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Abstract

This work investigates approaches to obtain automatic segmentation of three media (i.e., lymph

node parenchyma, perinodal fat and normal saline) in lymph node (LN) envelope data to expedite

quantitative ultrasound (QUS) in dissected LNs from cancer patients. A statistical modeling study

identified a two-parameter gamma distribution as the best model for data from the three media

based on its high fitting accuracy, its analytically less-complex probability density function (PDF),

and closed-form expressions for its parameter estimation. Two novel level-set segmentation meth-

ods that made use of localized statistics of envelope data to handle data inhomogeneities caused

by attenuation and focusing effects were developed. The first, local region-based gamma distribu-

tion fitting (LRGDF), employed the gamma PDFs to model speckle statistics of envelope data in

local regions at a controllable scale using a smooth function with a compact support. The second,

statistical transverse-slice-based level-set (STS-LS), used gamma PDFs to locally model speckle

statistics in consecutive transverse slices. A novel method was then designed and evaluated to auto-

matically initialize the LRGDF and STS-LS methods using random forest classification with new

proposed features. Methods developed in this research provided accurate, automatic and efficient

segmentation results on simulated envelope data and data acquired for LNs from colorectal- and

breast-cancer patients as compared with manual expert segmentation. Results also demonstrated

that accurate QUS estimates are maintained when automatic segmentation is applied to evaluate

excised LN data.
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Résumé de la thèse

Afin d’accélérer et automatiser l’analyse par ultrasons quantitatifs de ganglions lymphatiques de

patients atteints d’un cancer, plusieurs segmentations automatiques des trois milieux rencontrés

(le parenchyme du ganglion, la graisse périnodale et le sérum physiologique) sont étudiées. Une

analyse statistique du signal d’enveloppe a permis d’identifier la distribution gamma comme le

meilleur compromis en termes de qualité de la modélisation, simplicité du modèle et rapidité de

l’estimation des paramètres. Deux nouvelles méthodes de segmentation basées sur l’approche par

ensemble de niveaux et la distribution gamma sont décrites. Des statistiques locales du signal

d’enveloppe permettent de tenir compte des inhomogénéités du signal dues à l’atténuation et la

focalisation des ultrasons. La méthode appelée LRGDF modélise les statistiques du speckle dans

des régions dont la taille est contrôlable par une fonction lisse à support compact. La seconde,

appelée STS-LS, considère des coupes transverses, perpendiculaires au faisceau, pour gagner en

efficacité. Une troisième méthode basée sur la classification par forêt aléatoire a été conçue pour

initialiser et accélérer les deux précédentes. Ces méthodes automatiques sont comparées à une

segmentation manuelle effectuée par un expert. Elles fournissent des résultats satisfaisants aussi

bien sur des données simulées que sur des données acquises sur des ganglions lymphatiques de

patients atteints d’un cancer colorectal ou du sein. Les paramètres ultrasonores quantitatifs estimés

après segmentation automatique ou après segmentation manuelle par un expert sont comparables.
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Long résumé de la thèse en français

Les ganglions lymphatiques et leur rôle dans la prise en charge

du cancer

Les ganglions lymphatiques appartiennent au système lymphatique et sont de petits organes ayant

une forme ovoïde ou réniforme connectés à des vaisseaux sanguins et des vaisseaux lymphatiques.

Ils jouent un rôle important dans le système immunitaire et sont responsables de la filtration de la

lymphe avant que celle-ci ne retourne dans la circulation générale. Lors du développement d’un

cancer, la présence ou l’absence de métastases dans les ganglions lymphatiques qui drainent la

tumeur, est pris en compte pour déterminer le stade de la maladie et donc le traitement à suivre.

Les ultrasons quantitatifs

On désigne par ultrasons quantitatifs un ensemble de techniques qui estiment des paramètres liés à

la microstructure d’un milieu, comme un tissu, à partir des signaux ultrasonores rétrodiffusés par

ce milieu. Un signal ultrasonore radio-fréquence (RF) est composé d’échos obtenus par réflexions

d’un faisceau ultrasonore sur une surface séparant deux milieux ayant des propriétés acoustiques

différentes, ainsi que de composantes de diffusion du faisceau par des structures dont la taille est

inférieure à la longueur d’onde. Ce sont notamment les composantes fréquentielles de ces derniers

signaux qui renferment des informations sur la micro-structure des tissus.

En imagerie ultrasonore conventionnelle, l’information ultrasonore est représentée par des images

dites en mode-B construites à partir du logarithme de l’enveloppe du signal radio-fréquence. Cette

représentation des données est moins riche que le signal RF. Aussi d’une part le mode-B permet

d’observer des structures dont les dimensions sont supérieures à la longueur d’onde. Et d’autre part

pour évaluer la micro-structure tissulaire, les analyses s’appuient bien souvent sur le signal RF.

Par exemple, après transformée de Fourier du signal RF, les variations du contenu spectral du signal

xix
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RF sont extraites et reliées à des propriétés décrivant la microstructure des tissus biologiques à

l’aide d’un modèle de diffusion comme le modèle de diffuseur Gaussien.

Les ultrasons quantitatifs pour détecter les métastases dans les

ganglions lymphatiques

Notre laboratoire collabore depuis 2007 avec d’autres équipes à un projet visant à détecter à l’aide

d’ultrasons quantitatifs les métastases dans les ganglions lymphatiques. Le projet mené par Ernest

Feleppa de Riverside Research à New York est en partie financé par le NIH (contrat CA100183).

Les résultats de cette collaboration [1–4] ont permis de montrer le potentiel des ultrasons quanti-

tatifs à haute-fréquence (> 15 MHz) pour analyser en 3D l’ensemble du ganglion et détecter les

métastases. Une fois les signaux RF acquis, l’analyse comprend 3 étapes importantes : la seg-

mentation des données 3D, l’estimation des paramètres ultrasonores quantitatifs et la classification

(ganglions sains/ganglions métastatiques).

L’acquisition des données est décrite dans le 2e chapitre. En résumé, les ganglions extraits de

la pièce opératoire sont immergés dans du liquide physiologique (NS) et les signaux RF sont

enregistrés avec un transducteur monoélément focalisé de fréquence centrale 25.6 MHz. Cependant

il reste toujours une pellicule de graisse (PNF) résiduelle autour du parenchyme du ganglion (LNP).

Segmenter les trois milieux (LNP, PNF et NS) est nécessaire pour restreindre l’estimation des

paramètres ultrasonores au parenchyme et tenir compte de l’atténuation des trois milieux lors de

l’estimation des paramètres ultrasonores quantitatifs. Enfin à partir de la segmentation, il est aisé

d’extraire la taille, la forme, et le volume des ganglions qui pourraient être utilisés comme bio-

marqueurs.

Une fois segmenté, 13 paramètres ont été considérés dont les quatre principaux sont la taille et la

concentration efficaces des diffuseurs, l’ordonnée à l’origine et la pente du spectre. Deux modèles

de diffusion différents permettent d’estimer ces quatre valeurs à partir d’un spectre normalisé te-

nant compte de l’atténuation, appelé également coefficient de rétrodiffusion [5]. La figure (1.6)

illustre la façon d’obtenir le coefficient de rétrodiffusion. Les neuf autres paramètres sont des pa-

ramètres statistiques dérivés de l’enveloppe du signal radio-fréquence.

Dans une précédente étude, et sur une base de données comprenant 172 ganglions de patients at-
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Figure 1: Deux images en B-mode montrant 2 coupes 2D (plan x-z) d’acquisitions ultrasonores
haute-fréquence 3D effectuées sur un ganglion métastatique (a) et un ganglion sain (b). La méth-
ode STS-LS décrite au Chapitre 5 a été utilisée pour segmenter le parenchyme ganglionnaire (LNP)
délimitée par un trait rouge, la graisse (PNF) délimitée par un trait vert, et le liquide physiologique
(NS) délimité par un trait bleu. (c) Le profil représente une version lissée de l’enveloppe du
signal radio-fréquence et il a été calculé le long du rectangle bleu visible dans (b). Il illustre

l’inhomogénéité de l’enveloppe avec la profondeur.

teints d’un cancer colorectal ou gastrique, l’aire sous la courbe de la Caractéristique Opérationnelle

du Récepteur (COR) a été estimée pour évaluer la performance de la classification en deux classes

(ganglion sain, ganglion métastatique) d’un classificateur linéaire. Des aires sous la courbes su-

périeures à 0.95 ont été obtenues pour les ganglions colorectaux et gastriques. En dépit de ces

résultats prometteurs, l’adoption de cette méthode en pratique clinique est limitée par le temps

nécessaire pour segmenter les données qui étaient initialement segmentées à l’aide d’une méthode

semi-automatique nécessitant beaucoup d’attention [6]. Développer une segmentation 3D automa-

tique et plus robuste est indispensable pour envisager une utilisation en routine clinique.

Les défis de la segmentation des données ultrasonores haute-

fréquence

Segmenter une image est un problème mal posé consistant à partitionner l’image en régions co-

hérentes afin par exemple d’isoler un ou plusieurs objets dans l’image. Les techniques à mettre

en oeuvre peuvent être simples comme un seuillage ou s’appuyer sur des techniques très raffinées

pour, par exemple, intégrer des connaissances a priori sur l’intensité, la texture ou la forme des

objets recherchés. Les images ultrasonores restent souvent difficiles à interpréter et donc à seg-
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menter à cause de la présence du speckle, d’un contraste parfois limité, de frontières très ténues ou

absentes entre deux régions, et de l’atténuation.

En plus des difficultés évoquées, les acquisitions ultrasonores haute-fréquence des ganglions ont

été acquises à l’aide d’un transducteur monoélément focalisé. Aussi les effets de la focalisation

et de l’attenuation sont particulièrement visibles. Ainsi le rapport signal à bruit est faible dans

les régions les plus éloignées du transducteur comme on peut l’observer sur la figure 1(a). Avec

un transducteur focalisé, le faisceau converge à la focale puis diverge, ce qui contribue à ce que

l’intensité du signal rétrodiffusé varie rapidement avec la profondeur comme on peut le voir sur la

figure 1(b,c).

Objectif de la thèse

Le principal objectif de ce travail est la segmentation automatique en 3 milieux (parenchyme du

ganglion, graisse environnante, et liquide physiologique) des acquisitions ultrasonores. Cette étape

est un verrou à l’analyse automatique par ultrasons quantitatifs des ganglions lymphatiques excisés

et par conséquent la détection des métastases par ultrasons quantitatifs.

Contributions

Les principales contributions de cette thèse sont les suivantes:

• Une méthode de prétraitement basée sur les splines cubiques afin de restaurer les échantillons

saturés et qui se trouvent principalement dans la graisse ;

• Une analyse statistique de l’enveloppe du signal RF qui identifie la distribution gamma

comme la meilleure distribution paramétrique à prendre en compte lors du développement

de méthodes de segmentation des ganglions lymphatiques ;

• Deux méthodes de segmentation basées sur une approche par ensemble de niveaux et mod-

élisant l’intensité des voxels par des statistiques gamma locales ;

• Une méthode basée sur les forêts aléatoires qui a été développée pour améliorer l’initialisation

des 2 précédentes méthodes.
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Organisations de la thèse

La thèse est divisée en 7 chapitres :

1er chapitre : Ce chapitre présente le contexte clinique du projet : L’anatomie du ganglion lym-

phatique est décrite puis le rôle des ganglions lymphatiques dans l’évaluation du stade du cancer,

préalable indispensable au choix du traitement le plus adapté. La méthode de référence s’appuyant

sur l’histologie ainsi que les méthodes émergentes invasives et non-invasives sont examinées dont

les ultrasons quantitatifs. Enfin dans le contexte des ultrasons quantitatifs, l’importance et les dif-

ficultés de la segmentation des données haute-fréquence acquises sur des ganglions lymphatiques

humains sont discutées.

2e chapitre : Ce chapitre décrit le protocole expérimental utilisé pour recruter les patients, acquérir

les données ultrasonores et les données histologiques qui servent de référence. Le contenu de la

base de données est résumé. Les données simulées utilisées dans la suite de l’étude sont également

présentées.

3e chapitre : Une méthode de prétraitement basée sur les splines cubiques est décrite afin de

restaurer les échantillons saturés du signal RF. Ce prétraitement permet de retrouver dans la graisse

une distribution empirique unimodale alors qu’initialement la distribution exhibait bien souvent

2 modes. Une étude statistique de l’enveloppe du signal RF est menée pour déterminer parmi

9 distributions (Rayleigh, Gaussienne, lognormale, Nakagami, Weibull, log-logistique, gamma,

loi d’extremum généralisée, gamma généralisée) celles qui modélisent le mieux les distributions

empiriques des différents milieux. La distribution gamma généralisée à trois paramètres modélise

le mieux les trois milieux. La distribution gamma avec ses deux paramètres a cependant été retenue

dans le reste de l’étude car elle présente un bon compromis entre la qualité de la modélisation, la

simplicité du modèle et la rapidité de l’estimation des paramètres.

4e chapitre : Ce chapitre s’ouvre par une revue de la littérature concernant la segmentation des

données ultrasonores et le problème de la segmentation de données inhomogènes. Puis une nou-

velle méthode variationnelle de segmentation appelée LRGDF basée sur une approche par ensem-

ble de niveaux dans laquelle les statistiques gamma locales de l’enveloppe dans les trois milieux

sont déterminées à l’aide d’une fonction lisse à support compact. En comparant cette méthode

avec une segmentation manuelle réalisée par un expert, on obtient un critère de similarité de Dice

élevé. Cette méthode est également plus performante que la même méthode utilisant une statistique
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Gaussienne.

5e chapitre : Afin d’améliorer la prise en compte des inhomogénéités du signal d’enveloppe des

ganglions lymphatiques, une seconde méthode appelée STS-LS est décrite. Elle utilise une densité

gamma pour modéliser le speckle supposé homogène dans le même milieu et à l’intérieur de coupes

transverses qui sont donc perpendiculaires au faisceau ultrasonore. L’intensité des voxels d’un

même milieu et à la même profondeur sont modélisés par la même distribution ce qui a pour effet

que cette méthode est plus rapide que la méthode LRGDF tout en conservant des segmentations de

bonne qualité mesurée à travers le critère de similarité de Dice.

6e chapitre : Les méthodes LRGDF et STS-LS fournissent de bonnes segmentations mais sont

des méthodes qui nécessitent une initialisation. Plus l’initialisation est proche du résultat at-

tendu et plus la segmentation convergera rapidement vers la solution désirée. Ici l’enjeu consiste

à améliorer l’initialisation des 2 méthodes STS-LS et LRGDF à l’aide d’une classification par

forêt aléatoire afin de conserver des segmentations de bonne qualité tout en diminuant les temps

de calcul. Les méthodes hybrides ont été évaluées sur des ganglions colorectaux et la méthode

combinant forêt aléatoire et LRGDF est la plus performante. Nous montrons également que les

paramètres ultrasonores quantitatifs estimés après segmentation automatique sont comparables aux

paramètres ultrasonores quantitatifs estimés après segmentation manuelle par un expert.

7e chapitre : Après un résumé des résultats obtenus, ce chapitre final décrit les limites de ce travail

en particulier l’application de la méthode sur certains ganglions du sein et s’achève sur des pistes

à explorer.



Chapter 1

Introduction

1.1 Diagnostic Context

1.1.1 Lymph Node Anatomy (Structure) and Pathology

The lymphatic system, also named second vascular system, is one of the two components of the

circulatory system and is an integral part of the immune system. Comprised of lymph vessels (i.e.,

lymphatics) and lymph organs (i.e., lymph nodes, tonsils, thymus, spleen and bone marrow) as il-

lustrated in Fig. 1.1, the lymphatic system transports lymph fluid throughout the body. Specifically,

lymph fluid that contains lymphocytes and other white blood cells is transported through lymphatic

vessels to lymph nodes and is then emptied into the bloodstream through the thoracic duct (i.e.,

the largest lymphatic vessel) [7, 8]. In addition, the lymph organs generate immune cells, monitor

the presence of pathogens and facilitate the immune response. Finally, the lymphatic system is in

charge of transporting dietary fat from the intestine to the liver [9].

Lymph nodes (LNs) or lymph glands are small, bean-shaped, encapsulated lymphatic organs. They

are responsible for filtration of lymph on its way to the blood vascular system and processing of

antigens [11, 12]. Their longest dimension is from 1 mm to 20 mm [8]. Approximately 600-800

LNs [13, 14] are distributed throughout the body but they are concentrated in certain areas such

as the axilla, mesenteries and groins [8]. Details about the structure inside a LN are shown in

Fig. 1.2 [8]. The LN is surrounded by a fibrous capsule where the afferent lymphatic vessels

penetrate and drain into the subcapsular and medullary sinus system. Efferent lymphatic vessels

emerge from the hilum of the LN in order to transport lymph towards larger lymphatic vessels.

A network of blood vessels entering the hilum helps circulating lymphocytes into the LN. The

lymphoid parenchyma is composed of a cortex and medulla. The cortex contains collections of

lymphocytes comprised predominantly of B cells and some T cells. The B cells mature completely

1
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Figure 1.1: Anatomy of the lymphatic system consisting of lymph vessels and lymph organs. The
lymph organs include lymph nodes, tonsils, thymus, spleen and bone marrow. From [10]
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Figure 1.2: Detailed structures of a lymph node (a), and a photomicrograph of a lymph node in a
routine hematoxylin and eosin preparation (b). From [8]

within the bone marrow while the T cells exit the bone marrow immature and attain maturity within

the thymus.

In addition to their functions in normal physiology, LNs and lymphatic vessels play critical roles

in pathological conditions including inflammation and cancer [15]. LNs become greatly enlarged

when functional demands are increased. This can occur, for example during intense immune re-

actions or due to tumor metastasis. In cancer patients, the lymphatic vessels provide conduits for

tumor cells to leave the primary tumor and to establish secondary tumors in regional LNs or dis-

tant organs [9]. In fact, stromal or immune cells in the LN microenvironment secrete chemokine

signals that will attract tumor cells to the LN [15]. In many cancer types, including breast cancer,

gastric cancer and colorectal cancer, cancer cells pass through lymphatic vessels at the tumor site

and then spread via the lymphatic system: initially to the draining regional LNs (also called the

sentinel LNs) and then further to the blood stream and other organs. Therefore, the existence of

metastases in sentinel LNs is commonly considered to be the first step in metastatic cancer cell

dissemination [9]. Note that a sentinel LN is defined as the first LN in the lymphatic system that

receives drainage from an anatomic region and is immunologically responsible for that region [16];

the sentinel LN is thus regarded as the first LN to which cancer cells are most likely to spread from

a primary tumor. To detect the sentinel LN, blue dye (e.g., methylene blue) or a radio-tracer is



4 Introduction

injected within the region close to the tumor. The surgeon then identifies the node by visual in-

spection or by using a gamma probe or Geiger counter. The procedure of identifying, dissecting

and examining the sentinel LN to determine its status (i.e., containing metastases or not) is re-

ferred as the sentinel LN biopsy (SLNB). This regular clinical routine procedure is part of regular

clinical routine and is essential for staging disease progression, determining patient prognosis and

selecting appropriate treatment strategies [9].

1.1.2 Importance of Accurate Detection of Metastases in Human Lymph

Nodes

Accurate detection of LN metastases plays a key role in proper staging and treatment of can-

cer. For many cancers, the tumor-node-metastasis (TNM) system developed and maintained by

the American Joint Committee on Cancer and the International Union for Cancer Control [17]

is the established tool for cancer staging. Depending on the stages of cancer, proper treatments,

ranging from surgery or local radiation of the primary tumor to systematic treatments involving

chemotherapy and radiation, are performed. The TNM staging system is basically based on 3 key

information: (1) the extent of primary tumor (T), (2) the status of nearby (regional) LNs (N), and

(3) distant metastases (M) [17, 18]. In women with early-stage breast cancer, the status of axillary

LNs is one of the strongest prognostic factors, and the current standard of care in the assessment

of metastatic spread to LNs is the SLNB [19]. For colorectal cancer patients, the presence of re-

gional LN metastasis plays the main role in guiding the indication of adjuvant therapy [20, 21].

Fig. 1.3 illustrates how the metastases found in LNs relates to the stage determined for patients

with colorectal cancer. In relation to the primary colorectal tumor, when metastases are found in

the nearby LNs alone or in more distant LNs, then the cancer is in Stages III or IV, respectively.

Presence of distant metastases (LNs or organs) automatically categorizes the cancer as Stage IV,

even if the primary cancer has not yet infiltrated the wall of the colon or rectum, and it may or may

not have spread to nearby lymph nodes. It is worth noting that the SLNB could also be applied to

other malignancies such as colorectal cancer [21].

Currently, micrometastases (metastases between 0.2 mm and 2 mm in diameter) and isolated tumor

cells (< 0.2 mm or < 1000 tumor cells) are categorized separately from macrometastases (> 2

mm). Furthermore, micrometastases are regarded as a clinically significant and positive detection
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Figure 1.3: Stages of colorectal cancer. A part of the lymphatic system with the lymph nodes
is depicted in green color. (Source: http://www.nih.gov/research-training/advances-colorectal-

cancer-research)

of metastases [4, 15, 17]. Sensitive detection of micrometastases poses a challenge for clinical

evaluation and orientation of patient care.

1.1.3 The Current Histological Method for Examining Human Lymph Nodes

In the current standard-of-care, the approach for examining LNs in cancer specimens relies on

manual dissection followed by histological assessment. After dissection from cancer patients, LNs

are sent to a pathology laboratory in which the LNs undergo either (1) an intraoperative “touch-

prep” procedure or (2) a postoperative complete histological preparation and evaluation [22].

In the complete histological procedure, small LNs (< 5 mm) are bisected, and the larger ones are

cut into 3 mm pieces. The major steps of the procedure are presented in Fig. 1.4(a) [22]. The

procedure can reliably detect metastases in the stained slides extracted from the surfaces of the LN

pieces. However, because the complete volume of the LN is not evaluated, clinically significant

micrometastases (i.e., 0.2 mm - 2 mm) can go undetected. Furthermore, the complete procedure is

a time-consuming process that typically requires 2 - 3 days [22].
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Bisecting the 
lymph node

Fixing & embedding 
the cut pieces

Preparing 3 to 6 thin (3 µm) 
sections from the exposed 

cut surfaces

Placing the sections on 
microscopic slides and 

staining them with H&E

Microscopically examining 
the stained slides

Cutting the selected lymph 
node in two halves

Touching the cut surfaces to 
a glass slide

Staining the slide with Diff-
Quik (Fisher Scientific)

Microscopically examining 
the stained slides

(a) (b)

Figure 1.4: Flowcharts showing the main steps of (a) postoperative complete histological prepara-
tion and examination, and (b) intraoperative touch prep procedures to determine LN status.

The touch prep procedure illustrated in Fig. 1.4(b) [22–24] is primarily used to evaluate sen-

tinel LNs in breast cancer. The aim of the procedure is to quickly determine (within 10 - 15

minutes [23]) the status of sentinel LNs while the patient is under the effects of anesthesia in an

operating room [22]. Note that the LNs experiencing the intraoperative touch prep procedure also

undergo the postoperative complete histological procedure. For breast cancer, if the patient has

given consent for axillary dissection, and the sentinel LN is categorized as a positive during the

touch prep procedure, a complete axillary node dissection will be performed for the anesthetized

patient. Otherwise, the patient is rescheduled (typically 1 week after the surgery [24]) in clinic

to discuss the results of the postoperative procedure evaluating the sentinel LNs. Clearly, because

only the two cut surfaces of the LN are examined, the touch prep procedure can miss micrometas-

tases and/or peripheral metastases in the LNs [21].

Therefore, both standard histological procedures suffer from sampling constraints, i.e. only a

small portion of the LN is examined, leaving most of the LNs uninspected. They are not able

to detect all metastases in LNs, particularly micrometastases [25], leading to a high probabil-

ity of false-negative determinations [22]. For colorectal cancer, about 30% of the patients with

histopathology-negative LNs (i.e., TNM stages I and II) develop recurrent and/or progressive dis-

ease which is likely to be associated with undetected metastatic deposits [20, 21, 26]. Many pa-
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tients who were initially diagnosed LN negative following the standard-of-care procedure experi-

ence disease recurrence, and after advanced evaluation, they are found to contain isolated tumor

cells and/or micrometastases [21, 27].

1.1.4 Emerging Techniques for Metastases Detection in Human Lymph Nodes

1.1.4.1 Noninvasive Methods

Current standard histopathological methods for metastases detection require the dissection of LNs

which entails a painful and costly surgical procedure, and is often associated with side effects

(e.g., restricted shoulder motion and lymphedema). Thanks to recent advances in medical imaging,

several noninvasive methods are emerging to detect and characterize human LNs.

Choi et al. [28] conducted a study on the use of computed tomography and magnetic resonance

imaging (MRI) for the evaluation of LN metastasis in early colorectal cancer. Their results showed

that a size criterion of metastatic LNs was ≥ 4.1 mm . This criterion was optimal to diagnose LN

metastases with a sensitivity of 78.6% and specificity of 75%. The accuracy of differentiation of

benign and malignant LNs using LN size alone is low because malignant LN infiltration occurs in

up to 30% of cases within LNs of less than 5 mm for rectal, gastric, lung, esophageal and pancreatic

carcinoma [29]. To detect axillary LN metastasis in breast cancer, Hwang et al. [30] compared

three noninvasive modalities including axillary ultrasonography (AUS), contrast-enhanced MRI

(cMRI) and F-fluorodeoxyglucose (F-FDG) position emission tomography/computed tomography

(PET/CT). Additional criteria including cortical thickening, irregular or round shape, loss of fatty

hilum and high level of F-FDG uptake were considered to differentiate metastatic LNs from normal

ones. They concluded, however, that although PET/CT was more accurate than AUS and cMRI, it

was inadequate for decision-makings, and therefore none of these modalities could replace SLNB.

Color Doppler ultrasound can help to discriminate metastatic LNs from normal ones by revealing

macrovessel architectures [29, 31]. Normal LNs generally present hilar predominant normal vas-

cularity. Contrarily, metastatic LNs exhibit peripheral or mixed vascularity and loss of hilar type

of vascularization. In addition, contrast-enhanced color Doppler ultrasound improves the visual-

ization of macrovessels but it does not provide information for evaluating microvessels [29, 32].

Contrast-enhanced ultrasound (CEUS) techniques could improve the visualization of vessels in
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LNs to better evaluate the vascular distribution [29]. Recently, Matsuzawa et al. [33] described the

use of CEUS with Sonazoid contrast agent to detect sentinel LNs and determine their status. Their

results indicated that CEUS with Sonazoid which provided a sensitivity of 81.8% and a specificity

of 95.5% was more accurate than contrast enhanced computed tomography and color Doppler

ultrasound.

It should be noted that the ability of the detection of LNs using noninvasive imaging methods

highly depends the size and position of LNs. Reliable determination of metastatic LNs is difficult

because approximately one third of metastases occur in LNs that are not even visible to all imaging

methods [29]. Therefore, current noninvasive imaging methods mainly concentrate on the early

determination of metastases in detectable LNs to guide neoadjuvant treatment strategies.

1.1.4.2 Invasive Methods to Assess the Entire Lymph Nodes.

The use of more closely-spaced step sections [25] and immunohistochemistry staining [34] may

improve the detection of metastasis in LNs [4, 21] as compared to the current standard histopatho-

logical methods. In addition, methods including molecular analysis or high-frequency (HF), three-

dimensional (3D) quantitative ultrasound (QUS) have been developed to better assess the entire

volume of LNs.

Molecular biology-based techniques such as the real-time polymerase chain reaction analysis (RT-

PCR) and, more recently, one step nucleic acid amplification (OSNA) have been developed to

assess the entire volume of LNs for metastases. In colorectal cancer, techniques based on quan-

titative RT-PCR for the detection of Keratin 20 mRNA in regional LNs have been investigated

by several groups [26, 35, 36]. Their results generally indicate a higher sensitivity of molecular

analysis compared to conventional histopathological methods. To detect metastases in axillary

LNs in primary breast cancer patients, methods based on molecular detection of cytokeratin 19

mRNA using OSNA have been demonstrated to outperform histopathology of a single tissue sec-

tion [37–39]. Although very promising, the lack of standardization of molecular analyses makes

comparison of different studies difficult. Therefore, techniques based on molecular analyses re-

quire further prospective studies before being adopted in clinical routine [4, 21].

HF, 3D QUS methods [1, 2, 4, 22] have been developed to examine the entire-volume of LNs

with finer spatial sampling in order to better detect LN metastases throughout the LN. Using HF
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ultrasound (i.e., > 15 MHz), QUS methods can provide an evaluation of tissue microstructures.

By performing a 3D ultrasound scan, data can be acquired from the full LN volume. Therefore,

the methods can evaluate the whole LN to detect micrometastases as well as macrometastases.

Results [4] have demonstrated that QUS methods can provide high sensitivity and specificity for

detecting metastases in colorectal and axillary LNs. The QUS methods will be described in more

detail in Section 1.2.2.

1.2 Emerging Quantitative Ultrasound Techniques for Lymph

Node Characterization

1.2.1 Fundamentals of Ultrasound

Ultrasound is a widespread medical imaging modality with many advantages compared to other

imaging modalities. Major strengths of ultrasound are its abilities to reveal anatomy, the dynamic

movement of organs, and details of blood flow in real-time. It is the only non-invasive medical

imaging modality that can provides true real-time images. Furthermore, ultrasound is low cost,

safe (because it does not use ionizing radiation), easy to transport (portable) and to use (adaptable).

Ultrasound is the term corresponding to mechanical waves propagating at frequencies above the

range of audible sound frequencies (i.e., > 20 kHz). When an ultrasound pulse propagates within

a biological medium, the wave is modified as it travels through the tissues. The ultrasound wave is

absorbed by media and reflected at interfaces encountered along its path. Absorption refers to the

phenomenon when some energy of the ultrasonic wave propagating through tissue is absorbed by

the tissue and converted to heat. Additional energy is lost from the propagating wave as energy is

scattered away from the wave propagation path. The attenuation coefficient of a medium describes

the amount of lost wave intensity per distance traveled due to the different attenuation phenomena.

The attenuation coefficient in soft biological tissues increases as a function of the ultrasonic wave’s

frequency.

Biological tissue is not acoustically homogeneous, i.e., the acoustic impedance, which is defined

as the product of the density and the propagation speed of sound, varies within the medium. There-

fore, when an ultrasonic beam propagates in the tissue, part of it is reflected or scattered due to
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discontinuities in the acoustical properties of the medium [40]. Note that scatterers are microscopic

inhomogeneities (i.e., cell nuclei, fiber, etc) that are acoustically different from their surrounding

medium. Echoes are produced, that can be due to specular reflections and diffuse scattering [40].

• Specular reflections enable the visualization of boundaries between two acoustically differ-

ent regions. They occur when an ultrasound pulse reaches boundaries where the size of

the inhomogeneities in acoustical impedance is larger than the wavelength of the acoustical

signal.

• Diffuse scattering occurs as the ultrasound pulse encounters scattering structures with sizes

smaller than the acoustic wavelength. Diffuse scattering gives rise to speckle phenomenon.

In reflection mode, ultrasound images are generated by transmitting acoustic pulses into the imaged

object using an ultrasound probe (transducer), and then recording the echoes backscattered from

structures within the object as the pulses propagate through them. Contrast between tissues in

ultrasound images can result from differences in their populations of scatterers. Specifically, a

medium with few or weak scatterers will appear dark in an ultrasound image. Contrarily, a dense

scatterering medium or a medium containing strong scattering structures will appear bright.

Speckle

Speckle gives ultrasonic images their characteristics granular appearance [41]. The speckle phe-

nomenon depends on the resolution cell of the ultrasonic imaging system. The resolution cell,

which is defined by the beam cross-sectional area and the transducer pulse duration [40, 42], cor-

responds to an elementary volume from which the ultrasound system cannot resolve the contribu-

tion of individuals scatterers. The dimensions of the resolution cell vary with its position in space

because the emitted ultrasound beam is usually focused at one particular point.

Speckle is formed by backscattered echoes of randomly or coherently distributed scatterers within

a resolution cell within the insonified media [43]. It also depends on the nature of the involved

scatterers, such as their mass density, their spatial distribution and their echogeneity. Speckle can

be fully developed [43] or partly developed [44]. Fully developed speckle refers to the situation

when each resolution cell contains a large (or infinite) number of randomly located scatterers.

When the number of scatterers within a resolution cell is low (i.e., effective number of scatterers

is smaller than 10) , the speckle is defined as partially developed.
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Quantitative Ultrasound

Quantitative ultrasound (QUS) is the term referring to techniques that provide parameter esti-

mates relating to small scale tissue structures based on ultrasonic backscattered radio frequency

(RF) signals. Echo signals are produced by reflections from interfaces between acoustically dif-

ferent regions (macrostructures, with dimensions > wavelength) and by coherent and incoherent

scattering from small scale tissue structures (microstructures, with dimensions < wavelength) and

recorded by the ultrasound imaging system as the RF signals. Therefore, these echo signals con-

tain frequency-dependent information about the microstructures of tissues as well as the nature of

underlying scatterers.

Conventional ultrasonic images (B-mode images) are constructed from the log-compressed RF sig-

nal envelope. This processing removes the frequency-dependent content available in the RF echo

signals. B-mode images display tissue structures with dimensions greater than wavelength; how-

ever, in order to evaluate the microstructures of tissue using the ultrasonic signals, the frequency-

dependent information available only in the original RF signals must be used.

Thus, QUS analysis relies on access to the RF signals prior to processing for the production of B-

mode images. By transforming the RF echoes in the frequency domain using the Fourier transform,

the frequency dependence of the echo signals can be evaluated and, using appropriate scattering

models, can be related to the microstructural properties of the biological media.

Several parameter estimates have been obtained using QUS techniques [45, 46]. Using spectral

analysis of the raw backscattered RF signals, spectral slope and intercept [47, 48], effective scat-

terer size and acoustic concentration [49, 50] have been successfully used to characterize different

aspects of tissue microstructures. Note that acoustic concentration is the product of the scatterer

number density and square of the relative acoustic impedance. The relative acoustic impedance

is the ratio of the acoustic impedance difference between the background and the scatterers to the

acoustic impedance of the background. By modeling the echo envelope with proper statistical

distributions, effective number of scatterers per resolution cell [44], and the ratio of coherent to

diffuse signal [51] can be derived and thus applied to tissue characterization.
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1.2.2 Quantitative Ultrasound for Detecting Metastases in Human Lymph

Nodes

Our laboratory has been part of a collaborative project since 2007 working to develop techniques

using HF QUS to detect LN metastases. This research consortium is directed by Ernest Feleppa

of Riverside Research, New York, USA. Previous work from this collaboration [1–4] has demon-

strated the potential of a high-frequency (HF), three-dimensional (3D), QUS method (Fig. 1.5)

for reliably evaluating the entire LN volume to detect metastases. In these previous studies, radio-

frequency (RF) echo signals were acquired from entire LNs using HF ultrasound (HFU) (i.e., >

15 MHz) so that tissue microstructural properties could be assessed to detect LN micrometastases.

The QUS method consists of two major steps: 3D segmentation and 3D QUS-parameter estima-

tion.

3D backscattered RF 
signal acquisition

QUS Classification

3D segmentation

QUS-parameter 
estimation

Dissected lymph node

US & QUS-parameter 
visualization

Figure 1.5: Steps used in QUS methods for detecting metastases in dissected human LNs.

Details describing the acquisition of these data are presented in Chapter 2. In brief, the gross

surgical specimen was dissected and immersed in normal saline (NS) for RF signal acquisition.

After dissection, the bean-shaped LN parenchyma (LNP) remains surrounded by a thin layer of

perinodal fat (PNF). Accurate segmentation of the three media (LNP, PNF and NS) is necessary to
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Extracting RF segments 
from a cylindrical ROI

Correcting attenuation in PNF & LNP, and the 
effects of using the Hanning window

Averaging the corrected power spectra of 
all RF segments in the ROI

Dividing the averaged power 
spectrum by the calibration spectrum

Backscatter Coefficient 
(BSC)

Gating RF segments for analysis 
using a Hanning window

Computing the power spectra of gated 
RF segments using the Fourier transform

Figure 1.6: The major steps for estimating the backscatter coefficient (normalized and attenuation-
corrected local power spectrum) of the backscattered RF signals within a cylindrical ROI.

correct for attenuation in each medium and to restrict QUS processing to the LNP. Furthermore,

successful segmentation provides LN dimensions, shape and volume data, which may also be

useful as bio-markers of cancer.

The second step of the QUS method computed a feature set from the LNP data after compensa-

tion for attenuation effects. This feature set consisted of thirteen QUS parameters associated with

tissue microstructures in the LNP. The four most effective parameters (spectral intercept, spectral

slope, effective scatterer sizes and acoustic concentration) were estimated by fitting two different

scattering models to attenuation-compensated and normalized local power spectra (which can be

related to backscattered coefficients [5]). Fig. 1.6 illustrates the process of computing the backscat-

tered coefficient. Four other parameters were estimated from the backscattered echo envelope by

considering its probability density functions (PDF) to be Nakagami and Homodyned-K. Another

five parameters were estimating using the modified quantile-quantile plot [52] by quantifying the

difference between the echo envelope PDFs and the Rayleigh PDFs.

In a database of 172 LNs of colorectal- and gastric-cancer patients [4], the area under the receiver-
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operator characteristic curve (AUC) was computed to assess the classification performance. A

high AUC value (i.e., > 0.95) was obtained. Despite these promising results, application of the

QUS method for metastasis detection is currently limited by time-consuming visual inspection and

manual correction required by the existing semi-automatic 3D segmentation method [6]. Devel-

oping a more-robust, 3D, automatic segmentation approach is necessary to make the QUS method

practical in the clinical setting.

1.3 Segmentation

1.3.1 Overview

Segmentation is a well-established problem involving partitioning an image into different mean-

ingful regions which are application-dependent. The objective of segmentation is well-defined;

however, depending on the quality and characteristics of images (data), segmentation techniques

range from simple (e.g., thresholding) to complicated ones, requiring complex mathematical for-

mulation to integrate prior information (intensity distribution, shape, texture, etc.) derived from

the segmented image and/or image datasets (i.e., segmentation based on machine learning tech-

niques). Because of the inherent poor visual quality, automatic segmentation of US data is difficult.

Additional challenges including speckle, low contrast between tissue regions of concern, lack of

explicit boundaries, occlusion caused by surrounding tissues and attenuation make the automatic

US segmentation one of the most active areas of researches in medical imaging with a wide range

of segmentation methods being developed. We will further discuss state-of-the-art segmentation

techniques in Section 4.1.1.

1.3.2 Specific Challenges for Segmentation of High-frequency Ultrasound

Data from Human Lymph Nodes

In addition to the challenges outlined above, high-frequency ultrasound (HFU) data from human

LNs suffer from important focusing and acoustic-attenuation effects because the data were ac-

quired using a single-element, spherically-focused HF transducer. To obtain the fine-resolution

backscattered signals for the evaluation of LN microstructures to detect micrometastases, a HF
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Figure 1.7: HFU B-mode data presenting a 2D section (in the x-z plane) of volumetric data ac-
quired from excised metastatic (a) and nonmetastatic (b) LNs. Regions that were segmented using
the proposed STS-LS method (presented in Chapter 5) are delineated and identified with labels
as LNP, PNF and NS. (c) The smoothed axial profile of radio-frequency signal envelopes (i.e.,
radio-frequency signal envelopes vs. depth) within the rectangle shown in (b) illustrates the inho-

mogeneities of the intensity with depth.

transducer was used, leading to the high signal attenuation. This causes low signal-to-noise levels

with depth, especially at the deepest regions explored for large LNs as depicted in Fig. 1.7(a). Fur-

thermore, to increase transducer sensitivity and performance at analysis regions, the spherically-

focused transducer was used. With a focused transducer, the beam profile converges to a focal

point and then diverges at an equal angle beyond the focal point as shown in Fig. 1.8. As a result,

the backscattered signals and thus the echo envelope evolved significantly with imaged depth as

illustrated in Fig. 1.7(b,c).

In addition, as presented in Section 1.1.1, LNs have a complicated structure with different acoustic

Figure 1.8: Single-element, spherically-unfocused and -focused transducers. Source:
http://www.olympus-ims.com/en/ultrasonic-transducers
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properties. Therefore, backscattered echo signals from LNs, especially the metastatic LNs, tend to

be highly inhomogeneous. Furthermore, the great variation in the shape of between different LNs,

particularly in axillary LNs, makes it difficult to incorporate shape priors into segmentation.

1.4 Objectives of the Thesis

The main objective of the thesis is to investigate if local and parametric modeling of speckle

statistics can contribute to better and faster segmentation of high frequency ultrasound data for

the detection of micro metastases in human LNs using QUS.

First, the probability density functions (PDF) best modeling the echo signal envelope (or speckle

statistics) from the three media (i.e., LNP, PNF and NS) in the LN HFU data is identified (Chapter

3). Developing an US image segmentation method depends strongly on how the speckle is inter-

preted, i.e., speckle can be suppressed but it can be used as a source of information [41]. In this

thesis, we adopt the latter strategy and exploit speckle information for segmentation.

Subsequently, two novel level-set segmentation methods (Chapter 4 and 5) that employ gamma

PDFs to locally model the speckle statistics in two different manners are developed to segment the

three media. Although the two level-set segmentation methods provide satisfactory segmentation

results on our dataset, we would like to enhance them. Furthermore, the level-set methods require

an initialization, the closer the initialization is to the sought boundaries, the faster the segmentation

will converge, thus reducing the execution time. We thus consider to integrate into the segmen-

tation methods the information that we have acquired a large LN dataset, and many LNs have

been manually segmented by experts. Therefore, Chapter 6 presents hybrid segmentation methods

in which we implement random forest classification (RFC) with new features to obtain a prelim-

inary segmentation which is considered as initialization for the level-set segmentation methods.

Following this approach, the level-set segmentation methods are applied to refine the segmenta-

tion provided by the RFC so that automatic segmentation is ultimately obtained. The agreement

between QUS parameters estimated from manually segmented LNs and from automatically seg-

mented LNs is also assessed to investigate if the QUS estimates are maintained when automatic

segmentation is applied to evaluate excised LN data. Finally, limitations remaining to overcome

and other applications that may benefit from the work presented in this thesis in the future are

discussed.



Chapter 2

High-resolution Databases Characterizing

Human Lymph Nodes

This chapter describes the experimentally-acquired and simulated databases that were used through-

out this thesis. Within the NIH project CA100183 (PI, Pr Ernest Feleppa, Riverside Research, New

York NY), human lymph nodes (LNs) were removed from patients at the Kuakini Medical Center

(KMC) in Honolulu, HI. The patient population, techniques used for LN dissection, histological

preparation and high-frequency ultrasound (HFU) data acquisition are briefly summarized in Sec-

tion 2.1. More detailed descriptions on the preparation of high-frequency ultrasound and histology

databases can be found in previously published works [1, 2]. Note that the Institutional Review

Boards (IRBs) of the University of Hawaii and KMC approved the participation of human subjects

in the study. All participants were recruited at KMC and gave written informed consent as required

by the IRBs.

For developing segmentation methods, it was necessary to have additional data with well-known

characteristics. Therefore, techniques were put into place to simulate data sets that well mimic the

experimentally-acquired LN data (with realistic speckle, attenuation and focusing effects). The

methods used to obtain these simulated data are described in Section 2.2.

2.1 Data Acquired from Human Lymph Nodes

2.1.1 High-frequency Ultrasound Data

LNs were dissected from patients with histologically-proven primary cancers (e.g., breast, colorec-

tal or gastric cancer) at KMC. Table 2.1 summarizes the number of patients, LNs and LN status

17
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Organ Patients Total LN Cancerous LN Non-cancerous LN
Breast 199 418 71 347
Gastric 33 127 32 95

Colorectal 169 445 74 371
Other 25 58 20 38
Total 426 1048 197 851

Table 2.1: Clinical LN database of human lymph nodes

Figure 2.1: Data acquisition set-up showing scanning axes (left) and the excised LN in normal
saline solution (right). (Taken from [53])

that we have acquired for each type of cancer. The surrounding perinodal fat (PNF) was then man-

ually removed from the LNs. Isolated, freshly dissected LNs were individually placed in a normal

saline (NS) solution at room temperature and scanned. Sizes predominantly ranged from 2 to 12

mm and LNs were surrounded by a remaining thin layer of PNF. The scanning system along with

a LN being scanned is presented in Fig. 2.1. Radio-frequency (RF) signals were acquired using a

single-element transducer (PI30-2-R0.50IN, Olympus NDT, Waltham, MA) with a 12.2 mm focal

length, an F-number of 2 and a center frequency of 25.6 MHz. The theoretically predicted axial

and lateral resolutions of the imaging system were 85 µm and 116 µm, respectively. Thus, the

volume of the 3D resolution cell can be estimated to be π×85× (116/2)2×10−9 ≈ 8.98×10−4

mm3. The RF echo signals were digitized at 400 MS/s using an 8-bit Acqiris DB-105 A/D board

(Acqiris, Monroe, NY). Volumetric data were acquired from each LN by scanning adjacent planes

with a uniform plane and A-line spacing of 25 µm in both lateral directions. Envelope data were

derived from the digitized RF data by applying a Hilbert transform.
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Figure 2.2: Three orthogonal cross-sectional views showing the segmentation of three regions
overlaid on B-mode data (40-dB dynamic range) acquired from a non metastatic LN of a colorectal
cancer patient. The RFC_STS-LS method presented in Chapter 6 was used to segment the LN. The
LNP and PNF regions are demarcated by the red curve and green curve, respectively; while the
NS region is limited by the blue curve. The bottom right panel displays the histology image co-

registered with the bottom left B-mode image.
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Figure 2.3: Three orthogonal cross-sectional views of B-mode data (40-dB dynamic range) ac-
quired from a metastatic LN of a colorectal cancer patient. The co-registered histology images is

also shown.
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2.1.2 Histology Data

To overcome the problems of sampling constraints associated with the current standard of care, a

non-standard histology procedure was employed to acquire fine spatial sampling, which is impor-

tant to avoid missing clinically significant metastases. Furthermore, fine spatial sampling enables

co-registration of 3D ultrasound volume with 3D histology volume, necessary to evaluate the reli-

ability of the QUS methods for detecting metastatic regions within the LNs.

Briefly, after US data acquisition, the scanned LN was inked to provide visual reference for re-

covering orientation with respect to the 3D ultrasound scan. To estimate the size of LN, the entire

LN was photographed using a digital camera (FujiFilm FinePix S9100, Fuji Photo Film, Tokyo,

Japan) equipped with Hoya +2 and +4 close-up lenses (Hoya Corp., Tokyo, Japan). The next steps

involved cutting the LN approximately in half, fixing the two half-nodes in 10 % neutral-buffered

formalin and embedding them in paraffin. The two half-nodes were then microtomed into paired

3 µm thin sections at every 50 µm for nodes smaller than 5 mm or 100 µm for larger nodes. In

other words, a step size (distance between two consecutive set of pairs) for nodes smaller than

5 mm and for larger nodes was 50 µm and 100 µm, respectively. At each step, sets of 3 to 5

pairs of 3 µm sections were obtained depending on LN size. For light-microscopic examination,

each 3 µm thin section was placed on a microscope slide and stained with Hematoxylin and Eosin

(H&E). To obtain histological images of the two lymph-node halves, each H&E stained slide was

photographed using the same digital camera used for estimating LN size (i.e., FujiFilm FinePix

S9100) and a high-quality, high-throughput slide scanner (NanoZoomer, Hamamatsu, Japan) with

a pixel resolution of 0.46 µm.

Fig. 2.2 displays three orthogonal B-mode images of a metastatic LN together with a co-registered

histology image using LymphExplorer [54]. Three regions (LNP, PNF and NS) were automatically

segmented using the RFC_STS-LS segmentation method described in Chapter 6 of the thesis. Fur-

thermore, Fig. 2.3 shows three cross-sectional views of B-mode data acquired from a metastatic

LN as well as a corresponding histology image. In general, data acquired from metastatic LNs are

more inhomogeneous than those acquired from nonmetastatic LNs, and thus automatic segmenta-

tion of such data is more challenging.
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Figure 2.4: Illustration the generation of simulated data affected by focusing and attenuation. (a)
Ground truth data with three media: LNP, PNF and NS. (b) B-mode display of original envelope
data distributed according to gamma distributions for the 3 media. (c) Axial profile of the focused
transducer. (d) A slice generated from the axial profile. (e) The attenuation estimated for 3 media.
(f) The combination of focusing and attenuation. (g) B-mode display of simulated data affected by

focusing and attenuation.

2.2 Simulated Ultrasound Data based on Speckle Statistics

Simulated data were generated to present the same topology as the LN data, i.e., simulated data sets

were comprised of three regions (LNP, PNF and NS) as shown in Fig. 2.4(a). As will be presented

in Chapter 3, the gamma (GA) distribution well describes envelope statistics for data from LNP,

PNF and NS regions. Therefore, data were initially simulated for each type of tissue region as

random numbers distributed according to the GA distribution. The GA-distribution parameters

for each region were chosen to be approximately those for each corresponding region of the LN

envelope data. Specifically, the shape and scale (a, b) parameters for the LNP, PNF and NS regions

were
(
2.25, 1.1×10−4), (2.49, 2.9×10−4) and

(
2.90, 0.5×10−4), respectively. The size of the

data was selected to be the size of a typical LN, i.e., 4.5 mm×4 mm×5 mm. Fig. 2.4(b) shows a B-

mode image (log compression with 40 dB dynamic range) of the simulated data with no simulation

of the attenuation and focusing effects A0 (x). Note that x = (x1,x2,x3) = (z,x,y) is a spatial

variable representing a voxel in 3D space.

To simulate the focusing effect, we employed the experimentally measured axial beam-profile
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Figure 2.5: B-mode images (40-dB dynamic range) extracted from the simulated data.

curve
(
Fprofile (x1)

)
. This profile was estimated based on the amplitude of the specular echo from

a planar interface placed at different axial positions with respect to the transducer as described

in [1]. The beam profile is presented schematically in Fig. 2.4(c). A slice constructed from the

axial profile of the curve is presented in Fig. 2.4(d). The attenuation was negligible for NS. It

was assumed to be typical of soft tissue, 0.5 dB/MHz/cm, for LNP and was based on a previous

measurement of 0.97 dB/MHz/cm for PNF [1]. Therefore, at the center frequency of 25.6 MHz

and after conversion from decibels to nepers, the attenuation coefficients of PNF, αPNF, and LNP,

αLNP, were 2.859 Np/cm and 1.474 Np/cm, respectively. By taking into consideration the round-

trip propagation, the final simulated signal, A, was obtained using the following equation:

A(x) = A0 (x)Fprofile (x1)exp(−2(αPNFdPNF (x)+αLNPdLNP (x))) , (2.1)

where A0 is the random numbers distributed according to the GA distribution, and Fprofile is the

axial profile of the focused transducer; dPNF and dLNP are, respectively, the thickness of PNF and

LNP layers that the sound propagates through. Fig. 2.4(e) shows the effect of attenuation in the

3 encountered media, and Fig. 2.4(f) presents the combination of the attenuation and focusing

effects. Finally, Fig. 2.4(g) shows the B-mode image of the slice simulated in panel Fig.2.4(b)

after integration of the attenuation and focusing effects. Fig. 2.5 presents a few B-mode images

extracted from a typical 3D simulated LN data set.

The experimentally acquired databases combined with simulated data sets will be used throughout

this thesis to evaluate the performance of the novel automatic segmentation techniques. Prior to

development of segmentation techniques, it was necessary to well characterize the data distribution

in the different types of tissues encountered. This characterization is the subject of the next chapter.
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Chapter 3

Statistical Modeling of High-frequency

Ultrasound Data from Human Lymph

Nodes1

3.1 Introduction

Modeling accurately the statistics of ultrasound echo envelope signals is important for applications

of tissue segmentation and classification. Statistical distributions can be employed in developing

segmentation methods based on maximum likelihood or maximum a posteriori (MAP) approaches.

Furthermore, the estimated parameters of the statistical distributions of the echo envelope can

provide information regarding tissues of interest and could potentially be used for characterizing

different tissue types.

Significant work has been performed to investigate the specific statistical properties of ultrasound

echo-signal data within the common clinical frequency range (<15 MHz). Zimmer et al. [56]

used the lognormal distribution to model speckle in liver images. Shankar et al. [57] proposed

Nakagami and K distributions to model the backscattered echo signals from tissue, and the distri-

bution parameters then were used to classify breast masses. A family of four distributions (gamma,

Weibull, normal and lognormal) was evaluated by Tao et al. [58] for modeling the speckle in car-

diac ultrasound images. The study of Tao indicated that the gamma distribution provided the best

fit to the data and had a low misclassification rate in distinguishing between blood and adjacent

soft tissue. Nillesen et al. [59] investigated the envelope statistics of blood and myocardium in

1This chapter is adapted from Thanh Minh Bui, Alain Coron, Jonathan Mamou, Emi Saegusa-Beecroft, Tadashi
Yamaguchi, Eugene Yanagihara, Junji Machi, S. Lori Bridal, and Ernest J. Feleppa, “Modeling the Envelope Statis-
tics of Three-dimensional High-frequency Ultrasonic Backscatter from Dissected Human Lymph Nodes”, Japanese
Journal of Applied Physics, vol. 53, pp. 07KF22-1–11, 2014 [55]

25
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echocardiographic images. Nillensen’s study showed that the gamma distribution outperformed

other distributions (K, Nakagami, inverse Gaussian and Rayleigh) in describing the speckle statis-

tics of blood and myocardium. To diagnose liver fibrosis, two and three component Rayleigh

mixture models were proposed to model statistics of the ultrasonic envelope data acquired on this

organ. [60–62]. Recently, Anquez et al. [63] proposed the use of the gamma distribution to model

the statistics in amniotic fluid and fetal tissues of antenatal 3D ultrasound images. Anquez then

formulated a segmentation method by integrating the gamma statistical model of the intensity dis-

tribution using the MAP approach to maximize the probability p(P(Ω) |I) of the partition P(Ω)

given the image I. Only a few studies have evaluated the statistics of HFU data. Raju et al. [64]

conducted a study on the statistics of the envelope of two-dimensional (2D) HFU backscatter

signals from human skin. Raju’s results indicated that the Weibull, K and generalized gamma dis-

tributions were capable of modeling the envelope statistics well. However, the shape parameters of

the three distributions were unable to discriminate between data acquired in healthy skin and skin

affected by dermatitis [65].

The aim of this chapter is to identify probability distribution functions (PDFs) that best model the

envelope of 3D HFU data acquired in LNP, PNF and NS. Once fully characterized, information re-

garding PDFs in different regions of the LNP and the surrounding media can be applied to develop

a LN segmentation method using the MAP approach [63, 66]. Furthermore, detailed characteriza-

tion of parameters describing the PDF of non-cancerous vs. metastatic LNP may potentially also

contribute to more-accurate QUS-based characterization of LNs. To avoid confusion, it is worth-

while mentioning that in this thesis, statistical modeling and segmentation methods were evaluated

using envelope data (i.e., before log compression), but LN images (e.g. Figs. 3.1, 4.3, etc) are

shown in B-mode display (log compression with 40 dB dynamic range) for good contrast.

3.2 Theory

3.2.1 Probability Density Functions

The analytic signal associated with the signal backscattered from an ensemble of discrete scatterers

in the absence of attenuation can be expressed at each instant as [64] Re jϕ = ∑
N
i=1 aie jθi, where

ai and θi, respectively, are the amplitude and phase of the backscattered signal from an individual
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Table 3.1: Expression of the nine investigated PDFs. Here φ (z) = exp
(
−z2/2

)
/
√

2π is the PDF
for the standardized normal distribution, Γ(m) =

´
∞

0 xm−1e−xdx is the gamma function, φlogis (z) =
ez (1+ ez)−2 is the PDF of a standardized logistic distribution.

Family
Probability Density Function Parameter

(r ≥ 0 unless specified) interpretation

Rayleigh (RA) f (r;σ) =
r

σ2 exp
(
− r2

2σ2

)
σ > 0: scale

Normal (NM) f (r; µ,σ) =
1
σ

φ

(
r−µ

σ

)
,

µ: mean; σ > 0:
standard deviation

Lognormal
f (r; µ,σ) =

1
σr

φ

(
ln(r)−µ

σ

)
, r > 0

µ: location
(LM) σ > 0: scale

Nakagami
f (r;m,Ω) =

2mmr2m−1

Γ(m)Ωm exp
(
−m

Ω
r2
) m≥ 0.5: shape

(NA) Ω > 0: scale

Weibull (WE) f (r;α,β ) =
β

αβ
rβ−1 exp

[
−
( r

α

)β
]

α > 0: scale
β > 0: shape

Loglogistic (LL) f (r; µ,σ) =
1

σr
φlogis

(
ln(r)−µ

σ

)
, r > 0

µ: location
σ > 0: scale

Gamma (GA) f (r;a,b) =
1

baΓ(a)
ra−1 exp

(
− r

b

) a > 0: shape
b > 0: scale

Generalized
f (r;k,µ,σ) = 1

σ
exp
[
−
(

1+ k (r−µ)
σ

)− 1
k
](

1+ k (r−µ)
σ

)−1− 1
k k 6= 0: shape

Extreme Value µ: location
(GE) with 1+ k (r−µ)

σ
> 0 σ > 0: scale

Generalized
f (r;a,b,c) =

crac−1

bacΓ(a)
exp
[
−
( r

b

)c] a > 0, c > 0: shape
Gamma (GG) b > 0: scale

scatterer i, and N is the number of scatterers;R denotes the envelope of the signals received by

the transducer. The amplitude, ai, depends on the shape, size, and acoustical properties of each

scatterer with respect to the surrounding medium. The phase, θi, depends on the position of each

scatterer. Because ai, θi, and N are unknown beforehand, they can be modeled, in general, as

random variables. Therefore, the resultant envelope R of the signal backscattered from an ensem-

ble of discrete scatterers is also a random quantity that can be described using probability density

functions (PDFs). Although scattering in real tissue results from a continuous distribution of scat-

tering sites throughout the tissue and not from discrete scatterers, this simplified model provides a

convenient starting point for analysis. To determine which PDF best models the envelope of HFU

data acquired from human LNs, we investigated nine exponential PDFs described in Table 3.1.

Each PDF is described briefly.

Rayleigh (RA) distribution: On the basis of the central-limit theorem, the envelope data, R, can

be modeled using a RA distribution for either a large number of randomly distributed scatterers

(the phase, θi, is uniformly distributed from 0 to 2π) [67], or when the individual amplitudes ai

are themselves RA distributed [64]. The ratio of the mean of the RA distribution to its standard
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deviation, i.e., its SNR, has a constant value of 1.91.

Normal (NM) distribution: According to the central-limit theorem, the NM distribution approx-

imately models the sum of a large number of independent, identically distributed (i.i.d.) random

quantities. The NM distribution was used to describe the intensity distribution of ultrasound im-

ages of prostate tissue [68]. It has recently been used to model the saturated 3D ultrasound data

acquired from fetal tissue [63].

Lognormal (LM) distribution: The LM distribution is a common model for failures times. Ac-

cording to the central-limit theorem, the LM distribution can be used to model a random variable

that arises from the product of a number of identically distributed independent positive random

quantities [69]. In the context of ultrasound, the LM distribution has been used to model the

speckle in hepatic images [56].

Nakagami (NA) distribution: The NA distribution was first proposed by Nakagami to describe

the statistics of returned radar echoes [70]. The parameter m is constrained such that m ≥ 0.5

[70]. The study by Yacoub [71] indicated that the magnitude of the incoherent sum of powers

(as opposed to the instantaneous amplitude summation) of several RA signals can be modeled by

the NA distribution. In the context of ultrasound, Shankar [67] proved that pre-Rayleigh (SNR <

1.91), Rayleigh (SNR = 1.91) and post-Rayleigh (SNR > 1.91) conditions could be modeled by

the Nakagami distribution. Moreover, Shankar showed that the envelope of backscattered signals

obtained from human breast was described well by this distribution and that its parameters could

be used to classify breast masses [72]. The NA distribution includes the RA distribution for the

special case when m = 1, and approximates the Rician distribution when m > 1.

Weibull (WE) distribution: The WE distribution has been used to model radar clutter signals [73].

The statistics of the envelope of high-frequency ultrasonic backscatter from human skin have

been approximately described by this distribution [64]. Because the SNR monotonically increases

with the shape parameter β , the WE distribution can be used to model pre-Rayleigh (0 < β < 2),

Rayleigh (β = 2) and post-Rayleigh (β > 2) conditions. Note that, the WE distribution includes

the exponential (β = 1) and RA (β = 2) distributions. Furthermore, if R has a WE distribution

with parameters α and β , then U = ln(R) has an extreme value distribution with µ and σ param-

eters, where µ = ln(α), and σ = β−1.

Loglogistic (LL) distribution: The LL distribution is often used in survival analysis to model
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events that experience an initial rate increase, followed by a rate decrease. The LL distribution is

considered here because it has a shape that is similar to the shape of the LM distribution; however

the LL distribution has heavier tails, i.e., the tails of the histogram at high and low values are

heavier [69].

Gamma (GA) distribution: The sums of exponentially distributed random variables can be well

modeled by the GA distribution. If parameter a is large, the GA distribution closely approximates

a NM distribution when modeling positive real numbers. The GA distribution includes the expo-

nential distribution when b = 1, and also includes the chi-squared distribution with n degrees of

freedom when a = n/2 and b = 2. Moreover, if R has a NA distribution with parameters m and Ω,

then R2 has a GA distribution with a shape parameter m and a scale parameter Ω/m. Because the

shape parameter a takes values in the range 0 < a < ∞, using the GA distribution eliminates the

constraint (m≥ 0.5) that is imposed when using the NA distribution. In the context of ultrasound,

the GA distribution was shown to well describe the envelope of backscattered signals obtained

from amniotic fluid and fetal tissues [63].

Generalized extreme value (GE) distribution: The GE distribution was developed within ex-

treme value theory to combine the Gumbel (k = 0), Frechet (k > 0), and WE (k < 0) families;

it also corresponds to the type I, type II and type III extreme value distributions [74]. The GE

distribution is often used as an approximation to model the maxima of long finite sequences of

random variables. We consider this distribution because the envelope of ultrasound echo-signal

data presents local maxima.

Generalized gamma (GG) distribution: By adding a third parameter to the GA distribution,

Stacy [75] introduced the GG distribution. Shankar [76] proposed the use of the GG distribution

to model the envelope of ultrasonic signals backscattered from breast tissue. Subsequently, the

GG distribution was demonstrated to describe the envelope of 2D HFU signals backscattered from

human skin [64]. An interesting property of the GG distribution is its ability to model amplitude

as well as intensity fluctuations (if R is GG distributed, R2 and kR (where k is a constant) are also

GG distributed). This distribution also includes the following distributions as special cases: RA

(c = 2, a = 1), exponential (c = 1, a = 1), NA (c = 2), WE (a = 1), GA (c = 1), and LM (a→ ∞).
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3.2.2 Probability-Density-Function Parameter Estimation

The parameters of each distribution describing the envelope data were estimated according to the

following relations using the method of moments. This method derives parameters from the mo-

ments of the data and provides computational efficiency. For convenience, the M envelope samples

{ri}M
i=1 in the region of interest were assumed to be i.i.d., and AVG(R) = M−1

∑
M
i=1ri denotes the

sample mean of the envelope R.

RA distribution: The scale parameter σ of the RA distribution can be effectively estimated as

σ̂ =
√

2/π AVG(R).

NM distribution: The mean and standard deviation parameters of the NM distribution can be

estimated using µ̂ = AVG(R), σ̂ =

√
AVG(R2)− (AVG(R))2.

LM distribution: The NM and LM distributions are closely related. If R is distributed lognormally

with parameters µ and σ , then U = ln(R) is distributed normally with mean µ and standard devia-

tion σ . Consequently, the location and scale parameters of the LM distribution can be efficiently

estimated as µ̂ = AVG(U), and σ̂ =

√
AVG(U2)− (AVG(U))2.

NA distribution: The method of moments can be used to obtain the two parameters of the NA

distribution as follows

Ω̂ = AVG
(
R2) (3.1)

m̂ =

(
AVG

(
R2))2

AVG(R4)− (AVG(R2))
2 . (3.2)

The estimation of the parameter m using (3.2) is computationally efficient. However, the constraint

(m≥ 0.5) was violated by this estimation on our data. Therefore, we used the m estimator devised

by Greenwood and Durand [77] because it best approximates to the maximum-likelihood estimator

as indicated by Zhang [78].

m̂ =


0.50008+0.16488y−0.05442y2

y , when 0 < y≤ 0.5772
8.898919+9.05995y+0.9775373y2

y(17.79728+11.96847y+y2)
, when 0.5772 < y < 17,

(3.3)

where y= ln(µ̂2/G), with a sample estimate of the kth moment µ̂k =AVG
(
Rk), and G=

(
∏

M
i=1 r2

i
)1/M.
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WE distribution: There are no closed-form expressions for estimating the β parameter of the WE

distribution. Using the method of moments [79], the parameter β̂ can be estimated by solving the

following implicit equation:

Γ

(
1+2β̂−1

)
[
Γ

(
1+ β̂−1

)]2 =
AVG

(
R2)

[AVG(R)]2
. (3.4)

A unique solution of β̂ exists because the left hand side (LHS) of (3.4) is a monotonic function

of β̂ . A look-up table with precomputed values of the LHS as a function of finely spaced β̂

(estimation accuracy of 0.0001 for 0.1≤ β̂ ≤ 5.0) was used to obtain β̂ . After obtaining β̂ , α̂ was

estimated from the equation, α̂ = AVG(R)/Γ

(
1+ β̂−1

)
.

LL distribution: The LL distribution is closely related to the logistic distribution. If R is dis-

tributed loglogistically with parameters µ and σ , then U = ln(R) is distributed logistically with

parameters µ and σ . Consequently, the parameters of the LL distribution are estimated using the

method of moments as, µ̂ = AVG(U) , and σ̂ =
√

3 π−1
√

AVG(U2)− (AVG(U))2.

GA distribution: Using the method of moments, the parameters of the GA distribution can be

efficiently estimated as follows:

â =
(AVG(R))2[

AVG(R2)− (AVG(R))2
] , (3.5)

b̂ =

[
AVG

(
R2)− (AVG(R))2

]
AVG(R)

. (3.6)

.

GE distribution: There is no closed-form solution for the parameter estimation of the GE distribu-

tion. Therefore, its three parameters were estimated using a maximum likelihood algorithm [74].

GG distribution: The three parameters of the GG distribution can be estimated using the moment

of the logarithm of data [80]:

Ψ(2) (â)[
Ψ(1) (â)

]1.5 =−

∣∣∣∣∣∣∣
AVG

[
(U−AVG(U))3

]
{

AVG
[
(U−AVG(U))2

]}1.5

∣∣∣∣∣∣∣ (3.7)
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ĉ =

√√√√ Ψ(1) (â)

AVG
[
(U−AVG(U))2

] (3.8)

b̂ = AVG(R)
Γ(â)

Γ(â+ ĉ−1)
, (3.9)

where U = ln(R), and Ψ(n) (a) = dn+1 [lnΓ(a)]/dan+1 is the polygamma function. The LHS of

(3.7) is a monotonic function of â. The solution of (3.7) was found by using a look-up table with

precomputed values of the LHS as a function of finely spaced â (estimation accuracy of 0.001 for

0.1≤ â≤ 50.0). Once â was obtained, the parameters ĉ and b̂ were estimated using (3.8) and (3.9),

respectively.

3.2.3 Goodness-of-Fit Evaluation

To evaluate quantitatively the goodness of fit of each candidate distribution to the experimental

envelope distribution, the Kolmogorov Smirnov (KS) metric [81] was used. The KS metric is

the maximum absolute difference between the theoretical cumulative distribution function (CDF)

(F (x)) and the experimental envelope CDF (G(x)); it is given by MKS (F,G)=max |F (x)−G(x)|.

Smaller values of the KS metric indicate a better fit of the candidate distribution to the experimental

distribution.

3.3 Characterization of Experimentally Acquired Ultrasound

Data

3.3.1 Extraction of 3D Regions-of-Interest (ROIs)

The extraction of the ROIs plays a crucial role in statistical analysis. The size of each ROI must

be large enough to contain a sufficient number of resolution cells so that each ROI contains an

adequately large number of independently and identically distributed envelope voxels to maintain

the stability of parameter estimation. On the other hand, the ROI must be small enough to provide

acceptable spatial resolution, and to avoid getting signals affected by very different attenuation
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and diffraction effects. To mitigate potential bias related to LN size, a maximum of ten non-

overlapping, randomly-located ROIs at a fixed depth (distance from the transducer) were selected

for LNP, PNF and NS. Any ROIs that were not fully included in depths between 10.85 mm to

13.55 mm were not processed because they were considered to be too distant from the focal zone

of the transducer.

3.3.1.1 Lymph Node Parenchyma and Normal Saline

For statistical analysis of the LNP and NS, non-overlapping, randomly-located cylindrical ROIs

with a 0.7 mm length and diameter were extracted from the envelope data. The number of in-

dependent resolution cells for each 3D ROI was
[
π (700/2)2×700

]
/
[
π (116/2)2×85

]
∼ 296,

because the predicted axial and lateral resolutions of the imaging system were 85 µm and 116 µm,

respectively. The centers of the ROIs were located at depths of 11.2 mm, 12.2 mm (focal distance),

13.2 mm. Figure 3.1(a) and 3.1(b) present the z-x and y-x cross-sectional planes, respectively, to

illustrate the ROI dimensions in the LNP.

3.3.1.2 Perinodal Fat

Because the layer of PNF surrounding the LNP is thin and varies in extent, use of cylindrical ROIs

within the PNF region of each LN is not practical. Consequently, ROIs were extracted from the

PNF layer as illustrated in Figs. 3.1(c) and 3.1(d). For each LN, the ROIs in the PNF layer were

placed so that the number, N, of voxels within each ROI was equal to the number within the ROIs

of the LNP or NS. First, a 3D PNF-mask section with a depth range of 0.7 mm and central depth of

11.2, 12.2 or 13.2 mm, respectively, was prepared using the manually segmented PNF label (Fig.

3.1(c)). Second, within the x-y plane, triangular sections were delimited so that the apex was at

the center of the LN. The angle ϕ of each 3D triangular section was adjusted so that the number of

PNF-mask voxels contained in a 3D triangular section (with a slice-thickness of 0.7 mm) equaled

to N. Finally, the voxels within the PNF (as delimited by the section thickness and the triangular

sections) were treated as an independent ROI for statistical analysis.
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Figure 3.1: Illustration of the dimensions and positioning of a cylindrical ROI (solid blue region)
in the LNP in the x-z plane (a) and the x-y plane (b). Similar positioning and ROI size was used
to select ROIs in the NS. The division of the PNF layer into angular sections is illustrated by the

cross-hatched regions in the x-z plane (c) and the x-y plane (d).

3.3.2 Initial Characterization of the Distributions

A database of 99 LNs dissected from colorectal-cancer patients was used to study the statistics of

data at the focal depth (12.2 mm from the transducer). Eighteen nodes were entirely cancerous

and 81 nodes were entirely devoid of cancer. Thirty-six LNs including 12 cancerous and 24 non-

cancerous specimens were selected from the database to examine the statistics of LN data at, before

and after the focal distance. These 36 LNs were selected because the semi-automatic segmentation

technique [6] provided accurate segmentation throughout the entire LN (not only for regions at the

focal distance). The number of ROIs for the LNP, PNF and NS media at the focal distance of the

99 LNs were 967, 956 and 468, respectively, since some small LNs provided fewer than 10 ROIs.

To facilitate comparing distributions, the vertical axes of all the box plots representing the KS

metrics are presented on a log scale. For each box, the central mark is the median, the edges of the

box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points that are

not considered outliers, and outliers are plotted individually. Points are drawn as outliers if they
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Figure 3.2: KS metrics for comparison of the goodness of fits for the different distributions de-
scribing the data from LNP ROIs centered at the focal distance. Eighteen cancerous LNs (a), and

81 non-cancerous LNs (b).

are larger than q3 + 1.5(q3− q1) or smaller than q3− 1.5(q3− q1), where q1 and q3 are the 25th

and 75th percentiles, respectively.

3.3.2.1 Models Describing the Statistics of Envelope Data of Lymph Node Parenchyma,

Perinodal Fat and Normal Saline

The GG distribution best modeled the statistics for 66.4%, 65.2% and 61.1% of the ROIs of LNP,

PNF and NS centered at the focal distance, respectively. The GG distribution also provided the

lowest average values of the KS metric for the 967 LNP, 956 PNF and 468 NS ROIs. Figure 3.2

shows box plots of the KS metrics for the data from LNP ROIs of the 18 cancerous LNs and the

81 non-cancerous LNs. The plots illustrate how the GG distribution best fits the experimental

envelope distribution of both cancerous and non-cancerous LNs. The GG distribution provides

the lowest median values of the KS metrics for cancerous LNs (0.011) and non-cancerous LNs

(0.009). Therefore, the GG distribution outperforms all the 8 remaining distributions (GE, GA,

LL, WE, LM, NA, RA, NM) in fitting the envelope distributions from the three different media.

To investigate which distributions other than the GG distribution best describe the statistics of HFU

envelope data acquired in cancerous and non-cancerous LNs at the focal distance, the percentage of

ROIs best modeled by the remaining 8 distributions (excluding the GG distribution) was evaluated

based on the KS metric. Results are summarized in Fig. 3.3. As shown in Fig. 3.3(a), the GA

and GE distributions best model the statistics for 45.6% and 40.9%, respectively, of the cancerous
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Figure 3.3: Percentages of ROIs from each medium that were best modeled by each of the eight
distributions (excluding GG) as assessed using the KS metric. All ROIs were centered at the focal

distance.

LNP ROIs. Thus they have approximately the same fitting performance and outperform all the

remaining six distributions. Among the 81 non-cancerous LNs, the GA distribution best models

the statistics for 49.5% of ROIs, followed by the GE distribution with 35.3%, as illustrated in Fig.

3.3(b). Consequently, the GA distribution fits most of the experimental envelope distribution of

non-cancerous LNs better than the GE distribution does, as illustrated in Fig. 3.3(b).

Figure 3.4 presents the KS metrics for LNP ROIs centered at depths of 11.2 mm, 12.2 mm and 13.2

mm, respectively, for the 12 cancerous LNs and 24 non-cancerous LNs. The GG distribution best

describes the statistics of ROIs at each depth, followed by the GA and GE distributions. Among

the 12 cancerous LNs, the GE distribution fits the experimental envelope distribution slightly better

than the GA distribution as shown in Figs. 3.4(a), 3.4(b), and 3.4(c). Furthermore, the distribution

of the KS metrics of the GA distribution for cancerous LNs is broader than that for the non-

cancerous LNs. However, the GA distribution is likely to describe the statistics of ROIs of non-

cancerous LNs marginally better than the GE distribution as indicated in Figs. 3.4(d), 3.4(e), and

3.4(f).

Regarding the statistics of the envelope of the HFU data acquired in the PNF layer at the focal dis-

tance, Fig. 3.5(a) presents a box plot of the KS metrics for PNF ROIs centered at the focal distance

of the 99 LNs. The GG distribution again shows the best fit by providing lowest KS metrics. The

median of KS metrics of the GG distribution for PNF is 0.034 which is much higher than that for

the LNP. The data summarized in Fig. 3.5(c) show that the NM distribution outperforms the other

7 distributions (excluding the GG distribution) by best describing the statistics of 46.8% of the

PNF ROIs. Nevertheless, the distribution of the KS metrics of the NM, WE, NA distributions are
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Figure 3.4: KS metrics for LNP ROIs of 12 cancerous LNs (a-c) and 24 non-cancerous LNs (d-f).
The ROIs are centered at different depths: (a, d) 11.2 mm; (b, e) 12.2 mm; (c, f) 13.2 mm.

relatively similar as presented in Fig. 3.5(a). The WE distribution is superior to the NM and NA

distributions because it has the lowest KS-metric median. The KS metrics for PNF ROIs centered

at different depths, 11.2 mm, 12.2 mm and 13.2 mm are shown in Fig. 3.6. While the GG distri-

bution always outperforms the other distributions, the NM distribution is fairly good at the focal

distance, that is when the 75th percentiles of the KS metrics of the GA distribution are the worst of

the three 75th GA percentiles. Away from the focal distance, apart from the GG distribution, the

WE, GA and GE distributions provide reasonable alternatives as shown in Figs. 3.6(a) and 3.6(c).

The statistics of the envelope data obtained from the NS at the focal distance are best modeled by

the WE and GE distributions (when the GG is excluded) as 48.1% and 47.2% of the NS ROIs,

respectively, as shown in Fig. 3.3(d). The NA and GA distributions best describe the statistics

of 2.4% and 2.1% of the ROIs. The same result is illustrated in Fig. 3.5(b), whereas the GG

distribution obtains the best fit with the lowest median value of the KS metric (0.012), followed by

the WE and GE distributions. To examine the envelope statistics for HFU data in NS at different

depths, the KS metrics for the NS ROIs centered at the depths of 11.2 mm, 12.2 mm, and 13.2 mm,



38 Statistical Modeling of High-frequency Ultrasound Data from Human Lymph Nodes

(a) (b)

10
−2

10
−1

GG GE GA LL WE LM NA RA NM
10

−3

10
−2

10
−1

GG GE GA LL WE LM NA RA NM

Figure 3.5: KS metrics for PNF (a) and NS (b) ROIs centered at the focal distance of the 99 LNs.

Table 3.2: Distributions best describing the envelope of HFU data as assessed using the KS metric.
From left to right the distributions are listed in the order of descending accuracy.

Medium Best-fit distributions
LNP GG > GA> GE > WE
PNF GG > WE > GA/NA > GE
NS GG > WE > GE > NA/GA/RA

respectively, are shown Figs. 3.6(d), 3.6(e) and 3.6(f). In the descending order of fitting accuracy,

the GG, WE, GE, NA, GA, and RA distributions best model the statistics of the NS data. This

is true at all the depths considered. Ideally, the NS region contains no scatterers so statistics are

anticipated to be those of the noise. Table 3.2 summarizes the distributions that best model the

three media encountered in LN data ranked according to their relative accuracy as assessed using

the KS metric.

Figure 3.7 shows the experimental PDFs for two representative ROIs corresponding to LNP and

NS media, as well as their best estimated PDFs and the associated KS metrics. The GG and GA

distributions fit the experimental envelope of the LNP and NS very well in both tails as illustrated

in Fig. 3.7(a) and 3.7(b).

3.3.2.2 Parameter Examination

The SNR of the envelope of all LNP ROIs are less than 1.91 (SNR = 1.50± 0.16). This result

indicates that the PDF of the LNP envelope satisfies the pre-Rayleigh condition.

Because the GG distribution best models the envelope data of the LNP, PNF and NS, an examina-
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Figure 3.6: KS metrics for PNF ROIs (a-c) and NS ROIs (d-f) of the 36 LNs. The ROIs are
centered at different depths: (a, d) 11.2 mm; (b, e) 12.2 mm; (c, f) 13.2 mm.
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Figure 3.7: Experimental envelope PDF from representative LNP ROI (a) and NS ROI (b). Fits
and associated KS metrics are shown for the best-fitting distributions.
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Figure 3.8: The relation between two shape parameters (GG-a, GG-c) of the GG distribution for
different media. The correlation coefficients between GG-a and GG-c are also indicated.

tion of its parameters is worthwhile. As presented in Sect. 3.2, the GG distribution has a single

scale parameter (GG-b) and two shape parameters (GG-a, GG-c). GG-b was not included in the

study because it strongly depends on attenuation and examined depth. Depending on the values

of the two shape parameters, the GG distribution may include RA (c = 2, a = 1), exponential

(c = 1, a = 1), NA (c = 2), WE (a = 1), GA (c = 1), and LM (a→ ∞) distributions. Figure

3.8 shows the relationship between the two shape parameters of the GG distribution for the three

media. ROIs at the focal zone of 18 cancerous LNs and 81 non-cancerous LNs were considered.

Figure 3.8 indicates high correlations between the two shape parameters for the three media. As

GG-a increases, GG-c decreases considerably. As shown in Fig. 3.8(a), GG-c never reaches the

value of 2; this means that among the family of the GG distribution, the RA and NA distributions

do not model the envelope data of LN parenchyma well, as reported in the previous subsection.

Fig. 3.8(a) also shows a large overlap between the two shape parameters of cancerous LN ROIs

and non-cancerous LN ROIs except when the GG-a parameter is greater than approximately 10.

Therefore, using the two shape parameters to characterize between cancerous and non-cancerous

LN ROIs can be expected to be ineffective. Nevertheless, Fig. 3.8 illustrates that the ranges of
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values of the two shape parameters are different from one media to another but those ranges do

overlap considerably.

3.3.2.3 Poor Modeling for Saturated Perinodal Fat Data

Although, among all the other distributions, the GG and WE distributions best model the statistics

of PNF, their fitting accuracy is rather low as shown by the fact that the KS metric values are higher

for PNF relative to like-cases for LNP and NS. The reason for this poorer fitting can be understood

upon examination of the complicated experimental data-envelope distribution typical for data from

the PNF as shown in Fig. 3.9(b). This irregular distribution results from the saturation occurring

during digitization. During the acquisition, US system settings were optimized to acquire high

quality RF signals in the LNP. Because PNF surrounding the LNP has a higher echogenicity than

the LNP, its RF signals digitized using the 8-bit A/D board were partly saturated. This is demon-

strated in Fig. 3.9(a) which displays the histogram of RF data from a region of interest (ROI)

of the PNF medium. As a result of signal saturation, the envelope distribution in PNF becomes

artificially multimodal with spurious peaks originating from the saturation effects on the Hilbert

transform (Fig. 3.9(b)). Furthermore, in the PNF, the correlation coefficients between the percent-

age of saturated voxels in the HFU data and the KS metrics of the GG, WE and GA distributions

are 0.70, 0.79 and 0.95, respectively. In particular, the KS metric values increase significantly as

the percentage of saturated voxels in the HFU data increases. Therefore, it is necessary to restore

the RF saturated values, which occurred predominantly in the PNF medium, to their true values

because a unimodal distribution cannot properly model the distribution of saturated envelope data

from PNF.

3.4 Restoration of Saturated Data

3.4.1 Smoothing Spline Restoration

In order to recover the saturated values, a smoothing cubic spline function, g, [82, 83] was con-

structed for each 1D RF signal , s, along the sound propagation direction to closely approximate

non-saturated samples, and, thus, to restore RF signals. Suppose that among the sequence of N

sampled values s(t j) with j ∈ {1, . . . ,N}, NJ samples were not saturated and N−NJ samples were
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Figure 3.9: The effect of the pre-processing step on histograms describing the data from PNF.
Histograms of envelope data from a ROI in the PNF medium for the original saturated RF data (a)
and for the corresponding envelope data (b). After pre-processing with λ = 0.9, the histograms are
(c) and (d) for the RF and envelope, respectively. The red curves designate the fit GA distributions

for the envelope data before (b) and after (d) restoration of saturated RF samples.
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saturated. By denoting J the subsequence of non-saturated samples and J the subsequence of sat-

urated samples, each index j ∈ {1, . . . ,N} belongs either to J or J. On each interval delimited

by two consecutive, non-saturated samples, the cubic spline function, g, agrees with a 4th order

polynomial. By construction [82, 83], the smoothing spline function, g, has a continuous second

derivative and was found by minimizing the penalized residual sum of squares (RSS)

RSS(g,λ ) = λ ∑
j∈J

(s(t j)−g(t j))
2 +(1−λ )

ˆ +∞

−∞

|g′′(t)|2dt, (3.10)

where λ ∈ (0,1] is a weighting and smoothing parameter. The first term is a loss function encour-

aging g to fit the non-saturated samples well. The second term penalizes the square of the second

derivative of g. By decreasing the value of λ from 1 to 0, g gets smoother. As a result, when

λ = 1, g interpolates the non-saturated samples, and when λ tends toward 0, g tends toward the

linear least-squares fit of the non-saturated samples.

By changing the smoothing parameter, λ , and observing the KS metrics obtained in the envelope

data of the PNF medium, the minimum of the KS metrics was obtained when the λ value was equal

to 0.9. After applying restoration step, the envelope distribution in the PNF became a unimodal

distribution as illustrated in Fig. 3.9(d) because the saturated RF values were recovered effectively

as shown in Fig. 3.9(c).

3.4.2 Distributions Best Describing the Restored Data

Once the data were restored for saturation effects, the distributions best describing the data were

once again examined. Fig. 3.10 presents the KS metrics estimated within ROIs located in PNF at

the focal depth. Relative to fits obtained prior to data saturation, the KS metrics for the GG, GA

and WE distributions were significantly decreased. Specifically, the p values estimated according

to three Wilcoxon paired, signed-rank tests of KS metric values estimated from data before and

after preprocessing for three distributions were less than 10−14. The GG still provided the best

fit for the PNF envelope distribution, whereas the GA and WE distributions achieved comparable

fitting accuracy (Wilcoxon paired, signed-rank test, p = 0.06).
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Figure 3.10: GG, GA and WE KS metric values of PNF envelope data from ROIs centered at the
focal distance. The envelope was computed from the original RF signals or the RF signals after
restoring the saturated samples. The asterisks *** indicate a p-value estimated according to the

Wilcoxon paired, signed-rank test lower than 0.001.

3.5 Discussion and Conclusions

This work evaluates the statistics of 3D HFU envelope-signal data obtained from dissected human

LNs. The results of the study indicate that the GG distribution best models the three different

media (LNP, PNF and NS) interrogated during volumetric scanning because it produces the lowest

values of the KS metric. The two shape parameters, GG-a and GG-c, of the GG distribution

improve the fit of the heavier tails of the experimental PDFs. The GG distribution includes many

distributions commonly used to characterize the speckle: gamma, Weibull, Nakagami, Rayleigh,

exponential and lognormal. Therefore, it has all the advantages of these distributions. Although

some differences exist between the two sets of shape parameters for the GG distribution, they

present significant overlap between cancerous and non-cancerous LN ROIs. Thus, use of these

shape parameters for characterization of LN types could be investigated further, but at present,

such an approach seems to be of limited interest. The GG distribution has three parameters, and

the high correlation between its two shape parameters (GG-a, GG-c) means that the envelope data

could be effectively modeled by a 2-parameter distribution. Furthermore, the parameter estimation

of the GG distribution is computationally expensive. Hence the use of the GG distribution in

segmentation is not attractive. Alternatively, the two-parameter GA distribution also well described

the envelope statistics for LNP data (as shown in Figs. 3.2–3.4). Its parameters can be estimated

more efficiently than for the GG. Therefore, the GA distribution could provide a good option for
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modeling the signal from LNP.

Closer examination of the physical interpretation of the distribution statistics can help understand

why the Rayleigh distribution does not describe the data adequately. In ultrasound imaging, echo-

signal envelope data statistics are described well by the Rayleigh distribution only when every

resolution cell contains a large number of identical scatterers that are randomly and uniformly

distributed. We applied our previously reported method [2] to estimate the two parameters (the

effective number of scatterers, µ , per resolution cell and the ratio, k, of the coherent to diffuse sig-

nal) of the homodyned-K distribution for the 967 LNP ROIs centered at the focal distance (without

compensation for attenuation). The average value of µ was 1.04 for cancerous LN, and 1.81 for

non-cancerous LN. These values for the effective number of scatterers are too small (much smaller

than 10 [44, 45]) to provide typical Rayleigh behavior and is consistent with the observed pre-

Rayleigh behavior (SNR = 1.50±0.16). Furthermore, the average value of k was determined to be

on the order of 0.57. This implies the existence of a non-negligible coherent signal, which is not a

typical feature for data satisfying the Rayleigh conditions. The small number of effective scatterers

per resolution cell may be partly driven by small resolution cell size (9.08×10−4 mm3) obtained

with the HFU imaging system. Although the tissue structures associated with the coherent signal

have not been specifically identified, LNs are known to have a complex structure, and elements of

this structure may contribute to producing speckle statistics that do not conform to the Rayleigh

distribution. LN can be considered to be “kidney shaped” with an outer cortical layer surrounding

an inner core of parenchyma and a central fatty hilum region. The cortex consists of numerous af-

ferent lymph ductules and intertwined capillaries. These eventually converge toward small efferent

ducts and blood vessels. Therefore, acoustic response from structures with very different scattering

properties can be anticipated. Moreover, echoes from spatially extended structures such as the ef-

ferent vessels in the LNs may be strongly correlated (spatially coherent scattering). Clearly, to the

extent that the different structures in the LN are scatterers, their sizes tend to change and increase

toward the hilum. Furthermore, their orientations may depend on location within the node. Hence

the scattering properties within a ROI may vary over the ROI and be dependent on the size and

location of the ROI. This diversity of scatterers and their properties within the ROI may result in

multiple distributions in the envelope statistics being expressed.

To describe the statistics of the envelope of the HFU in PNF, the WE distribution initially appeared

to be the most appropriate as shown in Section 3.3.2.1. Although the GG and WE distributions
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modeled the envelope data from PNF better than the remaining distributions, their fitting accuracy

was not very good due to the complicated experimental PDF caused by saturation of the HFU echo

signals from the PNF layers. Therefore, a restoration method based on smoothing-cubic spline

was developed to restore saturated RF values which occurred mostly in the PNF medium. This

step was necessary to recover a unimodal distribution. Once restored, the envelope data from

the PNF was well-modeled by the GA distribution. To the best of our knowledge, constructing

a smoothing-spline approximation to restore the saturated points in US data is novel. Previous

work in the literature directs more attention to identifying statistical models that fit saturated [63]

or left-censored US (linear or log-compressed envelope) data well [84] because the true values

of saturated signals were considered to be lost. Note that the GE distribution modeled the statis-

tics of the envelope data well for saturation-restored PNF as well as LNP. Nevertheless, the GE

distribution is not a good candidate for incorporation in segmentation techniques because of the

complicated expression for the PDF and the time-consuming estimation of parameters required to

fit this expression.

For envelope data from regions within the NS, the WE provided best accuracy. The GA distribu-

tion performed next best for the characterization of statistics for data from NS. The NA and RA

distributions also demonstrate an ability to model the statistics of the NS as shown in Fig. 3.7(c).

In the NS, the KS metric is independent of the depth because the recorded signal in this medium

were due to the noise from the acquisition system and not to backscattered echoes from scatterers.

In conclusion, based on these findings, the statistical distributions that appear to be the most

promising to describe the envelope data adequately with minimal calculation time are the GA

for LNP and PNF, and the WE or GA for the NS. For initial development of the segmentation

method, the GA distribution can be selected to model the envelope data of the three media of LN

envelope data because of its high fitting accuracy, its analytically less complex PDF expression,

and its closed-form expression for parameter estimation. This provided a solid starting point for

subsequent work to incorporate the statistics of the data from the three media into robust algorithms

for segmentation of HFU data from human LNs.



Chapter 4

Local Region-based Gamma Distribution

Fitting Segmentation Method1

4.1 Introduction and Literature

Segmentation is an important step in ultrasound (US) data analysis. Its main objective is to par-

tition data into different regions in order to identify regions of interest for facilitating subsequent

analyses or to allow the visualization of anatomical structures such as cardiac chambers, fetus,

etc. Manual segmentation is subjective, tedious, and time-consuming, and automation of this task

is highly desirable, especially for analysis of 3D data sets or dynamic image sequences. Never-

theless, automatic segmentation of US data faces many challenges, such as low contrast, lack of

explicit boundaries, speckle and intensity inhomogeneities.

Speckle, depending on the density and the spatial distribution of sub-wavelength scattering struc-

tures, gives ultrasonic images their characteristic granular appearance. In Chapter 3, the gamma

distribution has been found to be the best choice for statistical modeling of the envelope of the

radio frequency (RF) echo signals acquired from human lymph nodes (LNs). Note that the gamma

distribution has been previously introduced to model data distributions of blood and tissue in clini-

cal B-mode cardiac images [58], and echo envelope distributions of blood and myocardial regions

in echocardiographic images [59]. Throughout this chapter, we use the term “intensity” to refer to

either the envelope of RF signals or the gray-scale level of clinical B-mode images. In US imaging,

intensity inhomogeneities may be caused by variations in the tissue structure and/or the presence of

several tissue types. Other, significant sources of intensity inhomogeneity with imaged depth arise

1This chapter is adapted from Thanh M. Bui, Alain Coron, Jonathan Mamou, Emi Saegusa-Beecroft, Eugene
Yanagihara, Junji Machi, Alexandre Dizeux, S. Lori Bridal, and Ernest J. Feleppa, “Level-set segmentation of 2D
and 3D ultrasound data using local gamma distribution fitting energy”, IEEE International Symposium on Biomedical
Imaging: From nano to macro (ISBI), New York, USA, pp. 1110-1113, 2015 [85]
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due to acoustic focusing and attenuation. These depth-dependent effects are particularly important

at high US frequencies (> 15 MHz).

4.1.1 A Short Literature Review on Ultrasound Segmentation

Several segmentation methods have been developed for application to a number of clinical chal-

lenges and extensive reviews can be found in [41, 86, 87]. Various researchers have focused on

employing Bayesian models to formulate a posterior energy function consisting of data likelihood

(using parametric models of intensity distributions) and priors (e.g., shapes, spatial and/or tem-

poral smoothness constraints). After estimating the parameters of the posterior energy function

using stochastic or deterministic algorithms, segmentation results can be obtained. Xiao et al. [88]

adapted the statistical method of [89] to segment B-mode clinical breast and cardiac US images

in the presence of intensity inhomogeneity. The method employed maximum a posteriori (MAP)

and Markov random field (MRF) methods to estimate the US image distortion field while label-

ing image regions based on the corrected intensity statistics. However, the US intensities were

modeled by the Gaussian distribution. Boukerroui et al. [90] formulated a Bayesian MRF model

to obtain an energy function consisting of a data fidelity term and a smoothness constraint to ad-

dress the segmentation problem of 2D breast US data and echocardiographic sequences (2D + T).

This model extended their previous work [91] by introducing a weighting function into the energy

function to balance the local and global statistics in the image. The energy was then minimized

using the iterated conditional mode algorithm. The conditional density distribution of the observed

grey-scale intensity was also assumed to be Gaussian. Working on more-sophisticated statistical

distributions, Destrempes et al. [92] proposed the use of a mixture of three Nakagami distribu-

tions to model three media, namely the intima-media layers, lumen and adventitia, to segment

the intima-media thickness of carotid arteries based on the US B-mode image. The mixture pa-

rameters were estimated using an expectation maximization algorithm under the assumption that

observations were independent. Then the MAP approach was employed to obtain the posterior

distribution of the data likelihood acquired from the mixture of Nakagami and priors based on a

geometric constraint, an anatomical prior and a temporal constraint. The final segmentation result

was found by computing the posterior distribution iteratively using the exploration/selection algo-

rithm. Depending on initialization, an optimal solution could be obtained. To segment lesions in

multiple-tissue 2D and 3D HFU skin images acquired in vivo, a Bayesian algorithm combined with
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a Markov chain Monte Carlo method was proposed by Pereyra et al. [93]. The likelihood was built

using a heavy-tail generalized Rayleigh mixture to model multiple-tissue images, while the prior

was based on the MRF to take into account the spatial correlation inherent in biological tissues.

The posterior distribution of the Bayesian model was sampled using a hybrid Metropolis-within-

Gibbs sampler to estimate the model parameters. More recently, Hansson et al. [84] formulated

a Bayesian model for determining the position of the endocardium in clinical B-mode US cycles.

The map describing the probability of pixels being classified as endocardium was constructed by

using the Gibbs method to sample a posterior distribution. To obtain the posterior distribution,

the data likelihood was formulated by using a gamma mixture model to handle artifacts resulting

from left-censoring of the US clinical B-mode images; the spatial and temporal smoothness, and

preferred shapes and position were considered as priors.

The iterative nested graph cut (NGC) method has also, very recently been proposed for segmenta-

tion of colorectal LN envelope data [94]. The method consisted of two steps: segmentation using

NGC and distribution-parameter estimation. The NGC technique extended the graph cut frame-

work to exploit the nested relationship of the three media, i.e., LNP is contained inside PNF and

both media are within NS. The technique required the minimization of an energy function con-

sisting of a length term (boundary smoothness constraint) and a data term. The data term was

computed based on the use of the Gaussian distribution to model the intensity distribution of data

within each media. In the distribution parameter estimation step, to account for the acoustic atten-

uation and focusing effects, a spline-based curve fitting was used to estimate the depth-dependent

mean and variance parameters of the Gaussian distribution. Segmentation results were obtained

by iterating between the two steps until convergence (about 5 iterations).

Deformable models including parametric [95–98] and geometric [99–102] models have proven to

be powerful image-segmentation techniques. Geometric deformable models implemented using

level-set methods have advantages over parametric models because of their ability (1) to handle

topology changes automatically, (2) to remove the issue of contour parameterization and control-

point regridding and (3) to facilitate implementation [103]. In contrast to the use of local edge

information (gradient) to attract a contour toward the object boundaries as in edge-based meth-

ods, the statistical region-based methods evolve the contour by fitting statistical models to data

within each of the separated regions. As a result, statistical region-based segmentation methods

are far less sensitive to noise and initialization because fewer undesired local minima exist in their
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cost functions [103]. By adapting the fundamental work of Chan and Vese [100] to segment fetal

echography and echocardiography US images, Sarti et al. [101] proposed a region-based level-

set method that employed the Rayleigh probability density function (PDF) to model the speckle

statistics in US data. Segmentation was performed by minimizing an energy function formulated

from Rayleigh PDFs of the gray levels of the images and a smoothness constraint. The method,

however, assumed that data in each segmented region are homogeneous (i.e., that data statistics

are spatially invariant). Furthermore, more-precise statistical distributions [55, 67, 104] than the

Rayleigh distribution have been proposed to model the US envelope data. Integrating appropriate

intensity distributions (e.g., exponential family [105, 106]) into the development of segmentation

methods was demonstrated to improve segmentation accuracy when applied to noisy images. To

segment the utero-fetal unit from 3D US data, Anquez et al. [63] proposed a region-based level-set

method that used the MAP approach to formulate an energy function. The energy function is com-

prised of a smoothness constraint prior and a likelihood obtained by modeling data statistics with

tissue-specific intensity distributions to separate the amniotic fluid (modeled by an exponential or

Rayleigh distribution), from maternal and fetal tissues (modeled by a normal distribution). The

gamma distribution was also introduced as a generic model that could be used for all tissue types.

Because the data statistics are computed in a global way (i.e., using data from the whole inner or

outer regions), the method can fail or provide inaccurate segmentation results when the regions are

inhomogeneous. Therefore, Dahdouh et al. [107, 108] introduced an additional shape prior for the

fetus envelope and a shape model of the fetus’ back to improve the robustness of the segmentation

method.

Alternatively, several techniques based on local statistics [85, 109–112] have been proposed to

deal with the intensity inhomogeneity present in images. Lankton [110] proposed a framework

that allows the localization of any region-based segmentation energy. In this framework, the op-

timal partition is found by allowing the contour to evolve towards a local minimum of the energy

function as formulated by integrating data statistics that are computed locally in a circular region

around each pixel of interest. By inserting three kinds of energies into the framework, and with

an appropriate initialization, the method has been successfully applied to segmenting real-world

and MRI images in the presence of inhomogeneities. Nevertheless, the computation load of this

technique is more expensive than that of methods based on global statistics. Barbosa et al. [113]

proposed an efficient framework for real-time segmentation of 3D, inhomogeneous, echocardio-
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graphic data and computer tomography liver tumor images. By sacrificing topology flexibility, the

framework uses B-spline explicit active surfaces to recover objects from 3D data. This enables a

contour to evolve by using global and local region-based segmentation energies.

Li et al. [109] proposed a region-based, active-contour model to segment images with intensity

inhomogeneity by introducing a kernel function to define a region-scalable fitting energy function.

By integrating the weighted averages (means) of the image intensities in the window specified

by a Gaussian kernel with a localization property, the model was able to segment images in the

presence of intensity inhomogeneity. To segment images with strong noise or different textures,

Wang et al. [111] extended Li’s model by using Gaussian distributions with different means and

variances to model the local intensity distributions (specified by the Gaussian’s kernel). However,

the assumption that local image intensities are described by Gaussian distributions does not account

well for the range of intensity distributions encountered in US data where envelope and clinical

B-mode data are more-appropriately modeled by the gamma distribution [55, 58, 59, 63].

4.1.2 Our Contribution

Inspired by Wang and Li’s Gaussian-based model, we investigated a novel segmentation method

and applied it to 2D and 3D US data. The method employs the gamma distribution to model

local US intensities specified by the mollifying kernel. The gamma-distribution parameters are

estimated efficiently using the method of moments. This method performs well in the presence

of ultrasonic speckle and sources of regional intensity inhomogeneities. Furthermore, both 2- and

3-phase methods can be implemented. Segmentation performance was evaluated using simulated

envelope data, 2D clinical B-mode images obtained from murine tumors, and 3D envelope data

acquired from human lymph nodes (LNs).

4.2 Proposed Segmentation Method

4.2.1 Two-phase Level-set Formulation

Let Ω be a bounded open subset of RN , N = {2,3}, and let I : Ω→R denote a N-dimensional image

to segment. We present a local region-based gamma distribution fitting (LRGDF) segmentation
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method that takes into account the statistical properties of US data and deals with the intensity

inhomogeneities. We first describe the 2-phase method and then extend it to 3 phases needed

for segmentation of the LN data. To derive a contour (curve in 2D and surface in 3D) evolution

equation for energy minimization, we employ the level-set method that represents the contour

(boundary) implicitly by the zero level of a function φ : Ω→ R. The sign of φ (x) defines two

regions: Ω1, where φ (x) > 0; and Ω2, where φ (x) < 0. The boundary between Ω1 and Ω2 is

implicitly defined as φ (x) = 0. We define the following energy function:

E (φ) =

ˆ
Ω

ˆ
Ω

Kρ (x−y)

[
−

2

∑
i=1

λiMi (φ (y)) ln pi (I (y) ;θi (x))

]
dydx+µ

ˆ
Ω

|∇H (φ (x))|dx,

(4.1)

where µ,λi ∈R+ are weighting parameters; M1 (φ (y)) = H (φ (y)), M2 (φ (y)) = 1−H (φ (y)) are

membership functions corresponding to the two regions; H is the Heaviside function. The pi (.) is

the probability density function (PDF) of the gamma distribution modeling the intensities in local

regions. As presented in Chapter 3, the gamma PDF is expressed as p(I;θ) = 1
baΓ(a)I

a−1 exp
(
− I

b

)
,

where θ = (a,b) are shape and scale parameters.

In the energy function (Eq. 4.1), the kernel, Kρ (x−y), is used to specify the local region centered

at x. The kernel Kρ (u) is a nonnegative scalar function with the following properties [109]:

1. Kρ (u) = Kρ (−u);

2. Kρ (u)> Kρ (v) if |u|< |v|, and lim|u|→∞ Kρ (u) = 0;

3.
´

Kρ (x)dx = 1.

We employ the mollifying kernel expressed as Kρ (u) = A
ρ2 exp

[
−1/

(
1−
∣∣∣ u

ρ

∣∣∣2)], if |u| ≤ ρ

and zero elsewhere, u ∈ RN , ρ > 0 is a scale parameter; the constant A > 0 is selected so that´
Kρ (u)du = 1. The kernel Kρ (u) has compact support |u| ≤ ρ (i.e., it is zero outside the com-

pact set |u| ≤ ρ).

Note that the energy function Eq. 4.1 in our work is different from the energy defined by Wang

et al. [111]. In Eq. 4.1, pi (I;θ) is the gamma PDF used to model the local intensity distribution

instead of the Gaussian PDF. In addition, Kρ (x−y) is the mollifying kernel which is different from

Gaussian kernel used in [111]. The mollifying kernel has better localization property and has been

demonstrated to handle intensity inhomogeneities slightly better than the Gaussian kernel [114].
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The minimization of the energy function (4.1) corresponds to two minimization tasks: minimiza-

tion of E with respect to θ1 and θ2 (with a fixed φ ), and minimization of E with respect to φ

(with fixed θ1 and θ2). The first minimization yields the maximum likelihood (ML) estimate of

the PDF parameters within the local regions. Because the ML approach does not provide a closed

form solution to estimate the two gamma distribution parameters, the method of moments [115]

was employed to acquire the closed form without significantly affecting the estimation accuracy

as âi (x) = m̂i(x)2

v̂i(x)
, b̂i (x) = v̂i(x)

m̂i(x)
, i = 1,2, where m̂i (x) and v̂i (x) are computed as follows:

m̂i (x) =
´

Kρ (y−x)I(y)Mi(φ(y))dy´
Kρ (y−x)Mi(φ(y))dy ,

v̂i (x) =
´

Kρ (y−x)I(y)2Mi(φ(y))dy´
Kρ (y−x)Mi(φ(y))dy − m̂i (x)2 .

(4.2)

The minimization of E with respect to φ is implemented using the standard gradient descent

method by solving the evolution equation (see Appendix A for detailed derivation):

∂φ

∂ t
= δ (φ (x))

[
λ1e1 (x)−λ2e2 (x)+µdiv

(
∇φ (x)
|∇φ (x)|

)]
, (4.3)

where

ei (x) =
ˆ

Ω

Kρ (y−x) ln pi
(
I (x) ; θ̂i (y)

)
dy, (4.4)

and δ is the Dirac function.

In (4.3), the term, δ (φ (x))(λ1e1 (x)−λ2e2 (x)), plays the key role in the segmentation model,

since it drives the contour toward object boundaries. The second term is used to maintain the

regularity of the contour.

4.2.2 Multiphase Level-set Formulation for Lymph Node Segmentation

4.2.2.1 Energy Function and Evolution Equations

A multiphase approach is implemented to allow simultaneous segmentation of more than 2 ob-

jects [116, 117]. Two or more level set functions φ1,φ2···φk are used to make a definition of N

membership functions Mi of regions Ωi, i = 1,2 · · · ,N, such that Mi (φ1 (y) ,φ2 (y) · · ·φk (y)) equals

1 where y ∈ Ωi, and zero elsewhere. To segment 3 media (i.e., LN parenchyma (LNP), perinodal

fat (PNF), and normal saline (NS)) in the LN envelope data acquired from dissected human LNs,
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we use two level set functions φ1 and φ2 to define 3 membership functions, M1 (φ1 (y) ,φ2 (y)) =

H (φ1 (y))H (φ2 (y)), M2 (φ1 (y) ,φ2 (y)) = (1−H (φ1 (y)))H (φ2 (y)) and M3 (φ1 (y) ,φ2 (y)) = 1−

H (φ2 (y)), corresponding to the three regions. The gamma distribution is used to model the en-

velope data in LNP, PNF and NS regions. The energy function E (φ1,φ2,θ1,θ2,θ3) is expressed

as:

E (φ1,φ2,θ1,θ2,θ3) =

ˆ

Ω

ˆ

Ω

Kρ (x−y)

[
−

3

∑
i=1

λiMi (φ1 (y) ,φ2 (y)) ln pi (I (y) ,θi (x))

]
dydx

+
2

∑
k=1

µk

ˆ
Ω

|∇H (φk (x))|dx. (4.5)

The parameters are estimated as presented in Section 4.2.1 and the final segmentation result is

found by solving the gradient flow equation as follows (detailed derivation is presented in Ap-

pendix A):


∂φ1
∂ t = δφ1 (x)

[
H (φ2 (x))(λ1e1−λ2e2)+µ1div

(
∇φ1(x)
|∇φ1(x)|

)]
,

∂φ2
∂ t = δφ2 (x)

[
H (φ1 (x))(λ1e1−λ2e2)+λ2e2−λ3e3 +µ2div

(
∇φ2(x)
|∇φ2(x)|

)]
,

(4.6)

where e1, e2 and e3 are computed as in (4.4).

4.2.2.2 Numerical Implementation and Initialization

For numerical implementation, the Heaviside and Dirac delta functions were replaced by their

smoothed versions, Hε (x) and δε (x) [109] given by:

Hε (x) =
1
2

[
1+

2
π

arctan
( x

ε

)]
, (4.7)

δε (x) = H
′
ε (x) =

1
π

[
ε

ε2 + x2

]
. (4.8)

The estimation of the parameter of the gamma distribution and the computation of ei, i = 1,2,3

were implemented using convolutions as follows:

ei = ln(I)Kρ ∗ (âi−1)− IKρ ∗
(
1/b̂i

)
−Kρ ∗

(
âi ln b̂i + lnΓ(âi)

)
. (4.9)
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The convolution (∗) was implemented efficiently using the fast Fourier transform. The optimal

parameter sets for the two-phase and three-phase segmentation methods are λ1 = 1.0, λ2 = 1.04,

µ = 1.5, ρ = 12, and λ1 = 1.04, λ2 = 1.0, λ3 = 1.01, µ1 = 1.2, µ2 = 1.0, ρ = 0.4 mm, respectively.

A signed distance function of an ellipsoid centered at the center of the LN data was used to initialize

for φ1. To initialize automatically for φ2 identifying the NS region, an anisotropic filter [118]

and the Otsu thresholding algorithm were employed. To preserve the regularity of the level set

functions, they were reinitialized every two iterations by computing the signed distance function

map to their corresponding zero level set [63].

4.3 Evaluation Data and Methods

Reliable segmentation of tumors in clinical B-mode images is a critical step for monitoring tumor

vasculature during therapy. B-mode images were acquired with a Sequoia 512 (Siemens Medical

Solutions, Mountain View, CA) using a 15L8w linear-array transducer with a bandwidth of 8–15

MHz and a dynamic range of 80 dB.

The 2D, 2-phase LRGDF method was evaluated using twelve B-mode images of murine tumors.

The 3D, 3-phase LRGDF method was evaluated using the simulated data as described in Section

2.2 of Chapter 2 and a representative, experimentally acquired database of envelope data from 54

LNs (18 metastatic and 36 nonmetastatic LNs) from 38 colorectal-cancer patients. The success of

the segmentation method was quantified using the Dice similarity coefficient (DSC) [119]:

DSC =
2 |X ∩Y |
|X |+ |Y |

, (4.10)

where X and Y are, respectively, the automatic segmentation result and the reference result (the

ground truth data in case of the simulated data or the expert manual segmentation in case of the

clinical LN envelope data and B-mode images of murine tumor). The value of DSC is always

between 0 and 1, and a value of 1 indicates perfect agreement between the two results.

To further evaluate the LRGDF segmentation method, results of the 2-phase method on the twelve

2D clinical, B-mode images of murine tumor were compared with respect to those obtained by the

method proposed by Wang and Li et al. [111], which used the Gaussian distribution to model local

intensities specified by the Gaussian kernel. In addition, results obtained by the 3-phase LRGDF
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Figure 4.1: Segmentation results on B-mode images (80 dB dynamic range) acquired from murine
tumors. Initializations (upper row) and their corresponding final results (bottom row). The DSCs

of 3 images from left to right are 0.945, 0.882 and 0.936, respectively.

method on envelope data of 54 LNs were compared with those obtained by the SegGauss method of

Wang and Li et al. adapted for 3D, 3-phase version.

4.4 Results

The 2-phase LRGDF method successfully demarcated tumors in the B-mode images by providing

high DSC values. For the twelve B-mode images considered, the 2-phase method achieved a mean

DSC value of 0.915 ± 0.026 compared to the DSC value obtained with the Wang and Li et al.

method [111] of 0.896 ± 0.038. A few segmentation results are presented in Fig. 4.1.

On 20 3D simulated data sets, the average DSC values for LNP-like, PNF-like and NS-like regions

obtained by the 3D, 3-phase LRGDF method were 0.975 ± 0.003, 0.919 ± 0.003 and 0.980 ±

0.001, respectively. To facilitate visual evaluation, Figure 4.2 presents segmentation results over-

laid on the log compressed B-mode images (40 dB dynamic range). As shown in Fig. 4.2, the three

regions are correctly delimited. Note that the signed distance functions of ellipsoids were used to

initialize two level set functions.

The 3-phase LRGDF method was used to segment 3D envelope data for 54 LNs dissected from

colorectal cancer patients. Fig. 4.3 shows a representative segmentation result overlaid on B-mode

LN data. Automatic segmentation with the 3-phase and SegGauss methods were compared with

manual segmentation by an expert using the DSC. The average DSC values for each method and
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Figure 4.2: Slices extracted from 3D data from the simulated LN data set show initializations (top)
and final segmentation boundaries (bottom) overlaid on corresponding B-mode display. Note that
the red curve is the boundary between LNP and PNF; the green curve is the boundary between

PNF and NS.

Table 4.1: The DSC (MEAN± STD) of the LRGDF method and the SegGauss method over 54 LNs
with the p-value estimated according to the Wilcoxon paired, signed-rank test.

Media LRGDF SegGauss P-value
LNP 0.920 ± 0.039 0.884 ± 0.082 < 10−5

PNF 0.806 ± 0.110 0.767 ± 0.108 < 10−5

NS 0.975 ± 0.009 0.968 ± 0.014 < 10−9

segmented zone are summarized in Table 4.1. Table 4.1 indicates that the LRGDF method out-

performs the SegGauss method. The Wilcoxon paired, signed-rank test indicated that the DSCs for

the segmentation of the three media with the LRGDF method were statistically significantly better

(p-value < 0.05) than those achieved with segmentation using the SegGauss method. Furthermore,

the LRGDF method ran faster than the SegGauss method. Specifically, for the 54 LN data, the aver-

age execution time required to converge to the final result was 34.9±20.3 and 38.2±23.9 min for

the LRGDF and the SegGauss methods, respectively, with the average LN volume of 18,081,250

voxels. The segmentation methods were implemented in Matlab 7.12 (R2011a) without code opti-

mization and evaluated on a desktop computer with the Intelr Xeon(R) CPU E5-2643 at 3.3GHz.
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Figure 4.3: Three slices corresponding to three planes of a representative segmentation result
overlaid on the B-mode image of a nonmetastatic LN. The DSCs for LN parenchyma, PNF and

NS are 0.932, 0.855 and 0.981, respectively.

4.5 Discussion and Conclusions

These results show that the LRGDF segmentation method is robust to speckle noise in US data

because the gamma distribution models the local data statistics well. When modeling positive real

numbers, the gamma distribution will approximate the Gaussian distribution if its shape parameter

is large. Therefore, the LRGDF method provides a more generalized model that could be adjusted

to the special case of the local intensities distributed according to the Gaussian distribution [109,

111]. To demonstrate this point, Fig. 4.4 shows the results of the 2-phase LRGDF method applied

to segment vessels in an X-ray image (first row) as well as in MRI images of left ventricle (second

row) and tumor (last row). Although, the images present challenges such as weak boundaries, noise

and intensity inhomogeneities, the LRGDF method correctly segments the regions of interest.

To handle the characteristic intensity inhomogeneities of US data, the mollifying kernel, Kρ (u),



§4.5 Discussion and Conclusions 59

Figure 4.4: Results of the proposed method for segmentation of medical images (X-ray and MRI).
For each row, initialization (left) and final result (right).
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was employed to specify the local region statistics on a selected spatial scale. The choice of the

scale parameter ρ is important in characterizing the localization property of this mollifying kernel

because Kρ (u) is zero in
{

u ∈ RN : |u|> ρ
}

. When a small scale value ρ is selected, intensity in-

homogeneities are handled better; however, segmentation becomes more sensitive to initialization.

For larger value of ρ , the method is less dependent on initialization; however, intensity inhomo-

geneities can lead to incorrect segmentation results and computational cost is higher. We used the

“coarse to fine” scheme to determine an optimized ρ value of 0.4 mm for the LN data set.

In conclusion, we presented a LRGDF segmentation method that deals well with speckle noise in

US data and handles intensity inhomogeneities that typically are present in US data. The method

provides more-accurate segmentation than the SegGauss method when applied to our data sets.

Furthermore, the LRGDF method required less time to obtain final results because it converged

faster than the SegGauss method. However, results still depend on initialization. The execution time

significantly increases if initialization is too far from the correct boundary. Thus, future work will

investigate an improved, automatic initialization technique for the LRGDF segmentation method.

Although the LRGDF method executes faster than the SegGauss method, it is still computationally

expensive. Because the LN data were acquired with a high-frequency (HF), focused transducer, the

intensity inhomogeneities in the LN envelope data are mostly due to the attenuation and focusing

effects. Therefore, the data acquired from the same media within a limited axial depth (thickness)

are relatively homogeneous. This seminal characteristics of the HFU data can be taken into account

to develop a more efficient segmentation method. Chapter 5 will present an alternative solution to

do so.



Chapter 5

Statistical Transverse-slice-based Level-set

Segmentation Method1

5.1 Introduction

The LRGDF segmentation method presented in Chapter 4 was capable of segmenting ultrasound

(US) data in the presence of data inhomogeneities. The ability of the method relies on the fact that

it took into account the gamma statistics of data in local regions specified by the mollifying kernel.

Depending on the level of data inhomogeneities, the scale parameter of the kernel and thus the

kernel size can be adapted. For example, large scale parameters and kernel sizes make the method

less dependent on initialization but weaken the method’s ability to handle data inhomogeneities,

and the computational cost becomes heavy. Furthermore, estimating the gamma-distribution pa-

rameters in local regions was the most computationally expensive part of the method because each

local region required estimating its own set of parameters, and the number of local regions was

large, especially in 3D datasets.

Understanding how data are acquired is essential to understand the sources causing data inho-

mogneities and thus data characteristics. As presented in Chapter 2, to acquire high resolution data,

the lymph nodes (LN) were scanned using a single-element, spherically-focused, high-frequency

transducer. Because of focusing and attenuation effects, the data evolved significantly with imaged

depth, leading to the variability with depth of the statistical parameters of distributions modeling

the envelope data. Therefore, the LN envelope data are mostly inhomogeneous along the axial

1This chapter is adapted from Thanh Minh Bui, Alain Coron, Jonathan Mamou, Emi Saegusa-Beecroft, Tadashi
Yamaguchi, Eugene Yanagihara, Junji Machi, S. Lori Bridal, and Ernest J. Feleppa, “Local Transverse-slice-based
Level-set Method for Segmentation of 3D, High-frequency Ultrasonic Backscatter from Dissected Human Lymph
Nodes”, IEEE Transactions on Biomedical Engineering (Resubmitted after getting review with decision “Minor Revi-
sions”)

61
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direction (i.e., ultrasound beam direction) of the acquisition system. This important information

should be taken into consideration when developing a method for segmenting the LN data.

Based on the axial inhomogeneity of the HFU LN envelope data, we chose to modify the form of

the kernel used in the local-region based segmentation method developed in the previous chapter

so that, instead of considering spherical kernels throughout the LN volume, local homogeneity

was assumed within planes that were equidistant with respect to the ultrasound transducer. Thus

transverse-slice masks were introduced to take into account the characteristic depth-dependence of

HFU data. This statistical transverse slice based level-set (STS-LS) method provides segmentation

envelope of HFU data acquired from these LNs in 3D into three phases (i.e., LN parenchyma

(LNP), perinodal fat (PNF) and normal saline (NS)). This novel segmentation makes use of the

tissue-dependent statistical distribution of envelope data in each of the three media and handles the

depth-dependent nature of ultrasonic data by finding optimal statistical parameters for each tissue

type within each transverse slice. A new energy function was developed by incorporating gamma

distributions to model the three corresponding media (LNP, PNF, NS) in each transverse slice. The

gamma-distribution parameters were then estimated from each of the 3 media in each transverse

slice using the method of moments (MoM) as before. This refinement provided better efficiency

and effectiveness for simulated and LN envelope data compared to the global-energy [63] and

original Lankton region-based [110] segmentation methods.

5.2 Characterizing Spatial Variability of Lymph Node Enve-

lope Data

Because of strong diffraction of the spherically-focused transducer and significant attenuation at

high frequencies, the distribution parameters modeling the envelope data evolve significantly with

imaged depth. The aims of this section are to demonstrate and characterize the variability of

gamma-distribution parameters with depth in our data. Results are used to determine appropriately

transverse slices so that data from a single tissue-type in each transverse slice can be considered as

approximately homogeneous during subsequent segmentation.

Firstly, for each LN, fifteen non-overlapping, cylindrical ROIs with a length and diameter of 0.5

mm were extracted from manually-segmented LNP envelope data. The centers of the ROIs were
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Figure 5.1: Illustration of the extraction of ROIs to evaluate data inhomogeneity. (a) ROIs were
extracted from independent positions at fixed 12.2 mm depth to assess lateral inhomogeneity. (b)

ROIs were extracted along the sound propagation direction (axial direction).

located at a fixed depth as illustrated in Fig. 5.1(a). In each ROI, two gamma-distribution parame-

ters (shape-a, and scale-b) were estimated so that fifteen values for each parameter corresponding

to the fifteen ROIs were obtained. We then computed the sample mean, MEAN, and sample stan-

dard deviation, ST D, of the two gamma-distribution parameters over the 15 ROIs. These values

were used to calculate the relative standard deviation (RSD), RSD=
∣∣ ST D

MEAN

∣∣×100, to obtain RSDL
a

and RSDL
b for the parameters a and b (L stands for lateral direction). A lower percent RSD indi-

cates a lower variability in the parameter set estimated from different ROIs of the same LN. For

example, for each LN, RSDL
a was obtained from fifteen shape parameters, a, estimated from the

fifteen corresponding ROIs. In a similar way, the fifteen ROIs were extracted from independent

depths along the sound propagation direction (axial direction) as presented in Fig. 5.1(b). In a

similar way, the fifteen ROIs were extracted from independent depths along the sound propaga-

tion direction (axial direction) as presented in Fig. 5.1(b). In most LNs, we were able to extract

15 non-overlapped ROIs along the axial direction. In smaller nodes, the axial dimensions were

not sufficient for this to be done. In such cases, to reach 15 non-overlapped ROIs, we randomly

selected additional adjacent, non-overlapped ROIs but at the same depth. The centers of adjacent

ROIs were 1 mm apart which should be sufficient to provide independent data using the transducer

which has a lateral resolution at the focal zone of approximately 116 µm. RSDA
a and RSDA

b were

then computed for the two gamma-distribution parameters (A stands for axial direction).

Fig. 5.2 shows the RSD of the two parameters of the gamma distribution acquired from ROIs in

the LNP envelope data of 54 LNs. Fig. 5.2 indicates that:

1. The variability of the scale parameters (RSDL
b , RSDA

b ) is much larger than that of the shape

parameters (RSDL
a , RSDA

a ).

2. The scale parameters obtained from ROIs along the axial direction present higher variability
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Figure 5.2: The relative standard deviation (RSD) of the gamma-distribution parameters modeling
the LNP envelope data along the lateral (RSDL

a , RSDL
b) or axial (RSDA

a , RSDA
b ) direction over 54

LNs. The 18 metastatic LNs are outlined with a dashed rectangular border. Note that LN numbers
are arbitrary but consistent with Fig. 5.7.

than those along the lateral direction. Therefore, the data inhomogeneities along the axial

direction are more severe than those along the lateral direction such that envelope data lo-

calized within a transverse slice with an appropriate thickness would be less inhomogeneous

than data distributed across the depth of the LN.

3. The LNs with higher RSD values tend to be metastatic LNs. Thus, the acoustic speckle

in HFU data from metastatic LNs is generally more inhomogeneous than that from non-

metastatic LNs.

5.3 Segmentation Methods

In this section, we first summarize previous studies on region-based level-set segmentation meth-

ods and highlight their limitations when applied to the HFU data. We then describe our STS-LS

segmentation method and justify its feasibility on our data set.



§5.3 Segmentation Methods 65

5.3.1 Related Methods

Let Ω be a bounded open subset of R3, and let I : Ω→ R denote a 3D image to be segmented into

an inner region Ω1 and its complement Ω2. Anquez et al. [63] proposed solving the segmentation

problem by finding an optimal partition in the image domain. They employed the level-set frame-

work and the maximum a posteriori (MAP) approach to formulate the following energy function

that is minimized to obtain the segmentation result:

EG (φ ,θ1,θ2) =

ˆ

Ω

F (x, I,φ)dx+µ

ˆ

Ω

|∇H (φ (x))|dx, (5.1)

where the second term is the regularization term to keep the contour smooth. It can be noted that

the regularization term is equal to µ|C|, where |C| is the surface area of the contour boundary

C and µ is a weighting constant. The first term is the data fidelity term with an image crite-

rion F (x,φ , I) = −H (φ (x)) ln p1 (I (x) ;θ1)− (1−H (φ (x))) ln p2 (I (x) ;θ2), H is the Heaviside

function. The function φ : Ω→ R is the level-set function that implicitly represents the boundary

contour (curve in 2D and surface in 3D) as its zero level-set (φ (x) = 0). Specifically, the sign

of φ (x) defines the two regions: Ω1, where φ (x) > 0, and Ω2, where φ (x) < 0. Furthermore,

p1 (I (x) ;θ1) and p2 (I (x) ;θ2) are the probability density functions (PDF) modeling the intensity

distribution of data within the regions Ω1 and Ω2, respectively; θ1 and θ2 are the parameters of the

corresponding PDFs estimated in a global way (i.e., using the whole inner Ω1 and outer Ω2 regions

delimited by the contour).

Because the data fidelity term is computed in a global way, the method cannot handle data inho-

mogeneity (i.e., when data statistics vary spatially). In US imaging, data inhomogeneities may be

caused by variations in the tissue structure and/or the presence of several tissue types. Speckle

statistics may also evolve with imaged depth due to attenuation and acoustic focusing effects.

These depth-dependent effects are particularly important in HFU as analyzed in Section 5.2.

To handle intensity inhomogeneities, Lankton et al. [110] proposed a local region-based framework

reformulating segmentation energies in a local way. The localized region-based energy function to

be minimized is as follows:

EL (φ) =

ˆ

Ω

δ (φ (x))
ˆ

Ω

B(x,y)F (x,y, I,φ ,B)dydx+µ

ˆ

Ω

|∇H (φ (x))|dx, (5.2)
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where x= (x1,x2,x3) , y= (y1,y2,y3)∈Ω; F (x,y, I,φ ,B) is a local image criterion; B(x,y) repre-

sents a mask function used to specify local regions (neighborhoods) as shown in Fig. 5.3(a) where

local parameters driving the contour evolution are estimated. In other words, the parameters used

to compute the image criterion F (x,y, I,φ ,B) at each x are locally estimated in the data within

the mask specified by B(x,y).

It is worthwhile mentioning the energy functions proposed by Lankton et al. (Eq. (5.2)), Li et

al. [109], Wang et al. [111] and our work in Chapter 4 (Eq. (4.1)) are similar in that they all

take into account the properties of local inner and outer regions delimited by the zero-level of

the level-set function representing the boundary. The methods differ, however, with respect to

the ways by which the localization is specified and what kinds of image criteria are computed to

handle different kinds of data. For example, to specify localization, in Eq. (5.2), the mask function

B(x,y) is used; whereas Eq. (4.1) used the mollifying kernel function Kρ (u) with the property

that Kρ (u) decreases and approaches zero as |u| increases.

To compute the energy EL (φ) in Eq. (5.2), due to the presence of the δ (φ (x)) Dirac function,

only points near the contour are taken into account and intensity inhomogeneities arising far away

are ignored, so the framework demonstrates its ability to segment images with intensity inho-

mogeneities. Lankton’s framework is, however, more sensitive to initialization and also more

computationally expensive than methods based on globally computed energies.

Flexibility in the neighborhood size (size of the mask specified by B(x,y)) and the image criterion

(F (x,y, I,φ ,B)) provided in Lankton’s framework can be adapted for the segmentation of specific

types of data, e.g., HFU. The mask size can be adapted based on the scale of object(s) of interest

and the spatial scale of the data inhomogeneities. In the original paper [110], three kinds of image

criteria, F (x,y, I,φ ,B), including uniform modeling, mean separation and histogram separation

energies were considered. Yet, none of these criteria makes use of prior knowledge about US

speckle statistics.

5.3.2 Two-phase Statistical Transverse-slice-based Level-set (STS-LS) Method

The proposed STS-LS segmentation method is adapted from the localized energy function in Lank-

ton’s framework Eq. (5.2) modified with respect to the shape of the mask specified by B(x,y) and

the image criterion F (x,y, I,φ ,B). The method will first be developed in two phases and then
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extended to the three phases necessary for segmentation of the LN data. Unlike Lankton’s frame-

work that used a spherical mask in the image criterion (see Fig. 5.3(a)), we introduce an additional

mask BT for computing the image criterion. Furthermore, the gamma PDF is employed, and its

associated parameters are estimated within the new mask BT . The energy function is as follows:

EL (φ) =

ˆ

Ω

δ (φ (x))
ˆ

Ω

B(x,y)FS (x,y, I,φ ,BT )dydx+µ

ˆ

Ω

|∇H (φ (x))|dx. (5.3)

In our context, the mask function BT (x,y) = BT (x1,y1) specifies a transverse slice BT,x1 as pre-

sented in Fig. 5.3(b) and (c). Specifically, the transverse slice, BT,x1 , has the same length (second

dimension) and width (third dimension) as the image I and a thickness of h so that BT (x1,y1)

equals 1 where |y1− x1|< h/2 and zero elsewhere. Selecting a transverse slice provides efficiency

for the energy function calculation (Eq. (5.3)) because all points at the same depth and belonging

to the same medium are described by the same PDF distribution parameters. This efficiency is

directly associated with the data dimensionality, i.e., the higher the data dimensionality, the higher

efficiency will be gained when compared to the Lankton’s framework. In the energy function (Eq.

(5.3)), we kept a mask function B(x,y) but it deliberately specifies a small region Bx centered

at x for which B(x,y) = 1. The small region Bx was used to specify local regions around the

zero-level of the level-set function for which the image criteria were computed and summed up.

The image criterion FS (x,y, I,φ ,BT ) includes the log-probability of the intensity I (x) with pa-

rameter θi(y1) estimated for points y belonging to Bx:

FS (x,y, I,φ ,BT ) =−
2

∑
i=1

λiMi(φ(y)) ln pi (I(x);θi(y1)) , (5.4)

where M1 (φ (y)) = H (φ (y)), and M2 (φ (y)) = 1−H (φ (y)) are the membership functions. The

two positive constants, λ1, λ2, are introduced to weight the local interior and exterior energies. The

PDFs p1 (I (x) ;θ1 (y1)) and p2 (I (x) ;θ2 (y1)) are gamma PDFs. θi (y1) = (ai (y1) ,bi (y1)), i = 1,2,

are the local gamma-distribution parameters which are spatially varied according image depths.

The parameters of each PDF are estimated within the data specified by transverse slice and each
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membership function as follows :

θ̂i (y1) = argmin
θi(y1)

− ˆ
Ωi(y1)

BT (x1,y1) ln pi (I (x) ;θi (y1))dx

 . (5.5)

Because the maximum likelihood approach does not provide a closed-form expression for esti-

mating the gamma-distribution parameters, the MoM [115] is used to estimate the two gamma-

distribution parameters as âi (y1) =
m̂2

i (y1)
v̂i(y1)

, b̂i (y1) =
v̂i(y1)
m̂i(y1)

, where m̂i (y1) and v̂i (y1) are the sample

mean and sample variance estimated in local regions Ωi (y1), specified by the transverse slice and

the membership functions (i.e., H (φ) and 1−H (φ)), as follows:


m̂i (y1) =

1
|Ωi (y1)|

´
y∈Ωi(y1)

I (x)dx,

v̂i (y1) =
1

|Ωi (y1)|
´

y∈Ωi(y1)
(I (x)− m̂i (y1))

2 dx.
(5.6)

The minimization of EL (φ) with respect to φ (with fixed θi) can be achieved by taking the Euler-

Lagrange equation and updating the level-set function by the gradient descent method (see Ap-

pendix B for detailed derivation):


∂φ

∂ t
= δ (φ (x))

[
FD (x)+µdiv

(
∇φ (x)
|∇φ (x)|

)]
,

FD (x) =
´

Ω
B(x,y)δ (φ (y)) ln [p1(I(y);θ̂1(x1))]

λ1

[p2(I(y);θ̂2(x1))]
λ2

dy.
(5.7)

In the level-set evolution equation (5.7), the second term, δ (φ (x))µdiv(∇φ (x)/ |∇φ (x)|), has a

smoothing effect on the zero-level surface to maintain the regularity of the surface. The first term,

δ (φ (x))FD, is the data term derived from the local intensity distributions p1
(
I (y) ; θ̂1 (x1)

)
and

p2
(
I (y) ; θ̂2 (x1)

)
. It plays a key role in the evolution of the surface since it is responsible for

driving the surface toward the object boundaries. This evolution equation is rather similar to the

one derived by Lankton et al. [110] using Gaussian PDFs with the same variance:
∂φ

∂ t
(x) = δ (φ (x))

[
FD (x)+µdiv

(
∇φ (x)
|∇φ (x)|

)]
,

FD (x) =
´

Ω
B(x,y)δ (φ (y))

[
(I (y)−m2 (x1))

2− (I (y)−m1 (x1))
2
]
.

(5.8)
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However, the image criterion (5.4)) is slightly different from the Lankon’s image criterion FUM:

FUM (x,y, I,φ ,B) =−
2

∑
i=1

λiMi(φ(y))
[
(I (y)−m2 (x))2− (I (y)−m1 (x))2

]
, (5.9)

regarding the role of x and y. This point is discussed in Section 5.5.2.

5.3.3 Multiphase Level-set Formulation for Lymph Node Segmentation

A multiphase approach is implemented to allow simultaneous segmentation of multiple objects

[116, 117]. To correctly segment the LNP, PNF, and NS (N = 3), we use two level-set func-

tions (φ1,φ2) (as in Section 4.2.2.1) to define 3 membership functions M1 (φ1,φ2), M2 (φ1,φ2),

M3 (φ1,φ2) corresponding to the three regions. The LNP, PNF and NS regions are modeled by the

p1 (I (x) ;θ1 (y1)), p2 (I (x) ;θ2 (y1)) and p3 (I (x) ;θ3 (y1)) gamma distributions, respectively. The

membership functions M1 (φ1,φ2)=H (φ1)H (φ2), M2 (φ1,φ2)= (1−H (φ1))H (φ2) and M3 (φ1,φ2)=

1−H (φ2) give a three-phase level-set formulation. The energy function, E (φ1,φ2) = E1 (φ1,φ2)+

E2 (φ1,φ2), where Ek (φ1,φ2), k = 1,2, is expressed as follows:

Ek (φ1,φ2) =

ˆ

Ω

δφk (x)
ˆ

Ω

B(x,y)FS (x,y, I,φ1,φ2,BT )dydx+µk

ˆ

Ω

|∇Hφk (x)|dx, (5.10)

where FS (x,y, I,φ1,φ2,BT ) = −∑
3
i=1 λiMi (φ1 (y) ,φ2 (y)) ln pi (I (x) ;θi (y1)), and λ1, λ2 and λ3

are positive constants. The minimization of E (φ1,φ2) with respect to φk (with fixed θ1, θ2, θ3) can

be achieved using the gradient descent method by solving the following evolution equations (see

Appendix B for detailed derivation):

∂φ1

∂ t
= δ (φ1 (x))

[
FD1 (x)+µ1div

(
∇φ1 (x)
|∇φ1 (x)|

)]
FD1 (x) = H (φ2 (x))

´
Ω

B(x,y)
(
∑

2
k=1 δ (φk (y))

)
ln [p1(I(y);θ̂1(x1))]

λ1

[p2(I(y);θ̂2(x1))]
λ2

dy

∂φ2

∂ t
= δ (φ2 (x))

[
FD2 (x)+µ2div

(
∇φ2 (x)
|∇φ2 (x)|

)]
FD2 (x) =

´
Ω

B(x,y)
(
∑

2
k=1 δ (φk (y))

)[
H (φ1 (x)) ln [p1(I(y);θ̂1(x1))]

λ1

[p2(I(y);θ̂2(x1))]
λ2
+ ln [p2(I(y);θ̂2(x1))]

λ2

[p3(I(y);θ̂3(x1))]
λ3

]
dy.

(5.11)

The weighting constants, λi, i = 1,2,3, play an important role in the evolution equations (5.11).
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Figure 5.3: A cross section of the 3D data representing the level-set framework for segmentation
of an object and the shape of a proposed transverse slice in 3D. The contour, C, identifying the
boundary of the object is implicitly defined as φ = 0. (a) Lankton’s method uses the mask function,
B(x,y), to specify a spherical mask for each point along the contour. (b) the proposed method,
where the mask function BT (x1,y1) delimits an area of the red rectangle as the transverse slice.
All points x under evaluation having the same depth (distance to transducer - 1-axis) share the
same transverse slice. Each transverse slice is split by the contour into the local interior and local

exterior regions. (c) the shape of a transverse slice is presented in 3D.

Because the values of LN envelope data are less than 1 (≈ 10−3V), the values of PDFs pi (.) ,

i = 1,2,3, are greater than 1 as indicated in Fig. 3.7 and 3.9 in Chapter 3. Therefore, when λ1 > λ2

the evolution surface represented by φ1 tends to inflate toward the object boundaries and vice versa.

The tuning of the two weighting constants is useful, especially when the data topology is known.

This tuning helps the level-set function converge faster and avoids convergence to unexpected local

minima. Particularly, because the LNP is surrounded by the fat and NS media, we initialize the

level-set function φ1 as a signed distance function of a small ellipsoid within the LNP region,

and choose λ1 > λ2. Then the evolution surface represented by φ1 will expand toward the LNP

boundaries.

5.3.4 Implementation

To improve the computational efficiency and accuracy of the proposed STS-LS method, three

strategies were combined: narrow band [120], multiresolution [121] and good initializations. A

narrow band technique [120] was applied so that only points close to a zero level-set function were

considered. Using a multiresolution technique, the original data were down sampled by a factor

of 2 in each dimension and the segmentation results obtained on the down sampled version were

then up sampled to the same factor and used to initialize the full-resolution segmentation. This

multiresolution technique decreased computation time while also helping to avoid incorrect local

minima that would otherwise lead to inaccurate segmentation. Finally, good initialization for the

two level-set functions, φ1 and φ2 plays an important role in the final segmentation results. To
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facilitate comparison, the same initialization techniques presented in Section 4.2.2.2 of Chapter 4

were used for all segmentation methods in this chapter.

Pseudo code for the segmentation of LN data is presented in Algorithm 5.1. The two level-set

functions, φ1, φ2, were reinitialized every 4 iterations by computing the signed distance map to their

corresponding zero level-set [122] in order to preserve their regularity. The Heaviside and Dirac

delta functions were replaced by their smoothed versions, Hε (x) and δε (x) as in Equations (4.7)

and (4.8), respectively. Regarding the convergence criterion, the segmentation algorithm stops

when the partition of the image is stationary (i.e., the image partition does not evolve significantly

between two consecutive reinitializations) or when the number of iterations reaches a certain value

(e.g., 250 for the LN data).

5.4 Results

The STS-LS segmentation method was evaluated using clinical LN envelope data and simulated

data mimicking the characteristics of LN envelope data. Similar to Chapter 4, the success of

the segmentation method was quantified using the Dice similarity coefficient (DSC) to compare

automatic segmentation result with reference result (the ground truth data in case of the simulated

data or the expert manual segmentation in case of the clinical LN envelope data).

5.4.1 Results on Simulated Data

The STS-LS segmentation method successfully demarcated the 3 regions in the simulated data by

providing high DSC values. For 20, 3D simulated data sets, the DSC values of LNP, PNF and NS

regions were 0.981± 0.001, 0.914± 0.002 and 0.974± 0.001. Fig. 5.4 presents slices showing

the initializations and their corresponding segmentation results to demonstrate the success of the

proposed method. Note that the segmentation method was evaluated with the parameter settings:

µ1 = 0.2, µ2 = 0.2, λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, h = 0.5 mm. Accurate segmentation results were

obtained in about 120 iterations.
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Algorithm 5.1 Segmentationof the LN data in each resolution
1: Input: I: image to segment defined on Ω; x: voxel; φ01, φ02: initialization for φ1, φ2 functions;

h: the thickness of the transverse slice; µ1, µ2: regularization parameters; λ1, λ2, λ3: positive
weighting constants.

2: Result: seg(I): Segmentation result, LNP: φ1 > 0, φ2 > 0; PNF: φ1 < 0, φ2 > 0; NS: φ2 < 0.

3: φ1← φ01; φ2← φ02;
4: its = 0
5: while convergent criterion is not met do
6: its←its + 1;
7: Find the indices of the voxels belonging to the narrow band areas of φ1, φ2.
8: Identify the transverse slice with the thickness of h for all the voxels belonging to the

narrow band areas.
9: for each x belonging to narrow band areas having different depth do

10: Estimate the gamma-distribution parameters in local regions specified by membership
functions (M1, M2, M3) and the transverse slices.

11: Assign similar values for parameters of the points that have the same depth and belong
to the same local region.

12: end for
13: Compute ∂φ1(x)

∂ t , ∂φ2(x)
∂ t using (5.11);

14: 4t1 = 0.8/max
(

∂φ1(.)
∂ t

)
;

15: 4t2 = 0.8/max
(

∂φ2(.)
∂ t

)
;

16: φ1 (x)← φ1 (x)+4t1
∂φ1(x)

∂ t ;

17: φ2 (x)← φ2 (x)+4t2
∂φ2(x)

∂ t ;
18: if modulo(its,4)≡ 0 then
19: φ1 (x)←reinitialization(φ1 (x));
20: φ2 (x)←reinitialization(φ2 (x));
21: end if
22: end while
23: seg(I) = binarize(φ1,φ2);
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Figure 5.4: Three slices showing segmentation results obtained from simulated volumetric data.
Initializations (upper row) and their corresponding segmentation results (bottom row).
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Figure 5.5: Boxplots showing the distributions of DSC values obtained from 3 segmentation meth-
ods for the 3 media in 54 colorectal LNs (left) and 30 breast LNs (right). The asterisks *, **
and *** indicates that the p values estimated according to the Wilcoxon paired, signed-rank test
lower than the adjusted (i.e., Bonferroni correction) significance levels α = 0.017, α/5 and α/50,

respectively.
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(a) (b)

(c)

(d) (e)

(f)

Figure 5.6: Segmentation results overlaid on the B-mode images corresponding to 3 planes. (a, b,
c) Slices extracted from the best segmentation result of a nonmetastatic LN, the Dice coefficients
for LNP, PNF and NS are 0.975, 0.899 and 0.965, respectively. (d, e, f) Slices extracted from
the worst segmentation result of a metastatic LN, the Dice coefficients for LNP, PNF and NS are

0.883, 0.825 and 0.956, respectively.
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5.4.2 Results on Clinical Lymph Node Database

We also evaluated the STS-LS method using the US envelope data of the database of 54 LNs

dissected from colorectal cancer patients and 30 LNs dissected from breast-cancer patients. The

database was divided into two groups based on primary-tumor organ because segmentation of the

breast LNs is more challenging than that of colorectal LNs due to their more complicated shape

and topology. The whole database was processed with the optimal set of parameters: µ1 = 0.2,

µ2 = 0.2, λ1 = 1.04, λ2 = 1.0, λ3 = 1.0 and h = 0.7 mm. We also compared the performance

of the STS-LS method with two other methods denoted SegGlobal and SegLankton. The SegGlobal

method was proposed by Anquez et al. [63], adapted to the 3-phase level-set method formulated

in the global way by using the gamma distribution to model the LNP, PNF and NS regions. The

second method, SegLankton, is based on the original Lankton’s framework, adapted to 3 phases with

the radius of the local region of 0.7 mm, we inserted in the framework the local energy functions

formulated by using the gamma distribution to model the LNP, PNF and NS regions. Therefore,

the STS-LS method differs from the SegLankton in terms of the shape of the mask (i.e., instead of a

spherical local region, a transverse slice is considered). The same initializations were used for all

three methods.

Fig. 5.5 presents the performance of the STS-LS, SegGlobal and SegLankton methods on our databases.

The STS-LS method outperforms the two other methods by providing higher DSC values for the

three media. The DSC values for LNP, PNF and NS media are 0.935 ± 0.027, 0.820 ± 0.083

and 0.963 ± 0.009, respectively, for colorectal LNs, and 0.900 ± 0.057, 0.774 ± 0.137 and 0.961

± 0.011, respectively, for breast LNs. The STS-LS method provided almost perfect results for

the NS region. For the PNF region, we obtained slightly lower mean DSC values because the

PNF region is thin and has a high variation in the shape. The Friedman test indicated a statisti-

cally significant difference in the DSC values depending on the segmentation methods (p values

less than 10−10 for the three media of the 54 colorectal-cancer LNs, and p values less than 10−6

for the three media in the 30 breast-cancer LNs). The nonparametric Friedman test was used be-

cause it does not assume normality of the data distributions. To examine which pairs of methods

provided significantly different DSC values for the three different combinations of methods (STS-

LS vs. SegLankton, SegLankton vs. SegGlobal and SegGlobal vs. STS-LS), we applied the Wilcoxon

paired, signed-rank tests with a Bonferroni correction [123] resulting in a significance level set

at α = 0.05/3 = 0.017. For the 54 colorectal LNs, there were statistically significant differences
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in the DSC values between the STS-LS and SegLankton methods and between the STS-LS and

SegGlobal methods (p < 0.7×10−4 for the three media); there were also significant differences in

the DSC values between the SegLankton and SegGlobal methods for the LNP (p = 0.001) and NS

(p = 0.0005) media, whereas there was no statistically significant difference in the DSC values

between the SegLankton and SegGlobal methods for the PNF medium (p = 0.65). For the 30 breast

LNs, there were statistically significant differences in the DSC values between the STS-LS and the

SegLankton methods and between the STS-LS and SegGlobal methods (p < 0.004 for the three me-

dia); there was also significant difference in the DSC values between the SegLankton and SegGlobal

methods for the NS medium (p = 0.2×10−4), whereas there were no statistically significant dif-

ferences in the DSC values between the SegLankton and SegGlobal methods for the LNP (p = 0.04)

and PNF (p = 0.4) media.

Fig. 5.6 presents the best and the worst LNP segmentation results of the STS-LS method. As

visually shown in Fig. 5.6(a-c), the method nearly perfectly demarcates the three regions in the

envelope data. Conversely, Fig. 5.6(d-f) shows the worst segmentation result acquired from a

metastatic LN. Because the envelope data exhibit the intensity variability with small high intensity

regions within the LNP, the method misidentifies these regions as PNF.

To further examine and compare the performance of the three methods, Fig. 5.7 displays DSC val-

ues obtained for LNP segmentation applied to each of the 54 colorectal LNs. The STS-LS method

outperforms the SegLankton method in most of the LNs (i.e., 38 out of 54). In addition, the STS-LS

method demonstrates its robustness in case of metastatic LNs in which the SegGlobal method al-

most fails. This result was anticipated because the metastatic LNs are more inhomogeneous than

the nonmetastatic LNs as indicated in Section 5.2. Although the SegGlobal method performs better

in nonmetastatic LNs, it is still outperformed by the STS-LS method.

Table 5.1 presents the average segmentation time for the three methods applied to the 54 colorectal

LNs. The computational load of SegLankton method increases dramatically when extending to

higher dimension, whereas the proposed method provides computational efficiency approaching

that of the SegGlobal method. Note that all the segmentation methods have been implemented using

Matlab 7.12 (R2011a) and evaluated on a Desktop computer with the Intelr Xeon (R) CPU E5-

2643 at 3.3 GHz.
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Figure 5.7: DSCs for LNP over 54 colorectal LNs. The 18 metastatic LNs are outlined with a
dashed rectangular border.

Table 5.1: Average segmentation time (in minutes) over 54 colorectal LNs.

STS-LS SegLankton SegGlobal
20.9 ± 14.4 434.3 ± 255.7 17.6 ± 14.1

5.5 Discussion

5.5.1 General Discussion

A novel, automatic STS-LS segmentation method has been described in this chapter and applied

to segmentation of LNP, PNF and NS in LN envelope, HFU data. The method is robust to acoustic

speckle, deals well with the depth-dependent intensity inhomogeneity in the envelope data, and is

efficient.

Because of significant attenuation and focusing effects in the HFU data, the segmentation tech-

nique needed to remain robust in spite of axial inhomogeneities in the data. Data inhomogeneities

with imaged depth caused by attenuation and focusing effects were handled well by transverse

slices where the gamma-distribution parameters are estimated. The thickness, h, of the transverse

slice can be adjusted depending on the spatial scale of the focusing and attenuation-based inho-

mogeneities. Specifically, smaller values of h handle data inhomogeneities better, but cause the

variance of the estimated gamma-distribution parameters to increase and the segmentation to be-

come more sensitive to initialization. Whereas large values of h cause segmentation to be less

dependent on initialization but less able to handle data inhomogeneities well. When h has the

size of the entire segmented image, then the STS-LS method is identical to the SegGlobal method.
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Note that this approach for dealing with axial inhomogeneities of data could be extended to other

biomedical-imaging applications in HFU, such as segmentation of skin lesions [93].

Lateral inhomogeneities in the LNP data also influence segmentation performance. Such inho-

mogeneity is demonstrated, even for the nonmetastatic LNs, by RSD values greater than 10%

along the lateral dimension of the LNP for the gamma-distribution scale parameter (Fig. 5.2).

The metastatic LNs generally are larger and more inhomogeneous than the nonmetastatic ones as

reflected by higher RSD values of the gamma-distribution parameters presented in Fig. 5.2. Be-

cause the STS-LS method is more robust to the data inhomogeneities than the SegGlobal method, it

provided more-accurate segmentation even in metastatic LNs that were poorly segmented by the

SegGlobal method (Fig. 5.7). In addition, the STS-LS method provided more-accurate segmentation

than the SegLankton method because it is less sensitive to initialization than the SegLankton method.

When dealing with 3D data, minimizing the segmentation time is a very important consideration

for the design of a practical segmentation technique. The execution time of the STS-LS method

is approximately the same as that for the SegGlobal method while the SegLankton method is very

computationally expensive (Table 5.1). The efficiency of the segmentation methods depends on the

number of gamma-distribution parameters estimated during the energy minimization process. For

example, assuming that the methods are applied to a 3D data set with a size of N×M×K, where N

is the depth dimension, then for each iteration, the SegGlobal method requires the estimation of 3×2

parameters corresponding to the three segmented media for the two parameters (shape-a, scale-b)

of the gamma distribution. The STS-LS method requires estimation of approximately 3×N× 2

parameters. Meanwhile, the SegLankton method requires estimation of 5× σ ×N ×M×K × 2

parameters (2×σ ×N×M×K× 2 for φ1 and 3×σ ×N×M×K× 2 for φ2), where σ ranges

between 5% and 8% depending on the architectural properties of the LNs because the narrow band

technique was used. Note that the number of voxels involved in the estimation of each parameter of

the SegLankton method is smaller than that of the STS-LS method, which in turn is smaller than that

of the SegGlobal method. Thus the execution time does not increase proportionally to the difference

in the number of estimated parameters but it exhibits a correlation. Furthermore, if the STS-LS

method is implemented using C/C++, the execution time will be significantly reduced.
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5.5.2 Discussion on the Image Criterion

The image criterion Eq. (5.4) is not the log-likelihood of the regions and leads to the evolution

equation (5.7). We now consider the image criterion derived from the log-likelihood of the regions:

FL (x,y, I,φ ,BT ) =−λ1H (φ (y)) ln p1 (I (y) ;θ1 (x1))

−λ2 (1−H (φ (y))) ln p2 (I (y) ;θ2 (x1)) .
(5.12)

Note that the variables y and x1 are exchanged in pi (.) functions as compared to Eq. (5.4). The

evolution equation is (see Appendix B for detailed derivation)


∂φ

∂ t
= δ (φ (x))

[
FD (x)+µdiv

(
∇φ (x)
|∇φ (x)|

)]
,

FD (x) =
´

Ω
B(x,y)δ (φ (y)) ln [p1(I(x);θ̂1(y1))]

λ1

[p2(I(x);θ̂2(y1))]
λ2

dy.
(5.13)

Therefore, the evolution equations (5.7) and (5.13) are different in such a way that the intensities I

and parameters (θ̂1, θ̂2) are fixed or vary when computing FD (x). Specifically, during the compu-

tation of FD (x), in Eq. (5.7), the parameters θ̂1 (x1) , θ̂2 (x1) are fixed, and I (y) scans the values of

the intensity within the local region identified by B(x,y)δ (φ (y)) > 0. In contrast, in Eq. (5.13),

the intensity I (x) is fixed and the parameters θ̂1 (y1) , θ̂2 (y1) vary as in Chapter 4 (Eq. (4.4)).

To illustrate these differences, we simplify the evolution equations by assuming that data follow

a Gaussian statistics, and that weighting parameters and regularization term are discarded. There-

fore, the Lankton’s style evolution equation (Eq. (5.7)) can be rewritten:


∂φ

∂ t
(x) = δ (φ (x))

´
Ω

B(x,y)δ (φ (y))F1 (y)dy,

F1 (y) =
[
(I (y)−m2 (x1))

2− (I (y)−m1 (x1))
2
]
,

(5.14)

and the log-likelihood style evolution equation (Eq. (5.13)) becomes:


∂φ

∂ t
(x) = δ (φ (x))

´
Ω

B(x,y)δ (φ (y))F2 (y)dy,

F2 (y) =
[
(I (x)−m2 (y1))

2− (I (x)−m1 (y1))
2
]
,

(5.15)

where m1 (x1) (resp. m2 (x1)) are the mean intensities of the intersections of the transverse slice

BT,x1 and the membership functions M1 (φ)(resp. M2 (φ)).
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Figure 5.8: Illustration of the differences between the evolution equations (5.14) and (5.15 ). The
gray object with intensity of 20 is surrounded by a white background with intensity of 250. At
a specific point x in blue, the transverse slice BT,x1 is delimited by the blue rectangular border,
whereas the small region Bx is delimited by the small dashed rectangular border. Within a small
region Bx and close to the zero-level set, the green points belong to the sought background, whereas
the red points belong to the sought object. For point x, the green and red arrows represent the
direction of the forces that the green and red points affect the zero-level set φ (x) = 0. (a) Lankton’s
evolution equation (5.14). (b) Evolution equation (5.15) derived from log-likelihood of the regions.

In the example image shown in Fig. 5.8, the intensities of the object and background are 20 and

250, respectively. The current level-set function φ separates the image into the object (φ > 0) and

the background (φ < 0). If
∂φ

∂ t
> 0, the zero-level set that is expected to delimit the object inflates.

Conversely, if
∂φ

∂ t
< 0, the curve φ = 0 deflates. Let us consider the sought-background point x in

blue. At x, the level-set function has to shrink to be close to the sought object. We now evaluate

how each of the two evolution equations behaves.

Considering Eq. (5.14), at pixel x (blue color point in Fig. 5.8(a)), m2 (x1)≈ 250, and m1 (x1)≈ 80,

the intensity I (y) varies over the local regions closed to the zero level of φ because of the pres-

ence of B(x,y)δ (φ (y)). Let consider the green points in Fig. 5.8(a), they belongs to the sought

background, so their intensity is 250. Using Eq. (5.14) to compute F1 (y) , we obtain F1 (y) < 0

for each of these points, meaning that green points tend to locally deflate the zero-level set (i.e.,

correct direction). This is represented by the green arrow at x in Fig. 5.8(a). Considering the

red points which belong to the sought object, their intensity is 20. For each of those points, we

obtain F1 (y) > 0, meaning that they tend to inflate the zero-level set (i.e., incorrect direction).

This is represented by the red arrow in Fig. 5.8(a). Therefore, within local regions specified by
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B(x,y)δ (φ (y)), the points belonging to the sought object (red points) compete with the ones

belonging the sought background (green points) during the evolution of the zero-level set. Conse-

quently, using the evolution equation (5.14), the size of Bx should be small to minimize the number

of points (i.e., red points in our example) that have incorrect contribution to the evolution of φ .

Considering Eq. (5.15), at the same point x, the intensity value I (x) is fixed and equal to 250 (i.e.,

I (x) = 250); whereas the means m1 (y1), m2 (y1) vary. For the green points, the associated mean

intensities vary with the center of the transverse slices BT but can be approximated by m2 (y1) ≈

250, m1 (y1)≈ 100 as shown in Fig. 5.8(b). Using Eq. (5.15), we thus obtain F2 (y)< 0 for those

points, meaning that the green points tend to locally deflate the zero-level set. Let consider again

the red points, the mean intensities associated with them are: m2 (y1) ≈ 250, m1 (y1) ≈ 30. We

thus obtain F2 (y)< 0 for these red points, so they also correctly contribute to locally deflating the

zero-level set. The contributions of the red and green points to the evolution of the zero-level set

at x are represented by the red and green arrows in Fig. 5.8(b). Because points belonging to the

sought object and sought background make proper contributions to the evolution of φ , the level-set

function φ is expected to converge faster than the one in Eq. (5.14), and the size of Bx can be large.

From the above analysis, the computations of the image criterion (i.e., whether based on data log-

likelihood or not) will lead to different evolution equations that in turn affect the behaviors of the

level-set functions. The evolution equations become less different when the size of Bx gets smaller.

In special case, when Bx is so small that the size of the local region specified by B(x,y)δ (φ (y)) is

1 point, both evolution equations are similar. From a practical point of view, when using Lankton’s

style Eq. (5.7), the size of Bx should be small to maintain low computational cost and better

behavior of the level-set function (i.e., containing fewer points that have opposite effects on the

evolution of the level-set function). But if Bx is too small, the method will not handle well strong

noise. In our work, the size of Bx is empirically set to 3×3×3 voxels around x. Note that in the

original implementation provided by Lankton2, the size of Bx (or B(x,y)δ (φ (y))) is 1 point. The

evolution equation (5.13) derived from the data log-likelihood is likely to converge faster than Eq.

(5.7) because all points within Bx properly contribute to the evolution of the level-set function. The

size of Bx may be important, especially for rather small BT . In our context of large BT , parameter

maps vary slowly so a small Bx is probably more appropriate. If Bx = BT , we reach the solution

developed in Chapter 4 except that the evolution here is more local. The evaluation of this evolution

2http://www.shawnlankton.com/2008/04/active-contour-matlab-code-demo/
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equation on our dataset is ongoing.

5.6 Conclusions

In conclusion, we designed and implemented a STS-LS segmentation method that deals with

speckle noise and handles inhomogeneity in the LN envelope echo-signal data. The STS-LS

method provided accurate segmentation results and also outperformed the SegLankton and SegGlobal

methods when applied to our data sets. This new automatic segmentation method can facilitate

and expedite accurate QUS-based cancer detection in LNs without the need for operator-dependent

segmentation. Therefore, this advance can enable more-efficient QUS-based cancer detection in

LNs.

Future refinements to the technique could be developed to further improve segmentation. For

example, because the STS-LS method is based on local statistics, it is sensitive to initialization.

The closer the initialization is to the true boundaries, the faster the segmentation will converge.

Additional work developing more-effective initialization technique could significantly improve the

efficiency of the STS-LS method. We also note that an additional strategy is available to extend

the two-phase segmentation to multiphase segmentation based on the idea of competing regions

proposed by T. Brox [124], and it potentially can be applied to the STS-LS method. We consider

investigation of these options to be the subject of future work. In addition, other techniques are

needed to identify regions subject to strong localized shadowing effects. Currently, such shadowing

can compromise the STS-LS segmentation, which assumes that data are relatively homogeneous

within each transverse slice. The investigation of a machine-learning based approach for better

initialization of the STS-LS segmentation method is the subject of the next chapter.



Chapter 6

Segmentation with a Machine Learning

Technique1

6.1 Introduction

The two proposed segmentation methods (LRGDF and STS-LS) presented in Chapters 4 and 5

provided satisfactory segmentation results on our LN envelope data. The success of the methods

was based on the use of the level-set framework and parametric modeling (i.e., gamma probability

density function) of speckle statistics in local regions specified by membership functions and the

mollifying kernels or transverse slices. Nevertheless, how to improve the computational efficiency

of the methods while still maintaining their high segmentation accuracy. Because both methods

require initialization, the closer the initialization is to the sought boundaries, the faster the seg-

mentation will converge, thus reducing the execution time. Therefore, better initializations greatly

contribute to improving the efficiency of the LRGDF and STS-LS methods.

As presented in Chapter 2, we have acquired a large dataset with 445 LNs from 169 colorectal-

cancer patients and 418 LNs from 119 breast-cancer patients, and many of them were manually

segmented by experts. Furthermore, the LRGDF and STS-LS methods provided almost perfect

segmentation results in several LNs that could be potentially considered to be labeled data. These

raise questions that how we can integrate the information of many correctly segmented LNs (i.e.,

many labeled LNs) into segmenting an upcoming LN data, and that how we can apply the ex-

perience of correctly segmenting previous LNs to segmentation of subsequent LNs. The feasible

solution is to use machine learning techniques in a supervised fashion. As defined by Ethem Al-

1This chapter is adapted from Thanh M. Bui, Alain Coron, Jonathan Mamou, Emi Saegusa-Beecroft, Eugene
Yanagihara, Junji Machi, S. Lori Bridal, and Ernest J. Feleppa, “Random Forest Classification and Local Region-
Based, Level-Set Segmentation for Quantitative Ultrasound of Human Lymph Nodes”, IEEE International Ultrasonics
Symposium (IUS), Taipei, Taiwan, pp. 1-4, 2015. [125]

83
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paydin, machine learning is “programming computers to optimize a performance criterion using

example data or past experience” [126]. Supervised learning is a machine learning task of esti-

mating an unknown (input, output) mapping from known (input, output) examples that are usually

called labeled training data [127].

Random forests [128] that are ensembles of randomly trained decision trees have been empirically

demonstrated to outperform other state-of-the-art machine learning techniques when applied to

high dimensional data [129]. The learning framework can handle a large amount of training data

efficiently, inherently suit for multi-class problems (e.g., simultaneous segmentation of different

tissues) and are easily distributed on parallel-hardware architectures (easily parallelizable) [130–

132]. Random forests have been well adapted to classification, regression and other problems

[132]. In the classification problems of 3D data, when the number of labeled voxels is large, the

computational efficiency of random forests is essential to significantly reduce the execution time

required for training and classifying.

Random forest classification (RFC) has been successfully applied to medical image segmenta-

tion [133–135]. Lempitsky et al. [133] employed RFC to segment the myocardium in 3D echocar-

diography data automatically. For each voxel, the features including appearance (a sum of inten-

sities within a cuboid centered at the voxel) and position were considered. Recently, Yaqub et

al. [135] described two extensions to the traditional random forest framework and demonstrated

that the extended framework outperformed the traditional framework as well as many state-of-

the-art techniques on segmenting adult brain magnetic resonance imaging and 3D fetal femoral

ultrasound datasets. Their extensions involved introducing a feature selection step to retain strong

features and neglect weak features, and weighting each tree in the forest in the classification (test-

ing) phase.

Contribution to researches on random forests could be carried out in two manners. On the one

hand, efforts have been made to propose improvements in the random forest model itself [131,

135–137]. These contributions could be evaluated using standard databases such as Kinect body

part classification [138], ImageNet [139], Caltech Pedestrian Dataset [140], etc. On the other hand,

researchers could propose new discriminative features [133, 138, 141] and incorporate them into

a traditional random forest framework to achieve their goals (e.g., realtime, accuracy, etc.) for a

specific application. Our contribution in this chapter can be categorized as the latter.

To segment the LN parenchyma (LNP), perinodal fat (PNF) and normal saline (NS) media in LN
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envelope data, we investigate RFC to obtain preliminary segmentation results to initialize level-

set methods automatically. The RFC makes use of features consisting of backscattered energy,

statistical parameters, contextual information and distance information. To obtain more efficient

segmentation results, the results provided by the RFC were used to initialize the LRGDF and

STS-LS methods, yielding two new segmentation methods namely RFC_LRGDF and RFC_STS-

LS. The RFC_LRGDF and RFC_STS-LS methods call upon the level-set methods to correct for

spatially-inconsistent misclassifications of the RFC and to account for the variability of ultrasound

statistical properties associated with focusing and attenuation effects.

6.2 Methods

6.2.1 Segmentation using Random Forest Classification

To fix the coordinate system, ~x1 is the axis parallel to the ultrasound beam, while ~x2 and ~x3 are

orthogonal axes lying in a plane perpendicular to the beam direction. I(x) is the acquired 3D

ultrasound envelope data at position x = (x1,x2,x3).

6.2.1.1 Features

The initial segmentation is formulated as a 3-class classification of voxels. For each voxel V i, fif-

teen features were extracted for training and classification as presented in Table 6.1. The backscat-

tered energy corresponds to the amount of energy that has been backscattered. Distance infor-

mation, consisting of distance to the transducer and the length of the acquisition along the axial

direction, takes into account the voxel position and the LN size information. The contextual in-

formation becomes important to discriminate voxels belonging to LNP from ones belonging to

NS, especially at distant parts of the LN data where the signals are highly attenuated. Finally,

because the envelope data were well modeled by the gamma distribution which is not a symmetric

distribution, the shape and scale parameters as well as average and median can be considered to be

good statistical features. To compute these statistical features, two sizes of cubic region of interest

(i.e. lengths of 0.3 mm and 0.5 mm) were used to take into account data properties in different

spatial scales. Note that apart from distance features (i.e., x1 and acquisition length), we replaced

the original values of other features by their natural logarithm.
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Table 6.1: Description of the 15 features extracted for each voxel located at x = (x1,x2,x3).

Category Description
Backscattered
energy

BE (x) =
´ x1

0 I2 (u,x2,x3)du provides information about tissues that
the ultrasound beam has propagated through.

Distance x1, distance to transducer.
information Length of the acquisition along −→x1 .
Contextual infor-
mation

The four maximum intensities along the four rays, with an origin at
the center of the voxel of interest, radiating outward along the ~x2 or
~x3 axes. For example, CI_x2−= max−∞≤u<x2 I(x1,u,x3), CI_x2+=
maxx2<u≤∞ I(x1,u,x3).

Statistical parame-
ters

Four features were estimated within each cubic region of interest
(ROI) centered on each voxel. 2 ROIs (edge length of 0.3 mm or
0.5 mm) were extracted around each voxel x. The four parameters
are:

• shape and scale parameters of the gamma distribution that best
models the empirical distribution of I;

• average and median of I.

Figure 6.1: Diagram of classification forest using 3 classes (LNP, fat and NS). A forest contains
T trees. After training, each split node stores a binary test, while each leaf node stores a class
distribution. The enlarged split node illustrates how the binary test is carried out by applying the
threshold (B1) for the feature (BE, backscattered energy) that was selected for this node during
training. A feature vector is classified by traversing each tree and is sent to the left or right child
node depending on its response to the binary test at each split node. This process gives a path from

root to leaf (as illustrated in green) and a class distribution at the leaf node.
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6.2.1.2 Training the Random Forest

As illustrated in Fig. 6.1, random forest [128, 132] is an ensemble of decision trees; each tree

consists of split nodes and terminal nodes. By merging the decisions of all trees, this ensemble

has higher accuracy than a single tree. The RFC can be separated into an off-line phase (training)

and on-line phase (classification). As we use the RFC to classify voxels in a supervised setting, in

the training step, the classifier is trained using a collection of N labeled voxels, V =
{
(fi,ci)N

i=1
}

,

where fi is the feature vector including the 15 elements of the i-th training voxel, and ci ∈ {1,2,3}

corresponding to LNP, PNF and NS media, respectively, is its class label provided by an expert.

The training phase is responsible for building T random decision trees. A decision tree is a graph

with no loops consisting of split nodes and terminal nodes as shown in Fig. 6.1. To build each

tree, a small random subset V ′ ⊆ V of the original labeled voxels V is used. By using the subset

V ′, each tree is grown by repeating the following steps at each split node:

1. Randomly select m features from the full feature set (m = 4 features from a full feature set

containing 15 features, in our case).

2. Find the feature among these m features that provides the maximum information gain at its

optimized threshold. The information gain that reflects the quality of a split (i.e., it measures

how a binary test successfully splits the labeled voxels of different classes into different child

nodes) is computed using the Gini index as follows:

4G(Vn,n) = Gini(Vi,n)−wlGini
(

Vnl,nl
)
−wrGini(Vnr,nr) , (6.1)

where Vn is the labeled voxels at node n; wl and wr are the proportion of the labeled voxels

at node n assigned to the left nl and right nr child nodes. The Gini index at split node n,

Gini(n), is computed by:

Gini(n) =
3

∑
k=1

pn
k (1− pn

k) , (6.2)

where pn
k is the proportion of labeled voxels belonging to class k at node n.

3. Split the training labeled voxels at the node into two child subsets according to the threshold

level for the node’s feature.

This process is repeated to split nodes until either the number of training labeled voxels at the
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Figure 6.2: RFC (a) and segmentation methods (b, c) obtained by combining RFC with the LRGDF
and STS-LS methods

node falls below a certain threshold or no gain of information is achieved if training labeled voxels

are split to left and right subsets. The feature and thresholds selected for each node and the tree

architecture are stored for use during subsequent classification. A node where the split does not

take place is called a leaf (or terminal) node. After finishing the training, T trees are created. Each

node in any tree contains a weak classifier (i.e., a feature and optimized threshold). Each leaf node

contains a distribution (histogram) of training class labels that reach it.

6.2.1.3 Classifying with the Random Forest

As shown in Fig. 6.1, during classification, each feature vector traverses each tree separately until,

for each tree, a leaf node is reached. At each split node, the feature vector is sent to the left or right

child node depending on the result of the binary test associated with the node and chosen during

training. The class distributions (calculated during training) of reached leaf nodes of all trees are

combined to provide the final probabilistic output. The class of maximum probability is chosen to

label the feature vector and the corresponding voxel within the data set.
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6.2.2 Final Segmentation

The RFC was applied to the segmentation of the three media in the LN envelope data. The seg-

mentation results of the RFC were evaluated and were used as an initialization for the LRGDF

and STS-LS methods. The RFC and its combination with the two level-set methods yield 3 new

segmentation methods, namely RFC, RFC_LRGDF and RFC_STS-LS as shown in Fig. 6.2.

6.2.3 Parameter Settings and Evaluation Methods

We used an RFC of 60 trees (T = 60). During the training, among 15 features, 4 features were

randomly selected to be evaluated at each split node. The minimum size of a leaf node was set as 1.

To train each tree, two-thirds of the original training labeled voxels were randomly selected. From

a database of 54 LNs (18 metastatic, 36 non-metastatic) acquired from colorectal-cancer patients,

12 LNs (6 metastatic, 6 non-metastatic) were selected for training the RFC, and the 42 remaining

LNs were used to evaluate the RFC and then the RFC_LRGDF and RFC_STS-LS methods. Using

the RFC_LRGDF and RFC_STS-LS methods, the parameter settings for the LRGDF and STS-LS

methods were similar to those presented in Chapter 4 and 5, except that the number of iterations

for the two methods was set to 80.

In implementing and evaluating the RFC method, it is necessary to know which features play more

important roles than others, so that we can optimize the method afterwards. Therefore, the feature

importance was computed by the summation of the decreases in the information gain at each split

node for each individual feature over all the trees.

Similar to Chapters 4 and 5, the success of segmentation methods was quantified using the Dice

similarity coefficient (DSC) to compare the automatic and expert manual segmentations. Further-

more, we also evaluated the segmentation method in terms of QUS estimates from automatically

segmented LNs and manually segmented LNs using a Bland-Altman plot [142].

6.2.4 Statistical Test

In addition to two segmentation methods (LRGDF and STS-LS) presented in Chapters 4 and 5, we

have described three new methods (i.e., RFC, RFC_LRGDF and RFC_STS-LS) in this chapter. It

is important to identify which method performs better than others on our dataset. Therefore, we
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Figure 6.3: Eight pairs of methods that were applied Wilcoxon paired, signed-rank tests. The
numbers correspond to the questions that we wanted to answer.

compared DSC values obtained from the five methods when segmenting each of three media (i.e.,

LNP, PNF and NS). The Friedman’s test was carried out to identify statistically significant differ-

ence in the DSC values depending on the segmentation methods. The non-parametric Friedman’s

test was used because it does not assume normality of the data distributions. More importantly, we

also wanted to answer to the following 8 questions:

1. How does the RFC perform as compared to the LRGDF method?

2. How does the RFC perform as compared to the STS-LS method?

3. How is the performance of the LRGDF method in comparison with that of the STS-LS
method?

4. Are the segmentation results of LRGDF method improved when the ellipsoid-based initial-
ization is replaced by the RFC initialization?

5. Are the segmentation results of STS-LS method improved when the ellipsoid-based initial-
ization is replaced by the RFC initialization?

6. Does the LRGDF method improve the RFC segmentation?

7. Does the STS-LS method improve the RFC segmentation?

8. Between LRGDF and STS-LS methods, which one is better at refining the RFC segmenta-
tion?

To respond to these questions, Wilcoxon paired, signed rank tests were carried out to compare eight

pairs of methods as illustrated in Fig. 6.3. By taking into account the Bonferroni correction [123],

the significance level for the paired tests was set at α = 0.05/8 = 0.006.
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Table 6.2: The DSC (MEAN±STD) of the initial segmentation using the RFC in comparison with
other four segmentation methods over 42 LNs.

Media LRGDF STS-LS RFC RFC_LRGDF RFC_STS-LS
LNP 0.927±0.035 0.937±0.025 0.922±0.022 0.942±0.028 0.936±0.020
PNF 0.814±0.104 0.822±0.088 0.801±0.074 0.841±0.099 0.820±0.079
NS 0.976±0.009 0.963±0.008 0.959±0.013 0.976±0.008 0.961±0.009

6.3 Results

For each medium, the Friedman’s test indicated statistically significant differences in the DSC

values depending on the segmentation methods (p values less than 10−7 for the three media of 42

LNs).

6.3.1 Segmentation with RFC, LRGDF and STS-LS Methods

Table 6.2 summarizes the DSC values provided by the five segmentation methods on 42 LNs. As

indicated by Table 6.2, the DSC values provided by the RFC method are relatively high but they

are lower than the those provided by LRGDF and STS-LS methods. Specifically, the DSC values

for LNP and PNF of the RFC segmentation are significantly smaller than those of the STS-LS

method as indicated in Fig. 6.4; DSC values for NS of the RFC method are significantly smaller

than that of the LRGDF method.

Visual examination of the segmentation results allows us to identify the reason why the RFC

method did not perform well enough. As shown in Fig. 6.5(b), RFC does not produce smooth

segmentation. This is due to the fact that RFC classifies each voxel independently. Furthermore,

spatially inconsistent misclassifications can occur as indicated in Fig. 6.6(b).

Fig. 6.7 presents feature importance based on the information gain computed using the Gini split-

ting index. The backscattered energy proves to be the most important feature for RFC. Addi-

tionally, the larger cubic ROIs provided more important statistical features (shape, scale, median,

average) than the smaller cubic ROIs.

Although the DSC values for LNP and PNF of the STS-LS method are slightly higher than those

of the LRGDF method as indicated in Table 6.2, no statistical difference in their DSC values was

found using the Wilcoxon paired, signed-ranked test (Fig. 6.4). Table 6.2 and Fig. 6.4 indicate

that the LRGDF method provided statistically higher DSC values for NS medium than the STS-LS
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Figure 6.4: Boxplots showing the distributions of DSC values obtained from each of the 5 segmen-
tation methods for the 3 media in 42 LNs. (a) LNP; (b) PNF; (c) NS. The asterisks *, ** and ***
indicate the p values estimated according to the Wilcoxon paired, signed-rank test lower than the
adjusted (i.e., Bonferroni correction) significance levels α = 0.006, α/5 and α/50, respectively.
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Figure 6.5: A representative segmentation result obtained from a nonmetastatic LN overlaid on the
log-compressed B-mode image (40 dB dynamic range). Original B-mode image (a); segmentations
using the RFC (b), the RFC_LRGDF (c) and the RFC_STS-LS (d) methods. The DSC values of
the RFC_STS-LS segmentation were 0.934, 0.843 and 0.948 for LNP, PNF and NS, respectively.
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Figure 6.6: Segmentations of a metastatistic LN overlaid on the B-mode image. Original B-mode
image (a); segmentations using the RFC (b), the RFC_LRGDF (c) and the RFC_STS-LS (d) meth-
ods. The DSC values of the refined segmentation were 0.951, 0.871 and 0.965 for LNP, PNF and

NS, respectively.
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Figure 6.7: Feature importance based on the Gini splitting index. The larger the score, the more
important the feature. 0.3 or 0.5 at the end of a feature name indicates the size of the cubic ROI.
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method.

6.3.2 Refining the RFC Segmentation

For segmenting LNP and PNF media, the RFC_LRGDF and RFC_STS-LS methods provided sta-

tistically significantly better DSC values than the RFC method because the level-set methods (i.e.,

LRGDF and STS-LS methods within the RFC_LRGDF and RFC_STS-LS methods) smoothed the

segmentation boundaries and corrected some spatially inconsistent segmentation provided by the

RFC segmentation as shown in Fig. 6.5(c,d) and 6.6(c,d). As can be seen in Fig. 6.6(c,d), the

bottom of the LN is not perfectly segmented, however this does not affect the QUS processing

because QUS parameters are only estimated in the more supercial data for depths from 10.5 mm to

13.5 mm [2]. Importantly, because the LRGDF method took into account speckle statistics in local

regions specified with mollifying kernels, it is very effective in refining the RFC initialization that

is close to the sought boundaries. This is demonstrated by the fact that for segmenting the three

media, the RFC_LRGDF method provided highest DSC values (Table 6.2) that are statistically

significantly higher than those provided by the RFC method (Fig. 6.4); whereas the RFC_STS-LS

method produced statistically significantly better DSC values for two media (i.e., LNP and PNF)

in comparison with the RFC method. In order to refine the RFC initialization, the LRGDF method

is therefore preferable to the STS-LS method.

6.3.3 Segmentation Time

In terms of segmentation time, the RFC method took much less time to obtain the final segmenta-

tion results compared to other methods as shown in Table 6.3. Note that using the RFC method, sig-

nificant time was required for feature extraction, while the classification only took a few seconds.

The RFC_LRGDF and RFC_STS-LS methods provided comparable segmentation time which is

about half of the segmentation time required by the STS-LS method. Note that the segmenta-

tion methods were implemented in Matlab 7.12 (R2011a) without code optimization in mind and

evaluated on a desktop computer with the Intel
r

Xeon(R) CPU E5-2643 at 3.3GHz.
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Table 6.3: Execution time (MEAN±STD) in minutes over 42 colorectal LNs.

LRGDF STS-LS RFC RFC_LRGDF RFC_STS-LS
33.8±20.2 20.8±14.5 2.6±1.7 10.2±5.7 10.6±6.3

6.3.4 Quantitative Ultrasound Evaluation using Automatic and Manual Seg-

mentation

In general, QUS parameters obtained from LNs segmented using RFC, RFC_LRGDF and RFC_STS-

LS methods were very close to those obtained from manually segmented LNs. We present here

the Bland-Altman plots for the average-effective-scatterer size, D, and the average-acoustic con-

centration, C, because they are important estimates in characterizing metastatic and non-metastatic

colorectal LNs as indicated in previous work [1, 2].

As indicated in Fig. 6.8, the D estimates made in LNP segmented with the automatic methods

vs. manual segmentation by an expert agreed well. The mean differences and the 95% limits of

agreement (MEAN±1.96*STD) for the RFC vs. manual segmentation, RFC_LRGDF vs. manual

segmentation and RFC_STS-LS vs. manual segmentation were −0.02 µm and [−1.37,1.32] µm,

−0.11 µm and [−1.03,0.81] µm, and −0.12 µm and [−0.92,1.16] µm, respectively. Therefore,

the D values estimated from LNs segmented by the RFC_LRGDF method are closest to those

obtained from manually segmented LNs.

Fig. 6.9 presents the Bland-Altman plot for the C values estimated from LNs segmented by

automatic methods vs. manual expert. The mean differences and the 95% limits of agreement

(MEAN±1.96*STD) for the RFC vs. manual segmentation, RFC_LRGDF vs. manual segmenta-

tion and RFC_STS-LS vs. manual segmentation were −0.39 dB/mm3 and [−1.62,0.83] dB/mm3,

−0.15 dB/mm3 and [−0.89,1.19] dB/mm3, and −0.37 dB/mm3 and [−1.53,0.78] dB/mm3, re-

spectively. Compared to the C values obtained from manually segmented LNs, the RFC_LRGDF

method provided closest C values, followed by the RFC_STS-LS method.

6.4 Discussion and Conclusions

In this chapter, three new segmentation methods (i.e., RFC, RFC_LRGDF and RFC_STS-LS) have

been described to automatically segment the three media in LN envelope data. Their segmenta-

tion accuracy (quantified by the DSC values) and segmentation time were compared. These new
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Figure 6.8: Difference vs. the mean for the average-effective-scatterer size (D) estimated on
42 LNs segmented with an expert and each of 3 automatic segmentation methods (i.e., RFC,

RFC_LRGDF, RFC_STS-LS).
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Figure 6.9: Difference vs. the mean for the average-acoustic concentration (C) estimated on
42 LNs segmented with an expert and each of 3 automatic segmentation methods (i.e., RFC,

RFC_LRGDF, RFC_STS-LS).
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methods were also compared to those obtained by the LRGDF and STS-LS methods as presented

in Chapters 4 and 5. In addition, QUS estimates obtained from LNs segmented by the three new

methods were evaluated with those obtained from manually segmented LNs.

The RFC method was more computationally efficient than the LRGDF and STS-LS methods and

provided relatively accurate segmentation results on our dataset. Furthermore, the backscattered

energy was the most important feature in the feature set for the RFC. Note that the RFC method

could be improved in several ways. Firstly, the feature sets could be enriched to include texture

features computed using the gray-level co-occurrence matrix [143–145] or using local binary pat-

terns [146, 147] or wavelet package texture descriptors [148, 149]. Secondly, the efficiency of

RFC method could be improved. Currently the training took about 10 hours to finish, but it was

done off-line, while the on-line classification took about a few seconds. Therefore, the time re-

ported in Table 6.3 for the RFC method can be considered to be the time required for extracting

features which was implemented using Matlab. Reimplementing the feature extraction process us-

ing C/C++ would significantly reduce the execution time for the RFC method. Thirdly, increasing

the number of LNs used for training would improve classification accuracy but could increase the

time required for training. The online random forest [150, 151] could also be considered to allow

online building of decision trees and thus to avoid retraining the classifier from scratch. Finally, the

performance of the RFC method is associated with the labeled data used for training the classifier.

The labeled data were mostly based on the manual expert segmentation. Therefore, improving the

quality of manual segmentation for being used as labeled data would improve the performance of

the RFC method.

The combinations of the RFC framework with the level-set methods yield the RFC_LRGDF and

RFC_STS-LS segmentation methods. The two new methods are well adapted to high-frequency

ultrasound envelope data of soft-tissues whose statistics vary with depth due to focusing and at-

tenuation effects. As being inherent within the level-set framework, the LRGDF and STS-LS

methods naturally handled topology changes, therefore they compensated for some local inconsis-

tencies obtained using the RFC. Additionally, the RFC_LRGDF method provided slightly better

results in terms of DSC values and QUS parameter estimates as compared to the RFC_STS-LS

method (Table 6.2 and Fig. 6.4). This can be explained by the fact that the LRGDF method (within

the RFC_LRGDF method) was more effective in refining the segmentation provided by the RFC

method because the initialization (provided by the RFC) was very close to the sought boundaries
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and the LRGDF method took into account the statistics of data in more-local regions specified by

the mollifying kernels.

In conclusion, the RFC_LRGDF and RFC_STS-LS methods provided accurate segmentation re-

sults on our data set when compared to manual expert segmentation. In addition, the QUS pa-

rameters obtained from the LNs with automatic segmentations were close to those obtained when

manual segmentation was used. Therefore, these results demonstrate that these methods can con-

tribute to obtaining accurate QUS estimates in excised colorectal LNs without operator-dependent

segmentation.



Chapter 7

Conclusions and Perspectives

7.1 Goals and Results

The main objective of this work was to investigate whether advanced signal and data analysis

techniques could enable automatic segmentation of the three media (i.e., LNP, PNF and NS) in LN

envelope data. Such automatic segmentation is necessary to fully automate the QUS processing to

detect metastases in dissected human LNs.

A preprocessing method based on cubic smoothing splines was developed to restore the saturated

radio-frequency signals occurring predominantly in the PNF medium of the LN data. This pre-

processing method is important to convert the empirical multi-modal distribution of PNF envelope

data into a unimodal distribution. In addition, a study on the statistical modeling of the envelope of

LN ultrasound data was conducted. Results indicated that the three-parameter generalized gamma

distribution modeled the envelope data of the three media (i.e., LNP, PNF and NS) well. The two-

parameter gamma distribution, however, was ultimately selected to model the three media due to its

high fitting accuracy, its analytically less-complex probability density function (PDF) expression,

and its closed-form expression for parameter estimation using the method of moments.

Two novel level-set segmentation methods (LRGDF and STS-LS) were developed to segment the

three media in the LN envelope data. The methods make use of localized gamma statistics of

envelope data to handle data inhomogeneities caused by attenuation and focusing effects. The

LRGDF method employed the gamma PDFs to model speckle statistics of envelope data in local

regions at a controllable scale using a smooth function with a compact support, i.e., the gamma-

distribution parameters of the local data are considered as spatially-varying functions. To obtain

more efficient segmentation, the STS-LS method used gamma PDFs to locally model the speckle

statistics within consecutive transverse slices. Because the data belonging to a same medium and

101
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transverse slice are relatively homogenous, they could be properly described by the same PDF

distribution parameters. Therefore, this transverse-slice approach is well adapted to the HFU data

that is subject to depth-related inhomogeneities and provided faster segmentation results than the

LRGDF method.

Nevertheless, an intrinsic shortcoming of level-set methods based on local statistics is their de-

pendence on initialization. To overcome this problem and to obtain more efficient segmentation

results, a method based on RFC with new proposed features was developed to initialize for the

LRGDF and STS-LS methods effectively and automatically. The combination of RFC with two

level-set methods yielded composite methods referred to as: RFC_LRGDF and RFC_STS-LS.

As compared with manual expert segmentation, the novel methods, especially the RFC_LRGDF

method, designed and evaluated in this research provided accurate and automatic segmentation res-

ults on simulated envelope data and data acquired for LNs from colorectal-cancer and breast-cancer

patients. Results also demonstrated that accurate QUS estimates are maintained when automatic

segmentation is applied to evaluate excised LN data. Thus, segmentation techniques designed to

account for local ultrasonic speckle statistics should eliminate the need for operator-dependent,

manual segmentation for QUS evaluation of human LNs.

7.2 Perspectives

A straightforward extension of the work in this thesis is to evaluate the segmentation methods

across the entire LN data set. QUS parameters [2, 4] will be estimated automatically using the

automatic segmentation results provided by our methods. The sensitivity, specificity and area under

the receiver-operator characteristic curve will then be computed to evaluate the QUS methods for

the detection of LN metastases.

Athough occuring predominantly in the PNF, the signal saturation may also occur in the LNP.

Therefore, the preprocessing method based on smoothing cubic spline that was developed in this

thesis to restore the saturated signals could be helpful for QUS parameters. For example, us-

ing spectral analysis of RF signals to quantify the frequency-dependent information of tissues,

QUS parameters (e.g., effective scatterer size and acoustic concentration) were estimated from the

normalized power spectra (or backscatter coefficient as shown in Fig. 1.6) of the RF signals. Sat-

uration has impacts on the RF signals such as causing the loss of signal power and modifying the
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form of signals, and thus changes the frequency-related information of the RF signals.

The segmentation methods provided accurate segmentation results for colorectal LNs as well as

a limited number of breast LNs. The segmentation of breast LNs remains challenging because

of their irregular shapes and topologies and because significant fat deposits occur within the LNP.

Basically, in our dataset, the breast LNs can be devided into three groups. A majority of breast LNs

can be categorized in the first group consisting of LNs that are similar to colorectal LNs (i.e., bean-

shaped parenchyma surrounded by a thin layer of perinodal fat). The second group contains LNs

that are quite similar to the LNs of the first group but contain significant fat within the LNP; LNs

may also be elongated along one axis. LNs belonging to the third group are elongated and exhibited

irregular topologies, highly echogenic structures; fat may be embedded in the LNP. These LNs are

very difficult to segment even by human experts. In addition to axillary LNs, the third group also

contains sentinel LNs that were cut in two halfs during the sentinel LN biopsy. The third group is

the most challenging group for segmentation.

Methods developed in this thesis provided accurate segmentation results for the first group and

good segmentation results for the second group of breast LNs. For the third group of breast LNs,

correct segmentation could not be provided by experts, therefore it is not possible to evaluate our

segmention methods in this group. To segment LNs in the third group, one idea is to refer to the

histology data and use the information of histology data (e.g., shapes, topologies, etc.) to obtain

reference segmentation of ultrasound data. If accurate segmentations for data in a number of LNs

in this group are be obtained, the reference data can be used to train the RFC. RFC_LRGDF and

RFC_STS-LS methods could subsequently be applied to obtain and evaluate segmentation results

within an additional set of LNs.

The LRGDF method provided accurate segmentation results on the LN envelope data and B-mode

tumor data. The gamma distribution well modeled the envelope data as well as the B-mode data.

In addition, use of a mollifying kernel to take into account the local statistics helps the LRGDF

method to handle data inhomogeneities. With an appropriate initialization, the LRGDF method

could be applied to the segmentation of other kinds of ultrasound data such as liver [52], prostate

[152] and skin [93]. The STS-LS method efficiently handles the depth-dependent inhomogeneities

which are characteristics of HFU data presenting strong attenuation effects. Data that exhibit strong

shadowing effects, however, may not be well handled by either the LRGDF or STS-LS methods.

In such cases, shape priors [152, 153] could be integrated as an additional data term into the energy
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functions of the LRGDF and STS-LS methods.

In this thesis, random forest classification (RFC) was employed to obtain an initial segmentation

that was considered to be an initialization for the level-set methods. As discussed in Chapter 6,

the RFC presented in this thesis could be extended in several ways by enriching the feature set,

speeding up the feature extraction process by using C/C++ implementation, applying on-line ran-

dom forest to avoid training from scratch, and improving the quality of manual segmentation used

as labeled data for training the random forest classifier. Recently, stack random forest feature

fusion [137] and deep neural decision forests [131] have been described and demonstrated to out-

perform traditional random forests. Future work could evaluate these two new frameworks within

our dataset.



Appendix A

The LRGDF Method: From the Energy to

the Evolution Equations

A.1 Two phases

The energy function E (φ)

E [φ ] = ED [φ ]+µER [φ ] , (A.1)

is the sum of a data term ED and a regularization term ER.

The data term is

ED [φ ] =

ˆ
Ω

ˆ
Ω

Kρ (x−y)

[
−

2

∑
i=1

λiMi (φ (y)) ln pi (I (y) ;θi (x))

]
dydx, (A.2)

where M1(x) = Hε(x), M2(x) = 1−Hε(x), and Hε a regularized version of the Heaviside function

which tends to H when ε → 0.

The regularization term penalizes the length in 2D or surface in 3D of the boundary between the

two regions,

ER [φ ] =

ˆ
Ω

|∇Hε (φ (x))|dx. (A.3)

To minimize E, we derive the evolution equation:

∂φ

∂ t
=−(∇ED[φ ]+µ∇ER[φ ]) . (A.4)
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from the Euler-Lagrange equation.

However we focus on the contribution of the data term as the contribution of the regularization

term is well known [100] and is

∇ER[φ ] =−δ (φ (x))div
(

∇φ (x)
|∇φ (x)|

)
. (A.5)

We rewrite ED[φ ] as

ED [φ ] =−
ˆ

Ω

2

∑
i=1

λi

ˆ
Ω

Kρ (x−y) ln pi (I(y);θi(x))dxMi (φ(y))dy, (A.6)

and we define ei(x), i = 1,2 as

ei(x) =
ˆ

Ω

Kρ (y−x) ln pi (I(x);θi(y))dy. (A.7)

So,

ED [φ ] =−
ˆ

Ω

2

∑
i=1

λiei(x)Mi (φ(x))dx. (A.8)

For a small variation h, the Gâteaux variation of ED is

δED [h,φ ] =
d
dt

ED[φ + th]t=0

=−
ˆ

Ω

2

∑
i=1

λiei(x)M′i (φ(x))h(x)dx (A.9)

with

M′1(x) = δε(x) (A.10)

M′2(x) =−δε(x). (A.11)

The Gâteaux variation is interpreted as the scalar product of h and the function of interest:

∇ED[φ ](y) =−
2

∑
i=1

λiei(x)M′i (φ(x))

=−δε(φ (x))(λ1e1(x)−λ2e2(x)) .
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Then the evolution equation is

∂φ

∂ t
(x) = δε (φ (x))

[
λ1e1(x)−λ2e2(x)+µdiv

(
∇φ (x)
|∇φ (x)|

)]
. (A.12)

A.2 Three phases

The three-phase energy function is

E [φ1,φ2] = ED [φ1,φ2]+ER [φ1,φ2] , (A.13)

with the data term:

ED [φ1,φ2] =

ˆ

Ω

ˆ

Ω

Kρ (x−y)

[
−

3

∑
i=1

λiMi (φ1(y),φ2 (y)) ln pi (I (y) ;θi (x))

]
dydx, (A.14)

and the regularization term:

ER (φ1,φ2) =
2

∑
k=1

µk

ˆ
Ω

|∇Hε (φk (x))|dx, (A.15)

where

M1(x,y) = Hε(x)Hε(y), M2(x,y) = (1−Hε(x))Hε(y),

M3(x,y) = 1−Hε(y).

The gradients of the Mi are

∇M1(x,y) =

δε(x)Hε(y)

Hε(x)δε(y)

 , ∇M2(x,y) =

 −δε(x)Hε(y)

(1−Hε(x))δε(y)

 ,

∇M3(x,y) =

 0

−δε(y)

 .
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As in 2 phases, the data term can be rewritten as:

ED [φ1,φ2] =−
ˆ

Ω

3

∑
i=1

λi

ˆ

Ω

Kρ (y−x) ln pi (I (x) ;θi (y))dyMi (φ1(x),φ2 (x))dx

=−
ˆ

Ω

3

∑
i=1

λiei(x)Mi (φ1(x),φ2 (x))dx,

where ei (x) are similar to Eq. (A.7).

Then the two Gâteaux variations are

δED1[h1,φ1] =
d
dt

E[φ1 + th1,φ2]t=0

=−
ˆ

Ω

δε(φ1(x))Hε(φ2(x))(λ1e1(x)−λ2e2(x))h1(x)dx, (A.16)

δED2[h2,φ2] =
d
dt

E[φ2 + th2,φ2]t=0

=−
ˆ

Ω

δε(φ2(x))
(

Hε(φ1(x))(λ1e1(x)−λ2e2(x))

+(λ2e2(x)−λ3e3(x))
)

h2(x)dx. (A.17)

So with the same scalar-product argument, the evolution equations are


∂φ1
∂ t = δφ1 (x)

[
H (φ2 (x))(λ1e1(x)−λ2e2(x))+µ1div

(
∇φ1(x)
|∇φ1(x)(|

)]
,

∂φ2
∂ t = δφ2 (x)

[
H (φ1 (x))(λ1e1(x)−λ2e2(x))+λ2e2(x)−λ3e3(x)+µ2div

(
∇φ2(x)
|∇φ2(x)|

)]
.

(A.18)
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The STS-LS Method: From the Energy to

the Evolution Equations

B.1 Two phases

The energy function

E [φ ] =ED[φ ]+µER[φ ]

=

ˆ

Ω

δε (φ(x))
ˆ

Ω

B(x,y)F (x,y, I,φ ,BT )dydx+µ

ˆ

Ω

|∇Hε (φ (x))|dx,
(B.1)

is composed of the data term ED[φ ] and the regularization term ER[φ ].

The data term energy only takes into account points that are closed to the zero level set of φ .

We define M1 and M2 as

M1(φ) =Hε(φ),

M2(φ) =1−Hε(φ).

Let us define Bx (resp. BT,x) a small (resp. large) region centered at x for which B(x,y) = 1 (resp.

BT (x,y) = 1). Bx (resp. BT,x) can be subdivided in 2 non-intersecting sub-regions Bx,i (resp. BT,x,i),

i = 1,2, of points that are part of region i. So x is not part of one of them.

In this Appendix, we focus our attention on the data term and the criterion F . Regions parameters

θi(x) are always estimated on BT,x,i.
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B.1.1 Lankton evolution equation

We derive the Lankton evolution from FS with

FS (x,y, I,φ ,BT ) =−
2

∑
i=1

λiMi(φ(y)) ln pi (I(x);θi(y)) . (B.2)

The energy associated to each region Bx is based on the sum for all the subregions Bx,i and all the

points y ∈ Bx,i of the log-probability of the intensity I(x) with parameter θi(y).

Note that x and y may well belong to 2 different subregions of the domain Ω, and this information

is not taken into account in this energy.

λi are two constants close to 1 which provides some additional flexibility.

The Gâteaux variation is

δEDa [h,φ ] =
d
dt

EDa[φ + th]t=0

=

ˆ

Ω

δ
′
ε (φ(x))h(x)

ˆ

Ω

B(x,y)FS (x,y, I,φ ,BT )dydx

+

ˆ

Ω

δε (φ(x))
ˆ

Ω

B(x,y)

[
−

2

∑
i=1

λiM′i(φ(y))h(y) ln pi (I(x);θi(y))

]
dydx. (B.3)

As δ ′ε(0) = 0 the first term is neglected near the zero level set and the role of x and y are exchanged,

δEDa[h,φ ] =
ˆ

Ω

ˆ

Ω

δε (φ(y))B(y,x)

[
−

2

∑
i=1

λiM′i(φ(x)) ln pi (I(y);θi(x))

]
dyh(x)dx. (B.4)

We read the previous equation as the scalar-product between h and the function of interest. The

gradient of the functional is

∇EDa[φ ](x) =−
ˆ

Ω

δε (φ(y))B(y,x)

[
2

∑
i=1

λiM′i(φ(x)) ln pi (I(y);θi(x))

]
dy. (B.5)

When B is centrally symmetric B(y,x) = B(x,y) so

∇EDa[φ ](x) =−δε(φ(x))
ˆ

Ω

δε(φ(y))B(x,y) ln
pλ1

1 (I(y);θ1(x))

pλ2
2 (I(y);θ2(x))

dy, (B.6)
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and the evolution equation is

∂φ

∂ t
(x) = δε(φ(x))

[ˆ
Ω

δε(φ(y))B(x,y) ln
pλ1

1 (I(y);θ1(x))

pλ2
2 (I(y);θ2(x))

dy+µdiv
(

∇φ

|∇φ |

)]
. (B.7)

This equation is similar to the one derived by Lankton et al. [110] when I(x) has a Gaussian

statistics. But the evolution equation was derived from the energy based on the log-likelihood of

the regions (See Section B.1.2 below). You may also find a different sign because in [110], Hε is

slightly different (i.e., Hε(x) = 0 when x > ε , and Hε(x) = 1 when x < ε).

They also did not introduce two different mask functions, so BT = B.

B.1.2 F as the log-likelihood of the two regions

In this context F is based on the log-likelihood of the regions Bx centered on x. The likelihood

of each region Bx is the product for all y belonging to each sub-region Bx,i of the probabilities

pi (I(y);θi(x)):

FL (x,y, I,φ ,BT ) =−
2

∑
i=1

λiMi(φ(y)) ln pi (I(y);θi(x)) . (B.8)

With this model, the probability of the sub-region Bx,i is described by the parameter θi(x) estimated

on the larger sub-region BT,x,i.

So at x, 2 parameters, θ1(x) and θ2(x) are estimated, one for each sub-region of BT,x. When

computing the probability of the point y which belong to region i, the pdf has parameter θi(x).

Eq. (B.4) is replaced by

δEDL [h,φ ] =
ˆ

Ω

ˆ

Ω

δε (φ(y))B(y,x)

×

[
−

2

∑
i=1

λiM′i(φ(x)) ln pi (I(x);θi(y))

]
dyh(x)dx.

(B.9)
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Then with the same reasoning (centrally symmetric B, ...), the gradient of the functional is

∇EDL [φ ](x) =−δε(φ(x))
ˆ

Ω

δε(φ(y))B(x,y) ln
pλ1

1 (I(x);θ1(y))

pλ2
2 (I(x);θ2(y))

dy, (B.10)

and the evolution equation is

∂φ

∂ t
(x) = δε(φ(x))

[ˆ
Ω

δε(φ(y))B(x,y) ln
pλ1

1 (I(x);θ1(y))

pλ2
2 (I(x);θ2(y))

dy+µdiv
(

∇φ

|∇φ |

)]
. (B.11)

Note that in Lankton paper [110], h is considered as a constant function in Eq. (B.9) (Eqs. (29)–

(31) in [110]) and force a local variation along the normal direction of the level set function φ .

Therefore, a different scalar-product is chosen, and the evolution equation Eq. (B.7) was derived.

B.2 Three phases

The 3-phase energy function:

E [φ1,φ2] = ED [φ1,φ2]+ER [φ1,φ2] , (B.12)

where the data term, ED [φ1,φ2], and regularization term, ER [φ1,φ2], are

ED [φ1,φ2] =
2

∑
k=1

ˆ

Ω

δ (φk(x))
ˆ

Ω

B(x,y)F (x,y, I,φ1,φ2,BT )dydx, (B.13)

ER (φ1,φ2) = µ1

ˆ

Ω

(|∇Hε (φ1(x))|dx+µ2

ˆ

Ω

|∇Hε (φ2 (x))|dx. (B.14)

We also define

M1(φ1,φ2) = Hε(φ1)Hε(φ2)

M2(φ1,φ2) = (1−Hε(φ1))Hε(φ2)

M3(φ1,φ2) = 1−Hε(φ2),
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and consider two image criteria Fa and FL.

B.2.1 Lankton evolution equation

It is based on Fa with

Fa (x,y, I,φ ,BT ) =−
3

∑
i=1

λiMi(φ1(y),φ2(y)) ln pi (I(x);θi(y)) . (B.15)

Now we use the same machinery than before, and write the Gâteaux variations:

δED1a[h1,φ1,φ2] =
d
dt

ED[φ1 + th1,φ2]t=0

δED2a[h2,φ2,φ1] =
d
dt

ED[φ1,φ2 + th2]t=0.

We focus our attention on δED1[h1,φ1,φ2]

δED1a =

ˆ

Ω

δ
′
ε(φ1(x))h1(x) . . .dx

+
2

∑
k=1

ˆ

Ω

δε(φk(x))
ˆ

Ω

B(x,y)

[
−

3

∑
i=1

λi
∂M′i
∂φ1

(φ1(y),φ2(y))h1(y) ln pi(I(x);θi(y))

]
dydx. (B.16)

We neglect the first term as δ ′ε(φ1(x)) = 0 on the zero level set and get:

δED1a =
2

∑
k=1

ˆ

Ω

δε(φk(x))
ˆ

Ω

B(x,y)

[
−

3

∑
i=1

λi
∂M′i
∂φ1

(φ1(y),φ2(y))h1(y) ln pi(I(x);θi(y))

]
dydx, (B.17)



114 The STS-LS Method: From the Energy to the Evolution Equations

The ∂M′i
∂φ1

is replaced by their respective values, and terms are reordered,

δED1a =−
2

∑
k=1

ˆ

Ω

δε(φ1(y))Hε(φ2(y))

×
ˆ

Ω

δε(φk(x))B(x,y) ln
pλ1

1 (I(x);θ1(y))

pλ2
2 (I(x);θ2(y))

dxh1(y)dy.

=−
ˆ

Ω

δε(φ1(y))Hε(φ2(y))

×
ˆ

Ω

(
2

∑
k=1

δε(φk(x))

)
B(x,y) ln

pλ1
1 (I(x);θ1(y))

pλ2
2 (I(x);θ2(y))

dxh1(y)dy. (B.18)

After exchanging x and y and taking into account the centrally symmetry of B, we derive the

gradient of the functional,

∇ED1a[φ1,φ2](x) =−δε(φ1(x))Hε(φ2(x))

×
ˆ

Ω

(
2

∑
k=1

δε(φk(y))

)
B(x,y) ln

pλ1
1 (I(y);θ1(x))

pλ2
2 (I(y);θ2(x))

dy. (B.19)

Concerning the second level set φ2,

∇ED2a[φ1,φ2](x) =−δε(φ2(x))
ˆ

Ω

(
2

∑
k=1

δε(φk(y))

)
B(x,y)

×

[
Hε(φ1(x)) ln

pλ1
1 (I(y);θ1(x))

pλ2
2 (I(y);θ2(x))

+ ln
pλ2

2 (I(y);θ2(x))

pλ3
3 (I(y);θ3(x)

]
dy. (B.20)

B.2.2 F as the log-likelihood of the three regions

Now FL is

FL (x,y, I,φ ,BT ) =−
3

∑
i=1

λiMi(φ1(y),φ2(y))) ln pi (I(y);θi(x)) , (B.21)

so all occurences of pi(I(x);θi(y)) in Eq. (B.15) are replaced by pi(I(y);θi(x)).

With the same machinery than before, we finally find that all pi(I(y);θ(x)) in Eqs. (B.19)–(B.20)
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are replaced by pi(I(x);θi(y)) and write:

∇ED1L
[φ1,φ2](x) =−δε(φ1(x))Hε(φ2(x))

×
ˆ

Ω

(
2

∑
k=1

δε(φk(y))

)
B(x,y) ln

pλ1
1 (I(x);θ1(y))

pλ2
2 (I(x);θ2(y))

dy. (B.22)

Concerning the second level set φ2,

∇ED2L
[φ1,φ2](x) =−δε(φ2(x))

ˆ

Ω

(
2

∑
k=1

δε(φk(y))

)
B(x,y)

×

[
Hε(φ1(x)) ln

pλ1
1 (I(x);θ1(y))

pλ2
2 (I(x);θ2(y))

+ ln
pλ2

2 (I(x);θ2(y))

pλ3
3 (I(x);θ3(y)

]
dy. (B.23)

Again with Lankton original derivation, one would read pi(I(y);θi(x)) instead of pi(I(x);θi(y)) in

∇ED1[φ1,φ2] and ∇ED2[φ1,φ2].
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