topology and attack scenario The first scenario we implement rely on
a topology that we deployed on virtual machines. It contains 5 Linux-based hosts: a web server,
a database server, an administration machine inside a LAN, a firewall that protects the LAN and
the servers from the Internet, and the attacker’s machine that is on the Internet. We configure the
firewall in such a way that the web server is the only service that is accessible from the Internet
and the LAN. The web server needs the database server to work properly and has a full access to
it. The enterprise has two business applications using the IT: an Extranet which is rarely used and
an Intranet which is used for all employees and is thus much more critical. The database server
also contains some confidential information that the company wants to protect.

When the web server is exploited, the attacker can access the database server and with another
exploit can try to gain access to all the data it contains. This is the attack path that will be
described in the rest of this scenario.

4.4.2.6.2 Generation of the attack path and proposition of remediations To collect
the topological information, we use the python agents described in Subsection 4.4.2.1. We generate
MulVAL inputs and launch the attack graph engine, then extract the attack paths and select the
one presented above. It chains the exploitation of two vulnerabilities: the first one CVE-2004-1315
is on the web server, the second one, CVE-2012-3951, is on the database server.

We use our prototype to visualise the attack path to correct and the remediation candidates.
We present here the four most relevant candidates, ranked by their cost. We also explain for each
candidate why its cost is low, medium or high.

1. The first candidate is the deployment on the firewall of the Snort rule sid:12610 that allows
to block the exploitation of the first vulnerability. This remediation has a lot of advantages,
because it doesn’t interrupt any legitimate service, is not too expensive (deployment can be
nearly fully automated), and blocks successfully the attack. This candidate has no impact
costs, a low operational cost and thus a very low global cost, that is why this is the first one
to be proposed.

2. The second one is the proposal of a patch to the first vulnerability. As the first one, it doesn’t
have any impact on normal service, but has much more operational costs, because deploying
a patch need human intervention. So, this candidate has a low global cost and thus is the
second one to be proposed.

3. The third one is a firewall rule that blocks all the traffic from the Internet to the web server
on http port. It has a low operational cost, because it can be automatised, but has a medium
impact because it cuts the access from the Internet to the web server, even if it keeps all the
accesses from the LAN. So this candidate has a medium global costs and thus is the third to
be proposed.

4. The last one is a firewall rule that blocks all the traffic to the web server on http port. It
also has a low operational cost, but has a huge impact because it also cuts all the accesses
for the employees of the LAN to the web server. So this candidate has a high global cost and
thus is the last one to be proposed.

58

4.5. Related work

4.4.2.7 Results on PoSecCo’s testbed

We will now present the results of this method applied on the testbed of the FP7 European Research
Project PoSecCo10.

The main use case in which the PoSecCo prototypes have been tested has two main business
services: a broadcaster Internet distribution and a corporate streaming service. These services
have several security requirements and run on a testbed that has been deployed during the project,
on which prototypes have been tested. It contains around twenty machines (some are representing
server farms) and eight routers. All the topological information needed for our prototype is collected
from an ontology and the attack paths extracted are ranked according to their impact on security
requirements.

On the twenty machines and eight routers, there are more than a thousand vulnerabilities in
total. It was chosen for this project that there will be one attack path per target, gathering the
relevant ways to compromise it. Thus, after establishing a list of five hosts to protect in priority,
the operator has five attack paths to assess and correct. These attack paths contain between thirty
and hundreds of nodes, the possible remediations are computed in a few seconds. Due to project
limitations, only two types of remediations are proposed: patches and firewall rules. For each
attack path, many candidates are proposed (up to a hundred), and are ranked according to their
operational and impact cost. The first candidates (lower cost) offer the best compromise between
efficiency and cost and should be the best option for a security operator.

During the project, the prototype implementing this approach was presented to end-users that
compared their risk analysis and its remediation, in anticipation of a change in the testbed topology,
with and without the prototype. The end-users, independent of the project, concluded that the
scenario using this methodology was much more efficient: it reduces the analysis from four hours
to twenty-two minutes and could reduce the number of people needed for this task from between
three and six to only one. The result of this evaluation can be found in PoSecCo’s Deliverable 1.7,
in scenario SP06 [DMM+13].

4.5 Related work

The papers which describe the closest approach to our work are [WNJ06] and [AJN12]. In [WNJ06],
Wang et al. base their analysis on the preconditions of an attack graph to compute ways to prevent
attacks. But even when they evoke the cost to choose one remediation solution rather than another,
they do not present a cost function to sort candidates as we did in this chapter. In [AJN12],
Albanese et al. extend [WNJ06] mainly by adding a cost model, similar to the one we present here,
and by improving the complexity of the algorithm to compute candidates. But what distinguishes
our approach from both these is that we do not compute remediations to an attack graph but
to attack paths, meaning that our algorithms are working with smaller inputs. We are convinced
that it is much more sound and efficient to correct only the paths that are significant rather than
reasoning on the global attack graph. This was assessed on realistic use-cases.

What is also original in our approach is that our remediation computation is generic. In [NJ09]
and [NJ08], Noel and Jajodia propose various types of remediations to predefined types of attacks
modelled by attack graphs. The method we present here is more generic. Indeed, the expressiveness
of logical attack graphs allows the modelling of every attack described with AND/OR conditions and
our method applies to all of them, without the limitations identified in the related work. Dealing
with new attacks only implies to define remediation for potential new kinds of preconditions. These
remediations can be simple or may require network topology simulation, as the ones presented in

10PoSecCo Research Project, http://www.posecco.eu

59

http://www.posecco.eu

CHAPT 4. REMEDIATING THE LOGICAL ATTACK PATHS OF AN ATTACK GRAPH

this chapter.

Furthermore, several databases that contain remediations exist. However, each database is
dedicated to a type of remediation. For example, the NVD11 contains information about patches
and Snort rules databases contain only Snort rules12. In this chapter, we design a remediation
database and fill it using several available online sets of data. This database contains different
kinds of remediations and can be extended to provide new types of remediations.

4.6 Conclusion

We present in this chapter a method describing how to compute remediations for ranked attack
paths extracted from an attack graph. Attack graphs have been widely used for assessing proac-
tively the security level of an information system, we chose to use them in order to propose solutions
to enhance this security level, by computing remediations preventing the most important attack
paths. Using scored attack paths extracted from an attack graph allows us to remediate only
the very likely or impacting paths that lead to main assets which is much more efficient than
remediating the whole attack graph.

We have stated that the only vertices on which we compute remediations, within a logical
attack path, are the preconditions. We have implemented algorithms to cluster these nodes into
conjunctions of sufficient preconditions to be remediated, in order to protect the target of an
attack path. Then, after explaining how to compute remediation actions to prevent a precondition,
we detailed their combination with the sufficient conjunctions of preconditions to determine the
candidates. As the operator has to choose one remediation among several candidates providing
the same remediation objective, we assign to each remediation a global cost combining operational
and impact costs. To calculate topological remediations to certain preconditions and to assess the
effects of remediations on the system, we have designed a simulated network topology.

The logical model used for modelling attack graphs is deterministic and not dynamic. Thus, it
has to be extended into a quantitative model to represent dynamic attacks and to model them more
accurately, in order to generalise this remediation computation process into a response computation
process. However, this logical model has the advantage to be efficiently generated and processed
and is well suited to model potential attacks.

As a result, we have developed in this chapter a methodology to compute remediations that
applies to static models. It has appeared that risk is a key indicator to select the attack paths
to correct, by combining the likelihood of the path with the impact it may have on the system.
So, in order to generalise this remediation computation methodology into a response computation
methodology for occurring attacks, the first step is to build a reliable dynamic risk assessment
model giving the riskiest assets that need to be corrected.

11NIST National Vulnerability Database, https://nvd.nist.gov/
12Sourcefire, https://www.snort.org/products

60

https://nvd.nist.gov/
https://www.snort.org/products

Chapter 5
Bayesian Attack Model

In chapter 4, we have taken a static model from the state of the art as introduced in chapter 2
and have developed a process to compute remediations preventing attacks that are the most likely
to occur in a system. We came to the conclusion that the first component necessary to build a
response process to occurring attacks is to build a reliable dynamic risk assessment model. There
are two main metrics necessary for risk assessment: the likelihood and the impact of the likely
futures. The impact component of the risk strongly depends on the system to study and of the
organisation. Its computation can rely on a functional model of the system, but it cannot be
fully automated. On the contrary, methodologies to estimate attacks’ likelihood do not depend
on the system in which they are implemented. In this chapter, we thus focus on the likelihood
computation. Although many attack models have been proposed for static risk assessment, such
as attack graphs (cf. chapter 2), no model is fit for dynamic risk assessment, as they usually lack
sufficient granularity. Thus, in this chapter, we build a model that aims at assessing the risk
brought by the residual attacks that remain accessible in a system.

Given the advantages brought by Bayesian attack graphs (cf. chapter 2), we consider that they
provide a strong foundation for dynamic security modelling. Our objective is thus to propose
solutions for the two issues highlighted in the state of the art: cycles and performance. Our
proposal enables the use of Bayesian networks for dynamic risk assessment applied to real-scale
information systems. The Bayesian Attack Model we propose is built from a Generic Attack Model.
In this chapter, we first describe the Bayesian Attack Model architecture, its structure and the
nodes probability tables. We validate this model with simulations and study its sensitivity toward
its parameters. Finally, we compare the Bayesian Attack Model with the related work.

This chapter is part of the contribution described in subsection 1.3.1, the definition of a dy-
namic risk assessment model, and tackles the challenges described in section 1.2.1 and 1.2.3: the
methodology to build an dynamic risk assessment model merging different information sources and
taking advantage of the different types of attack representation.

5.1 Bayesian Attack Model architecture

The Bayesian Attack Model (BAM) described all along this section is built from a Generic Attack
Model (GAM) and a set of alerts, related to Generic Attack Model’s sensors. Figure 5.1 sum-
marises the global architecture of the Bayesian Attack Model. In this example, it is built from a
Generic Attack Model containing 3 states. The Bayesian Attack Model is composed of submodels
called Bayesian Attack Trees (Bayesian Attack Tree). Bayesian Attack Trees and Bayesian Attack

61

CHAPT 5. BAYESIAN ATTACK MODEL

Model are described in subsection 5.2.2. Each Bayesian Attack Tree is composed of a sequence
of transitions, typed nodes linked together. These transitions are described in subsection 5.2.1.
The probabilistic relations between nodes of a Bayesian Attack Tree are described in conditional
probability tables whose content is detailed in section 5.3. The last component of this architecture
is the impact analysis component that we present in section 5.4.

Figure 5.1 – Bayesian Attack Model Architecture

5.1.1 Breaking the cycles of a Generic Attack Model

As mentioned in subsubsection 2.4.2.2, attack graphs almost always contain cycles. As a Generic
Attack Model is a generalisation of attack graphs and other attack models, it can also be cyclic.
Solutions of the state of the art for Bayesian modelling either do not mention the cycle challenge,
or they delete possible attacker actions.

A solution to break cycles, while keeping all possible paths, is to enumerate all paths, starting
from every possible attack source, keeping in the nodes a memory of the path of the attacker.
So, using this memory, we can build an acyclic attack model by ensuring that the paths do not
backtrack on already exploited nodes.

Figure 5.2 shows an example of the breaking of cycles in a Generic Attack Model. Figure 5.2a
shows a Generic Attack Model of three states, containing a cycle (s1 as a transition to s2, s2 has a
transition to s3 and s3 has a transition to s1). Figure 5.2b shows an equivalent model with three
acyclic models, starting from all possible states (s1, s2 and s3). Notice that the semantics inside
the newly built nodes are a bit different: a node s1s2s3 means that the attacker controls the state
s3, having first compromised s1, then s2, finally s3.

Unfortunately, this cycle breaking process causes a combinatorial explosion in the number of
states of the newly built model. We discuss in subsection 5.2.5 how we mitigate such limitation.

5.1.2 Grouping transitions

In a Generic Attack Model, there may exist many transitions between two states. Transitions can
be of different types, depending on the attack (cf. Def. 6). Generally, in large Generic Attack
Models, there are very few different types of transitions, as detailed in subsection 7.1.1. In order
to reduce the size of the model, while preserving information, we group all transitions of the same

62

5.2. Complete Bayesian Attack Model

Figure 5.2 – Cycles in Generic Attack Model

(a) Generic Attack
Model (b) Breaking cycles

type between two states into a single vertex with (1) a new condition: a multivariable boolean
function (usually, an OR) of all conditions applying to the grouped transitions, (2) an attached
sensor node activated only when the boolean function of grouped sensors is true.

When several conditions ci of a transition t are grouped in one condition c, we define the prob-
ability of successful exploitation associated with this new condition. For example, when grouping
several conditions ci “a vulnerability is exploited on the destination state” into one new condition
c “at least one vulnerability of the list is exploited on the destination state”, we assume that the
exploitation of each vulnerability is independent, to compute its probability of exploitation P (c).
This is an acceptable approximation since we consider all the existing vulnerabilities between two
states. Thus, the probability of exploitation P (c) becomes:

P (c) = P (
∨

i∈{vulnerabilities of t}
ci) = 1−

∏

i∈{vulnerabilities of t}
(1− P (ci)) (5.1)

5.2 Complete Bayesian Attack Model

5.2.1 Representation of a Generic Attack Model transition in the Bayesian
Attack Model

A transition in the Generic Attack Model is an edge that can be associated with conditions and
can be related to a sensor. In the Bayesian Attack Model, we detail the transitions, the conditions,
and sensors as nodes, in order to model the probabilistic interactions between such elements, using
the nodes detailed below. Each node represents a boolean random variable with two mutually
exclusive states.

Definition 16 A Bayesian state node bam-stn(s1, · · · , sn), with ∀i, si ∈ S (cf. Def. 7), is
a node of the Bayesian Attack Model representing the random variable describing the state of
compromise of sn using the path of the Generic Attack Model s1 → · · · → sn. This node has two
mutually exclusive states: compromised and not-compromised.

63

CHAPT 5. BAYESIAN ATTACK MODEL

Definition 17 A Bayesian transition node bam-tn(as), with t ∈ T (cf. Def. 7), is a node of
the Bayesian Attack Model representing the random variable describing the success of t. This node
has two mutually exclusive states: succeeded and failed.

Definition 18 A Bayesian condition node bam-cn(c), with c a condition (cf. Def. 8), is a
node of the Bayesian Attack Model representing the random variable describing that the condition
c is fulfilled. This node has two mutually exclusive states: verified and not-verified.

Definition 19 A Bayesian sensor node bam-sen(s), with s a sensor (cf. Def. 9), is a node of
the Bayesian Attack Model representing the random variable describing the state of the sensor s.
This node has two mutually exclusive states: alert and no-alert.

These nodes are linked with edges, indicating that the child node has a conditional dependency
to the state of its parents. For example, a Bayesian sensor node is the child of its related monitored
element, and a Bayesian state node is the child of a Bayesian transition node.

Definition 20 A Bayesian edge bam-e, is a link from a parent node to a child node that
represents a conditional dependency of the child toward its parent.

Figure 5.3 shows the details of the representation of a transition from sn (source) to sn+1

(target). It is composed of a Bayesian transition node that binds a Bayesian state node to another
one. This transition has two conditions (bam− cn1 and bam− cn2) and a sensor (bam− sen).

Figure 5.3 – Bayesian Attack Model Transition

5.2.2 Bayesian Attack Tree and Bayesian Attack Model

The complete Bayesian Attack Model is composed of a family of Bayesian Attack Trees (BAT), as
defined below, each one issued from one attack source.

Definition 21 A Bayesian Attack Tree is a Bayesian network BAT(AS, DAG,P) where:

• AS is a special Bayesian state node, the attack source of this Bayesian Attack Tree.
• DAG(BN,E) is a polytree structure, constituted of

• BN , the Bayesian nodes BN=[bam-stn],[bam-tn],[bam-cn],[bam-sen] (cf. Defs. 16-19)
• E, the set of edges E = {bam − e} representing a conditional dependency between the

nodes (cf. Def. 20).

64

5.2. Complete Bayesian Attack Model

• P is a set of local probability distributions, associated with each node of DAG. As all nodes
are discrete random variables, the local probability distributions can be specified within a
conditional probability table.

To build the whole structure of one Bayesian Attack Tree of the Bayesian Attack Model, we
start from each state of the Generic Attack Model, as a potential attack source of a Bayesian
Attack Tree. Then, we recursively add the transitions contained in the Generic Attack Model
with the nodes described in subsection 5.2.1. To avoid cycles, each transition is added, as soon
as its destination state has not been already compromised during the currently followed path, as
described in subsection 5.1.1. This can be achieved thanks to the memory of past states in Bayesian
state nodes. Figure 5.4 presents the algorithm used to build a Bayesian Attack Tree. Note that this
algorithm introduces the nbSteps parameter that is presented in detail in subsection 5.2.5. This
building process also ensures that the graph structure of each Bayesian Attack Tree is a polytree:
a Directed Acyclic Graph for which there are no undirected cycles either. This allows to use very
efficient exact inference algorithms in the Bayesian network such as Pearl’s algorithm [Pea88].

Figure 5.4 – Algorithm to build a Bayesian Attack Tree

1: function buildBayesianTree(attackSource) . build the Bayesian Attack Tree tree from
attackSource state

2: bayesianTree← createEmptyBayesianTree()
3: bayesianAttackSource← bayesianTree.addState(attackSource) . create a new Bayesian

state node and add it to the tree
4: for each transition in attackSource.getOutTransitions() do . get possible next transitions
5: addTransition(0, bayesianAttackSource, transition, bayesianTree)
6: end for
7: end function
8: function addTransition(currentNbStep, fromBayesianState, transition, bayesianTree)

. add transition to the Bayesian Attack Tree bayesianTree

9: if currentNbStep < nbSteps then . did not reach nbSteps yet
10: if not fromBayesianState.history().contains(transition.destination) then . the

destination state has not been already compromised
11: . then, we add all the Bayesian nodes related to the transition to the bayesianTree

12: bayesianTree.addTransitionNode(transition)
13: bayesianTree.addConditionsNodes(transition.conditions)
14: bayesianTree.addSensorNode(transition)
15: nextState← bayesianTree.addState(transition.destination)
16: bayesianTree.addSensorState(transition.destination)
17: for each nextTransition in transition.destination.getOutTransitions() do
18: addTransition(currentNbStep+1, nextState, nextTransition, bayesianTree) .

add recursively the next possible transitions
19: end for
20: end if
21: end if
22: end function

The complete Bayesian Attack Model is constituted of the set of all Bayesian Attack Trees.
As we build a Bayesian Attack Tree from each state of the Generic Attack Model, the Bayesian
Attack Model contains exactly |S| Bayesian Attack Trees.

Definition 22 The Bayesian Attack Model Generic Attack Model ({BATi}), is a family of
|S| Bayesian networks where, for all i in {1..N},BATi is a Bayesian Attack Tree, whose attack
source is the state i in the Generic Attack Model.

65

CHAPT 5. BAYESIAN ATTACK MODEL

5.2.3 Reconciliation of probabilities

As each Bayesian state node contains the history of states that can lead to this node, many
Bayesian state nodes can represent the same state, in several Bayesian Attack Trees, when the
attacker used a different path to reach it (e.g., the node bam− stn(s1 → s2 → s4) is different from
bam− stn(s2 → s3 → s4), even if the attacker has the control of the same state s4 at the end.).

In the complete Bayesian Attack Model, we thus have many Bayesian state nodes representing
the same state. However, what most interests a security operator is the attacks that are the most
likely to compromise his states. Thus, as output of the reconciliation of probabilities, we assign
to a state a probability of compromise that is the maximum of the probabilities of Bayesian state
nodes targeting the same state.

P (sk) = max
i∈{1..N}

PBATi
(sk)) = max

i∈{1..N}
(max
{∀s1..sk−1}∈PBATi

bam− stn(s1, ..., sk−1, sk)) (5.2)

5.2.4 Bayesian Attack Model usage

We build our Bayesian Attack Model from the knowledge that the security operators have about
the potential attacks in their system: the Generic Attack Model. Then, we change the state of the
Bayesian sensor nodes according to the alerts received from the sensors.

no-alert If the sensor exists and is deployed in the system, as long as it has not issued any alert,
all related sensor nodes of the Bayesian Attack Model (that may appear in several Bayesian
Attack Trees) are set to the no-alert state.

alert When the sensor raises an alert corresponding to this element, the Bayesian sensor nodes
are set to the alert state. If the sensor also gives an alert confidence probability, it is possible
to set the state alert to this probability.

no-info The Bayesian nodes for which there is no compromise information (no deployed sensor,
Bayesian condition nodes, etc.) are not set in any state and their probability are updated by
the Bayesian inference.

Each time the a node of a Bayesian Attack Tree changes state (when we receive an alert and
fix a Bayesian node in a different state), we use a Bayesian network belief propagation algorithm
(Lauritzen or Pearl’s inference algorithm) to update the probabilities of each state at all the nodes.
Then, for each state of the Generic Attack Model, the maximum probability of the state compro-
mised of all related Bayesian state nodes, provides security operators with the probability of the
states being compromised, as described in subsection 5.2.3.

5.2.5 Model size limitation

Use of a nbSteps parameter to prevent performance issues: The main limitation when imple-
menting this model is the combinatorial explosion of the number of nodes, due to the redundancy
introduced by the cycle breaking process. In order to improve the performance and prevent this
combinatorial explosion, we limit the number of successive transitions added to each Bayesian
Attack Tree, according to a nbSteps parameter. Thus, we can contain the number of nodes to
process in the Bayesian Attack Model, as detailed in section 5.5

Figure 5.5 shows an example of the generation of a Bayesian Attack Model from a Generic
Attack Model with 4 states, with nbSteps = 2. This Bayesian Attack Model is constituded of 3

66

5.2. Complete Bayesian Attack Model

Bayesian Attack Trees: BAT0 starting from s0, BAT2 starting from s1 and BAT2 starting from
s2. Even if there is a path s0 → s1 → s2 → s3 (3 steps) in the Generic Attack Model, as nbSteps
= 2, this path is not be in BAT0. This path is “cut” in two parts: s0 → s1 → s2 in BAT0 and
s1 → s2 → s3 in BAT1.

Figure 5.5 – Bayesian Attack Model generation with nbSteps = 2

Impact of the nbSteps parameter on the outputs of the Bayesian Attack Model: Thanks to
the redundancy of the model, and as each state node is an attack source of a Bayesian Attack
Tree, if a transition is discarded in a Bayesian Attack Tree, it will be in another Bayesian Attack
Tree, closer to the Bayesian Attack Tree attack source. For example, in Figure 5.5, the transition
btn2→3 is in BAT1 and BAT2. The probabilities of Bayesian state nodes in a Bayesian Attack Tree
represent the probability of the attacker exploiting this node starting from the attack source. As
long as no attack has been detected on a path, the probability of a state compromise decreases
rapidly as a function of the length of the path between the attack source and the node. During
initial probability computation, the probabilities of nodes far from the attack sources are very low.
These probabilities are below the maximum used during the probability reconciliation detailed in
subsection 5.2.3 and do not have any effect on final state compromise probabilities. In that case,
the nbSteps parameter has no impact on the final results. For example, in Figure 5.5, as the
transition btn1→2 has not been detected, btn2→3 will have a higher probability in BAT2 than in
BAT1 (assuming that s1 and s2 have the same attack source probability, i.e., bstn1 and bstn2 have
the same probability).

The key limitation this parameter introduces is when attacks start being detected and intro-
duced in a path. More precisely, the limitation arises when more than two alerts are injected in
the model. For example, to compute the combined impact of two alerts relative to each other, they
need to appear in the same Bayesian Attack Tree. The maximum compromise probability of the
state related to the first alert will be in the Bayesian Attack Tree in which it is the attack source.
If the second alert is attached to a state that is more than nbSteps away (i.e., separated with
more than nbSteps −2 missed alerts), it will not be in the same Bayesian Attack Tree and these
two attacks will be taken into account separately. This will prevent the increase of probabilities of
the nodes between the two alerts. For example, in Figure 5.5, as nbSteps= 2, there is no possible
missed alerts. In this example, if btn0→1 and btn2→3 are part of the same attack scenario, as
btn1→2 has not been detected, there is no Bayesian Attack Tree in which two successive transitions
have alert sensors. Alerts may be separated by nodes without alerts for two reasons: if there are

67

CHAPT 5. BAYESIAN ATTACK MODEL

not enough sensors or if there are false negatives, both undesired cases.

As a summary, the only case when the impact of the limitation of the Bayesian Attack Tree
depth to nbSteps is significant is when there are more missed alerts than nbSteps−2 between
two successive alerts for the same attack. These assumptions are validated by the experimental
validation of section 5.7.

5.3 Conditional probability tables

We now specify the local probability distribution associated with each node, describing the prob-
ability dependencies of a node toward his parents. As the nodes are discrete random variables, we
describe the probability dependencies using conditional probability tables.

Bayesian state nodes The conditional probability table of states highly depends on the type of
transition and of the attack modelled. Thus, we fill the conditional probability table of a
Bayesian state node with the one of the related state of the Generic Attack Model.

Bayesian transition nodes The conditional probability table of transitions highly depends on
the type of transition and of the conditions. Thus, we fill the conditional probability table
of a Bayesian transition node with the one of the related transition of the Generic Attack
Model.

Sensor nodes A Sensor node has only one parent, the element related to the sensor. Its condi-
tional probability table thus contains only two values and their complementaries representing
the false-positive and false-negative rates attached to the sensor. For example, the
conditional probability table of a Bayesian sensor node of a transition is described in Ta-
ble 5.1.

Table 5.1 – Conditional probability table of a Bayesian sensor node related to
a transition

bam-tn succeeded failed

bam-sen
alert 1−false-negative false-positive

no-alert false-negative 1−false-positive

Attack sources The attack source of a Bayesian Attack Tree is a Bayesian state node without
parents. As such, it does not have a complete conditional probability table, but only a
prior probability value and its complementary. This attackSourceProbability parameter
represents the a priori probability of having an attack issued from this node. It thus has
to be set by the operators, knowing the risk that an attack starts from a state. It can
be deduced from a risk evaluation methodology (e.g., ISO 27005 [ISO11a]). In a typical
information system, for example, a high probability can be set to the Internet (e.g., 0.7), a
medium one to servers in a demilitarised zone (internal subnetwork protected by a firewall
exposing external-facing services on the Internet) (e.g., 0.4), and a small one for production
database servers (e.g., 0.1).

Attack conditions The Attack conditions also do not have any parents. Their probability is the
probability of occurrence P (c) associated with the condition. It highly depends on the type of
condition modelled by this node. For example, for a condition describing the presence of a list
of vulnerabilities on a state. The estimation of the probability of occurrence of this group of
conditions follows the process detailed in subsection 5.1.2, with values for each vulnerability,
coming from the Exploitability Metrics of the CVSS, as explained in subsubsection 7.2.2.3.

68

5.4. Impact analysis

5.4 Impact analysis

The last component necessary to build our Bayesian Attack Model is the impact analysis function.
The goal of this function is to take the states of the Generic Attack Model with their compromise
likelihood computed by the Bayesian Attack Model and an impact score associated with each state
to give a risk score to states. We apply the usual equation to compute the risk R of a state s, with
the probability of compromise P of the state computed by the Bayesian Attack Model, and the
impact I of its compromise:

R(s) = P (s)× I(s) (5.3)

In this work we focus on the likelihood computation (P (s)), whose methodology is independent
of the system studied, whereas the impact analysis (I(s)) strongly depends on the system and
organisation. Thus, we only associated with each state a fixed impact score. Moreover, in order to
validate the probabilistic results of the Bayesian Attack Model, we assign to each state the same
impact value (I(s) = 1,∀s) for the validation.

5.5 Bayesian Attack Model complexity evaluation

The main computation done on each Bayesian Attack Tree of the Bayesian Attack Model is the
execution of the belief propagation algorithm (probability inference), computing the probability of
all nodes, according to evidences, nodes set to a specific state. The complexity of the inference in
a Bayesian network is directly linked to the number of nodes and structure of the network. We
estimate the number of nodes M of a Bayesian Attack Tree, depending on |S|, the number of
state nodes in the Generic Attack Model, and k the maximum number of consolidated transitions
between two states in the Generic Attack Model (i.e., the maximum number of different types of
transitions). M is also strongly depending on the existence of transitions between the states. This
depends strongly on the type of attacks represented in the Generic Attack Model. Thus for this
complexity evaluation, we consider the worst case: there are k transitions between each pair of
states. For each transition, we add ≈ 4 nodes to the Bayesian Attack Model (sometimes few more,
according to the number of conditions). Thus, in the worst case, for each Bayesian Attack Tree,
starting from an attack source, the number of nodes to add is

M ∼ 4× k × (|S| × · · · × (|S| − nbSteps− 1)) = 4× k × |S|!
(|S| − nbSteps)!

= O(|S|nbSteps) (5.4)

Even if the number of nodes in each Bayesian Attack Tree is high, the Bayesian inference can
be done efficiently. Indeed, as the structure is a polytree, efficient inference algorithms can be used.
For example, Pearl’s belief propagation algorithm is linear in the number of nodes [Pea88].

Thus, for each Bayesian Attack Tree, in the worst case, the complexity of the construction and
probability inference C(BAT) is C(BAT) = O(|S|nbSteps). Finally, for the whole Bayesian Attack
Model, as there are at most |S| attack sources, in the worst case, the complexity of the inference
in the whole model C(BAM) is

C(BAM) = |S|.C(BAT) = O(|S|nbSteps+1) (5.5)

The calculations on each Bayesian Attack Tree are independent. So, they may be easily done
in parallel, which gives in practice, C(BAM) = O(|S|nbSteps) with |S| processors.

69

CHAPT 5. BAYESIAN ATTACK MODEL

5.6 Bayesian Attack Model performance evaluation

In order to dynamically assess the risk of a system, the Bayesian Attack Model has to be evaluated
each time a correlated alert, or a set of correlated alerts is received: the sensor nodes are set in
their new states, then the probabilities are updated. The duration of such a process needs to
be quite fast for the operator to properly understand the risk in operational time. We simulate
random Generic Attack Models, with different parameters (number of states, number of transitions,
topology) to evaluate the performance of the Bayesian Attack Model. Then, we generate random
attack scenarios with four successive transitions. Finally, we evaluate the Bayesian Attack Model
on the different scenarios.

We generate random realistic Generic Attack Models, as shown in Figure 5.6, containing from
1 to 50 states, regrouped in M clusters. In each cluster, there is a transition between each pair
of states of the cluster (i.e., states in a cluster are fully-connected “in mesh”). All the states of a
cluster have a transition to all the states of the next cluster in cascades. By varying the number
of clusters in the Generic Attack Model, we change the topology of the Generic Attack Model and
its number of transitions. For example, in a topology of M = 50 clusters, each state of the Generic
Attack Model has only one transition to a next state. In a topology of M = 10 clusters, for the
maximum number of states (|S| = 50), each state of the Generic Attack Model has a transition to
the four other states of its cluster, and to the five states of the next cluster.

Figure 5.6 – Generic Attack Model topology for simulations

The results of the duration in seconds of the Bayesian Attack Model generation and the inference
after the evaluation of one scenario of four successive transitions, on these generated Generic Attack
Model, is displayed in Figure 5.7. The parameters of the Bayesian Attack Model are in the default
values detailed in section 5.7. In Figure 5.7a, with 50 clusters (i.e., 50 states in sequence, linked
by only one transition) the processing time is very fast (< 0.60 seconds). In Figure 5.7b, with 30
clusters, the states are no longer in sequence and the processing time is a bit slower (< 1 seconds).
With 20 and 10 clusters, in Figure 5.7c and 5.7d, the density of transitions between states is higher,
so the duration is also higher, but still acceptable (< 2 minutes). Thus, these simulations show
that for medium-sized topologies (up to 50 states), even when they are quite strongly connected
(up to 10 clusters), the duration of the Bayesian Attack Model generation and of the inference
remains acceptable (< 2 minutes).

5.7 Parameter sensitivity analysis

The Generic Attack Model has three parameters that can be customised, according to the system
it represents and the possible attacks. Moreover, the Bayesian Attack Model adds three more
parameters that can be customised by security operators using the tool. Thus it is interesting
to evaluate how sensitive the Bayesian Attack Model is toward those parameters. This allows to
evaluate if an uncertainty in the choice of the parameter has a significant impact on the final results
of the Bayesian Attack Model.

70

5.7. Parameter sensitivity analysis

Figure 5.7 – Duration in seconds of Bayesian Attack Model execution, ac-
cording to the number of states and clusters in the Generic Attack Model

(a) 50 clusters (b) 30 clusters

(c) 20 clusters (d) 10 clusters

Note that the Generic Attack Model also allows to customise the whole conditional probability
tables associated with the states or transitions, but it is difficult to represent the impact of changes
in the conditional probability tables, as any logically valid probability value is possible. However,
in practice the conditional probability tables are generally AND or OR tables, representing the logic
to reach the places or carry out the transitions. In such a case, they do not have any impact on the
probabilities, only on the required parents. For our experiments, we use OR conditional probability
tables, because they were the most common in the real use cases.

5.7.1 Generic Attack Model parameters summary

Table 5.2 summarises the four parameters of the Generic Attack Model: false-positive, false-
negative, probability-attack-source and probability-unknown-attack. Each parameter is
associated with its description and the default value used in the experimentations.

5.7.2 Bayesian Attack Model parameters summary

Table 5.3 summarises the two parameters introduced by the Bayesian Attack Model: nbSteps, and
probability-new-transition. Each parameter is associated with its description and the default
value used in the experimentations.

71

CHAPT 5. BAYESIAN ATTACK MODEL

Table 5.2 – Proposed values of the Generic Attack Model parameters

Parameter
name

Meanings Proposed
value

Proposed value explanation

false-posi
tive

False positive rate of each sensor.
Sensors may raise an alert, even
if the transition has not been
completed, or the state was not
reached by the attacker.

0.02 Even if operators try to minimise false
positives, their occurrence is still in-
evitable.

false-nega
tive

False negative rate of each sen-
sor. Sensors may not raise an
alert, even if the transition has
been completed, or the state was
reached by the attacker.

0.005 This value is generally smaller than the
false positive rates as security operators
try to prevent as much as possible the
occurrence of false negatives for tran-
sitions for which they have deployed a
sensor.

probability-
attack-source

A priori probability of an attack
issued from the state. An in-
ternal state may be the source
of an attack. Probability of all
other nodes than the actual at-
tack source

0.1 for all
nodes, 0.7 for
the attack
source of the
scenarios

This value highly depends on the type
of state that is represented, but except
for well-known potential attack sources,
the probability for other states can be
relatively small as these states have
fewer chances of being source of attacks.

probability-
unknown-at
tack

Probability that an unknown at-
tack allows to reach a place, with-
out requiring the previous transi-
tion. This also allows to repre-
sent the security level needed in
the system.

0.001 Very small probability of having a 0-
day, an unknown vulnerability.

Table 5.3 – Proposed values of the Bayesian Attack Model parameters

Parameter
name

Meanings Proposed
value

Proposed value explanation

nbSteps Number of successive transitions
to keep in the Bayesian Attack
Model.

2 Allows to recognise multi-step attacks
with at most 1 missing alert (i.e., 2
steps means 3 transitions). cf. subsec-
tion 5.2.5 for full explanation.

probability-
new-transi
tion

Probability that the attack prop-
agates through a new transition.

0.3 70% of chance that the attacker does
not continue his attack. He may have
already found on this state what he was
looking for.

5.7.3 Parameter sensitivity analysis simulation scenarios

In order to study the impact of these parameters on the results of the Bayesian Attack Model,
we simulated a random Generic Attack Model of 35 states as presented in section 5.6, on which
we apply six detection scenarios, corresponding to an attack of three transitions, starting from
the main attack source (i.e., its probability of being the attack source is 0.7), with and without
detection anomalies, as summarised in Table 5.4.

Then, we compute the compromise probabilities, results of the Bayesian Attack Model, accord-
ing to the change of the parameter. Finally, we plot the variation interval of these probabilities,
on the whole parameter variation interval, for all Generic Attack Model states. We explain in Fig-
ure 5.8 how to read the figures result of this sensitivity analysis. Figure 5.8a explains the bar graph
figures. This kind of figure represents the whole variation of the states compromise probability,
according to the variation of the parameter. The ordinate of the bars represent the compromise
probability computed by the Bayesian Attack Model of the states of the Generic Attack Model.
The height of each bar is the variation of compromise probabilities of related state, all along the
variation of the parameter. On the left are presented the states known as compromised in the
attack scenarios. Figure 5.8b explains the plot figures. This kind of figure gives an intuition on

72

5.7. Parameter sensitivity analysis

Table 5.4 – Parameter sensitivity analysis simulation scenarios

Scenario S1 → S2 S2 → S3 SX → SX+1 S3 → S4 Comment
1 � × × × First alert
2 � � × × Second alert
3 � � × � Third alert
4 � × × � no-alert for the second transition
5 � × × � no-info for the second transition
6 � � � � Three alert and a false positive alert on

another transition

Caption:
{Si, i ∈ {1, 4}}: States of the attack scenario; {SX , SX+1}: States of the false positive alert; Si → Si+1: Detection
on the transition from state Si to state Si+1;
O: no-info sensor; �: Sensor set to alert ; ×: Sensor set to no-alert.

how the states compromise probability varies, according to the variation of the parameter. In both
figures, the states that are known as compromised (source and/or destination of attack scenario
transitions) are shown in red (bar or plot), whereas states known as healthy are shown in green.
The coloured background represents different levels of compromise probability according to the
value of the compromise probabilities: above 0.75 and critical probability, above 0.5 it is a high

probability, above 0.25 it is a medium probability and above 0, it is a low probability.

Figure 5.8 – Explanation of the figures on variation of parameters

(a) Bar graphs (b) Compromise probabilities plots

73

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.4 Bayesian Attack Model initial results

The results of the Bayesian Attack Model for this attack scenario with the parameters in their
default values are shown in Figure 5.9.

Scenario 1 Figure 5.9a shows the status of the compromise probabilities after the first alert of the
attack scenario. The source state of the transition that has been detected is the most likely
source of attack so its compromise probability is critical (i.e., p > 0.75), the transition
destination state has a high compromise probability(i.e., 0.75 > p > 0.5): it is not yet sure
that an attack is happening, the alert might be a false positive. The other states have very
low compromise probabilities (i.e., p < 0.25), since they have not been detected.

Scenario 2 After the second alert, the compromise probabilities shown in Figure 5.9b confirms
that an attack is actually happening: the first two compromised states have critical prob-
abilities(i.e., p > 0.75), and the third compromised state has a high compromise probabil-
ity(i.e., 0.75 > p > 0.5).

Scenario 3 After the third alert, the compromise probability of the fourth attacked state also
increases, as shown in Figure 5.9c. However, this probability only slightly increases (until a
medium probability). This is surely because of the nbSteps parameter, that makes this state
be in another Bayesian Attack Tree than the three others compromised states, Bayesian
Attack Tree whose attack source probability is much lower than the actual attack source.

Scenario 4 The fourth scenario, represented in Figure 5.9d, contains a false negative (the second
transition). As a result, the compromise probabilities of the states are lower than for the
third scenario, but still allow to distinguish the compromised states, from the not-compro-
mised ones. In practice, for such a case, a security operator would need to investigate if the
scenario had happened, or if the third alert was a false positive.

Scenario 5 The fifth scenario, represented in Figure 5.9e, contains a transition for which there is
no information. Thus, the probabilities are between the scenario with a false negative, and
the scenario with all alerts (in particular for the second compromised states) .

Scenario 6 The last scenario contains all alerts, but also includes a false positive alert (not re-
lated to the previous ones). We can see this alert with the not-compromised states whose
probability have increased in Figure 5.9f, compared to the results in Figure 5.9c. However,
as this alert is not part of the global attack scenario, the probabilities of the “false positive
states” are lower than the actually compromised states. Thus, the Bayesian Attack Model
allows to distinguish the false positives from the actually happening attack scenarios.

So, the compromise probabilities computed thanks to the Bayesian Attack Model shows the
evolution of an attack scenario, according to the received alerts. The scenarios 1 to 3 shows the
normal evolution of an attack where all attack transitions are detected. In such case, each new alert
confirms that this multi-step attack is actually happening. The only limitation of the Bayesian
Attack Model that can be noticed, thanks to this experimentation, is due to the nbSteps parameter
preventing a large increase of the states far from the actual attack source.

74

5.7. Parameter sensitivity analysis

Figure 5.9 – Bayesian Attack Model results with parameter default values

(a) 1st alert (b) 1st and 2nd alert

(c) 1st, 2nd and 3rd alert
(d) 1st alert, 2nd no-alert,
3rd alert

(e) 1 alert, 2nd no-info, 1st alert
(f) 1 alert, 1 false positive alert,
3rd and 4th alert

75

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.5 Generic Attack Model parameter: false-positive

The false-positive parameter is associated with each sensor of the Generic Attack Model. It
represents the probability of an alert raised by the related sensor to be a false positive alert, i.e.
an alert raised without successive attack of the related state or transition.

Generally, to be usable in practice and limit irrelevant investigations, sensors are configured
to strongly limit the probability of false positives. Thus the false-positive parameter should
remain low (e.g., from 0 to 5%). However, to be sure to take into account sensors with higher
false-positive values (for example, an anomaly detection sensor with many false positives), we
analyse the sensitivity of this parameter on its whole variation interval (]0, 1[). Figure 5.10 shows
the results of this analysis.

From 0 to 0.2, the false-positive parameter is very sensitive, but only for compromised states.
The compromise probabilities decrease with the increase of this parameter. The more alerts
there are in the attack scenario, the more sensitive this parameter is, for the alerts involving
more detected transitions. We can see that, for example, with the evolution from Figure 5.10a
to 5.10c. This can be explained by the fact that if there are more chances that the alerts
can be false positives, this chance is larger for the states far from the most potential attack
source, that need several alert (potentially false positives) to be attacked. In Figure 5.10d
and 5.10e, with a no-alert or no-info sensor, the impact of this parameter is even bigger,
as the certainty of this attack is only for very low values of the false-positive parameter.
Note also that, for the Scenario 6 of Figure 5.10f, the not-compromised states concerned by
the false positive alert have high compromise probability, for very accurate sensors (very low
values of the false-positive parameter), which seems legitimate. The false-positive
parameter is insensitive with not-compromised states, except for the scenario 6, containing
a false positive alert.

From 0.2 to 0.95, the false-positive parameter is a little sensitive for the compromised states
that are significantly impacted by this parameter from 0 to 0.2. It is insensitive for not-com-
promised states.

From 0.95 to 1, for all scenarios, there is a little increase of compromise probabilities for both
compromised and not-compromised states, which all converge to their initial attack source
probability (probability-attack-source for all sources, except the actual attack source
that has a 0.7 probability in these simulations).

This sensitivity analysis shows that, especially from 0 to 0.2, the false-positive parameter
has an important impact on the compromise probabilities of the compromised states of the Bayesian
Attack Model. With the increase of the Generic Attack Model false-positive parameter, the
compromise probabilities of the compromised states decrease quickly. This variation interval is the
most frequent interval for this parameter. Thus the false-positive parameter will have to be
calibrated carefully, in order to have accurate compromise probabilities for compromised states.
This parameter has a low impact on the compromise probabilities of not-compromised states.
However, in most cases, this parameter does not impact the ranking between the compromised
states.

76

5.7. Parameter sensitivity analysis

Figure 5.10 – Sensitivity of the false-positive parameter from 0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

77

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.6 Generic Attack Model parameter: false-negative

The false-negative parameter is associated with each sensor of the Generic Attack Model. It
represents the probability of false negative alerts for a sensor, i.e. an alert that is not raised by the
sensor, while the attack actually succeeded.

Generally, to limit a wrong security feeling (i.e., feeling safe, while there is no real protections),
sensors are configured to limit at most the false negatives for known attacks, for which a detection
method is enabled. Thus the false-negative parameter should stay low (e.g., from 0 to 5%).
Beyond, the detection measures are generally not deployed. However, to be sure to take into
account sensors with higher false-negative values (for example, a detector of a metamorphic
malware), we analyse the sensitivity of this parameter on its whole variation interval (]0, 1[).
Figure 5.11 shows the results of this analysis.

From 0 to 0.3, the false-negative parameter is a little sensitive for compromised states. The
compromise probabilities slowly decrease with the increase of this parameter. The impact is
approximately the same, whatever the number of alerts there is in the scenario. The most
important impact is in Scenario 6, in Figure 5.11f for which the probability of the last com-
promised state decreases faster than the states of the false positive alert. Thus after 0.05,
there the not-compromised state, source of the false positive transition has a probability
higher than one of the compromised state. The false-negative parameter is insensitive
with not-compromised states, except for the scenario 6, containing a false positive alert.

From 0.3 to 0.9, the false-negative parameter is moderately sensitive for the compromised
states. The compromise probabilities decrease with the increase of this parameter, but their
order does not change. The impact is similar whatever the number of compromised states
there is in the scenario (see for example Figure 5.11a to 5.11c). For Scenario 4 and Scenario
5, with either one no-alert or one no-info sensor, the decrease curve goes slower, as it is
more likely that there has been a false negative or that the third alert is a false positive. On
all scenarios, the probability of not-compromised states slowly converge.

From 0.95 to 1, for all scenarios, both compromised and not-compromised states have con-
verged to their initial attack source probability (probability-attack-source for all sources,
except the actual attack source that has a 0.7 probability in these simulations). Thus the
variation of probability is very light.

This sensitivity analysis shows that, on its whole variation interval, the false-negative pa-
rameter has a medium impact on the compromise probabilities of the Bayesian Attack Model.
With the increase of the Generic Attack Model false-negative parameter, the compromise prob-
abilities of the compromised states decrease slowly. Moreover, on its usual variation interval (from
0 to 0.1), the false-negative parameter has a low impact. It has almost no significant impact
on the probability of not-compromised states. This parameter almost does not impact the rank-
ing between all compromised nor not-compromised states, except for the scenario 6 with a false
positive, in which, for low value of the parameter (0.05), the false positives get higher values than
one actually compromised state.

78

5.7. Parameter sensitivity analysis

Figure 5.11 – Sensitivity of the false-negative parameter from 0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

79

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.7 Generic Attack Model parameter: probability-attack-source

The probability-attack-source parameter is the probability associated with each state of the
Generic Attack Model, representing the probability of this state to be a source of attack. The value
of this parameter is set by the security operators according to the risk analysis of the system.

According to the state, this parameter can take any value possible from 0 to 1. We thus
simulate the variation of this parameter on [0, 1] and analyse its impact on the states compromise
probabilities. This parameter can generally be deduced from a risk evaluation methodology (e.g.,
ISO 27005 [ISO11a] or EBIOS [Sec04]). Figure 5.12 shows the results of this analysis.

From 0 to 1, the impact of the probability-attack-source parameter is relatively homoge-
neous for all scenarios, and on the whole variation interval. The impact of this parameter
is important, for all states. The probability-attack-source parameter determines the
probability of all states being an attack source, except the actual attack source, the only
state whose probability does not change in Figures 5.12a to 5.12f, on the whole parame-
ter variation interval. Thus, the value of the probability-attack-source parameter is the
minimum that each state, either compromised or not-compromised will have in the Bayesian
Attack Model. Moreover, the compromised states generally increase quicker than the not-
compromised ones, as their transition source is more and more likely with the increase of the
parameter. With high parameter values, the chaining of attack transitions in the scenario is
less important.

This sensitivity analysis shows that, on its whole variation interval, the probability-attack-
source parameter has a very significant impact on the compromise probabilities of the not-com-
promised states of the Bayesian Attack Model. With the increase of this parameter, the compro-
mise probabilities of the not-compromised states increase regularly. The compromise probability
of compromised states is also increasing with this parameter, but it is less important than not-
compromised states. With significant variation of the probability-attack-source parameter,
the ranking between either compromised or not-compromised states changes.

80

5.7. Parameter sensitivity analysis

Figure 5.12 – Sensitivity of the probability-attack-source parameter from
0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

81

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.8 Generic Attack Model parameter: probability-unknown-attack

The probability-unknown-attack parameter is the probability that an unknown attack allows
the attacker to reach a place, without requiring the previous transition. This is a kind of wild card
representing all the attacks unknown for the defender, but known from the attacker.

This value should usually stay very low (< 1%), otherwise this means that there is an issue
in the modelling of the attack scenarios that can happen in the system (e.g., not good knowledge
of the system by the defender, partial knowledge of the vulnerabilities that are in the system,
etc.). However, there might be good reasons to set higher values to this parameter. For example,
in systems in which a very high level of security is needed, we can increase the value of the
probability-unknown-attack parameter, to represent very motivated attackers that may have
access to unknown attack transitions (e.g., unknown 0-days vulnerabilities). We thus simulate the
variation of this parameter on [0, 0.5] and analyse its impact on the states compromise probabilities.
Figure 5.13 shows the results of this analysis.

From 0 to 0.05, the probability-unknown-attack parameter is a little sensitive for compro-
mised states. The compromise probabilities slowly increase with the increase of this param-
eter. The more alerts there are in the attack scenario, the more important increase there
is of the compromised states. For example, in Scenario 2 of Figure 5.13b, the compromise
probabilities of compromised states increase slowly on this variation interval. In Scenario 3
of Figure 5.13c, the compromise probability of the newly attacked state increase faster. The
probability-unknown-attack parameter is insensitive with not-compromised states.

From 0.05 to 0.5, the probability-unknown-attack parameter is moderately sensitive for both
the compromised and not-compromised states. The compromise probabilities increase with
the increase of this parameter, but the order of compromised states and between compromised
and not-compromised states does not change, except for very high values of the parameter
(> 0.35). In all scenarios, more than half of not-compromised states increase slowly with the
increase of the parameter. The probability of the other states do not increase. This must be
due to the fact that these states cannot be attacked directly (i.e., with only one transition)
from the compromised states. For such states, the increase of the probability-unknown-
attack parameter has nearly no impact, as the attacker will need to exploit two or more
unknown transitions to reach them. For the scenario 4 of Figure 5.13d, with a no-alert
sensor, and the scenario 5 of Figure 5.13e, with a no-info sensor, the impact of the proba-
bility-unknown-attack is more important for the states after the no-alert sensor, as these
states are more likely to be reached after an unknown attack (that obviously is not detected).
This effect is similar for two not-compromised states of the scenario 6 of Figure 5.13f, with a
false positive alert. Indeed, the states of the false positive alert are more likely to have been
attacked with an unknown attack, for a higher value of the probability-unknown-attack
parameter.

This sensitivity analysis shows that, on its common variation interval (0 to 1%), the probabil-
ity-unknown-attack has no real impact on the compromise probabilities of both compromised
and not-compromised states in the Bayesian Attack Model. Moreover, even with higher values,
there is an impact on compromise probabilities, but it does not change the order of compromised
states and between compromised and not-compromised states.

82

5.7. Parameter sensitivity analysis

Figure 5.13 – Sensitivity of the probability-unknown-attack parameter
from 0 to 0.5

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

83

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.9 Bayesian Attack Model parameter: nbSteps

The nbSteps parameter represents the number of successive transitions to keep in the Bayesian
Attack Model. This parameter prevents the combinatorial explosion of the number of nodes in the
Bayesian Attack Model. The detailed explanations about this parameter are in subsection 5.2.5.

On the Generic Attack Model with 35 states, we cannot increase this parameter to high values
to analyse the impact of the nbSteps parameter with high values. Thus, we analyse the impact
of the nbSteps parameter on the Generic Attack Model of 35 states used for other parameters, as
well as on a smaller topology of 12 states. Figure 5.14 shows the results of this analysis.

On Generic Attack Models of 35 states, the nbSteps parameter is very sensitive for compro-
mised states, with low values. With the increase of the nbSteps parameter, the compromise
probabilities of compromised states vary until they converge to their final value. By compar-
ing Scenario 1 of Figure 5.14a and Scenario 2 of Figure 5.14b, we can notice that the final
value seems to be reached when the nbSteps parameter is equal to the number of the actu-
ally detected transitions + 1. This parameter is moderately sensitive for not-compromised
states. In Scenario 1 of Figure 5.14a and Scenario 4 of Figure 5.14c, there is a decrease in the
compromise probabilities of compromised states, from nbSteps = 1 to nbSteps = 2. Indeed,
as there is only one transition that has been detected, when there are two transitions in the
model (i.e., nbSteps = 2) the second transition that has not been detected make decrease the
value of the probabilities of compromised states. In the other case, for 3 of Figure 5.14b and
6 of Figure 5.14d, the increase of the nbSteps parameter makes the probabilities of compro-
mised states increasing. Indeed, when there are a sufficient number of steps in the Bayesian
Attack Model, all attack transitions of the scenario are in the same model and contribute to
the increase of compromise probabilities.

On Generic Attack Models of 12 states, the analysis of the sensitivity of the nbSteps pa-
rameter confirms the results we have for the biggest model. With the increase of the nbSteps
parameter, the compromise probabilities of compromised states vary until they converge to
their final value. This final value is reached when the number of detected transitions in the
model is nbSteps −1. This parameter is a little sensitive for not-compromised states.

This sensitivity analysis shows that the nbSteps parameter impacts particularly the compromise
probabilities of the compromised states of the Bayesian Attack Model. With the increase of this
parameter, the compromise probabilities of the compromised states vary until they converge to
their final value. The not-compromised states are moderately impacted by the variation of this
parameter.

84

5.7. Parameter sensitivity analysis

Figure 5.14 – Sensitivity of the nbSteps parameter

(a) Scenario 1 (b) Scenario 2

(c) Scenario 4 (d) Scenario 6

(e) Scenario 1 (Generic Attack
Model of 12 states)

(f) Scenario 3 (Generic Attack
Model of 12 states)

85

CHAPT 5. BAYESIAN ATTACK MODEL

5.7.10 Bayesian Attack Model parameter: probability-new-transition

The probability-new-transition parameter is the probability that the attacker propagates
through a new transition. This parameter represents the fact the even if an attack is possible,
the attacker may or may not do it. For example, the attacker may have already found what he
was looking for.

The value of this parameter is difficult to estimate, so the probability-new-transition pa-
rameter has to be evaluated on its whole possible variation interval. We thus simulate the vari-
ation of this parameter on [0, 1] and analyse its impact on the states compromise probabilities.
Figure 5.15 shows the results of this analysis.

From 0 to 0.15, the probability-new-transition parameter is very sensitive for compromised
states. Their compromise probabilities quickly increase with the increase of this parameter.
This parameter is little sensitive for not-compromised states. Around the 0 value of this
parameter, for all scenarios, both compromised and not-compromised states converge to
their initial attack source probability (probability-attack-source for all sources, except
the actual attack source of the scenario that has a 0.7 probability in these simulations). The
compromise probabilities of all compromised states increase until they reach a maximum,
whose value depends on the certainty of this state to be compromised in the related scenario.
We can explain this behaviour by the fact that for very low values of the probability-
new-transition parameter, the attacker has a very little chance to do an attack and pass a
transition. The rank between all compromised and not-compromised states is kept, except
for the scenario 6 of Figure 5.15f, for which the two not-compromised states of the false
positive transition have higher probabilities than the compromised state with the smallest
probability, for very low value of the probability-new-transition parameter.

From 0.15 to 0.3, the probability-unknown-attack parameter is a little sensitive for both the
compromised and not-compromised states, for nearly all scenarios. Once the maximum of
compromised probabilities has been reached, this parameter is near insensitive.

From 0.3 to 0.8, the probability-new-transition parameter is sensitive again for compro-
mised states. Their compromise probabilities decrease with the increase of this parameter.
The probability-new-transition parameter is nearly insensitive with not-compromised
states. As they have reached their maximum, the compromise probabilities of all com-
promised states decrease until they reach their final value around 0. We can explain this
behaviour by the fact that for higher values of the probability-new-transition parameter,
the attacker has many chances to do an attack and pass a transition. Thus, all the transitions
after the compromised states should also be followed by the attacker. But as their sensors
are not activated, the attacker did not do these attacks. Thus the compromised states
are in fact more probability not-compromised and the alert sensors of the scenarios are
most likely false positives. There is one state whose compromise probability is 0.1 (i.e., the
probability-attack-source value), for all scenarios, whatever the value of the probabil-
ity-new-transition parameter is. This is a not-compromised state that is not the source
and destination of any transition. Thus it cannot be used to reach any other state, nor be
attacked from a state. As a result, its probability stays at probability-attack-source.
The rank between all compromised and not-compromised states is globally kept, except for
the not-compromised state which probability is constant.

From 0.8 to 1, as the compromise probabilities of all states have reached their minimum, the
probability-new-transition parameter is insensitive, for both compromised and not-
compromised states.

86

5.7. Parameter sensitivity analysis

Figure 5.15 – Sensitivity of the probability-new-transition parameter
from 0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

87

CHAPT 5. BAYESIAN ATTACK MODEL

This sensitivity analysis shows that, on its whole possible variation interval, the probabil-
ity-new-transition parameter has an important impact on the compromise probabilities of the
compromised states of the Bayesian Attack Model. With the increase of this parameter, the
compromise probabilities of the compromised states increase until they reach a maximum (reached
around 0.15), then they decrease. The rank of the states is globally kept.

5.8 Related work

Few people proposed enhancements to improve attack graphs with Bayesian networks, to use them
for dynamic risk assessment [QL04, LM05, XLO+10]. However, they do not describe how they
manage cycles that are inherent to attack graphs. In [XLO+10], Xie et al. present an extension of
MulVAL attack graphs using Bayesian networks, but they do not mention how to manage the cycle
challenge, while MulVAL attack graphs frequently contain cycles. In the same way, in [FW08],
Frigault and Wang do not mention how they deal with the cycle challenge constructing Bayesian
attack graphs. In [LM05], Liu and Man assert that to delete cycles, they assume that an attacker
will never backtrack. The same assumption is used by Poolsappasit et al. in [PDR12]. However,
they both do not present how they deal with this assumption to keep all possible paths in the
graph, while deleting cycles. We propose here a novel model that explodes cycles in the building
process, keeping all possible paths while deleting the cycles, to compute the Bayesian inference.

The Bayesian model presented by Xie et al. in [XLO+10] is based on logical attack graphs. It is
thus very verbose and can be huge for real information systems. In [LM05], Liu and Man’s model
is a topological graph, in which are added violation states. It is thus quite compact, but does
not detail the attacks, their conditions and, mainly, the sensors that can change state. Thus, the
only observations that can be set on this model are observations on topological nodes. The model
we present is applicable to a Generic Attack Model that we define formally. So, it is a hybrid
vision of logical and topological models which is much more compact than those based on logical
attack graphs. It contains the logical conditions necessary to carry out the attacks, in order to
keep all information important to model attacks, and add sensor nodes that can be activated with
alerts. Moreover, we also add several improvements (attack nodes gathering, polytree structure
of Bayesian Attack Tree, etc.) that either reduce the size of the graph structure or improve the
performance of the inference. We thus constrain the size of the graph in which we do Bayesian
inference, while conserving all paths by linearising cycles.

The experimental validation we did on the Bayesian Attack Model is on a simulated models
that are far bigger than the state of the art. For example, Xie et al. assess their model on a
topology of 3 states and 3 vulnerabilities [XLO+10], Liu and Man on a topology of 4 states and
8 vulnerabilities [LM05]. The real world examples used by Frigault and Wang in [FW08] contain
at most 8 vulnerabilities on 4 states. The test network used by Poolsappasit et al. in [PDR12]
contains 8 states in 2 subnets, but with only 13 vulnerabilities. Thanks to our polytree model, we
successfully run our Bayesian Attack Model efficiently on simulated topologies with up to 70 states.

5.9 Summary and conclusion

We presented in this chapter a Bayesian Attack Model, representing all the possible attacks in
an information system. This model enables dynamic risk assessment. It is built from a Generic
Attack Model. Sensor nodes can be activated by dynamic security events to update the compromise
probabilities of states, which rank the risk level of ongoing attacks. This model handles the cycles
that are inherent to the Generic Attack Model and thus is applicable to any input attack model,
with multiple potential attack sources. The cycle breaking process significantly increases the

88

5.9. Summary and conclusion

number of nodes in the model, but thanks to the polytree structure of the Bayesian networks we
build, the inference remains efficient, for medium-sized systems.

We also studied precisely the sensitivity of the results of the Bayesian Attack Model, toward
the parameters of the Generic Attack Model or the parameters introduced by the Bayesian Attack
Model. We summarise in Table 5.5 the results of the sensitivity analysis of all parameters. We
also give in this table the range of variation on which we conduct the sensitivity analysis for the
given parameters. We present first the Generic Attack Model parameters then, after the double
line, the Bayesian Attack Model parameters.

Table 5.5 – Sensitivity analysis of the parameters of the Bayesian Attack
Model

Name Variation
range

Ranking influence Probability influence

false-positive [0− 1] Low impact (between
compromised states
with low probabilities
and not-compromised
states).

Important impact (fast decrease) on compro
mised states on [0−0.2], then almost no impact
except for extreme values (> 0.9). No impact
for not-compromised states except for extreme
values (> 0.9).

false-negative [0− 1] Low impact (between
compromised states
with low probabilities
and not-compromised
states). Almost no
impact on its usual
variation interval
[0− 0.1].

Medium impact (decrease) on compromised
states. Low impact on not-compromised
states. On its usual variation interval [0−0.1],
very low impact.

probability-at
tack-source

[0− 1] Impacts ranking when
other states have
higher source probabil-
ity than actual attack
source.

Significant impact on the probabilities of the
not-compromised states (increase).

probability-un
known-attack

[0− 0.5] Impact on the ranking
of compromised states,
but only for high val-
ues of the parameter
(> 0.35).

Medium impact on both compromised and
not-compromised states. No real impact on
its common variation interval ([0, 0.01])

nbSteps [[0− 7]] Almost no impact. Medium impact on the probabilities of the com
promised states until they converge to their
final values. Low impact on the not-compro
mised states.

probability-
new-transition

[0.0− 1.0] Impact on extreme val-
ues (close to 0 and 1).

Important impact on the probability of compro
mised states. Low impact on the probability
of not-compromised states (for both, increase,
then decrease).

The most interesting result of this analysis, in order to know where the response priorities are,
is the ranking influence, which allows the prioritisation of responses. It describes the impact of the
variation of each parameter on the rank of state’s probabilities (on the whole parameter variation
range, for all alert scenarios). This rank will determine the priorities of security operators in their
system. The probability influence describes the effect of the variation of the parameters on the ab-
solute value of the state’s compromise probability. Only three parameters have a significant impact
on the rank of the states probabilities: probability-attack-source, probability-unknown-at-
tack, and probability-new-transition. The probability-attack-source parameter can be
estimated quite accurately with a risk analysis methodology, which gives the security risk of each
state, according to its position in the system. The probability-unknown-attack parameter has
no impact, if it is low (< 0.35), which is a reasonable assumption for a normally protected sys-
tem. The probability-new-transition parameter does not change the ranking on most of its

89

CHAPT 5. BAYESIAN ATTACK MODEL

variation interval, for all scenarios. Moreover, the maximum dispersion of compromise states is
reached before this value, around 0.2. Around this value, imprecision will not change the ranking
of the compromised states. This is a comforting result, as the compromised state’s ranking is not
too sensitive to up to medium changes on the inputs parameters, on their usual values. Three
parameters have a high impact on the absolute value of the compromise probabilities of states on
(at least) a portion of their variation interval: false-positive, probability-attack-source,
and probability-new-transition. With a medium uncertainty on such parameters (e.g., 0.01),
the variation of the absolute value of the probabilities is medium (e.g., up to 0.1). The other
parameters, false-negative, probability-unknown-attack, and nbSteps have a medium im-
pact on absolute values of probabilities. With a medium uncertainty on such parameter (e.g.,
0.1), the variation of the absolute value of the probabilities is low (e.g., up to 0.1). So, in the
Bayesian Attack Model, absolute value of compromise probabilities may be significantly impacted
by uncertainty on parameters, but rank is not impacted by the variation of the parameters, if the
uncertainty on the parameters is not too high.

As a result, we have built a dynamic risk assessment model that is suitable for any attack model
(either cyclic or acyclic) that can be specified within the Generic Attack Model. It is efficient for
up to medium-sized models. Its results are relatively accurate for the rank of the compromise
probabilities of states, even with uncertainty on the parameters. However, in order to have exact
absolute values on the compromise probabilities, the values of the parameters have to be accurately
chosen. One other drawback of this model is that it mixes the increase of compromise probabilities
due to already occurred attacks and likely futures. As a result, this model is not fully suited to
support the computation of responses.

90

Chapter 6
Hybrid Risk Assessment

Model

We presented in the previous chapter a Bayesian Attack Model that can be used for dynamic risk
assessment. The Bayesian Attack Model is built from a Generic Attack Model and contains all
the attacks that can happen in a system. Its sensor nodes can be activated by dynamic security
events to update the compromise probabilities of states. These probabilities allow to rank the risk
of ongoing attacks. However, the Bayesian Attack Model suffers from three main limitations.

• It can be used only for small and medium systems.
• It does not take into account the order in which the alerts are received. In the Bayesian

Attack Model, all the sensors that have raised alerts are activated in the model, but without
taking into account the order in which they have been received.

• For each state, the output of the Bayesian Attack Model is a unique value cumulating its
probability of being already compromised and being compromised in a near future, according
to the received alerts. There is no easy way in the results of the Bayesian Attack Model to
make a distinction between these two reasons of being compromised.

The model we propose in this chapter is a new hybrid model combining attack graphs and
Bayesian networks for dynamic risk assessment. It is an extension of the Bayesian Attack Model.
This model is subdivided into two complementary models: (1) The Dynamic Risk Correlation
Models correlate a chain of alerts with the knowledge on the system to analyse ongoing attacks
and provide the probabilities of hosts being compromised, (2) The Future Risk Assessment Models
take into account existing vulnerabilities and the current attack status to assess which potential
attacks are most likely to occur in the next future. Dynamic Risk Correlation Models aim at
threat likelihood assessment, identifying where the attack comes from. It outputs probabilities
that attacks are completed and that assets of the information system are compromised. These
probabilities provide security operators with the capability to manage priorities according to the
likelihood of ongoing attacks. Future Risk Assessment Models aim at threat mitigation, identifying
the most likely and impacting next steps for the attacker. This problem separation provides a
significant performance improvement in terms of the number of nodes, enabling scalability.

This chapter is part of the contribution described in subsection 1.3.1, the definition of a dynamic
risk assessment model, and the contribution described in subsection 1.3.2, the scalability of the
risk assessment model. It tackles the challenges described in section 1.2.1, 1.2.2 and 1.2.3: the
methodology to build a dynamic risk assessment model merging different information sources and
taking advantage of the different types of attack representation and which is scalable.

91

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.1 Hybrid Risk Assessment Model architecture

The Hybrid Risk Assessment Model (HRAM) takes the same inputs as the Bayesian Attack Model
presented in chapter 5: a Generic Attack Model and a set of alerts.

Determining the likelihood of occurrence of occurring attacks can be separated into two distinct
problems: (1) Threat impact assessment, identifying where the attack comes from and (2) Threat
mitigation, identifying the most likely next steps for the attacker. Each problem has its dedi-
cated models, Dynamic Risk Correlation Models (DRCMs) and Future Risk Assessment Models
(FRAMs), combined to provide a complete Hybrid Risk Assessment Model. The architecture of
the Hybrid Risk Assessment Model is presented in Figure 6.1. As for the Bayesian Attack Model,
we take as input a Generic Attack Model. First, we build Dynamic Risk Correlation Models from
this Generic Attack Model and the set of current alerts at time t. The reconciliation of the prob-
abilities given by the several Dynamic Risk Correlation Models gives the current attack status at
the current time. Then, we build Future Risk Assessment Models which give the likely futures
of the system, according to this current status. The combination of these likely futures with an
impact analysis results in the risk of the system.

Figure 6.1 – Hybrid Risk Assessment Model Architecture

6.2 Dynamic Risk Correlation Model

We will first present in this section the details of Dynamic Risk Correlation Models: their building
process, usage, structure, and probability tables.

6.2.1 Building process and usage

The goal of the Dynamic Risk Correlation Model is to provide explanations for correlated alerts
that have been raised by sensors in a system. By explanation, we mean the identification of the
likely source nodes that have been compromised and that have enabled the attacker to launch the
detected attack. A Dynamic Risk Correlation Model is built from the most recent alert received,

92

6.2. Dynamic Risk Correlation Model

the target, and explains why this alert has been generated, taking into account past alerts. As
soon as a new alert is received, a new Dynamic Risk Correlation Model is built. Older Dynamic
Risk Correlation Models are kept in parallel with the newly generated DRCM, to manage scenarios
with several distinct simultaneous attacks (a new alert is not related to older ones) as detailed at
the end of subsubsection 6.2.5.2. Probabilities of all kept Dynamic Risk Correlation Models are
consolidated as detailed in subsection 6.2.4.

We build the structure of the Dynamic Risk Correlation Models according to the Generic Attack
Model and the received alerts. Then, we set the states of the DRCM Sensor Nodes according to
the previous security alerts received by the sensors:

• If the sensor of a transition, state or condition exists and is deployed in the network, if it has
not issued any alert, all related DRCM Sensor Nodes are set to the no-alert state.

• If the sensor has raised an alert corresponding to this transition, state or condition, the
related DRCM Sensor Nodes are set to the alert state.

• If the transition, state or condition has no deployed sensor, there is no-info about this sensor.
So, the related DRCM Sensor Nodes cannot be set in any state and their probabilities are
updated by the Bayesian inference.

Note that if sensors give an alert confidence probability, it is possible to set the state alert to
this probability.

Finally, we use a Bayesian network belief propagation algorithm (Lauritzen or Pearl’s) to update
the probabilities of each state at all the nodes. The reconciliation of the probability the Dynamic
Risk Correlation Models gives the compromise probabilities of the states of the system, according
to the received alerts.

The building process of the Dynamic Risk Correlation Model according to 3 successive alerts
received by the system is shown in Figure 6.2. When the first alert is received, a Dynamic Risk
Correlation Model is built to detail the possible causes of this alert. The sensor(s) corresponding to
this alert in the Dynamic Risk Correlation Model are set to the alert state and Bayesian inference
is done. It gives the compromise probabilities of the states of the system, after the first alert. Then,
the alert 2 is received. A new Dynamic Risk Correlation Model is built to detail the possible causes
of the second alert. The sensor(s) in the new Dynamic Risk Correlation Model corresponding to
the alerts 1 and 2 are set to the alert state. If alert 1 is not in this new DRCM, the two alerts
are not yet corresponding to the same attack. Thus, the Dynamic Risk Correlation Model is kept
in parallel to the new one, to take into account both unrelated attacks. The reconciliation of the
probability of both Dynamic Risk Correlation Model gives the compromise probabilities of the
states of the system, after the two alerts. Finally, when the system receives alert 3, we build a
third Dynamic Risk Correlation Model in a similar way and set the sensor(s) corresponding to the
alerts 1, 2 and 3 to the alert state. If the past alert(s) are not related to alert 3, we keep the
corresponding DRCM(s) in parallel to the newly built one. The reconciliation of the probability the
Dynamic Risk Correlation Models gives the compromise probabilities of the states of the system,
after the three alerts.

6.2.2 Representation of a transition

A transition in the Generic Attack Model is an edge from a state to another, associated with several
conditions and can be related to a sensor. In the Dynamic Risk Correlation Model, similarly to the
Bayesian Attack Model, we detail the states, transitions, conditions, and their sensors as nodes,
in order to model the probabilistic interactions between such elements, using the nodes detailed
below. Each node represents a boolean random variable with two mutually exclusive states.

93

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

Figure 6.2 – Building of the Dynamic Risk Correlation Model according to
the alerts received

Definition 23 The DRCM Target Node drcm-tan(s) or drcm-tan(t), with s ∈ S or t ∈ T
(cf. Def. 7), is the node of the Dynamic Risk Correlation Model describing the state of compromise
of s or t, the target of the DRCM. This node has two mutually exclusive states: compromised and
not-compromised.

The target of the Dynamic Risk Correlation Model corresponds to the element, either state or
transition, concerned by the lastly received alert in the system.

Definition 24 A DRCM State Node drcm-stn(sn, · · · , s1), with ∀i, si ∈ S (cf. Def. 7), is a
node of the Dynamic Risk Correlation Model representing the random variable describing the state
of compromise of state s1, to compromise the target of the DRCM sn using the path of the Generic
Attack Model sn ← · · · ← s1. This node has two mutually exclusive states: compromised and
not-compromised.

Definition 25 A DRCM Attack Source Node drcm-ason(s), with s ∈ S (cf. Def. 7), is a node
of the Dynamic Risk Correlation Model representing the random variable describing that the source
of attack is s. This node has two mutually exclusive states: source and not-source-of-attack.

Definition 26 A DRCM Transition Node drcm-tn(t), with t ∈ T (cf. Def. 7), is a node of the
Dynamic Risk Correlation Model representing the random variable describing the attack success of
transition t. This node has two mutually exclusive states: succeeded and failed.

Definition 27 A DRCM Condition Node drcm-cn(c), with c a condition (cf. Def. 8), is a
node of the Dynamic Risk Correlation Model representing the random variable describing that the
condition c is fulfilled. This node is a boolean variable with two mutually exclusive states: verified
and not-verified.

94

6.2. Dynamic Risk Correlation Model

Definition 28 A DRCM Sensor Node drcm-sn(s), with s a sensor (cf. Def. 9), is a node of
the DRCM representing the random variable describing the state of the sensor s. This node is a
boolean variable with two mutually exclusive states: alert and no-alert.

These nodes are linked with edges, indicating that the child node has a conditional dependency
to the state of its parents.

Definition 29 A Dynamic Risk Correlation Model edge drcm-e, is a link from a parent
node to a child node in the DRCM, representing a conditional dependency of the child toward its
parent.

6.2.3 Complete model

Definition 30 A Dynamic Risk Correlation Model is a Bayesian network represented by
DRCM(drcm-tan, DAG,P) where:

• drcm − tan(cf. Def. 23) is the DRCM Target Node, representing the element impacted by
the lastly generated alert.

• DAG(DRCMN,E) is a polytree structure, constituted of

• DRCMN , the DRCM nodes DRCMN=[drcm-stn],[drcm-ason],[drcm-tn],[drcm-cn],
[drcm-sn] (cf. Defs. 24-28)

• E, the set of edges E = {drcm-e} representing a conditional dependency between the
nodes (cf. Def. 29).

• P is a set of local probability distributions, associated with each node of DAG. As all nodes
are discrete random variables, the local probability distributions can be specified within a
conditional probability table.

Following the process described in subsection 5.1.1, we construct each Dynamic Risk Correlation
Model in such a way as not to have any cycles, but to keep all possible attack paths “directed to”
the target. The Dynamic Risk Correlation Model is built from the lastly received alert. Then,
we recursively add the transitions and states allowing to compromise the target. We store in each
DRCM State Node the path, from this state to the target of the Dynamic Risk Correlation Model.
This allows to ensure that the building process never comes back on a previously exploited node
and thus the Dynamic Risk Correlation Model does not have cycles, but contains all possible causes
of the latest received alert.

Moreover, we design this building process in order to generate a graph structure of the Dynamic
Risk Correlation Model which is a polytree (i.e., directed graph with no directed nor undirected
cycles). This implies, for example, to duplicate the condition and sensor nodes (i.e., new conditions
and sensors for each added attack step). The Dynamic Risk Correlation Model being a polytree
satisfies the requirements of Pearl’s inference algorithm [Pea88], which is quasilinear in the number
of nodes. Thus, the inference in such a Dynamic Risk Correlation Model with a polytree structure
containing duplicated nodes is more efficient and consume less memory, in comparison with a
directed acyclic graph structure with fewer nodes (no duplicates), for identical results.

Figure 6.3 shows an example of a Dynamic Risk Correlation Model built from an alert on state
s1 (the node in dotted lines on the left) from a Generic Attack Model of 3 states (s1, s2 and
s3). DRCM State Nodes are represented by a rectangle shape, DRCM Attack Source Nodes by a
five-sided shape, DRCM Transition Nodes by a diamond shape, and DRCM Condition Nodes by
an oval shape.

95

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

Figure 6.3 – Dynamic Risk Correlation Model

6.2.4 Reconciliation of probabilities

The outputs of the Dynamic Risk Correlation Models are of two types: (1) the probabilities of
attack sources, describing how likely an asset is to be the source of the attack impacting the target
of the Dynamic Risk Correlation Model, and (2) the compromise probabilities, describing how
likely it is that an asset has been compromised along the path of the attacker.

As a DRCM State Node contains the attack path from its related state to the target, many
DRCM State Nodes represent the same Generic Attack Model’s state. Indeed, the attacker can
potentially use several different paths to reach the target: for example, s1 ← s2 ← s4 is different
from s1 ← s3 ← s4, but in both cases, the attacker starts from the same state s4 to attack the
target s1. In a Dynamic Risk Correlation Model DRCMi, we thus have many DRCM State Nodes
and DRCM Source Nodes representing the same state s. We chose to give the operator the worst
case for compromise probability of states. Thus, as output of a Dynamic Risk Correlation Model,
we assign to a state:

• a probability of compromise Pc that is the maximum of the probabilities of DRCM State
Nodes related to this asset:

PcDRCMi
(s) = maxnode∈{DRCM States(s)}PcDRCMi

(node) (6.1)

• an attack source probability Ps that is the maximum of the probabilities of DRCM Source
Nodes related to this asset:

PsDRCMi
(s) = maxnode∈{DRCM Attack Source(s)}PsDRCMi

(node) (6.2)

On the other hand, as described in subsection 6.2.1, several older Dynamic Risk Correlation
Models are kept in parallel with the new ones generated each time a new alert is received. They
can be related to different simultaneous attacks. These Dynamic Risk Correlation Models DRCMi

give different sources and compromise probabilities for the same state s. Thus, the second level
of probability reconciliation is done between all kept Dynamic Risk Correlation Models. Simi-
larly to the single Dynamic Risk Correlation Model case, we want to present the operator with a
view of the worst case, and assign to a state s a probability of compromise Pc(s) and an attack

96

6.2. Dynamic Risk Correlation Model

source probability Ps(s) that is the maximum of the related probabilities in all the Dynamic Risk
Correlation Models

Pc(s) = maxDRCMi∈{kept DRCMs}PcDRCMi
(s) (6.3)

Ps(s) = maxDRCMi∈{kept DRCMs}PsDRCMi(s) (6.4)

So, in order to reconcile the different probabilities that we have for a state, with a Dynamic Risk
Correlation Model or between Dynamic Risk Correlation Models we chose to keep the maximum
of all probabilities relative to this state.

6.2.5 Pruning

The main limitation when implementing the Dynamic Risk Correlation Model is the combinatorial
explosion of the number of nodes, due to the cycle breaking process. This process introduces a lot of
redundancy which increases significantly the size of the model. In order to improve the performance
and prevent this combinatorial explosion, we implement two types of pruning: the pruning within
a Dynamic Risk Correlation Model and the pruning between Dynamic Risk Correlation Models.

6.2.5.1 Pruning within a Dynamic Risk Correlation Model

Within a Dynamic Risk Correlation Model, we provide a practical way to cut marginally relevant
attack paths (paths with extremely low probabilities) while preserving the other paths.

The probabilities of DRCM State Nodes represent the probability of the attacker having ex-
ploited the DRCM Target, by exploiting this state. As long as no alert has been sent by the
sensors located along this path, the probability of a node being compromised decreases rapidly
as a function of the length of the path between the DRCM State Node and the DRCM Target.
Moreover, thanks to the multiple Dynamic Risk Correlation Models that are kept, if a detected
transition is discarded in a Dynamic Risk Correlation Model, it will be in another older Dynamic
Risk Correlation Model, closer to its detected nodes, thanks to the redundancy of the model.

According to the state of the sensors along a path, we have different pruning policies, sum-
marised in Figure 6.4. The rules applied when building a Dynamic Risk Correlation Model are the
following:

• We keep exploring and memorising the path from the target asset, as long as we find alert
sensors.

• For no-alert sensors, when there are more than max-number-no-alert-to-explore, we
discard the path and keep only max-number-no-alert-to-keep nodes.

• For no-info sensors, when there are more than max-number-no-info-to-explore, we dis-
card the path and keep only max-number-no-info-to-keep nodes, but with values for the
parameters bigger than for no-alert sensors.

• As soon as an alert sensor is found on an explored path, the counters of no-alert and
no-info are reset to 0.

6.2.5.2 Selection of the Dynamic Risk Correlation Models to keep

The last important feature about this model is the selection of the Dynamic Risk Correlation
Models to keep. Indeed, as one new Dynamic Risk Correlation Model is generated each time an

97

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

Caption: ×: no-alert sensor; �: alert sensor; ?: no-info sensor

Figure 6.4 – Pruning policies in Dynamic Risk Correlation Model

alert is received, the number of models to keep can increase quickly. However, when alerts are part
of the same attack, they will be part of the Dynamic Risk Correlation Model whose target is the
sensor that raised the latest alert. Moreover, there will be more alert sensors in this Dynamic
Risk Correlation Model (increasing probabilities of all nodes of the DRCM), and at most the
same number of no-alert sensors (decreasing probabilities) than in all previous Dynamic Risk
Correlation Models related to the same attack. Thus, all the previous Dynamic Risk Correlation
Models related to the same attack are irrelevant, because they are included in the lastly generated
Dynamic Risk Correlation Model. Their probabilities will be lower so they do not change the
maximum of state compromise probabilities.

The only different Dynamic Risk Correlation Models that are useful to keep are those not
related to the same attacks because they bring new information about the currently happening
attacks. They can be identified by having at least one DRCM State Node with a higher probability
than all the ones of the latest Dynamic Risk Correlation Model, for the same state. These attacks
could be part of a more global attack scenario, starting from different sources, that has not yet
converged or it might be distinct attacks that are happening simultaneously. That is why we may
need to keep several Dynamic Risk Correlation Models in parallel.

6.2.6 Conditional probability tables

We now specify using conditional probability tables the local probability distribution associated
with each node, describing the probability dependencies of a node toward his parents. As most
nodes of the Dynamic Risk Correlation Model are very similar to the ones of the Bayesian Attack
Model and thus have the same conditional probability table, we will specify here only the nodes
which have different probability tables, compared to the Bayesian Attack Model.

For example, the DRCM sensor nodes have exactly the same conditional probability table as
Bayesian sensor nodes, as presented in section 5.3. The DRCM condition nodes have the same
probability value as Bayesian condition nodes, as presented in Table 5.3. The DRCM attack sources
have the same probability value as Bayesian attack sources, as presented in Table 5.3.

98

6.3. Future Risk Assessment Model

6.3 Future Risk Assessment Model

We will now present the second family of models of the Hybrid Risk Assessment Model: Future
Risk Assessment Models (FRAMs).

6.3.1 Building process and usage

The goal of a Future Risk Assessment Model is to evaluate among all possible futures, the ones
that are the most likely to happen. As indicated by Figure 6.1, a Future Risk Assessment Model
is built from each attack source, according to the Dynamic Risk Correlation Models’ reconciled
compromise probabilities. Then, we use a belief propagation algorithm to update the probabilities
of all the nodes. When there is a completed attack transition or a compromised state, a Future
Risk Assessment Model taking this node as starting point is built or updated and the branches
from this attack step are deleted in all other Future Risk Assessment Models. Indeed, this attack
is no longer a possible future, as it has happened and will be investigated in its own Future Risk
Assessment Model. Even if the structure of a Future Risk Assessment Model does not change with
alerts, its probabilities of conditions and attack sources can be updated. For example, the a-priori
condition probability of a vulnerability that has already been exploited is set to “1”.

We build recursively the structure of each Future Risk Assessment Model according to the
Generic Attack Model, starting from the attack source. Then, we use a Bayesian network belief
propagation algorithm to update the probabilities of each state at all the nodes. There is no need
to set evidences in Future Risk Assessment Models because it represents hypotheses in the future,
which, by definition, may only be observed later.

6.3.2 Representation of a transition

The representation of a transition in the Future Risk Assessment Model is very similar to the one
of the Bayesian Attack Model. But, as this model is only used to predict possible futures, there
are no sensor nodes. In the same way, each node represents a boolean random variable with two
mutually exclusive states.

Definition 31 The FRAM Attack Source Node fram-ason(s), with s ∈ S (cf. Def. 7), is
a node of the Future Risk Assessment Model representing a potential source of attack s whose
possible futures need to be evaluated. This node has two mutually exclusive states: compromised
and not-compromised.

Definition 32 A FRAM State node fram-stn(s1, · · · , sn), with ∀i, si ∈ S (cf. Def. 7), is a
node of the Future Risk Assessment Model representing the random variable describing the state of
compromise of state sn using the path of the Generic Attack Model s1 → · · · → sn. This node has
two mutually exclusive states: compromised and not-compromised.

Definition 33 A FRAM Transition node fram-tn(t), with t ∈ T (cf. Def. 7), is a node of the
Future Risk Assessment Model representing the random variable describing the attack success of
transition t. This node has two mutually exclusive states: succeeded and failed.

Definition 34 A FRAM condition node fram-cn(c), with c a condition (cf. Def. 38), is a node
of the Future Risk Assessment Model representing the random variable describing that the condition
c is fulfilled. This node has two mutually exclusive states: succeeded and failed.

99

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

These nodes are linked with edges, indicating that the child node has a conditional dependency
to the state of its parents.

Definition 35 A FRAM edge fram-e, is a link from a parent node to a child node in the Future
Risk Assessment Model, representing a conditional dependency of the child toward its parent.

6.3.3 Complete model

Definition 36 A Future Risk Assessment Model is a Bayesian network represented by
FRAM(fram-ason, DAG,P) where:

• fram− ason is the FRAM Source Node, a potential source of attack whose possible futures
need to be evaluated.

• DAG(FRAMN,E) is a polytree structure, constituted of

• FRAMN , the FRAM nodes FRAMN=[fram-ason],[fram-stn],[fram-tn],[fram-cn] (cf.
Defs. 31-34)

• E, the set of edges E = {fram-e} representing a conditional dependency between the
nodes (cf. Def. 35).

• P is a set of local probability distributions, associated with each node of DAG.

We build the Future Risk Assessment Model similarly to the Bayesian Attack Model, in such
a way as not to have any cycle. Moreover, we design the graph structure of the Future Risk
Assessment Model in order to be a polytree. This allows to use very efficient exact inference
algorithms such as Pearl’s algorithm [Pea88].

Figure 6.5 shows an example of a Future Risk Assessment Model issuing from state s1 from
a Generic Attack Model with 3 states. The FRAM Attack Source is represented by a five-sided
shape, FRAM State Nodes by a rectangle shape, FRAM Transition Nodes by a diamond shape,
FRAM Condition Nodes by an oval shape.

Figure 6.5 – Future Risk Assessment Model

6.3.4 Reconciliation of probabilities

The outputs of a Future Risk Assessment Model are the compromise probabilities, describing how
likely it is that a state will be compromised in the near future, by an attacker, according to the
status of compromise of states in the system.

100

6.4. Impact analysis

However, as a FRAM State Node contains the attack path from the FRAM Source Node to this
node, similarly to the Dynamic Risk Correlation Model, many FRAM State Nodes can represent
the same state, when the attacker used a different path. In a Future Risk Assessment Model,
we have many FRAM State Nodes representing the same state of the information system. As
output of the reconciliation of probabilities, we chose to give to the operator the worst case, for
the probability of the states being compromised in the near future. Thus, as output of a Future
Risk Assessment Model, we assign to a state a probability of compromise in the future that is the
maximum of the probabilities of FRAM State Nodes targeting the same state.

6.3.5 Pruning in a Future Risk Assessment Model

As a Future Risk Assessment Model does not include any evidence (i.e., it does not contain sensor
nodes which are set in a specific state), the Bayesian inference is much easier to compute. Moreover,
it has fewer nodes than a Dynamic Risk Correlation Model, thus its combinatorial explosion of
nodes is not as important. However, the combinatorial explosion of the number of nodes, due to the
cycle breaking process is still present. If they are not built carefully, there is a lot of redundancy
in all Future Risk Assessment Models, which increases significantly the size of the model. A major
part of this redundancy can be deleted, at the building of a new Future Risk Assessment Model,
by deleting all the paths issued from all sources of other Future Risk Assessment Models. All
these subtrees can be deleted safely, as their probabilities will be lower than the probabilities of
the Future Risk Assessment Model issued from the attack source. Moreover, as we only want to
predict the near future, we can limit to a small number of steps, nbSteps-possible-futures,
(e.g., 3) the next steps to compute.

It would also be possible to add a sounder pruning by keeping the nodes (and the rest of
the path) only if their compromise probability is above a certain probability (e.g., probability
above 0.01). Indeed, as the Future Risk Assessment Models do not have evidence and have a
polytree structure, the propagation of probabilities is a forward propagation and the probabilities
are decreasing with the depth in the polytree. It is thus possible to know when computing the
probabilities the maximum compromise probabilities of the children of the current node. However,
this would require to customise the inference algorithm.

6.3.6 Conditional probability tables

We now specify using conditional probability tables the local probability distribution associated
with each node, describing the probability dependencies of a node toward his parents. As the nodes
of the Future Risk Assessment Model are very similar to the ones of the Bayesian Attack Model,
they have the same conditional probability tables.

For example, the FRAM Source Node has the same probability value as Bayesian Source Nodes,
as presented in Table 5.3. The FRAM Condition Nodes have the same probability value as Bayesian
Condition Nodes, as presented in Table 5.3.

6.4 Impact analysis

We use exactly the same simple impact analysis component in the Hybrid Risk Assessment Model
to the one of the Bayesian Attack Model, that has been already presented in section 5.4

101

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.5 Hybrid Risk Assessment Model complexity evaluation

The complexity of the Hybrid Risk Assessment Model depends on the complexity of its underlying
models: Dynamic Risk Correlation Models and Future Risk Assessment Models. Thus, we study
successively the complexity of both types of models.

6.5.1 Dynamic Risk Correlation Model

As in the Bayesian Attack Model, the main computation done on each Dynamic Risk Correlation
Model is the execution of the belief propagation algorithm (probability inference), computing the
probability of all nodes, according to evidences, nodes set to a specific state. The complexity of
the inference in a Bayesian network is directly linked to the number of nodes and structure of the
network. We estimate the number of nodes M of a Dynamic Risk Correlation Model, depending on
|S|, the number of state nodes in the Generic Attack Model, k the maximum number of consolidated
transitions between two states in the Generic Attack Model (i.e., the maximum number of different
types of transitions), o the maximum number of alerts received until the generation of the Dynamic
Risk Correlation Model, and the pruning parameters presented in Figure 6.4. For this complexity
evaluation, we consider the worst case: there are k transitions between each pair of states.

Let maxPruning = max(max-number-no-alert-to-keep, max-number-no-info-to-keep).
In each branch, the sensors of transitions and states will be either in the alert state (maximum o
times), or in the no-alert or no-info state (maximum maxPruning times). Thus, each branch
is at maximum maxLength = maxPruning + o long. As in Bayesian Attack Model, for each
transition, we add ≈ 5 nodes to the Dynamic Risk Correlation Model (sometimes a few more,
according to the number of conditions). Thus, in the worst case, for each Dynamic Risk Correlation
Model, targeting a transition or state, the number of nodes to add M is

M ∼ 5× k × (|S| × · · · × (|S| −maxLength− 1)) = 4× k × |S|!
(|S| −maxLength)!

= O(|S|maxLength) = O(|S|maxPruning+o)

However, even if the number of nodes in each DRCM is high, the Bayesian inference can be
done efficiently. Indeed, as the structure is a polytree, efficient inference algorithms such Pearl’s
belief propagation algorithm can be used. The complexity of the inference in a Dynamic Risk
Correlation Model C(DRCM) is thus:

C(DRCM) = |S|.O(|S|maxPruning+o) = O(|S|maxPruning+o+1) (6.5)

We keep several Dynamic Risk Correlation Models in parallel, to take into account when there
are alerts that are part of different attacks. As a result, there are at most o Dynamic Risk Corre-
lation Models in parallel. We build a new model each time the system receives a new correlated
alert. Older models may be kept in memory, but they are not processed anymore and no inference
is done. We only compare the compromise probabilities of the |S| states with the compromise
probabilities of the newly generated DRCM, to assess whether or not we keep older Dynamic Risk
Correlation Models.

So, for each new alert received, the total of computations C done for all Dynamic Risk Corre-
lation Models is:

C = C(DRCM) + |S| × o = O(|S|maxPruning+o+1) (6.6)

102

6.6. Hybrid Risk Assessment Model performance evaluation

Even if this algorithmic complexity seems prohibitive, it is a worst-case analysis and, in practice,
it is quite efficient, even for big systems, as detailed in section 6.6.

6.5.2 Future Risk Assessment Model

Computations on Future Risk Assessment Models are much simpler than those on Dynamic Risk
Correlation Models. Indeed, these models have a limited number of nodes, and the depth of next
futures to predict can be small (e.g., 3 is a good value).

In the same way, we estimate the number of nodes M of a DRAM, depending on |S|, the
number of state nodes in the Generic Attack Model, and k the maximum number of consolidated
transitions between two states in the Generic Attack Model. For this complexity evaluation, we
consider the worst case: there are k transitions between each pair of states. For each transition,
we add ≈ 3 nodes to the Future Risk Assessment Model (sometimes few more, according to the
number of conditions). Thus, in the worst case, for each Future Risk Assessment Model, starting
from a potential attack source, the number of nodes to add M is

M ∼ 3× k × (|S| × · · · × (|S| − nbFutureSteps− 1))

= 4× k × |S|!
(|S| − nbFutureSteps)!

= O(|S|nbFutureSteps)

Thus, for each Future Risk Assessment Model, in the worst case, the complexity of the con-
struction and probability inference C(FRAM) is C(FRAM) = O(|S|nbFutureSteps). Finally, for
the whole Future Risk Assessment Models, as there are at most |S| attack sources, in the worst
case, the complexity of the inference in the whole model C(FRAMs) is

C(FRAMs) = |S|.C(FRAM) = O(|S|nbFutureSteps+1) (6.7)

The calculations on each FRAM are independent. So, they may be easily done in parallel,
which gives in practice, C(FRAMs) = O(|S|nbFutureSteps) with |S| processors.

6.6 Hybrid Risk Assessment Model performance evaluation

Similarly to the Bayesian Attack Model, the Hybrid Risk Assessment Model has to be evaluated
each time a correlated alert, or a set of correlated alerts is received: new sensor nodes are set in
their new states, then the probabilities are updated. Such a process must be quite fast (less than 5
minutes is good), for the operator to properly understand the risk in operational time. We evaluate
the Hybrid Risk Assessment Model on the simulated random Generic Attack Models presented in
section 5.6.

The results of the duration in seconds of the Hybrid Risk Assessment Model generation and
the inference after the evaluation of one scenario of four successive transitions, on the generated
Generic Attack Model, is displayed in Figure 6.6. The parameters of the Hybrid Risk Assessment
Model are in the default values detailed in section 6.7. These simulations show that for medium-
sized topologies (up to 70 states), even quite strongly connected (up to 10 clusters), the duration
of the Hybrid Risk Assessment Model generation and of the inference remains acceptable (< 1
minutes 30 seconds).

103

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

Figure 6.6 – Duration in seconds of Hybrid Risk Assessment Model execution,
according to the number of states and clusters in the Generic Attack Model

(a) 70 clusters (b) 10 clusters

6.7 Parameter sensitivity analysis

As the Bayesian Attack Model, we build the Hybrid Risk Assessment Model from an Generic
Attack Model. The Hybrid Risk Assessment Model also introduces new parameters. Thus, in this
section, we study the sensitivity of the Hybrid Risk Assessment Model toward the Generic Attack
Model and the Hybrid Risk Assessment Model’s parameters.

6.7.1 Generic Attack Model and Hybrid Risk Assessment Model pa-
rameters summary

In chapter 5, Table 5.2 summarises the four parameters of the Generic Attack Model: false-pos-
itive, false-negative, probability-attack-source and probability-unknown-attack.

Table 6.1 summarises the four parameters introduced by the Dynamic Risk Correlation Model of
the Hybrid Risk Assessment Model: max-number-no-info-to-explore, max-number-no-alert-
to-explore, max-number-no-info-to-keep and max-number-no-alert-to-keep. Each parame-
ter is associated with its description and the default value used in the experimentations.

Table 6.1 – Default values of the Dynamic Risk Correlation Model parameters

Parameter
name

Meanings Default
value

Default value explanation

max-number-no-
info-to-explore

Number of successive no-info
nodes to explore in the Dynamic
Risk Correlation Model.

6 Maximum number of successive tran-
sitions without sensors allowed in the
system.

max-number-no-
info-to-keep

Number of successive no-info
nodes to keep in the Dynamic Risk
Correlation Model.

2 We need to keep at least the no-info
node corresponding to the state.

max-number-no-
alert-to-explore

Number of successive no-alert
nodes to explore in the Dynamic
Risk Correlation Model.

4 Maximum number of successive false
negatives allowed in the system.

max-number-no-
alert-to-keep

Number of successive no-alert
nodes to keep in the Dynamic Risk
Correlation Model.

0 A no-alert sensor does not bring any
relevant compromise information.

104

6.7. Parameter sensitivity analysis

Table 6.2 summarises the two parameters introduced by the Future Risk Assessment Model of
the Hybrid Risk Assessment Model: nbSteps-possible-futures and probability-new-tran-
sition. Each parameter is associated with its description and the default value used in the
experimentations.

Table 6.2 – Default values of the Future Risk Assessment Model parameters

Parameter
name

Meanings Default
value

Default value explanation

nbSteps-possi
ble-futures

Number of successive transitions to
keep in the Future Risk Assess-
ment Model.

2 Allows to assess possible futures with
up to 2 following transitions. cf. sub-
section 6.3.5 for full explanation.

probability-new-
transition

Probability that the attack propa-
gates through a new transition.

0.5 70% of chance that the attacker does
not continue his attack. He may have
already found on this state what he
was looking for.

105

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.2 Hybrid Risk Assessment Model initial results

In the same way to what we did with the Bayesian Attack Model, in order to study the impact of
all the parameters on the results of the Hybrid Risk Assessment Model, we simulated a random
Generic Attack Model of 35 states as presented in section 5.6, on which we apply six detection
scenarios, corresponding to an attack of three transitions, with and without detection anomalies,
as summarised in Table 5.4. Then, we compute the compromise probabilities, results of the Future
Risk Assessment Model, according to the change on the parameters. These probabilities give the
actual compromise status in addition to the probabilities of possible futures (in order to have
results that can be compared with the Bayesian Attack Model). Finally, we plot the variation
interval of the compromise probabilities of states, on the whole parameter variation interval, for
all Generic Attack Model states.

The results of the Hybrid Risk Assessment Model for these attack scenarios with the parameters
in their default values are shown in Figure 6.7.

Scenario 1 Figure 6.7a shows the compromise probabilities output of the Hybrid Risk Assessment
Model of each state of the Generic Attack Model, after the first alert of the attack scenario. As
the transition that has been detected issues from the main source of attacks, it is very likely
and both the source and destination states of this transition have critical compromised
probabilities (i.e., p > 0.75). The other states have very low compromise probabilities (i.e.,
p < 0.25), since they have not been detected.

Scenario 2 After the second alert, the compromise probabilities shown in Figure 6.7b confirms
that an attack is actually happening and henceforth, the three compromised states (sources
and destinations of attack transitions) have critical probabilities(i.e., p > 0.75).

Scenario 3 Similarly, after the third alert, the four compromised states have critical probabil-
ities(i.e., p > 0.75), as shown in Figure 6.7c. Note also that the compromise probability of
two not-compromised states has a little increased. These states are probably likely possible
attack futures or other states that are in a possible attack path, compatible with the alerts.

Scenario 4 The fourth scenario, represented in Figure 6.7d, contains a false negative (the second
transition). As a result, the compromise probabilities of the states are lower than for the
third scenario, but still allow to distinguish surely the compromised states, from the not-
compromised ones. The compromised states still have critical probabilities, whereas the
not-compromised ones have low probabilities.

Scenario 5 The fifth scenario, represented in Figure 6.7e, contains a transition for which there is
a no-info sensor. As this transition cannot be detected, the results of the model are nearly
the same as the one of the third scenario.

Scenario 6 The last scenario contains all alerts, but also includes a false positive alert (not related
to the previous ones). As this alert is not related to the last alert of the scenario, it has not
been taken into account into the Hybrid Risk Assessment Model and both compromised and
not-compromised states have the same probability as in scenarios 3 and 5.

So, the compromise probabilities computed thanks to the Hybrid Risk Assessment Model shows
the evolution of an attack scenario, according to the received alerts. The scenarios 1 to 3 shows the
normal evolution of an attack where all attack transitions are detected. In such case, each new alert
confirms that this multi-step attack is actually happening. Even with detection anomalies (no-
info alert, false negative or false positive alert) in the scenario, the Hybrid Risk Assessment Model
recognises the whole scenario that is happening, with a significant gap between the probabilities
of compromised states and the ones of not-compromised states.

106

6.7. Parameter sensitivity analysis

Figure 6.7 – Hybrid Risk Assessment Model results with parameter default
values

(a) 1st alert (b) 1st and 2nd alert

(c) 1st, 2nd and 3rd alert
(d) 1st alert, 2nd no-alert,
3rd alert

(e) 1 alert, 2nd no-info, 1st alert
(f) 1 alert, 1 false positive alert,
3rd and 4th alert

107

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.3 Generic Attack Model parameter: false-positive

The false-positive parameter is associated with each sensor of the Generic Attack Model. It
represents the probability of an alert raised by the related sensor to be a false positive alert, i.e.
an alert raised without successive attack of the related state or transition.

Generally, to be usable in practice and limit irrelevant investigations, sensors are configured to
limit at most the false positives. Thus the false-positive parameter should stay low (e.g., from
0 to 5%). However, to be sure to take into account sensors with higher false-positive values
(for example, an anomaly detection sensor with many false positives), we analyse the sensitivity of
this parameter on its whole variation interval (]0, 1[). Figure 6.8 shows the results of this analysis
for the Hybrid Risk Assessment Model.

From 0 to 0.8, the false-positive parameter is moderately sensitive for compromised states.
Their compromise probabilities decrease with the increase of this parameter. The false-
positive parameter is nearly insensitive with not-compromised states, for all scenarios.
When there are more alerts, this parameter is slightly less sensitive. This can be seen, for
example, by comparing the compromise probabilities of scenarios 2 and 3 of Figure 6.8b and
6.8c with the ones of Scenario 1 of Figure 6.8a. This behaviour can be explained by the fact
that, with more alerts, it is more likely that an attack is actually occurring. Thus, having
a false positive attack scenario is less probable. In Scenario 4 of Figure 6.8d, with a no-
alert sensor, the impact of this parameter is bigger. The probabilities of the 4 compromised
states of the attack scenario decrease significantly, except for the main attack source that
keeps its initial probability-attack-source of 0.7. We can explain this faster decrease
of compromise probabilities by the fact that the 3 steps the attack scenario are less likely
with potentially false positive alerts surrounding a no-alert sensor. In scenarios 5 and 6 of
Figure 6.8e and 6.8f, the impact of the no-info alert or a false positive alert has no impact
on the impact of the false-positive parameter.

From 0.8 to 1, there is a fast increase of the compromise probabilities of compromised states
and a few not-compromised states until the 1 probability. As this range of value for the
false-positive parameter is extreme, it has edge effects.

This sensitivity analysis shows that, on most of its variation interval (and by far the most fre-
quently used in practice), the false-positive parameter has a very low impact on the compromise
probabilities of the compromised states of the Hybrid Risk Assessment Model. This parameter
has a low impact on the compromise probabilities of not-compromised states. For extreme values
of the false-positive parameter (> 0.8), the compromise probabilities of compromised and few
not-compromised states tend to 1. Thus, this parameter should not be used on the interval [0.8, 1],
which is anyway an interval that is not realistic in practice.

108

6.7. Parameter sensitivity analysis

Figure 6.8 – Sensitivity of the false-positive parameter from 0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

109

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.4 Generic Attack Model parameter: false-negative

The false-negative parameter is associated with each sensor of the Generic Attack Model. It
represents the probability of false negative alerts for a sensor, i.e. an alert that is not raised by the
sensor, while the attack actually succeeded.

Generally, to limit a wrong security feeling (i.e., feeling safe, while there is no real protections),
sensors are configured to limit at most the false negatives for known attacks, for which a detection
method is enabled. Thus the false-negative parameter should stay low (e.g., from 0 to 5%).
Beyond, the detection measures are generally not deployed. However, to be sure to take into
account sensors with higher false-negative values (for example, a detector of a metamorphic
malware), we analyse the sensitivity of this parameter on its whole variation interval (]0, 1[).
Figure 6.9 shows the results of this analysis for the Hybrid Risk Assessment Model.

From 0 to 0.2, the false-negative is a little sensitive, for compromised states. On scenarios
3 to 6 of Figures 6.9c to 6.9f, three not-compromised states are very sensitive to variation
in the false-negative parameter. These states are part of other potential transitions that
may cause the detected third attack transition. When the probability of having false negative
increases, the probability of these likely transitions having occurred, without effective alert,
increases. Thus the compromise probabilities of the states impacted by these transitions
increases. On the scenario 4 of Figure 6.9d, in which there is a no-alert false negative alert,
the probabilities of compromised states, are smaller for very low values of the false-nega-
tive parameter. Indeed, if it is very unlikely that there is a false negative, the global scenario
of 3 alerts (around a no-alert) is also unlikely.

From 0.2 to 0.9, the parameter false-negative is nearly insensitive for both compromised and
not-compromised states. There is only a tiny decrease of the probability of compromised
states, for all scenarios.

From 0.9 to 1, for all states and scenarios, there is a very significant decrease of compromise
probabilities for both compromised and not-compromised states, which all converge to their
initial attack source probability (probability-attack-source for all sources, except the
actual attack source that has a 0.7 probability in these simulations).

This sensitivity analysis shows that, on most of its variation interval (and by far the most
frequently used in practice), the false-negative parameter has a little impact on the compromise
probabilities of the compromised states of the Hybrid Risk Assessment Model. However, when its
value is above 5%, it impacts significantly the not-compromised states that may be impacted by
likely transitions close to the detected ones.

110

6.7. Parameter sensitivity analysis

Figure 6.9 – Sensitivity of the false-negative parameter from 0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

111

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.5 Generic Attack Model parameter: probability-attack-source

The probability-attack-source parameter is the probability associated with each state of the
Generic Attack Model, representing the probability of this state to be a source of attack. The value
of this parameter is set by the security operators according to the risk analysis of the system.

According to the state, this parameter can take any value possible from 0 to 1. We thus
simulate the variation of this parameter on [0, 1] and analyse its impact on the states compromise
probabilities. This parameter can generally be deduced from a risk evaluation methodology (e.g.,
ISO 27005 [ISO11a] or EBIOS [Sec04]). Figure 6.10 shows the results of this analysis.

From 0 to 1, the impact of the probability-attack-source parameter is relatively homoge-
neous for all scenarios of Figures 6.10a to 6.10f, and on the whole variation interval. It
has nearly no impact on the compromise probabilities of compromised states, except for the
Scenario 4, with a false negative. The impact of this parameter is medium, for all not-com-
promised states. The probability-attack-source parameter determines the probability
of all states being an attack source, except the actual attack source, on the whole parameter
variation interval. As this parameter is used especially as the probability of each attack
source of a Future Risk Assessment Model, the value of the probability-attack-source
parameter is the minimum that each state, either compromised or not-compromised will
have in the Future Risk Assessment Model. This is why there is almost a straight line from
(0,0) to (1,1) for not-compromised states for all scenarios. In scenario 4 of Figure 6.10d,
with a false negative no-alert sensor, the probability of compromised states slowly decrease
then increase with the increase of the probability-attack-source parameter. For very low
values of the parameter, the probabilities of the first states are high, as the main source of
attack is more likely to be the source of this attack scenario, than the other attack sources.
Then, the parameter increases and as the other sources of attacks are more likely to be the
source of the detected attack transition, the actual attack source is less likely. Finally, the
compromise probabilities of those states increase again when the probability of all attack
sources is higher.

This sensitivity analysis shows that, on its whole variation interval, the probability-attack-
source parameter has a significant impact on the compromise probabilities of the not-compro-
mised states of the Hybrid Risk Assessment Model. It has nearly no impact on probabilities of
compromised states. On its whole variation interval, with the increase of this parameter, the
compromise probabilities of the not-compromised states increase slowly. Indeed, this parameter
represents the a priori probability of the attacker to start an attack from the states other than the
actual attack source of this attack scenario.

112

6.7. Parameter sensitivity analysis

Figure 6.10 – Sensitivity of the probability-attack-source parameter from
0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

113

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.6 Generic Attack Model parameter: probability-unknown-attack

The probability-unknown-attack parameter is the probability that an unknown attack allows
the attacker to reach a place, without requiring the previous transition. This is a kind of wild card
representing all the attacks unknown for the defender, but known from the attacker.

This value should usually stay very low (< 1%), otherwise this means that there is an issue
in the modelling of the attack scenarios that can happen in the system (e.g., not good knowledge
of the system by the defender, partial knowledge of the vulnerabilities that are in the system,
etc.). However, there might be good reasons to set higher values to this parameter. For example,
in systems in which a very high level of security is needed, we can increase the value of the
probability-unknown-attack parameter, to represent very motivated attackers that may have
access to unknown attack transitions (e.g., unknown 0-days vulnerabilities). We thus simulate the
variation of this parameter on [0, 0.5] and analyse its impact on the states compromise probabilities.
Figure 6.11 shows the results of this analysis.

From 0 to 0.5, the impact of the probability-unknown-attack parameter is relatively homo-
geneous for all scenarios of Figures 6.11a to 6.11f, and on the whole variation interval. It
has nearly no impact on the compromise probabilities of compromised states, except for the
Scenario 4, with a false negative. The impact of this parameter is medium, for all not-com-
promised states. In all scenarios, more than half of not-compromised states increase slowly
with the increase of the parameter. The probability of the other states do not increase. This
must be due to the fact that these states cannot be attacked directly (i.e., with only one
transition) from the compromised states. For such states, the increase of the probabil-
ity-unknown-attack parameter has nearly no impact, as the attacker will need to exploit
two or more unknown transitions to reach them. For the scenario 4 of Figure 6.11d, with a
no-alert sensor, the probabilities of compromised states increase slowly as it is more and
more likely that the missing alert has not been detected, because it was an unknown attack.

This sensitivity analysis shows that, on its whole variation interval the probability-unknown-
attack parameter has a little impact on the compromise probabilities of the not-compromised
states of the Hybrid Risk Assessment Model. With the increase of this parameter, the compromise
probabilities of the not-compromised states slightly increase. It has no impact on probabilities of
compromised states.

114

6.7. Parameter sensitivity analysis

Figure 6.11 – Sensitivity of the probability-unknown-attack parameter
from 0 to 0.5

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

115

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.7 Dynamic Risk Correlation Model parameter: max-number-no-info-
to-explore

The max-number-no-info-to-explore parameter represents the number of no-info sensors to
investigate within a Dynamic Risk Correlation Model after one alert sensor, and before seeing
another alert sensor. This parameter represents in fact the maximum of no-info sensors that
can be between two alert sensors in an attack scenario.

In order to measure the impact of this pruning parameter, we simulated the variation of this
parameter on [[0− 10]] Figure 6.12 shows the results of this analysis.

From 0 to 3, the max-number-no-info-to-explore impacts principally the compromised states,
depending on the scenario. For all scenarios, this parameter is nearly insensitive for not-
compromised states. In Scenario 1, 2, 3 and 6 of Figures 6.12a, 6.12b, 6.12c and 6.12f, as
soon as the max-number-no-info-to-explore parameter is > 1, all states have their final
compromise probabilities. The value 1 of the max-number-no-info-to-explore corresponds
to the Bayesian State nodes (that, by default, have a no-info sensor) that are parents of
the alert Bayesian Transition nodes. When the value of the parameter is 0, the Bayesian
State nodes are not explored and their compromise probabilities are lower. In scenarios 4
and 5, there are detection anomalies (one false negative or one no-info). Each detection
anomaly requires to increment the max-number-no-info-to-explore parameter (twice, one
for a Bayesian State node and one for a Bayesian Transition node, if it is related to a no-info
sensor), for all states to have their final compromise probabilities.

From 3 to 10, the max-number-no-info-to-explore is insensitive for both compromised and
not-compromised states.

This sensitivity analysis shows that the max-number-no-info-to-explore parameter has an
impact on the compromise probabilities of the compromised states, but for very low values (< 3),
for all scenarios. From 3, this parameter does not have any impact on compromise probabilities.

116

6.7. Parameter sensitivity analysis

Figure 6.12 – Sensitivity of the max-number-no-info-to-explore parameter
from 0 to 10

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

117

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.8 Dynamic Risk Correlation Model parameter: max-number-no-info-
to-keep

The max-number-no-info-to-keep parameter represents the number of no-info sensors to keep
when there are too many no-info sensors after an alert. This parameter represents in fact the
maximum of successive no-info sensors that will follow an alert sensor in an attack scenario.

In order to measure the impact of this pruning parameter, we simulated the variation of this
parameter on [[0− 10]] Figure 6.13 shows the results of this analysis.

From 0 to 1, the max-number-no-info-to-keep impacts principally the compromised states,
depending on the scenario. For all scenarios, this parameter is nearly insensitive for not-
compromised states. For all scenarios of Figures 6.12a to 6.12f, as soon as the max-number-
no-info-to-explore parameter is > 1, all states have their final compromise probabilities.
The value 1 of the max-number-no-info-to-keep corresponds to the Bayesian State nodes
(that, by default, have a no-info sensor) that are parents of the alert Bayesian Transition
nodes. When the value of the parameter is 0, the Bayesian State nodes are pruned and their
compromise probabilities are lower.

From 1 to 10, the max-number-no-info-to-keep is insensitive for both compromised and not-
compromised states.

This sensitivity analysis shows that the max-number-no-info-to-keep parameter has an im-
pact on the compromise probabilities of the compromised states, but only for the 0 value, for all
scenarios. From 1, this parameter does not have any impact on compromise probabilities.

118

6.7. Parameter sensitivity analysis

Figure 6.13 – Sensitivity of the max-number-no-info-to-keep parameter
from 0 to 10

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

119

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.9 Dynamic Risk Correlation Model parameter: max-number-no-alert-
to-explore

The max-number-no-alert-to-explore parameter represents the number of no-alert sensors to
investigate within a Dynamic Risk Correlation Model after one alert sensor, and before seeing
another alert sensor. This parameter represents in fact the maximum of no-alert sensors that
can be between two alert sensors in an attack scenario.

In order to measure the impact of this pruning parameter, we simulated the variation of this
parameter on [[0− 10]] Figure 6.14 shows the results of this analysis.

From 0 to 2, the max-number-no-alert-to-explore impacts only the compromised states of
the scenario 4. For the other scenarios, this parameter has no influence on the probability
of compromised states. For all scenarios, this parameter is nearly insensitive for not-com-
promised states. In Scenario 4 of Figure 6.14d, there is a false negative. This false negative
requires to increment the max-number-no-alert-to-explore parameter to explore enough
no-alert nodes to reach the next alert node. Thus, from max-number-no-alert-to-ex-
plore = 2, all states to have their final compromise probabilities.

From 2 to 10, the max-number-no-alert-to-explore is insensitive for both compromised and
not-compromised states.

This sensitivity analysis shows that the max-number-no-alert-to-explore parameter has an
impact on the compromise probabilities of the compromised states, but for very low values (< 2),
and only when there is a false negative. From 2, this parameter does not have any impact on
compromise probabilities.

120

6.7. Parameter sensitivity analysis

Figure 6.14 – Sensitivity of the max-number-no-alert-to-explore parame-
ter from 0 to 10

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

121

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.10 Dynamic Risk Correlation Model parameter: max-number-no-alert-
to-keep

The max-number-no-alert-to-keep parameter represents the number of no-info sensors to keep
when there are too many no-alert sensors after an alert. This parameter represents in fact the
maximum of successive no-alert sensors that will follow an alert sensor in an attack scenario.

In order to measure the impact of this pruning parameter, we simulated the variation of this
parameter on [[0− 10]] Figure 6.15 shows the results of this analysis.

From 0 to 10, the max-number-no-alert-to-keep is insensitive for both compromised and not-
compromised states.

This sensitivity analysis shows that the max-number-no-alert-to-keep parameter does not
have any impact on compromise probabilities.

122

6.7. Parameter sensitivity analysis

Figure 6.15 – Sensitivity of the max-number-no-alert-to-keep parameter
from 0 to 10

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

123

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.11 Future Risk Assessment Model parameter: nbSteps-possible-fu
tures

The nbSteps-possible-futures parameter represents the number of successive transitions to
keep in each Future Risk Assessment Model. This parameter prevents the combinatorial explosion
of the number of nodes in the Future Risk Assessment Model. Detailed explanations about this
parameter are in subsection 6.3.5.

It is unrealistic to seek to “predict the future” too many steps in advance. Even predicting 4
steps of what will do an attacker is very optimistic. Thus, we study the sensitivity of this parameter
on [[0− 4]] Figure 6.16 shows the results of this analysis.

From 0 to 2, for all scenarios, the nbSteps-possible-futures is a little sensitive for not-com-
promised states. When the number of nbSteps-possible-futures increases, the probability
of the not-compromised states that are possible futures increase slightly. This parameter
has no impact on the compromised states, because these states have already been attacked,
and they are not any more likely futures.

From 2 to 4, the nbSteps-possible-futures is insensitive for both compromised and not-com-
promised states.

This sensitivity analysis shows that the nbSteps-possible-futures parameter has a very little
impact for its low values (< 3) on the compromise probabilities of the not-compromised states
of the Future Risk Assessment Model. It does not impact the probabilities of the compromised
states.

124

6.7. Parameter sensitivity analysis

Figure 6.16 – Sensitivity of the nbSteps-possible-futures parameter

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

125

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.7.12 Future Risk Assessment Model parameter: probability-new-tran
sition

The probability-new-transition parameter is the probability that the attacker propagates
through a new transition in the future. This parameter represents the fact the even if an at-
tack is possible, the attacker may or may not do it. For example, the attacker may have already
found what he was looking for.

The value of this parameter is difficult to estimate, so the probability-new-transition pa-
rameter has to be evaluated on its whole possible variation interval. We thus simulate the vari-
ation of this parameter on [0, 1] and analyse its impact on the states compromise probabilities.
Figure 6.17 shows the results of this analysis.

From 0 to 0.1, the probability-new-transition is insensitive for both compromised and not-
compromised states.

From 0.1 to 1, the probability-new-transition is insensitive for both compromised states.
However, for not-compromised states, it has a significant impact on the compromise prob-
abilities. When the probability-new-transition parameter increases, the probability of
not-compromised states increases. According to the scenarios, the growing curve of the not-
compromised states may be different, but the tendency is the same for all of them. Only
a few nodes have their probability changing according to the value of this parameter: 5 in
Scenario 1, 7 in Scenario 2, 9 in Scenario 3. These are the likely next attack states that may
be attacked. The different curves of not-compromised states represent the number of attack
transitions from the compromised states (e.g., we can recognise the curves y = x and y = x2

in Figures 6.17a, 6.17c, 6.17d, 6.17e and 6.17f). In Scenario 4 of Figure 6.17d, some of the
compromised states have probabilities lower than 1. Thus, the curve of the possible futures
of those states is multiplied by the source compromised probabilities.

This sensitivity analysis shows that, on its whole possible variation interval, the probability-
new-transition parameter has an important impact on the compromise probabilities of the not-
compromised states of the Future Risk Assessment Model. With the increase of this parameter,
the compromise probabilities of some of the not-compromised states increase with this parameter.

126

6.7. Parameter sensitivity analysis

Figure 6.17 – Sensitivity of the probability-new-transition parameter
from 0 to 1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

127

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

6.8 Related work

As described in section 5.8, few people propose enhancements to improve attack graphs or trees
with Bayesian networks, in order to use them for dynamic risk assessment [QL04, LM05, XLO+10].
However, they do not describe how they manage cycles that are inherent to attack graphs. In
chapter 5, we have presented a new risk assessment model that explodes cycles in the building
process, keeping all possible paths while deleting the cycles, to compute the Bayesian inference.
In this chapter, we extend this model as an Hybrid Risk Assessment Model. The Hybrid Risk
Assessment Model also manages cycles in the input model.

In this work, we focus on the likelihood component of risk assessment. Thus, we use a simple
impact function as output of the FRAMs, matching each compromised state with a fix impact
value. Other works of the state of the art rather focus on the impact component. For example,
Kheir et al. in [KDCB+09b] details how to use a dependency graph to compute the impact of
attacks on Confidentiality, Integrity and Availability. This work is complementary to ours as we
could add this kind of impact function after the FRAMs to compute a more accurate attack impact.

Models of the state of the art such as [FWSJ08] use Dynamic Bayesian Networks to monitor and
predict future status of the system. However, such a model uses a sequence of Bayesian networks,
which can be huge to process. The model we propose here separates the two objectives of dynamic
risk assessment, and thus keeps only the past information necessary to explain all alerts (pertinent
Dynamic Risk Correlation Models) and to update the models to evaluate potential futures (Future
Risk Assessment Models). Moreover, the building process and exploitation of Dynamic Risk Cor-
relation Models takes into account the temporality of raised alerts to determine attacks. Finally,
contrary to other models based on Bayesian attack graphs, our model can distinguish several dis-
tinct simultaneous attacks in the alerts raised in a system, by analysing the appropriate Dynamic
Risk Correlation Models.

Our experimental validation on the Hybrid Risk Assessment Model uses realistic simulated
topologies that are far bigger than the state of the art. For example, Xie et al. assess their model
on a topology of 3 hosts and 3 vulnerabilities [XLO+10], Liu and Man on a topology of 4 hosts and
8 vulnerabilities [LM05]. The real world examples used by Frigault and Wang in [FW08] contain
at most 8 vulnerabilities on 4 hosts. The test network used by Poolsappasit et al. in [PDR12]
contains 8 hosts in 2 subnets, but with only 13 vulnerabilities. Thanks to our polytree models, we
successfully run our Hybrid Risk Assessment Model efficiently on simulated topologies with up to
70 states.

The Hybrid Risk Assessment Model is an extension of the Bayesian Attack Model that brings
many enhancements. First, it separates the impact on the compromise probabilities of the past
events and the possible futures. This allows an operator to know directly if an asset as a high
compromise probability because it may have already been compromised, or because it is an easy
next step of attack. Second, the Hybrid Risk Assessment Model is much less sensitive to the
parameters (both of the Generic Attack Model and intrinsic) than the Bayesian Attack Model. No
parameter change the ranking of the compromise probabilities of the states and a few parameters
impacts significantly the absolute values of those probabilities. Even those sensitive parameters are
much less impacting that those of the Bayesian Attack Model. Finally, the Hybrid Risk Assessment
Model is more scalable than the Bayesian Attack Model.

6.9 Summary and conclusion

We present in this chapter a Hybrid Risk Assessment Model, combining the dynamic risk correlation
and the future risk assessment analysis. This model is an extension of the Bayesian Attack Model

128

6.9. Summary and conclusion

which aims at dynamic risk assessment. Hybrid Risk Assessment Model is subdivided into two
complementary models: Dynamic Risk Correlation Models and Future Risk Assessment Models.
Dynamic Risk Correlation Models are built according to dynamic security events, to update the
compromise probabilities of states. We use these probabilities to build Future Risk Assessment
Models, to compute the most likely futures. This combination of two complementary models
separates the compromise status of assets between past attacks and likely futures.

Like we did for the Bayesian Attack Model, we studied precisely the sensitivity of the results
of the Hybrid Risk Assessment Model, toward the parameters of the Generic Attack Model and
the parameters introduced by the Hybrid Risk Assessment Model. We summarise in Table 6.3
the results of the sensitivity analysis of all parameters. We also give in this table the range of
variation on which we conduct the sensitivity analysis for the given parameters. We present first
the Generic Attack Model parameters then, after the double line, the Dynamic Risk Correlation
Model parameters, finally, of the Future Risk Assessment Model parameters.

Table 6.3 – Sensitivity analysis of the parameters of the Hybrid Risk Assess-
ment Model

Name Variation
range

Ranking influence Probability influence

false-positive [0− 1] No impact, except for
the scenario contain-
ing a false negative in
which it impacts com
promised states.

Very low impact on its most frequently used in-
terval ([0− 0.25]). Then, low impact for both
compromised and not-compromised states. Ex-
cept for the attack scenario including a false
negative for which the impact is more impor-
tant.

false-negative [0− 1] No impact on low val-
ues. Important impact
above 0.05

Important impact for not-compromised states
(strong increase). On very high values of the
parameter, strong impact for all states.

probability-at
tack-source

[0− 1] Almost no impact. Medium impact on probability of not-compro
mised states. Low impact on compromised
states for the scenario with a false negative
alert.

probability-un
known-attack

[0− 0.5] No impact. Medium impact on the probabilities of not-
compromised states. Low impact on the most
frequently used interval ([0−0.05]). No impact
for compromised states.

max-number-no-
info-to-explore

[[0− 10]] No impact. Important impact on the probabilities of com
promised states when parameter < 3. Above
3, no impact. No impact for not-compromised
states.

max-number-no-
info-to-keep

[[0− 10]] No impact. Important impact on the probabilities of com
promised states when parameter < 2. Above
2, no impact. No impact for not-compromised
states.

max-number-
no-alert-to-ex
plore

[[0− 10]] No impact. Important impact on the probabilities of com
promised states when parameter < 2. Above
2, no impact. No impact for not-compromised
states.

max-number-no-
alert-to-keep

[[0− 10]] No impact. No impact

nbSteps-possi
ble-futures

[[0− 4]] No impact. Very low impact on the probabilities of not-
compromised states, no impact on compromised
states.

probability-
new-transition

[0− 1] No impact. High impact on the next possible futures not-
compromised states.

The ranking influence describes the impact of the variation of a parameter on the rank of
state’s probabilities (on the whole parameter variation range, for all alert scenarios). This rank will
determine the priorities of security operators in their system. The probability influence describes

129

CHAPT 6. HYBRID RISK ASSESSMENT MODEL

the effect of the variation of the parameters on the absolute value of the state’s probability. All
the Hybrid Risk Assessment Model parameters have almost no to no impact on the ranking of
the compromised states on their most frequently used interval, which is a comforting result. Note,
however, that the false-positive and false-negative parameters may impact the rank of the
compromised states, if their variation is too important, or if there are too many false negatives.

The false-negative parameter has an important impact on the absolute values of the com-
promise probabilities of not-compromised states for low values of the parameter. With a little
uncertainty on such parameters (e.g., 0.01), the variation of the absolute value of the probabilities
is medium (e.g., up to 0.1). Three parameters have a medium impact on the absolute values of
the compromise probabilities of states on their variation interval: probability-attack-source,
probability-unknown-attack and probability-new-transition. With a medium uncertainty
on such parameters (e.g., 0.1), the variation of the absolute value of the probabilities is also medium
(e.g., up to 0.1). Note that the probability-attack-source impacts the Dynamic Risk Corre-
lation Model and the Future Risk Assessment Model, whereas the probability-new-transition
parameter impacts only the possible futures. The probability-attack-source parameter can
be estimated quite accurately with a risk analysis methodology, which gives the security risk of
each state, according to its position in the system. The probability-new-transition must be
set by the operator, according to the level of security needed in his system, and to the motivation
of the attackers he his facing. For the pruning parameters of the Dynamic Risk Correlation Model
(max-number-no-info-to-explore, max-number-no-info-to-keep, max-number-no-alert-to-
explore and max-number-no-alert-to-keep) when they are above quite low values (2 or 3 de-
pending of the parameter) they have no impact. So, in the Hybrid Risk Assessment Model, the
ranking of states is not impacted by the variation of the parameters, and the absolute value of
compromise probabilities is slightly impacted by a up to medium uncertainty on most parameters,
except the false-negative parameter that is quite sensitive and might add false positives (i.e.,
give strong compromise probabilities to not-compromised states), if its value is not little enough
(i.e., if the administrator says that the sensors might not raise an alert even if an attack has
occurred, the model might give high probabilities to actually not-compromised states).

As a result, similar to the Bayesian Attack Model, we have built a dynamic risk assessment
model that is suitable for any attack model (either cyclic or acyclic) that can be specified within
the Generic Attack Model. Its results are accurate for the rank of the compromise probabilities
of states, even with uncertainty on the parameters. In order to have exact absolute values on
the compromise probabilities, the value of the false-negative parameter has to be accurately
chosen. In addition to the Bayesian Attack Model, the Hybrid Risk Assessment Model brings
many enhancements. First, it separates the impact on the compromise probabilities of the past
events and the possible futures. Second, the Hybrid Risk Assessment Model is less sensitive to
the parameters (both of the Generic Attack Model and intrinsic) than the Bayesian Attack Model.
Finally, the Hybrid Risk Assessment Model is more scalable than the Bayesian Attack Model.
Thus, this dynamic risk assessment model seems to be much more suitable for the computation of
responses to the occurring attacks. In the next chapter, we will apply the Bayesian Attack Model
and the Hybrid Risk Assessment Model to the cyber security domain, by building them from a
topological attack graph.

130

Chapter 7
Application to

cybersecurity: topological attack graphs

In chapter 5 and chapter 6 we develop two models, the Bayesian Attack Model and the Hybrid
Risk Assessment Model to enable dynamic risk assessment and allow the computation of responses
for occurring attacks. As these models are built from a Generic Attack Model, they can be applied
to different domains. The only requirement is that the attacks are modelled using a graph-based
model fitting into the Generic Attack Model. Thanks to its advantages over the Bayesian Attack
Model, the Hybrid Risk Assessment Model seems more promising for the computation of responses
to the occurring attacks. Nevertheless, the results of both these models need to be evaluated and
compared on real use-cases.

In the cybersecurity domain, the potential attacks are generally specified with an attack graph,
either logical, or topological. Logical attack graphs are more detailed than topological attack
graphs, but they are also much bigger, which prevent them from being used for large information
systems. As a result, the input Generic Attack Model we use to build and evaluate the dynamic
risk assessment models is built from a topological attack graph. Thus, in this chapter, we first
introduces topological attack graph and present how we can build them, either using existing attack
graph engines, either by building a new engine, more scalable than the existing ones. Then, we
apply the dynamic risk assessment models and assess their results on a use-case. Finally, we come
back to the original challenge, the computation of responses for occurring attacks, and see how the
dynamic risk assessment models we have built can integrate into the remediation methodology we
defined in chapter 4 to compute responses to current attacks.

This chapter is part of the contribution described in subsection 1.3.3, the ability to use risk
assessment models to support the computation of responses. It tackles the challenge described in
section 1.2.4: how to use the results of the dynamic risk assessment models in order, for example,
to compute responses to occurring attacks.

7.1 Topological attack graph generation

A topological attack graph is the base attack model from which we build our dynamic risk assess-
ment models for cybersecurity. We first formally define this model, then present how it can be
generated.

131

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

7.1.1 Definitions

Definition 37 A topological attack graph TAG is a directed graph TAG(TN,AS) where:

• TN = {TN} is a set of topological nodes: the assets of an information system,
• AS is a set of attack steps, the edges representing that an attack allows an attacker to
move from the parent topological node to the child topological node.

• Each attack step has a type of attack, describing how the attacker can move between
nodes (exploitation of a vulnerability, credential thief, etc.).

• Depending on the type of attack, each attack step is associated with a set of conditions
[c].

• Some attack steps are associated with a sensor that may raise an alert indicating that
this attack has been detected.

A topological attack graph can be generated with an attack graph engine, for example Mul-
VAL [OGA05a] or TVA [JNK+11], as detailed in subsection 7.1.2. Topological nodes represent,
for example, a host, an IP address or a computer cluster. In usual attack graphs, there are a few
(e.g., 2 or 3) different types of attacks (e.g., the exploitation of vulnerability on a remote host, the
local exploitation of a vulnerability).

Definition 38 A condition c is a fact that needs to be verified, for an attack step to be possible.
It is associated with a probability of success P(c).

The condition fact is, for example, “a vulnerability is exploited on the destination host”.

Definition 39 A sensor s of an attack step or of a topological node is an oracle issuing an alert
when the attack step has been detected or the topological has been detected as compromised. It is
associated with a false negative and a false positive rate.

A sensor represents, for example, a Network or Host Intrusion Detection System, or a System
Event Management.

7.1.2 Topological attack graph generation from existing attack graph
engines

In order to be able to use any type of attack graph engine to build the Bayesian Attack Model,
we chose a generic definition of a topological attack graph: a graph of topological assets as nodes,
and attack steps as edges. This graph can thus be generated either by topological attack graph
engines, or by logical attack graph engines, as described below. We implemented the generation
of our Bayesian Attack Model starting from both types of attack graph.

Using topological attack graph engines Starting from a topological attack graph engine, such
as TVA [JNO05], we simply transcribe the graph in the new format, with IP addresses as
topological nodes, and exploits as attack steps (with the exploitation of a vulnerability as a
condition).

Using logical attack graph engines Starting from a logical attack graph engine, such as Mul-
VAL [OGA05a], we first need to define topological nodes in the graph (for example, we
chose execCode(host, privilege): the acquisition of a privilege on a host). Then, we process
the graph to find how these topological nodes are bound together, also extracting the pre-
conditions needed by the subgraph between the topological nodes. This subgraph will be
summarised in the topological attack graph, as an Attack Step.

132

7.1. Topological attack graph generation

7.1.3 Hierarchical attack graph engine architecture

Several attack graph engines exist. They have been developed either by research laboratory or by
companies. However, in practice, this software suffers from several limitations:

• The first limit that can be noticed is that all the engines have either a logical or a topological
view of the attack. None of them is a hybrid view combining the advantages of the topological
view (much more concise view of the attack graph) and the advantages of the logical view (full
knowledge of the conditions that are necessary for an attack and how they are combined).
The topological attack graph engines do not keep all the logical conditions necessary to
generate the attack steps. The logical attack graph engines need further computations to
extract from the logical graph its topological structure.

• The existing attack graph engines are not scalable. They cannot be distributed and thus are
limited in the number of hosts or vulnerabilities they can handle.

• The commercial products does not allow to change the rules describing the attacks that can
be modelled in the attack graph.

• The only available Open Source Software, MulVAL, uses an obscure mix of several languages
(mainly Datalog, Java, C++, Bison etc.), has strange behaviours (e.g., the results of the
Datalog engine are written in an output file which can be huge and that is then parsed) and
has a syntax not easy to understand.

As the currently existing attack graph engines are not satisfying we implement a new attack
graph engine, which is topological but keeps logical conditions. It can be distributed on a cluster of
servers and thus is scalable. Moreover, it relies on topological hierarchy to improve performances.

7.1.3.1 Architecture

The high-level architecture of SAGE, the Scalable Attack Graph Engine is shown in Figure 7.1.
This engine has two types of inputs:

Static engine configuration These inputs allow to configure the attack graph engine, according
to the preferences of the user. They specify the attacks taken into account (in the attack
rules description file) and the execution parameters.

Dynamic topological inputs These inputs describe the assets of the information system (net-
work topology) and their connexion (flow matrix). This topology can be updated according
to changes in the information system, in order to update the attack graph.

The applications obtain the computed topological attack graph using a REST API. The topo-
logical attack graph is constituted of a set of attack steps, each attack step being associated with
its required conditions.

7.1.3.2 Technologies involved

The Scalable topological attack graph Engine relies on different topologies, to store, process and
compute the topological attack graph. Figure 7.2 summarises these technologies.

• The topological data (network topology, flow matrix, vulnerabilities) are stored in a graph
database (OrientDB) which can be distributed. A Python script parses topological data from
vulnerability scanners and CSV topological files and add it to the graph database. The graph
database also receives the results of the topological attack graph computation.

133

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

Figure 7.1 – Scalable Attack Graph Engine architecture

Figure 7.2 – Scalable Attack Graph Engine technologies

• The graph database is queried through the language Gremlin of the framework TinkerPop.
TinkerPop is a framework for Graph Databases that brings tools (e.g., graph query language,
proxy server etc.) and aims at becoming a standard for all graph database.

• The attack graph engine core is developed in Scala, using the Akka framework for distributed
computations. This framework relies on the concept of actors. Master actors orchestrate the
tasks that have to be done. Worker actors do the task that master send to them with
messages.

• Scala also allows to use a Domain Specific Language (DSL) to write the attack rules.

134

7.2. Building a Generic Attack Model from a topological attack graph

7.2 Building a Generic Attack Model from a topological at-
tack graph

We have several attack graph engines that we can use as input for dynamic risk assessment: Mul-
VAL, Cauldron (TVA) and SAGE. As described in subsection 7.1.2, we can generate a topological
attack graph (cf. Definition 37) using MulVAL and Cauldron. SAGE has been designed in order
to generate a topological attack graph. But, in order to use the dynamic risk assessment models of
chapter 5 and chapter 6, we need to fit the topological attack graph model into the Generic Attack
Model.

7.2.1 Generic Attack Model nodes

The nodes of the Generic Attack Model are built from the nodes of the topological attack graph
in that way:

State: The topological nodes of the topological attack graph are the states of the Generic Attack
Model.

Transition: The attack steps of the topological attack graph are the transitions of the GAM

Condition: The condition of the topological attack graph is the condition of the GAM. They are
attached to each transition.

Sensor: The sensors of the topological attack graph are those of the GAM. They are associated
with either the states (topological node), or the transitions (attack step).

7.2.2 Generic Attack Model probability tables

In addition to the nodes, the Generic Attack Model can be customised with conditional probability
tables associated with states and transitions.

7.2.2.1 Conditional probability tables of states

A GAM state node (representing a topological node) has one parent for each type of attack that
can be used to compromise it. Its probability table represents a noisy-OR. At least one succeeded
attack step is needed to make this node compromised. If no known attack step has succeeded,
there is still a little probability that an attack of this topological node may be an unknown one
(e.g., a 0-day). We denote it by pua (probabilityUnknownAttack). Such a conditional probability
table is described in Table 7.1. The first two lines represent all possible states of the parents (GAM
transitions nodes). The last two lines contain the probabilities of each state of the GAM state node
according to the states of its parents.

Table 7.1 – Conditional probability table of a Bayesian state node

sn 1 succeeded failed succeeded failed
asn 2 succeeded failed

tn
compromised 1 1 1 1− pua
not-compromised 0 0 0 pua

with pua = probabilityUnknownAttack.

135

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

7.2.2.2 Conditional probability tables of transitions

A GAM transition node (representing an attack step) has two types of parents: (1) one state node,
the source of the attack, which is required to perform the attack, (2) one or more condition nodes:
the conditions of the attack step. Depending on the type of attack modelled, the condition nodes
may not exist for the attack node.

The probabilityNewAttackStep parameter represents the fact that an attacker may have reached
his objective. Even if he has compromised the topological node and conditions are verified, it is
not certain that he will attempt to propagate through the execution of a new exploit. We describe
in Table 7.2 the conditional probability table of a GAM transition nodes, for the exploitation of a
vulnerability.

Table 7.2 – Conditional probability table of a GAM transition node “exploita-
tion of a vulnerability”

tn compromised not-compromised compromised not-compromised
cn verified not-verified

asn
succeeded pnt 0 0 0
failed 1− pnt 1 1 1

Caption: pnt: probability-new-transition.

7.2.2.3 Probability of success of conditions

There is only one main type of conditions in usual topological attack graphs: the exploitation of
a vulnerability of the target topological node. For such conditions, in our experiments, we use
an approximation of the probability of successful exploitation using information coming from the
Exploitability Metrics of the Common Vulnerability Scoring System (CVSS) [FIR15]. It is deduced
from (1) the Attack Complexity (AC), (2) Privileges Required (PR), (3) and User Interaction (UI)
values, as well as the Attack Vector (AV), which is taken into account when constructing the
topological attack graph.

7.2.3 Generic Attack Model parameters default values

We will now present here the value of the Generic Attack Model parameters that we use for the
cybersecurity experimental validation of the dynamic risk assessment models and explain their
default values. These parameters are used to fill the conditional probability tables of the Generic
Attack Model.

The use cases in which we want to use the dynamic risk assessment models represents typical
critical information systems. Such a system is managed by a security operator who often uses
a vulnerability scanner. Thus, most vulnerabilities are known, but there is still a little chance
(e.g., 0.1%) that a very motivated attacker knows a 0-day, a non-public vulnerability. As the
system contains known unpatched vulnerabilities, sensors are deployed to raise an alert as soon
as one of the vulnerabilities is exploited. These sensors have a medium chance (e.g., 2%) to raise
false positives, when an attack do not succeed while being detected. However, for the known
vulnerabilities for which a sensor is deployed, the probability of having a false negative is lower
(e.g., 0.5%). The security operator knows that most attacks may come from the Internet (e.g.,
probability of the Internet being a source of attack of 70%), even if internal hosts may also be
a new source of attacks (undetected phishing, malicious employee, etc.) with a lower probability
(e.g., 10%)).

136

7.3. Experimental validation of the dynamic risk assessment models for cybersecurity

Table 7.3 summarises the default values of the parameters used to build the Generic Attack
Model and explanation for the cybersecurity use-case: probability-unknown-attack, false-

positive, false-negative, probabilityInternet, and probability-attack-source. Each
parameter is associated with its description and the default value that was chosen for the use-
cases.

Table 7.3 – Default values of the parameters for the cybersecurity use case

Parameter name Default
value

Meanings Default value explanation

probability-un
known-attack

0.001 Probability that an un-
known attack occurs.

Very small probability of having a 0-day, a
unknown vulnerability.

false-positive 0.02 False positive rate of
each sensor.

Sensors may raise an alert, even if the at-
tack has not succeeded.

false-negative 0.005 False negative rate of
each sensor.

This value is smaller as it only concerns
vulnerabilities for which a sensor has been
deployed.

probability-In
ternet

0.7 A priori probability of
an attack coming from
the Internet.

The internet is the main source of attacks.
Thus, 70% of chances of being a source of
attack, 30% not to be a source.

probability-at
tack-source

0.1 A priori probability of
an attack issued from an
internal host.

An internal host may issue an attack.
Thus, 10% of chances of being a source of
attack, 90% not to be a source.

7.3 Experimental validation of the dynamic risk assessment
models for cybersecurity

Once we have built the Generic Attack Model for the cybersecurity use case, we have the main
input of the dynamic risk assessment models. So, we build those models, with their parameters
in the default values presented in Table 5.3 for the Bayesian Attack Model, and in Table 6.1
and Table 6.2 for the Hybrid Risk Assessment Model. Then, we evaluate the accuracy of the
results of the models for this cybersecurity use case. The Bayesian Attack Model and Hybrid Risk
Assessment Model are implemented in Java, using the SMILE Bayesian Network library [Dru99].

7.3.1 Accuracy evaluation

7.3.1.1 Methodology

To evaluate the accuracy of the results of the dynamic risk assessment models (i.e., how close the
compromise probabilities are to the truth), we simulate attack scenarios of 5 successive steps on
random information systems topologies and compare the theoretical results with the outputs of
the dynamic risk assessment models. We generate the random realistic topologies, as shown in
Figure 7.3, containing various numbers of hosts, in 7 subnets. These topologies are representative
of a real network in which defence in depth is implemented: all the hosts of a subnet have access
to the hosts of a deeper subnet. In each subnet, all accesses between hosts are authorised.

Figure 7.3 – Information system network topology for simulations

137

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

We compare the theoretical results known in the attack scenarios with the results of the com-
promise probabilities of the dynamic risk assessment models (Bayesian Attack Model and Dynamic
Risk Correlation Model). In each scenario, we know the nodes that are compromised and healthy,
i.e., nodes with a theoretical probability of respectively 1 and 0. We can then assess if the dynamic
risk assessment models probabilities of compromised nodes are close to 1, and if the dynamic risk
assessment models probabilities of not-compromised nodes are close to 0.

7.3.1.2 Bayesian Attack Model

The results of this study for the Bayesian Attack Model are shown in Figure 7.4. These figures
present the results of the accuracy evaluation of the Bayesian Attack Model on random simulated
topologies. The green bars or dots represent the hosts not as not-compromised in the attack
scenario. The red bars or dots represent the hosts not as compromised in the attack scenario. In
other words, this graph shows the errors (in terms of distance to the theoretical values 1 and 0)
of compromised and not-compromised nodes. Figure 7.4a shows a bar from the minimum to the
maximum of those probabilities values. Figure 7.6b shows a dot for the probability of each host
of a simulation scenario. When these figures show a large free space between the probability of
compromised hosts and the probability of not-compromised hosts, this means that it allows to
distinguish exactly not-compromised and compromised hosts, for example with a boundary at the
probability of 0.5.

Figure 7.4 – Accuracy of the results of the Bayesian Attack Model according
to the number of hosts

(a) Minimum and maximum prob-
ability of compromised and not-com
promised hosts.

(b) All probability values of compro
mised and not-compromised hosts.

These figures show that the Bayesian Attack Model is quite accurate for a low number of hosts
(until 25 hosts). Then, we can see a gradual deterioration of the results with the increase of the
number of hosts. From 30 hosts, this deterioration causes a mix between the probabilities of the
hosts that are actually compromised and the ones that are not-compromised. As a result, in such
cases, the Bayesian Attack Model introduces false negatives or false positives.

138

7.3. Experimental validation of the dynamic risk assessment models for cybersecurity

7.3.1.3 Hybrid Risk Assessment Model

We perform the same simulations for the Hybrid Risk Assessment Model. Contrary to the Bayesian
Attack Model, this model distinguishes the hosts that may have been compromised, thanks to the
Dynamic Risk Correlation Models, and the ones that may be compromised in the near future,
thanks to the Future Risk Assessment Models. We thus perform the accuracy evaluation for both
types of results.

Figure 7.5 shows the results of the accuracy evaluation of the Dynamic Risk Correlation Models.
Contrary to the Bayesian Attack Model, the results for the Dynamic Risk Correlation Model are
rather identical, independently of the number of hosts there are in the topology. Moreover, these
figures show a large separation (whitespace) between the probability of compromised hosts and
the probability of not-compromised hosts, for all values. This means that it allows to distinguish
exactly not-compromised and compromised hosts. This means that there are no false negatives
nor false positives introduced by the Dynamic Risk Correlation Models.

Figure 7.5 – Accuracy of the results of the Dynamic Risk Correlation Model
according to the number of hosts

(a) Minimum and maximum prob-
ability of compromised and not-com
promised hosts.

(b) All probability values of compro
mised and not-compromised hosts.

Figure 7.6 shows the results of the accuracy evaluation of the Future Risk Assessment Models.
As for the Dynamic Risk Correlation Models, the results for the Future Risk Assessment Models
are rather identical, whatever the number of hosts there are in the topology. These figures show
that obviously it is much more complicated to predict the potential futures that identify the past
attacks. There is no longer a large free space between the probability of compromised hosts and
the probability of not-compromised hosts. Indeed, even if the future next step that the attacker
chooses in our simulated scenarios is one of the most likely (easiest CVE vulnerability to exploit), it
is not the only one likely future that can be done. Thus, there is a superimposition of the probably
next compromised and not-compromised hosts on the probabilities from 0.5 to 0.6. However, apart
from the hosts that have a probability from 0.5 to 0.6, for which the operator has to investigate
deeper, the other hosts (which constitute the majority) can be clearly distinguished. The ones
with a probability lower to 0.5 are not-compromised, the ones with a probability above 0.6 are
compromised.

139

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

Figure 7.6 – Accuracy of the results of the Future Risk Assessment Model
according to the number of hosts

(a) Minimum and maximum prob-
ability of compromised and not-com
promised hosts.

(b) All probability values of compro
mised and not-compromised hosts.

7.3.1.4 Results comparison

The Bayesian Attack Model provides satisfying results when the number of hosts is not too high
(<25 hosts): it allows to recognise properly the hosts that are compromised. However, for a higher
number of hosts it does not allow to distinguish for sure compromised from not-compromised
hosts.

On the contrary, the Hybrid Risk Assessment Model has results that are similar independently
of the number of hosts. For past compromised hosts, the Dynamic Risk Correlation Models enables
to distinguish compromised hosts from not-compromised hosts with a very high success rate, as
there is a large difference between the compromised hosts (probability > 0.7) and the not-compro-
mised hosts (probability < 0.1). Moreover, the Future Risk Assessment Models allow to predict
the potential futures (if the attacker choose one of the easiest next attack steps) with a relatively
high success rate. Indeed, the majority of hosts have a probability that is below 0.5 (i.e., surely
a not-compromised host) or above 0.6 (i.e., surely a compromised host). Few hosts have their
probability from 0.5 to 0.6. For those hosts, the model cannot distinguish whether or not they are
the likely future that will be chosen by the attacker. Thus the security operator should protect
the likely next step targeting its valuable assets, to prevent the attacks he wants to prevent.

7.3.2 Use-case validation

7.3.2.1 Use-case presentation

In order to validate the accuracy of the results, while keeping the scenarios simple for explanations,
we implemented a real infrastructure of 11 virtual machines, for a total of a hundred vulnerabilities.
A host (that will be called host A, thereafter) can be attacked from the Internet, and can attack
the other hosts G to J of its subnetwork. The latter hosts can attack hosts A, C and D. This
network topology is representative of a real information system, where an ingress firewall (host K)
protects the LAN (E to J), and where publicly accessible servers are put in a demilitarised zone
(A to D). The topological attack graph used to populate the Bayesian Attack Model has been

140

7.3. Experimental validation of the dynamic risk assessment models for cybersecurity

generated from a report of the vulnerability scanner Nessus on this infrastructure.

From this network topology we apply 5 scenarios summarised in Table 7.4. The attack is
carried out through three attack steps. In scenarios 1 to 3, attack steps are detected and alerts are
generated. Scenarios 4 and 5 represent detection anomalies.

Table 7.4 – Simulation scenarios

S I → A A→ G G→ D Comment
1 X × × First alert
2 X X × Second alert
3 X X X Third alert
4 X O X no-info for the second step

(=no sensor)
5 X × X no-alert for the second step

(possible false negative for the
second step or false positive for
the third step)

Caption S: Scenario number; I → A: Attack from the Internet to host A; A→ G: Attack from
host A to host G; G→ D: Attack from host G to host D; O: No values set (=no-info);

X: Sensor nodes set to alert (an alert has been issued for this attack step); ×: Sensor node has
been set to no-alert.

These scenarios represent the dynamic evolution of a system with different possible situations:

• Scenarios 1, 2, then 3: Normal evolution of an attack during the time.
• Scenarios 1, then 4: Evolution of an attack in which an attack step cannot be detected (no

sensor for this step).
• Scenarios 1, then 5: Evolution of an attack in which an attack step has not been detected

while there was a sensor for this step.

We assume that the alerts given by the sensors are binary (alert, no-alert), i.e., we do not
have alert confidence.

7.3.2.2 Results and analysis for the Bayesian Attack Model

The results of the compromise probabilities of each topological node calculated by the Bayesian
Attack Model, for each scenario are shown in Figure 7.7.

These figures show the five scenarios of the use case presented in subsubsection 7.3.2.1. The
bars represent the hosts of the topology. Their ordinate is the compromise probability of the
abscissa host. The background colours give an idea of the threshold that could be taken to define
the compromise risk level of the hosts. For example, the hosts with a compromise probability under
the lowest line (probability ≤ 0.25) have a low risk of being compromised, above the lowest line
(0.25 < probability ≤ 0.50) have a medium risk, above the second line (0.50 < probability ≤ 0.75)
have a high risk, and above the upper line (0.75 < probability) have a critical risk of being
compromised.

In the scenarios 1, 2 and 3, the sensors corresponding to the 3 steps attack are set progressively.
Each new sensor set as alert confirms the attack that is currently happening and increases the
compromise probability of the previous and future states. For example, in scenario 3, the Internet,
and the 3 victim hosts are in the high or critical risk zone. In scenario 4, and scenario 5, when
there is a missing alert or a false negative / false positive, the probabilities of a currently happening
attack are lower, but higher than the residual risk and than the probabilities of scenario 1, that
should precede this state. So, a security operator may investigate the appropriate machines to
confirm or disprove the attack.

141

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

Figure 7.7 – Results of the Bayesian Attack Model for use-case scenarios

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5

7.3.2.3 Results and analysis for the Hybrid Risk Assessment Model

The results of the compromise probabilities of each topological node calculated by the Hybrid Risk
Assessment Model, for each scenario are shown in Figure 7.8.

These figures show the five scenarios of the use case presented in subsubsection 7.3.2.1. Like
for the Bayesian Attack Model, the bars represent the hosts of the topology.

In the scenarios 1, 2 and 3, the sensors corresponding to the 3 steps attack are set progressively.
Each new sensor set as alert confirms the attack that is currently happening and increases the
compromise probability of the previous and future states. For example, in scenario 3, the Internet,
and the 3 victim hosts are in the critical risk zone. In scenario 4, there is a missing alert,
the probabilities of a currently happening attack are nearly identical to the scenario 3 as there is
no-info for an attack step, which is surrounded by two attack steps. In scenario 5, there is a false
negative / false positive, the probabilities of a currently happening attack are a bit lower, but stays
high for the four hosts that may be compromised. So, a security operator needs to investigate the
appropriate machines to confirm or disprove the attack.

7.4 Computation of cybersecurity responses using dynamic
risk assessment models

We have studied in detail the probabilistic behaviour of the two dynamic risk assessment models
presented in chapter 5 and chapter 6. We have validated its usage for cybersecurity by building
them from a topological attack graph in section 7.2 and its results on a use-case in section 7.3. We

142

7.4. Computation of cybersecurity responses using dynamic risk assessment models

Figure 7.8 – Results of the Hybrid Risk Assessment Model for use-case sce-
narios

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5

will now come back to the original problem (the risk analysis and computation of responses for
occurring attacks) and study how we can use our models for this.

7.4.1 Response computation process

In section 4.2, we present a remediation process to prevent potential attacks. This process can be
generalised to response computation for potential and occurring attacks, as shown in Figure 7.9.
From a Generic Attack Model, we conduct the dynamic risk assessment, composed of the likelihood
analysis and the impact analysis. Then, from the risky possible future attacks, we compute the
responses from the conditions of future attacks. These responses candidates are then ranked by
taking into account the response impact cost, and the response operational costs.

The main differences of this process with the one for remediation computation, presented in
Figure 4.4 are:

Extraction of attack paths and scoring: The extraction of attack paths and scoring for the
remediation process is replaced, in the dynamic response computation process, by the dy-
namic risk assessment, that can be done, either by the Bayesian Attack Model or by the
Hybrid Risk Assessment Model. Indeed, the dynamic risk assessment combines (1) the likeli-
hood analysis, computing the future attacks that are the most likely to happen, according to
the occurring attacks and the threat context, and (2) the impact analysis, computing from
those likely attacks the ones that can cause the most damages. The outputs of this analysis
are the risky future attacks, that are an equivalent for dynamic risk analysis of the attack
paths with a high score.

143

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

Figure 7.9 – Response computation process based on a dynamic risk assessment
model

Remediation of preconditions and sufficient preconditions algorithm: These two compo-
nents allowing to compute the remediation candidates are replaced, in the dynamic response
computation process, by the computation of responses on conditions for future attacks. This
new component takes as input a possible future attack (a path in the Bayesian network) and
computes responses allowing to prevent or decrease the likelihood of this attack. An example
of such a component is presented in subsection 7.4.2. As for the remediation computation,
this component may rely on a remediation database, and on a network simulation tool, to
compute the network-based remediations.

Apart the two components presented above, the end of the response computation process is
identical to the remediation process detailed in section 4.2. Moreover, we have also already pre-
sented the first component (dynamic risk assessment) in chapter 5 and chapter 6. Thus, the only
component that we still need to detail is the second component: Computation of responses on
conditions for future attacks, which we will call hereafter the response computation component.

7.4.2 The response computation component

7.4.2.1 Inputs and outputs

The inputs of the response computation components are the outputs of the dynamic risk assessment.
So, it is a set of risky future attacks for which we know the likelihood, which we want to decrease
with the responses. The future attacks in the Bayesian Attack Model are only described by the
compromise probabilities of the states. In the Hybrid Risk Assessment Model, as there are separate
models for the analysis of possible futures, the description of future attacks is much more detailed.
Future attacks are described by a set of Bayesian models issuing from likely sources of attack
and targeting an asset that has high risk. As this description of likely future attacks is much
richer, we will build the rest of our response computation component on the outputs of the Hybrid
Risk Assessment Model, rather than on those of the Bayesian Attack Model. Similarly to the
remediation computation component of section 4.2, the response computation component can rely
on a remediation database and a network simulation tool, to compute the appropriate responses
to prevent an attack.

The output of the response computation component is a list of response candidates, composed
of a disjunction of conjunction of response actions. Each candidate allows to prevent (entirely or
partly, according to the response computation component) a risky future attack. The format of
these responses is identical to the one of the remediation presented in subsection 4.2.2.

144

7.5. Conclusion

7.4.2.2 Example of response computation component

We will present here only one simple possible solution that could be used to compute the responses,
taking inspiration of what we presented for remediations and leveraging the advantages brought
by the Bayesian networks of Future Risk Assessment Model.

The solution we propose to compute responses to attacks is the following. The goal of this pro-
cess is to protect a risky asset from the likely next steps of attacks. As presented in subsection 6.3.4,
we potentially have several Future Risk Assessment Models targeting the risky asset. Moreover,
in those Future Risk Assessment Models, there may be several FRAM State nodes related to this
risky asset. We thus have several places (corresponding to several paths) that need to be checked,
in order to protect the risky asset. However, for each of these FRAM State nodes (potentially in
different Future Risk Assessment Models) we have a probability of future compromise representing
how likely this path to the risky asset is. As the future compromise likelihood we present to the
operator is the maximum of all FRAM State nodes related to an asset, in order to decrease this
reconciled probability, we need to first decrease the probability of the FRAM State node with
maximum probability or completely delete its attack path.

We present in Figure 7.10 an algorithm computing responses to protect a risky asset. It is
called on one risky asset that we want to protect, and for which an acceptable risk has been set.
As we suppose the impact constant during the computation of the response candidates, the only
parameter of the risk that can vary is the likelihood. As a result, reducing the risk of an asset
with responses is identical to reducing its future compromise probability. Thus, while the risk of
this asset in Future Risk Assessment Models is not low enough, we try to correct the FRAM State
Node with the maximum probability. The correction of a FRAM State Node is done by computing
the possible responses that prevent the most important condition (i.e., the one that is the most
required for an attacker on the path) that can be corrected on the path from the FRAM Attack
Source Node to the FRAM State Node. We sort the conditions from the most important to the
less important, by multiplying, in all FRAM Transition Nodes, the conditions initial probabilities
with the value of the succeeded state in conditional probability tables with the condition failed
and all other parents as succeeded, and sorting them in ascending order. For example, a value of
0 for the succeeded state of a FRAM Transition Node with a failed condition means that the
failed condition is necessary to reach the state. When there are several conditions on the path
that have the same importance, we select the one attached to the transition that is the closest to
the FRAM Attack Source. Indeed, this will allow to stop the attacker as early as possible, while
protecting at best the risky asset.

Note that this algorithm follows a greedy approach and is thus rather efficient (i.e., the
computeReponseToProtectFramNode algorithm is linear in the number of conditions on the
path from the FRAM Attack Source Node to the FRAM State Node of the risky asset and the
computeResponseCandidates algorithm is linear in the number of FRAM State Nodes related to
the risky asset), but it does not consider all possible cases. As a result, the computed response
candidates may not include the global optimal response. However, this algorithm allows to have
an insight of the possibilities that can give the Hybrid Risk Assessment Model for response com-
putation. The Bayesian network based models allow to compute very accurately the impact of the
responses actions on the attack likelihood.

7.5 Conclusion

In this chapter, we have applied the dynamic risk assessment models we developed in chapter 5 and
chapter 6 to the cybersecurity domain. In order to do that, we first needed to populate a Generic
Attack Model with cybersecurity attacks. This was done using a topological attack graph engine.

145

CHAPT 7. APPLICATION TO CYBERSECURITY: TOPOLOGICAL ATTACK GRAPHS

Figure 7.10 – Algorithm computing the response candidates

1: function computeResponseCandidates(riskyAsset, acceptableRisk, frams) . Compute
response candidates protecting a risky asset.

2: responseCandidates← [[]]
3: currentRisk ← frams.getRisk(riskyAsset)
4: while currentRisk > acceptableRisk do . The risk is too high for riskyAsset

5: nodeToProtect← frams.getRelatedFramNodeWithMaxProba(riskyAsset) . Get the
FRAM State Node related to riskyAsset, with the maximum probability

6: reponses← computeReponseToProtectFramNode(nodeToProtect,frams) . Compute
responses to protect nodeToProtect, cf. below

7: if empty(reponses) or otherStopCondition then . Add here stop conditions that prevent
the protection of riskyAsset until acceptableRisk

8: return responseCandidates
9: else

10: responseCandidates← conjunctionOfSets(responseCandidates,reponses)
11: currentRisk ← frams.getRisk(riskyAsset)
12: end if
13: end while
14: return responseCandidates
15: end function
16: function computeReponseToProtectFramNode(nodeToProtect, frams) .

compute responses to protect a FRAM node by preventing the most effective condition, and apply the response
to frams.

17: fram← nodeToProtect.getRelatedFram()
18: sortedConditions← fram.getSortedConditionsOnPathFromSourceTo(nodeToProtect) .

get the conditions ranked by impact on nodeToProtect (from the most necessary to the least necessary to
attack this node).

19: for condition in sortedConditions do
20: if condition.canBeCorrected() then
21: frams.correctConditionAndUpdateProbabilities(condition)
22: return condition.getPossibleResponses() . returns the list of possible response to correct

this condition.
23: end if
24: end for
25: return [[]]
26: end function

We defined a topological attack graph and presented how we can generate a topological attack
graph from an existing attack graph engine. But as the existing engines are not efficient enough,
we implemented a new attack graph architecture, SAGE (the Scalable Attack Graph Engine) that
can be distributed on several computation nodes. As we can build a Generic Attack Model from
a topological attack graph, we experimentally validated the results of the Bayesian Attack Model
and of the Hybrid Risk Assessment Model for cybersecurity.

On the simulation-based accuracy evaluation of the results, the results of the Hybrid Risk
Assessment Model are far better than the ones of the Bayesian Attack Model. The Hybrid Risk
Assessment Model allows to distinguish accurately the compromised from the not-compromised
states for the analysis of past alerts, for any number of hosts, whereas the Bayesian Attack Model
is less precise. For the analysis of possible futures (not possible in the Bayesian Attack Model),
the results of the Hybrid Risk Assessment Model are obviously worse, as it is nearly impossible to
predict the future attacks for sure, but it allows to distinguish the attacks that are the most likely

146

7.5. Conclusion

to happen.

For the use-case base validation, the results are the same, the ones of the Hybrid Risk Assess-
ment Model are better than the ones of the Bayesian Attack Model in which few compromised hosts
have compromise probabilities very close to not-compromised hosts. On the contrary, the Hybrid
Risk Assessment Model perfectly distinguishes the compromised from the not-compromised hosts,
even if there is a false negative or a sensor with no information.

As a result we retained the Hybrid Risk Assessment Model to build a response computation
architecture, inspired by the one of chapter 4. Most of the principles are identical in the response
computation process based on a dynamic risk assessment model in comparison with the remedia-
tion computation process based on logical attack paths. The analysis of the logical attack graph
to extract the riskiest attack paths is replaced by the dynamic risk assessment that computes the
riskiest future attacks. The ranking of response candidates can be identical to the ranking of reme-
diation candidates. The only component that is different is the response computation component
that can leverage the advantages of the probabilistic dynamic risk assessment model to compute
the best thing to deploy, by assessing their impact on all possible futures.

To conclude, we validated that our dynamic risk assessment models, and especially the Hybrid
Risk Assessment Model can apply to the cybersecurity domain, being built from a topological
attack graph. Moreover, we showed that the methodology we built for remediation computation
may be extended to the computation of dynamic responses relying on the dynamic risk assessment
models to correct the riskiest current attacks.

147

Chapter 8
Conclusion and

perspectives

8.1 Contributions

In this PhD thesis, we proposed a risk assessment and response framework. This framework brings
three main contributions. The first contribution is the definition of a dynamic risk assessment
model. The second contribution is the scalability of this model. The last contribution is the
methodology to use risk assessment models to support the computation of responses.

8.1.1 Contribution 1: dynamic risk assessment model

The first contribution of this PhD thesis is the definition of a risk assessment model, correlating the
alerts and a priori knowledge on the system, to assess the current risk and predict possible futures.
This contribution is detailed in chapter 5, which presents the Bayesian Attack Model, and chapter 6,
which presents the Hybrid Risk Assessment Model. The Bayesian Attack Model is a necessary first
step to transform a Generic Attack Model into a model enabling dynamic risk assessment. It takes
into account dynamic security events to update the compromise probabilities of assets. It manages
input models containing cycles, which is common for attack models. The Hybrid Risk Assessment
Model is an incremental improvement of to the Bayesian Attack Model which enables scalability
and better accuracy in the results, by separating the compromise status of assets between successful
compromises and likely future attempts by the attacker. This model takes advantage of the multiple
representations of attack models (logical, topological, and probabilistic): it forms a topological
representation, but is based on a probabilistic model, to represent both the logical conditions
necessary to carry out the attacks, and the probabilities of occurrence of the attacks according
to the context. The Hybrid Risk Assessment Model relies on a set of parameters depending on
the input Generic Attack Model (sensors false positive or false negative rates, probabilities of
attack sources) or are inherent to the Hybrid Risk Assessment Model, either for the Dynamic
Risk Correlation Model (parameters for the pruning of paths with too much no-info or no-
alert sensors), or for the Future Risk Assessment Model (number of successive attack steps for
possible futures, probability of a new transition). We analyse the sensitivity of the model toward
these parameters. It shows that, in the Hybrid Risk Assessment Model, the ranking of states is
generally not impacted by the variation of the parameters, and the absolute value of compromise
probabilities is slightly impacted by an up to medium uncertainty on most parameters, except the

149

CHAPT 8. CONCLUSION AND PERSPECTIVES

false-negative parameter that is quite sensitive and might add false positives, if its value is not
little enough.

The dynamic risk assessment model we present in this thesis brings at least three significative
improvements compared to the state of the art. The first one is the ability to build the model
from an attack model containing cycles, for example, the vast majority of attack graphs. While
all Bayesian network-based models of the state of the art do not manage cycles, the model we
present can handle input models with cycles. On the other hand, the Hybrid Risk Assessment
Model separates in appropriate models the analysis of the past (within Dynamic Risk Correlation
Models) and of the future (within Future Risk Assessment Models). Thus, contrary to the other
dynamic risk assessment models of the state of the art, the probabilities of compromise do not
confuse the probabilities of being already compromised with those of being compromised in a near
future. Finally, contrary to the other models based on Bayesian attack graphs, our model can
distinguish several distinct simultaneous attacks in the alerts raised in a system, by analysing the
appropriate Dynamic Risk Correlation Models.

The methodology to build a dynamic risk assessment model merging different information
sources has been validated for cybersecurity, using topological attack graphs. Indeed, we showed
that we can easily transform a topological attack graph into a Generic Attack Model, the main
input of our models. Then, we apply the Bayesian Attack Model and the Hybrid Risk Assessment
Model to a real use-case of eleven virtual machines, for a total of a hundred vulnerabilities, on
which we run five attack scenarios. The results of the models are satisfying and correspond to the
real attacks that were carried out.

The sensitivity analysis of the results of the Hybrid Risk Assessment Model toward its parame-
ters showed that most parameters are not very sensitive. However, the exact value of a few of these
parameters may be very difficult to estimate. For example, probability-new-transition repre-
sents the will of an attacker to make a new attack transition. There is an important uncertainty on
the value of this parameter. On the other hand, the false-negative associated with each sensor
is very sensitive for low values and may introduce false positives in the results, if its value is not low
enough. A small variation on such parameter can have a significant impact on the final compromise
probability of assets. However, the order between the compromised assets is generally kept, even
with an important variation. As a result, the Hybrid Risk Assessment Model gives accurately to
security operators the order in which they have to investigate or respond to occurring attacks.
But the parameters need to be calibrated accurately, according to the security requirements of the
system, in order to give accurate absolute values of the compromise probabilities of the assets. We
detail this perspective of our work in subsection 8.2.1.

The dynamic risk assessment models we present are built from a Generic Attack Model. We
show in chapter 7 that this Generic Attack Model can be built from logical and topological attack
graphs, enabling the use of Bayesian Attack Model and the Hybrid Risk Assessment Model for
cybersecurity. However, we can also generate the Generic Attack Model for other types of attack
models enabling to use the dynamic risk assessment models in other domains. We detail this
perspective of our work in subsection 8.2.4.

8.1.2 Contribution 2: scalable risk assessment model

The second main contribution of this PhD thesis is the scalability of the risk assessment models.
This contribution is detailed in chapter 5, for the Bayesian Attack Model, and go one step further
in chapter 6 with the Hybrid Risk Assessment Model. Scalability is an important challenge of
static risk assessment model, but it is much more important for dynamic risk assessment models
which need to be evaluated frequently. Moreover, in order to use probabilistic models such as
the Bayesian networks, the cycles have to be exploded which increases significantly the size of the

150

8.1. Contributions

models to process. Thus the Bayesian Attack Model and the Hybrid Risk Assessment Model have
pruning policies, in order to prevent the explosion of nodes due to the cycle breaking process. For
the Bayesian Attack Model, we limit the exploration depth to a fix number of steps, from every
possible attack source. For the Hybrid Risk Assessment Model, the model has been defined in a
way that it only explores the paths that are likely to happen and thus it is more performing, while
keeping longer likely paths.

Both Bayesian Attack Model and Hybrid Risk Assessment Model have been successfully imple-
mented on simulated topologies of size far beyond the state of the art. For example, the models
of the state of the art were evaluated on topology with from 3 to 8 hosts. Thanks to our polytree
model, we successfully run our dynamic risk assessment models efficiently on simulated topologies
with up to 70 states.

The scalability of the Bayesian Attack Model and of the Hybrid Risk Assessment Model was
validated on simulated topologies of arbitrary size (from 0 to 70 hosts) but also arbitrary con-
nectivity. The hosts are gathered in a varying number of fully-connected subnetworks, with each
subnetwork able to attack any host of an other subnetwork, in cascade.

However, even if the scalability of the risk assessment models presented in this thesis are more
performing than the state of the art, it works only for medium information systems (up to 70
machines). We detail this perspective of our work in subsection 8.2.2.

8.1.3 Contribution 3: risk assessment model to support computation of
responses

The last main contribution of this PhD is the ability to use risk assessment models to support the
computation of responses. This contribution is detailed in chapter 4 and in section 7.4. The risk
assessment models give the attacks that are the most likely to happen and the possible futures
for those that are happening. We show in this PhD thesis that we can use both logical attack
paths (i.e., static attack models) and the Hybrid Risk Assessment Model (dynamic risk assessment
models) to compute possible responses. Then, the responses can be evaluated to know whether or
not they can prevent the likely attacks. Finally, the costs and impacts of the responses are taken
into account to choose the best response candidates that will be proposed to the operators.

For the computation of remediation, what distinguishes our approach from most of the similar
approaches of the state of the art is that we do not compute remediations to an attack graph
but to attack paths, meaning that our algorithms are working with smaller inputs, correcting
the most likely attacks, and not all possible attacks. What is also original in our approach is
that our remediation computation is generic. Dealing with new attacks only implies to define
remediation for potential new kinds of preconditions by filling the generic remediation database
we present. Moreover, this remediation computation methodology can be adapted to compute
responses preventing current attacks.

The remediation methodology was validated on realistic use-cases. The first use-case is a simple
experiment scenario of five hosts in which we compute the remediation candidates for the most
serious attack path. The second use-case is in the context of the FP7 European Research Project
PoSecCo with a network topology of twenty machines for more than a thousand vulnerabilities and
real end-users. The end-users concluded that remediating attack scenarios using this methodology
was much more efficient than doing this analysis manually.

Our work currently computes the responses only for the most likely potential attacks, but we
showed that thanks to dynamic risk assessment models, they could also be computed to prevent oc-
curring attacks. However, this has not been extensively studied in our work and stays a perspective
of our work, as detailed in subsection 8.2.3.

151

CHAPT 8. CONCLUSION AND PERSPECTIVES

8.2 Perspectives and future work

8.2.1 Calibration of the models parameters

One of the most difficult challenges of probabilistic models is the estimation of the models param-
eters. As we showed in this work, the uncertainty on the parameters of dynamic risk assessment
models can have a significant impact on the final values of the compromise probabilities. Thus,
security operators using a dynamic risk assessment model have to be careful when setting these
parameters. In this PhD thesis we study precisely the sensitivity of the results of the models
toward their parameters. We thus have identified the parameters for which we particularly need
accuracy, to have accurate output compromise probabilities. However, future work is still needed
on a methodology to estimate accurately such parameters.

A first solution to this challenge is to find an already existing and accurate source of data for
as much parameter as possible. For example, we proposed in this thesis to use the CVSS as main
input of vulnerability exploitation probability. But this score is not sufficient enough to be really
discriminating for vulnerabilities, as most vulnerabilities have the same CVSS score (a very high
score). That is why we have introduced a probability-new-transition parameter to prevent
a too fast increase of the compromise probabilities. A more discriminating source of data for the
conditions of transitions would make this parameter irrelevant and allow to get more accurate
results. For other parameters, new sources of data have to be found.

Another interesting solution would be to take advantage of the ability of Bayesian networks to
learn the parameters from data. Indeed, Bayesian networks are especially interesting for structure
or parameters learning from data. In our context, it would be very interesting to learn and update
the parameters of the Bayesian Attack Model or the Hybrid Risk Assessment Model, according to
the confirmation or negation by the security operators of the results of the models, after manual
checks. This will allow to progressively update the parameters and, for example, give priority to
the most accurate sensors.

8.2.2 Scalability of the risk assessment models for larger information
systems

In the state of the art, dynamic risk assessment models based on Bayesian networks were evaluated
on small topologies of up to 10 nodes. Due to the cycle breaking process, the Bayesian Attack
Model and Hybrid Risk Assessment Model are limited to up to medium Generic Attack Models (up
to 70 nodes). In order to be able to use those dynamic risk assessment models for bigger Generic
Attack Models, we need new heuristics to go one step further for scalability.

A solution that could be used for this challenge is to cluster the states that behave in the same
manner in the Generic Attack Model, i.e., to determine the cluster of states of the Generic Attack
Model that are targeted by the same transitions. States with identical input and output transitions
are very common in Generic Attack Models. For example, in a cluster of servers, many hosts are
using the same templates and have identical network accesses. Thus they can be targeted by the
same attack sources, exploiting the same vulnerabilities. For each of those clusters of states we can
create a new node in a higher lever hierarchical Generic Attack Model that thus contains a much
smaller number of states. So, future work has to study how we can use this hierarchy in Generic
Attack Models to model bigger information systems, while keeping details of the actual states that
have been compromised and the exact attack transition that has been taken by the attacker.

A complementary solution to this challenge is the distribution of the computations of Bayesian
networks. Indeed, both Bayesian Attack Model in Hybrid Risk Assessment Model uses many

152

8.2. Perspectives and future work

Bayesian networks in which computations are done separately and then are reconciliated. Thus,
the Bayesian networks build and inference computations, which are the most expensive in the
dynamic risk assessment models, can be easily distributed on several nodes, allowing to decrease
significantly the time needed to evaluate the model. Moreover, several approximate Bayesian
network inference algorithms rely on many independent sampling. As a result, with the use of
such algorithms, an inference in a big network could also be done much faster on several nodes.

8.2.3 Computation of responses using dynamic risk assessment models

In this PhD thesis, we only investigated in detail the remediation computation using static risk
assessment models such as logical attack graphs. However, the dynamic risk assessment models we
built have been designed to support the computation of responses for occurring attacks too. Future
work will investigate how the Bayesian Attack Model and the Hybrid Risk Assessment Model can
be used to compute the best responses to prevent an occurring attack.

One advantage of Bayesian networks is that they allow a quantitative probabilistic analysis.
A possible solution to assess the impact of remediations is to add new “response” nodes in the
Bayesian models, attached to the transition they prevent. Then we can compute the impact of
this response on the entire system with a Bayesian inference on this new Bayesian network. This
will allow to quantify the security improvement brought by the response and the residual risk.

8.2.4 Application of the Bayesian Attack Model and Hybrid Risk As-
sessment Model to other domains

In this thesis, we build our dynamic risk assessment models from a Generic Attack Model. In
the domain of cybersecurity, we build the Generic Attack Model from an attack graph. But this
Generic Attack Model has been designed to be generic and to apply also to other domains. An
interesting future work would be to investigate in which other domains there are graph-based
attack models which can be specified as a Generic Attack Model, to be able to build the dynamic
risk assessment models.

For example, we can build a Generic Attack Model from a list of possible attack scenarios,
rather than technical attack graphs, in order to apply the dynamic risk assessment models for
a higher-level view of cybersecurity attacks, or cyberphysical security. In such attack scenarios,
states represent the privilege of the attacker, either in physical or in a logical world. For example,
the position of an attacker in a server room. Transitions represent attack events or change of state
of an attacker. For example, the plug of a malicious USB key on a server. Sensors can also be
transposed to the physical world, for example, the detection of a person in a room by a surveillance
system.

Another field, closer to attack graphs on usual information systems is the virtualised environ-
ment. Thanks to the attack graph engine we developed during this PhD, we can compute the
attack graphs of such volatile infrastructure. Indeed, this engine is efficient and distributed. So,
it can manage the frequent changes that can happen in Cloud environments. Moreover, its at-
tack rules can be refined to include the specificity of such environments. Then, we can apply the
dynamic risk assessment models to the generated attack graph.

153

List of Figures

2.1 Graph definition examples . 10
2.2 Example AND-OR graph . 11
2.3 Example of a tree with its leaves displayed in red 11
2.4 Polytree example . 12
2.5 Example of a Bayesian network . 12
2.6 Example of a Petri net [Haz89] . 13
2.7 A cycle in an attack graph . 27

4.1 Example of logical attack graph . 48
4.2 Examples of attack paths . 50
4.3 Recursive algorithm computing the conjunctions of sufficient preconditions 51
4.4 Remediation process based on attack paths . 51
4.5 Algorithm computing the remediation candidates 53

5.1 Bayesian Attack Model Architecture . 62
5.2 Cycles in Generic Attack Model . 63
5.3 Bayesian Attack Model Transition . 64
5.4 Algorithm to build a Bayesian Attack Tree . 65
5.5 Bayesian Attack Model generation with nbSteps = 2 67
5.6 Generic Attack Model topology for simulations . 70
5.7 Duration in seconds of Bayesian Attack Model execution, according to the number

of states and clusters in the Generic Attack Model 71
5.8 Explanation of the figures on variation of parameters 73
5.9 Bayesian Attack Model results with parameter default values 75
5.10 Sensitivity of the false-positive parameter from 0 to 1 77
5.11 Sensitivity of the false-negative parameter from 0 to 1 79
5.12 Sensitivity of the probability-attack-source parameter from 0 to 1 81
5.13 Sensitivity of the probability-unknown-attack parameter from 0 to 0.5 83
5.14 Sensitivity of the nbSteps parameter . 85
5.15 Sensitivity of the probability-new-transition parameter from 0 to 1 87

6.1 Hybrid Risk Assessment Model Architecture . 92
6.2 Building of the Dynamic Risk Correlation Model according to the alerts received . 94
6.3 Dynamic Risk Correlation Model . 96
6.4 Pruning policies in Dynamic Risk Correlation Model 98
6.5 Future Risk Assessment Model . 100
6.6 Duration in seconds of Hybrid Risk Assessment Model execution, according to the

number of states and clusters in the Generic Attack Model 104
6.7 Hybrid Risk Assessment Model results with parameter default values 107
6.8 Sensitivity of the false-positive parameter from 0 to 1 109
6.9 Sensitivity of the false-negative parameter from 0 to 1 111

154

LIST OF FIGURES

6.10 Sensitivity of the probability-attack-source parameter from 0 to 1 113
6.11 Sensitivity of the probability-unknown-attack parameter from 0 to 0.5 115
6.12 Sensitivity of the max-number-no-info-to-explore parameter from 0 to 10 117
6.13 Sensitivity of the max-number-no-info-to-keep parameter from 0 to 10 119
6.14 Sensitivity of the max-number-no-alert-to-explore parameter from 0 to 10 121
6.15 Sensitivity of the max-number-no-alert-to-keep parameter from 0 to 10 123
6.16 Sensitivity of the nbSteps-possible-futures parameter 125
6.17 Sensitivity of the probability-new-transition parameter from 0 to 1 127

7.1 Scalable Attack Graph Engine architecture . 134
7.2 Scalable Attack Graph Engine technologies . 134
7.3 Information system network topology for simulations 137
7.4 Accuracy of the results of the Bayesian Attack Model according to the number of

hosts . 138
7.5 Accuracy of the results of the Dynamic Risk Correlation Model according to the

number of hosts . 139
7.6 Accuracy of the results of the Future Risk Assessment Model according to the num-

ber of hosts . 140
7.7 Results of the Bayesian Attack Model for use-case scenarios 142
7.8 Results of the Hybrid Risk Assessment Model for use-case scenarios 143
7.9 Response computation process based on a dynamic risk assessment model 144
7.10 Algorithm computing the response candidates . 146

A.1 Processus de remédiation . 176
A.2 Architecture du modèle d’attaque bayésien BAM 177
A.3 Représentation d’une transition du modèle d’attaque bayésien 178
A.4 Architecture du modèle d’attaque hybride HRAM 180
A.5 Architecture du moteur de graphe d’attaque SAGE 183
A.6 Processus de calcul de réponses . 183

155

List of Tables

2.1 Summary chart comparing attack models . 24
2.1 Summary chart comparing attack models . 25

4.1 Main MulVAL preconditions and their remediations 56

5.1 Conditional probability table of a Bayesian sensor node related to a transition . . . 68
5.2 Proposed values of the Generic Attack Model parameters 72
5.3 Proposed values of the Bayesian Attack Model parameters 72
5.4 Parameter sensitivity analysis simulation scenarios 73
5.5 Sensitivity analysis of the parameters of the Bayesian Attack Model 89

6.1 Default values of the Dynamic Risk Correlation Model parameters 104
6.2 Default values of the Future Risk Assessment Model parameters 105
6.3 Sensitivity analysis of the parameters of the Hybrid Risk Assessment Model 129

7.1 Conditional probability table of a Bayesian state node 135
7.2 Conditional probability table of a GAM transition node “exploitation of a vulnera-

bility” . 136
7.3 Default values of the parameters for the cybersecurity use case 137
7.4 Simulation scenarios . 141

A.1 Sensibilité des résultats du BAM, en fonction de ses paramètres. 179
A.2 Sensibilité des résultats du HRAM, en fonction de ses paramètres. 181

156

Glossary of Acronyms

BAM Bayesian Attack Model
BAT Bayesian Attack Tree
CPT Conditional Probability Tables
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DRCM Dynamic Risk Correlation Model
EBIOS Expression of Needs and Identification of Security Objectives
FRAM Future Risk Assessment Model
GAM Generic Attack Model
HRAM Hybrid Risk Assessment Model
HIPS Host Intrusion Prevention System
IS Information System
IDS Intrusion Detection System
IPS Intrusion Prevention System
IRS Intrusion Response System
ISMS Information Security Management System
NIPS Network Intrusion Prevention System
NIST National Institute of Standards and Technology
PVG Patch and Vulnerability Group
TAG Topological Attack Graph

157

Bibliography

[AHPS14] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga. Time-
dependent analysis of attacks. In Principles of Security and Trust: Third Interna-
tional Conference, POST 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, pages 285–305. Springer, 2014.

[AJN12] Massimiliano Albanese, Sushil Jajodia, and Steven Noel. Time-efficient and cost-
effective network hardening using attack graphs. In 42nd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, pages 1–12. IEEE,
2012.

[AP08] Qutaibah Althebyan and Brajendra Panda. A knowledge-based bayesian model
for analyzing a system after an insider attack. In IFIP International Information
Security Conference, pages 557–571. Springer, 2008.

[Art02] Michael Lyle Artz. NetSPA: A Network Security Planning Architecture. PhD thesis,
Massachusetts Institute of Technology, 2002.

[AWK02] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based
network vulnerability analysis. In 9th ACM Conference on Computer and Commu-
nications Security, 2002.

[Axe00] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy. Technical
report, Chalmers University of Technology, Goteborg, Sweden, 2000.

[AZ12] Saman Aliari Zonouz. Game-theoretic intrusion response and recovery. PhD thesis,
University of Illinois at Urbana-Champaign, 2012.

[BBK14] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal Kumar Kalita. Net-
work anomaly detection: methods, systems and tools. Communications Surveys &
Tutorials, IEEE, 16(1):303–336, 2014.

[BEJS10] Henk Birkholz, Stefan Edelkamp, Florian Junge, and Karsten Sohr. Efficient auto-
mated generation of attack trees from vulnerability databases. In Working Notes for
the 2010 AAAI Workshop on Intelligent Security (SecArt), pages 47–55, 2010.

[BP03] P J Brooke and R F Paige. Fault trees for security system design and analysis.
Computers & Security, 2003.

159

BIBLIOGRAPHY

[CAB+06] Frédéric Cuppens, Fabien Autrel, Yacine Bouzida, Joaquin Garcia, Sylvain Gom-
bault, and Thierry Sans. Anti-correlation as a criterion to select appropriate counter-
measures in an intrusion detection framework. In Annales des télécommunications,
volume 61, pages 197–217. Springer, 2006.

[Car00] C A Carver. Intrusion Response Systems: A Survey. Department of Computer
Science, Texas A & M University, College Station, TX, 2000.

[CCZ08] H Cavusoglu, H Cavusoglu, and J Zhang. Security patch management: Share the
burden or share the damage? Management Science, 54(4):657–670, April 2008.

[CM05] Marco Cremonini and Patrizia Martini. Evaluating information security investments
from attackers perspective: the return-on-attack (ROA). In Fourth Workshop on the
Economics of Information Security, pages 800–830. Citeseer, 2005.

[Col13] Robert Cole. Multi-step Attack Detection via Bayesian Modeling Under Model Pa-
rameter Uncertainty. PhD thesis, The Pennsylvania State University, 2013.

[CTT05] C.W. Chang, D.R. Tsai, and J.M. Tsai. A cross-site patch management model and
architecture design for large scale heterogeneous environment. In Security Tech-
nology, 2005. CCST’05. 39th Annual 2005 International Carnahan Conference on,
pages 41–46. IEEE, 2005.

[CY07] Seyit Ahmet Camtepe and Bulent Yener. Modeling and detection of complex attacks.
In 2007 3rd International Conference on Security and Privacy in Communications
Networks and the Workshops - SecureComm 2007, pages 234–243. IEEE, 2007.

[DLK04] Ram Dantu, Kall Loper, and Prakash Kolan. Risk management using behavior
based attack graphs. In Information Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. International Conference on, volume 1, pages 445–449.
IEEE, 2004.

[DMCR06] G C Dalton, R F Mills, J M Colombi, and R A Raines. Analyzing Attack Trees using
Generalized Stochastic Petri Nets. Information Assurance Workshop, 2006 IEEE,
2006.

[DMM+13] Lukas Demetz, Ronald Maier, Markus Manhart, Henrik Plate, and Matthias Fitz.
D1.7 - final project evaluation. Technical report, PoSecCo European Project from
the 7th Framework (project no. 257129), 2013.

[DPRW07] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley. Optimal secu-
rity hardening using multi-objective optimization on attack tree models of networks.
In Proceedings of the 14th ACM conference on Computer and communications secu-
rity, pages 204–213. ACM, 2007.

[Dru99] Marek J Druzdzel. Smile: Structural modeling, inference, and learning engine and
genie: a development environment for graphical decision-theoretic models. In Aaai/I-
aai, pages 902–903, 1999.

[DW06] Ole Martin Dahl and Stephen D Wolthusen. Modeling and execution of complex
attack scenarios using interval timed colored petri nets. Fourth IEEE International
Workshop on Information Assurance, pages 12 pp.–168, 2006.

[FIR15] FIRST-Forum of Incident Response and Security Teams. Common vulnerability
scoring system v3.0: Specification document. Technical report, 2015.

160

BIBLIOGRAPHY

[FW08] M Frigault and Lingyu Wang. Measuring network security using bayesian network-
based attack graphs. Computer Software and Applications, 2008. COMPSAC ’08.
32nd Annual IEEE International, pages 698–703, 2008.

[FWSJ08] Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring net-
work security using dynamic bayesian network. In the 4th ACM workshop, pages
23–30, New York, New York, USA, 2008. ACM, ACM Press.

[GDJ+12] Gustavo Gonzalez Granadillo, Hervé Débar, Grégoire Jacob, Chrystel Gaber, and
Mohammed Achemlal. Individual countermeasure selection based on the return on
response investment index. In Computer Network Security, pages 156–170. Springer,
2012.

[GJDC12] Gustavo Gonzalez Granadillo, Greagoire Jacob, Hervé Debar, and Luigi Coppolino.
Combination approach to select optimal countermeasures based on the rori index. In
Second International Conference on Innovative Computing Technology, pages 38–45.
IEEE, 2012.

[GTHM14] Erwan Godefroy, Eric Totel, Michel Hurfin, and Frédéric Majorczyk. Automatic
generation of correlation rules to detect complex attack scenarios. In Information
Assurance and Security (IAS), 2014 10th International Conference on, pages 23–28.
IEEE, 2014.

[Haz89] M. Hazewinkel, editor. Encyclopaedia of Mathematics. Springer Netherlands, 1989.

[HLZ10] Matthew H Henry, Ryan M Layer, and David R Zaret. Coupled petri nets for
computer network risk analysis. International Journal of Critical Infrastructure
Protection, 3(2):67–75, 2010.

[Ing09] Terrance R Ingoldsby. Attack tree-based threat risk analysis. Amenaza Technologies
Ltd. Copyright, 2010, 2009.

[ISO11a] ISO/IEC. ISO 27005: 2011. Information technology–Security techniques–
Information security risk management. ISO, 2011.

[ISO11b] ISO/IEC 27035:2011. Information technology – Security techniques – Information se-
curity incident management. Technical report, International Organization for Stan-
dardization, 2011.

[ISO14] ISO/IEC 27000:2014. Information technology – Security techniques – Information
security management systems – Overview and vocabulary. Technical report, Inter-
national Organization for Standardization, 2014.

[Jen87] Kurt Jensen. Coloured petri nets. Petri nets: central models and their properties,
pages 248–299, 1987.

[JKM+15] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Rolando
Trujillo-Rasua. Attack trees with sequential conjunction. In ICT Systems Secu-
rity and Privacy Protection, pages 339–353. Springer, 2015.

[JN10] S Jajodia and S Noel. Advanced cyber attack modeling analysis and visualization.
Technical report, DTIC Document, 2010.

[JNK+11] S Jajodia, S Noel, P Kalapa, M Albanese, and J Williams. Cauldron mission-centric
cyber situational awareness with defense in depth. In Military Communications
Conference, pages 1339–1344, 2011.

161

BIBLIOGRAPHY

[JNO05] S Jajodia, S Noel, and B O’Berry. Topological analysis of network attack vulnera-
bility. Managing Cyber Threats, pages 247–266, 2005.

[KCBC+09] Wael Kanoun, Nora Cuppens-Boulahia, Frédéric Cuppens, Samuel Dubus, and
Antony Martin. Success likelihood of ongoing attacks for intrusion detection and
response systems. In Computational Science and Engineering, 2009. CSE’09. Inter-
national Conference on, volume 3, pages 83–91. IEEE, 2009.

[KCBCD10] Nizar Kheir, Nora Cuppens-Boulahia, Frédéric Cuppens, and Hervé Debar. A Service
Dependency Model for Cost-Sensitive Intrusion Response. In Dimitris Gritzalis, Bart
Preneel, and Marianthi Theoharidou, editors, Computer Security – ESORICS 2010,
pages 626–642. Springer Berlin Heidelberg, 2010.

[KDCB+09a] N Kheir, H Debar, N Cuppens-Boulahia, F Cuppens, and J Viinikka. Cost evaluation
for intrusion response using dependency graphs. In Network and Service Security,
pages 1–6. IEEE, 2009.

[KDCB+09b] Nizar Kheir, Hervé Debar, Nora Cuppens-Boulahia, Frédéric Cuppens, and Jouni
Viinikka. Cost evaluation for intrusion response using dependency graphs. In Net-
work and Service Security, 2009. N2S’09. International Conference on, pages 1–6.
IEEE, 2009.

[KH10] Phongphun Kijsanayothin and Rattikorn Hewett. Analytical approach to attack
graph analysis for network security. In Availability, Reliability, and Security, 2010.
ARES’10 International Conference on, pages 25–32. IEEE, 2010.

[Khe10] N Kheir. Response Policies and Counter-measure: Management of Service Depen-
dencies and Intrusion and Reaction Impacts. PhD thesis, Ecole nationale supérieure
des télécommunications de Bretagne, 2010.

[Kis13] Richard Kissel. Glossary of key information security terms. NIST Interagency Re-
ports NIST IR, 7298:3, 2013.

[KLI08] Do Hoon Kim, Taek Lee, and H P In. Effective security safeguard selection process
for return on security investment. In Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, pages 668–673, December 2008.

[KPCS13] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. Dag-based
attack and defense modeling: Don’t miss the forest for the attack trees. CoRR,
March 2013.

[KVK09] Mikko Kiviharju, Teijo Venäläinen, and Suna Kinnunen. Towards modelling infor-
mation security with key-challenge petri nets. 14th Nordic Conference on Secure IT
Systems, pages 190–206, 2009.

[LI05] R P Lippmann and K W Ingols. An annotated review of past papers on attack
graphs. Technical report, DTIC Document, 2005.

[LM05] Y Liu and H Man. Network vulnerability assessment using Bayesian networks.
Defense and Security, 2005.

[LS88] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, 1988.

[Man16] Mandiant Consulting. M-Trends 2016 Special Report. Technical report, FireEye,
Inc., 2016.

162

BIBLIOGRAPHY

[MBFB06] M A McQueen, W F Boyer, M A Flynn, and G A Beitel. Quantitative Cyber Risk
Reduction Estimation Methodology for a Small SCADA Control System. In System
Sciences, 2006. HICSS ’06. Proceedings of the 39th Annual Hawaii International
Conference on, page 226, 2006.

[MBZ+06] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and Jeannette
Wing. Ranking attack graphs. In Recent advances in intrusion detection, pages
127–144. Springer, 2006.

[McD00] J P McDermott. Attack net penetration testing. In the 2000 workshop, pages 15–21,
New York, New York, USA, 2000. ACM Press.

[Mea98] C Meadows. A representation of protocol attacks for risk assessment. In Proceedings
of the DIMACS Workshop on Network . . . , 1998.

[MIT14] MITRE corporation. The MITRE Systems Engineering Guide. Technical report,
2014.

[MMDD09] Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducasséc. M4D4: a Logical
Framework to Support Alert Correlation in Intrusion Detection. 2009.

[MO05] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In ICISC’05: Pro-
ceedings of the 8th international conference on Information Security and Cryptology.
Springer-Verlag, December 2005.

[MRT15] Erik Miehling, Mohammad Rasouli, and Demosthenis Teneketzis. Optimal defense
policies for partially observable spreading processes on bayesian attack graphs. In
Proceedings of the Second ACM Workshop on Moving Target Defense, pages 67–76.
ACM, 2015.

[MSL10] C. Mu, B. Shuai, and H. Liu. Analysis of response factors in intrusion response
decision-making. In Computational Science and Optimization (CSO), 2010 Third
International Joint Conference on, volume 2, pages 395–399. IEEE, 2010.

[Nat05] National Institute of Standards and Technology. Creating a Patch and Vulnerability
Management Program. Technical report, 2005.

[Nat12] National Institute of Standards and Technology. SP 800-30 Rev. 1: Guide for Con-
ducting Risk Assessments. Technical report, 2012.

[NGGT10] Y. Nunez, F. Gustavson, F. Grossman, and C. Tappert. Designing a distributed
patch management security system. In Information Society (i-Society), 2010 Inter-
national Conference on, pages 162–167. IEEE, 2010.

[NJ08] S Noel and S Jajodia. Optimal ids sensor placement and alert prioritization using
attack graphs. Journal of Network and Systems Management, 2008.

[NJ09] S Noel and S Jajodia. Proactive intrusion prevention and response via attack graphs.
Technical report, Addison-Wesley Professional, 2009.

[NJOJ03] Steven Noel, Sushil Jajodia, Brian O’Berry, and Michael Jacobs. Efficient minimum-
cost network hardening via exploit dependency graphs. In Computer security appli-
cations conference, 2003. proceedings. 19th annual, pages 86–95. IEEE, 2003.

[OBM06] Xinming Ou, Wayne F Boyer, and Miles A McQueen. A scalable approach to attack
graph generation. In Proceedings of the 13th ACM conference on Computer and
communications security, pages 336–345. ACM, 2006.

163

BIBLIOGRAPHY

[OGA05a] X Ou, S Govindavajhala, and A W Appel. Mulval: A logic-based network security
analyzer. In Proceedings of the 14th conference on USENIX Security Symposium-
Volume 14, pages 8–8. USENIX Association, 2005.

[OGA05b] X Ou, S Govindavajhala, and A W Appel. Mulval: A logic-based network security
analyzer. In USENIX Security Symposium, 2005.

[oNSS10] Committee on National Security Systems. CNSS N 4009: National Information
Assurance Glossary. Technical report, 2010.

[Pau14] Stéphane Paul. Towards automating the construction & maintenance of attack trees:
a feasibility study. Proceedings GraMSec 2014, 2014.

[PCB10] Ludovic Piètre-Cambacédès and Marc Bouissou. Beyond attack trees: dynamic se-
curity modeling with Boolean logic Driven Markov Processes (BDMP). In European
Dependable Computing Conference, pages 199–208, 2010.

[PDR12] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security risk manage-
ment using bayesian attack graphs. Dependable and Secure Computing, 2012.

[Pea86] Judea Pearl. Fusion, propagation, and structuring in belief networks. AI, 1986.

[Pea87] Judea Pearl. Evidential reasoning using stochastic simulation of causal models. AI,
1987.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 1988.

[PML09] Srdjan Pudar, G Manimaran, and Chen-Ching Liu. PENET: A practical method and
tool for integrated modeling of security attacks and countermeasures. Computers &
Security, 28(8):754–771, November 2009.

[PR98] Judea Pearl and Stuart Russell. Bayesian networks. Computer Science Department,
University of California, 1998.

[PS98] Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-
vulnerability analysis. In the 1998 workshop, pages 71–79, New York, New York,
USA, 1998. ACM Press.

[QL04] Xinzhou Qin and Wenke Lee. Attack plan recognition and prediction using causal
networks. In Computer Security Applications Conference, 2004. 20th Annual, pages
370–379, 2004.

[R+99] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,
volume 99, pages 229–238, 1999.

[RP05] Indrajit Ray and Nayot Poolsapassit. Using attack trees to identify malicious at-
tacks from authorized insiders. In ESORICS’05: Proceedings of the 10th European
conference on Research in Computer Security. Springer-Verlag, September 2005.

[SAS06] Wes Sonnenreich, Jason Albanese, and Bruce Stout. Return on security investment
(ROSI)-A practical quantitative model. Journal of Research and Practice in Infor-
mation Technology, 38(1):45–56, 2006.

[SBW07a] N Stakhanova, S Basu, and J Wong. A cost-sensitive model for preemptive intrusion
response systems. In Proceedings of the 21st International Conference on Advanced
Networking and Applications, pages 428–435. IEEE Computer Society, 2007.

164

BIBLIOGRAPHY

[SBW07b] N Stakhanova, S Basu, and J Wong. A taxonomy of intrusion response systems.
International Journal of Information and Computer Security, 1(1):169–184, 2007.

[SBW07c] N Stakhanova, S Basu, and J Wong. A taxonomy of intrusion response systems.
International Journal of Information and Computer Security, 1(1):169–184, 2007.

[Sch99] Bruce Schneier. Attack Trees. Dr. Dobb’s Journal, December 1999.

[Sec04] Secrétariat Général de la Défense Nationale. EBIOS - Expression of Needs and
Identification of Security Objectives. Technical report, 2004.

[SHJ+02] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M
Wing. Automated generation and analysis of attack graphs. In Security and privacy,
2002. Proceedings. 2002 IEEE Symposium on, pages 273–284. IEEE, 2002.

[SMC09] Robert Schuppenies, Christoph Meinel, and Feng Cheng. Automatic extraction of
vulnerability information for attack graphs. Hasso-Plattner-Institute for IT Systems
Engineering, University of Potsdam, 2009.

[SO08] R E Sawilla and X Ou. Identifying critical attack assets in dependency attack graphs.
Springer, 2008.

[SPEC01] Laura P Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-
attack graph generation tool. In DARPA Information Survivability Conference
& Exposition II, 2001. DISCEX’01. Proceedings, volume 2, pages 307–321.
IEEE, 2001.

[SSBW09] C Strasburg, N Stakhanova, S Basu, and J S Wong. Intrusion response cost assess-
ment methodology. In Proceedings of the 4th International Symposium on Informa-
tion, Computer, and Communications Security, pages 388–391. ACM, 2009.

[SSEJJ12] A Shameli-Sendi, N Ezzati-Jivan, and M Jabbarifar. Intrusion response systems:
survey and taxonomy. SIGMOD, 2012.

[SSL15] Xiaoyan Sun, Anoop Singhal, and Peng Liu. Who touched my mission: Towards
probabilistic mission impact assessment. In Proceedings of the 2015 Workshop on
Automated Decision Making for Active Cyber Defense, pages 21–26. ACM, 2015.

[SSS14] Vivek Shandilya, Chris B Simmons, and Sajjan Shiva. Use of attack graphs in
security systems. Journal of Computer Networks and Communications, 2014, 2014.

[TFGB07] C J Tucker, S M Furnell, Ghita, BV, and P J Brooke. A new taxonomy for comparing
intrusion detection systems. Internet Research, 17(1):88–98, 2007.

[THC02] S Tanachaiwiwat, K Hwang, and Y Chen. Adaptive intrusion response to minimize
risk over multiple network attacks. ACM Trans on Information and System Security,
2002.

[TK02] T Toth and C Kruegel. Evaluating the impact of automated intrusion response
mechanisms. In Computer Security Applications Conference, pages 301–310. IEEE,
2002.

[WFM+07] Yu-Sung Wu, Bingrui Foo, Yu-Chun Mao, Saurabh Bagchi, and Eugene H Spaf-
ford. Automated adaptive intrusion containment in systems of interacting services.
Computer networks, 51(5):1334–1360, 2007.

165

BIBLIOGRAPHY

[Whi06] Dominic Stjohn Dolin White. Limiting Vulnerability Exposure through effective
Patch Management: threat mitigation through vulnerability remediation. PhD thesis,
Rhodes University, 2006.

[WNJ06] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost network hardening
using attack graphs. Computer Communications, 29(18):3812–3824, 2006.

[Wu09] Yu-Sung Wu. Achieving high survivability in distributed systems through automated
response. PhD thesis, Purdue University, 2009.

[WXX+08] Z. Wu, D. Xiao, H. Xu, X. Peng, and X. Zhuang. Automated intrusion response
decision based on the analytic hierarchy process. In Knowledge Acquisition and
Modeling Workshop, 2008. KAM Workshop 2008. IEEE International Symposium
on, pages 574–577. IEEE, 2008.

[WZK13] Shuzhen Wang, Zonghua Zhang, and Youki Kadobayashi. Exploring attack graph
for cost-benefit security hardening: A probabilistic approach. Computers & security,
32:158–169, 2013.

[XLO+10] Peng Xie, Jason H Li, Xinming Ou, Peng Liu, and R Levy. Using Bayesian net-
works for cyber security analysis. In Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages 211–220, 2010.

[Yag06] Yager. OWA trees and their role in security modeling using attack trees. Information
Sciences, 176(20):27–27, October 2006.

[ZKSY09] S.A. Zonouz, H. Khurana, W.H. Sanders, and T.M. Yardley. Rre: A game-theoretic
intrusion response and recovery engine. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on, pages 439–448. IEEE, 2009.

[ZLYS10] J. Zhu, Y. Liu, X. Yang, and X. SUN. Dynamic game based intrusion response
model. Journal of Computational Information Systems, pages 2199–2211, 2010.

166

Author’s publications

Publications in peer-reviewed conferences

[AGBC14] F.-X. Aguessy, L. Gaspard, O. Bettan and V. Conan. Remediating Logical Attack
Paths Using Information System Simulated Topologies. In Computer & Electronics Security
Applications Rendez-vous 2014, pages 187–203, 2014.

[AODLLF15] F.-X. Aguessy, O. Bettan, R. Dobigny, C. Laudy, G. Lortal and D. Faure. Adjustable
Fusion to support Cyber Security Operators. In Human Aspects of Information Security, Pri-
vacy, and Trust: Third International Conference, HAS 2015, Held as Part of HCI International
2015, Los Angeles, CA, USA, August 2-7, 2015. Proceedings, pages 143–153, 2015.

[MDMSBACLTM15] B. Mathieu, G. Doyen, W. Mallouli, T. Silverston, O. Bettan, F.-X. Aguessy,
T. Cholez, A. Lahmadi, P. Truong and E .Montes de Oca. Monitoring and Securing New Func-
tions Deployed in a Virtualized Networking Environment. In the First International Workshop
on Security Testing And Monitoring (STAM), in conjunction with 10th International Confer-
ence on Availability, Reliability and Security (ARES), 2015, pages 741–748, 2015.

[RABBC16] F. Reynaud, F.-X. Aguessy, O. Bettan, M. Bouet, V. Conan. Attacks against Network
Functions Virtualization and Software-Defined Networking: State-of-the-art. In Workshop on
Security in Virtualized Networks (Sec-Virtnet 2016), workshop of 2nd IEEE Conference on
Network Softwarization (NetSoft 2016), 2016.

[ABBCD16] F.-X. Aguessy, O. Bettan, G. Blanc, V. Conan, H. Debar. Hybrid Risk Assessment
Model based on Bayesian Networks. In 11th International Workshop on Security, IWSEC 2016,
Tokyo, Japan, September 12-14, 2016, Proceedings, 2016.

Contributions to collaborative projects

[Doc1511] P. Truong, B. Mathieu, F.-X. Aguessy, O. Bettan, E. Montes de Oca, A. Ortiz, W. Mal-
louli, T. Nguyen, A. Ploix, M. EL Aoun, G. Doyen, A. Lahmadi, T. Cholez. D1.1 - Virtualiza-
tion Techniques: Analysis and Selection. DOCTOR project, <ANR-14- CE28-000>, started
in 01/12/2014 and supported by the French Systematic cluster, 2015.

[Doc1512] P. Truong, B. Mathieu, F.-X. Aguessy, O. Bettan, E. Montes de Oca, A. Ortiz, W. Mal-
louli, H .Long Mai, A. Ploix, G. Doyen, T. Cholez, X. Marchal and C. Enclos. D1.2 - Architec-
ture of the DOCTOR Virtualized Node. DOCTOR project, <ANR-14- CE28-000>, started in
01/12/2014 and supported by the French Systematic cluster, 2015.

167

AUTHOR’S PUBLICATIONS

[Doc1621] P. Truong, B. Mathieu, F.-X. Aguessy, F. Reynaud, T. Combe, W. Mallouli, G. Doyen,
T. Nguyen, R. Cogranne, T. Cholez and X. Marchal. D2.1 - Security analysis of the virtual-
ized NDN architecture. DOCTOR project, <ANR-14- CE28-000>, started in 01/12/2014 and
supported by the French Systematic cluster, (To be published).

[Vir1531] VIRTUALIS Consortium. D3.1 - Spécifications techniques du module d’analyses de
risques. VIRTUALIS project, FUI 15, 2015.

[Vir1632] VIRTUALIS Consortium. D3.2 - Briques logicielles d’analyse de risques adaptées à la
sécurité physique/logique. VIRTUALIS project, FUI 15, (To be published).

[FIC151711] The FI-Core Consortium. D.17.1.1: Contribution to FIWARE Reference Architecture
(Security). Future Internet - Core, European Project from the 7th Framework Program, Project
reference: 632893, 2015.

[FIC151721] The FI-Core Consortium. D.17.2.1: FI-WARE GE Open Specifications. Future
Internet - Core, European Project from the 7th Framework Program, Project reference: 632893,
2015.

[FIC151731] The FI-Core Consortium. D.17.3.1: SW Release (version of components delivered
for integration in testbed). Future Internet - Core, European Project from the 7th Framework
Program, Project reference: 632893, 2015.

[FIC151741] The FI-Core Consortium. D.17.4.1: Installation and Administration Guides. Future
Internet - Core, European Project from the 7th Framework Program, as part of the Future
Internet Public-Private Partnership Programme (FI-PPP), Project reference: 632893, 2015.

[FIC151751] The FI-Core Consortium. D.17.5.1: User and Programmers Guide. Future Internet
- Core, European Project from the 7th Framework Program, as part of the Future Internet
Public-Private Partnership Programme (FI-PPP), Project reference: 632893, 2015.

[FIC151771] The FI-Core Consortium. D.17.7.1: Technical Roadmap. Future Internet - Core,
European Project from the 7th Framework Program, as part of the Future Internet Public-
Private Partnership Programme (FI-PPP), Project reference: 632893, 2015.

[FIW14813] The FI-WARE Consortium. D.8.1.3: GE Open Specifications. FI-WARE: Future
Internet Core Platform, European Project from the 7th Framework Program, as part of the
Future Internet Public-Private Partnership Programme (FI-PPP), Project reference: 285248,
2014.

[FIW14823] The FI-WARE Consortium. D.8.2.3: SW Release (version of components delivered for
integration in testbed). FI-WARE: Future Internet Core Platform, European Project from the
7th Framework Program, as part of the Future Internet Public-Private Partnership Programme
(FI-PPP), Project reference: 285248, 2014.

[FIW14833] The FI-WARE Consortium. D.8.3.3: Installation and Administration Guide. FI-
WARE: Future Internet Core Platform, European Project from the 7th Framework Program, as
part of the Future Internet Public-Private Partnership Programme (FI-PPP), Project reference:
285248, 2014.

[FIW14843] The FI-WARE Consortium. D.8.4.3: User and Programmers Guide. FI-WARE:
Future Internet Core Platform, European Project from the 7th Framework Program, as part
of the Future Internet Public-Private Partnership Programme (FI-PPP), Project reference:
285248, 2014.

168

AUTHOR’S PUBLICATIONS

[FIW14853] The FI-WARE Consortium. D.8.5.3: Unit Testing Plan and Report. FI-WARE:
Future Internet Core Platform, European Project from the 7th Framework Program, as part
of the Future Internet Public-Private Partnership Programme (FI-PPP), Project reference:
285248, 2014.

[FIW15CAB] P. CAO, F.-X. Aguessy, P. Bisson Poster - FI-WARE Security Monitoring Generic
Enabler Demonstrator. Trust in the Digital World (TDW), 2015.

169

Appendix A
French abstract -
Résumé français

A.1 Introduction

Les systèmes d’information sont d’une valeur inestimable, car ils rassemblent l’intégralité des sys-
tèmes utilisés pour le stockage et le traitement des données d’une organisation. Ils représentent
donc une cible de plus en plus attractive pour les attaquants. Cependant, ils sont aussi de plus
en plus complexes, car ils sont composés d’équipements matériels ou logiciels divers, provenant de
nombreux constructeurs ou fournisseurs. Ils reposent sur des logiciels qui sont souvent vulnérables,
et qui ne sont pas corrigés, soit, car c’est impossible, soit par manque de temps. Ainsi, la sécurité
de tels systèmes est très difficile à maitriser, alors qu’elle est souvent nécessaire pour la survie de
l’organisation.

Les opérateurs de sécurité qui doivent protéger les systèmes d’information critiques connaissent
généralement la plupart des vulnérabilités de leur système, grâce à des scanneurs de vulnérabilités.
Ils doivent faire face à des attaques toujours plus nombreuses et complexes. Les attaques qui
ont le plus d’impact sont les attaques multi étapes. Par exemple, l’attaquant commence par
exploiter une machine accessible depuis internet. Puis, à partir de celle-ci, il compromet la machine
d’un administrateur. Il peut alors accéder légitimement au contrôleur du domaine et prendre le
contrôle d’un serveur hébergeant des données critiques. Il existe plusieurs formalismes permettant
de représenter ce type d’attaque. Par exemple, un graphe d’attaque est un modèle d’analyse de
risque qui contient toutes les attaques connues qui peuvent être effectuées par un attaquant dans
un système.

En première ligne de défense, les opérateurs déploient des mesures de protection (par exemple,
des correctifs logiciels ou du contrôle d’accès, à l’aide de pare-feu) pour se prémunir des attaques.
Cependant, il y a toujours des contournements possibles. En deuxième recours, ils déploient donc
des sondes de détection qui les alertent dès qu’un attaquant exploite une vulnérabilité connue.
Quand ils reçoivent des alertes, ils doivent réévaluer le niveau de risque de leur système pour
choisir les réponses appropriées. C’est ce qui s’appelle l’évaluation dynamique de risque.

Cette thèse de doctorat est dans le domaine de la sécurité des systèmes d’information. Elle vise
à construire un système d’analyse statique et dynamique de risque prenant en compte le savoir
à priori sur un système d’information (topologie réseau, vulnérabilités, etc.) et les informations
dynamiques reçues dans ce système (alertes d’intrusion, etc.). Il s’applique à des systèmes qui
sont visés par des attaques complexes, où les administrateurs ont une bonne connaissance de leur

171

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

système et dans lesquels sont déployées des sondes de détection.

Quatre problèmes principaux se posent dans les approches actuelles. Le premier est la difficulté
de la construction d’un modèle permettant de concilier les informations de sécurité connues à priori
et celles qui arrivent dynamiquement dans le système. Le deuxième problème est le passage à
l’échelle d’un tel modèle qui peut être très gros pour un système avec de nombreuses machines
vulnérables. Le troisième est la difficulté de profiter des avantages des différentes représentations
possibles des attaques qui existent (topologiques, logiques ou probabilistes). Le dernier problème
concerne l’exploitation qui peut être faite après avoir construit le modèle d’attaque: comment
s’appuyer sur ce modèle pour pouvoir calculer les réponses appropriées pour protéger un système
d’information ?

Afin de résoudre ces problèmes, nous proposons dans ce manuscrit de thèse trois contributions
permettant de construire un système d’analyse statique et dynamique de risque et de calcul de
réponses. La première contribution est la construction d’un modèle probabiliste d’évaluation de
risque pouvant s’appliquer à n’importe quel type de système, qu’il possède des cycles ou non. Nous
étudions précisément la sensibilité des résultats du modèle en fonction de ses paramètres. Ensuite,
nous permettons d’améliorer significativement le nombre de noeuds et de vulnérabilités qui peuvent
être pris en compte par rapport aux modèles existants de l’état de l’art. Enfin, nous décrivons
comment les modèles d’attaque peuvent être utilisés pour servir de support au calcul de réponses
permettant de se protéger des attaques.

A.2 État de l’art

L’analyse de l’état de l’art présentée ici s’organise en deux parties. D’une part, nous étudions les
modèles existants dans l’état de l’art permettant de représenter les attaques multi étapes. D’autre
part, nous analysons comment ces modèles ont été utilisés pour calculer les réponses empêchant
les attaques potentielles ou en cours.

A.2.1 Modèles d’attaque

Un grand nombre de modèles d’attaque de l’état de l’art s’appuient sur des modèles basés sur les
graphes (arbre, graphes, réseaux de Petri, réseaux bayésiens, processus de Markov, etc.).

Les premiers modèles à avoir été proposés dans la littérature pour représenter les attaques multi
étapes sont les arbres d’attaque [Sch99, Ing09, Pau14]. Ceux-ci reposent sur des arbres ET/OU
dans lesquels les noeuds représentent les actions possibles pour un attaquant qui sont raffinées
récursivement jusqu’à devenir des actions atomiques. Les arbres d’attaque ont été étendus dans
de nombreux travaux, par exemple pour ajouter d’autres opérateurs: OU-Exclusif, ET-Ordonné
[BP03], quelques, la plupart [Yag06], ou pour ajouter la position d’un attaquant [RP05] ou encore
des informations temporelles [CY07, AHPS14]. La structure d’arbre a été la première permettant
de modéliser précisément la succession d’éléments d’attaque dans un système. C’est donc la base
de la plupart des modèles suivants. Cependant, elle ne permet pas de représenter facilement la
progression d’un attaquant dans un système, car elle ne contient pas de notion de position de
l’attaquant et décrit une seule attaque principale.

Pour répondre à ce dernier problème, les graphes d’attaque ont été proposés pour s’appuyer sur
un graphe, plutôt qu’un arbre, pour décrire les attaques [PS98]. Il existe deux catégories principales
de graphes d’attaque [LI05, KPCS13]. Dans la première, les graphes d’attaque logiques, les noeuds
représentent des faits logiques qui ont besoin soit de la conjonction, soit de la disjonction de leurs
parents pour être possibles. Les arcs représentent donc une relation de dépendance entre ces faits
logiques. Dans la deuxième catégorie, les graphes d’attaque topologiques, les noeuds représentent

172

A.2. État de l’art

des actifs d’un système d’information (machines, interfaces réseau, etc.). Chaque arc représente
une attaque possible à partir d’un actif, qui permet de prendre le contrôle d’un autre actif du
système. Les graphes d’attaque sont générés par des moteurs de graphes d’attaque tels que MulVAL
[OGA05a, OBM06], TVA [JNK+11, JNO05] ou NetSPA [Art02], à partir d’un inventaire de la
connectivité réseau du système et de ses vulnérabilités. Les graphes d’attaque sont très proches
des arbres d’attaque, mais permettent de représenter plusieurs attaques multi étapes dans le même
modèle. Ils permettent de décrire précisément ce type d’attaque, mais ne sont pas suffisants pour
décrire les attaques en cours ou contenir plusieurs attaquants.

D’autres modèles d’attaque sont basés sur les réseaux de Petri. Un réseau de Petri est constitué
de places (représentant des états), de transitions (représentant des actions pour passer d’un état
à un autre) et de jetons qui sont situés sur les places (chaque jeton représentant un objet dans
un état). Les réseaux de Petri sont généralement utilisés pour faire des simulations d’accessibilité
des places. Un réseau d’attaque [McD00] est basé sur un réseau de Petri dans lequel les places
représentent les états de compromission des entités du système, les transitions représentent des
événements d’attaque et les jetons représentent la progression d’un attaquant qui possède les
privilèges associés à la place où il est. Les réseaux d’attaque ont été étendus par divers formalismes
pour, par exemple, prendre en compte la difficulté ou la durée des étapes d’attaque [DMCR06,
DW06] ou ajouter des prérequis à certaines étapes d’attaque [PML09]. L’avantage principal des
réseaux de Petri par rapport aux graphes ou aux arbres est qu’ils permettent de modéliser, dans
un seul modèle, la progression concurrente de plusieurs attaquants dans un système, à l’aide de
différents jetons. Cependant, un réseau de Petri ne peut pas être utilisé pour représenter l’ensemble
des privilèges acquis par un attaquant (un jeton ne peut être qu’à une seule place en même temps).
De plus, il n’est pas facile d’adapter ce type de modèles pour prendre en compte l’ajout de détections
en cours d’exécution. Ce formalisme est plutôt fait pour savoir si certains états peuvent être
atteints, et quelle est leur probabilité de l’être ou la durée pour y arriver.

Enfin, la dernière famille principale de modèles d’attaque de l’état de l’art regroupe les modèles
basés sur les réseaux bayésiens. Un réseau bayésien est un graphe orienté acyclique dans lequel
chaque noeud possède plusieurs états distincts. Il est associé à une table de probabilité décrivant
la probabilité d’être dans un état de ce noeud, étant donné chaque état possible de ses parents.
Une fois ce graphe spécifié, le formalisme des réseaux bayésiens fournit des algorithmes efficaces
permettant de calculer la probabilité de chaque état du réseau, étant donné des preuves, des noeuds
qui ont été fixés dans un état particulier. Les graphes d’attaque bayésiens [LM05, FW08] sont
constitués de noeuds représentant une machine dans un état spécifique (généralement compromis
ou non compromis) et d’arcs représentant une attaque possible. Ils ont été étendus pour ajouter des
informations temporelles, par exemple sur l’évolution de la disponibilité de correctifs ou d’exploits
[FWSJ08], ou pour ajouter des informations sur l’incertitude des détections [XLO+10]. Les réseaux
bayésiens ajoutent aux modèles basés sur des graphes des outils puissants permettant de calculer
les probabilités des différents états des noeuds du graphe. De plus, les dépendances entre les
noeuds ne sont plus des ET ou des OU, mais des probabilités d’occurrence compte tenu de l’état
des parents, ce qui est beaucoup plus expressif. Enfin, l’attaquant peut quitter chacun des états
qui ont été précédemment compromis. Cependant, les modèles d’attaque bayésiens de l’état de
l’art ne permettent pas de représenter l’évolution concurrente de plusieurs attaques simultanées.
Il se pose aussi deux problèmes lorsque l’on veut utiliser ces modèles en pratique. Le premier est
un problème de performance, car l’inférence bayésienne peut être très couteuse à calculer pour de
gros réseaux. Le deuxième problème concerne la présence de cycles, très fréquente dans les graphes
d’attaque, et qui n’est pas possible dans les réseaux bayésiens. La plupart des travaux de l’état
de l’art soit n’évoquent pas le problème des cycles, soit fournissent des solutions non satisfaisantes
pour les corriger.

Pour conclure, il y a un grand nombre de modèles d’attaque qui ont été proposés dans la
littérature. Certains sont limités uniquement à l’analyse statique de risque, d’autres permettent

173

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

aussi de représenter dynamiquement les attaques qui sont en train de se produire. Les modèles qui
paraissent les plus intéressants sont ceux basés sur les réseaux bayésiens, mais ils possèdent des
limitations pour être vraiment utilisables.

Les modèles existants ont différents niveaux de détail et ils permettent de représenter plus ou
moins précisément les étapes d’attaque, en utilisant différents opérateurs logiques ou probabilistes.
Or, il est possible qu’une organisation ait déjà des modèles d’attaque existants, ou bien un opérateur
peut vouloir faire une analyse avec un niveau de granularité précis. Ainsi, il est utile de définir
un modèle d’attaque générique GAM, qui généralise la plupart des modèles d’attaque de l’état de
l’art, et qui permet d’avoir un seul type de point d’entrée, tout en étant compatible avec la plupart
des modèles d’attaque de l’état de l’art basés sur des graphes.

La première étape permettant de construire ce modèle générique GAM est d’ajouter les noeuds
et arcs: les états et les transitions. Un état représente l’état d’un attaquant dans le système (par
exemple, un privilège sur une machine, la possession d’une donnée, la position d’un attaquant).
Une transition est un arc qui représente la possibilité pour un attaquant d’aller d’un état source a
un état destination. Chaque transition à un type qui décrit pourquoi et comment l’attaquant peut
passer d’un état à un autre (par exemple, l’exploitation d’une vulnérabilité, le vol d’identifiants).
En plus de ces deux éléments, il est possible d’ajouter au GAM des conditions, des faits qui doivent
être vérifiés pour qu’une transition soit possible, et des sondes de détection, qui permettent de
s’assurer que d’autres éléments (un état, une transition ou une condition) sont vérifiés. Enfin, les
états, et transitions peuvent être associés à des tables de probabilités qui décrivent la relation qui
existe entre une transition et ses conditions, ou bien entre un état et ses transitions entrantes. Les
tables peuvent représenter des opérateurs logiques simples (OU, ET, OU-Exclusif, etc.) ou bien
des relations probabilistes plus complexes. Ainsi, nous pouvons construire un modèle d’attaque
générique GAM qui peut contenir les informations de la plupart des modèles d’attaque graphiques
existants et être un unique point d’entrée, applicable à n’importe quel domaine et avec différents
niveaux de granularité.

A.2.2 Calcul de réponses s’appuyant sur les modèles d’attaque

Les réponses regroupent les actions ayant pour but de traiter un risque. Elles peuvent être de
deux types: des remédiations, c’est à dire des actions ayant pour but de traiter un risque latent, de
corriger une vulnérabilité existante, ou des contre-mesures, pour corriger le risque d’une attaque
en train de se produire. Les réponses peuvent être regroupées en trois catégories: les réponses
correctives, les réponses actives et les réponses passives. Les réponses correctives, généralement des
remédiations ont pour but de résoudre un problème en corrigeant la vulnérabilité, par l’application
d’un correctif logiciel. Cette technologie est assez mûre, mais possède certaines limitations [CCZ08]
qui font que l’application de correctifs nécessite la plupart du temps une intervention humaine
(par exemple, pour des tests de non-régressions) et que parfois ils ne peuvent pas être appliqués
(par exemple, à cause de la nécessité de redémarrer un service critique ou de l’indisponibilité
des correctifs). Les réponses actives ont pour but d’empêcher l’exploitation d’une vulnérabilité,
mais sans la corriger. Elles sont généralement mises en oeuvre par des systèmes de prévention
d’intrusion [SBW07c] (uniquement des fonctions de filtrage) ou des systèmes de réponses aux
intrusions [Car00, SBW07b, THC02] qui peuvent appliquer d’autres types de réponses (arrêt de
services ou machines, changement de la politique de contrôle d’accès, etc.). Les réponses passives
[TFGB07] sont un dernier recours, pour être alerté si une vulnérabilité est exploitée. Elles sont
généralement implémentées par des systèmes de détection d’intrusion situés sur le réseau ou sur
les machines.

Plusieurs articles de l’état de l’art s’appuient sur les modèles d’attaque pour sélectionner des
réponses aux attaques. Généralement, ceux-ci sont utilisés pour voir l’impact sur le système entier
de l’application d’une réponse et mesurer la réduction du risque [MBFB06, NJ09]. Sinon, ils peu-

174

A.3. Calcul de remédiations aux chemins d’attaque logiques

vent aussi être le support utilisé pour le calcul des réponses [CAB+06, WNJ06, AJN12]. Ainsi, les
modèles d’attaque peuvent permettre d’optimiser la configuration et le déploiement de réponses
passives (par exemple, un graphe d’attaque peut permettre de trouver les points de déploiement
optimaux de sondes de détection) ou de calculer des remédiations ou d’autres types de réponses
permettant de protéger les cibles potentielles d’attaque. Au contraire, les modèles topologiques et
fonctionnels du système d’information [MMDD09, JN10, TK02, KCBCD10, SSL15] sont générale-
ment utilisés pour évaluer l’impact des réponses à déployer. Au lieu d’écrire toutes les attaques
possibles dans un système, ils présentent les services légitimes ou les missions du système et leurs
interdépendances. Leur utilisation est complémentaire aux modèles d’attaque.

Pour sélectionner les réponses à déployer, plusieurs critères peuvent être pris en compte, soit
reliés à l’attaque (par exemple, le type d’attaque, sa durée), soit reliés à la réponse (par exem-
ple, l’efficacité de la réponse, ses effets négatifs), soit reliés à la cible (par exemple, son exposi-
tion à la menace, ses contraintes en confidentialité, intégrité ou disponibilité) [Car00, MSL10].
Ensuite, plusieurs méthodologies [WXX+08, KLI08, KCBCD10, ZLYS10, AZ12] et métriques
[CM05, SAS06, SBW07a, SSBW09, KCBCD10, GDJ+12] permettent de sélectionner les réponses
qui seront effectivement déployées sur le système en essayant de trouver un équilibre entre les effets
positifs de la réponse (par exemple, contre les attaques potentielles, en s’appuyant sur un modèle
d’attaque), ses effets de bord (par exemple, contre les effets négatifs sur le système, en s’appuyant
sur un modèle fonctionnel) et son coût.

Pour conclure, un grand nombre de critères peuvent être pris en compte pour calculer et sélec-
tionner une réponse à une attaque. La première étape nécessaire pour pouvoir prendre une décision
est d’effectuer une évaluation de risque, soit statique, pour prévenir des attaques potentielles, en
phase de conception du système, soit dynamique, pour prévenir des attaques en cours dans un sys-
tème en cours d’exploitation. Ce modèle peut permettre à la fois d’identifier les attaques auxquelles
il faut répondre, mais aussi de savoir l’impact des réponses sur ces attaques potentielles.

A.3 Calcul de remédiations aux chemins d’attaque logiques

Les modèles d’attaque sont un support intéressant permettant de calculer des remédiations. Nous
allons présenter ici une méthodologie permettant de remédier les chemins d’attaque les plus sig-
nificatifs extraits d’un graphe d’attaque logique. Un graphe d’attaque logique décrit précisément
toutes les actions qui peuvent être faites par un attaquant dans un système afin de compromettre
toutes les cibles d’attaques possibles. Au contraire, un chemin d’attaque est un extrait du graphe
complet qui ne contient que les chemins probables et/ou les plus impactants qui visent à com-
promettre une cible d’attaque. Corriger un chemin d’attaque permet donc de protéger une cible
critique d’un système pour être sûr qu’elle ne soit pas compromise par des attaques connues.

La figure A.1 représente le processus de remédiation de chemins d’attaque. La première étape
est la génération du graphe d’attaque logique, à l’aide d’un moteur de graphe d’attaque, à partir
d’un modèle topologique du système. À partir de ce modèle sont extraits les chemins d’attaque.
Chaque chemin d’attaque est associé à un score dépendant de sa criticité et de sa probabilité
d’occurrence. Celui-ci permet de classer les chemins d’attaque entre eux. C’est alors que commence
le processus de remédiation pour chaque chemin d’attaque qui doit être corrigé.

Un chemin d’attaque est un graphe logique ET-OU. Le fait logique contenu dans chaque noeud du
graphe est vérifié uniquement si la conjonction ou la disjonction (suivant le type de noeuds) de ses
parents est vérifiée. Comme les préconditions (les noeuds sans parents) n’ont pas de parents, elles ne
sont pas déduites depuis d’autres noeuds. Ce sont donc les premières conditions à partir desquelles
l’ensemble des autres noeuds est déduit. Ainsi, ce sont les seuls noeuds où l’on peut appliquer
des remédiations. Un algorithme permet de calculer les ensembles de préconditions suffisantes,

175

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

Figure A.1 – Processus de remédiation

si corrigées, pour protéger la cible du chemin d’attaque. Chaque ensemble possible contient une
conjonction de remédiations qui doivent être toutes corrigées pour protéger la cible. Chaque
remédiation décrit une condition qui permet à l’attaquant de faire une attaque. Le processus de
remédiation s’appuie sur une base de données qui contient les remédiations connues associées à
des conditions d’attaque. À partir des ensembles de préconditions suffisantes et des remédiations
possibles de chaque précondition, on calcule les remédiations candidates, permettant de corriger le
chemin d’attaque.

Pour comparer plusieurs remédiations permettant de corriger un même chemin d’attaque, le
processus de remédiation comporte un composant qui évalue le coût de la remédiation. Le coût
d’une remédiation est divisé en deux composants qui peuvent être exprimés en unités monétaires:
le coût opérationnel et le coût d’impact. Le coût opérationnel est constitué (1) du coût direct
de la remédiation (par exemple, le coût d’un patch ou d’une signature d’attaque), (2) des coûts
de déploiement (par exemple, la charge de travail nécessaire à déployer la remédiation sur la
machine concernée), (3) des coûts de test (par exemple, vérifier après un correctif que les applicatifs
fonctionnent correctement et que la vulnérabilité est corrigée), (4) des coûts de maintenance (par
exemple, l’augmentation, suite à l’ajout d’une nouvelle signature, de la charge CPU et du temps
de traitement des alertes générées). Le deuxième composant du coût, le coût d’impact, peut
être calculé à l’aide d’un modèle fonctionnel du système. Il détaille le coût que pourrait avoir
sur le système le déploiement de cette nouvelle remédiation. Pour cela, la remédiation candidate
potentielle est déployée sur un réseau simulé sur lequel on analyse son impact sur les services
légitimes, grâce au modèle fonctionnel. La combinaison du coût opérationnel et d’impact permet
d’assigner à chaque remédiation candidate un coût global et donc de les classer entre elles.

Nous venons donc de présenter un processus permettant de calculer les remédiations à des
chemins d’attaque extraits depuis un graphe d’attaque. Les graphes d’attaque ont été très utilisés
pour évaluer de façon proactive la sécurité des systèmes d’information. Nous avons choisi de les
utiliser ici plutôt comme support permettant de proposer des remédiations pour empêcher des
attaques possibles. Le fait de choisir seulement certains chemins d’attaque au lieu de corriger
tout le graphe permet d’avoir beaucoup moins de problèmes de performance pour calculer les
remédiations possibles.

Le formalisme utilisé par les graphes d’attaque logiques est déterministe et statique. Ainsi,
il est nécessaire de l’étendre en un modèle quantitatif et dynamique, pour pouvoir représenter
des attaques en cours et permettre de généraliser ce processus de calcul de remédiation. L’un
des indicateurs clés permettant de choisir les chemins d’attaque à corriger est leur risque, qui
combine la probabilité d’occurrence avec l’impact qu’ils peuvent avoir sur le système. Ainsi, afin
de pouvoir généraliser ce processus de calcul de remédiation en un processus de calcul de réponse,
la première étape est de construire un modèle d’évaluation dynamique de risque permettant de
savoir les attaques les plus risquées en cours.

176

A.4. BAM, le modèle d’attaque bayésien

Figure A.2 – Architecture du modèle d’attaque bayésien BAM

A.4 BAM, le modèle d’attaque bayésien

Il est apparu, avec l’étude de l’état de l’art et la construction de la méthodologie de calcul de
remédiation, que la première étape nécessaire pour calculer des réponses est de faire une analyse
de risque technique. Or, il n’y a pas de modèle d’analyse de risque satisfaisant dans l’état de
l’art. Le risque est constitué de deux composants. Le premier est la probabilité d’occurrence des
attaques. Le deuxième est l’impact des futures attaques probables. L’impact est un composant
qui dépend beaucoup du système étudié et de l’organisation auquel il appartient. Son calcul peut
reposer sur un modèle fonctionnel du système, mais ne peut pas être complètement automatisé.
Au contraire, les méthodologies permettant d’évaluer la probabilité des attaques ne dépendent pas
du système. Comme vu dans l’état de l’art, il existe plusieurs modèles permettant de faire de
l’analyse statique de risque, par exemple les graphes d’attaque. Par contre, il n’y a pas de modèle
permettant de faire de l’analyse dynamique de risque avec une granularité suffisante et qui peut
s’appliquer à n’importe quel système. Le modèle d’attaque bayésien BAM que nous présentons ici
vise à évaluer le risque apporté par les attaques possibles et en cours dans un système, en pouvant
s’appliquer à n’importe quel système. Il est construit à partir du modèle d’attaque générique GAM
décrit précédemment, et peut ainsi s’appliquer à différents domaines et avec une description des
attaques plus ou moins haut niveau.

L’architecture du modèle d’attaque bayésien BAM est présentée dans la Figure A.2. Ce modèle
est construit à partir d’un GAM, et d’un ensemble d’alertes. Il est constitué d’un ensemble d’arbres
bayésiens appelés BAT dont chacun part d’une source d’attaque potentielle. Le fait de construire
plusieurs modèles chacun partant d’une source d’attaque permet de casser les cycles possibles du
modèle d’attaque pris en entrée, en énumérant les chemins possibles à partir de la source d’attaque.
Dans le BAM, on représente une transition par un ensemble de noeuds permettant de modéliser:
l’étape source, l’étape destination, la transition elle-même, ses conditions et les sondes de détection,
si elles existent. La figure A.3 montre la représentation dans le BAM d’une transition entre les
états tnn et tnn+1. Celle-ci comporte deux conditions et une sonde de détection.

Le modèle bayésien complet est construit en ajoutant récursivement les transitions d’attaque
à partir de chaque source d’attaque, dans le BAT correspondant. Ensuite, les probabilités sont
réconciliées par une fonction qui garde le maximum des probabilités correspondant à un état du
GAM, ce qui correspond au pire cas possible de compromission de cet état. C’est cette probabilité
qui pourra être utilisée pour calculer le risque associé à cet état.

177

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

Figure A.3 – Représentation d’une transition du modèle d’attaque bayésien

Pour construire le modèle d’attaque bayésien BAM, 6 paramètres entrent en jeu. Ceux-ci
peuvent être, soit des paramètres probabilistes du modèle GAM pris en entrée, soit des paramètres
intrinsèques du modèle bayésien. Nous étudions la sensibilité des résultats du modèle BAM (les
probabilités de compromission des états) en fonction des variations de ces paramètres. Le tableau
A.1 présente les paramètres impliqués et résume les résultats de cette étude de sensibilité. Le
résultat le plus intéressant de cette analyse, pour savoir où déployer des réponses, est l’influence du
paramètre sur le classement des états compromis. Cette colonne décrit l’impact qu’a la variation de
chaque paramètre sur le classement des probabilités de compromission des états, sur tout l’intervalle
de variation. Ce classement, pondéré par le risque associé aux états, va donner l’ordre dans lequel
les attaques en cours seront analysées par les opérateurs de sécurité. La colonne influence sur la
probabilité décrit l’impact de la variation du paramètre, sur les valeurs absolues des probabilités
de compromission des états.

Trois paramètres ont un impact significatif sur le classement des probabilités de compromission
des états. Or, soit ceux-ci peuvent être estimés assez précisément par les résultats d’une analyse de
risque antérieure (par exemple, probability-attack-source), soit ils n’ont pas d’impact sur leur
intervalle usuel d’utilisation (par exemple, probability-unknown-attack ou probability-new-

transition). Ce résultat est rassurant quant aux résultats du modèle bayésien BAM. En effet,
ceux-ci permettent d’obtenir le bon ordre dans les priorités sur les attaques les plus probables, même
avec une incertitude sur les paramètres en entrée. En revanche, concernant les valeurs absolues des
probabilités, plusieurs des paramètres sont très sensibles sur leur intervalle d’utilisation usuel (par
exemple, false-positive ou probability-attack-source). Même avec une petite incertitude
sur ces paramètres, les probabilités de compromission des états peuvent beaucoup changer.

Ainsi, le modèle BAM est un modèle bayésien qui peut être construit à partir de n’importe quel
modèle d’attaque (cyclique ou acyclique) pouvant être spécifié sous la forme d’un modèle d’attaque
générique GAM. Il est efficace pour des modèles jusqu’à des tailles moyennes. Ses résultats sont
assez précis pour classer les probabilités de compromission des états, même avec de l’incertitude
sur les paramètres. Cependant, il est nécessaire d’avoir une connaissance très précise sur la valeur
des paramètres pour avoir des résultats précis. Un autre défaut de ce modèle est qu’il mélange
l’augmentation de probabilité due aux attaques qui se sont déjà produites et des futurs possibles.

178

A.5. HRAM, le modèle hybride d’évaluation dynamique de risque

Table A.1 – Sensibilité des résultats du BAM, en fonction de ses paramètres.

Nom Description
Intervalle
de
variation

Influence sur
le classement

Influence sur la
probabilité

false-posi
tive

Taux de faux positif des
sondes de détection. [0− 1] Faible impact.

Impact important,
uniquement sur les
machines compromises,
pour les faibles valeurs
du paramètre.

false-nega
tive

Taux de faux négatif des
sondes de détection. [0− 1] Faible impact.

Impact moyen,
uniquement sur les
machines compromises,
pour les valeurs
moyennes du paramètre.

probability-
attack-
source

Probabilité à priori qu’une
attaque commence depuis
un état.

[0− 1]

Impacte le
classement quand
d’autres états ont
une probabilité
d’être source
d’attaque plus
forte que la vraie
source d’attaque.

Impact important sur
les probabilités des
noeuds non compromis.

probability-
unknown-at
tack

Probabilité qu’une attaque
inconnue permette
d’atteindre un état, sans
passer par une transition
existante.

[0− 0.5]

Impact
uniquement pour
les valeurs élevées
du paramètre.

Impact moyen sur les
états compromis ou
non-compromis.

nbSteps

Paramètre du GAM qui
limite la profondeur du
nombre de transitions à
ajouter aux BAT.

[[0− 7]]
Presque pas
d’impact.

Impact moyen sur les
probabilités des états
compromis.

probability-
new-transi
tion

Probabilité qu’un attaquant
propage son attaque en une
nouvelle transition
d’attaque.

[0− 1]

Impact
uniquement aux
valeurs extrêmes
du paramètre.

Impact important sur
les probabilités des états
compromis.

A.5 HRAM, le modèle hybride d’évaluation dynamique de
risque

Nous avons présenté un modèle d’attaque bayésien, BAM, qui peut être utilisé pour l’analyse
dynamique de risque. Mais celui-ci possède plusieurs limitations: (1) il ne peut être utilisé que pour
des systèmes de taille petite ou moyenne, (2) il ne prend pas en compte l’ordre dans lequel les alertes
sont reçues, (3) pour chaque état, la sortie du BAM est une unique valeur qui cumule la probabilité
d’être déjà compromis, en fonction des alertes reçues, et celle de l’être dans un futur proche. Il n’est
pas possible de faire la distinction entre ces deux informations, alors qu’elles peuvent toutes deux
être utiles pour un opérateur de sécurité. Le modèle que nous proposons désormais est un modèle
hybride, HRAM, qui combine lui aussi les modèles d’attaque et les réseaux bayésiens pour faire
de l’évaluation dynamique de risque. Il est constitué de la combinaison de deux types de modèles:
(1) Les modèles de corrélation dynamique de risque (DRCM) qui corrèlent une chaine d’alertes
avec la connaissance du système pour analyser les attaques qui ont été détectées et produisent les
probabilités de compromission des états. Ces modèles visent à évaluer la probabilité des menaces,
pour savoir d’où viennent les attaques. (2) Les modèles d’évaluation de risque des futurs possibles
(FRAM) prennent en compte le statut actuel d’attaque du système (donné par les modèlesDRCM),
ainsi que les transitions possibles (connues dans le modèle d’attaque), afin d’évaluer quelles sont les
attaques futures qui sont susceptibles de se produire. Ces modèles visent à atténuer les menaces, en
corrigeant les prochaines étapes d’attaque qui sont les plus risquées. La séparation des problèmes

179

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

Figure A.4 – Architecture du modèle d’attaque hybride HRAM

en deux modèles distincts permet une nette amélioration des performances en termes de nombre
d’états qu’il est possible de traiter.

L’architecture du modèle d’attaque hybride HRAM est présentée dans la Figure A.4. Comme
le modèle BAM, le modèle HRAM est construit à partir d’un GAM, et d’un ensemble d’alertes.
Le premier type de modèles, les DRCMs sont construits à partir des alertes entrantes. À chaque
nouvelle alerte est construit un modèle qui essaye d’expliquer l’alerte la plus récente reçue, en tenant
compte des transitions possibles dans le système et des alertes qui ont été reçues auparavant. Si
des alertes ne sont pas retrouvées dans le modèle construit à partir de l’alerte la plus récente, c’est
qu’elles ne font pas partie de la même attaque, ou bien qu’une attaque conjointe n’a pas encore
convergé. Dans ce cas, on conserve plusieurs DRCMs en parallèle, correspondant aux différentes
attaques en parallèle dans le système. La réconciliation des probabilités permet de remonter les
probabilités de compromission des états du système, à partir des DRCMs gardés en parallèle. Pour
chaque état du système qui peut être considéré comme une source potentielle d’attaque (soit à cause
de sa probabilité à priori, soit à cause de son état courant dans le système issu de l’analyse des
DRCMs), on construit un modèle des futurs possibles (FRAM). À l’aide de la fonction d’analyse
d’impact, le FRAM va permettre de savoir les futurs probables les plus risqués.

Chaque DRCM est construit à partir de la sonde de détection correspondant à l’alerte la plus
récente reçue à l’instant présent. On ajoute alors récursivement toutes les transitions permettant
d’expliquer la levée de cette alerte. Pour des raisons des performances, comme il n’est pas possible
de garder tous les chemins d’attaque possibles, des heuristiques permettent de ne garder que les
chemins les plus probables (les chemins sur lesquels il n’y a pas beaucoup de sondes de détection
qui n’ont pas levé d’alertes à la suite). Au contraire, un FRAM est construit à partir d’une
source d’attaque possible. Ensuite on ajoute toutes les transitions possibles qui ne se sont pas
déjà produites (une transition déjà détectée n’est plus un futur possible). Comme il est irréaliste
de vouloir prédire les attaques futures de nombreuses étapes à l’avance, il n’est pas nécessaire
d’ajouter un grand nombre de transitions successives au modèle. Celui-ci pourra être mis à jour,
en fonction des nouvelles alertes qui arrivent. Enfin, les probabilités des futures attaques possibles
sont réconciliées par une fonction qui garde le maximum des probabilités correspondant à un état
du GAM, ce qui correspond au pire cas possible de compromission de cet état. Comme pour le
BAM, c’est cette probabilité qui pourra être utilisée pour calculer le risque associé à cet état.

180

A.5. HRAM, le modèle hybride d’évaluation dynamique de risque

Table A.2 – Sensibilité des résultats du HRAM, en fonction de ses paramètres.

Nom Description
Intervalle
de
variation

Influence sur
le classement

Influence sur la
probabilité

false-posi
tive

Taux de faux positif des
sondes de détection. [0− 1] Pas d’impact. Impact faible.

false-nega
tive

Taux de faux négatif des
sondes de détection. [0− 1]

Impact
important
au-delà de 0.05.

Impact important pour
les états non
compromis.

probability-
attack-
source

Probabilité à priori qu’une
attaque commence depuis
un état.

[0− 1]
Presque pas
d’impact.

Impact moyen sur les
états non compromis.

probability-
unknown-at
tack

Probabilité qu’une attaque
inconnue permette
d’atteindre un état, sans
passer par une transition
existante.

[0− 0.5] Pas d’impact.
Impact faible sur
l’intervalle de variation
le plus fréquent.

max-number-
no-info-to-
keep

Paramètre du DRCM qui
limite le nombre successif de
sondes sans informations à
garder.

[[0− 10]] Pas d’impact.

Pas d’impact quand la
valeur est strictement
supérieure au nombre
de détections non
détectées dans les
scénarios d’attaque.

max-number-
no-alert-to-
keep

Paramètre du DRCM qui
limite le nombre successif de
sonde qui n’ont pas levées
d’alertes à garder.

[[0− 10]] Pas d’impact. Pas d’impact.

nbSteps-pos
sible-fu
tures

Paramètre du FRAM qui
limite le nombre successif de
transitions d’attaque dans
chaque FRAM.

[[0− 4]] Pas d’impact. Impact très faible.

probability-
new-transi
tion

Paramètre du FRAM qui
représente la probabilité
qu’une attaque inconnue
permette d’atteindre un
état, sans passer par une
transition existante.

[0− 1] Pas d’impact.

Impact fort sur
quelques-uns des états
non compromis (les
futurs possibles).

De même que pour le BAM, pour construire le modèle hybride HRAM, 8 paramètres principaux
entrent en jeu. Ceux-ci peuvent être, soit des paramètres probabilistes du modèle GAM pris en
entrée, soit des paramètres intrinsèques au modèle bayésien hybride. Le tableau A.2 présente les
paramètres impliqués et résume les résultats de l’étude de sensibilité des résultats du HRAM en
fonction de variation de ces paramètres.

Aucun paramètre n’a d’impact significatif sur le classement des probabilités de compromission
des états, sur leur intervalle d’utilisation le plus courant. Seul un paramètre (false-negative) a
un impact important sur la valeur absolue des probabilités de compromission. Trois paramètres
ont un impact moyen (probability-attack-source, probability-unknown-attack et proba-
bility-new-transition). Mais ceux-ci peuvent être estimés assez précisément par les résultats
d’une analyse de risque antérieure (par exemple, probability-attack-source), ou bien ils per-
mettent d’ajuster le niveau de sécurité voulu par un administrateur dans son système (false-neg-
ative, probability-unknown-attack et probability-new-transition). Ainsi, pour le modèle
HRAM, le classement des probabilités de compromission des états n’est pas impacté par la varia-
tion des paramètres. La valeur absolue de ces probabilités est seulement moyennement impactée, si
l’incertitude sur les paramètres n’est pas trop forte, mis à part pour le paramètre false-negative
qui peut ajouter quelques faux positifs (donner des probabilités de compromission fortes à des états
non compromis), s’il est trop élevé.

181

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

Donc, le modèle hybride HRAM est un modèle bayésien qui peut être construit à partir de
n’importe quel modèle d’attaque (cyclique ou acyclique) pouvant être spécifié sous la forme d’un
modèle d’attaque générique GAM. Il est efficace pour des modèles jusqu’à des tailles plus grandes
que le BAM. Ses résultats permettent de classer exactement les probabilités de compromission
des états et d’avoir des valeurs de probabilité assez précises, même avec de l’incertitude sur les
paramètres. Ce modèle ajoute des d’améliorations par rapport au BAM, qui sont permises par
la séparation des modèles DRCM pour analyser le passé et les FRAM pour analyser les futurs
possibles.

A.6 Application au domaine de la sécurité informatique

Nous avons développé deux modèles d’analyse dynamique de risque: BAM, le modèle d’attaque
bayésien et HRAM, le modèle hybride d’évaluation dynamique de risque. Ceux-ci sont construits
à partir du modèle d’attaque générique GAM. Afin d’évaluer et de comparer la pertinence des
résultats fournis par ces modèles, nous les appliquons désormais au domaine de la sécurité infor-
matique et réseau. Dans ce domaine, les attaques potentielles sont généralement spécifiées à l’aide
d’un graphe d’attaque, soit logique, soit topologique. Les graphes d’attaque logiques sont plus
détaillés que les graphes d’attaque topologiques, mais ils sont par conséquent aussi beaucoup plus
gros. Ainsi, ils ne peuvent pas être utilisés pour les grands systèmes d’information. Nous nous
intéresserons donc ici à des modèles d’attaque génériques, construits à partir de graphes d’attaque
topologiques.

La première étape de ce processus est de générer le graphe d’attaque topologique. Ce graphe
topologique est constitué de noeuds topologiques (qui représentent par exemple des machines) et
d’étapes d’attaque (qui représentent par exemple l’exploitation d’une vulnérabilité sur une ma-
chine). Un graphe d’attaque topologique peut être généré soit depuis un graphe d’attaque logique,
tel que ceux générés par exemple avec MulVAL [OGA05a] ou directement à l’aide d’un moteur de
graphe d’attaque topologique tel que TVA [JNK+11]. Cependant, les moteurs de graphes d’attaque
actuels ont plusieurs limitations: (1) ils ont une représentation soit logique, soit topologique des
attaques, mais il n’est pas possible d’avoir les deux en même temps, (2) ils ne passent pas à l’échelle
(ils ne peuvent pas être distribués et sont limités en nombre de machines et vulnérabilités), (3) pour
les moteurs topologiques, il n’est pas possible de changer les règles d’attaque.

Ainsi, nous avons développé un nouveau moteur de graphe d’attaque, SAGE qui résout ces
problèmes. (1) c’est un moteur topologique, mais qui, pour chaque étape d’attaque, conserve les
conditions qui ont été nécessaires pour qu’elle se produise, (2) il peut être distribué sur plusieurs
noeuds de calcul pour passer à l’échelle, (3) les règles d’attaque peuvent être modifiées. La Fig-
ure A.5 résume l’architecture du moteur SAGE. Celui-ci prend deux types d’entrées: (1) des entrées
statiques (les paramètres de configuration du moteur et les règles d’attaque) qui sont chargées au
lancement du moteur, (2) des entrées dynamiques (les vulnérabilités, la topologie réseau et la ma-
trice de flux) qui sont stockées dans une base de données orientée graphe et qui peuvent être mises
à jour dynamiquement. Le graphe est calculé en fonction des requêtes effectuées par l’opérateur,
souvent par l’intermédiaire de l’interface graphique.

À partir du graphe topologique, il est possible de construire un modèle d’attaque générique
GAM, permettant ensuite l’utilisation des modèles d’analyse dynamique de risque. Pour cela, les
états et les transitions du GAM sont les noeuds topologiques et les étapes d’attaque du BAM. Les
conditions sont celles associées aux étapes d’attaque. Dans un graphe d’attaque topologique, les
conditions sont généralement la présence d’une vulnérabilité sur une machine. Les sondes de dé-
tection sont celles qui sont déployées dans le système, configurées pour alerter en cas d’exploitation
d’une vulnérabilité connue.

182

A.6. Application au domaine de la sécurité informatique

Figure A.5 – Architecture du moteur de graphe d’attaque SAGE

Figure A.6 – Processus de calcul de réponses

Une fois que le modèle générique GAM est construit, il est possible d’effectuer l’analyse dy-
namique de risque, à l’aide des deux modèles construits précédemment. Pour cela, nous com-
mençons par générer plusieurs topologies réseau aléatoires de taille variable. Sur ces topologies
nous établissons des scénarios d’attaque de plusieurs étapes successives auxquelles correspondent
des scénarios de détection (comprenant en plus des faux positifs et faux négatifs). Il est alors
possible de comparer les résultats théoriques connus dans les scénarios d’attaque avec les résultats
pratiques, les probabilités de compromission calculées par les modèles d’évaluation de risque. Les
résultats produits par le modèle bayésien BAM sont bons, mais uniquement pour les petites topolo-
gies (< 25 machines): pour de telles topologies, ils permettent de distinguer les machines compro-
mises des machines non compromises. Les résultats du modèle hybride HRAM sont meilleurs, car
ils sont très stables, quelle que soit la taille de la topologie. Pour l’analyse du passé, le HRAM
donne une claire séparation entre les machines effectivement compromises et celles qui ne le sont
pas. En prédiction des futurs possibles, cette séparation est moins nette, car il est évidemment
plus compliqué de prédire les attaques futures, mais le modèle permet de prédire, parmi toutes
celles qui sont possibles, celles qui ont le plus de chance de se produire.

Une fois que nous avons validé l’intérêt et les résultats produits par les modèles bayésiens (en
particulier, ceux du modèle hybride HRAM), nous pouvons analyser comment ces modèles peuvent
être utilisés pour calculer des réponses à des attaques informatiques en cours. Pour cela, nous
généralisons la méthodologie de calcul de remédiation en une méthodologie de calcul de réponses.

183

CHAPT A. FRENCH ABSTRACT - RÉSUMÉ FRANÇAIS

La Figure A.6 représente le processus de calcul de réponses pour les attaques en cours. En
comparaison avec la méthodologie de calcul de remédiation, il y a deux composants principaux qui
changent:

L’extraction de chemins d’attaque d’attaque et score, qui est remplacée par l’évaluation
dynamique de risque. En effet, pour le calcul de remédiation, il n’y a pas d’attaques en
cours, on ne corrige donc que les attaques les plus risquées (impactantes et probables). Au
contraire, pour le calcul de réponse, il s’agit de corriger les attaques en cours et leurs futurs
probables. Le composant d’évaluation dynamique de risque qui a été décrit précédemment
repose sur l’un des modèles bayésiens (BAM ou HRAM). Il calcule les futurs probables et à
l’aide d’une fonction d’analyse d’impact en déduit les attaques futures risquées.

La remédiation des préconditions et l’extraction des préconditions suffisantes, qui sont
remplacées par le calcul de réponses aux conditions des futures attaques. Ce nouveau com-
posant a pour but de calculer les réponses permettant d’empêcher en partie ou complètement
une attaque future potentielle. La solution que nous proposons est de s’appuyer sur les mod-
èles des futurs possibles FRAMs du modèle hybride, afin de protéger les chemins d’attaque
qui engendrent la plus grande probabilité de compromission de l’actif visé. Pour cela, nous
parcourons les conditions présentes sur ce chemin de la “plus nécessaire” à la “moins néces-
saire” et calculons les réponses possibles, à l’aide de la base de données de réponse.

Nous avons donc appliqué les modèles d’évaluation dynamique de risque développés précédem-
ment au domaine de la sécurité informatique. Pour cela, nous avons généré un graphe topologique
à l’aide du moteur SAGE, puis l’avons transcrit au format générique du GAM, pour pouvoir con-
struire les modèles d’analyse dynamique de risque. Nous avons pu évaluer que les résultats calculés
par ces modèles étaient satisfaisants. Enfin, ces modèles nous ont permis de généraliser le processus
de calcul de remédiation en un processus de calcul de réponses aux attaques en cours.

A.7 Conclusion

Pour conclure, nous avons développé dans cette thèse de doctorat un système d’analyse statique
et dynamique de risque basé sur les modèles d’attaque. Celui-ci prend en compte la connaissance
à priori sur le système et les alertes qui sont levées dans celui-ci. La première contribution princi-
pale de cette thèse est la définition de modèles d’évaluation dynamique de risque, qui combinent
l’analyse du passé (expliquer les alertes reçues jusqu’à l’instant présent et en déduire le niveau
de compromission des actifs du système), et l’analyse des futurs possibles (essayer de prévoir les
attaques à venir qui sont les plus probables ou risquées). Ces modèles possèdent au moins trois
améliorations significatives par rapport à l’état de l’art. La première est la possibilité de les constru-
ire depuis des modèles d’attaque contenant des cycles, ce qui correspond à la majorité des modèles
d’attaque réels. Deuxièmement, le modèle hybride HRAM sépare dans des modèles appropriés
l’analyse du passé et du futur, ce qui évite de confondre la probabilité d’être déjà compromis
avec celle de l’être dans un futur proche. Enfin, il permet aussi de distinguer plusieurs attaques
simultanées distinctes. La deuxième contribution de ces travaux est l’amélioration du passage à
l’échelle des modèles d’évaluation dynamique de risque. En utilisant des heuristiques permettant
de tenir compte uniquement des chemins d’attaque significatifs, nous limitons l’impact négatif de
l’explosion des cycles. La troisième contribution de cette thèse est la définition d’une méthodologie
permettant de calculer des réponses en s’appuyant sur les modèles d’attaque. Tout d’abord, nous
avons construit cette méthodologie pour corriger les chemins d’attaque potentiels qui peuvent ex-
ister dans un réseau. Puis, nous l’avons étendue aux attaques en cours dans un réseau, en nous
basant sur les résultats de l’analyse dynamique de risque.

184

A.7. Conclusion

Quatre perspectives principales peuvent être données à ces travaux. La première concerne la
difficulté d’estimer les paramètres probabilistes du modèle. Même si l’analyse de sensibilité des
paramètres a montré que la plupart des paramètres n’étaient pas trop sensibles, au moins pour le
classement des probabilités de compromission, il faut faire attention au choix de certains paramètres
pour obtenir des résultats précis. La première piste de solution est de trouver d’autres sources de
données pour compléter les paramètres pris en entrée par le modèle. La deuxième est d’utiliser
les réseaux bayésiens pour faire de l’apprentissage des paramètres du réseau, par exemple après
la confirmation/infirmation d’une attaque par un opérateur. La deuxième perspective concerne
le passage à l’échelle qui, s’il est bien meilleur que l’état de l’art, n’est pas encore suffisant pour
gérer de très gros réseaux. Une piste est de regrouper les noeuds qui possèdent des configurations
similaires (vulnérabilités, accès autorisés, etc.). Il serait aussi possible de paralléliser les calculs
effectués sur les réseaux bayésiens. La troisième perspective vise à compléter la méthodologie de
calcul de réponse s’appuyant sur les modèles dynamiques de risque. L’approche que nous avons
présentée est assez simple et devrait être validée avec des données d’attaque réelle pour s’assurer que
les contre-mesures proposées sont bonnes. Enfin, la dernière perspective est d’appliquer les modèles
d’évaluation dynamique de risque à d’autres domaines que la sécurité informatique classique. En
effet, le fait de se baser sur un modèle d’attaque générique pour construire nos modèles permet
d’appliquer ceux-ci à d’autres types de modèles d’attaque, par exemple des scénarios d’attaque de
plus haut niveau ou encore de les appliquer à la modélisation d’attaques logiques-physiques. Ainsi,
il faudrait valider que les modèles que nous avons construits peuvent s’appliquer et donnent des
résultats cohérents sur ces autres domaines d’activité.

185

	Abstract
	Résumé
	Contents
	Introduction
	Context and objective
	Challenges in current security approaches
	Thesis statement

	State of the art of attack models
	Graph-based models
	Attack models
	Comparison of attack models
	Analysis of the state of the art of attack models
	Introducing a Generic Attack Model
	Conclusion

	Response computation using attack models
	Definition of response, remediation and countermeasures
	Corrective remediations
	Passive responses
	Active responses
	Computing and ranking responses using attack models
	Response selection criteria
	Response selection methodologies
	Metrics to balance damage and response cost
	Analysis and conclusion

	Remediating the logical attack paths of an attack graph
	Attack paths and preconditions
	Remediation of an attack path
	Costs of remediations
	Validation
	Related work
	Conclusion

	Bayesian Attack Model
	Bayesian Attack Model architecture
	Complete Bayesian Attack Model
	Conditional probability tables
	Impact analysis
	Bayesian Attack Model complexity evaluation
	Bayesian Attack Model performance evaluation
	Parameter sensitivity analysis
	Related work
	Summary and conclusion

	Hybrid Risk Assessment Model
	Hybrid Risk Assessment Model architecture
	Dynamic Risk Correlation Model
	Future Risk Assessment Model
	Impact analysis
	Hybrid Risk Assessment Model complexity evaluation
	Hybrid Risk Assessment Model performance evaluation
	Parameter sensitivity analysis
	Related work
	Summary and conclusion

	Application to cybersecurity: topological attack graphs
	Topological attack graph generation
	Building a Generic Attack Model from a topological attack graph
	Experimental validation of the dynamic risk assessment models for cybersecurity
	Computation of cybersecurity responses using dynamic risk assessment models
	Conclusion

	Conclusion and perspectives
	Contributions
	Perspectives and future work

	List of Figures
	List of Tables
	Glossary of Acronyms
	Bibliography
	Author's publications
	French abstract - Résumé français
	Introduction
	État de l'art
	Calcul de remédiations aux chemins d'attaque logiques
	BAM, le modèle d'attaque bayésien
	HRAM, le modèle hybride d'évaluation dynamique de risque
	Application au domaine de la sécurité informatique
	Conclusion

