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La composition des isotopes stables de l’eau sur le plateau Est Antarctique :
mesure à basse température de la composition de la vapeur, utilisation comme un traceur
atmosphérique et implication pour les études paléoclimatiques

Mots clés : Antarctique, isotopes, spectroscopie, climat, reconstruction

Les carottes de glace permettent de reconstruire le climat
du passé, à partir entre autre de la composition isotopique de
l’eau (δ 18O, δ 17O et δD). Sur le plateau Est Antarctique, les
températures très froides et les faibles accumulations permettent
de remonter le plus loin dans le passé (jusqu’à 800 000 ans) mais
compliquent l’interprétation du signal isotopique. Premièrement,
les reconstructions des variations de température dans les carottes
de glace à partir des isotopes de l’eau se basent sur des modèles
pour décrire l’évolution de la composition isotopique de la vapeur
et de la phase condensée le long du cycle de l’eau. Ces modèles,
qui ont été développés au cours des dernières décennies, reposent
sur la connaissance de coefficients du fractionnement isotopique
associé à chaque transition de phase et sur des hypothèses pour
représenter la micro-physique des nuages.

Lors de la formation de flocons de neige à basse tempéra-
ture, 2 types de fractionnements isotopiques doivent être pris en
compte : le fractionnement isotopique à l’équilibre, associé à la
transition de phase vapeur-glace et le fractionnement isotopique
cinétique lié aux différentes diffusivités des différents isotopes. A
basse température, les déterminations des coefficients du fraction-
nement du fractionnement à l’équilibre présentent d’importantes
différences et n’ont jamais pu être mesurées à des températures
inférieures à -40 ◦C. Or la température moyenne annuelle à Dome
C est de -54 ◦C atteignant jusqu’à -85 ◦C l’hiver. Les diffusivités
des différents isotopes quant à elles n’ont jamais été mesurées à
des températures inférieures à 10 ◦C. Toutes ces lacunes résultent
dans des incertitudes importantes sur le lien entre la composition
isotopique et la température dans des conditions comme celles du
Plateau Est Antarctique.

De plus, dans ces conditions froides et arides, les proces-
sus physiques qui affectent la composition isotopique de la neige
après la déposition des flocons deviennent importants compte tenu
du faible apport annuel de précipitation. Pour estimer l’impact de
ces processus de post-déposition sur la composition isotopique, il

est nécessaire de bien caractériser le fractionnement isotopique à
l’interface neige/atmosphère pour des températures allant jusqu’à
-90◦C.

Afin d’améliorer les reconstructions quantitatives de tempé-
rature l’étude des processus affectant la composition isotopique
de la glace à très basse température est donc primordiale. Dans
cette optique, ma thèse a été à l’interface entre les études de
processus au laboratoire et en Antarctique et le développement
instrumental afin de pouvoir réaliser des mesures isotopiques
encore inédites, en particulier à très basse humidité. D’un côté,
j’ai développé d’un nouveau spectromètre infrarouge aux per-
formances bien au-delà des instruments commerciaux. En effet,
la fréquence du laser est stabilisée par rétroaction optique par
une cavité ultra-stable jusqu’à un niveau de stabilité de l’ordre
du hertz. La lumière est ensuite injectée dans une cavité CRDS
hautes performances avec une sensibilité de 10−13cm−1.Hz−1/2.
Ceci permet de mesurer la composition isotopique avec une pré-
cision inférieure au ppm.

En parallèle, des expériences au laboratoire ont permis de
renforcer les connaissances sur les processus affectant les iso-
topes de l’eau, en particulier le fractionnement lié à la transition
de phase vapeur - glace et le fractionnement cinétique lié aux
différentes diffusivités des différents isotopes en modélisant le
fractionnement lié à la diffusion près d’un point froid. Enfin,
durant une campagne en Antarctique, j’ai pu réaliser parmi les
premières mesures de la composition isotopique de la vapeur et
de la glace en Antarctique et appliquer les modèles physiques
des processus à des données de terrain. Ces mesures montrent
que le cycle de sublimation/condensation contribue de manière
importante à la composition isotopique de la neige sur le plateau
Est Antarctique.

.
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Water stable isotopic composition on the East Antarctic Plateau :
measurements at low temperature of the vapour composition, utilisation as an atmosphe-
ric tracer and implication for paleoclimate studies
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Ice cores enable reconstruction of past climates, from
among others water stable isotopic composition (δ 18O, δ 17O
et δD). On the East Antarctic Plateau, very cold temperature and
low accumulation provide the longest ice core records (up to 800
000 years) but embrangle the interpretation of isotopic composi-
tion. First, reconstructions of temperature variations from ice core
water isotopic composition are based on models used to describe
the evolution of the isotopic composition of the vapour and of the
condensed phase over the entire water cycle. These models have
been developed during the last decades and depend upon precise
determinations of isotopic fractionation coefficients associated
to each phase transition and upon hypotheses to describe cloud
microphysics.

During the formation of snowflakes at low temperature, two
types of isotopic fractionations need to be taken into account :
equilibrium fractionation, associated to the vapour to ice phase
transition and kinetic fractionation associated to the difference of
diffusivity of the different isotopes. At low temperature, determi-
nations of equilibrium fractionation coefficients present important
discrepancies and have never been realised for temperature below
-40 ◦C. However, mean annual temperature at Dome C is around
-54◦C reaching -85◦C in winter. For the diffusivities of the dif-
ferent isotopes, they have never been measured at temperature
below 10◦C. All these gaps result in important uncertainties on
the link between isotopic composition and temperature, espe-
cially for cold and dry conditions such as encountered on the East
Antarctic Plateau.

Furthermore, because of the very low amount of precipi-
tation, physical processes affecting the isotopic composition of
the snow after the deposition of snowflakes can results in an im-
portant contribution to the isotopic budget. In order to estimate

the impact of the post-deposition processes on the water vapour
isotopic composition, it is necessary to characterise the isotopic
fractionation at the snow/atmosphere interface for temperature
down to -90◦C.

In order to improve isotopic paleothermometer perfor-
mances, it is primordial to study processes affecting snow iso-
topic composition. Toward this goal, my Ph-D has been at the
interface between monitoring of processes affecting isotopes,
both in laboratory experiments and field studies, and instrumental
development to push the limits of water vapour isotopic com-
position trace detection. On one hand, new developments in
optical feedback frequency stabilisation applied for the first time
to water isotopic composition monitoring provide performances
beyond any commercial instrument and can be used for thorough
processes studies. The laser frequency is stabilised by optical
feedback from an ultra-stable cavity to the hertz level. Then, the
light is injected in high performances cavity with a sensibility of
10−13cm−1.Hz−1/2. This enables measuring isotopic composi-
tion with a precision below the ppm level.

On the other hand, laboratory experiments have supported
theories about isotopic fractionation associated to the vapour to
ice phase transition and to kinetic fractionation linked to the dif-
ference of diffusivities of the different isotopes. Finally, these
physical models have been collated to field measurements rea-
lised at Dome C in Antarctica, which are among the first water
vapour and snow isotopic composition measurements realised in-
land Antarctica. These measurements show how important is the
contribution of the sublimation condensation cycles to the snow
isotopic composition budget on the East Antarctic Plateau.

.
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Chapter 1

Introduction

La météorologie ne pourra devenir une science véritablement exacte que le jour
où les phénomènes qui s’y rattachent auront été étudiés sur tous les points du
globe, et l’Antarctique, [...], reste toujours une vaste tache d’inconnu. ∗

Pourquoi faut-il aller dans l’Antarctique ?
JEAN-BAPTISTE CHARCOT

Past climate reconstructions

As the cold trap of the water cycle, Antarctica’s ice has archived variations of climate
in the past. Ice traps dusts, air bubbles and dissolved compounds which are preserved
on long time scales (up to 800 000 years), locked and frozen in time. The composi-
tion in stable heavy water isotopes (H2

18O, H2
17O and HD 16O) over the light, principal

one (H2
16O) is one of the tools used to realise past climate reconstructions [Dansgaard,

1964; Lorius et al., 1969] among greenhouse gases concentration trapped in air bubbles
[Raynaud et al., 1993], inert gas isotopic composition trapped in air bubbles [Severing-
haus et al., 1998; Landais et al., 2004], borehole thermometry [Cuffey and Clow, 1997]...
Along the last decades, several deep ice cores have been drilled in Greenland [North
Greenland Ice Core Project members, 2004; NEEM community members, 2013] and in
Antarctica [Petit et al., 1999b; EPICA, 2004, 2006; WAIS Divide Project members, 2013]
providing multiple reconstructions of the climate variations.

∗. Meteorology will only become an exact science when all the phenomena involved in it will have been
studied all around the world, and Antarctica, [...] still remains a vast unknown area.



Chapter 1. Introduction

Past climates study reveals successive glacial and interglacial cycles characterised by
a period of 100 000 years [Imbrie and Imbrie, 1980] as illustrated on Figure 1.1. These
cycles are controlled by the variations of energy received from the solar radiation in the
high latitudes of the Northern hemisphere Milankovitch [1941]. The decrease of solar
radiation at the high latitudes of the Northern hemisphere increases the quantity of snow
accumulated over the year. Because the surface covered in snow is larger, the global
albedo increases. It creates a positive feedback loop because more solar radiations are
then reflected which decreases even more the temperature and can increase the accumula-
tion of snow and trigger a glacial period. The variation of the amount of energy received
by the solar radiations is mainly controlled by the orbital parameters. First, there is the
eccentricity which corresponds to the deformation of the Earth orbit from a perfect cir-
cle into an ellipsoid: the deformations are small (1.7 to 5.8 %) and change slowly with
two typical frequencies at 100 000 years and 400 000 years. Second, the obliquity rep-
resents the tilt between the rotational axis of the Earth with the orbital axis: it imposes
the latitudinal repartition of the solar radiation and directly controls the amplitude of the
seasonal cycle, the obliquity varies between 22.1◦ and 24.5◦ with two pseudo-periodicity
around 41 000 years. And third the precession controls the synchronisation of the season
(determined by which hemisphere face toward the sun) with the position of the earth on
the ellipsoid with a periodicity of 19 000 years and 23 000 years. The variations of the
orbital parameters create small variations of solar irradiance, but as the climatic system is
strongly non linear, these small variations are enough to trigger an hysteresis cycle, hence
the glacial-interglacial cycles [Paillard, 1998].

The hydrological cycle is predominant in the Earth climate system and all three phases
of water (vapour, liquid and ice) play an important role in the radiative balance and redis-
tribution of heat. First, the oceanic masses cover 72% of the Earth surface and are actively
regulating the climate through an important and complex thermohaline circulation. Sec-
ond, water vapour, as the most important greenhouse gas (60% of the natural greenhouse
effect [Kiehl and Trenberth, 1997]), warms the atmosphere by trapping infrared radiations
but can also cool the atmosphere through the increase of albedo by the clouds. Third, as
explained above, snow and ice albedo effects strongly impact the climate, but frozen
water can also impact the climate through fresh water input in the thermohaline circula-
tion creating large, rapid temperature fluctuations [Dansgaard et al., 1984; Bond et al.,
1993]. Because stable water isotopes are involved at each step of the hydrological cycle
[Dansgaard, 1954], they can be used as a faithful proxy of past atmospheric temperature
[Dansgaard, 1964].
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Figure 1.1: Methane (green, ppbv) and carbon dioxide (red, ppmv) concentrations from the air
bubbles of the EPICA ice core and δD (black, permil) of the ice of the EPICA ice core, compared
to benthic isotopic composition (blue, permil), precession, obliquity and eccentricity as predicted
by the Milankovitch theory [Jouzel and Masson-Delmotte, 2010]

Studying Antarctica

Antarctica is a very important place for paleoclimate science. First, because of the extent
of the ice sheet, both vertically and horizontally, it is an archive of the Earth global cli-
mate and presents as well local particularities due to the large range of climatic conditions
encountered. Present ice cores span with unchallenged reconstruction power over the last
800 000 years and they are expected to be able to reach up to 1.5 million years [Fischer
et al., 2013]. Second, Antarctica is isolated enough and mostly free of direct anthro-
pogenic contamination, which leads to better preserved archives. Finally, the importance
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Chapter 1. Introduction

of Antarctica’s ice sheet in global climate makes it dire to understand the dynamics of lo-
cal climate to temperature variations, especially in the context of climate change. Indeed,
mass balance of Antarctica’s ice sheet is very sensitive to climate variations with rapid
ice-sheet collapse triggered by coastal melt highlighting the vulnerability of the Antarctic
ice sheet in the context of climate change [DeConto and Pollard, 2016]. These ice sheet
mass losses are associated with direct impact on the global climate, in particular large sea
level rising [Dutton et al., 2015].

Several deep ice cores have been drilled providing either long spanning records of
several hundred thousand years (Vostok, Dome C...) or high resolution records of the last
80 000 years of the West Antarctic ice sheet (WAIS Divide). New technological devel-
opments, in particular infrared spectroscopy, enable to access to high resolution and even
continuous measurement of ice core isotopic composition profiles. Indeed, the ability
of infrared spectrometers to continuous measure has been transferred to ice cores study
through sampling in Continuous Flow Analysis (CFA) systems [Gkinis et al., 2011]. By
extracting liquid water during the progressive melting of an ice core, it is possible with a
peristaltic pump to continuously vaporise the water and analyse it. Even more impressive,
a common effort of the Laboratoire de Glaciologie et de Geophysique de l’Environnement
(LGGE) and of the LIPHY has developed an infrared spectrometer deployed inside the
drill of the ice core, enabling measurements of the ice isotopic composition and methane
content in situ when the ice is being drilled [Grilli et al., 2014].

Water stable isotope signal

Interpreting stable water isotopic composition signal is not as straightforward because of
the multitude of processes leading to the formation of the snow in remote Polar Regions:
evaporation at the oceanic surface, advection of air masses, snow flake/rain drop for-
mation in mixed phase conditions in clouds, re-evaporation during precipitation events,
mixing of different air masses and even post-deposition processes such as sublimation-
condensation cycles at the diurnal scale. Indeed, each of these processes is associated
with one or several fractionation of water isotopes.

In addition, the fractionation processes are not perfectly constrained at low tempera-
tures such as encountered in remote Polar Region. At the phase transition between vapour
and ice, the fractionation associated with the phase transition at thermodynamic equilib-
rium (equilibrium fractionation) has only been measured down to −40◦C [Merlivat and
Nief, 1967; Majoube, 1971a; Ellehøj et al., 2013] and the different determinations already
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differ significantly at−20◦C. Kinetic fractionation during molecular diffusion is not con-
strained any better with only a few experimental determinations of the diffusivity ratios of
the different isotopes [Merlivat, 1978a; Cappa et al., 2003; Luz et al., 2009], all of them
realised at positive temperatures.

This creates important uncertainties on theoretical relationship between water stable
isotopic composition and temperature as highlighted by Guillevic et al. [2013]. As a
result, stable isotopic composition from ice core is generally calibrated against an inde-
pendent estimation of temperature variations, for instance a borehole thermometry record
[Cuffey and Clow, 1997] or from nitrogen and argon isotopic composition temperature
record [Orsi et al., 2014]. Still, these methods only provide a discrete calibration for one
period, one time scale and one location and cannot be generalised for the interpretation of
the isotopic composition as a temperature proxy.

At the first order, all three stable isotopic compositions (δ 18O, δD and δ 17O) are still
directly related to local average temperature. Additional information can be extracted
from combination of the isotopic compositions in secondary parameter or excess. The
deuterium excess d− excess = δD−8×δ 18O as defined by Dansgaard [1964], provides
additional information such as the relative humidity during evaporation at the source of
the moisture [Gat, 1996; Uemura et al., 2008], during re-evaporation in convective zones
[Risi et al., 2008], the temperature variations at the source of the moisture [Vimeux
et al., 1999] or can be used to tune supersaturation using its spatial variations [Ciais
and Jouzel, 1994; Werner et al., 2011]. The excess in 17O, defined by 17O− excess =

ln
(
δ 17O+1

)
−0.528 ln

(
δ 18O+1

)
[Barkan and Luz, 2007; Landais et al., 2008] can be

used as an indicator of relative humidity at the source of the moisture during evaporation
[Uemura et al., 2010b] or temperature during condensation of the snow in very cold re-
gions [Landais et al., 2012b; Winkler et al., 2012; Schoenemann et al., 2014]. The second
order parameters are still relatively rarely used in Polar Regions as they are not so simple
to interpret as they also combine several signals such as relative humidity and temperature
at the source and the local temperature in Polar Regions [Jouzel et al., 2007] or even the
precise trajectory of the air masses during the advection of moisture [Bonne et al., 2015].

Main scientific questions

The frame of my Ph-D is to improve the performances of paleoclimate reconstructions
from ice core isotopic composition, by better quantifying the climatic information recorded
by the ice isotopic composition, especially for remote Polar Regions. This motivates an
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Chapter 1. Introduction

important effort to understand the processes involved in the fractionation of water stable
isotopes both in the atmosphere and at the snow surface, in particular at low temperature
and low humidity, using both laboratory experiments and field studies. This goal has been
separated in several scientific questions, the first one is:

• What is the primary contribution to snow isotopic composition on the East
Antarctic Plateau ?

The snow isotopic composition is not solely determined by the isotopic composition
of the successive precipitation events and is affected by several post-deposition processes.
First, wind transports flakes and erodes the snow surface in a fashion dependent on topog-
raphy (from the local to the regional scale) which redistributes the snow [Sokratov and
Golubev, 2009]. Modelling approaches highlight that only during strong wind events can
occur permanent deposition of snow [Groot Zwaaftink et al., 2013]. It also creates gradual
movement of the snow dunes associated with artificial variations of the isotopic composi-
tion in the ice structure [Ekaykin et al., 2002; Frezzotti et al., 2002; Ekaykin et al., 2004].
Second, surface snow measurements in Greenland indicates that the isotopic composi-
tion can be altered directly by the exchanges with the local vapour [Steen-Larsen et al.,
2014a]. Already in Greenland, this modification can contribute for a significant amount of
the signal despite important annual accumulation. On the East Antarctic Plateau, it is not
clear whether this kind of post-deposition process should have more or less impact on the
snow isotopic composition: the precipitation rate is much lower than in Greenland, and
therefore we expect these exchanges to have a larger relative contribution in Antarctica
but the temperature is lower and therefore the humidity level, which limits the contribu-
tion of these exchanges.

One of the limits to obtain a better constrain on the archival of climatic signal by snow
isotopic composition is that, at this range of temperature, the associated fractionation
processes are poorly constrained. This raise the second question of my Ph-D:

• How to determine quantitatively isotopic fractionation during the formation
of snow at low temperature ?

This question includes mainly the impact of the fractionation during the vapour to
ice phase transition and the fractionation associated with diffusion processes. An impor-
tant amount of studies have been led in the 60’s, 70’s and 80’s exploring the processes
influencing isotopic composition under the direction of Dansgaard, Lorius, Merlivat and
Jouzel. At this time, measuring isotopic composition of water was mainly realised by
mass spectrometry and required a chemical transfer. To explore the influence of one
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physical process affecting the isotopic composition, they had to realise complex and time
consuming laboratory setups and they laid the foundations of the isotopic paleothermome-
try. Experiments on fractionation processes have been so far still mainly realised by mass
spectrometry. Indeed, even though Ellehøj et al. [2013] tried to implement an infrared
spectrometer to determine the isotopic composition of the vapour left over the equilibra-
tion chamber, below−10◦C, the precision of the infrared spectrometer was direly reduced
and led Ellehoj et al to mainly use the data obtained by mass spectrometry.

Still, as stated above, important discrepancies remain in the determination of both
equilibrium fractionation and kinetic fractionation coefficients, in both cases, especially
at low temperatures. In laboratory setups or in the field, processes affecting the vapour or
the vapour to ice phase transition are the main troublemakers in cold conditions. Indeed,
only traces of water vapour remain in the air at the temperature encountered on the East
Antarctic Plateau leading to reduce precision of the measurement of the isotopic compo-
sition of the vapour in these conditions.

To overcome this measurement issue, analytical developments are crucial to push the
detection limit and therefore realise processes studies. This leads to the next question of
my Ph-D:

• How to measure water vapour isotopic composition for climatic conditions as
encountered on the East Antarctic Plateau ?

Nowadays, commercial plug and play instruments based on infrared spectroscopy are
available and can measure continuously isotopic composition with precision equivalent to
mass spectrometry. Infrared spectrometry builds on several aspects of physics to provide
high sampling rate, non destructive, water vapour isotopic composition measurements.
With telecommunication developments, laser diodes in the near-infrared region have been
widely studied. Indeed, optical fibre main material has a minimum of absorption in this
region near 1400 nm. Through the development of telecommunication, efficient and af-
fordable diode lasers, photodiodes, mirror and other optical, electro-optical and accousto-
optical components have been conceived.

In the last decades, development of resonant cavities have opened new possibilities to
reduce the size of the sample analysed and increase the power of measurement at the same
time. Combined with the computer evolution, stand alone infrared spectrometers are now
able to measure isotopic composition continuously in the field and in laboratories.
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These new instruments are routinely deployed to measure water vapour isotopic com-
position in tropical and temperate regions [Tremoy et al., 2011; Steen-Larsen et al., 2014b].
In Polar Region, only a few measurements have been realised due to low humidity content
increasing the need for calibration and special care to prevent condensation in the inlets
[Steen-Larsen et al., 2013; Bonne et al., 2014]. Indeed, absolute humidity decrease ex-
ponentially with temperature, reaching easily the limits of the instruments below −30◦C.
In Antarctica, before the beginning of my Ph-D, only two campaigns measured water
vapour isotopic composition inland Antarctica: Olivier Cattani at Dome C in 2006/07 by
cryogenic trapping and whose results are presented in Section 6.2 and Janek Landsberg
(Ph-D defended in 2014) at Troll Station in 2012 but the results were impaired by sam-
pling problems and were never published [Landsberg, 2014]. Continuous measurement
of water vapour by infrared spectroscopy stays very limited at low humidity and therefore
leads to the last question of my Ph-D:

• What are the limits of the isotopic composition measurements of water vapour
by Infrared spectrometry ?

New developments in infrared spectroscopy over the last years enabled one to measure
down to very low humidity, such as encountered in central Antarctica. New commercial
instruments, from Picarro for instance, are now able to measure below 1000 ppmv and
include 17O− excess [Steig et al., 2014] with routine precision around 0.1‰ for δ 18O.

At the Laboratoire Interdisciplinaire de PHYsique (LIPHY), Daniele Romanini, Erik
Kerstel and Janek Landsberg have developped an infrared spectrometer able to measure
triple isotopic composition in trace of water vapour down to 10 ppmv. New developments
in optical feedback frequency stabilisation realised by Johannes Burkart (Ph-D defended
in 2015) enabled comb-assisted spectroscopy of CO2 gas with unchallenged precision.
My thesis builds on all these initiatives to expand the possibilities to measure water iso-
topes in the vapour at low humidities as encountered in Antarctica combining cryogenic
trapping for mass spectrometry measurements, the use of several generations of commer-
cial instruments from Picarro, the use of the instrument developed by Janek Landsberg
and the development of a new range of infrared spectrometer for water vapour isotopic
composition measurements based on optical feedback frequency stabilisation. At the Lab-
oratoire des Sciences du Climat et de l’Environnement, using the expertise of Olivier
Cattani and Hans-Christian Steen-Larsen (Ph-D defended in 2010), three campaigns were
organised to monitor water vapour isotopic composition inland Antarctica: one at Kohnen
station by François Ritter in 2013 and two at Dome C by myself in 2014 and Frederic
Prié in 2015.

18



Figure 1.2: Satellite picture of Antarctica with the two inland stations where water vapour isotopic
composition was monitored during my Ph-D

• Applications to atmospheric dynamic and link with modelling

Finally, water isotopes study is actually going beyond the sphere of paleoclimate sci-
ence, even in Polar Regions. Continuous monitoring of water vapour isotopic composition
has enabled one to use water stable isotopes as an atmospheric tracer. For instance, using
several continuous monitorings in the North Atlantic region, Bonne et al. [2015] high-
light the interest of using d-excess to monitor atmospheric rivers. These phenomena are
particularly important because they account for a significant contribution to high latitudes
moisture budget [Liu and Barnes, 2015]. Water isotopes have also been commonly used to
tune supersaturation in remote Polar Regions where very few measurements exists [Ciais
and Jouzel, 1994; Winkler et al., 2012].
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Vapour isotopic composition is also necessary to improve the performances of cli-
matic models: accurate description of isotopic composition as a tracer in climate models
requires an important amount of data to set precise parametrisation. Water isotopes have
been routinely implemented into Global Circulation Model (GCM) and provide dynamic
representation of the isotopes in Polar regions useful for the interpretation of ice core data
[Hoffmann et al., 1998; Schmidt et al., 2005; Risi et al., 2010; Werner et al., 2011]. In
parallel of my Ph-D, the implementation of water isotopes in the regional model MAR
[Gallée and Gorodetskaya, 2010], which include the complete physics of the water cycle
in Polar Region, has been realised by Mathias Moys and should provide important in-
sights of the local dynamic of water isotopes. Additionally, the implementation of water
isotopes in the snow model CROCUS [Brun et al., 2011] has been realised by Alexandra
Touzeau and should provide important insights of the post deposition processes in the
snow firn.

Organisation of the manuscript

In this manuscript, we will address several aspects of water stable isotopes in low humidity
and temperature conditions: how to measure water isotopes accurately at low humidities
? How equilibrium and kinetic fractionation are parametrised at low temperature ? How
isotopic composition is affected by climatic parameters during snow formation and after
deposition ? This PhD had an important experimental part through the development of
a new infrared spectrometer, developments on existing infrared spectrometer: the HiFI
realised by Janek Landsberg; and also the developments a new humidity generator to be
able to calibrate infrared spectrometers at very low humidities. It includes the results from
several laboratory experiments: spectroscopy of the water vapour at the LIPHY, cloud
chamber experiments at the Laboratoire Interuniversitaire des Sciences Atmospheriques
(LISA), equilibrium fractionation coefficients determination at the LSCE, and from two
field campaigns at Concordia among which I took part in the first one. It also includes the
analysis of snow samples gathered by several winterover crew at Concordia.

In the Chapter 2 are detailed the water isotopes physical properties. First, from a ther-
modynamic point of view, it focuses on how phase transition affects the isotopic compo-
sition and details two experiments that have studied the phase transition between vapour
and ice. Then, the large panel of out of equilibrium processes affecting the isotopic com-
position is reviewed and applied to the formation of snow in Antarctica. Finally, all these
information is placed in the context of an isotopic paleothermometer.
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In the Chapter 3, we detail the measurement of isotopic composition and provide
an idea of the limits of infrared spectroscopy before I started my Ph-D. First, a quick
overview of mass spectrometry is realised in order to explain the pros and cons of the
method, in particular the rather good precision versus the time consuming preparation
of the samples and the necessity of regular calibration. Then, a detailed review of how
to measure water vapour isotopic composition by infrared spectroscopy includes basic
physics underlying the measurement techniques. The purpose is to clarify the possibili-
ties with both methods in order to optimise behaviour with mass spectrometry and infrared
spectroscopy and to clearly state the present limits.

In the Chapter 4, we present the new developments in infrared spectroscopy realised
during my Ph-D in order to push the limits further. First, we realised new reference spectra
of water vapour in order to improve the spectroscopy fit parameters on which are relying
all infrared spectrometers to estimate the concentration. These results show that one of
the principal limits is the frequency stabilisation of the laser. These results motivated the
construction of a new ultra stable cavity as a frequency reference. This cavity has been
characterised and placed in the context of previous prototypes and we describe the first
results from this cavity to realise spectra of water vapour. The efforts on these two aspects
of spectroscopy: are mandatory to realise instruments able to measure at lower humidity
water stable isotopic composition, in the laboratory or on the field.

In the Chapter 5, we focus on experimental investigations on the fractionation pro-
cesses with two main aspects: the isotopic fractionation associated with the vapour to ice
phase transition and diffusion led kinetic fractionation. First, we go back on fractiona-
tion during the phase transition between vapour and ice and try discriminate over the two
existing determinations [Merlivat and Nief, 1967; Ellehøj et al., 2013]. We present per-
spectives of a new experiment to be realised. Then, we revisit the experiment of Jouzel
and Merlivat [1984] extending a similar impact of kinetic fractionation on 17O− excess

than on d− excess and exploring with a new theoretical background the impact of the
difference in diffusivities of the different isotopes.

In the Chapter 6, we focus on field study of stable isotopes on the East Antarctic
Plateau. First, we describe the water vapour isotopic composition monitoring realised
during my Ph-D at Dome C. Because this is the first campaign measuring on the East
Antarctic Plateau with humidity levels down to 200 ppmv, it was important to validate
the measurement techniques. This led to an important amount of validation of the data
through Allan Variance calculation, regular calibrations, comparison with cryogenic trap-
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ping realised in parallel, and the first results. These results are also compared with the
similar results from Kohnen station where the climatic conditions are in between the one
found at Dome C and at NEEM (Greenland). Then we study in parallel vapour and snow
isotopic composition in order to understand how the isotopic composition archives tem-
perature signal in a place where annual accumulation of snow contributes as much as
sublimation/condensation cycles to the mass budget.

In the Chapter 7, a comprehensive discussion of the impact of these results is pro-
vided to conclude this manuscript. Finally, this manuscript is completed by a summary
in French (Annexe A), a description of my Ph-D in a context larger that simply scientific
point of view (Annexe B), some technical aspects (Annexe C) and an additional article
about the acquisition of isotopic composition for surface snow in East Antarctica in which
I was involved (Annexe D).
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Chapter 2

Water isotopes physical properties

In this section, we will define all the notions we will be using later on. This section is
based on the state of the art of water isotopic composition physical properties including
thermodynamic, diffusion, turbulence and distillation processes. These properties are
fundamental to understand the history that led a moist air toward being precipitated in
remote Polar Regions and therefore essential to analyse the ice isotopic composition in
paleoclimate studies. These properties are directly used by models incorporating isotopes,
including global climate models. They mainly involve the thermodynamic properties of
moisture along the water cycle. First, we will describe the thermodynamic properties
involved at the phase transition at thermodynamic equilibrium, then move on to out of
equilibrium processes also affecting the different isotopes and finally explain why this is
important in the isotopic paleothermometer.

2.1 Thermodynamic properties

2.1.1 Saturated vapour pressure

When a gas is in contact with its condensed phase, particles can freely exchange between
the two phases. At thermodynamic equilibrium, the net flux is equal to 0. If the ther-
modynamic conditions are enabling both phases to exist, the vapour reaches its saturated
vapour pressure. Then, the number of particles leaving the surface is equal to the number
of particles striking and "joining" this surface at this time, i.e. Psat(T )(1−R)/

√
2πmT

where Psat is the saturated vapour pressure, R a mean "reflection coefficient" for parti-
cles colliding at the surface [Landau and Lifshitz, 1958]. Using the Clausius-Clapeyron
formula, one can calculate the saturated vapour pressure with:

dPsat

dT
=

Lv(T )Psat

RvT 2 (2.1)
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where Lv is the latent heat and Rv the gas constant. In the case of water for climatology
studies, the variations of Lv against temperature, and therefore of Psat , cannot be neglected.
Approximations validated toward measurements are used as there is no analytical solution
of such problems considering the degree of complexity involved. Unless stated otherwise,
we will use within this manuscript the Goff and Gratch formula [Goff and Gratch, 1945]
for vapour at equilibrium with liquid water :

log Psat =−7.90298
(

373.16
T
−1
)
+5.02808 log

(
373.16

T

)
...

−1.3816 10−7
(

1011.344 (1−T/373.16)−1
)
...

+8.1328 10−3
(

10−3.49149 (373.16./T−1)−1
)
+ log (1013.25) (2.2)

Where T is expressed in K. For the case of vapour at equilibrium with ice :

log Psat =−9.09718
(

273.15
T
−1
)
−3.56654 log

(
273.15

T

)
...

+0.876793
(

1− T
273.15

)
+ log (6.1173) (2.3)

Even though this formula slightly underestimates the vapour pressure of ice, in the range
of −100◦C to +100◦C, the error is only on the order of 0.1 % which is not relevant con-
sidering the precision obtained with humidity and temperature measurements.

As the number of particles striking the surface is mass-dependent, different isotopes
have different saturated vapour pressures. Therefore, there is a fractionation at the inter-
face between the phases. For instance, in the case of the isotopic exchange of H2O and
HDO between a liquid phase and a gaseous phase, we have, using the formulation from
Criss [1999], chapter 2:

(H2O)l +(HDO)g = (HDO)l +(H2O)g (2.4)

where the equilibrium constant K =
[(HDO)l][(H2O)g]

[(H2O)l][(HDO)g]
is directly linked to other state

thermodynamic variables. In the case of an equilibrium between a gas and a liquid phase
with two different isotopes involved such as described above, the relationship between the
Gibbs free energy and the equilibrium constant is given by :

∆G0
f =−RT lnK (2.5)
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where R is the gas constant, T the absolute temperature (Kelvins) and the standard Gibbs
free energy of the particular reaction ∆G0

f is expressed in kcal.mol−1. Tables usually pro-
vide values of the Gibbs free energy at standard conditions of pressure and diverse ranges
of temperature. For instance, Lide [2004] provides the thermodynamic data associated
with each element involved in the exchange equation (2.4) at 25◦C. We obtain for the
reaction (2.4) a value ∆G0

f = 45 cal.mol−1 which gives a value of K = 1.079. This means
that the ratio of number of HDO molecules by H2O molecules in the condensed phase is
1.079 times higher than in the vapour and therefore, the heavy isotopes are more impor-
tantly found in the condensed phase than in the vapour. This property is classically called
equilibrium fractionation and the value found here is in agreement with experiments. As
the values for the Gibbs free energy ∆G0 associated with isotopic exchanges are very
small, thermodynamic data can not necessarily be known with enough precision to make
useful predictions to estimate isotopic fractionation, especially as there is a very strong
dependence on the Gibbs free energy associated with each element with temperature.

2.1.2 Equilibrium fractionation

As the flux of molecules sticking on the surface is greater for the heavy isotopes (H2
18O,

H2
17O, or HD 16O) than for the light isotope (H2

16O), they remain in larger quantity in
the condensed phase than in the vapour. More generally, the molecules are preferably
found in the phase in which they bound the strongest. In the case of water isotopes for the
range of temperature observed on earth, the heavy isotopes are preferentially found in the
condensed phases rather than in the vapour, but it is not necessarily the case. In order to
express the quantity of the heavy isotope X compared to the light one, we use the isotopic
ratio RX :

RX =
abundance o f heavy isotopes
abundance o f light isotopes

The quantity of heavy isotopes is much lower than the light ones, thus we usually report
isotopic composition compared to a reference value:

δX =
RX

RX
re f
−1 (2.6)

Because the values of δX are very small, it is expressed in ‰. In the case of water, Rre f
X

is the standard value given by the International Atomic Energy Agency (IAEA) named V-
SMOW after Vienna Standard Mean Ocean Water and SLAP after Standard Light Antarc-
tic Precipitation. The values of the standards are given in Table 2.1. Determination of the
absolute isotopic composition of a sample is rather complicated as we will see in section
6.2.
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Table 2.1: Values of the standard V-SMOW and SLAP with a factor 10−6 [Baertschi, 1976; de Wit
et al., 1980; Martin and Gröning, 2009] .

H2
18O/H2

16O H2
17O/H2

16O HD 16O/H2
16O

RX
V−SMOW 2005.20±0.45 379.9±0.8 155.75±0.08

RX
V−SLAP 1893.91±0.45 ??? 89.12±0.07

The equilibrium fractionation has been defined as the ratio of saturated vapour pres-
sure between each heavy isotope and the principal one (H16

2 O). If a water sample is
introduced in a box, after a time long enough for thermodynamic equilibrium to settle,
the vapour partial pressure reaches the saturated vapour pressure; the partial pressure of
the heavy isotope is equal to its saturated vapour pressure as well and:

α
HDO
eq (v↔ l) =

PHDO
sat

PH16
2 O

sat

(2.7)

This definition is not commonly used. Using Raoult’s law which links the partial vapour
pressure to the composition of the liquid (solid) phase it lies above and to the saturated
vapour pressure of the compound i: Pi

v = X i
l Pi

sat , we can simplify this expression. Again,
in the case of HDO, we obtain:

PHDO
sat

PH16
2 O

sat

=
PHDO

v

PH16
2 O

v

XH16
2 O

l

XHDO
l

=
RHDO

v

RHDO
l

(2.8)

This leads us to another definition of the equilibrium fractionation coefficient, much more
convenient to use in climate science:

α
HDO
eq (v↔ l) =

RHDO
v

RHDO
l

(2.9)

This notation is equivalent to the equilibrium constant of equation (2.4). The same nota-
tion can be applied for phase transition between solids, liquids or gases and generalised
for H17

2 O and H18
2 O. This notation is directly related to the equilibrium constant associ-

ated with the reaction of the transfer of molecules between the two phases. The saturated

vapour pressure Psat can be determined from equation 2.5: as we saw
PHDO

sat

PH2O
sat

= 1.079

at 25◦C which is the correct value for equilibrium fractionation between liquid water
and vapour at this temperature. As saturated vapour pressure is sensitive to temperature
through the Clausius Clapeyron (equation 2.1), so is the equilibrium fractionation coef-
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ficient. As we will see in the next sections, the equilibrium fractionation coefficient is
well known for the liquid/vapour phase transition of water, but for the ice/vapour phase
transition, it is not very well constrained and under −40◦C, the equilibrium fractionation
coefficients of the different heavy isotopes are just extrapolated.

Another notation is sometimes used in order to directly compute the impact of equi-
librium fractionation on the δ values using:

εeq = (αeq−1) (2.10)

In the case of small ε , it is then possible to write:

ε
i
eq(v↔ l)≈ δ

i
v−δ

i
l (2.11)

If this expression is more convenient to use directly with δ isotopic composition, it is
not always valid, in particular at low temperature αHDO

eq is not small enough for such an
approximation.

2.1.3 Statistical thermodynamics

Classical statistical thermodynamic provides tools to roughly estimate the variation with
temperature of the saturated vapour pressure of different isotopes and therefore of the
equilibrium fractionation coefficients. These estimations are provided by experimental
determinations of the thermodynamic state variables but the theoretical background fails
to predict their variations. Indeed the differences in the chemical potentials of the pure
isotopes only differ by a constant no matter which phase [Landau and Lifshitz, 1958],
resulting in roughly equal saturated vapour pressure for all isotopes. To infer theoretical
formulas for either Gibbs free energy or saturated vapour pressure, quantum statistical
thermodynamic is necessary.

In the case of equilibrium fractionation of water between different phases, the stoi-
chiometry of the exchange equation allows us to write αeq = K (equation (2.4)). Also
the net volumes are not changing and PV remains constant. The Helmholtz free energy
associated with the isotopic exchange reaction is therefore equal to the Gibbs free energy
change providing a direct link between K and Q, the partition function. The partition
function can be expressed from the Boltzmann distribution law:

Q = ∑
j

g je−
ε j
kT (2.12)
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where g j refers to the degeneracy of level j, ε j is the jth level of energy, k is the Boltz-
mann constant and T is the temperature. Calculating these quantum effects can only be
done analytically for monoatomic elements by solving the Shrödinger equation with an
adapted potential. For polyatomic molecules, more complicated theory are to be used.
By applying a correction to the thermodynamic chemical potential of the liquid, accept-
able expression of the saturated vapour pressure can be found. Water molecule physi-
cal properties make it really complex to model. Urey [1947] simplified the system by
analysing separately the different atoms in the molecule and the three contributions (ro-
tational, vibrational and the zero point energy (ZPE) associated with the energy of the
lowest vibrational state) to each degree of liberty to the partition function with:

Qi

Q
=

3n−6

∏
k=1

σ

σ i
U i

k
Uk︸ ︷︷ ︸

Rotational

e−U i
k/2

e−Uk/2︸ ︷︷ ︸
ZPE

1− e−Uk

1− e−U i
k︸ ︷︷ ︸

Vibrational

(2.13)

where σ is the symmetry number, Uk is the ratio of the energy of the transition k and

of the thermal energy Uk =
hνk

kT
, the subscript i refers to the heavy isotope i whereas no

subscript refers to the main isotope (H16
2 O) and 3n−6 is the number of vibrational modes,

n being the number of atoms (for instance, in the case of water, n = 3) [Criss, 1999]. At
high temperature when Uk becomes small, this formula can be developed in power series
with :

ln
(

Qi

Q

)
= ln

(
σ

σ i

)
+

3n−6

∑
k=1

(
Uk

2−U i
k

2

24
−U4

k −U i
k

4

2880
+

U6
k −U i

k
6

181440
+ ...

)
(2.14)

In that case, the ratio of partition function provides with an expression of the equilibrium
fractionation coefficient dependency with temperature. This calculation is fundamental
in the determination of water isotopes equilibrium fractionation [Van Hook, 1968]. As

Uk ∝
1
T

, we find that the dependency of ln
(

Qi

Q

)
∝

1
T 2 and therefore, the dependency

of αeq against the temperature. At low temperature, similar calculations predict a depen-
dency of 1/T . Combining those two approaches in a more general power serie develop-
ment, Bigeleisen and Mayer [1947] predict the dependency of the isotopic fractionation
coefficient with:

ln αeq =
A
T 2 +

B
T
+C (2.15)

where the term
B
T

is small against the others. The theoretical formula calculated with this
principle and determination of the coefficients A, B and C by Van Hook [1968] will be
compared to the experimental determinations in the next section.
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2.1.4 Determination of equilibrium fractionation coefficient

Instead of measuring the thermodynamic Gibbs energy linked to the phase transitions,
equilibrium fractionation coefficients have been directly determined. For liquid-vapour
phase transitions, the different experimental determinations of the equilibrium fractiona-
tion for the different molecules have provided satisfactory agreement [Craig et al., 1963;
Merlivat and Nief, 1967; Majoube, 1971b]. The theoretical determination from Van Hook
[1968] which solves Eq. 2.14 to estimate the variations of αeq is in agreement with these
data and validates the theoretical background previously described. Determining experi-
mentally equilibrium fractionation coefficient for ice and vapour is not as easy as it seems.
Indeed, to measure only equilibrium fractionation at the solid/vapour phase transition, one
needs to build very specific systems where only the influence of the fractionation due to
the phase transition affects the measurements. We will describe here the two principal
ones: a) Merlivat and Nief [1967] (and later on Majoube [1971a] for δ 18O) and b) Elle-
høj et al. [2013]. These two methods are radically different and provide two independent
determinations of the αeq.

Merlivat and Nief [1967] used a method developed by Boato et al. [1962] to measure
isotopic fractionation in vapour flux of Argon. It relies on a closed volume connected at
one end to a reservoir of water vapour of known isotopic composition (Ri

0) as presented
in Fig. 2.1. The other end of the volume is cooled down below 0◦C at a stable tempera-
ture by eutectic baths. At first, the volume is empty and a leak dN from the reservoir is
opened. When the vapour pressure at the cool part of the volume reaches the saturated
vapour pressure, the vapour condensates and ice is formed (some experiments lead to
supercooled liquid water as well). After a while, a profile of humidity and isotopic com-
position is formed, lead by molecular diffusion from the leak from the reservoir to the
condensing surfaces. This profile eventually reaches a permanent regime which is when
the measurement takes place.

In a permanent regime, there is no more accumulation of neither moisture nor isotope
in the volume, therefore the quantity of all isotopes of water going through the leak is
equal to the one condensing. This results after a while on the isotopic composition of the
ice being roughly the same as the isotopic composition of the reservoir Ri

S = Ri
0 for each

isotope i. At the ice/vapour interface, equilibrium fractionation occurs, the link between
the isotopic composition of the vapour near the interface and the ice is α i

eq = Ri
S/Ri

v =
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Figure 2.1: Merlivat and Nief experimental set up.

Ri
0/Ri

v. The isotopic composition in the vapour is therefore defined by:

Ri
v(x)−Ri

0 = Ri
0

(
1

α i
eq
−1

)
exp
(−vz

Di

)
(2.16)

where v is the speed of the water fluxes in the linear volume, z the curvilinear length
of the volume V and Di is the diffusion coefficient of the isotope i. By measuring the
isotopic composition of the vapour very close from the condensation surface, Merlivat
and Nief obtain an estimate of the composition of the first vapour. By measuring the
isotopic composition very close from the origin of the leak, they obtain an estimate of the
isotopic composition of the original vapour, and therefore of the condensate. This results
in a measurement of the equilibrium fractionation coefficients through:

α
i
eq(T ) =

Ri
v(z = l)

Ri
v(z = 0)

=
Ri

0
Ri

v
(2.17)

This method relies on two criteria for the fluxes:

• The flux to the spectrometer must be negligible compared to the flux of the leak:
dspectro << dN. In the case of Merlivat and Nief [1967], this flux was less than 1%
than the flux entering the volume;

• The number of molecules condensing by unit of time, which is equal to the leak as
we saw earlier, dN must be several orders of magnitude smaller than the number of
collisions due to the thermal agitation Ncol = P∆tS/

√
2πmkBT .

By forcing the flux of water vapour and isotopes in a closed system, Merlivat and Nief
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[1967] manage to create an experiment where the entire isotopic composition profile
is determined by the boundary condition of isotopic composition in the vapour at the
vapour/ice interface. This experiment was realised using different eutectic bath, therefore
at different temperatures providing the dependency of the equilibrium isotopic fractiona-
tion coefficient with temperature for HDO. Majoube [1971a] realises a similar experiment
and extends the determination to the case of H18

2 O for a vapour to ice transition and to
both H18

2 O and HDO for a vapour to liquid transition [Majoube, 1971b].

Ellehøj et al. [2013] rely on a completely different setup taking advantages of the
new developments in infrared spectrometry allowing reliable continuous monitoring of
water vapour isotopic composition (see section 3.2.2.1). They created a constant flux
of moisture with known isotopic composition which was going through an equilibration
chamber where part of the vapour was condensing (see Fig. 2.2). In this case, the quantity
of moisture condensing and remaining in the vapour after the equilibration chamber is
determined by the saturated vapour pressure at the temperature of the chamber. Finally,
the infrared spectrometer precision was not good enough to infer directly the isotopic
composition of the residual vapour and they used a cryogenic trapping device to analyse
by mass spectrometry the remaining vapour isotopic composition (see section 3.1.2).

Figure 2.2: Ellehoj et al experimental set up.

The air carrier flux is conserved through the equilibrium chamber but the mass of wa-
ter vapour changes: mvap(in) = mice+mvap(out). For the isotopes, the mass conservation
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is expressed by: mvap(in)δ (in) =miceδice+mvap(out)δ (out). By combining these two re-
lationships and the equilibrium fractionation definition αeq = (δice +1)/(δvap +1), Elle-
høj et al. [2013] obtain a measurement of the equilibrium fractionation coefficient from
the isotopic composition of the vapour injected to the chamber, out of the equilibration
chamber and the thermodynamic conditions:

αeq =
δvap(in)−δvap(out)
(δvap(out)+1)(1−g)

+1 (2.18)

where g = mvap(out)/mvap(in) is directly linked to the temperature and the partial pres-
sure of water of the gas. For this experiment, the set up is imitating a more realistic
situation as the phase transition occurs at pressure conditions close to atmospheric ones.
In addition, two different instruments were used to measure the isotopic composition of
the vapour : an infrared spectrometer and a mass spectrometer. The infrared spectrometer
was also used to monitor the permanent regime and therefore estimate how reliable are
the experiments results. This experiment suffered some experimental issues, in particular
the infrared spectrometer was one of the first generation of Picarro analyser was not able
to infer precisely the isotopic composition at low humidity.

The results of these two experimental determinations are presented in Fig. 2.3. The
datapoints have been fitted with the theoretical dependence with temperature. Indeed
statistical thermodynamics predict a temperature dependency of the equilibrium fraction-
ation in 1/T 2 (see Eq. 2.15 in section 2.1.3) which is compatible with the experimental
determination described above. There is a relatively good agreement between the differ-
ent determinations in the case of a vapour/liquid transition (not shown) but in the case of
a vapour/solid transition, important discrepancies appear, especially in the case of HDO.

Interestingly, theoretical determinations [Van Hook, 1968] were agreeing with Mer-
livat and Nief [1967] determination of αD

eq but not with Majoube [1971a] determination
of α18

eq . For α18
eq , the experimental determinations of Ellehøj et al. [2013] and Majoube

[1971a] remain compatible but differ from theory. The extrapolations of the tempera-
ture dependency of the equilibrium fractionation from Ellehøj et al. [2013] and Majoube
[1971a] still differ significantly below −40◦C therefore it is not possible to discriminate
one extrapolation over the other. Indeed, the discrepancies in the determination of the
equilibrium fractionation coefficient are even more important at low temperatures where
no datapoint was gathered and formula are only extrapolated (dashed lines on figure 2.3).
All this creates an important uncertainty on the determination of the isotopic fractiona-
tion at phase transition at low temperature and is a motivation for the present work: ice
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(a)

(b)

Figure 2.3: Equilibrium fractionation temperature dependency from theoretical [Van Hook, 1968]
and experimental [Merlivat and Nief, 1967; Majoube, 1971a; Ellehøj et al., 2013] for (a) the case
of HDO and (b) the case of H18

2 O

33



Chapter 2. Water isotopes physical properties

cores are gathered in place usually far below 0 ◦C and all these uncertainties hamper the
interpretation of the isotopic composition reconstructions.

In the case of α17
eq , only theoretical determination of the dependence of the equilibrium

fractionation coefficient with temperature has been realised by Van Hook [1968] by com-

paring it to α18
eq with a relation characterised by:

ln
(
α17

eq s v
)

ln
(
α18

eq s v
) = 0.528. Barkan and Luz

[2005] measured a few points (at 11.4 and 41.5 ◦C) and found which are in agreement
with the calculation from Van Hook [1968]. Landais et al. [2012b] used field data from
Greenland and also found a ratio of 0.528 for the ratio of the fractionation coefficients
between vapour and ice.

2.2 Out of equilibrium processes

Kinetic fractionation is a term enveloping a wide range of fractionation processes which
do not involve two phases at thermodynamic equilibrium. In the case of phase transition,
under or over saturated transitions often happen at every step of the water cycle (evapo-
ration in subtropical regions, in the clouds, in the mist, even over the inlandsis). Under
or over saturated phase transitions can result from the wind, diffusion or the lack of con-
densation nucleus. Wind and diffusion also generate fractionation: transport of heavy
isotopes is less efficient than the light isotope one.

2.2.1 Evaporation over an isolated water body

First evidences of out of equilibrium fractionation processes were highlighted by Craig
et al. [1955, 1963] for wind driven rapid exchanges between a liquid reservoir and the at-
mospheric boundary layer. In this case, the boundary layer is isolating the ocean/atmosphere
interface from the free atmosphere adding additional fractionation effect to the isotopic
composition of the moisture escaping the boundary layer.

Craig and Gordon [1965] represent the isotopic fractionation processes during the
evaporation and advection of moisture through different layers. First, the surface of the
ocean is considered to have an isotopic composition slightly different from the rest of
the reservoir. At the interface between the ocean and the atmosphere, equilibrium frac-
tionation is implemented. Above, the atmosphere is separated in 3 layers: a) a laminar
layer of height zm characterised by moderate wind speed, b) a turbulent layer where the
vertical gradient of wind speed is located and c) the free atmosphere (see Fig. 2.4). For
each of these layers is attributed a difference in the isotope transfer rates and therefore a
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Atmosphere

Laminar Layer

Ocean

Equilibrium fractionation

Molecular di�usion

Eddy di�usionTurbulent Layer

Free atmosphere

Ri
v  hv

  

Ri
S   1

Ri
L   1

  

Ri
m hm

  

Ri
a  ha

  

Figure 2.4: Craig and Gordon model illustration, h is the relative humidity of the different levels
of the atmosphere and Ri the isotopic ratio

fractionation. In the end, the isotopic composition of the moisture escaping in the free
atmosphere is determined by the combined transfer function of diffusion near the ocean
surface, equilibrium fractionation at the interface, molecular diffusion in the laminar layer
and eddy diffusion in the turbulent layer.

The approach of Craig and Gordon [1965] is to associate with each layer described
above a flux for water and heavy isotopes and a resistance by analogy to Ohm’s law. For
each layer described in Fig. 2.4, we defined the isotopic composition of the layer X by
Ri

X , the relative humidity hX and the resistance ρ i
X . As on the schematic, the subscript L

corresponds to the deep water layer, S to the surface water layer, v to the surface vapour
layer, m to the interface between the laminar and the turbulent layer and a to the free
atmosphere. Starting from the bottom, in the ocean, the flux of water over the whole
column is defined by the evaporation rate at the surface because of the continuity law,
therefore :

E =−dN
dt

= φ(1−hv) =
Pvsat χ√
2πMkT

(1−hv) (2.19)

where φ is the vaporisation flux, M is the molecular mass, k is the Boltzmann constant, χ

is the condensation coefficient. Note that in climate models, φ is often calculated differ-
ently. The isotope flux on the other hand is not fully determined by what is happening at
the surface. Craig and Gordon suppose the existence of the laminar layer under the sur-
face of the ocean where diffusion of heavy isotope in water is responsible of fractionation
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with a heavy isotope flux defined by :

E i
L =

(1+Eρ i
L)RL−RS

ρ i
L

(2.20)

where ρ i
L = ZL/Di

LCL is the resistance associated with each isotope through the ocean
sub-surface layer and RL and RS are the isotopic composition of respectively the deep
ocean and of the water at the surface. This resistance will mainly be necessary to estimate
time constant to reach a stationary state and the gradient of isotopic composition in the
water will vanish once the transient state ends.

At the interface, the evaporation rate of the heavy isotopes is driven by the equilibrium
fractionation through this formula :

E i = φ
i(α i

eqRi
S−hvRi

v) =−
dNi

dt
(2.21)

where φ i = φ/(
√

Mi/Mχ/χ i) is the ratio of the condensation rate of H16
2 O to the rate for

the pure isotopic species. This provides with interfacial resistances of 1/φ for H16
2 O and

K/φ for heavy isotopes. Above, in the laminar layer, molecular diffusion is limited the
fluxes toward the free atmosphere through :

Em =
hv−hm

ρm
(2.22)

E i
m =

hvRi
v−hmRi

m
ρ i

m
(2.23)

where the resistances are defined by ρm = zm/DC and ρ i
m = zm/DiC with C the absolute

water vapour concentration and D and Di the diffusion coefficient of water and heavy iso-
tope in the air respectively.

This model does not provide easy applications in this form as it requires enormous
dataset. Indeed, to take advantage of this model, isotopic composition profiles from inside
the ocean all the way up to the free atmosphere are necessary. Still, Cappa et al. [2003]
study an interesting steady state application of this model. Considering that the ocean
and the free atmosphere are two infinite reservoirs, in a permanent regime, there is not
accumulation of neither water vapour nor heavy isotopes in the boundary layer. Therefore,
the flux of water at the interface between the turbulent layer and the free atmosphere
should be equal to the flux at the surface of the ocean:

K
hv−ha

zaC
= φ(1−hv) (2.24)
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where K is a diffusivity coefficient taking into account both molecular and eddy diffusion
in one parametrisation. An analogue equation can be written for the heavy isotopes. In

the case of equilibrium, the flux isotopic ratio RE =
E i

E
(not to mix up with an isotopic

composition) can be expressed as :

RE =
Ki

K
Req−Raha

1−ha

1+K/φz
1+Ki/φ iz

(2.25)

with Req the isotopic composition of the vapour at equilibrium with the ocean. In this
case, the effective fractionation is defined by αe f f = RE/RL, leading to:

αe f f =
RE

RL
=

Ki

K

(
1+K/φz

1+Ki/φ iz

)
︸ ︷︷ ︸

Kinetic e f f ect

(
αeq−haRa/RL

1−ha

)
︸ ︷︷ ︸

Equilibrium+humidity e f f ect

(2.26)

This formulation still is simplified when used in models to describe kinetic effects
during the evaporation of water vapour over the ocean. Indeed, in the kinetic effect factor,
the terms K/φz and Ki/φ iz are very small and the fractionation linked to diffusion pro-

cesses can be expressed as α
i
di f f ≈

Ki

K
. The diffusion lead fractionation processes will be

described later on in section 2.2.4 for the simple molecular diffusion and in section 2.2.5
for the parametrisation of turbulent diffusion in models. In addition, Merlivat and Jouzel
[1979] introduced the closure assumption stating that in steady state while the evaporation
at the ocean being the lone source of moisture, then the isotopic composition at the top of
the free atmosphere is determined by the flux isotopic ratio, thus Ra = RE . Using these
two assumptions, it is possible to obtain a simpler expression, closer to what is used in
models:

αe f f =
αdi f f

(
αeq−haαe f f

)
1−ha

(2.27)

In order to describe accurately the water cycles involved in the formation of ice in
Polar Regions, the transport toward continental Polar Regions is often computed using a
Rayleigh distillation.

2.2.2 Rayleigh Distillation

In order to use the isotopic composition of the ice in remote region of Antarctica, we need
to calculate the isotopic composition of the moisture transported toward there. After the
evaporation at the ocean which can be described using a Craig and Gordon model, we
consider the transport of air parcel under moist pseudo-adiabatic conditions: each time
condensation occurs (toward both liquid or solid phase), the condensed phase is removed
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from the air parcel. In this case, we obtain successive distillation of the water vapour
present in the air masses, and in particular an evolution of its isotopic composition. By
analogy with chemical binary systems, we can apply the Rayleigh distillation principle
[Rayleigh, 1902]. Indeed, every time condensation occurs, the isotopic composition of
the condensed phase Ri

c is determined by the temperature (through the equilibrium frac-
tionation α i

eq and the isotopic composition of the vapour Ri
v:

Ri
c = α

i
eqRi

v (2.28)

As the newly formed condensate is immediately removed from the air parcel, to maintain
the mass balance for each isotope, the number of molecules of the isotope i is determined
by:

Ri
v(t +dt)N(t +dt) =

(
Ri

v(t)−dRi
v
)
(N(t)−dN)+α

i
eqdN (2.29)

where dRi
v is the variation of isotopic composition of the vapour and dN is the number of

molecules of water removed from the system. We therefore obtain a direct expression of
the fundamental Rayleigh differential equation:

dRi
v

Ri
v
=
(
αeq−1

) dN
N

(2.30)

This equation can be simplified by introducing the fraction of remaining water f =
N
N0

,

leading to:
d ln Ri

v =
(
α

i
eq−1

)
d ln f (2.31)

This differential equation is very general and can be applied to a wide range of cases.
First, let us consider the case when the fractionation coefficient is constant, originally
treated by Rayleigh [1902]. Then, we obtain that the isotopic composition at each step

of the distillation is determined directly by
Ri

Ri
0
= f α i

eq−1, where Ri
0 is the initial condition

when f = 1. With this simple equation, as α i
eq is constant, Ri can refer equivalently to

the isotopic composition of both the condensed phase or the vapour (as Ri
v = α i

eqRi
p and

Ri
v0 = α i

eqRi
p0 with Ri

p the isotopic composition of the precipitation). Therefore we obtain
for the precipitation:

1+δ i
p

1+δ i
p0

= f α i
eq−1 (2.32)

If the fractionation coefficient is rarely constant along an air masses trajectory in particular
in Polar Region where the temperature varies a lot, this equation can be used to estimate
the local slope of the different isotopic composition (for instance δD as a function of
δ 18O). Indeed, the fraction of remaining water will be the same for the different isotopes
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and the temperature variations can be neglected, the Rayleigh model gives for instance:

1+δD
1+δD0

=

(
1+δ 18O
1+δ 18O0

)(αD
eq−1)/(α18

eq−1)

(2.33)

Therefore, the instantaneous slope between δD and δ 18O:

dδD
dδ 18O

=
αD

eq−1
α18

eq −1

(
1+δD

1+δ 18O

)
(2.34)

Fig. 2.5 presents the isotopic composition of precipitation from the GNIP network.
Even if important variations in the isotopic fractionation coefficient are created by a wide
range of temperature, the isotopic composition relationship between δ 18O and δD can be
linear. For instance, Jouzel et al. [1987] found that the observed annual precipitation slope
is very close to the one of the meteoric water line: δD= 7.97δ 18O+8.6 with a correlation

coefficient r = 1.00. Even though the ratio
αD

eq−1
α18

eq −1
keeps rising as the temperature drops,

the decrease in
(

1+δD
1+δ 18O

)
counterparts this increase. This effect can even provide

with slopes lower than 8, for instance in the case of the vapour isotopic composition in
Greenland [Steen-Larsen et al., 2013] where the slope is around 6.5o/oo/

o/oo and even way
lower as we will see in the case of Antarctica (See chapter 6).

2.2.3 Second order (excess) parameters

This recurrent slope of 8 in precipitation from large part of the world and important cor-
relation between the different isotopic composition motivated for the creation of a second
order parameter. In the case of HDO, Dansgaard [1964] defined the d-excess against the
composition of H18

2 O by:
d− excess = δD−8 δ

18O (2.35)

The slope of 8 being predicted by equilibrium fractionation in a Rayleigh distillation, us-
ing the d-excess as a second order parameter enables one to see the influence of out of
equilibrium processes.

In the case of H17
2 O, even though a natural linear relationship with δ 18O occurs, a

more complex power relationship links more precisely the isotopic ratios [Craig, 1957;
Mook and Grootes, 1973] as illustrated by Fig. 2.6:

R17

R17
SMOW

=

(
R18

R18
SMOW

)λ

(2.36)
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Figure 2.5: Annual δD vs δ 18O in precipitation from the GNIP network [Schotterer et al., 1996]

The observed coefficient in this case has been determined by Meijer and Li [1998] as
0.5281±0.0015. Using this slope, Barkan and Luz [2007] defined 17O− excess by anal-
ogy with d− excess by:

17O− excess = ln
(
δ

17O+1
)
−0.528 ln

(
δ

18O+1
)

(2.37)

The ratio of logarithm of equilibrium fractionation of H17
2 O and H18

2 O: ln α17
eq /ln α18

eq =

0.529 (which is independent of temperature) is slightly different from this slope because
of the ratio of isotopic compositions in the Rayleigh distillation (as for the slope for the
definition of d− excess, see Eq. (2.34)). This implies that equilibrium fractionation only
slightly affects 17O− excess as detailed more in section 5.2.2.

As the ratio of isotopic fractionation
αD

eq−1
α18

eq −1
strongly depends on the temperature,

its values changes and in particular, at low temperature, it can rise up to 10. Therefore,
in the Rayleigh distillation, during the advection of air masses, d− excess is affected by
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equilibrium fractionation because of the gradient of temperature from the source of the
moisture to the site of final precipitation. This makes d−excess an interesting tracer of the
processes that affected the moisture during its transport. 17O− excess is mostly affected
by kinetic effect, for instance during the evaporation, or later on in this manuscript due
to molecular or turbulent diffusion. The kinetic fractionation impact on d− excess and
17O− excess will be detailed in section 5.2.2.

Figure 2.6: δ 17O vs δ 18O in precipitation from Luz and Barkan [2010] and Touzeau et al. [2016]

2.2.4 Molecular diffusion

In the Craig and Gordon approach, there is a diffusive layer characterised by a resistance.
Merlivat [1978a] realised an experiment to analyse the difference in diffusion coefficients
for the different water isotopes in an air matrix. The principle of the measurement de-
scribed in the article is to follow the composition of two flasks connected by a pipe.
Initially, one is filled with nitrogen and water vapour of known concentration and iso-
topic composition and the other is filled at the same pressure of nitrogen. The pipe is
maintained opened and only molecular diffusion is displacing molecules from one flask
to the other. Using a serie of experiments, she obtained values for the relative diffusion
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coefficient of :
DHDO

DH2O
= 0.9755±0.0009 (2.38)

DH18
2 O

DH2O
= 0.9723±0.0007 (2.39)

The experiment were realised in nitrogen and not in dry air, therefore a model was used
to estimate the values above. Kinetic theory of gases in a rigid elastic spherical molecules
model [Rosenboum, 1941] predicts that:

Di

D
=

(
M
Mi

Mi +Mmat

M+Mmat

)1/2(
Γ+Γmat

Γi +Γmat

)2

(2.40)

where M, Mi and Mmat are the molecular masses of the main isotope, the heavy isotope
and the atmospheric matrix respectively and Γ, Γi and Γmat their respective diameters. To
interpret quantitatively the data, Merlivat had to introduce differences in the molecular
diameters of the different species calculated from the Virial coefficients. As no values
for these diameters existed in the literature, only qualitative validations of these could be
realised. This diameter modification has a stronger effect in the case of HDO than in the
case of H18

2 O.

Another determination of diffusion coefficient was realised by Cappa et al. [2003] with
an independent method in which a stream of air was circulating above a water surface.
The results differ a lot as they found :

DHDO

DH2O
= 0.9839 (2.41)

DH18
2 O

DH2O
= 0.9691 (2.42)

If Cappa et al. [2003] claim that the evaporative cooling of the liquid surface is necessary
to estimate the fractionation and argue against the "diameter effect" highlighted by Merli-
vat, the argument does not really work to compare to Merlivat’s results as no evaporation
took place. In addition, new measurements of Luz et al. [2009] validated the results of
Merlivat [1978a] and additionally highlighted the impact of temperature over the ratio of
diffusion coefficients.

As the "speed" associated with the diffusion of the different isotopes is different, frac-
tionation occurs during the molecular diffusion processes and an example of the impact
will be detailed in section 2.2.6.

42



2.2. Out of equilibrium processes

2.2.5 Turbulent diffusion

In numerous situations, molecular diffusion is completely erased by turbulence. In this
case, it is necessary to consider the impact of eddy diffusion, or turbulent diffusion. Mer-
livat and Jouzel [1979] parametrised the impact of the combination of molecular dif-
fusion and turbulence on isotopic fractionation. Using wind tunnel experiments [Mer-
livat, 1978b] and a theoreotical evaporation model [Brutsaert, 1975], they highlighted
the impact of windspeed on the relative contribution from molecular diffusion to kinetic
fractionation. In particular, Merlivat and Jouzel [1979] framework takes into account a
discontinuity in the fractionation coefficients between a smooth and a rough regime as
illustrated on Fig. 2.7.

Figure 2.7: Variation of kinetic fractionation coefficient of H18
2 O with wind speed, a discontinuity

occurs around 7 m s−1 [Merlivat and Jouzel, 1979]

This framework is obtained by distinguishing different cases for kinetic fractionation
according to the wind speed:

• the static case, if wind speed tend to 0 m s−1, only molecular diffusion impacts the
kinetic fractionation factor and we obtain like in previous section αdi f f =

Di

D

• the laminar case, when wind speed is inferior to 5 m s−1, part of the molecular

diffusion impact is erased and αdi f f =
(

Di

D

)2/3

• turbulent case, when wind speed is superior to 5ms−1, a larger part of the molecular

diffusion impact is erased and αdi f f =
(

Di

D

)1/3
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A large number of studies have explored different parametrisations of αdi f f =
(

Di

D

)n

with different values of n from pure turbulent diffusion (n = 0) to pure molecular diffu-
sion (n = 1) [Cappa et al., 2003; Barkan and Luz, 2007; Uemura et al., 2010b].

We have seen the macroscopic impact of diffusion led fractionation in the Craig and
Gordon model (section 2.2.1), it also impacts the cloud microphysics and in particular the
snow formation which has a strong impact in paleoclimate studies from Polar ice cores.

2.2.6 Snow formation

In remote Polar Regions, the density of condensation nuclei is low enough to enable
strong supersaturation to occur. In this case, once some ice crystals have been formed in
the cloud, they behave as condensation nuclei and there is a transfer of molecules from
the vapour to the ice. This transfer is limited by the diffusion toward the condensation
nuclei and not by the moisture amount nor the available energy. As the diffusion "speed"
of the heavy isotopes (H18

2 O, H17
2 O and HDO) is limited compared to the main isotope

H16
2 O, this results in a kinetic fractionation during the formation of the snow flakes in

the clouds. Jouzel and Merlivat [1984] provide with a theoretical framework to estimate
the fractionation associated with diffusion in this context. They consider a flux of water
molecule toward the surface directly proportional to D(pv− psat) where D is the diffusiv-
ity, pv the partial pressure and psat the saturated vapour pressure over ice. For the heavy
isotopes, a similar expression can be written with in addition a relationship between the
heavy isotope partial pressure to the vapour partial pressure:

pi
v = pvRi

SMOW
(
1+δ

i
v
)

(2.43)

and between the heavy isotope saturated vapour pressure and the water saturated vapour
pressure:

pi
sat = psatRi

SMOW
1+δ i

ice
α i

eq
(2.44)

As the diffusion of molecules in ice is extremely low, the composition of each ice layer is
considered to be fixed by the ratio of fluxes of heavy and light isotopes toward the ice:

1+δ
i
ice =

1
Ri

SMOW

Φi

Φ
(2.45)
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where Φ and Φi are the fluxes of molecules of water and of heavy isotope i respectively.
This brings to:

1+δ
i
ice =

Di (pv(1+δ i
v)− psat(1+δ i

ice)/α i
eq
)

D(pv− psat)
(2.46)

From this equation, they obtain an effective fractionation coefficient taking into account
the equilibrium fractionation at the phase transition and the kinetic effect due to diffusion
toward the ice such as:

α
i
e f f =

α i
eqSi

α i
eq

D
Di (Si−1)+1

(2.47)

where Si is the supersaturation against ice. If this equation is widely used in models
including water isotopes, it requires an estimation of the supersaturation which is a critical
point. Jouzel and Merlivat [1984] use a parametrisation of the supersaturation against
temperature such as Si = 0.99−0.006 T . This model has been tested in a cloud chamber
experiment and will be described in section 5.2.2.

2.3 Toward an isotopic paleothermometer

All these processes will affect the isotopic composition of all the water cycle (Fig. 2.8).
We already saw in section 2.2.1 one description of fractionation occuring during the evap-
oration at mid-latitudes. During the advection toward Polar Regions, isotopic composi-
tion of precipitation decrease poleward due to the successive distillations under colder
and colder conditions. We will first describe how Rayleigh distillation (section 2.2.2)
can be directly applied to meteoric water and then how all this different processes enable
estimate of past temperature from ice isotopic composition.

2.3.1 Application of the Rayleigh distillation to meteoric waters

On the full scale of the water cycle, the formulas described in section 2.2.2 are not able
to describe the distillation of the moisture. Indeed, the temperature gradient along the tra-
jectory of the air masses from the evaporation site in the sub-tropics toward remote Polar
Regions is such that the fractionation coefficient cannot be considered constant anymore.
In the formation of meteoric water in more realistic case, it is necessary to consider a
variable fractionation coefficient. Dansgaard [1964] proposes a discrete segmentation of
the cooling process using the mean temperature of each stage of the cooling process to
provide with an estimate of the mean fractionation faced by the moisture.

The major biases of this approach are first that it does not take into account the in-
termittency of the precipitation and second that only one source of moisture is taken into
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Figure 2.8: Scheme of the isotopic fractionation associated with each step of the water cycle
toward Antarctica

account. In the case of a real air parcel, models can compute Rayleigh distillation calcu-
lations taking into account the real temperature for each condensation event. To compute
the impact of different sources for the vapour, it is necessary to realise back-trajectory
of the air masses to estimate the relative importance of the different inputs of moisture.
At LSCE, Ciais and Jouzel [1994] developed the Mixed Cloud Isotopic Model (MCIM)
which computes the successive distillation in the cloud at different temperatures along the
air masses trajectories. It takes into account the micro-physical properties, in particular
mixed phase conditions (possibility of water under vapour, liquid and ice phases in the
air parcel) and kinetic fractionation. The mixed-phase is handled by distinguishing 3 dif-
ferent regimes. First, above a certain threshold of temperature (T > TS), only liquid and
vapour can exist in the air parcel. This results in saturated vapour pressure being calcu-
lated above liquid water and fractionation at the phase using the liquid-vapour equilibrium
fractionation coefficient. Then, below TS, ice can appear in the cloud but liquid droplets
can still exist. This is called a Bergeron-Findeisen regime [Bergeron, 1935]. The vapour
partial pressure is in between the saturated vapour pressure of the liquid droplets PL

sat and
of the ice crystals PI

sat . There is a partial evaporation of the droplets into the vapour which
condensates into ice crystals, both phase transition associated with fractionation. Finally,
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below a second threshold TW , the liquid phase completely disappears.

By computing the isotopic fractionation (equilibrium and kinetic) at each step of the
water cycle, it is possible to compute the evolution of the vapour isotopic composition all
along the hydrological cycle, and therefore to estimate the precipitation isotopic compo-
sition. It is possible to include realistic temperature variations, for instance obtained from
back trajectory analysis. Nevertheless, the MCIM (and globally Rayleigh type models)
does not take into account neither vertical mixing with (unsaturated) air masses along
the water mass trajectory [Winkler, 2012] nor mixing of several air masses of different
origins.

2.3.2 Isotopic thermometer

The foundation of isotopic thermometry is based on the work of Dansgaard [1964] and
Lorius et al. [1969] who have been able to highlight the relationship between isotopic
composition of snow and the local mean annual temperature in Polar Region. This method
is part of a long list of methods using ice core to reconstruct past climates. Using the iso-
topic composition of samples obtained during transect in both Antarctica and Greenland,
they obtained a linear relationship between the yearly average δ isotopic composition and
the average local temperature. Different slopes are obtained according to the region (Fig.
2.9), indeed the air masses have different origins and histories which are reflected by the
slope of the linear relationship. Jouzel et al. [1987] used the spatial slope to estimate the
temporal variations of temperature from Vostok ice core isotopic composition.

The use of stable water isotopes to infer temperature at long time scale is still not so di-
rect. Jouzel et al. [1997] show using simulations that the temporal slopes are significantly
lower than the spatial slopes obtained at present day and does not remain constant over
time. The variations in the slope of isotopic composition vs temperature have been linked
to different processes. First, differences in the seasonality of precipitation between glacial
and interglacial periods sensibly affects the relationship between temperature and isotopic
composition in Greenland [Fawcett et al., 1997; Krinner et al., 1997]. If in interglacial
periods, the precipitation occurs regularly through the whole year, during glacial period,
they seem to only occur during summer due to a modification of the storm track trajectory.
This results in recording a temperature signal biased toward summer conditions in glacial
periods in Greenland and therefore underestimate the variations of temperature between
interglacial and glacial period. Modifications in the large scale circulation can also imply
the mixing of different moisture sources [Charles et al., 1994], a complete change of the
moisture sources [Sime et al., 2013] or the conditions in which they are generated [Boyle,
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Figure 2.9: Isotopic composition of the precipitation compared to the yearly average of the tem-
perature of the site.

1997].

The use of second order parameters like d−excess or 17O−excess can enable to esti-
mate the modifications of the source climatic conditions as they preserve the information
on the evaporation conditions [Landais et al., 2008; Jouzel et al., 2013]. For instance,
using the impact of kinetic processes over d− excess, Gat [1996] has been able to esti-
mate the relative humidity over the ocean during the evaporation and Risi et al. [2008]
have been able to estimate the re-evaporation in the convective zone. d− excess can also
be used to track down the kinetic impact due to diffusion during the cloud formation and
help tune supersaturation spatial evolution [Ciais and Jouzel, 1994; Werner et al., 2011] to
implement in Eq. (2.47). Vimeux et al. [1999] also used d−excess to estimate changes in
the moisture sources temperature conditions in the Vostok ice core associated with obliq-
uity’s variations over the last 150 000 years. The interpretation of d− excess signal still
remains challenging as it is affected by several factors such as the relative humidity of the
source, the local temperature in Polar Region [Jouzel et al., 2007] and the path followed
by the water masses [Bonne et al., 2015].

17O−excess is also controlled by relative humidity during evaporation and re-evaporation
processes and is not redundant compared to d− excess. Indeed, at higher latitudes, they
show different variations because the relationship between δ 17O and δ 18O is not temper-
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ature dependent whereas the one between δD and δ 18O is [Luz et al., 2009; Majoube,
1971b,a], 17O− excess keeps the signature of relative humidity acquired at low latitudes
as illustrated in Fig. 2.10 [Luz and Barkan, 2010]. In very isolated regions in East Antarc-
tica, 17O−excess also depends of the condensation temperature as the influence of kinetic
fractionation increases when temperature decreases [Landais et al., 2012a; Winkler et al.,
2012].

δ18O

δ17O

Seawater

 
GMWL, slope = 0.528

Equilibrated vaporInitial vapor due to

relative humidity

in source regions

α eq
 = 0.529

αdi� = 0.518

Vapor transport and precipitation in
closed-system Rayleigh distillation:
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di�ering degrees of

17O-excess
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17O-excess
high humidity

Figure 2.10: Schematic illustration of the impact of kinetic fractionation on 17O− excess at evap-
oration: during evaporation, kinetic fractionation due to the difference of diffusivities acting with
a slope of 0.518 creates a positive 17O− excess signal; the amplitude of the kinetic fractionation
at the evaporation is directly linked to the local humidity. Modified from Bao et al. [2016].

Efficient isotopic thermometry relies first on good measurement of the isotopic com-
position. In particular, the use of second order parameters, especially 17O− excess re-
quires 2 additional orders of magnitude of precision on the measurements. If new in-
frared spectrometer now measures 17O−excess , we will see in the next section that there
still are some important bias to be corrected and therefore that mass spectrometry is still
relevant. It is also necessary to have an efficient and relevant theoretical framework to
describe the impact on isotopic composition of each step of the water cycles as described
in Fig. 2.8. In this manuscript, we will mainly focus on the processes occurring at low
temperature, from down to earth detailed physical studies of the isotopic thermodynamic
to its impact in natural conditions.
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How to measure water stable isotopic
composition ?

Since the first studies analysing the ratio between heavy and light water isotopes [Dole,
1935; Epstein and Mayeda, 1953], some evolutions took place into the analysis of the iso-
topic composition. The evolution of the methods and of their power of measurement en-
abled through the years to broaden the fields of applications of water isotopes. Nowadays,
isotopic composition of water through the entire hydrological cycles is being measured.
In glaciology, the main application is obviously for past climate reconstruction from the
isotopic composition of the ice from Polar and Alpine ice cores.

Still, as we saw in the previous section, in order to understand the processes leading to
the formation of the ice, measuring isotopic composition upstream to formation precipi-
tation is really important. Measurements in the vapour has been done at the mid-latitudes
since the fifties [Craig et al., 1955; Craig and Gordon, 1965] but remains challenging in
Polar Regions where the humidity is lower. In the precipitation, with the expansion of the
Polar Programs in the late fifties and in the sixties, a few precursor studies highlighted the
importance of having reliable measurements techniques [Craig, 1961; Dansgaard, 1964;
Lorius et al., 1969].

In this section, we will describe how to measure isotopic composition of water sam-
ples. These samples can be obtained from water directly but also from cryogenic trapping
of the vapour or melting pieces of ice. First, we will describe mass spectrometry, the refer-
ence method to measure isotopic composition of a water sample. Then, we will describe
how new developments in optical spectroscopy now enable measurements with similar
precision than mass spectrometry and much simpler experimental protocols.
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3.1 Mass spectrometry

3.1.1 General principle

The most commonly used mass spectrometry method for stable isotopes application uses
momentum focusing to separate the different isotopes [Criss, 1999]. Using a high volt-
age source (tens of kilovolts), the molecules are split in ions of charge q and accelerated
with a uniform distribution of energy. The kinetic energy of the particles in the beam is
mv2/2 = qV where ~v, m and q are the velocity, the mass and the charge of the particles
respectively and V is the voltage of the source. The beam of molecules goes through an
orthogonally oriented magnetic field ~B as illustrated on Fig. 3.1.

The moving ions are thus affected by the Lorentz force:

~F = q
(
~E +~v×~B

)
(3.1)

where ~E and ~B are the electric and magnetic fields respectively. The path followed by the
ions is defined by a radius of curvature r = mv/qB. Using the kinetic energy given to the
ion by the source, the radius of curvature can be expressed as:

r =

√
2mV
qB2 (3.2)

If the charge remains the same for all the particles, the beam is split into several beams
by particles mass. All the isotopes of the same mass share the same radius of curvature.
By collecting the ions with collectors at the end of the different paths, one can count the
relative quantity of ions with the same mass-to-charge ratio.

In the case of the water molecule, it is not possible to analyse the water itself. Water’s
highly adsorbing behaviour prevents this from being an efficient measurement method.
Chemical transfer lines have been developed in order to transfer the atomic constituents
of water into less "sticky" molecules, such as O2, H2, or CO2.

3.1.2 Preparation of water samples

The measurement of δD of water was conventionally realised by converting water to
dihydrogen by pyrolysis or reduction. Different reducing agents have been used such
as uranium, zinc, carbon, magnesium, tungsten, or chromium, as listed in the review of
Wong and Klein [1986]. In all cases, the samples are completely reduced into dihydrogen
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Figure 3.1: Schematic of a mass spectrometer such as a MAT 253 used to measure the isotopic
composition of oxygen isotopes at LSCE. A magnet deflects the beam of ions toward cups, the
heavier ions are less deflected and therefore, it is possible to count the ions by ratio mass over
charge.

preventing any fractionation to occur. For instance, the reduction over hot chromium
powder (around 1080◦C) proceeds according to the chemical equation:

Cr+2H2O(HDO)→CrO2 +2H2(HD) (3.3)

This method provides a precision better than 0.5‰ and a linear response from +23‰
to -428‰ [Donnelly et al., 2001]. At the LSCE, the measurement of δD was realised
using a reduction over Uranium plates in an oven at 600◦C. The apparatus developped
by Nief and Botter [1958] could measure relative variations of δD with a precision of
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0.6‰, which is very close to the best performances still obtained nowadays by infrared
spectroscopy (see section 3.2).

The measurement of δ 18O has classically been realised by equilibration of water with
CO2 [Epstein and Mayeda, 1953] and can reach a precision of 0.05‰. The method is
rather slow (from several hours to several days depending on the catalyst) and cannot usu-
ally be used to measure the H17

2 O composition: indeed 17O12C16O has the same weight
16O13C16O but is much more abundant. Note that by using CO2 of known isotopic com-
position, Uemura et al. [2010a] were able to measure 17O− excess by equilibration with
a limited precision of 184 ppm.

Accurate measurements of both δ 18O and δ 17O can be achieved by a reaction of
fluorination at 370◦C [Barkan and Luz, 2005] :

4CoF3 +2H2O→ 4CoF2 +4HF +O2 (3.4)

The reaction is proceeded to completion, HF is trapped with liquid nitrogen at the exit
of the reactor and the produced O2 is trapped to be analysed later on a dual inlet mass
spectrometer. Precision of this method have been estimated to be 0.13‰ for δ 18O and 5
ppm for 17O−excess [Landais et al., 2006]. Note that in the case of fluorination, the same
line is used for preparing and measuring the sample for both the measurement of δ 18O

and δ 17O, the associated errors are therefore not independent. This allows a precision on
the 17O− excess two orders of magnitude lower than for δ 18O and δ 17O individually. In
the case of the determination of d− excess by mass spectrometry, different independent
methods are used for measuring δD and δ 18O, resulting in the errors of both measure-
ments cumulating.

In addition to the chemical transfers mentioned above, in the case of water vapour,
cryogenic trapping is necessary to measure the water vapour isotopic composition by mass
spectrometry [Craig and Gordon, 1965]. Such methods transfer a significant amount of
the vapour toward ice (less than 13 ppm of the vapour is lost [Helliker et al., 2002]), and
therefore produce ice samples with the same isotopic composition as the vapour. This
method has been proven reliable in both temperate regions and polar regions [Craig and
Gordon, 1965; Angert et al., 2008; Uemura et al., 2010b; Steen-Larsen et al., 2013]. For
a more precise description of cryogenic trapping, refer to section 6.2 .
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3.1.3 Calibration

Mass spectrometry measurements can be biased due to different experimental artefacts.
First, drift of the environmental conditions, mainly the temperature of the laboratory, im-
pacts directly the measurements. Indeed, mass spectrometers rely on counting the number
of molecules at selected mass-to-charge ratios, as the ionisation efficiency is highly sen-
sitive to the environmental conditions, drift of the instrument can occur. The use of Dual
Inlet methods brings a first correction to the data: along with the gas sample, a gas of
known isotopic composition is systematically analysed, such that environmental changes
will affect roughly equally the measurement of these two samples. The relative difference
in isotopic composition between the two samples will therefore be free of the influence of
the drift.

If this method enables to cancel short term environmental conditions variations, it
does not account for (1) preparation of the gas sample through the extraction line, (2)
daily variations of the linearity of the mass spectrometer, and (3) the zero enrichment of
the mass spectrometer. To solve points (1) and (2), it is necessary to realise daily cali-
bration of the spectrometer with water samples of known isotopic composition, which are
prepared the same way as the sample, against the SMOW-SLAP scale. For the calibration
to be efficient, it is important to have a standard of similar isotopic composition in δ 18O:
a big difference in isotopic composition creates memory effects that can lead to important
artefacts in the excess values. For this reason, LSCE has developed a large collection of
working standards as described in Table 3.1.

Table 3.1: Values of working standards at LSCE reported against V-SMOW, respective analytical
uncertainties ±0.05 ‰, ±0.1 ‰ and ±6 ppm for δ 18O, δD and 17O− excess.

Standard δ 18O (‰) δD (‰) 17O− excess (ppm)
ORSMOW 3 +0.4 +2.4 0
EPB 7 −7.44 −50.4 18
ROSS 5 −18.64 −144.3 40
D57 1 −32.68 −286 38
NEEM 4 −33.56 −310.6 40
Talos 2 −39.15 −310.6 25
OC 3 −54.05 −424.1 18
SLAP 2 −55.5 −427.5 0

In the case of 17O− excess, the absolute offset of the mass spectrometer is crucial be-
cause of the very small signals (of the order of tenth of ppm). Figure 3.2 shows the differ-
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Figure 3.2: 17O− excess values vs δ 18O for water standards measured at LSCE, IESJ and IPGP
for intercalibration (Winkler, 2012)

ence between three mass spectrometers measuring the same water samples at the LSCE,
IESJ (Institute of Earth Science of Jerusalem, Israel), and IPGP (Institut de Physique du
Globe de Paris, France). For low δ 18O samples, we observe a large spread of values
found for the same standard through the different spectrometers. Landais et al. [2014]
show that assigning the 17O− excess value of SLAP to 0 ppm provides a second point
for the calibration between spectrometers leading to an agreement between the different
spectrometers and thus, enabling to obtain an absolute measurement relevant comparison
between isotopic modelling and measurements [Schoenemann et al., 2013].

56



3.2. Infrared spectroscopy

3.2 Infrared spectroscopy

The main alternative to mass spectrometry is optical spectroscopy. There are several tech-
niques but all methods are based on the light/matter interactions at the microscopic level.
In the case of atmospheric science, most of the instruments analysing isotopes use a trans-
parent window of the atmosphere in the near-infrared region. Here, after an overview of
the main principles of infrared spectroscopy, we will first describe the physical principle
of light absorption. Then, we will describe 2 of the state of the art methods nowadays
used to realise trace detection, and in particular in the case of water isotopes: Optical
Feedback Cavity Enhanced Absorption Spectroscopy (OFCEAS), developed in LIPHY,
and Cavity Ring Down Spectroscopy (CRDS), a technique typically used by Picarro in-
struments. These developments will serve as an technical introduction for next chapter.
Finally, we will describe why calibration is as important for infrared spectroscopy as for
mass spectrometry.

3.2.1 Overview

In this section, we provide a general overview of infrared spectroscopy in order to under-
stand the scaling of the different variables involved in the technique, the physical point
of view how infrared spectroscopy works will be detailed in the next section. Optical
spectroscopy relies on light being absorbed by the molecules or the atoms. This measure-
ment method is non-destructive (no chemical transfer required and the measurement is
in theory not affecting the measurement; practically, adsorption of water still affects the
samples).

This light absorption is characterised by absorption peaks at different wavelengths as
illustrated in Fig. 3.3. For trace detection in general and water isotope measurement in
particular, the measured elements are diluted in an air matrix. In the case of water, the
concentration of water molecules is from a few ppm (Polar Region, stratosphere) to a few
% (tropics). As we saw in section 2.1.2, natural abundances of heavy isotopes in water
are of the order of hundreds of ppm. These concentrations result in the need of (1) a
very sensitive method able to detect molecules at concentration down to 10−10 of the total
number of molecules (1/104 of the water molecules themselves 1/106 of the total number
of molecules), (2) with a very high dynamic as the abundance of different isotopes can
be different with a factor of 104, (3) in a spectral range where the air (nitrogen) matrix is
transparent but also all other trace elements and (4) with a precision of the order of the
ppm on each concentration to provide a relevant 17O− excess estimate. To estimate the
concentration of a specie using optical spectroscopy, we use the light extinction for one
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absorption peak. This light extinction is directly linked to the number of molecule of the
specie. As described in detail in section 3.2.2.1, the absorption peak presents a lineshape,
which is not a pure Dirac distribution but a Gaussian distribution spanning, in the infrared
region, over several MHz. This is due to the distribution of energy of the molecules of
each specie. For each absorption peak, the concentration of each specie is related to the
surface under this lineshape and not only the height, in order to take into account the
entire distribution of molecules. This requires a spectral resolution much better than the
linewidth and high enough to have a relevant number of data points per peak to fit com-
plex profiles.

These are incredibly high requirements and justify the use of sophisticated measure-
ment techniques. Two of the different available techniques described in sections 3.2.4.2
and 3.2.4.3 will provide examples of the current state-of-the-art. For all infrared spec-
troscopy techniques, if very high levels of sensitivity are needed, what will finally matter
the most is how precisely the frequency scale can be determined and at which level of
stability. Still, to keep the acquisition rate high, the bare minimum of spectral points is
generally used (compared to the most adapted to fit the lineshape profile of each absorp-
tion peak at the condition of temperature and pressure). Small variations of the measure-
ment conditions will have a strong impact on the molecular absorption line profile and,
given the high requirements, these variations can yield important systematic errors in the
measurements, and therewith a need for regular calibration (see section 3.2.6).

Despite these potential difficulties, infrared spectroscopy nowadays can provide a
level of performances equivalent to mass spectrometry. We postulate, however, that it
has not yet reached its full potential. The interests of infrared spectroscopy compared to
mass spectroscopy are numerous and important: (1) direct sampling of the vapour en-
ables one to easily analyse vapour samples but also liquid or ice samples with a vaporiser;
this enabled for instance following in the field the isotopic composition of the ice of the
Aurora Basin ice core (ABN project) and to insure to have at least 2000 years of tempera-
ture reconstruction [Moy et al., unpublished results], (2) it is crucial for the development
of Continuous Flow Analysis for isotopes but also other trace elements as only infrared
spectroscopy can measure the samples as soon as the ice is melted, (3) in laboratory, as
no chemical transfer is required, it enables much faster measurements (even though the
accuracy and reliability of mass spectrometry are yet still necessary in parallel) and (4) it
provides new possibilities for understanding the processes involved in isotopic composi-
tion changes.
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Figure 3.3: Simulated absorption spectrum of water in the infrared region based on the HITRAN
2012 database [Rothman et al., 2013]

3.2.2 Physical background

In this section, we will focus on the physical background needed to explain the spectro-
scopic point of view of this manuscript. First, we will provide a simple physical expla-
nation of molecular absorption. Subsequently, we will discuss the spectral broadening of
the absorption profiles due to the Doppler effect (temperature) and collisions (pressure).
Then, we will provide a brief discussion about resonant cavities, which are classically
used in infrared spectroscopy. Finally, we will address the conversion of the spectra to
concentration, and thus, the necessity of calibrating infrared spectroscopy data.

3.2.2.1 Molecular absorption

Optical spectroscopy takes advantage of the absorption of light by the molecules. Water
molecules behave as electric dipoles and interact with the electromagnetic field of light.
The electromagnetic field can couple with the molecule through an interaction potential
(we will not detail here the interaction Hamiltonian, see Weissbluth [2012] for more de-
tailed theoretical developments). At the macroscopic level, with many molecules, these
interactions result in absorption and refraction of the light by a medium formed by the
molecules themselves, caused by a density of microscopic electric dipole interacting with
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the electromagnetic field. This leads to a macroscopic polarisation such as:

~P = ε0χ~E (3.5)

where ~E is the electric field, ε0 the dielectric constant of vacuum and χ = εr−1 the electric
susceptibility of the medium. This complex susceptibility influences the propagation of
the electromagnetic wave in the Maxwell equations, leading to:(

∆− ε0εrµ0µr
∂ 2

∂ t2

)
~E(~r, t) = 0 (3.6)

where µ0 and µr are the magnetic permeability of vacuum and of the medium, respec-
tively. In the case of a laser beam, the light can be represented as a coherent polarised
plane wave propagating in the dielectric, which leads to a solution:

~E(~r, t) = ~E0 e−ni~k0.~r︸ ︷︷ ︸
Absorption

ei(nr~k0.~r−ωt)︸ ︷︷ ︸
Re f raction

(3.7)

where n = nr + i ni =
√

εr is the complex refractive index in the electric dipole approxi-
mation (µr ≈ 1) and ~k0 is the wave vector in vacuum defined by a dispersion in vacuum
such as ω = c|~k0|. Eq. (3.7) highlights the two different effects of light matter interac-
tions: refraction and absorption through both the real and imaginary part of the refractive
index n. Calculation of the refractive index can easily be done in the case of the transition
between two energy levels for an isolated atom. In the case of a polyatomic molecule
such as water, numerous transitions associated with the pairs of the energy states may
interact. In first approximation though, we will consider the case where each two levels
transition is not under any influence from another transition. In this case, we can express
the refraction index from the optical Bloch equation.

First, the real part of the refractive index nr which affects the dispersion relation in the
medium, thus reducing the speed of light in the medium and the wavelength of the light.
The real component of the refractive index for a 2 levels transition as given by Loudon
[2000] is:

nr = 1+
N
V

µ2
eg

2ε0h̄
∆

γ

γ/2
∆2 + γ2/4+Ω2/2

(3.8)

where
N
V

is the density of the medium in molecules, ~µeg is the transition dipole moment,
∆ = ω−ωt is difference between the laser frequency with the frequency associated with
the idealistic two level transitions responsible for the absorption with a characteristic en-

ergy h̄ωt , γ =
µ2

egω3
t

6π h̄ε0c3 is the spontaneous emission rate of the transition and Ω =
~µeq.~E

h̄
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is the optical Rabi frequency. Second, the imaginary part of the refractive index ni is re-
sponsible in Eq. 3.7 for the absorption term as the exponential term directly affects the
amplitude of the electromagnetic field. This brings a definition of the molecular absorp-
tion coefficient αabs (not to be confused with the isotopic fractionation coefficient):

αabs =−nik0 (3.9)

As for the real part of the refractive index nr, we can express the imaginary part in the
case of a 2 levels transition, which leads for the absorption coefficient to:

αabs =
N
V

µ2
egω

ε0h̄c
γ/2

∆2 + γ2/4+Ω2/2
(3.10)

In the case of N levels of energy, the dielectric susceptibility and therefore, the refractive
index and the absorption will be combining the transitions linked to all pairs of levels of
energy:

αabs = ∑
<i, j>

αabs i→ j (3.11)

In the case where the transitions are not independent, the lineshape widens (see the next
section for broadening effects).

This expression describes the Lorentzian distribution of the absorption coefficient as-
sociated with one two-level transition for non-interacting molecules at rest, which can
only be observed at low pressures and low intensity. To observe this distribution, the
other broadening effects (such as described in the next sections) can be reduced by dif-
ferent methods (cooling, low pressure,...). The minimum width of this Lorentzian distri-
bution is determined by the spontaneous emission rate of a molecule. For this reason, the
linewidth associated with spontaneous emission is called the natural width of the spectral
line [Loudon, 2000]. Practically, in the case of infrared spectroscopy, the natural width of
spectral line is negligible at standard temperature and pressure conditions and realised at
conditions of temperature and pressure where other additional broadening processes will
hide this effect.

3.2.2.2 Doppler Broadening

We measure the absorption of a gas with a temperature T > 0 K, hence the velocity of
the molecules follows a Boltzmann thermal probability distribution. For a molecule with
velocity ~u, the apparent frequency of the light is affected and becomes ωap = ω −~k.~u.
The light is absorbed by the molecule only when its frequency ω is shifted by the Doppler
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effects to the characteristic frequency of the transition ωt :

ω =
ωt

1−u/c
≈ ωt

(
1+

u
c

)
(3.12)

where c is the celerity of light. Therefore, the distribution of velocities of the molecules
imposes the distribution of frequencies that can be absorbed. This results in an apparent
broadening of the transition lineshape called Doppler Broadening. The typical order of
magnitude of u/c at ambient conditions is 10−6, therefore in the case of water in the in-
frared region, this is much larger than the natural linewidth. The distribution of velocities
follows the Maxwell-Boltzmann speed distribution [Landau and Lifshitz, 1958]:

f (u)du =

√
m

2πkBT
e−

Mu2
2kBT du (3.13)

where kB is the Boltzmann constant, M the atomic mass and T the temperature. This
results in normalised Gaussian lineshape of the Doppler-broadened absorption line such
as:

FG(ω) =
1√

2π∆2
e−(ω−ωt)

2/2∆2
(3.14)

where ∆2 is the variance of the Gaussian distribution such as ∆ = ωt

√
kBT
Mc2 . Figure

3.4 presents the comparison of the normalised Gaussian lineshape with the respective
Lorentzian lineshape defined by:

FL(ω) =
γ/π

(ω−ωt)2 + γ2 (3.15)

The Lorentzian lineshape is characterised by tails extending larger away from the peak
than in the case of the Gaussian lineshape where most of the distribution is sharply centred
around the peak. The very fine Lorentzian distribution due to the natural width of the
transition can be considered as a Dirac in the case of infrared spectroscopy, still, collisions
of the molecules together also create broadening with a Lorentzian shape with a width
typically equivalent to the Doppler broadening for the range of pressure we work at.

3.2.2.3 Collisional Broadening

Collisions between the atoms or molecules in a gas is a random process. During a col-
lision, the interaction forces between the colliding particles shift the energy levels in a
linear combination of the unperturbed molecules. Because the collision itself lasts a very
short amount of time, we will here consider no emission and absorption occur during the
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Figure 3.4: Comparison of the normalised Gaussian and Lorentzian lineshapes as a function of the
frequency normalised by their respective integrals Loudon [2000]

collision itself. Then, the collisions affect the interaction between the molecules and the
light only via the changes in the energy levels available [Loudon, 2000]. This results in an
additional term in the Lorentzian lineshape of the dielectric susceptibility leading to γ in

the expression of the Lorentzian lineshape being equal to γ =
fc

2π
, fc being the frequency

of collisions (i.e. the number of collisions experienced by one molecule per second). This
frequency is derived from the kinetic theory of an ideal gas by:

fc = σn

√
8kT
πµ

= σ p

√
8

πµkT
(3.16)

where σ represents the collision cross-section (m2), n the density of molecules (m−3), p

the pressure (Pa), µ the reduced mass (kg) and T the temperature (K). Because of the
dependency to pressure, collisional broadening is also referred to as pressure broadening.

In general cases, several broadening effects are going to influence the lineshape of
the transitions, for instance for the Voigt profile: collision and doppler broadening [Voigt,
1912]. When the absorption is subject to two (or more) different processes affecting the
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lineshape, it is necessary to determine the combination of the different mechanisms. For
instance, in the case of two broadening effects centred on the same frequency ω0, the
composite lineshape is determined by:

Fcomp(ω) =
∫

∞

−∞

F1(ν)F2(ω +ω0−ν)dν (3.17)

3.2.3 Application to spectroscopy

In infrared spectroscopy, the determination of the shape of the profile characterising the
linewidth is crucial. Indeed, to infer quantitatively the quantity of molecule accountable
for the transition absorbing the light, it is necessary to obtain the whole surface of the
linewidth. Because integrating the dataset would create a lot of noise, it is necessary to fit
the datapoint and integrate the area from the fit function which prerequisites (1) a good
knowledge of the baseline and (2) an adapted profile to fit the datapoint. This justifies a
dire need to understand precisely infrared spectroscopy. Here we detailed the basic equa-
tions explaining the light and matter interactions. Still more sophisticated theories are
used nowadays and a rapid overview will be given in section 3.2.5. Before, we need to
focus on how the spectrum is obtained.

The water vapour spectrum has a significant amount of rotational-vibrational transi-
tions in the near and mid infrared region (Fig. 3.3). Furthermore, a large part of the
absorption lines can be attributed to one single isotopic specie. At low pressures, the
lineshapes are narrow enough to distinguish the transitions from one another and there-
fore enable determination of the isotopic composition of the gas sample. Because of the
sensitivity of the different broadening effects to the environmental parameters such as
temperature, pressure and partial pressure, it is very important to monitor or/and control
them precisely. Rapid scans enable one to limit the possible variations of environmental
conditions during the spectrum acquisition but limit the number of points. As we saw,
the lineshape profiles are dependent to an important number of parameters and therefore
require an important number of datapoints per transition to be able to fit the profile. The
competition between rapid scans and important number of points in the profile calls for
powerful optical techniques to realise spectra.

Building on the exponential decrease of the amplitude of the electromagnetic field
along the propagation in the medium, the Beer-Lambert law states that the direct absorp-
tion of the medium is:

I(e) = I0e−αabs` (3.18)
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Figure 3.5: The Herriot cell is a type of multipass cell enabling important number of passes to
increase the optical path without increasing the volume of the sample (source : lzh.de)

where ` is the optical path in the medium. By measuring the extinction of light through a
sample, one can directly measure its composition. This method, which is still nowadays
used in several commercial instrument, presents important limitation in sensitivity result-
ing in either important sampling volumes or low signal to noise ratio. In order to increase
the optical path without increasing the volume, multipass cells use mirrors on both side on
which the beam is reflected several times before leaving the cavity (for instance, a Herriot
cell as illustrated in Fig. 3.5).

3.2.4 Resonant cavities

In this section, we detail how the use of resonant cavities enables a reduction of the
amount of gas necessary and an increase of the optical path at the same time. This sec-
tion gives a rapid overview of the different techniques of spectroscopy based on resonant
cavities that have been studied during my PhD. The major asset of these methods is the
high dynamic enabling precise measurements in a wide range of conditions and more
importantly, enabling measurements of the concentration of different species whose con-
centrations differ by factors up to 104. First, we will describe the physical background of
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resonant cavities, and then we will detail the principle of two methods: the Optical Feed-
back Cavity Enhanced Absorption Spectroscopy (OFCEAS) and the Cavity Ring Down
Spectroscopy (CRDS).

3.2.4.1 Resonant cavity physical background

In order to increase even more the optical path, one can use "semi-transparent" mirrors
and match them for the light beam to fold back on itself and therefore create an optical
resonator. This set-up is called a Fabry-Perrot interferometer and was initially used to
determine the thickness of a glass plate. Here, we apply the same method to determine
the absorption after a very important number of passes [Kastler, 1962].

Transmission

Frequency
υ1

Outcoming
light

L υ2 υ3 υ4 υ5 υ6

Figure 3.6: Schematic of an linear optical cavity, only modes with wavelength proportional to L/2
creates constructive interferences and can build up light in the cavity

A cavity with two mirrors of reflectivity R and transmission T (as on the schematic
in Fig. 3.6) is injected with a coherent light source Ii. If R is important, each time the
light hits a mirror, an important fraction is reflected and a small fraction is transmitted.
After one roundtrip in the cavity, the remaining light (roughly R2Ii) is coherently summed
up with new light, resulting in an accumulation of light in the cavity. The total trans-
mitted light is the sum of the contributions due to the successive reflections, as for the
reflected light and the energy stored inside the cavity. In a steady state, we obtain for the
transmission:

Et

Ei
= t2eiΦ/2

(
1+ r2eiφ + ...

)
(3.19)

where r =
√

R and t =
√

T =
√

1− r2 are the reflection and transmission coefficients of
the electric field on the mirrors respectively and Φ is the phase shift associated with one
round trip. This is equivalent to the sum of a geometric series, therefore:

Et

Ei
=

t2eiΦ/2

1− r2eiφ =
(1− r2)eiΦ/2

1− r2eiφ (3.20)
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Alternatively for the reflected beam Er and the internal power E:

Er

Ei
= r− r(1− r2)eiΦ

1− r2eiφ (3.21)

E
Ei

= i
t + rteiΦ

1− r2eiφ (3.22)

The cavity transmission is maximal at resonance (when Φ = 0 or 2π). The transmission
of the cavity is given by the Airy function:

Tcav =
(1−R)2

1−2RcosΦ+R2 =
(1−R)2

(1−R)2 +4Rsin2Φ/2
(3.23)

The transmission is maximum when sin2φ/2 = 0 which is equivalent to
2π

c
Lν = mπ

with m an integer. Depending on the value of the reflectivity R, the cavity transmission
will show characteristic peaks more or less sharp (Fig. 3.7). For low values of R, it is
not possible to extinguish the transmission completely and the observed pattern is simply
fringes. For high values of R, the signal is completely erased in between the resonances
which occur at the frequency:

νm = m
c

2L
= m∆νFSR (3.24)

where L is the distance between the mirrors and ∆νFSR =
c

2L
is called the Free Spectral

Range (FSR) of the cavity. The width of each resonance is defined by the Full Width Half
Maximum (FWHM) such as:

∆νw =
c

2πL
1−R√

R
(3.25)

The finesse F is defined as the ratio of the FSR by the width of the cavity mode and
estimates the relative sharpness of the resonance:

F =
∆νFSR

∆νw
= π

√
R

1−R
(3.26)

High finesse cavities are particularly interesting for spectroscopy for different reasons.

First, the average time spent in the cavity by a photon is < τ >= F ∗ 2L
πc

, therefore the
mean optical path increases linearly with the finesse and can reach values of several hun-
dreds kilometres. Second, the range of frequency at which photons are able to build up in
such a cavity is very narrow, therefore it gives the possibility to sample at high frequency

resolution. Third, the power inside the cavity PIC = 2
F
π

Pi is determined by the finesse and
the input power Pi. Thus, even with a weak power input, it is possible to build up high
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Figure 3.7: Cavity transmission for reflectivities ranging from 0.1 to 0.83

quantity of energy inside the cavity. Finally, if the cavity is built within a solid stable ma-
terial and its length remains constant, the resonant frequencies are precisely determined
and the cavity itself can provide a frequency reference.

Cavities with more than 2 mirrors can also be realised and have similar behaviour. In
the case of a V-shaped cavity (3 mirrors), similar behaviour occurs with 4 possible exits
for the light. For such cavities, the free spectral range is slightly different : ∆νFSR =

c
4L

and the finesse is defined by : FV = π
R

1−R2 . We will see in the next section the interest
of such a cavity compared to a linear cavity.

3.2.4.2 Optical Feedback Cavity Enhanced Absorption Spectroscopy (OFCEAS)

OFCEAS is a method developed and patented by LIPHY to measure trace elements in
gas phase [Morville et al., 2005]. It relies on V-shaped resonant cavity as presented in
figure 3.8 made from a stainless steel. A PID (Proportional, Integral and Differential)
comparator additionally insures the temperature stability of the cavity creating a stable
frequency reference for the instrument. Building up on this, a portion of the light from
the cavity is sent back to the laser source, resulting in a stabilisation of the frequency of
the diode laser (optical feedback). A detailed framework of the optical feedback theory
has been developed by Laurent et al. [1989]. An essential property of optical feedback on
frequency locking is the suppression of frequency excursion to a frequency width ∆νOF

even narrower than the FWHM of the cavity.
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Figure 3.8: OFCEAS principle schematics as described by Morville et al. [2005]

The main advantage to use a V-shaped cavity in this instrument is to avoid direct re-
flection from the mirror labelled Ma in the Fig. 3.8 back to the laser. This reflection
would create another "cavity" on which the laser could lock and would perturb the fre-
quency locking. The optical feedback light still goes back to the laser. The beamsplitter
(BS on the schematic) splits the beam toward both the cavity and a reference diode.

When the frequency of the laser is scanned, it will get locked successively on the reso-
nance frequency of the cavity (see Fig. 3.9) and will remain locked until it can get locked
to the next resonance. How long the laser stays locked can be set by adjusting the feed-
back rate with a linear polariser (attenuator A in Fig. 3.8). If an important feedback rate is
interesting to improve the statistics of the laser getting/staying locked, it is crucial not to
have a feedback rate too high for the cavity to be able to delock but relock instantaneously
to the next mode.

During my Ph-D, I have been working on an instrument based on the OFCEAS tech-
nique named HiFI developed by Landsberg et al. [2014]. In this instrument, the lasers are
DFB (distributed feedback) laser diodes with a typical maximal output of 10 mW around
7200 cm−1. These diodes are particularly suited to optical feedback. The cavity is com-
posed of 3 mirrors from Layertec GmbH with a radius of curvature of 1 m and a wedge
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(a) (b)

Figure 3.9: Example of OFCEAS signal during a full scan and zoom over the last resonance and
the Ring-Down measurement used to convert the spectrum into an absorption scale [Landsberg,
2014]

(a) (b)

Figure 3.10: Simulated spectrum for 1 ppm of water vapour at natural concentration at 7184 cm−1

on the left and 7200 cm−1 on the right from the Hitran database [Rothman et al., 2013]

of 1◦. The maximum ring-down time observed with an empty cavity at 7184 cm−1 was
150 µs which is equivalent to a reflectivity of 99.9989% or a finesse of roughly 144000
(see next section for the definition of ring-down and a comparison with last generations
of commercial instruments). The instrument is housed in a 1.5U heigh 19" rack and has
a weight of 20 kg. The working pressure inside the cavity is 35 mBar and the air carrier
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gas flows at approximately 150 sccm (the flow is adjusted for the gas cell pressure to re-
main constant). The volume of the cavity is approximately 20 mL. The instrument can be
used at different wavelengths by changing the laser diode: we used two lasers of which
the first operates at 7184 cm−1 where all three isotopic ratios δ 18O, δ 17O and δD can
be obtained (see Fig. 3.10a), and the second at 7200 cm−1 where only δ 18O and δD can
be determined but where the transitions associated with each isotope are better separated
(see Fig. 3.10b).

This instrument has been especially developed by Landsberg et al. [2014] to work at
low humidity, and in particular, lower than all the commercial instruments that were avail-
able at the time. It can measure water vapour isotopic composition down to humidities of
200 ppmv with a precision better than 0.1‰ for δ 18O, 0.15‰ for δ 17O and 0.8‰ for δD.
This instrument has been involved in several campaigns carried out by Janek Landsberg
including on a field trip campaign to Troll Station in Antarctica, the Cloud Chamber ex-
periment described in section 5.2.2 and by me during the first field campaign to Concordia
Station in Antarctica (see section 6.2).

3.2.4.3 Cavity Ring Down Spectroscopy

Cavity Ring Down Spectroscopy (CRDS) is another alternative to realise spectroscopy
with a long effective optical path length. It also relies on a resonant cavity but in this
case, the laser is not locked to the cavity. Indeed, in this case, the optical feedback is
not the purpose of the resonant cavity but measuring the decay rate of the light going out
of the cavity once the laser has been stopped. As a laser is injected in the cavity in a
resonant situation (by adjusting the length of the cavity with a piezzo for instance), some
energy will build up in it. Because of the energy conservation, the relation between the
reflectance R, the transmittance T and the loss L due to scattering or absorption on the
mirror at each reflection is:

R+T +L = 1 (3.27)

Note that in this situation, it is not possible to neglect the impact of the loss contrary
to section 3.6. If the light input is suddenly stopped for whichever reason, the intensity
inside the cavity shows an exponential decay which is directly transferred to the intensity
leaving the cavity:

I(t) = I0 e−
t

τRD (3.28)

where I0 is the intensity when the light input has been stopped and τRD is the ring-down
time which does not depend on I0, the initial intensity of the decay. After n round trips in
the cavity, the intensity decays because of (1) the transmitted and the lost part of the light
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at each reflection on the mirrors and (2) the molecular absorption during the trip from one
mirror to the other, such as :

I(t) = I0e−2n(−ln R+αabsL) (3.29)

Each round trip in the cavity corresponds for the photons to a time t =
2nL

c
spent in the

cavity, thus, Eq. 3.29 can be written as:

I(t) = I0e−
ct
L (−ln R+αabsL) (3.30)

The presence of molecule absorbing the light will reduce the ring down time. The expo-
nential decrease of the light intensity is illustrated in Fig. 3.11. The decay time constant
in Eq. (3.30) can be expressed as:

τ =
1

c(−lnR+αL)
(3.31)

This decay is also called ring down time. To obtain the absorption coefficient, the sub-
traction with the ring down time of an empty cavity can simplify previous equation and
leads to:

αabs =
1
c

(
1
τ
− 1

τ0

)
(3.32)

Figure 3.11: CRDS principle schematics as described by Paldus and Zare [1999] representing the
exponential decay out of the optical cavity. The decay time is extremely short, a few µs but still
measurable with satisfactory precision.

This is a simplified theoretical approach to describe the link between ring-down time
and the absorption coefficient αabs and a more complete theoretical description can be
found in Romanini et al. [2014] and Burkart [2015] and will not be described here. This
method presents several features of interest: first, the measurement is completely inde-
pendent of everything occurring before the cavity as the incident light is off when the
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measurement happens, this removes all uncertainties linked to phase noise, power fluc-
tuations and locking between the laser and the cavity and is an enormous advantage;
second, to infer precisely the time constant of an exponential decay is a rather precise
measurement technique. Most of the instrument based on CRDS are actually building on
Continuous-Wave Cavity Ring-Down spectrometry technique (CW-CRDS) developped
by Romanini et al. [1997] for which the laser and the cavity mode are jointly tuned to
scan a whole spectral ensemble with high resolution without relying on the free spectral
range of the cavity.

During the time of my Ph-D, I used a couple of instruments based on this technique
from the company Picarro: the L2120-i, the L2130-i and the L2140-i. Only the last
one can measure all 3 isotopic compositions. These spectrometers are composed of a
high finesse ring cavity with a empty ring-down time of 22 µs which is equivalent to a
finesse of 44 000 or an effective optical path length of 6.7 km and a typical sensitivity
of 2.3 10−11 cm−1Hz−1/2 [Crosson, 2008]. The working pressure inside the cavity is
66.7 mbar and the flow approximately 40 sccm. In the case of the previous generation of
water vapour isotope Picarro analysers (up to the L2130-i), one of the mirror is mounted
on a piezoelectric actuator which enables changing the size of the cavity and therefore
tune the cavity modes to whatever wavelength the laser is set (one method enabling CW-
CRDS). For the latest version of the water vapour isotope analyser, the L2140-i, the length
of the cavity is kept constant during measurements and the laser is locked to successive
FSR of the cavity [Steig et al., 2014]. If this results in less freedom in the spectral sam-
pling but enables to use the cavity as a frequency reference, as for OFCEAS: the cavity in
the Picarro instruments is made a special steel which has a very small thermal expansion
coefficient, this cavity provides a rather good frequency reference (see Table 4.3 in section
4.2.1 for comparison).

An additional modification of the Picarro L2140-i is a second laser at 7193 cm−1 (see
Fig. 3.12) allowing to obtain the composition in H17

2 O. The spectral window used is
different than in the case of the HiFI (OFCEAS instrument, see section 3.2.4.2)for purely
logistical reasons and theoretically, no difference of precision should occur from this dif-
ference. The ring-down and the finesse of Picarro’s analysers are lower than the one of
the HiFI which results in smaller optical path length and therefore an instruments less
sensitive at low humidities. As important efforts have been made by Picarro to provide
their analysers with efficient temperature, pressure and flux regulations (housekeeping),
it is possible to average over long time period the data without being affected by drift of
the instruments and Picarro analysers have been used successfully down to 100 ppmv.
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Figure 3.12: Measured absorption spectrum for 20000 ppm of water vapour in dry air at 7200cm−1

on the left and 7193 cm−1 on the right, the lines are a least mean squares fit of the datapoint by
Galatry profiles [Steig et al., 2014]

Picarro’s analysers are not the only CRDS instruments available nor the only ones
used in my Ph-D, as demonstrated in section 4.1.2.

3.2.5 From a spectrum to a concentration

The different kinds of spectrometers above will not provide directly a concentration. In
the case of OFCEAS for instance, the ratio of powers received by the two photodiodes has
to be converted into a molecular absorption. To calculate the molecular absorption from
the cavity transmission obtained from the ratio of the powers of the two photodiodes, it
is necessary to invert the Airy-shaped cavity transmission transfer function as detailed by
Kerstel et al. [2006]. In the case of CRDS also, the molecular absorption is not directly
obtained: it is necessary to fit the exponential decrease of power out of the cavity to ob-
tain the ring-down time and calculate the absorption as described in section 3.2.4.3. Even,
in some rare case of saturated absorption, non-exponential ring-down profiles have been
reported [Burkart et al., 2015]. Once an absorption spectrum is obtained from an infrared
spectrometer, an important amount of calculation is still required to obtain a concentra-
tion.

As we saw, the concentration of species associated with a transition is proportional
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to the surface between the transition lineshape and the baseline. To estimate this concen-
tration, it is possible to simply integrate points to points the surface. Still, this method is
rather noisy, especially when the number of points is low (as to increase the number of
spectral points decreases the sampling rate). By fitting the spectrum with the physical pa-
rameters upon which the broadening effects of each transition are based, the measurement
of only a few spectral points per transition can already provide a satisfactory estimate of
the concentration of the element associated with a transition. To be efficient, this method
requires a lineshape profile which encompasses all the physical processes affecting the
molecular absorption in the experiment conditions and precise fit parameters which are
based on a set of reference spectra realised with an important amount of spectral points
and laboratory controlled experimental conditions. Considering the precision needed to
provide a relevant determination of isotopic composition, the choices in the profile and
the fit parameters are crucial. Reducing the number of points decreases the time of the
scans, therefore limits the risks of the environmental conditions (such as pressure, temper-
ature and flux) changing during the measurement, but it is also a trade-off because with
few spectral points, all the noises of the frequency and amplitude determinations create
important biases or noises on the final concentration. Figure 3.13 presents the use of dif-
ferent profiles to fit one absorption line of water vapour around 1.4µm [Lisak et al., 2009].

The Voigt profile is the simplest, it is obtained by combining the Gaussian profile of
the Doppler Broadening and the Lorentzian profile of hard-collisional broadening. The
Galatry Profile is the one used on Picarro instruments to fit the spectra, it integrates soft-
collision between molecules introducing collisional narrowing. The Speed-Dependent
Voigt Profile takes into account the speed of the molecules in the collisions to introduce
collisional broadening and shifting effect of the profile. Finally, the Speed-Dependent
Nelkin-Ghatak profile uses hard-collision and takes into account collisional narrowing
and the speed-dependence of collisional broadening and shifting. We will not go into
details on the theoretical differences between these profiles, a description of the line
shape models can be found in Ciurylo [1998]. All of these profiles have been widely
used in spectroscopy and numerous studies attest whether they are relevant at the dif-
ferent experimental conditions. Figure 3.13 illustrates the typical W − shape expected
with a maladapted profile. In the case of the Voigt Profile, very important residuals occur
due to the lack of line narrowing. If Galatry Profile greatly improves the fit, only when
speed-dependence and line narrowing are taken into account together, are the residuals
completely removed from the fit [Lisak et al., 2009].

In the case of the transition detailed in Fig 3.13 for instance, the absorption lineshape
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Figure 3.13: Measured absorption line of water vapour in Nitrogen carrier at 133 mbar at
7179.75201 cm−1 and residuals from fit with four commonly used profiles: V P Voigt Profile,
GP Galatry Profile, SDV P Speed-Dependent Voigt Profile and SDNGP Speed-dependent Nelkin-
Ghatak profile [Lisak et al., 2009]

is dependent of the experimental conditions as illustrated for instance by Eq. (3.10). The
parameters that can fit the absorption profile from only physical experimental conditions
are the fit parameters. Each profile requires a certain number of fit parameters as thor-
oughly described by the technical report of Tennyson et al. [2014]. For spectroscopy
of water vapour, they recommend to use the Hartmann-Tran profile (HTP) [Tran et al.,
2013]. This profile includes the speed dependence, hard velocity changes due to colli-
sion and that modification of the velocity is correlated with rotational state changing at
the collision and requires up to 7 parameters to fully characterise the line shape for one
transition at one temperature and in one matrix of ambient gases.
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If spectroscopy experiments aim at measuring directly the fit parameters to understand
the physics lying behind these, for trace detection application, the fit parameters are im-
plemented with values from the literature. A strong effort has been lead to obtain the most
relevant spectroscopic parameters, and the HITRAN database keeps a regularly updated
list of the state of the art spectroscopy experiments [Rothman et al., 2013]. Still, as the
final precision of the fit is directly influenced by these parameters, in order to obtain the
best precision in the trace detection, it is important to constrain the fit parameters pre-
cisely. In section 4.1.2, we will present a set of spectra realised in laboratory experiments.
They provide us with robust fit parameters that can be included in the next generations
of infrared spectrometers. By characterising the dependency of the fit parameters with
environmental conditions such as temperature or pressure, it is possible not to entirely fit
them and to use instead parametrisation with temperature or pressure for instance. This
enables to reduce the number of spectral points necessary to obtain precise concentration
measurements.

3.2.6 Calibration

In this section, we will rapidly review the reasons why it is necessary to calibrate infrared
spectroscopy measurements. 3 types of calibration are realised in infrared spectroscopy.
Type (1) calibration estimates the drift of the instrument. As for mass spectrometry, it is
mainly because of unaccounted evolutions of the environmental conditions. The calibra-
tion protocol for type (1) calibration relies on the measurement of one isotopic standard
at one humidity level. The regularity of this calibration is given by the Allan-Variance
diagnostic (See section 6.2 for an example on the Picarro L2130i at low humidities). It is
calculated as the variance of one long steady measurement with different running average
of the data (see Fig. 3.14 for an example in the case of a Picarro L2140-i). As we realise
longer running average of the dataset, the white noise is being cancelled and the variance
decreases (illustrated by the monotonous slope for all isotopic composition measurements
in Fig 3.14). After a while though, the drift of the instrument can be larger than the noise
of the instrument, creating variance that is characterised on an Allan deviation plot by
an increase. The drift of infrared spectrometers is most of the time due to fringes in the
optical setup due to parasite reflections on mirrors, windows or lenses. Because of small
variations of temperature of the entire setup, small variations of the distance between the
different optical elements will affect the fringes and therefore create biases. The drift can
also be related in drift in the frequency of the laser or small variations of the temperature
or the pressure of the gas. In the case of the Picarro L2140-i illustrated in Fig. 3.14, the
Allan deviation of the measurement of δD stops decreasing earlier than δ 18O and δ 17O
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but rises less than δ 18O and δ 17O at longer time scale. In order to benefit from the best
performances of the spectrometer (toward 10−2‰ for δ 18O), it is necessary to realise type
(1) calibrations every 10 000 seconds, so roughly every 3 hours.
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Figure 3.14: Allan standard deviation for water isotopic composition measured of a Picarro L2140-
i: (A) δ 18O: green, (B) δ 17O: red, (C) δD: blue and (D) 17O−excess: black. Modified from Steig
et al. [2014].

Type (2) calibration estimates the isotope-isotope response of the instrument. Be-
cause the absolute amplitudes of the transitions associated with the different isotopes are
not referenced against the SMOW with enough precision, the estimatation of the isotopic
composition from infrared spectrometers is not naturally referenced against the SMOW-
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SLAP line. In order to account for this bias, two standards whose isotopic compositions
bracket the isotopic composition being monitored are successively measured providing
the response of the infrared spectrometer compared to the SMOW-SLAP scale. Typical
isotope-isotope slope is between 0.95‰/‰ and 1.05‰/‰ for Picarro’s analysers for in-
stance. This type of calibration can be realised once a week provided type (1) calibration
accounted for the drift.

Type (3) calibration estimates the isotope-humidity response of the instrument. This
type of calibration is necessary if the collisional broadening is not properly estimating the
impact of water vapour partial pressure changes on the lineshape. Because most spectrom-
eters take too few spectral points to implement more sophisticated absorption profiles, it
is necessary to correct this bias directly on the isotopic composition and on the humidity.
Type (3) calibration is realised by measuring 1 standard at different levels of humidity in
order to account for the response of the infrared spectrometer to humidity.

3.3 Optical frequency combs

Here, we introduce quickly optical frequency combs and how they can be used as an ab-
solute frequency reference. Optical frequency combs have been used directly to realise
spectroscopy, as highlighted for instance by the recent work of Millot et al. [2015]. Still,
due to the price of an optical frequency comb (around 100 ke), alternative methods are
often chosen. During my PhD, we used an optical frequency comb as an absolute fre-
quency reference to characterise a very stable cavity (see next chapter).

An optical frequency comb is the representation in the frequency domain of stable
train femto-second laser pulses ( f emto = 10−15), the light is characterised by a large
spread of discrete optical frequency separated evenly. Each frequency has a fine linewidth
(around 100 kHz) and an important stability potential. The use of this kind of laser has
opened a new era in spectroscopy and precision measurements in general and led to a
Nobel price for John Hall and Theodor Hänsch [Hall, 2006; Hänsch, 2006].

Frequency combs are a train of short light pulses emitted at regular interval as pre-
sented in Fig. 3.15. Because of the short duration of these pulses of light, they can be
considered like a comb of Dirac functions in the time domain with a repetition rate frep.
As the Fourier transform of a comb of Dirac functions is also a comb of Dirac functions,
the free spectral range between two successive frequencies is equal to the repetition rate
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Figure 3.15: Representation of an optical frequency comb in the time domain a) by consecutive
pulses emitted by a mode-locked laser and in the frequency domain b) with the corresponding
spectrum [Udem et al., 2002]

fFSR = frep and the frequency of the mode n is defined by:

ωn = n×ωrep +ω0 (3.33)

where ωrep = 2π frep and ω0 = 2π f0 is a frequency offset resulting of the shift of the
carrier wave (blue curve in Fig. 3.15a) with respect to the pulse envelope (red curve in
Fig. 3.15a). Indeed, the carrier wave is moving with the phase velocity vp = ω/k and the
envelope is moving with the group velocity vg = dω/dk and in a dispersive medium, the
phase and the group velocities are not equal. This leads to an expression of the frequency
zero-offset:

ω0 = 2ωcL
(

1
vg
− 1

vp

)
frep (3.34)

where L is the length of the cavity and ωc is the frequency of the carrier wave.

In the frequency domain, a frequency comb displays an important number of discrete
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frequency peaks completely determined from Eq. (3.33) by the repetition rate frep and
the zero-offset frequency f0. Using a fast photodiode, it is possible to detect the pulses
and therefore measure the repetition rate frep. By an active control of the cavity length
and using the expression of the free spectral range, it is possible to keep the repetition rate
locked by controlling the cavity length using for instance a piezo-electric actuator (as for
the continuous wave cavity ring down for example in section 3.2.4.2).

Figure 3.16: Determination of the zero-offset frequency by doubling the frequency of the mode n
in a non-linear crystal and making it interfere with the mode 2n [Udem et al., 2002]

The measurement of ω0 is much harder because the measurement of an optical fre-
quency around 1014 Hz is not possible with a precision at the Hz level without a referenced
optical frequency comb. The solution to this issue is the self referencing and is based on
an interferometric measurement. If the comb spans over at least an octave (meaning the
highest accessible frequency is higher than twice the lowest accessible frequency), it is
possible to determine this frequency by simply doubling the frequency of the mode n as
illustrated in Fig. 3.16: 2ωn = 2(nωr +ω0) and overlapping it on a fast photodiode with
the mode 2n of frequency ω2n = 2nωr +ω0. The beatnote between the two frequencies
(see section 4.2.4.1 for more detail on beatnote) is directly the offset frequency ω0. Using
this measurement, through a servo loop on the pump laser power, allows to control the
value of ω0 and to lock it to a reference radiofrequency, for instance against a rubidium
clock. Because the first octave-spanning combs have only been realised recently [Jones
et al., 2000; Diddams et al., 2000], only recently have we been able to build an absolute
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frequency comb.

This method enables building a femto-second optical frequency comb that produces
known absolute frequencies over a large range of wavelengths. Optical frequency combs
can be used to do spectroscopy directly. If the different teeth of the comb can be injected
in a resonant cavity, an entire spectrum can be realised within a few milliseconds and
several species scanned at once [Bernhardt et al., 2010]. In this case, the main challenge
is to analyse efficiently the light after the cavity. The beatnote obtained by combining
the signal of two combs with a small offset in the repetition rate (∆ fr) provides another
frequency comb in the radio-frequency domain which can be measured directly and can
be scaled to produce the optical spectrum (see Fig. 3.17). With such a method, Rieker
et al. [2014] has been able to use dual-comb spectroscopy to measure greenhouse gases
remotely over several kilometres paths, including lines of different water isotopes. These
methods can provide interesting opportunities to monitor atmospheric trace detection but
are rather expensive.

Figure 3.17: Conversion of the dual comb absorption feature into a radiofrequency signal for trace
detection measurement [Rieker et al., 2014]
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Development of new spectrometry tools

Le principe du Biglemoi que Monsieur connait sans doute, repose sur
la production d’interférences par deux sources animées d’un
mouvement oscillatoire rigoureusement synchrone. ∗

L’écume des jours
BORIS VIAN

Previous chapter detailed the state-of-the-art in term of mass and infrared spectrome-
try. In this chapter, we will describe the new developments in infrared spectroscopy that
have been realised in the framework of my PhD. Even though commercial instruments
are getting more and more powerful, in particular at low humidities, there remains im-
portant limitations. Therefore, we need to push the limits of what infrared spectroscopy
can achieve. As described in section 3.2.5, infrared spectroscopy relies on both a good
absorption measurement and a precise frequency determination. This motivated the de-
velopment of a water isotope infrared spectrometer based on optical feedback to stabilise
the frequency (as for OFCEAS, section 3.2.4.2) and on CRDS to measure the absorption
(see section 3.2.4.3).

In this chapter, we will first describe the classical CRDS setup at LIPHY, which al-
ready has a sensitivity two orders of magnitude better than most commercial instruments.
We describe the first experiments using this setup under a flow of water vapour of known
isotopic composition and not for a static vapour as classically done. This was realised
with a custom-made humidity generator that is described at the beginning of the section.

∗. The principle of Biglemoi, which you sir know for sure, relies on the production of interferences by
two sources driven by a rigorously synchronous oscillatory movement.
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This humidity generator was involved in laboratory experiments for spectroscopy of water
vapour and also in several field campaigns that will be described in the next chapters. We
will highlight that even for this powerful setup, one of the main limitation is the frequency
noise. This justifies the development of a laser source stabilised by optical feedback from
a highly stable V-shaped cavity based on the work of Burkart et al. [2013].

4.1 Water vapour infrared spectroscopy

As detailed in section 3.2.5, evaluation of the isotopic composition from a spectrum is
realised by fitting the data with a lineshape and fit parameters. During my Ph-D, several
experiments on the spectroscopy of water vapour were realised to evaluate the lineshapes
of the transitions commonly used by infrared spectrometers. This was realised using a
new generation of humidity generator, especially conceived for low humidities. We will
first describe this generator and then a first use of this generator to produce stable water
vapour fluxes in a spectroscopy experiment. This will finally be converted in a new set of
fit parameters.

4.1.1 Humidity generator

This new generation of humidity generator is inspired from the prototype developed by
Landsberg [2014]. The humidity levels at which we aim to measure, are very low (from
1 to 1000 ppm in volume mixing ratio), justifying the need to build a dedicated humidity
generator able to provide moisture at these levels. Indeed, commercial calibration devices
cannot be used to produce humidity levels that low.

4.1.1.1 Physical principle

The humidity generator is based on undersaturated evaporation of a small droplet at the
tip of a needle (see Fig. 4.1a). Liquid water is pushed through a needle around which a
flow of dry air is generated. The flux of water fL is maintained low compared to the air
flow fA so the humidity h of the moist air flow is small (h << 1). Therefore, the air stays
undersaturated and its humidity is limited only by both flows (liquid water in the needle
and dry air around it). The specific humidity of the air is determined by:

HS =
dH2O fL R Tst

fA Pst MH2O
(4.1)

where dH2O = 1000 kg m−3 is the density of water, R = 8.314 J mol−1 K−1 is the gas con-
stant, Tst = 293.16K and Pst = 1.01105 Pa are the standard conditions of temperature and
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pressure, respectively and MH2O = 18 10−3 kg mol−1. Note that the flux of water fL needs
to be expressed in m3 min−1 if the air flow fA is expressed in s m3 min−1 (standard cubic
meter per minute).

(a) (b)

Figure 4.1: Evporation of the droplet in the chamber of the humidity generator: left, picture from
the prototype from Landsberg [2014]; right, schematics of the water molecules being transfered to
the air flow.

Physically, when the flux of water or air is changed, there is first a transient regime
during which the radius of the droplet changes, modifying the evaporative surface and
therefore the humidity of the produced air. Once a permanent regime is reached, the
radius of the droplet is stabilised and the humidity fixed by Eq. (4.1). As the stationary
regime is reached, there is no accumulation of molecules in the system and therefore
the isotopic composition of the vapour produced is equal to the isotopic composition of
the water injected in the needle: Ri

v = Ri
L (note that because of the fractionation during

the phase transition, the isotopic composition of the droplet Ri
G is necessarily different

from Ri
L and Ri

V ). Each flux of water evaporating corresponds to a specific size of the
evaporation surface and therefore a radius of the drop. The evolution of the radius of the
drop can be modelled by a non-linear differential equation on the volume of the drop:

dV
dt

= fL− fevap (4.2)

where V is the volume of the drop and fevap = ke S is the evaporation flux depending of ke

the evaporation rate and S the surface of the drop exposed to the dry air. The calculation
of this surface is not so straightforward: it is the surface of a sphere of variable radius
intercepted by the surface of a disk of constant radius (the syringe tip). This system has
been numerically modelled by Janek Landsberg and Erik Kerstel. By solving numerically
this differential equation, they obtain the simulation in Fig. 4.2. The isotopic compo-
sition is computed by the introduction of an evaporation fractionation factor following
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Cappa et al. [2003]. This numerical approach validates the theoretical explanation of the
undersaturated evaporation of the droplet.

(min)

Figure 4.2: Simulation of the humidity and the isotopic composition of the water vapour during a
transient event during which the water injected in the needle was doubled [Data and model from
J. Landsberg and E. Kerstel, personal communications].

4.1.1.2 Technical realisation of the generator

As the instrument relies on operating on a stationary regime, it is important that the dry air
input and the water input are steady. The dry air flux is controlled by a Bronkhorst mass
flow controller IQF-200C-AAD-11-V-S from 0 to 500 sccm with a precision of 4 sccm.
The water flux is controlled by a Harvard Apparatus Pump 11 Pico Plus Elite that can
produce a water flow down to 3.66 pL min−1 with an accuracy of 0.5 % using syringes
from 10 to 250 µL. The same pump is equipped with two syringes that provides two
water flows into two evaporation chambers in parallel (see Fig. 4.3). Each syringe is
connected to a water reservoir and to the evaporation chamber by a double 3-ways liquid
valve switching from an infuse mode to a pushing mode. The double 3-ways valve is a
Rheodyne MXX777603 with leak tight connections and an internal volume 1.9 µL. This
modification is a major improvement to the instrument designed by Landsberg [2014] as
it enables automatic handling of the standards from a reservoir to the evaporation cham-
ber with a robust connexion avoiding in particular potential air bubbles in the water flow.
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Indeed, as we have had amble opportunity to observe, the system relies on a permanent
regime, therefore all air bubbles trapped in the water flow will break the steady state and
create artefacts in the humidity and isotopic composition, reducing the performance of
the calibration device. In addition, this provides with the opportunity of a "refill" mode
in which the syringes draw standard water from a reservoir. The 100 µL volume of the
syringes suffices for operation over several hours, up to one day. With the addition of the
refill option, the instrument can be used unattended for many months (such as demanded
for an Antarctic campaign).

Bronkhorst
Mass �ow 
Controler

Bronkhorst
Mass �ow 
Controler

Bronkhorst
Pressure 
Controler

Bronkhorst
Pressure 
Controler

Vacuum line
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Withdraw 
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Withdraw 
mode

Common
Output

Dry air 

Dry air 

Pump Pico
Elite 11

Standard 2

Standard 1

Figure 4.3: Humidity generator schematic drawing in the infuse mode. Note that on the schematic
appear two pressure controllers. In reality only one single controller controls the pressure on both
lines at the same time.

The evaporation chambers are made from stainless steel swagelok cylinders on which
ultratorr connectors are holding viton septa in which needles are inserted toward the mid-
dle of the chamber. The pressure of both chambers is regulated by a single Bronkhorst
P-702CV pressure controler with a precision of 3 mbar from 0 to 1000 mbar. This com-
mon pressurisation of the two chambers and the relatively high flow (higher than needed
by the infrared spectrometers) allow to maintain a steady state whether or not the infrared
spectrometer is connected, and increases the time efficiency of calibration procedures.
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This humidity generator relies on the same principle than the one developed by Lands-
berg [2014] of steady undersaturated evaporation of a drop at the tip of a needle. Still,
here, the entire instrument has been remodelled including:

• A new system to handle liquid samples without manual intervention with a liquid
double 3-ways valve as described above.

• All the gas handling has been made with copper tubes and ultra-torr connectors to
obtain the best performances in term of memory effects and airtightness.

• The injection chambers were redesigned: the chambers of the generator of Lands-
berg [2014] were home-made aluminium blocks in which the internal diameter was
only 4 mm, this created issues if the needle was not perfectly straight, the tip could
touch the walls of the injection chamber, resulting in variable surfaces of the as-
pherical drops and therefore important variations of the air/water interface which
directly influences the humidity generated. Here, we used commercial stainless
steel chambers Swagelok SS-4CD-TW-10 with an internal diameter of 21.8 mm

and ultra-torr connectors holding the septum modified as on schematic 4.3 with an
air inlet welded in the central part.

• A stand-alone electronic control which insures both power supply and communica-
tion between the different valves and pump and a computer on which a user-friendly
software was developed using Labview.

• A new function for the pressure inside the cavity to mimic the atmospheric pressure:
we use a differential pressure gauge to monitor the difference of pressure inside the
evaporation chamber and of the outside air; this function can be used in the field
to insure that the calibration is not affected by the evolution of the atmospheric
pressure.

This humidity generator has been used several times during my Ph-D: in laboratory
experiments to record spectrum of water vapour under continuous flow conditions and
to measure the equilibrium fractionation, and during two field campaigns at Dome C in
2014/15 and 2015/16. It has been tested during long term measurements of the humidity.
Unfortunately, at the noise level of the isotope analyser (Picarro L2130i), it was not clear
whether the humidity generator or the Picarro was responsible for the noise at a level
around 4 ppmv on the humidity level.
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4.1.2 Water isotope calibrated spectrum

Before realising new developments in infrared spectroscopy, we used an existing setup
consisting of a CRDS cavity of 1.4 m optimised to measure absorptions of traces of wa-
ter vapour similar to Kassi and Campargue [2012] injected by the humidity generator
described in the previous section. These experiments aimed to realise reference spectra
of water vapour at different isotopic compositions found in natural water. The purpose of
this experiment is: (1) to characterise the spectral area where most of commercial infrared
spectrometers are working and (2) to evaluate the performances that can be reached with
an optimised CRDS system. These spectra are among the first to be realised in a flux
of water vapour of known isotopic composition and therefore will provide information
about the relative peak intensities of the transitions present in the spectrum for a precise
referenced isotopic composition.

4.1.2.1 General set-up

These water spectra are realised for a steady flow of water vapour molecules. In order to
realise these, we used the setup described in Kassi and Campargue [2012]. The frame of
the CRDS is a 1.42 m long electro-polished stainless steel cell with an inner diameter of
11.5 mm equipped with two high reflectivity mirrors Layertec (R = 0.99998 at 1390 nm)
with an empty cell ring down time up to 494 µs at 7200 cm−1. The cavity is injected
with a fibred DFB laser NEL 1392 nm emitting around 20 mW intensity power and with
a 2 MHz linewidth. The DFB laser is powered with a custom made current source and
temperature controller. This custom electronic control allows to scan the frequency of
the laser by controlling the laser chip temperature from −10 to 60◦C with a resolution of
1 mK equivalent to sub−MHz potential resolution.

Even though the fibred laser is equipped with an optical isolator, a second optical iso-
lator is protecting the DFB diode from optical feedback as illustrated in Fig. 4.4. A splitter
sends a fraction of the light (10 %) to a wavemeter HighFinesse WSU7-IR: a commercial
Fizeau type wavemeter with a 5 MHz resolution, a 20 MHz accuracy over 10 hours and a
typical refresh rate of 20 Hz. The remaining light is sent to the CRDS cavity through an
acousto-optic switch with a response time of 20 ns and an isolation of 100 dB.

A fibre port (FL in Fig. 4.4) consisting in a FC/APC fibre adapter is used to focus
the light and to mode-match the laser to the TEM00 cavity mode with two steering mir-
rors (not shown in Fig. 4.4). The cavity relies on CW-CRDS as presented in section
3.2.4.3. The cavity temperature is monitored by a calibrated TSIC 501 sensor with an
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Figure 4.4: Schematic of the optical part of the setup used to realise the spectra of water vapour
under a steady flow: the light of a fibred laser diode (LD) is sent through an optical isolator
(OI) and split by a coupler. 10% of the light is sent to a wavemeter and 90% to an acousto-
optic modulator (AOM) and then to the CRDS cavity. SPI communications enable to control the
temperature and the current of the laser diode (modified from Kassi and Campargue [2012]).

accuracy of 0.1◦C and by an uncalibrated PT1000 probe on a Wheatstone bridge with a
precision of 10−4◦C. The cavity pressure is monitored by a pressure transducer Baratron
100 Torr and regulated by a Bronkhorst Pressure Controler P-702CV downstream of the
cavity. After the cavity, on the optical path, a lens focuses the transmitted light onto an
InGaAs avalanche photodiode (PD). The ring-downs are triggered once a computer con-
trolled threshold is reached on the photodiode signal by activating the acousto-optic driver
TTL switch. The transmission of the cavity signal on the photodiode is recorded by an
acquisition board (NI-PCIe6351, 16 bits resolution, 2 MHz acquisition rate) and fitted to
an exponential decay with a fast Newton method based C routine.

The flow was generated by the humidity generator described in the section 4.1.1 using
three different water standards: EPB, NEEM and UL5 (see Table 3.1 for their isotopic
compositions) for humidity ranging from 75 to 600 ppmv in an air matrix. A commer-
cial infrared spectrometer (Picarro L2140i) was installed in parallel of the CRDS cavity
previously described providing a validation of the stability of the vapour content (both hu-
midity and isotopic composition) for the duration of the spectrum. We recorded spectra of
the water mixture of isotopes for all three standards between 7199.33 and 7202.04 cm−1

for a large range of pressure (10 to 80 mbar) and water partial pressure (5 to 50 µbar).
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These spectra will ultimately be used to constrain the fit parameter of a few transitions
with known isotopic compositions with a multifit approach in order to be able to express
their dependency to the pressure and the partial pressure.

4.1.2.2 Results

in Fig. 4.5, we present one spectrum realised by the flow CRDS setup described in the
previous section, the three transitions measured by the Picarro analyser to infer water iso-
topic composition (see Fig. 3.12). The transition at 7199.96 cm−1 is attributed to H18

2 O,
the one at 7200.13 cm−1 to H16

2 O and the one at 7200.3 cm−1 to HDO. This spectrum
is realised for a water vapour of known isotopic composition (NEEM in Table 3.1) at a
pressure of 39.98 mbar, a temperature of 23.53◦C, with a humidity of 603 ppmv. The
spectrum is fitted using a Nelkin-Ghatak lineshape which takes into account the Doppler
Broadening and Dicke narrowing (hard collisions with a change of the velocity distri-
bution of the molecules associated with the increased collision rate). Several additional
transitions, all belonging to H16

2 O (626 in HITRAN nomenclature), have been included
to realise the spectrum due to their non-negligible impact on the baseline, they have been
modelled with the same type of profile. The intensities, Lorentzian broadening and Dicke
narrowing paremeters, were taken from the HITRAN database. The Doppler Broadening
was fixed to its theoretical values according to the gas temperature and the mass species.
For these spectra, we included transitions at 7199.32, 7199.37, 7199.87, 7200.05, 7200.33
and 7200.38 cm−1.

The complete spectrum covers roughly 2 cm−1 with a baseline RMS absorption noise
around 2 10−11 cm−1 per ring-down (by comparison, Picarro’s analyser need to average
100 datapoints to reach this level [Crosson, 2008]). Despite the very high performances of
the CRDS measurements, important residuals are noticeable in Fig. 4.5. These residuals
are due first to the lack of frequency stabilisation and second to the lineshape. During the
realisation of these spectra, the noise on the frequency of the laser diode was 4.7 MHz,
this jittering creates important residuals particularly on the wings of the transition because
variations of frequency are associated with important variations of absorption. We have
identified the source of the noise to the current card driving the laser and the bug has
been fixed since then. The second source of noise is the lack of speed-dependence in the
physical model that creates additional residuals. This is visible thanks to the typical of
the asymmetry of the residuals on the wings of the transitions. Nevertheless, we decided
not to use a lineshape including the speed-dependence because the frequency noise had
the same order of magnitude than these residuals and therefore prevented from a precise
and meaningful determination of the fit parameters.
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Figure 4.5: Spectrum of 24.12 µbar of water vapour in 39.98 mbar synthetic air at 23.53◦C at
7200 cm−1 by the flow CRDS setup fitted with a Nelkin-Ghatak line profile.

We realised almost 100 spectra at different conditions of pressure and water partial
pressure. The covered range for each type of water isotopic composition is presented
in Fig. 4.7. Using precise pressure measurements and 27 of these spectra, in Fig. 4.6,
we estimated the pressure dependency of the Lorentzian pressure broadening γ parameter
and of the Dicke narrowing β parameter. For the pressure broadening, we observe a linear
dependency of the Lorentzian parameter in agreement with the values from the literature
from HITRAN database for the transitions at 7200.3 cm−1 as presented in Table 4.1, but
not for the transition at 7199.96 and 7200.13 cm−1 where we found small differences.
Note that the transition at 7200.3 cm−1 is weaker than at 7199.96 and 7200.13 cm−1 and
therefore the signal to noise ratio is not as good, which might be the reason of the apparent
agreement between our results and the one from the HITRAN database.

For the Dicke narrowing parameter, we obtained values as presented in Table 4.2.
These curves are very powerful tool. Indeed, we can use the temperature to infer the
Doppler Broadening and the pressure to directly infer the beta and the Lorentzian broad-
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Figure 4.6: Determination of the fit parameters from 27 spectra realised at different conditions
of pressure of a) the pressure broadening Lorentzian parameter and b) the beta Dicke narrowing
parameter included in the Nelkin-Ghatak Humlicek profile for the three transitions at 7199.96,
7200.13 and 7200.3 cm−1

Table 4.1: Dependency of the Lorentzian parameter with the pressure for the transitions at
7199.96, 7200.13 and 7200.3 cm−1

Transition’s Estimated Slope from
wavelength slope the literature

(cm−1) (cm−1/atm) (cm−1/atm)

7199.96 8.38 10−2 8.29 10−2

7200.13 9.61 10−2 9.39 10−2

7200.30 5.54 10−2 5.54 10−2

ening parameters without fitting them from the spectra. Each parameter fitted requires
more datapoints per transition. Therefore, by providing robust parametrisation of the
temperature and pressure dependencies of these parameters, we can optimise the sampling
rate by reducing the number of points in the spectra. These parameters were successfully
used to fit all the 100 spectra, attesting their relevance no matter the temperature, humid-
ity or isotopic composition. To our knowledge, this is the first determination of the Dicke
narrowing beta parameters of those water transitions.
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Figure 4.7: Summary of the range of pressure and water vapour partial pressure covered by the set
of spectra presented here.

Table 4.2: Dependency of the beta parameter with the pressure for the transitions at 7199.96,
7200.13 and 7200.3 cm−1

Transition’s Estimated
wavelength slope

(cm−1) (cm−1/atm)

7199.96 2.09 10−2

7200.13 2.74 10−2

7200.30 1.44 10−2

Several sensitivity tests have been realised. In particular, we estimated the stability of
the isotopic composition in the cell. We observed that there was an important outgasing
of the cell itself which affects over several hours the isotopic composition. This created
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large uncertainties on the isotopic composition of the vapour in the cell and limited the
interpretation of the data for the absolute determination of the intensity of the transition
per molecule. The important outgasing was attributed to the low temperature of the cell
(around 20◦C). Still, this is the first experiment of spectroscopy of water vapour with
known isotopic composition. Indeed, previous realisations of spectra were realised by
vaporising a water sample at natural abundance (presumably local tap water) in uncon-
trolled temperature conditions. Thus, the isotopic composition of the vapour formed was
only weakly constrained because of (1) the variations of the equilibrium fractionation
coefficients with the temperature and (2) the unknown initial liquid composition. Here,
because we generate the moisture with a calibration device, the isotopic composition is
known within 0.1‰ for δ 18O for instance. We estimate that the outgasing of the cell adds
up a limited uncertainty of 3‰. These results show biases up to 40‰ on δ 18O on the
absolute intensities of the transition of the heavy isotopes compared to the light isotope.
These preliminary results justify to realise spectra of water vapour of precisely known
isotopic composition in order to indicate the intensity of the transition per molecule of the
SMOW . The precision of this value is crucial to obtain better interpretation of spectra in
the future.

4.1.3 Conclusion

We realised the first spectra of water vapour of known isotopic composition in the near-
infrared region. So far, we focused on the three transitions used by Picarro’s analysers
(such as the L2130i) and the HiFI. The spectra were realised at different conditions of
pressure and water vapour partial pressure. We estimated the Lorentzian pressure broad-
ening parameter and the Dicke narrowing parameter dependency with the pressure (see
Tables 4.1 and 4.2). In addition, we show that the absolute intensities of the transitions
of the different isotopes are not precisely referenced compared to the SMOW. For ap-
plication in infrared spectroscopy, these biases in absolute intensities lead to important
isotope-isotope correction to apply to the data.

The main limitation to obtain more information from these spectra is the laser fre-
quency noise. Because of this limitation, we decided not to extend the analysis to the
entire range of wavelength we covered and rather to fix the frequency issue to realise
new set of spectra. In order to improve the precision of the frequency, we used optical
feedback to stabilise the frequency of the laser.
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4.2 Optical feedback frequency stabilisation

To infer the frequency more precisely during the realisation of the spectra, we can either
measure with a precise wavemeter the frequency or stabilise the laser source, for instance
with optical feedback frequency stabilisation. The only absolute and precise method to
measure an optical frequency relies on the beatnote with a frequency comb (see sec-
tion 3.3). Considering the price of an optical frequency comb and the complexity of the
method, the frequency stabilisation by an external cavity was chosen.

The method of optical feedback frequency stabilisation we use here is based on the
work of Burkart et al. [2013] (for more details, also see Burkart [2015]). In their work,
Burkart et al. [2013] used Distributed-Feedback Diode laser (DFB) with a typical linewidth
of several MHz locked on a V-shape cavity to create sub− kHz very stable laser. DFB
lasers in the infrared region build on important efforts to create cheap and efficient lasers
for telecommunication purpose (more information about the DFB lasers we use here can
be found in annex C.2). Indeed, optical fibres have a minimal absorption in this region.
The initial purpose was to create a tunable laser source with a very fine linewidth for
metrological purposes. First, we will describe the work of Burkart et al. [2013] and
the first generation of V-shaped Cavity Optical-Feedback-stabilised laser source (VCOF),
then we will focus on the second generation of VCOF developed during my Ph-D and fi-
nally, the performances of the last generation of VCOF compared to an optical frequency
comb.

4.2.1 V-shaped Cavity Optical-Feedback-stabilised laser source

As in the case of OFCEAS (section 3.2.4.2), the VCOF relies on optical feedback from
a very stable Fabry-Perot resonator to lock and stabilise the frequency of a jittering and
relatively broadband laser, here a DFB laser. Nevertheless, in the case of a VCOF, the
point of the cavity is not to acquire a spectrum for a gas but only to stabilise the laser.
This stabilisation is thus several order of magnitude more precise than in the case of the
OFCEAS instruments (no impact of the gas on the finesse of the cavity). Ultrastable
cavity for metrology applications are usually built using linear cavities composed of two
ultrapolished mirrors are optically contacted on the two faces of a Ultra-Low Expansion
(ULE) glass spacer [Ludlow et al., 2007; Alnis et al., 2008]. In the case of this first VCOF,
because of the V-shape, the mirrors were not optically contacted on the cavity but hold
tightly by low-expansion mirror holders in super-INVAR as illustrated in Fig. 4.8. Indeed,
the optical contacting of the mirror is rather complicated to achieve with a V-shaped cav-
ity.
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Figure 4.8: Picture of the first highly-stable V-shaped cavity on a stainless steel flange [Burkart
et al., 2013]

This VCOF was therefore a hybrid between classical ultrastable cavities made only of
ULE glass and OFCEAS cavities made from stainless steel (see Table 4.3 for thermal ex-
pansion coefficients). The choice of super-invar to hold the mirrors was the best compro-
mise between a low thermal expansion, a high specific heat (in order to increase thermal
inertia) and the possibility of machining at the laboratory’s workshop. Machining a mirror
holder requires high standards of precision for the relative position of the mirrors: the two
mirrors on the top have a tilt of 2.50◦ which should be precisely respected in order to have
the cavity aligned by construction. The mirror holders are fixed to the cavity by springs
connected to the central stainless steel clamp ring. The whole cavity is mounted in a vac-
uum chamber made of stainless steel and closed by CF100 flanges to obtain high vacuum
(down to 2.10−7mbar). High vacuum is important to reduce the refractive index fluctua-
tions impact on frequency drift. In this version, in order to reduce temperature gradient
inside the chamber, aluminium sheets were installed around the cavity. The cavity is hold
by Macor glass ceramic legs, a material with low thermal conductivity (1.46W.m−1.K−1)
but good vacuum properties. Temperature was actively stabilised using a supercool sys-
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tem to a temperature of 23◦C with root mean square (RMS) temperature fluctuations of
250 µK and temperature difference between the two opposite ends of the chamber always
smaller than 8 mK.

Table 4.3: Physical properties of several materials used in the conception of the different genera-
tions of VCOF

ULE Zerodur Super Invar Aluminium Copper
Thermal conductivity (W.m−1.K−1) 1.31 1.46 10.5 237 401
Specific heat capacity (J.kg−1.K−1) 767 800 515 897 385
Density (kg.m−3) 2210 2530 8150 2700 8960
Thermal expansion (ppm.K−1) 0.03 0.007-0.1 0.6 23.1 16.5

Figure 4.9: Schematic of the first VCOF experimental setup, PZT stands for piezoelectric trans-
ducer, νn is the reference cavity resonance frequency and νRF is the radiofrequency driving the
Mach Zehnder Modulator [Burkart et al., 2013]

Typical time response of the cavity to a temperature step is approximately 12 hours
[Burkart et al., 2013]. This means that the flange, the aluminium sheet and the vac-
uum are filtering low frequency temperature variations. The total frequency drift associ-
ated with the temperature jump would correspond to a thermal expansion coefficient of
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6.0 10−7K−1, this corresponds to the thermal expansion of the super invar.

Figure 4.9 illustrates the experimental setup around the cavity. The DFB laser light is
separated in 2 arms by a Glan-Taylor Polariser (light blue cube). Part of the light (around
1 mW out of the 20 mW produced by the laser) is sent to the cavity. The phase of this part
of the light is actively adjusted by a piezo transducer controlling the distance between
the laser and the cavity for the light incoming the cavity to always be in phase with the
resonant light in the cavity. The rest of the light is sent through an optical isolator to a
fibred Mach-Zehnder modulator (MZM).

The Mach-Zender modulator is used here as an optical frequency shifter. This mod-
ulator can shift the frequency of the light from virtually DC to 20 GHz using sideband
modulation by a radiofrequence [Kawanishi et al., 2006]; detailed explanation can be
found in [Burkart, 2015]. In this application, this device enables tuning the frequency of
the laser without losing the coherence and altering the frequency stabilisation up to 6GHz

on both sides of the carrier.

In order to characterise the setup, Burkart et al. [2013] used another Fabry-Perot cav-
ity as an optical spectrum analyser. The secondary cavity was a linear cavity (two mirrors)
made of super-invar with a finesse of 5.5 105 and a free spectral range (FSR) of 4.8 GHz.
Using the MZM, they first scanned the etalon frequency response in transmission. Then,
using this response function, they could estimate the drift of the laser around the centre
of the resonance frequency of the etalon. This method provided with the power spectral
density of the frequency noise as presented in Fig. 4.10. Important low frequency contri-
bution from seismic noise affects the measurement. At higher frequency, two important
peaks are visible: at 1.1 kHz which is attributed to a mechanical resonance of the setup
and at 5.9 kHz due to the laser current modulation. Using the β -separation line technique

[Di Domenico et al., 2010], Burkart et al. [2013] evaluated the full width half maximum
(FWHM) of the laser ∆ν < 530Hz. This corresponds to a narrowing of at least 4 orders of
magnitude of the laser width. Unfortunately, at this point, they were not able to estimate a
more precise FWHM of the laser. The drift of this laser stabilised by this first generation
of VCOF is estimated at 20 Hz/s.

This VCOF has been built to produce highly coherent light at 1590 nm and has been
used for absorption line metrology of CO2 [Burkart et al., 2014; Burkart and Kassi, 2015].
At these wavelengths, water vapour is completely transparent and therefore this is not di-
rectly applicable to water vapour spectroscopy. During my Ph-D, I have assembled two
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Figure 4.10: Frequency noise PSD of the single-sideband light measured using a Supar Invar
etalon. [Burkart et al., 2013]

new generations of VCOF with the help of Johannes Burkart, trying to compensate for
the flaw of this first VCOF. In particular, this first VCOF was characterised by a thermal
expansion coefficient completely dominated by the super-invar whereas the holders cor-
respond to a relatively low contribution of the length of the cavity. In order to reduce the
high thermal expansion coefficient of this first VCOF, I have assembled a second proto-
type replacing the spring by threaded bars (see Fig. 4.11). Indeed, it was feared that the
1.1 kHz highlighted above was due to the spring resonance on the bottom mirror and that
this variations lead to the high thermal expansion.

The first attempt was realised with the bolts directly tightening the holders on the bars
as on the picture 4.11. It quickly appears that even without putting an important torque on
the bolts, we were compressing the ULE-glass spacers when changing the temperature,
losing all the interests of such a glass. We introduce belleville washers between the bolts
and the holders to reduce the stress on the spacer. These washers are not flat but have a
conic shape and can be deformed. They act here as a spring, holding tight the holders on
the spacer without creating stress on the glass. The second addition to this new VCOF
was the addition of a massive copper shield around the cavity. This setup had a typical
time response to a temperature step of approximately 18 hours, slightly better that the one
presented by Burkart et al. [2013]. Finally, the vacuum system was optimised by the in-
troduction of an ion pump to the flange: previously the system was only relying on active
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Figure 4.11: Picture of the second highly-stable V-shaped cavity on a stainless steel flange

turbo pumping which created vibration and perturbed the system, therefore pumping had
to be stopped during measurement, relying only on passive vacuum inside the cell. The
addition of a vibration-free ion pump enables to maintain condition on a long term basis.
If the drift of the cell remains similar (20 Hz/s), the FWHM has been determined to be
lower than 670 Hz, similar results than the previous one. The main improvements for this
cell are therefore not coming from replacing the springs by threaded bars but only by the
shields and pressure control which are more efficient and therefore increase the duration
during which the cavity is remaining stable for a measurement without any intervention.

If the performances of these cavities are perfectly fine for most of spectroscopy ap-
plications (a sub-kilohertz laser source can fully resolve absorption lines roughly 1 GHz
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large), the drift of the cavities hampers their possible use on the field where the environ-
mental conditions are not as stable as in the laboratory and therefore could quickly impact
the datasets.

4.2.2 Realisation of a second generation VCOF

This motivated for the development of a new generation of VCOF with improved drift
and stabilisation which could be used as a frequency reference. Following the classical
designs of ultrastable cavity, we realised a new cavity made solely of ULE glass on which
the mirrors would be fixed by optical contacting. This concept was challenging to realise
given the V-shape geometry of our cavity (to our knownledge, all the ultrastable cavities
are linear): indeed, installing the two top mirrors would require two arms in the spacer (V
shape) which is fairly complicated to machine in glass. Instead, it was decided to create
one big common aperture for both beams and mirrors and to only contact the mirrors on
a small surface (see Fig. 4.12 and 4.13). The top mirrors were finally only hold by half
the outer 1 mm ring of the 1 inch concave mirror which was chamfered and polished. Ma-
chining of the spacer and optical contacting were realised by Winlight Optics from the
selected design in Zerodur Extrem 7 glass, which has a typical thermal expansion coeffi-
cient of 7 10−9 K−1 (see Table 4.3).

The choice of materials (aside from the spacer) was realised to obtain the best vacuum
qualities of the cavity, we therefore reduced to a minimum the use of hydrophilic materi-
als and all metal parts have been electro-polished. The cavity was installed in the shield
and in the flange in a white room class 100 to limit the impact of dust. Two pumping
devices were used to put the cavity under vacuum. First, a turbo pump connected through
the KF25 flange (T) in Fig. 4.12 to bring the whole system down to 10−6 mbar. As we
were forced to glue the windows to the flanges, it was not possible to heat the flange to
more than 40◦C to enhance the water outgasing from the surface. After 2 weeks of sec-
ondary vacuum, the copper tube (C) was crushed to seal the cavity and the ion pump, a
GammaVacuum 3S-CV-1V-5K (I), was turned on. The ion pump is plugged on a uninter-
ruptible power supply (UPS) and has been maintaining the cavity under vacuum for the
last year at a level of 10−7 mbar.

The mirrors are provided by Layertec with a nominal reflectivity at 1390nm of 0.99997
and a transmittance of 0.00002. We characterised these mirrors in a 27 cm linear cavity.
At 1390 nm, the ring-down of the empty cavity went up to 39 µs which is equivalent to
a finesse of 140000 and a reflectivity of the mirrors of 0.999977 therefore slightly better
than the specifications.
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Figure 4.12: Computer assisted design of the second generation VCOF setup. Three high reflec-
tivity silicium mirrors (M) are optically contacted on a Zerodur Extrem 7 spacer (S). Even though
an important hole remains on the top of the cavity, a lateral vent (V) has been machined in front of
the ion pump CF16 flange (I) to efficiently empty the inside of the cavity. The cavity is supported
by 3 macor ceramic glass legs (L) inside a massive copper shield (H) itself supported by 3 macor
ceramic glass sockets. Opposite to the ion pump flange is a copper tube (C) connecting to the
turbo pump (T). The light is injected in the cavity by three wedged windows (W) glued on the
CF160 ultra-vacuum flanges (F).

One major concern before the cavity was put under vacuum was intrusion of dusts over
the mirrors which would hamper the performances of the cavity. Optical contacting was
realised in Winlight facilities in April 2015. We built an optical setup to control directly
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Figure 4.13: Picture of the second generation VCOF on the bottom part of the copper shield on a
flange CF160 in the white room of LIPHY

the finesse of the cavity (see Fig. 4.14) right after the optical contacting was made. This
enabled us to optimise the cleaning of the mirrors up to a ring-down of 18.6 µs of the
cavity filled with air. Under vacuum back in LIPHY, we obtained a ring-down of 24.1 µs

at 1392 nm, close to the optimal values at 27 µs according to our mirror characterisation
(lower than in the linear cavity used for the characterisation as the shape and the length
of the cavities were different). These ring-down times are rather small compared to the
other V-shaped cavities and ultra-stable cavities in general, which means that the finesse
is not very high (only 131000), but it will still be enough for optical feedback to narrow
the FWHM of the diode laser down to sub-kilohertz levels. It also enhances the feedback
efficiency as it is easier for the laser to lock in the cavity because more light comes back.
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Figure 4.14: Picture of the optical setup deployed at Winlight facilities to characterise the ring-
down of the cavity during optical contacting, indicative path of the laser beam in red.

4.2.3 Injection of the VCOF by a DFB laser

Once the light laser is injected in the VCOF, its frequency is narrowed and power accu-
mulates inside the cavity. Despite very high reflectivity mirrors, it is possible to measure
the transmission of the cavity with a InGaS photodiode. Even though the frequency of
the laser is locked on the resonance frequency of the cavity by optical feedback, it does
not naturally stay locked to the cavity. Indeed, the locking of the laser on the cavity (or of
the cavity on the laser light) requires that the light entering the cavity is in phase with the
light inside the cavity.

Figure 4.15 presents an example of an experimental transmission of the cavity obtain
during a scan of the laser. A small modulation is applied on the current of the laser (in
black) with a frequency of 1.4 kHz. It introduces a modulation of the emission frequency
of the laser which results in a modulation of the transmission of the cavity. The signal of
the transmission of the cavity is multiplied with the high passed filtered of the modulation
signal at 200 Hz. Once filtered by a low pass filter at 200 Hz as presented in Fig. 4.15 by
the dark blue curve, the results of this multiplication provides us with an excellent error
signal which equals 0 when cavity transmission is maximal. We built a home-made ana-
log PID to use this error signal to maintain the laser locked inside the cavity by adjusting
the phase of the light entering the cavity by modifying the distance between the laser and
the cavity. Practically, one of the steering mirror is mounted on a piezoelectric-actuator
which enable playing on the distance between the laser and the cavity. To summarise
what is presented in Fig. 4.15, the current of the DFB laser is scanned by the laser current
modulation (black). At first, the laser frequency is too far from the resonant frequency of
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Figure 4.15: Transmission of the cavity measured on the photodiode signal (red) when the DFB
laser is injected and error signal (light blue) created by the multiplication of the transmission signal
with the modulation of the current of the laser (black). Dark blue, low pass filtered error signal.

the cavity, no light can accumulate in the cavity and the laser is not locked. At the instant
0, we observe a rapid increase of the cavity transmission associated with building up of
the intra-cavity power. The laser is locked. We keep scanning the frequency of the laser
(slope of the laser current modulation) and pass by the maximum of the transmission, the
emission of the laser is centred with the resonance of the cavity. Then, shortly before
0.12 s, the frequency of the laser has been swept too far and the lock is not possible any-
more.

For the purpose of this figure, we artificially set high laser modulation amplitude and
decreased the frequency of the modulation 1.4kHz. In normal conditions, the modulation
frequency is 9 kHz, the multiplication and filtering are realised by an analog lock-in am-
plifier SRS SR510. The optical feedback of the cavity on the laser narrows its linewidth.
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The typical linewidth of DFB laser diode is around 2MHz, as we saw in section 4.1.2,
this is one of the limiting factor to realise very fine spectra of water vapour (see section
C.2 for more details on the characterisation of the DFB laser). We estimate the lineshape
of the resonance of the cavity using Eq. (3.23) with the reflectivity inferred from the
ring-down measurement at section 4.2.2 of 24 µs. The full width half maximum of the
resonance is 3.103 kHz which is already almost 1000 times smaller than the linewidth of
the laser diode.

4.2.4 Performances of the new VCOF

Even though this mono-bloc zerodur VCOF should be less sensitive to temperature changes
than the previous generation ULE/Invar hybrids, an important effort was realised to con-
trol the temperature conditions of the whole system. In addition to the full-coverage mas-
sive copper shield around the cavity inside the flange, an active temperature controlled
box was built around the cavity. This box of 50x50x82 cm is composed of two layers:
a passive external 1 cm thick plywood box around an actively heated 1 mm thick copper
box. Each face of the copper box is independently heated by heating bands from Omega
up to a power of 120W , controlled by 6 independent PID loops controlled by an Arduino
Mega 2560. The PID loop was developed in the joint frame of LITOS and COMBINISO
projects in collaboration with Tim Stoltmann, see section C.1 for more detail.

Measurement of the frequency of the laser stabilised by optical feedback on the V-
shaped cavity using a high-finesse wavemeter HighFinesse WSU7-IR immediately showed
the limit of the wavemeter itself. We observed important drift of the frequency completely
decorrelated with the temperature variations of the cavity. This drift was actually the drift
of the wavemeter, which was not temperature stabilised. In order to evaluate the fre-
quency variations of the newly designed VCOF, we had to use comb-assisted frequency
measurements. Indeed, the tooth of frequency combs can be used as an absolute frequency
reference against which compare the frequency of the VCOF (see section 3.3). In the next
section, we will explain how the measure of the frequency using a comb is realised, this
method is called an optical beatnote.

Following [Burkart et al., 2015], we make use of a commercial optical frequency comb
as an absolute frequency reference to measure the performances and the stability of the
V-shaped cavity.
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4.2.4.1 Beatnote of the frequency stabilised laser with a comb

We used a self-reference frequency comb Toptica FFS1550 to evaluate the frequency sta-
bility of the V-shape monobloc cavity. A DFB laser Eblana at 1.392 µm was injected in
the V-shaped cavity and locked in with a servo-loop controlling the phase of the incoming
light by actioning one of the injection mirrors through a piezoelectric actuator as illus-
trated in Fig. 4.16. Part of the light is coupled into an optical fibre. The wavelength is
roughly monitored with a wavemeter HighFinesse WSU7-IR with an accuracy of 20MHz

in order to evaluate which peak of the comb is actually beating.

Figure 4.16: Experimental setup to realise the beatnote between the new monobloc VCOF and an
optical frequency comb in order to evaluate the frequency drift and the absolute FSR of the VCOF

Using a fibre coupler, we combine the light of the optical frequency comb with the
light from the laser stabilised with the VCOF. The light is diffracted using a grating and a
fast photodiode is used to measure the so-called beatnote of the two combined pulsations.
The physical principle of the beatnote is based on the interference of the superposition of
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4.2. Optical feedback frequency stabilisation

two pulsations with different frequencies. Their respective electric fields are written:

~E1(~r, t) = ~E0 cos (~k1.~r−ω1t) (4.3)

~E2(~r, t) = ~E0 cos (~k2.~r−ω2t +φ) (4.4)

supposing their amplitude are the same (not necessarily the case but irrelevant for now).
The total electric field is the sum of the two electric fields of the two waves:

~E(~r, t) = ~E0

(
cos
[
ω1

( z
c
− t
)]

+ cos
[
ω2

( z
c
− t
)
+φ

])
(4.5)

This equation can be re-written into:

~E(~r, t) = 2~E0 cos
[

ω1 +ω2

2c
(z− ct)

]
︸ ︷︷ ︸

carrier

cos
[

ω1−ω2

2c
(z− ct)

]
︸ ︷︷ ︸

envelope

(4.6)

The frequencies of the two waves f1 =ω1/2π and f2 =ω2/2π and of the carrier fcarrier =

f1 + f2 are about 1014− 1015 Hz. Photoreceptors are not able to measure at rates above
20 GHz, therefore it is not possible to observe directly the evolution electric field with
a detector. On the other hand, the frequency of the envelope fenveloppe = f1− f2 can be
relatively small if the two waves have similar frequencies. With a measurement of the
frequency of the envelope and of a known locking reference, it is possible to estimate the
frequency of a laser. This is the beatnote measurement. By using a comb, it is always
possible to find a peak of the comb whose frequency is around the frequency we want to
characterise, but more importantly, the frequency of this peak is absolutely determined as
we saw in section 3.3. This creates an absolute reference of frequency spanning over a
large range of optical frequencies .

Here, when we combine the light from the VCOF to the appropriate peak of the op-
tical frequency comb, it is possible to observe the oscillations of the envelope on a fast
photodiode (red curve in Fig. 4.16). As previously stated, the carrier frequency around
1014 Hz is way too fast to be directly observed even with the fastest photodiodes to date.
The teeth of the combs are separated by 250 MHz. We use the high-finesse wavemeter to
evaluate roughly the frequency of VCOF and select the closest tooth of the comb. The
difference νn− k frep− f0 is therefore necessary below 125 MHz by construction, there-
fore measurable on a fast photodiode. This setup provides with an absolute determination
of the frequency of the resonance n of the VCOF.
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Two experiments were carried out to evaluate the performances of the cavity: first, we
estimated the drift of the cavity by measuring for a period of several days the evolution
of the frequency of the cavity compared to the comb, because of the extremely low level
of drift, even with an absolute frequency reference like a comb, this requires integration
over 20 minutes and an important number of points to obtain a robust statistic; second, we
realised a ramp on the temperature of the DFB laser and injected the successive resonance
of the V-shaped cavity, this enables us to evaluate with a very high precision the free
spectral range of the cavity, and therefore to determine its size precisely. This information
is very important to evaluate the long term drift of the cavity.

4.2.4.2 Estimation of the drift of the cavity

We realised the beat note of the VCOF with the comb for several days using the setup
described in the previous section. The temperature of the VCOF was stabilised at roughly
10mK using the wood box as described in C.1. We observe various drifts of the frequency
of the beat note. Among them, it is still not clear yet which ones can be attributed to the
VCOF frequency variations as presented in Fig. 4.17. Indeed, at the hertz level, we are
reaching the limits of the lock of the comb and therefore, the interpretation of the signal is
more complicated because not all variations of frequency can be attributed to the VCOF.
Here, we observe drifts lasting over several hours from 0.3 to 2.7 Hz.s−1. Around the
hour 60, the wood box was opened to optimise the injection of the laser in the V-shaped
cavity. This leads to the important variations of temperature and to a gap in the beatnote
measurement.

The temperature around the flange was monitored during the experiment. It is not
possible to monitor directly the temperature of the cavity because it would lead to the
insertion of materials not suited for high-vacuum applications. We estimate that the varia-
tions of temperature outside the flange should encompass the variations of temperature of
the cavity because of (1) the inertia of the 15 kilos stainless-steel flange, (2) the isolation
of the vacuum inside the flange, (3) the isolation from the massive copper shield around
the cavity and (4) the inertia of the glass cavity. We observe that the drift of the frequency
is completely decorrelated with the temperature variations of the flange. This limits the
characterisation of the behaviour of the cavity toward temperature. An additional experi-
ment consisting in a step of temperature should be realised soon in order to evaluate the
thermal expansion of the cavity. Nevertheless, this shows that the worst performances of
this new cavity are already 10 times better than the previous hybrid VCOF (which has a
drift of 20 Hz.s−1) and validates its relevance.

110



4.2. Optical feedback frequency stabilisation

25.004

25.002

25.000

24.998

24.996

T
em

perature of the flange (°C
)

967248240
Time (hours)

-0.2

-0.1

0.0

0.1

0.2

F
re

qu
en

cy
 (

M
H

z)

Figure 4.17: Variations of the frequency of the VCOF monitored by the beatnote with the comb
for 96 hours and monitoring of the temperature of the flange inside which lies the VCOF

Another way to estimate the drift of the cavity is to measure the evolution of its size
over several weeks/months.

4.2.4.3 Estimation of the size of the cavity

In order to evaluate the size of the cavity, we measured the free spectral range of the
V-shaped cavity. Because of the principle of resonant cavities (see section 3.2.4.1), the
laser can only get locked to the VCOF when the frequency is a multiple of c/4L. Because
of the extreme accuracy of the frequency measurement from the beatnote with the comb,
measuring a high number of FSR provides with an extremely precise and accurate esti-
mation of the length of the cavity as illustrated in Fig. 4.18.

This estimation has been realised by scanning of the laser diode from −10◦C to
+60◦C which is equivalent to scan from 7159.26611cm−1 to 7195.32520cm−1 with steps
around 0.0001◦C. This scans revealed 2658 modes of the VCOF associated with a total
relative frequency variation (sums of the 2658 FSR) of 1.08005 T Hz with a standard de-
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Figure 4.18: Relative frequency variations of 2568 modes of the monobloc VCOF, the DFB laser is
locked in the successive modes with a spacing of exactly 406337674.5Hz. The residuals observed
here corresponds to the noise of the optical frequency comb.

viation of 5.5 104 Hz. These important residuals (observed in Fig. 4.18) are associated
with the noise of the optical frequency comb. Here, a precision measurement of the FSR
has been realised by successively locking the laser to the 2658 modes. The slope of the
absolute frequency from the beatnote compared the mode number is exactly the FSR and
we obtain a value of 406337674.5±0.3 Hz with a perfect correlation (r2 virtually equals
1). Using the expression of the FSR for a V-shape cavity ∆νFSR =

c
4L

, we obtain a size

of V-shaped cavity of 0.1844478500 m with an extreme level of precision of 1.4 10−10m.
Considering the drift of the cavity is around 1.5 Hz.s−1, it means we know the size of this
cavity at the atomic level and the variations of this length are around 10−14m and should
not be observable. The measurement of the size of the cavity by Winlight Optics given at
0.1843±0.0002 m for the cavity is confirmed by this measurement.

Other determinations will be realised on regular occasions in order to estimate the
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4.2. Optical feedback frequency stabilisation

dilatation of the cavity with temperature and to evaluate the long term drift of the cavity.
Still, considering the drift of the cavity below 3 Hz.s−1, we need to wait several months
to be able to realise this measurement and obtain a change of the FSR above 1Hz. Com-
bining the FSR and the finesse of the cavity, it is possible to obtain the cavity mode-width
using Eq. (3.26). Here, we obtain cavity modes of 3101.8 Hz.

4.2.5 Overall comparison with other lasers

To estimate the performances of this source, we realise an Allan deviation of the fre-
quency stabilisation of (1) a stand-alone DFB laser, (2) an External-Cavity Diode Lasers
(ECDL) and (3) a DFB laser locked on the VCOF. The results of the Allan deviation are
presented in Fig. 4.19. This measurement provides with an estimate of the accuracy on
the frequency of the different lasers at different scales from a single point to several sec-
onds.
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Figure 4.19: Comparison of the Allan variance of the frequency of a stand alone DFB laser (blue
squares), an ECDL (green circles) and a DFB locked on the VCOF (red triangles) measured by
the beatnote with a tooth of the comb. Dark grey dashed line represents the erasing of white noise
over the line in N−1/2.
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First, at the sampling rate of the measurement (2 kHz), we observe the instantaneous
linewidth of the different lasers: slightly below 2 MHz for a stand-alone DFB laser and
around 200 kHz for an ECDL. In the case of the DFB locked on the VCOF, we actu-
ally observe the linewidth of the frequency comb. This is the first indication that the
measurement is limited by the comb and not by the VCOF. For the VCOF, independent
measurement shows a linewidth below 300 Hz, therefore several orders of magnitude be-
low the 100 kHz presented here.

We observe that the stand-alone DFB laser frequency is not improved when the signal
is averaged. This is due to important instantaneous drift of several MHz which leads the
Allan Variance to increase. For the ECDL, we observe that the frequency goes down
following a slope of N−1/2 up to almost 0.1 s. Here, we show that the VCOF/comb
stability goes beyond 1 s with a slope of roughly N−1/2. Once again, as we have not
reached the values of the drift of the VCOF as estimated in previous section, here, we are
limited by the frequency comb.

4.3 Design of a new OFFS-CRDS spectrometer

In this chapter, we have shown that the limits of infrared spectroscopy are not reached yet.
In the first section, we have detailed a CRDS cavity with a detection limit at 5.10−13 Hz−1

which can be used to realise precise isotopic composition measurements down to below
the ppm level. Still, we showed that the main limit of this setup is the frequency jittering
which creates an important amount of noise on the wings of the transitions and hamper
the determination of the concentration. In the second section, we have detailed a VCOF
cavity that can be used to stabilise the laser frequency down the Hz level with frequency
drift as low as 1.5 Hz.s−1. The combination of the two methods could unfortunately not
be achieved during the time frame of my Ph-D. Here, we detail the proof of concept of
this kind of spectrometer for trace detection applications as already described by Burkart
et al. [2014] for CO2 and illustrated in Fig. 4.20.

The new spectrometer is based on a VCOF to stabilise a laser. We showed that it is
possible to obtain a frequency reference with a precision at the Hz level which would
correspond to a precision on the wavenumbers of 10−11cm−1 (to be compared with the
width of the transitions around 0.1cm−1 shown in Fig. 4.21). Compared to the experiment
described in section 4.1.2, the linewidth and the frequency drift are known 6 orders of
magnitude better.
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4.3. Design of a new OFFS-CRDS spectrometer

Figure 4.20: Schematic of the experimental setup for optical feedback frequency stabilised cavity
ring down spectroscopy (OFFS-CRDS) including the stabilisation of a DFB laser by a VCOF,
tuning of the frequency by an MZM and injection of the light into a CRDS cavity to measure
samples [Burkart et al., 2014].

A second very important element is to be able to scan with fine spectral resolution.
In Fig. 4.22, we present the comparison of the spectra realised by a Picarro L2140i with
the spectra of a CRDS setup realised in LIPHY similar to the one we are realising for
the OFFS-CRDS spectrometer such as described in section 4.1.2.1. This highlights the
very small number of points on the spectra taken by commercial infrared spectrometers.
As discussed in section 3.2.5, a small number of points still permits to obtain a precise
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Figure 4.22: Spectra from a Picarro L2140i (red dots) measuring a water standard at 21150 ppmv
compared to a spectra realised with the setup described in section 4.1.2.1 with the same standard
at 500 ppmv (blue squares).

concentration of the elements associated with each transition provided the fit relies on a
relevant lineshape and fit parameters. Nevertheless, as shown in section 4.1.2.2, jitter in
the frequency of the laser can create important uncertainties on the surface of the tran-
sition (and therefore on the concentration), thus an important number of points on the
wings of the transition is recommended to precisely obtain the frequency. This requires a
very precise stabilisation of the frequency of the laser and the possibility to scan at finer
resolution. In the case of spectrometers as the Picarro’s, the laser frequencies scan the
successive resonance of the spectrometer, therefore the resolution is limited by the FSR
of the cavity.

Here, we want to be able to scan at finer resolution than the FSR of the CRDS cavity.
Using an Mach-Zehnder Modulator (MZM), we are able to scan over an area equivalent
to 40 GHz or 1.33 cm−1 as illustrated in Fig. 4.21 by the blue area. Because of the im-
pressive performances of the CRDS to a level around 10−13Hz−1, this can provide water
isotopic composition in H2

18O and HDO with a precision 2 to 3 orders of magnitude
better than present state-of-the-art. For the measurement of 17O− excess, the very small
transition at 7200.6 cm−1 does not have a signal to noise ratio high enough for a precise
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Figure 4.23: Isolated absorption line of 2 Pa of CO2 recorded with an adaptive resolution using a
MZM to control the frequency of the light and a VCOF to stabilise the laser frequency, residuals
with a Gaussian (red) and a Voigt profile (blue) [Burkart et al., 2014]

determination. To access a transition of H2
17O such as the one at 7201.8cm−1, this would

require to scan the laser itself and jump of several FSR of the VCOF cavity. Because of
the impressive stability of the VCOF, this technique can be realised without any loss of
stability and within a small amount of time.

The new spectrometer is able to significantly increase the spectral resolution on the
areas of interest in order to gain both a good precision and a good sampling rate as illus-
trated in Fig. 4.23. A single scan with an adaptive resolution gradually increases from
435 MHz on the baseline to 10 MHz at the top of the line [Burkart et al., 2014]. This
technique aims at providing fast and precise measurement of isotopic composition of wa-
ter vapour. Considering the sensibility of the CRDS and the precision of the frequency
measurement, from a spectroscopic point of view, the precision of this instrument for all
three isotopic compositions (δ 18O, δ 17O and δD) is at the level of 1 ppm. Provided the
gas is handled properly, we expect measurement of isotopic composition and second order
parameter efficiently using this system for humidity between 1 and 1500 ppmv.
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4.4 Synthesis

Infrared spectroscopy has been a ground breaking advance in the measurement of water
isotopic composition. It provides scientists with non-destructive, direct measurements of
the water vapour isotopic composition. Infrared spectrometers can thus be used to monitor
in the field directly the variations of water vapour isotopic composition and to measure
the isotopic composition of liquid or ice samples without any chemical transfer within
minutes. This technique is now widely spread in geosciences laboratory with large range
of applications. Mainly, it provides an time efficient measurement technique compared
to mass spectrometry for which time consuming chemical transfers are necessary. It also
opens the possibility for Continuous Flow Analysis (CFA): the measurement of isotopic
composition of the ice occurs continuously while the ice is being melted and thus, can
increase highly the spatial resolution of the ice core measurements [Gkinis et al., 2011].
Even further, an infrared spectrometer has been included inside a drill (Subglacior project)
and will be able to measure in-situ the ice isotopic composition [Grilli et al., 2014]. This
opens new possibility for the time efficiency of deep ice core drilling: a 3000 m deep ice
core such as the Dome C EPICA ice core can take up to 9 years to drill, with the Sub-
glacior probe, an entire profile of ice isotopic composition and methane content can be
realised within a summer season.

Yet, there are still limitations to what infrared spectrometers can achieve. On one
hand, the precision of the different commercial instruments available are still overall be-
low mass spectrometers, in particular for the measurements of d−excess and 17O−excess

[Landais et al., 2014; Steig et al., 2014]. On the other hand, most of the commercial in-
frared spectrometers are limited at low humidities in their power of measurements. These
two limitations are mainly due to (1) the spectroscopic lineshapes used to fit the spectrum
and (2) frequency jitter of the lasers. In the case of commercial instruments for which
high sampling rates limit the number of points in the spectra, these two effects are even
more problematic and requires to average out the results over several minutes to obtain
results at the same level of precision than mass spectrometry.

Here, we used high-performance CRDS experiment to evaluate the fit parameters of
the absorption lines used by most commercial infrared spectrometers. We were able to
evaluate the pressure dependency of the Lorentzian pressure broadening parameter and
of the Dicke narrowing parameter for different lines. Still, important noise level on the
wing of the absorption lines in the spectra highlighted how important the stabilisation of
the laser frequency is. This justified the development of an Optical Feedback Frequency
Stabilisation Cavity Ring Down Spectrometer (OFFS-CRDS) in which the issue of the
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frequency jitter is dealt with by an additional high-finesse cavity serving as a frequency
etalon. The comparison of this new laser with an optical frequency comb validated the
approach with a reduction of the linewidth and of the drift of the laser of at least 5 orders
of magnitude.
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Chapter 5

Experimental investigations on
fractionation processes

Here comes the sun, here comes the sun
(...) I feel that ice is slowly melting

Here comes the sun
THE BEATLES

As we saw in section 2.3.2, the interpretation of the isotopic signal from ice core is
limited by important discrepancies in the fractionation coefficients determination, either
equilibrium or kinetic fractionation. First, as described briefly in section 2.1.4, the im-
portant differences between the determinations of ice-vapour equilibrium fractionation
coefficients impose important uncertainty on fractionation linked to phase transition. We
therefore realised a laboratory experiment to measure once more the ice-vapour equilib-
rium fractionation coefficients in perspective in particular with Merlivat and Nief [1967],
Majoube [1971a] and Ellehøj et al. [2013] works. Preliminary results show that it is
important to realise new processes studies to better characterise the equilibrium fraction-
ation.

Second, we followed the suggestion of Jouzel and Merlivat [1984] to realise cloud
chamber experiments to investigate the impact of diffusion on kinetic fractionation. First,
we realised an open air preliminary experiment highlighting the influence of kinetic frac-
tionation on 17O− excess linked with less efficient transport by diffusion of heavy iso-
topes in a gradient of humidity. Then, we measured the profile of isotopic composition in
a water vapour gradient to identify the relevance of Jouzel and Merlivat [1984] approach.



Chapter 5. Experimental investigations on fractionation processes

5.1 Ice-vapour equilibrium fractionation coefficient

In this section, we focus on fractionation associated to the phase transition between ice
and vapour. Commonly, as we saw in section 2.1.4, fractionation between ice and vapour
is described using the framework of equilibrium fractionation which imply that the system
satisfies thermodynamic equilibrium (or at least, quasi-equilibrium) conditions. We will
first evaluate the impact of this hypothesis on experiments from Ellehøj et al. [2013] and
then see how can this impact their results. Then, we will describe the new setup being
realised to measure once more the isotopic fractionation during the phase transition.

5.1.1 Thermal equilibrium

As defined by Dansgaard [1964], equilibrium fractionation corresponds to thermody-
namic equilibrium conditions between two phases, therefore to a closed box in which the
net fluxes between both phases of every type of molecules are null. Quasi-thermodynamic
equilibrium situation corresponds to the case when the net flux of molecules condensing
or sublimating is very low compared to the number of molecules hitting the interface by
thermal agitation:

∆N << Ncol =
P∆tS√

2πmkBT
(5.1)

Merlivat and Nief [1967] claim their experiment corresponds to a quasi-thermodynamic
equilibrium situation. In the case of Ellehøj et al. [2013], we test if this condition is val-
idated at the lowest temperatures. We computed the number of molecules hitting the
ice/vapour interface in Ellehoj set-up using the formulation in Eq. (5.1) for a surface of
1 cm2 of ice. The number of molecules condensing is estimated by:

∆N =
f0Na(Pvap−Psat)

RT
(5.2)

where f0 = 150 sccm is the air flow going through the trap, Na is the Avogadro Number,
Pvap is the incoming vapour partial pressure, Psat is the saturated vapour pressure in the
trap, and R and T are the gas constant and the temperature.

Figure 5.1 presents the ratio of molecules condensing by molecules hitting the surface
compared to an arbitrary threshold of 1/10 (note that here the threshold and the surface
where ice is being formed are scaled together). In Ellehoj’s experiment, the incoming
fluxes have a constant humidity generated by a liquid water bath at a constant temper-
ature of 274.7 K. But when the equilibration chamber is cooled down to lower temper-
ature, more water vapour is transferred to ice, therefore the net flux of water molecules
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5.1. Ice-vapour equilibrium fractionation coefficient

from the vapour phase to the ice phase is increasing with decreasing temperature. On the
other hand, when the temperature decreases, the number of molecules of water hitting
the ice surface by thermal agitation also decreases. The ratio of the number of molecules
condensing by the number of water molecules hitting the ice/vapour interface is there-
fore increasing when temperature decreases, probably creating out of thermal equilibrium
conditions at low temperature, when results of Ellehøj et al. [2013] and Merlivat and Nief
[1967] differ the most (see Fig. 2.3 in section 2.1.4).

Figure 5.1: Ratio of the number of molecules condensing by number of molecules of water hitting
the ice surface due to thermal agitation in Ellehoj experiment

Additionally, experiments during which we condensate water vapour on a cold plate in
a cloud chamber (see section 5.2.1) do not support Ellehoj’s measurements. In these ex-
periments, we used the coefficients of Majoube/Merlivat to model the exchanges between
the ice and the vapour because they lead to a slightly better agreement than the ones of
Ellehoj. Another cloud chamber experiment realised by Moyer et al. [2013] seems to even
validate the coefficients of Majoube/Merlivat over Ellehoj for equilibrium fractionation.

If these studies bring doubt on the relevance of Ellehoj’s measurements to estimate
equilibrium fractionation, it does not discredit these data. Indeed, measurements in the
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field of water vapour and snow isotopic composition seem to agree better with coefficients
of Ellehøj et al. [2013] to estimate the link between the water vapour isotopic composition
and the snow surface isotopic composition [Casado et al., 2016b; Ritter et al., 2016]. In
the field, the net flux of water molecule at vapour/ice interface is difficult to estimate.
We believe that Ellehoj measurements could correspond to an isotopic fractionation at the
vapour/ice phase transition out of thermodynamic equilibrium. Equilibrium fractionation
requires a closed box model whose application is limited for field conditions where the
boundary layer is actively mixed by turbulence.

5.1.2 Perspectives

This motivates to realise new laboratory experiments measuring fractionation at the phase
transition taking into account both the temperature (as classically realised) but also the
net flux of water molecules condensing (or sublimating), and trying to possibly impose a
threshold in which thermodynamic equilibrium can be considered for isotopes. We use
custom-made glass traps, that we immerse in a bath of ethanol regulated in temperature
by a cryocooler, as a reactor for the phase transition to occur. We create a circulation of
moist air through the trap, with the humidity generator described in section 4.1.1 set to
generate a humidity level above the saturated vapour pressure. We use a Picarro L2140i
to measure the vapour isotopic composition out of the trap.

Preliminary results show fractionation during condensation in the traps but we have
not been able to realise quantitative analysis yet due to important drifts of the infrared
spectrometer on one hand and too small ice deposition on the other hand.

This experiment could not be finished within the framework of my PhD but is being
carried on. These measurements will be compared with an open box model using vapour
and snow isotopic composition at Dome C (see section 6.2). We believe this is a very
important experiment in particular because we will be able to evaluate the impact of the
amount of water being condensed and therefore evaluate our hypothesis about Ellehøj
et al. [2013] results.

5.2 Diffusion lead kinetic fractionation

In this section we focus on the impact of molecular diffusion on kinetic fractionation.
Molecular diffusion coefficients of water vapour different isotopes have been poorly stud-
ied and for now, only two studies estimate theses coefficients from laboratory experi-
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ments: Merlivat [1978b] and Cappa et al. [2003]. As discussed in section 2.2.4, the
results from these two studies are contradictory. This creates important uncertainties in
estimations of fractionation during the snow formation in remote Polar Regions. Indeed,
in remote Polar Regions, the density of condensation nuclei is very low therefore the
impact of diffusion is important during the formation of snow. This low density of con-
densation nuclei is also associated with supersaturated conditions on the East Antarctic
Plateau. Jouzel and Merlivat [1984] estimates the impact of kinetic fractionation during
the formation of snow in supersaturated conditions as we saw in section 2.2.6. Their
equation is still nowadays used in all climatic models including water isotopes [Ciais and
Jouzel, 1994; Kavanaugh and Cuffey, 2003; Schmidt et al., 2005; Risi et al., 2010; Werner
et al., 2011]. Supersaturation is a parameter very weakly constrained in Antarctica, there-
fore in Jouzel and Merlivat [1984] formulation, uncertainty on supersaturation is subject
to important issues. It is generally tuned by using data from a transect [Petit et al., 1982;
Winkler et al., 2012].

This motivated to revisit laboratory experiments to estimate the impact of diffusion
in supersaturated conditions over isotopic fractionation. First, we describe the different
experimental setups, then we challenge the Jouzel and Merlivat [1984] formulation with
new quantitative estimations.

5.2.1 Experimental setup

A first preliminary experiment was realised in 2010 by Alexandre Cauquoin. As in the
experiment of Jouzel and Merlivat [1984], a cold plate was cooled to different tempera-
tures in the laboratory ambient air. The results highlighted important impact of kinetic
fractionation on 17O− excess, similarly to d− excess, as presented in next section. Still,
the ambient conditions were not well constrained preventing from quantitative interpreta-
tion, therefore a similar experiment in a the cloud chamber CESAME at the Laboratoire
Interuniversitaire des Systemes Atmospheriques (LISA) at Creteil near Paris was realised.

The cloud chamber is 5.2 m3 and equipped with flanges from all sides. Temperature,
pressure, humidity and concentration in aerosols are monitored by built-in instruments.
The entire chamber can be cooled down to −5◦C and used at a large range of pressure. A
clone of the chamber enable rapid adiabatic decompressions. If most of the applications
are the atmospheric chemistry of aerosols, we used this chamber to realise experiments
in controlled conditions. A copper was inserted at the bottom of the cloud chamber from
a KF 40 flange as illustrated in Fig. 5.3. A circulation of ethanol inside the plate con-
trols the temperature of the plate with a response time inferior to 1 minute. The isotopic

125



Chapter 5. Experimental investigations on fractionation processes

Figure 5.2: Picture of the cloud chamber CESAM

Figure 5.3: Picture inside the cloud chamber CESAM: two copper inlets pump air at different
heights of the cold plate here covered with frost. No other sign of condensation is visible on the
rest of the cloud chamber.
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composition of the vapour is measured by two infrared spectrometers: a Picarro L2120i
(CRDS instrument) and the SARA H2Oi HiFI from LIPHY (OFCEAS instrument). Two
copper inlets extract the air from right above the cold plate as illustrated in Fig. 5.3.

Figure 5.4: Picture of the volumetric flask used to generated the water vapour of known isotopic
composition.

In order to fill the cloud chamber with water vapour of known isotopic composition,
we used a volumetric flask of 1 L which was heated up to 120◦C. An additional inlet was
added to the flask in order to be able to flush it as illustrated in Fig.5.4. The protocol to
fill the chamber was : (1) filling the chamber to 900 mbar with a nitrogen/oxygen mix
with roughly 20% of oxygen, (2) filling the volumetric flask with the amount of water
necessary to reach the wished humidity in the volume of the chamber, (3) heating up the
flask isolated from the chamber to 120◦C filled with 1 atm of pure nitrogen, (4) once all
the water is evaporated, opening the valve between the cloud chamber and the flask and
transferring the vapour under a flux of hot dry nitrogen, (5) filling the cloud chamber up to
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1atm with nitrogen to reach a mix of 20/80 % of oxygen/nitrogen with a known humidity
and isotopic composition of water vapour.

Each experiment lasted between 1 and 2 hours during which the cold plate relative
position to the copper inlets was changed in order to realise a profile of isotopic com-
position. Each step lasted 15 minutes once a permanent regime was reached. Once the
experiment was finished, the cold plate was extracted from the cloud chamber and the ice
deposed on top of it gathered to be analysed a posteriori in the laboratory by both infrared
and mass spectrometry.

5.2.2 Article 1: Experimental determination and theoretical frame-
work of kinetic fractionation at the water vapour-ice interface
at low temperature

In this section, we describe the results from the two experiments revisiting the Jouzel and
Merlivat [1984] experiments. First, using an open air experiment, we compare the dif-
ferent impact of kinetic fractionation on both d− excess and 17O− excess. Because we
observe similar difference of diffusivities between H17

2 O and H18
2 O than between HDO

and H18
2 O, it seems logical that kinetic fractionation directly affects 17O− excess as it

does for d− excess. Nevertheless it was never directly observed. The results of the open
air experiment already differ from the one obtained by Jouzel and Merlivat [1984].

In order to infer a more quantitative point of view, a similar experiment has been
realised in a cloud chamber as previously described. Here, solving the diffusion equation
for the different isotopes in cylindrical coordinates, we manage to reproduce the profiles
of isotopic composition with different hypothesis on the flux of heavy isotopes at the
ice/air interface. We highlight important flaws in the Jouzel and Merlivat model which
can be easily solved by the diffusion equation. More importantly, this model is completely
independent of supersaturation which is a complicated parameter to evaluate.
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Abstract

Water isotopes are commonly used for climate reconstruction from ice cores. The different heavy isotopes of water such as
H2

18O, H2
17O or HDO give information about local temperature but also temperature and humidity of water vapour sources.

Quantification of these parameters relies on the good knowledge of equilibrium and kinetic isotopic fractionation at each step of
the water cycle. One of the strongest limitations when interpreting water isotopes in remote Antarctic ice cores is the formulation
of the isotopic fractionation at solid condensation (vapour to ice). This classical formulation also implies a good knowledge of
coefficients for equilibrium fractionation andwater vapour diffusion in air as well as supersaturation in clouds. The uncertainties
associated with these different parameters make the formulation of isotopic fractionation at solid condensation only empirical.

Here, we make use (1) of recent development in the measurements of water isotopes in the water vapour through infra-red
spectroscopy and (2) of the possibility to measure accurately 17O-excess of water to test the classical formulation and param-
eterization of isotopic fractionation at solid condensation. A first experiment involving very strong supersaturation evidences
a strong kinetic effect on 17O-excess at solid condensation, similar to d-excess. It also shows the limits of the classical formu-
lation of water isotopic fractionation during solid condensation estimation at very low temperature. A second experiment per-
formed in a cloud chamber under controlled conditions uses cavity ring down spectrometers (CRDS) to determine the spatial
variability of water vapour isotopic composition due to diffusion (kinetic effect) during solid condensation. The spatial var-
iability of water vapour isotopic composition can be relatively well reproduced by the resolution of diffusion toward a cold
plate. This preliminary study opens new perspectives to revisit the classical formulation of water isotopic fractionation during
solid condensation at very low temperature.
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1. INTRODUCTION

As the cold trap of the global water cycle, Antarctica is a
unique archive of Earth’s past climate and water cycle. On
long timescales (up to 800,000 years), climate changes are
retrieved from the water isotopic records of deep ice cores
(Petit et al., 1999; EPICA, 2004; Jouzel et al., 2007). Indeed,
water isotopic records (d18O or dD) are linked to condensa-
tion temperature through the Rayleigh distillation effect
(the cooler the air, the less water it can hold).

Still, important limitations prevent us from obtaining a
quantitative temperature record from d18O and dD profiles
in polar ice cores. In Greenland, variations in the moisture
source (Charles et al., 1994), seasonality of the precipitation
(Fawcett et al., 1997; Krinner et al., 1997), and the link
between condensation and surface temperature (existence
of an inversion layer) (Loewe, 1936) can bias by a factor
of two the temperature reconstructions from ice cores. In
Antarctica, the same effects are at play (Sime et al., 2009;
Laepple et al., 2011) but other factors should be considered
too because the mean annual temperature is lower than in
Greenland (less than �55 �C today on the East Antarctic
plateau). Indeed, reconstructing polar temperature from
isotopic composition of the snow is generally based on
models describing the physics of isotope fractionation
(either simple isotopic models describing water fraction-
ation following Rayleigh distillation (Ciais and Jouzel,
1994), or Atmospheric General Circulation Models –
AGCM – including the description of the water isotopes
(Hoffmann et al., 1998; Schmidt et al., 2005; Risi et al.,
2010; Werner et al., 2011)). These models, developed over
the last decades, rely on the knowledge of the fractionation
coefficients associated with each phase transition and on
simple assumptions concerning cloud microphysics. Indeed,
all mass dependent and symmetry dependent physical pro-
cesses involve fractionation: the different isotopes do not
have the same saturated vapour pressure or diffusivity in
air. At low temperature, both vapour–solid equilibrium
fractionation and the different diffusivities of water isotopes
in air should be considered (Jouzel and Merlivat, 1984). A
recent effort was made to determine the temperature depen-
dence of the fractionation coefficients associated with dD
and d18O (Ellehøj, 2011). The results turned out to be sig-
nificantly different from the previous determination
(Majoube, 1971a,b). Moreover, the evolution of diffusivities
of water isotopes in air has never been studied at tempera-
tures lower than 10 �C (Merlivat, 1978; Cappa et al., 2003;
Luz et al., 2009). Using diffusivity values measured at 20 �
C, as is commonly done, limits the quantitative interpreta-
tion of water isotopes in remote Polar Regions. In the clas-
sical formulation of the fractionation during ice/snow
condensation, the ratio between kinetic (diffusivity) and
equilibrium fractionation is only controlled by the degree
of supersaturation of water vapour over ice. From available
observations, it is expected that supersaturation increases
with decreasing temperature and thus has a very strong
influence at the very low temperatures encountered in cen-
tral Antarctica. Even if recent studies have shown high
supersaturation levels near the ground level, in the lower
atmospheric boundary layer (Style and Worster, 2009;

Genthon et al., 2013; Gallet et al., 2014) and in the higher
atmosphere (Gettelman et al., 2006), the supersaturation
in Antarctica remains poorly documented, and is thus very
crudely tuned in isotopic models (Ciais and Jouzel, 1994).
This further limits the models’ ability to provide a quantita-
tive link between water isotopic ratios and temperature. To
progress on these issues, controlled laboratory experiments
are needed to test the values of the fractionation coeffi-
cients, as well as the models describing water fractionation
at snow formation.

In addition to the primary temperature information
provided by dD and d18O, the combination of dD and
d18O in the form of the deuterium excess (d-excess =
dD � 8 � d18O (Dansgaard, 1964)) has been used over the
last decades and provides information related to relative
humidity during evaporation over the ocean (Gat, 1996)
and re-evaporation in the convective zones (Risi et al.,
2008) It also has an important added value in polar regions
since d-excess has been shown (1) to help tuning the super-
saturation spatial evolution (Ciais and Jouzel, 1994; Werner
et al., 2011) and (2) to provide information on past changes
of moisture source temperature. Vimeux et al. (1999) have
indeed first used this tracer in the remote East Antarctica
Vostok ice core over a timespan from present to 150 kilo-
years before present (kyrs BP) to evidence a change in the
moisture source temperature associated with Earth’s obliq-
uity. Unfortunately, this second order parameter of isotopic
composition is not yet used widely in Polar Regions. One
reason for the relatively little use that has been made of this
tracer is probably that d-excess in polar ice cores is not as
simple to interpret as previously thought since it also varies
with relative humidity of the source, local temperature in
polar regions (Jouzel et al., 2007), and the precise trajectory
of the water masses (Bonne et al., 2015).

Recently, the increased precision provided by new ana-
lytical approaches has permitted the measurements of a
new complementary tracer of the hydrological cycle: 17O-
excess, defined as 17O-excess = ln(d17O + 1) � 0.528 � ln
(d18O + 1) (Barkan and Luz, 2005; Landais et al., 2008).
Like d-excess, 17O-excess shows variations in the hydrolog-
ical cycle because the different fractionation processes, equi-
librium and kinetic (diffusion), modify d18O and d17O in
different ways. At low latitudes, 17O-excess, like d-excess,
is controlled by relative humidity that imposes the relative
importance of equilibrium to kinetic fractionation during
evaporation and re-evaporation. Consequently, both 17O-
excess and d-excess increase when relative humidity
decreases. At higher latitudes, 17O-excess and d-excess show
different evolutions. d-excess is affected by local tempera-
ture, because the relationship between the fractionation
coefficients associated with dD and d18O is temperature
dependent (Luz et al., 2009; Majoube, 1971a,b). 17O-
excess is much less affected by changes in local temperature
and keeps the signature of relative humidity acquired at low
latitudes (this is so because the relationship between the
fractionation coefficients associated with d17O and d18O is
independent of temperature). Still, this does not seem to
hold true in very isolated regions of East Antarctica where
17O-excess is also influenced by condensation temperature
through the increasing influence of kinetic fractionation
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when temperature decreases (Landais et al., 2012; Winkler
et al., 2012). In these regions, characterized by a d18O of
precipitation less than -50‰, the quantitative interpretation
of 17O-excess is hampered by the same limitations expressed
above: insufficient constraints of the fractionation coeffi-
cients at very low temperature, strong influence of supersat-
uration, and thus an inaccurate description of cloud
microphysics. Still, this very strong sensitivity of 17O-
excess to supersaturation could also be seen as an advan-
tage for interpretation of polar ice core isotopic records
because it provides a stringent test for relative quantifica-
tion of equilibrium and kinetic effects during solid conden-
sation (Schoenemann et al., 2013).

Here, we combine d18O, d-excess, and 17O-excess in differ-
ent laboratory experiments to test the current formulation of
isotopic fractionation during solid condensation. With the
exception of the recent experiment of Ellehøj et al. (2013),
focusing only on equilibrium solid condensation andwithout
17O-excess measurements, no laboratory experiments have
been reported since the early work of Merlivat, Majoube
and Jouzel in the 70’s to better constrain our knowledge of
water isotopic fractionation at solid condensation, even
though this is essential for a quantitative interpretation of
polar ice core records of water isotopes.Moreover, the recent
development of (1) laser spectroscopy for continuous mea-
surements of water isotopes in water vapour and (2) high res-
olution measurements of the new tracer 17O-excess makes it
timely to revisit the conventional formulation of isotopic
fractionation of water at solid condensation. Also, a preli-
minary analysis reported by Moyer et al. (2013) of cloud
chamber experiments determined fractionation factors for
HDO and H2

18O down to 190 K. Interestingly, the results
agree with an extrapolation of the 70’s data to lower temper-
atures and appear to disagreewith the experiments byEllehoj
and colleagues. However, a detailed analysis has so far not
been published.

In a first section, we will present the by now classical for-
mulation of Jouzel and Merlivat for water isotopic fraction-
ation at solid condensation (Jouzel and Merlivat, 1984). We
repeat the laboratory experiments of this reference study,
including 17O-excess measurements, in addition to the dD
and d18O measurements of the bulk water vapour and con-
densate. In a second section, we present a more sophisticated
experimental study run in a cloud chamber with measure-
ments of the water isotopic gradient in the water vapour
near the condensation point. Such an improved experimen-
tal set-up also requires a more advanced model description
of isotopic diffusion and condensation. These two studies
permit to pinpoint the limits of the current model for water
isotopic fractionation at solid condensation that so far has
been used to interpret polar ice core records.

2. REVISITING JOUZEL AND MERLIVAT (1984)

EXPERIMENT

2.1. The first evidence of kinetic fractionation at solid

condensation of water vapour

In the first paper evidencing kinetic fractionation during
snow formation, Jouzel and Merlivat analysed the isotopic

composition of condensed ice on a cold plate (�20 �C)
(Jouzel and Merlivat, 1984). The water vapour isotopic
composition of the environment (20 �C) was also analysed.
Water vapour saturation over ice was unnaturally high,
because of the strong temperature gradient between the
environment and the cold plate. Unfortunately, the degree
of supersaturation could not be precisely inferred because
neither the relative humidity of the surrounding air, nor
the temperature at the surface was measured. Still, the com-
bined measurements of d18O and dD both in the water
vapour and in condensed ice on the cold plate showed a
strong departure from the relation expected for isotopic
fractionation at equilibrium conditions (Majoube, 1971a,
b; Merlivat and Nief, 1967), which directly shed light on
the existence of the kinetic effect during snow formation.
To quantify this effect, a simple modelling approach was
developed through the expression of the fluxes of the three
molecules (H2

16O, H2
18O and HD16O) toward a plane sur-

face in a molecular regime.
In this approach, Jouzel and Merlivat made the hypoth-

esis of steady state diffusion in one dimension. Conse-
quently, the first hypothesis is that the condensation plate
is of infinite dimension so that the molar flux, F, toward
the cold plate can be expressed through Fick’s first law:

F ¼ �D
@/
@z

ð1Þ

where D is the diffusion coefficient (m2 s�1), / the molar
concentration of water in air (in mol m�3) and z (m) the dis-
tance from the centre of the condensation plate. In the
hypothesis of steady state, we can express the isotopic ratio
of the condensate, Rs, as the ratio of the fluxes Fi/F, Fi and
F being the fluxes associated with heavy (H2

17O, H2
18O and

HD16O) and light (H2
16O) molecules, respectively. Hence,

we can express Rs as:

Rs ¼ Dið/iðzÞ � /iðz0ÞÞ
Dð/ðzÞ � /ðz0ÞÞ ð2Þ

where Di is the diffusion coefficient of water in air for heavy
molecules, /i and / are the concentration of heavy and
light water molecules in air, and z0 indicates the surface
of the ice–air boundary. Because we work at constant atmo-
spheric pressure, the water concentration in air can be
expressed through the partial pressures, ev

i and ev respec-
tively for heavy and light molecules. We finally get:

Rs ¼ DiðeivðzÞ � eivðz0ÞÞ
DðevðzÞ � evðz0ÞÞ ð3Þ

At the ice boundary (z0), it is assumed that there is equi-
librium between condensate and water vapour in the
boundary layer (Fig. 1) and the partial pressure is equal
to the saturation vapour pressure over ice, ei. The satura-
tion ratio with respect to ice, Si is defined as Si = ev/ei.
Using the above definitions, Jouzel and Merlivat end up
with:

1þ ds ¼ ak � as � ð1þ dvÞ ð4Þ
where

ak ¼ Si

asD=DiðSi � 1Þ þ 1
ð5Þ
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with ds and dv, the isotopic composition (dD, d17O or d18O)
of the solid water and of the water vapour, respectively. Si

is the supersaturation of water over the cold point. as and ak
are the fractionation coefficients associated with solid con-
densation for respectively the equilibrium and the kinetic
effects. D is the diffusion coefficient of H2

16O and Di the dif-
fusion coefficient of the heavy molecule (H2

18O, H2
17O, or

HD16O). The ratios Di=D for HD16O and H2
18O were first

determined by Merlivat (1978) through two independent
experiments performed at a constant temperature of
+20 �C. Later, different results were found for these ratios

Di=D (Cappa et al., 2003; Luz et al., 2009) placing an addi-
tional large uncertainty on the use of Eqs. (4) and (5).

In order to check the applicability of such a simple for-
mulation and extend it to the new parameter 17O-excess, we
have first repeated the historic experiment, now also vary-
ing the temperature of the cold plate and measuring d17O
in addition to dD and d18O. Contrary to the case of

DHDO=D, DH17
2
O=D has been shown to be constant in labora-

tory experiments over a temperature range varying between
10 and 40 �C (Luz et al., 2009). If this result is also true for
temperatures below 0 �C, the 17O-excess provides an addi-
tional way to check the validity of the classical result of
Jouzel and Merlivat.

2.2. A simple experimental set-up and its results

Our first experiment was carried out in the spring of
2010. The cold condensation plate was a 15 cm diameter
copper disc attached to a 15 cm long cold finger immersed
in ethanol or liquid nitrogen depending on the desired tem-
perature of the condensing copper disc in the range from
�2 �C to �42 �C. The humidity level in the room was
almost constant over the series of experiments (11,000
± 1000 ppm). Water vapour was continuously pumped dur-
ing 4 h through a Pyrex cold trap immersed in ethanol at
�70 �C at a flow rate of 2 L min�1. The 4-h timespan cor-
responds to the time required to collect a sufficient amount
of water for measurement of dD, d18O and d17O. During
these 4 h, the temperature of the cold plate was maintained
constant and a sample of the condensing ice was collected
every hour in order to check for any temporal evolution
of its isotopic composition. Each 4-h condensation

experiment was repeated once for each temperature level
of the cold plate. By changing the duration of the second
experiment, we were able to track the impact of the copper
interaction with the water. No significant difference
between the first and the second experiment condensate
composition could be noticed even when the amount of
condensate was doubled. The surface interaction between
copper and ice is thus negligible in our experiments.

dD measurements of both the cryotrapped water vapour
in the room and the ice collected on the cold plate were per-
formed using an Isoprime isotope ratio mass spectrometer
(IRMS). The method uses reduction of water in a chro-
mium furnace followed by elemental analysis. The final pre-
cision of the dD measurements is 0.1‰. The same samples
were analysed for d17O and d18O using a fluorination line to
convert water to oxygen through chemical reaction with
CoF3. The oxygen is then measured on a dual-inlet IRMS
and referenced to a pure commercial oxygen standard and
the results are calibrated on the V-SMOW-SLAP scale.
The details of the method are given in (Barkan and Luz,
2005; Landais et al., 2010; Schoenemann et al., 2013).
The final precision on d17O and d18O is 0.1‰. Because mea-
surements of d17O and d18O are performed on the same
samples through the same fluorination line, experimental
errors are not independent for d17O and d18O (Landais
et al., 2006). This leads to a final precision on the 17O-
excess measurements of 7 ppm in this study. For d-excess,
the final uncertainty is 1.6‰.

For the different experiments, we observe that the isoto-
pic composition of the water vapour is rather constant,
while d18O and dD of the solid condensate decrease with
temperature. In parallel, d-excess and 17O-excess generally
increase with decreasing temperature (Fig. 2). Still, these
tendencies are not constant and we notice a saturation effect
below �26 �C: d18O of ice shows only a 0.85‰ decrease
between the �26 �C and the �42 �C experiments; between
�17 �C and �42 �C d-excess and 17O-excess remain practi-
cally constant within the experimental error bars.

2.3. d-excess and 17O-excess variations evidence a strong

kinetic effect

As already noted by Jouzel and Merlivat (1984), large d-
excess values are not unexpected for ice condensing at tem-

Fig. 1. Schematic representation of the solid condensation experiment and the associated concept of fractionation. At the solid vapour
interface, it is classically assumed that equilibrium fractionation is occurring inside a boundary layer. More remotely, kinetic fractionation is
at play.
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perature below 0 �C in a room at 21 �C. This is the result of
strong kinetic effects driven by the large temperature differ-
ence between the environment and the cold plate. As we will
explain below, the same is true for 17O-excess.

In a first schematic approach (Fig. 3), the dD (d17O) vs
d18O fractionation process at solid condensation can be
summarised as follows. Equilibrium fractionation always
results in the condensing phase being more enriched in hea-
vier isotopes than the vapour phase. To first order and
neglecting the temperature effect for dD vs d18O, the ratio
of fractionation coefficients at equilibrium is about 8 when
comparing dD and d18O and 0.529 when comparing ln
(d17O + 1) and ln(d18O + 1). As a consequence, equilibrium
fractionation during ice condensation drives the water iso-
topic composition very close to the slope of the meteoric
water line (also equal to about 8 in the dD vs d18O plot
and equal to 0.528 in a ln(d17O + 1) vs ln(d18O + 1) plot).
d-excess and 17O-excess are thus only very slightly modified
during this process.

This schematic evolution of the isotope ratios in the case
of equilibrium fractionation is, however, no longer true at
very low temperature (below – 10 �C). In this case, the ratio

of equilibrium fractionation coefficients for dD vs d18O,

ðaDeq � 1Þ=ða18eq � 1Þ increases to values higher than 10

(instead of 8 at +10 �C calculated from the experiment of
(Majoube, 1971a)). As a result, the condensation at equilib-
rium does not follow the meteoric water line in the dD vs
d18O plot (empty circles in Fig. 3). The resulting equilib-
rium condensate lies above the meteoric water line leading
to the existence of a d-excess (Fig 3a.) (7‰ at �20 �C and
25‰ at �40 �C). Because temperature has no effect on the
relationship between equilibrium fractionation coefficients
for d17O and d18O (Van Hook, 1968), no 17O-excess is asso-
ciated with equilibrium fractionation even at very low tem-
perature (Fig. 3b.).

Kinetic fractionation results from the fact that the light-
est molecules diffuse faster toward the cold plate than the
heavier molecules. Different experiments were performed

Fig. 2. (a) d-Excess vs d18O repartition for water vapour and solid
ice for the different condensation experiments driven at different
temperatures. (b) 17O-excess vs d18O repartition for water vapour
and solid ice for the different condensation experiments driven at
different temperatures.

Fig. 3. (a) Theoretical evolutions of dD and d18O during solid
condensation at different temperatures, the full circle is the vapour
composition, the empty circles is the equilibrium condensate and
the cross is the condensate. (b) Theoretical evolutions of d17O and
d18O during solid condensation at different temperatures, the full
circle is the vapour composition, the empty circles is the equilib-
rium condensate and the cross is the condensate.
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to determine the ratio of the diffusion coefficients and asso-
ciated kinetic fractionation for water isotopes in air. Even if
a large discrepancy (by a factor of 2) is observed between
the different estimates, the ratios of kinetic fractionation
coefficients are always lower than the associated ratios for
equilibrium fractionation coefficients. To first order, the
ratio of kinetic fractionation factors varies between 0.5
and 1 for the pair dD/d18O (Merlivat, 1978; Cappa et al.,
2003; Luz et al., 2009) and is estimated at 0.518 for the pair
d17O/d18O (Barkan and Luz, 2007). Kinetic fractionation
will thus move the isotopic composition of condensing ice
toward lower d18O along a line of lower slope than the slope
of the meteoric water line as illustrated on Fig. 3. The
kinetic fractionation is thus responsible for a positive d-
excess and 17O-excess in condensing ice: the stronger the
kinetic effect, the higher the d-excess or 17O-excess. One
simple way to increase the part of the kinetic fractionation
in our experiment was to decrease the temperature of the
cold plate and we indeed observe that down to �26 �C,
we have a significant increase of d-excess and 17O-excess
with decreasing temperature.

2.4. Comparison between experimental data and the classical

formulation of isotopic fractionation at solid condensation

In order to compare our data with the simple model pro-
posed by Merlivat and Jouzel, we need an estimation of the
supersaturation Si and hence of the water vapour pressure
ev and the saturation pressure over ice ei at the cold surface.
The measured molar mixing ratio of 11,000ppmv of water
vapour in the room air, together with the total pressure
yields a value of 11 hPa for ev. The formulation given by
Wagner and Pruß (2002) relates the saturation vapour pres-
sure over ice, ei, to the temperature of the cold plate. A sim-
ple formula adapted to our case (maximum error of 0.052%
for T between �70 �C and 0 �C) is:

ei ¼ A� 10
mT

TþTn ð6Þ
ei is given in hPa, T is the temperature of the cold plate in �
C. A, m and Tn are constant equal to 6.114742 hPa,
9.778707, and 273.1466 �C, respectively. It is now possible
to use Eqs. (4) and (5) to link the isotopic composition of
the water vapour to the isotopic composition of the ice con-
densate and compare this calculation to our experimental
results. For this comparison (Fig. 4), we have chosen to
use the measured isotopic composition of the ice dS and
to compare measured and modelled dV (see Eq. (4)).

Because different experimental values of Di=D have been
reported in the literature, we have calculated Eq. (5) with
the different estimates given in Table 1. Luz et al. give the

evolution of Di=D over a temperature range of 10–40 �C
(Luz et al., 2009). As we are interested in lower tempera-
tures, we only took the values corresponding to T = 10 �C
and T = 20 �C (the temperature at which Di=D were esti-
mated in (Merlivat, 1978; Cappa et al., 2003)). Note that

the values of Di=D for d17O are not given in Table 1 since
only one estimate was made experimentally linking

DH17
2
O=D and DH18

2
O=D, such that: ln(D=DH17

2
O)/ln

(D=DH18
2
O) = 0.5185 ± 0.0003 (Barkan and Luz, 2007; Luz

et al., 2009).

Fig. 4 shows that we indeed worked in very extreme con-
ditions with supersaturation reaching an extreme value of
112 at �42 �C, while values encountered in clouds of Polar
Regions are of the order of 1.2. The lowest value for Si in
our experiments is 2 for a temperature of �2 �C on the cold
plate. As for the isotopic values, we observe a generally
good agreement between modelled and measured vapour
dD, even for very low temperatures. On the contrary, for
d18O and hence for d-excess and 17O-excess, there is a clear
difference between modelled and measured values, whatever
the values chosen for D/Di. The difference between experi-
ment and modelled values for d18O and d-excess increases
for decreasing condensation temperature, hence increasing
supersaturation and kinetic fractionation. Interestingly,
whereas the Cappa values for D/Di give the best agreement
in the case of dD, they show the worst agreement for d18O.

The dD values are relatively less sensitive to kinetic frac-
tionation than d18O. Indeed, as explained above, vapour-ice
equilibrium fractionation is about 8 times larger for dD

Fig. 4. Comparison of measured (black crosses) and modelled
isotopic composition of the water vapour. Modelled isotopic
composition of the water vapour is calculated using values of the
isotopic composition of the condensate and Eqs. (4) and (5) using
different values for D/Di (Merlivat, 1978 – blue crosses; Cappa
et al., 2003 – green crosses; pink crosses – Luz et al., 2009 for 10 �C;
red crosses – Luz et al., 2009 for 20 �C). (For interpretation of the
references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 1
Different estimates of D/Di.

D=DHDO D=DH18
2 O

Merlivat (1978) 1.025 1.028
Cappa et al. (2003) 1.016 1.032
Luz et al. (2009) (T = 20 �C) 1.023 1.028
Luz et al. (2009) (T = 10 �C) 1.029 1.027
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than for d18O (aDeq � 1 � 8� ða18eq � 1Þ), while fractionation

associated with diffusion is of the same order of magnitude

for dD and d18O (D=DD � 1 � D=D18 � 1). Taking into
account the temperature influence on aeq (Majoube,
1971a; Ellehøj et al., 2013) it can be calculated that for
dD, diffusive fractionation is less than the quarter of the
magnitude of equilibrium fractionation, even at �42 �C;
while the absolute value of this ratio is always larger than
1 in the case of d18O. As a consequence, we believe that
the fact that the Jouzel and Merlivat approach does not
account properly for the isotopic fractionation during solid
condensation at high supersaturation is due to an error in
properly incorporating the kinetic fractionation in Eq. (5).
This is obvious when looking at the d18O, d-excess and
17O-excess values strongly impacted by kinetic fraction-
ation, especially at high supersaturation levels.

Several reasons can lead to a wrong estimate of the
kinetic influence on the calculated fractionation factor
through Eq. (5). First, the formulation of Eq. (5) may be
correct but the input values of D/Di may not. In fact, we
never get a good agreement between measured and calcu-
lated d18O of the water vapour using any of the estimated
D/Di values reported in the literature (Merlivat, 1978;
Cappa et al., 2003; Luz et al., 2009) (Fig. 4). Second, the
formulation of Eq. (5) should be revised. Indeed, there
are several hypotheses that are questionable in the
approach that led to Eq. (5). On the one hand, it is assumed
that vapour pressure eV does not show any spatial varia-
tions, given that eV has been measured far away from the
cold plate to estimate water flux at the cold plate surface.
On the other hand, the assumption was made of an infinite
plate, which is also not the case in reality. In order to check
these assumptions, we have developed a more sophisticated
experimental set-up with spatial measurements of the isoto-
pic composition of the water vapour that we discuss in the
following sections.

3. CLOUD CHAMBER EXPERIMENTS AND

DIFFUSION FRACTIONATION

3.1. Experimental set up

In order to perform more controlled experiments, we
have used the national cloud simulation chamber facility
CESAM (Wang et al., 2011) at the Laboratoire Inter-uni-
versitaire des Sciences Atmosphériques (LISA). This is a
stainless steel chamber of 4.2 m3, equipped with a vacuum
pump facility enabling to reach a vacuum of the order of
10�4 mbar. The temperature of the chamber was controlled
and set to 20 �C. For our experiments, it was first filled with
an atmosphere composed with 80% N2 and 20% O2 at
atmospheric pressure. We then introduced water vapour
by connecting to the chamber a heated glass flask contain-
ing an amount of water that yielded the required level of
humidity after complete evaporation. The water is heated
to its boiling point, while a flux of dry nitrogen gas carries
the water vapour into the chamber.

Condensation of water at low temperature occurs in the
lower part of the chamber where we installed a cylindrical
copper cold trap with a diameter of 3.9 cm. The trap

temperature is controlled by internal circulation of cold eth-
anol at a controlled temperature. The surface temperature
of the cold trap does not vary by more than 0.1 �C during
a condensation experiment. The copper trap is kept at room
temperature during the filling of the chamber and introduc-
tion of water vapour. Only after homogenization is
achieved within the chamber, is the circulation of cold eth-
anol switched on, in order to reach a stable temperature of
the copper surface in less than 2 min.

A near-infrared CRDS (cavity ring down spectroscopy)
spectrometer (Picarro L2120) was used to analyse the isoto-
pic composition of the water vapour (dD, d18O) in the cloud
chamber. A copper extraction tubewas connected to the ana-
lyser enabling extraction of vapour from the centre of the
cloud chamber. The inside surface of the tube was coated
with a hydrophobicmaterial and the tubewas heated in order
to prevent any condensation point, which could produce
fractionation. Calibration of the CRDS instrument was per-
formed 3 times a day at different humidity levels (from 2000
to 14,000 ppm) by 2 different homemade standards cali-
brated with respect to VSMOW and SLAP by repeated
IRMS analyses: ODM (d18O = �7.6‰, dD = �49.0‰)
and ROSS (d18O = �18.71‰, dD = �144.7‰). These cali-
brations were used to correct the raw d18O and dD of the
water vapour measured by the CRDS instrument.

Humidity inside the cloud chamber was measured far
from the cold point by a hygrometer Vaisala HMP234. In
addition, the CRDS instrument continuously measured
the concentration of water vapour. The calibration of the
humidity measurements has been performed in the labora-
tory by a dew point generator, yielding a correction less
than 0.5%. The extremity of the copper extraction tube,
leading the air from the chamber to the spectrometer, was
equipped with a thermocouple continuously measuring
the temperature at the different levels above the cold trap.
Except when the tube was in contact with the cold trap,
the temperature given by the thermocouple was always
20 �C. Because of the thermal conduction of the tube, the
measured temperature may not reflect the local tempera-
ture. Therefore, we are not confident that the temperature
profile is really constant (Section 3.4.).

The isotopic composition of the water vapour is mea-
sured at varying vertical distances from the centre of the
copper cold plate. Once the copper trap was cooled down,
we noticed that the isotopic composition of the water
vapour changed only for vertical distances less than 5 cm
from the cold copper surface. We have thus measured the
isotopic composition of the water vapour at different
heights above the cold surface, decreasing the distance
between the copper extraction tube and the surface of the
cold plate in the sequence: 10 cm, 5 cm, 4 cm, 3 cm, 1 cm,
0.6 cm and 0.3 cm. Measurements at each step lasted 10–
15 min with a stable concentration and isotopic composi-
tion of the water vapour, which enabled us to average the
measurements and to increase the precision. Once the
experiment finished (1h30 – 2 h), the condensed ice was
removed from the cold trap and stored, to be later analysed
by both IRMS and optical spectrometry (see Section 2.2).
Even for low supersaturation, several grams of ice were
produced on the cold trap surface. With this important
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Table 2
Experimental results obtained in the controlled cloud chamber (Section 3, 2013) and in the simple room experiment (Section 2, 2011, grey highlights at the bottom of this table). A comparison is
systematically displayed between the isotopic composition of the condensate and the predicted value as calculated from the vapour isotopic composition using Jouzel and Merlivat’s theory with aeq
from Majoube (Majoube, 1971a) and Di=D from Merlivat (Merlivat, 1978). Note that when no measurements were available, 17O-excess of the vapour is estimated at �20 ppm.
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amount, all the effects linked to the interaction between the
first layer of ice and the copper can be neglected.

3.2. Results and comparison with classical fractionation

formulation

Ten experiments were run with different experimental
conditions (temperature of the cold point, relative humidity
far from the cold trap) as summarised in Table 2. We have

explored relative humidity levels between 17% and 60% and
temperatures of the cold point between �5 and �21 �C.
Our aim was to explore supersaturation levels not as
extreme as those presented in the non-controlled experi-
ment of Section 2. Indeed, in the cloud chamber experi-
ments, we could reach supersaturation level as low as 1.07
for the experiment of the afternoon of April 18.

For similar supersaturation levels, the isotopic composi-
tions of the solid condensate are the same for both the

Fig. 5. (a) Comparison between the experiments of the afternoon of 25/04 with high supersaturation (light colours) and of the morning of 19/
04 with low supersaturation (dark colours) of the evolution of d18O (blue) and dD (red): full circles are measured isotopic compositions of the
vapour, empty squares are measured isotopic compositions of the ice, empty circles are calculated isotopic compositions of water vapour in
isotopic equilibrium with the ice using the fractionation factors at the temperature of the cold plate (Majoube, 1971a), dotted lines are
predictions for the isotopic composition of the vapour over the cold trap using Jouzel and Merlivat theory (J&M 84) and the isotopic
composition of the vapour at the boundary layer predicted with the equilibrium fractionation (empty circles) (b) Comparison of the humidity
levels between the experiments of the afternoon of 25/04 (full line, dark purple) and the one of the morning of 19/04 (dotted line, light purple)
and the volume mixing ratios corresponding to the saturated vapour pressure at the cold trap temperature for both experiments (circles). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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experiment ran in non-controlled conditions and the exper-
iment ran in the cloud chamber. We also observe a similar
increase in d-excess and 17O-excess of the solid condensate
by increasing supersaturation (the effect of temperature on
d-excess is a second order one). As already discussed in the
previous section, the model of Jouzel and Merlivat gener-
ally overestimates the change in d-excess and 17O-excess
between the water vapour and the solid condensate for
supersaturation levels higher than 1.8. As noted above,
one possible explanation for this discrepancy is that the
spatial variations of the isotopic composition of water
vapour were not taken into account. In the Jouzel and
Merlivat approach and because of technical limitations,
the flux toward the cold plate was indeed calculated with
the humidity level and isotopic composition of the water
vapour far away from the cold plate, but the isotopic com-
position of the water vapour and humidity strongly varies
toward the cold plate, which may complicate the simple
equation proposed by Jouzel and Merlivat. This is the rea-
son why we now concentrate on the water vapour profile
over the cold plate. We have selected two experiments to
look at these profiles: first, an experiment with a rather
low supersaturation Si ¼ 1:8 (19/04 morning) and one with
a rather high supersaturation Si ¼ 4:3 (25/04 afternoon).
Cold trap temperatures are similar in both experiments,
only the humidity levels differ.

Fig. 5 shows the evolution of isotopic composition over
the cold trap during the two experiments. Globally, the
water mixing ratio, d18O, and dD decrease at distances less
than 1 cm above the cold plate. Such a result is not unex-
pected. First, the decrease of water content toward the cold
plate is due to the water trapping on this surface. Second,
the diffusion toward the cold plate is associated with frac-
tionation. Because lighter molecules diffuse more rapidly
than heavier ones, the isotopic composition of the conden-
sate is very depleted in heavy isotopes. Moreover it is
expected that the condensate equilibrates with the water
vapour in the boundary layer (Merlivat and Nief, 1967;
Majoube, 1971a). The d18O and dD values observed at
0.3 cm above the cold plate should thus be influenced by
both diffusion and equilibrium fractionation.

With the isotopic profiles in the water vapour, it is now
possible to test the validity of the Jouzel and Merlivat for-
mulation (Jouzel and Merlivat, 1984) at short spatial scale.
For this, we have calculated the supersaturation profiles for
our experiments from the measurements of the water mix-
ing ratio and the temperature of the cold point. Then, as
in Section 2, we have deduced the modelled isotopic compo-
sition of the water vapour at each level of our profile using
the measured isotopic composition of the condensate, the
value of supersaturation at each level and Eqs. (4) and
(5). Fig. 5 shows that measured and modelled isotopic com-
positions of the water vapour already differ significantly at
1 cm above the cold point, i.e. for supersaturation levels
higher than 2. For low supersaturation, the Jouzel and
Merlivat model reproduces the profile of dD of the vapour,
but fails for d18O as already observed in Section 2. For high
supersaturation, both isotopic composition profiles are not
reproduced by the model. The difficulty to obtain a good
match between data and model even at short distances

above the cold point is a strong limitation for quantitative
interpretation of water isotopic fractionation at solid
condensation.

We thus propose below an improved mathematical
approach compared to the one of Jouzel and Merlivat to
describe the spatial evolution of d18O and dD in the water
vapour linked to equilibrium and diffusion fractionation
processes. Our aim is thus to obtain a simple expression
that will enable to fit the whole profile of d18O and dD in
the water vapour based on physical processes. Such a model
should enable us to test whether the values of diffusivity
used for the water isotopes are valid for solid condensation
at low temperature.

3.3. Formulation of fractionation associated with diffusion for

a cloud chamber experiment

The cloud chamber experiment has been designed so
that the main process controlling the spatial repartition of
water isotopes in water vapour is diffusion toward the cold
trap. In order to check this assumption, we estimated the
stability toward convection through calculation of the

Brunt Väisälä frequency and we obtained N 2 ¼ g
h

dh
dz � 0;

13s�2 > 0, where g is the local acceleration of the gravity
and h the potential temperature. This indicates that the
atmosphere is stable with respect to convective processes.

The second prerequisite for our problem is to be station-
ary. This assumption is not true for long experiments
(longer than one day) because of continuous trapping of
water vapour on the cold trap and extraction of water
vapour for the optical analyser. Still the amount of water
trapped during the 90 min condensation cycle is negligible
compared to the large volume of the cloud chamber (in
other words, the pressure difference between the beginning
of one experiment and the end is less than 0.5%). We have
also experimentally checked that the concentration profile
was established very quickly at the beginning of the exper-
iment to remain unchanged throughout the experiment.
Real-time measurements of the isotopic composition of
the water vapour have shown a rapid response to modifica-
tions of the temperature or height of the cold point. The
transient periods are of the order of magnitude or smaller
than the time response of the CRDS spectrometer (around
1 min). These transients are followed by a stationary water
vapour isotopic composition with no further trend. Fur-
thermore, at the spatial scale (centimetre) of our experi-
ment, the characteristic time scale is small enough to
consider only stationary effects of the diffusion.

From the above considerations, the problem we need to
solve is the equation of diffusion with a flux through a disc
at steady state. This system is similar to the one proposed
by Jouzel and Merlivat and involves the same physical pro-
cesses. Still, the assumption of an infinite plate for conden-
sation is removed as it was leading to an unrealistic water
vapour profile with a linear increase of water vapour con-
centration from the cold trap. The equation of diffusion
in steady state in cylindrical coordinates with axial symme-
try is given by:

Devðr; zÞ ¼ 0; z > 0 ð7Þ
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The boundary conditions for the cloud chamber experi-
ments are:

1. The concentration far away from the cold trap:
lim
z!1

evðr; zÞ ¼ ev1

2. The vertical gradient of water isotopes at the cold plate
surface is:

@ev
@z

����
z¼0þ

¼ f 0

where ev is the partial pressure of H2
16O in the air. The

parameter f 0 is related to the flux density through Fick’s

law: ~j ¼ �D ~rðevÞ, hence j0 ¼ �Df0. The total water flux

going toward the cold trap is defined by U ¼ R R
D jz where

jz is the vertical component of the flux density ~j and D
the domain of the z ¼ 0 plane that the cold trap spans.

We then obtain U ¼ �pR2Df0 with R the radius of the cold
trap and D the diffusion coefficient of water in air.

A similar set of equations can be written for the heavy
isotopes:

Deivðr; zÞ ¼ 0; z > 0
@eiv
@z jz¼0þ ¼ f i

0

lim
z!1

eivðr; zÞ ¼ eiv1

8>><
>>:

Without any temperature gradient (assumption dis-
cussed in Section 3.4), these sets of equations lead to the fol-
lowing solution along the central axis (r = 0):

ev ¼ f 0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
� zÞ þ ev1 ð8Þ

eiv ¼ f i
0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
� zÞ þ eiv1 ð9Þ

The flux of the isotope i, f i
0 can be related to f 0, the flux

of the main isotope H2
16O from the isotopic composition diB

at the ice boundary layer, such that:

f i
0 ¼

diB
1000

þ 1

� �
Ri
SMOW

D
Di f 0 ð10Þ

Here, we first focus on the high supersaturation experi-
ment during which the diffusion role should prevail. In a
first step, we focus on the water vapour concentration pro-
file ev and evaluate how Eq. (8) is able to reproduce our
experimental data. We forced ev1 to be equal to the value
of ev at 10 cm from the cold trap. The experimental water
partial pressure of the light isotopes in the vapour phase
ev is directly calculated from the relative humidity. Two
parameters remain:

1. f 0 which mainly influences the shape of the profile close
to the cold point. We thus adjust its value to fit the
experimental value at the lowest level (0.3 cm).

2. The radius R of the cold trap. If we use the true value,
the inflection of the concentration profile is too high
(more than 3 cm from the cold trap). In order to repro-
duce an inflection point at 1–2 cm above the cold trap
(Fig. 5b), we need to reduce the radius to 0.8 cm (deeper
discussion in Section 3.4.).

In a second step, we focus on the water isotopic compo-
sition profiles eiv. We adjust eiv1 to the value of eiv at 10 cm

from the cold trap. f i
0 is calculated from Eq. (10) using

diB ¼ diice. When we take Di=D to be equal to the value given

by Merlivat, 1978 (D18=D ¼ 0:973 and DD=D ¼ 0:976 full
blue line on Fig. 6) a satisfactory agreement is observed
between modelled and measured water vapour isotopic

Fig. 6. Isotopic composition for (a) dD and (b) d18O for the high
supersaturation experiment: black dots are the isotopic composi-
tion of the vapour during the high supersaturation experiment,
dark blue line is the isotopic composition profile calculated from
Eqs. (8) and (9) using the ice isotopic composition as a boundary
layer and Di=D from Merlivat, 1978, light blue dotted line is the
isotopic composition profile using the ice composition as a
boundary layer and adjusting Di=D, dark blue dashed line
represents the isotopic composition profile adjusting the boundary
layer isotopic composition and using Di=D from Merlivat, 1978,
and red dashed line gives the isotopic composition using the
equilibrium fractionation to predict the boundary layer isotopic
composition and adjusting Di=D; the blue dot is the isotopic
composition of the ice and the red one is the isotopic composition
of the vapour calculated with the Majoube equilibrium fraction-
ation coefficient (Majoube, 1971a). (For interpretation of the
references to colour in this figure legend, the reader is referred to
the web version of this article.)
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composition even though some discrepancies remain in par-
ticular in the case of dD as the isotopic composition does
not go low enough. In order to fit the experimental data,
we need to relax the constrain on one of the parameters

involved in the expression of f i
0. The value of D

i=D has been
adjusted by root mean square minimization of the modelled
diX to best reproduce the measured diX (Fig. 6). Small

adjustments of Di=D (see Table 3) to best fit the data pro-
vide a clear improvement in the agreement between theoret-
ical profiles and experimental measurements (light blue
dotted line on Fig. 6).

Our approach for solving Eq. (10) does not take into
account any fractionation at the vapour/ice interface, there-
fore the flux of molecule brought by diffusion is directly
transferred to the ice. In the case of a permanent regime,
the thermodynamic equilibrium would prevent a complete
transfer of molecule and involve a fractionation at the
vapour/ice interface. This suggests another hypothesis for

f i
0 adjustment: rather than adjusting Di=D, we keep the val-

ues of Di=D from Merlivat, 1978 and adjust diB (dark blue
dashed line on Fig. 6). In the case of the best fit for d18O,
the isotopic composition of the boundary layer is compati-
ble with the equilibrium fractionation with the ice

(d18B ¼ �22:0‰ instead of d18B ¼ �29:9‰ in the case of equi-
librium fractionation between the boundary layer and the

condensate) whereas it is not for dD (dDB ¼ �11:2‰ instead

of d18B ¼ �154:1‰ in the case of equilibrium fractionation).

Finally, imposing 1þ diB ¼ aieqð1þ diiceÞ at the boundary
layer give an acceptable solution taking into accounts equi-
librium fractionation and the diffusion is adjusted within a
reasonable range (see Table 3). These values are in the
range given in the literature, as shown in Fig. 6 by the blue
dotted line (see Table 3). Still the fact that we do not end up

with a unique Di=D value for d18O and dD for the experi-
ments performed at high and low supersaturation implies
that the proposed model is not perfect. Using alternative
values for aieq such as the one of Ellehoj et al., 2013, does

not improve the global shape of the modelled profiles: the
calculated values for d18O and dD are only slightly modified
by less than 2‰ and 5‰ respectively.

To conclude, the diffusion model that we developed here

is mainly forced by f i
0, the flux at the vapour-ice interface.

We have tested different assumptions for the f i
0 value and

for each case, Di=D remains within the range of values

expected in the literature. In the case of HDO, DD=D is low-
est when no fractionation at the interface is implemented

(diB ¼ diice). The values are even lower in the case of low

supersaturation. This is not unexpected and shows that
fractionation occurs at solid condensation. The depletion
of HDO in the vapour associated with equilibrium fraction-
ation at solid condensation is much more important than
for H2

18O. Without taking into account fractionation at

the vapour–ice interface for the estimate of f i
0 it is compen-

sated by adjusting Di=D to fit the water vapour isotopic
profiles. This adjustment is therefore stronger for HDO/
H2O. The fact that this phenomenon is accentuated when
the supersaturation is lower, hence when equilibrium frac-
tionation dominates shows that it is important to consider
equilibrium fractionation at the vapour–ice interface, even
with strong supersaturation.

3.4. Limitations

Because of the strong supersaturation, our system is
mainly controlled by diffusion toward the cold trap. Our
approach is based on the classical formulation of diffusion
toward a disc. Still some effects have been neglected in this
approach: mainly the influence of temperature and the
geometry of the cold trap (a cylinder, not a disc). To take
into account the influence of temperature, we cannot solve
the diffusion equation analytically and therefore we present
a numerical resolution in the following.

Because of the lack of reliable temperature profile, we
model the temperature diffusion over the cold trap. We
solve the heat equation (DT ¼ 0) in 3D and integrate this
profile in the thermodiffusion equation (Landau and
Lifshitz, 1959). Taking into account the dependence of
the diffusion coefficient of water on temperature (Hall and
Pruppacher, 1976):

D ¼ 0:211
T
T 0

� �1:94 P 0

P

� �
ð11Þ

where T 0 ¼ 273:15 K and P 0 ¼ 1013:25 mbar, we end up
with the following equation:

1:94
~rT
T

: ~rev þ Dev ¼ 0 ð12Þ

As there is no analytical solution to Eq. (12), this final
diffusion problem is numerically solved using Mathematica
software with the geometry of a disc for the sink. As for the
previous solution, we have to decrease the radius of the cold
plate compared to the true value in order to best fit the con-
centration profile. Different temperature gradients have

been tested (rT
!

¼ 0 and rT
!

¼ constant) but do not yield
significantly different results (not shown).

Table 3
Summary of the hypotheses for the boundary layer flux values and literature values for Di=D.

Low supersaturation experiment High supersaturation experiment

diB (‰) DD=D D18=D DD=D D18=D

diB ¼ diice 0.928 0.984 0.955 0.979
1þ diB ¼ aieqð1þ diiceÞ 0.966 0.996 0.981 0.986

Merlivat, 1978 Cappa et al. (2003)

Literature coefficients 0.976 0.973 0.989 0.969
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As for the resolution of Eq. (8), to obtain the best fit to

the data we need to adjust f 0 and f i
0. Even if the fluxes (f 0

and f i
0) are different when taking the temperature into

account, the ratio of the fluxes f i
0=f 0 remains the same as

for the case with no temperature gradient, such that the
conclusion of the previous section remains unchanged.

We have chosen to keep Di=D constant with temperature
variations since we are not aware of any study evaluating
the relative variations of the different water isotopes diffu-
sion coefficients. Nevertheless, studies of thermal diffusion
for nitrogen isotopes (Grachev and Severinghaus, 2003)
highlighted a temperature dependence in the ratio of diffu-
sion coefficients of different isotopes. This is another limita-
tion of our approach that could only be explored with a
much more controlled temperature profile.

A second limitation of our approach is the assumption
that the whole flux of water was toward the disc surface,
hence neglecting the fluxes toward the lateral cylinder sur-
face. This effect could influence the diffusion profile and
explain why we need to use a smaller effective radius to fit
the water vapour profile. We thus solve Eq. (12) on a cylin-
der of radius 1.9 cm and height 8 cm instead of a flat disc.
The numerical resolution of Eq. (12) was performed using
the Mathematica software. Temperature influence could
not be taken into account in this model because of numer-
ical instabilities. However, even with this solution, we still
need to decrease the radius (cf Fig. 7, blue curve) compared
to the true value in order to fit the water vapour profile. We
thus conclude that our system is not purely diffusive, espe-
cially at the edge of the trap with possible convective effects.

The existence of convective effects at the edge would explain
why we need to use an effective radius smaller than the true
radius to bring into agreement modelled and measured
water vapour profiles.

Third, despite a relatively good agreement between the
modelled and measured profiles, we still do not manage
to reproduce the observed excursion or ‘‘bump” in the
d18O profile. Whereas dD is continuously decreasing when
approaching the cold plate, the d18O profile shows a bump
at a distance of about 1 cm above the cold plate. This can
be explained by the competition between equilibrium and
diffusion fractionations. While equilibrium fractionation
leads to low dD and d18O values in the water vapour just
above the condensation plate, diffusion tends to deplete
the water vapour in light isotopes because they move more
easily toward the cold plate, leaving heavier molecules
behind. Because of the relative values of the equilibrium
and kinetic (diffusion) fractionation coefficients, the diffu-
sion fractionation becomes visible in the water vapour
d18O profile, whereas the dD profile remains mainly domi-
nated by equilibrium fractionation. We therefore interpret
the bump in the d18O profile at 1 cm above the cold plate
as due to enrichment in H2

18O because of the relatively
strong diffusion of light isotopes toward the cold plate.
As for the dD profile, the isotopic enrichment due to diffu-
sion is masked by the strong isotopic fractionation associ-
ated with the vapour-solid equilibrium. This competition
is not included in our model in which diffusion and equilib-
rium act independently on different regions (boundary layer
for equilibrium and free air for diffusion). Possible varia-

tions of Di=D with the temperature (as mentioned above)
and the addition of a vertical advection process may also
contribute to the existence of this bump. Still, we decided
not to include these effects at this stage. First, we do not
have solid data on temperature variations in the cloud
chamber. Second, we could not provide any explanation
for the existence of a vertical advection flux toward the cold
plate.

Finally, the inlet itself can impact the temperature,
humidity and isotopic composition profiles. Copper was
chosen as it is the material commonly used for isotopic
composition measurements and has been shown to have a
limited impact compared to a number of other materials
on the isotopic composition of moist air in contact with it
(Steen-Larsen et al., 2014). Still, as copper has a good ther-
mic conductivity, it probably biased the temperature mea-
surements, justifying a calculation of temperature profiles
with the heat equation.

To summarize, the above mentioned issues, in combina-
tion with the design of this first cloud chamber experiment
with its poorly defined temperature profile, a lack of mea-
surements close enough to the cold trap and even the geom-
etry of the cold trap itself hinder in the interpretation of the
results. The measurement of temperature without advection
is challenging: there is an impact of radiation on the sensor
itself and heat conduction through the copper inlet homog-
enises on a large scale the temperature measured by our
sensor. An additional challenge is to measure water isotopic
composition very close to the cold plate. Such measure-
ments require a smaller inlet than the one we used

Fig. 7. H2
16O partial pressure of the vapour during the experiment

of the 25th of April: the black dots are the experimental datapoints,
the blue dot is the saturated vapour pressure over the cold trap and
the red lines are the fit as described in Section 3.3. with an effective
radius: Re = 0.81 cm (full line) instead of 1.9 cm (dashed line), the
blue lines are the numerical resolution in the case of a cylinder
(Section 3.4) and the green lines are the numerical resolution in the
case of a disc (Section 3.4); note that in the case of the disc,
temperature profile has been modelled with the heat equation. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(0.64 cm outer diameter). However, a smaller diameter tube
could lead to a more turbulent flow towards the spectrom-
eter. Finally, the size of the cold trap was limited by the
aperture of a flange KF 40 through which the cold trap
was inserted into the cloud chamber.

4. CONCLUSION AND PERSPECTIVES

In this study we presented two approaches to better
understand the fractionation during solid condensation
under very high supersaturation conditions. Under such
conditions, both kinetic and equilibrium fractionation
effects should be taken into account. First experiments (Sec-
tion 2) show extremely supersaturated situations in which
kinetic effects predominate. These experiments prove that
17O-excess increases with the increasing importance of
kinetic fractionation, as is the case for d-excess. This vali-
dates to first order the implementation of fractionation
associated with 17O-excess in the same manner as has been
done for d-excess variations in isotopic models (Landais
et al., 2008; Risi et al., 2013).

Using both simple and controlled experiments in a cloud
chamber, we show that a parametrisation as proposed by
Jouzel and Merlivat, 1984 is able to properly reproduce
dD for low supersaturation level, but fails to reproduce
d18O, d-excess and 17O-excess, even for low supersatura-
tion. Since the relative influence of kinetic vs equilibrium
fractionation is much more important for d18O than for
dD, this suggests that kinetic fractionation is not properly
taken into account in the Jouzel and Merlivat approach.

We have proposed a more sophisticated model for the
diffusion toward a cold trap than the one proposed by Jou-
zel and Merlivat. This approach aims to reproduce water
vapour isotopic profiles measured by laser spectroscopy in
a cloud chamber above a cold trap. Still, a match between
modelled and observed values could not be obtained from
the ratio of diffusivities of water isotopes in the air as clas-
sically used (Merlivat, 1978). Moreover, the lack of mea-
surement of the water vapour isotopes very close to the
cold trap prevents us from providing a correct description
of the boundary layer. The bump in the d18O profile is
the major unresolved issue in our model, but in the absence
of (1) spatially better resolved data for the boundary layer
description and (2) relevant profiles of other physical prop-
erties, we are unable to progress on this issue without fur-
ther experiments.

To progress with the investigation of these processes, a
more accurate description of the boundary layer near the
condensing point is needed and would allow to improve
the associated modelling. Also, our experiments were all
performed at an ambient temperature of 20 �C, whereas a
proper representation of isotopic processes in Polar
Regions calls for laboratory experiments at temperatures
below 0 �C. Working at temperatures below zero would
require significant changes to the cloud chamber environ-
ment. Finally, the development of laser analysers and their
improving performances at low temperature (Landsberg
et al., 2014) now renders it possible to continuously mea-
sure water vapour isotopic composition at very remote sites
in Antarctica where both temperature and humidity are

very low. Such measurements, in parallel to precipitation
and surface snow sampling, would permit to better con-
strain the isotopic fractionation between water vapour
and snow in this region and hence complement our labora-
tory approach.

This study is preliminary and provides new perspectives
to revisit the classical formulation of water isotopic frac-
tionation during solid condensation at very low tempera-
ture. Compared to Jouzel and Merlivat’s formulation, the
kinetic fractionation is not imposed by the supersaturation

but by the fluxes of the different isotopes (f 0 and f i
0 in the

text). Our formulation is particularly adapted for the two
following examples. The determination of moisture fluxes
between the ice and the air at the surface in Polar Regions
is an important open question (Frezzotti et al., 2004) that
involves complex mechanisms. Using the isotopic composi-
tion of frost flowers, surface hoar and water vapour could
give clues about the thermodynamic condition in which
they occur. At the surface, important supersaturation can
occur. They are linked with out of equilibrium phase tran-
sition (Style and Worster, 2009; Gallet et al., 2014). Field
measurements of water vapour isotopic composition in
Antarctica will allow further investigation of the impact
of molecular diffusion in real conditions and the complete
diffusion scheme we presented here should also be adapted
to describe the very stratified polar night conditions.

In the sub-surface, our formulation is also well adapted.
Exchanges between the snow and the interstitial air create
snow metamorphism which is associated with isotopic frac-
tionation and therefore post deposition effects on the isoto-
pic composition of the archived snow (Town et al., 2008).
On the first centimetres of the snow, important temperature
gradients occur, leading to diffusion through the porous
matrix. The integration of isotopic composition in snow
models such as CROCUS (Touzeau et al., 2015) will need
to take into account diffusion through robust parametrisa-
tion of kinetic fractionation.

As in Jouzel and Merlivat (1984), the design of our
experiment does not correspond to cloud microphysics
and the implementation of our new formulation for air-
ice isotopic fractionation is not directly an application to
isotopic fractionation in clouds. In cloud microphysics, dif-
fusion of water molecules toward condensation nuclei cre-
ates kinetic fractionation. In the case of high density of
condensate nuclei, equilibrium fractionation is important
and therefore the impact of diffusion on the condensation
fractionation is reduced. In remote Polar Regions, this den-
sity is low and sustainable supersaturation can occur. A
good representation of the fractionation induced by the
long diffusion path toward the condensation nuclei is
important for models to predict the isotopic composition
on a distillation path. To realise a cloud chamber experi-
ment depicting more accurately what happens in cloud
microphysics, there should not be a unique cold trap acting
as a sink of water molecules. Instead, condensation should
occur on a limited number of condensation nuclei while iso-
topic composition is monitored. The challenge for such an
experiment is to create conditions in which condensation on
the wall of the cloud chamber impact is moderate compared
to the condensation on the nuclei. As a long term perspective,
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isotope diffusion calculations could be integrated in the
parametrisation of the physics of water distillation using a
characteristic diffusion length deduced from the condensa-
tion nuclei density in clouds, for instance in models such
as MAR (Gallée and Gorodetskaya, 2010) or MCIM
(Ciais and Jouzel, 1994).
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5.3. Perspectives

5.3 Perspectives

In this chapter, we study the processes affecting water isotopes at (1) the phase tran-
sition vapour and ice and (2) due to the diffusion in the vapour phase. In the processes
study involving the measurement of water vapour, the new developments of infrared spec-
troscopy are crucial. First, to be able to measure isotopic composition of water vapour
at very low humidity (down or even below 1 ppmv), it is necessary to evaluate fraction-
ation associated with the vapour-ice phase transition (equilibrium or out of equilibrium)
for the entire range of temperature encountered in Polar Regions (temperature down to
−90◦C in winter on the East Antarctic Plateau). Second, the evaluation of the impact of
kinetic fractionation quantitatively can be greatly improved by (1) reducing the response
time of the infrared spectrometers in order to be able to observe the transient effect of
diffusion (typical time scale for diffusion of water vapour in an air matrix over 10 cm is
1min30s) and (2) by measuring at a finer scale the isotopic composition profile near the
ice-vapour interface. We believe that the new instrument described in section 4.3 can pro-
vide solutions to improve laboratory experiments to constrain the isotopic fractionation
(both equilibrium and kinetic). Presently, infrared spectroscopy has not been widely used
in controlled laboratory experiments.

Nevertheless, we hope this use will be extended to more experiments. As we men-
tioned, we are actually using a commercial infrared spectrometer to infer fractionation
associated to the phase transition in laboratory experiments. Many more processes affect-
ing isotopic composition still need to be studied in controlled conditions and for which
infrared spectroscopy would be a great aid such as metamorphism in temperature cycles,
diffusivity of the different isotopes at low temperatures or even the impact of turbulence
on kinetic fractionation.

An important effort is starting using ab-initio calculation to evaluate the thermody-
namic and physical properties of the different isotopes as highlighted by Pinilla et al.
[2014] for equilibrium fractionation for instance. Calculation of diffusivity can also be
realised by using high-quality ab-initio intermolecular potentials [Tulegenov et al., 2007]
as realised by Hellmann et al. [2014] for CH4 in N2. Once validated against dataset, the
ab-initio calculations can easily be extended to large range of conditions. For instance, for
diffusivity calculation, once the physics included in the calculation is validated for a small
range of temperature or gas matrix, it can be used to physically extrapolate the data for
other temperature or gas matrix. As mentioned in the introduction, it is necessary to have
robust determination of the isotopic composition at low temperature and low humidity for
modelling purposes.
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Chapter 6

Exchanges between snow and vapour on
the East Antarctic Plateau
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Post-deposition processes affect the isotopic signal recorded by the snow. In order to
address the impact of these processes, during my Ph-D were organised two campaigns
at the French and Italian station Concordia near the top of the dome C to study the iso-
topic composition of the continuum vapour, precipitation, surface snow and buried snow
in a French, Italian and Russian collaboration involving the LSCE, the LGGE (Grenoble),
University of Venice, and the AARI (Saint-Petersbourg).

Dome C is located at 75◦ 06’ S, 123◦ 21’ E on the East Antarctic Plateau; it tops at
3233 m above sea level and the mean annual temperature and accumulations are −54.3◦C
and 27 kg.m−2.yr−1, respectively [Petit et al., 1982; Genthon et al., 2015; Röthlisberger
et al., 2000]. After the EPICA ice core covering 800 000 years of climatic archives was
drilled [EPICA, 2004], a permanent station jointly operated by French and Italian po-
lar institutes was installed to study remote polar climate. This cooperation enables tens
of programs to deploy perennial installations monitoring the atmospheric boundary layer
conditions [Genthon et al., 2013], the troposphere structure with a LIDAR and a radiome-
ter [Ricaud et al., 2012], the properties of the snow pack... This motivated us to install
water vapour isotopic composition monitoring in summers 2014/15 and 2015/16 and I
went to Concordia during the first campaign. If measurements of isotopic composition

∗. And the sun will shine all night and the snow will fall in August



Chapter 6. Exchanges between snow and vapour on the East Antarctic Plateau

of water vapour are routinely realised at the mid-latitudes and even in the high-latitudes
of the Arctic, very few studies have been realised in Antarctica. Thanks to the important
effort realised to monitor and understand atmospheric processes at Dome C, it is the per-
fect location to follow processes affecting the isotopic composition. In this section, we
will first describe the first campaign including the first results obtained by comparing the
water vapour isotopic composition to other boundary layer datasets. Then, we will also
describe the second campaign which was led by Frederic Prie.

6.1 Field campaign

The monitoring of the water vapour at Dome C was part of the project NIVO (IPEV
project 1110) which focuses on the snow metamorphism on the field and co-supported
by the project GLACIO. Including isotopes in snow surface studies is a logical step as
on one hand, they can be used as a tracer of the history of the snow and on the other
hand, metamorphism is one of the key to understand post deposition impact on snow iso-
topic composition. Following a preliminary campaign in summer 2013/14 during which
Ghislain Picard sampled snow to measure its isotopic composition in parallel with physi-
cal properties of surface snow, I went to Concordia in summer 2014/15 to monitor water
vapour isotopic composition, sample snow surface and dig snow pits for further isotopic
composition measurements.

6.1.1 Deployment of the instruments

We deployed at Dome C two infrared spectrometers and a cryogenic trapping device. In-
frared spectrometry is a brand new method that has a lot of potentials for studying remote
regions like Dome C but has not been proven reliable before the campaign. Hence a cryo-
genic trapping device has also been used to sample the vapour in parallel and obtain a
replicate measurements with a reliable method. The instruments were deployed in the
Snow Shelter, located 900 m east from the station, and therefore upwind of the station in
order to avoid as much as possible contamination by the fumes emitted by the station.
This shelter has been buried in the snow, removing all impacts of the shelter structure on
the wind field. This is particularly important to study boundary layer processes: indeed
boundary layer wind-driven turbulence would have been affected by the roughness from
a large structure, for instance the atmospheric shelter on the right in Fig. 6.1. At the
immediate proximity of this shelter are installed several thermometers, a hygrometer and
an anemometer. About 300m north from the shelter is the American tower where temper-
ature, humidity and wind speed over 45 m are monitored [Genthon et al., 2013]. About

148



6.1. Field campaign

300 m south is the Atmospheric Shelter where chemical composition of the atmosphere is
measured.

Figure 6.1: Picture of Concordia station and surrounding from the American tower. The instru-
ments were deployed at the Snow Shelter at the edge of the Clean Area. Dominant winds blow
from the clean area (Courtesy Bruno Jourdain).

Figure 6.2 shows the schematic of set-up deployed during the campaign of 2014/15.
The two infrared spectrometers were installed in the Snow Shelter to provide them with a
relative temperature stability and were sniffing outside air through a common copper inlet.
A second inlet was installed for the cryogenic trapping system. Both inlets were heated
with a self-regulated heating bands of roughly 29W.m−1 (Raychem 10BTV2-CT) and in-
sulated by 30 mm thick insulation foam (see Fig. 6.3). During the whole campaign, no
sign of condensation in the inlet was observed and the temperature was estimated around
10◦C insuring that no water vapour would condensate in the inlet before being analysed.
The inlets were hung at 2 m above the ground level and facing toward the clean area. A
clean zone of 12 m2 was protected around the inlets (the green poles in Fig. 6.3) in order
to realise daily snow surface samples right under the inlet.

The cryogenic trapping was realised with 50 cL glass trap filled with glass balls in
order to increase the surfaces where condensation could occur (see section C.4 for a pre-
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Figure 6.2: Schematic of the set up deployed at Dome C in 2014/15 including 2 infrared spec-
trometers: a Picarro L2130i and a SARA H2Oi, with a cryogenic trapping system.

sentation of the different types of traps used at LSCE). The traps were immersed in 99%
pure ethanol maintained at −100◦C by an immersion cooler Huber TC100. A flux of air
of 18 L.min−1 of air was pumped through the glass trap in order to obtain at least 2 mL

of water per period of 12 hours. The cryogenic system is shown in Fig. 6.4. Once the
moisture of the air is trapped, it is necessary to extract the water from the glass balls. In
order to do so, the traps are put under vacuum and heated up to 200◦C. This fills the
volume of pure water vapour. Once all the ice is vaporised, a valve connecting the trap to
a phial immersed into the ethanol bath at −100◦C is opened. This phial being also under
vacuum, the vapour is transferred from the hot trap to the cold phial to counter the pres-
sure gradient which is maintained by the temperature difference. This method has been
proven reliable to transfer the vapour [Steen-Larsen et al., 2013]. The liquid samples were
stored in 8 mL parafilmed plastic phials, shipped back to France for analysis on a mass
spectrometer Thermofischer MAT253 (see section 3.1.1) and an infrared spectrometer Pi-
carro L2140i (see section 3.2.4.3).

During this campaign, were also deployed a Picarro L2130i which is a CRDS instru-
ment (see section 3.2.4.3) and a SARA H2Oi, the HiFI developed by Janek Landsberg
which is a OFCEAS instrument (see section 3.2.4.2). The two infrared spectrometers
were calibrated by a common home-made humidity generator as described in section
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4.1.1. During calibration, electrovalves were rerooting the inlet to a pumping unit in or-
der to maintain a flux in the inlet, deleting stagnant moisture in the inlet and reducing
memory effects after the calibrations. The calibration scheme is described in details in
section 6.2.

Figure 6.3: Picture of the two inlets in the insulation foam facing the Clean Area. A 12m2 area
was cleared around the inlet to be able to sample the snow right under the inlet.

The structure of the shelter is made out a 22 f t container inside which a wood structure
was holding the tables and the instruments. Because of the light structure, important
vibrations could build up inside the shelter and the vibration hampered the capacity of
measuring of the HiFI. The data suffer from important noise and this leads to the decision
of discarding the part of the dataset to focus on the data obtained from the Picarro.

6.1.2 Validation of the measurements

Because it was the first time infrared spectrometers were deployed at humidity as low as
100 ppmv, we had to validate the relevance of the measurement. The cryogenic trapping
is the traditional method to measure water vapour isotopic composition and has been used
in the next section to validate the accuracy of the isotopic composition monitoring. Be-
fore trying to analyse the content of the moisture, it is important to validate the humidity
measurement itself.
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Figure 6.4: Picture of the cryogenic trapping set up in the Snow Shelter at Dome C: while a trap
is connected to the outside air, the previous one is heated to detrap the water from the glass balls
and transfer it into a small phial

Measuring humidity at low temperature is very challenging and can lead to numer-
ous artefacts. Indeed, because of the supersaturation, if the hygrometers are not heated,
condensation occurs on every surface leading to depletion of the moisture content. On
the other hand, by heating the instruments, because of large quantity of buoyant micro-
droplets and micro-crystals, the aspiration can easily sample solid or liquid water con-
tent increasing the moisture content. In order to validate the measurement realised by
the Picarro, they have been compared to the other humidity measurements realised by
Christophe Genthon with a Vaisala HMP 155 hygrometer sensor measuring relative hu-
midity compared to liquid water (see Fig. 6.5). The results of these hygrometers are
calibrated and guaranteed down to −60◦C. These data were converted in partial pressure
using the Goff and Gratch formula [Goff and Gratch, 1945] (see section 2.1.1). After a
calibration of the humidity measurement by the humidity generator as described in next
section, we converted the humidity provided by the Picarro in ppmv to partial pressure
using the formula:

PH2O = Patm
Humppmv ∗10−6

Humppmv ∗10−6−1
(6.1)

The comparison between the partial pressure out of the Picarro measurements and the
HMP measurements are displayed in Fig. 6.5. Apart from a few outliers, very good cor-
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Figure 6.5: Partial pressure calculated from the measurements of the Picarro compared to the one
calculated from the HMP155 of Vaisala at Dome C between the 1st of January 2015 to the 10th of
January 2015.

relation is found between the two datasets with a linear fit with a correlation coefficient
r2 = 0.94 and a slope of 1.05. This indicates very satisfactory performances of the Pi-
carro humidity measurements on the field down to partial pressure of 10 Pa. Note that
the Picarro data were calibrated, see section C.3 for the comparison with the uncalibrated
results.

More detailed comparisons of the diurnal datasets highlight that the Picarro over es-
timates supersaturation at night, in particular when relative humidity is over 120% as
illustrated in Fig. 6.6. During the day, we observe that the humidity measured by the
Picarro matches the relative humidity better when using the supersaturation definition
against liquid water. This could indicate the presence of a layer of liquid water which the
vapour equilibrates with. After, the temperature is cooling ("night" period) and the relative
humidity matches better when using the ice definition of the saturated vapour pressure.
Finally, for important supersaturation, the buoyant micro-crystals of ice composing the
mist are sampled together with the vapour by the inlet because the inlet is heated and no
filter is applied. This results in artificially high values of relative humidity up to 200%.
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Figure 6.6: Relative humidity obtained from the Picarro humidity measurement by comparing with
the saturated vapour pressure over ice (blue) and over liquid water (red) compared to independent
calibrated relative humidity (black).

This artefact provides a clear indicator of misty, supersaturated conditions associated with
frost deposition.

6.2 Article 2: Continuous measurements of isotopic com-
position of water vapour on the East Antarctic Plateau

In this section, we focus on the monitoring of the isotopic composition of the vapour.
After a short introduction, we present the technical aspects of the monitoring of water
vapour isotopic composition in a site like dome C: the installation of the spectrometers
including the Allan Variance estimation and the calibration procedure but also the devel-
opment of new standards at isotopic composition lower than the SLAP value necessary
to bracket the vapour isotopic composition and calibrate the infrared spectrometers and
finally references to validate the choice of the comparison with cryogenic trapping. This
study includes additionally cryogenic trappings realised in 2006/07 by Olivier Catanni
which have not been published before. Apart from these results, only two other attempts
of measuring water vapour isotopic composition have been realised inland Antarctica:
Janek Landsberg at Troll Station using the HiFI but due to calibrations issues, the results
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the East Antarctic Plateau

could not be used; and Francois Ritter at Kohnen Station using a Los Gatos analyser
(multipass cell, see section 3.2.3): Kohnen station is at a similar latitude than Dome C,
but elevation is lower (2982 m a.s.l.) leading the important katabatic winds [Ritter et al.,
2016], temperature, humidity and accumulation are also higher. The results will be com-
pared in section 6.4.

Then, we analyse the results from the datasets. First, we compare the isotopic com-
position measured in situ by the Picarro and the isotopic composition of the cryogenic
trapping samples measured in the laboratory by mass spectrometry and infrared spec-
troscopy. After validating the results, we focus on the impact of the turbulence in the
boundary layer on the relationship between isotopic composition and temperature. In-
deed, during this first campaign, several days occurred during which the isotopic com-
position signal was completed erased, leading to decorrelation between temperature and
water vapour isotopic composition. We attribute this intermittent behaviour to weakly tur-
bulent (or even stratified) conditions in the atmospheric boundary layers as described in
section 6.3.1. Finally, we study the slope between δD and δ 18O in order to understand the
origins of the vapour isotopic composition. Indeed, if the values of water vapour isotopic
composition match values calculated from equilibrium fractionation from the snow with
the literature coefficients, the slope obtained between δD and δ 18O from the calculation
using equilibrium fractionation from the literature [Majoube, 1971a; Merlivat and Nief,
1967; Ellehøj et al., 2013] (from 5.7 to 7‰/‰) is very different from the slope obtained
in the data (from 4.5 to 5.3‰/‰).
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Abstract. Water stable isotopes in central Antarctic ice cores
are critical to quantify past temperature changes. Accurate
temperature reconstructions require one to understand the
processes controlling surface snow isotopic composition.
Isotopic fractionation processes occurring in the atmosphere
and controlling snowfall isotopic composition are well un-
derstood theoretically and implemented in atmospheric mod-
els. However, post-deposition processes are poorly docu-
mented and understood. To quantitatively interpret the iso-
topic composition of water archived in ice cores, it is thus es-
sential to study the continuum between surface water vapour,
precipitation, surface snow and buried snow.

Here, we target the isotopic composition of water vapour
at Concordia Station, where the oldest EPICA Dome C ice
cores have been retrieved. While snowfall and surface snow
sampling is routinely performed, accurate measurements of
surface water vapour are challenging in such cold and dry
conditions. New developments in infrared spectroscopy en-
able now the measurement of isotopic composition in wa-
ter vapour traces. Two infrared spectrometers have been de-
ployed at Concordia, allowing continuous, in situ measure-
ments for 1 month in December 2014–January 2015. Com-
parison of the results from infrared spectroscopy with labo-
ratory measurements of discrete samples trapped using cryo-

genic sampling validates the relevance of the method to mea-
sure isotopic composition in dry conditions. We observe very
large diurnal cycles in isotopic composition well correlated
with temperature diurnal cycles. Identification of different
behaviours of isotopic composition in the water vapour as-
sociated with turbulent or stratified regime indicates a strong
impact of meteorological processes in local vapour/snow in-
teraction. Even if the vapour isotopic composition seems to
be, at least part of the time, at equilibrium with the local
snow, the slope of δD against δ18O prevents us from iden-
tifying a unique origin leading to this isotopic composition.

1 Introduction

Ice cores from polar ice sheets provide exceptional archives
of past variations in climate, aerosols and global atmospheric
composition. Amongst the various measurements performed
in ice cores, the stable isotopic composition of water (e.g.
δ18O or δD) provides key insights in past polar climate and
atmospheric water cycle. The atmospheric processes con-
trolling this signal have been explored throughout the past
decades using present-day monitoring data. Based on the
sampling of precipitation or surface snow, relationships be-
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tween precipitation isotopic composition and local tempera-
ture have been identified since the 1960s and understood the-
oretically to reflect atmospheric distillation processes (Dans-
gaard, 1964; Lorius et al., 1969). Nevertheless, there is
both observational and modelling evidence that the isotope–
temperature relationship is not stable in time and space
(Jouzel et al., 1997; Masson-Delmotte et al., 2008). The vari-
ation in the isotope–temperature relationship has been ex-
plained by the isotopic composition of precipitation being
sensitive to changes in condensation vs. surface tempera-
tures, to changes in evaporation condition and transport paths
and to changes in precipitation intermittency (Charles et al.,
1994; Fawcett et al., 1997; Krinner et al., 1997; LeGrande
and Schmidt, 2006; Masson-Delmotte et al., 2011; Werner et
al., 2011). While complex, these processes can be tracked us-
ing second-order isotopic parameters such as d-excess, which
preserve information on evaporation conditions (Jouzel et al.,
2013; Landais et al., 2008), and they are accounted for by at-
mospheric models equipped with water stable isotopes (Risi
et al., 2010; Schmidt et al., 2005; Werner et al., 2011).

The variations of d-excess and some variations in δ18O are
due to the different influences of equilibrium fractionation
and diffusion driven kinetic fractionation processes at each
step of the water mass distillation trajectory. Specific limi-
tations exist for the representation of the isotopic fractiona-
tion at very low temperature. Equilibrium fractionation coef-
ficients have been determined either by spectroscopic calcu-
lations (Van Hook, 1968) or by laboratory experiments (Elle-
høj et al., 2013; Majoube, 1971; Merlivat and Nief, 1967),
with significant discrepancies at low temperatures. Molecu-
lar diffusivities have mainly been measured at 20 ◦C (Cappa
et al., 2003; Merlivat, 1978), but recent experiments have
shown that temperature can have a strong impact on these
coefficients (Luz et al., 2009).

Another source of uncertainty for the climatic interpreta-
tion of ice core records arises from poorly understood post-
deposition processes. Indeed, the isotopic signal of initial lo-
cal snowfall can be altered through wind transport and ero-
sion, which are strongly dependent on local and regional to-
pography, and can produce artificial variations in ice core wa-
ter stable isotopes caused by gradual snow dune movement
(Ekaykin et al., 2002, 2004; Frezzotti et al., 2002). Moreover,
it is well known that the initial isotopic signal associated with
individual snowfall events is smoothed in firn, a process de-
scribed as “diffusion” (Johnsen et al., 2000; Neumann and
Waddington, 2004). This diffusion occurs through isotopic
exchanges between surface water vapour and snow crystals
during snow metamorphism (Waddington et al., 2002). “Dif-
fusion lengths” have been identified based on spectral prop-
erties of ice core records and shown to depend on several pro-
cesses: wind transport and erosion will alter the surface com-
position with a very strong influence of orography, and diffu-
sion through the pores of the snow firn smooths the signal as
does metamorphism of the crystals (Schneebeli and Sokra-
tov, 2004). Finally, there are hints based on high-resolution

isotopic measurements performed near snow surface of po-
tential alteration of the initial precipitation isotopic compo-
sition (Hoshina et al., 2014; Sokratov and Golubev, 2009;
Steen-Larsen et al., 2014a). This motivates investigations of
the isotopic composition not only of precipitation and surface
snow but also of surface water vapour.

Atmospheric monitoring in extreme polar climatic con-
ditions remains challenging. Supersaturation generates frost
deposition, which can bias temperature and humidity mea-
surements, and low vapour contents are often outside of
range of commercial instruments. As specific humidity is
under 1000 ppmv on the central Antarctic plateau, measur-
ing the isotopic composition of surface water vapour re-
quires either very long cryogenic trapping (typically 10 h
at 20 L min−1) to collect enough material for offline (mass
spectrometric or laser-based) isotopic analyses or very sensi-
tive online (laser-based) instruments able to produce accurate
in situ isotopic measurements.

Recent developments in infrared spectroscopy now enable
direct measurements of isotopic composition of the vapour
in the field, without time-consuming vapour trapping. With
careful calibration methodologies, these devices provide ac-
curacies comparable with those of mass spectrometers (Bai-
ley et al., 2015; Tremoy et al., 2011) and have already been
used for surface studies in the Arctic region (Bonne et al.,
2015, 2014; Steen-Larsen et al., 2014a).

The goal of our study is first to demonstrate the capabil-
ity to reliably measure the isotopic composition of central
Antarctic surface water vapour during summer, second to in-
vestigate the magnitude of its diurnal variations, in compar-
ison with the corresponding results from central Greenland
(Steen-Larsen et al., 2013), and third to highlight the impact
of a intermittently turbulent boundary layer on the isotopic
composition variations.

We focus on Concordia station, at the Dome C site,
where the oldest Antarctic ice core record, spanning the last
800 000 years, has been obtained (EPICA, 2004). During
the last 20 years, the French–Italian Concordia station has
been progressively equipped with a variety of meteorological
monitoring tools, documenting vertical and temporal varia-
tions in atmospheric water vapour (Ricaud et al., 2012). Dur-
ing summer, meteorological data depict large diurnal cycles
in both surface air temperature and humidity (Genthon et al.,
2013), which may result from either boundary layer dynam-
ics and/or air–snow sublimation/condensation exchanges.

During the Antarctic summer of 2006–2007, cold trap
samplings of water vapour were performed. Here, we report
for the first time the results of this preliminary study together
with continuous measurements performed during the austral
summer of 2014–2015 using laser instruments with a spe-
cific methodology for low-humidity calibration, as well as
new cold trap sampling for laboratory measurements.

This manuscript is organized in two main sections to high-
light the two different aspects of the study. First, Sect. 2 de-
scribes the technical aspect: the site, the material deployed
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Figure 1. Left: map of Antarctica showing the location of Concordia, Dumont d’Urville station (DDU) and the South Pole (SP). Right:
picture of the area from the top of the underground shelter where the instrument was located, looking toward the clean area.

and the applied methods, with a focus on calibration in order
to assess the technical reliability of such methods for sites as
cold as the Antarctic Plateau. Section 3 reports the scientific
aspect of the results, with first a focus on the relevance of in-
frared spectroscopy compared to cryogenic trapping, second
a description of the diurnal to intra-seasonal surface vapour
isotopic variations and third an analysis of the origin of the
vapour. We conclude and discuss outlooks for this work in
Sect. 4.

2 Technical challenges

2.1 Sampling site

Concordia station is located near the top of Dome C
at 75◦06′06′′ S–123◦23′43′′ E, 3233 m above sea level and
950 km from the coast. While the local mean tempera-
ture is −54.3 ◦C, it was −32.4 ◦C during the campaign
of 2014/2015, reaching a maximum value of −24.5 ◦C.
Ice core data suggest an average annual accumulation of
2.7± 0.7 g cm−2 yr−1 (Genthon et al., 2015; Petit et al.,
1982; Röthlisberger et al., 2000).

The first cold trap vapour sampling campaign was per-
formed in summer 2006–2007. The second field campaign
took place from 24 December 2014 to 17 January 2015.

The spectrometers for the 2014/2015 campaign were in-
stalled in an underground shelter located 800 m upwind from
the station, therefore protected from the fumes of the power
generator of the station (discussed in Sect. 2.5). Such under-
ground shelter allows us to avoid any impact of the moni-
toring structure on the wind field and possible sampling arte-
facts. The area around the shelter is characterized by few sas-
trugi, none higher than 20 cm (Fig. 1). A clean area of 12 m2

with no sastrugi was marked around the inlets. We decided to
point the inlets toward the dominant wind in order to prevent
artefacts from condensation or evaporation from the protec-

tion of the inlet or the pole holding it. Indeed, frost formation
was observed on the protective foam and pole.

Together with our water vapour isotopic data, we use me-
teorological observations from the lowest level of the 45 m
meteorological profiling system at Dome C (Genthon et al.,
2013). The profiling system was located at proximity with
the spectrometers. The temperature observations on the 45 m
profiling system are made in aspirated shields and thus not
affected by radiation biases. Genthon et al. (2011) demon-
strated that when the wind speed is below 5 m s−1, radiation
biases are very significant and can reach more than 10 ◦C
in conventional (non-wind-ventilated) shields. Temperature
is measured using HMP155 thermohygrometers, while wind
speed and direction are measured using Young 05103 and
05106 aerovanes. Elevation above the snow surface was
3.10 m for the wind and 2.58 m for temperature in 2014–
2015. This will be henceforth commonly referred as the 3 m
level. Further details on the observing system, instruments,
sampling and results are available in previous publications
(Genthon et al., 2013, 2010). Surface temperature is mea-
sured with a Campbell scientific IR120 infrared probe. The
probe is located at 2 m height and uses upwelling infrared
radiation and the temperature of the detector to compute the
temperature of the surface of the snow. The uncertainty of the
surface temperature measurement is around ±1 ◦C, which is
mainly due to unknown and possibly varying emissivity of
the snow (Salisbury et al., 1994).

2.2 Water vapour isotope monitoring

Two infrared spectrometers were used to measure contin-
uously the isotopic composition of water vapour pumped
2 m above the snow surface: a cavity ring-down spectrom-
eter (CRDS) from Picarro (L2130-i) and a high-finesse wa-
ter isotope spectrometer (HiFI) based on the technique of
optical feedback cavity-enhanced absorption spectroscopy
(OFCEAS) developed in LIPhy (Laboratoire Interdisci-

www.atmos-chem-phys.net/16/8521/2016/ Atmos. Chem. Phys., 16, 8521–8538, 2016



8524 M. Casado et al.: Continuous measurements of isotopic composition of water vapour

Picarro SARA

Outside 

Inside

7 m 

From table to 
ceiling : 2 m 

Cold trap

Swagelock valve

Swagelock valve

Cryocooler

Calibration 
device

Extraction

Swagelock valve

Primary 
pumping 
unit

50 mL min30 mL min

18 L min

Electrovalves
commutation

Electrovalves
commutation

Primary 
pumping 
unit

–1 –1

–1

Figure 2. Schematics of the experimental set-up implied in the wa-
ter vapour isotopic composition monitoring.

plinaire de Physique), Grenoble, France (Landsberg et al.,
2014), as described on Fig. 2.

Both instruments are based on a general technique of
cavity-enhanced absorption spectroscopy (Romanini et al.,
2014). This is essentially a long-path-length optical detec-
tion technique that increases the sensitivity of detection
of molecules in the optical cavity by folding the optical
beam path between two (or three) highly reflective mir-
rors. The commercial Picarro spectrometer is based on near-
infrared continuous-wave cavity ring-down spectroscopy
(CW-CRDS) (Crosson, 2008). It has proven to be a fairly ro-
bust and reliable system, delivering good-precision isotopic
measurements at concentration (water mixing ratio) values
between 1000 and 25 000 ppmv.

The HiFI spectrometer also operates in the near-infrared
region of the spectrum but uses OFCEAS (Romanini et al.,
2014). In the case of the HiFI spectrometer, the optical path
length was increased by about 1 order of magnitude to 45 km.
This optimizes the spectrometer for oxygen-18 isotopic mea-
surements with a precision better than 0.05 ‰ at a water
mixing ratio around 500 ppmv (Landsberg et al., 2014). The
HiFI spectrometer was shown to be able to reach this level
of performance also in Antarctica during a 3-week campaign
at the Norwegian station of Troll (Landsberg, 2014). Unfor-
tunately, during the current campaign at Dome C the spec-
trometer had to operate in a noisy environment. The system
was not isolated from vibrations of several vacuum pumps in
the shelter and an accidental resonance did perturb the phase
control. This resulted in a baseline noise level more than one
order higher than normal, which created a corresponding in-
crease of the error on the isotope ratio measurements. At
this level of noise, the Picarro measurements turned out to
be more precise than the HiFI measurements. It is for this
reason that the latter were only used as an independent tool
to check on the absolute values from Picarro measurements.

All time series shown hereafter were obtained with the Pi-
carro spectrometer.

The two instruments were connected through a common
heated inlet consisting of a 1/4 in copper tube. The inter-
nal pumps of each instrument pumped the outside vapour
through the common inlet and into the respective cavities.
The fluxes generated by the instruments were small enough
not to interact with one another, as attested by stable pressure
in the cavities of both instruments. The length of this com-
mon inlet (approximately 10 m long) caused a response delay
of approximately 2 min for the humidity signal. Memory ef-
fects caused by interactions between the water vapour and the
inside of the tubes introduce different delays for different iso-
topes. In the case of high-resolution data, artificial d-excess
can be produced as the memory effect of HDO is substan-
tial larger than H18

2 O (Steen-Larsen et al., 2014b). However,
our measurements were averaged over 1 h thereby removing
this effect. No sign of condensation in the inlet was observed
during the whole campaign.

2.3 Allan variance analyses

The measurements of isotopic composition with an acqui-
sition time of approximately 1 s have a standard deviation of
10 ‰ for δD and of 2 ‰ for δ18O at approximately 500 ppmv
(Fig. 3). Infrared spectrometers typically produce data per-
turbed by different kinds of noise: one is noise due to fre-
quency instabilities of the laser, temperature and mechan-
ical instabilities of the cavity, temperature and pressure of
the sampled gas, electronic noise and residual optical inter-
ference fringes on the spectrum baseline. The noise, usu-
ally predominantly white noise, can be significantly reduced
through time averaging; for instance, with an acquisition time
of 2 min, we decrease the standard deviation to 1.3 ‰ for δD
and 0.2 ‰ for δ18O.

With increasing integration time, one expects the precision
of the measurements to initially improve, due to the reduc-
tion of white noise, up to the point where instrumental drift
becomes visible. The so-called Allan–Werle plot shows the
overall expected precision as a function of integration time
(Fig. 3).

Long-term laboratory measurement of a standard was car-
ried out at a humidity of 506± 3 ppmv in order to reproduce
the range of the expected humidity for Concordia station.
Stable humidity production for 13 h was realized using the
calibration device described in the next section and in the
Supplement 1. The standard deviation of δD follows the op-
timum line almost up to 4 h integration time. The standard
deviation of δ18O does not follow the optimum profile af-
ter 100 s but still drops continuously over almost 2 h. These
measurements confirm the reliability of the Picarro L2130i
even at low humidity and justify the use of such an instru-
ment in this campaign. The integration time providing the
ultimate precision could not be achieved because of the lack
of a vapour generator stable for more than 13 h. At other hu-
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Figure 3. Allan variance plots for laboratory long-term standard
measurement (dark squares) and for field long-term standard mea-
surement (light circles) for δD (Top, green) and for δ18O (bottom,
blue). Dash lines correspond to the quantum limit on N−1/2 for
each composition.

midity levels, we observe similar profiles with an increas-
ing initial precision as the moisture content increases (not
shown).

In the field, we performed calibrations lasting up to
90 min, as a trade-off between instrument characterization
and measurement time optimization. This, however, is not
long enough to accurately estimate the rise of uncertainty
due to instrumental drift but does allow us to assess the ulti-
mate precision for the instruments under realistic field con-
ditions. The Allan variance was thus calculated from field
Picarro calibration data, at 450 ppmv. From this analysis, we
conclude that 2 min appear to provide an optimal integration
time, associated with an ultimate precision of the spectrom-
eter of 0.2 ‰ for δ18O and 1.1 ‰ for δD (black dashed lines
on Fig. 3). This test could not be performed at other humidi-
ties.

2.4 Calibrations

Calibration of the spectrometer is crucial in order to be able
to express the measurement results with confidence on the in-
ternational VSMOW2–SLAP2 (Standard Mean Ocean Water
2 and Standard Low Antarctic Precipitation 2) isotope scale
(IAEA, 2009). Calibrations have been reported to vary be-
tween instruments and calibration systems, as well as over
time. Tremoy et al. (2011) highlighted the importance of cal-
ibration for Picarro analysers under 10 000 ppmv with biases
up to 10 ‰ for δD and of 1 ‰ for δ18O at volume mixing ra-
tios (VMRs) down to 2000 ppmv. Protocols have been devel-
oped and adapted for calibration under Greenland ice sheet
summer (Steen-Larsen et al., 2013) and south Greenland
year-round conditions (Bonne et al., 2014) with good per-
formance attested from parallel measurements of PICARRO

and LGR analysers for humidity above 2000 ppmv. At VMRs
below 2000 ppmv, much larger errors can be expected with-
out calibrating the instruments.

For this field season, we have followed the classical cali-
bration protocols with (1) a study of the drift of the instru-
ment, (2) a linearity calibration using two working standards
whose isotopic values were established in the laboratory vs.
SMOW and SLAP and (3) a study of the influence of humid-
ity on the isotopic value of the water vapour. At very low-
humidity levels (below 2000 ppmv), standard calibration de-
vices (such as the SDM from Picarro) are not able to generate
stable constant humidity. Here, we expected humidity levels
below 1000 ppmv and therefore we could not use standard
water vapour generator and had to develop our own device
inspired from the device developed by Landsberg (2014) and
described in detail in the Supplement Sect. 1.

The calibration protocol for type (1) calibration relies on
the measurement of one standard at one humidity level (the
average of the expected measurement) twice a day for 30 min
in order to evaluate the mean drift of the infrared spectrom-
eter. Standard values of the drift on a daily basis should not
exceed 0.3 ‰ in δ18O and 2 ‰ in δD. The calibration proto-
col for type (2) calibration relies on the measurement of two
standards whose isotopic compositions bracket the one mea-
sured in order to evaluate the response of the infrared spec-
trometer compared to the SMOW–SLAP scale (thereafter
isotope–isotope response). Typical isotope–isotope slope is
between 0.95 and 1.05 ‰ ‰−1 for δ18O and for δD. The cal-
ibration protocol for type (3) calibration relies on the mea-
surements of one standard at different levels of humidity in
order to evaluate the response of the infrared spectrometer
to humidity (thereafter isotope–humidity response). Type (2)
and type (3) calibration can only be realized once a week
provided type (1) calibration has validated the drift of the in-
strument was within acceptable values (below excess 0.3 ‰
in δ18O and 2 ‰ in δD). For temperate range where humid-
ity is important (above 5000 ppmv), it is possible to consider
a linear relationship for the isotope–humidity response; for
dryer situations (below 5000 ppmv), the isotope–humidity
response requires at least a quadratic relationship.

The three types of calibrations were performed in the field
and in the laboratory prior and after field work. It was par-
ticularly important to add laboratory calibrations (especially
for drift of the instrument) in addition to field calibrations
because of the short season and lack of dry air at the begin-
ning of the season, in particular to strengthen the results from
type (2) and (3) calibrations as we will present in the follow-
ing.

In order to evaluate the performances of our spectrometer,
all type of calibrations were performed in the laboratory at
different humidities (from 100 to 1000 ppmv) and repeated
on five occasions in a time span of 4 weeks with two stan-
dards: UL1 (δ18O=−54.30 ‰ and δD=−431.1 ‰) and
NEEM (δ18O=−33.56 ‰ and δD=−257.6 ‰). We esti-
mate the mean drift for a period of 1 month (type 1) by com-
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Figure 4. Measured isotopic composition for (a) δD and (b) δ18O using the PICARRO spectrometer for a fixed humidity: light circles are
field calibration points, dark squares are laboratory calibration points, the dashed lines are the fit with a quadratic function and at the top are
the residuals compared to the fit for the entire series.

Table 1. Average residuals compared to the quadratic fit toward hu-
midity of laboratory (five sets) and field calibrations for different
humidity levels for the Picarro; cf. Fig. 4a and b.

Laboratory Humidity (ppmv) 200 400 600 800
calibrations δD residuals (‰) 10.1 4.9 6.0 3.1

δ18O residuals (‰) 0.3 0.7 0.5 0.3

Field Humidity (ppmv) 150 350 480 710
calibrations δD residuals (‰) 1.0 6.8 2.9 5.1

δ18O residuals (‰) 0.6 1.0 0.5 0.4

paring the offset of the isotopic composition over the five
occurrences. For the isotope–isotope slope, we obtain stan-
dard values around 0.95 ‰ ‰−1. We evaluate the laboratory
isotope–humidity response by comparing the measured value
of the isotopic composition to the value of humidity. Each in-
dependent set of calibrations (each week) can be fitted by a
quadratic function with a small dispersion of the data points
(inferior to 2 ‰ for δD and 0.2 ‰ for δ18O). Different cal-
ibration sets performed over different days show dispersion
due to the instrument drift. We observe a much larger disper-
sion for δD than for δ18O, in particular at low concentration
(200 ppmv) due to the combined action of the drift and of
the noise of the instrument (see Table 1). Note that the low
residuals for the field calibration at 150 ppmv are an artefact
due to few measurements at this humidity. The average drift
observed combining the offset isotopic composition over 1
month is slightly under 1 ‰ in δ18O and reaches 8 ‰ in δD
(type 1 calibration).

Field calibration could only be performed after 7 January
when the dry air bottle was delivered to Concordia. Then, two
calibrations per day were realized as follows: 30 min calibra-
tion, 30 min measurements of outside air and 30 min calibra-
tion. As the data are interpolated on an hourly resolution, this
procedure prevents gaps in the data. Altogether, 20 calibra-
tions were achieved from 7 to 17 January with two working

standards. These logistical issues require adjustment to the
calibration procedure described above. Because type (1) cal-
ibration could not be performed during the field campaign,
we use the drift evaluated from the laboratory calibrations
to bracket the maximum drift expected over a period of 1
month. This results in an important increase of the uncer-
tainty of the measurement of δ18O from 0.2 ‰ (optimal value
from the Allan variance) to 1 ‰ (estimated from the drift of
the instrument during the laboratory type (1) calibration) and
in δD from 1.3 to 6 ‰.

Type (2) calibration was realized on the field using
two working standards calibrated against VSMOW–SLAP:
NEEM and UL1 at the end of the campaign. Because the
vapour isotopic composition at Dome C was much lower
than expected (well below the SLAP isotopic composition),
in order to properly estimate the isotope–isotope response of
the instrument it was necessary to evaluate the relevance of
the correction obtained from the field calibration. This is de-
scribed in Sect. 2.6 and required to produce new standards
with isotopic composition below the SLAP value. As de-
scribed in Sect. 2.6, we validated that even by calibrating the
isotope–isotope response of the instrument above the SLAP
composition, the linearity of the instrument was good enough
to extend the calibration down at least to −80 ‰ in δ18O.

As it was not possible to perform relevant ramps of humid-
ity within 1 day, type (3) calibration was realized by merging
all calibration realized on the field into one series (Fig. 4,
light colour points). This merged field calibration set pro-
vides with an estimate of the linear correction to be applied
on the measured humidity (cf. Supplement 2). The merged
field calibration series also documents the nonlinearity of the
instrument as a function of the background humidity level
and is used to correct the values of δD and δ18O measure-
ments in water vapour. The laboratory and field calibrations
do not match. Calibrations realized in the lab and in the field
have been reported to differ (Aemisegger et al., 2012), which
rules out the use of pre-campaign laboratory calibrations,
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even though laboratory calibration is still useful for provid-
ing insight into the minimum error to be expected during the
field campaign. There is no indication from Aemisegger et
al. (2012) that opposite trends were obtained during the dif-
ferent calibrations. We checked the possibility that this be-
haviour could be linked with the remaining water content of
the air carrier as it occurred for Bonne et al. (2014) e.g. at
low humidities. For both field and laboratory calibrations, we
used Air Liquid Alphagaz 1 air with a remaining water con-
tent below 3 ppmv. One possible explanation for the opposite
trend on the field compared to laboratory calibrations could
be an extraordinary isotopic composition of the air carrier
from the dry air cylinder during the field campaign. How-
ever, we do not believe the air carrier is responsible for this
opposite trend. First, we realized a calculation of the isotopic
composition of the 3 ppmv of water remaining in the cylinder
necessary to explain the difference between the field and the
laboratory calibrations trends. The calculation is the average
of the isotopic composition weighted by the water content
between the remaining 3 ppmv (unknown isotopic composi-
tion to be determined) and the water vapour generated by
the calibration device (known humidity and isotopic compo-
sition). It is not possible to find one unique value matching
the system and the range of calculated values spans between
δ18O=−450 ‰ and δ18O=−650 ‰. This range is beyond
anything observed from regular use of air carrier cylinder.
Second, the same cylinder was used during another cam-
paign and a similar feature was not observed (not shown).
Finally, we observe a very good agreement between the re-
sults from the Picarro and the cryogenic trapping data (see
Sects. 2.6 and 3.1) with a difference of 1.16 ‰ for δ18O us-
ing the field calibrations. If we use the laboratory calibra-
tions, this would create a much larger difference (above 5 ‰
difference in δ18O) which validates the calibration procedure
and the use of the field calibration. Here, we attribute this odd
behaviour of the isotope–humidity response to the important
amount of vibration in the shelter and therefore decided to
use this isotope–humidity response to calibrate the dataset.
Indeed, this response should be representative of the global
behaviour of the Picarro measuring during this campaign.

To summarize, here we cannot estimate from these mea-
surements the drift over the period of field measurement.
However, we incorporate an uncertainty for this drift from the
laboratory calibrations. These laboratory calibrations were
realized on a period longer than the campaign and therefore
should bracket the actual drift of our instrument during field
deployment and decrease the accuracy of the measurement
to 1 ‰ in δ18O and 8 ‰ in δD.

The precision on the absolute value is calculated from the
largest residuals of both the laboratory and field calibration
fit. It rises up to 18 ‰ for δD at 200 ppmv and 1.7 ‰ for δ18O
at 400 ppmv, with better precision at higher humidity (Fig. 4).
This highlights the need for regular calibrations to obtain the
best performances, unfortunately with a very high cost for
this study: the lack of regular calibrations hinders by a fac-

tor of 5 the precision of the measurements (1.3 ‰ for δD in
the best conditions from the Allan variance against 6 ‰ for
δD from the mean residuals of the calibration). Additional
information about the linearity of Picarro infrared spectrom-
eters against the SMOW–SLAP scales at isotopic composi-
tion below the SLAP values can be found in Sect. 2.6 with
the description of the measurements of the cryogenic trap-
ping samples.

2.5 Data post-treatment and performances

In addition to the calibration and averaging necessary to
improve the accuracy and precision of the dataset, we had
to correct our data from the introduction of condensate in-
side the inlet. Figure 5 illustrates two of such “snow-intake”
events, providing typical examples of duration and shape. In-
deed, our inlet was facing the dominant wind without any
protection to prevent introduction of condensates. Such pro-
tection usually requires to be heated to prevent condensa-
tion of water vapour under supersaturated conditions; how-
ever, heating would lead to sublimation of all the precipi-
tation falling into the inlet, which would then increase the
vapour content. Moreover, micro-droplets or crystals are of-
ten floating in the air on the Antarctic Plateau and reduce
the efficiency of any precipitation filter. We therefore de-
cided to remove the effect of all sorts of precipitation events
through a post-treatment of our datasets. This is justified by
a small number of cases (fewer than 100), clearly identified
as “snow-intake” events.

A manual post-treatment was thus realized following sys-
tematic rules. All data with a specific humidity higher than
1000 ppmv were discarded; this value was chosen as the
maximum surface air temperature observed during the cam-
paign (−24.6 ◦C) and implies a theoretical maximum sat-
urated vapour content of 1030 ppmv. After this first post-
treatment, the largest humidity measurements of 977 ppmv,
slightly lower than the maximum saturated vapour content,
suggested that we may have discarded only a few relevant
high-humidity data in our post-processing.

All humidity peaks higher than natural variability were
also discarded, using as a threshold 5 times the standard
deviation in normal conditions (which is between 10 and
20 ppmv). In very few occasions (only twice during the en-
tire campaign), a very high density of snowflakes could cre-
ate a regular inflow of snow in the inlet, leading to an in-
crease of the vapour content without peak shapes. In those
cases, the amplitude and the frequency of the specific hu-
midity variability still allowed us to distinguish precipitation
introduction from the “background” vapour signal. These pe-
riods associated with important “snow-intakes” created gaps
in the dataset (4 h in total). Gaps in our dataset mostly arise
from calibration of the instruments and power shortages (30
to 60 min gaps) that could be filled by interpolating.

Two running averages were performed: first at 10 min res-
olution, without filling the gaps which correspond to approx-
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Figure 5. Left: example of raw data measured by the Picarro. Hu-
midity (light red, ppmv) and δD (light blue, ‰), data averaged over
10 min for humidity (red, ppmv) and for δD (dashed line blue, ‰)
and over 1 h for δD (dark blue, ‰). Right: zoom on two “precipi-
tation events” identified in the humidity signal of the Picarro (top,
snow flake; bottom, diamond dust).

imately 3 % of the dataset (Fig. 5), then an average at a res-
olution of the hour where the gaps were filled by linear in-
terpolation (only 1 % of the whole datasets had gaps larger
than an hour), apart from 13 January when 4 h in a raw were
missing due to an intense precipitation event. Finally, 0.7 %
of the dataset is missing at the 1 h resolution.

Even though the spectrometer was located at the border of
the clean area of the station, we verified that the influence of
the station did not contaminate the vapour by analysing wind
direction. As mentioned earlier, the shelter is almost 1 km
upstream the station against the dominant wind. Few events
with wind direction pointing from the station were identified
(21 h spread over 5 days during the whole campaign when
the wind direction is pointing from the station plus or mi-
nus 20◦). Most of these events match the period when the
wind speed was very low (< 2 m s−1). We used the methane
measurements also provided by the Picarro L2130 in paral-
lel with the vapour measurements to assess any potential an-
thropic contamination of the vapour at the shelter area. An
anthropic contamination of the vapour could lead to artificial
values of isotopic composition. Indeed, combustion of fos-
sil fuels have been shown to produce d-excess, for instance
(Gorski et al., 2015). Small spikes of methane were detected
for only two occurrences: 28 December between 09:30 and
10:40 and 3 January between 06:00 and 07:00 (local time).
They match events with wind direction pointing at the shel-
ter. These two events were fairly short and no specific impact
on either humidity or isotopic composition can be identified
for these events.

2.6 Cryogenic trapping of the moisture

Water vapour was trapped with a cryogenic trapping device
(Craig and Gordon, 1965) consisting of a glass trap immersed
in cryogenic ethanol. Cryogenic trapping has been proven

reliable to trap all the moisture contained in the air and
therefore to store ice samples with the same isotopic com-
position as the initial vapour (He and Smith, 1999; Schoch-
Fischer et al., 1983; Steen-Larsen et al., 2011; Uemura et al.,
2008). Two different cryogenic trapping set-ups have been
deployed. The first one, in 2006/2007, was based on traps
without glass balls. These traps cannot be used with air flow
above 6 L min−1 in order to trap all the moisture because the
surface available for thermal transfer is rather small. In order
to be certain of trapping all the moisture, two traps in series
were installed. Because of the lack of glass balls, the absence
of water in the trap at the end of the detrapping can be ob-
served. This was a very important validation because detrap-
ping efficiency is essential to obtain correct values of iso-
topic composition (Uemura et al., 2008). During the second
campaign, we used traps filled with glass balls to increase
the surface available for thermal transfer and therefore that
can be used at higher flows. This cryogenic trapping set-up
relies on extensive tests previous to the campaign, indicat-
ing that our custom-made glass traps filled with glass balls
at −100 ◦C successfully condensate all the moisture, even
for a flow up to 20 L min−1. These tests have been realized
with (1) a Picarro (L2140i) to attest that the remaining hu-
midity was below the measurement limit (around 30 ppmv)
and (2) a second trap downstream to evaluate the presence
of ice after a period of 12 h which would indicate a partial
vapour trapping. These tests enable us to validate the system
we used, similar to Steen-Larsen et al. (2011), and motivate
its deployment for the second campaign at Dome C. Exten-
sive tests have also proven that complete detrapping can be
done with traps filled with glass balls despite no direct obser-
vation of possible remaining water. The results shown later
on (Fig. 10) show that similar values are obtained from both
types of set-up (with or without glass balls) and assess the
reliability of both the methods.

Here, we present the results of two cryogenic trapping
campaigns: one in 2006/2007 and one in 2014/2015. During
the 2006/2007 campaign, 20 samples were gathered by cold
traps (without glass balls) immersed in ethanol at −77 ◦C,
with a pump with a flow of 6 L min−1 and 36 h sampling
periods. For the campaign of 2014/2015, 20 samples were
gathered by cold traps (filled with glass balls) immersed in
ethanol at −100 ◦C under a flow of 18 L min−1 and 10 to
14 h trapping periods. The samples were extracted from the
traps by heating them up to 200 ◦C on a line under vacuum
connected to a glass phial immersed in the cryogenic ethanol
for 10 to 12 h. This process allows the total transfer of the
water by forced diffusion and produces samples between 2
to 4 mL. On 8 January 2015, the high flux pump was dam-
aged and was replaced by a membrane vacuum pump with
only 8 L min−1 flow, increasing the trapping duration from
24 to 36 h.

As no particles filter was installed on the inlet (cf.
Sect. 2.1), we trapped both the precipitation captured by
the inlet and the surface vapour. This might lead to biases
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when precipitation occurred, which must be taken into ac-
count when comparing the results between the spectrometers
and the cold trap.

Samples from the 2014/2015 campaign were then
shipped for laboratory analyses using a Picarro L2140i.
The samples were injected through a syringe in a
vaporizer and an auto-sampler. The classical calibra-
tion procedure to be analysed polar samples is using
three internal standards calibrated against SMOW and
SLAP: NEEM (δ18O=−33.56 ‰ and δD=−257.6 ‰),
ROSS (δ18O=−18.75 ‰ and δD=−144.6 ‰) and OC3
(δ18O=−54.05 ‰ and δD=−424.1 ‰). The isotopic com-
position of the sample to analyse has to be surrounded by
the isotopic composition of the standards for the calibration
to be efficient. As the isotopic composition of the vapour
in Concordia is well below SLAP (δ18O=−55.50 ‰ and
δD=−427.5 ‰), i.e. δ18O is around −70 ‰, no standard
was available to bracket the sample isotopic composition. It
was therefore important to check the linearity of the instru-
ments for δ18O values below −55 ‰.

In order to do so, we prepared new home-made stan-
dards: we diluted a known home-made standard EPB
(δ18O=−7.54± 0.05 ‰) with highly depleted water, Isotec
water-16O from Sigma-Aldrich (99.99 % of 16O atoms, here-
after DW for depleted water). We first had to determine the
absolute composition of the DW by realizing several dilu-
tions of the water with isotopic composition in the range be-
tween SMOW and SLAP. The dilution was realized with a
Sartorius ME215P scale, whose internal precision is certi-
fied at 0.02 mg. The water was injected through needles in
a glass bottles covered by paraffin films to prevent evapora-
tion. All the weights were measured four times in order to
improve the precision of the measurements. From the differ-
ent measurements, the accuracy is estimated at 0.1 mg after
correcting for the weight of the air removed from the bottle
by injecting the water. Four new home-made standards were
realized in the range SMOW–SLAP and measured 15 times
each with a Picarro L2140i (cf. Fig. 6, part 1). Their iso-
topic composition is scattered along the line from the EPB
composition to the DW composition. Because we know the
exact dilution of EPB with the DW, we can use the measured
δ18O values to precisely infer the isotopic composition of the
DW: δ18ODW or R18

DW = (δ
18ODW/1000+1)·RSMOW, where

R18
SMOW = 2005. 2 is the absolute isotopic composition of the

SMOW in H18
2 O.

The isotopic composition of the mix is given by

δ18Omix = δ
18OEPB+

R18
DW−R

18
EPB

R18
SMOW

XDW (1)

where XDW is the ratio of quantities of DW vs. EPB in
the dilution. The slope of the linear regression of δ18Omix
with XDW provides directly an estimate of the isotopic com-
position of the DW. We find R18

DW = 128± 2 (equivalent
to δ18ODW =−936.2± 0.6 ‰), which is slightly less de-

Figure 6. Isotopic composition measured by liquid injection in the
Picarro L2140i for different samples prepared by dilution of EPB
with “almost pure” water: the red dots are the measurements, the
red line is the calculated isotopic composition and the red squares
for residuals are the difference between the measurements and the
theoretical composition.

pleted than the specifications given by the producer (purity of
99.99 %). Another determination can be done independently
by using the Eq. (1) for one single dilution. Using indepen-
dent dilutions done within the range SMOW–SLAP, we ob-
tain R18

DW = 127 and 130.
In a second step, we produce three other water home-made

standards by dilution of EPB with “almost pure” H16
2 O to

obtain δ18O values below SLAP. Using the known dilution
amount and the isotopic ratio of “almost pure” H16

2 O deter-
mined above, we compare the measurements for these three
home-made standards, i.e. placed on a SMOW–SLAP scale
with classical calibration procedure to the values calculated
using Eq. (1) (Fig. 6, part 2). Given the precision on the
isotopic ratio of the “almost pure” H16

2 O, on the EPB and
the precision of the scale, the precision of the calculation of
δ18Omix is 0.05 ‰ (uncertainty propagation in Eq. 1).

Residuals between measured and calculated δ18O are less
than 0.2 ‰ for the home-made standards at −60 and −80 ‰
and less than 0.3 at −110 ‰. We thus conclude that the Pi-
carro L2140i can be used safely to infer linearly δ18O values
down to −80 ‰, which encompasses the δ18O range of our
water vapour samples, and is close to linear for δ18O values
down to−110 ‰ (deviation of 0.3 ‰ slightly higher than the
measurement uncertainty).

3 Results

3.1 Validation of infrared spectrometry data

The data gathered by the cold trap and the infrared spectrom-
eters during the 2014/2015 campaign are displayed in Fig. 7.
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Figure 7. Hourly average δ18O (‰) in green, raw d-excess (‰) in
light blue (d-excess smoothed on a 3 h span in thick blue) and hourly
average of the specific humidity (ppmv) in red during the campaign
2014/2015. Measurements by the Picarro are displayed as the thin
light lines and measurements performed in the laboratory from the
cold trap samples are displayed as dark bars.

The measurements performed by the Picarro (light lines)
from 25 December to 4 January are marked by a 10 ‰ grad-
ual decline in δ18O and a 40 ‰ gradual increase in d-excess.
By contrast, the second part of the measurements (performed
after 4 January) does not show any long-term multi-day
trend. We also observe a decrease in δ18O and an increase
in d-excess in the cold trap data from 25 December to 5 Jan-
uary. The decrease in δ18O and increase in d-excess are also
recorded in the period from 5 January to 13 January in the
cold trap results, while they are not observed in the Picarro
data.

During a similar campaign in Greenland (Steen-Larsen et
al., 2011), differences between infrared spectrometry in situ
and cryogenic trapping measurements were generally around
0.1 ‰ in δ18O. In comparison, we observe that the cold trap
δ18O values are generally higher than the δ18O measured
by the Picarro. This can be explained by several factors.
First, the isotopic composition sampled using the cold trap
is weighted by humidity: the cold trap traps more moisture
when the humidity is highest, which also corresponds to the
moment when the isotopic composition is the highest. In or-
der to take this into account, we weighted the isotopic com-
position from the Picarro by specific humidity (not shown).
On average, the weighted isotopic composition has an offset
of+1.1 ‰ in δ18O compared with the original dataset, rising
up to 7.2 ‰ on 31 December and down to −2.9 ‰ on 6 Jan-
uary. In this case, the cold trap δ18O is still in average higher
than the isotopic composition weighted by humidity, with an
offset of +1.16‰ for δ18O and −3 ‰ for d-excess, which
lies within the error bar of our measurements. We thus con-
clude that, at first order, our cold trap measurements validate
the laser spectrometer data.

Table 2. Average, minimum and maximum values over the whole
campaign for air temperature (T3 m), snow surface temperature
(Tsurf), specific humidity (q), δD (‰), δ18O (‰) and 3 h smoothed
d-excess (‰).

Average Minimum Maximum

T3 m (◦C) −31.2 −42.6 −24.6
Tsurf (◦C) −31.5 −46.1 −21.2
q (ppmv) 589 161 977
δD (‰) −491 −558 −393
δ18O (‰) −68.2 −77.1 −53.9
d-ex (‰) 55.1 21 88

The cold trap measurements may also include snow-intake
events that were captured by the inlet, whereas we removed
such data in the spectrometer measurements. Because the
isotopic composition of precipitation is enriched compared
to the vapour, the introduction of snow crystals in the cold
trap inlet could explain a small part of the positive offset of
cold trap measurements compared to the infrared spectrome-
try. No quantitative estimation of this bias has been realized.

3.2 Two climatic regimes

Figure 8 presents the specific humidity and isotopic com-
position (δ18O, δD and d-excess) measured by the Picarro.
The data are continuous from 25 December 2014 to 17 Jan-
uary 2015, except for 4 h on 13 January due to a large snow-
fall event. These data are compared with the 3 m temperature
and the 3 m wind speed (Sect. 2.1) and also to the surface
temperature monitored by infrared sensing. Note that the dif-
ferent temperature measurements are not intercalibrated and
may present a limited bias of 1 ◦C. Table 2 summarizes the
average, minimum and maximum values for 3 m tempera-
ture, surface temperature, humidity and isotopic composi-
tion.

Even though the sun never actually passes below the hori-
zon, when the zenithal angle is low, snow surface radiation
deficit generates a strong radiative cooling of the surface,
which leads to stratification of the atmospheric boundary
layer. Daily cycles are clearly visible in all the variables.
Greater diurnal temperature variations are observed at the
surface than at 3 m even though average temperatures remain
similar as already observed in Kohnen (van As et al., 2006).
Day temperature at the surface rises up to 8 ◦C higher than
at 3 m during the period from 26 December 2014 to 4 Jan-
uary 2015. After 4 January, differences remain small (less
than 2 ◦C). This first difference will lead us to distinguish the
two regimes to further investigate: the first one from 26 De-
cember 2014 to 4 January 2015, and the second one from 5
to 17 January 2015.

Table 3 compares the average values, the diurnal ampli-
tudes and the trends within the different datasets. Tempera-
ture is higher during regime 1, probably due to the proxim-
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Figure 8. Hourly average δD (‰) in dark blue, hourly average δ18O (‰) in green, d-excess (‰) smoothed on a 3 h span in light blue and
hourly average of the specific humidity (ppmv) in red, measured by the Picarro during the campaign; comparison with 3 m temperature
(purple, ◦C), difference between ground and 3 m temperature (purple shade, ◦C), wind direction (grey dots, ◦) and speed (black line).

ity to the solar solstice. Diurnal amplitudes in air tempera-
ture and humidity are significantly higher in regime 2 than in
regime 1. In regime 1, isotopic daily cycles are dumped and
completely erased from 1 to 3 January, whereas daily cycles
are important for regime 2 (in phase with those of temper-
ature); a significant day-to-day trend appears during regime
1 with almost −1 ‰ day−1 for δ18O and is not present in
regime 2 (0.07‰ day−1 for δ18O).

We attribute the difference between the two regimes to
changes in atmospheric stability, in particular during the
“night”. Indeed, during daytime, the convection enables
strong mixing in both regime 1 and regime 2. However, sig-
nificant differences are noticeable in the nocturnal stability
between regime 1 and 2 which impact the night-time turbu-
lent mixing.

Atmospheric static stability is further assessed using the
Richardson number (Richardson, 1920), which is a ratio
between the square of the Brunt–Väisälä frequency (N =√
g
θ

dθ
dz , where θ = T (P0/P )

R/CP is the potential tempera-
ture calculated from P0 the standard reference pressure, R
the gas constant of air and cP the specific heat capacity)
and the square of the horizontal wind gradient (see Supple-
ment part 3). During regime 1, the Richardson number expe-
riences important daily cycles, rising higher than 0.2 during
night-time, indicating a stable and well-stratified boundary
layer, and dropping lower than 0 during daytime, indicating
a non-stable, convective atmosphere (King et al., 2006). The
Richardson number is in particular really large for the nights
from 1 to 3 January (rising up to 0.85) highlighting an en-
hanced night-time stratification during this period. Regime

1 is thus characterized by a well-marked diurnal cycle with
a convective activity during the “day” and a stably strati-
fied atmospheric boundary layer during the “night”. By con-
trast, the Richardson number is lower during the night in
regime 2, which leads to smaller diurnal cycles of stratifi-
cation. This can be explained by stronger winds during the
nights in regime 2 (Fig. 9), which enhance the turbulent mix-
ing in the atmospheric boundary layer and tend to reduce the
stratification.

We now investigate the mean daily cycle of all data during
each regime. For this purpose, the trend is removed by sub-
tracting the average value of the day from all data. We then
produce a mean value for each hour of the day over the whole
regime. The correlations between the average daily cycles
of isotopic composition, 3 m temperature, 3 m wind speed
and surface temperature are given on Table 4. Temperature
of 3 m is less strongly correlated with surface temperature
during regime 1 compared to regime 2. During night-time in
regime 2, the atmosphere is more turbulent and therefore at-
mospheric mixing is more efficient. For a more stratified noc-
turnal atmosphere (regime 1), we expect surface temperature
to be less correlated to 3 m temperature and also to isotopic
composition.

We also observe that the correlation of surface isotopic
composition and temperature, as well as between δ18O and
δD, is stronger for regime 2 (turbulent nocturnal atmosphere)
than for regime 1 (stratified nocturnal atmosphere). An expla-
nation for this correlation could be the temperature influence
on the fractionation at the snow–air interface. In the case of
regime 2, as the turbulence allows efficient air mass mixing,
the isotopic composition at 2 m is directly related to what

www.atmos-chem-phys.net/16/8521/2016/ Atmos. Chem. Phys., 16, 8521–8538, 2016



8532 M. Casado et al.: Continuous measurements of isotopic composition of water vapour

Table 3. Average, daily amplitude and daily trend over the whole campaign for air temperature (T3 m, ◦C), snow surface temperature (Tsurf,
◦C), specific humidity (q, ppmv), δD (‰), δ18O (‰) and smoothed d-excess (‰).

Regime 1: from 26 Dec to 4 Jan Regime 2: from 5 to 17 Jan

Average Amplitude Trend (/day) Average Amplitude Trend (/day)

T3 m (◦C) −29.9 7.6± 0.2 −0.29± 0.02 −32.4 11.9± 0.2 −0.38± 0.02
Tsurf (◦C) −30.2 14.2± 0.4 −0.34± 0.05 −32.6 16.2± 0.3 −0.47± 0.03
q (ppmv) 631 341± 20 −24± 3 541 521± 13 −39± 2
δD (‰) −490 14± 3 −3.7± 0.4 −495 38± 2 −0.8± 0.3
δ18O (‰) −68.1 1.4± 0.6 −0.92± 0.06 −68.9 5.4± 0.4 −0.07± 0.04
d-ex (‰) 54.9 8± 1 3.7± 0.2 56.2 13± 2 −0.2± 0.2

Table 4. Slope and correlation coefficient between the different data average daily cycle: for each data, the average of the day was removed
and a trend-free daily cycle for each regime was produced.

Regime 1: Regime 2:
from 26 Dec to 4 Jan from 5 to 17 Jan

Slope r2 Slope r2

δD (‰) vs. q (ppmv) 0.043± 0.005 0.79 0.071± 0.003 0.96
δD (‰) vs. T3 m (◦C) 2.0± 0.2 0.74 3.2± 0.2 0.94
δD (‰) vs. Tsurf (◦C) 0.95± 0.2 0.58 2.3± 0.1 0.95
δD (‰) vs. δ18O (‰) 6.0± 1.3 0.48 6.5± 0.6 0.85
q (ppmv) vs. T3 m (◦C) 45± 2 0.94 44± 2 0.96
q (ppmv) vs. Tsurf (◦C) 24± 2 0.89 32± 1 0.98
T3 m (◦C) vs. Tsurf (◦C) 0.49± 0.05 0.80 0.69± 0.04 0.92

is happening at the surface; hence the isotopic composition
is strongly correlated to surface temperature. Such a situa-
tion was already described at the NEEM station in Green-
land (Steen-Larsen et al., 2013), where similar temperature
and water vapour isotopic composition cycles were observed
during 10 days, leading to the conclusion that the snow sur-
face was acting successively as a sink during the night and
as a source during the day. They also hypothesized that the
vapour isotopic composition could be at equilibrium with
the snow one, at least during part of the day. Exchange with
the vapour could also have strong impact on snow metamor-
phism in Concordia, as observed in NEEM (Steen-Larsen et
al., 2014a).

In the case of regime 1, when atmosphere is at least part
of the time stratified, the mixing of the first layers of the at-
mosphere is not efficiently done by turbulence. In these situ-
ations happening mostly at night, the ground is cooling faster
than the air above it, creating vertical gradients in mois-
ture content of the atmosphere (van As and van den Broeke,
2006).

We now investigate the timing of the average diurnal cy-
cles (Fig. 9). By comparing the position of the maximal slope
(which enables a more precise determination of dephasing
than the maxima), we notice a shift of approximately 2 h be-
tween surface and 3 m temperature. Specific humidity aver-
age daily cycle is synchronized with 3 m temperature in both

regimes 1 and 2. For regime 1, no diurnal cycle appears in
surface vapour isotopic composition. For regime 2, the daily
cycle of surface vapour isotopic composition is synchronized
with surface temperature and therefore shifted 2 h earlier than
3 m temperature and humidity. This is consistent with the hy-
pothesis of temperature-driven exchanges of molecules be-
tween the air and the snow surface in regime 2. This hypoth-
esis will be discussed in more details in part 3.3.

The diurnal amplitude that we measured (38‰ for δD in
average during regime 2) is within the range obtained in
previous studies in Greenland. In NEEM, daily cycles up
to 36‰ for δD were measured during summer campaigns
(Steen-Larsen et al., 2013), much more important than those
cycles on the coastal areas of Greenland with peak-to-peak
amplitudes of variations of 1 ‰ for δ18O in Ivittuut, Green-
land (Bonne et al., 2014). A similar pattern is observed
around Antarctica, near coastal areas, on a ship near Syowa
station, where isotopic composition variations are dominated
by day-to-day evolution and there are no diurnal cycles (Ku-
rita et al., 2016).

3.3 Local water vapour δD–δ18O relationship and
snow surface interactions

Figure 10 presents the δD and δ18O isotopic composition
during the 2014/2015 campaign, for continuous measure-
ments and cold trap data, and earlier cold trap data from
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Figure 9. Comparison of average daily cycles (UTC time) of 3 m temperature (light purple, ◦C), surface temperature (dark purple), specific
humidity (red, ppmv), wind speed (black line, m s−1), wind direction (black dots, ◦) and δ18O (green, ‰) for (a) regime 1 and (b) regime 2.

2006/2007. We observe that all these data depict a common
range of isotopic composition and align on a similar slope. In
this section, we focus on the slope between δD and δ18O and
not on the d-excess. Indeed, the high values of d-excess are
related to the low value of the slope δD vs. δ18O (around 5
compared to the value of 8 used in the d-excess calculation).
Note that discussions of d-excess or of the slope between δD
and δ18O are strictly equivalent in this case.

We observe very low (around 5) δD and δ18O slopes mea-
sured using on-site infrared spectroscopy and post-campaign
mass spectrometry of the cryogenic trapping samples (Ta-
ble 5). In fact, publication of the 2006/2007 cold trap data
was postponed until an explanation for such low vapour line
was identified due to the fear of sampling vapour from the
station generator. As stated in Sect. 2.5, no such contami-
nation occurred. This slope is much lower than observed in
Greenland (Bonne et al., 2014; Steen-Larsen et al., 2013). A
very low slope for δD vs. δ18O in water vapour is not unex-
pected as Dome C is very far on the distillation path and air
masses are very depleted in heavy isotopologues (Touzeau et
al., 2016). Indeed, for a Rayleigh distillation, the local rel-
ative variations of the isotopic composition of δD and δ18O
are defined by

dδD
dδ18O

=
αD− 1
α18− 1

1+ δD
1+ δ18O

, (2)

where αD and α18 are respectively the equilibrium frac-
tionation coefficients of HDO and H18

2 O (Jouzel and Mer-
livat, 1984). In the average condition of the campaign
(T =−31.5◦C and isotopic composition from Table 2), even
if (αD− 1)/(α18− 1)= 9.71, the very low value of δD
(around −500 ‰) brings down the slope δD and δ18O to
5.3 ‰ ‰−1. Note that the important d-excess values obtained
in Sect. 3.2. are due to the very low slope between δD and
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Figure 10. δD and δ18O plots: red is the daily average isotopic com-
position from the Picarro (circles: regime 1; squares: regime 2), pur-
ple crosses are the cold trap isotopic composition from 2014/2015
campaign, blue squares are the cold trap isotopic composition from
2006/2007, green hexagons are the isotopic composition of the
snow (Touzeau et al., 2015) (light tone is the average composition
minus 1 standard deviation, mid-tone is the average composition
and dark tone is the average composition plus 1 standard deviation),
green lines are the respecting calculated equilibrium fractionation in
the range of temperature observed during the campaign (Majoube,
1971) (local origin thereafter) and the black line is the curve es-
tablished with a Rayleigh distillation in the MCIM (remote origin
thereafter).

δ18O and not necessarily to important kinetic effects in this
case.

We now discuss in details the possible drivers of the iso-
topic composition of water vapour at Dome C following sev-
eral hypotheses: the first being local origin (equilibrium be-
tween surface snow and water vapour), the second being re-
mote origin (distillation of a water mass from the coast).
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Table 5. Slope and correlation coefficients between the different datasets. Picarro and meteorological data are daily average data. Equilibrium
fractionation slopes are calculated from the average values (average, ± 1 standard deviation) with Majoube fractionation coefficients (high
M, med M, low M) or Ellehøj fractionation coefficients (med E).

Data for all season

Slope r2

Picarro data δD (‰) vs. q (ppmv) 0.12± 0.02 0.61
δD (‰) vs. T3 m (◦C) 3.7± 1.5 0.22
δD (‰) vs. Tsurf (◦C) 4.3± 1.2 0.30
δD (‰) vs. δ18O (‰) 5.3± 0.3 0.92
q (ppmv) vs. T3 m (◦C) 43± 6 0.69
q (ppmv) vs. Tsurf (◦C) 45± 5 0.79

Meteological data T3 m (◦C) vs. Tsurf (◦C) 0.7± 0.1 0.63

Trapping 2006/2007 δD (‰) vs. δ18O (‰) 4.6± 0.7 0.82

Trapping 2014/2015 δD (‰) vs. δ18O (‰) 4.8± 0.4 0.90

Equilibrium fractionation δD (‰) vs. δ18O (‰) high M 7.02 Th.
δD (‰) vs. δ18O (‰) med M 6.50 Th.
δD (‰) vs. δ18O (‰) low M 5.99 Th.
δD (‰) vs. δ18O (‰) med E 5.65 Th.

MCIM δD (‰) vs. δ18O (‰) at −35 ◦C 6.11 Th.

For the first hypothesis, we used the range of annual
isotopic composition of the snow at Dome C (Touzeau et
al., 2016), represented by green hexagons (average value
± 1 standard deviation). The slope between δD and δ18O
of the snow annual isotopic composition is 7.2 ‰ ‰−1, al-
ready lower than 8. From these values, we calculate the
corresponding vapour isotopic composition in the range of
summer temperature (−20 to −45 ◦C) using standard equi-
librium fractionation coefficients (Majoube, 1971; Merlivat
and Nief, 1967). The range of calculated vapour isotopic
contents is consistent with observed vapour: from the aver-
age value of snow δ18O=−48.4 ‰, we get a vapour pre-
dicted δ18O=−68.2 ‰ at −35 ◦C, which lies within the
values measured by the Picarro (on average over the cam-
paign δ18O=−68.9 ‰). The slope between δD and δ18O,
however, is higher than the one observed: 6.5 ‰ ‰−1 vs.
5.3 ‰ ‰−1 for the Picarro and even 4.8 ‰ ‰−1 for the
cold traps. The same calculation with the equilibrium frac-
tionation coefficients from Ellehøj et al. (2013) can pre-
dict relevant δ18O and δD values and more realistic slopes
(5.7 ‰ ‰−1).

We now analyse the effect of the distillation on the isotopic
composition of the water vapour. For this test, we used the
Mixed Cloud Isotopic Model (MCIM) to compute the iso-
topic composition of the vapour. The MCIM is a Rayleigh
model taking into account microphysical properties of clouds
and in particular accounting for mixed phases (Ciais and
Jouzel, 1994). The model was tuned with snow isotopic com-
position of an Antarctic transect from Terra Nova Bay to
Dome C to accurately reproduce the isotopic composition of

the Antarctic Plateau (Winkler et al., 2012). For instance, the
model predicts an average value of snow isotopic composi-
tion at Dome C of −51 ‰ for an average site temperature
of −54.5 ◦C when the measurements indicated −50.7 ‰;
note that the model takes into account an inversion tem-
perature and that the condensation temperature Tcond is de-
duced from the surface temperature Tsurf through (Ekaykin
and Lipenkov, 2009)

Tcond = 0.67× Tsurf− 1.2. (3)

The prediction of average vapour isotopic composition by the
MCIM is δ18O=−51.6 ‰ at −35 ◦C, which is much higher
than the average vapour measurements (δ18O=−68.9 ‰).
However, the MCIM manages to predict the isotopic compo-
sition of the summer precipitation (δ18O=−37 ‰ at−35 ◦C
for the model compared to values rising up to −39 ‰ for
matching temperature in Dome C summer precipitation).
Therefore, we conclude that the vapour isotopic composition
seems to be principally influenced by local effects. Note that
the slope between δD and δ18O predicted by the MCIM is
around 6.1 ‰ ‰−1, which is also higher than the one ob-
served during the campaign (between 4.6 and 5.3 for the dif-
ferent datasets).

The precipitation amount in Dome C is less than 10 cm
per year (Genthon et al., 2015). Each precipitation event does
not form a complete layer of snow and is mixed with earlier
snowfall possibly deposited under the earlier winter condi-
tions. The snow isotopic composition is therefore a mix of
new snowfall and older snow. This phenomenon is amplified
by drift and blowing snow (Libois et al., 2014). A mixing be-
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tween a large range of source isotopic compositions should
be considered to compute the local origin hypotheses, which
could explain the bias of the slope predicted by equilibrium
from a single snow composition compared to experimental
data.

4 Conclusion

In this study, we assessed the relevance of infrared spectrom-
etry to measure isotopic composition of water at concentra-
tions as low as those encountered over the Antarctic Plateau.
Apart from the logistic challenges involved in the installation
of spectrometers in remote areas, humidity levels, very de-
pleted samples and important local variability create a tech-
nical challenge that the new infrared spectroscopy techniques
overcame.

Allan variance measurements in the laboratory indicated
the possibility of using Picarro and HiFI spectrometers at hu-
midity as low as 200 ppmv and with almost no loss of preci-
sion from 500 ppmv (limit of precision of 0.1 ‰ δ18O and for
1.1 ‰ for δD). Identical measurements in the field showed it
was possible to reach similar results in the field even though
great care in the environment where the instruments are de-
ployed should be addressed.

For such humidities, the linearity of the instruments is not
guaranteed toward humidity and regular calibrations in the
field are necessary. In this particular study, it was not pos-
sible to calibrate the instruments regularly in the field for
logistical reasons, so we bracketed the drift of the instru-
ment by series of calibration in the lab. This is not the op-
timal method and results in significant error bars compared
to the performances of the instrument. The uncertainty of
the isotopic composition measurement is therefore 6 ‰ for
δD and 1 ‰ for δ18O. We have further validated these mea-
surements through (i) a comparison of the data acquired by
infrared spectrometry with cryogenic trapping samples and
(ii) a protocol to calibrate on the SMOW–SLAP scale at
δ18O lower than the SLAP δ18O value (−55.5 ‰). This cali-
bration demonstrated that our Picarro instrument is linear in
δ18O, down to −80 ‰ in δ18O and stays almost linear down
to −110 ‰. This is essential for our study since the mean
δ18O value was −68.2 ‰ at Concordia between 25 Decem-
ber 2014 and 17 January 2015.

Two different regimes have been identified during the cam-
paign: the first from 26 December 2014 to 4 January 2015
and the second from 5 to 17 January 2015. The main dif-
ference between the two regimes on isotopic composition
is the amplitude of the daily cycles: large and regular dur-
ing regime 2, small and irregular in regime 1 and an almost
erased one from 1 to 4 January 2015. For regime 1, corre-
lation of humidity with surface temperature is lowered and
isotopic composition is almost stable, whereas for regime 2
there is an almost perfect correlation for both humidity and
isotopic composition with temperature. We attribute these

differences to differences in the stability of the atmosphere.
We explain the drop of correlation in regime 1 by a weakly
turbulent boundary layer during which temperature, humid-
ity and isotopic composition diurnal cycles are truncated in
comparison to regime 2, which is characterized by efficient
turbulence with important diurnal cycles and almost perfect
correlation between the snow surface temperature and the
first metres of the atmosphere. The second regime therefore
appears to be characterized by equilibrium between the iso-
topic composition of vapour over the first metres and that of
the snow, as already shown for Greenland (Steen-Larsen et
al., 2013).

Temperature cycles seem to be directly responsible for
isotopic composition cycles, at least in regime 2, through
equilibrium fractionation in sublimation/condensation cy-
cles. At first order, it seems the snow isotopic composi-
tion is influencing directly the vapour through fractionation
at phase change. The vapour isotopic composition average
value matches the one obtained by equilibrium fractiona-
tion of the local snow. However, the measured slope between
δD and δ18O still cannot be explained purely by equilibrium
fractionation from local snow. We cannot rule out a contribu-
tion of horizontal air advection from inland locations, trans-
ported by southward winds and providing small amounts of
very depleted moisture.

Finally, our study opens new perspectives on the influence
of post-deposition effects and their importance for the wa-
ter stable isotope signal recorded in deep ice cores. In par-
ticular, we have shown that the relationship between water
vapour δ18O and temperature can be erased by weakly turbu-
lent regimes. Yearlong monitoring of the isotopic composi-
tion of the water vapour could help identify how often these
conditions happen and also whether the snow isotopic com-
position could present a biased relationship toward seasonal-
ity, temperature or precipitation.

5 Data availability

The dataset used for this study is available as a Supplement.

The Supplement related to this article is available online
at doi:10.5194/acp-16-8521-2016-supplement.
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Chapter 6. Exchanges between snow and vapour on the East Antarctic Plateau

6.3 Study of the moisture origins

6.3.1 Impact of turbulence on the intermittency of the relationship
between isotopic composition and temperature

In this section, we rapidly go back on the impact of turbulence on isotopic composition
signal in the vapour mentioned in previous section. As indicated by the more important
Richardson number during the Regime 1, in particular at night, the lower layers of the
atmospheric boundary layer are stratified and a suppression of the diurnal cycle of water
vapour isotopic composition is observed. Figure 6.7a shows a schematic of the processes
involved in the suppression of the water vapour isotopic composition cycles in the bound-
ary layer. Temperature diurnal cycles at the surface create variations in the fractionation
at the phase transition between vapour and ice. Because of these temperature variations,
snow still faces sublimation/condensation cycles and exchanges isotopes with the first
layer of water vapour (layer 0 on the graph). But because of the stratified boundary layer,
the signal is not able to be advected up. This also leads to a reduce reservoir of water
vapour the snow can exchange with, therefore, in such a situation, we expect a smaller
impact of post-deposition by sublimation/condensation cycles though we have not been
able to confirm this hypothesis by observations yet. Even for a weakly-turbulent atmo-
spheric boundary layer (such as described by Zilitinkevich et al. [2008]), we can expect
to observe a weaker propagation of the surface signal in isotopic composition toward the
boundary layer. Indeed, a lasting stratified boundary layer is unlikely to be observed in
summer at Dome C, but our conclusions can be extended to an intermittently weakly
turbulent boundary layer. At Summit, Berkelhammer et al. [2016] report similar stable
atmospheric conditions during which the atmospheric vapour near the surface is appar-
ently isolated from the free troposphere. In these stable conditions, we still expect to
observe diffusion of moisture in the boundary layer (especially because of the gradient of
temperature and of humidity). Even though molecular diffusion is less efficient than eddy
diffusion, this might lead to a net flux of moisture. As shown by Casado et al. [2016a],
the diffusion of water in the air creates fractionation, therefore we expect that even in
stratified conditions, the moisture exchanges can alter the vapour isotopic composition,
still it has not been observed yet in Antarctica.

During the regime 2, we observe full complete diurnal cycles in water vapour isotopic
composition. Indeed, during this regime, strong winds and a more turbulent boundary
layer mixed more efficiently the first layers of the boundary layer, in particular, lifting the
signal of water vapour isotopic composition from the surface to higher up in the boundary
layer. This probably enables more exchanges of isotopes between the snow and water
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Figure 6.7: Schematic of the impact of turbulence on the water vapour isotopic composition: left,
stratified regime, exchanges between vapour and snow still occur but the vapour is not mixed
efficiently, right, turbulent regime, vapour and snow can exchange freely because eddy diffusion
provides a large reservoir of water vapour.

vapour and should trigger post deposition effects of sublimation/condensation cycles on
snow isotopic composition. This will be discussed more thoroughly in section ??.

6.3.2 Source of moisture

In both cases, the first hypothesis is that the main source of vapour is from exchanges
with the snow pack which is not validated. Indeed, if the mean water vapour isotopic
composition matches the values predicted by equilibrium fractionation with the snow, as
described in section 6.2, the slope between δD and δ 18O cannot be properly predicted,
no matter which fractionation coefficients are used. If Ellehoj’s fractionation coefficients
seem more appropriate to predict both the values of isotopic composition and the slope
between the isotopic compositions, they still fail to predict it precisely.

In section 6.2, we showed that the "remote origin" hypothesis was not compatible with
the slope between δD and δ 18O. We used the MCIM (a Rayleigh model) tuned with a
transect from Terra Nova Bay to Dome C to evaluate the slope between δD and δ 18O and
found a slope higher than the one of the vapour at Dome C (6.1 ‰/‰ for the Rayleigh dis-
tillation against roughly 5‰/‰ for the measurements). The "remote origin" hypothesis,
defined by a Rayleigh distillation from a unique source was therefore rejected. Still, the
slope obtained for the vapour created only from local sublimation of snow using equilib-
rium fractionation is not equal to the one found in the vapour. To explain this difference,
we propose two hypothesis: (1) the vapour has been formed from an extreme Rayleigh
distillation followed by a refill of moisture near the surface in a nearby location (within
100km) where the isotopic composition is not necessarily equal to the one found at Dome
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C or (2) the parametrisation of the exchanges with the local snow through equilibrium
fractionation is not relevant or badly parametrised.

Figure 6.8: Backtrajectories of the air masses to Concordia from the 5th of January 2015 to the
17th of January 2015 realised using the software HYSPLIT: a) average backtrajectories on a map
of Antarctica of clusters of the direction of transport of the air masses of the last 2 steps, only
trajectories from the South are really visible, b) altitude of the air parcel along the backtrajectory

First, we test the "refill" hypothesis. Back trajectory analyses indicate that all the air
masses are originating from further inland mostly from the south (figure 6.8). These anal-
yses indicate that air parcels have been near the ground level for more than 30 km (in the
dataset used to compute the backtrajectory, the first layer is from 0 to 20m), which enable
important exchanges between the moisture of these parcels and the snow surface for tens
of kilometres before reaching Dome C in particular considering the low windspeed en-
countered at Dome C (below 5m.s−1), this range of distance corresponds to several hours.
In this case, the dry air masses could get refilled with moisture near the surface which is
not included in the MCIM. This refill would lead to isotopic composition of the vapour
close to equilibrium fractionation with the snow. In this case, the air masses are coming
from further south. The classical trajectory computed in the MCIM is not going by 30 km

further South Dome C. It could be modelled by integrating an extreme distillation down
to 30 km South of Dome C and then computing a refill by sublimation of the snow.

It is expected that snow from further inland would be more depleted in heavy isotopes
because it is further away on the Rayleigh distillation path. Indeed, a recent publica-
tion by Genthon et al. [2015] indicates that over the 25 km North and South of Dome C,
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there is a gradient of accumulation of 10% (lowest value 25 km South of Dome C). This
indicates that the region farther South Dome C is further away on the Rayleigh distilla-
tion path, and that the snow is more depleted than in Dome C. Still, preliminary results of
isotopic composition of snow from 25km South Dome C does not support this hypothesis.

Still, if the snow is more depleted, the vapour formed would also be more depleted, in
addition of the slope between δD and δ 18O being lower. The "refill" hypothesis further
south is therefore not completely satisfactory. This suggests the second hypothesis: the
temperature dependency of the equilibrium fractionation at low temperature is perhaps
not well estimated. We additionally tested to include kinetic fractionation, with a similar
formulation than Jouzel and Merlivat [1984] and it was not possible to match the value
of the slope (the slope obtain for the vapour isotopic composition was then below 2‰/‰,
not shown). A complete understanding of the origin of the moisture would require a
model including isotopes and able to evaluate several sources and mixing of air masses.
We believe the regional model MARiso will be perfectly suited for this kind of study.

6.4 Comparison with other measurements from East Antarc-
tica

A similar campaign was realised at Kohnen station (located at 75◦ 00’ S, 00◦ 04’ E, 2892m

above see level, see the map in Fig. 1.2) in 2013/14 by Francois Ritter [Ritter et al., 2016]
where important diurnal oscillations were also intermittently observed. Kohnen station
is located lower on a slight slope which enables katabatic winds. Additionally, Kohnen
site is warmer with an average temperature of −44.5◦C and the accumulation is higher:
64 kg.m−2.yr−1. Despite the presence of katabatic winds, Ritter et al. [2016] found that
the diurnal variability is predominant in the variations of water vapour isotopic composi-
tion and they attribute it to the exchanges between snow and vapour (see Fig. 6.9b).

Figure 6.9 presents the comparison of the mean diurnal cycle of turbulent regime at
Dome C with the mean diurnal cycle of a sample of large amplitude days in Kohnen. De-
spite temperature being higher at Kohnen, similar temperature diurnal cycles characterise
both sites. The wind speed is more important at Kohnen except at night when it falls to
almost 0 m.s−1, this is a typical feature of katabatic winds. Water vapour isotopic compo-
sition at Dome C is more depleted than in Kohnen due to its more remote location on the
Rayleigh distillation path. Still, we observe similar amplitudes of water vapour isotopic
composition cycles in Dome C (38‰ for δD) and in Kohnen (36‰ for δD).
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Figure 6.9: Comparison of the measurements of water vapour isotopic composition mean diurnal
cycles in (a) Dome C and in (b) Kohnen for in both cases days with important diurnal cycles:
regime 2 in the case of Dome C and 18 days scattered in the dataset for Kohnen [Ritter et al.,
2016]

Keeping the hypothesis that the first contribution to the isotopic composition of the
vapour are the vertical fluxes of moisture from/to the snow, the results from Kohnen gen-
eralise our results from Dome C to a large range of places over the East Antarctic Plateau.
Indeed, the amplitude of variations of humidity and isotopic composition of the vapour
at Kohnen and Dome C are similar. To conserve a neutral mass budget, this requires
amplitudes of variations of snow isotopic composition of the same order of magnitude,
and thus that the post deposition due to condensation/sublimation should be of the same
order of magnitude. As accumulation is 3 times larger in Kohnen than at Dome C, we ex-
pect a smaller impact in Kohnen than at Dome C. More studies inland Antarctica would
strengthen our knowledge of the processes affecting water vapour isotopic composition.
Additionally, these results only focus on the diurnal scale and extension to seasonal scale
requires year long water vapour isotopic composition monitoring.

To our knowledge, these two sites (Dome C and Kohnen) are the only two inland sites
in Antarctica where water isotopes in the vapour have been measured. Still, in Green-
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land, Steen-Larsen et al. [2013] has monitored water vapour isotopic composition and
compared it to snow. Climatic conditions at NEEM are warmer than in Dome C and
in Kohnen and the distillation path is much shorter and therefore, the water vapour iso-
topic composition is enriched at NEEM compared to Dome C. This is clearly visible in
the slopes between δD and δ 18O. At NEEM, the slope was estimated by Steen-Larsen
et al. [2013] around 6.5‰/‰, this is higher that in Kohnen where it was estimated by
Ritter et al. [2016] around 6.0‰/‰ which is also higher than at Dome C where it is only
5.3‰/‰ [Casado et al., 2016b]. This reflects the impact of continentality over the slope
between δD and δ 18O, and it is associated with an artificial increase of d− excess. Still,
already at NEEM, Steen-Larsen et al. [2014a] found that the exchanges between water
vapour and snow surface were impacting the isotopic composition not only of the vapour
but also of the snow. Because of the very low precipitation rate at Dome C, it is the perfect
location to estimate the impact of the exchanges between water vapour and snow on the
snow isotopic composition.

The amount of sublimated/condensed snow required for this range of modification of
the vapour isotopic composition is difficult to estimate as we are not in a closed box sys-
tem, and therefore, a large part of the flux influences layers higher than the measurement
height or even than the atmospheric boundary layer most likely. Ritter et al. [2016] re-
alised a closed box model to estimate the variations of vapour isotopic composition com-
puting only thermodynamic properties at equilibrium during an average diurnal cycle.
They show that a snow reservoir of 5 mm provides enough vapour to observe variations
of the vapour isotopic composition 2 times larger than observed. This overestimation is
most likely due to closed system. In section 7.2.3, we will show in experimental data that
the amount of water involved in one frost deposition event during a normal night at Dome
C can reach amounts larger than what would be necessary to justify the range of evolution
of the water vapour content observed here.

6.5 Perspective for new water vapour measurements

In 2015/16, Frederic Prie went to Concordia station to realise a second study, the first
preliminary results are presented in Fig. 6.10. During this campaign, issues with the
calibration device drivers prevented from calibrating during the first three weeks of the
campaign and therefore from obtaining the best possible precision from in situ infrared
spectrometry. Still, cryogenic trapping and in situ measurements from the Picarro are in
agreement. During 2015/16 campaign, it is not possible to separate easily two clear turbu-
lent or stratified regimes of several days as it was for 2014/15 and it seems that turbulent
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and stratified conditions tend to successively occur. Additionally, several precipitation
events create gaps in the dataset that we were not able to fill by interpolation. Finally,
issues with the gas handling seems to have impacted the δ 18O of the water vapour in
the inlet of the Picarro. Indeed, if the values of the calibration are normal, the values of
outside air δ 18O are completely out of range of what is expected for the East Antarctica
Plateau (around −30‰ , not shown). We expect that d− excess will be not available for
this dataset.
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Figure 6.10: Specific humidity and water vapour isotopic composition during the campaign of
2015/16 from the Picarro (light lines) and the cryogenic trapping (dark bars)

This 2015/16 campaign benefited from the participation of Alexey Ekaykin from the
AARI (Saint Petersburg) and it was possible to realise extensive snow pits studies to com-
plete the one realised at Vostok and compare them with the vapour. The measurements of
these snow pits could not be realised within the framework of my PhD.

The development of a field deployable instrument to measure water vapour isotopic
composition as described in section 4.3 would enable one to measure down to humid-
ity and temperature never measured yet. In particular, this instrument would be able to
monitor the isotopic composition all year long at Dome C. This would be an extraordi-
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nary opportunity to improve the constrain on physical processes affecting water stable
isotopes.
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Chapter 7

Archival of the water stable isotope
signal in East Antarctic ice cores

This section was realised using material from a manuscript submitted to The Cryosphere

Ice is a natural archive of past climate variations. The chemical and physical compo-
sitions of the ice and of the air bubbles trapped inside are used as paleoclimate proxies
[Jouzel and Masson-Delmotte, 2010]. In Greenland, ice cores provide reconstructions
of past temperature from greenhouse gas concentrations and water isotopes back to the
last interglacial period, 120 000 years ago [North Greenland Ice Core Project members,
2004; NEEM community members, 2013]. In Antarctica, low accumulation rates enable
the reconstruction of past climate over several interglacial periods, e.g. 420 000 years at
Vostok [Petit et al., 1999b] and 800 000 years at Dome C [EPICA, 2004, 2006]. Even
though reconstructions from ice cores from Greenland do not extend as far back as from
Antarctic’s ice cores, high resolution analyses of the cores from Greenland provide very
fine temporal resolution and can even resolve the seasonal cycle [Vinther et al., 2010].
Seasonal variations are also imprinted in the snow isotopic composition of high accumu-
lation sites of coastal areas of Antarctica [Morgan, 1985; Masson-Delmotte et al., 2003;
Küttel et al., 2012]. For low accumulation sites as found on the East Antarctic Plateau,
there is no consensus whether ice core records can reveal the climatic signal at resolu-
tions finer than multidecadal [Baroni et al., 2011] or not [Ekaykin et al., 2002; Pol et al.,
2014]. Ekaykin et al. [2002] analysed multiple pits from Vostok and identified large
spatio-temporal variations caused by post-deposition associated with surface topography
and wind interactions. These non-climatic phenomena creates high frequency signal in
single cores, which calls for stacking isotopic composition profiles from several snow pits
to distinguish the common climatic signal from this post-deposition noise. Still, on the
East Antarctic Plateau, a significant seasonal cycle is depicted in the isotopic composition
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of the precipitation [Fujita and Abe, 2006; Landais et al., 2012a; Stenni et al., 2016] and
of the surface snow [Touzeau et al., 2016]. So far, whether this seasonal cycle is archived
or not in buried snow, and thus, whether stacking an array of snow pits permits to increase
the signal to noise ratio and depict a climatic record at the seasonal scale from water iso-
topic signal remain unclear [Ekaykin et al., 2014; Altnau et al., 2015; Münch et al., 2016].

Several studies have focused on understanding how is the climatic signal archived in
the isotopic composition of snow and ice on the East Antarctic Plateau. Since the early
works of Dansgaard [1964] and Lorius et al. [1969], the relationship between ice isotopic
composition and local temperature has been attributed to the distillation associated with
the successive condensation events on the path from the initial evaporation site to the
deposition site. Nevertheless, the relationship between isotopic composition and surface
temperature is not constant through time and space, due notably to processes within the
boundary layer [Krinner et al., 1997], the seasonality of the precipitation between glacial
and interglacial periods [Sime et al., 2009], variations in the air masses transport trajec-
tories [Delaygue et al., 2000; Schlosser et al., 2004] and evaporation conditions [Vimeux
et al., 1999]. For Central East Antarctica, the glacial-interglacial isotope-temperature re-
lationship appears quite close to the spatial gradient (Werner et al., in prep), but its validity
for inter-annual variations [Schmidt et al., 2007] and warmer than present-day conditions
[Sime et al., 2009] is challenged.

In addition, under the exceptionally cold and dry conditions of the East Antarctic
drilling sites, the contribution of post-deposition processes to the isotopic composition of
the surface snow cannot be neglected [Town et al., 2008; Sokratov and Golubev, 2009].
It has been recently evidenced that summer exchanges between snow and water vapour
at the surface significantly affect the isotopic composition of the snow both in Greenland
[Steen-Larsen et al., 2014a] and on the East Antarctic Plateau [Ritter et al., 2016]. In the
first top metres of the snowpack, isotope exchanges involved during the snow metamor-
phism and the diffusion within the porous matrix additionally affect the isotopic compo-
sition of the snow [Langway, 1970; Johnsen, 1977; Whillans and Grootes, 1985]. The
diffusion length associated with these processes depends on the firn ventilation, the snow
density and the exchange rate between the atmospheric water vapour and the surface snow
[Waddington et al., 2002; Schneebeli and Sokratov, 2004; Sokratov and Golubev, 2009].
This wide range of processes hampers the interpretation of the isotopic signal, in partic-
ular it is not clear how much of the original signal acquired during the formation of the
precipitation is conserved during the burial of the snow.
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Due to the extreme conditions on the East Antarctic Plateau, the general understand-
ing of the processes involved in the hydrological cycle (out of any isotopic consideration)
is not straightforward, and there remains open questions such as the definition of the accu-
mulation, the estimation of the mass balance or the impact of snow metamorphism on the
albedo feedback loop. In the case of accumulation, the low amount of precipitation [Petit
et al., 1982; Frezzotti et al., 2007; Genthon et al., 2015] and the important contribution of
blowing snow in the total deposition [Groot Zwaaftink et al., 2013; Picard et al., 2016a]
creates patchiness in the accumulation, resulting in large uncertainties in the determina-
tion of the real precipitation amounts. Snow metamorphism is difficult to quantify due to
the large noise created by the spatial variability, requiring a large number of samples every
day. Using passive microwave satellite data, Picard et al. [2012] argue that the grain index
is an indicator of the coarsening of snow grains and show its increase in summer to be
anti-correlated with the integrated summer precipitation amount. Supersaturation is esti-
mated from the combined measurements of humidity and temperature, both of which are
complexified by the extreme conditions in Antarctica [Genthon et al., 2016]. Including
water isotopic composition as a tracer of the interactions between the snow pack and the
atmospheric boundary layer could help refine our knowledge of the processes involved in
the hydrological cycle in these regions.

Recent studies have focused either on the monitoring of the isotopic composition of
the snow pack on the East Antarctic Plateau [Touzeau et al., 2016], of the precipitation
[Fujita and Abe, 2006; Landais et al., 2012a; Stenni et al., 2016], or of the atmospheric
water vapour [Casado et al., 2016b; Ritter et al., 2016]; exploring their links to climatic
parameters and the implications for post-deposition processes during the archival of the
climatic signal by the snow isotopic composition. Here, we study the isotopic compo-
sition of the continuum between atmospheric vapour, precipitation, surface and buried
snow. To do so, we combine different datasets from the East Antarctic Plateau, based
on published studies and new results, in order to qualitatively characterise the different
processes affecting surface snow isotope composition at different time scales. We first
report and compare the different methodologies applied for sampling surface snow, snow
pits, precipitation and water vapour in the atmosphere (Section 2). Then, we present
the results from these different studies including surface snow measurements over sev-
eral years, precipitation measurements, vapour and snow measurements and snow pits
sampling (Section 3). Finally, we discuss the impact of post-deposition processes at the
snow surface through the exchanges between the snow and the vapour and within the firn
(Section 4) before summarising our key conclusions.
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7.1 Sampling of snow on the East Antarctic Plateau

7.1.1 Sites

The East Antarctic Plateau is a high elevation area, over 2500 metres above sea level
(m a.s.l.) covered with snow and ice spreading on most of the eastern continental part of
Antarctica (Fig. 7.1). The East Antarctic Plateau is characterised by mean annual tem-
peratures below−30◦C and accumulation below 80kg.m−2.yr−1, as illustrated in Fig. 7.1.
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Figure 7.1: Map of Antarctica highlighting the East Antarctic Plateau (grey line = contour of
2500 m a.s.l. elevation) indicating the location of the sampling sites (solid squares) included in
this work. Colours indicate the annual mean surface air temperature at 2 m modified from the
ERA-interim dataset from 1979 to 2009 [Nicolas and Bromwich, 2014].

This study mainly focuses on Dome C, the site of the Concordia overwintering sta-
tion, enabling year-long operations and thus giving the rare opportunity to study the entire
seasonal cycle of isotopic composition. We extend the results to the entire East Antarctic
Plateau by comparing the data from Dome C to observations from the Kohnen, Vostok and
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Amundsen-Scott South-Pole stations and from the point S2 which is one of the drilling
sites of the campaign Explore-Vanish joining Dome C and Vostok (see Fig. 7.1). These
locations span a large range of climatic conditions of the East Antarctic Plateau as illus-
trated on Table 7.1.

Table 7.1: Climatic conditions at the different sites used in this study [Alley, 1980; Petit et al.,
1982; Wendler and Kodama, 1984; Oerter et al., 2000; Ekaykin et al., 2002; van As et al., 2007;
Lazzara et al., 2012; Casey et al., 2014; Genthon et al., 2015; Touzeau et al., 2016; Laepple et al.,
2016]

Site Location
Altitude AWS mean 10 m firn Accumulation Mean wind
(m a.s.l.) temperature (◦C) temperature (◦C) (kg.m−2.yr−1) speed (m.s−1)

Kohnen 75.0◦S - 0.1◦E 2892 -42.2 -44.5 62 - 73 4.5
Vostok 78.5◦S - 106.8◦E 3488 -55.2 -57 21 5.1
S2 76.3◦S - 120◦E 3229 NA -55.1 21 NA
Dome C 75.1◦S - 123.3◦E 3233 -52.4 -54.3 27 3.3
South Pole 90◦S - 0◦E 2835 -49.3 -50.8 69 4.1

7.1.2 Surface snow and precipitation sampling

Precipitation and surface snow have been sampled at Dome C regularly by different teams
since 2008. Here, we report new measurements of precipitation and surface snow together
with previously published data from Stenni et al. [2016] and Touzeau et al. [2016] (see
Table 7.2). Because different teams were in charge of the different sampling activities,
the protocols differ between the years (Table 7.2).

The sampling protocol of the 2011 campaign (SUNITEDC) has been precisely de-
scribed by Touzeau et al. [2016]: the upper first millimetres of snow (1 to 5 mm) were
gathered every 1-2 weeks using a metallic blade over a surface of 20 per 20 cm. This
leads to samples of approximately 20mL. The sampling areas were randomly picked pro-
vided the surface was flat.

During the NIVO project (from 2013 to 2015), the surface snow was gathered by
sampling roughly 15 mm of snow with a corning flask over a surface of 20 per 10 cm.
This led to samples of approximately 50 mL. The sampling areas of 2013/14 were chosen
randomly in a 100 per 100 m "clean area" near the Atmospheric Shelter in parallel with
density and specific surface area (SSA) measurements (see section 7.1.4). Two samples
were collected during each collect and we present here the average value of the two sam-
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Figure 7.2: Impact of the surface snow sampling, approximately 20 per 10cm of snow are gathered.
The surface conditions vary a lot at the meter scale with the presence or not of frost hoar.

ples. In addition, during summer 2013/14, regular samplings of surface and sub-surface
snow were performed for almost 2 months. The surface samples were gathered using a
corning flask from 0 to 3 cm depth. The sub-surface samples were gathered by the same
tool from 3 to 6 cm depth. In 2014/15, an additional sampling took place within the
GLACIO project twice a day from December 2014 to January 2015 near the location of
the inlet used for water vapour monitoring (See section 7.1.4 and Casado et al. [2016b])
following the same protocol.

Sampling of surface snow and precipitation isotopic composition were carried out in
parallel by the Italian winterover crews (program PRE-REC). Precipitation samples have
been collected all year round on a 80 per 120 cm wooden table standing 1 m above the
ground level 800 m from Concordia Station from 2008 to 2011. The samples were col-
lected at 1 a.m. every day if the amount was sufficient. The surface snow samples were
gathered from an adjacent wooden plate of 80 per 120 cm at ground level. If the amount
of snow on this second table was sufficient, snow samples were collected. Both precipita-
tion and surface snow samples were sealed into date-labelled plastic bags and preserved
in frozen state until delivery and measurement in Italy. For the precipitation samples, the
protocol is detailed by Stenni et al. [2016]. It is important to note that the protocol of sur-

188



7.1. Sampling of snow on the East Antarctic Plateau

face snow sampling from the PRE-REC campaign differ greatly from the protocols from
the NIVO and SUNITEDC programs due to the presence of the wood plate.

Table 7.2: Summary of the different campaigns of surface snow and precipitation samplings pre-
sented here.

Project Location Years
Resolution

Reference
(days)

SUNITEDC (French) Surface snow 2011 7 [Touzeau et al., 2016]

PRE-REC (Italian)
Precipitation 2008 to 2011 1 Partially in [Stenni et al., 2016]
Surface snow 2012 and 2014 7 This study

NIVO (French)
Surface snow 2013 to 2016 3

This study
Sub-surface 11/2013 to 01/2014 1

GLACIO (French) Surface snow 12/2014 to 01/2015 1 This study

7.1.3 Snow pits sampling

We present profiles of isotopic composition sampled in snow pits at Dome C : two unpub-
lished profiles from the first preliminary campaigns at Dome C in 1978 and two new snow
pit profiles obtained in 2014/15, dug 50 m apart in parallel with surface snow sampling
and vapour monitoring. For one of them, snow temperature and density profiles were
established. The samples were taken in plastic flasks and analysed later on in the labo-
ratory. To extend the results to other sites of the East Antarctic Plateau, we additionally
present snow pit samplings performed through several campaigns over different sites of
East Antarctica which were realised and analysed by different teams. An example of a
snow pit being dug is shown of figure 7.3.

Two new isotopic composition profiles from Kohnen are extracted from trenches, fol-
lowing the methodology reported in Münch et al. [2016] but down to 3.6m depth sampled
at a 3 cm vertical resolution. The two profiles are separated by approximately 500 m. A
large number of snow pits from Vostok station are presented here, they have been pre-
viously described in Ekaykin et al. [2002, 2004] and Ekaykin and Lipenkov [2009]. We
combine the results from six snow pits with depths varying from 2.5 m to 12 m and a
minimum resolution of 5 cm. In addition, snow pits from the Explore-Vanish campaign
are included comprising one 3.5 m deep snow pit from Vostok, one 2.6 m deep from S2
and one 2m deep from Dome C, all of them including triple isotopic compositions (δ 18O,
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Figure 7.3: Picture of the realisation of a snow pit realised at Dome C in January 2015

δ 17O and δD) published in Touzeau et al. [2016]. Finally, we include two snow pits from
South Pole [Jouzel et al., 1983; Whitlow et al., 1992].

7.1.4 Atmospheric and snow surface monitoring

Water vapour isotopic composition has been measured at Kohnen station in 2013/14 [Rit-
ter et al., 2016] and at Dome C in 2014/15 [Casado et al., 2016b]. In both cases, to reduce
the noise, the dataset were averaged to hourly resolution and cover approximately one
month. In parallel to water vapour isotopic composition monitoring, surface snow was
sampled once to twice a day. For a period from 27 hours to 72 hours, the surface snow
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Table 7.3: Summary of the different snow pits presented in this study.

Station Years
Resolution Number

Reference
(cm) of pits

Vostok
2001 to 2015 2 to 5 6 Ekaykin et al. (2002, 2004, 2009)

2012/13 3 1 Touzeau et al. [2016]

Kohnen 2012/13 3 2 Münch et al. [2016]

Dome C
1977/78 1 to 3 2 This study
2012/13 3 1 Touzeau et al. [2016]
2014/15 1.5 to 5 2 This study

S2 2012/13 3 1 Touzeau et al. [2016]

South Pole
1978 2 1 Jouzel et al. [1983]

1989/90 1.1 1 Whitlow et al. [1992]

was sampled every hour to evaluate the diurnal cycle of both the vapour and the snow
isotopic composition (see section 7.1.2).

Dome C hosts a large set of instruments probing the troposphere and the firn justi-
fying to focus this study on this site. Here, we make use of temperature, wind speed
and humidity measurements from the 45m meteorological profiling system described by
Genthon et al. [2013]. The temperature and humidity observations are performed using
ventilated thermohygrometers HMP155 and are therefore free of radiation biases [Gen-
thon et al., 2011]. The temperature reanalysis product (ERA interim) has been compared
to ventilated automatic weather station data (AWS) from Genthon et al. [2013] and we
found a good agreement at the seasonal scale and fairly good agreement at the event scale
(not shown here). Depending on data availability (as the ventilated AWS were installed
at Dome C in 2009), we will use either ERA-interim or measurements from AWS. An
intercomparison when the two datasets are overlapping reveals that most of the variability
from the day-to-day to the seasonal and inter-annual scales in captured by ERA-interim
and major differences appear only for the evaluation of the diurnal cycle (not shown).
Wind speed and direction are measured using Young 05103 and 05106 aerovanes. Snow
surface temperature is measured with a Campbell scientific IR120 infrared probe located
2 m above ground level.

Finally, we include grain index observations [Picard et al., 2012] obtained by satellite
measurements. The grain index is used as an indicator of the evolution of the size of the
snow grains, and provides a qualitative evaluation of metamorphism. When available,
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we include Surface Sensitive Area (SSA) measurements also as an indicator of meta-
morphism [Libois et al., 2015]. These optical methods are completed with snow surface
observations. Frost deposition was monitored with a time lapse of the growth of hoar at
the surface (see the video at https://vimeo.com/170463778). An image processing script
was used to characterise the growth of a few crystals at the surface of the sastruga.

7.1.5 Modelling approaches

To highlight the impact of post-deposition processes, it is necessary to present how the
surface snow isotopic composition differs from the initial precipitation signal formed dur-
ing the Rayleigh distillation. Here, we make use of the Rayleigh-type Mixed Cloud Iso-
tope Model (MCIM) developed by Ciais and Jouzel [1994] which computes the Rayleigh
distillation along the air masses trajectories. The model includes microphysical proper-
ties of clouds and in particular takes into account mixed phase conditions. It is tuned
with triple snow isotopic composition measured along a transect from Terra Nova Bay
to Dome C [Landais et al., 2008]. This tuning has been proven suitable to evaluate the
variations of isotopic composition at Dome C [Winkler, 2012]. This will provide a com-
parison between the spatial and the temporal slope of precipitation isotopic composition
at the seasonal scale.

7.2 Results

In this section, we review the results from the different datasets, illustrating the different
steps of the archival of climatic signal by the snow isotopic composition, from the precip-
itation to the buried snow (see Fig. 7.4).

We first present precipitation isotopic composition variations based on data from
Stenni et al. [2016] and additional new data. We then present our new data of surface
snow isotopic composition compared to the variations in 2 m surface air temperature, the
grain size index and the precipitation isotopic composition, in order to evaluate at the
day-to-day and at the seasonal scales the difference between surface snow and precipi-
tation isotopic signals. We then report short time scale parallel measurements of vapour
and surface snow isotopic composition, providing inputs on one of the major component
of summer metamorphism on surface snow isotopic composition: the diurnal cycles of
sublimation/condensation. We finally compare the isotopic composition of the surface,
sub-surface and buried snow to evaluate the processes involved during the archival of the
isotopic composition signal.
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Figure 7.4: Schematic of the different contributions to the snow isotopic composition (Ri
X stands

for the composition of isotope i in the phase X) in remote Polar Regions: above the surface, both
the precipitation and the sublimation/condensation cycles can contribute to the surface compo-
sition; in the open-porous firn below the surface, the snow can exchange with the air below the
surface, enhanced or not by wind pumping. Deeper in the firn, molecular diffusion in the intersti-
tial air affects the snow isotopic composition.

7.2.1 Precipitation isotopic composition

In this section, we present precipitation isotopic composition data at Dome C from Stenni
et al. [2016] depicting 3 complete annual cycles from 2008 to 2010, completed by new,
unpublished data from 2011 (Fig. 7.5).

At Dome C, the precipitation isotopic composition presents a large variability at the
day-to-day scale and a regular seasonal cycle. At the seasonal scale, precipitation isotopic
composition is relatively well correlated to local temperature with a slope of 0.49±0.02
‰/ ◦C (R2 = 0.63, n = 500) [Stenni et al., 2016] and no apparent lag between tempera-
ture and isotopic composition variations. Compared to other year-long precipitation sam-
pling on the East Antarctic Plateau, this slope is lower than at Dome F (0.78 ‰/◦C with
R2 = 0.78 [Fujita and Abe, 2006]) and higher than at Vostok (0.26 ‰/◦C with R2 = 0.58
[Touzeau et al., 2016]). In summer, we systematically observe precipitation δ 18O above
-40 ‰ at Dome C, whereas in winter, δ 18O values below -65 ‰ are systematically ob-
served.
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Figure 7.5: Four years (2008 to 2011) of monitoring at Dome C of the variations of precipita-
tion isotopic composition from the PRE-REC campaign [Stenni et al., 2016] (δ 18O, green, dots:
raw data, line: monthly average) in surface air temperature from the reanalysis ERA-interim (red
line), grain index from satellite observations (black line) and snowfall amount calculated from the
reanalysis ERA-interim (black bars).

7.2.2 Surface snow isotopic composition

Here, we present measurements of surface snow isotopic composition at Dome C from
December 2010 to January 2016 (Fig. 7.6) combining results from Touzeau et al. [2016]
with new data presented for the first time in this study from the PRE-REC, NIVO and
GLACIO projects. The dataset includes three complete annual cycles of surface snow
isotopic composition (in 2011, 2014 and 2015) and part of the 2012 cycle, with the re-
spective temperature variations from AWS [Genthon et al., 2013] and the precipitation
events (from reanalysis products). Note here that we use the available data from AWS in
this section and not reanalysis products as in section 7.2.1 (see section 7.1.4).

First, we focus on the spatial variability impact on the measurements. To disentangle
the local (below 1 km) spatial variability from the temporal variations of the surface snow
isotopic composition (Fig. 7.6), we compare the duplicate measurements realised during
the year 2014 (Fig. 7.7). Indeed, for this year, several sets of measurements are avail-
able: one sampled at a fixed location on a wood surface (PRE-REC, blue dots) and one
sampled randomly from the snow surface in a large field (NIVO, red line) as described
in section 7.1.2. For the NIVO datapoints, we additionally present the raw maximum
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Figure 7.6: Surface snow isotopic composition (δ 18O, green lines) sampling from December 2010
to 2015: Dec 2010 to Dec 2011, data from the project SUNITEDC [Touzeau et al., 2016]; Feb
2012 to Oct 2012, data from the project PRE-REC (this study); Nov 2013 to Jan 2016, data from
the project NIVO (This study). For comparison: AWS 2 m temperature measurements [Genthon
et al., 2013] (red line), grain index [Picard et al., 2012] (black fine line) and precipitation (black
bars) from ERA-interim reanalysis product. The blue shaded areas highlight the high grain index
values (arbitrary threshold).

and minimum values obtained from duplicates. Strong differences are visible at the event
scale, in particular during some events in March May and June. During these events, the
very low values of the PRE-REC sampling reflect the isotopic composition of precipita-
tion (not shown, Dreossi et al., in prep). This indicates that the sampling directly on the
surface snow is a mixture of newly accumulated and existing snow and thus shows smaller
variations than the wood surface and the precipitation itself. Also, when comparing the
PRE-REC results to the NIVO results, there is an average difference of 4‰, which we
attribute here to spatial variability. At the event scale (synoptic event of typically a cou-
ple of days), the variations of the surface snow isotopic composition exhibit an important
small scale spatial variability (meter scale) due to the patchiness of the accumulation and
of the frost deposition. Caution in interpretation of variations of surface snow isotopic
composition at short time scale is therefore necessary. Larger statistics would be nec-
essary to distinguish the climatic signal from the sampling variability. Still, the overall
trends of the different datasets (and therefore representing different locations) are similar
and demonstrate that the temporal variations are larger than the spatial variations. We
estimate the spatial uncertainty of the surface snow isotopic composition measurements
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to be 1.7‰ for δ 18O from the standard deviation calculated with the duplicates on the
NIVO samples (randomly picked within 50 m).
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Figure 7.7: Reproducibility of surface snow isotopic composition measured in 2014. The NIVO
dataset (red dots and line, duplicate span represented by the red shade, also presented in green
in Fig. 7.6) is compared to measurements obtained by independent teams (PRE-REC, blue dots;
GLACIO, grey hexagon) and independent methods: PRE-REC snow samples were collected from
a wood table whereas NIVO and GLACIO snow samples were collected directly from the surface
snow;

Second, we focus on the temporal variability at different time scales. The three years
(2011, 2014 and 2015) present the typical temperature variations for the East Antarctic
Plateau: a short, "warm" summer before a long, rather constant, winter as described by
Van Den Broeke [1998]. Over this cycle are imprinted short warm events often associated
with advection of warmer air masses and precipitation events; these warms events are
particularly visible in winter. We observe a similar pattern for δ 18O of the surface snow:
annual cycles with a steep maximum centred on January (roughly a month after the tem-
perature maximum) and a gradual decrease along most of the winter delayed by several
months when compared to local temperature. Over these annual cycles, peaks of δ 18O

of surface snow occur and some of them might be related to warm precipitation events as
previously suggested by Touzeau et al. [2016].

The winter values of the surface snow isotopic composition are similar between all
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observed years but the summer values show strong inter-annual variations, resulting in
variable amplitudes of the annual cycles of δ 18O. In 2011 and 2015, the amplitude of the
annual cycle is below 10‰ in δ 18O, whereas it is above 20‰ in 2014. In 2012, despite
missing data at the beginning of the year, we observe variations of δ 18O more similar to
the ones of 2014 than to the one of 2011 and 2015 with a difference of 15‰ in δ 18O be-
tween the maximum at the beginning of February and the minimum in September. These
differences are significant with respect to the results obtained from replicate samples.

Third, in Fig. 7.6, we present the grain index estimated from satellite data [Picard
et al., 2012] to evaluate the impact of metamorphism on the surface snow. Periods of
strong metamorphism identified during the summer are highlighted (blue shaded areas)
using an arbitrary level on the summer grain index increase. We observe a link between
summer grain index highs and the amplitude of the seasonal variation of δ 18O of the
surface snow: in 2011 and 2015, small cycles of δ 18O are associated with a large grain
index starting to increase in December; whereas in 2014 (and partially in 2012), the large
summer increase of δ 18O is associated with small summer increase of grain index, in this
case delayed after mid-January. Such a pattern is not observed for precipitation (Fig. 7.5)
whose isotopic composition seasonal variations appear more regular and in phase with
temperature.

Finally, we focus on the slope between surface snow isotopic composition and tem-
perature to evaluate if the slope between isotopic composition and temperature observed
in precipitation is conserved in surface snow after being impacted by post-deposition pro-
cesses. Because the timeseries of surface snow δ 18O and of temperature are not in phase,
it is not possible to directly estimate the corresponding temporal slope by linear regres-
sion. This is particularly important in 2014 when the amplitude of the isotopic composi-
tion cycle is maximal. We therefore estimate the relationship by comparing the peak to
peak range in temperatures and isotopic composition. As the phase lag is smaller in 2011,
we use this year to compare the peak-to-peak slope to the linear regression. For 2011,
during which the amplitude of the isotopic composition seasonal cycle is greatly reduced
with respect to 2014, the slope between δ 18O and temperature is 0.14‰◦C [Touzeau et al.,
2016] rising up to 0.22‰◦C if considering the difference between maximum summer val-
ues and minimum winter values. For 2014, we obtain a slope of 0.49‰◦C, lower than
the prediction of the MCIM of almost 1‰◦C but closer to the value of the slope between
δ 18O and temperature reported by Touzeau et al. [2016] of 0.46‰◦C in precipitation at
Dome C (see Table 7.5).
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This illustrates that, at the seasonal scale, the seasonal amplitude of variations in sur-
face snow isotopic composition is greatly reduced compared to that of precipitation.

7.2.3 Exchanges between atmospheric water vapour and snow iso-
topic composition

In this section, we focus on the isotope exchanges between the surface snow and the atmo-
spheric vapour at the diurnal to day-to-day scales by comparing measurements of vapour
isotopic composition from Casado et al. [2016b] with new results of surface snow isotopic
composition from samples obtained in parallel with the vapour monitoring. To evaluate
the impact of sublimation/condensation cycles on the snow isotopic composition, we per-
formed hourly samplings of the snow isotopic composition during 24 hours at Dome C in
parallel with vapour isotopic composition monitoring. In Fig. 7.8, we present the simul-
taneous evolution of snow and vapour isotopic compositions over 24 hours on the 7th of
January 2015.
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Figure 7.8: Isotopic composition of surface snow (light green dots, error bars are obtained from
replicates) compared with isotopic composition of water vapour (dark green line) during one typ-
ical summer day at Come C , with 3m-temperature (purple line) compared to the surface temper-
ature (light purple shade) and with the relative humidity (blue line) during the same period from
Casado et al. [2016b]. The blue shaded area marks the time-period when frost deposition was
observed (see the time-lapse video: https://vimeo.com/170463778)
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To evaluate the impact exchanges between snow and vapour on surface snow isotopic
composition, we chose the 7th of January as a case study. Indeed, it was characterised
by a large diurnal cycle in water vapour isotopic composition, humidity and temperature
associated with a turbulent and convective atmospheric boundary layer enabling impor-
tant exchanges of moisture between snow and vapour [Casado et al., 2016b]. This is a
common situation in summer at Dome C due to weak katabatic winds. The afternoon
was perturbed by the advection of a frontal perturbation (not shown) which affected the
value of the vapour isotopic composition from 06:00 on the 7th of January (the maximum
of δ 18O is typically reached around 06:00 UTC). To study the exchanges between snow
and vapour free of the impact of meteorological events, we therefore focus on the night
from 18:00 on the 6th of January to 5:00 on the 7th of January. In addition to the iso-
topic composition of the vapour and of the surface snow are presented in Fig. 7.8 the
3m-temperature measured by AWS, the surface temperature measured by infrared sens-
ing [Casado et al., 2016b] and the relative humidity calculated from the specific humidity
measured by the Picarro laser instruments and the saturated vapour pressure at the ground
temperature [Goff and Gratch, 1945]. Note that due to intake of snow crystals in the inlet
of the Picarro, relative humidity is overestimated in very supersaturated conditions, still
other hygrometers installed at Dome C indicated supersaturated conditions with relative
humidity ranging between 105% and 125% between 19:00 on the 6th of January and
06:00 on the 7th of January. Measurements of supersaturation are complicated by the
loss of water vapour at the condensation on the surface of instruments for non-heated in-
struments and sampling of floating microcrystals for heated instruments [Genthon et al.,
2016].

During this five hours period, water vapour δ 18O increased from -73‰ to -64‰ . The
evolution of water vapour isotopic composition is synchronous to observations of mist
and frost deposition due to local large supersaturation (which are visible on the time-
lapse video: https://vimeo.com/170463778). This situation is typical for the "night" at
Dome C in summer, and thus is an typical illustration of the "night" deposition of frost.

During this event of frost deposition, snow δ 18O decreased by roughly 2‰. From
21:30 on the 6th of January (UTC time) to 01:40 on the 7th of January (UTC time),
the volumes of three snow crystals have been monitored by a script transferring the size
in pixels of each crystals from the video on this link (https://vimeo.com/170463778) to
surfaces using a length etalon and estimating the volume variations using a power law
from the surface variations. This shows an increase by a factor from 1.5 to 3.9. The
growth of the crystals observed in the time-lapse can be interpreted as the deposition
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of an amount of ice large enough to significantly affect the isotopic composition. The
frost deposition occurs simultaneously with the modification of the isotopic composition
of the snow and of the vapour. These observations can be explained by an exchange
of molecules between the snow and the vapour affecting significantly the snow isotopic
composition leading to an enrichment of the isotopic composition of the vapour and a
depletion of the isotopic composition of the snow. While this new line of evidence clearly
shows vapour-snow isotopic variations associated with frost deposition, it remains to be
confirmed by an extended monitoring over several days.

7.2.4 Surface and sub-surface snow isotopic exchanges

In this section we investigate the difference in isotopic composition between surface and
sub-surface (5 cm below the surface) snow. First, we want to test if the delay observed
between the variations of surface snow isotopic composition and temperature is due to
the sampling procedure (see section 7.2.2). Second, we want to investigate how is the
isotopic signal propagated inside the firn, from the surface to the sub-surface.
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Figure 7.9: Isotopic composition of the snow at the surface (blue line) and difference between
surface and the sub-surface (blue shade) during 2 months at Dome C in 2013/14, compared with
SSA measurements (black dots), temperature (red line) and precipitation (black bars) from ERA-
interim, and precipitation observations (purple squares). The shaded area corresponds to the period
during which the grain index changes reflect large metamorphism (see section 7.2.2).

During the summer 2013/14, regular samplings of surface (0 to 3 cm) and sub-surface
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(3 to 6 cm) snow have been realised at Dome C. Once a day, 2 samples of snow at each
level have been taken along with specific surface area (SSA) measurements to evaluate
the size of the grains and therefore, how much metamorphism has taken place [Picard
et al., 2016b]. These data are presented in Fig. 7.9 with the temperature and the precipi-
tation from reanalysis products and in-situ observations of precipitation. We observe that
overall, during these two summer months, the sub-surface isotopic composition is almost
systematically lower than the surface isotopic composition. This is found as well in most
of the snow pits presented in this manuscript (see section 7.2.5).

From the end of November to the 15th of December, we observe similar values of
surface and sub-surface snow isotopic composition. This is a period during which meta-
morphism has not started yet as indicated by the large values of SSA (Fig. 7.9). The
surface snow isotopic composition is low (around -55‰) and the SSA is high which is
typical of winter snow. From the 16th of December, we observe large differences be-
tween the surface and the sub-surface snow isotopic composition (up to 5‰ higher at
the surface) and the SSA decreases indicating the metamorphism is effective. Until the
31st of December, numerous drift events mix the snow and therefore cause strong spatial
variability. Finally, due to a large episode of precipitation around the 2nd of January, we
observe a significant increase of snow δ 18O of 18 ‰ at the surface first and at the sub-
surface no more than two days later. The accumulation of snow associated with this event
cannot account for enough snow to create a layer of 5 cm as the annual accumulation at
Dome C is barely 8 cm. If the surface snow isotopic composition seems to be directly af-
fected by this precipitation event, it seems that the subsurface snow isotopic composition
is less sensitive to this impact and that it only changes as a reaction of the surface changes.

As illustrated in Fig. 7.6, the grain index shows that strong metamorphism only starts
in the middle of January (high grain index increase is indicating strong metamorphism,
in the case of SSA, accumulation of metamorphism results in a small SSA). During this
period, we observe a large variability of both the surface and the sub-surface snow iso-
topic composition. It is important to note here that the variations of isotopic composition
include both spatial and temporal variations as only one sample per day was realised,
therefore some of the variability might be spatial variability.

A single frost event, on the 9th of January, seems to have depleted strongly the snow
in heavy isotopes, but any robust analysis would require more events to discriminate the
impact of the frost event from the spatial variability.
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7.2.5 Signal in the snow pits

At the annual or seasonal scale, there is no consensus whether or not snow isotopic com-
position archives the climatic conditions on the East Antarctic Plateau. Ekaykin et al.
[2002] observed 20 to 30 cm cycles in the isotopic composition of the snow at Vostok.
Here, we compare the oscillations of the snow isotopic composition of five sites on the
East Antarctic Plateau (Dome C, Kohnen, S2, South Pole and Vostok) which are char-
acterised by different meteorological and glaciological parameters such as mean annual
temperature, elevation, wind speed and direction, accumulation or sastrugi height. A rep-
resentative subsection of the profiles of isotopic composition from the different sites is
presented in Fig. 7.10.

We analyse the typical varriations observed in the snow pits by manual counting of
the successive local extrema with a threshold of minimum 1.5‰ for δ 18O and 10‰ for
δD for the difference between a minimum and a maximum (in both cases, the thresholds
are chosen higher than the measurement precision and lower than the annual variations of
surface snow isotopic composition; sensitivity tests have been realised that show insignif-
icant impacts). For each snow pit, the mean cycle length is estimated by counting the
number of maxima over the length of the pit. We present the average of the cycle length
of the different pits for each site (Table 7.4).

Table 7.4: Mean cycle length obtained by manual counting of maxima from the isotopic composi-
tion profiles from the pits. Sites are sorted by accumulation in snow equivalent (calculated using
an average snow density of 350 kg.m−3).

Site
Accumulation δ 18O cycles δD cycles Number Length of Finest

(cm snow equivalent) (cm) (cm) of pits the pits (m) Resolution (cm)

S2 6.0 24 20 1 2.6 3
Vostok 6.9 22 22 6 From 2 to 12 2
Dome C 7.7 18 19 4 From 1 to 3 1
Kohnen 18.3 19 NA 2 3 3
South Pole 19.7 20 20 2 From 6 to 10 1.1

Manual counting shows recurrent 20 cm ’cycles’ across most of the Antarctic Plateau
(Table 7.4). This signal is particularly robust for sites such as Vostok with seven snow-
pits with cycle lengths between 19 and 26 cm and for Kohnen with 2 snowpits with cycle
lengths between 17 and 23 cm. Similar cycle lengths are generally observed for δD and
δ 18O, but our manual counting method applied on a limited number of pits with a rela-
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Figure 7.10: Isotopic composition profiles from 2 pits from Kohnen (Yellow), 2 pits from Dome C
(Purple), 2 pits from Vostok (Blue), one pit from S2 (Green) and two pits from South pole (Red)
and counting of cycles (circles) for each profile with a threshold of 1.5‰ in δ 18O between the
successive local minima/maxima to prevent noise from artificially being counted as cycles.
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tively low resolution would not allow to detect small differences. Still, for one pit at S2
where we observe a difference of 4cm between the length of the cycle in δD and in δ 18O.
This difference is due to one skipped local maximum in the case of δ 18O compared to δD

and shows the limits of the counting of successive maximum for a limited number of pits
with relatively low resolution.

The cycle lengths are longer than expected with the annual accumulation rates for the
lowest accumulation sites such as S2, Vostok and Dome C. For these sites, in order to
observe the seasonal cycles (with a length of the order of the accumulation between 6 and
7 cm), a resolution finer than 3 cm is necessary to avoid aliasing according to the theorem
of Shannon-Nyquist [Nyquist, 1924; Shannon, 1949]. Due to the interannual variability
of the snow accumulation, the snow isotopic composition will not necessary capture the
seasonal variations of temperature and precipitation isotopic composition. The limited
resolution of the S2 profile may explain why no seasonal cycle of isotopic composition is
visible. In the case of Vostok and Dome C, the vertical resolution of the isotopic compo-
sition profile is fine enough to establish the lack of seasonal cycle. Once the resolution is
finer than the frequency of Shannon-Nyquist, we do not observe differences in the cycle
length with the resolution of the pits. For sites with higher accumulation such as South
Pole and Kohnen (around 20 cm of snow equivalent accumulation), it is expected to be
able to identify seasonal cycles in snow isotopic composition [Jouzel et al., 1983]. In this
case, the observed depth cycles could simply reflect the preservation of seasonal varia-
tions in annual layers, as commonly observed in Greenland [Vinther et al., 2010]. The
profiles are highly variable, exhibiting significant differences in between sites and as well
in between pits from a single site, even if sampled the same year, and even for the pits
from relatively high accumulation. This can be attributed to the mixture of the potential
climate signal and non-climate noise [Fisher et al., 1985; Münch et al., 2016; Laepple
et al., 2016].

We observe meaningful differences of the cycle lengths between the top of the pits
(typically 20 cm for the first 3 m) and the bottom of the pits (typically 30 cm 10 m deep)
for Vostok and South Pole. The amplitude of the cycles is clearly not reduced at the
bottom part of the pits compared to the top part as could be expected from diffusion. We
note that for Dome C, Kohnen and S2, the profiles are not long enough to evaluate the
cycle length-depth dependency.
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7.3 Discussion

In this section, we discuss how the results presented above can constrain the different
contributions to the snow isotopic composition and the implications for the archival of a
climatic isotopic composition signal. First, we evaluate the contribution of precipitation
to the surface snow isotopic composition budget. Then, we focus on the post-deposition
contribution to the surface snow isotopic composition from exchanges with the atmo-
spheric water vapour. Finally, we discuss how the surface signal is modified during snow
burial, and if this affects the archival of the signal. The different processes contributing to
the isotopic budget of the snow evaluated in this study are summarised in Fig. 7.4.

7.3.1 Contribution of the precipitation to the surface snow isotopic
composition

Annual records of precipitation isotopic composition at Dome C highlight a regular cycle
in isotopic composition (Fig. 7.5 and Stenni et al. [2016]) in agreement with the classical
modelling of isotopic effects during the distillation along the moisture path and the for-
mation of the snow [Dansgaard, 1964; Jouzel and Merlivat, 1984]. As shown in section
7.2.2, this is not the case for surface snow isotopic composition variations: the seasonal
cycle of surface snow isotopic composition is not in phase with the temperature cycle and
the precipitation cycle, and the slope between the surface snow isotopic composition and
the temperature is reduced compared to the one between the precipitation isotopic com-
position and the temperature. In this section, we explore whether or not this feature can
be explained by (1) the patchiness of the accumulation and the spatial variability due to
redistribution and mixing/diffusion in the top centimetres of the snowpack and (2) precip-
itation intermittency.

First, we evaluate model-data comparison of the climatic signal in the precipitation
isotopic composition. Figure 7.11a presents the isotopic composition - temperature rela-
tionship in the dataset of precipitation isotopic composition and computed by the Mixed
Cloud Isotopic Model (MCIM). Except in summer (December, January, and February),
the MCIM is able to faithfully simulate the precipitation isotopic composition. The simu-
lated relationship between δ 18O and the temperature in the model of 0.95‰/◦C (see Table
7.5) is similar to the one found from the data from the transect between Terra Nova Bay
and Dome C which is not unexpected as these data were used to tune the model [Win-
kler et al., 2012]. For the entire seasonal cycle, we observe for the precipitation isotopic
composition a slope below 0.46‰/◦C. Important differences are not unexpected between
temporal and spatial slope of precipitation [Ekaykin, 2003; Landais et al., 2012a; Touzeau
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et al., 2016]. It is interesting to note here that the winter temporal slope of precipitation
isotopic composition (0.76 ‰/◦C) matches the spatial slope of isotopic composition for
the East Antarctic Plateau (0.77 ‰/◦Cfor low isotopic composition area). Here, the low
slope of the entire seasonal cycle is associated to the deviation of the summer isotopic
composition to a slope of 0.41‰/◦C. One way to explain such a low slope would be to
introduce an additional fractionation linked with re-evaporation during the precipitation
events which can affect the snow flakes isotopic composition [Koster et al., 1992] and
therefore decrease the slope with temperature. This may also result from changes in air
masses trajectory and thus, in the Rayleigh distillation. Backtrajectory calculations for
the East Antarctic Plateau indicate strong asymmetry of the moisture sources for austral
summer and winter [Sodemann and Stohl, 2009; Winkler et al., 2012]. Finally, in the
MCIM, the condensation temperature is estimated through a linear relationship with the
local surface temperature [Ciais and Jouzel, 1994]. The reduced summer temperature in-
version at Dome C [Ricaud et al., 2014] is thus not taken into account in the MCIM which
could also lead to a reduced slope.
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Figure 7.11: a) Isotopic composition of precipitation versus 3m temperature from 2008 to 2010
(light blue squares) and mean monthly values over these three years (coloured circles) from our
datasets, compared with outputs of the MCIM for the same range of temperature tuned for Dome C
(black dots); b) and c) respectively isotopic composition of surface snow in 2011 and 2014 versus
3m temperature.

This indicates that at least during winter, this model is able to predict the value of
snow isotopic composition from mixed phase Rayleigh distillation. The tuning of super-
saturation for the site of Dome C from Winkler et al. [2012] such as S = 1− 0.003T ,
appears valid, at least for winter conditions. This tuning of the supersaturation implies
supersaturation up to 115% in summer conditions at Concordia, in the range of measure-
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ments obtained by Genthon et al. [2016].

By contrast, links between temperature and surface snow isotopic composition are
more complex (Fig. 7.6) and we do not observe a linear relationship between surface
snow and precipitation isotopic compositions. The range of values spanned by the sur-
face snow isotopic composition cycle is sometime coherent with the precipitation cycle
(2014) and sometimes not (2011, 2015; see also Fig. 7.11). The difference of methods to
sample the surface snow through the year does not explain this behaviour as for instance,
the same protocol was applied to both 2014 and 2015. The surface snow isotopic compo-
sition is compared with the output of the MCIM model (Fig 7.11). These results confirm
that in 2014, the snow isotopic composition spans all the range predicted by the model
for this range of temperature, as for precipitation isotopic composition; whereas for 2011
(and 2015, not shown), the surface snow isotopic composition does not rise above -45‰
and does not reflect the enriched summer values. The differences in the maximal summer
values between 2014 and 2011 reported here are not linked to the precipitation isotopic
composition. Indeed, precipitation events with values of isotopic composition higher than
-40 ‰ have been reported during all these summers and the isotopic composition of pre-
cipitation is in phase with the temperature.

The loop shape of the data for year 2014 (Fig. 7.11c) suggests that variations of snow
isotopic composition are delayed compared to temperature variations. This feature can
be attributed to the sampling of 15 mm of snow which implies mixing of fresh snow with
older snow, considering the mean accumulation rate at Dome C below 8cm per year. Nev-
ertheless, the high isotopic compositions of the 2014 summer have been recorded almost
simultaneously at the surface and at the sub-surface (section 7.2.4 and Fig. 7.9) and do not
exhibit the 2 months phasing between change in precipitation δ 18O due to temperature
and change in surface snow δ 18O.

During an episode of precipitation, for "high-accumulation" sites, the isotopic com-
position of the precipitation is stored in the surface snow, and contributes to archiving
the local temperature signal through the isotopic fractionation during the formation of the
snowflakes [Jouzel and Merlivat, 1984]. For a low accumulation site such as Dome C,
each precipitation event is not necessarily captured by the surface snow isotopic compo-
sition because the snow deposition is patchy and strongly dependant of the surface rough-
ness [Groot Zwaaftink et al., 2013; Libois et al., 2014; Picard et al., 2016a]. In Fig. 7.6,
we also present the isotopic composition with ERA-interim snowfall product to illustrate
this patchiness of the snow deposition at the event scale. If ERA-interim does not provide
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Table 7.5: Summary of the isotope temperature relationships observed for the different datasets.
For the surface, because of the 2 months shift, the slopes are calculated using the difference be-
tween the extrema of isotopic composition and temperature as detailed in section 7.2.2. For 2012,
the summer maxima of isotopic composition were not sampled leading to an underestimation of
the slope. For 2011, the dephasing is small enough to perform a linear regression, the result is
indicated inside parenthesis. For the precipitation, the vapour and the MCIM output, we ran a
linear regression. All the correlations are significant (p− values < 0.05).

Type of sample Period
Slope δ 18O vs T

r2
(‰/◦C)

Surface

2011 0.22 (0.14) 0.29
2012 > 0.27 NA
2014 0.49 NA
2015 0.27 NA

Precipitation
All years 0.46 0.65
Summer 0.41 0.54
Winter 0.76 0.56

Vapour Summer 2015 0.46 0.26

MCIM Multiyear 0.95 0.99

Transect to Dome C
Multiyear 1.20 0.69

δ 18O < -40 ‰ 0.77 0.90

reliable quantitative estimates of the amount of snowfall on the East Antarctic Plateau, it
has been shown to be relevant to predict at least the temporality of most snowfall events at
Dome C [Libois et al., 2015]. At Dome C, as described by Touzeau et al. [2016], we can
see that warm winter precipitation events are often associated with significant variations
of surface snow isotopic composition (up to 5‰), nevertheless, we still observe a large
number of precipitation events not associated with any variations of surface snow isotopic
composition.

At the seasonal scale, the patchiness of the accumulation cannot explain why the sur-
face snow does not systematically record the precipitation signal, and thus, why we ob-
serve missing summer values in the surface snow isotopic composition. Indeed, in 2014,
we obtained several time-series of surface snow isotopic composition and at the seasonal
scale, we observe a strong agreement between the time-series. Additionally, for the NIVO
and the SUNITEDC campaigns, the samples were randomly taken, thus, they should not
be systematically affected by the erasing of the precipitation signal in the surface snow
isotopic composition.
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Finally, while the slope between precipitation isotopic composition versus tempera-
ture is also stable over the different years, it is not the case for the surface snow. The
slope between surface snow δ 18O and temperature of 2014 (0.49 ‰/◦C) is similar to the
one observed in precipitation (0.46 ‰/◦C), as shown in Table 7.5, indicating a probable
link. The slopes of 2011 and 2015 are much lower. In the case of 2015, we observe a
rather low cumulative precipitation amount (see Fig. 7.6) which could explain the small
values of summer δ 18O, but it is not the case for 2011. Because both the average values
of δ 18O and the slopes of surface snow δ 18O against temperature differ from the ones
of precipitation in 2011 and 2015, the lack of a summer signal in 2011 and 2015 surface
snow isotopic composition cannot only be due to the intermittency of precipitation, and
requires to involve post-deposition processes.

7.3.2 Contribution of sublimation/condensation cycles to the surface
snow isotopic composition

Another possible factor affecting the surface snow isotopic composition is post-deposition,
in particular exchange with atmospheric water vapour associated with metamorphism. At
the seasonal scale, the significance of the contribution of the post-deposition is supported
by the comparison of the isotopic composition of the surface snow to the grain index (see
Fig. 7.6).

The high values of grain index in the summer can be attributed to intense metamor-
phism [Picard et al., 2012; Libois et al., 2015], the rise usually starts during the first week
of December. Rapid falls of the grain index result from important precipitation events
and the input of small snow grains from precipitation. Finally, the slow decrease during
winter is explained by the accumulation of new small snow flakes by precipitation onto
the coarse grains formed during the summer. Winter metamorphism is too slow to impact
the snow structure.

For the surface snow isotopic composition variations, two features of interests are vis-
ible in Fig. 7.6. We observe inter-annual variability of the summer surface snow isotopic
composition. This inter-annual variability seems to be directly related to the strength of
the metamorphism: we obtain a strong negative correlation between the amplitude of the
grain-index increase in summer and the maximum δ 18O. The summer increase of δ 18O

seems to be very sensitive to the date at which the intense summer metamorphism starts.
The large values of δ 18O observed in 2014 (and maybe for the year 2012, but the max-
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imum of δ 18O was reached before the sampling started) are associated with a small and
delayed increase of grain index (in both case, the main increase of grain index happens
after the 15th of January, whereas for normal years, it starts the first week of December).
This delayed start of the metamorphism enables the surface snow to capture the enriched
precipitation isotopic composition of summer. Second, in winter, we observe a mixing
of new income of precipitation on the top of already deposited snow as illustrated by the
slow decrease of the δ 18O during the entire winter. This is similar to what is observed
for the grain index. By contrast, there is no apparent relationship between precipitation
isotopic composition and grain index from 2008 to 2011 (see Fig. 7.5).

This indicates the importance of metamorphism in the formation of the surface snow
isotopic signal as a post-deposition process. If Picard et al. [2012] highlight a direct link
between the summer intensity of metamorphism and the integrated amount of accumula-
tion over the summer, we do not observe a link with the summer amplitude of the surface
snow isotopic composition variations (even though more years are necessary to attest the
lack of link). In order to disentangle the different fractionation processes involved in the
metamorphism, we evaluate the formation of this δ 18O signal during snow metamorphism
by studying in parallel the vapour and the snow isotopic composition at the diurnal time
scale in summer.

Metamorphism can affect the surface snow isotopic composition through exchanges
of water molecules between the snow and the moisture: either the atmospheric water
vapour or the interstitial air water vapour. Here, we focus on the coarsening of the grains
due to the exchanges with the atmospheric vapour under the influence of the diurnal cy-
cle of temperature. Exchanges between snow and atmospheric vapour during sublima-
tion/condensation cycles can significantly affect the surface snow isotopic composition.
Indeed, it has been shown in Greenland that the mass balance was set by both sublima-
tion/condensation cycles and synoptic storm events [Steen-Larsen et al., 2014a; Berkel-
hammer et al., 2016]. In between precipitation events, moisture exchanges significantly
affect the snow isotopic composition over several days and a parallel evolution of the snow
and vapour isotopic compositions is observed in NEEM [Steen-Larsen et al., 2014a]. Sim-
ilar observations have been made in Kohnen in Antarctica by Ritter et al. [2016] during
summer 2013/2014. Dome C is a colder site than NEEM or Kohnen, thus we expect a less
efficient metamorphism. Still, because the accumulation rate at Dome C (2.3cm.yr−1 w.e.)
is lower than at NEEM (20cm.yr−1 w.e.) and than at Kohnen (6.4cm.yr−1 w.e.), we expect
to observe a stronger relative impact of the interplay between vapour and snow.
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At Dome C, we also observe that the surface snow isotopic composition is signifi-
cantly affected by the exchanges of molecules with the vapour in between precipitation
events. However, at the diurnal scale (see section 7.2.3), no parallel evolution is ob-
served in snow and vapour isotopic compositions contrasting with results from NEEM
and Kohnen. Our observations are coherent with exchanges in a closed box system: the
vapour is enriched in heavy isotopes while snow is depleted during frost deposition events.
This is consistent with equilibrium fractionation in a closed box where the vapour iso-
topic composition is predicted by equilibrium fractionation with the snow [Casado et al.,
2016b]. We attribute the difference of behaviour compared to Kohnen [Ritter et al., 2016]
and NEEM [Steen-Larsen et al., 2014a] to the position of the station on the top of a
dome. Indeed, at Dome C, the weakness of the katabatic winds decreases the renewal of
air masses long enough for the exchanges with the snow to be detected. At Kohnen and
NEEM, stronger winds are observed leading to a more efficient renewal of air masses able
to exchange with the surface. Preliminary results from back trajectory analyses indicate
that most of the air masses arriving at Dome C have been loaded with moisture within the
last 50km before Dome C. It is important to note that the humidity content at Dome C is
lower than at Kohnen and NEEM, resulting in a smaller reservoir of water vapour with
which the snow can exchange. Despite these low humidity levels, a significant impact
of the sublimation/condensation cycles on the snow isotopic composition is observed.
Similar studies measuring isotopic composition of vapour and snow at sites with similar
temperatures but larger wind speeds (such as at Vostok), could provide more robust in-
sights on the impact of wind on renewal of air masses compared to humidity levels. This
study relies on one event of attested frost deposition and the monitoring of more events is
necessary to be able to quantitatively evaluate the fractionation processes involved.

7.4 Conclusions

In this study, we explored the post-deposition processes affecting the archival of water
isotopic composition from precipitation to the snow pack for low accumulation sites of
the East Antarctic Plateau. We focused in particular on the exchanges between the vapour
and the snow occurring during snow metamorphism and on how the accumulation and the
burial of the snow layers affect the isotopic composition signals found in the precipita-
tion, the surface snow and the buried snow. We combined a comprehensive dataset from
precipitation, surface snow, buried snow and atmospheric vapour isotopic compositions
to assess the impact of theses two post-deposition processes compared to the original
climatic signal captured by precipitation isotopic composition. Figure 7.12 presents the
histogram of the isotopic composition of the precipitation, the surface snow, in 2011 and
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in 2014, and in the snow pits. Additionally, we present the average value of each distri-
bution as well with the standard deviation of the distributions.
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Figure 7.12: Top: Histogram of the isotopic composition at Dome C of precipitation (blue), of
surface snow in 2014 (green) and in 2011 (red) and of four snow pits stacked together (black).
Bottom: dots: average value for each distribution and, error bars: standard deviation of the ensem-
ble.

The distribution of isotopic composition in the precipitation is much larger than the
distribution of the surface snow isotopic composition. As discussed in section 7.2.2, a
large range of depleted precipitation isotopic composition, mostly observed in winter, are
not represented in the surface snow isotopic composition. Below the surface, apart from a
few isolated enriched samples with δ 18O values above -45‰, the distribution of isotopic
composition is even narrower than at the surface (both the red and the green points). The
narrowing of the distributions of the isotopic composition from the surface to the buried
snow (Fig. 7.12) could be explained by isotopic diffusion in the snow [Langway, 1970;
Johnsen, 1977; Johnsen et al., 2000; Gkinis et al., 2014]. These large differences of the
signals in the isotopic composition of the precipitation, the surface snow and the buried
snow document the various processes involved in the archival of the climatic signal in the
snow isotopic composition on the East Antarctic Plateau.
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First, we evaluated at the seasonal scale the different contributions to the snow isotopic
composition between the precipitation on one hand and the exchanges with the atmo-
sphere on the other hand. We compared the seasonal variations of precipitation and sur-
face snow isotopic composition. We observed an inter-annual variability in the seasonal
cycle of surface snow isotopic composition which deviates from the regular seasonal cycle
of precipitation isotopic composition. The large differences between the average isotopic
composition of surface snow and precipitation might indicate a significant impact of post-
deposition processes in the site of Dome C. This is supported by a clear link between the
surface snow isotopic composition and both the intensity and the temporality of summer
metamorphism. Furthermore, post depositions effects are not limited to summer: in win-
ter, a large range of very depleted precipitation isotopic compositions is not observed at
all in the surface snow isotopic composition.

Second, we focused on the impact of the exchanges between the vapour and the snow
at the diurnal scale. With simultaneous hourly measurements of atmospheric vapour and
surface snow isotopic composition, we evaluated one part of the metamorphism compo-
nent: exchanges between atmosphere and snow pack through sublimation/condensation
cycles. We showed that for a place like Dome C with low wind speed, it is possible to
have a closed system where the vapour is enriched while the snow is depleted. This one
case is the first field observation of a potentially closed system in Antarctica and differs
from NEEM and Kohnen where the vapour and the snow evolve in parallel, probably due
to stronger katabatic winds which renew the vapour reservoir.

Finally, we evaluated the evolution of the isotopic signal while the snow is being
buried. We highlighted that there are recurrent 20 cm cycles in the isotopic composition
profiles in the snow pack in five sites from East Antarctica: Dome C, Kohnen, S2, South
Pole and Vostok. This finding raises doubts on the interpretation of high resolution varia-
tions from such sites. A detailed investigations of these cycles is out of the scope of this
study, but will ,be presented in a follow up publication (Laepple et al., in prep).

Despite combining different types of data (precipitation, vapour surface snow and
snow pits isotopic compositions) from five different sites, some elements are still lacking
to robustly quantify the different contributions to the snow isotopic composition budget
due to diverse limitations: the lack of winter measurement of the vapour isotopic composi-
tion prevented us to evaluate the complete annual cycle of exchanges between vapour and
snow, especially considering that the atmospheric boundary layer has a different struc-
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ture in winter than in summer; the differences of resolution and of depth of the snow
pits depending of the sites limited the interpretation of the cycles through robust spectral
methods; and finally the small number of locations where precipitation and surface snow
were sampled all year long on the East Antarctic Plateau (only Dome C) hindered a gen-
eralisation of the results for the link between metamorphism and surface snow isotopic
composition to the entire East Antarctic Plateau. This study was limited to the impact of
post-deposition processes on the first order of variations of isotopic composition (δ val-
ues). Still, excesses (d−excess and 17O−excess) are expected to provide further insights
to understand processes due to their different sensitivity to kinetic fractionation [Casado
et al., 2016a]. This will be explored in another independent study.

Our study covers different contributions to the snow isotopic signal during the archival
in Antarctica and demonstrates that the climatic signal initially acquired in the precip-
itation isotopic composition is not necessarily stored in the surface snow and in the
buried snow. These results yield for a more quantitative evaluation of the impact of
post-deposition processes on the isotopic composition, in particular of snow metamor-
phism and interstitial diffusion; through controlled laboratory experiments, field studies
and using snow models. The link between snow isotopic composition and temperature
in Polar ice cores appear strongly affected by all these post-deposition processes at the
intra to inter-annual scale. The interpretation of ice core records is today most limited by
the lack of understanding of these post-deposition processes. Progress in this direction is
needed to strengthen a physically based interpretation of water stable isotope records for
quantitative paleoclimate reconstructions.
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Chapter 8

Conclusions and perspectives

During the time frame of my Ph-D, important efforts have been done to measure and un-
derstand water stable isotopes content. The geoscience part of this project has been mainly
carried on at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE) and
the instrumental development part at the Laboratoire Interdisciplinaire de Physique (LI-
Phy). This project involved an important amount of collaborations, including princi-
pally the Laboratoire de Glaciologie et de Geophysique de l’Environnement (LGGE), the
French Polar Institue (IPEV), the Centre National de Recherche Meteorologique (CNRM),
the Laboratoire Inter-universitaire des Sciences Atmospheriques (LISA) and also several
foreign collaborations with Italy, Russia, Denmark and Germany. In this section, we will
go back to the scientific questions of the PhD (as detailed in the introduction) and sum-
marise the new analytical possibilities we foresee and the implications of our results for
paleoclimate reconstructions.

What is the primary contribution to snow isotopic composition on the
East Antarctic Plateau ?

This is the main question of the manuscript and is mainly treated in section 7. Since
the early works of Dansgaard [1964] and Lorius et al. [1969], variations of snow iso-
topic composition are used to infer the past variations of temperature. Still, all processes
involved during the archival of the snow isotopic composition are not well known and
there remain uncertainties on the relative contribution of the precipitation, the sublima-
tion/condensation cycles, the metamorphism and the blowing snows. In the framework
of the NIVO project, I have participated to one campaign and organised two to sample
surface and sub-surface snow, excavate snow pits and monitor the vapour isotopic com-
position in order to understand the formation of the snow isotopic signal. This work was
completed by some additional results from the sites of Vostok, Kohnen,S2 and South Pole
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and enabled to explore the different contributions to the snow isotopic composition bud-
get from the diurnal to the seasonal time scale at the surface and also in the first metres of
the snowpack.

First, at the surface, we showed that the precipitation signal can be erased by important
metamorphism at the diurnal and at the seasonal scale. This creates variability of the sur-
face snow isotopic composition summer highs and therefore different isotope-temperature
slope at the seasonal scale for the different years. The origin of the intermittency of the
linear relationship between isotopic composition and temperature seems to be linked with
the temporality of summer metamorphism, and requires further studies comparing the
impact of metamorphism on the snow isotopic composition such as what the amount of
water exchanged for a given temperature cycle, what overall depth is affected for a given
temperature gradient, and the relative contribution of kinetic fractionation. We recom-
mend several approaches to characterise this impact: through snowpack models including
isotopes (Touzeau et al., in prep), laboratory controlled experiments and field studies. In
particular, it is important to characterise the exchanges between the surface and the local
atmospheric water vapour and between the surface and the layers of snow underneath in
the snowpack. All of our studies have been realised in summer and a lot is still to be
learnt when we are able to measure water vapour isotopic composition in winter on the
East Antarctic Plateau.

We also observed rapid propagation (within a few days) of the surface snow signal
toward the sub-surface. This propagation is much faster than what is expected by the
accumulation and could be associated with isotopic diffusion. In thi case, because the
temperature gradient can be oriented upward or downward, we expect this propagation to
be also bi-directional, in particular with a lasting upward transport in winter conditions.
To test this hypothesis, the winterover crew at Dome C is currently realising snowpits in
winter to analyse if an opposite phase can be found in winter.

Finally, we showed that a generalised 20 cm cycle is found in snow isotopic compo-
sition at the low accumulation sites of the East Antarctic Plateau. Considering the large
differences in climatic conditions (mean average temperature, accumulation, insulation,
mean wind speed, height of sastrugi...) of the different sites we analysed, it is not obvious
how to explain these recurrent cycles. These conclusions call for a more comprehensive
approach of how the isotopic composition signal is archived at low accumulation sites.
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How do equilibrium and kinetic fractionation processes affect the iso-
topic composition at low temperature and low humidity ?

The measurements of vapour isotopic composition at Dome C highlight that there remains
discrepancies in the parametrisation of kinetic and equilibrium fractionation for the for-
mation of snow at low temperature. In addition to the field campaign, we realised several
processes studies to evaluate equilibrium and kinetic fractionation at low temperature and
low humidity. All the uncertainties on the coefficients used to parametrise these different
types of fractionation directly affect the ability to model isotopic composition of snow
and vapour, and therefore the precision of the climate reconstruction.

In section 5.1, we presented preliminary results on equilibrium fractionation. Us-
ing our experience to measure water vapour isotopic composition on the field (see section
6.2), we wanted to evaluate the equilibrium fractionation coefficients at temperature lower
than that reached by Ellehøj et al. [2013] and Merlivat and Nief [1967]. We believe that
equilibrium fractionation at low temperature needs to be better constrained but also that
it is important to evaluate out-of-equilibrium fractionation associated with the ice-vapour
phase transition.

Additionally, in section 5.2 we investigated the fractionation due to the difference
of diffusivities of the different isotopes. We realised two experiments where this type
of kinetic fractionation was at play by condensing vapour over a cold plate in a humid-
ity (and temperature) gradient. First, we demonstrated that kinetic fractionation affects
17O−excess similarly to d−excess in very supersaturated conditions in a qualitative lab-
oratory experiment. Then we realised profiles of water vapour isotopic composition to
quantitatively infer the diffusion in controlled cloud-chamber experiments. These results
show that the Jouzel and Merlivat [1984] model fails to represent the impact of kinetic
fractionation on the vapour isotopic composition. We introduced a classical diffusion
framework to model the impact of the difference of diffusivity on the isotopic composi-
tion, independent of any parametrisation of supersaturation.

How to measure water vapour isotopic composition on the East Antarc-
tic Plateau ?

As we saw, the exchanges between the local vapour and the surface is very important in
the isotopic budget on the East Antarctic Plateau and still poorly characterised. Improving
this characterisation requires robust measurements of water vapour isotopic composition
at low temperature and low humidity. In section 6.2, we explored different methods of
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measurements: cryogenic trapping, an OFCEAS instrument and a CRDS instrument.

First, we demonstrated the ability of two types of custom-made cryogenic trappings
to sample water vapour isotopic composition at low humidity such as encountered on
the East Antarctic Plateau. For both trap designs, we showed that a careful detrapping
protocol is essential in order to obtain a relevant isotopic composition (in particular for
d−excess). In low humidity conditions, the design with glass balls enables one to reduce
the duration of the trapping from 36 hours to 12 hours for summer conditions at Dome C
for instance.

Second, we successfully deployed two infrared spectrometers at Dome C: an OFCEAS
instrument (HiFI, home-made in LIPHY) and a CRDS instrument (Commercial Picarro
L2130i). The data from the OFCEAS were very noisy and therefore not exploited in this
manuscript, we still learned from this experiment that extra-care is necessary with this
instrument to protect it from the vibrations to obtain precise results. Still, this method
shows the best potential with measurements of δ 18O with precision better than 0.5‰ at
20 ppmv. We also showed that commercial CRDS instrument can provide measurements
of water vapour isotopic composition with precision better than 0.3‰ down to 200 ppmv

but requires a robust calibration protocol. At this range of humidity, we had to build a
new humidity generator able to serve as a calibration device below 1000 ppmv.

Still, these performances would barely be sufficient to monitor water vapour isotopic
composition in winter on the East Antarctic Plateau where the humidity goes down to
1 ppmv. This level of humidity would require to push the limits of the state-of-the-art in
term of infrared spectroscopy but it is essential to measure in such dry conditions if we
want to understand air/snow exchanges on the East Antarctic Plateau.

What are the limits of the measurements of water stable isotope con-
tent by infrared spectroscopy ?

We believe that the limits of infrared spectroscopy are still not reached yet, as presented
in section 4. We developed a new kind of infrared spectrometer based on Optical Feed-
back Frequency Stabilisation (OFFS) and Cavity Ring-Down Spectroscopy (CRDS) to
attempt to push the limits further by using the benefits of both methods. Because in-
frared spectroscopy relies on the integrated absorption profile of the transition to infer
the concentration of each compound, both the absorption and the frequency need to be
precisely measured. Here, we conceived the first V-shaped cavity in ultra-low expansion
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glass (ULE) and we use optical feedback frequency stabilisation to stabilise a DFB laser
diode down to the hertz level (10−14 precision on the determination and the stabilisation
of the frequency) and a high-performances CRDS cavity to measure the absorption with
a sensitivity of 10−13 cm−1.Hz−1/2, almost 100 time better than standard commercial in-
frared spectrometers.

If this instrument will never be able to go on the field because of its size and fragility,
this is the first step toward the development of a new type of infrared spectrometers able
to measure isotopic composition at humidity down to the ppm level. The performances
of this instrument even exceed what is needed for isotopic composition and application in
Doppler thermometry are foreseen. For water isotopes monitoring, we expect to be able
to measure triple isotopic composition of water vapour down to the ppm level. These
performances would enable to evaluate the equilibrium fractionation down to -90 ◦C, to
develop instruments able to monitor the isotopic composition of the vapour on the East
Antarctic Plateau in winter, both in the atmosphere and in the snow.

Applications to atmospheric dynamics and modelling

The results from the field campaign showed that water vapour isotopic composition can
be used as a tracer for boundary layer atmospheric processes. Indeed, because of the im-
portant impact of turbulence (and of stratification) on water vapour isotopic composition,
it is a very powerful tool to evaluate the turbulence of the low atmospheric boundary layer.

As we saw, isotopic composition has been used to infer the supersaturation parametri-
sation against temperature and the data of precipitation presented here tends to confirm the
parametrisation found in a mixed phase Rayleigh distillation model at the seasonal scale.
Previous tuning of supersaturation were realised using transect across the East Antarctic
Plateau. Here, we show that the parametrisation of supersaturation obtain from the spa-
tial variations of snow isotopic composition is validated with temporal variations of the
precipitation isotopic composition.

In perspectives, preliminary results from the 2014/15 campaigns highlight an impor-
tant d−excess anomaly ahead of an advection of humid air and an important precipitation
events. Indeed, during the campaign of 2014/15, we observed an important increase of
d− excess before the arrival of a cloud system larger than usually observed at Dome C.
These results have not been completely studied yet unfortunately, but they show similari-
ties with results of Aemisegger et al. [2015] at the mid-latitudes.
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Perspectives

This thesis covers several aspects of the physics of water stable isotopes. If water isotopes
are a very powerful tool due to the direct link between temperature and fractionation at
the phase transition, we showed that on the East Antarctic Plateau, the interpretation is
not as straightforward as once expected. The understanding of how the climatic signal is
actually archived by the snow isotopic composition is crucial. Indeed, for now, the rela-
tionship linking the water stable isotopic composition to the temperature is empirically
deduced from data. As we saw, important variations on this relationship occur in time and
space. The main limitation to theoretically infer this link is due to the lack of a robust
framework of the physical processes affecting the water isotopic composition at low tem-
perature.

Here, we present with OFFS-CRDS the first analytical tool able to measure water
vapour isotopic composition down to volume mixing ratios of 1 ppm. The setup described
here provides the proof of concept and will be further used to realise reference spectra to
constrain the broadening parameters in perfect experimental conditions with an impor-
tant number of points. This work will be pursued by combining CRDS measurement of
water standard of known isotopic composition under flow using a stabilised diode laser.
These measurements should also improve the infrared spectrometry performances for all
instruments by generating physically robust lineshape profiles for different conditions of
pressure, temperature and humidity. The performances of this type of instrument also
enable studies beyond trace detection, for instance the study of saturated absorption line
or also Doppler thermometry. Additionally, this type of instrument has been developed
for water vapour but the principle can be easily transferred for other gas such as CO2 or
O2.

Both OFCEAS and OFFS-CRDS techniques provide an incredible opportunity to
study the physical processes affecting isotopes in conditions as cold as in winter on the
East Antarctic Plateau, and therefore fully study the formation of the snow in Antarctica.
The first application these techniques can be used for, is to estimate directly the equilib-
rium fractionation for sublimation/condensation for temperatures down to −90◦C. As we
saw, this is an important limitation for the interpretation of isotopic composition signal.
Second, we plan on developing of a second type of CRDS cavities able to measure at
atmospheric pressure, therefore not requiring any pumping. These high-pressure CRDS
cavities coupled with ultra-stable laser source will provide the opportunity to measure the
isotopic composition of the vapour in interstitial air in the snow pack without sublimating
the snow with an external pumping. The deployment of such a cavity in a snow meta-
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morphism chamber can help to constrain the impact of metamorphism on snow isotopic
composition in controlled laboratory experiments.

Additionally, these analytical tools can also be used to pursue the effort of monitor-
ing water vapour isotopic composition on the East Antarctic Plateau and obtain year-long
time series. It would be the first measurement of water vapour isotopic composition be-
low 100 ppmv on the field providing the first observations of the impact of stratification
(mostly observed in winter) on the exchanges between snow and vapour in Antarctica.
The measurement of water vapour isotopic composition at several heights could bring ad-
ditional features about (1) the net flux of moisture and of heavy isotopes in the boundary
layer, and (2) the molecular diffusion characterisation over the first meter of the snow
surface. It would also be the opportunity to deploy a high pressure CRDS cavity buried in
the snow to evaluate all at once the snow, the interstitial vapour (at different depths) and
the atmospheric vapour isotopic compositions.

A better understanding of the formation of the snow is not only crucial for paleocli-
mate purposes but also for the study of climate change: as we saw, water stable isotopes
can be used as a tool to trace atmospheric processes, and therefore to understand large
scale atmospheric dynamics in Polar Region; or metamorphism which plays a predomi-
nant role in the albedo of the snow.
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Annexe A

Résumé

La composition des isotopes stables de l’eau sur le plateau Est
Antarctique : mesure à basse température de la composition
de la vapeur, utilisation comme un traceur atmosphérique et
implication pour les études paléoclimatiques

Introduction

Les carottes de glaces permettent de reconstruire le climat du passé, à partir entre autre de
la composition isotopique de l’eau (δ 18O, δ 17O et δD) [Petit et al., 1999a; EPICA, 2004;
Jouzel et al., 2007]. Sur le plateau Est Antarctique, les températures très froides et les
faibles accumulations ont permis de remonter jusqu’à 800 000 ans sur le site de Dôme C
et 400 000 ans sur le site de Vostok. Cela dit, des limitations importantes bloquent l’inter-
prétation quantitative en terme de variation de temperature des signaux de compositions
isotopiques dans les carottes de glace. Au Groenland, les variations de sources d’humi-
dité [Charles et al., 1994], de saisonalité de précipitation [Fawcett et al., 1997; Krinner
et al., 1997], de liens entre température de condensation et température de surface dûs
à l’existence d’une couche d’inversion [Loewe, 1936] peuvent biaiser d’un facteur 2 les
estimations de variations de température entre période glaciaire et interglaciaire. En An-
tarctique, des effets similaires vont affecter les performances des reconstructions de tem-
pérature [Sime et al., 2009; Laepple et al., 2011]. De plus, à cause des températures plus
basses en Antarctique qu’au Groenland, d’autres facteurs doivent être considérés. Pre-
mièrement, les reconstructions des variations de température dans les carottes de glace à
partir des isotopes de l’eau se basent sur des modèles pour décrire la physique tout au long
du cycle de l’eau, en particulier associé aux différents fractionnements isotopiques. Ces
modèles peuvent aller de simples modèles décrivants la distillation successive des masses
d’air humide (dits modèles de Rayleigh) [Ciais and Jouzel, 1994] ou des modèles de circu-
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lation atmosphérique incluant les isotopes de l’eau [Hoffmann et al., 1998; Schmidt et al.,
2005; Risi et al., 2010; Werner et al., 2011]. Ces modèles, qui ont été développés au cours
des dernières décénnies, reposent sur la connaissance de coefficients du fractionnement
isotopique associé à chaque transition de phase et sur des hypothèses pour représenter la
micro-physique des nuages. En effet, chaque processus physique dépendant de la masse
ou de la symétrie de la molécule d’eau va résulter en un fractionnement isotopique.

Ainsi, lors de la formation de flocons de neige à basse température, le fractionnement
isotopique associé à la transition de phase vapeur-glace mais aussi aux différentes diffu-
sivités des différents isotopes doivent être pris en compte [Jouzel and Merlivat, 1984]. A
basse température, les déterminations des coefficients du fractionnement isotopique asso-
ciés à la transition de phase vapeur-glace présentent d’importantes différences [Merlivat
and Nief, 1967; Majoube, 1971a; Ellehøj et al., 2013] et n’ont jamais pu être mesurées
à des températures inférieures à −40◦C. Or, la température moyenne annuelle à Dome
C est de −54◦C atteignant jusqu’à −85◦C l’hiver. Les diffusivités des différents isotopes
quant à elles n’ont jamais été mesurées à des températures inférieures à 10◦C [Merlivat,
1978a; Cappa et al., 2003; Luz et al., 2009] et seuls des modèles permettent d’estimer les
variations des différentes diffusivités des différents isotopes [Lu and DePaolo, 2016].

En plus de l’information principale de température enregistrée par δ 18O, δ 17O et
δD, les combinaisons des différentes compositions isotopiques en paramètres de second
ordre appelés excès fournissent des informations supplémentaires. L’excès en deutérium
(d− excess = δD−8×δ 18O [Dansgaard, 1964]) fournit des informations sur l’humidité
relative pendant l’évaporation au niveau des océans [Gat, 1996], pendant la ré-évaporation
dans les zones convectives [Risi et al., 2008]. Le d-excess a aussi été utilisé pour paramé-
triser l’évolution spatiale de la sursaturation en régions polaires [Ciais and Jouzel, 1994;
Werner et al., 2011] ou encore mettre en évidence les changements de température à la
source des masses d’air humide associés aux changements d’obliquité sur les 150 000 der-
nières années [Vimeux et al., 1999]. L’utilisation du d-excess dans les carottes de glace
polaires reste limité car il est aussi affecté par l’humidité de la région source et la tempé-
rature locale [Jouzel et al., 2007] ou encore la trajectoire suivie par la masse d’air [Bonne
et al., 2015].

Récemment, l’amélioration des techniques de mesure a permis la mesure d’un second
paramètre de second ordre, l’excès en 17O (17O−excess= ln

(
δ

17O+1
)
−0.528ln

(
δ

18O+1
)

[Barkan and Luz, 2005; Landais et al., 2008]). Comme pour le d-excess, le 17O− excess

est affecté au cours du cycle hydrologique par différents processus de fractionnement
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qui affectent le δ 18O et le δ 17O différemment. Aux basses latitudes, le 17O− excess

est affecté par l’humidité relative qui impose l’importance relative du fractionnement à
l’équilibre par rapport au fractionnement cinétique dans les processus d’évaporation et de
ré-évaporation comme l’est le d-excess. Il en découle que d-excess et le 17O−excess aug-
mentent tous deux quand l’humidité relative diminuent. Aux hautes latitudes en revanche,
contrairement au d-excess, le 17O− excess n’est que peu affecté par les changements
de température locale car les fractionnements à l’équilibre associés au δ 18O et le δ 17O

ont la même dépendance en température. Pour les régions les plus froides cela dit, l’im-
pact croissant du fractionnement cinétique a pu induire la signature de la température de
condensation dans le 17O− excess [Landais et al., 2012a; Winkler et al., 2012].
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FIGURE A.1 – Description des différents processus affectants la composition isotopique dans le
cycle de l’eau en régions polaires.

Afin d’améliorer les performances du paléothermomètre isotopique, l’étude des pro-
cessus affectant la composition isotopique de la glace est primordiale. Dans cette optique,
ma thèse a été à l’interface entre les études de processus au laboratoire et en Antarctique
et le développement instrumental afin de pouvoir réaliser des mesures encore inédites.
Ainsi, afin de pouvoir réaliser des études de processus avec des méthodes analytiques
poussées, j’ai d’abord approfondi les recherches sur les différentes techniques de mesure
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existantes avant ma thèse, ce qui a conduit au développement d’un nouveau spectromètre
infrarouge aux performances bien au delà des instruments commerciaux. En Parallèle,
des expériences au laboratoire ont permis de renforcer les connaissances sur les processus
affectant les isotopes de l’eau, en particulier le fractionnement lié à la transition de phase
vapeur - glace et le fractionnement cinétique lié aux différentes diffusivités des différents
isotopes. Enfin, durant une campagne en Antarctique, j’ai pu réaliser parmi les premières
mesures de la composition isotopique de la vapeur et de la glace en Antarctique et appli-
quer les modèles physiques des processus à des données de terrain.

Méthodes de mesure

Afin d’être à même d’étudier les processus affectant les isotopes de l’eau dans les meilleures
conditions, il est important d’avoir des protocoles de mesure de la glace et de la vapeur
aussi performants que possible. Dans cette optique, un grand volet de ma thèse a été de
travailler avec les différentes méthodes de mesure des isotopes de l’eau. En particulier,
j’ai pu travailler en parallèle avec des méthodes de spectrométrie de masse, la référence,
et des méthodes de spectroscopie infrarouge. Si la spectrométrie de masse permet des me-
sures précises et robustes, les méthodes d’extraction chimiques sont longues et permettent
seulement la mesure de 8 échantillons par jour. Les mesures de δ 18O et le δ 17O au LSCE
ont été réalisées sur une ligne de fluorination sur le modèle de la méthode développée par
Barkan and Luz [2005] avec une précision d’environ 5 ppm sur le 17O− excess. La spec-
troscopie infrarouge permet maintenant de mesurer les trois compositions isotopiques de
manière moins précise (environ 15 ppm [Steig et al., 2014]) mais beaucoup plus rapide
(jusqu’à 20 échantillons par jour).

Afin de pousser plus loin, en collaboration avec le LIPHY, j’ai travaillé sur un instru-
ment de type OFCEAS qui permet de mesurer les isotopes de l’eau jusqu’à des humidités
de l’ordre de quelques ppm. Cela dit, la véritable évolution provient du développement
d’un spectromètre infrarouge de nouvelle génération basé sur deux cavités : une pour
stabiliser la fréquence du laser et obtenir une source ultra-stable et très fine (largeur infé-
rieure à 300 Hz avec une drift d’environ 1.5 Hz.s−1) et une cavité de mesure de très haute
performance avec une rapport signal sur bruit allant jusqu’à 700 000. Ces nouveaux dé-
veloppements instrumentaux promettent des mesures d’une précision incomparable des
isotopes de l’eau au laboratoire et sur le terrain. Ce nouvel instrument a aussi pu être
utilisé pour des mesures d’optique appliquées à la détermination des paramètres de spec-
troscopie de l’eau et à la stabilisation d’un laser télécom par une cavité ultra-stable.
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Etude du fractionnement isotopique en laboratoire

Pendant ma thèse, j’ai réalisé des expériences de laboratoire pour étudier le fractionne-
ment isotopique, à la fois cinétique et à l’équilibre. En effet, les nouvelles méthodes de
spectroscopie infrarouge permettent de mesurer directement la vapeur sans passer par un
transfert chimique vers le spectromètre de masse. En particulier, celles-ci ont permis de
revisiter l’expérience de Jouzel and Merlivat [1984] afin de mesurer l’impact du frac-
tionnement cinétique sur le d− excess et le 17O− excess. Une expérience préliminaire a
montré que l’impact du fractionnement cinétique lié aux différences de diffusivité avait
le même impact sur le 17O− excess que sur le d− excess. Une seconde expérience en
chambre à nuage a permis d’analyser de manière quantitative les profils de compositions
isotopiques dans un gradient d’humidité et de température, mettant en évidence les la-
cunes de la représentation de Jouzel and Merlivat [1984].

Suivant l’approche débutée par Ellehøj et al. [2013] d’utiliser un spectromètre infra-
rouge pour analyser la vapeur après une chambre de condensation, l’étude du fraction-
nement à l’équilibre solide-vapeur a pu aussi être abordé. Si les mesures de laboratoire
n’ont pas pu être réalisées de manière répétées dans le cadre de ma thèse, une comparai-
son avec des données de terrain et un modèle en boite permet une comparaison d’étude de
processus en laboratoire et sur le terrain et fournit une explication sur la différence entre
les mesures d’Ellehøj et al. [2013] d’une part et de Merlivat and Nief [1967] et Majoube
[1971a] d’autre part.

Etude de la composition isotopique sur le Plateau Antarc-
tique

Durant le cadre de ma thèse, j’ai pu prendre part à une campagne de mesure de la composi-
tion isotopique de la vapeur et de la neige à Dome C. Cette étude est la première à mesurer
la composition isotopique de la vapeur d’eau à si basse humidité et une des premières en
Antarctique. Afin de réaliser cette campagne, nous avons dû porter spécialement soin aux
calibrations des instruments qui fonctionnaient hors de leur gamme linéaire. L’installation
simultannée de deux spectromètres infrarouge (un Picarro L2130i et un OFCEAS H2Oi)
ainsi qu’un piège cryogénique a permis de valider une série de mesures continues de la
vapeur d’eau de 25 jours consécutifs. L’intérêt de mesurer la composition isotopique de
la vapeur d’eau à Dome C pour étudier les processus réside dans la multitude d’installa-
tions de mesure de la couche limite atmosphérique (température, humidité, vent), de la
troposphère entière (un LIDAR et un radiomètre mesurants la température, l’humidité, la
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présence d’eau sous forme liquide ou solide...), de la surface de la neige (température,
chimie, SSA)... En combinant nos résultats à des mesures de la couche limite, nous avons
mis en évidence l’impact de la turbulence sur le lien entre la composition isotopique de
la vapeur et la température à l’échelle diurnale. Dans les régimes turbulents ou non, d’im-
portants cycles de condensation/sublimation résultent en d’importants échanges entre la
vapeur et la neige. Dans le cas d’un régime turbulent, la vapeur de la couche limite est
bien mélangée et la neige échange avec un important réservoir de vapeur. Dans le cas
d’un régime stratifié ou faiblement turbulent, la composition isotopique de la vapeur à
deux mètres n’affiche plus aucun cycle diurnal.

La pente entre δD et δ 18O est néanmoins beaucoup plus basse que prédite par le
fractionnement à l’équilibre (5.3‰/ ‰ au lieu de 6.5‰/ ‰), ce qui pose des questions
sur l’hypothèse d’une source principale de la vapeur par les échanges avec la neige locale.

Dans un second temps, la comparaison entre la composition isotopique de la vapeur,
de la précipitation, de la neige de surface et de la neige plus profonde a permis de mieux
comprendre comment le signal climatique est archivé. Suivant les bases posées par Tou-
zeau et al. [2016], j’ai pu réaliser une étude quantitative de données de neige, de vapeur
et de précipitation autour du plateau Antarctique. Les données de Dome C mettent en
évidence une intermittence du lien entre la composition isotopique de la neige et la tem-
pérature à l’échelle saisonnière. Ces résultats viennent altérer l’interprétentation des re-
constructions à l’échelle annuelle à partir de la composition isotopique de la neige/glace
en Antarctique de l’Est. Finalement, tous ces résultats sont utilisés pour approfondir l’uti-
lisation des isotopes de l’eau comme proxy paléoclimatique et aussi comme traceur at-
mosphérique.

Conclusions et perspectives

Cette thèse m’a permis de couvrir plusieurs aspects de la physique des isotopes stables
de l’eau. Les isotopes de l’eau peuvent fournir énormément d’informations grâce au lien
direct entre le fractionnement isotopique pendant un changement d’état et la tempéra-
ture. Cependant, sur le plateau Est Antarctique, leur interprétation n’est pas si directe. La
compréhension de la manière dont le signal climatique est archivé par la composition iso-
topique de la neige est cruciale. En effet, pour le moment, la relation liant la composition
isotopique de l’eau à la température est seulement empirique. Comme nous l’avons vu,
d’importantes variations de cette relation ont lieu selon les lieux et les époques. La princi-
pale limite pour pouvoir théoriser ce lien est le manque d’un cadre robuste des processus
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physiques affectant la composition isotopique de l’eau à basse température.
Ici, nous avons présenté le premier instrument capable de mesurer la composition

isotopique de la vapeur d’eau à des concentrations de l’ordre du ppm. Cet instrument
procurera des opportunités exceptionnelles dans l’étude des processus physiques affectant
les isotopes de l’eau dans les conditions qui règnent sur le Plateau Est Antarctique, même
en hiver et permettra de repousser les limites de notre compréhension de la formation de la
neige en Antarctique. Il n’est pas seulement crucial d’améliorer notre appréhension de la
formation de la neige pour les études de paléoclimatologie mais aussi pour les études des
climats actuels : en effet, les isotopes stables de l’eau peuvent être utilisé comme traceur
des processus atmosphériques à différentes échelles : de la turbulence dans la couche
limite à des circulations de grande échelle ; mais aussi comme traceur du métamorphisme
qui joue un rôle prédominant par exemple dans les variations d’albédo de la neige.
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My Ph-D from a non-scientific
perspective

During my Ph-D, I was involved into several initiative to bring my research and research
in general to a broader audience. I think this enables research to be more transparent to a
larger public which is fundamental to fight scepticism and obscurantism.

B.1 Opening research to highschoolers: building a 3D
scanner

During my campaign to Dome C, I realised a time lapse of the evolution of the frost hoar
at the surface of the snow. This idea just meant to be a fun video to show to my folks
once back home finally provided interesting scientific estimates of the deposition of frost
during the daily cycle. In order to realise a more quantitative estimate of the mass budget
associated to the frost deposition, I decided to build a 3D-scanner building on the Do-It-
Yourself trend (DIY). The small project has been awarded at the Flash Freeze event of
the Cryosphere division of the American Geophysicist Union (AGU) and is supported by
APECS France logistically.

B.1.1 The 3D-scanner project

The analysis of the time lapse images has highlighted important evolution of the size of
the ice crystals as illustrated on figure B.2. Using a ruler as a reference, it was possible
to highlight that within a couple of hours, the length and the width of a series of crystals
was multiplied by 2. This growth is simultaneous with opposite evolutions of the isotopic
composition of the snow surface and of the vapour, a supersaturation higher than 120%
and observations of mist. Still, because the third dimension is missing, it is not possible
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Figure B.1: Picture of the camera realising the time lapse of the frost deposition during 24 hours
at Dome C (Courtesy Bruno Jourdain)

to realise a complete mass budget.

Nevertheless, these submillimetric frost deposition can have a significant contribution
to the global mass budget of the snow surface. Indeed, because accumulation is lower
than 8cm every year at Dome C, these small depositions can add up and significantly con-
tribute. This motivated a plan to build a 3D-scanner able to measure frost deposition by
realising time lapse all year long. The new developments of powerful micro-controllers
is also an additional motivation to develop such a system. Indeed, numerous projects
build on the DIY trend using Arduino’s or Raspberries’ micro-controllers to realise small
project from 3D-scanner to 3D-printers or automatic samplers. The initial plan of the
3D-scanner is illustrated on figure B.3. A camera equipped with a macro-lens would be
positioned above the snow surface. The third dimension would be reconstructed using a
laser beam with an angle and measuring the position where it hit the snow crystals using
Thales law. To improve the efficiency of the scanning, 4 laser slits with different colors
can be used and separated with the Bayer matrix of the camera. This method would still
require more than a minute to realise one 3D-image. Extra care has to be addressed for
temperature stabilisation of the instrument enabling mechanical part and electronic part
to work properly but preserving the radiation from sublimating the snow artificially.
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B.1. Opening research to highschoolers: building a 3D scanner

Figure B.2: Picture of the small ice crystals at Dome C durinng the time lapse of the frost deposi-
tion during 24 hours

Figure B.3: 3D-schematics of a crystal (left), the principle of measurement using a laser beam
with an angle to estimate the vertical dimension (middle), a large view of the scanner (right top)
and a representation of what kind of picture the camera should shoot (right bottom)
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The MPS 2nd highschool class from Jacques Decour (Paris, France) has participated
in the project with the help of Juliette Dumas and of the association APECS France.
Unfortunately, schedules issues prevented from actually building the 3D-scanner during
the scholar year, but the highschoolers were involved in the project with 3 discussion
sessions during which they could learn how building a research project can be done. The
original plan to involve a class in testing the instrument and even maybe deploying the
instrument in the Alps will be tried again in 2017.

B.1.2 Pedagogic content

Attached bellow are the slides used during the discussions with the students:

• On the 9th of May, how to realise a 3D image

• On the 23rd of May, on the formation of the snow in Antarctica
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Comment acquérir une image en 3D ?

Mathieu Casado
Laboratoire des sciences du climat et de l'environnement (LSCE)

Institut Pierre Simon Laplace, CEA, CNRS, UVSQ
Gif Sur Yvette France

La glace : une archive

A. Orsi
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Comment se forme la neige de l'Antarctique ?

Mathieu Casado
Laboratoire des sciences du climat et de l'environnement (LSCE)

Institut Pierre Simon Laplace, CEA, CNRS, UVSQ
Gif Sur Yvette France

La glace garde en mémoire le climat du passé

Jouzel et Masson-Delmotte 2010
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La glace garde en mémoire le climat du passé

Jouzel et Masson-Delmotte 2010

50 10 3

40
30
20
10
0E

xc
en

tr
ic

ity

120010008006004002000

Age (ky BP)

24.5
24.0
23.5
23.0
22.5

O
bl

iq
ui

ty

40 10 3
20
0

20
40

P
re

ce
ss

io
n 4.5

4.0

3.5

3.0

2.5

B
en

th
ic

 
18

O

440

420

400

380

D

280

240

200

C
O

2

800
700
600
500
400
300

C
H

4

End of ice
core record

Archivage du signal climatique

Source T. Blunier 
http://www.iceandclimate.nbi.ku.dk



La neige n'est pas une archive passive 

Pinzer et al, 2012

La neige se sublime 
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B.2. Acquired skills

B.2 Acquired skills

During my Ph-D, I have spent an important amount of time on experimental aspects, both
in LSCE and in LIPHY. First, in LSCE, as a part of measuring triple isotopic composition
of water, I have been using both mass spectrometry and infrared spectroscopy. I have
followed the days advanced training class about Dual Inlet Isotope Ratio Mass Spec-
trometry at Thermo Fischer factory in Bremen (Germany). I have been using regularly
the fluorination technique to transfer water to dioxygen, which involves manipulation of
high-vacuum and cryogenic liquid handling (helium and nitrogen). Between LSCE and
LIPHY, I have been using a wide range of infrared spectrometers from commercial Pi-
carro analysers (L2120,L2130 and L2140) to homemade analysers from LIPHY (HiFI,
an OFCEAS instrument for water triple isotopic composition) that I learned to assemble
completely and even to building a new generation of infrared spectrometer based on opti-
cal feedback frequency stabilisation.

During my time in LIPHY, I had to face a large range of new challenges and got basic
skills in electronics, instrument interfacing and data acquisition. I took a two days train-
ing class about machine tools at the workshop of LIPHY getting an independent level in
milling, lathing and crafting of small components that require to be custom made during
the realisation of the spectrometer. For high complexity machinery usage, I also learned
how computer-aided design techniques. Finally, obviously, I learned a wide range of
techniques related to the optical setups in infrared spectrometry: cavity injection, fiber
injection, laser techniques and phase control. Finally, I designed a new range of humidity
generator adapted for very low humidity levels as required for field and laboratory exper-
iments.

During the field work at Dome C (Antarctica), I was in charge of running a com-
mercial analyser Picarro (L2130), the HiFI, including the calibration scheme of the two
instruments on a daily basis, a cryogenic trapping setup, surface snow sampling and snow-
pits sampling. A mission in a location as remote as Dome C requires careful planning and
packing and I was in charge of the organisation of my campaign. I also realised the proto-
col for the 2015/16 campaign and helped Frederic Prie in the packing and the organisation
of the campaign. Finally, I realised the protocols for the winterover crew for snowpits and
surface sampling in 2015 and 2016.

For the analyses of the data, I have been using different levels of complexity of mod-
elling. First, I have been developing a serie of tools analysing the data and the calibration,
statistical evaluation of the quality of the data and uncertainty evaluation using mainly

253



Appendix B. My Ph-D from a non-scientific perspective

Matlab. I have been using models such as the MCIM (intermediate complexity model
to compute Rayleigh distillation in mixed phase conditions) and handling model outputs
from GCM including isotopes and reanalyses products.

Being part of an Antarctic expedition is an exceptional opportunity and it has taught
me a lot outside the frame of scientific knowledge: from team work to improvising with-
out the necessary equipment due to the isolation. It is primarily in these situations that
you see how much relying on a team means and how important are the services provided
by the IPEV.

B.3 Courses, summer schools, and scientific conferences

B.3.1 Courses

• Thermo Fisher Scientific advanced training course, 3 days, Thermo Fisher factory,
Bremen Germany, course in analytical techniques, specialized operation and main-
tenance for Delta V and MAT 253 Dual Inlet Isotope Ratio Mass Spectrometry.

• University Joseph Fourier, 24 hours (scientific) of Optical Spectroscopy by Prof.
Erik Kerstel, Jan. 2014.

• International French-German Summer School SPECMO 2014, 5 days (scientific) of
New experimental and theoretical developments in molecular spectroscopy - push-
ing the limits organised by Dr. Isabelle Kleiner, September 2014.

• University Versailles Saint Quentin: 24 hours (scientific) of Arctic Climate: sci-
ence, society and geography by Prof. Alain Sarkissian, July 2015.

• University Pierre and Marie Curie: 26 hours (non-scientific) of Russian classes by
Prof. Svetlana Trouve, December 2015.

B.3.2 Scientific Conferences and seminars

• Société Francaise des Isotopes Stables 2013, Dunkerque, oral presentation.

• European Geophysicist Union 2014, Vienna, poster.

• 5th workshop of the International Collaboration and Education in Ice Core Science
2015, Grenoble, poster.

• American Geophysical Union 2015, San Francisco, posters + flash freeze presenta-
tion (awarded).
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B.3. Courses, summer schools, and scientific conferences

• 2nd open science conference of the International Partnerships in Ice Core Sciences
2016, Hobart, poster.

• Invited seminar at the Ice and Climate Center 2016, Copenhagen, oral presentation

• First thematic workshop Panoply 2016, LSCE, oral presentation

• Field Laser Applications in Industry and Research 2016, Aix-les-Bains, oral pre-
sentation + posters.
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Technical parts

Instrumentation requires an important amount of technical work which does not necessary
belong in the main text of a thesis. Still, this part of every day work is important because
without it, no experiment would actually be working.

C.1 Thermal regulation of the VCOF

In order to regulate the temperature of the VCOF around 1 mK, we build a multi-layer
active temperature regulated box. Indeed, even though the cavity is not sensitive to tem-
perature variations, in order to obtain the best of performances, it is important for it to
remain absolutely regulated. The box is composed of a 10 mm thick plywood outer box
of 420x420x570mm, inside which is a 1 mm thick copper inner box of 370x370x540mm.
On each face of the copper box are Omega SRFR-12 silicon heat bands covering more
than 60% of each face. Because failure in temperature regulation can always happen, a
multi-layer box enables to obtain already interesting passive properties as illustrated on
figure C.1 which justified the choice of plywood. The important amount of air between
the inner copper box and the massive stainless steel flange is also acting as a secondary
isolation. The wood and copper box combined passive isolation erase 90% of the AC
temperature cycles of roughly 30 minutes. With the inertia of the flange and the air acting
as a secondary isolation, the 30 minutes cycles are completely erased even at the mK level
in the temperature of the flange. Still, this isolation is not able to erase a diurnal cycle of
1◦C as illustrated by the important trend on the flange temperature.

In order to erase all temperature variations as well as the gradient, we integrate a
PID (Proportional, Integrate and Differential) control on the power supply of the heat
bands. The PID, realised by Tim Stoltman and Samir Kassi, is a digital PID running on
a Arduino Mega 2560. Temperature is read independently on each face of the copper
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Figure C.1: Impact of the passive temperature cycles under 0.3◦C peak-to-peak AC cycles.

box by a PT1000 sensor read with a Wheatstone bridge by an ARM communicating in
SPI. Two multiplexers MC14051BDG enable the arduino to communicate to 8 SPI driven
temperature probes. One digital to analog convertor DAC8568C enables the arduino to
address individually 6 operational amplifiers. After an inter-calibration of 16 PT1000
sensors, this setup can control individually the temperature of the 6 faces of the copper
box with a precision of 1 mK and absolute differences between faces below 10 mK.

C.2 Characterisation of the DFB laser

We use diode laser Eblana EP1392 which includes a Peltier temperature regulation. The
specifications of the laser diode from Eblana photonics are presented in figure C.2. At
25◦C, we observe that the laser emits light around 1392.5nm. There is a current threshold
at 15 mA and the maximum power is around 20 mW . We characterised the diode laser
we have been using slightly beyond the specifications in order to obtain quantitatively the
behaviour of our laser diode.

We scanned the temperature of the laser diode from 20◦C to 60◦C. We estimate the
temperature tuning coefficient of the diode at 0.0872 nm.◦C−1, slightly lower than the
specifications at 0.1 nm.◦C−1. During the scan, it was possible to actually observe the
absorption of the water in the air over the 50 cm of open optical path between the laser
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C.2. Characterisation of the DFB laser

(a) (b)

Figure C.2: Specifications of the Eblana EP1392 laser diode: C.2a power at the different wave-
length at 25◦C normalised against the maximum of power and C.2b scan of power for different
current of the laser diode (Source: Eblana documentations http://www.eblanaphotonics.com)

diode and the wavemeter as illustrated on figure C.3.
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Figure C.3: Wavelength (in blue) and power (in red) measured by the High-Finesse WSU7-IR
during a scan of the temperature of the laser diode.
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We measured the waist of the laser beam along the propagation direction using both
the knife-edge technique and measurement of intensity on a CCD sensor. We found a
beam slightly elliptic with an eccentricity of 0.19. We optimised the focus of the beam by
measuring the waist when positioning the lens in front of the laser. The final waist of the
beam with the lens mounted on is respectively 150 µm and 219 µm on the X and Y axes
at 22.1 cm of the laser.

C.3 Utilisation of Picarro analysers

We have mentioned in this manuscript that Picarro’s analysers require calibration to ac-
curately estimate the isotopic composition. An internal report from Guillaume Tremoy
showed that it is also necessary to calibrate the humidity measurements of the Picarro’s
analysers. Here, we present the comparison of the not calibrated humidity from the field
campaign at Dome C compared to the data from the calibration hygrometer HMP.
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Figure C.4: Humidity calibrated (in blue) and not calibrated (in red) from the Picarro L2130i at
Dome C compared to the one calculated from the HMP155 of Vaisala at Dome C between the 1st
of January 2015 and the 10th of January 2015.

This justify the need of calibration of the humidity product from Picarro instruments.
Traditional method at LSCE uses a dew point generator Licor LI-610 to generate a fixed
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moisture content. It is not possible to set the dew point generator below 0◦C, therefore
for low concentration, we usually dilute the moist air generated by the LICOR with dry
air using 2 mass flow controllers. For the range of humidity encountered at Dome C, the
dilution between the moist air generated by the LICOR (roughly 6000 ppmv) is large so
the accuracy of the mass flow controllers we used is not enough to precisely generated a
known humidity. We used the humidity generator described in section 4.1.1 to realise the
calibration of the humidity presented on figure C.5.
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Figure C.5: Measured humidity by the Picarro L2130i (red crosses, data and dashed lined, fit) in
the field compared to the theoretical produced humidity by the calibration device (black line).

We obtain a linear function Hum(Picarro) = 15.7+1.049×Hum(T h) with r2 = 0.99.
This function was used to correct the raw data and provide for the blue curve on figure
C.4.
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C.4 Glass traps for cryogenic trapping

Several architectures of traps for cryogenic trapping have been used through the years
at LSCE. The two most efficient designs are presented on figure C.6. On the left, we
present traps filled with glass balls. This kind of traps can be used at high flow because
the balls create only very small interstitial canals where the moist air flows by, and there-
fore successively traps all of the moisture for flows up to 20 L.min−1. The second type of
trap, on the right, is not filled with glass balls but is composed of two traps and of long
tubes connecting the traps. It has been proven reliable to trap the moisture for flows up
to 6 L.min−1. Both systems require detrapping, though the traps without glass balls are
singularly more convenient for detrapping. This is a crucial step because an incomplete
detrapping creates fractionation and therefore a large uncertainty on the isotopic compo-
sition of the vapour.

(a) (b)

Figure C.6: Pictures of the two type of cryogenic traps deployed in Antarctica and used at LSCE:
C.6a single trap filled with glass balls to increase the surface where the vapour can condensed and
C.6b double trap without glass balls but with an efficient architecture still totally traps the moisture
for flow below 6 L.min−1.
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C.4. Glass traps for cryogenic trapping

Both types of traps have been deployed at Concordia with satisfactory performances.
For both traps, an important number of interns have been characterising the performances
for different flows and isotopic composition.
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Abstract. The isotopic compositions of oxygen and hydro-

gen in ice cores are invaluable tools for the reconstruction of

past climate variations. Used alone, they give insights into the

variations of the local temperature, whereas taken together

they can provide information on the climatic conditions at

the point of origin of the moisture. However, recent analyses

of snow from shallow pits indicate that the climatic signal

can become erased in very low accumulation regions, due

to local processes of snow reworking. The signal-to-noise

ratio decreases and the climatic signal can then only be re-

trieved using stacks of several snow pits. Obviously, the sig-

nal is not completely lost at this stage, otherwise it would be

impossible to extract valuable climate information from ice

cores as has been done, for instance, for the last glaciation.

To better understand how the climatic signal is passed from

the precipitation to the snow, we present here results from

varied snow samples from East Antarctica. First, we look

at the relationship between isotopes and temperature from

a geographical point of view, using results from three tra-

verses across Antarctica, to see how the relationship is built

up through the distillation process. We also take advantage

of these measures to see how second-order parameters (d-

excess and 17O-excess) are related to δ18O and how they are

controlled. d-excess increases in the interior of the continent

(i.e., when δ18O decreases), due to the distillation process,

whereas 17O-excess decreases in remote areas, due to kinetic

fractionation at low temperature. In both cases, these changes

are associated with the loss of original information regarding

the source. Then, we look at the same relationships in pre-

cipitation samples collected over 1 year at Dome C and Vos-

tok, as well as in surface snow at Dome C. We note that the

slope of the δ18O vs. temperature (T ) relationship decreases

in these samples compared to those from the traverses, and

thus caution is advocated when using spatial slopes for past
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climate reconstruction. The second-order parameters behave

in the same way in the precipitation as in the surface snow

from traverses, indicating that similar processes are active

and that their interpretation in terms of source climatic pa-

rameters is strongly complicated by local temperature effects

in East Antarctica. Finally we check if the same relationships

between δ18O and second-order parameters are also found in

the snow from four snow pits. While the d-excess remains

opposed to δ18O in most snow pits, the 17O-excess is no

longer positively correlated to δ18O and even shows anti-

correlation to δ18O at Vostok. This may be due to a strato-

spheric influence at this site and/or to post-deposition pro-

cesses.

1 Introduction

Water isotopic composition of shallow and deep ice cores has

long been used for reconstructing past climatic conditions in

polar regions (Jouzel et al., 2007; Küttel et al., 2012; Schnei-

der et al., 2006). The correlation between temperature and

δ18O in polar regions is explained by the progressive rela-

tive loss of heavy isotopes with respect to the light ones dur-

ing distillation of the water mass along its trajectory from

warm to cold regions. However, more and more recent stud-

ies are evidencing that the water isotopic composition (δ18O

or δD) in shallow snow pits in Antarctica does not follow

the recent (last 50 years) temporal evolution of temperature,

especially in regions of very low accumulation like the East

Antarctic plateau (Ekaykin et al., 2002, 2004; Hoshina et al.,

2014; Winkler et al., 2013). Post-depositional effects at the

snow surface (Sokratov and Golubev, 2009) are responsible

for a large noise, i.e., a non-climatic signal, in water isotopic

records. This non-climatic signal can be shaped by many lo-

cal effects such as surface relief, accumulation rate (Ekaykin

et al., 2004) or temperature gradient in surface snow (Town

et al., 2008). The situation is however improved when work-

ing on stacks of several shallow pits from which a climatic

signal can be extracted (Altnau et al., 2015; Ekaykin et al.,

2014; Schneider et al., 2006). In addition, the fact that δ18O

or δD records in deep ice cores have been providing ro-

bust and high-resolution records of past temperature over the

last glacial period clearly confirms the direct link between

temperature and water isotopic composition of surface snow.

Accordingly, either the post-depositional noise is not strong

enough to entirely erase the original climatic signal, or some

of the post-deposition processes are under the control of lo-

cal temperature and thus reinstate a link between δ18O and

temperature.

In addition to δD and δ18O records bringing information

on temperature at first order, additional climatic informa-

tion can be retrieved from second-order parameters like

d-excess (d-excess= δD− 8 · δ18O) and 17O-excess (17O-

excess= ln(δ17O+ 1)− 0.528 · ln(δ18O+ 1)) (Dansgaard,

1964; Barkan and Luz, 2007; Landais et al., 2008). These

parameters represent the y intercepts of two straight lines,

one relating δD and δ18O with a slope of 8, and the other

relating ln(δ17O+ 1) and ln(δ18O+ 1) with a slope of 0.528.

Most meteoric and surface waters over the globe fall on a line

with a slope of 8 and a y intercept of 10 in the δD/δ18O dia-

gram, called the Global Meteoric Water Line (Craig, 1961).

However, variations of d-excess values have been observed

in waters from various regions around the globe, and have

been attributed, in the middle to low latitudes, to regional

hydrological conditions (importance of evaporation and pre-

cipitation amount). When plotting the isotopic compositions

of meteoric waters in a ln(δ17O+ 1)/ln(δ18O+ 1) diagram,

they fall on a straight line with a slope of 0.528 (Barkan

and Luz, 2007; Landais et al., 2008; Luz and Barkan, 2010;

Meijer and Li, 1998). Following the model of the d-excess

definition, Barkan and Luz (2007) defined the 17O-excess in

this diagram, and proposed that it was a tracer of climatic

conditions at evaporation. The fact that δ18O, d-excess and
17O-excess bear slightly different climatic information is due

to influences of both equilibrium and kinetic fractionation

processes on the water isotopic composition. Equilibrium

and kinetic fractionation effects are induced by differences in

saturation vapor pressure and diffusivities among isotopes,

respectively. The different water isotopes exhibit different

sensitivities to equilibrium and kinetic fractionation leading

to variations in d-excess and 17O-excess. At low latitudes,

both d-excess and 17O-excess will be sensitive to relative

humidity during evaporation because of large variations in

kinetic fractionation (Gat, 1996; Uemura et al., 2008, 2010).

However, along the distillation process, the influence of

relative humidity on d-excess is fading away to the benefit

of the temperature gradient between the source and the

precipitation site through equilibrium fractionation (Petit et

al., 1991; Vimeux et al., 1999).

For coastal stations of Antarctica, 17O-excess and d-excess

are markers of water origin, mainly temperature for d-excess

(Delmotte et al., 2000; Kurita, 2011; Schlosser et al., 2008)

and relative humidity for 17O-excess (Winkler et al., 2012).

Presence of sea ice at the oceanic water evaporative regions

may also contribute to the d-excess and 17O-excess signal

(Gao et al., 2011; Schoenemann et al., 2014). However, at

very low temperatures, and therefore in the central regions

of Antarctica, the d-excess and 17O-excess in the precipita-

tion become much more sensitive to the temperature of con-

densation than in the coastal regions. By using the different

isotopic parameters, it remains possible to separate the influ-

ence of the source temperature from the influence of the lo-

cal temperature, as was done in central Greenland (Masson-

Delmotte et al., 2005; Jouzel et al., 2005) and more recently

in East Antarctica (Uemura et al., 2012) with a sensitivity

of polar d-excess to source temperature of 1.5 ‰ ◦C−1 (Risi

et al., 2010) and a sensitivity of polar 17O-excess to source

relative humidity of −0.9 ppm %−1 (Landais et al., 2009).

Because 17O-excess is less sensitive to temperature than d-
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excess, the site temperature influence on 17O-excess is only

perceptible in very remote sites of East Antarctica (Winkler

et al., 2012). Finally, 17O-excess may also bear the signature

of stratospheric input since photochemical reactions involv-

ing ozone can affect the triple isotopic composition of oxy-

gen in water in the stratosphere (Franz and Röckmann, 2005;

Lin et al., 2013; Winkler et al., 2013; Zahn et al., 2006). This

effect is generally marginal since the amount of water vapor

in the stratosphere is very small (a few ppm only). However,

it can become significant in East Antarctica where surface

humidity is very low (i.e., at Vostok, the average specific hu-

midity value is ∼ 112 ppmv and decreases to almost 0 ppmv

in winter; Ekaykin, 2003).

The goal of this study is to understand how a climatic and

environmental signature can be imprinted in the water iso-

topic composition of surface snow in remote East Antarc-

tica. Our strategy is to make an optimal use of the combina-

tion of all water stable isotopes (δD, δ17O, δ18O) in different

types of snow on the Antarctic plateau (precipitation, surface

snow, buried snow) to disentangle temperature, water cycle

and stratospheric influences.

The outline of our study is the following. In Sect. 2, we

present the spatial distribution of water isotopic composition

averaged in the top 30 cm of surface snow in East Antarctica

with a focus on the remote East Antarctic plateau. In Sect. 3,

we present variations of isotopic composition of precipita-

tion and surface snow on two drilling sites in East Antarc-

tica (Dome C, Vostok). Section 4 is a multi-isotope compi-

lation of new data on several snow pits in East Antarctica.

Each section is organized in three subsections: a review of

current knowledge, a description of new measurements and

results and a discussion. The final discussion shows that the

multi-isotopes approach at different sites with similar tem-

perature and accumulation rate characteristics is a useful tool

to identify the main drivers for the water isotopic variations

observed on shallow ice cores and to test the origin of the

δ18O variations classically interpreted in terms of past tem-

perature changes.

2 Spatial variations of d-excess vs. δ18O and 17O-excess

vs. δ18O in Antarctic transects

2.1 Review of current knowledge

The measurements of water isotopic composition in Antarc-

tic transects have first provided a spatial relationship of

0.8 ‰ ◦C−1 between surface temperature and δ18O in snow

(Lorius and Merlivat, 1977; Masson-Delmotte et al., 2008).

Applications of this relationship for reconstructing past tem-

perature from records of δ18O in ice cores have however re-

vealed some limitations because of combined influences of

the seasonality of precipitations, origin of moisture, varia-

tions in elevation or post-deposition effects (e.g., Charles et

al., 1994; Fawcett et al., 1997; Hoshina et al., 2014; Jouzel et

al., 2003; Krinner et al., 1997; Masson-Delmotte et al., 2012;

Neumann et al., 2005). Changes in moisture source, post-

deposition effects and ice condensation are associated with

kinetic fractionation effects. As a consequence, 17O-excess

and d-excess are useful tools to disentangle the different in-

fluences on water isotopic composition in ice cores and hence

improve our knowledge of the δ18O vs. temperature relation-

ship.

For quantitative interpretations, the isotopic measurements

are also classically combined with simple isotopic models

(such as Mixed Cloud Isotope Model, i.e., MCIM, Ciais

and Jouzel, 1994) or more sophisticated general circulation

models (GCMs) equipped with water isotopes (such as the

model LMDZ-iso from the Laboratoire de Météorologie Dy-

namique of Paris, where Z stands for the zoom function of

the model; Risi et al., 2010, 2013). The aim of such a model–

data approach is twofold. First, the comparison of data and a

model on the present-day spatial repartition of water isotopic

composition in Antarctica is essential for the validation of

the implementation of water isotopes in the model. Second,

the use of isotopic models is essential to quantitatively inter-

pret the water isotopic records in deep ice cores and translate

them into records of climatic parameters (e.g., local temper-

ature).

The model–data comparison over polar transects enables

the correct implementation of the relative influences of ki-

netic vs. equilibrium fractionation processes during snow

formation. These different influences are balanced through

the expression of the supersaturation function, S, in the for-

mulation of the fractionation coefficient (αV−S) during snow

formation so that

αV−S =
S

(S− 1)D/D∗+ 1/αeq

, (1)

where αeq is the fractionation coefficient at equilibrium be-

tween vapor and solid; D and D∗ are the diffusion coeffi-

cients of the light and heavy water isotopes in air. In the clas-

sical approach, S is related to inversion temperature, T in ◦C,

at which precipitation is assumed to form, so that S= 1− a T

(Ciais and Jouzel, 1994; Jouzel and Merlivat, 1984). The

relationship between supersaturation and temperature is not

well constrained from atmospheric data. The classical way to

adjust the slope a in the different models is to compare water

isotopes data and model outputs in polar regions. More pre-

cisely, because d-excess is very sensitive to kinetic effects at

condensation in cold polar regions, the tuning of the super-

saturation relationship to temperature is performed so that the

observed relationship between δ18O and d-excess in Antarc-

tica can be reproduced by the model (Ciais and Jouzel, 1994;

Risi et al., 2013; Schmidt et al., 2007). In GCMs, this tuning

leads to values for a between 0.003 and 0.005, with recent

models (Risi et al., 2010; Lee et al., 2007; Schmidt et al.,

2005; Tindall et al., 2009; Werner et al., 2011) favoring val-

ues equal to or greater than 0.004. Using the link between
17O-excess and δ18O on polar transects is an additional con-
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straint (Landais et al., 2008; Pang et al., 2015). The best fit

of an MCIM model to the isotopic compositions (d-excess

and 17O-excess) measured on the Terra Nova Bay–Dome C

traverse, is obtained with a value for a of 0.0033 (Winkler et

al., 2012). Pang et al. (2015) used the same value to fit to the

Zhongshan–Dome A traverse. Adequate tuning of supersat-

uration is the key to quantitatively interpret the influence of

temperature and moisture origin on δ18O, d-excess and 17O-

excess, especially in deep ice core records (Masson-Delmotte

et al., 2005; Stenni et al., 2010; Winkler et al., 2012).

The longest ice core records (Dome C, Dome F, and Vos-

tok) are located in the cold and dry regions of East Antarctica

(EPICA comm. members, 2004; Kawamura et al., 2007; Petit

et al., 1999). In these cold regions, the kinetic fractionation

is very strong because of a high supersaturation level. The

influence of kinetic fractionation on water isotopic compo-

sition is even stronger in glacial climatic conditions. In or-

der to quantitatively interpret these glacial isotopic records,

the expression of kinetic fractionation during snow forma-

tion should be known precisely at very low temperatures.

Unfortunately, there are barely any present-day analogs for

the glacial conditions encountered at Dome F, Vostok and

Dome C. To better document the water isotopic composi-

tion of snow in extremely cold regions of Antarctica, and

to improve the tuning of the supersaturation function, recent

transects have been performed toward remote regions of the

East Antarctic plateau (e.g., Becagli et al., 2004; Fujita et al.,

2011; Masson-Delmotte et al., 2008; Mayewski and Good-

win, 1999; Pang et al., 2015).

2.2 Measurements and results

We present here a compilation of existing and new transect

data combining the measurements of all water stable isotopes

(δ18O, d-excess and 17O-excess). The first transect com-

bining these surface measurements was obtained within the

ITASE project (Magand et al., 2004; Mayewski and Good-

win, 1999; Mayewski et al., 2005) between Terra Nova Bay

and Dome C (Fig. 1), and water isotopic data were already

published (Landais et al., 2008; Proposito et al., 2002). The

second transect was performed between Zhongshan station

and Dome A (Fig. 1) during the CHINARE expedition and

water isotopic data were published in Pang et al. (2015). Fi-

nally, we present new water isotopic records from a transect

obtained between Syowa, Dome Fuji and the site of the Drön-

ning Maud Land ice core (EPICA DML, obtained within

the European Project for Ice Coring in Antarctica, EPICA)

(Fig. 1) through a Swedish–Japanese project (Fujita et al.,

2011).

The surface snow samples were obtained from shallow

pits on which the average water isotopic composition was

measured. These pits had a depth of 1 m for the Terra Nova

Bay–Dome C traverse (Proposito et al., 2002; Magand et al.,

2004), 10 cm for the Zhongshang–Dome A traverse (Pang et

al., 2015) and 10 to 30 cm for the Syowa–Dome F traverse.

Figure 1. Map of the sites discussed in this manuscript.

Because the accumulation decreases from the coast towards

the inland sites, the recorded period, for the first transect,

varies from 2 years near the coast to 12 years at Dome C.

For the Chinese traverse, the recorded period varies from 1

year in inland areas to 3 months in coastal areas. For the

Syowa–Dome F traverse, the pits were shallower at inland

sites (10 cm) and deeper at coastal sites in order to record at

least 1 year in each sample. For the three transects presented

here, 17O-excess measurements were obtained by fluorina-

tion method of water to oxygen (Barkan and Luz, 2005) fol-

lowed by dual inlet measurements of produced oxygen vs. a

reference oxygen standard. Measurements of the Terra Nova

Bay–Dome C transect were performed at the Hebrew Univer-

sity of Jerusalem Israël (HUJI) using a Delta V mass spec-

trometer. Measurements of the two other transects were per-

formed in France at the Climate and Environment Sciences

Laboratory (LSCE) on a MAT 253 instrument. The measure-

ments were calibrated vs. VSMOW (Vienna Standard Mean

Ocean Water) and SLAP (Standard Light Antarctic Precipi-

tation), taking reference values for δ18O and 17O-excess of

respectively 0 ‰ and 0 ppm (or per meg) and −55.5 ‰ and

0 ppm (Pang et al., 2015; Schoenemann et al., 2013; Win-

kler et al., 2012). The pooled standard deviation (1σ ) was

computed from duplicate injection, fluorination and isotope

ratio mass spectrometry (IRMS) measurements of the same

sample, and is on average of 5–6 ppm for 17O-excess. The

δ18O and d-excess measurements for the Syowa–Dome Fuji

transect were performed using an equilibration method (Ue-

mura et al., 2007) at the National Institute of Polar Research,

Japan.

All three transects show similar evolutions for the relation-

ships between d-excess and δ18O on the one hand, and 17O-

excess vs. δ18O on the other hand (Fig. 2, Table 2). For δ18O

level lower than −40 ‰, d-excess decreases for increasing

δ18O with a slope of−0.95 ‰ ‰−1. 17O-excess does not ex-

hibit a significant trend if we restrict the data in the range of

δ18O>−50 ‰ as in the Terra Nova Bay–Dome C transect
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Figure 2. Water isotopic composition along Antarctic transects

(blue: Zhongshan–Dome A transect; green: Syowa–Dome F tran-

sect; red: Terra Nova Bay–Dome C transect) and comparison with

modeling outputs (black and grey line: MCIM with S= 1–0.004T

and S= 1–0.002T respectively, from Landais et al., 2012a; dotted

line: LMDZ-iso with S= 1–0.004T ; Risi et al., 2013).

(Fig. 2, Table 2). For δ18O values lower than −40 ‰, 17O-

excess increases with δ18O with a slope of 0.91 ppm ‰−1

(Table 2).

2.3 Discussion

For δ18O values between −20 and −40 ‰, there is a large

scattering of the d-excess values, with no clear trend. This

can be due to a variability of the climatic conditions (tem-

perature and relative humidity) at the source. For δ18O val-

ues below−40 ‰, d-excess values are clearly anti-correlated

with the δ18O values and change from ∼ 4 ‰ to about 25 ‰.

Such a change cannot be due to a change of the relative hu-

midity of the source nor to a change of the source temper-

ature that could explain only a few per mil changes. Thus,

the increase of d-excess for decreasing δ18O values is prob-

ably caused by the fractionation at condensation during the

distillation. This increase of d-excess is directly related to a

decrease of the slope (dδD/dδ18O) of the distillation line to-

wards low δ18O values (i.e., low temperatures). Indeed, in

the case of simple Rayleigh distillation, when the precipi-

tated snow is immediately removed from the air mass and

when only equilibrium fractionation occurs, we can express

the local slope of the Rayleigh’s distillation line at a given

point as

dδD

dδ18O
=

(
αDV−S − 1

)(
α18
V−S − 1

) × (1+ δD)(
1+ δ18O

) . (2)

This slope expression comes from a simple mass bal-

ance associated with a condensation step, with a small

amount of snow precipitated at equilibrium and thus re-

moved from the vapor. No assumption is made on the pre-

vious distillation path. When considering only equilibrium,

(αDV−S − 1)/(α18
V−S − 1) equals 8.7 at 0 ◦C and then increases

for lower temperature (it equals 10.1 at −40 ◦C). However,

when distillation increases, the ratio (1+ δD)/(1+ δ18O) no

longer equals 1, and 1+ δD reaches values lower than 0.6

(corresponding to δD lower than −400 ‰) in East Antarc-

tica. The combined effect of distillation and equilibrium frac-

tionation at low temperature leads to a slope of the meteoric

water line smaller than 8 at about −40 ◦C (i.e., 0.6× 10.1

is smaller than 8). The distillation effect is thus responsible

for the decrease of the slope of the meteoric water line and

hence the increase of d-excess for cold regions. Still, as ex-

plained in Jouzel and Merlivat (1984), the anti-correlation

between d-excess and δ18O is muted by the existence of

the kinetic effect. Indeed, when considering also kinetic ef-

fects in addition to equilibrium during solid precipitation,

(αDV−S − 1)/(α18
V−S − 1) equals 11.4 at −40 ◦C. Still, the dis-

tillation effect dominates over the effect of both equilibrium

and kinetic fractionation (0.6× 11.4 still remains smaller

than 8) and the d-excess tends to increase toward low tem-

perature.

The decrease of 17O-excess with decreasing temper-

ature is not linked to distillation effect. Pure equilib-

rium fractionation in a Rayleigh distillation with simi-

lar dependencies of α17
V−Sand α18

V−S to temperature (with

ln(α17
V−S/α

18
V−S)= 0.528) would lead to an increase of 17O-

excess toward low temperatures (Landais et al., 2012b; Van

Hook, 1968). Actually, the decrease of the 17O-excess to-

ward low temperature is due to the kinetic effect at condensa-

tion. Indeed, the ratio ln(D/D17)/ ln(D/D18) is significantly

lower (0.518) than the corresponding ratio between equilib-

rium fractionation factors and it results in a decrease of the
17O-excess in a Rayleigh distillation system when kinetic ef-

fect at condensation is significant.

When the temperature decreases, the supersaturation in the

air mass increases. This enhances the kinetic effect at con-

densation and leads to a decrease of both 17O-excess and d-

excess compared to their evolutions at pure equilibrium. In

turn, the evolution of d-excess and 17O-excess at low tem-

perature can help tuning the kinetic effect (Eq. 1) and es-

pecially the dependency of supersaturation to temperature. A

change in the source region of the water vapor also influences
17O-excess and d-excess at low temperature, but cannot by it-

self explain the observed decrease in 17O-excess from about

30 ppm to about 10 ppm between δ18O values of −50 and
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−60 ‰ (Fig. 2). Following Winkler et al. (2012) we estimate

that the effect of relative humidity would not be more than

10 ppm and the effect of a change of temperature, not more

than 3 ppm.

The three transect data sets are of primary interest to con-

strain the fractionation formulation between vapor and snow

in remote regions of Antarctica, as has already be done

in previous publications (Landais et al., 2008; Pang et al.,

2015; Winkler et al., 2012). We give here two examples for

this tuning using published modeling experiments incorpo-

rating all stable water isotopes. Figure 2 shows that a good

agreement can be obtained between isotopic data and mod-

eling results when using a simple model of water trajec-

tory (MCIM, Ciais and Jouzel, 1994; Landais et al., 2008)

with an appropriate tuning of the supersaturation function

(S= 1− 0.0033T or S= 1− 0.004T according to the tun-

ing of other parameters such as the temperature of solid con-

densation) (Landais et al., 2012a; Pang et al., 2015; Win-

kler et al., 2012). Winkler et al. (2012) discussed in details

the tuning of the different parameters of the MCIM to be

able to fit together δ18O, d-excess and 17O-excess in cen-

tral Antarctica and showed that supersaturation is indeed

the key parameter to fit the relative evolution of 17O-excess

vs. δ18O and d-excess vs. δ18O. When supersaturation is too

low (e.g., S= 1− 0.002T ), equilibrium fractionation domi-

nates and modeled 17O-excess and d-excess are too high at

low temperature (Fig. 2).

Things are more complicated when using AGCM

equipped with water isotopes. Figure 2 shows that a d-excess

increase and 17O-excess decrease for decreasing δ18O are

also predicted by the LMDZ-iso model with an appropriate

supersaturation function (S= 1− 0.004T , Risi et al., 2013).

However, the modeled δ18O values are not low enough in

Antarctica, thus leading to a strong discrepancy between the

East Antarctica data sets and the modeling outputs. One of

the main reasons for this disagreement is that temperatures

in Antarctica are not cold enough in the LMDZ model. The

overestimation of polar temperature is a common bias of

CMIP5–PMIP3 simulations (e.g., Cauquoin et al., 2015b;

Risi et al., 2010; Werner, 2011). This problem might be

linked to the generally poor representation of the polar at-

mospheric boundary layer and related atmospheric inversion

temperatures in GCMs (e.g., Krinner et al., 1997). Future

improvements in the incorporation of the water isotopes in

AGCM should take advantage of the transect data presented

here.

Finally, the combined measurements of water isotopes

along the three transects are essential to quantify the tem-

perature influence on δ18O, d-excess and 17O-excess. Using

the supersaturation tuning on the transect data, Winkler et

al. (2012) and Pang et al. (2015) found the following influ-

ences of temperature on δ18O, d-excess and 17O-excess in the

remote drilling stations of East Antarctica (Dome A, Vostok,

Dome C): 1 ‰ ◦C−1,−1.8 ‰ ◦C−1 and 0.3 ppm ◦C−1. These

determinations are in agreement with the recent estimates by

Uemura et al. (2012) for the Dome F d-excess and δ18O sen-

sitivity to temperature.

3 Temporal variation of the water isotopic composition

on the East Antarctic plateau

3.1 Introduction

While the spatial relationship between δ18O and tempera-

ture has long been the reference to link δ18O records in ice

cores to past temperature variations (Jouzel et al., 2013), nu-

merous studies have shown the limitations of such an ap-

proach because climate influences δ18O in a complex way

(see Sect. 2.1). One way to capture the uncertainty associ-

ated with such reconstruction is to evaluate the temporal de-

pendency of δ18O to temperature. In this section, we thus

estimate the relationship between temperature and water iso-

topes in precipitating snow over 1 year and the relationship

between temperature and water isotopes in the surface snow

on the same site. Because isotopic composition archived in

ice core probably results both from the isotopic composi-

tion of the precipitation and from post-deposition effects, we

study the annual relationship between the isotopic composi-

tion of snow and the temperature, both on precipitation sam-

ples and on surface snow sampled every week.

3.2 Method

Precipitation and surface snow samples come from two sta-

tions located on the East Antarctica plateau: Vostok and

Dome C (Fig. 1). Climatological characteristics for these sta-

tions are listed in Table 1. Vostok and Dome C are both

located on the East Antarctica plateau in low accumula-

tion regions (2–3 cm ice eq yr−1, Table 1). Vostok station is

the most remote and highest station. In terms of tempera-

ture, Vostok experiences the coldest conditions, and the wind

speed is greater at Vostok relative to Dome C (Table 1).

At Vostok, precipitation occurs in three forms: snow from

clouds, diamond dust and rime. The durations of precipita-

tion events vary from a few hours to a few days (the lat-

ter is typical for diamond dust). The Vostok precipitation

sampling has been performed immediately after each precip-

itation event from December 1999 to December 2000 and

can be separated into two data sets. The first one (series A)

corresponds to sampling from a precipitation trap placed at

1 m above the snow surface and at ∼ 50 m windward from

the station (Landais et al., 2012a). Samples collected in this

trap consist of pure precipitation as ascertained by the calm

weather conditions and absence of blowing snow at the time

of collection. Sublimation in the trap is unlikely for two rea-

sons. First, the high walls of the trap shaded the precipitation

within it. Second, most of the samples were collected in win-

ter, when insolation is minimal. The second series (B) cor-

responds to sampling from a lower precipitation trap buried

with its upper edge at the snow surface. Thus the flow of
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Table 1. Main characteristics of the snow pits drilled in East Antarctica at three different stations. Meteorological data for Vostok from

http://www.aari.ru. Data indicated by a ∗ correspond to the snow pit Vostok_winkler (Winkler et al., 2013). Accumulation rate (S2) from

E. Le Meur et al. (2016). Temperature at S2: L. Arnaud, personal communication, 2015, 10 m temperature at Dome C: J. Schwander,

unpublished data, 2001. Wind speed at Dome C from the IPEV/PNRA project “Routine Meteorological Observations” at Concordia station

http://www.climantartide.it.

Vostok S2 Dome C

Latitude −78.5◦ S −76.3◦ S −75.1◦ S

Elevation 3488 m 3229 m 3233 m

Mean annual air T (2 m) −55.2 ◦C NA −51.7 ◦C

Air T coldest month −68.0 ◦C (Aug) NA −63.5 ◦C (Jul.)

Air T hottest month −31.8 ◦C (Dec) NA −31.3 ◦C (Jan)

10 m borehole T −57 ◦C −55.1 ◦C −54.9 ◦C

Acc. rate (ice eq.) 2.4 cm yr−1 2.1 cm yr−1 2.7 cm yr−1

Wind speed 5.1 m s−1 NA 3.3 m s−1

Average δ18O −57.13 ‰∗; −57.06 ‰ −53.81 ‰ −51.14 ‰

Average d-excess 15.3 ‰∗; 16.1 ‰ 12.3 ‰ 9.1 ‰

Average 17O-excess 10 ppm∗; 26 ppm 32 ppm 31 ppm

Figure 3. (a) Isotopic composition of the precipitation at Vostok over 1 year. A: samples from the upper trap (pure precipitation); B: samples

from the lower trap (precipitation mixed with blowing snow). For the 17O-excess, dark green points were measured at LSCE, whereas light

green points were measured at HUJI. (b) Isotopic composition of the precipitation at Dome C over 1 year.

blowing snow around the trap was unimpeded and the snow

collected consists of a mixture of precipitation and blowing

snow. After the collection, the samples from the two series

were melted, poured into special plastic bottles and frozen

again. This procedure was followed to avoid alteration of the

initial isotopic composition of precipitation due to sublima-

tion and exchange with the atmospheric water vapor. Sample

volume varied between 1 mL (diamond dust) and 10–20 mL

(heavy precipitation).

The δD, δ8O and 17O-excess measurements for the

16 samples of series A (Fig. 3a, blue panel: Febru-

ary 2000–September 2000) have been published in Landais

et al. (2012a). δ18O and d-excess measurements were per-

formed at Geophysics department, Niels Bohr Institute, Uni-

versity of Copenhagen, while 17O-excess was measured at

HUJI using a Delta V instrument (duplicate measurements

of 17O-excess were also realized at LSCE for six samples).

The 11 samples of series B were measured in the same in-

stitutions as the samples of series A (Fig. 3a, yellow panel:

December 1999–February 2000).

The Dome C precipitation sampling has been continu-

ously performed since December 2007 in the framework of

the Italian glaciology program at Concordia station. Almost

100 samples are collected every year and analyzed for δD

and δ18O. Here, we present only a subset of this sample col-

lection from January to December 2010 (Fig. 3b). Unfortu-

nately, samples from the year 2011 (period when the surface

snow was sampled, see the last paragraph of this section)

were not available. The 17O-excess was measured at LSCE

using the fluorination method followed by dual inlet analy-
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sis on a MAT 253 as for the transect samples of the previous

section (Sect. 2) and Vostok precipitation samples.

It should be noted that some δ18O values presented on

Fig. 3 are significantly lower than the δ18O value of the SLAP

(−55.5 ‰). The classical two-point calibration VSMOW–

SLAP is thus possibly not valid here. We have addressed the

δ18O calibration issue for very low δ18O values by diluting

well-characterized standards with almost pure H16
2 O (Isotec

Water-16O from Sigma-Aldrich; Casado et al., 2016). These

dilutions and associated measurements have shown that the

VSMOW–SLAP calibration for δ18O on our instrument can

be extrapolated down to−90 ‰. It was not possible to do the

same exercise with 17O-excess because the water with almost

pure H16
2 O (99.98 %, Casado et al., 2016) was not character-

ized in H17
2 O content. Still, measurements of much depleted

δ18O samples on different mass spectrometers suggest that

we may create biases of up to 10 ppm in the 17O-excess val-

ues expressed in a VSMOW–SLAP scale. Mean 17O-excess

values associated with δ18O<−55.5 ‰ and performed on

different mass spectrometers may therefore not be directly

comparable.

The sampling of surface snow at Dome C was performed

between December 2010 and December 2011, in the clean

area, about 1 km away from Concordia station, according to

the following procedure. Each day of collection, an area of

approximatively 5 m2 was chosen (different from the previ-

ous one) and snow is scraped from 5 to 10 spots (∼ 0.04 m2)

within this area. This variability is due to the necessity to

collect enough snow for later analysis. Only the first 1–2 mm

of snow was collected, using a metal blade. The snow col-

lected was homogenized and melted, and a fraction destined

for isotopic analysis transferred into a 20 mL vial and then

kept frozen until analysis. In every 5 m2 area, sastrugi were

avoided, but otherwise (i.e., in flat areas) the sampling was

performed randomly and no distinction was made between

snow types; drifted snow, wind crust, soft, hard and hoar

snow are sampled indiscriminately. The aim was to sample

all types of snow present during the day of sampling to ac-

cess the average composition of the surface snow in direct

contact with the atmosphere. On this set of samples, δ18O

and δD were measured by a wavelength scanned cavity ring-

down spectroscopy instrument (Picarro L2130i) with a re-

sulting uncertainty of 1σ = 0.05 ‰ for δ18O and 0.5 ‰ for

δD. As for the other new 17O-excess data presented in this

manuscript, we used here the fluorination method coupled

with dual inlet mass spectrometry (MAT 253) with a result-

ing uncertainty 1σ = 5 ppm.

3.3 Discussion

As already observed for other Antarctic sites where δ18O

measurements on precipitation samples have been per-

formed, δ18O of falling snow is strongly related to temper-

ature both at Dome C (R= 0.88, p< 0.05, Table 2) and at

Vostok (R= 0.77, p< 0.05, Table 2). The annual slope of

Figure 4. Isotopic composition of surface snow sampled every 1–

2 weeks at Dome C.

δ18O vs. temperature is 0.46 and 0.26 ‰ ◦C−1 at Dome C and

Vostok respectively (Table 2). The annual slope at Dome C is

comparable to the one observed at Dome F for a similar tem-

perature level (0.47 to 0.78 ‰ ◦C−1, Fujita and Abe, 2006;

Motoyama et al., 2005), while the Vostok seasonal δ18O

vs. temperature slope is significantly lower. Using only the

samples of series A (instead of A+B) increases the annual

slope at Vostok slightly (0.35 ‰ ◦C−1), suggesting that this

low slope can result from post-deposition noise (i.e., blow-

ing snow with an isotopic composition different from the

one of the falling snow). Several other possible explanations

have already been evoked to explain this low slope (Ekaykin,

2003; Landais et al., 2012a), such as a strong gradient be-

tween condensation and surface temperature at Vostok when

precipitation occurred, or a change in the type of precipita-

tion at Vostok (possible high contribution of diamond dust in

precipitation). However, we should also note that at Vostok,

we have only a small number of water samples correspond-

ing to precipitation events associated with the largest amount

of snow. These large precipitation events are associated with

relatively high temperature in winter. Such a selection of par-

ticular precipitation events may also have an influence on the

final δ18O vs. temperature slope; therefore we avoid specu-

lating on this particular value with so few data points (26 at

Vostok).

As for the surface snow at Dome C, there is a rather good

correlation between δ18O and 2 m air temperature (Fig. 4)

with a global slope of 0.14 ‰ ◦C−1 (R= 0.54, p< 0.05, Ta-

ble 2). This slope is lower than the annual slope in the pre-

cipitation at Dome C (0.46 ‰ ◦C−1, R= 0.88, p< 0.05, Ta-

ble 2) and hence much lower than the spatial slope. The fact

that temporal slopes are smaller than the spatial ones has to

be kept in mind when applying these slopes to past tempera-

ture reconstructions. When looking in more detail at the evo-

lution of δ18O over 1 year, two observations can be made.

First, between December 2010 and March 2011, we observe

a long-term decreasing trend of both temperature and surface

snow δ18O, in a period associated with only rare precipita-
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tions events. Here the number of points is limited and this

correlation should be checked by a higher resolution study.

A possible explanation for the joint evolution of these two

parameters (between precipitation events) would be surface

snow metamorphism and exchange with the atmospheric wa-

ter vapor, as already evidenced in Greenland (Casado et al.,

2016; Ritter et al., 2016; Steen-Larsen et al., 2013). This

mechanism is supported by the synchronous prolonged pe-

riod of hoar formation (Fig. 4), surface hoar crystals being

the product of water vapor condensation (Champollion et al.,

2013). Besides, the porous surface hoar could also act as a

trap for the rare snow particles and diamond dust (Champol-

lion et al., 2013), therefore facilitating the evolution of the

isotopic composition of the snow in the absence of precip-

itation events. Second, several short warming events during

winter 2011 are also clearly imprinted in the δ18O signal.

Because warm events are often associated with precipitation

events (Fig. 4), the temperature-δ18O link during these events

can result from fresh snow deposition. Note that the warm

event of mid-June (17 June) is not reflected in the δ18O sig-

nal. This may be due to wind erosion and redeposition of the

snow.

The relationship between d-excess or 17O-excess and δ18O

can also help us to understand the annual variation of the iso-

topic composition of the snow. Here the annual amplitude

of variation (10–20 ‰ for d-excess and 30–40 ppm for 17O-

excess) suggests that the main control is the site temperature,

because other parameters such as source temperature and rel-

ative humidity would not account for more than a few per

mil for d-excess or more than 10 ppm for 17O-excess (Win-

kler et al., 2012). Both for Vostok and Dome C precipita-

tion, d-excess and δ18O are anti-correlated with a slope of

−1.61 ‰ ‰−1 (R=−0.88, p< 0.05, Table 2) at Dome C

and −0.7 at Vostok (R=−0.64, p< 0.05, Table 2). Even if

there is a large difference between the two slopes, this anti-

correlation is expected and has already been observed with

similar values (1 to 2 ‰ ‰−1) on the transect data: for δ18O

level below −40 ‰, we observe a clear anti-correlation be-

tween δ18O and d-excess linked to the effect of distillation.

In the surface snow at Dome C, d-excess is also globally anti-

correlated with δ18O over the whole year 2011 with a slope

of −0.47 ‰ ‰−1 (R=−0.4, p< 0.05, Table 2), indicating

that the effect of the distillation process is still perceptible in

the surface snow but somehow obscured by another process.
17O-excess of precipitation is significantly correlated with

δ18O at Vostok (2.95 ppm ‰−1, R= 0.88, p< 0.05, Table 2)

with a higher slope and correlation coefficient compared to

the transect data set with δ18O<−40 ‰ (0.91 ppm ‰−1,

R= 0.36, p< 0.05, Table 2). On the opposite, no clear re-

lationship can be drawn from the 17O-excess vs. δ18O val-

ues in the precipitation at Dome C, even if sampling at both

sites encompasses the same range of δ18O values down to

−70 ‰ and surface temperature down to−75 ◦C. Such a re-

sult suggests that the kinetic effect during condensation is not

the only driver for 17O-excess variations in East Antarctica.

The analysis of the surface snow at Dome C, however, shows

a small (but significant) correlation between 17O-excess and

δ18O. How can this correlation exist in the surface snow and

not (significantly) in the precipitation at the same site? We

propose two hypotheses regarding this phenomenon. First, at

Dome C the annual cycle of temperature in 2010 is very well

defined and does not show the frequent warming events (up

to −50 ◦C) observed during the winter of 2011 at Dome C

and in 2000 at Vostok. In other words, natural variability

may be the cause of these differences, with winter 2010 ex-

periencing more stable (and therefore colder) conditions than

winter 2000 and 2011, and thus reduced correlation between
17O-excess and δ18O. Alternatively, the post-deposition pro-

cesses within the snow could be responsible for a renewed

correlation between 17O-excess and δ18O.

4 Variability of water isotopic composition in snow pits

4.1 Description of the sampling sites

The next step to understand the archiving of the water iso-

topic composition is to look at the combined water isotopes

on short snow pits at different places in Antarctica. The iso-

topic composition on snow pits will indeed be influenced by

the isotopic composition of snow precipitation, diamond dust

deposition and post-deposition effects, involving exchanges

with atmospheric water vapor. Many isotopic measurements

have been performed on snow pits in Antarctica (e.g., Alt-

nau et al., 2015; Ekaykin et al., 2014) but except the study

from Winkler et al. (2013) focusing on one shallow pit only

in Vostok, none of the previous studies have combined mea-

surements of all stable water isotopes.

Here, we compare the results obtained from snow pits

from three localities: Vostok, S2 and Dome C (Fig. 1). The

main characteristics of the sampling sites are described in Ta-

ble 1. From Dome C to S2, and then to Vostok, the temper-

ature decreases, while the altitude increases. Thus the com-

bination of the continental effect and of the altitudinal effect

should lead to decreasing δ18O values, because of a more

advanced distillation at the most remote sites. Interestingly,

results from modeling of air parcel trajectories (Reijmer et

al., 2002) indicate that air parcels moving toward Vostok pass

over Dome C, thus confirming the pathway of the distillation.

To see if the distillation is indeed the main process control-

ling the isotopic composition in the snow pits, we first com-

pare the average values between the pits, and then look at

the evolution of isotopic parameters. Given the accumulation

rate, several decades are probably recorded (about 60 years).

However, we avoid discussing any precise age scale for these

shallow pits drilled in East Antarctica. Indeed, because of the

low accumulation rate and redeposition effects in this region,

the precise chronology is uncertain (possibility of gaps or

snow layer repetition). This prevents a proper interpretation

of isotopic variations in terms of interannual variability and
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we only discuss in the following the average isotopic values

and correlation between the different isotopic parameters. If

distillation is the main driver, we expect low δ18O values to

be associated with high d-excess values, because they would

be symptomatic of a more pronounced distillation, and with

lower 17O-excess values, because of the kinetic effect at very

low temperature.

4.2 Isotopic measurements

Here, we have analyzed the isotopic composition of the first

(2 to 4) meters of snow at three localities: Vostok, S2 and

Dome C (Fig. 1). At Vostok, we can compare new data from

the snow pit obtained for this study to a snow pit previously

analyzed in δD, δ18O and δ17O (Winkler et al., 2013) that

was dated to 1951 at 3.46 m. In the following, this snow pit

will be called Vostok_winkler. For the different snow pits,

the snow was sampled every 3 cm from the top to the bot-

tom. The new δ18O, δD and 17O-excess measurements pre-

sented here were performed following the analytical meth-

ods of Sect. 2.2 with a MAT253, while the data from Vos-

tok_winkler were measured on a Delta V.

4.3 Results

The average values for δ18O (Table 1) decrease from Dome C

to Vostok. The average d-excess values have an opposite

trend relative to the δ18O values (they increase from 9.1 ‰ at

Dome C to 12.3 ‰ at S2 and to 16.1 ‰ at Vostok). Finally,

the average 17O-excess values measured on the same instru-

ment are similar at Dome C, S2 and Vostok (∼ 30 ppm).

Correlations between variations of δ18O, d-excess and 17O-

excess were inferred first for the whole isotopic series of

the snow pits and then, for the couple δ18O/17O-excess for

subsections of 20 points, corresponding to 60 cm, or about

10 years. The Spearman’s correlations performed over a

shifting window of 20 points are significant (with α= 0.05)

if the absolute value of the correlation coefficient ρ is higher

than 0.443.

The results of Spearman’s correlations for the whole se-

ries are presented in Table 2. For the d-excess/δ18O couple

of parameters, the correlation is negative in all the pits, and

strongest at S2. We note that the correlation at Dome C is

also negative but not significant at the 0.05 level. Regarding

the 17O-excess/δ18O couple of parameters, the correlation is

significant only in the Vostok_winkler snow pit. At this site,

the correlation is negative.

The shifting window correlation coefficients between 17O-

excess and δ18O are overall negative at Vostok and S2

(Fig. 5a–c). They are significant in most of the core (70 %

of cases) for Vostok_winkler, and also in a large part of the

core for the second snow pit at Vostok (30 % of cases) and at

S2 (40 % of cases). At Dome C, the correlation coefficients

are small, and oscillate between positive and negative values

(Fig. 5d). They only reach significant values in 4 % of cases.

Figure 5. Water isotopic data from snow pits and correlation be-

tween δ18O and 17O-excess for Vostok_winkler ((a); Winkler et al.,

2013), Vostok (b), Dome C (c) and S2 (d). Each correlation coeffi-

cient R between δ18O and 17O-excess corresponds to a correlation

realized over 20 points (see Sect. 4.3). The correlation coefficients

are significant when they are larger than 0.443 in absolute values.

The limit of significance is displayed as a green dotted line.

4.4 Interpretation of the results and discussion of

processes

The comparison of the average values between sites is coher-

ent with the distillation process, with δ18O values decreas-

ing and d-excess values increasing from Dome C to Vostok.

However, the kinetic effect at condensation is not clearly ap-

parent, as the 17O-excess values remain more or less the same

between the sites.

Global Spearman’s correlations led to significant nega-

tive correlations between δ18O and d-excess for S2, Vostok

and Vostok_winkler. These negative correlations are consis-

tent with those already detected in the snow from transects

and in the precipitation, and therefore with a distillation pro-

cess. An effect of the source is also possible, but not suffi-

cient to explain the large amplitude of variations in d-excess

and 17O-excess (10–20 ‰ for d-excess and 30–40 ppm for
17O-excess). At Dome C, the absence of significant corre-

lation in the snow pit is unexpected, considering the anti-

correlation observed at this site both in the precipitation and

in the surface snow. Thus the distillation process at this site

appears somehow obliterated by post-deposition processes
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(erosion, transport and redepositing of snow, diffusion of iso-

topes within the firn) affecting the isotopic compositions and

their relationships.

The overall negative relationship between δ18O and 17O-

excess at Vostok and S2 (considering not only the whole se-

ries values but also the subsections values) is rather intrigu-

ing. In effect, this is opposed to what has been observed on

transects and at the seasonal scale for precipitation samples.

The anti-correlation between 17O-excess and δ18O in these

two sites definitively shows that distillation is not the driver

of the 17O-excess variations in the East Antarctica snow pits.

Other mechanisms must then be considered to account for

such negative correlation. Winkler et al. (2013) have ex-

plored different possible explanations for the relationships

between 17O-excess, δ18O and δD. Using additional 10Be

measurements in the same pit at Vostok and the good cor-

relation between 10Be and 17O-excess, they have concluded

that stratospheric input may be a good candidate for explain-

ing the high 17O-excess values concomitant with high 10Be

and low δ18O. Indeed, mass-independent fractionation as-

sociated with reaction with ozone in the stratosphere may

lead to strong 17O-excess in the stratosphere (Zahn et al.,

2006). Even if the amount of water vapor is very small there

(2 ppm), East Antarctica is very dry (30 ppm at Vostok) and

located under the influence of the polar vortex hence with

significant stratospheric input (e.g., Cauquoin et al., 2015a;

Stohl and Sodemann, 2010). We propose here that the more

frequent anti-correlation between 17O-excess and δ18O ob-

served at Vostok relative to S2, and also at Vostok and S2

with respect to Dome C, is linked to a stronger influence of

stratospheric input in areas that are more remote (i.e., Vos-

tok and S2). This is supported by the highest level of natural

tritium observed at Vostok (100 TU) compared to Dome C

(30 TU) (Becagli et al., 2004; Fourré et al., 2006; Proposito et

al., 2002). Natural tritium is indeed mainly produced by the

interaction of cosmic radiations with the upper atmosphere

(Craig and Lal, 1961; Masarik and Beer, 2009) and is thus

a good marker of stratospheric water input when measured

in surface snow. Unfortunately, no tritium measurement is

available at S2 now.

Finally, note that post-deposition could also have an effect

on the relationship between δ18O, d-excess and 17O-excess.

This effect has been studied in Winkler et al. (2013) who

showed by simple calculations at steady state that this effect

could be important. Still, this calculation could not explain

the observed relationship at Vostok_winkler and particularly

how the seasonal correlation between δ18O and 17O-excess

observed in precipitation at Vostok can be changed to an anti-

correlation in the snow. To better quantify this effect in East

Antarctica, modeling of post-deposition effect should be im-

proved by using a dynamic model as in Town et al. (2008)

and by using field measurements and experiments to tune it

to the East Antarctic plateau.

5 Conclusions

We presented a compilation of new water stable isotopic data

in East Antarctica on surface snow, precipitation and snow

pits. The comparison of the different stable isotope parame-

ters δ18O, d-excess and 17O-excess is very useful to decipher

the various influences on the water isotopic composition in

ice cores that is further archived in deep ice cores. We se-

lected sites in East Antarctica with extreme climatic and iso-

topic values (δ18O down to −70 ‰ in winter) in order to ob-

tain a present-day equivalent to the glacial period archived in

deep ice cores. These sites are located at the very end of the

distillation trajectory with possible significant input of strato-

spheric water vapor that has an influence on water isotopic

ratios.

Table 2 presents the compilation of the relationships be-

tween the different isotopic parameters and temperature for

the different types of snow and different locations. Measure-

ments of water isotopes in average surface snow and precip-

itations show a systematic anti-correlation between d-excess

and δ18O for δ18O lower than−40 ‰ and, except at Dome C,

a systematic correlation between 17O-excess and δ18O for

δ18O lower than−40 ‰. Even if the low δ18O values encoun-

tered in East Antarctica cannot yet be reproduced by AGCM

equipped with water isotopes, the (anti-)correlation between

water isotopic parameters can be explained well. The anti-

correlation between d-excess and δ18O results from the dis-

tillation and the correlation between 17O-excess and δ18O at

very low temperatures; this is the result of kinetic effects at

condensation in a strongly supersaturated environment.

The links between isotopic parameters are however dif-

ferent in snow pits of East Antarctica. Especially, the pos-

itive relationship between δ18O and 17O-excess, associated

with kinetic effects at low temperatures, is not visible, and

an anti-correlation between δ18O and 17O-excess appears at

Vostok and S2 that could be explained by a stratospheric in-

put of water vapor. 10Be values, measured in the same snow

pit at S2, show a positive correlation with 17O-excess val-

ues (M. Baroni, personal communication, 2015), and thus

give weight to this explanation. Such an effect is not visible

at Dome C where no particular relationship between 17O-

excess and δ18O is visible.

From the different types of snow in East Antarctica, we

always observe a positive relationship between changes in

surface temperature and change in δ18O of snow, even in the

absence of precipitation. If confirmed by future studies, the

correlation between δ18O of surface snow and temperature

in the absence of precipitation in East Antarctica has strong

importance for the interpretation of water isotopes in deep

ice cores. Indeed, East Antarctica is characterized by a very

small accumulation rate (even smaller during glacial peri-

ods); therefore post-deposition effects are expected to have

a significant effect. Our findings suggest that post-deposition

effects lead to a correlation between δ18O and temperature.

To better understand the exchanges between surface snow
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and atmospheric vapor, and to assess their impact on the iso-

topic compositions, detailed models focusing on these inter-

actions are needed. In the future, the development of models

of post-deposition processes equipped with water isotopes

may become the key to the quantitative interpretation of iso-

topes in ice cores.

Finally, from our data, we calculated a wide range of

temporal slopes between δ18O and temperature (0.14 to

0.46 ‰ ◦C−1, Table 2). They are in general significantly

lower than the spatial slope of the δ18O vs. temperature rela-

tionship over Antarctica (0.8 ‰, Lorius and Merlivat, 1977;

Masson-Delmotte et al., 2008). Such results have important

implications for the temperature reconstructions from deep

ice cores in central Antarctica. Indeed, with a smaller δ18O

vs. temperature slope, the δ18O-inferred amplitude of past

temperature changes is larger. This is in agreement with out-

puts of experiments performed with AGCM equipped with

water isotopes. Indeed, the modeled temporal slopes between

δ18O and temperature over the East Antarctic plateau, both at

annual and glacial–interglacial scales, are generally smaller

by up to a factor of 2 compared to the present-day spatial

slope over Antarctica (Cauquoin et al., 2015b; Lee et al.,

2008; Risi et al., 2010; Schmidt et al., 2007; Sime et al.,

2008, 2009).

The Supplement related to this article is available online

at doi:10.5194/tc-10-837-2016-supplement.
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Abstract. Supersaturations in the natural atmosphere are frequent at the top of the troposphere 

where cirrus clouds form, but are very infrequent near the surface where the air is generally warmer 

and laden with liquid and/or ice condensation nuclei. An exception is the surface of the high 

antarctic plateau. One year of atmospheric moisture measurement at the surface of Dome C on the 

East Antarctic plateau is presented and compared with results from 2 models implementing cold 

microphysics parametrizations: the European Center for Medium-range Weather Forecasts through 

its operational analyzes, and the Model Atmosphérique  Régional. The measurements are obtained 

using commercial hygrometry sensors modified to allow air sampling without affecting the moisture

content even in case of supersaturation. Supersaturations are very frequent in the observations and 

in the models, but the statistical distribution differs both between models and observations and 

between the 2 models, living much room for improvements in both models. Unadapted hygrometry 

sensors generally fail to report supersaturations, and most reports of atmospheric moisture on the 

antarctic plateau are thus likely biased low. This is unlikely to strongly affect estimations of surface 

sublimation because supersaturations are more frequent as temperature is lower, and moisture 

quantities and thus water fluxes are very small anyway. Ignoring supersaturation may be a more 

serious issue when considering water isotopes, a tracer of phase change and temperature, largely 

used to interpret snow and ice samples from the antarctic plateau and reconstruct past climates and 

environments from ice cores. Longer and more continuous in situ observation series to test 

parameterizations of cold microphysics, such as those used in the formation of cirrus clouds in 

climate models, can be obtained at surface levels than higher in the atmosphere.
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1. Introduction

Ice supersaturation is frequently found in the upper troposphere  [Spichtinger et al. 2003] and 

specific cloud microphysics parameterizations are developed to represent this process in 

meteorological and climate models. These models have to be validated against the observations to 

reproduce cirrus and other clouds including contrails which develop at altitudes where 

supersaturations occur (e.g. Rädel and Shine [2010]). Radiosondes provide snapshot information 

but obtaining in situ observation series to calibrate and validate such parameterizations is a 

challenge because it requires flying and operating instruments on high altitude aircrafts or balloons. 

Sampling supersaturated air parcels without affecting the air moisture content is also a challenge, as

the excess moisture with respect to saturation tends to condensate on any surfaces including those 

of the sampling device and the sensor itself. There are thus not many in situ observations available 

to characterize and quantify natural supersaturations and their evolution in time, and evaluate and 

validate microphysics parameterizations in such conditions.

While they are frequent at high altitude, ice supersaturations do not generally occur in the surface 

atmosphere, where operating instruments is obviously much easier. Conditions close to the 

tropopause are however found over the antarctic ice sheet both in terms of temperature and 

humidity levels. Because of the distance from the nearest coasts and the high elevation, the antarctic

plateau is also particularly secluded from sources of aerosols. This is the most likely place on Earth 

to observe ice supersaturation in the near surface atmosphere. For instance, Schwerdtfeger [1970] 

reports on observations of relative humidity with respect to ice exceeding 120% at Vostok station in 

the heart of Antarctica.

The possibility of surface atmospheric supersaturation on the antarctic plateau raises an important 
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issue, that of the relative contribution of the different terms of the surface mass balance of the 

antarctic ice sheet. The terms are precipitation (positive for the surface) and 

evaporation/sublimation (negative or positive), and possibly blowing snow (positive or negative as 

blown snow redeposits, but generally negative because of enhanced snow evaporation). Melting and

runoff do not occur on the antarctic plateau and can be excluded. The net surface mass balance, 

observed using glaciological methods, is very small on the antarctic plateau. It is typically a few cm

water equivalent per year [Arthern et al., 2006]: the antarctic plateau is one of the driest places on 

Earth. This is because it is so cold, and thermodynamics imply that the various terms of the surface 

mass balance are bound to be correspondingly small. Because they are so small, and because of a 

harsh environment, the direct determination of precipitation and evaporation/sublimation on the 

antarctic plateau is not conclusive. Their relative contribution to the surface mass balance of the 

antarctic plateau is still poorly quantified, using indirect approaches [Frezzotti et al., 2004]. In most 

places on continents, precipitation largely dominates. This is not necessarily the case on the 

antarctic plateau. In particular, if atmospheric supersaturation occurs near the surface, then moisture

concentration is likely larger in the surface atmosphere than at the snow surface and the turbulent 

moisture flux is thus directed towards the surface (surface condensation). Unlike most other regions

of the Earth, this turbulent flux could contribute positively to the surface water budget and thus, 

here, on the surface mass balance.

Another potential issue with ice supersaturation on the antarctic plateau is that of the impact on the 

water isotopic composition of snow. Supersaturation leads to kinetic fractionation of the stable 

isotopic composition of water when it condensates. Since the 1980's [Jouzel et al. 1987], the longest

ice core records of past climate and environment are obtained from drilling operations on the 

antarctic plateau. Past atmospheric temperatures are deduced from the variations of the 

concentration of stable water isotopes along the core. Variations in supersaturation levels may 
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impact on this reconstruction. Supersaturations thus involve not only meteorological (clouds, 

precipitation, surface evaporation / sublimation) but also climate and paleoclimate reconstruction 

issues. It is therefore important to measure and assess supersaturations on the Antarctic plateau.

However, as already mentioned, measuring atmospheric supersaturation is a challenge because 

sampling a supersaturated air mass can affect its moisture content. Schwerdtfeger [1970] expresses 

concerns about the reliability of reports of supersaturation at Vostok station. On the other hand, 

many reports of relative humidity with respect to ice (RHi) on the antarctic plateau reach but seem 

to be capped at 100% [King et al., 1999]. Genthon et al. [2013] compare RHi observed at Dome C 

on the antarctic plateau using conventional solid state sensors with results from the ECMWF 

(European Center for Medium-range Weather forecasts) meteorological analyzes and from the 

MAR (Modèle Atmosphérique Régional, Gallée and Gorodetskaya [2010]) meteorological model. 

In both models, cold microphysics parameterizations are used which, depending on local 

conditions, allow for supersaturations. More often than not, when ~100% RHi is observed at Dome 

C with conventional instruments (not adapted to sample supersaturation), both models produce 

significant supersaturation, occasionally reaching more than 150% [Genthon et al., 2013]. The cold 

microphysics parameterizations differ in the 2 models (see Genthon et al. [2013] for references), 

and other aspects such as the vertical resolution also differ: if both model produce significant 

supersaturations, they do not quantitatively agree as to the amplitude of the supersaturations.

To verify such numbers and decide between models, using direct is situ measurements, instruments 

must be designed and/or adapted so as to bring the air mass to the moisture sensor without affecting 

its moisture content. This can be done by warming the air above its condensation temperature 

before ushering it to the sensor. Here, after the present general introduction (Section 1) , Section 2 

presents 2 instruments which are adaptations of commercial sensors to perform in very cold 
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conditions and to enable the measurement of atmospheric supersaturation at Dome C. The 

measurement site and deployment are also described in Section 2, and previous atmospheric 

humidity reports from this site are reminded. In Section 3, results from the older instruments are 

compared with the reports by the 2 adapted instruments. In this Section the models are shown to 

agree with the observations from the adapted instruments, of frequent occurrences of 

supersaturation at all time in the year including in summer. It is also shown that details of the 

climatology and the statistics of occurrence of supersaturation differ between the models and the 

observations and between the 2 models. Section 4 discusses the results, provides an outlook of 

research to follow, and finally concludes the paper.

2. Measurement site, instruments and methods

Dome C (Figure 1) is one of the main domes on the east antarctic plateau. Since 2005, the 

summit of the dome (75° 06’ S, 123° 20’ E, 3233 m a.s.l.) hosts a permanently manned station, 

Concordia, jointly operated by the French and Italian polar institutes (IPEV and PNRA). One of the 

first Antarctic Meteorological Research Center automatic weather station (AMRC AWS, 

https://amrc.ssec.wisc.edu/) deployed in Antarctica, back in the 1980s, was at Dome C. When the 

actual location of the summit of the dome was later more accurately determined using satellite and 

aircraft radar altimeters in the 1990s, the AWS was moved about 50 km to its present position. This 

induced a 30 m rise and correspondingly slight mean surface pressure change but otherwise little 

impacted the series consistency because the local environment is very homogeneous. The AWS 

provides one of the longest quasi-continuous meteorological reporting on the high antarctic plateau. 

The station measures pressure, temperature and wind, but not moisture. Additional meteorological 

reports are available since the construction of Concordia station, including an other AWS closer to 

the station and a daily radiosonde. Both the new station and the radiosondes report atmospheric 
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humidity using solid state film capacitive sensors [Kämpfer et al., 2013], . In early 2008, a system 

to vertically profile the lower part of the atmosphere was deployed along an ~45 m high tower. 

Temperature, wind and moisture are measured, the latter again using solid state film capacitive 

sensors. This profiling system is fully described in Genthon et al. [2010], Genthon et al. [2011] and 

Genthon et al. [2013].

Figure 1: Topographic map of Antarctica, showing the location of Dome C (red C). Altitude” is in

m.

Genthon et al. [2013] evaluate and compare 2 contrasted years, 2009 and 2010, respectively 

the warmest and coldest in a 10-year period. They report measuring humidity up to ~100% with 

respect to ice but also observing frequent frost deposition, a hint that supersaturation occurs but is 

missed by standard hygrometers without an adaption. Occurrences of supersaturation are further 

supported by a comparison with models that implement cold microphysics parameterizations: the 
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models often simulate supersaturation when the hygrometers hit the 100% RHi ceiling. That raw 

solid state hygrometers cannot measure supersaturation is understandable: a supersaturated air mass 

will deposit its excess moisture on any hard surface that serves as a condensation surface. The 

hygrometer body itself will condensate the excess moisture before it can be measured. One way to 

overcome this problem is to aspirate and warm the air above its thermodynamic saturation 

temperature at the intake.

There are several techniques to measure atmospheric moisture [Kämpfer, 2013]. The 

traditional wet bulb thermometer is not very practical, particularly when measuring well below 

freezing temperature. The dew-point hygrometer provides a direct physical measure of the 

saturation temperature. This is done by progressively cooling from ambient temperature a surface 

until atmospheric moisture condensation is detected on the surface. The cooled surface is generally 

a mirror and condensation is optically detected when the reflection of a light beam is observed to be

diffused and diffracted. The device also works below freezing temperature but should then be 

referred as frost-point hygrometer [King and Anderson, 1999]. Dew and frost-point hygrometers are

accurate but bulky, complex and expensive. They require significant amounts of energy, and they 

have moving parts as the mirror must be periodically cleaned. They are thus comparatively prone to

dysfunction and failures, and they cannot be used in remote unattended places or in radiosondes. On

the other hand, they mechanically aspirate air to the sensing mirror, and if the aspiration intake is 

heated significantly above ambient temperature the measured air is sampled without affecting its 

moisture content even if supersaturated. Some commercial instruments ensure this such as the 

Meteolobor VTP6 Thygan described below.

In the 1970s, Vaisala Oy (Finland) developed a very different, very compact humidity 

sensor, the Humicap thin film capacitive sensor1. The dielectric properties and capacitance of a 

1 http://www.vaisala.com/Vaisala%20Documents/Technology%20Descriptions/HUMICAP-Technology-description-
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polymer film vary with the relative humidity of the ambient air. Although the physical processes for

dependence have been described (e.g. Anderson [1994]), the relationship between capacitance and 

atmospheric moisture is an empirical one. The sensor needs calibration and a small but significant 

uncertainty affects the measurement. The uncertainty increases as temperature decreases. On the 

other hand, the Humicap is convenient, very compact, comparatively inexpensive, robust, and its 

use can be automated and deployed even in remote places and on radiosondes. It is thus currently 

widely used for such purposes. Thin film capacitive sensors are used in all automatic weather 

stations in Antarctica that report moisture as well as on the 45-m profiling system at Dome C 

mentioned above, in the latter case bundled in Vaisala HMP155 thermometers – hygrometers 

(thermohygrometers) [Genthon et al 2013]. According to the manufacturer, the uncertainty is +/-

1.4% of the reading in the -60°C to -20°C temperature range. It may be expected to be larger below 

-60°C. However, then, the absolute moisture content of the atmosphere is smaller  and absolute 

measurement errors are correspondingly smaller.

To tentatively confirm and quantify supersaturations at Dome C, both frost-point and thin film 

capacitive hygrometers were deployed at a height of 3 m and adapted as necessary to operate in the 

general Dome C conditions and to sample the air without altering its moisture content even when 

above saturation. In both systems, the hygrometer aspirated intake is heated so that the temperature 

of the sampled air parcel is raised above condensation level and condensation is avoided. The frost-

point hygrometer is a Meteolabor VTP6 Thygan chilled mirror instrument. It was selected because 

it is factory-designed to perform to cold temperatures and correspondingly low specific humidities. 

According to manufacturer the lowest measurable frost point temperature is -65°C. The fact that the

air intake is heated (see below) does not improve the temperature range of the instrument as the 

actual limitation is due to the ability to cool the mirror to the condensation temperature. A -65°C 

B210781EN-C.pdf?utm_campaign=CEN-TIA-G-Humidity%20Nurturing
%202015&utm_medium=email&utm_source=Eloqua&utm_content=CEN-TIA-G-HUMICAP%20Technology
%20Promotion
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temperature limit is not quite low enough to consistently operate at Dome C, where the surface 

atmospheric temperature can occasionally fall below -80°C. However, data from the vertical 

profiling system show that from 2009 to 2015, the air temperature ~3 m above the snow surface was

warmer than -55°C more than 50% of the time, and almost consistently (more than 99.5% of the 

time) warmer than -55°C during the local summer (Dec – Jan – Feb). Assuming near saturation, the 

instrument can nominally operate a large fraction of the time at Dome C. For our application, the 

frost-point hygrometer (noted FP from  now on) is hosted in a heated box so that the electronics and

mechanics are not affected by the extreme cold temperatures in winter. By factory design, the 

outside air is aspirated inside the instrument through a heated intake which prevents frost 

deposition. This design is not modified, the intake being simply made to protrude out of the heated 

box to sample the outside air. This is the only part of the instrument kept outside the heated box 

and, because it is itself heated, loss of moisture along the way to the mirror is consistently 

prevented. Visual inspection confirms that even when frost deposition occurs on other instruments 

on the tower, no frost deposition is observed in the vicinity of the instrument intake. Each 

measurement cycle lasts 10 minutes: heating and defrosting the mirror from the previous 

measurement, cleaning, then cooling until frost point is reached. The sensor thus reports 

measurements of frost point temperature, and conversion to relative humidity, on a 10' time step 

basis. The manufacturer claims a very high accuracy: 0.1% expressed in term of relative humidity. 

Dew and frost point hygrometers are indeed often used to calibrate other types of hygrometers. Here

the FP is used as a reference against which other sensors may be adjusted and are evaluated, at least 

down to temperatures where the FP performs well.

For the other type of hygrometer used here, the manufacturer (Vaisala Oy) guaranties its HMP155 

sensor down to -80°C for the measurement of temperature, but only to -60°C for the measurement 

of moisture. However, the main issue with colder temperatures for this instrument is that the time 

11 / 37

210

215

220

225

230

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-670, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 18 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



response increases. Yet, unlike in a radiosonde for which the environment quickly varies during 

ascent, variations are comparatively slow for fixed instruments and the operational limit is actually 

much below -60°C [Genthon et al., 2013]. In addition, to avoid frost deposition and preserve the air 

moisture content, for our application, the instrument aspirates the air through an inlet consistently 

heated ~5°C above the ambient temperature (Figure 2). The ambient temperature itself is measured 

by a separate PT100 platinum resistance thermometer in an unheated derivation of the system. A 

comparison with the frost point hygrometer shows that this simple and low cost innovative design 

succeeds to measure even highly supersaturated air, up to 200% with respect to ice or even more. In

addition, the fact that the air reaching the hygrometer sensor is 5°C above ambient temperature 

correspondingly extends the actual nominal temperature range of the instrument with respect to 

ambient temperature. The sensor reports relative humidity. According to manufacturer, the accuracy

in the low temperature range (-60° to -40°C) is +/-1.4 % of the reading. Accuracy improves at 

warmer temperature, and may conversely be expected to deteriorate for even colder temperatures. 

The temperature range -40° to -60°C is typical at Dome C although temperatures as cold as -80°C 

and as warm as -15°C may be encountered. Note that, in accordance with meteorological 

conventions, all sensors report relative humidity with respect to liquid water rather than ice even 

when the air temperature is below 0°C. Here the Goff-Gratch formulas [Goff and Gratch, 1946] are 

used to convert between RH with respect to liquid, water vapor partial pressure and RHi.
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Figure 2: Schematic drawing of the modified (HMPmod) hygrometer. The air is aspirated by the fan

(1) and heated through an inlet (2). The  temperature and the moisture content of the heated air (3)

is measured by the HMP155 (4). The ambient air  temperature (5) is measured by a separate PT100

(6) located in the unheated aspirated inlet shaded from sun radiation (7).

The  2 adapted instruments are deployed side by side ~3 m above the snow surface on the ~45-m 

tower. At the same level, hosted in an aspirated but unheated radiation shield (see Figure 1 of 

Genthon et al. [2011]), an unmodified HMP155 allows for comparison with a traditional design – 

and to exhibit biases of the latter. From now on, the original and modified HMP155 will be referred 

to as “HMP” and “HMPmod”, respectively. Table 1 lists the instruments and adaptations. The 

various instruments performed over the duration of 2015 except for limited periods due to 

datalogging failures or servicing in summer. The results are presented and analyzed in the next 

section.

Short name Instrument / sensor Housing

HMP Vaisala HMP155 tehermohymeter /

thin film polymer hygrometer

Aspirated radiation shield

HMPmod Modified Vaisala HMP155

thermohygrometer / thin film polymer

Aspirated radiation shield +

heated intake (Figure 2)
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hygrometer

FP Meteolabor Thygan VPT6 mirror

frost-point hygrometer

Heated enclosure, heated

intake

Table 1: List of hygrometers and adaptation. See text for details

3. Data, results and comparison with meteorological analyses and model simulation

3.1. Summer

Figure 3 displays the mean diurnal cycle of atmospheric moisture and temperature in January, 

February and December 2015 according to the various instruments. During this period, the FP is 

consistently running within its nominal manufacturer-stated temperature range and can serve as a 

moisture measurement reference for the other instruments. The sun never really sets at this time of 

the year, however its changing elevation above the horizon induces a strong temperature cycle near 

the surface (figure 3.d). Here, “night” will broadly refer to the local hours during which sun 

elevation is lower at Dome C and sets at lower latitudes. Figure 3a shows the mean cycle of partial 

pressure of water vapor from FP. The numbers are low due to the cold temperature: the water partial

pressure ranges on average between ~15 Pa in the early morning and slightly over 35 Pa in the early

afternoon. This cycle demonstrates that surface evaporation occurs during the day, followed by 

deposition at night, resulting in surface (3-m) atmospheric moisture diurnally changing by a factor 

of more than 2. Figure 3.b shows small differences and consistent agreement between the HMPmod

and FP instruments. Note here that HMPmod is slightly calibrated for moisture report against the FP

instrument for agreement in the early afternoon at the warmest of the day. This calibration does not 

exceed manufacturer stated accuracy for HMP155 (Section 2). The calibration proves robust and 
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valid at all time during the day in this period. Results from (unmodified) HMP significantly depart 

from those of the FP, and thus HMPmod instruments: the agreement is good in the afternoon only 

but quite poor the rest of the day and at night. Figure 3c displays the calculated RHi for the 3 

instruments, using the independent moisture measurements by each instrument ,but all finally 

reported to the atmospheric temperatures of the (unmodified) HMP. This is likely the most accurate 

estimation of temperature, i. e. the least likely affected by radiation and other biases because it is 

unheated and efficiently ventilated [Genthon et al. ,2011]. Temperature differences of as much as 

2°C are occasionally observed with the other instruments in low wind conditions.

RHi differs markedly between the unmodified HMP and the 2 other instruments. The latters both 

report RHi significantly exceeding 100% while the unmodified instrument hardly reaches 

saturation. All instruments agree well in the early afternoon at the warmest of the day but HMP 

disagrees at night. The FP and HMPmod instruments consistently agree with each other, including 

when reporting supersaturations reaching 120 % at night, confirming the high levels of 

supersaturation hinted by Genthon et al. [2013] from models.
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Figure 3: Mean Dec-Jan-Feb diurnal cycle of: (a) water vapor partial pressure from FP instrument

; (b) difference with respect to FP of water vapor partial pressure from original (HMP, black) and

modified (HMPmod, red) thin rilm polymer sensors ; (c) RHi from the 3 instruments; (d) air

temperature.

Figure 4 compares the observed diurnal cycles of temperature and moisture with ECMWF analyses 

of temperature and moisture at the 1st model level and at the standard 2 m level. The mean elevation

of the 1st model level in summer is 8.2 m. Thus the elevations of the 2-m and 1st level data bracket 

that of the observations. While at the 1st model level, temperature and moisture are prognostic 

variables of the general circulation equations (the integration of which alternates with a diagnostic 

resolution of the diabatic and hydrological processes), the 2-m variables are interpolations between 

the 1st level and the surface using gradient equations of the surface layer (Section 3.2 of Part IV, 

physical processes of ECMWF IFS Cyc41r1 documentation). Vignon et al. [2016] show that the 

16 / 37

320

325

330

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-670, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 18 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



surface layer where classical interpolation relationships are valid is often much shallower than 8 m 

in stable conditions at Dome C. The 2 m interpolated values probably encompass biases due to the 

interpolation formula and have to be considered carefully. The physics parameterizations for cold 

water condensation in the ECMWF model allow supersaturation to occur [Tompkins et al., 2007]. 

There are only 4 analyses steps per day, so ECMWF data are shown as dots on Figure 4 when the 

observations (48 data per day) are shown as continuous curves.

Figure 4: Mean Dec-Jan-Feb diurnal cycle of observed (FP and HMPmod) and analyzed (ECMWF,

2 m and 1st model level at ~8 m) water vapor partial pressure (a), relative humidity with respect to

ice (b) and temperature (c). The reference temperature is that from the unmodified HMP (brown

curve on plot (c)).

The ECMWF analyses overestimate nigh-time temperature and consequently underestimate the 
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amplitude of the diurnal cycle. The amplitude of the cycle of moisture partial pressure is also 

underestimated but not as badly as could be expected considering a non linear relation between 

temperature and saturation humidity. The model thus confirms a large diurnal change of magnitude 

and sign of the surface turbulent flux of moisture. The surface atmosphere is expectedly moister, 

and the vertical gradient and turbulent flux directed upward (surface sublimation) in the early 

afternoon. It is downward (deposition) and very weak at night. Because of the temperature errors, 

RHi is less than observed at night, yet it is significantly larger than 100%. The analyzes reproduce 

supersaturation at night and minimum RH in the early afternoon. While there are only 4 ECMWF 

analyses per day, at synoptic times (dots on Figure 4), the time step of the MAR model is 6 minutes 

only, which allows for a much more continuous comparison with the observations (Figure 5). Here, 

a more recent version of the MAR model is used than in Genthon et al. [2013]. The model still uses 

a parameterization for cold microphysics  [Meyer et al. [1992] and produces large supersaturations, 

actually too large compared to the observations in summer (Figure 5a). However, the model is now 

significantly and consistently too warm (Figure 5b). It will be shown that the MAR model 

significantly differs from the observations and ECMWF analyses in the rest of the year.
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Figure 5: Mean Dec-Jan-Feb diurnal cycle of observed (FP and HMPmod for moisture, HMP for

temperature) and MAR simulated RHi (a) and air temperature (b), the brown curve being the

observed as on Figure 4.

Figure 6 displays correlation plots of moisture reports from the unmodified (HMP) and modified 

(HMPmod) thin film capacitive sensors with respect to FP in summer. The direct correlations 

between water vapor pressures would be very high because humidity is largely controlled by 

temperature. Plotting deviations to the saturation vapor pressure, rather than the vapor pressure 

itself, removes much of the temperature codependence effect and concentrates on the relative ability

of the instruments to correctly measure moisture. The correlation between the regular HMP and FP 

is good below saturation but is obviously very poor above since the HMP fails to capture 

supersaturations. The correlation between HMPmod and FP reports is very high, above 0.97. The 

regression constant (the intercept) is 0.1 but the standard error on the constant is larger than 0.1. The

linear regression is thus not statistically different from a 1/1 one.

Figure 6: regression of anomaly to saturation vapor pressure from HMP ((a) and HMPmod (b)

instruments against FP.
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3.2 Annual variations and statistics

According to instrument reports, a strong diurnal cycle dominates the variability of atmospheric 

moisture in summer. The partial pressure is maximum in the early afternoon while RHi peaks near 

local midnight (Figure 3) when it occasionally reach more than 150% (not shown). As the diurnal 

cycle variability progressively vanishes and is replaced by synoptic variability in the colder months,

RHi occasionally reaches values above 200%. Limiting the range to values between 50 – 150 % 

(more than 99% of HMPmod reports), Figure 7 displays the distribution functions of observed, 

ECMWF analyzed and MAR modeled RHi.

Figure 7: Observed (a), ECMWF analyzed (b) and MAR (c) distributions of Hi in 2015 for csases
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of Rhi between 50 and 150%.

Although measurement uncertainties and uncertainties on conversions from relative humidity with 

respect to liquid to RHi allow some occurrences above 100%, as expected the reports from HMP 

peak near and hardly exceed the 100% ceiling. More than 50% of all reports between 50% and 

150% are above 100% for HMPmod and FP, with a similar distribution for the 2 instruments. The 2 

models are successful at reproducing very frequent occurrences of supersaturation, however their 

distributions  differ both with the observations and with each other. The MAR model is much more 

often supersaturated than the observations report, and also than the ECMWF analyses. Further 

analyzes of these differences, comparing the respective cold physics parameterizations, tracking 

possible contributions of temperature biases, is beyond the scope of the present study. However, this

result illustrates that because long series of consistent in situ observations are feasible at Dome C, 

not only short term chronology but also the statistics of supersaturation can be observed and used to

exhibit differences in behavior of models and parameterizations of natural atmospheric 

supersaturation.

 Differences between models and between one or the other model and the observations are beyond 

observation uncertainties. However, there are also significant differences between observations by 

even the 2 modified hygrometers. There are more differences between the HMPmod and FP below 

100% than above. Both the HMP155 and frost point hygrometer loose accuracy and sensitivity as 

temperature is colder and/or water vapor partial pressure is less. Below -55°C, FP occasionally, and 

more and more frequently as temperature gets colder, reports unrealistically low moisture content. 

Figure 8 displays the regressions of water vapor partial pressure differences with saturation, 

separately for partial pressure ranging between 2 and 5, 5 and 10, 10 and 20, and exceeding 20 Pa. 

The correlation deteriorates, and the regression line increasingly deviates from 1 to 1, as the 
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moisture content decreases.

Obviously, the smallest moisture partial pressures occur when the temperature is coldest. The 

instruments show their limits during the coldest of the winter. Figure 9 displays the annual cycle of 

monthly averaged temperature and RHi. HMP displays weak seasonal variability of RHi compared 

to the other instruments. On the other hand, FP displays extreme seasonal variability with values 

reaching below 30% (beyond the plot scale on Figure 9) in winter. Such unrealistically low values, 

at odd with the other instruments, reflect instrument limitation with very low moisture content.  

Limiting the analysis to cases of partial pressure of moisture above 2 Pa (dashed curves on Figure 

9) excludes significant portions of the coldest parts of the winter records. This is reflected by 

monthly winter temperature more than 20°C warmer (Figure 9a). The fact that HMPmod reports are

strongly increased suggests that this sensor also does not perform well at very low moisture levels. 

Both HMPmod and FP show strong seasonal variability with monthly mean RHi reaching 120% for 

HMPmod and exceeding 130% for FP. In both cases, the maximum monthly supersaturation is 

reached in early winter (April) and remains above 100% all year long, except in October for 

HMPmod when it is slightly below. Figure 10, same as Figure 7 but for partial pressure of moisture 

above 2 Pa only, confirms that in the surface atmosphere of Dome C, supersaturation is the norm 

rather than an exception.
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Figure 8: Regressions of partial pressure difference with saturation from HMPmod against FP,

depending on partial pressure range as indicated on the upper left corner of each plot. The black

line is the 1st bisector, the red line shows the linear regression.
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Figure 9: Seasonal variability of monthly-mean temperature (a) and RHi (b) for all reports (solid

lines) and reports with moisture partial pressure above 2 Pa only (dashed lines). With all reports,

the curve for FP reaches below 30%, well beyond the plot scale (green solid line).
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Figure 10, same as Figure 7a but for moisture partial pressure above 2 Pa only.

3.3 Impact on surface sublimation calculations

There are very few direct estimations of surface evaporation on the antarctic plateau. This is firstly 

because eddy correlation techniques use delicate high frequency sampling instruments such as sonic

anemometers which are hard to operate and maintain at the required level of performance in the 

extreme environment of the antarctic plateau. Moreover, due to the very low temperature, the water 

vapor content is very small and moisture sensors are not both fast and sensitive enough for such 

measurements in such conditions. For instance, Van As et al. [2005] report that eddy correlation 

measurements of latent heat flux were unsuccessful even in the summer at Kohnen station in 

Antarctica ~3000 m above sea level. The authors thus resigned themselves to use bulk methods, a 

most widely employed approach in Antarctica [Stearns and Weidner, 1993]. However, bulk methods
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are equally affected by measurement biases such as underestimation of water vapor content due to 

failure to measure supersaturation. The magnitude of the error can be estimated at Dome C by 

comparing bulk calculations using HMP and HMPmod water vapor reports.

The water vapor flux E from the snow surface (subscript 's ') to the atmosphere is calculated using 

bulk-transfer  formulae :

E=ρCQU(z)[qs  - q(z)]

where ρ is the air density, U(z) and q(z) the wind speed and the specific humidity at the height z in 

the atmospheric surface layer and qs the specific humidity at the surface, assuming saturation with 

respect to ice at the snow surface temperature. Here the wind speed and specific humidity are 

measured a z=~3m above th surface, and the snow surface temperature is obtained from 

measurement of the upwelling infrared radiation [Vignon et al., 2016] considering a snow 

emissivity of 0.99 [Brun et al., 2011]. CQ  is a bulk transfer coefficient which writes :

 

CQ=κ2 [ln(z/z0)-ψm(z/L)]-1 [ln(z/z0q)-ψq(z/L)]-1

where κ is the Von Kármán's constant, z0 et z0q the roughness lengths for momentum and water vapor

respectively and ψm and ψq are the corresponding surface-layer similarity stability functions. 

Stability functions depend solely on the dimensionless height z/L, where L is the Monin-Obukhov 

length. The same 4 function schemes taken  for stable conditions in Vignon et al. [2016] are tested 

here, and the functions from Hogström [1996] are selected for unstable conditions because they 

provide reasonable results for  momentum and heat fluxes at Dome C [Vignon et al, 2016] . L and 

thus CQ are calculated with an iterative resolution of the Monin-Obukhov equations system. The 
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value of z0 is the mean value reported by Vignon et al [2016] for Dome C (0.56 mm). The value of 

z0q is difficult to estimate at Dome C because the very low vapor content of the atmosphere induces 

high uncertainties and because the scarcity of near-neutral conditions prevents an independent 

selection of a scheme for the stability functions. Two different approaches are used. In the first one, 

z0q=z0 as in King et al [2001], whereas in the second one, z0q is calculated with Andreas [1987] 

theoretical formula which, at Dome C, yields z0q values lower than z0 by approximately one order of

magnitude. Uncertainties on flux calculations are estimated from the variance of results obtained 

with the different choices of stability functions and roughness length.

Figure 11.  Annual march of the monthly vapor vapor flux at the surface according to HMP (red)

and HMPmod( green), the black line showing 0, and cumulated difference (HMPmod – HMP, lower

plot).

Figure 11 shows the monthly seasonal and cumulated water flux calculated by the bulk method for 
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2015 using either HMP data or HMPmod reports. The flux is positive during the summer months 

indicating sublimation of snow while during winter months, the flux is negative indicating 

condensation to the surface.  Such seasonality is in agreement with that reported by King et al 

[2001] at Halley station, coastal Antarctica but at a latitude similar to that of Dome C. The positive 

summer values reflect the predominance of snow sublimation during the summer diurnal cycle 

[Genthon et al., 2013] because, in summer, the surface-atmosphere exchanges are larger during 

convective activity in the afternoon than in the night hours when the boundary layer becomes stable 

(King et al. [2006], Vignon et al. [2016]). Integrated over the full year 2015, the net water vapor 

flux is 0.2763 cm w.e using HMPmod data and  0.2863 cm w.e using HMP data. These numbers can

vary by as much as ±100% with the different choices of stability functions and roughness length 

values. They are very small anyway compared to the total surface water budget, given that the  

mean annual accumulation is about 2.5 cm water equivalent [Genthon et al., 2015]. However, a 

mean positive evaporation agrees with Stearns and Weidner [1993] who, for other regions of 

Antarctica, conclude that the annual-mean net sublimation exceeds the annual-mean net deposition. 

In fact, Figure 11 shows very little difference between calculations made with HMP and HMPmod 

data: the impact of supersaturation on the water heat flux is thus very small. This is because 

supersaturations predominantly occur when the wind speed and thus turbulence is weak (not shown)

and under cold temperatures associated to low values of specific humidity (Figure 12). A possible 

contribution of blowing or drifting snow sublimation (King et al [2001], Frezzotti et al. [2004], 

Barral et al. [2014]) is not taken into account here.
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Figure 12 : According to HMPmod, relative humidity vs water vapor partial pressure, saturation

shown by the red line (upper plot), and probability distribution function of RHi above 105% with

respect to water vapor partial pressure (lower plot).

4. Discussion and conclusions

Major ice supersaturations are observed in the surface atmosphere of Dome C on the antarctic 

plateau in atmospheric temperature and moisture conditions close to those of the upper troposphere.

Fog formation can be observed in the field at temperatures for which heterogeneous freezing of the 

supercooled droplets would occur if ice nuclei were present. This suggests that the atmosphere is 

devoid of ice nuclei and that ice crystals, when present, are mostly formed by homogeneous 

freezing of supercooled droplets. This needs to be confirmed by detecting fog formation and 

analysing its properties. Meanwhile, to our knowledge it is the first time such strong 

supersaturations (up to 200%) are observed in the natural surface atmosphere of the Earth. 
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Atmospheric supersaturations are frequent in the high troposphere where cirrus clouds form 

[Spichtinger et al., 2003]. On the other hand, atmospheric supersaturation is a very infrequent 

situation in the surface atmosphere because of the high concentration of aerosols and relatively mild

temperatures which are both favorable to liquid and solid cloud formation. In this respect, the 

surface atmosphere of the high antarctic plateau is an exception. Because of the high albedo of 

snow and high elevation, the temperature is close to that of the high troposphere elsewhere even in 

summer. Long distance transport to such remote area is insufficient to import significant amounts of

cloud and ice condensation nuclei even from the closest sources at the oceans, thus the possibility of

strong and frequent supersaturation.

 Because they are compact, light-weight and comparatively low cost , both to buy and to operate, 

solid state hygrometers (thin film capacitive sensors such as Vaisala's Humicap) are widely used to 

report atmospheric moisture from radiosondes or automatic weather stations. However, these 

sensors are subject to icing in supersaturated environment [Rädel and Shine, 2010] and require 

correction and/or adaptation. There are not many measurements of atmospheric moisture in 

Antarctica, and most including by the radiosondes are made using unadapted solid state sensors. 

The atmospheric humidity of the antarctic atmosphere where supersaturation is frequent is likely 

often underestimated from observations. Thus, the evaluation of meteorological an climate models 

from these data may be biased. Observations at Dome C using modified sensors to ensure that 

supersaturations can be sampled show that models that implement parameterizations of cold cloud 

microphysics intended to simulate cirrus clouds at high altitude qualitatively reproduce frequent 

supersaturations but fail with respect to the the statistics of supersaturation events. Moreover, they 

fail differently, both models producing too much supersaturation but one model simulating much 

more frequent occurrences of supersaturations that the other.
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Estimations of the moisture budget of the antarctic atmosphere may  be erroneous. Because it is 

comparatively undersampled by observation, studies of the antarctic atmosphere rely more than 

elsewhere on models and meteorological analyses. However, only models which microphysics 

parameterization account for supersaturation may, but not necessarily do, correctly reproduce 

antarctic atmospheric moisture. One consequence of underestimating surface moisture, whether in 

observations or models not accounting for supersaturations, is likely that the surface turbulent 

moisture exchange (evaporation or sublimation) is wrong. Although the ground is made of 

thousands of meters of snow and ice slowly accumulated through millions of years, the antarctic 

plateau is one of the driest places on Earth. At Dome C, only about ~3 kg m-2 of water accumulates 

each year [Genthon et al. 2015]. Out of this, the relative contribution of precipitation and 

evaporation is an open question. The direct measurement of both quantities is an unsolved 

challenge. For the turbulent fluxes, bulk and profile method parameterizations have their intrinsic 

limits because Monin-Obukov similarity theory requires empirical corrections functions which are 

not necessarily well established in very stable conditions [Vignon et al. 2016]. However, even the 

best theory and best parameterization deployed based on this theory will poorly apply if the 

observations are wrong. The consequences are limited on the antarctic plateau though, because 

supersaturations are stronger and more frequent as temperature is lower, and moisture content and 

thus turbulent moisture flux smaller.

Finally, supersaturation has an important impact on the isotopic fractionation occurring during the 

formation of snow [Dansgaard 1964]. Indeed, supersaturation can only occur in condition with a 

small number of condensation nuclei during which the growth of the snowflakes is limited by the 

diffusion of water molecules. The difference in diffusivity of the different isotopes of water will 

therefore lead to kinetic fractionation. Jouzel and Merlivat [1984] have experimentally established 

the impact of supersaturation on isotopic composition by a kinetic fractionation factor
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α kin=
S i

αeq D /D ' ( Si−1 )+1
.  Here, Si is the supersaturation, aeq is the equilibrium fractionation, 

D/D' is the diffusivity ratio between light and heavy isotope. This formulation is still used nowadays

in most atmospheric models that include water isotopes (e.g. Risi et al. [2010]). In order to provide 

quantitative interpretation of ice core signal, it is important to include the impact of kinetic 

fractionation which is significantly affecting the isotopic composition during the formation of the 

precipitation in the clouds, but also of the snow after the deposition. However, recent studies 

highlight important limitations of the Jouzel and Merlivat [1984] approach [Casado et al., 2016]. 

More importantly, all climatic models that include isotopic composition variables only estimate 

supersaturation from a parametrization from temperature and important discrepancies remain in this

parametrization. Although snow forms higher above the surface, our observations provide new 

constraints on ice supersaturation and will help improve these parameterizations.

Measurement of ice supersaturation as high as 200% in this very dry atmosphere is a game changer 

for understanding physical processes of the water cycle in Antarctica. The deployment of more 

hygrometers that can measure supersaturation on the ~45-m meteorological mast is underway and 

will give more insights into water vapor fluxes. Comparisons to surface observations will also 

improve our understanding of dry deposition and formation of frost hoar, and possibly of diamond 

dust. These results open new possibilities of using stations in remote polar regions to study and 

understand phenomena normally occurring in clouds at several km of altitude.
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