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Abstract

2D superconductors perturbed by local magnetism: from Yu-Shiba-Rusinov bound
states to Majorana quasiparticles

One of the present days goals of condensed matter physics is to create new systems with topological
properties, especially in the field of superconductivity. One of the ways envisioned to create topological
superconductors is to locally induce a magnetic interaction in the form of chains of magnetic impurities,
vortices or magnetic clusters of ordered magnetic impurities. In this thesis we studied a set of effects
from individual impurities to organized clusters interacting with two-dimensional superconductors. Using
scanning tunneling microscopy and spectroscopy we considered two systems, monocrystals of 2H-NbSe2
and monolayers of Pb/Si(111). Thanks to the two-dimensional electronic behavior of these two systems
we show how the spatial extent of the bound states induced by magnetic impurities is considerably
enhanced compared to the case of a three-dimensional superconductor. By combining these magnetic
atoms using a self-assembly method we were able to create ferromagnetic clusters that lead to a topological
superconductivity in Pb monolayers. In particular we present here measurement of topological edge states
at the interface Pb/Si(111) and Pb/Co/Si(111). We also present the measurement of zero bias peaks in
the center of larger magnetic clusters that sign the presence of Majorana fermions in these systems. Our
results show that an adequate patterning of surfaces could realize topological patches and call for a pursuit
of the efforts in the subject in order to be able to control Majorana fermions that could eventually lead
to breakthrough in quantum computation.

Keywords
Superconductivity, Yu-Shiba-Rusinov bound states, scanning tunneling spectroscopy, scanning tun-

neling microscopy, Rashba interaction, triplet superconductivity, spin-orbit coupling, two-dimensionnal
superconductivity, 2H-NbSe2, Pb/Si(111) monolayer, local magnetism, topology, edge states, proximity
effect.
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Résumé

Supraconducteurs 2D perturbés par un magnétisme local: des états de Yu-Shiba-
Rusinov aux quasiparticules de Majorana

L’un des buts de la physique de la matière condensée est à l’heure actuelle de fournir de nouveaux sys-
tèmes topologiques en particulier dans le domaine de la supraconductivité. L’une des manières envisagée
pour générer des supraconducteurs topologiques est d’utiliser une interaction magnétique locale sous la
forme de chaînes d’impuretés magnétiques, de vortex ou de clusters d’impuretés magnétiques ordonnées.
Dans cette thèse nous avons étudié un ensemble d’effets en partant de l’étude d’impuretés individuelles en
allant jusqu’aux clusters organisés en interaction avec un supraconducteur bidimensionnel. En utilisant
la microscopie et la spectroscopie tunnel nous avons étudié des monocrystaux de 2H-NbSe2 ainsi que les
monocouches de Pb/Si(111). En raison du caractère électronique bi-dimensionnel de ces deux systèmes
nous avons pu montrer que l’étendue spatiale des états liés induits par des impuretés magnétiques était
considérablement augmentée en comparaison avec les supraconducteurs tridimensionnels. En combinant
ces atomes magnétiques par auto-assemblage nous sommes parvenus à réaliser des clusters ferromagné-
tiques qui génèrent une supraconductivité topologique dans la monocouche de Pb. Nous présentons en
particulier ici la mesure d’états de bords topologiques à l’interface entre Pb/Si(111) et Pb/Co/Si(111).
Nous présentons également la mesure d’états liés à zéro énergie au centre de clusters magnétiques signant
la présence de fermions de Majorana dans ces systèmes. Nos résultats montrent qu’une structuration
adéquate des surfaces permet de réaliser des patchs topologiques et appellent à une continuation des
efforts de recherche sur ce sujet afin de pouvoir contrôler les fermions de Majorana observés qui sont
susceptibles de conduire à des percées futures dans le domaine de l’informatique quantique.

Mots clés
Supraconductivité, états liés de Yu-Shiba-Rusinov, spectroscopie à effet tunnel, microscopie à effet

tunnel, interaction Rashba spin-orbite, supraconductivité triplet, couplage spin-orbite, supraconductivité
bidimensionnelle, 2H-NbSe2, monocouche de Pb/Si(111), magnétisme local, topologie, états de bords,
effet de proximité.
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Introduction

Despite the century long history of superconductivity and the many works in the field, this phenomenon
stills raises many fundamental questions, the question of the interaction between superconductors and
localized magnetic disorder in particular. Recently, in relation with the emergence of the field of topo-
logical insulators, superconductivity was regarded as a potential new and powerful platform in which
to create, observe and control topological excitations that could eventually lead to real-life applications
in the field of quantum electronics. Due to their build-in electron-hole symmetry, superconductors are
expected under certain conditions to enter a topological phase that have been predicted to host zero-bias
Majorana bound states.

The question remains to know how to prepare such topological systems and ultimately manipulate the
Majorana quasiparticles in braiding operations. The path we follow consists in studying the individual
ingredients of topological superconductivity before ultimately combining them and produce robust zero-
bias modes. These ingredients are local magnetism, that is controlled by combining magnetic atoms and
Rashba spin-orbit interaction that emerges at surfaces. We will thus study both aspects and spend a large
part of this thesis discussing individual impurities before presenting results on ferromagnetic clusters.

This thesis aims at answering some of the fundamental questions of topological superconductivity
by first understanding the role of systems dimensionality in the coupling between superconductivity and
localized magnetic disorder. In order to understand how impurities couple we must first start by studying
individual magnetic atoms in a superconducting condensate. We will demonstrate the dramatic expansion
of Yu-Shiba-Rusinov (YSR) bound states by dimensionality effects in both 2D-like monocrystals and pure
atomically 2D superconductors.

Because Rashba spin-orbit interaction arises at surfaces, the Pb monolayers are ideal systems in which
to study topological superconductivity. By assembling local magnetic moments in ferromagnetic clusters
we will show that we can obtain topological superconductivity in the helical regime that exhibits two
nonequivalent edge states. In particular we will show that the behavior of these states is drastically
different from the one of individual impurities as they are not affected by crystalline disorder at the
atomic scale. Once we prove that we obtain topological superconductivity we can then study how vortices
behave in these structures and induce zero-bias peaks that can be switched on and off using the STM tip.

This thesis is organized in 7 chapters as described below. The first two chapters are general discussion
about the theoretical and experimental tools that will be used in the rest of the manuscript. Chapters 3
to 5 present experimental results observed by means of scanning tunneling microscopy and spectroscopy
on two different systems which are 2H-NbSe2 and monolayers of Pb/Si(111). The last chapter covers
some of the others results that were obtained during this thesis about the Pb/Si(111) monolayer system
not related with local magnetism.

Chapter 1: Superconductivity and scanning tunneling microscopy/spectroscopy
In this first chapter we describe the basic ideas of superconductivity that will be needed in the

following chapters to understand the concepts discussed. We also present the concept of scanning tunneling
microscopy and spectroscopy with which we will probe superconductivity.

We start by presenting a brief history of superconductivity from its discovery in 1911 to its theoret-
ical understanding provided by the BCS theory. We continue by discussing the Bogoliubov-de Gennes
approach and the formalism used to interpret our experimental data. We then move to the experimental
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technique of scanning tunneling microscopy and spectroscopy with which we probe superconductivity at
the atomic scale. In this part we explain the measurements principle and detail particularly the case of
a superconducting tip. We end by describing the experimental setup that we used at the INSP and the
procedures used for data analysis.

Chapter 2: Magnetic impurities in a superconductor
The theme of this thesis is the interaction between localized magnetic moments and superconductivity.

We discuss in this chapter the variety of theoretical approaches that were developed over time to describe
this type of interaction.

We start chronologically by discussing the Abrikosov-Gor’kov theory that describes assemblies of
randomly distributed classical magnetic moments in a bulk superconductor. We briefly present the theory
and its main physical consequences. Before studying in more details the physics of Yu-Shiba-Rusinov
bound states. In this part we go in depth inside the theory as we explain the role of dimensionality on
the spatial extension of the wave function associated to individual localized magnetic moments. This part
will be used in Chapter 3 and 4 to interpret our experimental results. We pursue this part on Yu-Shiba-
Rusinov bound states by presenting a review of the literature on the STM measurement of these states.
Finally we briefly mention the quantum limit of the Kondo physics as well as the spectroscopic signatures
of the Fano lineshapes.

Chapter 3: Magnetic and non-magnetic impurities in 2H-NbSe2 monocrystals
The third chapter presents the experimental results obtained on monocrystals of 2H-NbSe2 in which

were inserted magnetic impurities of Fe, Cr and Mn. We show in this chapter that the 2D-like electronic
structure of this material leads to an increase by a factor 10 of the spatial extension of the Yu-Shiba-
Rusinov bound states compared to bulk systems. We present tight binding calculations done by S. Guissart
and P. Simon supporting our experimental data as well as joint-DOS calculation that helps us understand
the contribution of the different parts of the Fermi surface to the electronic scattering. We discuss the
relation between the positive and negative bias states and the phase of the associated wave function in the
framework of the Rusinov theory and compare different types of impurities. We also present the results
obtained when trying to deposit Co impurities on the crystal surface and the characteristic signature of
non-magnetic Ta impurities in relation with the two gaps structure of 2H-NbSe2.

Chapter 4: Magnetic and non-magnetic impurities in Pb/Si(111) monolayers
This chapter presents the summary of our study of individual and disordered clusters of magnetic

impurities in monolayers of Pb/Si(111). We discuss the effects of the atomic structure of the monolayers
on the spatial structure of the Yu-Shiba-Rusinov bound states. We show that the link between the
system dimension and the spatial extent of the states confirms the results obtained in the case of 2H-
NbSe2. For the specific case of the

√
7×
√

3 reconstruction we discuss the periodicity of the oscillations
of the wave-function of the Yu-Shiba-Rusinov bound states in relation with the structure of the Fermi
surface measured by ARPES. In the last part of the chapter we present the case of randomly distributed
magnetic impurities in clusters. We show that the combined effect of individual Yu-Shiba-Rusinov bound
states leads to a gap reduction over the clusters as well as a gap filling. These results are well reproduced
by a simple calculation that uses the analytical formula derived for magnetic impurities in 2D systems.

Chapter 5: Magnetic clusters and topological systems
This chapter is dedicated to the study of topological superconductivity. We first discuss the effects of

different ingredients needed to obtain topological superconductivity: Rashba spin-orbit interaction, triplet
superconductivity and magnetism. We then present the results obtained by growing ferromagnetic Co
clusters embedded in a Si substrate covered by a Pb monolayer and measured by using a superconducting
tip. We show that we obtain edge states expected in the case of a topological superconductor put in close
contact with a trivial superconductor. We detail the energy and spatial dispersion of those edge states
and present the theoretical analysis performed in order to explain our results. We conclude the chapter
by showing how the inclusion of vortices in topological domains leads to the emergence of Majorana
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bound states that can be controlled by switching of the magnetization of the Co clusters. The theoretical
calculation presented in this chapter were also done in collaboration with S. Guissart, M. Triff and P.
Simon who developed the necessary theory.

Chapter 6: The Pb/Si(111) monolayer: A playground for 2D physics
In this chapter we gather the results obtained for the Pb/Si(111) monolayer without magnetic per-

turbation. This chapter first presents results covering the different phases existing in the Pb/Si(111)
monolayer (3 × 3,

√
3 ×
√

3, SIC, HIC,
√

7 ×
√

3) and the measurement of their electronic structure by
scanning tunneling spectroscopy beyond the characteristic superconducting gap energy. The second half
of the chapter is devoted to proximity effect. There we present the measurement of the proximity effect
between a superconductor and a quasi-Mott system.

Chapter 7: Superconducting proximity effect
In this last chapter we discuss the superconducting proximity effect between monolayers of Pb/Si(111)

and bulk-like Pb islands. We present measurement of superconducting correlations from the islands to
the monolayer below and above the critical temperature of the HIC phase. We compare those results
with calculations performed by J. C. Cuevas using the Usadel equations describing a superconductor in
the diffusive limit. We show how the theory accounts well for our experimental results when calculating
the superconducting order parameter self-consistently.

The conclusion summarizes the results obtained and presented in this thesis and give an outlook to
the things yet to come in the domain of topological superconductivity and 2D superconductors and the
possibilities offered by the results presented here.

A short summary (15 pages) of the thesis, written in French is included after the bibliography.
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Chapter 1

Superconductivity and scanning
tunneling microscopy

1.1 Introduction
In this chapter we will present the main concepts and tools that will be used in the following of the
manuscript. We will first briefly present an history of superconductivity before discussing the Bardeen-
Cooper-Schrieffer (BCS) theory in more details. Building on the BCS theory of superconductivity we
will present the Bogoliubov de Gennes approach and introduce the mathematical spinor formalism that
was used for numerical calculations in this thesis. In the second part of the chapter we will discuss the
experimental techniques of scanning tunneling microscopy and spectroscopy which will be used for the
experimental probing of the local properties of superconductivity. We present as well the basic principles
of the data analysis and sample preparation.

1.2 Superconductivity
1.2.1 Historical overview of superconductivity
Superconductivity is a phenomenon discovered in 1911 by Heike Kamerlingh Onnes in Leiden [1]. In
his laboratory he measured the resistivity of Hg as a function of temperature and observed a sudden
drop of resistivity under 4.2 K. While the first response to this observation was disbelief he was able
to prove that is was not caused by any error in the measurement process and that the zero resistivity
measurement was real. The same experiment was repeated with many other elements and it was shown
that superconductivity was more the rule than the exception in nature as only a few elements, such as
Cu, Ag or Fe for instance, didn’t experience this transition. Onnes received the Nobel Prize in 1913, not
for the discovery of superconductivity but [2]

For his investigations on the properties of matter at low temperatures which led, inter alia,
to the production of liquid helium.

Another important aspect of superconductivity was discovered by Walther Meissner et Robert Ochsen-
feld in 1933 [3]. Meissner and Ochsenfeld discovered that a superconductor would expel any applied mag-
netic field and is therefore a perfect diamagnet. The most impressive consequence of this diamagnetism
is the possibility to levitate a superconductor in a magnetic field strong enough. These two properties
(zero electric resistance and perfect diamagnetism) are the two basic requirements for a material to be a
superconductor.

The first piece of understanding in the field of superconductivity was provided by the brothers Fritz
and Heinz London in 1935 [4]. In their work they proposed the following relation between the current

1
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density and the vector potential in the London gauge (∇ ·A = 0)

js(r) = −nse
2

m
A(r), (1.1)

where e is the elementary electric charge1, m the mass of the electron and ns is the density of electrons
taking part to the superconductivity. This equations allows for the determination of the magnetic field
inside a superconductor and leads to the introduction of the penetration length λL defined as

λL = c

e

√
mε0
ns

. (1.2)

This length describes the characteristic size over which an external magnetic field penetrates a supercon-
ductor and therefore the London theory serves as a theoretical framework to explain the Meissner effect.
However the quantity nS introduced in the London equation is a phenomenological one and does not
provide any deep understanding of the underlying phenomena. This theory nevertheless has the merit to
envision superconductivity as a macroscopic manifestation of quantum mechanics.

London theory is still unsatisfactory as the equation describing this macroscopic effect is local in
nature. In 1953, Pippard [5] built upon the previous theory by analogy with the non-local generalization
of Ohm’s law J(r) = σE(r) written in a metal [6]

J(r) = 3σ
4πl

∫
R(R ·E(r′))

R4 e−R/ldr′ (1.3)

with R = r− r′. The length l is related to the range over which an electric field E(r′) affects the current
at a point r.

Pippard’s theory leads to the definition of another characteristic length scale in superconductivity
namely the coherence length ξ. This length is obtained by taking advantage of the Heisenberg uncertainty
principle. Pippard considers that the electrons with an energy of the order of kBTc play the main role
in superconductivity. These electrons thus have have a momentum in the range ∆p ' kBTc/vF with vF
the Fermi velocity. From the Heisenberg relation ∆x∆p ≥ ~ (we forget the 1/2 term as we only look for
orders of magnitude here) we can obtain

∆x ' ~vF
kTc

. (1.4)

We thus obtained a characteristic length and we define

ξ0 = a
~vF
kTc

(1.5)

with a a dimensionless constant of the order of unity. This length scale can be interpreted as the smallest
scale on which superconductivity can appear and the coherence of electrons is maintained. This constant
plays more or less the same role in superconductivity in reaction to a vector potential as the mean free
path in normal metals in reaction to an electric field. Pippard then proposes the following generalized
form for the current density in a superconductor

Js(r) = 3nse2

4πmξ0

∫
R(R ·A(r′))

R4 e−R/ξdr′ (1.6)

where ξ is called the coherence length and in presence of scattering is defined by a combination of ξ0 and
l as

1
ξ

= 1
ξ0

+ 1
l
. (1.7)

1e > 0 and equal to 1,6.10−19 C in the following.
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This expression is only true for l ' ξ while in all generality and one should write the correct form

ξ =
√
ξ0l. (1.8)

Writing eq. 1.6 in this form allows (for a slowly varying A(r′)) to find once again the London equation
(eq. 1.1).

Superconductivity is now equipped with a set of two characteristic length-scales, the penetration
length λL and the coherence length ξ. Depending on a relation between these two lengths we thus expect
differences in the behavior of superconductors.

The next theory of superconductivity was proposed by Ginzburg and Landau in 1950 [7]. This theory
is based on the previous work of Landau on phase transitions. The idea is here to find a free energy
describing the state of the system as a function of temperature and magnetic field. Ginzburg and Landau
proposed the following form for the free energy difference between the superconducting (Fs) and normal
(Fn) state

Fs(T,B)−Fn(T,B = 0) =
∫
d3r

[
α|∆(r)|2 + β

2 |∆(r)|4 + ~2

4m

∣∣∣∣(∇
i
− 2e

~
A(r)

)
∆(r)

∣∣∣∣2 + |B(r)− µ0H0|2
2µ0

]
.

(1.9)
In this equation the parameters α and β are such that α(T ) = α0(T − Tc) with α0 < 0 and β > 0. The
form of the free energy is only valid close to the transition which justifies the form of α(T ). ∆(r) is the
order parameter of the theory that will be different from 0 in the superconducting phase and equal to 0 in
the normal phase. This term will play the same role as the superconducting gap when interpreted in the
framework of the BCS theory. The mass term 1/4m multiplies a kinetic energy term which was originally
postulated by Landau as an analog to the Schrödinger equation. Originally the form of this mass term
was 1/2m∗ with m∗ the reduced mass of the electrons which is exactly equal to 2m due to the underlying
electronic pairing. In the same way, the original writing of the charge term 4e/~ was 2e∗/~ where once
again the pairing of electrons in the form of Cooper pairs leads to an effective charge equal to twice the
electron charge. By minimizing the free energy of the system, Ginzburg and Landau found two equations

~2

4m

(∇
i
− 2e

~
A(r)

)2
∆(r) + α∆(r) + β|∆(r)|2∆(r) = 0 (1.10)

js(r) = 2e
~

~2

4m

[1
2(∆∗(r)∇∆(r)−∆(r)∇∆∗(r))− 2e

~
A(r)|∆(r)|2

]
. (1.11)

The first equation describes the spatial evolution of the order parameter while the second one gives the
current density in a superconductor. The superconducting coherence length is obtained in the framework
of the Ginzburg-Landau theory as

ξ =
√

~2

2m|α| . (1.12)

Interestingly enough, equation 1.10 served as an inspiration to the Gross-Pitaevskii equation describing
the dynamic of an ultra-cold bosonic gas [8, 9]. The proximity between these two equations helps to
understand the bosonic behavior in superconductivity, in accordance with the BCS theory. The Ginzburg-
Landau theory was successful in the prediction of vortex lattices by Abrikosov in 1957 [10] and is still very
much used in the calculation of vortex configurations [11]. These equations also give a good understanding
of the difference between superconductors of type I and II via the introduction of the quantity κ = λ/ξ.

• For κ > 1/
√

2 superconductors will be called type I superconductors and will follow the Pippard
equation.

• For κ < 1/
√

2 superconductors will be called type II superconductors and will follow the London
equation. This type of superconductors will present a magnetic field transition called the vortex
phase.
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1.2.2 BCS theory
In 1957 John Bardeen, Leon Neil Cooper and John Robert Schrieffer published their work [12] in which
they propose their microscopic scenario for superconductivity. Their theory stems from the electron
phonon interaction described by Frölich [13] and suggested by the isotope effect [14, 15]. A first step was
provided by Cooper [16] who studied the problem of adding two electrons to the Fermi sea with a small
attracting interaction between those electrons. He showed that the Fermi surface is unstable under such
perturbation which tends to diminish the energy of the system.

Based on the Cooper problem that shows that the minimum of energy is obtained in the center of
frame of two electrons, Bardeen, Cooper and Schrieffer considered the following reduced Hamiltonian

ĤBCS =
∑
k,α

εk ĉ
†
kαĉkα − V

∑
k,k′

ĉ†k′↑ĉ
†
−k′↓ĉ−k↓ĉk↑. (1.13)

An energy cut-off is imposed on V such that it is non zero only for −ωD < Ek < ωD (with ωD the Debye
energy).

A few things can be said about this equation. First we place ourselves in the center of mass frame.
This assumption is justified by the Cooper problem. The second thing that can be said is that the spin
is conserved during the interaction and that the concerned spins come with opposite directions. This
form comes from the assumption made that the fundamental interaction is of the form V δ(r) which only
authorizes electrons of angular momentum l = 0 as the Fourier transform of the contact interaction leaves
only the s-wave channel to be non-zero while other channels p, d and f give no contribution. This imposes,
due to the Pauli principle, that the final state is globally antisymmetric. In all generality for an interaction
that conserves the spin we could consider the following Hamiltonian

Ĥ =
∑
k,α

εk ĉ
†
k,αĉk,α −

∑
k1,k2,k3,k4,α,β

Vk1,k2,k3,k4 ĉ
†
k1α

ĉ†k2β
ĉk3β ĉk4α. (1.14)

This more general form is the one that should be used in the case of p-wave superconductivity as can
be obtained when spin-orbit interaction is present in the problem. Here again a cut off at the Debye
frequency has to be introduced in the precise form of the interaction Vk1,k2,k3,k4 .

Starting from the less general Hamiltonian 1.13 and following the idea that the ground state of the
system must be written in the form of a coherent state, Bardeen, Cooper and Schrieffer finally found the
following wave function

|ψBCS〉 =
∏
k

(
uk + vk ĉ

†
k↑ĉ
†
−k↓

)
|0〉 , (1.15)

to which is added the normalization condition

|uk|2 + |vk|2 = 1. (1.16)

The form of the wave function 1.15 allows for a physical interpretation of the BCS ground state. It is
possible to see this ground state as a superposition of combinations of the Fermi sea (|0〉) and Cooper
pairs (ĉ†k↑ĉ

†
−k↓ |0〉). A given state |k ↑〉 (or its time reversed |−k ↓〉) is filled with a probability |vk|2 and

empty with a probability u2
k.

In order to obtain the expression of the terms uk and vk, it is necessary to perform a variational
calculation to minimize the mean value of the energy of the ground state.

E = 〈ψBCS |ĤBCS |ψBCS〉 . (1.17)

This approach leads to the introduction of the quantity ∆ defined as

∆ = V
ωD∑
k

ukvk. (1.18)
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The final result for the terms uk and vk is the following

uk =
√

1
2

(
1 + ξk

Ek

)
,

vk =
√

1
2

(
1− ξk

Ek

)
,

where Ek =
√
ξ2
k + ∆2, ξk = εk − µ and εk = ~2k2

2m .
The quasiparticle states of this system are then obtained by performing a Bogoliubov transformation

introducing the fermionic excitation operators γ̂k defined as a linear combination of the electronic operators
ĉ and ĉ† such as

ĉk↓ = ukγ̂k − v∗kγ̂†−k, (1.19)

ĉ†−k↑ = vkγ̂k + u∗kγ̂
†
−k. (1.20)

The γ̂ and γ̂† operators will then diagonalize the BCS Hamiltonian with energies ±Ek.
The final result is that the density of states of a superconductor is given by

ρ(E) = ν0
|E|√

E2 −∆2 . (1.21)

This density of states is represented on Fig. 1.1.b. The term ∆ is an energy gap in the excitation
spectrum of the superconductor and can be interpreted as the quantity of energy one has to provide in
order to break a Cooper pair. Rigorously speaking excitations are always of positive energy, however in
the semiconductor model, adding an electron to the system will be written as a positive energy excitations
while adding a hole (or removing an electron) will be written as a negative energy excitation.

ξk E/Δ

E k/Δ

ρ(
E)
/ν

0

a b

Figure 1.1: BCS density of states: a. Relation between Ek and ξk. b. BCS quasiparticle excitations
density of states as a function of the energy normalized to the value of ν0, density of states of the normal
metal at the Fermi energy. In both figures the dashed lines refer to the case of a normal metal that is
effectively recovered in a superconductor for E � ∆.

Within the BCS framework the gap temperature dependence can be calculated and in particular we
can find the following equation for the self-consistent calculation of the superconducting gap [6]

∆k = −
∑
l

Vkl
∆l

2El
tanh βEl2 . (1.22)
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with Vkl the strength of the contact interaction defined in eq.1.13.

1.2.3 Bogoliubov-de Gennes approach
A mean field approach of superconductivity is provided by the Bogoliubov-de Gennes approach [17] that
was first introduced in order to describe the effect of inhomogeneities in superconductors. The principle
is to consider the following Hamiltonian

ĤBdG =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ + ∆

∑
k

ĉ†k↑ĉ
†
−k↓ + h.c. (1.23)

where εk is defined for a chemical potential µ = 0. This Hamiltonian is the Hartree-Fock development of
the full BCS Hamiltonian. By applying a Fourier transform to the Hamiltonian 1.23 and introducing the
following Bogoliubov transformation

ψ̂r↑ =
∑
n

(
γ̂n↑un(r)− γ̂†n↓v∗n(r)

)
(1.24)

ψ̂r↓ =
∑
n

(
γ̂n↓un(r) + γ̂†n↑v

∗
n(r)

)
(1.25)

we obtain (see appendix .4) a set of equations for the terms un and vn in real space

unεn = Heun + ∆vn, (1.26)
vnεn = −Hevn + ∆∗un, (1.27)

With He the free electronic Hamiltonian.
Another interesting quantity one can compute within the Bogoliubov-de Gennes framework is the

value of the gap in an auto-coherent manner. When looking at the problem of an inhomogeneous super-
conducting gap that can therefore be written ∆(r), one can show [17] that it obeys the following equation
derived from eq. 1.22

∆(r) = V
∑
n

v∗n(r)un(r)(1− 2fn), (1.28)

whith V the contact interaction and fn the Fermi-Dirac distribution at energy En.
The main advantage of writing the Hamiltonian in the form of eq. 1.23 is the possibility to introduce

the spinors Ψ†(k) =
(
ĉ†k,↑ ĉ−k,↓

)
that result in a representation called the Nambu representation [18].

Using these spinors we can rewrite the Hamiltonian 1.23 as (see appendix .4)

ĤBdG = Ψ†(k)HΨ(k), (1.29)

with H a matrix written as (for µ = 0)

H =
(
εk ∆
∆∗ −εk

)
. (1.30)

Diagonalizing the Hamiltonian is now only a matter of diagonalizing the matrix H, a task that can
be easily performed analytically or numerically. The advantage of this method that we will use later is
that when we start to include interactions such as spin-orbit or magnetism and a spatial dependence, the
numerical diagonalization can still be easily implemented. Using Fourier transformation it is easily shown
that the BCS term in the Bogoliubov-de Gennes Hamiltonian can be rewritten in real space as

HBdG−BCS = ∆
∑
i

ĉ†i↑ĉ
†
i↓ + h.c. (1.31)
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while the kinetic part is written using hopping terms tij as

Hkin =
∑
〈i,j〉

tijc
†
icj . (1.32)

It is then still possible to define a Nambu spinor to diagonalize the Hamiltonian in real space. It is worth
noting that such formalism introduces a degeneracy of the eigenvalues of the Hamiltonian due to the
electron-hole symmetry introduced in the equations.

Another remark can be made when studying a case with Rashba spin-orbit interaction. Because
this interaction couples terms of different spins but same k vectors we need to expand our Nambu for-
malism to a Nambu-Gorkov basis that can be for instance written in the form of the spinors Ψ†k =(
ĉ†k↑ ĉ†k↓ ĉ−k↓ ĉ−k↑

)
[19].

In chapter 4 we will make use of Rashba interaction to explain and study topological superconductivity.
This interaction is written in its first quantization form as

ĤRashba = α(k × S) · un, (1.33)

where S refers to the electronic spin and un the axis of the Rashba field that describes the direction
along which the spatial inversion symmetry is broken. In the following we will take un = uz. Let us then
consider the same term in its second quantization form

ĤRashba = α
∑
k,µ,ν

ĉ†k,νk × σνµ · unĉ
µ
k = α

∑
k,µ,ν

ĉ†k,ν(kxσνy,µ − kyσνx,µ)ĉµk , (1.34)

with α the strength of the interaction and σ the 2×2 Pauli matrices. The index µ and ν refer to the spin
degree of freedom and in the matrix form of this equation to the row and column of the σ Pauli matrices.
Using the Nambu-Gorkov spinors, a Hamiltonian resulting from the addition of a BCS Hamiltonian and
a Rashba interaction will be written in its matrix form as

HRashba =


ξk −iα|k|eiθ ∆ 0

iα|k|e−iθ ξk 0 −∆
∆∗ 0 −ξk −iα|k|eiθ
0 −∆∗ iα|k|e−iθ −ξk

 . (1.35)

In this matrix, the angle θ describes the orientation of the vector k such that kx + iky = |k|eiθ.
From this matrix one can directly obtain the eigenvalues of the system in the form of the dispersion

relation
Ek,λ,µ = λ

√
∆2 + µ(ξk + kα)2, (1.36)

where λ and µ are equal to ±1. This gives 4 different branches : two for the electrons and two for the
conjugated solutions of opposite energy (that in both cases will be a mixture of electrons and holes one
would consider in the simple semiconductor view).

It is useful to make some remarks concerning the construction of the matrices in the Nambu and
Nambu-Gorkov formalism. First, due to the structure of the Hamiltonian and the necessity for it to
be hermitian, the matrix describing the Hamiltonian must also be hermitian. When implementing this
Hamiltonian numerically, this hermiticity is an easy thing to check by looking at the symmetry of the
real and imaginary part of the resulting Hamiltonian (see Fig. 1.2.a and b.). The real part of the H
matrix should be symmetric along the diagonal while the imaginary part should be antisymmetric along
the same axis.

Secondly the anti-commutation relations of the electronic operators adds another symmetry on the
superconductivity terms. Because we have ĉ†k↑ĉ

†
−k↓ = −ĉ†−k↓ĉ

†
k↑ the adjacent terms associated to super-

conductivity (in orange and blue on fig. 1.2.a) must change signs and we recover the same symmetry as
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2Δ

a b

c

Figure 1.2: Bogoliubov de Gennes Hamiltonian: Representation of the real (a) and imaginary (b)
part of a Bogoliubov-de Gennes Hamiltonian in the Nambu-Gorkov formalism. Visualizing the Hamilto-
nian is such forms allows to check its Hermiticity. The color code refers to the numerical value of each
term. (In this case we took a real value for the order parameter ∆). c. Density of states obtained by
taking a 2D lattice containing 25×25 sites. The dashed lines refers to the value of the superconducting
gap ∆.

for the diagonal terms. In this context the real part of the Hamiltonian is therefore fully anti-symmetrical
inside each 4×4 blocs along the anti-diagonal direction.

The message is that the commutation rules of the operators describing the system are fully encoded
inside the matrix form of the Bogoliubov-de Gennes Hamiltonian. It is therefore often a good idea to start
every calculation by checking that those symmetries are present before engaging in any more complex
calculation.

On Fig. 1.2.c we show the density of states obtained from an s-wave superconductor in a two dimen-
sionnal Rashba ground state. This figure is actually an histogram of the eigenvalues obtained from the
diagonalization of the matrices written in the Nambu Gorkov representation. The two dashed lines on this
figure represent the value of the energy gap ∆. Such implementation of superconductivity in a Rashba
system is not correct. This is simply due to the fact that in the case of Rashba interaction, we witness
the appearance of p-wave superconductivity. This p-wave superconductivity emerges from a modification
of the ground state of the system for a phonon mediated electronic interaction in presence of Rashba
spin-orbit. The correct term to include inside the Hamiltonian must possess a phase factor dependent on
the orientation of the k vector [20]. We will discuss this point more in detail in Chapter 4.

1.3 Scanning tunneling microscopy and spectroscopy
The question we now have to ask is now how we will be able to experimentally probe the superconducting
properties of the systems we are interested in. The experimental technique used throughout this thesis is
scanning tunneling microscopy (STM) and spectroscopy (STS). This technique was invented in 1986 by
Gerd Binnig and Heinrich Rohrer [21] and is based on the tunnel effect. The main idea behind STM is
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to consider a fixed sample and a tip moving over the sample without touching it. In this configuration
a bias voltage is applied between the tip and the sample that induces a shift between the Fermi levels
of the tip and the sample. The conduction electrons from the tip can then tunnel to the sample or the
conduction electrons from the sample can tunnel to the tip, depending on the sign of the bias. The tip
is controlled in the three spatial directions by different piezoelectrics that allow for a fine control of the
position (see Fig. 1.3.a).

𝐼 ∝ 𝑒−𝜅𝑧

𝑥
𝑦

𝑧

𝑉

Sample

Tip

Metallic Tip
Superconducting

Sample

𝐸𝐹
𝑡

𝐸𝐹
𝑠

𝐸

2Δ

𝑒−

𝑉

a b

Figure 1.3: Principle of scanning tunneling: a. In microscopy mode we measure the electronic current
between the sample and the tip from which the distance between these two elements can be obtained. b.
In spectroscopy mode, the electrons from the side with the higher chemical potential travel to the other
side with a probability linked to the number of states available at the same energy. This mode is called
elastic tunneling.

100 nm
Low

High

Figure 1.4: Vortex lattice in 2H-NbSe2:
Abrikosov lattice at 1 T in 2H-NbSe2. Original
figure from [22]. The conductance is color-coded
in grey scale from low conductance in white (for
the superconducting gap) to high conductance
in black (for the normal vortex cores).

Because the tunneling rate will be dependent on the
density of states of both the sample and the tip, STS
will be able to probe the electronic properties of the
system under study. As we will discuss later, for super-
conductors the spectroscopy mode will provide infor-
mation on the local electronic structure of the samples
as it was done by Hess et al. [22] for the vortices in
NbSe2. The basic principle is to obtain conductance
maps color-coded with the intensity of the derivative
of the tunneling current (see fig. 1.4). Because the
derivative of the tunneling current is directly related to
the local density of states, the contrast of the conduc-
tance maps provides information on the local electronic
structure and in particular is used to image the states
(vortex cores, gap fluctuations, bound states...) that
might exist inside the superconducting gap.

1.3.1 Topographic measurements
The first and most commonly used mode of scanning
tunneling is the microscopy mode. In this mode there
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are two possibilities when scanning the surface. The first possibility is to position the tip at constant
current using a feedback loop. By measuring continuously the tunneling current the electronic behind
the system regulates the extension of the z piezoelectrics in order to recover the current setpoint. The
electronic current being exponentially dependent on the distance between the two electrodes, in first
approximation the tip stays at a constant height of the surface. When simultaneously measuring the
extension z(x, y) of the piezoelectric we obtain the topography of the sample. This mode is called constant
current mode microscopy which is the one we will use all along this thesis.

The second mode is called the constant height mode in which the tip stays at the same position along
z and is then moved laterally while recording the current. The inconvenient of this technique is that the
absence of feedback in the z direction leaves the tip vulnerable to potential obstacles on the surface such
as steps or any other types of defects. It is thus only used for flat small areas.

1.3.2 Spectroscopy
Normal tip

The microscopy mode can be combined with a spectroscopy mode that allows to obtain the dependence
of the tunneling current as a function of the voltage bias between the tip and the sample. By making
the assumption that the density of states of the tip is constant one can show that the derivative of the
current with respect to the bias can be written as [23]

dI

dV
∝ −

∫ ∞
−∞

dEρ(x,E)∂fFD(E − eV )
∂E

. (1.37)

with fFD(E) the Fermi-Dirac distribution and ρ(x,E) the local density of states of the sample at the
point x in real space. From this expression we observe that at absolute zero the derivative of the current
is directly proportional to the density of states (DOS) and does not include any thermal broadening. A
direct consequence of this fact is that we will try to work as much as possible at the lowest temperature
accessible in order to avoid the broadening of the spectral features in the system we want to probe.
Obviously we cannot work at absolute zero and for the case of our STM, working at 300 mK limits the
spectral resolution to approximately 100 µeV (' 3.5kBT ).

The term ρ(x,E) in equation 1.37 contains matrix elements that tend to privilege certain tunneling
channels between the two electrodes. In particular these matrix elements induce a selectivity for k close
to 0 that corresponds to slowly decreasing wave-functions in the vacuum.

It was shown by J. R. Schrieffer [24, 25] that in the case of tunneling between a superconductor with
a gap ∆ and a normal metal one would obtain at zero temperature the following conductance

dIS/dV ∝
∣∣∣∣Re( V√

V 2 −∆2

)∣∣∣∣ , (1.38)

namely the BCS density of states. At 0 K the derivative of the Fermi-Dirac distribution is simply a
distribution δ(E) and thus only leaves in eq. 1.37 the density of states.

Superconducting tip

Another possibility for scanning tunneling spectroscopy is to use a superconducting tip. In this case, the
tip S1 possesses a gap ∆1 and in the case that we will study later, this gap is larger than the gap ∆2
of the sample2. This configuration is presented on fig. 1.5.a. In order for electrons to tunnel from one
electrode to the other, the Fermi level from one electrode has to be shifted at the minimum by the sum

2We will present STS measurements using a superconducting tip on a Pb monolayer. In this configuration the tip will
have almost the same gap as bulk Pb (' 1.3 meV) while the monolayer only has a gap of a few tenth of meV. At 300 mK, no
electron can be promoted to positive energy states by thermal activation and thus we will not observe zero bias conductance
at this temperature.
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Figure 1.5: Scanning tunneling spectroscopy using a superconducting tip at T = 0: a. We
consider a superconducting tip with a gap ∆1 and a superconducting sample with a gap ∆2 < ∆1. b. In
the absence of in-gap states the tunneling is only possible for Ebias = ∆1 + ∆2. c. For an in-gap state
at E = 0 the tunneling is allowed at Ebias = ∆1. d. For a continuum of states around the Fermi level,
for a given bias sign, the electrons can only tunnel to half of the continuum for Ebias ∈ [∆1,∆1 + ∆2].
e. At temperatures small compared to the critical temperature of the sample no electronic current can
occur at 0 bias. f. However for T smaller and of the order of Tc the thermal broadening caused by the
Fermi-Dirac distribution leads to the occupation of states on the other side of the superconducting gap
and thus to the possibility for electrons to tunnel from sample to tip even at 0 bias.
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of both gaps ∆1 + ∆2 (fig. 1.5.b). At this point electrons will tunnel from the quasiparticle peak energy
of one electrode to the quasiparticle peak energy of the other electrode.

At sufficiently low temperature, the Fermi-Dirac distribution does not leak from negative energies to
positive energies an thus the resolution of the spectroscopic measurements is not limited by the thermal
broadening and is even enhanced by the sharp decrease at the coherence peaks of the superconducting
gaps. As shown on fig. 1.5.f, for T ≈ Tc2 but still below Tc2, thermal broadening fills states at positive
energy above the gap. In this case the convolution of the density of states of the two electrodes produces
states at zero bias.

If we now consider a zero-bias in-gap state in our sample (like expected for a Majorana bound state
for instance), as shown on fig. 1.5.c, the minimal bias at which electrons will be able to tunnel for S1
to S2 will correspond to the gap of the tip ∆1. If this state is perfectly isolated we will obtain a sharp
peak in the DOS at exactly ∆1 with a width relative to the intrinsic width of the tip quasiparticle peaks
at T = 0 K. However if we are looking at a continuum of states or a dispersion of in-gap states (fig.
1.5.d) things are slightly different. The lowest energy at which the electrons will be able to tunnel will
also be ∆1 due to the fact that states at lowest energy are filled and electrons cannot tunnel into them.
However for any larger bias electrons will freely tunnel. In the case of an in-gap distribution of states
(see fig. 1.5.d) a superconducting tip will thus allow to visualize half the states (below the Fermi level)
at positive bias and half the states (above the Fermi level) at negative bias. The states of the continuum
will be observed in the intervals [∆1,∆1 + ∆2] and [−(∆1 + ∆2),−∆1]. This is only valid at T = 0 K
as temperature effects would affect the electronic distribution around the Fermi level and allow a partial
filling of the states leading to a spectroscopic signal in between these two intervals.

Let us be more precise and consider the general expression for the tunneling current between the tip
(T ) and the sample (S)

I(V ) ∝
∫
dE [f(E − eV )− f(E)]NT (r0, E − eV )NS(r0, E)T (r0, eV ). (1.39)

In this equation, the function f(E) refers to the Fermi-Dirac distribution, NS,T to the density of states of
the sample and tip respectively and T to the matrix elements. We consider a tip with a superconducting
gap ∆T and a sample with a gap ∆S as presented on fig. 1.6.a. The development of this expression
shows that (if ignoring the tunneling matrix elements) one can rewrite this expression in the form of the
difference of two convolution products.

I(V ) ∝ (fNT ⊗NS)(eV )− (NT ⊗ fNS)(−eV ). (1.40)

In fig. 1.6 we present the results of such calculation for a tip with a gap ∆T such that the gap of the
sample ∆S < ∆T . On figs. 1.6.a and b. we first treat the case of tunneling at two different temperatures
(respectively 25% and 50% of the superconducting gap of the sample). The first effect that one witnesses
is the appearance of peaks in the conductance inside the gap at energies equal to ±(∆T − ∆S). The
presence of these peaks is explained by a temperature effect and they are absent when the temperature
is low enough. Because of the Fermi-Dirac distribution, at finite temperature there exists some occupied
states at E > ∆S from which electrons are able to tunnel to the empty states of the tip for a bias that
would bring the quasiparticle peaks of the sample to the level of the quasiparticles peaks of the tip, thus
exactly ∆T −∆S . The same thing appears at negative bias when the situation is reversed. The main gap
originates from the case discussed in fig. 1.6.b where, without taking into account any thermal effect, the
empty states of the tip are brought in front of the filled state of the sample for a bias eV = ∆S+∆T . This
case corresponds to the one described schematically on fig. 1.5.b. It is interesting to notice that unlike
what was observed in the case of a normal tip, temperature does not have any effect on the sharpness of
these peaks but only on the temperature. This fact is illustrated on figs. 1.7 where we have computed the
conductance at 5% and 50% of the sample gap (respectively figs. a. and b.) for both a superconducting
tip (in blue) and a normal one (in green). The thermally induced broadening of the conductance does not
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Figure 1.6: In-gap states and temperature effects on a superconducting tip: a. We consider a
tip with a BCS DOS and a gap ∆T and a sample with a BCS DOS and a gap ∆S whose spectra are
represented respectively in black and green. The red and blue dashed lines corresponds to two thermal
configurations for the Fermi-Dirac distribution. b. Spectra resulting from the tunneling between a tip
and a sample in the configuration presented in a. where the blue and red colors refer to the colors of
the Fermi-Dirac distributions. c. Case of two in-gap states at energies ±ES . d. Resulting conductance
spectra at low temperature (blue Fermi-Dirac distribution from a.). e. Case of one in-gap state at the
Fermi-level. d. corresponding spectra at low temperature (blue Fermi-Dirac distribution from a.).
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Figure 1.7: Temperature dependence for SIS and SIN configurations: a. Comparison of the
conductance obtained by tunneling from a superconducting tip (blue) or a normal one (green) for a
temperature T = 5%∆S . Same for T = 50%∆S . The gap values ∆S and ∆T used in this calculation are
the same as the one used for fig. 1.6

exist when using a superconducting tip as the only width a peak might possess arises from the intrinsic
width of the quasiparticle peaks of the tip.

As we will discuss in-gap states in the next chapter, we computed on fig. 1.6.d the expected conduc-
tance at a temperature equivalent to 25% of the sample gap, of a sample possessing a pair of in-gap states
at energies ±ES . The in-gap thermal peaks discussed in the previous paragraph are still present and on
top of these we observe two pairs of peaks at energies ±(∆T + ES). The larger peaks at ±(∆T + ES)
correspond to a configuration in which the bias is adjusted in order to make coincide the filled (emp-
tied) in-gap state with the empty (filled) quasiparticle peak of the tip. Due to thermal effects the empty
(occupied) states at zero temperature get occupied accordingly to the Fermi-Dirac distribution and are
themselves able to create a current that produces peaks in the conductance at energies ±(∆T −ES). The
amplitude of these secondary peaks is much smaller than the principal ones as their filling is only ensured
by the tail of the Fermi-Dirac distribution. One should note that unlike what is to expect with a normal
tip, in this configuration in-gap states are seen in the conductance curve in the form of peaks coming hand
in hand with a dip of negative conductance. This negative conductance comes from the divergence in
the BCS density of states at the energy of quasiparticle peaks from which electrons will tunnel to in-gap
states. Tunneling between in-gap states and quasiparticle peaks does indeed lead to a current larger than
the one obtained by tunneling from in-gap states to the continuum of the tip for |V | > ∆T . At one point
a decrease in the tunneling current is thus to be expected. This decrease will translate as a negative
conductance in the dI/dV curves.

Finally, on fig. 1.6. e. and f. we present the case of an in-gap state at zero-energy (such as a Majorana
peak for instance). In this last configuration, the two pairs of peaks discussed in the previous paragraph
merge together and only leave a single pair of states at energies ∆T . This case corresponds to the one
schematically described in fig. 1.6.c.
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Figure 1.8: The M3 microscope on which were performed all the STM and STS measurement
presented in this thesis: a. Picture of the experimental setup. b. Top-view scheme of the setup.

1.3.3 M3 microscope

All the measurements presented in this thesis were performed on the M3 STM at the INSP (Fig. 1.8).
This STM is a home-built STM working at a minimum temperature of 300 mK at a base pressure of
10−11 mbar with the possibility to apply a magnetic field up to 7 T.

The system is constituted of two main parts: the STM chamber and the preparation chamber. The
sample is introduced via a load lock at a minimal pressure of around 2.10−8 mbar. The Pb monolayers
used in this thesis were prepared into the preparation chamber under high vacuum by means of molecular
beam epitaxy (MBE). The evaporator possesses three cells and in addition to Pb we can also deposit Co
and Cr. The quantity of material deposited by MBE is calibrated using a quartz microbalance (see fig.
1.9).

The samples are then directly transferred into the STM chamber for measurement without encoun-
tering a pressure over 10−10 mbar. The Si samples used for the preparation of the Pb monolayers were
also prepared prior to the Pb deposition inside the preparation chamber by direct current heating as we
will describe more precisely in chap. 4. This possibility to prepare our samples in such conditions allows
for a very small contamination of the surface and therefore very clean samples.

The cryogenic part of the microscope is accessed from the STM chamber by lowering the STM inside
the cryostat. The temperature of 300 mK is then obtained by means of 3He condensation. The conden-
sation process is limited in time by the quantity of 3He available. The characteristic time one can expect
from this apparatus is around 40 hours. As a consequence the maximum experimental time possible for
one measurement without thermal variation is of the order of 37 hours when taking into account the time
needed to stabilize the tip and to check the scan area beforehand.

For all the STM/STS experiments presented here we used tips made from Pt/Ir wire soldered into
tip-holders before being mechanically sheared by hand. The tips were then placed inside the preparation
chamber in order to be outgassed at 300◦C before using them.
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Figure 1.9: Calibration of sources for evaporation: a. Calibration curve of the Co source showing
the stability in time of the flux. b. Same curve for the Pb evaporator.

The scanning area on the sample is controlled by two sets of piezoelectric tubes controlling the rough
and fine motion of the tip respectively. The rough motion allows for a XY movement around the whole
surface of the sample and a Z movement allowing for a rough approach of the surface by eye. The fine
motion is then able to scan a maximum size of around 6 µm in X and Y direction and 1 µm in the Z
direction at room temperature. The approach of the tip to the surface is controlled by using both rough
and fine movement along the Z direction.

Temperature modifies the response of piezoelectric tubes to an applied electrical potential. The X,
Y and Z calibration of the STM must therefore be modified with the temperature. The consequence
of this is a reduction of the available measurement area. For instance, when scanning at 300 mK the
correction factor compared to room temperature is of 0.415 that limits the area accessible by the tip to
1200×1200 nm2. The whole system is controlled by the Matrix electronic from Omicron which allows for a
simultaneous topographic and spectroscopic acquisition. The measurement is performed by alternatively
measuring a topographic point and a spectrum. The two sets of data are obtained with different voltages
and current setpoints. This difference in parameters introduces an additional measurement time needed
to guarantee a good stabilization of the tip after the different voltage ramps.

The topographic measurements performed here were all obtained in constant current mode with a
typical voltage gap of 50 mV and a current setpoint of 40 pA. The spectroscopic measurements were
performed with a typical voltage gap of 5 mV and a current setpoint of 120 pA.

1.3.4 Data analysis

The data obtained on the M3 microscope are processed via a simple program I wrote using the Python
language.

Topographic data

The raw topographic data often comes with a slope that has to be corrected in order to correctly interpret
our results. The slope is subtracted on every topographic line by means of a linear fit.

Some artifacts can appear from such procedure. For instance a defect in the surface of an ill-placed
step can give rise to discontinuity along the y-axis but these effects can be suppressed easily by either
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restricting ourselves to some part of the image for a reference slope or calculating the global slope of the
scanned area in 2D.

Spectroscopic data

Figure 1.10: Smoothing and derivation procedure: On the left panel we present the superposition
of a single raw spectrum (blue) with a spectrum smoothed using the Savitzky-Golay procedure (green).
These spectra contain 1200 points and were obtained at 300 mK. On the right panel we present the
derivative of the same spectrum using once again the Savitzky-Golay procedure. The dashed spectrum
corresponds to the spectrum averaged over 500 spectra.

The main kind of spectroscopic data we acquire in our experiments is the signal I(V ). By taking the
derivative of this signal we can obtain the local density of states (LDOS). The procedure by which we
obtain the derivative dI(V )/dV must be carried out in a clean way due to presence of noise in the raw
signal. The presence of noise is due to the experimental constraint of the 3He condensation time. Because
we have 37 hours for a measurement, we must divide this time between the topography measurement
and the spectroscopy measurement. A topography lasts typically between 3 and 8 hours, depending on
the size of scanning area. This leaves about 30 hours of spectroscopy measurement. For a well spatially
resolved map of 256× 256 points we are only allowed to a spectrum every 1 or 2 seconds. This would
leave an irreducible noise even with a very stable tip.

We proceed by first smoothing the data using a Savitzky-Golay filter [26]. The principle of this
procedure is to perform the derivation by using a convolution of our data with a list of well known
coefficients. This type of derivation has the effect of averaging over the noise by acting as a quadratic or
cubic polynomial filter. The only parameter of this type of procedure is the size of the list used for the
convolution that corresponds to an effective convolution over a discrete number of points in the spectra
equal to this list size. This size depends on the noise present on the data and we typically use a size
that stays smaller than the thermal broadening of the density of states of 3.5kBT . We give an example
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of a single spectrum mesured in 1.3 s before and after performing the smoothing procedure on Fig. 1.10
with 1000 points between −0.7 and 0.7 mV. In order to correctly normalize the set of spectra we measure
in a conductance map we need to be able to have an energy window large enough in order to include
not only the superconducting gap but also the side part of the spectra on which the density of states is
approximately constant. This allows us to compare the spectra between themselves and correctly evaluate
the density of states without being bothered by the local features induced by superconductivity.

While one individual spectrum may stay quite noisy, by averaging over a few spectra the non-coherent
noise can be easily suppressed and we thus obtain clean spectra (i.e. representative of the probed area).

The origin of the noise can be diverse. The most common origin is the environment and the mechanical
vibrations from talking in the room, loudly closing the doors in the corridor, the different construction
works on the campus or the nearby subterranean train. The second type of noise we have on our signal
comes from electromagnetic perturbations. The main frequency we have in our system is a frequency
around 38 Hz induced by the 1K pot.

Once the derivative of the data has been collected into a single object we can play with it and perform
different operations depending on what we want to show. For instance our program allows us to perform
cuts through the data in order to extract a position and energy dependent LDOS map. It is also possible
to average the spectra over a chosen area of our data set. Combining these tools and the different image
processing methods (such as gaussian or median filters) allows for a large variety of possibilities and ways
to represent the relevant information extracted from our measurements.



Chapter 2

Magnetic impurities in a superconductor

2.1 Introduction
As we have seen in the introductory chapter, the BCS theory describes superconductivity by means of
couples of electrons forming Cooper pairs. The nature of the electrons forming these pairs is highly
dependent on the considered system but the simplest and best understood case one can obtain is an
s-wave superconductor in which the electrons forming the Cooper pairs possess opposite spins (↑, ↓).
The Anderson theorem [27, 28] states that in the case of such s-wave superconductor, only time reversal
symmetry breaking interactions can induce in-gap states. Thus non magnetic impurities will not give any
spectroscopic signature within the superconducting gap while magnetic ones will. Because the electrons
inside a Cooper pair are of opposite spins, the interaction they experience leads to a Zeeman effect that
tends to destroy the pair.

In this chapter we will discuss the theoretical aspects of the interaction of superconductors with mag-
netism. First we will look at how a random assembly of magnetic impurities affects the superconducting
condensates in the framework of the Abrikosov Gor’kov theory [29]. After that we will study in details
the Yu-Shiba-Rusinov (YSR) states [30, 31, 32] which are created by localized single impurities in a su-
perconductor. We will review the different assumptions of the model and solve exactly the eigen-energy
equation and study the form of the associated wave-function depending on the dimensionality of the sys-
tem. Finally in the last part of this chapter we will briefly discuss the so-called ’impurity problem’ in a
normal metal in relation to the Kondo effect [33]. From this we will extract the necessary information to
understand the difference between a classical and a quantum impurity. A review of the effect of impurities
in superconductors can be found in [34].

2.2 Abrikosov Gor’kov theory of dilute magnetic impurities in a su-
perconductor

The study of the interaction of magnetic impurities with superconductors was first introduced in the
seminal work of Abrikosov and Gor’kov in 1961 [29] and later continued in many other papers both
theoretically [35, 36, 37, 38, 39] and experimentally [40, 41, 42, 43]. The goal of this research is to study
the mean effect of a given density of impurities over the density of states of the materials in which they
are embedded. The Hamiltonian to add to the BCS Hamiltonian can be written as

Himp =
∑
i

{v1(r −Ri) + v2(r −Ri)Si · ŝ}, (2.1)

where the sum is performed over all impurities with spin Ŝi in the system. The first term is a simple non
magnetic diffusion potential with no effect on the spin of electrons and simply depends on the distance
from the impurity i. This terms diffuses spins ↑ and spins ↓ in the same way. The second term is

19
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a b

Figure 2.1: Density of states in the Abrikosov-Gor’kov theory: a. Density of states of a super-
conductor with a finite density of random magnetic impurities as the function of energy. The parameter
α controls the density and strength of the magnetic impurities (original figure from [44]) b. Qualitative
density of states of a superconductor with random magnetic impurities showing the growth of an in-gap
impurity band (original figure from [30])

the spin diffusion term and in all generality the spin of the impurities Si must be considered in its
operator form. However in the case of a large spin we can use the classical spin approximation in which
the impurity moment can be considered fixed with no internal degrees of freedom. This term causes a
Zeeman splitting of the paired electrons. The main assumptions of the Abrikosov-Gor’kov theory are
the absence of correlation between the impurities and the classical nature of their spins. This can be
translated mathematically as 〈S〉 = 0 (covering the random orientation of the spins of the impurities) and
〈SiSk〉 = 1

3S(S + 1)δik (covering the absence of correlation between two impurities i and k).
The second approximation of this theory consists to place the calculation in the framework of the

lower order Born approximation. This approximation means that the impurity density is small enough
to avoid coherent diffusion of electrons by multiple impurities. In this approximation, the self-energy can
be written for the diffusive part as

Σ = ni
∫

d3k

(2π)3 v1(k,k′)τ3G(k′)τ3v1(k,k′),

with ni the impurities density and G(k′) the Green’s function of the system. The magnetic part is similar
to the diffusive part except for the term S · ŝ that should be taken into account.

From this self-energy it becomes possible to compute the density of states as well as the supercon-
ducting order parameter. The result obtained by Abrikosov and Gorkov is that the critical temperature
of the superconductor evolves with the concentration of magnetic impurities. For a low concentration of
impurities, they obtain a linear evolution of the critical temperature

Tc = Tc0 −
π

4τs
, (2.2)



2.3. YU-SHIBA-RUSINOV STATES 21

while at higher concentration, they obtain the following expression

T 2
c = 1

πτ2
s

ln πTc0τs2γ . (2.3)

In these expressions, τs is the characteristic diffusion time which is inversely proportional to the concen-
tration of impurities and is directly related to the characteristic non magnetic and magnetic diffusion
times (resp. τ1 and τ2). From these asymptotic behaviors one can deduce a critical concentration ρcr for
which the critical temperature of the material is 0 and therefore when superconductivity is destroyed (see
appendix 7.5).

Before completely closing the gap at the critical concentration, the density of states of an Abrikosov-
Gorkov system is strongly modified, as shown on fig. 2.1.a. For low concentration of impurities, the first
effect of magnetic disorder is to weaken the quasiparticle peaks. This diminution of the amplitude of
quasiparticle peaks reveals the loss of coherence of the macroscopic superconducting wave function due to
the random scattering and pair-breaking induced by the magnetic disorder. The second effect induced by
magnetic disorder is a gap filling effect that will ultimately lead to gapless superconductivity (at which the
gap in the excitation energy spectrum zero despite maintaining pair correlations and non zero transition
temperature) before reaching the critical concentration described above. The qualitative growth of the
impurity band inside the gap is shown on fig. 2.1.b.

In the case of magnetic impurities coupled between themselves with a variable magnetic strength
(1/τs 6= Cte), the Abrikosov Gor’kov is slightly modified [36]. In this case an impurity band appears
inside the gap at the energy corresponding to the magnetic coupling between electrons and impurities.
The spectral weight associated to this band grows in intensity with the strength of the interaction as
shown on fig. 2.1.b. This case is the limiting case of a distribution of Shiba bound states that will be
discussed in the next section.

2.3 Yu-Shiba-Rusinov states
2.3.1 Assumptions
Instead of an assembly of randomly dispersed magnetic impurities we now go and look at an isolated
impurity. In the Abrikosov-Gorkov configuration, an ensemble of individual and non correlated spins lead
to the destruction of superconductivity after a critical concentration (Fig 2.2 top). We will now look at the
case where impurities are sufficiently spatially separated to avoid the superposition of the perturbations
they are associated to (Fig 2.2 bottom).

We still consider a classical spin for the impurity and in addition to the magnetic coupling J , we allow
the possibility to include a non magnetic interaction of strength K. The interaction Hamiltonian HImp

can therefore be written as

ĤImp = −JS2 (ĉ†0↑ĉ0↑ − ĉ†0↓ĉ0↓) +K(ĉ†0↑ĉ0↑ + ĉ†0↓ĉ0↓) (2.4)

Because we will consider that the interaction with the impurity is mostly localized at the impurity center,
the diffusion potential V (r) is approximated as δ(r) and this leads to the use of the electronic operators
ĉ0 and ĉ†0 where the index 0 refers to the site of the impurity. This interaction is superimposed to the
mean-field BCS Hamiltonian written as

ĤBCS =
∑
k

{
ξk(ĉ†k↑ĉk↑ + ĉ†k↓ĉk↓) + ∆ĉk↑ĉ−k↓ + ∆∗ĉ†−k↓ĉ

†
k↑
}
. (2.5)

A discrepancy appears when it comes to the spaces in which we treat the problem. The magnetic and
diffusive potentials are indeed better expressed in real space while the BCS Hamiltonian is more naturally
written in reciprocal space. As we will later use a tight binding calculation to compute the density of
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Figure 2.2: Abrikosov Gorkov to Shiba : Conceptual view of the transition between the Abrikosov-
Gorkov (top) and Shiba (bottom) limits.

states associated to the magnetic atoms in 2H-NbSe2 we will homogenize the spaces in which we are
working and transform the BCS Hamiltonian in the r representation. The first part of the Hamiltonian
will be obtained in the form of a tight binding Hamiltonian where the ti,j coefficients will be derived
from ab-initio DFT calculations fitting the ARPES data. The BCS interaction will be simply rewritten
by noting that the Fourier transform of ck↓c−k↑ is simply ci↓ci↑ and finally we can write for the full
Hamiltonian containing both superconductivity and magnetic and non-magnetic interaction

HBCS =
∑
i,j

tij ĉ
†
i ĉj +

∑
i

(
∆ĉ†i↑ĉ

†
i↓ + ∆∗ĉi↓ĉi↑

)
− JS

2 (ĉ†0↑ĉ0↑ − ĉ†0↓ĉ0↓) +K(ĉ†0↑ĉ0↑ + ĉ†0↓ĉ0↓). (2.6)

In order to simplify this expression ∆ will often be chosen real.

2.3.2 Eigenstates
The energies of the YSR states are found using a Bogoliubov transformation (see Appendix .4). The
principle of this transformation is to find a diagonalization of the full Hamiltonian in the form

H = Eg +
∑
n,σ

εnγ̂
†
nσγ̂nσ, (2.7)

where the operators γ̂ are defined as follows

ψ̂r,↑ =
∑
n

(
γ̂n,↑un(r)− γ̂†n,↓v∗n(r)

)
, (2.8)

ψ̂r,↓ =
∑
n

(
γ̂n,↓un(r) + γ̂†n,↑v

∗
n(r)

)
. (2.9)
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Figure 2.3: Energy of the electron-like (blue) and hole-like Shiba bound states as a function of the magnetic
coupling strength J for K = 0.

The operators ψ̂ are themselves the Fourier transform of the ĉ operators in reciprocal space

ψ̂r,σ =
∑
k

eikr ĉk,σ. (2.10)

Starting from the impurity interaction including both the magnetic and non magnetic potentials, we
can write the following equations for the Bogoliubov coefficients uα(r) and vα(r) [31]

ωuα(r) = ξ(k)uα(r) +H imp
αβ uβ(r) + i∆(r)σyαβvβ(r) (2.11)

ωvα(r) = −ξ(k)vα(r)−H imp
αβ vβ(r)− i∆(r)σyαβuβ(r) (2.12)

where we have explicitly written the indexes of the spinors v and u as well as those of the matrices H
and σ. These equations are simply the Bogoliubov-de Gennes equations derived in the previous chapter
to which were added the impurity terms.

This system can be separated between the solutions for (u↑, v↓) and (u↓, v↑). The solutions of each
system of equation can be obtained from the other by simply changing the sign of J . Writing the previous
set of equations in the restricted space (uk↑, vk↓) we now obtain the system

uk↑ = ν0
(K + JS

2 )(ω + ξk)uk↑ −∆(K − JS
2 )vk↓

ω2 −∆2 − ξ2
k

(2.13)

vk↓ = ν0
−(K − JS

2 )(ω + ξk)vk↓ + ∆(K − JS
2 )uk↑

ω2 −∆2 − ξ2
k

, (2.14)

where ν0 is the density of states at the Fermi energy. The solutions of this linear system of equations
give us the energy of the Shiba bound states as a function of the magnetic and non magnetic diffusion
potential. For convenience we introduce the parameters α = πν0JS/2 and β = πν0K and write the Shiba
energies as

EShiba = ±∆ 1− α2 + β2√
4α2 + (1− α2 + β2)2 . (2.15)

The ± values correspond to the electron and hole-like states. These energies are located inside the
superconducting gap and are not dependent on the sign of J . The expression of the Shiba energies can
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be substantially simplified by the introduction of a scattering phase δ± defined as tan δ± = Kν0 ± JS
2 ν0.

We then have
EShiba = ±∆ cos (δ+ − δ−). (2.16)

We plot the evolution of the Shiba energy as a function of the magnetic coupling (and for K = 0) in Fig.
2.3

For J → 0 we tend to a limit where the impurity has a minimal effect on the condensate. Therefore
the YSR bound states will be located at ES = ±∆. By increasing the coupling the states will then find
their energy moving toward the Fermi level.

From fig. 2.3 we can observe that at one value of the magnetic coupling the energy of the Shiba
bound state is exactly at zero. The point where this happens corresponds to the point where the energy
associated to the coupling J becomes comparable to the strength of the superconducting interaction. This
transition also corresponds to a different ground state for the system where it goes from a singlet spin
state to a doublet spin state. The classical interpretation of this second ground state is that the electrons
from the Cooper pairs get separated and one of the two stays linked to the impurity while the other one is
left to evolve unpaired. The doublet ground state is similar to what is expected from a quantum impurity
forming a Kondo doublet [45]. After this point the classical spin approximation starts to fall apart and
the ground state is different and calculations should be handled with care [46].

2 4 6 8 10
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10
JS2 E0

Figure 2.4: Value of the magnetic coupling JS/2
for which EShiba = 0 as a function of the non
magnetic coupling K

The YSR bound states are fully spin-polarized. This
polarization arises from the fact that equations 2.11
and 2.12 are unchanged if one performs the exchange
(u↑, v↓)→ (v↑, u↓).

By analyzing the crossover point for the Shiba ener-
gies as a function of the non magnetic coupling we ob-
tain the relation πν0

JS
2 =

√
1 + (πν0K)2 (see Fig. 2.4).

This can be interpreted as follows: when increasing the
non magnetic coupling, the diffusion of the electrons
by the magnetic potential gets weaker in proportion.
Therefore the bonding of the pair is less affected in the
limit of large non magnetic potentials and the strength
of the magnetic coupling needed to enter the Kondo
singlet regime, and completely break the Cooper pairs,
increases.

2.3.3 Writing the wave function of YSR
states
We have explained above how a local magnetic interaction induces states inside the superconducting gap
and discussed the physical interpretation of such states. Let us now compute the associated wave-function
and study the effect of dimensionality on their spatial extent.

Formalism

We define the spinor in momentum space as:

Ψ(knm) = 1
NM

∑
jl

e2iπjn/M+2iπlm/Nψ(rjl), (2.17)

where the knm are the allowed values for the k vector. N and M denote the number of atomic sites of
lattice in a and b directions. If we apply the Hamiltonian to this spinor, we find:

[E − ξnmτz −∆0τx]ψnm = 1
NM

(−JS2 +Kτz)ψ(rimp). (2.18)
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We can then infer this equation :

ψ(rjl) =
∑
nm

1
NM

ei2π(nj/N+ml/M)[E0 + ξnmτz + ∆τx]
E2

0 − ξ2
nm −∆2 (−JS2 +Kτz)ψ(rimp). (2.19)

From this equation by taking rjl = rimp, we can compute the amplitude of the wave function at the
impurity site, and then the full spatial dependence of the Shiba wave function. The only two adjustable
parameters are JS/2 and K when considering a given band structure.

2D vs. 3D

We can show easily with the relation ψ+(0)
ψ−(0)

cos(δ−)
cos(δ+) = 1 that the asymptotic forms (for r � λF = 2π/kF )of

the eigenstates are given for a 3D system (as found by Rusinov [31])

ψ±(r) = 1√
N

sin (kF r + δ±)
kF r

e−∆ sin(δ+−δ−)r/~vF , (2.20)

and for a 2D system [47] (see appendix .2):

ψ±(r) = 1√
Nπ

sin (kF r − π
4 + δ±)√

kF r
e−∆ sin(δ+−δ−)r/~vF . (2.21)

N is a normalization factor defined in dimension n by 1 =
∫ dnk

(2π)n
(|ψ+(k)|2 + |ψ−(k)|2). The comparison

between the 2D case and 3D case is presented on Figs. 2.5
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Figure 2.5: Comparison between 3D and 2D for the spatial extent of Yu-Shiba-Rusinov states a
to d (e to h) Calculated behavior of a Yu-Shiba-Rusinov bound state in an isotropic s-wave superconductor
with three-dimensional (two-dimensional) electronic band structure. a and e are schematic views of
the interaction of Cooper pairs with a classical magnetic impurity. b and f are calculated scanning
tunneling spectra at various distances from the impurity showing the fully polarized YSR states inside
the superconducting gap. c and g are simulated conductance maps around the impurity showing the
spatial extent of one peak of the YSR state presented in Figs. b. and f. respectively. d and h are
simulated conductance between -0.6 and 0.6 mV along the dotted line out of the impurity in Figs. c and
g respectively. A cut-off has been applied in order to get rid of the divergence at r = 0.
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Decay of the wave function

The main difference between the 3D and 2D cases concerns the decrease behavior of the wave function.
While in both cases we obtain a combined power law and exponential decay, the power law is different.
Due to what can be simply be seen as a Jacobian constrain in the calculations or a weaker screening, the
2D case behaves as 1/

√
r therefore decaying much slower than in the 3D case.

From an experimental point of view this power law is the key ingredient when it comes to probing the
fine structure of the wave function. In the case of a small amplitude YSR state the 1/r decay from the
3D case would dominate the LDOS and make more difficult to measure the oscillatory behavior at larger
scales. The coupling of impurity by means of YSR bound states is also much more complicated in this
case. However in 2D, for a same amplitude of the state on top of the magnetic impurity one can hope to
extract more information from a spatially resolved STS experiment.

Phase of the wave function

The parametrization of the wave function by the terms δ± shows us that these terms only depend on the
energy of the in-gap states as ES = ±∆ cos (δ+ − δ−). The spatially oscillating wave function is also solely
determined by this energy. Because STS measures the density of states which is actually the proportional
to |ψ(r)|2, the oscillatory behavior one is expected to observe on the conductance maps is related to twice
the phase difference of the wave function between the electron and hole like parts.

2.3.4 State of the art experiments on YSR states

The first experimental probing of YSR states is due to Bauriedl et al. [48] in 1981 where the authors
measured impurity bands of Mn atoms in Pb. The first STM measurement however can be found in the
work of Yazdani et al. [49] dating back to 1997. This experiment was concomitant with new theoretical
works such as [50, 51, 52] focused on the precise spatial behavior of the wave function. In the work of
Yazdani et al. (see fig. 2.6.A and B.) the authors studied Mn and Gd atoms on a Nb crystal in order
to reveal the in-gap states associated to the magnetic impurities interaction with the superconducting
condensate. One of their important result was that the signal associated to the YSR states was almost
non retrievable at distances of the order of 1 nm. This limited spatial extent did not allow for a precise
measurement of the inner structure of the wave function close to the impurity. However they were able
to show the existence of an asymmetry of the electron and hole-like peaks in the DOS over the magnetic
atoms.

Yazdani work was done at 3.8 K, intrinsically limiting the resolution of the measurement. The first
measurements at 300 mK are due to Shuai et al. in 2008 [53]. In this case the system used was a Pb thin
film on Si(111) covered with impurities of Mn and Cr. Using a superconducting tip the authors were able
to have a much more precise look into the structure of the in-gap states (see fig. 2.6.a to f.). What they
observed was the existence of more than one Shiba peak as predicted for impurities with a larger range of
the magnetic interaction. In this work the authors also studied the structure of Mn dimers spaced out by
a few Å in order to probe the bonding and anti-bonding states expected to appear between two magnetic
impurities. Just like Yazdani the spatial extent of the YSR bound state was limited to a distance of the
order of the nanometer. The consequence of this fact was the extreme difficulty to draw any definitive
conclusion concerning the spatial evolution of the wave function associated to the YSR bound states as
it would be hidden by its power law decay.

A lot of work was later put into the understanding of the interplay between Shiba and Kondo physics
especially using phtalocyanines molecules [54, 45].
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Figure 2.6: State of the art of YSR bound states: Left, dI/dV curves obtained by STM for Mn
atoms on Nb. Fig. b. shows the difference between the bare Nb spectra (dashed line) and the Shiba
bound state measured on top of a magnetic atom (full line). Original figure from [49]. Right, STS of Mn
and Cr atoms on Pb thin films using a superconducting Nb tip. Figs. c. and d. show the conductance
map and spectra obtained over a Mn atom while figs. e. and f. are obtained over a Cr atom. Original
figure from [53].

2.4 The impurity problem (Kondo physics)

The YSR bound states and the Abrikosov-Gorkov theory are only a minor part of a larger problem in
physics known as the impurity problem and more specifically the Kondo physics. The Kondo effect [33]
refers to an anomaly in the resistivity of metals containing magnetic impurities. Kondo showed that this
effect arises from the quantum nature of magnetic defect which leads to a logarithmic divergence in the
perturbative development of the resistivity. Experimentally this is materialized by a minimum in the
resistivity at a temperature TK called the Kondo temperature. The Hamiltonian Kondo studied was very
close to the Abrikosov-Gorkov Hamiltonian (eq. 2.1) with the difference that the impurity spins were
treated as quantum spins. The Hamiltonian associated to such interaction reads as

ĤKondo =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ +

∑
i

JŜi · ĉ†kσ̂ĉk, (2.22)

with i the index of a given impurity in a random position in the system. In Kondo’s calculation, impurities
are treated not as a constant magnetic field with no degrees of freedom but as a multilevels quantum spin.

It was later shown that the Kondo effect can be linked to the Anderson problem via a canonical
transformation called the Schrieffer-Wolff transformation [55]. Essentially this transformation states that
the case considered in the Kondo problem is equivalent to the coupling of an isolated quantum level with
an energy continuum. This energy level posses an on-site electron-electron repulsive interaction. The
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Anderson impurity Hamiltonian is written

Ĥ = εdĉ
†
dĉd +

∑
k

ξk ĉ
†
k ĉk +

∑
k

Vkdĉ
†
kdĉd + h.c.+ Un̂d↑n̂d↓, (2.23)

where the operators ĉk destroy an electron in state |k〉 and operators ĉd destroy an electron in state |d〉.
n̂dσ is the number operator giving the number of electrons on the level |d〉 and the corresponding term
in the Hamiltonian describes an on-site repulsion. This type of Hamiltonian leads to a resonance in the
density of states called Abrikosov Suhl resonance around the Fermi level.

a b
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Figure 2.7: Process by which to obtain a Fano form: An electron from the tip is interfering with
itself due to the possibility to tunnel either through the states on the impurity (with an hybridization
factor Γ1) or directly into the Fermi sea of the substrate (with an hybridization factor Γ2). a. Energy
diagram representation. b. Real space representation.

Due to the proximity of the interaction with the Shiba case many work is put into the understanding of
the interplay between the Kondo effect and superconductivity [56, 57, 54, 58]. Because a Kondo resonance
can be mapped to a discrete energy level one could intuitively expect it to manifest as a sharp resonance
in an STS spectrum. However in the framework of the Anderson model this state is hybridized with the
energy continuum of the substrate. This hybridization gives a Lorentzian line shape for the resonance.

There is actually a second effect that must be taken into account. When performing STM measure-
ments there can exist an interference of the path of electrons during tunneling (see appendix .4 and fig.
2.7) giving rise to a Fano resonance [59, 60]. This interference occurs between a direct tunneling of elec-
trons to the surface and an indirect one through the impurity. For a discrete level of energy εd if we define
x = eV−εd

Γ , the expected density of states is given by the following formula for the Fano line shape [61]

G(x) = ρ0
(q + x)2

x2 + 1 (2.24)

where q is the ratio of the real and imaginary part of the free Green function of the continuum that can
physically be interpreted as the ratio of resonant scattering to the direct scattering amplitude. The form
of this line shape is represented on Fig. 2.8 for different values of the factor q.

A key difference between the YSR bound states and Kondo effect is that the later does not need a
superconductor to be present. This difference gives us a way to know in which case we are. By destroying
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Figure 2.8: Fano line shapes for different values of the parameter q

superconductivity, the YSR bound states must disappear in the normal state while a Kondo resonance will
remain and split by Zeeman effect [62]. As destroying superconductivity with temperature is detrimental
to the spectroscopic precision of the STS measurements we will prefer to destroy superconductivity by
applying an external magnetic field. Doing so, in the case of a Kondo impurity we should be able to
observe some signal while in the case of a classical impurity there should not have any trace of bound
states in the normal regime.

2.5 Conclusion
In this chapter we have discussed the different phenomena associated to the presence of local magnetism
in superconductors starting from the Abrikosov-Gor’kov theory finishing by the Kondo effect. We mostly
focused on the YSR bound states for which we expect to observe pairs of peaks inside the superconducting
gap around magnetic impurities. These induced states originate from the time reversal breaking interac-
tion that tend to break the Cooper pairs made of electrons of opposite spins. We discussed the role of
the dimensionality on the YSR wave function and showed how 2D superconductors were better systems
to study the YSR bound states compared to 3D systems due to a different power law dependence.

We also discussed the way states at positive and negative bias are expected to be spatially dephased
in relation with their energy positions inside the superconducting gap.

In the next chapter we will use this information to discuss the in-gap states measured by STM in
2H-NbSe2.
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Chapter 3

Impurities in 2H −NbSe2 monocrystals

3.1 Introduction
As we mentioned in the previous chapter, the spatial extent of YSR bound states in previous STM
experiment was limited to a few angströms. Here we will show that by choosing a material with two
dimensional properties, the YSR bound states will present spatial extents order of magnitudes larger.
Finding such systems with long-range YSR bound states will allow for a measurement of finer effects such
as oscillations of the LDOS at the scale of the Fermi wave-length and dephasing between the electron and
hole component.

The discussion taking place in this chapter mostly covers the contents of our article [47] about the
experimental study of single magnetic impurities in a monocrystal of 2H-NbSe2. The case of 2H-NbSe2
is particularly interesting as its band structure is two-dimensionnal while from the point of view of
superconductivity it is an anisotropic three dimensional material whose coherence length along c exceeds
the periodicity along the c-axis. We will show that the large spatial extent of the YSR bound states in
this system is due to the fact that we are in presence of a quasi-2D Fermi surface.

We will end this chapter by briefly discussing the effect of non magnetic impurities.

3.2 Crystallographic and band structure of the material
2H-NbSe2 is a three dimensional bulk system. It is constituted of Se prisms surrounding Nb atoms (see
Fig. 3.2.a). The Se prisms are turned by 30◦ in each alternating slabs giving to the system a global
hexagonal symmetry. This structure creates a Fermi surface in the normal state constituted of two sheets
as shown on figs. 3.1.a and b. The sheets originate from the Nb dz2 and dxy/dx2−y2 orbitals and form
close contours in the a-b plan but do not close along the c-axis. In this aspect, the band structure of
the system is two-dimensional. It then becomes possible to model the Fermi surface of the system as
presented on fig. 3.1.d: the surfaces associated to band 1 and 2 obtained by DFT are in good agreement
with ARPES data. It should be noted that the full three dimensional system exhibits a small pocket
surrounding the Γ point. This pocket is associated to a hole band originating from the Se atoms taking
part to the inter-plan coupling (not represented on Fig. 3.1).

A topographic STM measurement at 320 mK of the surface of 2H-NbSe2 cleaved under UHV is
presented on Fig. 3.2.b. On this image we can witness a 3×3 nearly commensurate charge density wave
characteristic of this system [64] that appears under the temperature of 33.5 K [65].

NbSe2 undergoes a superconducting transition at a critical temperature of 7 K. One of the specificity
of this system is that it is a two bands superconductors in the sense that it has two distinct gapped
band at the Fermi level [66, 63]. This two-band originated superconductivity has been described in the
framework of the modified BCS theory [67, 68] or an anisotropic superconductor [69]. Independently
of the precise nature of the BCS interaction, the final result is a coupling of the same nature as for

31
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Figure 3.1: Electrons in 2H-NbSe2: a.-b. Structure of the Fermi surface for the two bands in the
reciprocal space (original figures from [63]). c. Superconducting spectrum of a 2H-NbSe2 sample at
300 mK obtained using a Pt/Ir tip. b. Fermi surfaces of band 1 and band 2 of 2H-NbSe2 in a two-
dimensional double layer model in which was only considered one unit cell along the c axis.

usual BCS superconductors in which the electrons are paired in a singlet state. NbSe2 being an s-wave
superconductor, as stated by the Anderson theorem only magnetic impurities induce in-gap states. Thus
any observed in-gap signatures will be associated to time-reversal symmetry breaking interaction, i.e.
vortices or YSR bound states.

When applying a magnetic field to the system vortices appear and order in the form of an Abrikosov
lattice with hexagonal symmetry. These vortices are seen in the form of characteristic six pointed stars
(see Fig. 3.2.c) and present Caroli-Matricon-de Gennes states at the vortex core. We will see in the
following that the same six-fold symmetries is also observed around individual magnetic impurities and
arises from the structure of the Fermi surface.

3.3 Sample preparation
3.3.1 Sample growth
The 2H-NbSe2 crystals used in our experiments were grown at the Institut Jean Rouxel in Nantes by E.
Janod and L. Cario, using an iodine vapor transport technique. Stoichiometric amounts of the elements
(Nb 99.8% Alfa Aesar, Se 99.99 % Aldrich) were sealed under vacuum in a silica tube with a small amount
of Iodine (4 mg/cm3, 99.9985% Puratronic). The tube was then heated up for a period of 170 h in a
gradient furnace. The mixture was located in the high temperature zone of the furnace at 700◦C while
the cold end part of the tube was around 660◦C (gradient 3◦C/cm).
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Figure 3.2: Structural and superconducting properties of 2H-NbSe2 a. Atomic structure of a 2H-
NbSe2 crystal. b 19×17 nm2 topographic image of a 2H-NbSe2 sample with the atomic lattice modulated
by a charge density wave. The image is taken at V=-200 meV and I=80 pA. c. Abrikosov lattice in
2H-NbSe2 showing the star shaped structure of vortices in a magnetic field of 0.1 T. d. Conductance
map taken at V=-0.05 meV integrated over ± 0.02 meV showing a few star-shaped structures created by
localized magnetic impurities at zero magnetic field. Measurements were performed at 320 mK.

This synthesis yielded large shiny black layered crystals (of a few mm in size) along with some black
powder. X-Ray diffraction pattern of the powder ascertained that it is composed of a majority of the
2H-NbSe2 phase (90%). Five single crystals were then tested for crystallographic quality using a four
circles FR 590 Nonius CAD-4F Kappa-CCD diffractometer at 300 K. All of them revealed an hexagonal
cell with parameters a = b ' 3.44 Åand c ' 12.56 Å, in very good agreement with parameters reported
for the 2H-NbSe2 phase [70]. Finally the composition of several crystals was tested by Energy Dispersive
X-ray Spectroscopy using an electronic microscope JEOL JSM 5800LV. A ratio Nb/Se close to 1:2 was
measured in agreement with the stoichiometry. No impurity traces could be detected using this technique
as the threshold of detection is larger than 1000 ppm. However the certificate of analysis delivered by the
company Alfa Aesar for the Niobium powder used as precursor (Lot number K08Q025) revealed as main
magnetic impurity 175 ppm of Fe, 54 ppm of Cr and 22 ppm of Mn. This synthesis yielded therefore to
2H-NbSe2 crystals unintentionally doped by a few hundreds of ppm of magnetic species with a dominance
of Fe impurities that as we will see in the following give the dominant spectroscopic signal (see Tab. 3.1).

Element Ta Cr W Ni Al C N
Concentration (ppm) 970 54 <5 14 30 47 555
Element Fe Si Mo Mn Ti H O
Concentration (ppm) 175 41 3 22 30 14 4000

Table 3.1: Chemical characterization of the Nb powder used for growing the 2H-NbSe2 crystals
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Figure 3.3: Spectral and spatial properties of an extended Yu-Shiba-Rusinov bound state in
2H-NbSe2 a. Experimental conductance map measured at -0.13 meV. The two a and b lines indicate
the crystallographic axes of 2H-NbSe2 while the a∗ and b∗ indicate the directions in the reciprocal space.
b. Characteristic experimental spectra taken on top of the impurity (red), on the right branch, 4 nm
from the center of the impurity (green) and far from the impurity (blue). c. Spatial and energy evolution
of the experimental tunneling conductance spectra, dI/dV (x, V ) along one branch of the star. The left
side of the figure corresponds to the center of the star and the right side to the top-right corner of the
scanning area. The color conductance scale is the same as the one used in a. d. Conductance profiles of
the electron and hole like YSR states as a function of the distance to the impurity along the same line as
for c.

3.3.2 Preparation for STM Measurement
The samples were glued on molybdenum sample holders using epoxy glue. These samples were cleaved
under ultra high vacuum (10−11 mbar) in order to get the cleanest surface possible. Large scale topographic
measurements performed on the samples (see Fig. 3.2) revealed a relatively small concentration of defects.

3.4 Observation of single magnetic impurities
3.4.1 Increase of the spatial extent by dimensionality
Simple topographic measurement on the surface of 2H-NbSe2 show different types of defects appearing
either bright or dark on fig. 3.2.b. The issue is that topography is not sufficient to determine whether the
defects we see are associated to magnetic or non magnetic impurities. Only spectroscopy can distinguish
between the two kinds thanks to the presence or absence of YSR bound states. Moreover we observed
that the YSR spectroscopic signatures do not necessary come along with topographic defects as the
magnetic atoms are present from the beginning of the synthesis of the crystal and are completely embedded
inside the crystal. Finding impurities thus needs to be accomplished by scanning large areas of the
sample and performing dense I(V ) grids centered around the superconducting gap in order to distinguish
spatially localized in-gap bound states. This constraint adds to the complexity of the task and to the
characteristic time scale of the experiment. Being limited by the quantity of 3He at our disposal (a
maximum condensation time of 40 hours) we looked for signatures of the YSR in areas of 300×300 nm2

with a resolution of approximately one spectrum per nanometer. Then we are able to witness about a
dozen of impurities in each image and consequently we can choose from these the one to look more closely
at.

By performing STS experiments at the temperature of 320 mK we observed YSR bound states around
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Figure 3.4: a. Hole like states spatial dependance angularly integrated. b. Same for electron like states.
The black dots are the experimental points and the red dashed lines are the power law fits calculated
ignoring the first points directly on top of the magnetic impurities in order to match the asymptotic
assumption made in the calculation.

Fe impurities randomly dispersed as presented on Fig. 3.2.d. These states do not present themselves as
circular waves localized around the magnetic defects as they would in the case of an isotropic material.
Due to the hexagonal structure of the atomic lattice, the YSR bound states are characterized by a six-
pointed star shaped electronic signature in 2H-NbSe2 . The scale on which these states can be observed
extends as far as 10 nm from their origin. When compared to previously observed YSR bound states
[49, 53, 54], this corresponds to an increase of the spatial extent by a factor 10. As we explained previously,
the dimensionality of the electron gas plays a decisive role on the power law decay (as 1/

√
r) of the wave

function associated to the YSR bound states. In the case of 2H-NbSe2 inter-plan Van der Waals interaction
is such that the electronic structure presents 2D characteristics with a Fermi surface that almost does not
experience any dispersion along the z direction. Another aspect that could possibly play a role on the
difference with other experiments is the fact that here the impurities are embedded in the atomic lattice
while in previous experiments, the YSR bound states were due to adatoms on the surface. The electronic
coupling experienced by the impurities to the superconducting condensate may be increased in our case.

Because the star shaped structure of the YSR states originates from the symmetries of the 2H-
NbSe2 hexagonal lattice, it is of interest to compare the orientation of the branches of the stars with
the crystallographic axes. We observed that the direct lattice vectors and the arms of the stars were
angularly shifted by an angle of 30◦ (Fig. 3.2.a). This direction for the arms of the stars corresponds to
the direction of the reciprocal lattice vectors (a∗ and b∗). Such an angular shift is also found in the vortex
lattice of 2H-NbSe2 in which the vortices also exhibit a six-pointed star shape (Fig. 3.2.c). This similarity
calls for a common origin of the six-fold symmetry that would reflect the anisotropy of the Fermi surface
[71], as supported by our simulations.

As expected theoretically [32, 30, 31], the tunneling spectra acquired over a given Fe impurity (see
spectroscopic map in Fig. 3.3.a) show two peaks inside the superconducting gap (red curve in Fig. 3.3.b),
one at positive bias and one at negative bias with symmetric positions with respect to the Fermi level
(EShiba ' ± 0.2 ∆). The peak at negative bias is much stronger than the one at positive bias. This
difference highlights a very strong local particle-hole asymmetry as can be seen in Fig.2.5.h. Having
a single pair of YSR conductance peaks in the gap is interpreted as the possibility to only access the
s-wave diffusion channel (for which the angular momentum is l = 0 1) for the electronic diffusion by the

1The maximum value for the quantized angular momentum is constrained by the extent of the diffusion potential as
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impurity. The authorized values of the angular momentum do indeed depend on the extent and form
of the diffusion potential and observing solely the l = 0 channel suggest that one can consider the iron
impurities as punctual defects. The same kind of behavior was observed in the case of Gd/Nb, Mn/Nb
[49] or Mn-Phtalocyanine on Pb [54] where the l = 0 diffusion channel was the only one to be activated.
On the contrary in [53] where the authors observed Mn atoms on Pb, the YSR states were observed for
momenta l = 0 and l = 1 while for Cr impurities they observed angular momenta up to l = 2. In all these
studies the spectroscopic signatures were strongly localized over the magnetic atoms and they disappeared
a few Å from their center. A long range effect of magnetic defects on the density of states is thus totally
decoupled from the local nature of the interaction from which they arise.

We also present on Fig. 3.4 the fit with the 2D power law of the radial dependance of the YSR bound
state. On this figure the slight spatial phase shift between the different branches completely mask the
oscillatory behavior and only leaves the power law decay of the YSR wave function. This result highlights
the dimensionality dependence as the decay of the local density of states goes as 1/r in 2D and 1/r2 in
3D.

3.4.2 Interference effects and phase conditions for YSR bound states

Witnessing long range effects of the magnetic impurities on the density of states allows a finer analysis
of the inner structure of the wave function associated to YSR states. On Fig. 3.3.a we present the LDOS
taken at the energy of the strongest YSR peak -0.13 mV. The center of the star corresponds to a very
strong peak in the tunneling spectra (red curve on Fig. 3.3.b) localized on the impurity [72]. The green
conductance curve on Fig. 3.3.b was acquired 4 nm from the impurity site. The decrease of the LDOS
between these two points both localized on one branch of the star is oscillatory with a periodicity of
0.8 nm as evidenced by the interference fringes clearly visible on the conductance map. Fig. 3.3.c shows
the evolution of the LDOS as a function of the voltage bias as well as a function of the distance from the
center of the impurity. On this figure we can see that the interference fringes for the electron-like and
hole-like excitations are in almost perfect spatial antiphase. Let us go back to the expression of the YSR
wave function 2.21

ψ±(r) = 1√
Nπ

sin (kF r − π
4 + δ±)√

kF r
e−∆ sin(δ+−δ−)r/~vF .

From this equation we observe that the dephasing between positive and negative energy wave-functions
will be determined by the quantity δ+−δ−. Because we experimentally probe the DOS which corresponds
to |ψpm(r)|2, the dephasing that will be observed in our conductance maps will be 2(δ+ − δ−).

As discussed in section 2.16, the phase difference between the positive and negative bias YSR states
is determined by the ratio Es/∆ = cos (δ+ − δ−). In the case of 2H-NbSe2 the value Es/∆ is difficult to
obtain precisely due to the two band gap with different values for ∆. However by comparing qualitatively
the mean gap value and the energy of the YSR state (ES � ∆) they fall into the domain in which the
phase difference of the wave function is close to π/2 and thus the phase difference observed in the DOS
is close to π.

Because all the physical quantities that characterize YSR bound states are defined from the values of
the magnetic and non-magnetic diffusion potentials J and K, a different type of impurity will lead to a
different spectroscopic signature.

As mentioned previously, Fe is not the only contaminant of the Nb used for the crystal synthesis.
There is no direct way to unequivocally determine the nature of an atom by STM. The claim that the
impurities observed in the previous section were Fe atoms is solely based on the number of signatures of a
given type we can observe compared to the known concentration of said atomic species from the chemical
analysis of the Nb (see for instance the case of large scale conductance maps as in 3.2.d). This chemical
analysis reveals that Co and Mn are the two other main magnetic contaminants of our Nb. While the

kFR . lmax.
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Figure 3.5: Spectroscopic maps integrated over the width of the overlapping Shiba peaks. The respective
lateral size of the spectroscopic pictures are 17 nm, 21 nm, 14 nm and 17 nm. In the lowest row, the green
spectra refer to the superconducting spectra of NbSe2 taken far from the impurity and the blue ones to
the spectra taken on top of the magnetic impurities. In each case the impurity and reference spectra are
taken from the same data set.

precise magnetic moment of these elements is not really known in the context of them being embedded
in 2H-NbSe2 one can safely argue that they can keep their magnetic properties.

We have observed signatures of magnetic impurities that present different shapes and characteristic
energies from the one presented in the previous section (Fig. 3.3). A sample of them are presented on Fig.
3.5. While the global six-branch star shape is preserved in each and every case as well as the orientation
of this pattern, the precise details of the spectroscopy can vary quite a lot. This is no surprise as the
band structure is responsible for the star shape while the nature of impurity will have an effect on the
magnetic and non-magnetic diffusion potentials J and K and thus on the energy of the bound states ES .

In Fig. 3.6 we show the case of an impurity whose YSR bound states are located at an energy of
±0.8 meV. The first observation that can be made on these data is that no matter the energy of the YSR
bound states, the spatial extent is conserved as we still have a clear spectroscopic signal 7 nm from the
center of the impurity.

A second observation one can make is that contrary to what was observed on fig. 3.3.c the phase
difference between the positive and negative energy states is in this case almost equal to 0. If we go back
to the expression of the dephasing δ+ − δ− (eq. 2.16) we see that we obtain δ+ − δ− ' 0 for EShiba ' ∆.
Therefore we expect no phase difference between the positive and negative bias states for energies close
to the value of the superconducting gap. The observation of this difference between the case of fig. 3.3.c
and fig. 3.6 confirms the link between the phase shift δ+ − δ− and the energy of the YSR bound states.

Because the energy of the YSR bound states in fig. 3.6 corresponds to the limits of the gap edge, the
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Figure 3.6: Gap edge YSR bound states: Spatial evolution of the Shiba bound states for an impurity
with Shiba energy close to the gap edges. The white spectra represents the bare NbSe2 that has been
subtracted to the radial cut in order to increase the contrast on the YSR states.

contrast one can hope for in a cut of the conductance map is not optimal. Therefore we subtracted to fig.
3.6 the mean superconducting spectrum taken in the same scanning area and we represent it in white in
order to help locate the bound states in the full DOS landscape.

We now take a closer look to what really happens in the center of the observed stars. In Fig. 3.7 we
present a conductance map obtained over a 5.5×5.5 nm2 area centered around the origin of one of the
stars presented in Fig. 3.5. What we observe in this figure is that what could from a distance look like
a single impurity is actually a cluster of 3 magnetic atoms giving rise to their own YSR bound states.
On the spectra of Fig. 3.7.d we observe that the YSR bound states do come by pair but that we have 3
different characteristic energies in this case : 0 meV (green curve), ±0.1 meV (red curve) and ±0.3 meV
(blue curve). An interesting feature of these spectra is that one impurity does not seem to have any real
effect on its neighbor as the spectra look as if they are simply a superposition of different YSR bound
states. This is best seen on the blue spectra in Fig. 3.7.d.

3.5 Theoretical modeling
The results we presented before were well understood in the framework of the Rusinov theory for what
concerns the spatial extent, the oscillations and the phase shift of YSR bound states. However, this model
can be analytically solved only for a parabolic dispersion. The band structure and symmetry of 2H-NbSe2
thus is not included and cannot be reproduced. We present here the tight binding model we used to take
into account the specific electronic dispersion of 2H-NbSe2. The work performed in this section (as well
as in appendix .2), both on the analytical and numerical side in the BdG formalism, was performed by
S. Guissart and P. Simon.

3.5.1 Tight binding parameters and model
In order to perform the numerical calculation, we project our tight binding model on a triangular lattice.
We have considered hopping terms up to the fifth nearest neighbour. The hopping amplitudes have been
chosen in order to reproduce the band structure obtained from DFT and in good agreement with ARPES
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Figure 3.7: Cluster of impurities in 2H-NbSe2: Zoom over a 5.5×5.5 nm2 area corresponding to a
cluster of 3 magnetic impurities. The three conductance maps (a to c) show the center of these impurities
and the spectra (d) correspond to the conductance curves obtained over each impurity. The colors refer
to the colors of the dots on the conductance maps while the black spectrum is the averaged spectrum
over the whole area.

measurements. We refer to Refs [73, 74, 75, 76, 77] for the NbSe2 band structure. The diagonalization of
the tight-binding model results in the following 2-band dispersion relation (See Fig. 3.1):

ξ(k) = ξ0 + t1(2 cos ξ cos η + cos 2ξ) + t2(2 cos 3ξ cos η + cos 2η) + t3(2 cos 2ξ cos 2η + cos 4ξ)
+ t4(cos ξ cos 3η + cos 5ξ cos η + cos 4ξ cos 2η) + t5(2 cos 3η cos 3ξ + cos 6ξ),

(3.1)

with ξ = 1
2kxa and η =

√
3

2 kya and a is the lattice spacing. The hopping parameters take the values
presented in Tab. 3.2 (in meV):

ξ0 t1 t2 t3 t4 t5
band 1 10.9 86.8 139.9 29.6 3.5 3.3
band 2 203.0 46.0 257.5 4.4 -15.0 6.0

Table 3.2: Parameters for the 2 bands of 2H-NbSe2 obtained by ab initio calculations. The numerical
values are given in meV.

To describe the 2H-NbSe2 monocrystal in presence of one magnetic impurity, we assume the impurity
spin to behave classically and use for the superconducting part the following Bogoliubov de Gennes
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Figure 3.8: LDOS computed by solving exactly the Shiba equation. Figs a and b are the Shiba states
with energy E = 0.59 meV and E = −0.59 meV respectively. Figs c and d are the Shiba states with
energy E = 0.42 meV and E = −0.42 meV respectively and finally Figs e and f) are the Shiba states
with energy E = 0.86 meV and E = −0.86 meV respectively. Colorbars give the density of states on each
sites ψ(rjl)ψ∗(rjl) normalised at

∑
jl |ψ+(rjl)|2 + |ψ−(rjl)|2=1. These theroretical calculations should be

compared to the experimental data from fig. 3.3 and figs. 3.5.

Hamiltonian
HBdG =

∑
i,j

(c†i↑cj↑ + c†i↓cj↓) +
∑
i

∆(c†i↑c
†
i↓ + ci↓ci↑), (3.2)

where c†iσ and ciσ denote the creation and annihilation operators of electron at site i with spin σ.
The hexagonal symmetry observed experimentally in Figs. 3.2.d and 3.3.a is well reproduced in

the framework of the Bogoliubov-de Gennes formalism [50]. This is done by numerically solving the
Schrödinger equation with the almost exact tight-binding description of the band structure of 2H-NbSe2.
As we only observe l = 0 states we assume a strictly on-site interaction while we treat the magnetic
impurity classically, i.e. assuming a large spin number S treated as a constant scalar. The interaction
potential contains both a magnetic and non-magnetic part and reads

HImp = −JS2 (c†0↑c0↑ − c†0↓c0↓) +K(c†0↑c0↑ + c†0↓c0↓), (3.3)

where the c0 and c†0 operators are respectively the annihilation and creation operators for electrons with
spin σ on the magnetic atom site. The first term corresponds to the Zeeman splitting between spin up and
spin down electrons for a coupling strength J/2 between the superconducting electrons and the individual
atom. The second term is the non-magnetic diffusion potential of amplitude K. Using this approach,
we calculate the LDOS for both the electron-like and hole-like YSR state. Since our experimental data
are obtained in the large tip-sample distance regime, according to [72] the measured current is carried
by single-electron tunneling rather than by Andreev processes. Therefore we can directly compare the
calculated LDOS with the experimental data and we recover the typical star shaped structure as presented
on Figs. 3.8 aligned along the reciprocal lattice vectors.

Because of the BdG part we can solve the Hamiltonian in the Nambu space using spinors of the
form ψ(rjl) = (φ↑(rjl), φ†↓(rjl)) where rjl = ja−→ex + la(

√
3

2
−→ey + 1

2
−→ex) denote site position in space with
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Figure 3.9: Same calculation as in Fig. 3.8, performed using band 2 instead of band 1.

a = 3.444Å the inter site distance. We also consider periodic boundary conditions and Fourier transform
the Hamiltonian.

3.5.2 Numerical calculation
Amagnetic impurity embedded in NbSe2 hybridizes with the two bands and can potentially give rise to two
Shiba in-gap states. Let us consider both bands separately. For most values of parameters characterizing
the magnetic impurity, we find that band 2 gives a more isotropic Shiba state with a much smaller spatial
extension. This is due to the fact that the two bands do not have the same anisotropy. Band 1 has a
deeper saddle point than band 2 and is therefore more isotropic. Therefore, band 1 will provide more
states near saddle point to the Shiba wave function. These states will be responsible of the longer spatial
extension of the Shiba state associated with band 1 and also of its spatial anisotropy.

Since we are interested in long-ranged Shiba states to reproduce the experimental data, we thus focus
on band 1. Fig. 3.8 presents the results obtained on a lattice of size N × M = 500 × 500 with a
superconducting gap ∆ = 1meV for different values of JS/2 and K using band 1. Fig. 3.9 shows the
same calculation but using band 2. We see on these two figures that the best fit of our experimental data
is obtained with band 1 that clearly shows a well defined 6 fold symmetry that is hard to see for band
2. We also observe that when varying the non magnetic diffusion parameter K the fine structure of the
LDOS is modified but keeps the same symmetry and orientation. This is in accordance with the variation
observed experimentally in the spatial pattern surrounding impurities of different types and thus different
typical YSR eigen-energies.

3.5.3 Joint-DOS approach
The observed oscillations being of the order of the Fermi wave-length, they cannot be captured by a
discrete tight binding model such as the one shown on figs. 3.8 and 3.9.

It is of interest to study what parts of the Fermi surface can give rise to the observed effects of
magnetic impurities in 2H-NbSe2. To do so we start by taking the tight binding parametrization of the
band structure of 2H-NbSe2 (using the coefficients defined in Tab. 3.2) for band 1. We do not include
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here the case of band 2 as the tight binding calculation clearly shows that this band does not contribute
much to the star shape of the YSR bound states.

K band

 band

K      K      K

      Total contribution

a c d

e fb

Figure 3.10: Joint DOS calculation on the Fermi surface of 2H-NbSe2: a. and b. Principle in
reciprocal space of the calculation. The two different sheets of the Fermi surface are represented in two
different colors. On a. we represent the transition authorized in order to simulate electronic scattering
from the inner Γ pocket (blue) onto itself while on b.we do the same for the K pockets (red). c. to d. 4
different calculations in real space obtained by calculating the auto-convolution of the Fermi surface by
selecting some part of the Fermi surface of the band 1 (see Fig. 3.1). K ↔ Γ refers to the convolution
of the outer pockets with the inner pocket. Γ ↔ Γ refers to the convolution of the inner pocket with
itself. K ↔ K refers to the convolution of the outer pocket with itself. “Total contribution” refers to the
auto-convolution of the full Fermi-surface.

We then performed a joint-DOS calculation on the Fermi surface of 2H-NbSe2. The principle of this
method, widely used in cuprates [78, 79], is to couple parts of the Fermi surface weighted by the Fermi
velocity vF (k) in order to reproduce the interference pattern around impurities or defects. Formally the
joint DOS at the Fermi level is written simply as a convolution product2

j(k) =
∫
FS

d2k′δ(k − k′)vF (k − k′)× δ(k′)vF (k′). (3.4)

We are interested in the real space wave function associated to magnetic impurities and therefore to the
Fourier transform of j(k). As the Fourier transform of a convolution product is the product of the Fourier
transforms of each term taken separately we have for the local density of states

ρ(r) = |FT (j(k))|2 = |FT (δ(k)vF (k))× FT (δ(k)vF (k))|2 = |FT (δ(k)vF (k)|4, (3.5)
2As the tight binding calculation is obtained for a 2D lattice we ignore the kz direction. This omission is also justified by

the 2D power law decrease of the YSR bound states measured experimentally.
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when considering the full Fermi surface.
Now one has to consider what happens in the case of tunnel selectivity and selective electron diffusion.

A natural separation of the Fermi surface in the case of 2H-NbSe2 is between the surface around Γ (referred
to as FSΓ in the following and shown in blue on figs. 3.10.a and b.) and the surfaces surrounding the K
points (referred to as FSK in the following and shown in red on figs. 3.10.a and b.). When considering
a tunnel selectivity that would favor the center of the Brillouin zone (as represented on fig. 3.10.a) we
would write

ρΓ(r) = |FT (δΓ(k)vF (k))|4 (3.6)

while a tunnel selectivity favoring the outside of the Brillouin zone (as represented on fig. 3.10.b) would
be written as

ρK(r) = |FT (δK(k)vF (k))|4. (3.7)

We can also include a selectivity of electrons undergoing a scattering from the Γ pocket to the K pockets
and we would have in that case

ρΓ↔K(r) = |FT (δΓ(k)vF (k))× FT (δK(k)vF (k))|2. (3.8)

These different configurations are represented on Figs. 3.10.c. to e.
On this figure we observe that the pattern most compatible with the experimentally observed inter-

ference fringes arise from the auto-convolution of the central part of the Fermi-surface (3.10.e). We also
observe that the fine branches observed experimentally on the stars on the conductance maps fit better
with this same configuration. The conclusions one can draw from this is that either our STM measure-
ments are highly sensible to what happens in the center of the Brillouin zone or that there exists a real
physical effects that would tend to privilege a scattering of the Cooper pairs and its constituting electrons
inside the central pocket of the Fermi surface.

A major issue with STM is the problem of correctly taking into account the matrix element for the
tunneling current [80] as it has been shown in the specific case of 2H-NbSe2 [63]. These matrix elements
can lead to an important selectivity over the Fermi surface and can help explain the difference between
the joint-DOS results and the experimental measurement. These types of calculations do not claim to
reproduce the fine characteristic of the YSR bound states as they do not include superconductivity at all.
However they allow us to get a better intuition in relation to the mechanisms underlying the scattering
of electrons in this specific context.

3.6 Deposited magnetic and non magnetic impurities
3.6.1 Magnetic Co impurities
We also performed experiments by depositing Co impurities over the 2H-NbSe2 crystals. The main
difference with the case of embedded impurities is that Co atoms are only present at the surface. On
Fig. 3.11.a we show a topography of such sample with 10−3 ML of Co. We observe different types of
configurations: single atoms and trimers. Like in the case of embedded impurities we observe a large
variety of in-gap states (see Fig. 3.11.b).

Scanning over deposited Co impurities is much more difficult as they have a strong interaction with
the STM tip that moves the atoms during spectroscopy measurements. This interaction causes the
discontinuities in the conductance maps in figs 3.11.d-f at some impurity sites. We do not observe the
same kind of long range effects of the magnetic atoms and this is detrimental to the observation of the
spatial oscillations of the YSR bound states. On fig. 3.11.c we show a cut (from which was subtracted
the bare NbSe2 spectrum) in the conductance map following the white arrow drawn on fig. 3.11.a. As
this cut passes through different magnetic atoms we observe different peaks at various energies inside the
gap.



44 CHAPTER 3. IMPURITIES IN 2H −NBSE2 MONOCRYSTALS

Figure 3.11: Effect of adsorbed Co adatoms on 2H-NbSe2: a. Topography of a 20×20 nm2 area of
a 2H-NbSe2 sample on which were deposited a total amount of 10−3 ML of Co. b. Selection of spectra
over the area presented in a where the colors of the spectra refer to the colors of the markers on the
topography. c. Diagonal cut in the spectroscopy from the top-left corner (0 nm) to the bottom right
corner (25 nm). The color code corresponds to the obtained dI/dV from which was subtracted the bare
NbSe2 spectrum. d.-f. Conductance maps at 3 different energies inside the superconducting gap showing
the typical spatial extent of the spectroscopic signatures of Co adatoms on 2H-NbSe2.

There is also a difference in the amplitude of the measured peaks with embedded impurities. For
instance the green spectrum in fig. 3.11 reaches to a value of 16 nS at its maximum that is higher than
the background value of 10 nS. An hypothesis we have is that indeed, there could be some hydrogen atoms
attached to the tip or to Co atoms enhancing the response in STS [81]. This effect was observed for a
2H-NbSe2 sample that was kept for a long time in UHV at T < 4K (about a month) before performing the
Co evaporation. Because H is the first contaminant of UHV it is therefore the most probable contaminant
one could think of. In comparison for a fresh new sample on which we deposited Co before directly
transferring it to low temperature this effect was not observed as much.

To support the claim that H is responsible for the increased spectroscopic response one should perform
controlled experiments in which a small hydrogen flux is send on the sample after the Co deposition. From
such samples by performing a statistical analysis on the amplitude of the in-gap states observed it should
be possible to establish a correlation between the quantity of H and the mean value of the amplitude of
the in-gap states. Due to time constrains we were not able to perform this kind of experiment but we did
observe a qualitative increase of the number of high amplitude in-gap states after moving the sample from
the cryostat to the preparation chamber for a long time and back to the cryostat. Such manipulation
usually results in an increase of the pressure in the STM chamber and a pollution of the sample. Hydrogen
is also known to modify the magnetic properties of Co [82].

We also observe on some impurities several in-gap states. This behavior is close to what was observed
by Shuai et al. [53] in the case of bulk Pb and can be explained by a larger value of the magnetic potential
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associated to such defects.

Non magnetic impurities signature

Small Gap

Figure 3.12: Effect of non magnetic impurities in 2H-NbSe2: a. Conductance map measured at
the gap edge (0.61 meV) showing the signatures of non magnetic Ta impurities in 2H-NbSe2. b. Spectra
taken over individual defects (black, green and red curves) compared with the bare spectra of 2H-NbSe2
(blue curve). The black arrows indicate the position of the small gap of 2H-NbSe2.

The shape of the dI/dV spectra obtained on 2H-NbSe2 is strongly dependent on the orbitals involved
in the tunneling of electrons. For instance the spectra obtained when tunneling in the ab plane of 2H-
NbSe2 significantly differs from what can be observed along the c-axis as the weight of the large gap
dominates in the first case and the small gap weight dominates in the second [63]. We will discuss in this
section the effect of non magnetic impurities that locally modify the tunneling conditions and reveal a
spatial dependence of the respective weight of the large and small gap. We will show that the difference
observed on the fine structure of the gap edge manifests in spectroscopic signatures of the defects present
in the system.

On Fig. 3.12.a we present a spectroscopic map over area of 50×50 nm2 on 2H-NbSe2. This map was
taken at 0.61 meV on the gap edge. On this figure we observe approximately 15 defects appearing in red
corresponding to a high conductance value. The spectra associated to these defects are all exactly the
same and three of them are displayed on Fig 3.12.b. Unlike the magnetic impurities discussed before or the
vortex lattice we do not see appearing any star-shaped pattern in the LDOS. The star shape we observed
in the magnetic case was attributed to a coupling of the defect to the superconducting electrons and was
shown to directly arise from the shape of the Fermi surface. The absence of such characteristic shape in
Fig. 3.12 indicates that the spectroscopic signatures does not arise from a coupling of the defects to the
superconducting electrons but rather to a matrix elements effects highlighting, in the two-gap pictures of
2H-NbSe2, the contribution of one part of the gap rather than the other.

STM experiments on 2H-NbSe2 [63] have shown that spectroscopy with the tip perpendicular to the
xy plane was more sensitive to the large gap of 2H-NbSe2 while tunneling with the tip parallel to the xy
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plan was more sensitive to the smaller gap. The only case where the matrix element effect is suppressed
is in the point contact regime. Because local defects break the translational invariance of the system,
they modify the tunnel selectivity and because this selectivity is directly linked to the relative amplitude
of the small and large gap probed in a dI/dV spectrum, non-magnetic impurities can modify the relative
weight between the large and small gap. We observe here that it leads to the appearance of a contrast in
the conductance maps at the energy of the small-gap.

Another aspect to mention is the density of impurities compared to what we observed in Fig. 3.2.d.
Inside roughly the same area we were able to observe 5 impurities giving rise to a star-shaped pattern while
in fig. 3.12 there are about 17 of them. The 1/3-4 ratio between magnetic and non magnetic impurities
roughly corresponds to the ratio between Ta and Fe presented in table 3.2. Therefore we tend to attribute
the defects appearing in Fig. 3.12 to the most present impurities i.e. tantalum. Ta is isoelectronic with
Nb and thus do not modify the electronic structure and act as a weak scatterer in the crystals.

3.7 Conclusion
In this chapter we discussed the effect of various impurities embedded and absorbed on 2H-NbSe2. We
showed in the case of embedded magnetic impurities how the induced YSR states couple to the 2D Nb
band in order to present a long range bound state in agreement with the theoretical calculations. Our
measurements revealed that we were able to measure YSR bound states over distances ten time larger
than for three dimensional systems. This long range behavior of the YSR bound states enabled us to
probe the fine structure of the LDOS and to link the phase of the measured oscillations to the energy
of the in-gap states. We discussed how the different parts of the Fermi surface influence the diffraction
pattern and showed that the saddle points between the Γ pocket and the K pockets strongly increases
the anisotropy of the system leading to six-fold symmetry states.

We then briefly discussed the case of embedded clusters of impurities and showed that we did not
measure any sign of an additional in-gap state that would have signed a coupling between impurities.

In a third step we presented the results obtained when depositing Co atoms on top of 2H-NbSe2
samples. We did not observe any long range effect of the YSR bound states in this configuration and
interpret this as a weak coupling to bands 1 and 2 that completely suppresses the long range effect
observed for embedded impurities.

Finally we briefly showed that due to the multi-gap structure of 2H-NbSe2, non-magnetic impurities
also produce spectroscopic signatures at the gap edge because of tunnel selectivity effects.

In the next chapter we will start from these results and compare them with what happens for
Pb/Si(111) monolayers that are pure two-dimensional superconductors. We will first study individual
impurities before moving to disordered magnetic clusters .



Chapter 4

Impurities in Pb/Si(111) monolayers

4.1 Introduction
The study of superconducting monolayers is a rich yet rather new field that started with the work of Zhang
et al. [83] that proved that superconductivity could occur in the systems Pb/Si(111) and In/Si(111).
Because such systems are made of a purely two-dimensional layer of Pb or In, they are the ultimate
limitation in the reduction of the dimensionality from 3D to 2D. Numerical calculations seem to point
toward a localization of the superconducting electrons between the Pb atoms (>90%) and the 3 first Si
atomic layers [84, 85]. In these calculations superconductivity is attributed to phonon mediated interaction
modified by the mismatch between the Si and Pb lattice parameter which leads to a softening of the phonon
modes [86, 84].

In this chapter we will study how such superconducting 2D electron gases react to the presence of
localized magnetic disorder. We will focus on two phases of the system Pb/Si(111) namely the

√
7×
√

3
and the stripped incommensurate (SIC) phases. After a brief presentation of the system under study,
we will present the results obtained on single magnetic impurities before moving to cluster of magnetic
atoms.

4.2 Structural properties of Pb/Si(111) monolayers
The Pb/Si(111) system is extremely rich in monolayer structures as the phase diagram of this systems
contains more than 4 well distinct phases and 15 intermediate phases for Pb coverages ranging from
1/3 monlayer (ML) to 4/3 monolayers [87, 88, 89].

The most studied phase is the
√

7 ×
√

3 phase where the
√

7 and
√

3 values refer to the lattice
parameters of the 1×1 surface of the Si(111) (see fig. 4.1.a). This phase appears below 270 K [89] and
corresponds to a nominal coverage of 1.2 ML. This phase exhibits a strong 1D behavior and is seen on
STM images as thin lines composed of a dense arrangement of Pb atoms (see Fig. 4.1). As the 1×1
substrate possesses a threefold symmetry, we will find on the same sample three different orientations of
the
√

7×
√

3 phase turned by 120◦ between each other.
A second phase of the Pb/Si(111) system is the hexagonal incommensurate phase (HIC) (see fig.

4.1.b). This phase is formed by combinations of triangular domains in two different orientations [90].
A third phase we will talk about in the next chapter is the 3 × 3 phase (see fig. 4.1.c). This phase

and the
√

3×
√

3 (see fig. 4.1.c) possess the same coverage and the transition from one the
√

3×
√

3 to
the 3× 3 structure is obtained under the structural critical temperature of 86 K [91].

We also mention the existence of the SIC phase (see fig. 4.1.d) which is close to the HIC structure but
with meandering walls not hexagonaly ordered and appears for higher coverages (of the order of 1.30 ML).
In this phase, due to the high density of Pb on the surface we will often obtain a coexistence of the Pb
monolayer with small islands with a maximum height of a few atomic layers.

47
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Figure 4.1: Phases of the Pb/Si(111) system: The name of each phase is indicated over each picture.

Finally there exists a pseudo-phase called “devil’s staircase”. This pseudo-phase contains many phases
with different reconstructions borrowing periodicity from the

√
7×
√

3 or
√

3×
√

3 phases (see fig. 4.1.f
for an example). We call it a pseudo-phase as its atomic structure can highly vary depending on which
extremity of the coverage spectrum we are. We will see later that it is possible in this configuration to
obtain a 1D-like phase (the 2

√
7 ×
√

3 close to the
√

7 ×
√

3 phase) appearing as an alternation of two
close rows of Pb atoms and one isolated row. There has been about 15 phases reported so far in the devil
staircase regime [92, 88].

4.3 Superconductivity in monolayers
Superconductivity in Pb and In monolayers was first discovered in 2010 by Zhang et al [83]. In this paper
they studied three different systems, two of Pb/Si(111) and one of In/Si(111). The two phases of Pb they
studied are the SIC and

√
7 ×
√

3 phases. They showed that these phases open a gap that disappears
around 1.8 K and 1.6 K respectively. The temperature dependance of these gaps follows nicely the BCS
theory and they were also able to measure the LDOS associated to vortices at different fields in the SIC
phase.

On fig. 4.2 we present how vortices appear on a Pb/Si(111) sample in the SIC phase. This structure
was obtained for a coverage of 1.4 ML instead of the nominal 1.3 ML for the perfect structure. The
Pb in excess forms 1 ML high Pb nano-islands. These nano-island do not play any significant role in
the behavior of superconductivity in the system and only slightly increase the disorder thus leading to
a slightly smaller gap compared to the case of Zhang et al. [83]. Fig. 4.2.a shows the topography of a
690×690 nm2 area that we studied at different magnetic fields.

Figs. 4.2.d.-g. show the zero bias conductance of the same area with applied magnetic fields between
0 and 40 mT. For B 6= 0 the conductance maps clearly show the appearance of vortices and the increase
of their density with the amplitude of the magnetic field.
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By studying the dependence of the LDOS around an individual vortex we can obtain the value of the
coherence length of the superconductor through the heuristic formula[93, 94, 95]

ρ(x, 0) = ν0 + (1− ν0)
(

1− tanh x

2ξ

)
. (4.1)

We thus take a cut through the isolated vortex of fig. 4.2.e and fit the obtained LDOS with the above
formula. We obtain from this fit a coherence length equal to 55 nm in accordance with previous determi-
nations using the critical field Hc2 and its relation to the coherence length Hc2(T ) = Φ0/2πξ2 [83, 96].

c

Figure 4.2: Vortices in SIC phase of Pb/Si(111): a. Topography of a 690×690 nm2 area of a
Pb/Si(111) sample in the SIC phase. b. Energy and space dependence of the LDOS measured through a
vortex core. c. Fit of the zero bias conductance using eq. 4.1 leading to a coherence length ξ = 55 nm.
d.-g. Conductance maps at zero bias for 4 different magnetic fields (0 mT, 10 mT, 20 mT and 40 mT).
The white dashed lines represent the single atomic steps present on the sample visible in the topography
a.

The first observation that can be made on the behavior of vortices in this system is the fact that
vortices are rather round and do not seem to “see” the atomic steps. We see that by increasing the
magnetic field vortices appear without any pinning effect. This suggest that superconductivity is very
homogeneous contrary to what has been observed for the

√
7×
√

3 that tends to form Josephson junctions
on the step edges [96].

For monolayer systems we are in the diffusive limit for superconductivity1. As a consequence, the
vortex cores do not exhibit Caroli-Matricon-de Gennes states and we simply observed a normal state as
shown by the constant conductance in fig. 4.2.b for d = 0 nm.

Because the superconducting properties of the Pb/Si(111) system originate from the interaction over
3 atomic layers with the Si substrate, the structural differences of the surface Pb layer do not modify

1The coherence length ξ ∝
√
ξ0l is much larger than the mean free path `
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unduly the coherence length, critical temperature and superconducting gap. This can be verified on the
coherence length for the

√
7 ×
√

3 (Tc = 1.52 K) and SIC (TC = 1.83 K) phases for instance. Starting
from the

√
7 ×
√

3 phase, every other phase with a higher Pb coverage (SIC, HIC, devil’s staircase) will
present a superconducting transition at temperatures low enough (see tab. 4.1). While the coverage
of these phases can have some overlap, the main difference to obtain one phase rather than the other
comes from the preparation conditions. By modifying the deposition temperature and time as well as
the annealing temperature we will go through the different phases and obtaining the right phase in an
homogeneous way can be very difficult.

Coverage
√

7×
√

3 SIC HIC Devil’s staircase
Critical temperature (SC) 1.52 K 1.83 K

Coverage <1.2 ML >1.3 ML 1.22 ML - 1.3 ML 1.2 ML - 1.33 ML

Table 4.1: Phases of Pb/Si(111) and their superconducting (SC) critical temperatures and Pb coverages

4.4 Individual impurities
4.4.1 Case of the

√
7×
√

3 phase

a b c

10 nm

Figure 4.3: Shiba states in
√

7 ×
√

3 structure: a. Topography of a 51×51 nm2 area with atomic
resolution. b. Spectroscopy of the same area around the Fermi level averaged over 20 energy pixels
(0.15 meV). c. Selected spectra at the maximum intensity site (red), and 15 nm (blue) away from the
impurity center.

We will start our discussion of magnetic impurities in Pb/Si(111) monolayers by focusing on the
well ordered

√
7 ×
√

3. The impurities we will discuss are not chemically identified as they are natural
contaminants of our Pb source and are evaporated conjointly. On fig. 4.3 we present the results obtained
for an isolated impurity embedded in the Pb layer in the

√
7 ×
√

3 phase. In this figure the considered
magnetic atom is located in a single domain and we do not have any domain wall close to it. The spatial
extension of the impurity is even larger than it was in 2H-NbSe2 as we obtain a spectroscopy signal
through the whole scanning area of a 51 nm width. This extent can be explained by the large coherence
length of the

√
7×
√

3 phase that is around 50 nm [96]. It can also be explained by the extremely strong
amplitude of the two peaks at ±0.058 ± 0.002 meV (see fig. 4.3.c) that go as high as 130 nS for the
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negative bias one in the same fashion as in the case of the disordered HIC phase discussed previously. In
the perpendicular direction the extent of the YSR bound states is much smaller and most of the signal
has vanished 10 nm away from the impurity center.

Due to the close proximity in energy and the limitations imposed by the thermal broadening of the
peaks at 300 mK we cannot distinguish clearly the positive bias states from the negative ones. It is thus
not possible to study in this specific case the phase of the YSR states as we did for 2H-NbSe2.

Figure 4.4: Fermi surface of the
√

7×
√

3 phase: Fermi surfaces in each of the three different isolated
domains (left) and combined (right) (adapted from [97]). The Fermi surface associated to the domain
presented on fig. 4.3 would correspond to the blue one on the left.

As we did for 2H-NbSe2 we will discuss the pattern of the YSR bound states observed experimentally
in relation with the shape of the Fermi surface of the system. In this part we will base our discussion on
the ARPES measurements found in [97]. In this paper the authors compared the signal averaged over the
three orientations of the domains obtained by ARPES to Fermi surfaces calculated from DFT. Kim et
al. found a good agreement between theory and experiment and proposed a Fermi surface with the form
presented on fig. 4.4. This Fermi surface is first characterized by two wavy lines crossing the

√
7 ×
√

3
Brillouin zone with little dispersion along the transverse direction. This open Fermi sheet is accompanied
by 3 pockets, one at the Γ point and the two others at the frontier with the second Brillouin zones2.

Another team [98] has proposed another DFT based model for the
√

3 ×
√

7 phase. They obtained
slightly different results but the best agreement with ARPES is given by the interpretation of Kim et al.
[97] that we described above.

Perpendicular to the Pb lines direction a clear periodicity is observed in the conductance map of fig.
4.3.b that corresponds to twice the lattice parameter (' 3 nm) of the system along the same direction.
This double periodicity is better seen on the Fourier transform of the conductance map presented on fig.
4.5. On this figure we represented the first Brillouin zone of the

√
7 ×
√

3 with white lines. Clear spots
2These last two pockets are seen as 4 pockets on fig. 4.4 because of their position between two different Brillouin zones

but there are actually only two independent ones.
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appear at the frontier between the first and second Brillouin zone in the same direction as the interline
periodicity (I). These spots are responsible for the doubling of the periodicity in spectroscopy for the
YSR bound states. Along the Pb lines we can observe a spatial oscillation that is difficult to precisely
quantify (approximately 4 nm). This oscillation corresponds in the Fourier map to the signal observed
(II) crossing the first Brillouin zone along the same direction as the previously discussed spots between
the Γ point and the apexes of the zone.

I

I II

II

Figure 4.5: Fourier transform of the LDOS around an impurity in
√

7 ×
√

3 phase: a. Fourier
transform of the signal presented on fig. 4.3.b. b. Fourier transform of the corresponding topography.
The white lines represent the different Brillouin zone in the reciprocal space and the red ellipses indicate
the position of the scattering wave vectors in reciprocal space.

Unlike 2H-NbSe2 there is no tight binding model describing the full band structure of the Pb/Si(111)√
7 ×
√

3 system yet. It is therefore not possible to obtain an accurate Fermi surface from which to
perform joint-DOS calculation. Our team at the INSP is currently working in collaboration with J. A.
Silva-Guillén and L. Chiroli from Madrid university to obtain a DFT model of the

√
7 ×
√

3 phase and
perform quasi-particle interference calculations. However, based on the ARPES measurements performed
on this system we can try to obtain a qualitative agreement by finding an approximation of the Fermi
surface from which we could extract the main features of the YSR pattern.

To simplify the discussion of the different combinations we will use below we start by labeling (following
[97]) the parts of the Fermi surface as follows (see fig. 4.6):

• The center pocket will be referred to as the Γ pocket

• The four pockets at the limits of the first Brillouin zone will be referred to as S1 pockets

• The two crossing lines will be referred to as S2 lines

From ARPES data we observe that the spectral weight is mostly located on the S1 pockets. The S2 lines
present a larger spectral weight at the points where the lines abruptly change their direction. Finally the
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weight at the Γ pocket is rather small compared to the previously discussed parts of the Fermi surface.
Obviously ARPES is subject to matrix elements effects and our simulations do not claim to be a perfect
description of the system. Our “model” Fermi surface is presented on fig. 4.6.e.

S1α↔S1β

S 1α
↔

S 1β

S2↔S’2

S1 S1

S2

Bragg

S1α⟷S1β

S2⟷S2

a b c

d e
Bragg vectors

I

I
II II

Figure 4.6: Transitions and Fermi surface for the
√

7×
√

3 phase: a. Schematic representation of
high DOS scattering from S2 pockets onto themselves. b. Schematic representation of transitions from
S1α pockets to S1β pockets c. Schematic representation of transitions from S1 pockets of the same type.
d. Diffraction spots in reciprocal space related to the transitions described in a., b. and c. The dark
dashed line represent the lines joining the first Bragg points. We kept the First Brillouin zone as a guide
for the eye in light grey. e. Model Fermi surface based on ARPES data on this system extrapolated for
a single domain. The color code refers to the density of states for each point of the F.S.

Using this Fermi surface we can now try several combinations of the different parts of the Fermi surface
to compute the joint DOS. We present the result of this calculation on fig. 4.7.a.-f. The analysis of the
Fourier transform of the joint DOS makes clear the doubling of the periodicity we observe as we obtain
weight at the top and bottom edges of the first Brillouin zone (I), half distance between the Γ point and
the vertical Bragg peaks. This periodicity originates from the diffusion of electrons between the different
S1 pockets of the Fermi surface and to a smaller extent from the warped part of the S2 bands. We also
recover the periodicity along the x axis coming from the same type of transitions.

We reiterate that such calculation does not claim to perfectly reproduce the complex physics of the
YSR bound states. For instance the spatial extent of these states directly depends on the coherence
length of the system, a parameter that joint-DOS calculations do not account for. In the same way we
are not capable to extract any information about the phase difference between the positive and negative
bias states as such a parameter is governed by the amplitudes of the magnetic and non magnetic diffusion
potentials. However the good agreement between our phenomenological calculations and the experimental
results in both 2H-NbSe2 and Pb/Si(111)

√
7×
√

3 phase show that independently of the restrictions we
mentioned, joint DOS calculations are a good way to predict the patterns that the YSR bound states
will present around magnetic impurities. This is no real surprise as this technique has been widely used
before in cuprates [78, 79] but our results indicate its robustness.

Studying the geometry of the Fermi surface is thus strongly indicative of the final structure of the
YSR bound states. Performing such study helps identify what system would be of interest when trying
to obtain chains of magnetic impurities for instance as a strongly 1D behavior of the joint DOS would
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Figure 4.7: Joint DOS calculation in the
√

7 ×
√

3 structure: Reciprocal space calculation of the
joint DOS for the different possible transitions. The notations refer to those used in fig. 4.6.
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indicate a strong preferential direction for the YSR bound states. We would therefore have a possibility
to obtain a larger extent of the YSR bound states along said direction that could then be used in order
to obtain a wider range of parameters with which to play to couple magnetic impurities.

4.4.2 Non magnetic impurities in
√

7×
√

3 phase

We have seen previously that non-magnetic disorder does not induce in-gap states in s-wave supercon-
ductors. However, Rashba spin orbit interaction at surfaces is expected to lead to triplet correlations
and p-wave superconductivity that becomes sensitive to non-magnetic disorder. In this section we discuss
the results obtained in the literature concerning metallic monolayers and present results on the

√
7×
√

3
phase in relation to the effect of non-magnetic disorder.
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Figure 4.8: Non-magnetic disorder induced states: a.-d. Fourier transform of conductance maps
obtained from quasiparticle interferences at 4 different in-gap energies. The red dashed lines indicates
the first Brillouin zone and the white dashed line its autoconvolution. The red arrows on b. indicate the
position of the diffusion spots in the Fourier transform. e. Schematic representation of the authorized
and forbidden transition from the different part of the Fermi surface. f. Schematic representation of the
expected joint-DOS pattern in the reciprocal space.

Transport measurements in parallel magnetic field show that the monolayer of Pb grown on GaAs(110)
shows no difference in a field of 14 T [99] which is one of the effect predicted of Rashba spin-orbit coupling
[100]. This effect strongly advocates for a very high spin orbit coupling in the Pb monolayer. Another
similar system Tl-Pb/Si(111) was also shown to possess a strong spin-orbit interaction [101].

Another possibility to probe the spin-orbit interaction in the Pb monolayer is to look at the effect of
non magnetic disorder. Due to the Anderson theorem, in-gap states are not expected in the case of an
s-wave superconductor. However for a p-wave superconductor there is no such fundamental limitation.

We have measured in our team that for the
√

7×
√

3 phase we had a gap filling as well as a fluctuation
of the height of quasiparticle peaks [96]. These fluctuations are directly related to the existence of a strong
spin-orbit coupling in this material and to p-wave superconductivity as only non-magnetic disorder was
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present in these experiments.
By measuring conductance maps of the

√
7×
√

3 phase far from any YSR bound states we observed
fluctuations of the quasiparticle peaks amplitude as well a gap filling at the gap edge. We were able to
perform a Fourier transform analysis of these maps and the results are presented on fig. 4.8. On these
FFT maps we observe that inside the superconducting gap of the Pb monolayer (i.e. |V | < 0.3 meV) we
observe a signal associated to electron scattering. We can compare these Fourier transform to what we
had obtained for YSR bound states in the case of a single magnetic defect (see fig. 4.5.a). The only spots
we observe that also appears on fig. 4.5 are the ones located exactly at the limit of the first Brillouin zone
(labeled I) responsible for the doubling of the periodicity in the direction perpendicular to the atomic
lines. The two other external points (labelled II) that we expected to appear on the line joining the Bragg
spots are not present in the case of states induced by a non magnetic interaction.

The absence of these diffusion spots indicate that the lateral diffusion of electrons (∆ky = 0) are
only permitted if the spin is included in the interaction. Such link between space and spin is another
strong indicator of the presence and the importance of spin-orbit coupling in the Pb/Si(111) monolayer.
Calculations are ongoing in order to derive a tight-binding model of the

√
7×
√

3 phase from DFT.

4.4.3 Disordered phases
Now that we have seen what happens to the YSR bound states for the ordered

√
7 ×
√

3 phase, we will
now study the effect of disorder by looking at the devil’s staircase and SIC phases that do not present a
long range crystalline order.

On fig. 4.9 we present the topography (a) and spectroscopy (b) of a highly anisotropic phase in the
devil’s staircase domain. Like for the

√
7 ×
√

3 case it appears in the form of chains with an atomic
lattice parameter much longer in one direction than the other. As a consequence we will observe three
different orientations of these lines rotated from each other by 60◦. The in-gap peaks are well visible and
separated inside the superconducting gap as they were before (see fig. 4.9.c). However by looking at the
conductance map we see that the YSR bound states manifest themselves in the form of elongated shapes.

We see that the elongation of the YSR bound states follows the orientation of the characteristic lines
observed in topography. This anisotropy follows the form of the structure of the lattice in the reciprocal
space [102, 97, 98] as we have discussed more in details in the case of the

√
7×
√

3 phase.
The SIC phase is more disordered and does not possess a well defined crystalline symmetry. As it can

be seen on fig. 4.10.a it is made of small patches arranged in a somewhat triangular pattern but with no
long range order. Because the shape of the spectroscopic signature of the YSR bound states observable by
STM depends mostly on the shape of the Fermi surface, in order to obtain a clear pattern it is necessary
to have a well defined structure in reciprocal space. The absence of a well-defined long-range crystalline
order in the case of SIC prevents the establishment of a clear pattern for the Fermi surface and the
resulting YSR bound states appear as speckle-like patterns.

However if the disorder only appears at scales larger than the typical extension of the YSR bound
states, it becomes once again possible to define locally a clean reciprocal space structure for the Fermi
surface. In the case of the devil’s staircase phases it is possible to obtain domains large enough to satisfy
this condition. In particular when these phases are highly anisotropic (in the form of 1D chains for
instance) we can once again observe a specific dispersion of the YSR bound states.

4.5 Towards the Abrikosov-Gorkov limit
We have seen in the previous section how the disorder of the Pb monolayer influenced the YSR bound
states. We will now study arrays of randomly distributed impurities with random spin orientation in the
same disordered SIC phase. The effect of a disordered array of magnetic impurities in a superconductor
was first studied theoretically by Abrikosov and Gor’kov [29]. They showed that two main features were
to be observed in this condition. First the superconducting coherence peaks are expected to disappear
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Figure 4.9: Magnetic impurities in a 1D phase of the devil’s staircase phase : a. Topography
of a 413×363 nm2 area in one of the devil’s staircase phase of Pb/Si(111). This 2D phase is highly
anisotropic and we can distinguish the three orientations of the domains. The white arrows indicate the
orientation of the linear domains delimited by the white dashed lines. b. Conductance map integrated
over the superconducting gap showing the YSR bound states in this system. c. Selection of spectra from
the spectroscopy shown on fig. b. The blue spectrum is the average spectrum over the whole area.

due to the lost of coherence in the system. Then a gap filling is expected in relation to the appearance of
a band of Shiba states. This model is usually well accepted and was very successful in the interpretation
of experimental data. We will show here that this is not always the case and that the quasiparticle peaks
can be conserved in the presence of magnetic disorder.

4.5.1 Growth conditions

We studied clusters of Co atoms buried below a monolayer of Pb in the SIC phase. We first deposit
10−2 ML over the 7×7 reconstructed Si(111) at room temperature. By annealing the Si sample covered
with Co atoms by direct current at 375◦C, we observe a migration of the magnetic atoms toward the step
edges as shown on fig. 4.11.a. This behavior is strongly different from the one observed in [103] for a
similar system with a smaller annealing time.

This migration is stopped by step edges and defects in the Si substrate which are mainly the 7 × 7
twins. On fig. 4.11.b we present a zoom on one of the accumulation area. Those twins appear at places
where the steps are in form of wedges and facilitates the accumulation of Co atoms. The disorder we
observe seems to indicate that the individual Co atoms do not form any coherent magnetic domain and
will behave as individual magnetic scatterers. On the zoomed topography we observe that the Co atoms
do not form dimers or trimers as they did in the case of 2H-NbSe2. They rather stay in the form of
individual atoms arranged in a very disordered way.

The second step of the preparation is to cover the sample with Pb in the usual proportions before
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Figure 4.10: Magnetic impurities in the SIC phase : a. Topography of a 21×21 nm2 area in the
SIC phase. b. Conductance map integrated over the superconducting gap showing the YSR bound states
in this system. c. Spectrum over the impurity (red) far from the impurity (blue) and in between.

annealing the sample at 375◦C during 4 min 30 sec. We obtain a sample in the SIC phase with a few
dispersed mono-atomically high islands in excess shown on fig. 4.12.a. The phase looks homogeneous at
first sight and does not exhibit any clear sign of the buried Co.

In a first approximation we thus expect that once the sample is covered by a monolayer of Pb each
impurity will lead to its own YSR bound states. We can then expect these states to overlap due to the
lack of phase coherence for the YSR bound states in the SIC phase. Due to the Co clusterisation our
sample will still present unaffected superconducting areas with the same properties as in the clean case.
In the middle of this unmodified superconductor we will observe areas in which we will have some gap
filling induced by these states. This limit can be seen as a pseudo Abrikosov Gorkov regime where we
have non interacting classical impurities that form localized clusters rather than a continuous magnetic
disorder.

4.5.2 Spectroscopic features

As shown on fig. 4.12.b, when performing spectroscopic measurements we observed a very strong signal
on the gap edges presenting a spatial pattern highly similar to the Co clusters visible in topography before
the Pb deposition (shown on fig. 4.11). On fig. 4.12.c we show 3 spectra measured over the most visible
clusters from the conductance map (in red, orange and green) as well as a reference spectrum measured
where we observe the smallest concentration of defects.

The first thing to observe on the spectra of fig. 4.12 is the gap filling effect that originates from the
YSR states induced by the buried magnetic impurities. On the perturbed spectra we observe that while
we still recognize the characteristic BCS shape, the width of the gap is modulated by the Co. This effect
is better seen when one performs a cut through the LDOS as shown on fig. 4.13.c. The direction of the
cut is indicated on fig. 4.13.a by a white dashed line.

Due to the gap filling caused by the YSR bound states we cannot fit the spectra with a BCS line
shape. Another way to follow spatially the superconducting properties over this type of area is to extract
the position of the superconducting coherence peaks. Such analysis is shown on fig. 4.13.b. When
compared to the conductance map we observe a clear correlation between the density of states inside the
superconducting gap and the energy of the coherence peaks. Therefore a large density of states at the
Fermi level will be associated to a lower energy of the quasiparticle peaks. This indicates that unlike
what was observed in the case of individual impurities, here the gap undergoes a reduction due to a large
density of magnetic clusters.
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Figure 4.11: Co on Si annealed at 375◦C: a. Topography of a 622×622 nm2 area on which were
evaporated 10−2 ML of Co and then annealed at 375◦ for 4 min. b. Zoom showing the aggregation of Co
atoms along the step edges.

4.5.3 Theoretical analysis and link to Abrikosov-Gorkov theory

In order to interpret the data presented above we will describe our sample by a superposition of Shiba
states assuming no interaction between them. This superposition of states will have as a first effect to fill
the gap. This gap filling will in return modify the self-consistency equation that will ultimately reduce
the superconducting gap ∆.

As we explained in the discussion about the Bogoliubov-de Gennes theory, there exists a self-consistency
equation of the superconducting gap (eq. 1.28). This correction to the superconducting gap was previ-
ously ignored in the treatment of individual impurities as it was not observed experimentally and only
played a secondary role on the phenomenon we were interested in. This simplification does not hold
anymore in the case of large clusters. The combined effect of each impurity has a strong effect on the gap
as we discussed about fig. 4.12.c.

To describe this system we consider a disc of radius R in which we randomly dispose magnetic scat-
tering centers. As the disorder observed experimentally does not indicate any long range arrangement
for the magnetization of the clusters we choose to attribute a random value of the magnetic coupling J
comprised between ±Jmax. The non magnetic diffusion potential has however no reason to change from
one impurity to the other and we therefore choose to take a fixed value for the non magnetic diffusion
potential K.

As we consider that each impurity behaves independently from its neighbor we compute for each
impurity the associated YSR bound state. In first approximation the YSR wave function is given by the
asymptotic formula 2.21 where the terms δ± are determined from the values of J and K. To avoid the
divergence at the impurity center we replace the 1/

√
r divergence by a thresholded value 1/

√√
r2 + a2

that behaves as 1/
√
r far from the center and takes a finite value at r = 0. For the threshold a we took a



60 CHAPTER 4. IMPURITIES IN PB/SI(111) MONOLAYERS

100 nm

a

b

c

Figure 4.12: Spectroscopy of the pseudo Abrikosov Gorkov regime: a. Topography of a
622×622 nm2 area of Pb/Si(111) in the SIC phase. b. Conductance map of the same area at the gap
edge (E = -0.1 meV) revealing the spectroscopic effect of the underlying Co atoms. c. Selected spectra
from different impurity patches (red, orange and green from the brightest to the smallest) compared to a
spectrum acquired far from any impurity (blue).

small value (0.02 nm) to avoid any normalization issue later on. We take for ∆0 (the unperturbed gap)
a value of 0.35 meV that corresponds to the experimental gap measured at 300 mK

The individual YSR bound states are normalized to 1. We numerically integrate the square modulus
of the individual wave functions over the whole area of interest. Because the self-consistent equation of
the gap makes use of the terms un(r) and vn(r) obtained from the Bogoliubov-de Gennes equations we
see that we can directly use the YSR wave functions calculated before. We thus perform a self-consistent
calculation of the gap reduction induced by YSR bound states using eq. 1.28.

The calculation of the gap involves the constant λ linked to the superconducting coupling. We estimate
it using the relation [6]

kBTc = 1, 13~ωDe−
1
λ (4.2)

and we obtain a value of 0.24 (we take ~ωD = 10 meV ). We checked the convergence of the gap with the
iteration and observed that the calculation gives a satisfactory value after 3 to 4 iterations (see fig.4.16.c
and d.).

The full Python code written for this calculation is reported in appendix .4.
In order to check the validity of our calculation we first tried to compute the simple case of a single

impurity. The gap reduction we obtained is plotted on fig. 4.14.a and the corresponding YSR bound
states LDOS on 4.14.b. We then compared to what was obtained by Meng et al. in [104]. In this article
the author performed the analytical calculation of the gap variation around a single impurity and found
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Figure 4.13: Spectral features of the pseudo Abrikosov-Gorkov regime: a. Same conductance
map as the one of fig. 4.12. b. Map of the coherence peaks energy over the area presented on a. The red
area in the middle of the image is due to noise during the spectroscopic measurement. c. Cut through
the line indicated on the two top figures showing the spatial variation of the superconducting gap when
crossing patches of impurities. 0 nm corresponds to the top left of the conductance map and 700 nm to
the bottom right.

that for 3D systems the leading order terms give

δ∆(r) ≈ ∆0e−r/ξ

(kF r)2 . (4.3)

The power law present in the decay is the same as the one found for the LDOS when performing the
Rusinov calculation in 3D. Therefore it seems natural to extend this expression in 2D using the expression

δ∆(r)2D ≈ ∆0e−r/ξ

kF r
. (4.4)

We then fit the results from our own calculation using this expression and we present the result in fig.
4.14.a. We performed this calculation by using a non realistic value of the coherence length ξ = 5.3 nm
for numerical reasons linked to the discretization of the space. If we want to include the typical scale of
the oscillations (' kF ) as well as the typical scale of the coherence length (one order of magnitude larger
for the Pb monolayer) we need an extremely large amount of numerical points that drastically increase
the calculation time.

Once again, in order to avoid some problematic divergence at the origin we perform the substitution
r →

√
r2 + a2. The fitting procedure gives us for ξ a value of 5.74 nm and for the maximum gap difference

a value of -1.14 µeV. These values are to be compared with what we obtain in our model. Concerning
the coherence length we used a value of 5.3 nm and we therefore have a very good agreement with the
other model. For the gap difference the final value we obtain is -1.165 µeV on the impurity site and we
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Figure 4.14: Fit of gap reduction for a single magnetic impurity: a. Gap profile as a function
of the distance from the impurity distance. The dots corresponds to the gap calculated using our semi-
analytical method while the dashed lines corresponds to the fit obtained by using the formula from [104]
adapted to a 2D case. b. LDOS map of the negative bias YSR bound state for the same impurity.

therefore fall once again very close from the other model. These results seem to confirm the validity of
our model in first approximation and allow us to push our investigation forward.

On fig. 4.15 we present in a. the gap map calculated over 500 impurities in a disc of radius 10 nm
(2 impurities per nm2) and in b. the corresponding LDOS map at -0.37 ∆. The positions of individual
impurities is represented in fig. 4.15.a by white dots. We see that the gap is strongly modified by the
impurity and undergoes in some places a diminution of 30% of its original value. This result is in good
agreement with what we obtained by comparing the local value of the energy of the coherence peaks of
the superconductor in fig. 4.13.b. Unsurprisingly the larger value of LDOS for in the in-gap states is
directly correlated to the smaller value of the gap just as we observed experimentally.

The individual conductance spectra we obtain from this simulation are presented in fig. 4.16.a. The
blue spectrum on this figure corresponds to the homogeneous gap from which we started the calculation
using the value ∆0 = 0.28 meV. This spectrum is calculated from the BCS equation for the density of
states and in order to reproduce the experiments is convoluted with the derivative of the Fermi-Dirac
distribution at 300 mK. The red spectrum on this figure was taken in the center of the cluster and shows
the combination of two effects. The first effect we observe here is the gap filling effect that was observed
experimentally on fig. 4.12.c, indicating a gapless regime for superconductivity. This gap filling originates
from the in-gap YSR bound states. Instead of creating a single peak as we saw in the case of individual
impurities, the cluster of randomly oriented impurities leads to a distribution of states inside the gap.
This distribution is added to the reduced ∆ and increases the zero-bias conductance. The second effect
is the gap reduction on the red spectrum: the position of the coherence peaks that are around 0.2 meV.

Fig. 4.16.b. shows a cut through the magnetic cluster. This figure combines both figs. 4.15 as it lets
us follow the smooth variation of the superconducting gap as well as the gap filling. When taking a cut
through the cluster we also see more defined peaks that correspond to the points where the cut passes
right over an impurity. In this case the spectral weight associated to the impurity is strong enough to
dominate the other ones and as we did experimentally, we see the in gap pair of YSR bound states.

This whole calculation and observations make the link between the Shiba and the Abrikosov-Gorkov
regime. We already discussed the difference with the Shiba case and we will now discuss the link with the
Abrikosov-Gorkov theory. In the case described by Abrikosov and Gorkov the impurities are supposed to
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a b

Figure 4.15: Calculation of the gap and density of states associated to magnetic clusters : a.
Gap map computed in a self-consistent way for 500 impurities in a disc of radius 10 nm for ∆0 = 0.35 meV.
The white dots indicate the random positions of Co atoms. b. LDOS for the in-gap YSR bound states.

be distributed randomly over the full sample while here they are localized in the form of clusters. However
inside the clusters the impurity are indeed randomly distributed. The observed and calculated clusters can
thus be seen as small 2D Abrikosov-Gorkov superconductors. This comparison can be further extended as
we do consider perfectly independent impurities and associated YSR bound states in our model. The same
condition is used in the Abrikosov Gorkov theory when the scattering of electrons on different impurities
is neglected. This condition corresponds to the lowest order Born approximation.

The main difference between the Abrikosov-Gorkov theory and our results resides in the gap filling
effect. As we show on fig. 4.16.d, for increasing values of the effective spin-flip rate the gap filling is only
provided from the diminution of the spectral weight of the quasiparticle peaks and leaks from the gap
edges continuously toward the Fermi level. Because of this effective spin-flip rate Γ, the role of specific
individual impurities is totally neglected in order to favor a statistical approach of the system.

Our phenomenological model does not claim to be a perfectly accurate representation of the physical
reality as many second order effects have been neglected. It is however a fast way to perform calculations
on magnetic clusters without diagonalizing an Hamiltonian at each iteration loop. Moreover due to its
intrinsically continuous nature we are not limited to an on-site calculation as tight-binding is. We think
that our model gives a good intuition on the underlying physical phenomena happening and provide a
satisfactory explanation for our experimental results.

Our results on this system clearly show the role of magnetic defects in the filling and the reduction
of the superconducting gap. Compared to Abrikosov-Gor’kov theory we have shown that the coherence
peaks do not necessary disappear before entering a gapless regime for superconductivity. Our results may
help interpret some experiments where gap filling was observed without a diminution of the quasiparticle
peaks [105, 106]. On a structural point of view our recipe may be used for the patterning of macroscopic
samples and the locally weakened order parameter may be useful in the engineering of pinning centers
for vortices. The structure of the vortex lattice at low field would be in this case fully determined by the
position of the magnetic clusters on the sample.
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Figure 4.16: Cut through clusters and gap convergence: a. Spectra obtained from the self-consistent
calculation on magnetic clusters. The blue curve corresponds to the spectrum obtained with an homoge-
neous gap ∆ = 0.28 meV at 300 mK. The red curve corresponds to an average inside a 5 nm radius in
the center of the impurity disc. The green curve corresponds to average spectrum over the whole area.
b. Cut through the LDOS crossing the center of the disc of impurities. c. Convergence of the gap with
iteration of the algorithm. The y axis is in logarithmic scale. d. Abrikosov-Gorkov calculation of the
DOS for increase values of the effective spin-flip rate Γ.

4.6 Conclusion
In this chapter we have discussed the influence of nano-magnetism on the Pb/Si(111) system in two
different configurations:

• Isolated classical impurities

• Randomly arranged clusters of classical magnetic impurities

We first showed that the results obtained on 2H-NbSe2 about two dimensional superconductors could
be extended to the Pb/Si(111) monolayers as we measured the YSR bound states over more that 20 nm
from the impurity origin. Due to that enhancement of the bound states range by dimensionality effect we
were able to study the Fourier transform of conductance maps for a single impurity. We discussed the role
of the atomic structure on the spatial pattern of the highly anisotropic YSR bound states and in the case
of the

√
7×
√

3 phase how the Fermi surface influences this pattern. We also showed that the disordered
monolayer leads to speckle patterns for the YSR bound states. We were able to compared the case of
magnetic impurities and non-magnetic impurities and deduce that spin-orbit interaction plays a role in
the electronic scattering and thus implies the existence of a triplet component for superconductivity.

We then showed how a large Co concentration could form local accumulations of magnetic impurities
and produce a continuum of YSR bound states. These clusters have an effect on the gap-filling and the
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gap size that are well reproduced by considering the gap reduction under the influence of the superposition
of independent YSR bound states.

In the next chapter we will discuss the intermediate case of ordered Co clusters giving rise to a
topological transition and the appearance of topological edge states. We will discuss the role of the
different ingredients needed to enter a domain of topological superconductivity and show how we can
obtain Majorana bound states by stabilizing a vortex inside of a topological domain.
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Chapter 5

Magnetic clusters and topological
systems

5.1 Introduction
In this chapter we will present the results obtained in the study of topological superconductivity induced
by magnetic Co clusters embedded below Pb/Si(111) monolayers. We will first introduce the theoretical
tools needed to discuss topological superconductivity and Majorana quasi-particles. We will then show
how one can obtain nanometer sized clusters of Co/Si acting as small ferromagnets on the superconducting
Pb overlayer. By analyzing this configuration in terms of field-induced topological transition we will show
how the emergence of edge states can be expected. This part was published on arXiv in [107]. Finally
we will see how by increasing the size of the Co clusters it becomes possible to create a vortex state that
will exhibit a zero-bias state that shows strong similarities with Majorana bound states.

5.2 Topology and Majorana quasi-particles
In an attempt to include special relativity into quantum mechanics Dirac proposed the equation that now
bears his name [108, 109]. Dirac’s theory first proposed the idea that particles like electrons could be
associated to an antiparticle. In 1937 E. Majorana, mostly motivated by esthetic, showed that another
equation could be written that would be compatible with both quantum mechanics and special relativity
[110]. In his theory, Majorana proposes that there could exist some fermions which are their own antipar-
ticle. While Dirac antiparticles such as positrons were discovered soon after their theoretical prediction,
the status of Majorana particles is more uncertain. There are some suspicions that neutrinos might be
Majorana particles but no definitive proof has been found yet.

However in the field of condensed matter physics there has been a lot of recent proposals of systems
that could exhibit Majorana-like excitations. Superconductivity is involved in most of these proposals due
to its build-in electron-hole symmetry which is an essential ingredient for Majorana-Weyl physics. The
idea is that from a system described in terms of electronic operators ĉkσ it is possible to diagonalize the
superconducting Hamiltonian by introducing Majorana operators γ̂ defined as a combination of electronic
operators

γ̂1 = 1√
2

(ĉ† + ĉ)

γ̂2 = i√
2

(ĉ† − ĉ).

These operators have the particularity to be their own adjoined operator as γ̂†i = γ̂i. Because in the
framework of superconductivity the Hamiltonian describing the system can be diagonalized using a Bo-

67
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goliubov transformation in which the uk and vk factor are respectively the electron and hole weight of the
eigenvectors it is natural to expect that under certain conditions these factors will take the same value
and we would thus obtain a Bogoliubov operator in the form of a Majorana operator.

Such operators are interesting in condensed matter physics as they are associated to anyonic quasi-
particles that obey non-Abelian statistics. When exchanging two fermions the global phase function
acquires a − sign, while the exchange of bosons leads to a + sign. Anyons are quasi-particles that acquire
a Berry phase θ 6= ±1 when exchanging two of them [111]. The non-Abelian statistics on the other
hand refers to the fact that the exchange of quasiparticles keeps the trace of the exchange path that was
followed through the global phase of the wave-function. This type of statistics allows to perform quantum
calculations [112] by braiding of Majorana fermions [113]. These type of calculation are expected to be
fault-proof as the topological properties of Majorana bound states should prevent decoherence to occur
in the system.

The proposed systems expected to exhibit Majorana fermions are diverse and include vortex cores
in topological superconductors [114, 115, 116], superconductor-semiconductor heterostructures [117, 118]
as well as chains of magnetic atoms on top of superconductors [119, 120, 121]. In every case one of
the key ingredients involved in the emergence of Majorana bound states is spin-orbit coupling [122] and
we will discuss this effect more in details below. By combining spin-orbit coupling and magnetism it
is expected that one would create a topological superconductor in which a topological index could be
defined [123]. The Majorana states would then appear at the interface between a topological and a trivial
superconductor.

Signatures of Majorana excitations were claimed to have been observed in two types of experiments.
The first type of experiment [124] uses a nanowire made of semi-conducting InAs in contact with an s-wave
superconductor (niobium titanium nitride). When applying an external magnetic field in the direction of
the nanowire, the authors observed a region of magnetic field in which appeared a zero-energy mode they
attributed to Majorana quasiparticles.

The second type of experiment takes the route of magnetic chains on superconductors [125]. In this
experiment the authors use a superconducting Pb monocrystal on which they deposit Fe atoms that
spontaneously organize in the form of ferromagnetic chains. By using STM they observed zero energy
bound states at the end of the ferromagnetic chains. The spin-orbit interaction in this configuration is
provided by Pb which is an heavy element.

5.3 Rashba spin-orbit interaction
5.3.1 Origin and effect of the interaction
The Rashba interaction is an effect created by spatial inversion symmetry breaking at surfaces. The
coupling of the spin and momentum of electrons is derived from the relativistic Dirac equation (Darwin
terms) where the movement of electrons in an electric field creates an artificial magnetic field that will
couple to their spin. In crystals this effect is seen when the electrical field experiences a strong spatial
variation as it is the case at surfaces. In particular 2D electron gases present a strong variation of the
electric field due to the symmetry breaking along the z axis. When expanding the Dirac equation in the
low energy limit at the second order in e2/hc we obtain a term of the form [126]

HSO = ~
4m2c2 σ̂ · (∇V × p̂). (5.1)

For a symmetry breaking along the axis ur, the Rashba spin-orbit interaction reads as

ĤSO = α(k × σ) · ur, (5.2)

that can be rewritten in two dimensions under the form (for ur along the z axis)

Ĥ2D
SO = α(kxσy − kyσx). (5.3)
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The parameter α is therefore mostly a reflect of the asymmetry around the atomic nuclei at which the
potential V (r) is localized. For a simple parabolic dispersion the Rashba spin-orbit interaction leads to a
splitting of the bands and the new dispersion is written as [127]

E±(k) = h2k2

2m ± αk. (5.4)

We plot this dispersion on figs. 5.1.a. and b. for one and two dimensions respectively.
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Figure 5.1: Rashba dispersion: a. Dispersion relation obtained for a Rashba spin-orbit interaction in
1D. b. Dispersion relation obtained for a Rashba spin-orbit interaction in 2D for a fixed value of ky.

The projection of the spin along the quantization axis is not a good quantum number in the case of
Rashba spin orbit and the eigenbasis of the system will be a chiral basis in which the spin of the electrons
is turning with the orientation of the k vector in the reciprocal space (i.e. S · k = 0 and S · z = 0). The
spin thus behaves in Rashba systems in the same fashion as it does in topological insulators around Dirac
cones.

Because the eigenstates of a system exhibiting Rashba spin-orbit are a mixture of spins ↑ and ↓, a
more convenient way to write the eigenbasis of the system will be by introducing an index λ = ± which
will correspond to the chirality of the system. The eigenvectors |±〉 can be easily written from the original
states |↑〉 and |↓〉 as

|k, λ〉 = |k, ↑〉+ iλeiθk |k, ↓〉√
2

. (5.5)

with θk the orientation of the k vector. An interesting observation that can be made on the form of
this ground state is that it is totally independent of the parameter α that describes the strength of the
spin-orbit interaction. This behavior indicates that the interaction deeply modifies the ground state of the
system. As we will discuss later, the form of the superconducting interaction is modified in the presence
of spin orbit interaction. This will lead to triplet and spinless superconductivity from which topological
superconductivity will emerge.
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5.3.2 Case of Rashba effect with magnetic field

We now add to the Rashba interaction an external magnetic field whose effect is described by a Zeeman
Hamiltonian

HZeeman = B · σ̂. (5.6)

If we parametrize the orientation of the magnetic field by the angles θ and φ (see fig. 5.2.c) and the
direction of the in-plane k vector by θk it becomes possible to write the Hamiltonian in the Nambu spinor
basis ψ† =

(
ĉ†k↑ ĉ†k↓

)
as

HRashba+Zeeman =
(

ξk + V cosφ iαke−iθk + V e−iθ sinφ
−iαkeiθk + V eiθ sinφ ξk − V cosφ,

)
(5.7)

where V is the amplitude of the magnetic field (|B| = V ). It now becomes trivial to obtain the eigenvalues
of the system in the form

E± = ξ(k)±
√
V 2 + k2α2 − 2kV α sinφ sin (θ − θk). (5.8)

By analyzing this dispersion we observe that for an in-plane field (i.e. φ = π/2) the bands possess a

degeneracy point at k = −V
α

(
cos θ
sin θ

)
that is lifted for any finite out-plane magnetic field. For a perfectly

normal magnetic field the splitting at the Γ point is exactly of 2V . We show on fig. 5.2 the effect of an
external magnetic field on the electronic dispersion for both in- and out-plane field.

The opening of a gap by means of a magnetic field perpendicular to the surface of the sample will deeply
modify the ground state of the superconducting ground state of a Rashba superconductor. The ground
state is modified in such a way that if one wants to continuously transform the system to a superconductor
with an in-plane magnetic field it would have to be done through a step that would close the gap. This
intermediate gap closing will sign a topological transition between a topological superconductor (out of
plane field) to a trivial one (in plane field) in the following. When we will include superconductivity
inside the problem later on, we will have defined two superconductors with different topological indexes
depending on whether superconductivity appears on a system where the bands are already split or not.
These topological indexes will also depend on the value of the chemical potential and whether or not the
Fermi level falls inside the gap opened by the perpendicular magnetic field.

In the same way as edge states appear at the interface between a trivial and a topological insulator we
will see the appearance of states at the edges of the trivial superconductor (with no Zeeman degeneracy
lifting) and the topological one (with lifted degeneracy). Here these edge states will be called chiral as
they arise from a time-reversal symmetry breaking.

5.3.3 Rashba spin-orbit and form of the superconducting interaction

In 1989 [128] Édel’shtein and in 2001 Gor’kov and Rashba [20] investigated the way spin-orbit interaction
influences the superconducting ground state derived from the general Hamiltonian (equivalent to 1.13)

Hint = 1
2
∑
λµνρ

∑
kk′q

Uλµνρ(k,k′, q)â†λ,kâ
†
µ,−k−qâν,−k′−qâρ,k′ . (5.9)

where the λ, µ, ν, ρ indexes relate to the spin degrees of freedom. In this case the operators Ŝ2 and Ŝz
do not commute with the Hamiltonian. S and Sz are thus not good quantum numbers anymore. As a
consequence, the isotropic s-wave gap used in the absence of spin-orbit interaction does not minimize the
energy of the ground state and should therefore be replaced by a momentum dependent gap. Furthermore,
the states on which the coupling now applies are the eigenstates of the system in presence of Rashba
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a b

c d

θ
φ=π/2

Figure 5.2: Zeeman effect on Rashba system: a.-b. Effect of the magnetic field outside of the plane
on a Rashba superconductor. Real space configuration versus band dispersion. c.-d. Same thing for a
magnetic field inside the plane.

spin-orbit coupling. Under such circumstances the Bogoliubov-de Gennes equations become the Gor’kov
equations

(iωn − ελ(k))gλ(k, ωn) + ∆(k)f †λ(−k, ωn) = 1,
∆∗(k)gλ(k, ωn) + (iωn − ελ(k))f †λ(−k, ωn) = 0

where ωn are the Matsubara frequencies [19] and gλ and fλ are the normal and abnormal Green functions
respectively. The index λ refers in these equation to the eigenstate ± of the system without supercon-
ductivity but Rashba spin-orbit coupling (see eq. 5.5).

In the absence of spin-orbit the order parameter ∆ is fully described from the abnormal green function
f(k) as we have for singlet pairing (the α and β indexes refer to the spin degrees of freedom) [129]

∆αβ ∝ 〈ψ̂α(k)ψ̂β(−k)〉 = f(k)(iσ̂y)αβ. (5.10)

Where the proportionality symbol includes the amplitude of the superconducting coupling. The lack of
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inversion symmetry redefines the order parameter as a mixture of singlet and triplet pairing in the form

∆αβ ∝ 〈ψ̂α(k)ψ̂β(−k)〉 = {if(k)σ̂y + (d(k) · σ̂)iσ̂y}αβ . (5.11)

In all generality the type of coupling that one should include inside the Bogoliubov-de Gennes formalism
will depend on how the spin-orbit interaction favors either the singlet configuration (corresponding to the
term f(k)) or the triplet configuration (corresponding to the term d(k) · σ̂). As we will discuss later, in
order to preserve the time reversal symmetry of the system we have to add some constraint on the two
terms. The singlet term must be an even function of k while the d vector must be an odd function of the
wave vector k. The simplest case one can consider is to write for the singlet term as a constant (as in the
usual BCS case)

∆↑↓(k) = ∆S . (5.12)

On the other side, the simplest way to write the triplet term is to consider a function of the angle θk as

∆↑↑(k) = ∆↓↓(k) = ∆T |k|eiθk . (5.13)

5.3.4 Rashba spin-orbit, Zeeman and superconductivity
Let us now consider a simple singlet superconductor with Rashba spin-orbit coupling on which is applied
an external magnetic described by a Zeeman Hamiltonian

H = H0 +HSinglet +HRashba +HZeeman. (5.14)

This is a crude approximation that neglects the triplet pairing terms discussed previously and will be
different from the helical case we will discuss below.

For a magnetic field oriented along the z direction we can obtain the analytical expression for the
dispersion of the system.

E = ±
√
V 2 + k2α2 + ∆2 + ξ2 ± 2

√
k2α2ξ2(k) + V 2(∆2 + ξ2(k)). (5.15)

By analyzing the dispersion we observe a critical field Vcrit for which we obtain a gap closure at the Γ
point in the reciprocal space

Vcrit =
√

∆2 + µ2. (5.16)

The dispersion 5.15 is represented on fig. 5.3 for three different values of V, respectively at zero field
(V = 0), at the topological transition induced by the Zeeman field (V = Vcrit =

√
∆2 + µ2) and beyond

the topological transition (V = 2Vcrit). For fields larger than Vcrit the gap reopens as shown on fig.
5.3.c. The reopening of the gap only occurs for a finite Rashba coupling α 6= 0. For α = 0 the gap still
closes at Vcrit but stays closed at higher field, the superconductor is then in the paramagnetic limit. The
topological transition that exists in presence of spin-orbit coupling is thus absent when α is turned down
to zero as shown on fig. 5.4.

5.3.5 Symmetries of the Hamiltonian
We have previously discussed the effect of a magnetic field that breaks time reversal symmetry and leads
to chiral superconductivity. We will now address triplet superconductivity that preserves time reversal
symmetry and leads to helical superconductivity.

A general BCS Hamiltonian respecting the time reversal invariance can be written as

HBCS−TR =
∑

k,k′,σ1,σ2

Vσ1,σ2(k,k′)ĉ†k′,σ1
ĉ†−k′,σ2

ĉ−k,σ2 ĉk,σ1 . (5.17)
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Figure 5.3: Topological transition in magnetic field of a Rashba superconductor: Band structure
of a Rashba superconductor respectively at zero magnetic field, at the topological critical field and over
the topological critical field.

This form leads to three different possibilities for the spin configuration in the mean field case. The first
possibility is to have a coupling between opposite spin (↑, ↓) leading to a singlet state

HS
BCS =

∑
k

{
∆S ĉ

†
k,↑ĉ
†
−k,↓ + h.c.

}
. (5.18)

In this configuration, the spin antisymmetry does not force any symmetry on the order parameter with
respect to the spatial inversion (k → −k) and thus the minimal way to write the s-wave order parameter
is to take a constant ∆S .

The second possibility for the spins to couple in the time-reversal invariant BCS Hamiltonian is the
triplet case where the coupling occurs between spins of same orientation (↑, ↑) and (↓, ↓). The symmetry
analysis of this Hamiltonian shows that it is not possible anymore to consider a k invariant order parameter
in the mean field limit as ∆T (k) must transform into −∆T (−k) by spatial inversion. The simplest way
to do so without introducing any node in the order parameter is to include an angular dependance in the
p-wave term such as

HT
BCS =

∑
k

{
∆T |k|eiθk ĉ†k↑ĉ

†
−k↑ −∆T |k|eiθk ĉ†k↓ĉ

†
−k↓ + h.c.

}
(5.19)

where θk refers to the direction of the wave vector k where we write px + ipy = ~|k|eiθk .
While the triplet component of superconductivity ∆T is a priori authorized in every circumstances,

for a system that respects time-reversal invariance it is not necessarily present. The work of Rashba and
Gor’kov [20] showed that the presence of Rashba spin-orbit coupling is responsible for the appearance
of the triplet correlations. Because the Hamiltonian and the spin operators Ŝ2 and Ŝz do not commute
anymore we will need to take into account both triplet and singlet terms.
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Figure 5.4: BCS superconductor in magnetic field: Same figures as in 5.3 in the case where the
Rashba interaction has been suppressed (α = 0).

If we try to compute the dispersions one should expect in a system with coexisting triplet and singlet
order parameters we would obtain the following matrix form for the Hamiltonian1

H =


V − µ+ ξk ∆S |k|α −∆T

|k|
kF

∆S V + µ− ξk ∆T
|k|
kF

|k|α
|k|α ∆T

|k|
kF

−V − µ+ ξk −∆S

−∆T
|k|
kF

|k|α −∆S −V + µ− ξk

 (5.20)

With a magnetic field oriented along the z direction and with the inclusion of spin-orbit interaction.
This Hamiltonian is written in the basis Ψ =

(
ĉk↑ ĉ†−k↓ ĉk↓ ĉ†−k↑

)
. The positive eigen energies of this

Hamiltonian are given by

E± =

√√√√
V 2 + k2α2 + ∆2

S + |k|
2

k2
F

∆2
T + (ξk − µ)2 ± 2

√
V 2(∆2

S + (ξk − µ)2) +
(

∆S∆T
|k|
kF

+ |k|α(ξk − µ)
)2
.

(5.21)
Because spin-orbit is already included in the symmetries of the Hamiltonian via the triplet supercon-

ductivity term, we can in first approximation ignore the Rashba kα terms in the Hamiltonian. We will
also forget about the Zeeman terms as we will only consider a time-reversal invariant system. Then we
can show that one can perform a phase transition and change the topology of the ground state by tuning

1In order to simplify the notations, the Hamiltonian is written at θk = 0. However, the supposed rotational invariance
guaranties the independence of the solutions with θk and thus diagonalizing the Hamiltonian for this single case is enough
to infer the main properties of the dispersion. In order to study the spectrum we redefine the triplet order parameter ∆T so
that it can be expressed in the same unit system as ∆S . We do so by introducing a term 1/kF = 1/

√
2mµ in the expression

given in eq. 5.19.
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the ratio ∆T /∆S at zero magnetic field. For ∆T /∆S = 1, the gap closes and for higher values it reopens
entering a topological phase. It is thus possible to operate a time-reversal invariant topological transition
by playing on the values of the triplet and singlet order parameters. The topological phase obtained in
this configuration is called helical as it does not break time-reversal symmetry and leads to a set of two
bound states with opposite chiralities.

In the previous section we broke time reversal symmetry by means of a magnetic field normal to the
surface. This configuration was called chiral and exhibited one edge state. In the present case of a mixture
of triplet and singlet order parameters we preserve time reversal symmetry and instead of one edge state
we will obtain a pair of states with opposite chiralities. This configuration is called helical.

This discussion is summarized on fig. 5.5. The top part describes the chiral case (with ∆T = 0) and
the bottom part the helical case (with V = 0). Figs. 5.5.a present the band structure of a system with
s-wave superconductivity and Rashba spin-orbit interaction for different values of the Zeeman coupling
VZ . One can see that for a critical field VZ =

√
∆2 + µ2, the gap closes at k = 0 and then reopens,

entering the topological chiral phase. The corresponding µ vs. Vz phase diagram is represented on fig.
5.5.b and the disk in the topological part of the diagram represents the superconducting sample with a
single edge state propagating at the interface with the vacuum.

We procede similarly for the helical case where we present on fig. 5.5.b. the evolution of the band
structure with ∆T for a system in which spin-orbit was omitted (α = 0) as well as magnetic field (Vz = 0)
in order to only leave an s-wave superconductivity term ∆S . Contrary to fig. 5.5.a, the axes here are
∆S and ∆T . The topological transition occurs for ∆S = ∆T and when ∆T > ∆S the system is in the
helical topological phase. The gap closing associated to this transition is presented on fig. 5.5.d with the
trivial and topological phases delimited by a black dashed line. When in the helical topological state,
there exists two counter-propagating states at the edges of the sample. These edge states are represented
by a clock wise and an anti-clockwise arrow of different colors.

What this shows is that there exists many different ways to obtain a topological transition by playing
with the different ingredients at our disposal. An analysis of the dispersion 5.21 actually shows that the
phase transitions between trivial and helical as well as between chiral and helical respectively appear for
the following conditions √

∆2
T + V 2

z = ∆2
S , (5.22)√

∆2
S + µ2 = Vz (5.23)

We present on fig. 5.6 a summary of the discussion on both helical and chiral cases where we display
the ∆T vs. ∆S phase diagram of topological superconductivity. On this figure are represented the three
possible phases a superconductor can enter by controlling the amplitude of the Zeeman term Vz and
the triplet order parameter ∆T . In all these phases we obtain a fully opened gap that only closes at
the transition lines (black dashed lines). The Rashba term is neglected for simplicity as it does not
fundamentally modifies the phase diagram. In particular, the transition at Vz =

√
∆2
S + µ2 happens at

k = 0 and is left unchanged whatever the amplitude of the Rashba term might be.

5.4 Experiment principle
We will now present an experimental realization of topological edge states in Pb/Si. In order to do so
we will consider a system in which a small ferromagnet will locally (over the size of a few nanometers)
create an area of topological superconductivity by means of a time reversal symmetry breaking interaction
(see fig. 5.7). This will define two areas of different topologies (outside and inside the ferromagnet) that
will lead to the formation of edge states at the interface between the two areas. In order to realize
such system experimentally we need to first obtain the superconductor that will exhibit the necessary
triplet correlations and then be able to control the growth of ferromagnets sufficiently coupled to the
superconductor in order to trigger the topological transition.
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Figure 5.5: Helical vs. chiral superconductivity: a. Band structure of a system with Rashba spin-
orbit and singlet superconductivity for different values of the magnetic field perpendicular to the surface
(∆T = 0 here). b. Phase diagram for topological state in this system as a function of the chemical
potential µ and the Zeeman coupling Vz. The blacked dashed line represents the topological transition
where the gap closes. c. Band structure of a system with a mix of singlet and triplet superconductivity
for increasing triplet value. d. Phase diagram for topological state in this system as a function of the
amplitude of the singlet pairing ∆S and the triplet pairing ∆T (α = 0 here).
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Figure 5.6: Topological superconductivity phase diagram: a. Phase diagram presenting the three
coexisting phases of superconductivity: trivial (blue), helical (red) and chiral (green). b. Band structure
taken at different points of the phase diagram a. at points indicated by the color diamonds.

As we explained before in order to observe topological superconductivity and Majorana fermions spin-
orbit coupling is an essential component. It thus becomes necessary to determine what kind of system
is the most favorable. Because Rashba spin-orbit coupling arises at surfaces, thin films and monolayer
superconductors seem to be good candidates. Strong spin-orbit splitting was indeed reported at the
surface of semiconductors covered by a metal layer [130, 131, 132, 133, 134].

The next step is to find a metal with a strong spin-orbit interaction. Because the strength of the
interactions varies as Z3 with Z the atomic number of the element we will privilege heavy elements.
The system Pb/Si(111) thus seems to be an interesting one as Pb is known to present strong spin-orbit
coupling [135, 136]. Furthermore, as we have shown before (section 4.4.2), the electronic diffusion by
non magnetic disorders induces peak height fluctuations as well as a gap filling effect. We showed when
discussing fig. 4.8 that the selection rules for the diffusion spots in the Fourier transform were linked to
a spin-orbit coupling in the Pb/Si(111) monolayers.

The results we will show in the next session were obtained by combining the Pb monolayer with
nanoclusters of Co. We found that the Co arranges in the form of clusters of sizes varying from 5 to a few
tenths of nanometers and act as small ferromagnets. We have thus gathered the ingredients necessary to
the obtention of topological superconductivity and the observation of edge states.

5.5 Sample preparation
Our samples were prepared under UHV at a maximal pressure of 3.10−10 mbar. The first step of the
preparation consists into cleaning the Si that will be used for the Pb and Co deposition later on. We used
wafers of Si cut along the (111) orientation and doped with phosphorus. We first submitted the Si to a
series of “flashes” at 1200◦C by direct current heating.

We usually perform about 20 flashes to make sure that we get rid of the biggest defects such as
silicon carbides. The Si substrate is then prepared by rapidly changing the temperature from 1200◦C to
900◦C directly after a flash. If the pressure inside the preparation chamber during this step stays in the
range 10−10 mbar we then slowly decrease the temperature down to 500◦C in order to form the 7 × 7
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Figure 5.7: Structure of the sample Pb/Co/Si(111): a. Side view of the system showing the inclusion
of the Co inside the Si substrate. Over this the Pb monolayer remains unmodified but still feels the effect
of the magnetic field B created by the underlying Co atoms. b. When in the superconducting state, the
superconductivity from the Pb monolayer enters the topological phase under the action of the magnetic
field while the rest of the sample remains in the trivial phase.

30 nm 10 nm
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Figure 5.8: Topography of Pb/Co/Si system: a. Large scale (181×181 nm2) topography showing
the monoatomic steps from the Si substrate as well as the small islands created by the Pb. b. Zoom of a
small area (42×42 nm2) of the sample showing the atomic structure of the system.

reconstruction (see Fig. 5.9). If the pressure criterion is not satisfied we go back to the previous steps
of flashing the sample until we can operate under good conditions of pressure. During all the different
preparation stages we cool the cryopot with nitrogen of the preparation chamber allowing for a lower
pressure thanks to a cryo-pumping phenomenon on the walls of the chamber.

We then wait for the sample to reach room temperature before proceeding to the Co and Pb deposition.
These two depositions were performed one after the other from sources previously calibrated with a quartz
microbalance. We evaporate Co onto the sample for 6 sec with a flux of 10−2 ML.min−1 for a final quantity
of 10−3 ML. In order to obtain an homogeneous Pb mono-layer we start by depositing 4 ML and then
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anneal the whole sample in the structure Pb/Co/Si at 375◦C during a time that will depend on the
precised structure one wants to obtain (see Fig. 5.9) and can range between 90 sec and 5 min.

Temperature

Time

375°C

500°C

900°C

1200°C

Si preparation Annealing of the sample

Co and Pb deposition

2’30’’ 1’30’’≈10’

Figure 5.9: Steps of sample preparation: The sample is prepared in three separate operations, the Si
cleaning, the Pb and Co deposition and the final annealing of the sample.

Using such recipe leaves us with an homogeneous sample with only a few Pb islands as shown on Fig.
5.8.a and the Co is not seen in the topography, leaving a seemingly unperturbed Pb monolayer. We will
discuss in the following the Co clusters and the way we can image them. The steps originating from the
Si substrate are mono-atomic for the large majority and only a few are double. On the level of the atomic
structure we obtain a mixture between a linear and an hexagonal phase (HIC). Both those phases coexist
homogeneously in the sample and domain walls are accomodated by

√
7×
√

3 boundaries (see Fig. 5.8.b).
As usual we observe a few single atomic defects on our samples due to the impurity already present in
the Pb source or adsorbed during the sample preparation. As we observed in the case of the individual
YSR states, the impurities from the Pb source can give rise to magnetic signatures in the gap. However
those impurities are extremely dispersed throughout the sample and their signatures in the LDOS rarely
overlap.

5.5.1 Imaging of the Co clusters
One of the question that remains is: why is Co not visible in topography measurements? Our strategy
was to anneal a sample containing those clusters up to a point where most of the Pb had evaporated.

We performed an annealing of the sample during 2 hours at 400◦C and obtained the structure presented
on fig. 5.10.a. The phase we obtained is a mosaic phase and we have only a few island remaining that
appear as bright spots on this figure separated by 50 nm in average (some of them are indicated by
white arrows on the figure). The step edges have been strongly modified during the annealing and appear
shredded indicating that the Si is also moving during this procedure.

The islands left on the sample are actually Co islands capped with Pb that enables for a semi-direct
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a b

Figure 5.10: Topography of a Co cluster: a. 536×536 nm2 area topography of a Pb/Si sample
containing 10−3 ML of Co after a 2 hours annealing at 400◦C. b. 11×9 nm2 close-up on a Co cluster
capped with bilayer Pb. The white dashed lines delimits the contour of the Pb capping.

observation of the Co clusters. On fig. 5.10.b we present a close-up of such an island where we adapted the
color code in order to see both the surface of the sample and the island. While we still have a truncated
triangular global shape characteristic of Pb islands we also see on the top of the island a quasi-circular
contour that is not seen in the case of Pb islands without Co. The characteristic size of the Co associated
features is around 5 nm of lateral size and the measured height is about 4 Å. While the tip tends to induce
an artificial broadening the fact that we observe such sharp contour around the Co makes us confident
that we do measure the real size of the cluster. However we must be careful with the measurement along
z as some electronic effects can play a role.

We also performed, with the help of D. Demaille, transmission electron microscopy (TEM) measure-
ments on our sample and those results are shown on fig. 5.11. These images clearly reveal the existence
of nanometer-sized objects in our sample. It was not possible however to obtain a chemical analysis of
these objects as they tend to disappear under the electron beam during long exposure measurements.

Most of the previous experimental work on the magnetic and structural properties of Co/Si(111) were
done for much larger Co covering [137] and little is known on the magnetism of nano-clusters. In particular
it was shown that for coverage of the order of 1 ML, the system did not exhibit magnetic property. However
some work showed the dependence of the annealing temperature on the magnetic properties of the Co thin
films on Si(111) substrate [138, 139]. In particular it was shown that for annealing temperatures above
600 K, the hysteresis loops essentially disappeared. The difference in size and in temperature with our
own samples could help explaining the discrepancy between previous experiments and our own case. In
the future it would obviously be necessary to perform complementary magnetic measurement on our own
samples in order to confirm the presence of magnetism in our nano-structures and definitively validate
our theoretical model.

5.6 Experimental results
5.6.1 Topological edge states
The data presented in this section were obtained by using a superconducting tip in order to increase the
resolution. This tip was prepared from Pt-Ir wire that was covered with Pb by crashing the tip into the
Pb 3D islands grown over SiC clusters that are sometimes found on the surface. The tip thus exhibits a
superconducting gap of 1.3 meV similar to bulk Pb. The samples discussed here were obtained by first
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Figure 5.11: TEM planar view of Pb/Co/Si(111) samples: a. 213×213 nm2 area observed by TEM
from a planar view of one of our sample revealing the Co clusters as dark spots. b. 105×105 nm2 zoom
of the yellow area.

depositing 0.8.10−3 ML of Co before Pb deposition and annealing the sample at 365◦C for 90 sec. The
atomic structure of the Pb monolayer obtained using this set of parameter corresponds to the SIC phase.
We show our area of interest on fig. 5.12.a. This part of the sample corresponds to an area where a
cluster of Co is buried below the Pb monolayer. This cluster has a radius of approximately 5 nm and is
only seen in conductance maps in the gap energy range. The corresponding in-gap spectroscopy is shown
on figs. 5.12.b.-d.

At the Fermi level (b.) we observe a perfect circle in the conductance map. This ring corresponds
to the edge states at the interface between a trivial superconductor (away from the Co cluster) and a
topological one (above the Co cluster). The ring separates for larger biases into an inner and an outer
ring (c. and d.). The separation of the zero-bias ring at E 6= EF thus reveals the helical behavior of
the system through its two nonequivalent edge states. If we refer to the phase diagram of fig. 5.6.a
we are originally (away from the Co cluster) in the blue area somewhere on the y axis. The magnetic
cluster induces the transition as Vz crosses the two phase transitions (along the horizontal direction of
the diagram of fig. 5.6.a.). The question is here to know whether we are in the helical configuration or in
the chiral configuration.

The separation of the two rings can better be visualized by taking a line cut through the spectroscopic
data that crosses the center of the disc. This cut is showed on fig. 5.12.e. On this cut we clearly see
the X-shaped crossing of the state at the Fermi level at ±3 nm from the disk center. It should also be
noted that the states connect continuously (up to the energy resolution of our measurement) across the
full gap thus giving a real dispersion of the states. The existence of a dispersion is clearly in opposition
with what we had observed for YSR bound states that only admit a pair of states inside the gap (or a
few pairs depending on the potential size) at a given energy.

Because we reach the topological regime by means of a Zeeman field, time-reversal symmetry is broken
in our system. Theoretical tight-binding calculation of a spatially variable magnetic field2 let us think that

2We take a Zeeman potential Vz(r) of a gaussian form Vz(r) = Vmaxe
−r2/σ2

.
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Figure 5.12: Edge states of a buried ferromagnetic cluster of Co: a. Topography of a 16×13 nm2

area of a Pb/Si(111) sample in the devil’s staircase phase. b.-d. Conductance maps at 0 meV, 0.1 meV
and 0.2 meV respectively showing the edge states induced by the underlying Co cluster. e. 10 nm wide cut
passing through the center of the circle showed on b. showing the spatial dispersion of the gap crossing
states. On the cut, we suppressed the gap of the tip from the raw data and subtracted the average
spectrum measured on the surface far from any defect in order to better adapt the color scale.
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Figure 5.13: Tight binding calculation of the edge states between an helical and a trivial
superconductor: In this calculation we used the values ∆S = 4 and ∆T = 1.4 and the Zeeman energy
Vz = 12 at r = 0. In this configuration the central part of the system is in the chiral phase will the
external part not affected by the Zeeman interaction is in the trivial phase. On this figure we subtracted
the superconducting spectrum of the trivial phase in order to better show the appearance of the in-gap
states.

we are in the chiral configuration. We present in fig. 5.13 the result of the calculation for a topological
chiral cluster with a smooth interface with a trivial superconductor. This calculation was performed by
projecting the 2D model of our system on a 1D space by supposing a cylindrical symmetry. We were thus
able to separate the radial and angular part of our wave-function as

Ψ(r) =
∑
mJ

ψn,mJ (r)eiĴzθ (5.24)

where mJ refer to the eigenvalues of the rotation operator Ĵz commuting with the Hamiltonian describing
our system. From the separation of the radial and angular part we are able to only plot the radial part
of the LDOS |ψ(r)|2. In that LDOS map (subtracted from the trivial DOS) we recover the typical X
shaped crossing of the edge states that we observe experimentally. Calculations performed with other
set of parameters show that the crossing of the states can only be obtained if the maximal value of Vz is
taken so it satisfies the chiral criterion Vz >

√
∆2
S + µ2.

In our experiment the presence of two gap-crossing states is a reminiscence of the helical phase that
is crossed when evolving from chiral to trivial. Our helical edge states are equivalent to those observed
for quantum spin Hall effect (which presents two edge states) with an applied magnetic field (that splits
the edge states). The spatial splitting of the opposite chiralities is caused by the Zeeman interaction
that breaks the time reversal symmetry. The splitting vanishes at the Fermi level as the electron-hole
symmetry restores the time reversal equivalence of the two chiralities.

A remark one can make concerning these experimental in-gap signatures is that they do not correlate
to any topographic feature. Contrary to what we had previously observed for YSR bound states observed
around single magnetic impurities, the in-gap states do not seem to be sensitive to the local disorganization
of the Pb monolayer. At 0 bias in particular the width of the ring is approximately 0.7 nm which is
comparable to the typical atomic dimensions and Fermi wavelength of the system. This behavior is in
direct opposition with the long range extension we observed in the case of YSR bound states where the
spatial extent is mostly driven by the coherence length ξ of the superconductor. Here ξ does not seem to
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Figure 5.14: Un-shortened spectrum line cut: a. Spectra taken on the ring seen at 0 bias in fig.
5.12.b (red) and far from any magnetic perturbation or interface effect (blue). b. Cut through the ring
where the removal of the states between ±∆T ip was not performed. The black dashed lines indicate the
position of the tip gap and the reference value used to obtain fig. 5.12.e.

play a role and only atomic dimensions are relevant for the zero bias features. However at different biases
the spatial extension of the states increase. In particular a nearby defect that is absolutely absent from
the zero-bias conductance map starts to become visible at the bottom right corner of the images on figs.
5.12.d and fuses with the previously clean topological edge states. Our explanation for this behavior is
that the defect in the bottom is actually a YSR bound state or a small cluster leading to a YSR band
that gets included into the edge state at its own characteristic energy. The inclusion of this state to
the more global topological edge state is better seen on fig. 5.12.d where we can really follow the outer
crown of the helical states that totally surround the YSR state with no discontinuity. Surprisingly the
extension of this additional feature is determined by the characteristic length scales of the cluster and
not the characteristic length scales of the YSR bound states as one would expect. We do not have an
explanation for this fact.

Because these data were acquired using a superconducting tip, there exists a whole area of the spectrum
(for |V | < ∆T ip) that does not contain any worthwhile information. Thus in the cut 5.12.e we simply
suppressed this area in order to only show the spectroscopic features linked to the sample. This allows us
to see the continuation of negative bias states into the positive bias ones and follow the dispersion of the
states in the system. On this figure we also subtracted the mean Pb spectrum in order to obtain a better
contrast on the in-gap states3. In order to compare these results with the original data set, we present
on fig. 5.14 the data without the cut. On this figure, as expected, we clearly see that we do not have any
spectroscopic signal in the range |V | < ∆Pb.

5.6.2 Majorana bound states in vortex cores

Now that our toolbox contains the necessary ingredients for topological superconductivity, the next chal-
lenge is to successfully obtain a zero bias Majorana excitation that can then be manipulated in braiding
operations.

Theoretical calculations show us that from the dispersion of chiral edge states we observe at the frontier
between a topological and a trivial superconductor, the only way to stabilize a well defined zero bias mode
is to introduce a vortex inside the cluster. In cylindrical symmetry we can separate the wave-function in
a radial (ψn,mj (r)) and an angular (eiθĴz) component. For a p-wave superconductor, the vortex allows us

3We applied the same gap subtraction procedure on fig. 3.6.



5.6. EXPERIMENTAL RESULTS 85

a

b

d

c

40 nm

Figure 5.15: Spectral signature of a disorder proof zero bias spectral signature: a. Topography
of a 100×100 nm2 area on a Pb/Si(111) sample in a mixture between linear and hexagonal devil staircase
phases. b. Zero bias conductance map of the same area. c. Spectra taken at the maximum of the
conductance map b. (red), on the ring surrounding this maximum (green) and on the bare monolayer
(blue). d. 65 nm long spatial and energy cut through the defect visible on b. along the white line of the
same figure.

to write a rotation operator Jz that commutes with the Hamiltonian of the form

Ĵz = L̂z + 1
2 σ̂z + nσ̂z, (5.25)

with Lz the angular momentum and n the vortex winding number. As we look for single solutions at
E = 0 we want it to be defined by a single quantum number n. For an odd value of n the eigenvalues mj

of Jz will take integer values. On the other hand, the electron-hole symmetry we look for implies that for
every positive energy solution ψmj ,E we have the corresponding negative energy solution ψ−mj ,−E . We
would thus have for an even value of n a coupling between the positive and negative energies solutions
of the states that will prevent the appearance of an isolated zero-bias mode. The only solution is then to
have mj = 0 for which n ∈ N and the phase of the wave-vector has an even number of winding around
the vortex.

We observed experimentally that for larger topological domains with size of the order of 20 nm, a
vortex forms in the center of the domain and drastically modifies the structure of the edge states. We
reached those experimental conditions by slightly increasing both the amount of Co deposited on the
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surface (1.10−3 ML instead of 0, 8.10−3 ML in the previous case) as well as the annealing time (4 min
30 sec instead of 1 min 30 sec in the previous case). The objects we obtained in these conditions have
a characteristic size of around 20 nm and present drastically different spectral signatures from what was
observed and described in the previous section.

Figure 5.16: Conductance maps of a Majorana bound state: Conductance maps at 4 different in-
gap energies (0 meV, 0.5 meV, 1 meV and 1.5 meV) showing the energy evolution of the spatial dispersion
of Majorana bound states.

We present on Figs. 5.15 and 5.16 the results obtained on a vortex observed inside of a topological
area4. Despite the different preparation conditions, the Pb phase of the monolayer is the one we had
achieved in the previous case and no significant difference can be observed as it can be seen on fig. 5.15.a.
When performing spectroscopy of the area presented on fig. 5.15.a we observe two different features at
the Fermi level. First we obtain a crown surrounding the topological domain as we had in the previous
case, but it is here accompanied with another state localized in the very center of the topological domain
characteristic of the presence of a vortex. The spectra taken at these two positions (in the center of the

4All of the results of this section were obtained with a normal tip and thus the data manipulations that were used in the
previous subsection in order to suppress the tip gap are not necessary here and the data analysis was done using the same
procedure as in all the others chapters of this thesis.
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cluster and in the outer crown) show clear zero-bias peaks with the center one exhibiting a very strong
amplitude as seen in fig. 5.15.c in red. On the outside of the topological domain we observe that the
dI/dV peaks collapse at EF for r → ∞. This evolution of the states is better seen by taking a line cut
across the magnetic cluster passing through the center peak. This cut is shown on fig. 5.15.d where the
bare superconducting spectrum has been subtracted in order to only leave the contrast of the in-gap states
in the LDOS plot. The behavior of the in-gap states is much different from what we had observed in the
case of the continuum of interface states. Here, due of the presence of the vortex, a zero energy level is
pinned at the high symmetry point of the system which corresponds to the center of the magnetic cluster.
This central state is connected with the interface states by a continuum of states that move towards the
gap edges before converging back to the Fermi level.

The question arises to explain why such topological effects were not observed in the last chapter for
large clusters. The simplest explanation consists in saying that due to the size of the clusters and the
growth method used to obtain them we cannot get a well ordered magnetic structure. Ordering is a
necessary condition as the Co may form Co silicide having non-ferromagnetic structures, that may not
fulfill the necessary condition to enter the topological regime by creating a magnetic field larger than the
critical field V >

√
∆2
S + µ2 (for the chiral case) or

√
∆2
S + µ2 > V >

√
∆2
S + ∆2

T (for the helical case).

5.6.3 Magnetization switches

On Fig. 5.15.b. we can observe a discontinuity in the conductance maps as for some lines we seem to lose
the zero bias signatures of the Majorana bound states. By comparing these jumps with the topography
we observe that no correlation can be established as the spectroscopic jumps are not visible by any means
in the topographic data. This eliminates the possibility of a tip instability that should be observed in
topography as well as in spectroscopy. By repeating the measurement from the top of the initial image
5.15.a. to the bottom of the same area we obtained the results presented on fig. 5.17.

On this figure we show that at one point of the spectroscopy measurement, the zero bias signatures
suddenly disappear. The transition is marked by a white dashed line in fig. 5.17.a. However we do not
lose the in-gap spectroscopic signal totally as shown in fig. 5.17.c. On this figure we show the conductance
map obtained at V = 0.14 meV that exhibit what looks a lot like YSR bound states. The spectra taken
in the top part and the bottom part of the scanning area are shown in figs. 5.17.b. and d. respectively.
What these spectra reveal is that the sudden disappearance of the zero bias Majorana bound states (on
the center and edge of the magnetic cluster) leaves some states at the gap edges (indicated by the two
orange arrows on fig. 5.17.d). We attribute the gap edge states to a YSR impurity band due to a domain
with in plane magnetization. The crown of the Majoranas is not observed anymore once the shift has
occured and the disorder sensitivity typical of YSR bound states is recovered for the gap edges states.

We interpret such drastic differences as a switching of the cluster magnetization from an out of plane
field (which leads to the formation of Majorana excitations) to an in plane field which does not satisfy
the conditions to enter the topological regime for reasons we evoked when discussing fig. 5.2. The sudden
shift of magnetization occurring at the exact point in time when the STM tip passes at the center of the
magnetic cluster leads us to attribute this effect to the tip electrical field or inelastic excitation reversing
the magnetization. Our explanation is supported by multiple observations of this effect on similar clusters
of comparable sizes. The spatial extension of the cluster can easily explain how, compared to the small
clusters of the previous section, the anisotropy of the system could make the in and out of plane magnetic
configurations almost equivalent. The tip disturbance (by its electric field or a current induced excitation
of the magnetization) would become sufficient to overcome the energy barrier between the in and out of
plane configuration and induce the switching.
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Figure 5.17: Bi-stability of the system and Majorana switching: a. Conductance map taken at
0 meV showing the abrupt transition while scanning between the presence and absence of the zero bias
peak. b. Spectra taken on the center spot (red) and outer crown (green) on the top part of the conductance
map. The arrow shows the position of the Majorana peak at the Fermi level. The blue spectrum is included
as a reference for the usual superconducting spectrum of the Pb monolayer c. Conductance map taken at
0.14 meV of the same area showing the Shiba contribution to the Majorana modes (on the top) and the
fully Shiba-like states (on the bottom). d. Spectra taken over the disordered YSR states in the bottom
part of the scanning area (green) and on the superconducting monolayer far from any magnetic defect
(blue). The two arrows indicate the position of the Shiba bound states at the gap edge. The conductance
maps were acquired by scanning from the top to the bottom of the scanning area.

5.7 Conclusion
In this chapter we addressed topological superconductivity by first detailing the ingredients necessary to
obtain it. We explained the way Rashba spin-orbit interaction modifies the superconducting ground states
by introducing triplet correlations. This discussion allowed us to plot the phase diagram of superconduc-
tivity as a function of the weight of the triplet order parameter ∆S and the Zeeman field amplitude Vz.
We then presented and discussed the results we obtained by growing magnetic clusters of Co covered by
a monolayer of Pb. We showed how the self-organizing Co clusters buried under the Pb monolayer act as
small local ferromagnets that induce edge states at the frontier between a topological superconductor and
a trivial one. Surprisingly, while we expected a single chiral state due to time reversal symmetry breaking
we obtained a pair of chiral states that we interpreted as a signature of the helical phase that is crossed
during the transition between the chiral and trivial phases.

When increasing the size of the clusters we showed that we can trap vortices inside the topological
and induce zero bias Majorana bound states. The existence of these bound states is determined by the
orientation of the Zeeman field that can be switched by using the tip of a STM. We hope to be able in
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future studies to better understand the shift mechanism in order to achieve a total control over the state
of the system and a full control of the Majorana excitations that could lead to braiding possibilities of
said Majoranas.
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Chapter 6

The Pb/Si(111) monolayer: A
playground for 2D physics

6.1 Introduction

As we have seen in the previous chapter the system Pb/Si(111) presents a large variety of structural
phases that depend on the nominal Pb coverage. In this chapter we will discussed results obtained
by STM/STS in the system Pb/Si(111) for non superconducting phases not discussed before. Unlike
the results presented in the two previous chapters about the

√
7 ×
√

3, HIC and SIC superconducting
phases, the results presented here are not yet fully understood or do not benefit from a full and complete
theoretical interpretation. Therefore this chapter more than the others will be mostly oriented towards
experiments and will be lighter on the theory side.

The first part of this chapter will deal with diluted phases of Pb/Si(111) (namely the 3×3 and
√

3×
√

3
phases). We will present the signatures of a quasi-Mott insulator phase and its behavior when placed in
proximity to metallic phases. We will conclude by presenting results still not fully understood covering our
work on the proximity effect between the

√
7×
√

3 and 3× 3 phases where one phase is superconducting
and the second one is nearly Mott-insulating.

The part concerning the low density monolayer phases in the normal state was performed in collabo-
ration with V. Cherkez and R. Federicci.

6.2 Induced metallicity

6.2.1 Phase coexistence in Pb/Si(111) systems

In this section we focus on the metallic and insulating phases of Pb/Si(111). We will mostly focus on the
metallic

√
7×
√

3 and 3× 3 phases and insulating disordered
√

3×
√

3 phase.
When growing monolayer samples it is difficult to obtain homogeneous phases over the whole sample.

The most common case is the one where we obtain a mixture of phases over different areas of the sample.
This configuration leads to a system globally in the

√
7×
√

3 phase with patches of 3×3 at the step edges.
We present on fig. 6.1.a a paradigmatic example of what one should expect for long annealing of a

Pb/Si(111) sample. On this figure we see two domains of
√

7×
√

3 phase on the bottom and right side of
the image. These phases are in contact with a 3 × 3 domain and are separated from it by a well visible
boundary. Inside the 3×3 domain we also observe a disordered

√
3×
√

3 part which connects continuously
to the 3 × 3 phase (see for another example fig. 6.1.b on which the unit cells of the

√
3 ×
√

3 and 3 × 3
are represented using a red losange and a blue hexagon respectively). The difference in the connection
between the 3×3 to the

√
3×
√

3 and the connection between the 3×3 to the
√

7×
√

3 is easily explained
by the fact that the 3× 3 is derived from the

√
3×
√

3 through a temperature dependent phase transition

91
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Figure 6.1: Topography and spectroscopy of Pb/Si(111) phases mixture: a. Topography of a
62×62 nm2 area showing the coexistence on the same terrace of

√
7×
√

3, 3× 3 and disordered
√

3×
√

3
phases. b. Topography of a 15× 33 nm2 area showing the structure of the disordered

√
3 ×
√

3 phase.
The red diamond and blue hexagon indicate the primitive cells of the

√
3 ×
√

3 and 3 × 3 structures
respectively. c.-e. Spectroscopic data on the same area for two energies (-319 meV for c., -95 meV for d.
and 37 meV for e.) showing the different electronic behaviors in the various phases. f. Typical spectra
measured for the

√
7×
√

3, 3× 3 and disordered 3× 3 case.
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under 86 K [91]. In these two phases the atomic arrangement is the same in the xy plane and the difference
between the two structures comes from a difference in the vertical atomic arrangement. There has been
several mechanism proposed to explain this transition [140, 141, 91, 142, 143, 144] that has also been
observed in similar systems such as Pb/Ge(111) and Sn/Ge(111) [145]. Recent unpublished calculations
by M. Calandra and C. Tresca have shown that this effect is purely structural and also affects the first
three top Si layers. They calculated a transition temperature of 90 K, very close to the experimental
value of 86 K.

This continuous shift in phases is not observed between the 3 × 3 and
√

7 ×
√

3 because in this case
the primitive cells of both lattices deeply changes its symmetry from hexagonal to rectangular. This
difference leads to the appearance of domain walls between the two structures that can be clearly seen in
fig. 6.1.a (blue arrows).

Domain walls can also be seen when looking at the connection between two
√

7 ×
√

3 domains with
different orientations (green arrows). On the same figure we can clearly observe the specific pattern at
the interface of two lines connecting to the interface followed by one seemingly disconnected line (green
arrow). The same kind of behavior appears at the connection with the 3× 3 at the bottom of the image
(blue arrow). We see that depending on the orientation of the

√
7 ×
√

3 lattice the connection of the
chains is either continuous (on the vertical interface) or discontinuous (at the horizontal interface).

These boundaries have a direct impact on the electronic properties of the system. We present on figs.
6.1.c. d. and e. three conductance maps at -319 meV and -95 meV and 37 meV. These maps allow us to
correlate the topography with the electronic distribution. On the conductance map 6.1.e we can clearly
see the boundary state appear in blue at the interface between 3× 3 and

√
7×
√

3 (purple arrows).

On top of that we also clearly see some defects that are difficult to spot on the topography alone. The
most striking one is the fork shaped boundary crossing the 3×3 area signaled by a dashed contour on fig.
6.1.a. This defect is visible in the topography obviously but is extremely contrasted in the conductance
map 6.1.c. and d. This defect actually corresponds to a

√
3 ×
√

3 antiphase domain boundary between
two 3 × 3 domains and we can see how it connects to the disordered phase on the left side of the area.
This antiphase domain boundary corresponds to an area where two mismatched lattices encounter. A
closer look at the 3× 3 lattice below and above the antiphase boundary reveals a shift of the dark areas
seen in topography by one atomic lattice constant.

If we now look at the disordered
√

3 ×
√

3 part of the scanning area (another example is shown on
6.1.b) on the left side we can observe how the topographic disorder directly influences the electronic
distribution. Obviously the disorder on the topography seems to be fixed as dark spots and bright spots
are well defined spatially. However this is not the case when looking at the conductance maps. At strong
negative bias on fig. 6.1.c. (-320 meV) the topographic defects almost perfectly match the spectroscopy
when referring to the position of said defects. By moving towards positive bias we see that the disorder
does extend to the well ordered 3× 3 part of the scanning area with a clear tendency to be favored inside
the twinning “fork”. As we will see in the following this behavior corresponds to an induced gap inside
the 3× 3 phase.

A direct consequence of this phase between the
√

3 ×
√

7 and 3 × 3 is that a bad connection of the
different patches might suppress conductivity on the whole sample. For instance while the

√
7 ×
√

3
becomes superconducting under 1.52 K [83], in the case where a large part of the sample is in the 3 × 3
phase, the STS signal may not present any gap. It is not clear if this effect is caused by an inverse
proximity effect of the normal parts (3×3) on the superconducting parts or if the impossibility to measure
a superconducting gap originates from more subtle effects as Coulombic effects induced by the other
phases. In this section we are in a case where we were not able to observe any low energy features such
as superconducting gaps and we thus focused only on the large energy scale behavior of the coexistence
of the different Pb/Si phases.
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a

c d

e f

b

Figure 6.2: Spectroscopy of defects in metallic Pb/Si monolayer: a. Conductance map of a
500×500 nm2 of the system Pb/Si(111) showing a coexistence of phases taken at an energy of -209 meV.
b. Spectra taken on the

√
7 ×
√

3 phase either on top of the P defects (red) or on a defect free region
(blue) between ±900 meV . The cyan curve is the mean spectrum of the

√
7 ×
√

3 phase averaged over
a disc of 40 nm radius. The red and blue arrows indicate the position of the states associated to the
dopants. c.-f. Conductance maps of the same area 500×500 nm2 taken at 4 different energies.
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6.2.2 High energy spectroscopy of the Pb/Si(111) phases

A remark that we can make on the data from fig. 6.1 concerns the
√

7 ×
√

3 domains on the right and
bottom side of the scanning area. On the conductance map taken at -320 meV areas about a dozen
nanometers of size appear over which we observe an increase of the conductance, one of them is indicated
by a red arrow. The density of these areas and the fact that we can identify very localized defects inside
leads us to link them to dopants from the Si substrate. The associated spectral signature would thus be
associated to the phosphorus rather than the Si or the Pb monolayer. This kind of defects can be seen
on a larger scale on fig. 6.2.a.

Atoms

Hollows

15 nm

3×3

√3×√7

√3×√3

diso
rd

ered

√3×√7

Figure 6.3: LDOS localization on 3×3 structure: a. Conductance map at -320 meV (identical to
6.1.c). b. Spectra taken either on the “hollows” on a. (in red) or on the "atoms" (in blue) showing the
variation of the atomic distribution at the atomic scale. The two thickest curves correspond to the mean
value of the regular size curves of the same color. The inset shows the sites corresponding to atoms and
hollows on a topography of the 3× 3 phase.

The spectra associated to the P dopants are shown on fig. 6.2.b. On this figure we took a sample of
six spectra, three taken on top of the buried defects (in red) and three taken away from these defects (in
blue). The main spectroscopic difference between those two sets of spectra is that while without defects
a small peaks appears in the conductance around -400 meV, in the presence of defects this peak is shifted
towards the Fermi level around -270 meV. As a consequence the P can be seen in the conductance maps
at all energies between -478 meV and -95 meV. We do not observe any spectroscopic difference at positive
biases and therefore the clusters are not seen at any positive energy (see fig. 6.2). Strangely enough the
P is seen only on the

√
7×
√

3 and does not seem to leave any kind of signature on the 3×3 phase.
In the 3 × 3 phase we observe a strong localization effect that can be seen on fig. 6.1.c., d. and e.

On these figures we observe a strong localization of the electronic states. For convenience we will refer
to the high conductance sites on fig. 6.1.c as atoms and the lower conductance sites as hollows as they
respectively relate to the bright and dark spots seen on the topographic map 6.1.a.
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The spectra associated to the atoms and the hollows are shown on fig. 6.3.b together with a conduc-
tance map identical to 6.1.b. These spectra show that even if the two configurations share the same global
shape, the spectral weight of atoms is larger than the one of hollows above -117 meV. For any other bias
within the investigated range the ratio is inverted.

If we enlarge the spectroscopic window and look at the 3× 3 phase globally, we observe that around
±300 meV the spectra exhibit two peaks (see blue curve on fig. 6.4.c). These two peaks are also present in
the disordered

√
3×
√

3 phase but are shifted around ±400 meV and surround a 300 meV gap symmetrical
around the Fermi level (yellow curve). Such a gap opening in the presence of disorder hints toward an
Anderson localization effect [146] in the

√
3×
√

3 phase. On the other hand, the sharp localization of the
electronic states of the 3× 3 phases as well as the energy symmetrical peaks (potentially Hubbard bands
according to DFT + U calculations) are strong indicator that this phase is actually close to be a Mott
insulator [147] or that it at least exhibits strong electronic correlations. The Mott picture is consistent
with what was observed for the analogous system Sn/Si(111) in the (

√
3×
√

3) phase [148] which is closely
related to Pb/Si.

Figure 6.4: Effect of the interaction between different phases: a. Topography of an area
500×500 nm2 showing the usual appearance of a sample with coexistence of phases 3 × 3,

√
7 ×
√

3
and disordered

√
3 ×
√

3. b. Conductance map of the same area at the energy of 71 meV. c. Spectra
selected over the different phases seen on a. and b. The spectra are measured at the positions indicated
on figures a. and .b by the points of the same color.

6.2.3 Modified behavior of the
√

7×
√

3 by proximity with disordered
√

3×
√

3 regions

An interesting feature observable on fig. 6.4 is the inclusion of a small patch of
√

7 ×
√

3 surrounded
by disordered

√
3 ×
√

3. This part of the scanning area is located at the position of the red dot on figs.
6.4.a. and b. The corresponding characteristic spectra is shown in red on fig. 6.4 c. This inclusion of
the
√

7×
√

3 patch strongly modifies its characteristic density of states compared to the usual
√

7×
√

3
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case (green curve) as we observe that a full gap (red curve), of the same size as the one of the disordered√
3×
√

3 phase, is induced.
Around -300 meV, at the energy where we were previously able to image the underlying dopants, we

observe a strong diminution of the density of states that is counterbalanced by the appearance of a large
“bump” at 600 meV. This bump hides a small features around 320 meV that corresponds to the states
observed in the green and black spectra of the homogeneous

√
7 ×
√

3 phase and that are an intrinsic
feature of this phase.

On fig. 6.5 we observe a similar situation where we have a triangular island of
√

7×
√

3 surrounded by
both ordered 3× 3 and disordered

√
3×
√

3. In this configuration, the LDOS measured inside the island
more closely resembles the usual

√
7×
√

3 density of states. However, we do observe a diminution of the
LDOS around the Fermi level that in this case is closer to the behavior of the 3 × 3 phase. Unlike the
case of a fully insulating disordered

√
3×
√

3 surrounding neighborhood we do not measure any dramatic
variation around -300 meV.

Figure 6.5: Effect of the interaction between different phases: a. Topography of an area 80×80 nm2

showing the coexistence of the phases
√

7×
√

3, 3× 3 and disordered
√

3×
√

3. b. Conductance map of
the same area selected at the energy of 94 meV. c. Spectra selected over the different phases seen on b.
and c. The spectra are taken from the positions indicated on figures a. and .b by the points of the same
color.

We have seen in this section that the 3 × 3 phase possesses a well reconstructed structure and is
quasi-Mott insulator as our spectroscopic measurements and DFT calculations show. On the other hand,
the
√

3×
√

3 behaves as a fully gapped Anderson insulator. Complementary measurements and DFT+U
calculations are being performed in order to model our experimental results. In the following section we
will discuss the precise way these two structure 3×3 and disordered

√
3×
√

3 coexist and study the spatial
evolution of the localization gap.
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6.2.4 Proximity between disordered
√

3×
√

3 and 3× 3 ordered regions

Because the two phases ordered 3×3 and disordered
√

3×
√

3 derive from one another, this kind of system
in which we observe the coexistence of both phases might be an interesting playground for studying the
interplay between Mott and Anderson localization. We present on fig. 6.6 the measurements performed
over a 50×46 nm2 area in which we go continuously from a disordered

√
3×
√

3 region to a well ordered
3× 3 phase. On fig. 6.6.e we show the individual spectra measured continuously from the

√
3×
√

3 part
of the system (blue spectra) to the 3× 3 crystalline part (red spectra). On this figure we can follow the
localization gap ('200 meV) that we already discussed above as it induced a smaller gap (' 100 meV) in
the 3× 3. This small gap of the 3× 3 is not present in cases where the

√
3×
√

3 is not in close contact.

Because the 3× 3 is not insulating on its own, the continuity with the fully gapped
√

3×
√

3 can be
seen as a crossover from low to high disorder for Anderson localization [149, 146, 150] in a Mott system.

Figure 6.6: Proximity effect between a metal and an insulator: a. Topography of a 50×46 nm2

area showing the coexistence of the 3× 3 phase (on the right) and the disordered
√

3×
√

3 phase (on the
left). b.-d. Conductance maps taken at -5 meV, 169 meV and 370 meV of the same area. e. Cut along
the line indicated on a. showing the spatial evolution of the insulating gap transmitted by proximity into
the 3× 3 area.

The coexistence of the two phases can also be seen on fig. 6.5 which corresponds to the same sample
as the one presented on fig. 6.1, where we can recognize the characteristic fork in the bottom of the
topography and spectroscopy that can be seen in both images. As we showed on fig. 6.4, we observe the
±300 meV bands of the 3× 3 structure as well as the gapped

√
3×
√

3 phase surrounded by its own two
sidebands at larger energies.
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6.3 Superconducting proximity effect between
√

7×
√

3 and 3× 3
The superconducting proximity effect describes how the properties of a superconductor can be induced to
either another superconductor with different characteristic parameters, a normal metal or an insulator.
If a normal metal (that we will call N) is in good electrical contact with a superconductor (that we will
call S), the Cooper pairs from the superconductor can “leak” to the normal metal and as a consequence
modify the electronic properties of the normal metal. This effect has been widely studied during the
1960’s [151, 152] and was recently revitalized by the possibilities to study this effect at much smaller
length and energy scales [153]. This physical effect originates from the fact that only Cooper pairs can
penetrate a superconductor below the gap energy |E| < ∆. It is however possible for an incoming electron
from the normal part to create an electron-hole pair with opposite spins, where the hole is reflected and a
second electron is transmitted and forms with the original incoming electron a Cooper pair. This process
thus conserves the spin and charge of the system.

Another way to see this process is to have a Cooper pair that passes from the superconducting part
to the normal part and progressively looses its coherence due to the absence of a "glue" for the electrons.
This pair becomes a pair of time-reversed electron states that propagate coherently over a distance LC
that is given in diffusive metals by LC = min{

√
~D/E,Lφ} with D the diffusion constant of the system,

E the electron state energy and Lφ the phase-coherence length in N . This diffusive case is the one we are
working in as we have ξ ' 50 nm for the superconducting coherence length and `e ' 4 nm for the elastic
mean free path in the monolayer systems.

Such Cooper pair leakage modifies the local density of states of the normal metal over a distance
LC from the S −N interface. This modification has been spatially resolved in recent years by means of
tunneling probes [154, 155] as well as STM/STS techniques applied to mesoscopic systems [156, 157, 158,
159, 160]. Very recently, the considerable progress in the controlled growth of atomically clean materials
under ultrahigh vacuum conditions has made it possible to probe the proximity effect with high spatial
and energy resolution in in situ STM/STS experiments [161, 162].

We will describe here the coexistence between small non-superconducting quasi-Hubbard 3×3 patches
and the superconducting

√
7×
√

3 phase.
We discussed in the previous sections how the 3 × 3 phase presented a quasi-Hubbard behavior and

the disordered
√

3×
√

3 an Anderson localization effect. In such a configuration of the sample we were not
able to probe the superconducting gap of the adjacent

√
7×
√

3 phase due to a transport gap induced by
the disordered

√
3×
√

3 phase in the whole sample. It thus became necessary to slightly change our recipe
in order to decrease the disorder and get rid of the transport gap by being closer to the clean

√
7 ×
√

3
coverage.

The sample was prepared by depositing 1.7 ML of Pb at ambient temperature before being annealed
at 375◦C for 3 minutes (plus two minutes during which we slowly increased the temperature from 0◦C to
375◦C. Compared to the recipe used to obtain a full superconducting system in a dense phase like SIC or
HIC), the Pb covering from which we start is very low, thus the annealing will lead to a large depletion
of Pb at the step edges of the substrate and the appearance of many 3× 3 flakes along them. More rarely
we also observe these flakes appearing in the middle of the terraces. The typical size of the flakes can
vary between 10 nm and more than 100 nm1. Despite the appearance of these 3× 3 flakes, the system is
globally superconducting and in the

√
7×
√

3 phase with domains of a typical size of about 500 nm.
On fig. 6.7.a we show the topography of a 102×89 nm2 area in such configuration. We see on this

figure a triangular patch of 3 × 3 surrounded by
√

7 ×
√

3 domains (lower left of the image) and a step
edge (top right of the image). Even if the 3×3 part is well reconstructed, it still contains local defects like
missing or adatoms clearly visible on the topography. In this configuration, the

√
7×
√

3 reconstruction is
superconducting and the 3×3 is a strongly correlated metal and presents two side bands centered around
±300 meV (see fig. 6.4.c) due to the proximity to a Mott transition.

1The 3× 3 flakes tend to be elongated along the steps edges and in this direction we have observed continuous domains
of more than 500 nm while in the perpendicular direction the typical extension of these flakes is about 50 nm
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Figure 6.7: Proximity effect between
√

7 ×
√

3 and 3 × 3 phases: a. Topography of an area
102×89 nm2 showing the coexistence between a

√
7 ×
√

3 domain and a 3 × 3 domain. b. Conductance
map of the corresponding area at 0.1 meV. c. Selected spectra over the

√
7 ×
√

3 phase (green), at the
center of the ring in the 3 × 3 phase (blue) and at a point of maximum intensity of the ring (red). The
color dots on the conductance map refer to the color of the spectra on c.

By performing STS on this system, we observe the appearance of an induced gap in the 3 × 3 flake
of the same size as the superconducting gap (see fig. 6.7.c). Inside this gap, two spatially fluctuating
peaks are measured as presented on the conductance map acquired at 0.1 meV on fig. 6.7.b. These in-gap
states appear in the form of rings centered around the bottom left corner of the 3×3 flake, with a pseudo
periodicity depending on the direction and the distance from the flake edges.

On the conductance map at the Fermi level we observe that these states are also present in the
√

7×
√

3
phase very close from the interface with the 3× 3 flake.

Due to the size of the superconducting gap and therefore the size of the induced gap, the in-gap states
we observe are very close from each other. Because of the thermal broadening of the spectra they seem at
first to overlap in one single band. On fig. 6.8 we show a line cut through the oscillating pattern starting
from the center of the oscillations (left) and going on the other atomic terrace (right). On this figure
we subtracted the bare superconducting

√
7 ×
√

3 mean spectrum in order to have a better contrast on
the in-gap states. Doing so seems to show that there are two separated in-gap states that overlap due to
thermal broadening. However we cannot exclude that these states correspond to a continuum of in-gap
states. Another example of this kind of proximity is presented on fig 6.9.

We tried many different approaches to interpret these in-gap states but unfortunately none of them
were able to reproduce the observed pattern. We will describe below these different approaches and the
results obtained.

The first model we tried to implement in order to reproduce the spectroscopic features was to consider
Andreev states in ballistic regime (in a quantum billiard configuration) induced by the inclusion of a
normal metal between superconducting electrodes. Andreev states have been widely studied in the context
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Figure 6.8: Cut through the oscillation pattern of Fig. 6.7: Spectral line cut over a distance of
70 nm through the 3× 3 proximity area subtracted from the mean spectrum of the

√
7×
√

3 phase. The
direction of the cut is indicated by a white dashed arrow on the topography 6.7.a. The dashed white line
represents the position of the step seen in topography in the top right corner.

of nanowires for SN [163] or SNS junctions [164, 165] or atomic contacts [166, 167]. The principle of these
Andreev states stems from the fact that electrons at energies below the superconducting gap, incoming
from a normal electrode cannot penetrate a superconductor without reflecting a hole inside the normal
electrode in order to create a Cooper pair that is allowed to enter the superconductor at energies below
the energy of the superconducting gap. Then, when multiple reflections occur from both superconducting
electrodes in an SNS system, a gap appears inside the normal part accompanied with in-gap states whose
energy will depend on the size of the N part and the phase difference between the two superconducting
electrodes.

In the context of our enclosed 3 × 3 patch, we expect a superconducting gap to be induced by the√
7×
√

3 and to observe these in-gap Andreev bound states. These states can easily be obtained in 1D by
using a Bogoliubov de Gennes tight binding calculation. We tried to perform the same calculation in 2D
by considering diverse simple geometrical shapes for the normal zone (square, circle, triangle) in order to
understand how the form of the flake would modify the shape of the Andreev eigen-modes. Unsurprisingly
these type of calculations did not reproduce the circular shape of the experimentally observed in-gap states.
Instead we found the eigen-modes of the shape of the normal area (see figs. 6.10.a). Another issue of
this type of calculation is that it relies on the diagonalization of the full band and thus necessitates very
large arrays in order to obtain the sufficient energetic resolution. Indeed generally the superconducting
gap is much smaller than the band energy. For instance for a gap of the order of 1/100 of the band size,
if we want about a hundred points in the gap we would need a total of 10.000 points for the full band
and thus the same number of atoms. In a 4×4 formalism we would have to diagonalize matrices of size
40.000×40.000. This kind of calculation thus rapidly becomes unmanageable as the size of the matrix we
wish to diagonalize increases.

The second approach we followed was based on an optical analogy. We imagined that inside a trian-
gular area a particle would reflect on the edges multiple times. Because in our system the three sides of
the flake are not equivalent2, we can consider that the reflectivity of the three sides of the triangle could
have different physical properties. For instance the electronic connection at the edges is far less efficient
than it is on the terrace and particles arriving at the top side of the flake would be more reflected than the
ones arriving at the sides. By summing the contribution for different initial angles and positions over the

2As two are directly connected to the
√

7×
√

3 and one consists of the step edge.
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20 nm

a b

Figure 6.9: Another example of proximity effect between
√

7×
√

3 and 3×3 phases: a. Topography
of a 116×73 nm2 area showing the inclusion of a triangular patch of 3×3 in the middle of an homogeneous√

7×
√

3 domain. b. Spectroscopy of the same area showing the characteristic rings.

whole system we should be able to reproduce the interference pattern produced by the multiple reflections
on the edges. Like in the previous case (see for instance fig. 6.10.b), we did not obtain satisfying results
and the eigenmodes of the triangles were the one we observed in the end.

Finally the last model we tried to apply to this system is a resistance model. By considering the STM
tip as one electrode and the

√
7×
√

3 as another one we tried to calculate what would be the resistance
seen by an electron injected inside the 3 × 3 flake. The idea behind this model is that the observed
spectroscopic signature might come not from real electronic states inherent to our system but rather to
an electric field induced by our STM tip. When injecting an electron at a point M of the 3 × 3 flake it
would try to return to the electrodes by finding the closest path to the

√
7×
√

3 reservoir. By calculating
the equivalent resistance at each point of a triangle we did observe a smooth evolution from the center
of the triangle to the edges with a rapid divergence at the edges as expected. However in this case we
did not reproduce the oscillating pattern we observe. A step we did not have the time to execute would
consist into solving the Schrödinger equation for an electric potential following the equivalent resistance
map calculated by this model. One could expect to observe eigenmodes that might eventually give both
the oscillating pattern and the circular shape we observe experimentally.

The conclusion we draw from these theoretical failures is that the correlations in this system should
probably be incorporated in the model and not neglected. The main issue with this conclusion is that
the easy to use Bogoliubov de Gennes formalism cannot be applied anymore as Hubbard term in the
Hamiltonian makes use of 4 different operators and therefore the spinors and the matrix form of the
Hamiltonian cannot be used.

6.4 Conclusion
In this chapter we discussed the versatility of the Pb/Si(111) monolayer in the way the different phases
could be combined in order to study interesting proximity effects based on their own spectral characteris-
tics. We first presented these spectral characteristics and showed that the 3×3 and

√
3×3 phases present

strong electronic correlation effects (Mottness) and that the disorder of the
√

3×
√

3 opens an Anderson
localization gap. We showed how contacting these two phases modifies continuously the localization gap
by proximity.

Finally we discussed the case of the superconducting proximity between a superconductor and a
correlated metal where we have observed an induced superconducting gap as well as in-gap Andreev
bound states appearing spatially in the form of rings. The calculation we did were not able to reproduce
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a b

Figure 6.10: Attempts to reproduce the effect of the proximity effect between a superconduc-
tor and a quasi-Hubbard system: a. Bogoliubov-de Gennes calculation for a billiard shaped normal
area surrounded by a superconducting area showing some of the eigenmodes of the system. b. Reflexions
model in a triangular domain.

the experimental data and more theoretical work will be needed in the future in order to understand the
geometry of these states probably caused by the Coulombic interaction in the 3× 3 phase.
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Chapter 7

Superconducting proximity effect

7.1 Introduction

The proximity effect is obviously not exclusive to S − N systems. For instance if a superconductor S1
described by its critical temperature Tc1 and its energy gap ∆1 is brought into contact with another
superconductor S2 with its own critical temperature Tc2 < Tc1 and energy gap ∆2 < ∆1, the LDOS of
both superconductors near the interface will feel the effect of the other side and be modified accordingly.
At low enough temperatures (T < Tc2) the modification of the LDOS will be significant within the energy
interval |E| ∈ [∆1,∆2] and may be observable over a distance LCi from the interface. In the intermediate
case where Tc2 < T < Tc1 one expects the proximity effect to induce a finite local order parameter in a
formally non-superconducting S2 by means of a nonzero attractive pairing interaction λ2 existing in S2.
Such mechanism should result in a proximity-induced interface superconductivity. A subtlety emerges as
we should make clear that order parameter and superconducting correlations are two different things. On
one side the order parameter ∆(r) emerges from the pairing interaction V (r) that is strictly equal to 0
in a normal metal. On the other side the superconducting correlations F (r) are related to 〈ψ̂↑(r)ψ̂↓(r)〉.
Both quantities are related by ∆(r) = V (r)F (r). Therefore for a normal metal with V = 0 we would
obtain ∆ = 0 but in no case forces F to get suppressed. The superconducting correlations stay finite close
to the interface between a superconductor and a normal metal due to the propagation of Cooper pairs in
the normal area.

To our best knowledge, except from the theoretical and qualitative discussion from the 1960’s [151,
152], no experiment has ever been reported in which this effect has been spatially resolved before our
work.

7.2 System

We study the case of two superconductors S1 and S2 in close contact, a study that was published in
[168]. The two superconductors are respectively the SIC monolayer that covers most of our sample and
a 7 ML high Pb nano-island. This sample was obtained following the same basic recipe as previously
discussed; only vary the initial quantity of Pb deposited on the surface and the time and temperature of
the annealing. In this case, after preparing the Si by heating it at 1200◦C in order to obtain the 7 × 7
reconstruction, we deposited 1.65 ML of Pb at room temperature before annealing the sample at 230◦C
[169]. This procedure leads to a

√
7×
√

3 that can be continuously transformed into a denser SIC phase
by adding 0.2 ML at room temperature onto the sample. As a result of a Stransky Krastanow growth
[170] once the SIC monolayer is completed, the system grows islands from the excess of Pb. The Pb
islands are mostly nanometer sized 1 ML high and a few are 5 to 7 ML high with size typically larger than
100 nm with a distribution of one every µm2. The 3D topography of the system is presented in false colors
spectroscopy on fig. 7.1.a. The superconducting characteristics of these islands are slightly under the bulk
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Figure 7.1: Proximity effect between two superconductors at 0.3 K: (a) Topographic STM image
of the sample showing the Pb nano-island S1 connected to the striped incommensurate Pb monolayer S2.
The superposed color-coded spectroscopy map at E = −0.3 meV allows to visualize the proximity effect.
256× 256 spectra were measured in the STS map. (b) Spatial and energy evolution of the experimental
tunneling conductance spectra dI/dV (V, x) across the junction (3D view). One spectrum is plotted every
1 nm and highlighted by a black line every 10 nm. (c) Color-coded experimental dI/dV (V, x) spectra
across the interface. One spectrum is plotted every nanometer. (d) Selected local tunneling spectra
(dots). The last spectrum measured on the top flat part of the island before the edge is denoted by -0 nm.
The first spectrum measured on the SIC monolayer is denoted by +0 nm. The distance between the
+0 nm and -0 nm spectra is about 1 nm. (e) Color-coded computed dI/dV (V, x) across the interface.
(f) Spatial evolution of the energy of the peak maximum Epeak(x) across the interface. The experimental
results (symbols) are nicely reproduced by self-consistent calculation of the order parameter (red solid
line), while the red dashed line corresponds to the non-self-consistent results. The evolution of the order
parameter is shown by black lines: self-consistent (solid) and non-self-consistent (dashed).

Pb but much larger than the monolayer SIC phase as we have TC1 ' 6.2 K and ∆1 ' 1.2 meV. On the
other hand, the monolayer characteristic superconducting parameters are TC2 ' 1.8 K and ∆2 ' 0.3 meV
[83, 171].

7.3 Results at 300 mK

The results obtained at 300 mK (for T < Tc2 < Tc1)on this system are summarized on fig. 7.1 (a) to (f).
At this temperature the two electrodes S1 and S2 are superconducting and the “stronger” superconductor
S1 will inject Cooper pairs into the “weaker” S2. On fig. 7.1.a the superimposed color code is the
conductance map obtained at -0.3 meV. This bias value corresponds to the small gap S2. On this figure
the non perturbed S2 appears in blue (outside the small gap) while S1 appears in red (inside the gap).
The yellow color allows to visualize in real space the proximity effect. Another way to visualize this effect
is by averaging the different spectra at a given distance from the interface as shown on fig. 7.1.(b), (c)
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and (d). A striking feature observed on this data is the sharp discontinuity at the interface (occurring
over less than 1 nm) that is followed by a smooth spatial evolution in both S1 and S2 toward their bulk
form. In S2 the evolution from the interface spectrum (B) to the reservoir spectrum (D, far from the
interface) is soft and can be followed over more than 100 nm.

Because S1 acts as the “stronger” superconductor, the inverse proximity effect where a superconductor
with a smaller gap tends to diminish the superconducting correlation in the larger gap system, is extremely
small. This inverse proximity effect is better seen on fig. 7.2.c. at -1.06 meV. For the inverse proximity
effect in S1 this evolution can be seen over approximately 60 nm.

Before describing how the proximity effect is modified at 2 K where S2 is in its normal states we
will discuss the theoretical framework of the Usadel equations to better understand our observations.
Most theoretical studies of the proximity effect between two superconducting systems have focused on
the analysis of the critical temperature using either the Ginzburg-Landau theory or the linearized Gorkov
equations [152] which are only valid close to the critical temperature of the whole system. Here we want
to be able to describe the local spectra at arbitrary temperatures and we will use the Usadel approach
[172]. This approach summarizes the quasiclassical theory of superconductivity in the diffusive limit,
where the mean free path is smaller that the superconducting coherence length ξ =

√
~D/∆. The

quasiclassical theory describes all the equilibrium properties in terms of a momentum-averaged retarded
Green’s function Ĝ(R, E) which depends on position R and energy E (see appendix .1 for a discussion
of the Green’s function formalism). This Green’s function is a 2× 2 matrix in the electron-hole (Nambu)
from whose components we will be able to extract the values of the LDOS and the superconducting order
parameter.

Ĝ =
(
g f

f̃ g̃

)
. (7.1)

In the case where the inelastic and phase-breaking interactions are neglected, the propagator Ĝ(R, E)
satisfies the following equation [172]

~D
π
∇(Ĝ∇Ĝ) + [Eτz + ∆̂, Ĝ] = 0, (7.2)

where τz is the Pauli matrix in electron-hole space and

∆̂ =
(

0 ∆(R)
∆∗(R) 0

)
, (7.3)

where ∆(R) is the space dependent order parameter that needs to be determined self-consistently via the
following equation (equivalent to eq.1.28)

∆(R) = V

∫ εc

−εc

dE

2π ={f(R, E)} tanh
(
βE

2

)
. (7.4)

In this equation β = 1/kBT , V is the superconducting coupling constant and εc is the cutoff energy.
These two parameters can be eliminated in favor of the critical temperature of the system (in absence of
proximity effect) in the usual manner. In our case, as the two reservoirs S1 and S2 will not present any
phase difference, the order parameter ∆ can be chosen to be real, as it was implicitly done in 7.4.

To solve the Usadel equations we will model our system as two superconducting reservoirs R1 and R2
connected by a proximity zone in 1D. Due to the thickness difference between S1 and S2, we will consider
that S1 is a perfect reservoir R1 in which the order parameter ∆1 remains constant and unmodified at
the interface. The inverse proximity effect will thus not be taken into account. S2 on the other side will
be approximated as a semi-infinite wire with a constant pairing interaction λ(R) = λ2 with a critical
temperature TC2.

The 1D Usadel equations were solved by J. C. Cuevas following [173] using the Ricatti parametriza-
tion [174] by describing the junction interface using Nazarov’s boundary conditions, valid for arbitrary
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Figure 7.2: Conductance maps of a 311×311 nm2 area at 300 mK: a.-d. Conductance maps taken
at the energies of -1.06 meV, -0.77 meV, -0.34 meV and 0 meV respectively.



7.4. RESULTS AT 2 K 109

transparency [175]. In order to well describe the boundary conditions, a key parameter is the effective
transparency coefficient r that can be roughly defined as the ratio between the resistances of the S1 − S2
barrier and of the monolayer1. Within this model, the LDOS ρ(x,E) can be computed as a function of
the distance from the interface x as ρ(x,E) = −={g(x,E)}/π, while the normalized tunneling spectrum
is obtained by making use of eq. 1.37.

In order to obtain the parameters of this model we first fixed the bulk gaps in S1 and S2 by performing
a BCS fit of their local tunneling spectra obtained far from the interface. The best fits we obtained were for
∆1 = 1.20 meV and ∆2 = 0.23 meV for an effective electron temperature of 0.55 K (slightly higher than the
base temperature of our STM). Then, we determined the value of the reflectivity coefficient r by adjusting
the discontinuity in the spectra observed at the interface leading to a value r = 0.02 corresponding to
a highly transparent yet non perfect interface. Finally, the value of the diffusion constant D2 is fixed in
order to reproduce the spatial dependence of the energy of the spectral maximum Epeak (x > 0) (see fig.
7.1. f). We obtained a value of D2 ' 7.3 cm2.s−1, which corresponds to a coherence length ξ2 ' 45.7 nm,
in good agreement with the ξ2 value extracted from the analysis of the vortex core profile in the SIC
phase ([83] and in our own analysis in fig. 4.2.c). Moreover, the value of D2 suggests that the mean free
path in the monolayer is of the order of 4 nm and is therefore much smaller than ξ2, which justifies the
Usadel approach in this problem2.

Fig. 7.1.f shows the spatial evolution of the peak height both as experimentally measured (blue dots)
and numerically calculated with (solid red line) and without (dashed red line) self-consistency on the
order parameter, i.e. ∆ = cte or ∆(r) as given from equation 7.4. In the case where self-consistency
is not implemented, the calculated spatial dependence Epeak(x) does not follow the experimental data.
The jump at the interface is also well captured and fits the experimental data nicely. On the same
figure we show the self-consistent order parameter ∆(x) (in black) in the monolayer. This parameter
exhibits a jump at the island edge and decays gradually to the S2 bulk value within 80− 100 nm. These
results underline the importance of fully self-consistent calculations which is in any case required based
on fundamental principles. In fig. 7.1.e we show the full dI/dV (V, x) spectra obtained from the solution
of the Usadel equations using the parameter values determined above. The theory clearly reproduces all
the salient features of the experimental results shown on figs. 7.1.(c) and 7.1.(d).

7.4 Results at 2 K
We now turn to the 2 K case. At such temperature, the monolayer is not in the superconducting state
anymore. The experimental results are presented on fig. 7.3. The spectra acquired on the monolayer do
not show a superconducting gap anymore far from the Pb island. Only close to the interface is present
a smooth induced gap that gradually disappears over a typical distance of 60 nm away from the island
edge. The behavior of the spatial evolution of the spectra closely resembles the case described in [162]
for a S-N system where instead of a crystalline Pb monolayer, an amorphous Pb wetting layer plays the
role of the normal metal. There are some differences however: (i) here, the Atshuler-Aronov reduction
of the low bias tunneling density of states, characteristic of electronic correlations, is absent and (ii) the
crystalline monolayer is superconducting at low temperatures which is not the case of the disordered Pb
wetting layer.

We can now compare the experimental proximity spectra with the results given by our model, using the
values determined at 0.3 K. The temperature used for the calculation is the one measured experimentally
from the thermometer placed close to the sample. The results of this calculations are presented on fig.
7.3.e. In this case also, the theoretical results qualitatively reproduce the experimental spectra on fig. 7.3.c

1We have r = GN/GB where GN is equal to σ2S/L with σ2 the normal state conductivity of the monolayer, S the section
of the barrier and L its length. GB on the other side is equal to G0Mτ with G0 the quantum of conductance 2e2/h, τ the
transmission coefficient of the interface and M the number of interface open channels.

2The diffusion coefficient is given by D = 1
2vF l in two dimensions. For vF ' 106 m.s−1 we obtain a mean free path

` '4 nm.
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Figure 7.3: Proximity effect between two superconductors at 2 K: The same as in Fig. 7.1, but
for T=2.05 K. At this temperature, the striped incommensurate Pb monolayer S2 is in its normal state.
Notice that the order parameter determined self-consistently exhibits a finite value close to the S1 − S2
interface.

without any adjustable parameter. More importantly, as we show in fig. 7.3.f, the Pb monolayer locally
develops, in the vicinity of the interface, a finite order parameter that survives over a distance larger
than 100 nm. The impact of this proximity-induced order parameter can be appreciated by comparing
these results with a non-self-consistent calculation where the order parameter is assumed to vanish at
this temperature, which would correspond to the case where S2 is a non superconducting metal. Such
calculations show that the induced gap extends over a much shorter distance inside the Pb monolayer
as compared to the experimental dependence. This fact is illustrated on fig. 7.3.f where we show that
the experimental data for Epeak(x) are much better fitted by the self-consistent calculation. Our results
thus provide clear evidence for the existence of the proximity-induced superconductivity in the interface
region.

We present on fig. 7.4 four different conductance maps showing the energy dependence of the proximity
effect. These maps can be compared to what was measured at 300 mK (fig. 7.2) where we could observe
the inverse proximity effect. This effect is not seen at 2 K on the conductance maps but due to the
nature of the calculations we performed, we cannot provide any theoretical calculation to support this
observation.

The inverse proximity effect observed at 300 mK is much weaker that the direct proximity effect. This
difference is due to the difference in electron densities of the two systems as the density of electrons in
much larger in the three dimensional islands than it is in the two-dimensional monolayer. In principle, the
inverse proximity effect can be described within a natural extension of our 1D model. However, such a
description is not quite satisfactory and this limitation calls for an extension of our model that is presently
in progress.

Shortly after the publication of our work, similar experiments were performed by Kim et al. [176]
confirming our observations.
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7.5 Conclusion
To summarize, in this chapter we have presented our results on proximity effect at 300 mK when both
Pb islands and the SIC monolayer are superconducting and at 2 K when Pb islands are superconducting
and the monolayer is metallic. We explained our results by using a 1D Usadel model based on solving
the self-consistent gap equation. Our results show the appearance of proximity-induced interface super-
conductivity in S2 in the vicinity of the S1 − S2 interface for temperatures above Tc2 thus confirming the
theoretical prediction by de Gennes and co-workers [151].

Figure 7.4: Conductance maps of a 311×311 nm2 area at 2 K: a.-d. Conductance maps taken at
the energies of -1.06 meV, -0.77 meV, -0.34 meV and 0 meV respectively.
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Conclusion

In this thesis we have discussed and presented results related to the interaction between superconductivity
and local magnetism. We particularly explored three limiting case :

• Individual impurities

• Ferromagnetic clusters

• Disordered clusters of magnetic impurities

From the first case we identified a direct connection between the dimensionality of the superconductor
and the spatial extent of the YSR bound states induced by the local magnetic moments. The increase
of the spatial extent of YSR bound states in two dimensional systems allowed us to further explore the
role of the Fermi surface of the superconductor in the spatial pattern seen around magnetic impurities
in conductance maps. We showed in two systems, 2H-NbSe2 and Pb/Si(111) that the structure and
symmetry of the Fermi surface is directly responsible for the diffraction patterns of the YSR bound
states. In particular we evidenced the 2kF periodic oscillations in those patterns and linked them to the
relevant parts of the Fermi surface. By comparing the Fourier transform of these conductance maps we
were able to show the disappearance of some electronic transition in the absence of magnetic interaction
thus highlighting the spin-orbit coupling present in the Pb/Si(111) monolayer. The work on NbSe2 in
relation to individual magnetic impurities was done with the assistance of M. Leclerc who was working
on his M2 internship at the time while the work on the Pb/Si(111) system was done partially during the
internship of R. Leriche.

By studying ferromagnetic clusters of Co buried below the Pb/Si(111) monolayer we showed that we
could locally induce a topological transition. The transition between trivial and topological is triggered by
the magnetic moments of the Co clusters and we explored the phase diagram of such system. We measured
the dispersion associated to edge states at the interface between a topological and trivial superconductor
and discussed them in terms of chiral and helical edge states. We then showed that by increasing the
size of the magnetic clusters we were able to trap vortices in the topological patches leading to zero bias
anomalies characteristic of Majorana bound states. We finally demonstrated that due to size effects and
magnetic anisotropy we were able to shift the magnetization of the Co clusters from an out of plane
configuration to an in-plane configuration. This shifting was associated to a transition from topological
to trivial for the clusters and a disappearance of the zero bias Majorana bound states. We would like
to mention here the participation of D. Demaille and L. Largeau who performed TEM measurements on
our samples at the INSP and LPN. This work will be continued by R. Leriche who will start his PhD
in 2016 and will aim at reproduce and extend the results we obtained on the Pb/Si(111) monolayer for
other systems.

The last configuration studied for the interaction between magnetic moments and superconductivity
corresponds to clusters of randomly arranged impurities. At this point we showed the limitations of the
Abrikosov-Gor’kov theory as the predicted attenuation of the quasiparticle peaks was not observed. We
showed however that the gap gets locally reduced by the magnetic clusters and we were able to reproduce
these results by considering the combination of YSR bound states with the gap auto-coherence equation.
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The results we presented hint at exciting future developments in the use of superconductors in the
elaboration of nano-patterned quantum electronic systems. In particular the possibility to manipulate the
magnetization of magnetic clusters by using the STM tip and thus the topological state of a system is very
promising. Future work could consist in the elaboration of full magnetic layers below a two dimensional
superconductor that could be made locally topological by electrical stimulation from the tip. Then for
large enough topological regions it should be theoretically possible to continuously move those trapped
vortices by designing the adequate topological regions. Such proposition would thus allow the braiding
of vortices and could lead to applications in the field of quantum nano-electronics.



Abrikosov Gor’kov theory

.1 Self-energy
In the following, we will base our calculations on a BCS Hamiltonian submitted to the perturbation Ĥimp

as written section 2.2. In a fully general way, the self-energy for a superconducting material can be written
in Nambu space as

M(k) = ωτ0 −∆τ1 =
(
ω −∆
−∆ ω

)
,

where τ1,2,3 refers to the Pauli matrices and τ0 to identity. When put in presence of an impurity, a
supplementary contribution M i must be added to the self-energy leading to the following expression for
the Green function

G−1 = εkτ3 − ωτ0 −M i + ∆τ1.

This Green function can be written by introducing ∆̃ and ω̃ without any lost of generality and we then
obtain

G−1 = εkτ3 + ∆̃τ1 − ω̃τ0.

This function can be easily inverted leading to the following expression for the Green function

G = 1
ω̃2 − ε2

k − ∆̃2

(
−εk − ω̃ ∆̃

∆̃ εk − ω̃

)

We suppose an isotropic dispersion relation εk for simplicity and we can then write

M i
diff = ni

∫
d2Ω
4π v1(~k,~k′)v1(~k′,~k)

∫
dk′

2π2 τ3G(k′)τ3

= ni

∫
d2Ω
4π |v1(~k,~k′)|2

∫
dk

2π2
1

ω̃2 − ε2
k − ∆̃2

(
−εk − ω̃ −∆̃
−∆̃ εk − ω̃

)

= ni 〈|v1(~k,~k′)|2〉
∫

dk

2π2
1

ω̃2 − ε2
k − ∆̃2

(
−εk − ω̃ −∆̃
−∆̃ εk − ω̃

)

= ni 〈|v1(~k,~k′)|2〉
∫
dεk
2π2

N(εk)
ω̃2 − ε2

k − ∆̃2

(
−εk − ω̃ −∆̃
−∆̃ εk − ω̃

)

We now make the hypothesis that over the considered integration domain, the density of states can
be considered to be constant and we thus have for the density of states by spin N(εk) = N0. Then,
if we observe that the integrals containing εk on the numerator are integrations of odd functions in a
symmetrical way around 0, we can then forget about these contributions and we only have to consider

M i
diff = ni

2 N0 〈|vi(~k,~k′)|2〉
∫
dε

π2
1

ω̃2 − ε2 − ∆̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)
.
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This integral can be easily calculated and gives

∫
dε

π2
1

ω̃2 − ε2 − ∆̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)
= 1

ω̃2 − ∆̃2

∫
dε

π2
1

1 + ε2

∆̃2−ω̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)

= 1
ω̃2 − ∆̃2

∫
dε

π2
1

1 + ε2

∆̃2−ω̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)

= − 1√
ω̃2 − ∆̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)∫
dx

π2
1

1 + x2

= − 1
π

1√
−ω̃2 + ∆̃2

(
ω̃ ∆̃
∆̃ −ω̃

)

= − i
π

1√
ω̃2 − ∆̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)

Finally the self-energy is given by

M i
diff (1) = −i ni2πN0 〈|v1|2〉

1√
ω̃2 − ∆̃2

(
−ω̃ ∆̃
∆̃ −ω̃

)
,

that we can rewrite in the more convenient form

M i
diff = 1

2 i(Γ1 + Γ2) ω̃τ0 − ∆̃τ1√
ω̃2 − ∆̃2

where
1
2(Γ1 + Γ2) = niπN0 〈|v1|2〉 .

Now that we are done with the diffusive part of the self-energy we are left with the calculation of the
part containing the spin interaction. The lowest order term will make the following term appear

〈k|v2 ~̂Si · ~̂s|k′〉 〈k′|v2 ~̂Si · ~̂s|k〉

for the diagonal part of the self-energy and

〈Tk|v2 ~̂Si · ~̂s|Tk′〉 〈k′|v2 ~̂Si · ~̂s|k〉 = −〈k|v2 ~̂Si · ~̂s|k′〉 〈k′|v2 ~̂Si · ~̂s|k〉

for the non diagonal part. By averaging over the impurity spin we simply obtain a factor 1
3S(S + 1) due

to the work hypothesis concerning the absence of correlation of individual impurity spins. Finally the
rest of the calculation is identical to the purely diffusive case and we obtain

M i
spin = i

ni
2πN0 〈|v2|2〉

1
4S(S + 1) 1√

ω̃2 − ∆̃2

(
ω̃ ∆̃
∆̃ ω̃

)

By defining
1
2(Γ1 − Γ2) = niπN0 〈|v2|2〉

1
4S(S + 1),

the full self-energy can be written as

M i = i√
ω̃2 − ∆̃2

(Γ1ω̃τ0 − Γ2∆̃τ1).
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Another equation must be taken into account for our study to be coherent. This equation is the auto-
coherence equation for the superconducting order parameter. This equation must be modified compared
to its usual form in the following way

∆ = N0V

2

∫ ωD′

−ωD′
<
{

∆̃√
ω̃2 − ∆̃2

}
dω,

where the cutoff energy ωD′ for the superconducting interaction has been introduced. The link between
this cutoff and the BCS cutoff is given by ωD′ =

√
ω2
D + ∆2.

The structure of the Green function calculated previously allows us to write

ω̃ = ω + iΓ1
ω̃√

ω̃2 − ∆̃2

∆̃ = ∆ + iΓ2
∆̃√

ω̃2 − ∆̃2
.

If we define Γ as Γ = Γ1 − Γ2 and u as u = ω̃/∆̃, the previous equations can be simplified as

u∆ = ω + iΓ u√
u2 − 1

,

∆(0,Γ) = N0V

2

∫ ωD′

ωD′
dω<

{ 1√
u2 − 1

}
.

We do indeed have
ω = ω̃ − iΓ1

ω̃√
ω̃2 − ∆̃2

= u∆̃− iΓ1
u√

u2 − 1
,

as well as
u∆̃ = ω + iΓ1

u√
u2 − 1

.

If we introduce inside this relation the expression of ∆̃, we obtain

u∆ + uiΓ2
∆̃√

ω̃2 − ∆̃2
= ω + iΓ1

u√
u2 − 1

,

i.e.
u∆ = −uiΓ2

1√
u2 − 1

+ ω + iΓ1
u

u2 − 1 = ω + iΓu√
u2 − 1

.

At non-zero temperature, the auto-coherence equation integrates a temperature dependance for ∆ in the
form of a factor tanh 1

2βω (where β = 1
kBT

) leading to the following equation

∆(T,Γ) = N0V
∫ ωD′

0
dω<

{ 1√
u2 − 1

}
tanh βω2 .

One should note here the modification of the integration limits that leads to the disappearance of the
1/2 factor. This new form must therefore be introduced inside the equation for u∆ where ∆(0,Γ) now
becomes ∆(T,Γ).

.2 Critical temperature and concentration
The value of the critical temperature is obtained by the cancellation of the order parameter as a function
of the tempereature, i.e. for ∆(Tc,Γ) = 0. An equivalent way is to look at the limit ∆ → 0 in which we
have

u = ω̃

∆̃
� 1.
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The term u√
u2−1 approaches 1 and in u∆, the final result is

lim
T→Tc

u∆ = ω + iΓ.

The auto-coherence equation for ∆ can then be written as

1 = N0V
∫ ωD

0
<
{ 1

∆
√
u2 − 1

}
tanh 1

2βωdω

' N0V
∫ ωD

0
<
{ 1

∆u

}
tanh 1

2βcωdω

= N0V
∫ ωD

0
<{ 1

ω + iΓ} tanh 1
2βcωdω.

This equation can be simply written as (one should note that ωD′ has became ωD due to the fact that
∆→ 0)

1 = N0V
∫ ωD

0
dω

ω

ω2 + Γ2 tanh 1
2βcω.

This result is identical to the one in the absence of spin diffusion for Γ→ 0. The presence of the impurity
thus induces a broadening of the function ω

ω2+Γ2 linked to a finite life time effect.
We can now calculate the critical concentration for which the critical temperature falls to zero. For

βc → +∞, the hyperbolic tangent behaves as 2
[
θ(x)− 1

2

]
(where θ(x) refers to the Heaviside function)

and in the considered integration interval we are in the case where tanh 1
2βcω ' 1. The consequence of

this is that

1 = N0V
∫ ωD

0

ω

ω2 + Γ2dω = N0V
∫ ωD

Γ

0

x

x2 + 1dx,

where we used the variable change x = ω
Γ . The previous integration gives us the following result

1 = N0V

2

(
ln
[(

ωD
Γcr

)2
+ 1

]
− ln 1

)
,

that can be simplified as
2

N0V
= ln

(
ω2
D

Γ2
cr

+ 1
)
.

By remembering that in the BCS theory

1
N0V

= ln
( 2ωD

∆P (0)

)
,

where ∆P (0) is the value of the gap at T = 0 for a pure material, we obtain√
ω2
D + Γ2

cr

Γcr
= 2ωD

∆P (0) .

In the limit ω2
D � Γ2

c , we simply find

Γcr = ∆P (0)
2 ,

which allows us to determine the critical concentration from which superconductivity is destroyed in the
material.



Computation of the Shiba wave function
in 2D and 3D

In the continuum limit, eq. 2.19 transforms into

ψ(r) =
∫

dkd

(2π)d e
ik·r−JS/2 +Kτz

E2 − ξ2
k −∆2 [E + ξkτz + ∆τx]ψ(rimp), (5)

where d is the dimensionality of the system. Assuming a constant density of states on the range of the
superconducting gap, we can solve [177, 31] Eq. (5) with r = rimp as :

{11− α+ βτz√
∆2 − E2 [E + ∆τx]}ψ(rimp) = 0 (6)

where α = πν0JS
2 and β = πν0K and ν0 is the density of states at the Fermi energy. The Shiba energy

and the amplitude ratio of the wavefunctions on the impurity site therefore read as :

E = ∆ 1− α2 + β2√
4α2 + (1− α2 + β2)2 ; ψ+(0)

ψ−(0) = 1 + (α− β)2√
4α2 + (1− α2 + β2)2 (7)

To solve completely Eq. (5) we follow Ref. [177, 31]. We need to compute these two integrals:

f0(r) =
∫

dkd

(2π)d
eik·r

E2 − ξ2
k −∆2 , (8)

and
f1(r) =

∫
dkd

(2π)d
ξke

ik·r

E2 − ξ2
k −∆2 . (9)

In order to obtain an analytical expression for the spatial evolution of the Shiba states, we make the
assumption of an isotropic energy dispersion ξk = k2/2m + µ where µ is the chemical potential. The
result depends of the dimensionality d. Let us detail both the 3D and 2D cases for completeness.

.3 Shiba state in a 3D system
We change the integration variable to ξk and x = cos θk with the polar angle θ measured relative to r.

f0(r) = ν0
2

∫
dξk

∫ 1

−1
dx

eikrx

E2 − ξ2
k −∆2 , (10)

We first perform the integral on ξk by linearizing k with k(ξ) = kF + ξ/~vF ,

f0(r) = − ν0π

2
√

∆2 − E2

∫ 1

−1
dxeikF rxe−kSr|x|, (11)
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where kS =
√

∆2 − E2/~vF . This gives

f0(r) = − ν0π√
∆2 − E2

e−kSr(kF r sin kF r − kSr cos kSr)− kSr
(kF r)2 + (kSr)2 . (12)

Finally by the assumption kF >> kS we find:

f0(r) = − ν0π√
∆2 − E2

e−kSr sin kF r
kF r

. (13)

The second integral reads:

f1(r) = ν0
2

∫
dξk

∫ 1

−1
dx

ξke
ikrx

E2 − ξ2
k −∆2

ω2
D

ω2
D + ξ2

k

. (14)

We have incorporated the Debye frequency ωD as a UV cut-off, to ensure the convergence of the integral
[177]. In the same way we first perform the integral on ξk,

f1(r) = i
πν0
2

ω2
D

∆2 − E2 − ω2
D

∫ 1

−1
dx

x

|x|e
ikF rx(e−kSr|x| − er|x|ωD/~vF ), (15)

and then on x

f1(r) = πν0<[
eikF re−kSr(−ikF r + ωDr

~vF ) + ieikF re−ωDr/~vF (kF r + ikSr) + (kS − ωDr
~vF )

(kF r + iωDr~vF )(−ikF r + kSr)
]. (16)

Now we compute the asymptotic limit and suppose kF r >> ωDr
~vF >> 1 and kF >> kS . This gives:

f1(r) ≈ πν0e
−kSr cos kF r

kF r
. (17)

.4 Shiba state in a 2D system
We proceed in the same way for the 2D case:

f0(r) = ν0
2π

∫
dξk

∫ 2π

0
dθ

eikr cos θ

E2 − ξ2
k −∆2 , (18)

f1(r) = ν0
2π

∫
dξk

∫ 2π

0
dθ

ξke
ikr cos θ

E2 − ξ2
k −∆2 , (19)

We first perform the integral on ξk and then on θ:

f0(r) = − πν0√
∆2 − E2<[J0(kF r + ikSr) + iH0(kF r + ikSr)], (20)

f1(r) = πν0=[J0(kF r + ikSr) + iH0(kF r + ikSr)], (21)

where J0(r) and H0(r) are the Bessel and the Struve function of order 0. These results are in agrement
with [178]. Here again we compute the asymptotic limit assuming kF >> kS , which provides

f0(r) ≈ − πν0√
∆2 − E2

√
2

πkF r
cos(kF r −

π

4 )e−kSr, (22)

f1(r) ≈ πν0

√
2

πkF r
sin(kF r −

π

4 )e−kSr + 2ν0
kF r

. (23)

In the regime where we can neglect the last term of f1(r), f1(r) ≈
√

2
πkF r

sin(kF r − π
4 )e−kSr.



Derivation of the Bogoliubov-de Gennes
equations

Let us consider the following Hamiltonian

H =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ +

∑
k

(
∆ĉ†k↑ĉ

†
−k↓ + ∆∗ĉ−k↓ĉk↑

)
. (24)

We will look for a way to diagonalize this Hamiltonian under the form [17]

H = Eg +
∑
n,σ

εnγ̂
†
nγ̂n. (25)

The simplest way to do so is to rewrite the creation operators as a linear combination of the γ operators
in real space. We then define

ψ̂r,↑ =
∑
n

(
γ̂n,↑un(r)− γ̂†n↓v∗n(r)

)
(26)

ψ̂r,↓ =
∑
n

(
γ̂n,↓un(r) + γ̂†n↑v

∗
n(r)

)
(27)

where the operators ψ̂ are linked to the operators ĉk in the reciprocal space by

ψ̂(r, σ) =
∑
k

eik·r ĉk,σ. (28)

The eigenvalues equation can also be rewritten in the form of commutation relations

[H, γ̂n,σ] = −εnγ̂n,σ[
H, γ̂†n,σ

]
= εnγ̂

†
n,σ

Obtaining the eigenstates of our systems is achieved through the equations for vn and un. This equation
is obtained by computing the commutation relations between Ĥ and ψ̂.

[H, ψ̂r,σ] = He

∑
r′,σ′

[ψ̂†r′,σ′ψ̂r′,σ′ , ψ̂r′,σ′ ] +
∑
r′,σ′

{
∆[ψ̂†r′,σ′ψ̂

†
r′,−σ′ , ψ̂r,σ] + ∆∗[ψ̂r′,−σ′ψ̂r′,σ′ , ψ̂r,σ]

}
(29)

The last of these terms is equal to zero and we are simply left with the first two. The first term gives the
following commutator

[ψ̂†σ′ψ̂σ′ , ψ̂σ] = ψ̂†σ′ψ̂σ′ψ̂σ − ψ̂σψ̂
†
σ′ψ̂σ′

= −ψ̂†σ′ψ̂σψ̂σ′ − ψ̂σψ̂
†
σ′ψ̂σ′

= (ψ̂σ′ψ̂†σ′ − δσ,σ′)ψ̂σ′ − ψ̂σψ̂
†
σ′ψ̂σ′

= −ψ̂σδσ,σ′ ,

121
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while the superconducting coupling gives the commutator

[ψ̂†σ′ψ̂
†
−σ′ , ψ̂σ] = ψ̂†σ′ψ̂

†
−σ′ψ̂σ − ψ̂σψ̂

†
σ′ψ̂
†

= ψ̂†σ′(δσ,σ′ − ψ̂σψ̂
†
−σ′)− ψ̂σψ̂

†
σ′ψ̂
†
−σ′

= ψ̂†σ′δσ,−σ′ − (δσ,σ′ − ψ̂σψ̂†σ′)ψ̂
†
−σ′ − ψ̂σψ̂

†
σ′ψ̂
†
−σ′

= δσ,−σ′ψ̂
†
σ′ − δσ,σ′ψ̂

†
−σ′

= −σδσ,−σ′ψ̂†−σ′
The general commutator from which we started can therefore be rewritten under the following form

[H, ψ̂σ] = −Heψ̂σ − σ∆ψ̂†−σ. (30)

Finally we only have to do the same with the commutator [H, ψ̂†σ] and we obtain

[H, ψ̂†σ] = −Heψ̂
†
σ − σ∆∗ψ̂−σ (31)

Note that the difficulty of the commutation with the kinetic term He has been left aside as this terms
trivially commutes with the field operators that form its eigenvectors by a simple Fourier transform.

We can now rewrite the previous commutators with the help of the γ operators by replacing the ψ by
the corresponding expressions. We then obtain

[H, ψ̂σ] = [H,
∑
n

{
γ̂σun − σγ̂†−σv∗n

}
]

=
∑
n

{
un[H, γ̂σ]− σv∗n[H, γ̂†−σ]

}
=

∑
n

{
−unεnγ̂σ − σv∗nεnγ̂†n,−σ

}
,

while the counterpart of this previously computed commutator reads

[H, ψ̂σ] = −Heψ̂σ − σ∆ψ̂†−σ
= −

∑
n

{
He

(
γ̂σun − σγ̂†−σv∗n

)
+ σ∆

(
γ̂†−σu

∗
n + σγ̂σvn

)}
By doing the same for the conjugated terms of the field operators we finally obtain the two equations∑

n

{
unεnγ̂σ + σv∗nεnγ̂

†
−σ
}

=
∑
n

{
He(γ̂σun − σγ̂†−σv∗n) + σ∆(γ̂†σu∗n + σγ̂−σvn)

}
∑
n

{
u∗nεnγ̂

†
σ + σvnεnγ̂−σ

}
=

∑
n

{
−He(γ̂†σu∗n − σγ̂−σvn) + σ∆∗(γ̂−σun + σγ̂†σv

∗
n)
}

By identifying the left and right terms of the equations the terms multiplied by γσ and γ†−σ we obtain the
Bogoliubov-de Gennes equations for the terms un and vn

unεn = Heun + ∆vn (32)
vnεn = −Hevn + ∆∗un (33)

This equation can then be written in a matrix form using the spinor Ψn =
(
un vn

)
and we obtain

εnΨ = MΨ (34)

where the matrix M is written
M =

(
He ∆
∆∗ He

)
. (35)



Fano resonance

We consider the general problem of the coupling of a single electronic state to an electron gas. The form
of the obtained peak is called Fano form from U. Fano who first found this expression in the context of
an He resonance probed by mean of inelastic electron scattering [61].

We take the following Hamiltonian

Ĥ0 =
∑
k

εk ĉ
†
k ĉk + εdd̂

†d̂, (36)

describing two non-interacting systems. The first system is described by the operators ĉk and ĉ†k and
corresponds to a continuum of states |k〉 following the energy dispersion εk. The second system is a single
electronic level |d〉 described by the operators d̂ and d̂†. This isolated level is at the energy εd.

We now add an Anderson like coupling between these two states described by the following Hamiltonian

Ĥint = V
∑
k

ĉkd̂
† + h.c. (37)

The discrete level |d〉 without the interaction from eq. 37 is described by the Green function

G
(0)
d = 1

ω + i0+ − εd
. (38)

When taking into account the interaction Hamiltonian, one creates an hybridization of the discrete level
to the continuum via the introduction of a self-energy of the type |V |2G0

c . The Green function now reads
as

G
(1)
d = 1

ω + i0+ − εd − |V |2
∑
k

1
ω+i0+−εk

. (39)

The |k〉 state being a continuum of states we can go from a discrete sum to a continuous integral over
band of width D. We then obtain∑

k

1
ω − εk

→
∫ D

−D

1
ω + i0+ − εk

= N0 ln
∣∣∣∣ω +D

ω −D

∣∣∣∣− iπN0, (40)

where N0 is the density of states at the Fermi level of our electronic bath. By taking D to infinity, we
only keep the second term of eq.40 and the Green function fro eq.39 can be written as

G
(1)
d = 1

ω + i0+ − εd + iπN0|V |2
. (41)

We are interested in the density of states which given by the imaginary part (up to a term 1/π) of the
Green function and therefore

ρ(ω) = 1
π

Γ2

(ω − εd)2 + Γ2 (42)

with Γ = πN0|V |2. The effect of coupling a discrete level to a continuum of states is thus shown to be a
Lorentzian broadening of the density of states of this level and equivalently the introduction of finite life
time of the quasi-particles excitations.
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If we now want to perform an STM experiment in which the tip of our microscope exchanges electrons
with the surface of our sample a new coupling must be introduced and will lead to a further modification
of density of states of the discrete level via the possibility of new virtual electronic transitions contributing
to the self-energy. The lowest order corrections to the continuum density of states is given by

δGc(ω) = |V |2G0
cGdG

0
c . (43)

As we want the associated density of states we must take the imaginary value of this quantity. Given that
for two complex numbers z and z′ we have ={z × z′} = =z<z′ + <z=z′, the correction to the density of
states can be written

δρc = |V |
2

π

[
={Gd}<

{
G0
cG

0
c

}
+ <{Gd}=

{
G0
cG

0
c

}]
. (44)

By writing qc = −<{G
0
c}

={G0
c} , the real and imaginary parts of G0

c can be written as

=
{
G0
cG

0
c

}
= (={G0

c})2(q2
c − 1),

<
{
G0
cG

0
c

}
= −2qc(={G0

c})2.

The correction to the density of states now becomes

δρc(ω) = −|V |
2

π
={G0

c(ω)}2[(q2
c − 1)=Gd(ω)− 2qc<Gd(ω)]

= −|V |
2

π
π2ρ2

0[(q2
c − 1)=Gd(ω)− 2qc<Gd(ω)]

= −Γρ0[(q2
c − 1)=Gd(ω)− 2qc<Gd(ω)].

If we now suppose that our discrete level is already hybridized by the electronic bath, the Green function
Gd(ω) to use is the one obtained previously in eq.41. Defining x = ω−εd

Γ we have for δρc(ω)

δρc(ω) = ρ0
x2 + 1[(q2

c − 1)− 2qcx] (45)

and for the total density of states obtained from the summation ρc(ω) = ρ0 + δρc(ω)

ρc(ω) = ρ0
(qc + x)2

x2 + 1 . (46)

This expression for the density of states leads to the resonance called the Fano form (Cf. Figure 2.8).



Gap reduction calculation

from math import *
from pylab import *
from numpy import *
from numpy import random as rand
from functools import partial
from scipy . sparse import csr_matrix as spmat
from scipy . sparse import kron as kr
from scipy . sparse . linalg import eigsh
from scipy import special
from scipy import interpolate
from myfunctions import *
from scipy . interpolate import interp1d
from scipy . ndimage . filters import median_filter
from scipy . ndimage . filters import gaussian_filter
from mpl_toolkits . mplot3d import Axes3D
from matplotlib import cm

from matplotlib import *

def psip(kF , r, deltplus , deltminus , vF , Delta ):
# Computes the wavefunction Psi+ taking as arguments the fermi wave vector ,
#the distance from the center , delta +, delta -, the fermi velocity and the SC Gap

a = 0.02
return 1/ sqrt(pi*kF*sqrt(r**2+a **2))*

sin(kF*r - pi /4 + deltminus )* exp( -Delta*abs(sin( deltplus - deltminus ))*r/vF )

def psim(kF , r, deltplus , deltminus , vF , Delta ):
# Computes the wavefunction Psi - taking as arguments the fermi wave vector ,
#the distance from the center , delta +, delta -, the fermi velocity and the SC Gap

a = 0.02
return 1/ sqrt(pi*kF*sqrt(r**2+a **2))

*sin(kF*r - pi /4 + deltplus )* exp( -Delta *abs(sin( deltplus - deltminus ))*r/vF )

def spectre (energies , Delta , temp ):
energies = energies . astype (’complex ’) # Converting the energy values to complex format
bcs = real(abs( energies )/ sqrt (( energies )**2 + 1j *0.002 - Delta **2))

#0 Temperature BCS density of states computed over the values of energies
const_list = zeros (len( energies )) + 1.

# Const list to suppress the edge effects due to the convolution procedure
temperature_list = thermal_broad (energies , 0, temp)

# Convolution function
output = convolve (bcs , temperature_list , ’same ’)/ convolve ( const_list , temperature_list , ’same ’)

# Normalized convolution
return output . astype (’float ’)

def wavefunc (dist_max , Delta , J, K):
# Function computing and normalizing correctly the Shiba wave function

kF = 1.5
N0 = 1.
vF = 5.
S = 1.

deltplus = atan(K*N0+N0*J*S/2.)
deltminus = atan(K*N0 -N0*J*S/2.)
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E_shiba = Delta *cos(deltplus - deltminus )

r_space = linspace (0, dist_max , dist_max *kF *2)
dr = 1/( kF *2)

psi_plus = psip(kF , r_space , deltplus , deltminus , vF , Delta )
psi_minus = psim(kF , r_space , deltplus , deltminus , vF , Delta )
# psi_plus [0] = psi_plus [1]
# psi_minus [0] = psi_minus [1]

normplus = 2* pi*sum( r_space *abs( psi_plus )**2 )*dr
normminus = 2* pi*sum( r_space *abs( psi_plus )**2 )* dr

normalization = normplus + normminus # N = I1 + I2

f1 = interp1d (r_space , psi_plus /sqrt( normalization ))
f2 = interp1d (r_space , psi_minus /sqrt( normalization ))

return f1 , f2 , E_shiba , normalization

def wavefunc3D (dist_max , Delta , J, K):
# Function computing and normalizing correctly the Shiba wave function
# energ = ener_r_space [0]

kF = 1.5
N0 = 1.
vF = 5.
S = 1.

deltplus = atan(K*N0+N0*J*S/2.)
deltminus = atan(K*N0 -N0*J*S/2.)
E_shiba = Delta *cos(deltplus - deltminus )

r_space = linspace (0, dist_max , dist_max *kF *2)
dr = 1/( kF *2)

psi_plus = psip3D (kF , r_space , deltplus , deltminus , vF , Delta)
psi_minus = psim3D (kF , r_space , deltplus , deltminus , vF , Delta)
# psi_plus [0] = psi_plus [1]
# psi_minus [0] = psi_minus [1]

normplus = 4* pi*sum( r_space **2* abs( psi_plus )**2 )* dr
normminus = 4* pi*sum( r_space **2* abs( psi_plus )**2 )*dr

normalization = normplus + normminus # N = I1 + I2

f1 = interp1d (r_space , psi_plus /sqrt( normalization ))
f2 = interp1d (r_space , psi_minus /sqrt( normalization ))

return f1 , f2 , E_shiba , normalization

def thermal_broad (E, E0 , T):
# Returns the derivative of the Fermi Dirac distribution over the energies E centered
# around E0 at temperature T

if T ==0:
return 1.

else:
Fermi_dirac = exp ((E-E0 )/T )/((1. + exp ((E-E0 )/T ))**2)
return Fermi_dirac

# Calculation parameters

lat_size = 100 # Lateral size of the system in pixels
area_size = 50. #Size of the system in nm

pixel_size = area_size / float ( lat_size )

Delta0 = 0.3
print ’Delta0 =’, Delta0 , ’meV ’
Tc = Delta0 *1.13/2. # Critical temperature in meV
kB = 1.38e -23 # Boltzman constant
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Mag_coupl = 8. # Value of the magnetic potential in meV
Diff_coupl = 3. # Value of the diffusion potential in meV
num_ener = 800 # Number of energy points considered
T = 0.3 # Temperature in Kelvin
temperature = T*kB /1.6e -19*1 e3 # Temperature in meV
num_iterations = 6 # Number of iterations for auto coherence
num_impurities = 500 # Number of impurities in our system

pos = []
# empty list that will contain the positions and values of the magnetic potential for each impurity

for i in range( num_impurities ):
# Initializing the positions of the impurities and the strength of the magnetic coupling

incircle = False
while incircle == False:

x0 = random ()*50 -25
y0 = random ()*50 -25
incircle = sqrt(x0 **2+ y0 **2) <15
if incircle == True:

theta = ( random () -0.5)*2+5
pos. append ([x0 , y0 , theta ])

if temperature <Tc:
Gap = Delta0 *sqrt (1. - temperature /Tc) # Value of the gap in meV

else:
Gap = 0

vF = 5.
xi = vF /( pi* Delta0 )
SC_coupling = 1./ log (1.764*1.13*100./( Delta0 *1e -3*1.6e -19/1.38e -23))

# Evaluating the superconducting coulping of electrons using the formula
# N0*V =1/ ln (1.764*1.13* hbar* omega_D / Delta ) estimating omega_D as around 100 K.

print ’Temperature = ’, round ( temperature , 4), ’meV --------- ’, T, ’K’
print ’Delta = ’, round(Gap , 2), ’meV ’
print ’J = ’, Mag_coupl , ’meV ’
print ’K = ’, Diff_coupl , ’meV ’
print ’xi = ’, xi , ’nm ’
print ’Tc = ’, Tc , ’meV --------- ’, Tc *1e -3*1.6e -19/kB , ’K’

print ’Estimated superconducting coupling = ’, SC_coupling , ’meV ’

const = transpose ( zeros ( num_ener * lat_size * lat_size ). reshape (num_ener , lat_size , lat_size ))+1.
# Array on which to construct the broadening of the Shiba BS
DOS = zeros( num_ener * lat_size * lat_size ). reshape (num_ener , lat_size , lat_size )
#Will contain the DOS once calculation and normalization of SBS made
gap_map = ( zeros ( lat_size **2*( num_iterations +1)). reshape ( num_iterations + 1, lat_size , lat_size ) +1)* Gap
#2D array containing the local values of the gap ( initialized as Delta constant )

print ’Number of impurities = ’, num_impurities
print ’____________________________ \n’

print ’position ok ’

gap_history = []
# empty list to keep track of the gap evolution with the iterations

x = linspace (- area_size /2. , area_size /2. , lat_size ) # Space in x direction
y = linspace (- area_size /2. , area_size /2. , lat_size ) # Space in y direction
energy_range = linspace ( -3* Delta0 , 3* Delta0 , num_ener ) # Values of the energies
x, y = meshgrid (x, y) #Grid x and y

for j in range( num_iterations ):# ______________________________________________________________________________ #Auto coherence loop
print ’iteration #’, j+1
shiba_ener = [] # empty list that will contain the position of the energies of every impurity
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amp = [] # empty list that will contain the normalization values of each wave function
gap_history . append ( gap_map [j]. flatten ())

# coupl = linspace (0, 50, num_impurities )

gap_list = gap_map . flatten ()

for i in range( num_impurities ):# Calculating the DOS associated to each impurity
index_x = int(pos[i ][1]/ pixel_size + area_size /2.) # !!!!!!!!!!!!!!!
index_y = int(pos[i ][0]/ pixel_size + area_size /2.) # !!!!!!!!!!!!!!
gap_imp = gap_map [j][ index_y ][ index_x ]

r = sqrt ((x-pos[i ][0])**2 + (y-pos[i ][1])**2)
# Array of the distance from the center of impurity i

r = r. flatten ()

interp_wf1 , interp_wf2 , Shiba_energy , amplitude =
wavefunc (max(r), gap_imp , cos(pos[i ][2])* Mag_coupl , Diff_coupl )

# Computation of the radial wave function
#of impurity i as a function of r, returns psi+, psi -, Es and normalization of the state

shiba_ener . append ( Shiba_energy )
amp. append ( amplitude )

wf1 = ( interp_wf1 (r)). reshape (lat_size , lat_size )
# Calculation of the Psi+ over the values of r

wf2 = ( interp_wf2 (r)). reshape (lat_size , lat_size )
# Calculation of the Psi - over the values of r

# Fermi Dirac broadening of the wave functions for wf1 and wf2
broad1 = ( const * thermal_broad ( energy_range , Shiba_energy , temperature ))

. transpose (). reshape (num_ener , lat_size , lat_size )
broad2 = ( const * thermal_broad ( energy_range , -Shiba_energy , temperature ))

. transpose (). reshape (num_ener , lat_size , lat_size )

if j == num_iterations - 1:
DOS += wf1 **2* broad1 + wf2 **2* broad2

# Adding the convoluted wave function to the global DOS

gap_map [j+1] += -SC_coupling *abs(wf1*wf2 )*(1 - thermal_broad ( Shiba_energy , 0, temperature ))
#Gap difference induced by impurity i

gap_map [j+1] += -SC_coupling *abs(wf2*wf1 )*(1 - thermal_broad (- Shiba_energy , 0, temperature ))
#Gap difference induced by impurity i

if i%10 == 0:# Indicator for the impurity index
print ’ impurity #’, i

gap_map [j+1] = gaussian_filter (abs( gap_map [j+1]) , xi , mode = ’wrap ’)
# Eliminating the effect of the SBS divergence

print min( gap_map [j+1]. flatten ())
DOS = array(map( partial ( median_filter , size = 1), DOS ))
# Median filter to suppress divergences in the DOS

gap_vals = gap_map [j+1]. flatten ()

# spectre_renormalization = array (map(mean , DOS. transpose (). reshape ( lat_size *lat_size , num_ener )))

evaluation_gaps = zeros (len( energy_range )* lat_size **2). reshape ( lat_size **2 , len( energy_range ))
# Array of 0 that will contain the

# modified spectra after having taken into account the renormalization by the impurities
for i in range(len( gap_vals )):

# Calculation of the final BCS spectra ( without the impurities )
evaluation_gaps [i] = spectre ( energy_range , gap_vals [i], temperature ) #-spectre_renormalization [i]
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evaluation_gaps = evaluation_gaps . transpose (). reshape (len( energy_range ), lat_size , lat_size )
# Reshaping the array evaluation_gaps to correspond to
#the form of the DOS array

DOS = DOS*max( energy_range )*2

total_DOS = DOS + evaluation_gaps # Total DOS with both BCS spectra ( thermally broaden ) and Shiba states
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Supraconducteurs 2D perturbés par un
magnétisme local: des états de Yu-Shiba-Rusinov

aux quasiparticles de Majorana
Gerbold Ménard

July 6, 2016

1 Introduction
Dans ce résumé nous aborderons les points principaux détaillés dans le manuscrit "2D supercon-
ductors perturbed by local magnetism; from Yu-Shiba-Rusinov bound states to Majorana quasi-
particles" en langue anglaise.

Cette thèse couvre l’étude de l’effet de perturbations magnétiques à l’échelle nanométrique dans
des supraconducteurs bidimensionnels. La motivation de cette étude était d’obtenir un type de
supraconductivité particulier dit topologique en manipulant des moments magnétiques dans des
supraconducteurs possédant une forte interaction spin-orbite.

Deux systèmes en particuliers y sont discutés. Tout d’abord nous avons étudié l’effet d’impuretés
magnétiques dans des monocristaux de NbSe2 qui sont des matériaux tri-dimensionnels du point
de vue de la supraconductivité mais dont la structure électronique est bidimensionnelle. En in-
sérant des impuretés de Fe dans ces cristaux il nous a alors été possible d’étudier les états de
Yu-Shiba-Rusinov produits et d’observer leur structure spatiale en parfait accord avec les prédic-
tions théoriques pour un supraconducteur bidimensionnel.

Le deuxième système étudié est la monocouche de Pb/Si(111), les résultats lui étant dédiés
sont ici séparés en deux parties. La première partie traite de l’effet d’impuretés magnétiques dans
ce système bidimensionnel. Nous avons étudié des impuretés magnétiques dans différentes phases
de la reconstruction du Pb en monocouche et mis en évidence le rôle de la surface de Fermi dans
les structures spatiales résultantes ainsi que confirmé le rôle de la dimensionnalité dans l’extension
spatiale des états de Yu-Shiba-Rusinov. En combinant ensuite les impuretés magnétiques sous
la forme de clusters enterrés sous la monocouche nous avons étudié le comportement du gap et
développé un modèle permettant de comparer nos résultats à la théorie d’Abrikosov et Gor’kov
généralement admise dans cette configuration.

La deuxième partie portant sur la monocouche de Pb/Si(111) supraconductrice traite de la
manière d’induire de la supracondutivité topologique en tirant profit de l’organisation d’impuretés
magnétiques sous la forme de clusters ordonnés. Nous commençons par mettre en évidence les états
de bords à la frontière d’une zone définie par un cluster nanométrique enfoui sous la couche de Pb.
Nous avons mesuré la dispersion spatiale associée à ces états et interprété les résultats en termes
de dispersion de Majorana à la frontière entre un supraconducteur trivial et un supraconducteur
topologique hélical. En augmentant la taille de ces clusters nous montrons qu’il est possible
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d’admettre des vortex ayant pour effet de piéger un mode électronique au niveau de Fermi, réalisant
ainsi une quasiparticule de Majorana. Nous montrons de plus que la magnétisation des clusters peut
être influencée par la pointe du STM, ce qui permet une manipulation des excitations de Majorana,
un pré-requis essentiel à l’élaboration d’une électronique quantique basée sur les propriétés de
statistique non anyonique desdites excitations [1, 2].

Enfin dans une dernière partie nous explorons la structure électronique des différentes phases
de la monocouche de Pb/Si(111). Nous discutons entre autre dans cette section le comportement
d’isolant de Mott de la phase 3 × 3 présentant deux bandes de Hubbard symétrique en énergie
dans la spectroscopie. Cette section s’achève par l’étude de l’effet de proximité supraconducteur
dans deux configurations. La première configuration concerne la proximité d’un supraconduc-
teur avec un domaine métallique corrélé tandis que la seconde concerne la proximité entre deux
supraconducteurs possédant des caractéristiques différentes.

2 Supraconductivité et microscopie à effet tunnel
La supraconductivité est un phénomène découvert en 1911 par H. Kamerlingh Onnes [3] caractérisé
par une résistivité nulle des matériaux de certains matériaux en dessous d’une température critique.
Ces propriétés de conductivité parfaite vont de paire avec un phénomène de diamagnétisme appelé
effet Meissner-Ochsenfeld [4]. La compréhension théorique de ce phénomène fut apportée par
Bardeen, Cooper et Schrieffer [5] et fait intervenir le concept de paires de Cooper [6] dans lequel
deux électrons s’apparient avec des vecteurs d’onde et des spins de singe opposés. Nous détaillons
ici le développement théorique amenant à la densité d’état BCS 1.

ξk E/Δ

E k/Δ

ρ(
E)
/ν

0

a b

Figure 1: Densité d’état BCS: a. Relation de dispersion pour un supraconducteur BCS avec un
gap ∆. b. Densité d’état d’excitations pour un supraconducteur BCS avec un gap ∆. Les lignes
poitillées dans les deux figures rappellent le cas normal pour la dispersion et la densité d’états.

Nous rentrons dans ce chapitre dans les détails du formalisme des équations de Bogoliubov-
de Gennes. Ce formalisme permet de résoudre sous une forme matricielle les équations pour les
excitations d’un supraconducteur et dans la suite du manuscrit sera abondamment employé pour
étudier les états de Yu-Shiba-Rusinov ainsi que la supraconductivité topologique.
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Il est possible de sonder les propriétés des supraconducteurs par l’intermédiaire de la microscopie
et de la spectroscopie à effet tunnel. Le gap d’énergie dans la densité d’état des supraconducteurs
est en particulier directement accessible en effectuant une mesure dI/dV du courant tunnel. La
mesure de cette conductance permet en effet d’accéder à la densité d’état locale convoluée par
la dérivée de la fonction de Fermi-Dirac dans le cas d’une pointe métallique. Il est également
possible de s’affranchir des limitations liées à l’élargissement thermique en utilisant des pointes
supraconductrices. La résolution énergétique est ainsi limitée par la largeur des pics de quasipar-
ticules, indépendante de la température de la mesure. Nous utilisons dans le corps du manuscrit
principal ces deux méthodes pour venir sonder la supraconductivité et en particulier les signatures
d’impuretés magnétiques au sein du gap.

3 États de Yu-Shiba-Rusinov
Pour un supraconducteur s-wave, le couplage des électrons en paires de Cooper se fait entre
deux électrons de spin et de vecteur d’onde opposé [5]. Une conséquence directe de cette forme
d’appariement est que sous l’application d’un champ magnétique l’un des électrons verra son énergie
augmenter tandis que le second verra son énergie diminuer par effet Zeeman. De cette manière
les paires pourront se retrouver brisées lorsque l’énergie Zeeman se trouve en compétition avec
l’énergie d’appariement des électrons supraconducteurs. Ce fait, d’abord révélé par les travaux
d’Abrikosov et Gor’kov [7] trouve un écho particulier dans le travail indépendant des physiciens
Yu, Shiba et Rusinov. Dans le cas où l’interaction magnétique est générée par un atome isolé il
est théoriquement anticipé l’apparition d’états liés dans le gap du supraconducteur appelés états
liées de Yu-Shiba-Rusinov (YSR) [8, 9, 10]. Ces états se manifestent dans une mesure spectro-
scopique par l’intermédiaire de pics dans le gap à des énergies symétriques par rapport au niveau
de Fermi. Le nombre de ces pics est contraint par la portée de l’interaction magnétique et pour
une interaction de la forme δ(rimp) se limite a une seule paire de pics.

Ces états ont été pour la première fois révélés en STM par Yazdani et al. [11]. Néanmoins la
structure interne de ces états prédites par la théorie n’a jamais pu être observée jusqu’à présent.
Une des raisons pour laquelle cette structure de la fonction d’onde associée à ces états magnétiques
n’a jamais été observée vient de la décroissance rapide de celle-ci dans un matériau tri-dimensionnel
dans lequel la fonction d’onde suit une loi de puissance en 1/kF r. En revanche pour un matériau
bidimensionnel cette loi de puissance devient de la forme 1/

√
kF r. La faible amplitude de ces

états se retrouve alors compensée par la décroissance plus lente du signal spectroscopique pour un
matériau bidimensionnel et permet la mesure des oscillations de la densité d’état locale attendue
théoriquement.

4 Impuretés individuelles dans 2H-NbSe2

Les résultats présentés dans cette partie reprennent majoritairement le travail publié dans [12].
2H-NbSe2 est un cristal constitué de plans faiblement liés entre eux par des interactions de type
Van de Waals. Ce matériau devient supraconducteur en dessous de la température critique de
33.5 K. Ce matériau bien que tridimensionnel possède une structure électronique bidimensionnelle,
idéale pour les effets que nous cherchons à mettre en évidence. Les cristaux utilisés pour nos
expériences contiennent un faible pourcentage d’impuretés magnétiques (principalement du Fe
ainsi qu’une faible quantité de Cr et de Mn) ayant été introduit lors de la préparation. Comme
nous le montrons sur la figure 2.a, lorsque l’on effectue une mesure de carte de conductance à la
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surface de l’échantillon, nous observons sur une échelle de l’ordre de la dizaine de nanomètres,
des structures de forme étoilée pour des énergies à l’intérieur du gap supraconducteur. Ces étoiles
correspondent dans la spectroscopie à une paire de pics (voir fig. 2.b) et les énergies de ces pics
peuvent varier en fonction du type d’impureté magnétique ainsi que la possibilité pour celles-ci de
former des clusters de deux ou trois atomes.
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Figure 2: Propriétés spatiales et spectrales d’un états lié étendu de Yu-Shiba-Rusinov
dans 2H-NbSe2 a. Carte de conductance expérimentale acquise à -0.13 meV. Deux lignes a et b
indiquent la direction des axes cristallographiques tandis que a* et b* indiquent les directions dans
l’espace réciproque. b. Spectres expérimental caractéristique pris au dessus de l’impureté (rouge),
sur la branche de droite, à 4 nm du centre de l’impureté (vert) et loin de l’impureté (bleu). c.
Évolution spatiale et énergétique des spectres de conductance tunnel expérimentaux, dI/dV (x, V )
le long d’une branche de l’étoile. La partie de droite de la figure correspond au centre de l’étoile
et la partie droite haute de la zone de mesure. L’échelle de conductance en couleur est la même
que celle utilisée en a. d. Profiles de conductance des états de YSR de type électron et trou en
fonction de la distance à l’impureté le long de la même ligne que dans le cas de c.

En raison de l’étendue spatiale supérieure à la dizaine de nanomètres de ces états magnétiques,
il est possible d’étudier la structure interne de ces états. En particulier, il est possible d’accéder
aux oscillations de cette densité d’état qui sont visibles dans les branches de l’étoile et représentées
en coupe sur les figures 2.c et d. Ces oscillations présentent un décalage de phase entre les états
de type trou et les états de type électron directement lié à l’énergie des états par rapport au gap
supraconducteur. Ainsi la différence de phase δ+− δ− entre ces états pour la fonction d’onde obéit
à la relation ES = ∆ cos (δ+ − δ−). Dans la mesure où le STM sonde la densité d’états et non la
fonction d’onde, le déphasage mesuré correspond en réalité au double du déphasage de la fonction
d’onde. Une conséquence directe de cette relation est que des états au sein du gap se trouvent en
opposition de phase tandis que des états en bord de gap se trouvent en phase l’un avec l’autre. Cet
aspect correspond parfaitement à nos mesures expérimentales dans le cas présenté dans la figure
2 ainsi que dans d’autres exemples sur différents types d’impuretés.

La compréhension de la forme étoilée des états de Shiba se fait par l’intermédiaire de la surface
de Fermi de NbSe2. Nous montrons dans le manuscrit principal qu’un calcul liaison forte permet
de prendre en compte cet aspect de la structure électronique et reproduit de manière fidèle les
résultats expérimentaux. Un autre moyen de prendre en compte les effets de structure de bande,
sans pour autant être limité par la résolution sur site intrinsèque au modèle de liaison forte est de
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passer par l’intermédiaire d’un calcul de joint-DOS. Cette deuxième manière de procéder permet
d’obtenir des informations qualitatives sur les parties de la surface de Fermi jouant un rôle dans
les diffusions électroniques par comparaison aux résultats expérimentaux. Nous avons ainsi mis en
évidence le rôle prédominant de l’une des surface de Fermi et au sein de celle-ci le rôle centrale de
la poche entourant le point Γ en raison de l’existence d’un point col dans la dispersion qui conduit
à une augmentation substantielle de la densité d’états aux coins de cette surface.

Cette partie s’achève par un bref commentaire concernant les signatures d’impuretés non mag-
nétiques de Ta. Celles-ci ont en effet un rôle à jouer sur les éléments de matrice tunnel déterminant
le poids respectif de chacun des gap de 2H-NbSe2. Nous avons ainsi observé que le petit gap de
NbSe2 voit son poids spectral augmenter au dessus d’impuretés magnétiques. Il est ainsi possible
d’observer ces impuretés spectroscopiquement, cependant la nature de cet effet est purement lié à la
technique expérimentale utilisée. Ainsi l’extension spatiale caractéristique des états de Shiba n’est
pas retrouvée pour les impuretés non magnétiques et nous n’observons pas non plus de structure
spatiale liée à la structure électronique du matériau.

5 Impuretés dans Pb/Si(111)
Cette section traite de l’effet d’impuretés magnétiques dans le système Pb/Si(111) en monocouche.
La supraconductivité dans ces systèmes a pour la première fois été mise en évidence par Zhang et al.
[13] en 2010. L’intérêt de ces systèmes par comparaison avec 2H-NbSe2 est qu’il s’agit d’un système
purement 2D où la supraconductivité est limitée à un gaz d’électron couvrant la couche supérieure
de Pb ainsi que les trois premières couches de Si. Il s’agit par conséquent de la limite ultime
dans la réduction de la dimensionnalité pour la supraconductivité. Le fait que ce système exhibe
ses propriétés majoritairement à la surface du matériau rentre également en compétition avec un
autre effet qu’est l’interaction Rashba spin-orbite provenant de la brisure de symétrie spatiale
aux interfaces. Comme nous le verrons dans la partie suivante, la coexistence des phénomènes
de supraconductivité et d’interaction spin-orbite donne naissance à une supraconductivité de type
triplet, élément essentiel pour l’émergence de propriétés de supraconductivité topologique.

Il existe différentes phases supraconductrices de la monocouche de Pb/Si(111). Nous com-
mençons par considérer la structure

√
7 ×
√

3 présentant une forte anisotropie et apparaissant
dans les mesures topographiques sous la forme de lignes atomiques (fig. 3.a). Cette anisotropie se
retrouve dans les mesures spectroscopiques comme cela est présenté sur la fig. 3.b.

Sur cette figure il apparaît clairement que l’élongation des états YSR se fait dans la direction
des chaînes atomiques visibles en topographie et l’étendue spatiale caractéristique d’un système
2D est observée. De plus la périodicité perpendiculairement à la direction de ces lignes se fait avec
exactement le double de la périodicité atomique. Une autre périodicité peut être observée dans
la direction des lignes mais est plus difficile à saisir dans l’espace réel. En prenant la transformée
de Fourier d’une telle carte de conductance il apparaît alors clairement un signal correspondant à
chacune de ces périodicités. Il est alors possible en partant de la structure de la surface de Fermi
de cette phase [14] d’interpréter les diffusions électroniques à partir des deux différentes poches se
trouvant à la limite de la première zone de Brillouin. Nous reprenons alors le principe des calculs
de joint-DOS utilisés dans le cas de 2H-NbSe2 en paramétrant une surface de Fermi ad-hoc se
basant sur les résultats de photoémission.

Bien que ce type de calcul ne prenne pas en compte des effets liés directement à la supraconduc-
tivité (e.g. la longueur de cohérence n’intervient pas dans le calcul), il est tout de même possible
d’en tirer des informations qualitatives. Ainsi nous montrons que les interférences de quasipar-
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Figure 3: États de Shiba dans la structure
√

7×
√

3: a. Topographie résolue atomiquement
d’une zone 51×51 nm2. b. Spectroscopie de la même zone autour du niveau de Fermi. c. Spectres
selectionnés sur le site d’intensité maximum (rouge), à 3 nm (vert) et à 15 nm (bleu) du centre de
l’impureté.

ticules dans cette même phase ne montrent pas de signal dans le sens des lignes en transformée
de Fourier. Ce fait indique l’interdiction de certaines diffusions dans le cas d’une interaction non
magnétiques et illustre par conséquent l’existence d’un fort effet spin-orbite dans ce système. Ces
constatations sont cohérentes avec l’effet Rashba spin-orbit qui est attendu dans ce système de
supraconductivité de surface.

Dans la suite de cette section nous présentons les résultats obtenus dans la phase HIC de
la monocouche de Pb/Si(111). Cette structure possède un taux couverture de Pb supérieure à la
phase

√
7×
√

3 et une température critique légèrement supérieure. Néanmoins les valeurs de gap et
de longueur de cohérence restent du même ordre de grandeur (respectivement ∆ ' 0.3 meV et ξ '
50 nm). Une particularité de la structure HIC est qu’il s’agit d’une phase incommensurable avec le
substrat de Si et apparaît par conséquent extrêmement désordonnée dans les images topographiques
(voir fig. 4.a). Il n’est pas possible dans le cas d’une structure incommensurable de définir une
surface de Fermi et la conséquence directe en est que les états de YSR apparaîtront dans les cartes
de conductance sous une structure de type tavelure (voir fig. 4.b). Cet effet lié à la structure
électronique n’empêche pas l’existence d’une portée étendue des états de YSR de l’ordre de la
longueur de cohérence.

Dans la dernière partie de ce chapitre nous présentons les résultats acquis dans l’étude de
clusters d’impuretés de Co enterrées sous la monocouche de Pb dans la phase HIC. Dans cette
configuration, les impuretés vont se comporter comme des diffuseurs individuels et la structure
incommensurable et désordonnée de la monocouche de Pb permet de supprimer les effet de phase
des états de YSR. Il est ainsi possible de considérer que les états magnétiques générés par chacune
de ces impuretés vit indépendamment de son voisinage et le signal mesuré en spectroscopie se
réduit à la sommation d’états de Shiba produit par des impuretés distribuées avec des moments
magnétiques aléatoires dans une certaine zone de l’espace. Nous mettons ainsi en évidence le
remplissage du gap supraconducteur accompagné par une diminution locale de la distance pic-à-
pic du gap supraconducteur. Cet effet est en net décalage avec ce qui est attendu dans le cadre de
la théorie d’Abrikosov-Gor’kov. En effet dans cette théorie généralement admise comme rendant
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Figure 4: Impuretés magnétique dans la phase HIC : a. Topographie d’une zone 21×21 nm2

dans la phase HIC. b. Carte de conductance intégrée sur la gamme d’énergie du gap montrant la
structure spatiale des états YSR dans ce système. c. Spectre pris au niveau de l’impureté (rouge),
loin de l’impureté (bleu) et à une distance intermédiaire (vert).

compte de cet effet d’impuretés aléatoirement réparties, le premier effet attendu est la disparition
des pics de quasi-particules au bénéfice d’une densité d’états régulière. La conservation de nos pics
de quasiparticules dans nos mesures expérimentales indique que la théorie d’Abrikosov-Gor’kov
n’est pas adapté à ce type de configuration, tandis qu’un simple modèle numérique de sommation
d’impuretés couplé à un calcul auto-cohérent spatial du gap supraconducteur permet de reproduire
nos résultats.

6 Clusters topologiques dans Pb/Si(111)
Comme nous l’avons montré dans la section précédente, la monocouche de Pb/Si(111) possède
une interaction spin-orbite liée à la structure bidimensionnelle de surface de ce système. Rashba
et Gor’kov [15] précédés d’Edelstein [16] ont montré que l’état fondamental d’un système supra-
conducteur en présence d’une interaction Rashba spin-orbite acquérait une composante triplet.
L’existence d’une telle composante triplet permet l’apparition d’une supraconductivité dite topologique.
À l’instar des isolants topologiques, les supraconducteurs topologiques peuvent être décrit par un
indice dit topologique décrivant la classe dans laquelle ils se trouvent. Deux matériaux d’indices
différents correspondent à des structures de bandes fondamentalement différentes. Tout comme
deux isolants topologiques possédant des invariants différents donnent naissance à des états de
bords à l’interface entre eux, deux supraconducteurs d’indices topologiques différents donneront
naissance à des états de bords topologiques. Ces états de bords topologiques sont particulièrement
intéressant dans le cas de supraconducteurs topologiques dans la mesure où la symétrie électron-
trou inhérente aux supraconducteurs conduit à une dispersion dite de Majorana.

Sur la figure 5 nous présentons le diagramme de phase d’un supraconducteur en fonction de
l’intensité de la partie triplet ainsi que celle du champ Zeeman appliqué perpendiculairement au
plan décrit par un système 2D. Dans la description théorique que nous avons adoptée, nous ob-
servons l’apparition de deux phases particulières appelées chirale et hélicale. En contact avec un
système non topologique (tel que le vide, système trivial par excellence) ces deux phases feront ap-
paraître des états de bords de nature différente. Les systèmes hélicaux, invariants par renversement
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Figure 5: Phases de la supraconductivité topologique: a. Diagramme de phase de la supra-
conductivité topologique en fonction du couplage Zeeman et de l’amplitude du paramètre d’ordre
triplet. Les couleurs correspondent aux différentes phases et les lignes pointillées les séparant
font référence aux lignes de fermeture du gap pour lesquelles les transitions topologiques appa-
raissent. b. Structures de bandes correspondants aux différentes phases ainsi qu’aux transitions
topologiques. Les symboles colorés correspondent aux points du diagramme de phase indiqués en
a.

du temps, posséderont une paire d’états de bord contrapropagatifs, tandis que les systèmes chiraux,
brisant la symétrie par renversement du temps posséderont un seul état de bord se propageant
dans une direction déterminée par l’orientation du champ magnétique.

Pour obtenir ce type de système topologique nous avons fait croître sous la monocouche de Pb
supraconductrice des clusters ferromagnétiques de Co d’une taille caractéristique comprise entre 5
et 10 nm. La structure schématique de ce système est présentée sur la figure 6.a. La spectroscopie
tunnel de ce système révèle au niveau de Fermi l’existence d’un état de bord à la frontière des
clusters de Co (voir fig. 6.b).

Il est important de noter que la structure de la couche de Pb n’est pas modifiée par la présence
du cluster de Co comme en atteste la topographie 6.c. Une étude plus précise de ces états de
bord montre qu’ils sont associés à une dispersion spatiale comme montré sur les figures 6.d.-f. De
l’anneau unique observé au niveau de Fermi, les états se séparent pour une énergie finie. En prenant
une coupe passant au centre de la zone topologique (voir fig. 6.g.) nous pouvons suivre l’évolution
dans l’espace et en énergie de ces états de manière plus précise. On observe ainsi l’apparition d’un
croisement des états au niveau de Fermi caractéristique d’états dispersifs de Majorana.

Dans le cas de systèmes unidimensionnels comme des fils [17] ou des chaînes d’atomes mag-
nétiques [18], l’interface est unidimensionnelle et ne donne pas naissance à une dispersion mais à
des états liés à zéro énergie. Dans le cas qui nous intéresse, des supraconducteurs bidimensionnels
possèdent une interface unidimensionnelle responsable du caractère dispersif des états de bords.

Les objets d’intérêt pour l’électronique quantique ne sont néanmoins pas les dispersions de
Majorana, mais bien les excitations de Majorana. Celles-ci peuvent être stabilisées à partir de
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Figure 6: États de bords d’un supraconducteur topologique: a. Structure schématique
du système considéré de clusters ferromagnétiques de Co enterrés sous la monocouche de Pb. b.
Spectroscopie à grande échelle au niveau de Fermi des états de bords générés. c. Topographie
d’une zone de taille 16×13 nm2 montrant la structure atomique de la monocouche recouvrant un
cluster ferromagnétique de Co. d.-f. Spectroscopie de la zone considérée à des énergies comprises
dans le gap supraconducteur. g. Coupe dI/dV en fonction de la distance au centre du disque
topologique et de l’énergie.

systèmes tels que celui présenté ci-dessus en introduisant un vortex dans la partie topologique. De
cette manière il est possible de montrer théoriquement qu’un état se trouve piégé au niveau de
Fermi correspondant à ces fameuses excitations de Majorana. Nous sommes parvenus à réaliser de
tels objets en augmentant la taille des clusters magnétiques de Co (voir fig. 7).

Cependant en augmentant la taille caractéristique de ces objets, ils acquièrent un comporte-
ment instable responsable d’un renversement de la magnétisation de hors-plan vers une magnéti-
sation dans le plan du supraconducteur. Cette transition fait perdre au systèmes ses propriétés
topologiques et fait disparaître les excitations de Majorana. En conséquence en utilisant le champ
électrique généré par la pointe du STM il nous est possible de modifier cette aimantation et par là
de manipuler l’apparition ou l’extinction de quasiparticules de Majorana. Cet effet nous permet à
long terme d’envisager un contrôle fin des fermions de Majorana pour une éventuelle application
au "tressage" de ceux-ci tel que décrit dans la littérature pour l’élaboration de qubits.
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Figure 7: Signature spectrale d’un pic au niveau de Fermi insensible au désordre local:
a. Topographie d’une zone 100×100 nm2 d’un échantillon de Pb/Si(111) dans une phase HIC.
b. Carte de conductance au niveau de Fermi de la même zone. c. Spectres pris au maximum
de la carte de conductance b. (rouge), sur l’anneau d’interface entourant ce maximum (vert) et
sur la couche de Pb loin de tout désordre magnétique (bleu). d. Coupe de 65 nm montrant la
dépendance en énergie et spatiale au travers du vortex montré en b.

7 Phases peu denses des monocouches de Pb/Si(111)
Ce chapitre est séparé en deux parties. La première partie traite des propriétés électroniques
générales de ces phases à des énergies bien supérieures au gap supraconducteur typique de

√
7×
√

3.
La deuxième partie quant à elle présente les résultats obtenus relatifs à l’effet de proximité des
monocouches avec des patchs isolants de monocouche dans la structure 3× 3.

Les monocouches de Pb/Si(111) présentent un grand nombre de phases qui diffèrent par la
quantité nominale de Pb constituant la couche [?] (see fig. 8). Dans cette partie nous décrivons
les propriétés électroniques de ces différentes phases en mettant particulièrement l’accent sur deux
phases non supraconductrices appelées 3×3 et

√
3×
√

3. Ces deux phases correspondent à la même
quantité de Pb et sont obtenues l’une depuis l’autre par une transition de phase à une température
de 86 K [19]. La phase haute température est la phase

√
3×
√

3 et la phase basse température la
phase 3× 3. Il est néanmoins possible à basse température (300 mK) de conserver localement des
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Figure 8: Différentes phases de monocouches de Pb/Si(111): Le nom des différentes pahses
est indiqué au dessus des images topographiques.

parties
√

3×
√

3 hautement désordonnées coexistant avec la phase 3× 3.
Nos mesures spectroscopiques montrent que la phase 3 × 3 est métallique et présente deux

bandes symétriques par rapport au niveau de Fermi associées à une forte interaction électronique
dans le système. Ces bandes de Mott-Hubbard sont également présentent dans la phase

√
3×
√

3
désordonnée mais se retrouvent déplacées à des énergies plus élevées. De plus le désordre dans
la phase

√
3 ×
√

3 ouvre un gap de plusieurs centaines de meV en raison d’un phénomène de
localisation d’Anderson.

Nous mettons également en évidence dans cette partie les signatures des dopants du Si dans la
spectroscopie et leur comportement percolatif dans la densité d’état tunnel à haute énergie.

Nous achevons notre discussion de l’effet de proximité en traitant le cas du contact entre la
phase

√
7 ×
√

3 et la phase 3 × 3. La première de ces phases est supraconductrice tandis que la
seconde est isolante à basse température et présente des fortes corrélations. La structure de telles
échantillons est montrée sur la figure 9.a.

Nous observons en spectroscopie l’apparition d’états dans le gap dont la nature précise nous
échappe encore malgré le grand nombre de modèles utilisés. Ces états apparaissent sous la forme
de paires d’états à des énergies symétriques par rapport au niveau de Fermi (fig. 9.b). Ils for-
ment spatialement des anneaux dans la partie 3×3 de nos échantillons se déplaçant à partir d’un
centre commun en fonction du potentiel appliqué (fig. 9.c). L’un des aspects les plus impor-
tant réside dans l’apparition d’un gap réminiscent du gap supraconducteur dans l’intégralité des
patch 3×3. Ce gap de proximité laisse suggérer que les états observés correspondent à des états
liés d’Andreev, néanmoins des calculs tight-binding ainsi que des calculs de reflections multiples
menées n’aboutissent pas à des résultats compatibles avec les observations expérimentales. Il est
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Figure 9: Effet de proximité entre les phases 3 × 3 et
√

7 ×
√

3: Topographie d’une zone
102×89 nm2 montrant la frontière entre un domaine

√
7 ×
√

3. b. Carte de conductance de la
même zone à 0.1 meV. c. Spectres sélectionnés dans la zone

√
7×
√

3 (vert), au centre de l’anneau
dans la partie 3× 3 (bleu) et un point d’intensité maximum de l’un des anneaux (rouge).

fort probable que les différences avec la théorie proviennent des forts effets de corrélation électron-
ique existant dans ces matériaux qui ne sont pas pris en compte dans les simples calculs de type
Bogoliubov-de Gennes que nous avons mis en place.

8 Effet de proximité
En tirant profit de la possibilité de faire croître de nombreuses variétés de phases en contact dans
un même échantillon nous avons réalisé des îlots de Pb d’une épaisseur d’une dizaine de couches
atomiques [20]. Ces îlots possèdent les caractéristiques supraconductrices du Pb volumique et
présentent en particulier un gap très supérieur à celui de la monocouche (' 1.3 meV). En con-
séquence la mise en contact de tels îlots avec une phase HIC donne lieu à un "écoulement" des
paires de Cooper dans la monocouche sur une échelle de ξ, validant ainsi les prédictions théoriques
de de Gennes [21]. Nous présentons les résultats spectroscopiques à deux températures, 300 mK et
2.05 K. Dans le premier cas les deux systèmes, îlot et monocouche se trouvent dans l’état supracon-
ducteur, tandis que dans le deuxième, seul l’îlot conserve ses propriétés de supraconductivité. Nous
mettons ainsi en évidence la susceptibilité de la monocouche à rentrer dans l’état supraconducteur
au dessus de sa température critique. Ces résultats sont appuyés par des calculs réalisés par J. C.
Cuevas utilisant les équations d’Usadel décrivant un supraconducteur dans la limite diffusive.
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9 Conclusion
En conclusion, dans cette thèse nous avons exploré l’interaction entre supraconducteur bidimen-
sionnel et magnétisme local en allant de l’atome individuel aux clusters d’impuretés magnétiques,
qu’ils soient ordonnés ou non.

Dans le cas d’impuretés individuelles nous avons montré que la dimensionnalité du supracon-
ducteur donnait lieu à une extension spatiale exceptionnelle des états liés de YSR. Cette extension
nous a permis d’étudier plus précisément la structure spatiale de ces états et de mettre en évidence
le lien entre la phase de ces états et leur énergie.

Nous avons également discuté le rôle de la structure électronique du matériau dans la struc-
turation spatiale de ces états. En appliquant une méthode de joint-DOS dans le cas de 2H-NbSe2
et de la phase

√
7×
√

3 de la monocouche de Pb/Si(111) nous avons ainsi pu mettre en évidence les
parties de la surface de Fermi dominant les diffusions électroniques par les impuretés individuelles.

Notre compréhension de la structure spatiale des états de YSR nous a permis de comprendre
les effets en jeu dans des clusters d’impuretés magnétiques désordonné et d’interpréter la réduction
locale du gap supraconducteur et le remplissage du niveau de Fermi comme un effet combiné des
différentes impuretés enfouies.

En parvenant à organiser de manière cohérente nos clusters d’impuretés magnétiques nous avons
montré qu’il était possible d’établir des domaines topologiques dans les monocouches de Pb/Si(111)
par l’application d’un champ magnétique étendu sur une échelle de quelques nanomètres. La mise
en évidence des états de bords résultant et de la dispersion les accompagnant constitue une mise
en évidence directe de la supraconductivité topologique.

La suite de ce travail a constitué à générer des vortex dans la partie topologiques piégeant ainsi
des excitations électroniques au niveau de Fermi qui correspondent à des états liés de Majorana.
Nous avons alors montré que ces états liés pouvaient être manipulés en basculant l’aimantation
des clusters magnétiques par l’intermédiaire de la pointe du STM.

Nous avons enfin décrit les différentes structures électroniques des phases monocouches de
Pb/Si(111) sur de larges gammes d’énergie. Ce faisant nous avons pu réaliser des structures de
proximité mettant en évidence le comportement fortement corrélé de la phase 3× 3.

Ce travail apporte ainsi une vision d’ensemble de l’interaction entre supraconducteur et im-
puretés magnétiques allant de l’impureté individuelle aux clusters d’impuretés. Les résultats
présentés sur la supraconductivité topologique laisse espérer un développement ultérieur de l’étude
des propriétés topologiques des monocouches supraconductrices et de la manipulation d’excitations
de Majorana dans ces systèmes. Une des pistes les plus prometteuses réside dans la possibilité de
manipuler les excitations de Majorana par l’intermédiaire d’une pointe de STM ouvrant ainsi la
voie à des possibilités de tressage de ces excitations.

References
[1] D. A. Ivanov. Non-Abelian statistics of half-quantum vortices in p-wave superconductors.

Phys. Rev. Lett., 86:268–271, 2001.

[2] M. Sato and S. Fujimoto. Majorana fermions and topology in superconductors. Arxiv:
1601.02726, 2016.

[3] H. K. Onnes. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab.
Univ. Leiden, 12:120, 1911.

13



[4] W. Meissner and R. Ochsenfeld. Ein neuer effekt bei eintritt der supraleitfähigkeit. Natur-
wissenschaften, 21:787–788, 1933.

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys. Rev.,
108:1175–1204, 1957.

[6] L. N. Cooper. Bound electron pairs in a degenerate Fermi gas. Phys. Rev., 15:1189–1190,
1956.

[7] A. A. Abrikosov and L. P. Gor’kov. Contribution to the theory of superconducting alloys with
paramagnetic impurities. Soviet Physics JETP, 12:1243–1253, 1961.

[8] L. Yu. Bound state in superconductors with paramagnetic impurities. Acta Phys. Sin, 21:75–
91, 1965.

[9] H. Shiba. Classical spins in superconductors. Progress of Theoretical Physics, 40:435–451,
1968.

[10] A. I. Rusinov. Superconductivity near a paramagnetic impurity. JETP Lett., 85:85, 1969.

[11] A. Yazdani and al. Probing the local effects of magnetic impurities on superconductivity.
Science, 275:1767–1770, 1997.

[12] G. C. Ménard, S. Guissart, C. Brun, S. Pons, V.S. Stolyarov, F. Debontridder, M.V. Leclerc,
E. Janod, L. Cario, D. Roditchev, P. Simon, and T. Cren. Coherent long-range magnetic
bound states in a superconductor. Nature Physics, 11:1013–1016, 2015.

[13] T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He, L. Wang, X. Ma,
X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J.-F. Jia, and Q.-K. Xue. Superconductivity in one-
atomic-layer metal films grown on Si(111). Nature Physics, 6:104–108, 2010.

[14] K. S. Kim, S. C. Jung, M. H. Kang, and H. W. Yeom. Nearly massless electrons in the silicon
interface with a metal film. Phys. Rev. Lett., 104:246803, 2010.

[15] L. P. Gor’kov and E. I. Rashba. Superconducting 2D system with lifted spin degeneracy:
mixed singlet-triplet state. Phys. Rev. Lett., 87:037004, 2001.

[16] V. M. Édel’shtein. Characteristics of the Cooper pairing in two-dimensional noncentrosym-
metric electron systems. Zh. Eksp. Teor. Fiz., 95:2151–2162, 1989.

[17] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven.
Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices.
Science, 336:1003–1007, 2012.

[18] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A.
Bernevig, and A. Yazdani. Observation of Majorana fermions in ferromagnetic atomic chains
on a superconductor. Science, 346:602–607, 2014.

[19] V. Yeh, M. Yakes, M. Hupalo, and M.C. Tringides. Low temperature formation of numerous
phases in Pb/Si(111). Surf. Science Lett., 532:L238–L244, 2004.

14



[20] I. Brihuega, O. Custance, R. Pérez, and J. M. Gómez-Rodríguez. Intrinsic character of the
(3× 3) to (

√
3×
√

3) phase transition in Pb/Si(111). Phys. Rev. Lett., 94:046101, 2005.

[21] V. Cherkez, J. C. Cuevas, C. Brun, T. Cren, G. Ménard, F. Debontridder, V. S. Stolyarov, and
D. Roditchev. Proximity effect between two superconductors spatially resolved by scanning
tunneling spectroscopy. Physical Review X, 4:011033, 2014.

[22] P.-G. de Gennes. Boundary effects in superconductors. Review of Modern Physics, 36:225,
1964.

15


	Abstract
	Résumé
	Remerciements
	List of abbreviations and notations
	Introduction
	Superconductivity and scanning tunneling microscopy
	Introduction
	Superconductivity
	Historical overview of superconductivity
	BCS theory
	Bogoliubov-de Gennes approach

	Scanning tunneling microscopy and spectroscopy
	Topographic measurements
	Spectroscopy
	M3 microscope
	Data analysis


	Magnetic impurities in a superconductor
	Introduction
	Abrikosov Gor'kov theory of dilute magnetic impurities in a superconductor
	Yu-Shiba-Rusinov states
	Assumptions
	Eigenstates
	Writing the wave function of YSR states
	State of the art experiments on YSR states

	The impurity problem (Kondo physics)
	Conclusion

	Impurities in 2H-NbSe2 monocrystals
	Introduction
	Crystallographic and band structure of the material
	Sample preparation
	Sample growth
	Preparation for STM Measurement

	Observation of single magnetic impurities
	Increase of the spatial extent by dimensionality
	Interference effects and phase conditions for YSR bound states

	Theoretical modeling
	Tight binding parameters and model
	Numerical calculation
	Joint-DOS approach

	Deposited magnetic and non magnetic impurities
	Magnetic Co impurities

	Conclusion

	Impurities in Pb/Si(111) monolayers
	Introduction
	Structural properties of Pb/Si(111) monolayers
	Superconductivity in monolayers
	Individual impurities
	Case of the 73 phase
	Non magnetic impurities in 73 phase
	Disordered phases

	Towards the Abrikosov-Gorkov limit
	Growth conditions
	Spectroscopic features
	Theoretical analysis and link to Abrikosov-Gorkov theory

	Conclusion

	Magnetic clusters and topological systems
	Introduction
	Topology and Majorana quasi-particles
	Rashba spin-orbit interaction
	Origin and effect of the interaction
	Case of Rashba effect with magnetic field
	Rashba spin-orbit and form of the superconducting interaction
	Rashba spin-orbit, Zeeman and superconductivity
	Symmetries of the Hamiltonian

	Experiment principle
	Sample preparation
	Imaging of the Co clusters

	Experimental results
	Topological edge states
	Majorana bound states in vortex cores
	Magnetization switches

	Conclusion

	The Pb/Si(111) monolayer: A playground for 2D physics
	Introduction
	Induced metallicity
	Phase coexistence in Pb/Si(111) systems
	High energy spectroscopy of the Pb/Si(111) phases
	Modified behavior of the 73 by proximity with disordered 33 regions
	Proximity between disordered 33 and 33 ordered regions

	Superconducting proximity effect between 73 and 33
	Conclusion

	Superconducting proximity effect
	Introduction
	System
	Results at 300 mK
	Results at 2 K
	Conclusion

	Conclusion
	Abrikosov Gor'kov theory
	Self-energy
	Critical temperature and concentration

	Computation of the Shiba wave function in 2D and 3D
	Shiba state in a 3D system
	Shiba state in a 2D system

	Derivation of the Bogoliubov-de Gennes equations
	Fano resonance
	Gap reduction calculation

