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Abstract

The deployment facility and flexibility of wireless technologies have allowed
considerable evolution of IEEE 802.11 standards. The arrival of the optical fiber to the
home has further motivated research studies to increase data rates and capacity. In this
context, the latest IEEE 802.11ac standard ratified in 2014 proposes new technologies
to achieve maximum data rates above 1 Gbit/s. In particular, 802.11ac includes the
Multi-User Multiple Input Multiple Output (MU-MIMO) and Transmit
Beamforming (TxBF). These smart antenna technologies assume a variable transmit
antenna pattern in function of the users’ position and the corresponding multipath
propagation channel characteristics. However, the current radio planning tools give a
fixed coverage map independent of any adaptive or smart antenna processing.

This thesis studies the impact of the MU-MIMO and TxBF techniques on radio
engineering, system optimization as well as radio planning tools. Indeed, the first part
of this thesis deals with refining the sum rate capacity gains by identifying interesting
system configurations and optimal system parameters (antenna spacing, tradeoff between
antenna number and number of spatial streams, antenna arrangement... ). The second
part addresses the beamforming gains in terms of the Signal-to-Noise Ratio (SNR) gain
and interference level to have realistic radio coverage modeling.

Hence, we have firstly analyzed the MU-MIMO to Single User MIMO (SU-MIMO)
sum rate capacity gain based on the 802.11ac correlated MU-MIMO channel models.
By analyzing the results, we have proposed system recommendations to optimize the
MU-MIMO in a residential environment, mainly related to system configuration. We
have also highlighted a relevant correlation coefficient which can be used to decide
whether MU-MIMO or SU-MIMO is suitable and to select users in MU-MIMO group.
Moreover, we have formulated the convex optimization problem of maximizing the
capacity in a Multi-User Multiple Input Multiple Output (MU-MIMO) context with
multiple receiving antennas taking into account the Equivalent Isotropically Radiated
Power (EIRP) constraint for Wireless Local Area Network (WLAN) in Europe.

Secondly, we have conducted a 2-user Multiple-Input Multiple-Output (MIMO)
propagation channel measurement campaign in a residential environment to confirm
the obtained radio engineering and system optimization recommendations. We have
been able to extend this study to other potential parameters which have influence on
MU-MIMO to SU-MIMO capacity gain such as path loss and antenna array
geometries.

Finally, we have evaluated the performance of TxBF by analyzing the Signal-to-Noise
Ratio (SNR) gain as well as the interference reduction. This part identifies the system
parameters which have the biggest influence on the realistic radio coverage simulation.
It proposes a statistical modeling to predict the beamforming gains achieved by the
antenna processing.

Keywords : MU-MIMO ; IEEE 802.11ac ; capacity ; antenna arrays ; indoor
propagation measurements ; TGac channel models ; transmit beamforming ; EIRP.
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Résumé étendu en français

1 Introduction

Le contexte global de cette thèse est celui de la montée en débit au-delà de 500
Mbit/s, voire de 1 Gbit/s sur l’accès radio, notamment en environement résidentiel.
Pour cela, différents standards sont en fin de normalisation, notamment le standard
IEEE 802.11ac dans la bande 5 GHz. Pour répondre à ce besoin de montée en débit, de
nouvelles techniques sont mises en œuvre comme l’utilisation de largeurs de bande plus
importantes (jusqu’à 160 MHz), la formation de faisceaux connue sous "transmit
beamforming (TxBF)" , puis, dans un second temps, l’utilisation du MIMO
multi-utilisateurs (MIMO-MU) permettant une réutilisation spatiale du spectre. En
outre, l’arrivée de la fibre optique a davantage motivé l’exploration de nouvelles
solutions pour augmenter le débit au sein des réseaux locaux domestiques.

Pour réaliser l’ingénierie radio, les outils d’ingénierie actuels supposent tous que le
réseau d’antennes de bornes Wi-Fi a un diagramme de rayonnement indépendant des
positions des stations clientes et constant dans le temps. Les nouveaux systèmes
MIMO-MU, ou même MIMO mono-utilisateur notés MIMO-SU avec "transmit
beamforming" remettent en cause cette modélisation dans la mesure où le diagramme
d’antennes formé devient dépendant du canal multi-trajets et de chacun des terminaux
clients servis à un instant donné. L’objet de la thèse est d’analyser l’impact de ces
nouvelles techniques MIMO sur l’ingénierie radio et notamment sur la modélisation des
couvertures et des interférences pour contribuer à la conception de la prochaine
génération d’outils d’ingénierie.

Le premier objectif de la thèse consiste à affiner les gains de capacité et surtout
préciser les domaines d’emploi en indoor du MIMO-MU par rapport au MIMO-SU
(lien en vue directe (LOS) ou avec obstacle (NLOS), comment constituer les groupes
d’utilisateurs. . . ). Les travaux s’appuient sur une modélisation réaliste du canal de
propagation MIMO indoor, basée sur des canaux standardisés indoor dans un premier
temps. Ensuite, une campagne de mesures a été réalisée au cours de cette thèse pour
confirmer et compléter les résultats obtenus.

Le second objectif de la thèse consiste à identifier quelle modélisation de l’ensemble
propagation, antennes et ses traitements, permettrait de simuler une couverture radio
réaliste pour l’ingénierie de ces nouveaux systèmes (802.11ac) tant du critère de puissance
reçue que des interférences.
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2 Techniques MIMO-MU pour les réseaux locaux sans fil

Les communications sans fil utilisent le rayonnement des ondes dans un
environnement donné par un émetteur (Tx). L’onde émise interagit avec
l’environnement physique d’une manière complexe avant d’arriver au récepteur (Rx).
En effet, l’onde se propage et est soumise à plusieurs phénomènes : réflexions,
diffractions, transmissions... L’onde reçue dépend de l’environnement, de
l’emplacement des objets et de l’activité humaine. Cet environnement souvent
dynamique exige une analyse approfondie du canal de propagation radio afin d’estimer
avec précision les paramètres des signaux reçus.

Pour tirer profit de la propagation multi-trajets à l’intérieur des bâtiments, les
techniques MIMO ont fait l’objet d’une attention particulière. Celles-ci ont été
proposées pour augmenter la capacité, en exploitant les propriétés spatiales du canal à
trajets multiples. Ces techniques MIMO ont d’abord été étudiées dans des scénarios
mono-utilisateur, puis étendues à des scénarios multi-utilisateurs. Dans ce contexte, la
nouvelle norme IEEE 802.11ac finalisée en janvier 2014 normalise le MIMO-MU pour
augmenter la capacité pour le sens descendant. Ce chapitre rappelle d’abord les
caractéristiques principales de la couche physique de la nouvelle norme 802.11ac avant
d’énumérer en détail les phénomènes de propagation influant le canal de propagation
dans les reséaux sans fil. Ensuite, nous décrivons la liaison descendante MIMO-MU, les
techniques de précodage proposées dans la littérature pour permettre la réutilisation
spatiale et les capacités liées.

2.1 Le standard 802.11ac

La norme IEEE 802.11ac permet d’atteindre des débits allant jusqu’à 6, 9 Gbit/s au
niveau de la couche physique pour la bande de 5 GHz. Par conséquent, cette norme
est destinée aux services qui requièrent des débits élevés, tels que la télévision haute
définition, l’affichage sans fil (interface multimédia haute définition (HDMI) sans fil), les
stations d’accueil sans fil (connexion sans fil avec des périphériques), et autres. Ci-après,
nous passons en revue quelques-unes des principales caractéristiques de la norme IEEE
802.11ac (Tableau 1).

2.2 Les techniques MIMO-MU

Dans les systèmes MIMO-MU, le point d’accès communique simultanément avec
plusieurs terminaux clients en exploitant la dimension spatiale. Ceci est possible en
utilisant la connaissance de chacun des canaux reliant les antennes de l’émetteur aux
différentes antennes des récepteurs en s’appuyant sur la technique de "feedback" explicite.
Dans le contexte MIMO-MU, l’émetteur doit gérer l’interférence inter utilisateurs. Pour
ce faire, plusieurs méthodes, nommées méthodes de précodage, sont proposées dans la
littérature. La diagonalisation par blocs, la plus étudiée, consiste premièrement à annuler
l’interférence inter-utilisateurs, et ensuite à optimiser la capacité de chacun des liens.
Les résultats proposés dans cette thèse se basent principalement sur cette technique vu
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Bande de fréquence 5 GHz: environ 400 MHz du spectre disponible en Europe

Modulation modulation d’amplitude en quadrature (MAQ): MAQ256,
MAQ64...

Nombre maximum de
flux spatiaux

8 flux spatiaux

Portée selon environnement 35 m à 150 m

Largeur de bande 20/40/80, 160, and 80 + 80 MHz

Débit maximal 6, 9 Gbit/s obtenu avec: 160 MHz, 8 flux spatiaux, MAQ
256 avec un taux de codage 5

6 , et un intervalle de garde de
400 ns.

Table 1 – Caractéristiques du standard 802.11ac.

qu’elle offre des performances assez proches de la borne théorique de capacité appliquant
le principe du "dirty paper coding".

3 Simulation de capacités multi-utilisateurs basées sur des
canaux normalisés (TGac)

Dans ce paragraphe, nous considérons la liaison descendante d’un scénario
MIMO-MU dans laquelle un point d’accès IEEE 802.11ac est équipé de plusieurs
antennes dipôles (jusqu’à 10 antennes) et transmet à deux récepteurs, chacun avec
deux antennes dipôles. Ce chapitre propose des recommandations pour optimiser les
performances MIMO-MU en se basant sur les canaux standardisés pour 802.11ac
(TGac). Tout d’abord, nous décrivons brièvement ce modèle. Ensuite, nous donnons
les résultats numériques pour l’impact du nombre d’antennes d’émission sur le gain de
capacité MIMO-MU par rapport au MIMO-SU. Nous expliquons les résultats obtenus
en mettant en évidence un coefficient de corrélation qui décrit la similarité entre les
canaux de deux utilisateurs. Enfin, nous formulons le problème d’optimisation de la
capacité au sens Shannon du MIMO-MU en tenant compte de la contrainte de
Puissance Isotrope rayonnée équivalente (PIRE). Il s’agit de la puissance répondant
aux exigences de la réglementation européenne pour les réseaux WLAN dans la bande
de fréquence 5 GHz: PIRE ≤ 23 dBm pour la bande basse, PIRE ≤ 30 dBm pour la
bande haute.

3.1 Modèle TGac

Les modèles normalisés ou standardisés sont un outil important pour la conception
des nouveaux systèmes radio. Ils permettent d’évaluer les avantages et les performances
de différentes techniques (modulation, codage...) d’une manière unifiée. C’est dans ce
cadre que les canaux 802.11 sont proposés pour les milieux indoor. Le modèle IEEE
802.11 TGn a été développé pour les canaux WLAN MIMO aux fréquences de 2.4 GHz

XVII





3.2 Nombre d’antennes d’émission et corrélation

Dans ce paragraphe, nous évaluons l’impact de l’augmentation du nombre d’antennes
d’émission sur le gain de capacité MIMO-MU par rapport au MIMO-SU. Nous examinons
ce gain de capacité en considérant que la répartition de la puissance totale d’émission est
équitable entre les différents flux spatiaux et sous porteuses. Le SNR est défini comme
le rapport entre puissance totale émise et la puissance du bruit, et est fixé ici à 20 dB.
Le canal est normalisé pour avoir une atténuation moyenne de 0 dB. La figure 2 donne
la moyenne du gain de capacité MIMO-MU par rapport au MIMO-SU en fonction du
nombre d’antennes d’émission. On considère deux canaux: le canal normalisé TGac-
B dans les conditions NLOS et le canal i.i.d Rayleigh décorrélé. Le graphe affiche les
valeurs moyennes et les quantiles à 10% et 90% (q10 et q90) servant à estimer l’intervalle
de confiance. La première observation tirée de la figure 2 est que le gain de capacité
MIMO-MU par rapport au MIMO-SU augmente lorsque le nombre d’antennes d’émission
augmente. Le gain passe de 1, 2 à 1, 65 pour l’environnement résidentiel: jusqu’à 45%
de gain de capacité. Nous observons également que le gain de capacité obtenu passant
de nT = 4 à nT = 6 est plus élevé que celui observé en passant de nT = 6 à nT = 8.
Ceci peut être expliqué par le fait que nous ne pouvons pas tirer profit du "transmit
beamforming" lorsque nT = 4, c’est à dire lorsque le nombre d’antennes d’émission est
le même que le nombre total de flux spatiaux. Une autre explication concernant le
coefficient de corrélation est donnée ci-après.

Figure 2 – Moyenne du gain de capacité MIMO-MU par rapport au MIMO-SU en
fonction du nombre d’antennes d’émission.
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Figure 3 – La moyenne du gain de capacité MIMO-MU par rapport au MIMO-SU en
fonction de la moyenne du coefficient de correlation(nT = 6).

Dans cette partie, nous définissons un coefficient de corrélation qui décrit le degré
de similarité entre les canaux de 2 utilisateurs. La moyenne du gain de capacité MIMO-
MU par rapport au MIMO-SU en fonction de la moyenne du coefficient de corrélation
est donnée sur la figure 3. Le nombre d’antennes d’émission est égal à 6. La moyenne
est calculée par rapport au temps, et chaque point représente l’un des 100 tirages de 2
utilisateurs. Lorsque le coefficient de corrélation augmente, le gain de capacité diminue:
plus de 30% de capacité en moins lorsque le coefficient de corrélation passe de 0,05 à 0,35.
En effet, lorsque les canaux des deux utilisateurs sont corrélés, l’algorithme de précodage
se montre moins performant. Ce coefficient de corrélation a un autre avantage: il peut
être utilisé comme critère pour regrouper les utilisateurs dans un scénario MIMO-MU.
Enfin, une analyse basée sur la régression linéaire est effectuée: les résultats suggèrent
une relation linéaire entre gain de capacité et corrélation. Le gain de capacité MIMO-
MU par rapport à MIMO-SU estimé y′ peut être exprimé en fonction de la corrélation
x sous forme:

y′ = a1x + a0 (1)

où y′, a1 et a0 désignent respectivement le gain de capacité estimé, la pente de régression
et l’ordonnée à l’origine. Dans le cas précis nT = 6, les valeurs numériques sont listées
dans le tableau 2.
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Scenario a0 a1 r Root Mean Square Error (RMSE)

LOS 1.7319 -1.1290 0.9425 0.0379

NLOS 1.7153 -1.1046 0.9682 0.0226

Table 2 – Résultats numériques des paramètres de régression linéaire pour 6 antennes
d’émission.

3.3 Contrainte de PIRE dans un contexte multi-utilisateurs

Le gain de capacité MIMO-MU par rapport au MIMO-SU est étudié en appliquant
la contrainte de limitation de PIRE cette fois-ci. Deux méthodes de répartition de la
puissance totatle d’émission sont analysées: répartition équitable et non de la puissance
parmi les flux spatiaux. Dans notre formulation, nous étudions le cas de 2 utilisateurs,
mais les résultats et les algorithmes présentés dans cette section peuvent être généralisés
à n’importe quel nombre d’utilisateurs.

Les techniques MIMO-MU consistent à appliquer un précodage linéaire transmis aux
flux spatiaux. Par conséquent, le diagramme d’antenne ainsi que son gain sont modifiés
en fonction de l’emplacement d’utilisateurs et les paramètres de propagation. La valeur
de PIRE est ainsi modifiée. La régulation européenne a fixé la PIRE dans les bandes de
fréquence 5 GHz à 200 mW (bande basse) ou 1 W (bande haute). Cette contrainte peut
être différente dans d’autres pays où elle est plutôt basée sur la puissance totale émise.

Nous avons formulé le problème de maximisation de capacité MIMO-MU sous la
contrainte de la limitation de PIRE. La figure 4 présente les résultats du gain de capacité
MIMO-MU par rapport au MIMO-SU pour les systèmes tenant compte ou non de la
contrainte de PIRE. Les valeurs moyennes et les quantiles à 10% et 90% (q10 and q90)
servant à estimer l’intervalle de confiance sont représentés. Le cas où la contrainte de
PIRE est considérée est noté eirp-égal. Nous notons le cas habituel où la puissance
d’émission est directement liée au SNR par basic. Le rapport signal à bruit est fixé
à 20 dB dans les deux cas. Le nombre d’antennes d’émission varie de 4 à 10. La
figure 4 montre que le gain de capacité MIMO-MU augmente quand le nombre d’antennes
d’émission augmente pour le modèle de canal TGac-B. Ce gain passe de 1,2 à 1,77 pour
un système tenant compte de la contrainte de PIRE dans un milieu résidentiel, ce qui
représente plus de 50% de gain de capacité. A noter que ce gain est égal à 45% pour un
système ne tenant pas compte de la contrainte de PIRE (basic). Ces résultats montrent
que l’augmentation du nombre d’antennes d’émission est également favorable au gain de
capacité MIMO-MU par rapport au MIMO-SU pour des canaux corrélés en respectant
la contrainte de PIRE.
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Figure 4 – La moyenne du gain de capacité MIMO-MU par rapport au MIMO-SU pour
IEEE TGac-B channel (residential).

4 Capacité MIMO-MU en environment réel de type
résidentiel

Ce chapitre présente les résultats numériques basés sur une campagne de mesures
menée au cours de la thèse dans un environnement résidentiel typique rencontré au sein
des réseaux domestiques. Afin d’avoir une comparaison significative, nous avons
effectué une comparaison entre le modèle de canal TGac-B et de l’environnement
mesuré. Le premier objectif de cette campagne de mesures est de confirmer les
résultats précédents et de valider les conclusions d’ingénierie radio basées sur des
modèles de canaux, puis d’étendre les résultats à différentes géométries de réseaux
d’antennes et à d’autres paramètres de propagation comme l’atténuation. Nous avons
également évalué l’impact de l’augmentation du nombre de flux spatiaux et des valeurs
de SNR. Enfin, nous avons élaboré une étude comparative entre les résultats simulés et
mesurés.

4.1 Campagnes de mesures

La Figure 5 montre l’environnement où nous avons mené la campagne de mesure:
un milieu résidentiel. Il s’agit d’un appartement réel de 12 m ×7 m formé de matériaux
et meubles européens. Le plafond est à 2,53 m. Les deux scénarios LOS et NLOS ont
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Figure 7 – Moyenne du gain de capacité MIMO-MU par rapport au MIMO-SU en
fonction de la moyenne du coefficient de corrélation.

5.1 Gain de beamforming

Nous présentons le gain sur le SNR comme métrique d’évaluation du gain de
"beamforming". Nous évaluons la capacité MIMO en respectant la contrainte de la
limitation de PIRE: PIRE = 23 dBm et en variant les valeurs d’atténuation de canal
pour prendre en compte différentes valeurs de SNR. En effet, en utilisant les 67
configurations différentes de 2 utilisateurs, nous avons normalisé le canal pour avoir des
atténuations comprises dans l’intervalle: J45 dB, 110 dB K. Pour chaque valeur
d’atténuation, on simule la valeur médiane de la capacité MIMO. En tenant compte de
la tendance linéaire décroissante des valeurs médianes de capacités en fonction du path
loss, nous avons appliqué une régression linéaire comme le montre l’exemple Figure 8.
La figure montre les valeurs médianes de capacité MIMO avec et sans "transmit
beamforming" pour un système avec deux antennes à l’émission, une antenne en
réception et un flux spatial en fonction de l’atténuation moyenne de propagation. Le
gain sur le SNR est défini comme la différence entre les deux droites de régression en
dB comme montre la figure.

Le gain sur le SNR a été évalué pour différentes configurations en fonction du nombre
d’antennes d’émission et de réception. La Figure 9 donne le gain sur le SNR en fonction
du nombre d’antennes d’émission pour un seul flux spatial. Le gain sur le SNR augmente
avec l’augmentation du nombre d’antennes d’émission, alors qu’il diminue lorsque le
nombre d’antennes de réception augmente. Outre, la figure 9 montre qu’il y a toujours
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Dans cette thèse, nous avons abordé les problématiques ci-dessus liées aux techniques
MIMO-MU et aux antennes intelligentes.

Tout d’abord, nous avons résumé les caractéristiques de la nouvelle norme 802.11ac
ainsi que les mécanismes de base de la propagation radio. Les différents modèles de
canaux MIMO ont également été présentés. En particulier, nous avons détaillé le canal
TGac utilisés pour nos simulations. Ensuite, nous avons décrit un modèle de système
MIMO-MU, les techniques de précodage et les méthodes de calcul de capacités.

Ensuite, nous avons proposé des recommandations pour optimiser les performances
MIMO-MU en se basant sur les canaux standardisés TGac. Ces recommandations sont
données en termes de paramètres systèmes/antennes et de la disposition des utilisateurs:
LOS, NLOS... Tout d’abord, nous avons détaillé le processus des de simulation, le modèle
de canal évalué et ses paramètres. Ensuite, nous avons fourni les résultats de gain de
capacité MIMO-MU par rapport au MIMO-SU en fonction des configurations d’antennes
et des paramètres de canaux de propagation. Enfin, nous avons mené une étude sur
ces gains de capacité en tenant compte de la contrainte de la PIRE. En particulier,
nous avons démontré qu’une légère augmentation du nombre d’antennes d’émission par
rapport au nombre total de flux spatiaux transmis améliore significativement le gain en
capacité MIMO-MU sur MIMO-SU. Nous avons également mis en évidence une définition
de la corrélation des canaux correspondant qui est utile pour décider si MIMO-MU
apporte plus de capacité que le MIMO-SU. Ce paramètre permettrait de sélectionner
les utilisateurs dans un groupe d’utilisateurs MIMO-MU, et également d’optimiser la
conception des antennes MIMO. Ensuite, nous avons formulé le problème d’optimisation
de la capacité MU-MIMO en tenant compte de la contrainte de la PIRE. Nous avons
montré que la technique de précodage MIMO-MU tire profit de la contrainte de la PIRE.

Nous avons ensuite présenté les résultats d’une campagne de mesures réalisée au
sein d’Orange Labs Belfort en utilisant un analyseur de réseau. Cette campagne a été
menée au cours de la thèse dans un environnement résidentiel typique des réseaux
domestiques. Le premier objectif de cette campagne de mesures était de confirmer les
résultats précédents et ainsi valider les conclusions d’ingénierie radio basées sur des
modèles de canaux, puis d’étendre ces résultats à différentes géométries de réseaux
d’antennes et à d’autres paramètres potentiels tels que l’atténuation de propagation.
Les résultats obtenus confirment les recommandations basées sur des simulations
TGac. En outre, nous avons étendu ces conclusions en étudiant l’impact de la
configuration des antennes de réception, le nombre de flux spatiaux et les valeurs de
SNR. En particulier, l’augmentation du nombre d’antennes de réception augmente
légèrement le gain en capacité du MIMO-MU par rapport au MIMO-SU. En outre, la
sélection de différentes antennes de réception n’a pas d’impact significatif sur ce gain
de capacité. Ensuite, nous avons évalué l’atténuation du canal et son impact sur le
gain de capacité MU-MIMO en utilisant différentes méthodes d’accès au canal. Une
différence d’atténuation entre récepteurs peut être bénéfique pour le gain de capacité
MIMO-MU par rapport au MIMO-SU selon le type de la méthode d’accès.

Enfin, le dernier chapitre évalue la méthode du "transmit beamforming" en se
basant sur les données de mesure dans un contexte MIMO-SU. Pour évaluer les
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performances de cette technique, nous avons défini deux métriques: le gain sur le SNR
et la réduction d’interférence. Plusieurs configurations MIMO (nombre d’antennes
émettrices et réceptrices, nombre de flux spatiaux, géométries de réseaux d’antennes)
ont été comparées pour identifier celle qui fournit les meilleurs gains sur le SNR. En
particulier, nous avons prouvé que l’augmentation du gain sur le SNR est possible
lorsque nous augmentons le nombre d’antennes d’émission, diminuons le nombre
d’antennes de réception, ou diminuons le nombre de flux spatiaux. Ces conclusions
permettraient d’ajouter les gains de "beamforming" aux cartes de couverture simulées
par les outils d’ingénierie actuels. En outre, nous avons cherché à savoir si
l’introduction de cette technique de "transmit beamforming" pourrait augmenter ou
réduire l’effet des interférences générées par un lien interférant. Nous avons pu montrer
qu’utiliser la technique de "transmit beamforming" peut réduire dans certaines
directions les interférences.

Les travaux de cette thèse pourraient être poursuivis par le développement des points
suivants:

— Cette thèse suppose que l’émetteur connaît parfaitement le canal. Il est donc
pertinent d’évaluer l’impact d’une estimation imparfaite du canal sur les résultats
obtenus.

— Une analyse approfondie des caractéristiques spatiales du canal de propagation
(direction du départ, direction d’arrivée) permettrait une comparaison plus
poussée des résultats des modèles de canal MIMO et de la campagne de mesure.

— Il serait intéressant de mener une campagne de mesures avec un réseau d’antennes
compact incluant ainsi l’effet de couplage des antennes. Dans notre campagne de
mesures, nous avons évalué le seul cas avec 8 antennes d’émission disposées en
réseau linéaire uniforme, les autres géométries se basant sur des réseaux virtuels.

— Il serait possible d’aller plus loin dans l’analyse des tirages aléatoires des 8
antennes d’émission pour proposer une géométrie de réseaux optimisée à 8
antennes et la tester dans d’autres environnements résidentiels pour généraliser
les résultats.

— Il est pertinent de développer un algorithme rapide simulant le traitement
d’antenne pour l’associer à un canal simulé par tracé/lancer de rayons afin de
prédire les gains de "transmit beamforming" en chaque point de la carte de
couverture au lieu d’une correction statistique globale.
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Acronyms

AoA Angle of Arrival

AoD Angle of Departure

AP Access Point

AS Angular Spread

BC Broadcast Channel

BD Block Diagonalization

BER Bit Error Rate

BF Beamforming

BS Base Station

CSD Cyclic Shift Delay

CCA Crossed Circular Array

CDF Cumulative Distribution Function

CI Channel Inversion

CIR Channel Impulse Response

CFR Channel Frequency Response

CSI Channel State Information

CSIT Channel State Information at the Transmitter

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

DL Downlink

DS Delay Spread

DPC Dirty Paper Coding

EIRP Equivalent Isotropically Radiated Power

GI Guard Interval

i.i.d. independent and identically distributed

IP Internet Protocol

ICA Irregular Circular Array

IDC International Data Corporation
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IUI Inter User Interference

ISI Inter-Symbol Interference

LOS Line-Of-Sight

MIMO Multiple-Input Multiple-Output

MU-MIMO Multi-User Multiple Input Multiple Output

MCS Modulation and Coding Schemes

NLOS Non-Line-Of-Sight

OFDM Orthogonal Frequency-Division Multiplexing

PAS Power Angular Spectrum

PAPR Peak-to-Average Power Ratio

per-SS per-Spatial Stream

PHY PHYsical layer

PDP Power Delay Profile

PDS Power Delay Spectrum

QAM Quadrature Amplitude Modulation

Rx receiver

RMS Root Mean Square

RMSE Root Mean Square Error

RCI Regularized Channel Inversion

SISO Single-Input Single-Output

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

SS Spatial Stream

SU-MIMO Single User MIMO

SVD Singular Value Decomposition

Tx transmitter

TxBF Transmit Beamforming

UL Uplink

ULA Uniform Linear Array

TDMA Time Division Multiple Access

THP Tomlinson-Harashima Precoding

VNA Vector Network Analyzer

VHT Very High Throughput

VP Vector Perturbation

Wo-BF Without Beamforming

W-BF With Beamforming

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network
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Notation

We briefly summarize below the main notations used throughout this report.
Wherever possible, we have tried to keep the same notations from one chapter to
another. The matrices and vectors are indicated with boldface.

t Time
τ Delay
f Frequency
Hk Channel matrix for user k (Transfer channel function at a given frequency)
Wk Precoding matrix for user k
diag(v) Diagonal matrix formed using the vector v
diag(M) Diagonal matrix formed using the diagonal of matrix M
∗ Convolution
(.)T Transposition
|| . || Vector norm-2
| . | Absolute value
(̄.) Complex conjugate
(.)H Transpose conjugate
E(.) Expectation || Mean
|| . ||F Frobenius norm
N Number of 802.11ac subcarriers
nT Number of transmitting antennas
nR Number of receiving antennas
nRk

Number of receiving antennas for the kth user
K Number of users
k User index running from 1 to K
trace() Trace
H† Pseudo inverse
I Identity matrix
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1.1 Context

Wireless communication is one of the most vibrant, challenging and interesting
areas in the communication field today. Over the past two decades, wireless
technologies have thrived and have even become standard for household and office
appliances. The deployment facility and freedom of movement they enable have made
them a very attractive solution for setting up local access networks.

The Enterprise Wireless Local Area Network (WLAN) market has become highly
competitive and the vendors are proposing vast offerings and unique solutions. WLAN
is affordable, easy to deploy and manage. That is why, recent trends in the industry have
shown increase in the demand for enterprise WLAN. According to the International Data
Corporation (IDC) 1, the Worldwide WLAN Market has shown solid growth (12.8%) in
the third Quarter of 2013 [3]. Also, the overall WLAN market revenues are forecast to
exceed 11 billion in 2017 and nearly 50 percent greater than 2012 revenues, according to
Dell’Oro Group [4](this growth includes deployment of the 802.11ac upgrade cycle). In
home networks, more than 10 millions of residential gateways are deployed in France.

The major standards for WLANs are the Institute of Electrical and Electronics
Engineers (IEEE) 802.11 family, commonly known as Wireless Fidelity (Wi-Fi). Since
its 1997 initial specification, the IEEE 802.11 standard has gone through several

1. IDC is the premier global provider of market intelligence, advisory services, and events for the
information technology, telecommunications, and consumer technology markets.
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order to evaluate radio wave propagation in an indoor environment, various techniques
may be used such as ray tracing launching technique, channel measurements and
channel models. The 2D and 3D ray tracing models are both used widely in the
literature. However, these techniques have not been normalized for MU-MIMO.
Moreover, they would need very high computation time. The task group of 802.11ac
(TGac) has designed standardized channel models for indoor wireless local area
networks by including MU-MIMO techniques. We have first based our research
approach on these standardized channel models. Since MU-MIMO TGac channel
models are mainly based on measurement campaigns in Line-Of-Sight (LOS) scenarios
like in offices [5][6][7][8], we have conducted afterwards a measurement campaign to
confirm and complete our results based on TGac simulations. However, since the
measurement equipment was not available until the end of the 2nd year of this Ph.D
work, the measurement analysis began at the end of 2014 and was hence scheduled for
less than one year. With this constraint, we could not go further in the measurement
analysis.

Thereby, in the first part of this thesis, the objective is to refine the capacity gains
for indoor MU-MIMO compared to the SU-MIMO systems by identifying interesting
system configurations (deployment recommendations such as LOS or
Non-Line-Of-Sight (NLOS), impact of distances or other environmental parameters ..)
and optimal system parameters (like number and arrangement of antennas, number of
spatial streams, ..). The results are based on both a standardized MIMO channel
modeling and a measurement campaign conducted in an indoor environment. This
part concludes system and deployment recommendations. In the second part of the
thesis, the objective is to define how smart antenna affects radio coverage and
interference. This characterization could be included in radio planning tools. This part
identifies the propagation parameters which have the biggest influence on the realistic
radio coverage simulation in terms of received power and interference level.

1.3 Main contributions

During this thesis, we have focused our study on identifying the deployment
recommendations or optimal system configuration of MU-MIMO techniques compared
to SU-MIMO from a physical point of view. We have studied the impact of antennas
and propagation channels on the Block Diagonalization (BD) capacity gain in home
networks under a total transmitted power constraint. Note that the BD is a precoding
technique that cancels the interference between users in a MU-MIMO context. We
have also highlighted a relevant channel correlation definition that is useful to decide
whether MU-MIMO outperforms SU-MIMO and to select the users into a MU-MIMO
user group. We have formulated the optimization problem for computing capacity
satisfying the Equivalent Isotropically Radiated Power (EIRP) constraint in
MU-MIMO context. We have confirmed the results based on measured channels in a
residential environment. The measurement campaign we have conducted, extended the
study to various antenna array geometries, as well as path loss impact. Finally, we
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have proposed a statistical model that describes the TxBF processing in terms of
received power gain and interference reduction. Based on this model, we will be able to
apply the beamforming gains in the upcoming radio planning tools.

1.4 Contents

The remainder of the report is divided as follows. In Chapter 2, we first introduce
the fundamentals of WLAN. Afterwards, we give the new features implemented in the
latest IEEE 802.11ac standard. We then present the basics of a wireless channel and
an overview of the channel models. We finish by presenting the different MU-MIMO
techniques and related capacity formulas. Chapter 3 analyzes and summarizes the
recommendations based on IEEE 802.11ac standardized channel for a two-user case,
taking or not into account the European regulation in terms of EIRP. In Chapter 4, we
present the results based on our measurement campaign conducted in a residential
environment. This environment is compared to the simulated TGac-B channel model.
This chapter completes the findings of the simulation results in terms of system
optimization. It also extends the study to reveal the impact of path loss on MU-MIMO
performance. Chapter 5 investigates the modeling of radio coverage using smart
antennas in terms of received power gain of the TxBF and interference level reduction.
Finally, we conclude this thesis and give some potential further research directions in
Chapter 6.

1.5 List of publications

Journal papers

— K. Issiali, V. Guillet, G. El Zein and G. Zaharia. Impact of Antennas and
Correlated Propagation Channel on BD Capacity Gain for 802.11ac Multi-User
MIMO in Home Networks. Mediterranean Telecommunication Journal (RMT),
June 2015.

— K. Issiali, V. Guillet, G. El Zein and G. Zaharia. MU-MIMO 802.11ac Capacity
Gain under EIRP Constraint for a Typical Home Environment. Lecture Notes in
Electrical Engineering (LNEE), April 2016.

International conferences

— K. Issiali, V. Guillet, G. El Zein and G. Zaharia. Impact of Antennas and
Correlated Propagation Channel on BD Capacity Gain for 802.11ac Multi-User
MIMO in Home Networks. In WIreless Technologies, embedded and Intelligent
Systems (WITS), April 2015: selected paper for publication in RMT journal.

— K. Issiali, V. Guillet, G. El Zein and G. Zaharia. Impact of EIRP Constraint on
MU-MIMO 802.11ac Capacity Gain in Home Networks. In Mediterranean Conf.
On Inf. and Com. Techn. (MedICT), May 2015: best selected paper for
publication in extended version in MDPI journal.
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— K. Issiali, V. Guillet, G. El Zein and G. Zaharia. IEEE 802.11ac Multi-user MIMO
capacity and impact of antenna array geometry based on indoor measurements.
In Personal, Indoor and Mobile Radio Communications (PIMRC), August 2015.
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2.1 Introduction

Radio propagation study is an essential step to perform appropriate design,
deployment, and management strategies for any wireless network. The transmitted
wave interacts with the physical environment in a complex way before arriving at the
receiver (Rx). Indeed, radio propagation is heavily site-specific and can vary depending
on the terrain, velocity of communicating devices, interacting objects and movement of
people.

Under the suggested solutions to overcome the issues related to multipath
propagation, MIMO communications have attracted considerable attention. They have
demonstrated the potential for increased Shannon capacity by exploiting the spatial
properties of the multipath channel [9]. If the channel is rich scattering (independent
and identically distributed (i.i.d.) Rayleigh channel) then a linear increase in capacity
is possible by simultaneously increasing the number of receiving and transmitting
antennas (the capacity increases according to the min of the number of transmitting
and receiving antennas). MIMO techniques were first investigated in single-user
scenarios, then extended to multi-user MIMO scenarios. The MU-MIMO technology
uses adaptive antenna 1 arrays to provide high spectral efficiency with moderate
receiver complexity. In this context, the new IEEE 802.11ac standard ratified in
January 2014 normalizes the MU-MIMO for increased data rates (above 1 Gbit/s).
The aim behind these techniques is to improve the system performance by increasing
channel capacity and spectrum efficiency extending coverage range. These techniques
also reduce multipath fading, co-channel interference, system complexity and cost, Bit
Error Rate (BER), and outage probability [10].

This chapter first gives the physical features of the new standard 802.11ac in
Section 2.2, before listing in details the basic propagation mechanisms which impact
the propagation channel in wireless communication (Section 2.3). Afterwards, we
describe the MU-MIMO downlink system, the precoding techniques in Section 2.5 and
their related capacities in Section 2.6. Finally, the conclusion is drawn in Section 2.7.

2.2 The 802.11ac standard

The IEEE 802.11ac standard is an emerging Very High Throughput (VHT) WLAN
standard that can achieve PHYsical layer (PHY) data rates of up to 6.9 Gbit/s for the

1. Adaptive antenna is as example a phased array where the gains and the phases of the signals
induced in the various elements are weighted to adjust the gain of the array in a dynamic manner along
a particular direction, while simultaneously placing nulls along undesired directions.
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5 GHz frequency band [11]. Note that the rates at the Internet Protocol (IP) layer are
lower in practice.

The scope of IEEE 802.11ac includes single link throughput supporting at least
500 Mbit/s, multiple-stations throughput of at least 1 Gbit/s, and backward
compatibility and coexistence with legacy IEEE 802.11n devices in the 5 GHz band.
Consequently, this standard is targeted at higher data rate services such as
high-definition television, wireless display (high-definition multimedia interface
(HDMI) replacement), wireless docking (wireless connection with peripherals), and
rapid sync-and-go (quick upload/download). The IEEE 802.11ac standardization
process started in 2008 and finished in December 2014.

In general, IEEE 802.11ac could be schematized as a lateral extension of IEEE
802.11n in which the two basic notions of MIMO and wider channel bandwidth are
enhanced. PHY and Multiple-Access Channel (MAC) layers modifications have been
introduced with the VHT standard. In addition, channelization has been modified and
MU-MIMO has been introduced for greater spectral efficiency.

Hereafter, we review some of the key features of IEEE 802.11ac such as larger
bandwidth, higher order modulation, and MU-MIMO transmission mode.

2.2.1 Mandated use of the 5 GHz band

The WLAN market is now transitioning from IEEE 802.11n to IEEE 802.11ac [2],
due to the promise of higher throughput and more reliable performance available in the
5 GHz unlicensed band. IEEE 802.11ac mandates the use of the 5 GHz frequency band,
a band with the availability of more significant spectrum compared to the commonly
used 2.4 GHz band. Indeed, in Europe, there is approximately 400 MHz of spectrum
available. In contrast, the 2.4 GHz band can accommodate only three non-overlapping
20 MHz wide channels. This has led to many competing devices per channel and heavy
levels of interference. The larger spectrum availability in the 5 GHz band provides more
network capacity, and leads to fewer competing devices per channel and thus reduced
interference compared to traditional single-band 2.4 GHz IEEE 802.11n networks.

2.2.2 Maximum data rate

One key feature of IEEE 802.11ac is the increase in data rate compared to IEEE
802.11n. This is achieved through the use of expanded channel bandwidth and higher-
order modulation. Figure 2.1 shows the peak data rate and the per-Spatial Stream
(per-SS) data rate for various WLAN standards that have evolved over the years. Spatial
streams are composed of independent data streams. 802.11b and 802.11g support peak
data rates of 11 and 54 Mbit/s, respectively. IEEE 802.11n increased the peak data rate
to 600 Mbit/s. IEEE 802.11ac has further increased the peak data rate to 6.9 Gbit/s,
over ten times that of 802.11n.

A maximum data rate of 6.93 Gbit/s is thus obtained using: 160 MHz bandwidth,
8 Spatial Stream (SS), 256-Quadrature Amplitude Modulation (QAM) with coding rate
5/6, and short Guard Interval (GI) (400 ns) [2].
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coding rates are defined: 3/4-rate and 5/6-rate. For comparison, 802.11n supports up
to 64-QAM with the same coding rates. Thus, 802.11ac achieves a 33% increase in
peak data rate over 802.11n. The combination of higher-order modulation and increased
channel bandwidth enables an 802.11ac device to support approximately three to six
times higher data rate compared to an 802.11n device for the same number of antennas
or SS [2]. 802.11n achieves a maximum of 150 Mbit/s per-SS (108 data tones in 40 MHz
of bandwidth with a maximum of 5.0 bits per tone). This results in a maximum data
rate of 600 Mbit/s, assuming the maximum supported 4 SS MIMO transmission of
802.11n. 802.11ac reaches 433 Mbit/s per-SS using 80 MHz channel bandwidth (234
data tones with 6.67 bits per tone), and 867 Mbit/s per-SS using 160 or 80 + 80 MHz
bandwidth. This results in a maximum data rate of 6.9 Gbit/s, assuming the maximum
supported 8 SS MIMO transmission of 802.11ac. While 6.9 Gbit/s is an eye-catching
maximum data rate, a more commonly cited advantage of 802.11ac is the ability to
cross the 1 Gbit/s barrier with small form-factor devices [2]. A two-antenna 802.11ac
device (using a maximum of two SS) can support a maximum data rate of 1.73 Gbit/s.
Furthermore, an 802.11ac device can surpass the data rate of an 802.11n device, with
much lower complexity and cost but with an increased bandwidth range. For example,
an 802.11n device requires three antennas (three spatial streams) to achieve a similar
maximum data rate (450 Mbit/s) as a single-antenna 802.11ac device.

2.2.4 Rate-range

In addition to increasing the maximum data rate, these enhancements also lead to
improved rate over-range performance of 802.11ac compared to 802.11n. Figure 2.2
shows simulated performance of both technologies [2], using a path loss model validated
with measurements within a large building. Both technologies support three spatial
streams, and have three transmitting and receiving antennas (3 × 3). The figure shows
the TCP/IP throughput vs. the distance between the wireless devices. It can be seen
that the 802.11ac devices can connect at twice the range of the 802.11n devices, at the
maximum TCP/IP throughput of the 802.11n device (approximately 280 Mbit/s). For
an end user, this translates to 802.11ac devices experiencing higher throughput across
most locations in a home/office environment. Another observation from Figure 2.2 is
that the peak rate of the 802.11ac device is three times that of the 802.11n device.
For the end user, this translates to 802.11ac-enabled devices experiencing much higher
throughput for in room and peer-to-peer scenarios.

However, the use of 80 MHz is guaranteed in optimal cases only where 80 MHz
bandwidth can be available. In the case of a reduced available bandwidth, as in dense
environments with many AP, in order to increase the throughput, the standard increases
the number of SS to eight, as well as it proposes the MU-MIMO processing as solution
to enhance the spectral efficiency.
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Figure 2.3 – Beamforming basics.

backward compatible with 802.11n devices.
Explicit compressed feedback (ECFB) is known to provide the most precise estimate

of the channel, taking into account all the imperfections at the transmitter and the
receiver. However, ECFB comes with a lot of overhead. For an AP with four antennas,
the compressed feedback varies from 180 to 1800 bytes, depending on the number of
client antennas and level of compression. For an 80 MHz client, sounding with just one
single antenna takes about 250 microseconds.

2.2.7 MU-MIMO

In 802.11n, a transmission to a device happens using SU-MIMO modes, where the
data rate to a device scales with the minimum number of antennas of each device and
with the signal to noise ratio. An 802.11n AP must transmit data to different devices,
attempting to divide up the network throughput between stations based on Carrier
Sense Multiple Access/Collision Avoidance (CSMA/CA) which acts to prevent
collisions before they happen. Unfortunately, 802.11n network capacity is then limited
by lower-cost devices that have a smaller number of antennas [15]. For instance, with
single-antenna receivers, the 802.11n does not take benefit from MIMO advantages to
improve throughput. In this context, 802.11ac MU-MIMO transmission modes allow
simultaneous transmissions to multiple devices, as depicted in Figure 2.4. This
significantly improves the spectral efficiency of a WLAN when there are stations with
limited numbers of antennas. Essentially, MU-MIMO captures the maximum spatial
capacity without requiring all individual stations to have a large number of antennas.
The 802.11ac standard allows a MU-MIMO transmission to send up to four stations
simultaneously. Each station may receive up to four SS, but the total number of SS in
a MU-MIMO transmission is limited to eight SS summed across all stations.

Transmit beamforming and MU-MIMO require knowledge of the channel state to
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2.3.2 Multipath propagation channel modeling

The channel refers to the medium between the transmitter and the receiver. We
have seen in the previous section that the real wireless channel is complicated due to
complex propagation environment. The transmitted signal may be reflected, diffracted
and scattered by surrounding obstacles, or attenuated and absorbed by obstructions
causing a fluctuation of signal power. Hence, multipath signals are received in a
terrestrial environment, i.e., where different forms of propagation are present and the
signals arrive at the receiver from transmitter via a variety of paths, causing multipath
interference. This is known as multipath fading. Adding the effect of movement of
either the Tx or Rx, the received overall signal amplitude or phase changes over a small
amount of time.

Consider a single-input single-output system, the overall transmission channel
(propagation channel as well as the transmitting and receiving antennas) can be
represented as a linear filter with time varying impulse response in continuous time
h(τ, t). The received signal y(t) at time t is expressed using complex baseband
equivalent signals and filter as:

y(t) = x(t) ∗ h(τ, t) + n(t) =

∫ +∞

−∞
h(τ, t)s(t − τ) dτ + n(t) (2.1)

where x(t) is the transmitted signal, n(t) is the corrupting noise, and ∗ denotes the
convolution operation.

As channel can be time-varying, time t is needed, and τ is the multipath delay.
The Channel Impulse Response (CIR) h(τ, t) for a single-input single-output system
experiencing multipath fading with L paths is given by:

h(τ, t) =
L−1
∑

l=0

αl(t)δ(τ − τl(t)) (2.2)

where αl(t) and τl(t) are respectively the complex attenuation and the delay of the lth

propagation path at time t. We denote L(t) by L for sake of simplicity.
The characteristics of the channel can also be represented in the frequency domain

by the Channel Frequency Response (CFR). CFR can be obtained by applying Fourier
transform to the CIR in the time-delay domain τ :

H(f, t) =

∫ +∞

−∞
h(τ, t)exp{−j2πfτ} dτ =

L−1
∑

l=0

αl(t)exp{−j2πfτl(t)} (2.3)

The continuous-time system model is generally sampled into an equivalent discrete
time model. The received signal is given by:

yk =
L−1
∑

l=0

hl,ksk−l + nk (2.4)
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where yk = y(kTsym), k is an integer and Tsym is the sampling period. L is the number
of taps, hl,k is the lth channel tap. The frequency domain response becomes:

H(f, k) =
L−1
∑

l=0

hl,kexp{−j2πlfTsym} (2.5)

2.3.3 Propagation channel parameters

The average Power Delay Profile (PDP), referred to as E(PDP (τ, t)), gives the
distribution of signal average power received over a multipath channel as a function of
propagation delays [17]. The influence of particular obstacles can be noticed in the PDP,
where the peaks, echoes, and other irregularities are displayed. The PDP can be thought
of as a density function, of the form:

PDP (τ, t) =
| h(τ, t) |2

∫+∞
0 | h(τ ′, t) |2 dτ ′ (2.6)

Mean Excess Delay, denoted τe(t) is the first moment of the power-delay profile (as
shown in Figure 2.7) [17]. It is expressed as:

τe(t) =

∫ +∞

0
τPDP (τ, t) dτ (2.7)

The time reference 0 is given by the first path of the channel.
Root Mean Square (RMS) Delay Spread (DS) τRMS(t) is the square root of the second

central moment of a power-delay profile [17], as seen in Figure 2.7. It is the standard
deviation of the mean excess delay as expressed in Equation 2.8. The RMS delay is a
good measure of the multipath delay spread. It gives an indication of the importance of
the Inter-Symbol Interference (ISI). Strong echoes (relative to the shortest path) with
long delays contribute significantly to τRMS(t).

τRMS(t) =

√

∫ +∞

0
(τ − τe)2PDP (τ, t) dτ (2.8)

Maximum Excess Delay τm is measured with respect to a specific power level, which
is characterized as the threshold of the signal [17]. When the signal level is lower than
the threshold, it is processed as noise. For example, the maximum excess delay can be
specified as the excess delay τm for which the average PDP (τ) falls below −30 dB with
respect to its peak value, as shown in Figure 2.7.

Figure 2.7 summarizes the delay dispersion parameters characterizing the
propagation channel defined above.

The coherence bandwidth Bcoh is the statistical average bandwidth of the radio
channel, over which signal propagation characteristics are frequency correlated at a given
correlation level. It characterizes the range of frequencies over which the channel can be
considered correlated or nearly flat. It is usually defined as the bandwidth over which
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The fast fading is modeled using either Rician distribution or Rayleigh fading.
Rayleigh fading occurs when there are multiple indirect paths between the transmitter
and receiver and no distinct dominant path, such as LOS path. Sometimes the
dominant non fading signal due to line-of-sight in the channel superimposes itself on
the random multipath components. The effect of the dominant signal over the weaker
multipath signal gives rise to a Rician distribution. The Rician distribution is
described by a parameter K, which is defined as the ratio of signal power in dominant
component over the (local-mean) scattered power. The absence of direct line-of-sight
signal K ⇒ ∞ degenerates Rician distribution into Rayleigh.

Otherwise, it is assumed to be a slow-fading channel if Tsym < Tcoh, i.e. Bsym > Bd.
It is important to note that the velocity of the mobile unit or the velocity of objects
using the channel through a baseband signal determines whether a signal undergoes fast
fading or slow fading.

2.4 MIMO propagation channel modeling for systems

The design guidelines and performance evaluation of radio communication require
developing effective propagation models featuring the relevant characteristics of the radio
propagation in an operating environment. MIMO channel propagation models have been
developed as a suitable, low-cost, and convenient alternative, since the site-measurements
are expensive and time consuming.

2.4.1 Power angular spectrum

Since the spatial (angular) distribution of the multi-path components is important
in determining the MIMO system performance [18], this paragraph highlights the
incorporate additional concepts such as Angular Spread (AS), Angle of Arrival (AoA),
Angle of Departure (AoD), Power Angular Spectrum (PAS) and the antenna array
correlation matrices for the Tx and Rx combinations, as illustrated in Figure 2.9.

Power angular spectrum defines the average received power as a function of Θ, where
Θ represents either the angle-of arrival for receiving antenna or angle-of-departure for
transmitting antenna. The AoD is defined to be the angle with which a departing ray’s
power is transmitted by the Tx array with respect to the broadside. Inversely, the AoA
is defined to be the angle with which an arriving ray’s power is received by the Rx array
with respect to the broadside. The power angular spectrum value, denoted PAS, at an
angle θ ∈] − π, π] is given by:

PAS(θ) = E(

∫ +∞

−∞
| h(τ, θ) |2 dτ) (2.10)

where h(τ, θ) defines the CIR as a function of the delay τ and the angle θ.
Similar to PDP, we can define the mean angle θ̄, and the RMS AS θRMS . This

determines how spread out multipath power is about the horizon. It is defined as the
standard deviation of the PAS.
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Figure 2.10 – MIMO channel models.

2.4.3 TGn channel models

Standardized models are an important tool for the development of new radio systems.
They allow to assess and compare the benefits of different transmission techniques to
enhance capacity and improve performance, in a manner that is unified for many parties.

In indoor area, radio propagation is influenced by the presence of building
materials. The transmitted signal reaches the receiver through more than one path,
due to reflection, refraction, and diffraction of the radio wave by objects such as walls,
windows, and doors inside a building. The IEEE 802.11n task group proposes in [20] a
set of channel models applicable to indoor MIMO WLAN systems as an extension of
the Single-Input Single-Output (SISO) channel models proposed by Medbo et al.
These models are the TGn channel models and are classified to be stochastic in
Figure 2.10. The newly developed MIMO models are based on the cluster model
developed by Saleh and Valenzuela [20].

The channel models comprise a set of 6 profiles, labeled A to F , which cover the
scenarios of Rayleigh flat fading, residential, residential/small office, typical office, large
office, and large space (indoors and outdoors). Each channel model has a path loss
model including shadowing, and a MIMO multipath fading model, which describes the
multipath delay profile, the spatial properties, the K-factor distribution, and the Doppler
spectrum.

Each channel model has a certain number of taps (one for model A, and 9 to 18 for
models B − F ). Each model further comprises a number of clusters, which correspond
to overlapping subsets of the tap delays. Each tap is characterized by a relative delay
(with respect to the first path delay). Table 2.1 summarizes the basic model parameters.

The average power of each tap in a particular cluster was determined so that the
sum of the powers of overlapping taps corresponding to different clusters corresponds
to the powers of the original average power delay profiles. Next, AS, AoA, and AoD

2. Not Applicable
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Parameters/Environment A B C D E F

Avg 1st Wall Distance (m) 5 5 5 10 20 30

RMS Delay Spread (ns) 0 15 30 50 100 150

Maximum Delay (ns) 0 80 200 390 730 1050

Number of Taps 1 9 14 18 18 18

Number of Clusters N/A 2 2 2 3 4 6

Table 2.1 – Basic channel model parameters.

values were assigned to each tap and cluster (using statistical methods) that agree with
experimentally determined values reported in the literature. Cluster AS was
experimentally found to be in the 20◦ to 40◦ range, and the mean AoA was found to be
random with a uniform distribution. With the knowledge of each tap power, AS, and
AoA (AoD) and for a given antenna configuration, TGn generates the correlation
matrix. The correlation matrix for each tap is based on the PAS with AS being square
root of the second moment of PAS.

The various steps of the cluster modeling approach are briefly described below.
— Start with delay profiles of models, designed as A for Rayleigh, B, C, D, E and F

for other specific environments.
— Manually identify clusters in each of the five models.
— Extend clusters so that they overlap, determine tap powers (see Appendix A).
— Assume Laplacian PAS shape of each cluster and corresponding taps.
— Assign AS to each cluster and corresponding taps.
— Assign mean AoA and AoD to each cluster and corresponding taps.
— Assume antenna configuration.
— Calculate correlation matrices for each tap as in [20].
Figure 2.11 and Figure 2.12 show model B and its delay profile with clusters. Clearly,

two clusters can be identified: cluster 1 corresponds to tap delays 0 to 40 ns (in steps
of 10 ns), while cluster 2 corresponds to tap delays 20 to 80 ns (also in steps of 10 ns).
Hence, clusters 1 and 2 comprise 5 and 7 tap delays, respectively, and they overlap in
3 tap delays (20, 30 and 40 ns). Each cluster is assigned a set of spatial properties: a
mean AoA, a mean AoD, an AS at the receiver, and an AS at the transmitter. These
parameters assume the same values for all tap delays related to a given cluster. These
parameters determine the transmit and receive correlation matrices associated with each
tap delay.

The IEEE 802.11n channel models make the following assumptions:
— The PAS and the Power Delay Spectrum (PDS) are separable: each tap is

modeled independently.
— The PAS and the Doppler spectrum for each tap are separable: the spatial

correlation (correlation matrices) and temporal correlation (Doppler spectrum)
for each tap are modeled independently.

— Each tap is modeled using the Kronecker model for Rician correlated channels,
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2.4.4 TGac channel models

In order to support MAC throughput above 1 Gbit/s using one or more of the
following technologies: higher order MIMO (≥ 4 × 4), or higher bandwidth (≥ 40 MHz),
or the MU-MIMO technology with ≥ 4 transmitting antennas, the TGac task group
proposes modifications to the basic TGn model [21].

The TGn channel models assume minimum tap spacing of 10 ns and were employed
for system bandwidth of up to 40 MHz. TGac systems may have much larger bandwidth.
Hence, the channel sampling rate is increased by reducing the PDP tap spacing by a
factor defined in [21].

The TGn channel models were originally conceived for MIMO systems with a
transmitter with four antennas and a receiver with four antennas, and are based on the
Kronecker channel correlation model assumption. TGn proposes that it is sufficient for
channel models to tightly bound and sweep the range of performance in real
environments. Furthermore, it is desirable that the channel model is simple enough
and builds on TGn channel models to allow a fair and efficient comparison of different
standards proposals.

Finally, to support MU-MIMO scenarios, the TGac proposed modifications to the
power angular spectrum. These modifications are summarized as follows [20]:

— The defined TGn azimuth spread for each cluster remains the same for all users.
— For each user, independent random offsets between +/ − 180◦ are introduced for

the AoA, the direct tap and the NLOS taps.
— For each user, independent random offsets between +/ − 30◦ are introduced for

the AoD, the direct tap and the NLOS taps.
In fact, it is shown [21] that for the same transmitter location, different receiver

locations lead to a different AoA at the receiver as depicted in Figure 2.13. Specifically,
the measurements report that clusters AoA vary by 0 − 20 degrees in NLOS scenario
(classroom) and 0−60 degrees in LOS scenario (great hall), depending on location. This
is equivalent to a MU-MIMO scenario with a fixed transmitter location and receivers
at different locations as depicted in Figure 2.13. Hence, the TGac conjectures that for
the same transmitter location, different receiver locations lead to a different AoD at the
transmitter. This conjecture is justified based on simulations evaluating the channel
capacity [21].

2.5 MU-MIMO techniques

In this section, we give an overview about the MU-MIMO techniques. First, we
present the assumed hypothesis throughout this thesis. Afterwards, we give the
MU-MIMO system model as described in the literature. Finally, we synthesize the
most explored MU-MIMO techniques in research distinguishing two cases: the
single-antenna users and the multiple antennas users.
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802.11ac, the standard specifies a single compressed beamforming method that relies on
the use of explicit feedback to implement MU-MIMO [11][16]. However, propagation
channels change over time in actual radio environments due to moving people resulting
in Doppler effect for example. Hence, CSI is not perfect. A simple channel prediction
scheme to provide CSI is proposed in [22], and its effectiveness is demonstrated through
simulations of BER performance using a measurement campaign in a meeting room.

To mitigate the effects of intersymbol interference in frequency selective channels,
OFDM is now a simple and well-accepted technique which converts a broadband
frequency selective channel into a series of narrowband channels by transmitting data
in parallel over many subcarriers. Combining OFDM with MIMO, producing so called
MIMO-OFDM, significantly reduces receiver complexity in wireless multiuser
broadband systems. Since OFDM uses multiple subcarriers, optimal linear precoding
for MIMO-OFDM can be implemented by deriving linear precoders for each subcarrier
independently. Hereafter, we assume either the channel experiences a flat fading so
that the channel is frequency non-selective or we operate in narrowband subchannels
guaranteed by the use of OFDM. Hence, the channel fading characteristic can be
considered to be narrowband for each frequency bin. This assumption is satisfied in the
case of the environment considered by TGac channel models. In fact, the subcarrier
frequency spacing defined in the 802.11ac standard [12] is ∆f = 312.5 kHz, and the
measured coherence bandwidths are ≥ 1 MHz: Bcoh ≫ ∆f [23] in most of the indoor
environments in the 5 GHz frequency band.

2.5.2 MU-MIMO system model

In a MU-MIMO transmission, there are two challenges in a MU-MIMO scenario:
Uplink (UL) and Downlink (DL) channels as depicted in Figure 2.14. The UL channel,
is used to model multiple users transmitting simultaneously to a single AP. The DL or
Broadcast Channel (BC) is used to model the case where the AP is transmitting
simultaneously to multiple users. The UL challenge is addressed using array processing
and multi-user detection techniques by the AP in order to separate the signals
transmitted by the users. The challenge for BC is that the interference cancellation is
required at the AP to have cheap terminals with low power consumption. This report
focuses on the capacity of the MU-MIMO DL channels. The UL MU-MIMO is not
considered by the 802.11ac standard. Thereby, a presentation of the mathematical
model can be quite useful. Indeed, techniques MU-MIMO processing techniques are
based on such approaches.

In the following, we describe the typical system model considered in this thesis. The
studied IEEE 802.11ac MU-MIMO system is composed of K users connected to one AP,
as shown in Figure 2.15.

The AP has nT antennas and communicates with K users simultaneously. Each user
k has nRk

antennas. We define nR =
∑K

k=1 nRk
, as the total number of the receiving

antennas.
According to Equation 2.1, the channel from the AP to the kth user is represented

by a nRk
× nT channel matrix Hk. It is the MIMO subchannel transfer function for a

29





subcarrier. For the sake of simplification, the subcarrier index is not mentionned. We
define the nR ×nT channel matrix H as H = [HT

1 . . . HT
K ]T , and its elements Hij as H =

(

Hij

)

1≤j≤nT
1≤i≤nR

. Note that each element Hij of H is the CFR presented in Subsection 2.3.2

between ith receiving antenna and the jth transmitting antenna and for a particular
subcarrier. The received signal is written as:

y = HX + n (2.12)

where X is the transmitted signal.
Let sk represents the Nss,k ×1 transmit data symbol vector for user k, where Nss,k is

the number of independent spatial streams transmitted simultaneously for the kth user.
The total number of spatial streams is Nss =

∑K
k=1 Nss,k. We define the Nss ×1 transmit

data symbol vector as: s = [s1
T s2

T . . . sK
T ]T .

Next section addresses how X can be designed based on s using precoding techniques
for MU-MIMO.

2.5.3 Precoding techniques

Precoding technique is the process of using the information at the transmitter in a
way that mitigates multi-user interference on the one hand, and maximizes the sum
rate capacity on the other. The non-linear techniques are known to achieve optimum
capacity. Actually, it has been proven that the capacity region of the DL MU-MIMO
systems is achieved with Dirty Paper Coding (DPC) method [24] called also the
capacity bound. This non-linear technique consists of precoding the data in order to
avoid the effect caused by the interference without canceling it. However, it has high
computational complexity. The capacity bound can be approached by linear
techniques. Linear precoding techniques are low-complexity transmission techniques
compared to non-linear techniques [22].

Linear precoding techniques, supported by the standard IEEE 802.11ac, assume that
the transmitted signal X is generated by a linear combination of data symbols contained
in a vector s. It has been shown that linear precoding techniques can achieve sum
rate capacity close to the DPC capacity bound with lower complexity [24]. Next, we
will present some precoding techniques proposed in the literature in order to identify a
relevant method for our study in next chapters. First, the simple case of single antenna
receivers is detailed in next subsection. Afterwards, we present the precoding techniques
taking into account multiple antennas per user.

2.5.4 Linear precoding techniques for single antenna receivers

Each user has only one receive antenna (nRk
= 1 for k = 1, .., K). In this case, we

have nR = K. Various approaches exist to solve the problem of designing linearly X
given s. Some of these techniques are Channel Inversion (CI) and regularized channel
inversion methods [25].
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2.5.4.1 Channel inversion

The channel inversion technique consists in canceling the effects of the channel by
precoding s with the pseudo inverse H† of the channel matrix [26]:

X = H†s = HH(HHH)−1s for : nT ≥ nR = K (2.13)

The inversion in the Equation 2.13 can be done only when nT ≥ nR = K. In [27], it has
been proven that the sum rate as K goes to infinity is constant when nT = K unlike
the capacity bound of a classical SU-MIMO system [28] which increases linearly with
min(nR, nT )[29].

This poor capacity is explained by looking at the eigenvalues of the matrix (HHH)−1.
This matrix is not well conditioned for random complex Gaussian matrices when H is
square, resulting in a very low SNR at the receivers. The CI technique is then a good
solution for low noise or high-power situations [27].

Therefore, any approach to improve channel inversion must seek to reduce the effects
of ill-conditioned channel matrices.

2.5.4.2 Regularized channel inversion

One technique used to regularize an inverse is to add a multiple of the identity matrix
before inverting. This technique is called regularized channel inversion and is written:

X = HH((HHH + ζI)−1)s (2.14)

where ζ is the regularization parameter.
In practice, the regularization factor, as a function of the total transmitted power

PT x, is commonly chosen as ζ = nT

PT x
[27]. It is shown in [27] that this expression

approximately maximizes the Signal-to-Interference-plus-Noise Ratio (SINR) at each
receiver, and leads to linear capacity growth with nT [30] [31]. Using this technique, each
user sees some interference. Actually, if ζ 6= 0 , the transmitter does not cancel out
perfectly all interference. Furthermore, this method has less flexibility in adjusting the
transmitted power to each user: changing the transmitted power to one user changes
the interference for all other users.

2.5.4.3 Discussion

The achievable sum rates for channel inversion and regularized channel inversion
methods are explicitly given in [32]. The authors in [27] have discussed their
performance versus the increase of the number of users as well as high SNR. The sum
rate of regularized inversion has linear growth with K, although its slope is different
from the sum capacity. The regularization channel inversion method shows a big
improvement over channel inversion method, a gap to capacity bound however remains,
especially at high SNR.

The channel inversion and regularized channel inversion methods could be used with
multiple antennas (nRk

> 1). However, system performance is not optimal. Several
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linear methods that take advantage of the presence of multiple antennas at the receivers
have been proposed by [33] [34]. The technique that was widely explored for multiple
antenna receivers is block diagonalization which is discussed in Subsection 2.5.5.1. This
technique relaxes the interference cancellation constraint between spatial streams to
interference cancellation between users only.

The rate gap between the BD and CI techniques with perfect Channel State
Information at the Transmitter (CSIT) is given in [35]. According to [36], a difference
of 3.2 bits/s/Hz is seen between CI and BD sum-rates for the 2-user equipped with 2
antennas case connected to a transmitter with 4 transmitting antennas in indoor
scenarios.

2.5.5 Linear precoding techniques for multiple antenna receivers

2.5.5.1 Block diagonalization

Block diagonalization [33], also referred to as block channel inversion, is a
generalization of the channel inversion technique when there are multiple antennas at
each user. BD scheme is one popular alternative due its low implementation
complexity and its capability of approaching the capacity bound at high SNR.

The AP employs a BD precoding matrix Wk of size nT × Nss,k for each user, which
transforms the data sk to the transmitted vector Wksk. The nT ×Nss precoding matrix
is hence defined as: W = [W1 . . . WK ]. For each IEEE 802.11ac OFDM subcarrier, the
received signal vector at the kth user is given by:

yk = HkWksk + Hk

K
∑

i=1,i6=k

Wisi + nk (2.15)

where nk = [nk,1, . . . , nk,nRk
]T is the noise vector composed of complex Gaussian

random variables for the kth user. The components nk,i are i.i.d. with zero mean and
variance σ2

n for k = 1, . . . , K and i = 1, . . . , nRk
. We define the noise vector n as:

n = [n1
T n2

T . . . nK
T ]T . The corresponding signals y = [yT

1 yT
2 . . . yT

K ]T at all users can
be arranged as:

y = HWs + n (2.16)

According to Equation 2.15, the component HkWksk denotes the desired signal for
the kth user, and the other components are the interference values between the kth

and the other K − 1 users. Hereafter, noise components are ignored. Therefore, it is
important for the MU-MIMO technique to eliminate these interference values. In this
direction, the BD precoding matrix must satisfy for any Hk and si with i 6= k:

Hk

K
∑

i=1,i6=k

Wisi = 0 (2.17)
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It follows that HiWk = 0 for i 6= k and 1 ≤ i, k ≤ K. Here, we define the following new
MIMO channel matrix H̃k except for the kth user as:

H̃k =
[

HT
1 . . . HT

k−1 HT
k+1 . . . HT

K

]

(2.18)

The condition in Equation 2.17 implies that Wk needs to be in the nullspace of
H̃k of dimension dim(Null(H̃k)) = nT − rank(H̃k). Note that the precoding matrix
Wk should be a nonzero matrix, otherwise, no signal is transmitted. To guarantee the
existence of a nonzero precoding matrix, a sufficient condition is that the number of the
transmit antennas is larger than the sum of the receive antennas of any K − 1 users [34]
and is written as

nT > max(
K
∑

i=1,i6=k

nRi
, k = 1, 2, . . . , K) (2.19)

The BD precoding matrix Wk is a cascade of two precoding matrices Ak and Bk.
Wk = AkBk, where Ak is computed by Singular Value Decomposition (SVD) in order to
nullify the IUI and Bk is designed using any classical method for optimizing SU-MIMO
capacity.

The SVD of the matrix H̃k is defined in Equation 2.20 where Ũk, Ãk, and Ṽk are
the left singular vector matrix, the matrix of singular values of H̃k and the right singular
vector matrix respectively.

H̃k = ŨkÃkṼH
k (2.20)

We set Ṽk = [Ṽ
(1)
k Ṽ

(0)
k ] where Ṽ

(1)
k denotes the right singular matrix corresponding to

non-zero singular values, referred to as the single space of all users except for the kth

user. Term Ṽ
(0)
k denotes the right singular matrix corresponding to zero singular values,

i.e. singular vectors in the null space which does not interfere with the other K − 1
users. In order to produce zero interference at the other users, the matrix Ak is chosen

by using the weight matrix Ak as the null space Ṽ
(0)
k : Ak = Ṽ

(0)
k .

We can see that the dimension of Ṽ
(0)
k is nT × Nss,k. Under the sufficient condition

given in Equation 2.19 and the assumption of i.i.d. channel, we can obtain than the

dimension Nss,k of the null subspace is Nss,k = nT −
K
∑

i=0,i6=k
nRi

[34].

By substituting into Equation 2.15, we obtain Equation 2.21 where the MU-MIMO
system denoted by Equation 2.15 has been decoupled to K parallel SU-MIMO systems
as depicted in Figure 2.16.

yk = HkṼ
(0)
k Bksk + nk (2.21)

A close observation from Equation 2.21 and Figure 2.16 shows that we can think

of an equivalent SU-MIMO channel of user k as HkṼ
(0)
k and the equivalent transmit

preprocessing for the equivalent SU-MIMO channel for user k can be represented as Bk.
The design of Bk is the same as designing the transmit preprocessing for a SU-MIMO
system. In this report, it is designed to optimize the channel capacity [29] and based
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channel matrix of the BD precoding is a block diagonal matrix. Hence MIMO decoders
can take advantage of the diversity present in the inter stream interference for each
user.

The authors in [38] evaluate the BD technique using a limited feedback system.
They have established the advantage of using BD technique compared to CI in terms of
feedback load quantifying the loss based on the throughput as a function of the feedback
level.

Based on experimental mobile WiMAX system with real implementation of BD
technique, it has been shown in [39] that BD throughput is almost the same using
either measured or simulated channels.

The BD scheme is just one of many linear precoding techniques that can be used on
the MU-MIMO broadcast channel with multiple user antennas. It is primarily limited
when the number of receiving antennas is greater than the number of transmitting
antennas.

To overcome the dimensionality constraint, [40] have proposed successive Minimum
Mean Square Error (MMSE) precoding (SMMSE). SMMSE provides higher antenna and
diversity gain than MMSE by suppressing the interference only between the antennas
located at the two different terminals.

In [41], the authors use a different approach by separating the problem of IUI
mitigation and the optimization of the overall system performance with respect to the
different optimization criteria. The proposed method is called Regularized block
diagonalization (RBD).

Different modifications of the original RBD algorithm provide different performance
improvements. RBD is capable to adapt to different levels of SNR in order to provide
a higher information sum rate of the system. At high SNR and high IUI it is able to
provide the high diversity. RBD represents a good compromise between capacity/BER
performance and computational complexity.

In [42], the authors propose a linear transmission technique based on the BD
technique using joint coordinated transmit-receive processing using a receiver
beamformer to select a subset of the eigenmodes of a given user, and a transmitter
beamformer in order to guarantee the orthogonality between the different users. This
method is evaluated based on numerical results. It has been shown how the proposals
achieve a significant fraction of the DPC sum rate for practical systems with finite K,
and outperform previous BD schemes.

To sum up, there are various linear precoding techniques and their performance
evaluation are compared in the literature. They achieve almost the same capacity with
relatively the same complexity. Since BD is the one that has been widely explored in
the literature and is used as reference for further improvement or extensions, this report
will focus on simulating the MU-MIMO processing based on its principle.

Note also that in the standard 802.11ac uses the feedback to obtain the CSI. Hence,
the MU-MIMO is chosen when the SNR is sufficiently high to get an acceptable feedback.
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2.5.6 Non-linear precoding techniques

Non-linear precoding techniques are known to be capacity achieving using the notion
of DPC, which originates from [43]. This reveals that any known interference at the
transmitter can be subtracted without the penalty of radio resources if the optimal
precoding scheme is applied on the transmit signal. In other words, it proposes to benefit
from the known CSI at the Tx to transmit information, instead of fighting against this
interference. Optimal performance can be achieved this way. But this technique is very
difficult to be implemented in practice.

There are several suboptimal and simplified variants of dirty paper coding. Other
non-linear precoding techniques are Tomlinson-Harashima Precoding (THP), Vector
Perturbation (VP) and Lattice Reduction Aided (LRA) methods. However, these
techniques have a very computational complexity and are not supported by IEEE
802.11ac.

We present in Appendix B a comparison of BD and DPC capacities based on the
correlated TGac-B channel model.

2.6 Channel capacity of wireless channels

An important tool for characterizing the performance of any communication channel
is the Shannon capacity. It is the maximum rate of communication for which arbitrarily
small error probability can be achieved [29].

A transmission scheme that maximizes the capacity for one user in the network
might result in unacceptably high interference for the other users, rendering their links
useless. If high throughput is the goal, a better approach might be to maximize the sum
capacity of the network, or the maximum sum transmission rate, where the IUI is taken
into consideration.

2.6.1 SU-MIMO capacity

The capacity of SU-MIMO additive white Gaussian noise channels with CSI known
at the transmitter was first studied by Telatar[29] and Foschini [9]. It is the maximum
amount of information that can be transmitted as a function of available bandwidth
given a constraint power.

The considered SU-MIMO system applies a singular value decomposition and its
capacity is computed for each OFDM subcarrier as detailed in [44]:

CSU−MIMO,k =

Nss,k
∑

i=1

log2(1 +
pik

σ2
n

σ2
ik) (2.24)

where pik is the allocated power to the ith spatial stream for the kth user, σik are the
singular values of the channel matrix for the kth user after the singular value
decomposition, and σ2

n is the noise power.
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arithmetic mean of C1 and C2 as can be seen in Equation 2.25.

CSU,T DMA =
C1 + C2

2
(2.25)

2.6.1.2 CSMA/CA method

The IEEE 802.11ac standard uses for the channel access the CSMA/CA method,
where each user verifies the absence of other co-channel signals before transmitting a
frame. The data frames are supposed to have equal size for each user, denoted below
L = L1 = L2, which implies a variable transmission duration [15]. According to
Figure 2.17(b), the time duration of the SU-MIMO, denoted tSU , is as: tSU = t1 + t2.

Thus, the CSMA/CA sum capacity of the SU-MIMO system (2×L)
CSU,CSMA

= L
C1

+ L
C2

.

Hence, the CSMA/CA SU-MIMO sum capacity is then equal to the harmonic mean of
C1 and C2 expressed as in Equation 2.26. We recall that ideal CSI is considered with
no protocol or frame overhead in this ideal case.

CSU,CSMA =
2

1
C1

+ 1
C2

(2.26)

2.6.2 MU-MIMO capacity

For a MU-MIMO system with K users and nRk
receiving antennas for each user k,

the sum rate using BD [32] for a particular propagation channel sample is expressed for
each OFDM subcarrier by Equation 2.27.

CMU−MIMO =
K
∑

k=1

Nss,k
∑

i=1

log2(1 +
pik

σ2
n

µ2
ik) (2.27)

where pik is the power dedicated to the ith spatial stream for the kth user, µik are the
singular values of the effective channel for the kth user after applying the IUI cancellation,
and σ2

n is the noise power. The methods of scaling the power will be analyzed in the
following chapter.

2.7 Main existing results and future works

Compared to a SU-MIMO TDMA system, DPC can bring a theoretical performance
gain in terms of channel capacity of up to max(min(nT /nRk

, K), 1) in an i.i.d. Rayleigh
fading channel [32]. The expected loss in Rayleigh fading due to block diagonalization
compared to DPC is given in Appendix B.

BD and DPC techniques are shown to be equivalent at low and very high SNR, small
number of users (low K), and high number of transmitting antennas [32][35].

Most MU-MIMO studies are based on Rayleigh channels, and only few articles
addresses the MU-MIMO challenges based on indoor measurements (see Appendix C).
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Some measured channels show an increase of the sum rate capacity over SU-MIMO
by a factor of 3.2 using DPC and by a factor of 2.7 using Regularized Channel Inversion
(RCI) with four transmit and four users with one receive antenna each at high SNR[45].
These results encourage us to simulate the MU-MIMO processing based on BD technique
since it outperfoms the RCI technique. The DPC gain compared to BD is however
important with large number of users [35] which is not the case with 802.11ac standard.
It actually limits the max number of users to 4 in a MU-MIMO group.

It has been shown in [46] that channel correlation impacts capacity gap. Still, this
result is based on single antenna users. The authors in [47] prove that MU-MIMO
capacity gain becomes insignificant comparing to SU-MIMO when nR increases with
16 transmitting antennas. Furthermore, the MU-MIMO is highly sensitive to Doppler
[48],[49].

40





Chapter 3

MU-MIMO capacity simulations
for standardized indoor channels
(TGac)
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3.1 Introduction

The first objective of this thesis is to refine the capacity gains by identifying
deployment recommendations or optimal system configuration for indoor MU-MIMO
compared to the SU-MIMO systems. Accordingly, the aim of this chapter is to give
recommendations to optimize MU-MIMO performance based on TGac simulations in
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terms of channel propagation parameters and users’ configuration: LOS, NLOS,
distances...

Consequently, this chapter is organized as follows. First, a detailed description of
the simulation process, the evaluated channel model and its parameters are given in
Section 3.2. Next, we provide the simulation results of the impact of antennas and
propagation channels on the BD capacity gain over SU-MIMO in Section 3.3.
Afterwards, we study in Section 3.4 the impact of transmit power control meeting the
European regulation requirements for WLAN in the 5 GHz frequency band in terms of
EIRP. Finally, we conclude in Section 3.5 by summarizing system recommendations
for an optimal use of MU-MIMO compared to SU-MIMO.

3.2 TGac-B channel model

3.2.1 Simulation setup

Since we study the benefit of using MU-MIMO techniques in home networks in
the context of the arrival of the optical fiber to the home, this chapter shows results
according to the channel model TGac−B. Actually, the TGac-B channel model covers
the scenarios of residential environments. It has a path loss model including shadowing,
and a MIMO multipath fading model which describes the multipath power delay profile,
the spatial properties, the Rician K-factor, the Doppler spectrum and the PAS.

Typically, the fading process is characterized by a Rayleigh distribution for the non
line-of-sight paths and a Rician distribution for a line-of-sight path. The TGac-B channel
model has 9 Rayleigh-fading taps, and each tap has a Bell Doppler spectrum to consider
the random time variability of an indoor channel due to human activity for example.
Each tap is characterized by a relative delay (with respect to the first path delay). It
further comprises a number of clusters, which correspond to overlapping subsets of the
tap delays. Each cluster is assigned a set of spatial properties: a mean AoA, a mean
AoD, an AS at the receiver, and an AS at the transmitter. These parameters assume the
same values for all tap delays pertaining to a given cluster. These parameters determine
according to the procedure given in [20] the transmit and correlation matrices associated
with each tap delay. The relative motion between the transmitter and receiver causes
Doppler shifts. Local scattering typically comes from many angles around the user.
This scenario causes a range of Doppler shifts, known as the Doppler spectrum. The
maximum Doppler shift corresponds to the local scattering components whose direction
exactly opposes the user’s trajectory.

A Matlab source code [20] was used to compute the different 802.11ac channel samples
based on the implementation of fading channels as objects. The main loop of the source
code is designed to process Fading Number Of Iterations bursts of samples. In our case,
its value is set in the Matlab channel model to 512. The length of a burst can be
expressed in coherence times, where the coherence time is defined in the TGn channel
models as the inverse of the Cut-off frequency fDHz

= 5.8333 Hz which is the ratio
between the wavelength and the movement speed of the scattering environment v0. In

43



our simulation, we use a simulation length equal to 55 coherence times of the MIMO
channel to simulate the fast fading. The choice of the value 55 for coherence times
is justified by the convergence of the MU-MIMO to SU-MIMO capacity gain as the
value of coherence times is increasing as can be seen in Figure 3.1. The figure gives the
MU-MIMO to SU-MIMO capacity gain versus the simulation length in coherence times
for a system with two receivers with two antennas each, both in NLOS with the Tx
equipped with 4 antennas. The antennas are spaced with half wavelength. The capacity
is computed using an average SNR = 20 dB. The simulation values stabilize after the
fictive threshold of 50 coherence times. Table 3.1 summarizes the input parameters used
for our simulations.

Figure 3.1 – MU-MIMO to SU-MIMO capacity gain versus the simulation length values.

Number of iterations of the vector of fading coefficients
FadingNumberOfIterations

512

Length of simulation in CoherenceTimes
SimulationLengthInCoherenceTimes= 1

fDHz

55

Sampling rate of the simulation SamplingRate 2500 Hz

Speed of moving scattering environment v0 1.2 km/h

Table 3.1 – Global parameters set for TGac-B channel model.

To have statistical results and various AoA and AoD angles, 100 couples of two
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users (K = 2) are randomly drawn around the access point. For each drawing, 488
interpolated channel time samples, denoted Nsamples, are collected for each couple of
users.

The delay domain channel was converted to frequency domain by discrete Fourier
transform taking into account the characteristics of IEEE 802.11ac: N = 56 subcarriers
spaced by ∆f = 312.5 kHz.

Thereafter, a uniform linear array of antennas at the AP is simulated with the
propagation channel model TGac-B (15 ns RMS delay spread) for the 5.25 GHz
frequency band. Note that linear array antenna is the only antenna array geometry
supported by TGac channel model. The simulated system is composed of one access
point equipped with multiple antennas (linear array of 0 dBi omnidirectionnal and
vertically polarized antennas), and two receivers. Each receiver has two 0 dBi
omnidirectionnal antennas. By default, the antenna spacing is set to 0.5 λ for both the
transmitter and the receiver.

3.2.2 Normalization

It is demonstrated in [50] that the physics of antenna arrays and propagation
channel should be taken into account when the normalization of the channel matrix is
chosen, so that SNR has proper physical meaning. The conclusions are physical and
correspond to realistic systems. The paper pointed out various normalizations and
gave equivalent formulas for different parameters needed. The antenna array geometry
and the transmission strategy (coherent/non-coherent) limit the choice of
normalization and determine how the capacity and other performance metrics scale
with the number of antennas, which is more pronounced for densely-populated antenna
arrays. The commonly used normalization is E(‖H‖2

F ) = nT nR. It corresponds to a
0 dB average path loss. This normalization implies the equality in Equation 3.1.

1

Nsamples

Nsamples
∑

p=1

nR
∑

i=1

nT
∑

j=1

|Hij |2 = nT nR (3.1)

For the sake of simplicity, we omit to write the components of the channel matrix as a
function of the index of the channel sample p (Nsamples = 488).

We denote the normalized channel matrix H
′

. We have H
′

= αH where α is the
normalization constant. Thus, the normalized channel matrices H

′

1 and H
′

2 for each user
are given in Equation 3.2.
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√

√
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(3.2)
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3.2.3 TGac and Rayleigh channel

Rayleigh fading is exhibited for each tap (except for the LOS tap which follows a
Rice fading with a 0 dB Rician factor), with the assumption that the real and imaginary
parts of the taps are modeled by i.i.d. zero-mean Gaussian processes so that different
taps are uncorrelated.

By setting the distance between the Tx and the Rx, the TGac-B channel model
simulates either the LOS or NLOS. Indeed, LOS conditions are assumed only up to a
breakpoint distance dBP = 5 m (dBP = 5 m for TGac-B channel). Since the Rician
factor for LOS is set to 0 dB which is very close to a Rayleigh channel, almost similar
results are obtained with the TGac-B LOS and NLOS scenarios. This 0 dB weak Rice
factor of the model B clearly appears in the Cumulative Distribution Function (CDF)
of the first tap of Figure 3.2. It almost merges with the CDF of the Rayleigh distributed
amplitude of the other taps. In Figure 3.2, the curve in green corresponds to the reference
values, whereas the blue curves are the outcomes of the simulation for the 9 taps. This
chapter is focusing on the TGac-B NLOS channel model after giving an example of LOS
numerical results.

Figure 3.2 – CDF of the taps power of TGn Channel Model Case B (9 taps)

We recall that for each IEEE 802.11ac OFDM subcarrier, the channel matrix is
computed through a discrete Fourier transformation (N = 56 subcarriers for a 20 MHz
channel) of the tap delay representation. To have comparisons with an ideal case, we
also study a non-correlated Rayleigh channel.
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3.3 Impact of antennas and spatially correlated
propagation channel on BD capacity gain

The objective of this thesis it to know which among the MU-MIMO and SU-MIMO
techniques is better in a residential environment. Thereby, most graphs in this chapter
highlight the MU-MIMO capacity gain over SU-MIMO expressed as the average of
MU-MIMO (simulated BD method) to SU-MIMO capacity ratio. For 2 users, the
optimal value of MU-MIMO to SU-MIMO capacity gain is theoretically proven to be 2
for TDMA system based on a Rayleigh channel. Indeed, compared to a SU-MIMO
TDMA system, DPC can bring a theoretical performance gain of up to
max(min(nT /nR, K), 1) in an i.i.d. Rayleigh fading channel [51].

We first study in this section the impact of antennas and propagation channel on the
BD capacity gain for IEEE 802.11ac MU-MIMO in home networks. No EIRP constraint
is considered in this section. We examine the effect of the number of the transmitting
antennas, their spacing, and the average SNR, defined as the ratio of PT x to the average
noise power: SNR = PT x

Nσ2
n

, where N = 56 is the total number of subcarriers defined in
IEEE 802.11ac standard for a 20 MHz bandwidth.

PT x is considered equally shared among the N subcarriers throughout this thesis.
Other strategies could be considered as in [52]. However, the impact of Peak-to-Average
Power Ratio (PAPR) should be globally studied. We also draw for comparative study
the results for i.i.d. Rayleigh channels. The aim of this study is to assess the weight of
each parameter on the BD capacity gain over SU-MIMO and to give recommendations
to optimize MU-MIMO performance.

3.3.1 Transmit antenna spacing effect

For the following, the number of transmitting antennas is fixed to nT = 6, and
SNR = 20 dB. To study the impact of the transmitting antenna spacing, six values are
used: 0.25 λ, 0.5 λ, 0.75 λ, 1 λ, 1.25 λ and 1.5 λ. No antenna coupling is considered
[53][54][49].

In Figure 3.3, the first value (0.25 λ) presents an isolated and very low gain (33%)
compared to the other spacings. For a transmit antenna spacing of 0.5 λ and 0.75 λ,
the capacity gain of MU-MIMO compared to SU-MIMO is around 50%. For a transmit
antenna spacing of 1 λ and above, the capacity gain of MU-MIMO compared to
SU-MIMO is around 53% and it almost attains the gain in a Rayleigh channel.
Antenna spacing has no effect on the Rayleigh channel since its MU-MIMO channel
matrix elements are complex Gaussian and independent. Considering a trade-off
between the overall antenna size and the MU-MIMO capacity gain, we recommend an
antenna spacing equal to 0.5 λ. This is set as the default value for the rest of this
report.
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Figure 3.3 – Average of MU-MIMO to SU-MIMO capacity ratio versus transmit antenna
spacing.

3.3.2 SNR effect

Figure 3.4 shows the MU-MIMO capacity gain over SU-MIMO versus SNR with 6
transmitting antennas spaced by 0.5 λ in NLOS conditions. For high SNR, MU-MIMO
outperforms SU-MIMO in terms of capacity with gain changing from 10% till 70%.
Nevertheless, for low SNR, SU-MIMO performs better than MU-MIMO in terms of
capacity which has been described already in the limitations of BD scheme. Note that
it is not practical to have too low SNR for MU-MIMO as it would not be possible to
have CSI with no errors to apply the precoding.

The MU-MIMO to SU-MIMO capacity gain is 30% when the SNR increases from 0
to 10 dB, from 10 to 20 dB, or from 20 to 30 dB, and around 10% when it changes from
30 to 40 dB. To conclude about the SNR, the desired range and the desired bit rate are
put forward. For the following results, a middle case is evaluated with SNR = 20 dB.

3.3.3 Number of transmitting antennas

In this subsection, we assess the impact of increasing the number of transmitting
antennas on MU-MIMO to SU-MIMO capacity gain. Under the same total transmitted
power, we have considered two transmitted power allocation strategies. We first share
the allocated power equally among the spatial streams. Secondly, we optimize the power
allocation using the Water-filling algorithm. In both cases, the SNR is set to SNR =
20 dB.
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Figure 3.4 – Average of MU-MIMO to SU-MIMO capacity ratio versus the SNR with 6
transmitting antennas spaced by 0.5 λ in NLOS conditions.

3.3.3.1 Equal power sharing

We assume here that the transmitted power is equally shared among the spatial
streams. Figure 3.5 gives the average of MU-MIMO to SU-MIMO capacity ratio versus
the number of transmitting antennas for the TGac-B NLOS and Rayleigh channels.
Average values, 10% and 90% quantiles (q10 and q90) are represented to estimate the
confidence intervals. The first observation drawn from Figure 3.5 is that the MU-MIMO
capacity gain over SU-MIMO increases with the number of transmitting antennas. It
changes from 1.2 to 1.65 for the residential environment, i.e. around 45% of capacity
gain. We also observe that the gain from nT = 4 to nT = 6 is much higher than the one
observed from nT = 6 to nT = 8 or the one observed from nT = 8 to nT = 10. This
can be explained by the fact that we cannot take benefit of the transmit beamforming
for nT = 4, since the number of transmitting antennas is the same as the total number
of spatial streams. Another explanation concerning the channel correlation is given
hereafter.

In order to optimize the MU-MIMO capacity gain and have a less congested
system, we recommend using nT = 6, when we have a system with two receivers and
two antennas each. Figure 3.6 shows the average capacity value for MU-MIMO and
SU-MIMO. The capacity value for MU-MIMO increases more rapidly than SU-MIMO.
It achieves 27.5 bits/s/Hz versus 16.5 bits/s/Hz for SU-MIMO for nT = 10.
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Figure 3.5 – Average of MU-MIMO to SU-MIMO capacity ratio versus the versus the
number of transmitting antennas.

Figure 3.6 – Channel capacity values versus the number of transmitting antennas.
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3.3.3.2 Optimized power sharing: Water-filling algorithm

The capacity of the MU-MIMO system can be further increased if we assign extra
power at the transmitter by allocating the power according to the Water-filling algorithm
to all the channels. The capacity optimization problem is presented in Equation 3.3







max
∑

subcarrier

∑K
k=1

∑Nss,k

i=1 log2(1 + pik

σ2
n

µ2
ik)

such that
∑K

k=1

∑Nss,k

i=1 pik = PT x

N

(3.3)

The power pik is allocated according to the Water-filling algorithm. The
problem 3.3 is a constrained maximization problem solved based on Lagrange
technique. This technique is characterized by the Lagrange multiplier λLagrange by
maximizing the function F defined in Equation 3.4. In our case, we have considered a
maximization for each subcarrier separately.

F =
K
∑

k=1

Nss,k
∑

i=1

log2(1 +
pik

σ2
n

µ2
ik) − λLagrange(

PT x

N
−

K
∑

k=1

Nss,k
∑

i=1

pik) (3.4)

From Equation 3.4, we deduce the expression of pik = ( 1
λLagrange

− σ2
n

µ2

ik

)+, where (.)+

is defined as: (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0. The Lagrange multiplier
is found based on the constraint of the optimization problem. The process of Water-
filling algorithm is similar to pouring the water in the vessel. The unshaded portion of
the graph in Figure 3.7 represents the inverse of the power gain of a specific channel.
The shadow portion represents the power allocated or the water. In [55], a practical
algorithm is detailed to evaluate numerically a general Water-filling solution.

Figure 3.8 analyzes the benefit of using Water-filling algorithm in optimizing the
MU-MIMO capacity gain over SU-MIMO. It shows the average of MU-MIMO to
SU-MIMO capacity ratio versus the number of transmitting antennas for TGac-B
channel NLOS using or not the Water-filling algorithm.

Average values, 10% and 90% quantiles (q10 and q90) are represented to estimate
the confidence intervals. The first observation drawn from Figure 3.8 is that the
average MU-MIMO capacity gain over SU-MIMO is almost the same as the obtained
gain using the Water-filling algorithm with slight gain in 90% quantiles: around 5%.
This is explained by the fact that both MU-MIMO and SU-MIMO systems take benefit
from the Water-filling algorithm as was proven widely in the literature. Hence, using
this complex algorithm for increasing MU-MIMO capacity gain is not necessary. Next
section will explore other ways in optimizing MU-MIMO system satisfying a given
power or EIRP constraint.
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Figure 3.8 – Average of MU-MIMO to SU-MIMO capacity ratio versus the number of
transmitting antennas.

Theoretical studies comparing BD to DPC have proved that in the particular case where
nT > nR, BD achieves the DPC optimal bound if H1H2

H = 0 [59]. This result means
that when the user channels are mutually orthogonal, BD can achieve the DPC capacity
bound. The opposite side (H1 = H2

H) is considered to be the worst case for MU-MIMO
[33]. Actually, with BD, each user precoding matrix lies in the null space of all other

users’ channels. Hence, if H1 = H2, then H2 = Ṽ
(0)
1 .

These theoretical results for extreme cases and our simulations revealed that the
definition in Equation 3.7 was the most relevant to explain MU-MIMO to SU-MIMO
capacity gain [60].

ρ =

∥

∥

∥H1H2
H
∥

∥

∥

2

F

nR1
nR2

(3.7)

Let us define the rows of the channel matrix of the jth user as: Hj = (Lj
1, . . . , Lj

nRj
)T

where Lj
i = (lji,1, . . . , lji,nT

) represents the ith row of dimension 1 × nT . The applied

channel normalization implies that || Lj
i ||= 1.

The product H1H2
H = (L1

1, . . . , L1
nR1

)T (L2
1, . . . , L2

nR2

)
H

is a matrix whose elements
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are:
(

L1
iL

2
j
H
)

1≤j≤nR1

1≤i≤nR2

. Hence, the correlation coefficient can be expressed as:

ρ =
1

nR1
nR2

nR1
∑

i=1

nR2
∑

j=1

|| Li
1Lj

2H ||2 (3.8)

The component || Li
1Lj

2H ||2 represents the correlation between each single receiving
antenna subsystem of the first user and each single receiving antenna subsystem of the
second user. This is the more common correlation coefficient used in the case of single
antenna receivers. E(ρ) represents an average value of the correlation coefficient between
any single antenna receiver subsystem combination.

The impact of the number of transmitting antennas versus average correlation
coefficient E(ρ) is presented in Figure 3.9. The averaging is performed over all the
MU-MIMO channel samples. The average correlation coefficient decreases with the
increase of the number of transmitting antennas. The two types of residential channel
(LOS, NLOS) follow the same trend. The values are higher but remain relatively close
to the ones obtained for i.i.d. Rayleigh channel. We can observe that even if the
simulated Rayleigh channel has independent elements in H1 and H2, the average
correlation coefficient E(ρ) is not zero, which is not an intuitive result. Through
analytic calculation (see next subsection), the average correlation coefficient ρ for an
i.i.d. MIMO Rayleigh fading channel is proven to be: E(ρ) = 1

nT
.

Figure 3.9 – Average correlation coefficient versus the number of transmitting antennas.

54



In Figure 3.10, we highlight the effect of transmit antenna spacing on the defined
correlation coefficient for a Tx with 6 transmitting antennas in NLOS conditions. The
figure shows that increasing the antenna spacing decorrelates the channels to attain the
optimum value 0.17 obtained for the Rayleigh channel. The recommended value of 0.5 λ
spacing gives a correlation coefficient value of 0.2 which is very close to the optimal
value.

Figure 3.10 – Average correlation coefficient versus transmit antenna spacing.

3.3.4.2 Impact of correlation coefficient on capacity gain

The average of MU-MIMO to SU-MIMO capacity ratio versus the average of the
correlation coefficient E(ρ) is presented in Figure 3.11 considering nT = 6. The average
is computed here only over time, and each point represents one of the 100 samples of
user couples. When the correlation coefficient increases, the capacity gain decreases:
more than 30% of capacity loss when the correlation coefficient goes from 0.05 to 0.35.
Actually, when both channels (H1 and H2) are correlated, close in other words, the BD
algorithm does not show great performance since the existence of the precoding matrix
is not guaranteed [33]. Thus, the gain decreases. It could be the case when the two
users are close. This correlation coefficient has another advantage: it can be computed
to optimize the users grouping in a MU-MIMO scenario. For example, a system could be

optimized by selecting the K users minimizing
nR1
∑

i=1

nR2
∑

j=1

||H1H2
H ||2

nR1
nR2

between any 2−user.

Since Figure 3.11 reveals a linear trend between correlation ρ and the capacity gain,
an analysis based on the supervised linear regression is carried out. To formulate the
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Figure 3.11 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient (nT = 6).

problem, the linear regression will determine how the MU-MIMO to SU-MIMO capacity
gain y is affected by the changes in the correlation coefficient x according to the regression
line in Equation 3.9.

y′ = a1x + a0 (3.9)

where y′, a1 and a0 denote respectively the estimated capacity gain, the regression slope
of the line and the intercept. The fitted line minimizes the error variance.

Besides, a coefficient of determination denoted r2 is defined in Equation 3.10 as the
ratio between the variance of y′ and the variance of y. Note that r is referred to as
correlation coefficient between x and y in the particular case of linear regression.

r2 =
V ar(y′)
V ar(y)

(3.10)

Finally, the RMSE, also termed standard error of the regression is calculated by dividing
the error variance by n − 2 (n is the number of samples, in our case n = 100 number of
random draws). In fact, linear regression removes two degrees of freedom from the data
(by estimating two parameters a0 and a1). The RMSE is simplified as can be seen in
Equation 3.11:

RMSE =

√

V ar(y)(1 − r2)(
n − 1

n − 2
) (3.11)
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The numerical values of the different parameters are summarized in Table 3.2. It
shows that setting the Rician factor to 0 dB for LOS scenarios in TGac-B channel
models gives almost similar results with slightly high capacity gain for LOS: 73 % for
LOS compared to 71 % for NLOS case.

Scenario a0 a1 r RMSE

LOS 1.7319 -1.1290 0.9425 0.0379

NLOS 1.7153 -1.1046 0.9682 0.0226

Table 3.2 – Numerical results of linear regression parameters for 6 transmitting antennas.

The y intercept for LOS scenario is slightly greater than the one in NLOS conditions:
almost 2% of capacity gain.

The coefficient of determination r2 (equivalently the correlation coefficient r between
x and y) tends to 1, and the RMSE tends to 0. This confirms the validity of predicting
the capacity gain based on the correlation coefficient.

These results will be confirmed next chapter based on measurements. Note also
that this linear regression analysis could be performed for other transmitting antennas
number.

3.3.4.3 Correlation coefficient for Rayleigh fading channel

For a MIMO i.i.d. Rayleigh fading channel, each element of the channel matrix
follows a zero mean complex Gaussian process (with the same standard deviation σ)
and all these elements are independent. Hence, the complex Gaussian coefficients L1

1(p)
and L2

1(q) where 1 ≤ p, q ≤ nT can be written in terms of their amplitudes r1
p, r2

q , and
phases φ1

p, φ2
q as:

L1
1(p) =

r1
pejφ1

p

nT
∑

m=1
(r1

m)2

and L2
1(q) =

r2
qejφ2

q

nT
∑

m=1
(r2

m)2

(3.12)

where rp
1, rq

2 follow a Rayleigh law, and φ1
p, φ2

q a uniform low in [0, 2π]. Note that rp
1,

rq
2, φ1

p, φ2
q are independent. The denominators stand for for channel normalization.

The expression of the correlation coefficient in Equation 3.8 is thus simplified as:

E(ρ) =
1

nR1
nR2

nR1
∑

i=1

nR2
∑

j=1

E(|| L1
i L2

j
H ||2) (3.13)

The components E(|| L1
i L2

j
H ||2) do not depend on the indexes i and j since the

corresponding laws for the matrix elements L1
i and L2

j
H

do not. The equation in 3.13 is
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then simplified as:

E(ρ) = E(|| L1
1L2

1
H ||2) (3.14)

= E
(

|
nT
∑

p=1

L1
1(p)L(p)2

1
H |2

)

= E
(

|
nT
∑

p=1

r1
pr2

p
√

nT
∑

m=1
(r1

m)2

√

nT
∑

m=1
(r2

m)2

ej(φ1
p−φ2

p) |2
)

(3.15)

Based on the statistical independence r1
p, r2

p, φ1
p, φ2

p, we can write:

E(ρ) =
nT
∑

p=1

E
( (r1

pr2
p)2

nT
∑

m=1
(r1

m)2
nT
∑

m=1
(r2

m)2

)

+ 0 (3.16)

Since all terms in the sum are identical, we can write:

E(ρ) = nT E
( (r1

1r2
1)2

nT
∑

m=1
(r1

m)2
nT
∑

m=1
(r2

m)2

)

(3.17)

We can deduce the equation below since r1
1 and r2

1 are independent:

E(ρ) = nT E
( (r1

1)2

nT
∑

m=1
(r1

m)2

)( (r2
1)2

nT
∑

m=1
(r2

m)2

)

(3.18)

Let us define A as A = E
(

(r1

1
)2

nT
∑

m=1

(r1
m)2

)

. We have:

A = E
( (r1

1)2

nT
∑

m=1
(r1

m)2

)

(3.19)

= E
( (r1

1)2

(r1
1)2 + (r1

2)2 + . . . + (r1
nT

)2

)

= E
((r1

1)2 + (r1
2)2 + . . . + (r1

nT
)2

(r1
1)2 + (r1

2)2 + . . . + (r1
nT

)2
− (r1

2)2

(r1
1)2 + (r1

2)2 + . . . + (r1
nT

)2
− . . . − (r1

nT
)2

(r1
1)2 + (r1

2)2 + . . . + (r1
nT

)2

)

(3.20)

= 1 − (nT − 1)A (3.21)

The quantity A is consequently equal to A = 1
nT

. Similarly, we have

E
(

(r2

1
)2

nT
∑

m=1

(r2
m)2

)

= 1
nT

. Finally, we prove that the average of the correlation coefficient

58



defined in Equation 3.7 is the inverse of the total number of the transmitting antennas
as can be seen in Equation 3.22. This result is validated through simulations
(Figure 3.9).

E(ρ) =
1

nT
(3.22)

In this section, we have studied the impact of antennas and propagation channel on
the BD capacity gain based on a same total transmitted power. Based on simulations,
we have given recommendations to optimize MU-MIMO capacity in terms of number of
transmitting antennas, their spacing and SNR effect. In the case of the EIRP
constraint, it may not be evident that TxBF and MU-MIMO linear precoding still
improve the system performance. Therefore, next section evaluates the impact of the
EIRP constraint on IEEE 802.11ac MU-MIMO capacity gain using simulations based
on the IEEE 802.11ac channel models.

3.4 EIRP constraint in a multi-user context

In this section, we still consider the downlink MU-MIMO scenario, in which an IEEE
802.11ac access point with multiple antennas (up to 10) is transmitting to two receivers,
each one with two antennas. The BD method is investigated under the EIRP constraint.
Two different power allocation schemes of the spatial streams are analyzed to optimize
MU-MIMO capacity: equal and unequal power sharing among the spatial streams under
the same EIRP constraint. In our formulation, we study K = 2 but the results and
algorithms presented in this section can be generalized to any number of users K.

3.4.1 Related work

The MU-MIMO techniques consist of applying a linear precoding to the
transmitted spatial streams based on the channel matrices H1, H2. Consequently, the
antenna array pattern and gain are modified as functions of the user location and their
corresponding propagation channel properties. This directly impacts the EIRP. The
European regulation sets the EIRP limit in the 5 GHz frequency bands to 200 mW or
1 W depending on the frequency channels. This constraint may differ in other
countries where it can be rather based on the total transmitted power. The EIRP
constraint is rarely evaluated in the literature for MIMO systems. In most of the
MIMO performance results, the packet error rate or the capacity value is evaluated
based on the same total transmitted power (denoted throughout this report as PT x)
which is related to the SNR. The used SNR is commonly defined as the ratio of PT x to
the average noise power as in the previous section with 0 dB average path loss
normalized channel. Few recent studies have focused on the capacity optimization
problems under total transmitted power constraint [52, 61, 33]. Sometimes, this
optimization is performed on each subcarrier of the 802.11 OFDM signal [52]. In [62], a
new EIRP-based solution for IEEE 802.11 power scaling is proposed. However, this
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study is dedicated to only one single user system with a single spatial stream and
receiving antenna. MU-MIMO linear precoding, like BD [61, 34], modifies dynamically
the antenna array pattern and gain as function of the current MU-MIMO propagation
channel. This may change the EIRP of the transmitting antenna array if transmitted
power remains unchanged. MU-MIMO and TxBF are commonly associated with a
large number of transmitting antennas used to improve the antenna array gain and
performance, as stated for MIMO i.i.d. Rayleigh channel [33, 34].

3.4.2 Problem statement

3.4.2.1 EIRP in linear precoding

For any receiver location, i.e. for any H matrix, the transmitting antenna array
pattern is modified by the W precoding matrix. We have used a linear array of nT

omnidirectional 0 dBi gain antennas with a regular spacing ∆, typically ∆ = λ/2. The
manifold of the transmitter antenna array a(Θ) can be expressed in function of the Θ
angle with the antenna array axis, a nT × 1 vector as written in Equation 3.23.

a(Θ)T = [1, e−2jπ∆ cos(Θ)/λ, ..., e−2jπ(nT −1)∆ cos(Θ)/λ] (3.23)

In practice with real antennas, a 3D antenna pattern can be included in this
processing. Since the used TGac channel model is only a 2D model, the antenna array
pattern expression is simplified to a 2D problem. The average radiated power d(Θ) in
any direction Θ relative to the antenna array direction is expressed in Equation 3.24 as
a function of the antenna input signals defined as X = Ws.

d(Θ) = E(| a(Θ)T X |2) (3.24)

The radiated power contribution of any subcarrier is simply expressed as a function
of the transmit diagonal correlation matrix B = E(s̄sT ) = E(diag(s̄1sT

1 , . . . , s̄KsT
K)) =

(

diag(pik), 1 ≤ i ≤ Nss,k, 1 ≤ k ≤ K
)

as:

d(Θ) = a(Θ)HW̄BWT a(Θ) (3.25)

The total radiated power dtotal(Θ) of all the subcarriers of the IEEE 802.11ac system
is expressed as:

dtotal(Θ) =
∑

subcarrier

d(Θ) (3.26)

The EIRP is then deduced as follows:

EIRP = max
Θ

dtotal(Θ) (3.27)

In the particular case in which the total transmitted power PT x is equally shared
among the spatial streams and subcarriers, we have pik = PT x

NNss
, where Nss denotes the

total number of spatial streams. Thus, d(Θ) can be simplified as:
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d(Θ) =
PT x

NNss
a(Θ)HW̄WT a(Θ) (3.28)

3.4.2.2 Optimization problems

The capacity optimization process consists of finding the optimal value of the
transmitted power values pik compatible with the EIRP constraint. Considering the
spatial streams, two power allocation schemes are evaluated: equal power allocation
and unequal power allocation.

The European regulation sets the maximum EIRP in an indoor area to 23 dBm for
the lower band (5150 − 5350 MHz) for the 5 GHz frequency. For practical reasons, such
as the computation time, this section focuses on the case where each subcarrier has
the same allocated total transmitted power. Furthermore, an unequal subcarrier power
allocation may not have a favorable impact on the peak-to-average power ratio of the
OFDM signal. The general optimization problem is thus expressed in this case as:







max
∑

subcarrier

∑K
k=1

∑Nss,k

i=1 log2(1 + pik

σ2
n

µ2
ik)

such that EIRP ≤ 23 dBm
(3.29)

As we have a sum of logarithmic functions, our problem is a standard convex
optimization problem with constraint and is resolved using the Matlab-based library
for convex optimization namely CVX [63] to find the optimal solution. A simpler
optimization problem consists in solving the case with equally distributed powers, i.e.
pik = PT x

NNss
. This optimization problem has only one unknown variable PT x. This

problem is simplified by seeking the maximum antenna array gain dtotal(Θ)
PT x

and then
scaling the power according to the EIRP limit. The case K = 1 uses the same
optimization method for computing the SU-MIMO capacity for both equal and
unequal power allocation under EIRP constraint.

3.4.2.3 Evaluated systems and SNR considerations

The 802.11ac MU-MIMO systems based on BD schemes are evaluated. The results
are presented in Section 3.4.3 and are compared to SU-MIMO systems relying on the
same antennas and total power or EIRP constraint. Three capacity optimization
techniques are evaluated and compared.

The first one is the usual MIMO system (denoted basic), with a constant transmitted
power PT x equally shared among the spatial streams. BD-basic and SU-basic denote the
corresponding studied systems. For this case, the average signal to noise ratio SNR per
subcarrier is defined as SNR = PT x

Nσ2
n

. This is the common SNR definition adopted in
most of the published MIMO capacity studies.

The second optimization considers a 23 dBm EIRP constraint and a total transmitted
power equally shared among the spatial streams. This optimization is labeled eirp-
equal. A dynamic power scaling is applied, as detailed above, as a function of each
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channel matrix snapshot H. SUeirp-equal and BDeirp-equal denote respectively the
corresponding SU-MIMO and MU-MIMO systems applying this technique.

The third one (eirp-unequal) considers a 23 dBm EIRP constraint and a total
transmitted power unequally and dynamically shared among the spatial streams.
SUeirp-unequal and BDeirp-unequal denote the corresponding systems applying this
technique.

For eirp-equal and eirp-unequal systems, the common SNR definition is biased
since PT x is no more constant, and depends on each channel matrix computation. We
subsequently define the average SNREIRP under EIRP constraint as
SNREIRP = EIRP

Nσ2
n

for eirp-equal and eirp-unequal systems.

Note that the maximum antenna array gain is nT . Since SNR = PT x

Nσ2
n

for a basic

system, it implies that its corresponding SNREIRP value is upper bounded by nT PT x

Nσ2
n

.
However, direct comparison between the two systems remains unfair.

3.4.3 Simulation results and analysis

3.4.3.1 Results for equal power allocation

In this section, we consider a system with an equal power allocation among the
spatial streams.

Figure 3.12 – MU-MIMO to SU-MIMO capacity ratio for an IEEE TGac-B channel
(residential).
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Figure 3.13 – MU-MIMO to SU-MIMO capacity ratio for an i.i.d Rayleigh channel.

Figures 3.12 and 3.13 present the simulation results in terms of the MU-MIMO to
SU-MIMO capacity ratio for basic and eirp-equal systems. Average values, 10% and 90%
quantiles (q10 and q90) are represented to estimate the confidence intervals. SNREIRP

is set to 20 dB for eirp-equal and SNR for basic is also set to 20 dB. nT varies from 4
to 10 transmitting antennas.

These figures show that the MU-MIMO to SU-MIMO capacity ratio increases with
the number of transmitting antennas for TGac-B (Figure 3.12) and Rayleigh
(Figure 3.13) channels. The capacity ratio changes from 1.2 to 1.77 for the eirp-equal
system in a residential environment, which represents more than 50% of capacity gain.
Note that the gain without the EIRP constraint is around 45% [64]. It has been shown
in previous studies that increasing the number of transmitting antennas favorably
impacts the capacity gain on an i.i.d. Rayleigh channel under SNR constraint [33, 34].
We have been able to prove in this section that this result holds even under the EIRP
constraint and with correlated channels as in TGac models. The difference between the
10% and 90% quantiles reduces as the number of antennas increases. This shows that
fading has less impact on the capacity values which become less scattered.

The basic and eirp-equal comparisons are biased. In fact, a system relying on a total
transmitted power does not satisfy a constant EIRP constraint since it may have an
increasing EIRP as nT increases. Intuitively, we could expect that for a basic system,
the MU-MIMO to SU-MIMO capacity ratio increases more rapidly in function of nT than
for an eirp-equal system, but simulations prove the opposite. In fact, SU-MIMO takes
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Figure 3.14 – Average of capacity values achieved by the basic and eirp-equal systems.

advantage of the power PT x when the system is not under EIRP constraint. For instance
in our simulated case (K = 2) where Nss = 4 for MU-MIMO and Nss = 2 for each one
of the single users, the reached EIRP by the MU-MIMO system EIRPMU−MIMO is
expressed as EIRPMU−MIMO = PT x

NNss
[max

Θ

∑

subcarrier(a(Θ)HW̄WT a(Θ))] and is upper

bounded by nT
PT x

4 . Similarly, for the same value of PT x, the single user EIRP is upper

bounded by nT
PT x

2 . This means that for a system under the same EIRP constraint, the
allocated power tends to be lower for SU-MIMO than for MU-MIMO. For the basic
system, the allocated power is the same for SU-MIMO and MU-MIMO. Figure 3.14
shows the average capacity values for MU-MIMO and SU-MIMO. It is well observed
that the MU-MIMO capacity increases more rapidly with nT compared to SU-MIMO.

3.4.3.2 Impact of power allocation strategy

The previous results have been obtained under the EIRP constraint with equally
shared power among the spatial streams. In this section, the impact of allocating an
unequal and optimized power to each spatial stream according to Equation 3.29 is
highlighted. Figure 3.15 compares the average of MU-MIMO to SU-MIMO capacity
ratio versus the number of transmitting antennas for eirp-equal and eirp-unequal
systems. As the number of the transmitting antennas increases, the capacity gain of
the MU-MIMO to SU-MIMO of the eirp-unequal becomes greater than the one
achieved of the eirp-equal system. However, this gain is not significant compared to the
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computational complexity: it is around 5% for 4 transmitting antennas, and it
decreases to 1% for 10 transmitting antennas.

Figure 3.15 – Average of MU-MIMO to SU-MIMO capacity ratio for eirp-equal and
eirp-unequal systems [TGac-B channel model].

To check whether the MU-MIMO capacity always outperforms the SU-MIMO, we
have evaluated the probability when the MU-MIMO capacity is lower than the SU-MIMO
capacity. This is illustrated in Figure 3.16 for eirp-equal and eirp-unequal schemes versus
the number of transmitting antennas.

Figure 3.16 shows that there are some channel snapshots for which the MU-MIMO
is less efficient than SU-MIMO, particularly when nT is equal to 4. The probability
reaches 22% for equal power sharing between spatial streams. However, the unequal
power sharing decreases this probability to 14%. We also observe on Figure 3.15 that
the MU-MIMO capacity gain for unequal sharing is slightly greater than the one observed
for a fair power distribution. Nevertheless, the gain is not significant: we have around
3% of capacity gain by contrast to high computational complexity. The probability is
almost 0 (≤ 1%) for nT = 6 and is equal to 0 for nT ≥ 8.

These results can be explained by examining the overall system: for nT = 4, the
MU-MIMO system is composed of 4 antennas in the transmit and the receive sides with
4 spatial streams. This gives no diversity possibilities. The number of spatial streams
becomes strictly less than the number of transmitting antennas when nT increases. As
a result, the system takes benefit from transmit diversity and shows probabilities which
tend to 0.
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Figure 3.16 – Proba (CMU−MIMO/CSU−MIMO < 1) versus the number of transmitting
antennas.

3.4.3.3 Antenna spacing effect

For additional results, different transmitting antenna spacings are evaluated for a
system in NLOS conditions composed of a Tx with nT = 6 antennas and
SNREIRP = 20 dB. The evaluated values are: 0.25 λ, 0.5 λ, 0.75 λ, 1 λ, 1.25 λ and
1.5 λ. Figure 3.17 shows an isolated and very low gain (37%) at 0.25 λ due, inter alia,
to the high correlation between the fading of the channels caused by the small spacing
between the transmitting antennas. As the number of the transmitting antenna
spacing is increasing, the MU-MIMO to SU-MIMO capacity gain for the residential
environment (TGac-B) is around the value of the capacity gain of Rayleigh channel
(57%). Antenna spacing has no effect on the Rayleigh channel since its MU-MIMO
channel matrix elements are complex Gaussian random variables and independent.
Considering a trade-off between the antenna size and the MU-MIMO capacity gain, the
recommendation is to have the antenna spacing equal to 0.5 λ.

3.5 Conclusion

The purpose of this chapter is to give recommendations for radio engineering and
system optimization. In this chapter, we have investigated the impact of antennas and
propagation channel on the BD capacity gain for the 802.11ac MU-MIMO in home
networks.
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Figure 3.17 – Average of MU-MIMO to SU-MIMO capacity ratio versus transmitting
antenna spacings.

In particular, we have proved that a small increase of the number of transmitting
antennas compared to the total number of the transmitted spatial streams improves
significantly the user channel de-correlation and the MU-MIMO capacity gain over
SU-MIMO: for example a MU-MIMO gain over SU-MIMO of 45% is achieved for a
20 dB SNR, 4 spatial streams and 6 transmitting antennas. We have also highlighted a
relevant channel correlation definition that is useful to decide whether MU-MIMO
outperforms SU-MIMO and to select the users into a MU-MIMO user group [64].
Afterwards, we have formulated the optimization problem of the sum capacity for
IEEE 802.11ac MU-MIMO systems, considering multiple spatial streams and antennas
for each user and taking into account the EIRP constraint [65]. Then we have derived
numerical results for a typical home network environment based on the spatially
correlated IEEE 802.11ac channel models. Two transmit power allocation methods
have been evaluated: equal and unequal sharing among the spatial streams under the
same EIRP constraint. We have compared these two strategies with the common
MU-MIMO BD linear under the total transmitted power constraint. We have shown
that MU-MIMO precoding takes more benefit from the EIRP constraint. In particular,
we have proved that under EIRP constraint, it is also recommended to have a number
of transmitting antennas slightly greater than the total number of spatial streams to
guarantee a MU-MIMO capacity gain over SU-MIMO with antenna spacing equal to
0.5 λ. These simulated results need to be confirmed in further work with real
MU-MIMO measured propagation channels [66]. Table 3.3 summarizes the previous
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conclusions and ends in proposing system recommendations.

Parameters
MU-MIMO to

SU-MIMO capacity
gain

Recommendations for
radio engineering

SNR effect: 0 − 40 dB Till 80% of gain
The desired range is put

forward

Transmit antenna
spacing: 0.5 λ − 1.5 λ

Insignificant gain of
2 %

0.5 λ

Number of
transmitting antenna

nT : 4 − 8
40% of gain

nT should be slightly greater
than the number of spatial

streams: 6 transmitting
antennas for two two-antenna

users and two SS per user

LOS or NLOS
almost the same gain
(LOS gives a slightly

high gain)
no recommendation

MU-MIMO with
Water-filling

algorithm

the same gain as equal
power sharing

not recommended excepted if
nT = nR = Nss

EIRP constraint
10% of gain with 6

transmitting antennas

— Beneficial use
— Power allocation

strategy: equal
power sharing for
low complexity

Table 3.3 – Recommendations to optimize MU-MIMO.

No deployment conclusion could be drawn based on the relative positions of the
AP and users since the TGac channel model is not geometrical. Next chapter will
explore deployment recommendations. Moreover, the channel model is restricted to only
simulate uniform linear antenna arrays. Other array geometries need to be evaluated
based on measurements.
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Chapter 4

MU-MIMO capacity based on
propagation measurements in
indoor environment
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4.1 Introduction

This chapter presents the numerical results based on a measurement campaign
conducted during the thesis in a residential environment typically encountered in home

70



networks. In order to have a meaningful comparison, we have performed a comparison
between the TGac channel models and the measured environment. The first objective
of this measurement campaign was to confirm the previous results and validate the
radio engineering conclusions based on channel models, then to extend the results to
different antenna array geometries and other potential parameters such as the path
loss. We have also evaluated the impact of increasing the number of spatial streams
and the SNR values. Afterwards, we have evaluated the measured path loss impact on
MU-MIMO capacity gain using different channel access methods. Finally, we have
drawn a comparative study between the simulated and measured results.

4.2 Experiment

In this section, we describe the performed measurements for MU-MIMO channels,
based on which we evaluate the MU-MIMO performance. First, we present a state
of the art of the previous studies based on measured data. We further describe the
measurement environment, as well as the studied scenarios. Finally, we introduce the
the measurement setup and the post processing.

4.2.1 Related work

Few articles have studied MU-MIMO capacity based on measured indoor
MU-MIMO propagation channels (see Appendix C). In a narrow indoor corridor
environment, the authors in [56] have analyzed DPC gain over linear processing for two
single-antenna receivers and revealed that this gain is almost insignificant for low and
high user channel orthogonality. Studies in [67, 48, 68] have focused on achieving
capacity or throughput improvement through the use of various transmitting antenna
arrangements, antenna designs and antenna configurations. It has been shown in [68]
by evaluating channel capacity that a compact tri-polarization antenna cube combined
with a simplified pattern circuit are suitable for MU-MIMO systems with antenna
selection. It has been shown in [67], using one transmitter with 8 antennas and four
single antenna receivers, that constraining the antenna arrangement to 7 λ is beneficial
(a gain of 12.8 % of spectral efficiency is achieved) in an indoor environment (room),
where λ indicates the wavelength of carrier frequency. However, none of these articles
highlights the deployment recommendations or optimal system configuration of the
MU-MIMO compared to SU-MIMO, or studies in details MU-MIMO capacity gain over
SU-MIMO with multiple antennas receivers based on measurements in home networks.

4.2.2 Measurement scenarios

Figure 4.1 represents the environment of the experiment. It displays the 3D indoor
residential scene used to perform measurements. It is a typical and real middle sized
apartment with a 12 m ×7 m surface and European building materials and furniture.
The ceiling is at 2.53 m. Both LOS and NLOS scenarios have been probed. Hereafter
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only global results are displayed, more measurements would be necessary to compare
LOS/NLOS statistics.

Figure 4.1 – Living room and corridor of the apartment.

Two locations of the Tx are considered, denoted as Tx1 and Tx2 in Figure 4.2. For
each Tx position, multiple positions of the two receivers are evaluated. We denote by
Rx1 and Rx2 the positions of the first and the second user respectively. During the
measurements, nothing moved in the environment of the experiment to keep the same
measurement conditions. Finally, the obtained measurement data base corresponds to
67 various 2−users configurations by combining the Tx and Rx positions.

4.2.3 Channel measurement setup

The MU-MIMO propagation channel is sounded using a Vector Network Analyzer
(VNA) based on a frequency domain technique. We collect the S21 parameter since
the propagation channel is the device under test. The VNA, depicted in Figure 4.4(a),
is connected by cables of 10 m to the Tx, 20 m and 5 m to the first and second user
respectively. Hence, the maximum distance between the Tx and Rx is 30 m. The VNA
has probed M = 2048 frequency tones between 5.15 GHz and 5.40 GHz stepped by
∆f = 122.07 kHz. This configuration permits a maximum propagation delay of 1

∆f =
8192 ns. This value is well above the propagation delay that can be usually observed in
such environment but it is useful to estimate the noise level of the measurement data for
post-processing. The high number of frequency bins allows also to improve the dynamic
(the difference between the peak power and noise level) of the CIR, which is between
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(a) VNA (b) Tx

(c) Rx1 (d) Tx: 480 virtual antennas.

Figure 4.4 – Measurement equipment.

from the non physical delay area of the average PDP. We force to 0 the corresponding
CIR complex samples with an average power below this noise level and also the sample
corresponding to a dynamic greater than 30 dB in order to process measurements with
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PDP over a 100 MHz bandwidth as in Equation 4.2. To get 100 MHz, the applied
Hanning window was reduced accordingly.

τRMS(k) =

√

√

√

√

√

√

√

√

√

2048
∑

j=1
(j∆T )2Pk(j∆T )

2048
∑

j=1
Pk(j∆T )

−
(

2048
∑

j=1
(j∆T )Pk(j∆T )

2048
∑

l=1
Pk(l∆T )

)2

(4.2)

This choice is justified by the fact that the average PDP of TGac channels are by
default computed over 100 MHz. The average PDP is computed over the 480 virtual
antennas. In the LOS case, the computation gives a mean value of τRMS = 10.87 ns,
and τRMS = 17.93 ns for the NLOS case. This result is in accordance with the numerical
values in [69]. The LOS-NLOS refers to the case where one of the users is on LOS with
the Tx and the other one on NLOS with Tx. It shows a middle case between the LOS
and NLOS scenarios with τRMS = 13.5 ns.

Figure 4.6 shows the delay spread of all measured channels compared to TGac
channels. Despite of the dispersion of measured τRMS , the average value is equal to
15.433 ns. The TGac-B channel model is defined to have 15 ns. Thus, both
environments show an average delay spread around 15 ns and can be considered to
have a similar frequency selectivity .

Figure 4.6 – Cumulative distribution function of the RMS delay spread [ns].
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4.3.2 Superdiagonal of transmit and receive covariances

We study the coefficients rT x and rRx of the receive and transmit correlation matrices
RT x and RRx as defined in [70][18] (Equation 4.3), of dimension nT × nT and nR × nR

respectively, for NLOS scenario with nT = 8 transmitting antennas arranged in linear
array and two receivers with two antennas each.

{

RT x = 1
nR

E | HT H̄ |
RRx = 1

nT
E | HHH | (4.3)

The transmit and receive correlation matrices give insight to what extent the
signals leaving the different transmitting antennas and the signals arriving at the
different receiving antennas respectively are correlated. According to [30], it has been
shown that in indoor and outdoor scenarios, almost no correlation can be measured at
the receive side between the different users. However, at the transmit side, there is
slightly, but not significantly more correlation. This has been shown to badly impact
the MU-MIMO performance.

The correlation coefficient is featured to have superdiagonal form. The superdiagonal
entry of a matrix is one that is directly above and to the right of the main diagonal. Each
component shows the correlation between the antenna corresponding to its row and its
adjacent antenna. The antennas are spaced by λ

2 . We have based our computation on
the second user channel matrix H2 because it includes all the various positions shown in
Figure 4.2. The nT × nT transmit correlation matrix has the superdiagonal coefficients

as rT x = 1
nR

E(
nR2
∑

i=1
HijH̄i(j+1)) for j = 1, 2, . . . , 7. The superdiagonal of the nR2

× nR2

receive correlation is rRx = 1
nT

E(
nT
∑

j=1
H1jH̄2j), where the Hij are the elements of the

channel matrix H.
Figure 4.7 shows the CDF of the average of the superdiagonal values of the transmit

and receive correlation matrices. The first observation drawn from this figure is that
the receive correlation shows lower values compared to the transmit correlation. The
measured environment shows slightly less correlated values at the Tx and Rx side than
the TGac-B channel model.

4.3.3 Fading

In this subsection, we evaluate the narrowband fast fading distribution.
We characterize the CDF of narrowband fading of the measured channel and we

compare it to the Rayleigh distribution as illustrated in Figure 4.8. The figure shows that
the fading in the measured environment fits exactly the Rayleigh distribution considered
for the TGac-B channel model.

Analyzing the previous parameters, we have shown that the two environments meet
the same trend. Hence, they are expected to give similar results.
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Figure 4.7 – CDF of the average of the superdiagonal values.

Figure 4.8 – Comparison of measured and Rayleigh fading CDFs [dB].
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4.4 Statistical results

The measured data allows the study of various types of transmitting antenna array
geometries using the 480 virtual antennas and an increased number of receiving antennas.
This section first presents MU-MIMO results based on normalized 0 dB average path loss
for each user. Afterwards, we consider measured path loss (non-normalized propagation
channels). In this section, all numerical results are computed under the EIRP constraint
(EIRP = 23 dBm). Note also that the power is equally shared among the spatial
streams as well as subcarriers.

4.4.1 Impact of transmitting antennas considering a normalized
channel

In this section, the effect of transmitting antennas (number and geometry of
antennas) on MU-MIMO system with two receivers with two antennas each is analyzed
based on a normalized channel. The reason of using the normalization is to keep only
fast-fading effects so that the average SNR at the receiving antennas is set to a fixed
value and can be easily adjusted as a parameter. The applied channel normalization in
this article implies that the average propagation loss is set to 0 dB for both users [64].
The average SNR is defined as SNR = EIRP/σ2

n where EIRP = 23 dBm for this
study, and is set to 20 dB. The aim is to assess the impact of transmitting antenna
configuration on the BD capacity gain over SU-MIMO and to give recommendations to
optimize MU-MIMO performance. To highlight the MU-MIMO capacity gain over
SU-MIMO, most graphs below show the average of MU-MIMO to SU-MIMO capacity
ratio.

4.4.1.1 Number of transmitting antennas

Figure 4.9 gives the average of MU-MIMO to SU-MIMO capacity ratio versus the
number of transmitting antennas arranged in an ULA. It also includes 10% (q10) and
90% (q90) quantiles as a reference. The first observation drawn from Figure 4.9 is that
the MU-MIMO capacity gain over SU-MIMO grows logarithmically with the number of
transmitting antennas. It changes from 1.27 to 1.7 for the residential environment, i.e.
around 43% of capacity gain. For 4 transmitting antennas, the quantile q10 of capacity
gain is less than 1. This can be explained by the fact that we cannot benefit from
transmit beamforming gain since the number of transmit antennas is the same as the
total number of spatial streams.

Figure 4.10 shows the average capacity values for MU-MIMO and SU-MIMO systems.
The capacity value for MU-MIMO increases more rapidly than SU-MIMO. It achieves
24 bits/s/Hz versus 14 bits/s/Hz for SU-MIMO with 8 transmitting antennas. In order to
optimize the MU-MIMO capacity gain and have a less congested system, we recommend
using 6 transmitting antennas in a system with two receivers and two antennas for each
receiver. If we aim at reaching higher capacities, using 8 transmitting antennas allows
2 bits/s/Hz of capacity increase.
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Figure 4.9 – Average of MU-MIMO to SU-MIMO capacity ratio versus the number of
transmitting antennas.

Figure 4.10 – Average MU-MIMO to SU-MIMO capacity values versus the number of
transmitting antennas.
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Figure 4.12 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient.

the CDF of the correlation coefficient values. The figure shows that the 1000 correlation
coefficient values remain close to the regular geometries presented previously, i.e. around
0.14 of correlation. Only few draws show lower values of correlation coefficient (less than
15% draws show correlation coefficient less than 0.14). Further analysis could be made
to identify the configuration that shows less correlation coefficient value. However, this
optimization needs to be generalized to other environments and different Tx and Rx
positions.

4.4.2 Impact of receiving antennas considering a normalized channel

In this section, the effect of the number of receiving antennas and the impact of the
selected receiving antennas on MU-MIMO system with two receivers with two antennas
each are analyzed based on a normalized channel.

4.4.2.1 Impact of selecting different receiving antennas

As can be seen in Figure 4.16, each user is equipped with four antennas. However,
in the previous simulations we have evaluated a Rx with two antennas. In this
subsection, we study the effect of selecting different receiving antennas on the
MU-MIMO to SU-MIMO capacity gain and correlation.

Figure 4.17 gives the average of MU-MIMO to SU-MIMO capacity ratio versus the
average correlation coefficient considering different receiving antenna arrangements. The
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Figure 4.13 – Average MU-MIMO capacity values versus the average correlation
coefficient.

(a) Quadrant (b) Circle

Figure 4.14 – Random antenna array geometries.

highest MU-MIMO capacity gain over SU-MIMO is achieved with two antennas arranged
in the diagonals across the square.

Additionally, this configuration extends the results of the previous chapter: spacing
above 0.5 λ the receiving antennas increases slightly the MU-MIMO to SU-MIMO
capacity gain: around 1% of capacity gain. All the cases show relatively small
correlation of value: 0.18 − 0.19. In terms of capacity values, as in Figure 4.18, we
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Figure 4.17 – MU-MIMO to SU-MIMO capacity ratio versus the average correlation
coefficient (nT = 6).

and two receivers with nR = 3 antennas each. The average SNR is set to
SNR = 20 dB. Figure 4.19 depicts the MU-MIMO to SU-MIMO capacity ratio versus
the average correlation coefficient. The first observation drawn from Figure 4.19 is that
the number of receiving antennas does not impact the correlation coefficient. This
result is expected by the formula of the correlation coefficient proved in Equation 3.22
for Rayleigh channel. Increasing the number of receiving antennas increases the
MU-MIMO to SU-MIMO capacity gain of 5%.

In terms of channel capacity values, Figure 4.20 shows an increase of about
3 bits/s/Hz for Tx with 4 or 6 antennas. Using a third antenna in a receiver will
enlarge its design. Regarding the obtained performance, we do not recommend to
increase the number of receiving antennas excepted if the number of spatial streams
per user is 3. In the case of 2 spatial streams per user, it is preferable to increase the
number of transmitting antennas and keeping 2 antennas at the receiver.

4.4.3 Impact of increasing the number of spatial streams

In this subsection, we highlight the effect of the number of spatial streams in
optimizing the MU-MIMO techniques. Before giving the statistical results, we present
the simulated system depicted in Figure 4.21. It is composed of one Tx with 4
transmitting antennas spaced with 0.5 λ and two receivers equipped with four
antennas each: nR1

= nR2
= 4. As previously stated in Chapter 2, the MU-MIMO can
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Figure 4.18 – Average MU-MIMO capacity values versus the average correlation
coefficient (nT = 6).

not be applied if the total number of spatial streams is greater than the number of
transmitting antennas. Hence, we can simulate the MU-MIMO processing in the only
case where the total of number spatial streams is 4 with nT = 4 transmitting antennas.
The SU-MIMO system is composed of 4 transmitting antennas and 4 receiving
antennas. The objective here is to identify for which number of spatial streams, the
MU-MIMO is preferable to SU-MIMO. The capacities are computed using five
SNR values: SNR = 15 ; 20 ; 30 ; 45 dB and 60 dB. For numerical values, we have:
EIRP = 23 dBm, 46.8 dB the free space path loss at 1 m range at 5.25 GHz and −93
dBm the noise power. We can expect SNR values till SNR = 70 dB.

Figure 4.22 shows the MU-MIMO channel capacity as a function of the SNR. The
figure shows that MU-MIMO clearly outperforms the SU-MIMO channel capacity for
two and three spatial streams. However, for a system with 4 spatial streams, the
MU-MIMO is not recommended. It shows a slight decrease (2 bits/s/Hz) in the
capacity value with an SNR = 40 dB compared to SU-MIMO. The MU-MIMO
processing has in addition the channel sounding which is not assumed throughout this
report. This validates the recommendation about using the MU-MIMO processing
rather than the classical SU-MIMO techniques when the number of the transmitter
antennas is greater than the total number of spatial streams. The number of spatial
streams is generally limited by the number of receiving antennas of cheap devices.
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Figure 4.19 – Average MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient.

4.4.4 Impact of the path loss difference on MU-MIMO gain

In this section, we consider the propagation channel including its measured path
loss on a 20 MHz bandwidth. The EIRP is equal to 23 dBm. The noise power is
set to −93 dBm which corresponds to the noise temperature at 300◦K for a 20 MHz
band with a noise factor of 8 dB. The number of transmitting antennas is set to 6
arranged in ULA geometry. The SU-MIMO capacity is expressed considering TDMA and
CSMA/CA channel access methods. The transmitter communicates with two receivers.
Each receiver is equipped with two antennas spaced by λ

2 . We consider the average
received power at each user in dBm.

Figure 4.23 shows the average of MU-MIMO to SU-MIMO capacity ratio versus the
absolute difference of the average received powers (in dB) denoted as ∆P by the two
receivers Rx1 and Rx2. We observe that when ∆P is below 15 dB, both channel access
methods give almost the same results. Nevertheless, compared to SU-MIMO CSMA/CA
method, it is advantageous to group users with larger ∆P and use MU-MIMO: the
capacity gain can be greater than 2. Actually, if C1 is very small compared to C2, then
CSU,CSMA is penalized by C1 [15] which is not the case of CMU−MIMO. We also notice
that the capacity gain in all cases is higher than 60% in a 12 m ×7 m apartment with
a 23 dBm EIRP. This proves the benefit of using the MU-MIMO method rather than
SU-MIMO.

Figure 4.24 includes the correlation parameter ρ in a 3D surface plot. The figure
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Figure 4.22 – Average MU-MIMO capacity values versus the SNR.

Figure 4.23 – Average MU-MIMO to SU-MIMO capacity ratio versus ∆P .
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that high difference in the received powers means low level of similarity between the
users’ channels. Hence, the correlation coefficient is low.

Figure 4.24 – MU-MIMO to SU-MIMO capacity ratio versus ∆P and correlation
coefficient.

4.5 Measured versus simulated environments: numerical
results

This section gives a thorough comparison between the numerical results based on
simulated and measured channels. Since the TGac channel models simulate antennas
arranged in ULA, we will confine the comparisons on evaluating a Tx with antennas
arranged in ULA. We have presented in previous sections global statistical results
including both LOS and NLOS cases. In this section, we will distinguish the two cases
in order to have meaningful comparison with TGac simulation results.

The used notation for measurements comprises three cases. First, we denote the
case where two receivers are in LOS with the transmitter as “Meas. LOS”. Second, the
case where the two receivers are in NLOS with the transmitter is refereed to as “Meas.
NLOS”. Finally, the case where one of the two users is in LOS and the other one is
NLOS conditions with the Tx is denoted as “Meas. LOS/NLOS”.

Similarly, we denote the TGac-B channel model with users in LOS and NLOS with
the Tx as “TGac-B LOS” and “TGac-B NLOS” respectively. The SNR is set to 20 dB
and is based on the EIRP constraint.

91







Figure 4.27 – Correlation coefficient versus the number of transmitting antennas.

ones showed in the previous chapter because the MU-MIMO to SU-MIMO capacity gain
values are computed based on the EIRP constraint.

Scenario LOS|NLOS LOS|NLOS LOS|NLOS LOS|NLOS

nT a0 a1 r RMSE

4 1.6864| 1.6719 -1.6373|-1.6553 0.9340| 0.9629 0.0487| 0.0302

6 1.8824|1.8741 -1.5518| -1.5817 0.9284| 0.9524 0.0435| 0.0294

8 1.9173 |1.9190 -1.3426|-1.4269 0.9327|0.9647 0.0331| 0.0203

Table 4.2 – Numerical results of linear regression parameters for different transmitting
antennas [TGac-B channel model].

The expression of MU-MIMO to SU-MIMO capacity gain as a function of correlation
coefficient motivates us to look for a simplified expression of the correlation coefficient
as a function of the physical parameters such as users’ relative position.

Figure 4.29 plots the correlation coefficient as a function of angles and distances for
a Tx with nT = 4 and two receivers in NLOS with nR1

= nR2
= 2 spaced by λ

2 as defined
in TGac-B channel models. Indeed, for each drawing, four angles are drawn randomly
by the TGac channel models. However, the points are dispersed and no conclusion could
be drawn except that the points are randomly distributed and with a nearly periodicity.

Similarly, Figure 4.30 plots the correlation coefficient versus the users’ position for
a transmitter with nT = 8 arranged in ULA based on measurements. We denote
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Figure 4.28 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient.

respectively the distance between each Rx1 and Tx and Rx2 and Tx as Tx−Rx1,
Tx−Rx2. The angle in this case is defined as in Figure 4.31 The trend of the
correlation coefficient gives an interesting result. It can approximately be expressed by
the ratio of the distance between the first user and the Tx and the distance between
the second user and the Tx. Table 4.3 gives the regression parameters for the studied
configuration. The correlation coefficient is low. A better prediction would need other
parameters to be included.

nT a0 a1 r RMSE

8 0.1200 0.0139 0.4496 0.0350

Table 4.3 – Linear regression parameters for 8 transmitting antennas [Measured channel].

4.6 Conclusion

A MU-MIMO measurement campaign has been conducted in a residential
environment for two users with two antennas each. The obtained sum rate capacity
under the EIRP constraint results confirm that 6 is the recommended number of
transmitting antennas to keep a compact size of the transmitting antenna arranged in

95



Figure 4.29 – Correlation coefficient versus the users’ position [TGac-B channel].

Figure 4.30 – Correlation coefficient versus the users’ position [Measured channel].
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Chapter 5

Transmit beamforming gain
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tools based on propagation
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5.1 Introduction

The ability to accurately predict radio-propagation for wireless communication
systems, is becoming crucial for system design and radio planning. In this context, the
Wireless local Area Network Design and Analysis (WANDA) software has been
developed by Orange Labs Belfort to design indoor WLAN. Figure 5.1 gives an
example of Wi-Fi radio coverage proposed by WANDA. It has been simulated at
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the conclusion and propose modeling for radio planning tools in Section 5.5.

5.2 Transmit beamforming analysis and modeling

5.2.1 Related work

Transmit beamforming is a feature of 802.11ac standard. It shapes the effective
radiation pattern of the antennas pointing towards the direction of the dominant
multi-paths by controlling the power and the phase of the transmitted signals. Various
techniques may be used to implement the TxBF. There are phased antenna arrays
(direction based beamformers), codes book (for Long Term Evolution (LTE)),
dominant eigen mode selection (single beamforming technique with one antenna
weighting vector and that carries only one spatial stream [71]), and the more general
SVD-MIMO with one precoding matrix carrying all the spatial streams. This latter is
selected in the 802.11ac standard and is studied in this chapter.

In the literature, TxBF has been studied in order to highlight its benefits compared
to the use of a simple MIMO system using spatial multiplexing only. Most of the
publications studied outdoor [72] or outdoor-indoor [73] environments based either on
measurements made with equipment that implements TxBF or on a purely theoretical
approach. Most of the results concern the dominant eigen mode TxBF. There are few
results concerning the more general SVD-MIMO systems with multiple spatial streams
[74][75], but they rarely concern typical European residential environments and
European building materials. In fact, studies have analyzed several MIMO
configurations in order to conclude on the relevance of a possible use of beamforming.
The TxBF requires the knowledge of the MIMO propagation channel between the
transmitter and the receiver. This implies frame exchanges between transmitter and
receiver and an overhead in the frame control. For instance, in [76], it was shown that
for small values of SNR (or high interference level) the dominant eigen mode
Beamforming (BF) schemes can perform close to the MIMO system with singular value
decomposition in terms of spectral efficiency, and can even outperform a MIMO system
with CSI only at the receiver.

Other studies have focused on the comparison between introducing the dominant
eigen mode and transmit diversity [77]. It was shown that, under ideal conditions
(uncorrelated fading), transmit diversity has an advantage over a beamforming system.
However, under handoff conditions, the beamforming system has both array gain and
diversity, which improves its performance relative to transmit diversity.

The SVD, which is seen as one of the most relevant MIMO precoding techniques, is
present in publications that address the topic of eigen beamforming with multiple
streams. Indeed, the analysis in [78, 79, 80, 81] have focused on evaluating the impact
of channel estimation error on the performance of MIMO system that implements
SVD-MIMO technique. It was proved that in case of non-ideal channel knowledge and
a limited accuracy in the channel matrix estimation, a reduced number of eigenmodes
in the precoding process becomes an optimum and leads to an improved BER. A
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typical system employing SVD shows capacity degradation when incorrect CSI is used
to transmit data. Therefore, some papers propose a new linear processing architecture
which reduces the effect of incorrect CSI at the transmitter.

Other approaches such as prototyping [82] have been also explored in order to assess
the feasibility of an IEEE 802.11n transmit beamforming architecture before starting
its mass production. However, it does not exploit the effect of the feedback delay to
evaluate the added value of beamforming.

In the context of earlier studies, it was shown in [83] for example, that in the case
of a single stream transported by a MIMO system with nT transmitting antennas and
nR receiving antennas, a significant antenna array gain nT × nR can be achieved in LOS
conditions i.e. in fully correlated received signals. For multiple streams and using the
SVD-MIMO technique, a theoretical bound of the gain was defined in the case of a rich
scattering environment (Rayleigh fading). This bound is (

√
nR +

√
nT )2. Other works

such as [84] have also analyzed the diversity gain for such channels and SVD MIMO
technique, and calculated that the achievable diversity order is (nT −Nss+1)(nR−Nss+1)
for Nss spatial streams.

In [44], the transmit beamforming is analyzed based on simulations performed in a
typical residential environment. The obtained results show that enabling TxBF increases
the received power when nT is important compared to Nss (if Nss = nT , no power gain
is achieved). Moreover, it was shown, for a given Nss, that with TxBF enabled, it is
more advantageous to increase the number of receiving antennas than the transmitting
antennas number. Two optimal values of transmitting antenna spacing were proved to
optimize the TxBF gain: around 0.5 λ and 1.25 λ. Accordingly, we have set the antenna
spacing to 0.5 λ. Finally, it is proved that the TxBF can improve the transmission range
especially when Nss is sufficiently small compared to nT . However, the published results
are based on ray tracing tools, and no conclusion was carried out about the impact of
the EIRP constraint on the numerical results.

In this chapter, we evaluate the TxBF performance under the EIRP constraint
based on measured data in home environment. We reveal in particular the benefits of
the introduction of this option compared to the use of a simple MIMO system with
spatial multiplexing and spatial expansion. The comparisons have been performed
using different metrics evaluated With Beamforming (W-BF) and Without
Beamforming (Wo-BF) based on the SVD MIMO technique. This study addresses the
impact of the overall MIMO configuration by varying the number of transmitting
antennas, the number of receiving antennas and the number of spatial streams. Several
transmitting antenna array geometries are compared to identify which one has the
most important BF gain. The interference level reduction is then evaluated in order to
investigate whether the introduction of TxBF can increase or reduce the interference
generated by an AP with TxBF activated. Note that the TxBF as defined in 802.11ac
standard is designed to optimize capacity but not to reduce or cancel interference to
the undesired receivers.
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Figure 5.6 – The SNR gain as a function of the number of transmitting antennas for
Nss = 1.

compared to a system with one receiving antenna (nR = 1) which does not show any
diversity.

Moreover, the figure shows that even under the EIRP constraint, the transmit
beamforming still achieves gain. It changes from 2 dB to 4 dB. The highest SNR gain
6 dB is achieved with a transmitter equipped with nT = 8 antennas and a receiver with
nR = 1 antenna. Hence, we can fully benefit from the TxBF when the number of
transmitting antennas is largely greater than the number of receiving antennas and
spatial streams, whereas the SNR gain is null when nT = Nss.

Secondly, we evaluate two spatial streams Nss = 2 to assess its impact on TxBF.
The number of receiving antennas varies in this case in nR = 2, nR = 3. Figure 5.7
gives the SNR gain as a function of the number of transmitting antennas for Nss = 2.
The same conclusion about the number of the transmitting and receiving antennas is
drawn from Figure 5.7. Moreover, Figure 5.7 shows that increasing the number of spatial
streams decreases the SNR gain. Indeed, the highest value of SNR gain is achieved by
nT = 8, nR = 2.

Therefore, with TxBF, increasing the SNR gain is possible when we increase the
number of transmitting antennas, decrease the number of receiving antennas, or decrease
the number of spatial streams compared to the number of transmitting antennas, even
under the EIRP constraint. The beamforming gains are in the range of 1 to 6 dB which
is very interesting to extend the WLAN coverage.
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Figure 5.7 – The SNR gain as a function of the number of transmitting antennas for
Nss = 2.

5.3.2 Impact of the geometry of transmitting antenna arrays

In this subsection, we assess the impact of antenna array geometries on the SNR
gain. We simulate different antenna array geometries as in previous chapter (Chapter 4,
Figure 4.11). The transmitter is composed of nT = 8 transmitting antennas arranged in
5 different geometries: CCA with 0.5λ spacing, and ICA with different radiuses: ICA
0.5λ, ICA 1λ, ICA 2λ and ICA 3λ.

We study the case of one spatial stream Nss = 1. The number of receiving
antennas varies in nR = 1, nR = 2, nR = 3. Figure 5.8 gives the SNR gain as a function
of the receiving antennas for different antenna array geometries. The figure confirms
that an increase in the number of receiving antennas decreases the SNR gain of almost
1 dB for all antenna array geometries except the ICA 1λ where it decreases by more
than 1 dB. The ICA 1λ achieves the highest SNR gain 6 dB with a receiver equipped
with nR = 1 receiving antenna. For nR = 2 and nR = 3 receiving antennas, the ICA 1λ
shows the highest SNR gain with 4, 3 dB and 3, 6 dB respectively.

All antenna array geometries show almost the same SNR gain values. The variation
is less than 0.5 dB which is insignificant regarding the difference between SNR gain
values when varying the number of transmitting antennas.
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Figure 5.8 – The SNR gain as a function of the number of receiving antennas for Nss = 1.

5.4 Statistical results of interference level reduction

In this section, we give numerical results of interference reduction to see whether
the introduction of TxBF increases or reduces the interference difference generated by
the AP. The interference reduction is evaluated as a function of the number and the
geometry of antennas as well as the number of spatial streams.

5.4.1 Interference level

In this section, we study the average value of the interference reduction for the various
2-user measurement configurations. The transmitter has the antennas arranged in ULA.

At first, we study the case with one spatial stream. Figure 5.9 gives the average of the
interference reduction as a function of the average of SNR gain for one spatial stream.
Increasing the number of transmitting antennas decreases the interference level. The
interference level is reduced from 1.5 dB to almost 3 dB when the number of transmitting
antennas increases from nT = 2 to nT = 8. However, increasing the number of receiving
antennas does almost not impact the interference level. The interference reduction values
slightly increase (less than 0.5 dB) passing from nR = 1 to nR = 3. The highest value
of interference reduction 3.5 dB in this case (Nss = 1) is achieved by a system with
nR = 3, nT = 8.

Secondly, we set the number of spatial streams to Nss = 2. Figure 5.10 gives the
average of the interference level difference as a function of the average of SNR gain for
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Chapter 6

Conclusion and perspectives
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6.1 Conclusion

In the recent years, MIMO has attracted considerable attention for its potential to
increase channel capacity. The MU-MIMO techniques have been proposed to further
increase the capacity by spatial reuse. However, no study gives explicit answers to
whether using MU-MIMO or SU-MIMO is the best choice in a residential environment,
or gives optimal configurations to benefit fully from these techniques. In addition, current
network planning tools need to be reviewed taking into account the beamforming gains.
In this thesis, we have addressed these issues related to MU-MIMO and smart antennas.

Firstly, the physical features of the new standard 802.11ac as well as the basic
propagation mechanisms have been summarized in Chapter 2. The MIMO channel
models have also been presented. We have highlighted in particular the TGac channel
models. The MU-MIMO system model, the precoding techniques and their related
capacities have been next recalled. Indeed, we have given in this chapter a short state
of the art of the MU-MIMO techniques. For our studies, we have selected BD
technique for the MU-MIMO processing.

In Chapter 3, we have proposed recommendations to optimize MU-MIMO
performance based on TGac simulations in terms of channel propagation parameters
and users’ configuration: LOS, NLOS, distances... A particular interest has been paid
to study the power control required to meet the European regulation for WLAN in the
5 GHz frequency band in terms of EIRP. First, we have given a detailed description of
the simulation process, the evaluated channel model and its parameters. Next, we have
provided simulation results in function of antennas and propagation channels
parameters on the BD capacity gain over SU-MIMO. In particular, we have proved
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that a small increase in the number of transmitting antennas compared to the total
number of transmitted spatial streams improves significantly the user channel
de-correlation and the MU-MIMO capacity gain over SU-MIMO. We have also
highlighted a relevant channel correlation definition that is useful to decide whether
MU-MIMO outperforms SU-MIMO and to select the users into a MU-MIMO user
group [64]. Afterwards, we have formulated the optimization problem of maximizing
the sum capacity under the EIRP constraint for the IEEE 802.11ac MU-MIMO. In our
formulation, we have looked for the power value which maximizes the sum capacity for
each spatial stream of each user [65]. We have compared these two strategies with the
common linear MU-MIMO BD under the total transmitted power constraint. We have
shown that MU-MIMO precoding takes benefit from the EIRP constraint. The
MU-MIMO to SU-MIMO capacity gain increases under the EIRP constraint.

In Chapter 4, we have presented the results of a measurement campaign using the
VNA. This campaign has been conducted during the thesis in a residential
environment typically encountered in home networks at Orange Labs Belfort. The first
objective of this measurement campaign was to confirm the previous results and
validate the radio engineering conclusions based on channel models, then to extend the
results to different antenna array geometries and other potential parameters such as
the propagation path loss. Obtained results confirm the recommendations based on
TGac simulations. Furthermore, we have extended the conclusions to study the impact
of receiving antennas and the number of spatial streams and the SNR values. In
particular, increasing the number of receiving antennas increases the MU-MIMO to
SU-MIMO capacity gain by only 5%. Moreover, selecting receiving antennas spaced by
0.5λ or 0.5

√
2λ has no significant impact on MU-MIMO to SU-MIMO capacity gain.

Afterwards, we have compared the measured propagation path loss impact on
MU-MIMO capacity gain using TDMA and CSMA/CA channel access methods.

Finally, in Chapter 5, we have evaluated the transmit beamforming gain based on
measured data in a SU-MIMO context. The performance evaluation has been made
based on the SNR gain and interference reduction. Several MIMO configurations
(number of transmitting and receiving antennas, number of spatial streams, antenna
array geometries) have been compared to identify which one has the most important
impact on the TxBF quantified in terms of received power. In particular, we have
proved that increasing the SNR gain is possible when we increase the number of
transmitting antennas, decrease the number of receiving antennas, or decrease the
number of spatial streams. These conclusions have been drawn to correct and update
the beamforming gains of the coverage maps in the current planning tools. Moreover,
we have investigated whether the introduction of TxBF can increase or reduce the
effect of interference generated by an interfering link. We have been able to show that
TxBF reduces the interference in the environment but not for the 100% of locations.
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6.2 Future work

In this thesis, many issues related to MU-MIMO system have been addressed.
However, multiple suggestions have not been explored and can be the topics for future
studies:

— This thesis assumes a perfect channel state of information at the transmitter. It
is relevant to assess the impact of an imperfect CSI on the obtained results.

— A deep analysis of spatial characteristics (AoA, AoD) of the propagation channel
could be done to compare the results between TGac MIMO channel models and
measurement campaign.

— It would be interesting to conduct a measurement campaign with a compacted
antenna array including the antenna coupling effect. In our measurement
campaign, we have evaluated only the case with 8 transmitting antennas
arranged in ULA.

— It is possible to go further in analyzing the random draws of 8 transmitting
antennas to propose an optimized array geometry and to test it in other residential
environments.

— It is relevant to develop rapid algorithm simulating the antenna processing in the
case of ray tracing or ray launching models in order to predict the beamforming
gains in each point of the coverage map instead of a global statistical correction.

— An accurate prediction of the correlation coefficient as a function of the users’
locations would be interesting to decide about the benefit of MU-MIMO.
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Appendix A

All detailed parameters of
TGac-B channel

The following figures (A.2, A.3 A.4 A.5 A.6) present the amplitude of the channel
taps, the PDP, the CDF, the spatial correlation properties and the Doppler spectra
respectively of a SU-MIMO set-up with nT = 2, nR = 2 working at 5.25 GHz carrier
frequency, with λ

2 wavelength spacing at the transmitter and receiver, using IEEE 802.11
TGac channel model TGac-B. It is sampled in time domain at 2500 Hz to simulate
fading with NLOS conditions. 512 FadingNumberOfIterations, where each iteration has
a length of 55 CoherenceTimes, have been generated. In order to reduce the set of output
samples, a downsampling factor of 48 has been applied. Per block, one sample has been
stored. Dashed red curves/markers correspond to the reference values, whereas the blue
curves/markers are the outcomes of the simulation. Moreover, in the Doppler plot,
the green curve represents the Welch periodogram[85]. Figure A.1 gives an example of
display of simulation parameters at the start of a simulation. The highlighted parameters
are the ones that can be modified. The match between reference curves and simulation
results is satisfactory in Figure A.3. Considering the LOS conditions, the achieved
tap power distributions in Figure A.3 fit the reference PDP [85]. The addition of the
LOS component causes the achieved PDP of models TGac-B to be shifted with respect
to the reference one, up to the value of the K factor (in this case K is equal to 0).
In Figure A.5, the spatial correlation coefficients of the simulated impulse responses
match the coefficients computed during the initialization phase. The spatial correlation
tends to be significant for certain taps. This is partly due to the small spacing (half a
wavelength) between the two receive antenna elements. Finally, the simulated Doppler
spectra shown in Figures A.6 reproduce the bell shape spectrum selected by IEEE 802.11
TGac Channel Model Special Committee. On these figures, the red vertical lines are
drawn at +/ − frequencyDoppler. The upper green line is set at the maximum of the
Doppler spectrum, and the lower green line lies 10 dB below. Ideally, the Doppler
spectrum should meet the crossing of the red and green lines. This would be the case,
should the jitter be removed from the sampled spectra presented.
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Figure A.3 – The PDP of IEEE 802.11 channel model case B (9 taps).

Figure A.4 – The CDF of the taps of the IEEE 802.11 channel model case B (9 taps).
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(a) The first six taps

(b) The last three taps

Figure A.5 – Spatial correlation of the taps of the IEEE 802.11 channel model case B
(9 taps).
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(a) The first six taps

(b) The last three taps

Figure A.6 – Doppler spectra of the taps of the IEEE 802.11 channel model case B (9
taps).
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Appendix B

Comparison of TDMA
SU-MIMO, DPC, and BD sum
rate capacity using MU-MIMO
and spatially correlated channels

We study the MU-MIMO broadcast channel and the achievable throughput for the
optimal strategy of dirty paper coding. We compare its performance to that achieved
with block diagonalization with lower complexity based on correlated channels.

It was found in [43] that dirty-paper coding is optimum capacity achieving for the
broadcast MU-MIMO channel. In [86], two iterative algorithms have been proposed to
find the optimum sum capacity bound for the multiple-antenna broadcast channel. The
authors have used the fact that the Gaussian broadcast and multiple-access channels are
dual. This means that their capacity regions, and therefore their sum rate capacities,
are equal. These algorithms compute the sum rate capacity achieving for the dual
multiple-access channel. This can be converted to the equivalent optimal strategies for
the broadcast channel. The algorithms employ a simple iterative Water-filling procedure
that probably converges to the optimum. The two algorithms use the single-user Water-
filling procedure in each iteration. Based on this algorithm and Water-filling, we find
the sum capacity of the multiple-antenna broadcast channel.

Figure B.1 illustrates the performance of the BD algorithm using or not Water-filling
and the sum-rate bound computed with DPC for a case involving nT = 6, nR1

= nR2
= 2

and SNR = 20 dB. The SNR here is defined as in Chapter 3, Section 3.3 without the
EIRP constraint. We have also plotted the SU-MIMO capacity to compare. The results
are based on the correlated TGac-B channel model and the cumulative distribution
function of the capacity achieved by each method is plotted. Block diagonalization with
equal power sharing among the spatial streams is labeled MU-MIMO BD, whereas MU-
MIMO BD WF refers to the BD algorithm employing the optimal power allocation via
Water-filling. SU-MIMO refers to the case with equal power sharing with no precoding
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Figure B.1 – Cumulative distributions of the sum rate capacity for nT = 6, nR1
= nR2

= 2
achieved by several MU-MIMO strategies.

algorithm. Finally, SU-MIMO WF employs Water-filling algorithm.
The first observation drawn from the Figure B.1 is that SU-MIMO show similar

capacity values with equal power sharing and Water-filling algorithm. The MU-MIMO
gives almost the same values. Furthermore, it can be seen that MU-MIMO DPC gives
the highest values of capacity as expected. The gap between the average values of DPC
(18.4739 bits/s/Hz) and BD (15.5096 bits/s/Hz) capacities is 3 bits/s/Hz.

The expected loss in Rayleigh fading due to block diagonalization compared to DPC
is given by [35]:

lossDP C−BD = (log2 e)
K−1
∑

k=0

nR1
−1

∑

n=0

(K−1)nT
∑

i=knR1
+1

1

nT − n − i
[bits/s/Hz] (B.1)

In our case when K = 2, nT = 6 and nR1
= nR2

= 2, lossDP C−BD = 1.5 bits/s/Hz in
Rayleigh channels.
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Appendix C

Measurement campaigns
synthesis

Table C.3 gives a non-exhaustif survey of the main measurement campaigns
conducted to evaluate MU-MIMO techniques. It shows that only a limited amount of
channel measurements and analysis of such MU-MIMO systems are available, even less
in the 802.11ac context. It mainly concerns outdoor areas or indoor to outdoor areas.
Note that the measurement campaigns conducted in Eurecom Institute have resulted
in many publications, we have mentioned only few of these papers [46][30][87][32].
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Environment
and equipment

Configurations and
parameters

Evaluated parameters and conclusions

[VNA] [54]
LOS and

NLOS cases in
a meeting
room at
5.2 GHz

K = 2, nT = 4,
nR1

= nR2
= 2

omnidirectional
colinear antennas

with coupling
spaced by λ

2 ,
dT x−Rx1

= 4 m,
dRx1−Rx2

= 3 m.

Doppler spectrum and BER
dependent on the array orientation

and the direction of the receiver
motion. In NLOS, Doppler spectrum
is quite different from the theoretical

U-shaped spectrum in the Jakes’
model. BER performance is much
degraded due to a channel change.

[Sounder
EMOS 1] [46]

LOS and
NLOS in
outdoor

vicinity of
Eurecom,
Sophia-

Antipolis,
France at

1917.6 MHz.
BW: 4.0625

MHz

nT = 2, K = 2,
nR1

= nR2
= 2. Tx:

antennas arranged
in two

cross-polarized
pairs. Rx: 3G

Panorama Antennas

A characterization of the
(dis-)similarity of the channels of

different users using: spatial
separation of the user’s, correlation
matrices, co-linearity of the MIMO
channel matrices and correlation of
large scale fading. The structure of

the MIMO channel matrices changes
significantly with the inter-user

distance [captured by the co-linearity
measure]. The transmit and the full
correlation matrix also show some

dependence on the inter-user distance.
Receive correlation matrices are

independent of the inter-user distance.
The shadowing correlation was found
to be very low in all cases even when

the nodes are quite close.

[49] Indoor
conference

room
LOS/NLOS

VNA at
5 GHz.

SU-MIMO: nT = 4,
nR = 4 MU-MIMO:

nT = 4, K = 2,
nR = 2 two linear
array orientations

spaced by λ
2 .

Antenna coupling
effect

BER: LOS is better than NLOS
(much higher SNR is given by the

direct path)
MU-MIMO system is sensitive to

channel change (it causes the IUI).

Table C.1 – Survey of measurement studies [Part I].

129



[30] [Sounder
EMOS] near

and far
outdoors

vicinity of the
Eurecom,
Sophia-

Antipolis
[predominantly
present LOS]
and NLOS

indoor: Tx in
the

neighboring
building
[strong

reflections]
and Rx in the
same room.

Frequency: 1917.6
MHz (BW:4.8
MHz). Linear
methods with

perfect CSI: CI and
RCI nT = 4, K = 4,

nRk
= 1,

SNR = 10 dB with
fairly sharing

proportional in a
round robin fashion.
Tx:arranged in two

cross-polarized
pairs. Rx: 3G

Panorama
Antennas.

The performance of MU-MIMO
precoding drops drastically when the
users are close together in an outdoor
scenario due to the strong correlation

at the transmitter. MU-MIMO
provides a higher throughput than

SU-MIMO. In outdoor scenarios with
a LOS, the capacity drops

significantly when the users are close
together, due to high correlation at
the transmitter side of the channel.

[Sounder
EMOS][87]:

-vicinity of the
Eurecom

institute in
Sophia-

Antipolis
outdoo. -LOS

and NLOS
indoor at

1917.6 MHz.

Outdoor: nT = 4,
K = 4, nRk

= 1.
Indoor: nT = 2,
K = 2, nRk

= 1.
SNR = 10 dB,

4.8 MHz of
bandwidth. Tx: 2

cross-polarized
pairs. Rx: 3G

Panorama
Antennas. OFDM

Distance VS the capacity of linear
precoding schemes: the further apart
the users are, the higher the capacity.
Hence, spatial separation of users has

a very strong impact on the
performance of linear precoding

schemes In particular, the
performance of a CI precoder drops
significantly in outdoor scenarios,

when the users are close together. The
performance of limited feedback

MU-MIMO schemes crucially depends
on the codebook.

[32] EMOS
outdoors in

the vicinity of
the Eurecom
institute LOS
most of time

nT = 4 (2 cross
polarized), K = 4,
nRk

= 1, Nss = 4
SNR = 10 dB.
1917.6 MHz,
BW:4.8 MHz

Antenna selection

The results show that MU-MIMO
provides a higher throughput than

SU-MIMO. However, the throughput
in the measured channels is by far

worse than the one in channels
without spatial correlation. Of all the
evaluated linear precoding schemes,

the RCI precoder performs best in the
measured channels.

Table C.2 – Survey of measurement studies [Part II].
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[26] Indoor
and indoor-

outdoor
scenarios with
multiples base
stations in the

Royal
Institute of
Technology

(KTH) using
DSP DA

Converter at
1766.6 M̃Hz

(BW: 9.6
kHz).

4 Tx and 4 Rx. Rx:
4-monopole array.
Tx: dual-polarized
sectorial antennas

with directive
pattern in elevation

with high gain
(Outdoor), and

dual-polarized patch
antennas with low

profile and low gain
(Indoor). Different

noise and
interference levels

Downlink with no CSI with close
antenna elements, in both indoor and

outdoor locations, performs very
similar to a channel with CSIT

(slightly higher in indoor). Spatially,
separated locations for Base

Station (BS) shows slightly lower
average capacity and non-Gaussian

distribution for the measured
environment.

[48] LOS
scenario in a
conference

room at the
NTT

DOCOMO
RD Center in

Yokosuka,
Japan using

an
implemented

LTE-
Advanced
transceiver

K = 2, nT = 4,
nRk

= 2. 3.92625
GHz, BW: 90 MHz

Antenna
arrangements at Tx:
CAA and DAA. Tx

and Rx:dipole
antennas with

omni-directional
beam patterns in

azimuth with 2 dBi
of gain.

Peak throughput greater than
1 Gbit/s is achieved for the CAA.

Throughput of approximately 700 to
950 Mbps is achieved for DAA.

MU-MIMO is robust against the
antenna separation. moving speed,

antenna separation (fading
correlation), and transmitter antenna

arrangement on the achievable
throughput of MU-MIMO.

[47] indoor
environment

(a room) using
MU-MIMO

testbed
according to

802.11a
standard

4.85 GHz BW: 100
MHz MU-MIMO:

nT =, K = 4,
nRk

= 4 Tx and Rx:
Sleeve antennas are

used for the
transmitter and

receiver antennas
arranged in linear

arrays spaced by 1.0
and 0.5 wavelengths,

respectively.

Frequency utilization of over 43.5/50
bits/s/Hz (0.87/1Gbps) when SNR is

31 and 36 dB, respectively for
nT = 16, nR = 4 K = 4. The

frequency utilization (K = 4): 2.4 to
3.3 times higher compared to the

eigenvector beamforming method in
SU-MIMO, when nT = 16 and nR

changes from 2 to 4.

Table C.3 – Survey of measurement studies [Part III].
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Appendix D

Capacity gain versus correlation
coefficient

The regression line of MU-MIMO to SU-MIMO capacity gain as a function of
correlation coefficient for nT = 8 transmitting antennas arranged in CCA with 0.5 λ
spacing is depicted in Figure D.1. Their regression parameters are summarized in
Table D.1.

Figure D.1 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient (nT = 8).

Next, the following figures ( D.2, D.3, D.4, D.5) show the regression lines of
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nT a0 a1 r RMSE

4 1.5525 -1.0471 0.8964 0.0292

5 1.6809 -0.9379 0.8838 0.0267

6 1.7458 -0.8899 0.9016 0.0213

8 1.8141 -0.8235 0.8863 0.0169

Table D.1 – Numerical results of linear regression parameters for different transmitting
antennas for CCA with nT = 8.

MU-MIMO to SU-MIMO capacity gain as a function of correlation coefficient for
different number of transmitting antennas arranged in ICA with different radiuses:
ICA 0.5 λ, ICA 1 λ, ICA 2 λ and ICA 3 λ. Table D.2 summarizes the related
regression parameters.

Figure D.2 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient (ICA 0.5 λ).
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Figure D.3 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient (ICA 1 λ).

Figure D.4 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient (ICA 2 λ).
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Figure D.5 – Average of MU-MIMO to SU-MIMO capacity ratio versus the average
correlation coefficient (ICA 3 λ).
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nT a0 a1 r RMSE

ICA
0.5 λ

ICA
1 λ

ICA
2 λ

ICA
3 λ

ICA
0.5 λ

ICA
1 λ

ICA
2 λ

ICA
3 λ

ICA
0.5 λ

ICA
1 λ

ICA
2 λ

ICA
3 λ

ICA
0.5 λ

ICA
1 λ

ICA
2 λ

ICA
3 λ

4 1.54 1.5 1.503 1.509
-

0.974
-0.89

-
0.879

-0.9 0.03 0.02 0.017 0.015 0.853 0.829 0.755 0.782

5 1.74 1.667 1.669 1.671 -1
-

0.778
-0.85

-
0.858

0.03 0.022 0.019 0.015 0.875 0.739 0.723 0.731

6 1.757 1.726 1.726 1.722
-

1.339
-0.88 -0.88

-
0.753

0.04 0.021 0.021 0.017 0.897 0.852 0.852 0.687

8 1.807 1.789 1.804 1.818
-

0.853
-

0.615
-

0.779
-

0.892
0.034 0.019 0.019 0.015 0.835 0.755 0.746 0.795

10 1.849 1.841 1.828 1.828
-

0.737
-

0.689
-

0.723
-

0.736
0.033 0.026 0.018 0.015 0.807 0.716 0.723 0.698

Table D.2 – Numerical results of linear regression parameters for ICA with nT passing from 4 to 10 and different radiuses.136





Appendix E

Spatial expansion precoding
matrix

Cyclic Shift Delay (CSD) and spatial expansion versus antenna mapping are applied
at the transmitter, when no beamforming scheme is considered. It is necessary because
closely spaced antennas act as beamforming arrays without wide phase spacing, and it
is possible to inadvertently create signal maxima and minima over receive antennas due
to interference patterns. This is avoided by giving each transmit antenna’s signal a large
phase shift relative to the others. Below are examples of spatial mapping matrices that
might be used [88]. There are many other alternatives; implementation is not restricted
to the spatial mapping matrices shown. The examples are:

— Direct mapping Qk is a diagonal matrix of unit magnitude complex values that
takes one of two forms:

1. Qk = I, the identity matrix

2. A CSD matrix in which the diagonal elements represent cyclic shifts in the
time domain.

— Indirect mapping: Qk may be the product of a CSD matrix and a unitary matrix
such as the Hadamard matrix or the Fourier matrix.

— Spatial expansion: Qk is the product of a CSD matrix and a square matrix formed
of orthogonal columns.

In our implementation, we have evaluated the spatial expansion scheme [88].The
spatial expansion may be performed by duplicating some of the Nss streams to form

the nT streams, with each stream being scaled by the normalization factor
√

Nss

nT
. The

spatial expansion may be performed by using, for instance, one of the following
matrices, denoted D, left-multiplied by a CSD matrix, denoted MCDS(k), and/or
possibly multiplied by any unitary matrix. The resulting spatial mapping matrix is
then Qk = MCDS(k).D, where D may take on one of the following values:

— nT = 2, Nss = 1, D = 1√
2

[

1 1
]T

— nT = 3, Nss = 1, D = 1√
3

[

1 1 1
]T

138



— nT = 4, Nss = 1, D = 1
2

[

1 1 1 1
]T

— nT = 3, Nss = 2, D =
√

2
3







1 0
0 1
1 0







— nT = 4, Nss = 2, D = 1√
2











1 0
0 1
1 0
0 1











— nT = 4, Nss = 3, D =
√

3
2











1 0 0
0 1 0
0 0 1
1 0 0











The values of the cyclic shifts to be used are specified in Table E.1 [88].

Number of
space-time

streams

Cyclic shift for
space-time

stream 1 [ns]

Cyclic shift for
space-time

stream 2 (ns)

Cyclic shift for
space-time

stream 3 (ns)

Cyclic shift for
space-time

stream 4 (ns)

Nss = 1 0 −− −− −−
Nss = 2 0 −400 ns −− −−
Nss = 3 0 −400 ns −200 ns −−
Nss = 4 0 −400 ns −200 ns −600 ns

Table E.1 – Cyclic shift values.
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Résumé 

 

 

La facilité de déploiement et la flexibilité des technologies sans 
fil ont permis une évolution considérable des normes IEEE 
802.11. L'arrivée de la fibre optique à la maison a également 
motivé des études de recherche pour accroître les débits et la 
capacité. Dans ce contexte, la dernière norme IEEE 802.11ac 
ratifiée en 2014 a normalisé de nouvelles technologies pour 
atteindre des débits maximaux au-dessus de 1 Gbit/s. En 
particulier, 802.11ac propose le Multiple Input Multiple Output 
Multi-Utilisateurs (MIMO-MU) et le Transmit Beamforming 
(TxBF). Ces technologies d'antennes intelligentes supposent un 
diagramme d'antenne d'émission qui dépend de la position des 
utilisateurs et des caractéristiques du canal de propagation 
multi-trajets correspondant. Cependant, les outils d’ingénierie et 
de planification radio actuels simulent une carte de couverture 
fixe et indépendante de tout traitement d'antennes adaptatives 
côté émission. 

Cette thèse étudie l'impact de ces techniques MIMO-MU et 
TxBF et propose des solutions adaptées pour  l'ingénierie radio 
et l'optimisation du système ainsi que pour les outils de 
planification radio. En effet, la première partie de cette thèse 
consiste à affiner les gains de capacité en identifiant les 
configurations et les paramètres système optimaux. La 
deuxième partie aborde les gains de beamforming en termes du 
gain sur le rapport signal à bruit (SNR) et sur la réduction du 
niveau d'interférence pour avoir une modélisation réaliste de la 
couverture radio. 

Par conséquent, nous avons tout d'abord analysé le gain de 
capacité MIMO-MU par rapport au MIMO Single User (MIMO-
SU) en se basant sur les modèles de canaux standardisés pour 
le contexte MIMO-MU corrélés 802.11ac. En analysant les 
résultats, nous avons proposé des optimisations du système 
pour maximiser les gains de capacité MIMO-MU dans un 
environnement résidentiel, principalement liées à la 
configuration du système, telles que le nombre d'antennes 
d'émission, l’espacement d'antennes, un compromis entre le 
nombre d'antennes et le nombre de flux spatiaux, la géométrie 
du réseau d’antennes... Un coefficient de corrélation entre 
canaux a été mis en évidence pour expliquer les gains obtenus. 
En outre, nous avons formulé le problème d'optimisation 
convexe de maximisation de capacité dans le cadre d’un 
système MIMO-MU équipé de plusieurs antennes de réception 
tout en tenant compte de la contrainte de la puissance isotrope 
rayonnée équivalente (PIRE) pour un réseau local sans fil 
(WLAN) en Europe. 

Nous avons ensuite mené une campagne de mesures de 
canaux de propagation avec deux utilisateurs dans un 
environnement résidentiel pour confirmer et compléter les 
résultats obtenus avec des canaux simulés. Nous avons été en 
mesure d'étendre cette étude à d'autres paramètres pouvant 
potentiellement influencer le gain de capacité MIMO-MU par 
rapport au MIMO-SU, tels que l’atténuation de propagation et la 
géométrie des réseaux d'antennes. 

Enfin, à partir de ces mesures nous avons évalué les 
performances de la technique du TxBF en analysant le gain sur 
le SNR ainsi que la réduction d'interférence. Cette partie 
propose finalement une modélisation statistique pour intégrer la 
prise en compte des gains de beamforming dans la simulation 
des couvertures radio avec un outil d’ingénierie. 

N° d’ordre : 15ISAR 32 / D15 - 32 

Abstract 

 

 

The deployment facility and flexibility of wireless technologies 
have allowed considerable evolution of IEEE 802.11 standards. 
The arrival of the optical fiber to the home has further motivated 
the research studies to increase data rates and capacity. In this 
context, the latest IEEE 802.11ac standard ratified in 2014 
proposes new technologies to achieve maximum data rates 
above 1 Gbit/s. In particular, 802.11ac includes the Multi-User 
Multiple Input Multiple Output (MU-MIMO) and Transmit 
Beamforming (TxBF). These smart antenna technologies 
assume a variable transmit antenna pattern in function of the 
users’ position and the corresponding multipath propagation 
channel characteristics. However, the actual radio planning 
tools give a fixed coverage map independent of any adaptive or 
smart antenna processing.  
 
 
This thesis studies the impact of the MU-MIMO and TxBF 
techniques on radio engineering, system optimization as well as 
radio planning tools. Indeed, the first part of this thesis deals 
with refining the sum rate capacity gains by identifying 
interesting system configurations and optimal system 
parameters. The second part addresses the beamforming gains 
in terms of the Signal-to-Noise Ratio (SNR) gain and 
interference level to have realistic radio coverage modeling.  
 
 
Hence, we have firstly analyzed the MU-MIMO to Single User 
MIMO (SU-MIMO) sum rate capacity gain based on the 
802.11ac correlated MU-MIMO channel models. By analyzing 
the results, we have proposed system recommendations to 
optimize the MU-MIMO in a residential environment, mainly 
related to system configuration such as the number of 
transmitting antennas (antenna spacing, tradeoff between 
antenna number and number of spatial streams, antenna 
arrangement...). A correlation coefficient between channels has 
been highlighted to explain the obtained gains. Moreover, we 
have formulated the convex optimization problem of maximizing 
the capacity in a MU-MIMO context with multiple receiving 
antennas taking into account the Equivalent Isotropically 
Radiated Power (EIRP) constraint for Wireless Local Area 
Network (WLAN) in Europe.  
 
 
Secondly, we have conducted a 2-user Multiple-Input Multiple-
Output (MIMO) propagation channel measurement campaign in 
a residential environment to confirm the obtained radio 
engineering and system optimization recommendations. We 
have been able to extend this study to other potential 
parameters to have influence on MU-MIMO to SU-MIMO 
capacity gain such as path loss and antenna array geometries.  
 
 
Finally, we have evaluated the performance of TxBF by 
analyzing the Signal-to-Noise Ratio (SNR) gain as well as the 
interference reduction. This part identifies the system 
parameters which have the biggest influence on the realistic 
radio coverage simulation. It proposes a statistical modeling to 
predict the beamforming gains achieved by the antenna 
processing. 
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