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Abstract

We propose in this thesis to characterize variability quantitatively at various scales during

embryogenesis. We use a combination of mathematical models and experimental results

In the first part, we use a small cohort of digital sea urchin embryos to construct a

prototypical representation of the cell lineage, which relates individual cell features with

embryo-level dynamics. This multi-level data-driven probabilistic model relies on sym-

metries of the embryo and known cell types, which provide a generic coarse-grained level

of observation for distributions of individual cell features. The prototype is defined as the

centroid of the cohort in the corresponding statistical manifold. Among several results,

we show that intra-individual variability is involved in the reproducibility of the develop-

mental process.

In the second part, we consider the mechanisms sources of variability during develop-

ment and their relations to evolution. Building on experimental results showing variable

phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose

a clarification of the various levels of biological variability using a formal analogy with

quantum mechanics mathematical framework. Surprisingly, we find a formal analogy be-

tween quantum entanglement and Mendel’s idealized scheme of inheritance.

In the third part, we study biological organization and its relations to developmental

paths. By adapting the tools of algebraic topology, we compute invariants of the network

of cellular contacts extracted from confocal microscopy images of epithelia from differ-

ent species and genetic backgrounds. In particular, we show the influence of individual

histories on the spatial distribution of cells in epithelial tissues.
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Résumé

Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes

échelles au cours de l’embryogenèse. Pour ce faire, nous utilisons une combinaison de

modèles mathématiques et de résultats expérimentaux.

Dans la première partie, nous utilisons une petite cohorte d’oursins digitaux pour

construire une représentation prototypique du lignage cellulaire, reliant les caractéris-

tiques des cellules individuelles avec les dynamiques à l’échelle de l’embryon tout en-

tier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des em-

bryons et sur les identités cellulaires; cela permet d’identifier un niveau de granularité

générique pour observer les distributions de caractéristiques cellulaires individuelles. Le

prototype est défini comme le barycentre de la cohorte dans la variété statistique corre-

spondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle

est impliquée dans la reproductibilité du développement embryonnaire.

Dans la seconde partie, nous considérons les mécanismes sources de variabilité au

cours du développement et leurs relations à l’évolution. En nous appuyant sur des ré-

sultats expérimentaux montrant une pénétrance incomplète et une expressivité variable

de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarifica-

tion des différents niveaux de variabilité biologique reposant sur une analogie formelle

avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une

analogie formelle entre l’intrication quantique et le schéma Mendélien de transmission

héréditaire.

Dans la troisième partie, nous étudions l’organisation biologique et ses relations aux

trajectoires développementales. En adaptant les outils de la topologie algébrique, nous

caractérisons des invariants du réseaux de contacts cellulaires extrait d’images de micro-

scopie confocale d’épithéliums de différentes espèces et de différents fonds génétiques.

En particulier, nous montrons l’influence des histoires individuelles sur la distribution

spatiales des cellules dans un tissu épithélial.
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General introduction

In the introduction of the Origin of species [49], Charles Darwin refers to the "Mys-

tery of mysteries" for the question of how species evolve and replace each other. Almost

two centuries later, this question remains of great importance and even if some major ad-

vances have been made in the understanding of the mechanisms underlying evolution,

the principle of descent with modification, which constitutes together with the principle

of natural selection the grounds of Darwinian evolution, lacks a full comprehension. As a

contribution to this problem, this work adresses the question of variation during embryo-

genesis and development.

Multicellular organisms are the result of a morphogenetic process involving multiple

levels of organization, from molecules to cells to tissues to organs, interacting in a com-

plex manner. This complexity is witnessed by causal processes that can be bottom-up,

for example from the molecular level to the cellular level through gene expression, and

top-down, for example from the tissue level to the cellular level through mechanical con-

straints. Moreover, an organism builds and maintains itself, it is self-organized. This idea

of a self-organizing nature of living organisms can be traced back to Immanuel Kant’s Cri-

tique of Judgment [116]. He considered organisms as entities where "every part is thought

as owing its presence to the agency of all the remaining parts, and also as existing for the

sake of the others and of the whole". Self-organization is at the very basis of complex sys-

tems science [117] and requires specific methodological approaches for its understanding.

The development of an organism is a dynamical phenomenon where any event occur-

ring at a given scale at a certain time is involved in the subsequent stages of development

at all level of organizations. Therefore any variation occurring in this process has con-

sequences on other parts of the organisms at later stages. This integrated nature of the

organism and its relations to variation had already been noticed by Charles Darwin who

designated it as correlated variations in the fifth chapter of the Origin of species:

Correlated Variations - I mean by this expression that the whole organization is

1
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so tied together during its growth and development, that when slight variations

in any one part occur, and are accumulated through natural selection, other

parts become modified.

The question remains as to how these correlated variations occur and shape the ex-

ploration and generation of diversity.

Understanding the diversity of forms in the living begins with the question of the sources

of morphological differences between individual organisms. Usually, differences between

individual organisms are attributed to genetic differences and variation in environmental

conditions. Recent experimental results suggest that other phenomena have to be ac-

counted for when considering sources of diversity. One striking example is the work of Raj

et al. in 2010 [181], where clonal organisms of a mutant strain of the worm Caenorhab-

ditis Elegans are grown in homogeneous environment and result in variable phenotypes.

In this example the phenotypic variation is ascribed to stochastic gene expression. The

concept of stochastic gene expression [65] covers the processes involved in the variability

of quantity of the protein expressed for a given gene. Many other mechanisms at various

levels of organization are able to generate diversity; they will be described in more depth

in the course of this dissertation. This raises the question of how to integrate this variety

of mechanisms generating variability when considering organisms as a whole.

Recent progresses in biological imaging technology and other quantitative techniques

have allowed to reconsider many biological phenomena. The observation of stochastic

gene expression in single cells [65] is a major example of the breakthroughs made possible

with technological developments. In the field of developmental biology, the development

of in toto and in vivo microscopy technology such as 2-photon microscopy, or single pla-

nar illumination microscopy, have opened new perspectives on the study of embryogene-

sis. In particular the complete digital reconstruction of the cell lineage during the first few

hours of the zebrafish development has been made possible by joint innovations in imag-

ing techniques and image processing [163]. This kind of phenomenological reconstruc-

tion provides information on developing organisms which had never been observed in a

quantitative way before, leading to a reinterpretation of many of the processes. In addition

to technical challenges, the very large datasets generated require new analytic method-

ologies to extract significant information [149]. In the meantime, a reinterpretation of the

relations between data and models is needed, new paradigms such as data-driven models

and hypothesis-driven models have emerged during the last decade [119].

These large sources of quantitative data at various scale obtained in living multicel-
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lular organisms shed a new light on processes occurring during development. Phenom-

ena that have been mostly qualitatively and verbally described can now be characterized

quantitatively in order to understand underlying principles [208]. However, we largely

lack concepts, methods and tools to use this data for deciphering biological complexity.

On a theoretical and epistemological level, biological organisms are multi-scale objects

involving several levels of organization that are usually described with heterogeneous the-

oretical frameworks [33]. A central characteristic of biological objects is their historical na-

ture, they are the result of both ontogenetic and phylogenetic trajectories, defining them

as historical entities; they may not be reproducible identically. Indeed, phylogenetic tra-

jectories are the result of an interaction and a co-constitution of organisms and their en-

vironments involving single events and small numbers [86], [137], similarly ontogenetic

trajectories can be considered as a sequence of symmetry breakings involving contingent

events [135], [15]. This historicity and variability of biological objects is at the center of

Darwinian theory of evolution and should be at the ground of our understanding of bio-

logical organization. This is an epistemological specificity of biology contrasting with the

ahistoricity of most physical objects. On this aspect the following quote of the physicist

Max Delbrück is particularly illuminating:

The complex accomplishment of any one living cell is part and parcel of the

[fact] that any one cell represents more an historical than a physical event. These

complex things do not rise every day by spontaneous generation from the non-

living matter - if they did, they would really be reproducible and timeless phe-

nomena, comparable to the crystallization of a solution, and would belong to

the subject matter of physics proper. No, any living cell carries with it the expe-

riences of a billion years of experimentation by its ancestors. You cannot expect

to explain so wise an old bird in a few simple words 1

Following this line of thought, we will consistently discuss the relevance of the mathemat-

ical concepts used and transferred from one discipline to the other by considering their

epistemological justification.

Given the systemic nature of organisms and the variety of sources of variation, as well as

the historicity of organisms, it is natural to ask for the characteristics of variability during

embryogenesis. What makes individual singular? How variation in individuals influence

variability at the population level? What are the relations between variability and probabil-

1. Max Delbrück - "A Physicist Looks at Biology", Address Delivered at the Thousandth Meeting of the
Academy, 1949
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ities? And variability and randomness? How to measure and quantify variation at several

scales during development? Given the differences between individual specimen, can we

define a normal prototypical development for a species?

We support the following thesis: variations at all scales during development shape

the exploration of diversity of forms, specifically designed mathematical tools are re-

quired to characterize and quantify these variations.

Characterizing normality In the first part, we will consider the concept of normality

and reproducibility of development. The question will be to measure how similar and how

different are embryonic developments of the same species in normal conditions. To this

aim, we will use a data set of five digitally reconstructed sea urchin Paracentrotus lividus

embryos at the single cell resolution. The specimens of this small cohort are developing

from the 32 cells stage (4 hours post fertilization) to hatching (around 500 cells, 10 hours

post fertilization). Using the BioEmergences worlkflow [70] their complete 3D+time cell

lineage and the shape of each cell was obtained from 2-photon microscopy acquisitions.

Using this large data set, we will investigate the different levels of variability. This variabil-

ity is first witnessed within an organism among the cells and underlies cell differentiation,

it is the intra-individual variability. This variability is then witnessed between specimen

among the cohort and is the result of individual specific histories, it is the inter-individual

variability. While intra-individual variability can be well characterized by considering dis-

tributions of cell features, inter-individual variability requires to establish generic compa-

rable features allowing to place individual specimen on the same footing without averag-

ing out significant intra-individual variability.

Similar dynamical patterns are found at the level of the whole embryo and in each

morphogenetic field. These patterns concern the evolution of the number of cells, the cell

surface and volume and the number of neighbors. A preliminary linear spatio-temporal

scaling is however necessary to make them fully comparable among specimen of the co-

hort. The value of the coefficients defining this scaling are a first step to characterize inter-

individual variability.

Variability in the distribution of individual cell features and symmetries of the embryos

prevent to identify unique cells from one organism to the other. To compare embryos and

characterize intra-individual variability, we define a generic coarse-grained level of obser-

vation based on inherent symmetries and similar fates (Mesomere, Macromeres and Large

and Small Micromeres). The corresponding group of cells are clustered according to this
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identity and generation. They form the unite of our study of variability in the sea urchin

development. Cells are considered exchangeable within these groups: the description of

the distribution of cell features is not affected by permutation of the cells. Therefore we

rely on the de Finetti’s theorem to guarantee the use of empirical probability distribution

as a good descriptor of individual cell feature distribution within a group of cells [8], [45].

Approximated parametric probability distributions within groups of cells and approx-

imated independency of the cell features distributions between groups of cells is the basis

for a multi-level data-driven probabilistic model of the cell lineage reproducing embryo-

level dynamics for each specimen from measures of individual cell features. The same

structure relating individual cell features and embryo level dynamics is found in each

specimen. Parameters of the probability laws estimated empirically define uniquely in-

dividual specimen. This structure serves as the basis for a prototypical model of develop-

ment among the cohort representing invariant features while preserving intra-individual

variability [186], [213]. We use the framework of Information Geometry [10], [159] to de-

fine the prototype as the Kullback-Leibler centroid in the associated statistical manifold

enabling to obtain a unique set of parameters representing the cohort.

In addition to representing quantitatively every measured cellular processes, this model

addresses formally and quantitatively the question of regulation in development and the

concept of morphogenetic field. Moreover it can be used to characterize a notion of struc-

tural stability and irreversibility. Eventually, this multi-level data-driven probabilistic model

will be employed as a basis for an hypothesis driven biomechanical model using the Meca-

gen modeling platform. This model enables a spatial embedding of the prototypical cell

lineage, the values of biomechanical parameters are obtained by parameter exploration

strategies and matching with empirical data leading to a phenotypic phase diagram [55],

[186].

Overall, this work provides a picture of development where the reproducibility of em-

bryo level dynamics emerges from variability at the individual cell level. This picture con-

trasts with the traditional view of the development as a finely tuned process. Chapter 1

describes this work at the broadest level, its reading doesn’t require a strong mathematical

background. Chapter 2 provides a more mathematical description of the multi-level data-

driven probabilistic model of the lineage and the construction of the prototype. Chapter 3

discusses some perspectives raised by the model such as a notion of irreversibility of des-

organization implied by the structure found in the embryos and a formal characterization

of robustness of development.
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Characterizing diversity In the second part, we will study the emergence of diversity in

evolution and how it is shaped by development. The question consists in how to relate

variations at the individual specimen level to variation at the population level and how to

characterize the influence of mutant development for diversification.

The variety of mechanisms at the origin of variation stimulate this question. In chap-

ter 4, we try to characterize variability in biology with respect to formalization in math-

ematics and physics. The review of the main mechanisms sources of variation shows an

heterogeneity of processes, from genetic mutations [139] to stochastic gene expression

[65], through epigenetic changes [9]. The timescales at which they operate and their vari-

ous mechanisms of inheritability are obstacles for their integration, although they all con-

tribute to the generation of diversity. We then turn to mathematics and physics to explore

the characteristics of the frameworks used for the formalization of uncertainty. Proba-

bility theory offers a framework to handle events in a context of uncertainty but doesn’t

provide any definition of randomness itself. This framework, following Kolmogorov’s ax-

iomatisation, rely on the boolean algebra of sets to construct the set of events (σ-algebra)

which is a model that may show some limitations, for example in the case of quantum me-

chanics. Chaos theory and ergodic theory are two frameworks in classical physics which

provide two different characterizations of randomness [14]. In both cases, it is an epis-

temic concept. Quantum mechanics on the other hand rely on an objective use of ran-

domness, as an intrinsic component of the object under study. The Hilbert space struc-

ture used in quantum mechanics probabilities enables operations that were not possible

in the Kolmogorovian framework such as a tensor product between space of possible cor-

responding to different observables [19]. Finally, we will argue that, given the high com-

plexity of biological organisms and the heterogeneous nature of the mechanisms source

of variability, an alternative approach consists in using models to explore the repertoire

of possibles although they will always provide an incomplete description of the space of

possible.

The experimental study of the squint mutant line of the zebrafish Danio rerio will then

bring an example of variable phenotypic expressivity and incomplete penetrance [169].

The results of a quantitative assessement of the distribution of phenotypes in the progeny

of homozygote mutants shows a discrete list of phenotypes that may be incomplete and

in unpredictable proportions. This experimental study is then the basis for an analogy

with the mathematical framework used in quantum mechanics, since the traditional Kol-

mogorovian framework shows some limitations when the description of the space of pos-
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sible is incomplete. The analogy rely on the possibility to use the Hilbert space vector

space structure and the possibility to perform tensor products between spaces of possi-

ble. By differentiating between uncertainty at the level of the observables, at the level of

possible phenotypes and the probability of obtaining these observables, we will clarify

some aspects of biological variation [211]. In particular, this framework can handle the

emergence of new observable and the emergence of new phenotypic value for a given ob-

servable. We obtain a formal analogy with entanglement in Mendel’s idealized scheme

of inheritance that is interpreted as a trace of biological organization.

Finally, we will explore the concept of an ontogenetic tree, which is an attempt to or-

ganize divergence patterns between developments among mutants of the same species

[101]. This question relates to the concept of developmental constraints or canalization,

and is a first step toward an understanding of how variability in development shapes the

space of possible forms [5]. We show with a data set containing a large number of descrip-

tion of mutant developments [29] that the zebrafish’s pharyngula stage is actually the stage

from which the highest number of mutants begin to diverge. However, possible biases in

the data set are discussed.

Quantifying shape In the third part, we focus on epithelial organization and on the

traces left by individual histories. The relative universality of this structure allow to study

variability among several species and within mutant developments. Epithelial morpho-

genesis results from a sequence of events involving cell proliferation, cell movement, cell

death and cell extrusion, leading consequently to a complex landscape. Using a data set of

epithelial images, we will consider the quantitative characterization of the network of cel-

lular contacts [67]. The network of cellular contacts gives a good estimation of epithelial

organization, however traditional tools from complex networks theories show some lim-

itations for its study since this network is highly constrainted by the underlying topology

of the tissue.

A similar problem arise when trying to characterize the structure of the cosmic web. It

is an historical structure shaped by random events at various scales which forms a com-

plex landscape. Using a discrete analog of the approach developed in [200], [38] we pro-

pose to compute topological invariants of the network of cellular contacts by adapting the

framework of persistent homology. To this aim, we begin by considering a discrete version

of the level set functions on the network using the number of neighbors as the parameter.

The number of neighbors is used as a measure of "density" in the network. Computation
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of the sub and super level sets with varying threshold for the parameter number of neigh-

bor generates two filtrations, i.e. two sequences of nested subspaces, from a network.

These sequences unfold the structure of the network. For each value of the parameter,

Betti numbers can be computed on the corresponding subspaces of the filtrations. These

Betti numbers roughly measure the i-th dimensional holes in the considered space and

are topological invariants. The sequence of Betti numbers values obtained when explor-

ing the range of value of the parameter enable to compute a persistence diagram which

is a topological signature of the network. This signature is automatically extracted from

confocal images of epithelia from Drosophila and Chick embryos. It is used to compare

and classify tissues.

To make sense of these topological signatures, we introduce a model of random tri-

angulated surface. This model has the same number of neighbors distribution as the

empirical network, nodes are linked randomly to form a triangulated surface. The topo-

logical signature is computed on this model of random triangulated surface and enable to

estimate the distance of empirical networks to a random spatial distribution of cells. Sig-

nificant deviation from the random model is obtained for the different cases studied; non

randomness of the spatial distribution is a measure of the influence of the morphogenetic

process for the construction of the network of cellular contacts. It shows that events occur-

ring at the individual cell level have an influence on the global morphology of the tissue.

The role of Myosin II, an element of the cellular cytoskeleton, is estimated by comparing

the results of the method on knocked out mutants and wild type embryos. Overall we show

that the level of organization of the cell cannot be uncoupled from the tissue organization.

This study is reported in chapter 8 and in [209], [212].

Finally, we consider the dynamical aspects of the network of cellular organization by

proposing some perspective on possible characteristics that could be computed on devel-

oping tissue. These dynamics involve the branching structure of the cell lineage as well as

its spatial unfolding. They are described in chapter 9.
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Introduction

In this part, we investigate the question of the reproducibility of development in nor-

mal conditions. This question is crucial for developmental biology. Embryogenesis has

been believed to be highly reproducible and finely tuned leading to the metaphor of the

"execution of a program" encoded in the genes [111], [76].

In the last decade, the reproducibility of the development of the Drosophila early de-

velopment has been quantified at several level of observation and has been shown to be

highly reproducible in particular at early stages. At the genetic level the quantification of

the morphogen concentration profiles such as Bicoid indicates a reproducibility with 10%

variation, interpreted as a precise control over absolute concentrations and responses to

small concentration differences. At the cellular level, the cell membrane lengthening dur-

ing cellularization of the Drosophila is a highly reproducible process ([130], [72], [59]) al-

lowing to calibrate measurements very accurately. At a more macroscopic level the fly

wing vein patterns are highly reproducible, the precision is in the range of a single cell

width [1].

For the sea urchin, Eric Davidson proposed the idea of an "invariant cell lineage" [51].

In the seminal article by Sultan and Horvitz the lineage of the nematode sea elegant Caer-

nohabidtis elegans has been shown to be reproducible at the single cell resolution [202].

However, until now, characterization of the development of the sea urchin at single cell

resolution has not been performed. The work presented in this part concerns the quanti-

tative study of sea urchin development at the single cell resolution.

Quantitative and integrative approaches in developmental

biology

Quantitative approaches in developmental biology require to integrate dynamics oc-

curring at several scales. Several steps are needed to understand the mechanisms occur-

11
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ring at these various scales, from data acquisition, to reconstruction, to modeling. The

BioEmergences platform 2 has been pioneer in this field. The approach conceptualized

by Nadine Peyriéras and Paul Bourgine is summarized in the epistemological triangle as

represented on figure 1.

Figure 1: BioEmergences epistemological triangle showing the various steps required from
data acquisition, to phenomenological reconstruction, to modeling - Image courtesy of
the BioEmergences platform see footnote 2

The first step consists in producing an accurate in toto and in vivo image acquisition

of the embryo development. This step involve the development of efficient imaging tech-

nologies. The most popular technologies are two-photon microscopy [57], [97] and light

sheet microscopy [206], [166]. The concept of two photon microscopy consists in excit-

ing fluorophores which can be of different kinds and are distributed at relevant places in

the embryo using two photons reaching the desired energy level when they converge and

superpose at the focal point. This technique enables deep imaging in living tissues. The

concept of the light sheet microscopy consists in using a thin sheet of light instead of light

focused on one point, this technique enables quicker image acquisition but require to ro-

tate the sample. Fluorophores consist most of the time of fluorescent proteins which are

translated from RNA injected at a precocious stage. These fluorophores commonnly fuse

to the membrane of the cell or to the nucleus. These techniques enable to measure de-

veloping embryo without perturbing their normal development. The data sets obtained

2. http://www.bioemergences.eu

http://www.bioemergences.eu
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consist in 3-dimensional images at regular consecutive time steps [149], therefore 4D raw

data as indicated on the bottom left of the epistemological triangle on figure 1.

The second step consists in extracting biologically relevant information from the 4D

raw data sets. This step is done through image processing. In particular, the position of

the cell nuclei at each time step is a relevant information to reconstruct the spatiotem-

poral cell lineage [16], [163]. In many studies the shape of individual cells carries useful

information [185]. From this phenomenological reconstruction, useful features can be ex-

tracted, such as the position and velocity field of cells [147], other cinematic description

of morphogenesis can be found in [132]. The accuracy of the phenomenological recon-

struction can be assessed through visual inspection by experts using visual platform such

as the MoveIt software [70].

Once the phenomenological reconstruction has been established for one or several

embryos, it is useful to propose theoretical hypotheses to interpret the data. These hy-

potheses can be extracted from the data [109], [108], [28]. Or they can be brought from ex-

ternal knowledge, for example physical hypotheses or previous experimental results [55],

[220], [219], [96], [18], [75], or information theoretic approaches such as the concept of

complexity [79], [13].

The main question that remains is how to compare theoretical assumptions with em-

pirical data, given the variability at all scales observed in developing embryos.

Multi-level approach for the study of the sea urchin early em-

bryogenesis

The sea urchin Paracentrotus lividus is a model organism widely used in developmen-

tal biology. Sea urchin’s embryos have many advantages that led to this status of model

organism. The eggs are easily accessible, fertilization can be controlled, embryo are trans-

parent and develop quickly, enabling their observation with microscopy techniques [69].

The use of the sea urchin for embryology can be traced back to the XIXth century, be-

ginning in 1847 with three publications documenting fertilization, "Sur le développement

des oursins" (On the development of sea urchins) by Adolphe Dufossé, "Auszug aus einem

Berichte des Akameikers v. Baër, aus Triest" (Excerpt from a report by the University Grad-

uate von Baër in Trieste), by Karl Ernst von Baër and "Observations sur le mécanisme et

les phénomènes qui accompagnent la formation de l’embryon chez l’oursin comestible"

(Observations on the mechanism and phenomena accompanying the formation of the
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embryo of the edible sea urchin), by Alphonse Derbès [31]. These studies were followed

by a famous work by Oskar Hertwig on sperm and egg pronuclear fusion in 1876. In 1891,

Hans Driesch used the sea urchin to perform experiments on development, showing that

a complete embryo could develop from extracted cells refuting preformation and mosaic

theories.

During the XXth century the sea urchin has been the basis for major discoveries. Tim

Hunt and collaborators discovered the role of cyclins in the sea urchin development, which

are key regulators of the cell cycle [68]. The sea urchin development has also been used as

a basis for the comprehensive study of the gene regulatory network [53]. The most recent

development of this approach can be found on the biotapestry website 3.

Figure 2: Diagram representing the first steps of the sea urchin cleavage patterns, from
[83]

As any multicellular organism, the sea urchin develop from a single fertilized egg. It

undergoes a radial holoblastic cleavage, meaning that all the cell divide in a stereotypic

way, with division axis either parallel or at right angle with what will become the animal

vegetal axis. The first and second cleavages are both meridional and perpendicular to each

other, as shown on figure 2. They are followed by an equatorial cleavage perpendicular to

them. The three first cleavages divide cells symmetrically, leading to a symmetrical 8-cell

blastula. The fourth division round is different of the first three, the animal and the vegetal

tier don’t divide similarly. The cells of the animal tier divide meridionally into eight cells

3. http://www.biotapestry.org/

http://www.biotapestry.org/
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with similar volumes called the Mesomeres cells. The cells of the vegetal tier don’t divide

symmetrically, the division occur in the equatorial plan, producing four large cells called

Macromeres, close to the Mesomeres, and four small cells called Micromeres at the vegetal

pole. At this 16-cell stage where the morphological symmetry breakings occur, the cells are

well identifiable. The next round of division is equatorial for the Mesomeres, forming two

tiers of eight similar cells. The Macromeres divide meridionally, forming a tier of eight

cells below the Mesomeres. The Micromeres divide somewhat later forming two sets of

cells, four Large Micromeres and four Small Micromeres. The Small Micromeres divide

once more, then cease dividing before the larval stage, see figure 3. When the embryo has

attained the 32-cells stage, it has begun to form a blastocoel which is a proteinaceous fluid

within the embryo, and during the next rounds of division which are less stereotypical,

cells organize themselves as a single layered epithelium surrounding the blastocoel.

Figure 3: Normal sea urchin development, following the fate of the cellular layers of the
blastula. (A) Fate map of the zygote. (B) Late blastula with ciliary tuft and flattened vegetal
plate. (C) Blastula with primary mesenchyme. (D) Gastrula with secondary mesenchyme.
(E) Prism-stage larva. (F) Pluteus larva. Fates of the zygote cytoplasm can be followed
through the color pattern. (Courtesy of D. McClay.) - Image and caption from [83]

At the end of the cleavage period, which correspond to proliferation without cell death

and without many cell movements within the blastula, the cells begin to undergo com-

plex morphogenetic movements. Figure 3 shows a schematic drawing of this gastrulation

movements which will later give rise to a free swimming pluteus larva.

The study of the sea urchin gene regulatory network (GRN) underlying development

lead to the establishment of maps of interaction such as the one represented on figure 4 for
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Mesomere cells during the period from 6 to 17 hours. Obtaining such a map require to test

each gene individually. On the scheme, each gene is represented with its name (e.g. Nodal

or Lefty), and the links between the genes represent interactions such as induction or inhi-

bition. We can observe the modularity of this network which depend only on signals from

Mesomere cells, except for some maternal inputs and the expression of the gene Wnt8

in the cells Veg2 (a subpopulation of the Macromeres lineage). The establishment of the

gene regulatory network has been described in [53] and contains more than 40 genes. The

dynamics in space and time of this gene regulatory network has been studied as a boolean

computational model [171], it is argued in this article that the data underlying this gene

regulatory network contains sufficient information to explain the complex developmental

process of gene expression. The main limitation of this approach is that the spatial resolu-

tion is coarser than the individual cell level where interactions between genes take place.

This limitation can be overcome with analysis at the single cell resolution such as the one

presented in this part of the dissertation.

In the following we propose to investigate quantitatively the morphogenesis of the sea

urchin Paracentrotus lividus from the 32-cells stage to more than 400 cells, by observing

the phenomenology of individual cells, shape and proliferation dynamics.
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Figure 4: Diagram representing the gene regulatory network of the Mesomeres during 6
to 17 hours post fertilization in the sea urchin Strongylocentrotus purpuratus from Eric
Davidson’s website at Caltechhttp://sugp.caltech.edu/endomes/ as of January
21, 2015

http://sugp.caltech.edu/endomes/


18

Overview of the part

The main object of this part of the dissertation is the comparative study of a small

cohort of digitally reconstructed sea urchin embryos from in toto and in vivo 2-photon

microscopy imaging. Using the BioEmergences workflow, the complete reconstruction of

the cell lineage and individual cell shape is obtained for 5 wild type embryos. The question

which is raised by this data set is how to characterize intra-individual variability which

underlies cell differentiation and inter-individual variation associated to individual de-

velopmental histories. Given the multi-scale nature of the embryonic development, the

answer to this question depends on the level of observation chosen. Indeed, features at

the individual cell level can be very variable from one individual to the other, whereas

embryo-level dynamics appear highly reproducible.

The original approach that we develop to integrate these various levels of observation

is summarized on figure 5. Based on the image acquisition and the phenomenological

reconstruction, a set of features is obtained for each individual cells. These features are

the length of the cell cycle, the division, the mean volume, the mean surface area, the

mother/daughter volume or surface area ratio. Since we have access to the complete lin-

eage, it is possible to follow their evolution through the genealogy. At a more macroscopic

level, we can look at embryo-level dynamics such as the evolution of the number of cells

through time, the evolution of the total cell volume, the evolution of the total cell surface

area.

To integrate the various levels of observation, we defined an intermediate coarse-grained

level of observation between individual cell features and embryo-level dynamics by clus-

tering individual cell features into identifiable groups of cells. These groups are defined by

common cell identity (Mesomeres, Macromeres, Large and Small Micromeres) and com-

mon generation (number of cycles undergone since fertilization), hence identifiable in

each specimen of the cohort. This generic coarse grained level of observation is the basis

unite of our comparative study. It allows to compare individual characteristics without

averaging out intra-individual variability.

The link between individual cell features is characterized with a data-driven multilevel

probabilistic model relying on this intermediate level of observation. Individual cell fea-

tures distribution can indeed be described and approximated through parametrized prob-

ability distributions. These probability distributions are then combined using the branch-

ing structure of the cell lineage. The parameters governing the probability distributions
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provide a signature of each individual specimen in the cohort. They are distributed in a

statistical manifold where inter-individual comparison can be performed.

Figure 5: Scheme representing the proposed approach to quantify inter individual vari-
ability in the sea urchin development and produce a prototypic model.

After having characterized intra- and inter-individual variability in the development

of the sea urchin, it is interesting to ask for the possibility of representing uniquely the

development in a quantitative manner. This question is answered by establishing a pro-

totypical representation of the cell lineage as the centroid of the cohort in the statistical

manifold. This prototype can then be used as a basis for an hypothesis based modeling of

morphogenesis. Indeed, this prototype enables to integrate quantitative parameters val-

ues in a biomechanical model, which can then be compared to empirical data on aspects
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not belonging to the input of the model.

Chapter 1 describes the sea urchin’s development in a cohort of digitally reconstructed

specimens. The specimens have been observed under normal condition and correspond

to a typical range of variability occurring in a normal development. This chapter repre-

sents a complete integrative approach for the study of development morphogenesis, as

it combines empirical measures, digital reconstruction, data analysis. Establishment of a

prototypical model for proliferation and cell volume dynamics enables to test biomechan-

ical hypotheses through parameter exploration with a biomechanical model.

Chapter 2 describes the data-driven multi-level probabilistic model underlying the

analysis presented in chapter 1 in depth. It requires some mathematical background. The

contribution of this chapter is the establishment of the prototype

Chapter 3 discusses some perspectives of the multi-level probabilistic for our under-

standing of embryogenesis, such as the concept of irreversibilty of desorganisation during

the considered period of development because of the lack of regulation of individual cell

features.



Chapter 1

Predicting sea urchin’s normal

development from a small cohort of

digital embryos

Abstract The quantitative comparison of developing sea urchin embryos from a small

cohort of digital specimens is the basis for the construction of a prototypic cell lineage tree,

sufficient to predict the spatio temporal cell organization of a normal sea urchin blastula.

This is achieved i) by finding the statistical models fitting best the phenotypic macroscopic

phenotypic features, ii) and embed the corresponding artificial prototypic cell lineage in

the 3D space via a biomechanical model. The resulting 3D model is made to systematically

explore a space of parameters to fit the experimental data in order to test biological hypothe-

ses. 1

1.1 Introduction

The question of finding the time and the locus for the apparition of differences be-

tween individuals has irrigated the science of embryology ([111]). Large genetic screens

have sought to find genetic determinants of these differences ([161], [92]). The construc-

tion of the genetic regulatory network of the sea urchin should reveal the dynamics of

1. This chapter is an early version of a paper involving Barbara Rizzi, Louise Duloquin, Julien Delile,
René Doursat, Paul Bourgine and Nadine Peyriéas - This study has been presented under various forms at
the conferences "The developmental biology of the sea urchin" XXI and XXII, at Woods Hole, MA, USA (2012
- 2014) and at the Gordon Research Conference "Stochastic physics in biology" at Ventura Beach, CA, USA
(2015)
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these determinants during development ([53]). However, recent results have shown that

the linear relation between genetic regulatory network and phenotype can be complicated

by stochastic ([181]) effects. On the other hand, physical determination and constraints

at the scale of the tissue or of the whole embryo canalize the space of possible shapes

([189], [94], [74]). Relating these two approaches, genetic determinants and physical con-

straints at the scale of the tissue, requires to understand the relations between individual

cell phenomenology and transformations at the whole embryo level. Phenomenological

reconstruction of live embryo development ([163]) generates data that allow to investigate

quantitatively such questions. We propose to use the full digital reconstruction of a small

cohort of developing sea urchin to unfold the relations between cell, tissue and whole em-

bryo dynamics.

The sea urchin has been studied as an animal model since over a century ([66], [144]).

The study of early embryogenesis provides insight in differentiation of cells in the differ-

ent layers ([53], [52]). The description of the morphogenetic changes associated to these

differentiation processes are lacking a quantitative description. In particular the quanti-

tative study of the sea urchin blastula development is a good model to tackle this problem

because the morphogenetic changes are undergone smoothly by the embryo allowing live

imaging over a long period of cleavage.

The full digital reconstruction of live specimen reveals simultaneously quantitative

features at the individual cell level and at the scale of the whole embryo. The develop-

ment is orchestrated by changes in size, shape, number, position and gene expression of

cells. The question remains of how these quantities are related to each other and in which

way do the macroscopic dynamics of the development emerge from the micro character-

istics of the cells. Are the individual cell features aggregated together in a unique precise

way that would create the precise patterns that we observe, suggesting a precise devel-

opmental mechanism regulating the development, or the global dynamics emerge from

loose relations between the cells, favoring robust emerging process.

1.2 A small cohort of digital sea urchin throughout their cleav-

age period

The quantitative comparison of the cell lineage and cell behaviors was achieved through

the full reconstruction of digital specimens from 2-photon microscopy imaging of live em-

bryos. Nuclear and membrane staining obtained by 1-cell stage injection ([70]) of syn-
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(a)

(b)

Figure 1.1: (a) Reconstruction of digital specimens from 3D+time in toto imaging. First
line - Volume rendering of raw images from 2-photon laser scanning microscopy, H2B-
mCherry and farnesylated eGFP staining. Second line - Nuclei detection and cell tracking.
Coloured dots represent the cell positions, cell trajectories displayed as streamlines over
the next 5 consecutive time steps. Third line - Surface rendering of segmented cell mem-
branes. Color code: Mesomeres (blue), Macromeres (red), Large (pink) and Small (purple)
Micromeres. (b) Temporal sequences covered by the imaging of the five different speci-
mens analyzed in this study.

thetic mRNA encoding H2B-mcherry fusion protein and farnesylated eGFP respectively,

was used to image embryos developing from the 32-cell stage until the hatching blastula

stage (Figure 1.1 - 1st line). Image data sets were processed through the BioEmergences

reconstruction workflow ([70]) to provide the complete cell lineage (Figure 1.1 - 2nd line)

and the segmentation of cell shapes (Figure 1.1 - 3rd line). The visualization interface

Mov-IT ([163]) was used to validate and correct the cell tracking and manually label cells

according to their distribution in known populations ([11]).
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1.3 Feature Extraction and Measuring

To define normal sea urchin’s development we used 5 developing specimens imaged

in similar experimental condition with the same set up. Acquisition lasted from 2 to 8

consecutive hours with a time resolution of 2 to 4 min, beginning 4 to 5 hours post fertil-

ization (32 cells - Figure 1.1 (d)). Cell lineage combined with cell segmentation provides

the life length and division time of cells, as well as the volume and surface area (Chapter 2 -

section 2.3.1). Mesomeres, macromeres and large and small micromeres cell populations

were marked at the 32-cell stage.

Morphological changes at the embryo-level are witnessed by the evolution of the num-

ber of cells, the cell volume and the cell surface area (Chapter 2 - Figure 2.4 A, D, G). These

dynamics have similar patterns in each specimen of the cohort. However spatio tempo-

ral rescaling overcome a first level of interindividual variability, making these dynamics

comparable from one embryo to the other, in whole embryo and in each morphogenetic

field (Chapter 2 - Figure 2.4 B, E, H). It consists in an affine transformation of the time de-

pendency (two parameters - Chapter 2 - Figure 2.4 C) and a linear transformation of the

spatial dependency (one parameter - Chapter 2 - Figure 2.4 F).

To compare quantitatively cell features among specimens of the cohort, it is necessary

to find generic coarse-grained levels of description because symmetries of the embryo

prevent to identify individual cells (Chapter 2). Relying on exchangeability of the cell fate

at this period for cells belonging to the same population (Mesomeres, Macromeres, Large

micromeres, Small micromeres), cells were clustered in groups of cells sharing identity

and generation. These groups of cells forms the basic unit for the comparison and model-

ing in this study of the sea urchin development.

1.4 Emergence of embryo-level dynamics from individual

cell features

To relate the macroscopic dynamics with the individual cell features, we propose a

data-driven multi-level probabilistic model of the cell lineage which rely on its branching

nature. After each cell cycle, a cell divide into two. The features of the cells are chosen ran-

domly using the corresponding probability distributions defined for each groups of cells

independently of any genealogical relationships (Chapter 2 - section 2.5). The macro-

scopic dynamics observed in each embryo and within each morphogenetic fields are ac-
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Figure 1.2: Probabilistic modeling. Each individual of the cohort is associated to one color.
The black lines with grey intervals correspond to 300 realizations of the model, mean
(black) and standard deviation (grey). The first column (A,D,G) shows the value of the pa-
rameters, cell cycle lenth, cell volume, cell surface area for the prototypical representation
of the cohort. The second column (B, E, H) corresponds to the model for one individual
of the cohort. The third column (C, F, I) corresponds to the prototypical model over the
cohort. The first line (B,C) shows the evolution of the number of cells, relying on the dis-
tribution of life lengths in the different subpopulations (A). The second line (E,F) shows
the evolution of the cellular volume, relying on the distribution of the volume (D). The
third line (H,I) shows the evolution of the cellular surface area, relying on the distribution
of the surface area in the different subpopulations (G).
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curately reconstructed with empirical parameters for each group of cells (Figure 1.2 B, E,

H). Variability in the division times results from the successive addition of variability in

the life lengths, leading to a continuous desynchronization of the cell cycles (Chapter 2).

The variation in the total cellular volume and surface area result from variable mean char-

acteristics with invariant cell dynamics (Chapter 2). These results suggest that the high

reproducibility of embryo-level dynamics emerges from individually loosely regulated cell

features within a branching structure and population level characteristics.

Each specimen of the cohort is represented by a set of parameters sufficient to repro-

duce embryo-level dynamics. The cohort is represented as a set of points in the associ-

ated statistical manifold and the prototypical representation of the cohort is defined as

the centroid of the specimens in this parameter space (Chapter 2 and [10], [159]). Proto-

typical statistics for the groups of cells are defined using this methodology (Figure 1.2 A, D,

G). Intraindividual variability is represented by the prototypical standard deviation com-

puted for each cell feature. A representation of the normal development of the sea urchin

during cleavage is obtained by simulating prototypical embryo-level dynamics from the

probabilistic model (Figure 1.2 C, F, I).

1.5 Spatial modeling

To understand the relations between the individual cell features and the shape of the

embryo, the prototypical model of the cell lineage is embedded in space with a biome-

chanical model using the MecaGen modeling platform (Figure 1.3 A - [55], [56]). Each cell

is represented by a single cylindrical particle oriented along the apico-basal axis of the

epithelium (Figure 2.18). As cells are extremely small and sticky (low Reynolds number,

[179]), inertia is neglected in favor of viscosity forces and the cell displacement is caused

by their immediate mechanical interactions. Thus, the relation between displacement

and the net force applied on cells by their neighbors is ruled by an overdamped equation

of motion. At the bastula stage, the increasingly epithelial nature of the cells induces a de-

composition of the force exerted between two neighbors into a set of tangential and nor-

mal components: the attraction-repulsion force maintains the integrity of the cell volume

and controls the stiffness and the adhesion of interaction in the tangential direction, and

the planarity conservation force maintains the planarity of the monolayered sea urchin

epithelium (Figure 1.3 B,C). In between a pair of neighbor cells, the attraction coefficient

varies depending whether the pair belongs to the same subpopulation (homotypic) or not
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Figure 1.3: A. Each dot represents a cell center, the edges relating them are calculated
from the two steps spatial neighborhood algorithm, via metric and topological criteria.
The red axes represent the cell axis ~Ui oriented along the apico-basal direction. Mem-
brane surfaces are calculated a posteriori for rendering purpose. Color indicates inden-
tity similar to figure 1.1. B. Intensity of the attraction-repulsion force ~F ∥ exerted between
two neighbor cells as a function of their relative distance. This force displays a similar
shape to interatomic potential derived forces like Morse or Lennard-Jones (Chapter 2 -
Figure 2.6). The force well is modulated by varying the appropriate attraction coefficient
wadh. C. The cell axis ~Ui (red arrow) is calculated by averaging the 6 surrounding triangle
outward normal vectors (light red arrows). D. Phenotypic phase diagram, axis correspond
to (wadh,e, wadh,o) with krig = 10000 and αgab = 1.0. Four distinct phenotype domain are
obtained when exploring the parameter space. Figure by Julien Delile
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(heterotypic). Cell division timing follows the prototypical probabilistic model mentioned

above (Chapter 2) and their orientation is performed in the tangential domain with an

angle chosen randomly using a uniform distribution.

Parameter space exploration determines the parameter sets which govern realistic spa-

tial enfolding of the sea urchin embryo development. Validation uses the sphericity of the

global embryo shape, the maintenance of the monolayered epithelium and the similar-

ity of the inter-subpopulation border shapes with those observed in the digital embryos

(Chapter 2 section 2.7). The best fitting domain is obtained for low heterotypic adhesion,

confirming that clear-cut border can be obtained without the need of biasing the division

orientation (Figure 1.3 Db:Mean). Moreover, when the attraction-force intensity is larger

than the planarity force intensity, the embryo epithelium agglomerate into 3D aggregate.

This transition runs through different phenotypic states: from the highly spherical and

planar embryos to the collapsed magma of cells, some starfish shaped embryos may ap-

pear in the parameter region where planarity is obtained even in the absence of sphericity

(Figure 1.3 - D).

1.6 Discussion

In summary, we demonstrate that, despite interindividual variability during cleavage

period, it is possible to uncover underlying invariant structures driving macroscopic dy-

namics and morphological changes. Their reproducibility emerge from loosely regulated

cell features along the branching cell lineage. In particular we show that the desynchro-

nization of cell division increases continuously during cleavage, and not as successive pe-

riod of synchronicity, metasynchronicity and asynchronicity as previously stated ([83]).

And if a pseudo gradient from vegetal to animal has been suspected ([60]), our study sug-

gests that it results from the characteristics of cell life length variability and does not nec-

essarily need a material support.

By finding a relevant generic coarse-grained level of observation to compare specimen

we overcome the problem of intraindividual variability and symmetries that arise from

multiscale observations. Modeling of the cell lineage and its 3D biomechanical embed-

ding assure the sufficiency of the characteristics defined at the level of groups of cells to

describe accurately the development of one specimen of the cohort, thus suggesting a reg-

ulation at the level of populations of cells and not at the level of individual cells. This pe-

riod of development may not need to require a fine tuned genetic regulation. This sparse
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description of the development for each specimen lead to the modeling of a prototypical

embryonic development which is the centroid of the cohort in the space of models. This

prototypical representation defines the normal development with a generality level guar-

anteed by the number of specimen in the cohort. This framework may form a basis to

bridge the gap between experimental biology and theoretical biology.
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Chapter 2

Variability in the sea urchin development:

A multi-level data driven probabilistic

model

Abstract This chapter describes a data-driven multi-level probabilistic underlying the

comparative study of a small cohort of digital sea urchin embryos presented in chapter 1.

To relate individual cell features with embryo-level dynamics, it is necessary to define an

intermediate generic coarse-grained level of observation. This level enables to characterize

probability laws that are the basis of a comprehensive probabilistic model. Correspond-

ing parameters are distributed in a statistical manifold where each embryo is identified by

a small set of points. A prototype is obtained by computing the Kullback-Leibler centroid

among specimen of the cohort. This prototype serves as a basis for a spatial embedding

through biomechanical modeling with the MecaGen platform. 1

2.1 Introduction

The development of the sea urchin blastula from 32 to 540 cells happens through cell

proliferation with no cell death. Early embryonic territories and cell morphology allow to

categorize cells according to known cell types, namely Mesomeres, Macromeres, Large Mi-

cromeres, and Small Micromeres [50] as represented on figure 2.2. Symmetry by rotation

along the animal vegetal axis as well as cellular variability prevent to identify individual

1. The establishment of the multi-level data-driven probabilistic model has highly benefited from ad-
vices by Paul Bourgine whom we warmly acknowledge

31
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cells from one specimen to the other.

Using digital reconstructions of in toto and in vivo developing sea urchin embryo, we

propose a data-driven multi-level probabilistic model that relates individual cell features

with embryo-level dynamics. These embryo level dynamics are the number of cells, the

cell volume and the cell surface area. The high reproducibility of these dynamics is ob-

served after performing a linear spatio-temporal rescaling.

We propose to model the cell lineage tree as a binary branching process where the di-

vision probability of a cell depends on its age. Each cell of the lineage lives for a random

time before giving rise to two new cells. The same process applies to these two new cells.

This approach can be compared to a binary Bellman-Harris process, yet identical prob-

ability among generations will not be assumed [122]. Once the cell genealogy has been

established, the dynamics of the cellular volume and surface is investigated along the cell

lineage. An intermediate level of description is defined by clustering cells by common cell

type and cell cycle, allowing interindividual comparison. Life lengths and division times

in these groups of cells are found to be well described with gaussian probability distribu-

tions, mean volume and surface area and mother/daughter ratio for the volume and the

surface area are found to be well described with log-normal distributions. The same multi-

level probabilistic model relates distribution of individual cell features in these groups of

cells with embryo-level in each specimen of the cohort. The geometry of the space of

probability distributions allow to assess the accuracy of our model which is found to be

high compared to inter-individual variability. Moreover, this model provides a descrip-

tion of the propagation of intra-individual variability in the cell lineage. Finally, based on

this multi-level probabilistic model, we define a unique prototypical representation of this

period of development by aggregating individual specimen statistics as Kullback-Leibler

centroids in the relevant morphospace. This prototypical representation is used to gen-

erate artificial cell lineages which will be the basis of a biomechanical model. Parameters

of the biomechanical model are fitted to the empirical data by comparing the simulations

with the reconstruction.

2.2 Image acquisition and digital reconstruction

This section describes the protocol to obtain images of developing sea urchin embryos,

and the image processing algorithms used to reconstruct the cell lineage and the cell shape

from these images. This section describes Louise Duloquin’s work for the image acquisi-
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tion and Barbara Rizzi’s work for the image processing [70].

2.2.1 Image acquisition

To obtain microscopy images of developing sea urchin embryo, it was first necessary

to inject oocytes from Paracentrotus lividus with 150 µg/ml H2B-mcherry and 150 µg/ml

eGFP-ras synthetic mRNAs [148]. Embryos were either maintained between slide and cov-

erslip covered with protamine or embedded in 0.25% low-melting-point agarose sea wa-

ter at the center of a 3 cm Petri dish. Image acquisition was performed with 2-photon

microscopy with simultaneous excitation at two different wavelengths (1030 nm and 980

nm). Acquisition of 5 developing specimen is obtained while maintaining similar exper-

imental conditions. They lasted from 2 to 8 hours with a time resolution of 2 to 4 min,

beginning 4 to 5 hours post fertilization.

2.2.2 Image processing

Nucleus center detection The detection of the position of cell nuclei relies on the in-

tensity of the signal emitted by the fluorescent histone fusion protein H2B-mcherry. A

difference of gaussian algorithm is applied on the images, resulting in a band pass filter

sharpening cell nuclei signal, which enables center detection by maxima identification

on the image. Value of the parameters were manually chosen with the MoveIt software

superimposing raw data with the detected cell positions.

Cell tracking The cell tracking consists in the complete spatio-temporal genealogy of

the cells, it is obtained by linking cell nuclei from one time frame to the other when they

represent the same cell, or two daughters after mitosis. The tracking is obtained in five

steps. The first one consists in linking nearest nuclei when this relation is reciprocal (it is

not necessarily the case when there is a mitosis). The second step accounts for mitoses by

connecting nuclei without predecessor with the nearest nuclei in the previous frame. The

third step refine the tracking obtained by assuming that the cells have small displacement

and hence don’t change of neighborhood quickly. An energy function is minimized by

simulated annealing. The fourth step consists in considering cells that do not live long

as false positive nuclear centers. The fifth step consists in visual inspection of the lineage

obtained with the MoveIt software which superimposes raw data with the reconstructed

lineage.
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Cell segmentation The cell segmentation consists in the reconstruction of individual

cell shapes. The fluorescent signal associated to the cell membrane is obtained thanks to

the GFP-Ras fluorescent protein. The cell membrane shape are reconstructed using a gen-

eralized version of subjective surfaces method [222]. This method enable to reconstruct

missing boundaries, relevant in the context of the images presenting a low signal-to-noise

ratio and incomplete membrane contours. This method is performed on the images that

are first smoothed with a geodesic mean curvature flow filter [126]. Numerical implemen-

tation of both filtering and segmentation algorithms has been performed on finite differ-

ence schemes [164, 194]. Further details about the employed methods can be found in

[126] and [222].

Using these image acquisition and image processing techniques, we obtained a small

cohort of 5 digital embryos with completely validated reconstructed cell lineages and re-

constructed individual cell shape.

2.3 Multi-level measures and rescaling

The digital reconstruction of a small cohort of developing embryos was analyzed at

different levels of observation, from individual cell features to embryo-level dynamics via

relevant coarse-grained cell groups. We observed similar patterns of evolution in the mea-

sured quantities, such as cell volumes and numbers of neighbors, across all specimens of

the cohort. Interindividual variability was captured by a linear temporal rescaling of the

cell number charts, and a spatial rescaling of the geometric charts. Spatial symmetries in

the embryos defined groups of exchangeable cells that constitute the basis of the proba-

bilistic model.

2.3.1 Individual cell features

The digital reconstruction of entire sea urchin specimens allowed us to extract a vari-

ety of features at the level of individual cells as presented. For any cell i , we defined the

following quantities (Fig. 2.1):

– its life length: xi , corresponding to the time between two consecutive divisions

– a mitosis time: mi , denoting the moment at which the cell i divides into two daugh-

ter cells (and ceases to exist as such)

– its current volume: vi (t ), with the average volume over its life length (using discrete
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Figure 2.1: Sample of the cell lineage indicating how life lengths are calculated.

time steps):

v i =
1

xi

∫mi

mi−xi

vi (t )d t ≃ 1

xi

mi−1∑

t=mi−xi

vi (t ) (2.1)

– its current surface area: si (t ), with the average surface area over its life length:

si ≃
1

xi

mi−1∑

t=mi−xi

si (t ) (2.2)

– a generation number: ni , denoting the number of past divisions on cell i ’s lineage

branch, which includes itself and all its ancestors since fertilization

– a cell type: ki , taking one of four possible values: 1 for mesomeres (Mes), 2 for

macromeres (Mac), 3 for large micromeres (LMic), and 4 for small micromeres (SMic) [50]

(Fig. 2.2)

– its current degree: di (t ), equal to the number of neighbors of cell i at time t , assum-

ing that the spatial distribution of cells can be represented by an undirected graph

of cellular contacts, in which cells correspond to nodes and cell-cell interactions to

edges [80, 67] (Fig. 2.3).

Each cell i also has a mother identified by j (a shortcut notation for the function j (i )

mapping any cell index to its mother’s index), which is used in the definition of two addi-

tional features:

– a daughter/mother average volume ratio: ai = v i /v j

– a daughter/mother average surface ratio: bi = si /s j

and three relationships:

– the mitosis time of a cell is equal to the sum of its life length and the mitosis time of
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its mother: mi = m j +xi

– the generation is incremented by one at each division: ni = n j +1

– starting from the 32-cell stage, each cell type is conserved across divisions through-

out the period considered here (development of the blastula): ki = k j .

Morphogenetic fields and global state variables

The cell lineage, denoted by L , is the set of all cells that the embryo contained during

a given period of time. From there, various subsets were defined:

– the current embryo, the set of all cells alive at time t : L (t ) = {i ∈L | mi −xi ≤ t < mi }

– morphogenetic fields, the sets of cells of a given type k across all generations: L
k =

{i ∈L | ki = k}

– current fields, the morphogenetic fields at time t : L
k (t ) = {i ∈L (t ) | ki = k}.

At the level of the entire embryo, and at each time step t , the global measures were:

– the number of cells, cardinality of the current embryo: N (t ) = |L (t )|
– the total cellular volume, sum of all individual cell volumes: W (t ) =∑

i∈L (t ) vi (t )

– the total cellular surface area, sum of individual cell surface areas: Z (t ) =∑
i∈L (t ) si (t )

– the total number of contacts, sum of the local degrees: C (t ) =∑
i∈L (t ) di (t )

These quantities were also calculated inside each current morphogenetic field k, replacing

L (t ) by L
k (t ) in the above definitions and using the notations N k (t ), W k (t ), Z k (t ), and

C k (t ).

Figure 2.2: The four cell populations identifiable at the 32-cell stage: 16 mesomeres, 8
macromeres, 4 large micromeres, and 4 small micromeres.
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Figure 2.3: Example of a cell with seven neighbors (visualized with the Mov-IT software).

Normalized embryo dynamics

The number of cells, total cellular volume, and total cellular surface area were mea-

sured empirically in each embryo of the cohort E , indexed by e ∈ [1, 5] and denoted Ne (t ),

N k
e (t ), and so on. The evolution over time of these variables was plotted concurrently

(Fig. 2.4A,D,G). We observed that the patterns of evolution across the various specimens

were similar but did not overlap: some were globally faster, some slower; some were larger,

other smaller. To filter out this variability and facilitate interindividual comparison, we ap-

plied temporal and spatial rescaling functions.

Temporal rescaling For each observed cell number Ne (t ), we considered its inverse func-

tion te (N ) equal to the time at which embryo e contained a given number N of cells (sym-

metric of Fig. 2.4A). Since Ne (t ) is a monotonically increasing function (no cell death dur-

ing the period considered), so is te (N ). However, because of the relative synchrony among

cell cycles, Ne can remain constant for several time steps (plateaus in Fig. 2.4A). There-

fore, to obtain a single-valued function, we defined te (N ) = min{t | Ne (t ) = N } over the

size interval of e, [Ne,min, Ne,max] (if N was not part of the observed discrete values, te (N )

was interpolated). Then, to minimize the discrepancy between the observed time of an

embryo, te (N ), and the mean time of the five specimens, 〈t〉(N ), an affine transform was
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Figure 2.4: Embryo-level dynamics before and after temporal and spatial rescaling. Start-
ing from the 32-cell stage, the global measures of five specimens e = 1, ...,5 are plotted
over their respective imaging periods. A) Number of cells Ne (t ) in each embryo. Original
periods in minutes post-fertilization (mpf): 225-396 mpf (blue), 345-507 mpf (green), 260-
588 mpf (orange), 300-575 mpf (cyan), and 260-638 mpf (pink). B) Temporally rescaled
number of cells in each embryo, Ne (αe t +βe ) (top curves), and each morphogenetic field,
N k

e (αe t +βe ) (four groups of lower curves, from top to bottom: Mes, Mac, LMic, SMic).
The rescaled periods are: 240-398 mpf (blue), 357-539 mpf (green), 246-702 mpf (orange),
291-619 mpf (cyan), and 265-531 mpf (pink). C) Affine transform parameters (αe ,βe ) used
in the previous top curves. D) Total cellular volumes We (t ). E) Temporally and spa-
tially rescaled total cellular volumes, (γe )3We (αe t +βe ) (top), and field cellular volumes
(γe )3W k

e (αe t+βe ) (same order as B), using the same parameters (αe ,βe ) as before. F) Coef-
ficients γe used in the previous top curves. G) Total cellular surface areas Ze (t ). H) Tempo-
rally and spatially rescaled total cellular surface areas, (γe )2Ze (αe t+βe ) (top), and field cel-
lular surface areas (γe )2Z k

e (αe t +βe ) (same order as B), using the same parameters (αe ,βe )
and γe as before. I) Temporally rescaled total numbers of contacts Ce (αe t +βe ) and field
numbers of contacts C k

e (αe t +βe ).
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performed on the time axis using a cost function:

Fe (α,β) =
Ne,max∑

N=Ne,min

(
αte (N )+β−〈t〉(N )

)2 with 〈t〉(N ) = 1

|EN |
∑

e∈EN

te (N ), (2.3)

where EN is the sublist of embryos e such that N ∈ [Ne,min, Ne,max] (including by inter-

polation). For each embryo, the parameters adopted for the transform satisfied (αe ,βe ) =
argminFe (α,β). Finally, taking the inverse again, we obtained five rescaled total numbers

Ne (αe t+βe ) and four groups of five rescaled field numbers N k
e (αe t+βe ), which are plotted

in Fig. 2.4B. The five parameter pairs (αe ,βe ) are shown in Fig. 2.4C.

Spatial rescaling Based on the same temporal rescaling, a linear transform was also per-

formed along the spatial dimensions to minimize the discrepancy between the temporally

rescaled cellular volume of an embryo, We (αe t+βe ) and its mean value over all specimens:

Ge (γ) =
(te,max−βe )/αe∑

t=(te,min−βe )/αe

(
γ3We (αe t +βe )−〈W 〉(t )

)2
with 〈W 〉(t ) = 1

|Et |
∑

e∈Et

We (αe t +βe ),

(2.4)

where Et is the sublist of embryos e such that (αe t +βe ) ∈ [te,min, te,max] (including by

interpolation). For each embryo, γe = argminGe (γ) was then defined as the optimal co-

efficient. The original volumes We (t ) are plotted in Fig. 2.4D. The five rescaled total vol-

umes (γe )3We (αe t +βe ) and four groups of five rescaled field volumes (γe )3W k
e (αe t +βe )

each are plotted in Fig. 2.4E, while coefficients γe are shown in Fig. 2.4F. Finally, we used

the same coefficients squared for the rescaled cellular surface areas, (γe )2Ze (αe t +βe ) and

(γe )2Z k
e (αe t +βe ) (Fig. 2.4H; the original curves Ze (t ) are shown in Fig. 2.4G).

Neighborhoods The total numbers of contacts in each embryo and each morphogenetic

field did not require an extra spatial transform to highlight interindividual similarities. Af-

ter carrying over the temporal rescaling parameters found above, the curves Ce (αe t +βe )

and C k
e (αe t +βe ) already presented a high degree of overlap among embryos e ∈ [1, 5]

(Fig. 2.4I). This is consistent with the fact that neighborhood relationships are topological

features, thus independent from metric deformations.
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2.3.2 Intermediate cell groups

Symmetries in the embryo, such as the rotational symmetry around the animal-vegetal

(AV) axis, prevent the identification and matching of individual cells from one specimen to

another. Unique identification of cells based on their morphological characteristics can-

not be done without ambiguity either. To overcome these issues, a generic coarse-grained

level of observation was needed. We chose here to define new subsets of L (adding to the

list of Section 2.3.1):

– generational cell groups, or simply “cell groups”, the subsets of generation-n cells

inside morphogenetic fields k: L
n,k = {i ∈L | ni = n & ki = k}.

Note that L
n,k is not the same as L

k (t ): the latter is a snapshot of morphogenetic field k

at time t and therefore may contain a mix of generations if some cells have divided more

frequently than others. Conversely, cells in the former group may have to be taken at dif-

ferent times. These sets offer two useful viewpoints on the embryo, one focusing on its

global state, the other on cell statistics. In any case, the greater n and t , the more distant

these two sets are likely to be.

At this intermediate scale, it became possible to identify and map cell groups L
n,k
e

across embryos. At the lower level, cells belonging to the same group were expected to

display similar individual features. At the sixth generation, each embryo e contained a

total of 32 cells composed of 16 Mes, 8 Mac, 4 LMic, and 4 SMic cells, which can be written:

|L 6,1
e | = 16, |L 6,2

e | = 8, |L 6,3
e | = |L 6,4

e | = 4 for all e ∈ [1, 5]. Since each cell gives rise to two

daughter cells at each cycle and there is no cell death, the number of cells of a given type

continued doubling, i.e. |L n,k
e | = 2n−6|L 6,k

e | for n ≥ 6 during the period of interest.

The six cell features considered here are the life length xi , mitosis time mi , average

cell volume v i , average cell surface area si , and the daughter/mother ratios of average vol-

ume ai and surface area bi . The dispersion of these features observed in each group L
n,k
e

of the empirical data is represented by distributions, modeled by sequences of random

variables. For example, (x1, x2, ..., xm) denotes the sequence of the values that the first fea-

ture, life length, takes in the m cells of a given group L
n,k
e . Each xi is the realization of

a random variable Xi pertaining to cell i . Cells being indistinguishable within the same

group, however, their order in the sequence is irrelevant. This property is referred to as

“exchangeability” of the sequence of random variables and is formalized as follows: for

any permutation π of the indices [1, m], the joint probability distribution of these vari-

ables is the same:

P (Xπ(1), Xπ(2), ..., Xπ(m)) = P (X1, X2, ..., Xm). (2.5)
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This property leads to de Finetti’s theorem, which can be summarized by saying that an

infinite sequence of exchangeable random variables is a “mixture” of independent and

identically distributed (i.i.d.) sequences [8, 45]. As for a finite exchangeable sequence, it

can also be approximated by a mixture of i.i.d. sequences [58]. One consequence of this

theorem is that the following empirical measure Pm,Xg constitutes a summary statistic for

the probability density P of the X sequence:

Pm,Xg (I ) = 1

m

m∑

i=1
δXi (I ), with δx(I ) = 1 if x ∈ I and δx(I ) = 0 if x ∉ I , (2.6)

where I is an interval of values or union of intervals (i.e. an element of the “σ-algebra” on

R) and δx is the Dirac measure. If m could increase to ∞, Pm,Xg would converge asymptot-

ically to the underlying theoretical probability distribution P of the sequence of exchange-

able random variables.

The motivation of the probabilistic model presented here and in the next section was

to provide an idealized representation of the dynamics of multicellular development relat-

ing the distributions observed in each cell group with the global dynamics of the cell lin-

eage. To simplify notations, let us define an embryo-specific cell group index g = (e,n,k)

so that L
n,k
e can be equivalently written Lg . With this, our goal was the following:

– link the distribution in each group Lg of life lengths: Xg ∼ {xi | i ∈ Lg } and the

distribution of mitosis times: Mg ∼ {mi | i ∈Lg } to the evolution of the total number

of cells in the embryo Ne (t )

– link the distribution in each group Lg of average volumes V g and the distribution

of daughter/mother volume ratios Ag to the evolution of the total cellular volume

We (t )

– link the distribution in each group Lg of average surface areas Sg and the distri-

bution of daughter/mother surface ratios Bg to the evolution of the total cellular

surface area Ze (t ).

2.4 Observation and approximation of multi-level statistics

From the empirical distributions of individual cell features, we derived parametrized

representations approximating their probability distributions in each cell group. Combin-

ing cell features along the cell lineage required considering simple models of inheritance.

As explained below, we calculated correlations based on an assumption of linearity in in-
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tercellular dependencies and, obtaining low values, concluded that the individual features

of a cell were largely independent from its mother’s or sister’s features. This independence

was then taken as a founding hypothesis of our model.

2.4.1 Estimation of cell feature distributions in cell groups

To interpret the empirical feature distributions, capture their evolution and predict

the developmental dynamics, it was best to describe them in terms of parametric mod-

els. First, however, because of the finite and relatively short duration of the period of

observation, some groups Lg were incompletely represented in the dataset. Therefore,

a distribution of cell features in a group was considered to be significant only if the num-

ber of observed cells constituted at least 95% of the full cardinality |Lg | calculated above.

Moreover, certain features, such as the volume vi and surface area si , required the obser-

vation of their evolution during whole cell cycles. Incomplete cell cycles were taken into

account only if the mean period of observation of individual cell dynamics in a group was

at least 20 min. Based on these criteria, we retained 252 distributions of individual cell

features across all cell groups Lg (corresponding to a rough average of 4× 3 significant

distribution-generation pairs in each one of the 5×4 embryo-cell type fields).

Graphical assessment of these histograms led us to categorize them into two major

types: normal distributions (i.e. Gaussian curves) for life lengths xi and mitosis times

mi ; and log-normal distributions for average cell volumes v i , average cell surface areas

si , daughter/mother volume ratios ai and surface area ratios bi (where a random vari-

able X is said to be log-normally distributed if the random variable Y = log X is normally

distributed).

We performed a chi-squared goodness-of-fit test on each distribution to validate our

assessment. This test evaluates the proximity of the empirical frequency with the theo-

retical one, i.e. whether the random variables are i.i.d. under a normal distribution or a

log-normal distribution. To this aim, we first calculated the empirical mean and standard

deviation of each random variable in each cell group Lg using a classical maximum like-

lihood estimation [40]. For example, in the case of life lengths Xg these two quantities
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Figure 2.5: Mean and standard deviation bars representing the normal and log-normal
approximations of the cell feature distributions in various cell groups Lg . For each fea-
ture (one per frame), the cell groups g = (e,n,k) cover all four cell types k (except life
length), one or several generations n ∈ [6, 10] per type, and most of the five embryos e per
generation-type combination (using the same colors as Fig. 2.4).
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are

µXg ≈ µ̃Xg =
1

Ng

∑

i∈Lg

xi (2.7)

σXg ≈ σ̃Xg =
(

1

Ng −1

∑

i∈Lg

(xi − µ̃Xg )2

)1/2

(2.8)

where Ng = |Lg |. The same formulas were applied to variables Mg , logV g , logSg , log Ag ,

or logBg , for each one of the 252 available distributions, yielding parameters (µ̃Mg , σ̃Mg ), ..., (µ̃Bg , σ̃Bg ).

All 252 (µ,σ) pairs are plotted in Fig. 2.5.

Then, based on the empirical mean and standard deviation, our categorization hy-

pothesis was challenged in each distribution by calculating a p-value corresponding to

the probability to find a good fit with a normal or log-normal curve. Taking again Xg as

an example, the distribution of life lengths {x1, x2, ..., xm} over the m cells of group Lg was

categorized into a fixed number l of discrete bins, (x̂1, x̂2, ..., x̂l ), where x̂1 = min{xi } and

x̂h+1 − x̂h =∆x̂ = (max{xi }−min{xi })/l for all h ∈ [1, l −1]. In this histogram, the observed

distribution corresponds to the number of values falling in each bin and was given by the

empirical measure Pm,Xg (Ih) (equation 2.6), where Ih = [x̂h , x̂h+∆x̂) and Il is closed, while

the expected distribution was given by Pm,X̃g
(Ih), where X̃g is the theoretical normal dis-

tribution calculated from (µ̃Xg , σ̃Xg ). The chi-squared statistic computes the discrepancy

between both distributions as follows:

χ2
g =

l∑

h=1

(Pm,Xg (Ih)−Pm,X̃g
(Ih))2

Pm,X̃g
(Ih)

. (2.9)

This statistic was assumed to follow a chi-squared distribution with κ = l − 3 degrees of

freedom [145] (the number of frequencies, l , reduced by the number of parameters of the

fitted distribution, µ and σ, and the constraint
∑

h Pm,Xg (Ih) = 1). This gave the p-value,

which is the probability of observing a test statistic at least as extreme, i.e. 1 minus the

cumulative distribution function of χ2
g for κ degrees of freedom. Finally, our Gaussian-fit

model was deemed adequate for a given feature in a group Lg if its p-value was greater

than 0.05 (Fig. 2.6).

Note that the chi-squared test of goodness-of-fit produces inaccurate results if the size

of the sample is too small—i.e., by convention, less than 5 elements in a bin [145]. Reduc-

ing the number of frequencies l increases the number of elements in each bin, but also

decreases the number of degrees of freedom κ, which must remain greater than 3 for the
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test to be applicable here. Based on these constraints, 128 distributions out of 252 had to

be excluded from the evaluation.

For most of the remaining 124 distributions, the validity of our assumptions about

their type (normal or log-normal) could be retained. Only 20 of them had a p-value under

0.05, among which 12 were under 0.01 (Fig. 2.7). The complete ranges of p-values ob-

tained were the following: [3.7e-8, 0.42] for life lengths xi , [3.6e-6, 0.46] for mitosis times

mi , [8.5e-3, 0.89] for average cell volumes v i , [5e-3, 0.96] for average cell surface areas si ,

[0.06, 0.84] for average volume ratios ai , and [1.3e-3, 0.76] for average surface area ratios

bi . The histogram of all 124 p-values is plotted in Fig. 2.8.

Ideally, the worst-fit cases could be used to subdivide cell groups Lg into smaller

classes (e.g., oral and aboral cells) reflecting the multimodal aspect of certain distribu-

tions, or to adopt different parametric models (e.g., exponential instead of Gaussian curves).

Given the small size of the cohort, however, and the non-reproducibility of these outlier

distributions in various specimens, it was difficult to rely on such deviations to define new

cell types or new models. Moreover, biological relevance of the inferred cell clusters would

have to be validated by correlation with genetic expression in the form of a developmental

“atlas” [41], which is out of the scope of this study. This is why we preferred keeping the

simplicity of normal and log-normal approximations as they captured the essential char-

acteristics of statistical distributions (their mean and variance) even in marginal cases. For

now, we left out any potential additional information for the sake of understandability and

interpretability of the whole dataset. The description of distribution shapes can be refined

in future work by using a larger cohort of specimens.

2.4.2 Cell volume and surface area dynamics

The volume and surface area of a cell are not constant during its life length because of

various contractions and dilations. To highlight the fluctuations of the cellular geometry

around its average, we define two other cell quantities:

– the normalized volume: ωi (u) = vi (t )/v i

– the normalized surface: φi (u) = si (t )/si

where t = m j +uxi (m j is the mother’s mitosis time) and u ∈ [0, 1] represents the cell’s

normalized age, which can be equivalently defined by t = mi − (1−u)xi . Then, the micro-

dynamics of cell geometry can be described by taking the mean of these quantities in each
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Figure 2.6: The 12 cell feature distributions (two per variable type) with the highest p-
value, i.e. the best cases of fit by normal or log-normal curves with respect to the chi-
squared test. Left to right, top to bottom: the two Xg and two Mg distributions closest to

normal curves; the two V g , two Sg , two Ag and two Bg distributions closest to log-normal
curves. Titles indicate the embryo e, cell type k, generation n and p-value.

Figure 2.7: The 12 worst-fit cases (p-value < 0.01) of cell feature distributions, where the
assumption of normal or log-normal curves could not be retained with respect to the chi-
squared goodness-of-fit test. They fall into four n,k categories: 8, Mac; 8, Mes; 9, Mac; and
9, Mes. Most of them concern X and M .
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Figure 2.8: Histogram of all p-values obtained by chi-squared goodness-of-fit test on 124
distributions of cell features. The six variables considered here were Xg , Mg , logV g , log Ag ,

logSg and logBg across the five embryos e, four cell types k, and all generations n within
the period during which the cell feature was observable.

group Lg (Fig. 2.9,2.10):

ω̃g (u) = 1

Ng

∑

i∈Lg

ωi (u) and φ̃g (u) = 1

Ng

∑

i∈Lg

φi (u), (2.10)

making the assumption that the functions ωg and φg are essentially deterministic, i.e. the

variations in volume and surface normalized in time and amplitude are the same for all

cells i ∈Lg (hence the notations ω̃g , φ̃g instead of µ̃Ωg , µ̃Φg ). Their particularity compared

to the other six empirical means calculated previously (equation 2.7) is their dependency

on time (normalized to align the signals).

2.4.3 Independence along the lineage

Having defined parametric representations (µ̃, σ̃) for each cell feature distribution within

each cell group Lg , we wanted to investigate the relationships among these variables.

Since cells are genealogically related, it was natural to hypothesize some degree of cor-
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Figure 2.9: Estimated cell volume microdynamics ω̃g (u) in various groups Lg of types
k = 1,2,3 and generations n = 6,7,8,9. Thin lines correspond to individual embryos e of
the cohort E (one or several per group). Thick lines represent cohort averages 〈ω̃g (u)〉e∈E .

relation between cells belonging to the same descent. With the goal to find a reduced

number of parameters describing the phenomenology of the process, we assumed linear

dependencies between the cell distributions of daughters and mothers, and among sis-

ters. This is written Y = λ+µX , where the scalar parameters λ and µ can be estimated

by linear regression based on a set of N realizations of the random variables X and Y :

{(xi , yi )}i=1,...,N . The empirical optimal values λ̃ and µ̃ are the ones that minimize the resid-

ual sum of squares over the samples:

SSres =
N∑

i=1
(yi − (λ̃+ µ̃xi ))2 =

N∑

i=1
ǫ2

i , (2.11)

where ǫi denotes the residual error terms such that yi = λ̃+ µ̃xi + ǫi and is assumed to be

normally distributed around zero. Then, to characterize the accuracy of this linear esti-

mation, we used the coefficient of determination, R2, which measures the percentage of
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Figure 2.10: Estimated cell surface microdynamics φ̃g (u) in various groups Lg of types
k = 1,2,3 and generations n = 6,7,8,9. Thin lines correspond to individual embryos e of
the cohort E (one or several per group). Thick lines represent cohort averages 〈φ̃g (u)〉e∈E .

variation of one variable explained linearly by the other [183, 40]. If we define the total

sum of squares by

SStot =
N∑

i=1
(yi − ỹ)2 with ỹ = 1

N

N∑

i=1
yi , (2.12)

where ỹ is the empirical mean of Y , then the percentage of variation that remains unex-

plained linearly is given by the ratio SSres/SStot, and the coefficient of determination is

equal to its complement:

R2 = 1− SSres

SStot
. (2.13)

For a “simple” linear regression (i.e. one with a single explanatory variable), it can be

shown that the coefficient of determination is equal to the square of the estimated Pear-

son’s coefficient of correlation:

R2 = ρ̃2
X ,Y , where ρX ,Y = cov(X ,Y )

σXσY
= µX Y −µXµY

σXσY
. (2.14)
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The greater R2, the more X and Y tend to be linearly dependent, with a binary decision

threshold generally set at 0.6. Note that R2 does not measure nonlinear dependencies,

thus can remain low even if X and Y are strongly related through quadratic or logarithmic

curves, for example.

Here, this coefficient was applied to six pairs of features calculated among the 252 dis-

tributions deemed sufficiently represented in the dataset (Section 2.4.1, Fig. 2.5). In the

following, for a group index g = (e,n,k) we use the shorthand notation g ′ = (e,n −1,k) to

refer to the previous-generation group in the same embryo.

Daugther’s life length vs. mother’s mitosis time As above, we assumed a simple model

of linear dependency between the life length xi of a cell i ∈ Lg and the mitosis time m j

of its mother j ∈ Lg ′ : xi = λ+µm j . The coefficients of determination R2 = ρ̃2
Xg ,Mg ′

were

computed between the distributions Xg ∼ {xi | i ∈ Lg } and Mg ′ ∼ {m j | j ∈ Lg ′} at several

generations n. For this calculation, we used the 23 groups Lg of Fig. 2.5A in which all cell

cycles were completely known, i.e. had observed start and end mitosis times, and their

corresponding 23 groups Lg ′ . In the end, the values of R2 that we obtained fell in the

range [3e-3, 0.51], which indicated only weak or inexistant linear dependencies.

Sisters’ life lengths For each pair of sister cells i1, i2 ∈ Lg , ordered such that xi1 > xi2 ,

we also assumed xi1 =λ+µxi2 , where the longer life length was included in a set Xg ,1 and

the shorter one in another set Xg ,2. The coefficient of determination R2 = ρ̃2
Xg ,1,Xg ,2

was

then computed in the same 23 groups and the values obtained belonged to the interval

[0.095, 0.77], revealing some linear dependency among sisters’ life lengths within certain

groups. More precisely, R2 coefficients scored above 0.6 in the following seven groups

g = (e,n,k): (4, 7, Mac), (5, 7, Mac), (3, 8, Mac), (4, 8, Mac), (1, 7, Mes), (3, 7, Mes) and

(3, 9, Mes). In the other 16 groups, there was no clear linear dependency.

Sisters’ volume ratios Concerning the volume and surface area, several models of de-

pendency can be explored. Usually, it is assumed that the volume of a mother is con-

served in its two daughters through mitosis, meaning that the average volumes should

verify: v i1 + v i2 = v j . Dividing by v j , this is equivalent to a linear relationship ai1 = 1−ai2

between the average daugther/mother volume ratios of the sister cells. To verify if there is

such a dependency, we computed the coefficient of determination R2 = ρ̃2
Ag ,1,Ag ,2

as above

between pairs of sister cells i1, i2 ∈Lg ordered such that ai1 > ai2 . Over the 38 cell groups

Lg of Fig. 2.5C in which all volumes could be confidently measured, the coefficients of
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determination belonged to [1.4e-3, 0.88], with 34 values below 0.61 and the other four val-

ues in [0.75, 0.88] corresponding to cell groups (3, 7, SMic), (3, 7, Mac), (4, 8, Mac) and

(1, 7, Mes). However, the λ̃ and µ̃ parameters for these groups were found in [−0.45, 0.12]

and [0.87, 3.02] respectively, i.e. far from 1 and −1. Altogether, these results largely invali-

dated the hypothesis of volume conservation across mitosis.

Daughter’s volume ratio vs. mother’s volume It was also legitimate to ask whether the

average daughter/mother volume ratio ai of a cell i ∈ Lg and the mean volume v j of its

mother j ∈Lg ′ were correlated. However, the coefficients of determination R2 computed

in the same 38 groups as above ranged in [1.9e-4, 0.43], indicating no linear relationship.

Sisters’ surface ratios; Daughter’s surface ratio vs. mother’s surface Finally, the same

tests were performed for surface area features, yielding similar negative results. All rela-

tionships are summarized in Table 2.1 and the histogram of all the coefficients of determi-

nation evaluated is shown on Fig. 2.11.

Overall, given the weak values of R2 obtained for the above six relationships of individual

features in the different cell groups (R2 was greater than 0.6 in only 20 cases out of 198

investigated pairs of distributions), we adopted the viewpoint that the various random

variables were independent between and within cell groups. Although some of these cor-

relation values may be ascribed to underlying deterministic factors responsible for cell-to-

cell variability [193], our goal in the present work is to find parameters that can summarize

relationships between random variables, hence the poor statistical significance of the lin-

ear regression test led us to a global assumption of independence. The following section

examines the relations between probability laws in the different cell groups and how they

are combined in the cell lineage.

2.5 Multi-level probabilistic model

In this section we use the parametrized description of the distributions of individual

cell features obtained for each cell group in the preceding section and their combination

in the cell lineage. The individual cell features considered are the life length, the mitosis

time, the volume and the surface area. The resulting probabilistic model predicts accu-

rately the final distribution of individual cell features comparatively to inter-individual dif-
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daughter
i ∈Lg

mother
j ∈Lg ′

sister
i1 ∈Lg

sister
i2 ∈Lg

R2
min R2

max

#groups g
such
that R2 > 0.6

xi m j 3e-3 0.51 0 of 23

xi1 > xi2 0.095 0.77 7 of 23

ai1 > ai2 1.4e-3 0.88 0 of 38

ai v j 1.9e-4 0.43 5 of 38

bi1 > bi2 0.02 0.81 0 of 38

bi s j 1.4e-5 0.39 8 of 38

Table 2.1: Summary of the linear regression test for six pairs of features across 198 distri-
butions in 61 groups.

Figure 2.11: Histogram of the coefficient of determination R2 = ρ̃2
X ,Y for the various pairs

of distributions X and Y displayed in Table 2.1. Only 20 values rank above 0.6.

ferences among the cohort. It reproduces embryo-level dynamics within each specimen

of the cohort (number of cells, total cellular volume, total cellular surface area). Moreover

it provides a model of how intra-individual variability propagates across the cell lineage.
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Proliferation dynamics

To model the dynamics and evolution of the cell lineage, the relations between the

moment of division and the life length of each cell in the cell lineage have to be established.

Xn,k is the random variable describing the cell cycle length (time between two consecutive

mitoses) within the group L
n,k , and Mn,k is the random variable describing the mitosis

time in L
n,k . Based on these notations, we propose the following model, derived from the

analysis of the data:

Mn,k = Xn,k +Mn−1,k (2.15)

Mn,k ∼ N (µn,k
M ,σn,k

M ) (2.16)

Xn,k ∼ N (µn,k
X ,σn,k

X ) (2.17)

P (Xn,k | Mn−1,k ) = P (Xn,k ) (2.18)

where N represents a normal distribution of mean µ and variance σ2 [40]. Equation 2.18

shows that Xn,k and Mn−1,k are assumed to be independent from each other, P represents

the probability law governing Xn,k .

This model is instantiated independently in each branch of the cell lineage with the

following relation among mitosis times:

mi = m j +xi (2.19)

where i ∈ L
n,k and j ∈ L

n−1,k are the indices of a cell and its mother, mi is a realization

of Mn,k and represents the mitosis time of cell i , xi is a realization of Xn,k and represents

the life length of cell i , m j is a realization of Mn−1,k and represents the mitosis time of cell

j .

We can relate the parameters governing the different distributions:

Mn,k ∼ N
(
µn,k

M ,σn,k
M

)
(2.20)

µn,k
M =

n∑

r=n0,k+1

µr,k
X +µn0,k ,k

M (2.21)

(σn,k
M )2 =

n∑

r=n0,k+1

(σr,k
X )2 + (σn0,k ,k

M )2 (2.22)

where n0,k indicates the initial cycle at which the cells of type k are found. The variability
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of mitosis times, represented by the variance of the Gaussian distribution is the sum of the

variability of cycle lengths in each cell group along the lineage tree. Similarly, the mean

mitosis time is the sum of mean cell cycle lengths over the preceding cell cycles in the

lineage.

Proof. Let’s first establish a recurrence relation between the random variables:

Mn,k = Xn,k +Mn−1,k

= Xn,k +Xn−1,k +Mn−2,k

= Xn,k +Xn−1,k + ...+Xn0,k+1,k +Mn0,k ,k

The observation window of the developing embryo in our data is finite. The observation

begins at the 32 cells stage at the earliest, i.e. with cells found at the 6th cell cycle in each of

the four subpopulations. The observation ends at the 408 cell stage at the latest, i.e. with

cells found at the 10th cell cycle for the Mesomeres and the Macromeres, at the 9th cell

cycle for the Large Micromeres and at the 7th cell cycle for the Small Micromeres. Since the

recurrence cannot be traced back to the origin, we have to provide a boundary condition

for the initial distribution of mitosis time, Mn0,k ,k .

The first distribution of mitosis time Mn0,k ,k is a Gaussian distribution:

Mn0,k ,k ∼ N (µn0,k ,k
M ,σn0,k ,k

M ) (2.23)

where n0,k indicates the initial cycle at which the cells of type k are found.

The probability distribution of mitosis time, Mn,k , is obtained recursively from the pa-

rameters of the cycle length distribution and the fact that the density of two independent

random variables is the convolution of their densities. Since all the random variables are

independent, we obtain the following relations between the probability densities:

fMn,k = fXn,k ∗ fMn−1,k (2.24)

fMn,k = fXn,k ∗ fXn−1,k ∗ fMn−2,k (2.25)

fMn,k = fXn,k ∗ fXn−1,k ∗ ...∗ fX
n0,k+1,k

∗ fM
n0,k ,k

(2.26)

where ∗ denotes the convolution product and fRV denotes the probability density of a

random variable RV .

In the case of Gaussian distributions, the convolution of two distributions is another
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Gaussian whose mean and variance are the sums of their respective components. [32].

The probability density of a Gaussian distribution is f (x | µ,σ) = 1p
2πσ2

.exp(− (x−µ)2

2.σ2 ). We

obtain for two Gaussian distributions with parameters (µ1,σ1 and µ2,σ2):

f (x |µ1,σ1)∗ f (x |µ2,σ2) = f (x |µ1 +µ2,
√
σ2

1 +σ2
2) (2.27)

Each distribution of the cell cycle lengths are Gaussian distributions, ∀n,k, fXn,k = f (x |µn,k
X ,σn,k

X )

and fM
n0,k ,k

= f (x | µn0,k ,k
M ,σn0,k ,k

M ). Consequently, combining equation 2.26 with equa-

tion 2.27, we obtain:

fMn,k (x) = f (x |
n∑

r=n0,k+1

µr,k
X +µn0,k ,k

M ,

√√√√
n∑

r=n0,k+1

(σr,k
X )2 + (σn0,k ,k

M )2) (2.28)

This result guarantees that the knowledge of the distributions of cell cycle lengths in

each cell group is sufficient to characterize the distributions of mitosis time for each of

them.

Cell volume dynamics

The cell volume varies throughout cell proliferation. The variation of volume is de-

composed into a stochastic and a deterministic component. The stochastic component

concerns the evolution of the mean volume of the cells along the cell lineage and the deter-

ministic component serves at modulating the cell volume around its mean by contraction

and expansion throughout the cell cycle.

To model the first component, we use a random variable V n,k describing the mean

cell volume in the group L
n,k , and another, An,k , describing the daughter/mother mean

volume ratio in the same group. We propose the following model that relate the mean

volume and the daughter/mother ratio:

V n,k = An,kV n−1,k (2.29)

V n,k ∼ lnN (µn,k
V ,σn,k

V ) (2.30)

An,k ∼ lnN (µn,k
A ,σn,k

A ) (2.31)

P (An,k |V n−1,k ) = P (An,k ) (2.32)
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where lnN represents the log-normal distribution with parameters µ and σ, An,k being

log-normally distributed is equivalent to log(An,k ) being normally distributed with meanµ

and variance σ2 [131, 40]. Equation 2.32 shows that the random variables An,k and V n−1,k

are assumed to be independent, P is the probability law governing An,k .

This model is instantiated in each branch of the cell lineage with the following relation,

for a cell i ∈L
n,k with mother j ∈L

n−1,k :

v i = ai v j (2.33)

where ai represents the ratio of a cell mean volume and its mother mean volume, it is a

realization of the random variable An,k . v j and v i are realizations of V n,k and V n−1,k and

represent the mean volume of cell i and j respectively.

The volume of a cell is not constantly equal to its mean value during the cell cycle.

The deterministic function ωn,k to which we refer as the volume micro dynamic model

the variation of volume which occurs between two consecutive mitoses. This function

is defined for each cell group L
n,k and represents the expansion and contraction that a

cell volume undergoes during its cell cycle. Its domain is the interval [0,1] which is the

percentage of elapsed cell cycle (the function is equal to 0 outside this interval) and its

range is the interval [0.8,1.3] and it is a normalized function:
∫1

0 ωn,k = 1. Fig. 2.9 shows

the estimated shape of ωn,k for the different cell groups.

Using this function ωn,k and keeping the same notations as in the equation 2.33, the

volume vi is obtained at each time step t for a cell i ∈L
n,k with mother j ∈L

n−1,k :

vi (t ) = v iω
n,k (ui (t )) (2.34)

= ai v jω
n,k (ui (t )) (2.35)

where the function u transports the time t to values in the interval [0,1] which is the do-

main of ωn,k and describe the percentage of elapsed life length. u is defined for cell i as

ui (t ) = t−m j

mi−m j
if m j ≤ t ≤ mi and ui (t ) = 0 otherwise.



57

The parameters of the various probability laws can be related in the following way:

V n,k ∼ lnN
(
µn,k

V ,σn,k
V

)
(2.36)

µn,k
V =

n∑

r=n0,k+1

µr,k
A +µn0,k ,k

V (2.37)

(σn,k
V )2 =

n∑

r=n0,k+1

(σr,k
A )2 + (σn0,k ,k

V )2 (2.38)

where n0,k indicates the initial cycle at which the cells of type k are found. As for the mito-

sis times, the variability of the volume (σn,k
V )2 is the sum of the variabilities in the daugh-

ter/mother coefficients, (σr,k
A )2, along the lineage tree with the initial variability (σn0,k ,k

V )2.

Proof. Using the initial distribution and the parameters of the daughter/mother mean vol-

ume ratio µn,k
A ,σn,k

A at each subsequent cell cycle, the mean volume distribution is calcu-

lated with a recurrence relation and the property that the product of two independent

random variables log-normally distributed is log-normally distributed.

We have the recurrence:

V n,k = An,kV n−1,k (2.39)

= An,k An−1,kV n−2,k (2.40)

= An,k An−1,k ...An0,k+1,kV n0,k ,k (2.41)

we can take the logarithm:

log(V n,k ) = log(An,k )+ log(V n−1,k ) (2.42)

= log(An,k )+ log(An−1,k )+ log(V n−2,k ) (2.43)

= log(An,k )+ log(An−1,k )+ ...+ log(An0,k+1,k )+ log(V n0,k ,k ) (2.44)

The last equation can be re-written:

log(V n,k ) =
n∑

r=n0,k+1

log(Ar,k )+ log(V n0,k ,k ) (2.45)

where ∀n,k, log(An,k ) ∼ N (µn,k
A ,σn,k

A ) and ∀n,k, log(V n,k ) ∼ N (µn,k
V ,σn,k

V ).

All the random variables are independent. As already stated in equation 2.27, the sum

of two independent random variables governed by a Gaussian distribution is a Gaussian
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Mean volume Mean surface area

V n,k ∼ lnN (µn,k
V ,σn,k

V ) ←→ Sn,k ∼ l nN (µn,k
S ,σn,k

S )

Mother/daughter volume ratio Mother/daughter surface ratio

An,k ∼ lnN (µn,k
A ,σn,k

A ) ←→ Bn,k ∼ lnN (µn,k
B ,σn,k

B )

Volume micro dynamic Surface area micro dynamic

ωn,k ←→ φn,k

Table 2.2: Identification between variables describing cell volume and cell surface area in
any cell group L

n,k

distribution whose parameters are the sum of the parameters of the initial distributions.

Therefore we obtain:

log(V n,k ) ∼ N (µn,k
V ,σn,k

V ) (2.46)

i .e. V n,k ∼ l nN (µn,k
V ,σn,k

V ) (2.47)

µn,k
V =

n∑

r=n0,k+1

µr,k
A + (µn0,k ,k

V ) (2.48)

(σn,k
V )2 =

n∑

r=n0,k+1

(σr,k
A )2 + (σn0,k ,k

V )2 (2.49)

Cell surface area dynamics

Cell surface areas and cell volumes are modeled in the same way, identifications be-

tween the quantities involved in their model are summarized in the table 2.2:

Model summary

The description of the model is summarized in tables 3.1 and 3.2. Table 3.1 describes

the relations between the random variables at the level of the cell groups and table 3.2

describe how the model is instantiated in each branch of the cell lineage tree.

A cell lineage is computed with this model by beginning with the 32 cells stage (16 Mes,

8 Mac, 4 LMic, and 4 SMic), using the fact that each cell divide into two and the relations

described in table 3.2 to generate the microscopic features. Relying on the cell lineage we

can compute macroscopic dynamics in each morphogenetic field, namely the number of
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cells N k (t ), the cellular volume W k (t ), and the cellular surface area Z k (t ), as described

in section 2.3.1. These macroscopic features are themselves random variables. However,

we will not give an analytical expression of their probability distribution since they are

difficultly tractable and will be simulated, leading to a numerical representation of their

properties.

Parameters are estimated from digital embryos as described in section 2.4.1. We recall

that it requires a first spatial and temporal rescaling over the cohort to overcome a first

level of inter individual variability (section 2.3.1).
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Cell group L
n,k

Cardinality |L n,k | = 2∗|L n−1,k | = 2n−n0,k |L n0,k ,k |

Division time Mn,k = Xn,k +Mn−1,k =
(

n∑
r=n0,k+1

Xr,k

)
+Mn0,k

Mn,k ∼ N (µn,k
M ,σn,k

M )

Xn,k ∼ N (µn,k
X ,σn,k

X )

P (Xn,k | Mn−1,k ) = P (Xn,k )

µn,k
M =∑n

r=n0,k+1
µr,k

X +µn0,k ,k
M

(σn,k
M )2 =∑n

r=n0,k+1
(σr,k

X )2 + (σn0,k ,k
M )2

Mean volume V n,k = An,kV n−1,k =
(

n∏
r=n0,k+1

Ar,k

)
V n0,k ,k

V n,k ∼ lnN (µn,k
V ,σn,k

V )

An,k ∼ lnN (µn,k
A ,σn,k

A )

P (An,k |V n,k ) = P (An,k )

µn,k
V =∑n

r=n0,k+1
µr,k

A +µn0,k ,k
V

(σn,k
V )2 =∑n

r=n0,k+1
(σr,k

A )2 + (σn0,k ,k
V )2

Mean surface area Sn,k = Bn,k S
n−1,k =

(
n∏

r=n0,k+1
Br,k

)
Sn0,k ,k

Sn,k ∼ lnN (µn,k
S ,σn,k

S )

Bn,k ∼ lnN (µn,k
B ,σn,k

B )

P (Bn,k | S
n,k

) = P (Bn,k )

µn,k
S =∑n

r=n0,k+1
µr,k

B +µn0,k ,k
S

(σn,k
S )2 =∑n

r=n0,k+1
(σr,k

B )2 + (σn0,k ,k
S )2

Table 2.3: Summary of the relations between the different random variables in the model -
the definitions of the different notations can be found in the previous sections 2.5, 2.5, 2.5
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Cells j ∈L
n−1,k and i ∈L

n,k

i is one of the two daughters of j

Division time mi = xi +m j

xi is a realization of Xn,k

m j is a realization of Mn−1,k

Volume vi (t ) = ai .v j .ωn,k (ui (t ))

ai is a realization of An,k

v j is a realization of V n−1,k

ωn,k is the deterministic volume micro dynamic

ui (t ) is the percentage of elapsed life length of cell i

Surface area si (t ) = bi .s j .φn,k (ui (t ))

bi is a realization of Bn,k

s j is a realization of S
n−1,k

φn,k is the deterministic surface area micro dynamic

ui (t ) is the percentage of elapsed life length of cell i

Table 2.4: Instantiation of the model independently in any branch of the cell lineage. The
stochastic components are highlighted in bold- the definitions of the different notations
can be found in the previous sections 2.5, 2.5, 2.5
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Model evaluation

To assess the significance of our model, we propose to measure the distance between

the empirical distribution (Mn,k , V n,k , S
n,k

) with the distribution predicted by the model.

For a cell cycle n, the parameters µn,k and σn,k of the distribution of individual cell

features can be predicted from the values of the parameters governing the distributions of

previous cell cycles with the following relationships.

For the moment of division:

Mn,k ∼ N
(
µn,k

M ,σn,k
M

)
(2.50)

µn,k
M =

n∑

r=n0,k+1

µr,k
X +µn0,k ,k

M (2.51)

(σn,k
M )2 =

n∑

r=n0,k+1

(σr,k
X )2 + (σn0,k ,k

M )2 (2.52)

for the volume:

V n,k ∼ lnN
(
µn,k

V ,σn,k
V

)
(2.53)

µn,k
V =

n∑

r=n0,k+1

µr,k
A +µn0,k ,k

V (2.54)

(σn,k
V )2 =

n∑

r=n0,k+1

(σr,k
A )2 + (σn0,k ,k

V )2 (2.55)

and for the surface area:

Sn,k ∼ lnN
(
µn,k

S ,σn,k
S

)
(2.56)

µn,k
S =

n∑

r=n0,k+1

µr,k
B +µn0,k ,k

S (2.57)

(σn,k
S )2 =

n∑

r=n0,k+1

(σr,k
B )2 + (σn0,k ,k

S )2 (2.58)

Since we measure both the statistics of Mn,k , V n,k , S
n,k

and Xn,k , An,k , Bn,k for all cell

groups L
n,k . We can compare the empirical statistics of Mn,k , V n,k , S

n,k
and the values of

the parameters predicted by the model.

A good measure of distance between probability distributions is the symmetrized Kullback-

Leibler divergence [10, 180, 159]. The Kullback-Leibler divergence between two probabil-
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ity distributions, having p and q as probability densities, is defined as:

K L(p||q) =
∫

x
p(x) log(

p(x)

q(x)
).d x (2.59)

The Kullback-Leibler divergence between two Gaussian distributions p(x|µp ,σ2
p ) and p(x|µq ,σ2

q )

is:

K L(p(x|µp ,σ2
p )||p(x|µq ,σ2

q )) = 1

2
.(2. log

σq

σp
+
σ2

p

σ2
q

+
(µq −µp )2

σ2
q

−1) (2.60)

and can be symmetrized into:

D(p(x|µp ,σ2
p ), p(x|µq ,σ2

q )) = 1

2
.K L(p(x|µp ,σ2

p )||p(x|µq ,σ2
q ))+ 1

2
.K L(p(x|µq ,σ2

q )||p(x|µp ,σ2
p ))

(2.61)

= 1

4
.(
σ2

q

σ2
p

+
σ2

p

σ2
q

+ (µq −µp )2(
1

σ2
p

+ 1

σ2
q

)−2) (2.62)

For each specimen of the cohort we obtain the comparison between the empirical mea-

sures of coefficients Mnfin,k ,k , V nfin,k ,k , Snfin,k ,k , where nfin,k represents the last cell cycle

observed in the window of observation (we write nfin when the cell type is obvious). We

can estimate the distance between the model and the data. In the following, the exponent

emp stands for measured statistics and the exponent mod corresponds to the parameters

predicted by the model.

For the mitosis times:

D(M
emp
n,k , M mod

n,k ) = 1

4
.




(σn,k
M ,mod)2

(σn,k
M ,emp)2

+
(σn,k

M ,emp)2

(σn,k
M ,mod)2

+ (µn,k
M ,mod −µn,k

M ,emp)2(
1

(σn,k
M ,emp)2

+ 1

(σn,k
M ,mod)2

)−2




(2.63)

where µn,k
M ,mod =∑n

r=n0,k+1
µr,k

X ,emp+µn0,k ,k
M ,emp and (σn,k

M ,mod)2 =∑n
r=n0,k+1

(σr,k
X ,emp)2+(σn0,k ,k

M ,emp)2.

For the volume:

D(V
emp
n,k ,V

mod
n,k ) = 1

4
.




(σn,k
V ,mod)2

(σn,k
V ,emp)2

+
(σn,k

V ,emp)2

(σn,k
V ,mod)2

+ (µn,k
V ,mod −µn,k

V ,emp)2(
1

(σn,k
V ,emp)2

+ 1

(σn,k
V ,mod)2

)−2




(2.64)

where µn,k
V ,mod =∑n

r=n0,k+1
µr,k

A,emp +µn0,k ,k
V ,emp and (σn,k

V ,mod)2 =∑n
r=n0,k+1

(σr,k
A,emp)2 + (σn0,k ,k

V ,emp)2.
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And for the surface area:

D(S
emp
n,k ,S

mod
n,k ) = 1

4
.




(σn,k
S,mod)2

(σn,k
S,emp)2

+
(σn,k

S,emp)2

(σn,k
S,mod)2

+ (µn,k
S,mod −µn,k

S,emp)2(
1

(σn,k
S,emp)2

+ 1

(σn,k
S,mod)2

)−2




(2.65)

where µn,k
S,mod =∑n

r=n0,k+1
µr,k

B ,emp +µn0,k ,k
S,emp and (σn,k

S,mod)2 =∑n
r=n0,k+1

(σr,k
B ,emp)2 + (σn0,k ,k

S,emp)2.

The measure of distance in itself is not easily interpretable because we don’t have a

benchmark for it. To assess relevant orders of magnitude, we compute the same distance

between the measures obtained in the various embryo of the cohort. For a specimen e of

the cohort, the distance between the model and the empirical distribution is computed

for the last observable cell cycle nfin,k . This quantity is normalized with the averaged inter

individual difference. We evaluate the normalized difference between the model and the

data for an embryo e with the function ev defined, for the mitosis times, as:

ev(M ,k) =
D(M

emp

nfin,k,e
, M mod

nfin,k,e
)

1
|E |−1

∑
l∈E ,l 6=e

D(M
emp

nfin,k,e
, M

emp

nfin,k,l
)

(2.66)

for the volumes:

ev(V ,k) =
D(V

emp

nfin,k,e ,V
mod
nfin,k,e )

1
|E |−1

∑
l∈E ,l 6=e

D(V
emp

nfin,k,e ,V
emp

nfin,k,l )
(2.67)

and for the surface areas:

ev(S,k) =
D(S

emp

nfin,k,e ,S
mod
nfin,k,e )

1
|E |−1

∑
l∈E ,l 6=e

D(S
emp

nfin,k,e ,S
emp

nfin,k,l )
(2.68)

These measure of differences between the model and the data are computed for each

morphogenetic field k, in each embryo such that nfin,k > n0,k . They are computed for

division times, volumes and surface areas. The results are grouped in the histogram on

Fig. 2.12. 36 predicted sets of parameters among 48 (75%) show a distance significantly

smaller than the reference distance (ev < 0.5), 10 predicted sets of parameters are in the

same order of magnitude than the reference distance (0.5 ≤ ev < 1.5), and 2 predicted sets

of parameters differ significantly from the empirical data; they correspond to the statistics

of volume and surface in the embryo 5 for the Mesomere (k = 1). As a conclusion, except

for these two "outlying" distributions, the model predicts accurately the dynamics of the
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Figure 2.12: Histogram of the score of the model for all morphogenetic field k such that
nfin,k > n0,k in each embryo for division times, volumes and surface areas, using the eval-
uation functions defined in equations 2.66, 2.67, 2.68

sea urchin development.

Simulation of artificial cell lineages with volume and surface area dynamics

300 realizations of the cell lineage were simulated in order to generate significant model

output. Matlab random number generator was used to simulate the realizations of ran-

dom variables. Macroscopic features were computed and compared to the empirical value

obtained for each specimen, as represented on figures 2.13 and 2.14.

Each embryo e of the cohort E has a specific window of observation. This window

determines the observed of cell groups L
n,k
e . n0,k denotes the initial cell cycle where cells

of type k are observable in a significant number and n f i n,k the last cell cycle where cells

of type k are observable in a significant number (we write n0 and n f i n when the cell type

k is obvious), as defined in the section about parameter estimation. The algorithm used

to generate the cell lineage is a straightforward implementation of the model described in

the section 2.5.

The finite range of observation of the cell lineage prevents to have access to the com-

plete cell cycle for the first and last generation, thus the volume (ωn,k ) and surface area

(φn,k ) micro dynamics cannot be estimated for these cycles. The shaded area on the right
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of the plot corresponding to the cell volume and the cell surface area represents the in-

complete cell cycles on figures 2.13 and 2.14.

Figure 2.13: Probabilistic modeling for each embryo of the cohort E A) D) G) in color num-
ber of cells in embryo 1,2,3 - in black and grey mean and standard deviation of 300 real-
izations of the model B) E) H) in color cellular volume in embryo 1,2,3 - in black and grey
mean and standard deviation of 300 realizations of the model C) F) I) in color cellular sur-
face in embryo 1,2,3 - in black and grey mean and standard deviation of 300 realizations
of the model - The shaded area on the right of B, C, H and I refers to incomplete cell cycles

2.5.1 Prototype

The probabilistic model provides an invariant structure relating individual cell features

with embryo level dynamics by using an intermediate coarse-grained level (cell groups

clustered by common cell type and generation). The same structure appears in each spec-

imen of the cohort. Sufficient statistics are identified for each cell group, providing a "sig-

nature" identifying each specimen of the cohort. To get a unique representation of the sea
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Figure 2.14: Fig. 2.13 continued J) M) in color number of cells in embryo 4,5 - in black and
grey mean and standard deviation of 300 realizations of the model K) N) in color cellular
volume in embryo 4,5 - in black and grey mean and standard deviation of 300 realizations
of the model L) O) in color cellular surface in embryo 4,5 - in black and grey mean and
standard deviation of 300 realizations of the model - The shaded area on the right of K, L,
N and O refers to incomplete cell cycles
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urchin blastula normal development, measures of each specimen have to be aggregated.

These aggregated measures associated to the identified invariant structure are meant to

provide a prototypical representation of the cohort. The aggregation procedure is based

on the geometrical concept of centroid of a set of points which generalizes the notion

of average in higher dimensional spaces. The mathematical framework of information

geometry is relevant here to deal with spaces of probability distributions needing to be

endowed with a relevant notion of distance [10, 180]. Bregman divergences generalize eu-

clidean distance and unify it to the statistical Kullback-Leibler divergence. In the follow-

ing we use the Kullback-Leibler divergence as the relevant notion of distance to compare

probability distribution.

Kullback-Leibler centroid

We give in this section the main formulas needed to compute the centroid of the cohort

of sea urchin. More refined mathematical developments can be found in [159].

The Kullback-Leibler centroid is defined as follow:

c = argmin
c∈S

1

n
.

n∑

i=1

K L(pi ||c)+K L(c||pi )

2
(2.69)

Therefore combining equation 2.60 and 2.71, we obtain:

c = argmin
c∈S

1

n

1

4

n∑

i=1

(
(2. log

σc

σi
+
σ2

i

σ2
c

+ (µc −µi )2

σ2
c

−1)+ (2. log
σi

σc
+
σ2

c

σ2
i

+ (µi −µc )2

σ2
i

−1)
)

which simplifies into

c = argmin
c∈S

1

n

1

4

n∑

i=1

(σ2
i

σ2
c

+
σ2

c

σ2
i

+ (µi −µc )2.(
1

σ2
c

+ 1

σ2
i

)−2
)

(2.70)

Prototype as a centroid in the relevant morphospace

The probabilistic model provides an invariant structure relating individual cell features

with embryo level dynamics by using an intermediate coarse-grained level (cell groups

clustered by common cell type and generation). The same structure appears in each spec-

imen of the cohort. Sufficient statistics are identified for each cell group, providing a "sig-

nature" identifying each specimen of the cohort. To get a unique representation of the sea

urchin blastula normal development, measures of each specimen have to be aggregated.
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These aggregated measures associated to the identified invariant structure are meant to

provide a prototypical representation of the cohort. The aggregation procedure is based

on the geometrical concept of centroid of a set of points which generalizes the notion

of average in higher dimensional spaces. The mathematical framework of information

geometry is relevant here to deal with spaces of probability distributions needing to be

endowed with a relevant notion of distance [10, 180]. Bregman divergences generalize eu-

clidean distance and unify it to the statistical Kullback-Leibler divergence. In the follow-

ing we use the Kullback-Leibler divergence as the relevant notion of distance to compare

probability distribution.

Kullback-Leibler centroid

We give in this section the main formulas needed to compute the centroid of the cohort

of sea urchin. More refined mathematical developments can be found in [159].

The Kullback-Leibler centroid is defined as follow:

c = argmin
c∈S

1

n
.

n∑

i=1

K L(pi ||c)+K L(c||pi )

2
(2.71)

Therefore combining equation 2.60 and 2.71, we obtain:

c = argmin
c∈S

1

n

1

4

n∑

i=1

(
(2. log

σc

σi
+
σ2

i

σ2
c

+ (µc −µi )2

σ2
c

−1)+(2. log
σi

σc
+
σ2

c

σ2
i

+ (µi −µc )2

σ2
i

−1)
)

(2.72)

which simplifies into

c = argmin
c∈S

1

n

1

4

n∑

i=1

(σ2
i

σ2
c

+
σ2

c

σ2
i

+ (µi −µc )2.(
1

σ2
c

+ 1

σ2
i

)−2
)

(2.73)

Prototype as a centroid in the relevant morphospace

The prototypical representation of the sea urchin blastula normal development is mod-

eled with the same structure as for each individual specimen. This structure is sum-

marized in section 2.5 and relates individual cell features with global dynamics through

statistics at the level of groups of cell. Using this multi-level probabilistic model, the pro-

totype is defined as a centroid in the relevant morphospace (the idea is schematized on

Fig. 2.15). Because the statistics at the level of cell groups are assumed to be either normal

or log-normally distributed, the relevant morphospace consists in the statistical manifold
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S defined for each random variable by the coordinates system (µ,σ2).

Figure 2.15: Schematic representation of the concept of prototype in the relevant mor-
phospace - the morphospace considered here is the statistical manifold S and the pro-
totype is the centroid of the cohort computed as a minimization problem described in
equation 2.74

The parameters of the distributions of individual cell features in each cell groups are

estimated as the centroid of the individual distributions found for each specimen of the

cohort.

Thus the parameters of the prototype (µp ,σp ) are obtained by solving the optimization

problem described in equation 2.73 over the cohort {(µe ,σe ) | e ∈ E }.

(µp ,σp ) = arg min
(µ,σ)∈R2

+

1

n

1

4

∑

e∈E

(σ2
e

σ2
+ σ2

σ2
e

+ (µe −µ)2.(
1

σ2
+ 1

σ2
e

)−2
)

(2.74)

To actually compute the coefficients used in the simulations, this minimization problem

is solved numerically with the estimated empirical parameters for each cell group Lg . The

results of the computation are shown on Fig. 2.16. The distributions of life length X and

mitosis time M within cell groups Lg are assumed to be normal distributions, the pro-

totypical coefficients are computed directly from the equation 2.74. The distributions of

volume V , surface area S, daughter/mother mean volume ratio A and mother/daughter
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mean surface area ratio B are assumed to be log-normal distributions, thus the prototyp-

ical coefficients are computed from the logarithm of these random variables which are

normally distributed.

Finally, the prototypical volume and surface area microdynamics ω(t ) and φ(t ) which

are deterministic functions are obtained for each cell group Lg by a simple average over

the cohort. They are represented in bold on the figures 2.9 and 2.10.

Simulation

300 realizations of prototypical cell lineages are produced and the macroscopic fea-

tures are compared with the empirical values as shown on Fig. 2.17.

Artificial cell lineages decorated with cellular volume and cellular surface can be pro-

vided for the prototypical model in the same way as for each embryo. We used as input

coefficients: µ̃X ,p , σ̃X ,p , µ̃A,p , σ̃A,p , µ̃ω, µ̃B ,p , σ̃B ,p , µ̃φ, n0 = 6 (the initial stage is the 32 cell

stage) and µ̃
n0,k
M ,p , σ̃n0,k

M ,p , µ̃n0,k
V ,p , σ̃n0,k

V ,p ,µ̃n0,k
S,p , σ̃n0,k

S,p . The simulation ends at the 408 cell stage

with n f i n,1 = n f i n,2 = 10 for the Mesomeres and the Macromeres, n f i n,3 = 9 for the Large

Micromeres and n f i n,4 = 7 for the Small Micromeres. Section 2.5.1 defines the notation

and the procedure of estimation of their value.

2.6 Biomechanical model description

The prototypical model of the cell lineage, with cell volume and cell surface area dy-

namics, is used as a basis for a biomechanical modeling of the sea urchin early embryoge-

nesis. This model is obtained with MecaGen modeling platform corresponding to Julien

Delile’s work under the supervision of René Doursat and Nadine Peyriéras ([55], [56]).

This model describes an organism as a set of interacting particles, representing the

cells. Cells are small and “sticky”, which is a main property of their physical behaviors.

The consequence is the disappearance of inertial forces [179] and low value of Reynolds

number. In this situation, applied forces produce a velocity and not an acceleration. The

displacement is proportional to the instantaneous force and inversely proportional to a

damping coefficient λ. For a multicellular system, the motion of each cell i with an inter-

acting neighborhood Ni of cells j is governed by the equation:

λi~vi =
∑

j∈Ni

~Fi j (2.75)
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Figure 2.16: Prototypical coefficients for each group of cell L
n,k A) Mean and standard

deviation of the life lengths B) Mean and standard deviation of the division times C) Mean
and standard deviation of the log of the volume D) Mean and standard deviation of the
log of the surface area E) Mean and standard deviation of the log of the daughter/mother
volume ratio F) Mean and standard deviation of the log of the daughter/mother mean
surface ratio
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Figure 2.17: In each graph, one color corresponds to one embryo and the 300 realizations
of the prototypical probabilistic model are represented with mean (black) and standard
deviation (grey). All curves are represented as a function of developmental time A) num-
ber of cells B) cellular volume C) cellular surface - for B and C, shared areas on the right
correspond to the end of the window of observation and therefore to incomplete cell cy-
cles

where ~Fi j is the interaction force exerted by cell j over cell i .

Each particle correspond to a cell, each of them having a certain shape. This shape is

modeled as a cylinder as shown on figure 2.18. Cell shape is defined by a lateral radius R, a

half-height R⊥ and a normal vector ~U . The cylinder axis ~U is oriented orthogonally to the

epithelial surface. Throughout this study, we assume that the depth of the tissue remain

constant and identical for each cell as the embryo develops itself, thus R⊥
i = R⊥

0 for each

cell. And therefore, the relation between the tangential radius of each cell i and its current

volume Vi (t ) reads:

Ri (t ) =
√

Vi (t )

2πR⊥
0

(2.76)

The motion of each cell is determined by its interactions with its neighborhood. The

establishment of this neighborhood is performed in two steps, first a metrical assessment

of the neighborhood and then a topological criteria to filter results of the first step. This

two-step procedure, which is described in ([55], [56]) enable to compute for each cell i its

interacting neighborhood Ni .

Once the topological list of neighbors is determined, the surface orientation of the

monolayered sea urchin can be expressed at each cell location by averaging the outward

normal vectors of the n triangles formed by n topological neighbors (Fig 2.19).

The interaction force ~Fi j exerted by cell j over cell i leads the swarm of cells toward an
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Figure 2.18: Cells are represented by cylindrical particle. Each cell is defined by a lateral
radius R, a half-height R⊥ and a normal vector ~U . - Figure by Julien Delile

Figure 2.19: Cell axis determination procedure. The cell axis ~Ui (red arrow) is calculated
by averaging the 6 surrounding triangle outward normal vectors (light red arrows). In or-
der to define the surrounding triangles, each neighbor position is first projected on the
plane orthogonal to ~Ui (here, only p1 the projection of the neighbor a1 is displayed). Then
neighbors are sorted according to the angle α j formed by the vector (i , p j ) and an arbi-
trary vector belonging to the orthogonal plane (the light red and dashed line). Figure by
Julien Delile
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equilibrium state, it is the sum of two components:

– an attraction-repulsion interaction force ~F ∥
i j , which maintains the integrity of the

cell’s volume and controls both the stiffness and the adhesion of the interaction in

the direction of the surface plane; this force can be modulated via the stiffness and

adhesion coefficients, and

– a planarity conservation interaction force ~F⊥
i j , which maintains the planarity of a

monolayered epithelium; this force can be modulated via a planar rigidity coeffi-

cient.

Moreover, the damping coefficient λi , which plays here a role somewhat equivalent

to the mass mi in Newton’s Second Law, is proportional to the surface of the cell: λi =
λ0Si with Si = 2πRi (Ri +2R⊥

i ) as the cell shape is considered cylindrical. The equation of

motion used throughout the study will be:

~vi =
1

λ0Si

∑

j∈Ni

(
~F ∥

i j +~F⊥
i j

)
(2.77)

The attraction-repulsion interaction force ~F ∥
i j is a spring-like force derived from an

elastic potential. Its expression is given by the following system of equations

~F ∥
i j =





−wrep(ri j − r max
i j )2(ri j − r

eq
i j ).~ui j if ri j < r

eq
i j

−wadh(ri j − r max
i j )2(ri j − r

eq
i j ).~ui j if ri j ≥ r

eq
i j and ri j < r max

i j

~0 if ri j ≥ r max
i j

(2.78)

where wrep and wadh are a repulsion and an adhesion coefficient, r
eq
i j is an equilibrium

distance between two cells corresponding to the densest packing in the 2D plane, r max
i j is

the maximal distance under which cells can adhere, finally ri j corresponds to the distance

between the two cells. The magnitude of this force is plotted on figure 2.20 (a) with varying

values of wadh. Alternative possible models are shown on figure 2.20 (b).

The planarity conservation interaction force ensures that the spatial configuration of

the swarm of cells remain planar during the simulation. Between two neighboring cells,

i and j , this planar rigidity coefficient is proportional to the planar rigidity coefficient

kr i g , and to the dot product between the neighborhood vector (~X j − ~X j ) (~X j and ~X j are

the positions of i and j ) and the normalized sum of both neighbor normal vectors ~ni j =
~Ui+~U j∣∣~Ui+~U j

∣∣ . The force is oriented in the direction of ~ni j and the force complete expression

reads:
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(a) (b)

Figure 2.20: (a)Plot of the attraction-repulsion force ~F ∥ modulated with the variable val-
ues of wadh (b) Comparison of the attraction-repulsion force used here with alternative
classical attraction-repulsion forces. The equilibrium distance is r eq = r

eq
i j = ceq(Ri +R j

with Ri = 0.1 and R j = 0.15. The solid line is the attraction/repulsion potential ~F ∥
i j with

wadh = wrep = 500. The dashed line is a force derived from the Morse potential, its equa-
tion reads: 2Dke−k(r−r eq) −2Dke−2k(r−r eq) with D = 0.265 and k = 10. The dot-dashed line
is force derived from the Lennard-Jones potential, its equation reads: −24ǫ

σ (2( r
σ )−13−( r

σ )−7)
with ǫ= 0.117 and σ= 2−1/6r eq. The force parameters were selected in order that the equi-
librium distance and the maximum value of the three curves match approximately on the
plot. Figure by Julien Delile
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~F⊥
i j = krig

(
(~X j − ~Xi ).~ni j

)
~ni j

The notations are described on figure 2.21.

Figure 2.21: Schematic of the planar rigidity force between neighbor epithelial cells.
Here, cells i , j and k are represented in 2D, with their respective normal axes ~Ui (yel-
low arrow), ~U j (red arrow) and ~Uk (blue arrow). The planar rigidity forces exerted between
neighbor cells i and j , and between i and k are aligned colinearly with the shared nor-
mal vectors ~ni j (orange vector), and ~ni k respectively. Forces are displayed by the thicker
arrows. The intensity of the force is lesser between i and k because the relative position
vector ~ui k and ~ni k are nearly orthogonal. As a result of these forces, neighbor cells are al-
ways attracted back to the lateral domain of each cell and thus maintain the planarity of
the tissue. Figure by Julien Delile

Mitoses are triggered when the cell cycle is complete as computed with the prototypi-

cal probabilistic model. When that event occurs, a division axis ~Mm is randomly selected

in the local tangential plane of the tissue.

Similarly, cell volumes are computed with the prototypical probabilistic model. As

mentionned in section before, the apico-basal radius of a daughter cell remains equal to

the one of its mother R⊥
m = R⊥

d1 = R⊥
d2 = R⊥

0 . The daughter cell lateral radii are deduced

from their respective volume.
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2.7 Comparison to experimental data

This section describes the metric used to compare the simulation of the biomechan-

ical model embedding the prototypical probabilistic model in space. The metric enables

to compare the simulation to the empirical data-set with varying values of the free pa-

rameters such as the adhesion coefficient wadh. This approach validates the hypotheses

underlying the model.

Three metrics based on three different aspects of the topology of the embryo are de-

signed (Dn for the number of neighbors, Dc for the number of neighbors variation, and Db

for the inter-population borders). In addition, we also calculate four objective functions

characterizing some properties of simulated embryos only (Cs evaluates the cohesion of

the tissue, Ss and Ns the sphericity of the simulated embryo shapes, and Ps the planarity

of the epithelium). The evaluation of these comparisons is performed in section 2.7.4.

In the following, we will associate the letter s with the spatial simulations and e with

the digital reconstructions.

2.7.1 Metrics

Comparison protocol To compare a spatially simulated embryo with the cohort, we

used the three topological features: 1) the distribution of the number of neighbors 2) the

distribution of the rate of neighborhood change and 3) the distribution of the neighbors

shared at the border.

Topological features The topology of an embryo is well described by the network of cell-

cell contacts which can be used as an estimator of the shape of the embryo. At time t, the

vertices of the network are the nuclei of the cells, denoted by L (t ) (with the same notation

as in section 2.3.1). The edges of the network are the junctions between cells, denoted by

E (t ).

The neighborhood of a given cell i at time t is N
t

i =
{

j ∈L (t ) : (i , j ) ∈ E
t
}
. The number

of neighbors (degree) d t
i of this cell can be calculated with the cardinality of its neighbor-

hood:

d t
i = |N t

i |

The network is evolving through time. To get an idea of the dynamics that it undergoes,

we computed the rate of change of the neighborhood per unit of time, c t
i . We compared
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the neighborhood at time t and t +d t and made the sum of the number of lost cells and

gained cells. More formally it can be described as:

c t
i =

1

d t
(N t

i ∆N
t−d t

i ) = 1

d t
(N t

i ∪N
t−d t

i ) \ (N t
i ∩N

t−d t
i )

were ∆ represents the symmetrical difference between two sets.

The embryos are composed of different subpopulations k that have already been pre-

sented above, in section 2.3.1. The topological network of cellular contacts allows to define

a notion of boundary between them, it will be the set of cells of a given type that share a

contact with the cells of another type. Formally, the border of the cell of type k1 with the

cell of type k2 is: B
t
k1→k2

=
{
i ∈L

k1 (t ) : ∃ j ∈N
t

i , such that j ∈L
k2 (t )

}
. With this defini-

tion of the border, the number of contacts of a given cell i (type k1) shared at the border

B
t
k1→k2

can be written:

bt
i (k1 → k2) = |

{
j ∈N

t
i : type( j ) = k2

}
|

Distributions of topological features in the groups of cells We would like to compare

embryos based on these topological features. We have shown that it is impossible to com-

pare developing embryos at the level of the individual cell because of an inherent vari-

ability in the cellular behaviors. We chose to compare these features at the level of the

subpopulations of cells to be coherent with the models whose parameters are defined at

this resolution. We therefore focused our attention on the distribution of topological fea-

tures in the groups of cells.

At a given time t, for a subpopulation k, we can define the distribution of the number

of neighbors using its normalized histogram hd ,k (t ). Since the number of neighbors of a

cell is a discrete quantity, we defined naturally the bins as being the number of neighbors.

Namely for a bin n ∈N, we compute the frequencies of occurrence as:

p t
d ,k (n) = 1

|L k (t )|
.|
{

i ∈L
k (t ) : di (t ) = n

}
|

and the complete histogram is the vector, hd ,k (t ) = (p t
d ,k (1), p t

d ,k (2), ..., p t
d ,k (N )), N be-

ing the maximum number of neighbors observed. The histogram is normalized: ΣN
k=1p t

d ,k (k) =
1, it can be viewed as a discrete probability density.

In the same manner we computed a normalized histogram for the rate of change of

the neighborhood per unit of time ht
c,g . To link the bins with interpretable biological
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quantity, we considered as a base unit one change in the neighborhood in 4 minutes

(equal to rate of change of 0.25 per minute). The histogram hc,k (t ) is defined on the set

X = ([0,0.25], ]0.25,0.5], ..., ]C − 0.25,C ]), with C being the maximum value observed for

the rate of change in the neighborhood. The frequencies of occurrence for a bin x ∈ X can

be calculated with the following formula:

p t
c,k (n) = 1

|L k (t )|∗0.25
.|
{

i ∈L
k (t ) : c t

i ∈ x
}
|

the complete histogram being the vector hc,k (t ) = (p t
c,g (0), p t

c,g (1), ..., p t
c,g (C )), withΣ

C
k=0p t

c,g (k)∗0.25 =
1. The histogram can be considered as a discretized continuous probability density.

For the boundaries, we considered all the possible cases of contact between cells. There

are four cell populations, SMic, LMic, Mac and Mes, which gives us 12 boundaries (con-

sidered asymmetrically): (SMic → LMic,SMic → Mac, ...,Mac → Mes,Mes → Mac). For

each of them (symbolized as g → l ), we computed the normalized histogram of the shared

number of contacts at the border B
t
g→l , ht

b,g→l . As for the number of neighbors, natural

bins are formed by the integers. The frequency of occurrence of a bin n ∈N is :

p t
b,g→l (n) = 1

|Bt
g→l

|
.|
{

i ∈B
t
g→l : bt

i ,g→l = n
}
|

the complete histogram is the vector hb,g→l (t ) = (p t
b,g→l (1), p t

b,g→l (2), ..., p t
b,g→l (S)), with

S with the maximum number of neighbors shared at a border. The histogram is normal-

ized Σ
S
k=1p t

b,g→l (k) = 1 and can be considered as a density distribution.

Measures of similarity To measure the similarity of two histograms we chose to com-

pute the Matusita distance which is related to the cosine of the angle between the two his-

tograms and varies between 0 (identical) to 1 (opposite). First we define the Bhattacharyya

coefficient (Bh) between two histograms p and q having the same set of bins X.

Bh(p, q) =Σx∈X

√
p(x)

√
q(x) = cos(θ)

where θ is the angle between the vectors (
√

p(1),
√

p(2), ...,
√

p(N )) and (
√

q(1),
√

q(2), ...,
√

q(N )),

equal to 1 when the distributions are identical. This coefficient is defined for two continu-

ous density distribution as Bh(p, q) =
∫√

p(x)
√

q(x)d x. The Matusita distance is defined

as Mat(p, q) =
∫

(
√

p(x)−
√

q(x))2d x, the two quantities are related by the relationship:

Mat(p, q) = 2∗ (1−Bh(p, q)). In the following, we will use the discretized version of this
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distance defined for discrete histograms (p(1), p(2), ..., p(N )), (q(1), q(2), ..., q(N )):

d(p, q) = 1

2
Σx∈X ((

√
p(k)−

√
q(k))2 ∗db)

where db is the size of the bin x. This distance is equal to zero if the two distributions

are identical and equal to one when they are opposite, it is applicable to any kind of dis-

tribution and even if any bin is empty (which is a reason of preferring this measure to the

chi-squared statistics).

Histogram resampling to calculate similarities As stated previously the first step of the

comparison between the embryo and the spatial simulation consists in comparing the

distribution of the features at different time steps. An issue is that the digital embryos

have all their own time sampling, ranging from 2min per time step to 5min. To overcome

this problem, we decided to use a common time sampling for all the embryos and for the

spatial simulation. We used a time interval ranging from 240 min post fertilization to 702

min, with a sample every 3 min. We interpolated the value of the histograms used for the

comparison at each time point of this time interval.

Given a simulated embryo s:
for each specimen ei of the cohort do

for each subpopulation (k), or ordered couple of subpopulation (g → l ) do
for each time t of the common time interval do

compute the three distances
d(ht

d ,k,ei
,ht

d ,k,s), d(ht
c,k,ei

,ht
c,k,s),d(ht

b,g→l ,ei
,ht

b,g→l ,s);

end

average over the entire time interval for each distance: d d ,k,e , d c,k,e , d b,g→l ,e ;
end

average over all the subpopulations: d n,e ,d c,e ,d b,e ;
end

average over the cohort: Dn = d n , Dc = d c , Db = d b ;
Algorithm 1: Comparison protocol for the three topological metrics

With this procedure, we obtain a measure of similarity for each of the three topological

feature that was used to define a protocol of comparison as shown on the Algorithm 1.
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2.7.2 Objective functions

In addition to the three metrics introduced above, we measure intrinsic features of the

simulated embryos via objective functions. These functions are defined in the following

for a given time step. They are subsequently averaged over the entire time interval.

Tissue cohesion objective function Cs The tissue cohesion objective function, which

represents the spacing between neighbor cells. Neighbor cells i , j tend to maintain their

effective distance ri j close to their equilibrium distance r
eq
i j but they may detach from

each other depending on their biomechanical properties. The definition of Cs reads:

Cs =
1

|E |
∑

i∈L

∑

j∈Ni

∣∣∣ri j − r
eq
i j

∣∣∣

r
eq
i j

where E is the of edges in the network of cellular contacts, L the set of cells and for a

cell i , Ni is its neighborhood.

Sphericity objective function Ss and Ns An important criteria to evaluate the model is

the shape of the simulated embryos. We designed two functions, Ss and Ns for that pur-

pose. Ss is the ratio between standard deviation and the average of the set of distances

between the cell positions Xi and the embryo center X . The rationale is that this function

has a low value for a small standard deviation and a large average. Its value is null in the

case of a spherical embryo.

Ss =
σ

µ
where µ= 1

|L |
∑

i∈L

∣∣∣Xi −X
∣∣∣ and σ=

√
1

|L |
∑

i∈L

(
∣∣∣Xi −X

∣∣∣−µ)2

The second sphericity objective function Ns is similar to Ss and its rationale is that

in the case of a spherical embryo, the cell axes ~Ui are equal to their normalized relative

position vector ~Xi ,center = Xi−X∣∣∣Xi−X
∣∣∣
. The set of dot products between ~Ui and ~Xi ,center should

have a minimal standard deviation and an average value close to 1. The equation of the

function Ns reads:

Ns =
σ

µ
where µ= 1

|L |
∑

i∈L

1+ ~Ui ·~Xi ,center

2
and σ=

√√√√ 1

|L |
∑

i∈L

(
1+ ~Ui ·~Xi ,center

2
−µ)2
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Planarity objective function Ps For each cell, the planarity objective function Ps aims at

characterizing the unicity of the epithelium layer by measuring the ratio of cells belonging

to the surrounding apico-basal neighborhood. We split the set of neighbors Ni into two

complementing sets, one covering the lateral domain N
∥

i and the other the apical domain

N
⊥

i . They are defined as the following:

N
∥

i =
{

j ∈Ni :
~X j −~Xi∥∥~X j −~Xi

∥∥ · ~Ui < η

}

N
⊥

i =
{

j ∈Ni :
~X j −~Xi∥∥~X j −~Xi

∥∥ · ~Ui ≥ η

}

A threshold value η controls the repartition between the two sets. Here, we set η =
cos(π4 ). The planarity objective function is written:

Ps =
1

|L |
∑

i∈L

|N ⊥
i |

|Ni |

In the case of a mono-layered epithelium Ps value is 0 and its value increases as the

cells agglomerate in a 3D tissue.

2.7.3 Initial State

For the spatial simulation, an initial spatial state of the cells was needed in order to be-

gin the simulation at the 32 cells stage. We choose to use the measured initial state of one

of the five embryos of the cohort. This solution, although not optimal, was more satisfying

than an artificial 32 cells stage. We wanted to avoid a spatial averaging that would have

been without biological meaning.

2.7.4 Validation - Parameter space

The purpose of this exploration study is to determine the parameter sets which are

responsible for realistic spatial enfolding of the sea urchin embryo development. The cri-

teria of validation are the sphericity of the global embryo shape, the maintenance of the

monolayered epithelium and the similarity with the empirical degree, rate of change of

the neighborhood and the inter-subpopulation border shapes. This parameter space of

the simulation is 4D, comprising the planar rigidity coefficient krig, the gabriel criteria co-

efficient αgab and two specific adhesion coefficients controlling the attractive part of the
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relaxation force ~F ∥
i j : wadh,e between pairs of heterotypic cells and wadh,o between pairs of

homotypic cells. The other free parameters of the model are set at constant values (Table

2.5). The timestep ∆t between two simulated time step is 6 seconds.

Note concerning the force amplitude coefficients wadh,e, wadh,o, wrep and krig : these

coefficients are all divided by the damping coefficent λ0 in the master equation of motion.

Simulations are strictly equivalent if the ratio force amplitude coefficient over damping

remains constant.

Table 2.5: Range and cardinalities of the parameters explored in this study.

Min. Max. Cardinality

wadh,e 10 1000 20

wadh,o 10 1000 20

wrep 100 100 1

krig 6000 16000 11

αgab 0.9 1.3 0.02

λ0 3000 3000 1

cmax 2 2 1

Results of the exploration of the parameter space are shown on figure 1.3 D.



Chapter 3

Perspectives and open problems raised by

the probabilistic model of development

Abstract In this chapter we explore perspectives raised by the data-driven multi-level

probabilistic model developed in the previous chapter. We begin by characterizing the alge-

braic structure underlying the relations between random variables, leading to identyifing a

Monoid structure. This structure can form the basis of a dynamical system representation

of the model enabling to derive some properties such as stability of the dynamics or law of

evolution. We also use this model to study its relation to previous theoretical proposition in

developmental biology.

The data-driven multi-level probabilistic model obtained in the previous chapter can

be used to discuss several aspects of developmental processes. Among these aspects, we

will explore the ideas of robustness, developmental irreversibility, chreodes and epigenetic

landscape. The main goal of this chapter is to identify some interesting perspectives.

We will begin by characterizing this idea of developmental irreversibility that arise

from the structure of the model.

Let’s first recall the main characteristics of the multi-level probabilistic model obtained

in the previous section operating at the level of the group of cells L
n,k and their combi-

nation through the lineage :

85
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Cell group L
n,k

Cardinality |L n,k | = 2∗|L n−1,k | = 2n−n0,k |L n0,k ,k |

Division time Mn,k = Xn,k +Mn−1,k =
(

n∑
r=n0,k+1

Xr,k

)
+Mn0,k

Mn,k ∼ N (µn,k
M ,σn,k

M )

Xn,k ∼ N (µn,k
X ,σn,k

X )

P (Xn,k | Mn−1,k ) = P (Xn,k )

µn,k
M =∑n

r=n0,k+1
µr,k

X +µn0,k ,k
M

(σn,k
M )2 =∑n

r=n0,k+1
(σr,k

X )2 + (σn0,k ,k
M )2

Mean volume V n,k = An,kV n−1,k =
(

n∏
r=n0,k+1

Ar,k

)
V n0,k ,k

V n,k ∼ lnN (µn,k
V ,σn,k

V )

An,k ∼ lnN (µn,k
A ,σn,k

A )

P (An,k |V n,k ) = P (An,k )

µn,k
V =∑n

r=n0,k+1
µr,k

A +µn0,k ,k
V

(σn,k
V )2 =∑n

r=n0,k+1
(σr,k

A )2 + (σn0,k ,k
V )2

Mean surface area Sn,k = Bn,k S
n−1,k =

(
n∏

r=n0,k+1
Br,k

)
Sn0,k ,k

Sn,k ∼ lnN (µn,k
S ,σn,k

S )

Bn,k ∼ lnN (µn,k
B ,σn,k

B )

P (Bn,k | S
n,k

) = P (Bn,k )

µn,k
S =∑n

r=n0,k+1
µr,k

B +µn0,k ,k
S

(σn,k
S )2 =∑n

r=n0,k+1
(σr,k

B )2 + (σn0,k ,k
S )2

Table 3.1: Summary of the relations between the different random variables in the model -
the definitions of the different notations can be found in the previous sections 2.5, 2.5, 2.5
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Cells j ∈L
n−1,k and i ∈L

n,k

i is one of the two daughters of j

Division time mi = xi +m j

xi is a realization of Xn,k

m j is a realization of Mn−1,k

Volume vi (t ) = ai .v j .ωn,k (ui (t ))

ai is a realization of An,k

v j is a realization of V n−1,k

ωn,k is the deterministic volume micro dynamic

ui (t ) is the percentage of elapsed life length of cell i

Surface area si (t ) = bi .s j .φn,k (ui (t ))

bi is a realization of Bn,k

s j is a realization of S
n−1,k

φn,k is the deterministic surface area micro dynamic

ui (t ) is the percentage of elapsed life length of cell i

Table 3.2: Instantiation of the model independently in any branch of the cell lineage. The
stochastic components are highlighted in bold- the definitions of the different notations
can be found in the previous sections 2.5, 2.5, 2.5
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3.1 The probabilistic model implies a monoid structure

3.1.1 Monoid Structure

It is interesting to look at the algebraic structure underlying the successive addition,

or multiplication, of independent variables, either for the relation: Mn,k = Xn,k +Mn−1,k

or for the relations V n,k = An,k .V n−1,k and Sn,k = Bn,k .Sn−1,k , which are equivalently de-

scribed as addition of independent variables as lnV n,k = ln An,k + lnV n−1,k and lnSn,k =
lnBn,k + lnSn−1,k . The basic property of a sum of independent random variables is that

their probability laws are convolved. This property is particularly useful in the case of

gaussian distributions because the convolution of two gaussian distributions is a gaussian

distribution. Since all the probability considered here are gaussian distributiion (for the

ln version of the volume and surface area), we obtain a monoid structure for the random

variables equipped with the addition.

Sum of independent gaussian random variable It can be shown that the set of gaus-

sian distributions with the convolution product forms a Monoid. The neutral element is

N (0,0), the convolution of a gaussian distribution gives a gaussian distribution (stabil-

ity). If gaussian distribution has a strictly positive standard deviation, then it cannot be

inversed. The evolution of the distribution of mitosis can only be toward more desynchro-

nization and thus disorganization. The development can be seen as the monoid action on

the group of cells. In terms of symmetry, it can be said that the symmetry identified with

the exchangeability principle are conserved by the monoid action.

Proof. Let’s denote S the set of gaussian distribution and ∗ the convolution product.

(S ,∗) is a monoid if the operation ∗ is stable, associate and has an identity element.

stability For two gaussian distributions with parameters ((µ1,σ1), (µ2,σ2)), we have f (x|µ1,σ1)∗
f (x|µ2,σ2) = f (x|µ1 +µ2,

√
σ2

1 +σ2
2). The convolution product of two gaussian distribu-

tions is a gaussian distribution.

∀(x, y) ∈S
2, x ∗ y ∈S

commutativity For two gaussian distributions with parameters ((µ1,σ1), (µ2,σ2)), we have
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f (x|µ1,σ1)∗ f (x|µ2,σ2) = f (x|µ1 +µ2,
√
σ2

1 +σ2
2)

= f (x|µ2 +µ1,
√

σ2
2 +σ2

1)

= f (x|µ2,σ2)∗ f (x|µ1,σ1)

Therefore, ∀x, y ∈S
2, x ∗ y = y ∗x.

associativity For three gaussian distributions with parameters ((µ1,σ1), (µ2,σ2), (µ3,σ3)),

we have:

( f (x|µ1,σ1)∗ f (x|µ2,σ2))∗ f (x|µ3,σ3) = f (x|µ1 +µ2,
√
σ2

1 +σ2
2)∗ f (x|µ3,σ3)

= f (x|(µ1 +µ2)+µ3,
√

(σ2
1 +σ2

2)+σ2
3)

= f (x|µ1 + (µ2 +µ3),
√
σ2

1 + (σ2
2 +σ2

3))

= f (x|µ1,σ1)∗ f (x|µ2 +µ3,
√
σ2

2 +σ2
3)

= f (x|µ1,σ1)∗ ( f (x|µ2,σ2)∗ f (x|µ3,σ3))

The convolution product is an associative operation on the set of gaussian distribution S .

identity element An element e ∈ S is an identity element if ∀x ∈ S ,e ∗ x = x ∗ e = x.

∗ is commutative, thus we need to find e with parameters (µe ,σe ) ∈ R
2 such that ∀x ∈ S

with parameters (µ,σ) ∈R
2, f (x|µe ,σe )∗ f (x|µ,σ) = f (x|µe +µ,

√
σ2

e +σ2) = f (x|µ,σ). The

solution is a gaussian distribution with parameters µe = 0,σe = 0. This element is the Dirac

delta function and is denoted by δ.

Given the properties of the convolution product on the set of gaussian distributions,

(S ,∗) is said to form a monoid.

A corollary of this result is that the tendency towards more desynchronization is irre-

versible. Indeed, the successive convolutions of gaussian distributions necessary lead to

a gaussian distribution with a greater variance. This operation is not invertible (except for

gaussian distribution with null variance).

In biological terms, it means that the rounds of division are less and less synchro-

nized throughout development. Similarly the dispersion of the volume and surface area
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increases with time, even if their mean values are decreasing. This irreversibility seems to

underlie the process of cell differentiation. As written in Davidson et al. [53]

the fundamental feature of developmental transcriptional systems in higher (bi-

laterian) animals is that it always moves inexorably forward, never reversing di-

rection

Here, it is the dispersion of the morphological features that goes inexorably toward being

more spread.

However, this result rely on the fact that the random variables defined in each groups

of cells are supposed independent of each other. It is possible to conceive mechanisms

that would enable cells to control dispersion while proliferating. Regulation of the cell cy-

cle and other morphological features are required to avoid going inexorably toward more

disorganization.

3.1.2 Formalization as a dynamical system

This underlying algebraic structure as a monoid allows to describe the development

as a dynamical system. To define this system (following the definition on wikipedia) it is

necessary to have a tuple (T, M ,ψ) where T is a monoid, M is a set and ψ is a function:

ψ : U ⊂ T ×M → M

and ψ has the properties of a flow:

– I (x) = {t ∈ T : (t , x) ∈U }

– ψ(0, x) = x

– ψ(t ,ψ(s, x)) =ψ(t + s, x)

The structure of monoid here is given by the set of gaussian distribution together with

the convolution product and the set of M correspond to the set of groups of cells embed-

ded in the manifold defined by the coordinate system (µ,σ), which is the phase space of

the system. The function ψ is the evolution function, and an orbit/trajectory of the sys-

tem is the set
{
ψ(t , x) : t ∈ I (x)

}
and correspond to the development of one specimen in

the cohort.

However, the function ψ is unknown and can only be obtained empirically for now, i.e.

interpolated from the sequence of points for each developmental trajectories.

With a dynamical system formalism and a phase space, we can define a notion of struc-

tural stability and a notion of vector field in the phase space. The vector field in the phase
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space can be interpolated between the measured points and from that we can expect to

compute Lyapounov experiments or topological entropy that gives a measure of the com-

plexity of development. The structural stability could be investigated by characterizing

singularity points of the vector field and the periodic trajectories.

Fokker-Planck Equation One possibility for the analytic characterization of the func-

tion ψ is to characterize the evolution of probability distribution through time by way of

an equation. One candidate equation could be the Fokker-Planck equation, indeed

Brownian motion of a particle is described by a stochastic differential equation

d X t =µd t +σdWt , where the X t are particle positions in R
n . µ is the drift veloc-

ity, σ is an n ×n matrix and dWt represents an n-dimensional normal Wiener

process. The Fokker–Planck equation (also called forward Kolmogorov equa-

tion) describes the temporal evolution of the probability density p(X t ):

∂p

∂t
=−∇.(µ.p)+∇.(D∇p), where D = 1

2
σσT

If µ and D are constant, the Fokker–Planck equation reduces to a drift-diffusion

equation that can be solved analytically. The fundamental solutions are Gaus-

sian distributions which drift and widen with time. 1

The fundamental solutions of this equation can be fitted to the empirical gaussian dis-

tributions obtained in the sea urchin embryo. The use of this equation on our system

could be interpreted as the random diffusion of the cells in a morphological space with a

drift generated by cell differentiation.

3.1.3 Fluctuation theory and robustness

It could be interesting to characterize the robustness of the model by studying its be-

havior when submitted to small fluctutations. We know that after three cell cycles, the

probability density of a random variable f123 such as the division time is the result of the

convolution of probability densities of random variables such as the life length ( f1, f2, f3).

We have the equality

f123 = f1 ∗ f2 ∗ f3

1. "Brownian Motion in 2D and the Fokker-Planck Equation" from the Wol-
fram Demonstrations Project - http://demonstrations.wolfram.com/

BrownianMotionIn2DAndTheFokkerPlanckEquation/

http://demonstrations.wolfram.com/BrownianMotionIn2DAndTheFokkerPlanckEquation/
http://demonstrations.wolfram.com/BrownianMotionIn2DAndTheFokkerPlanckEquation/
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We would like to relate small deviation on the density distribution ∆ f1, ∆ f2, ∆ f3 with de-

viation on the final probability density ∆ f123. The result should indicate how the pertur-

bations at different stages of development affect the final result. It is likely that earlier

fluctuations are more amplified than late ones.

More formally, we would like to show a relation such that ∆ f123 = ∆ f1 ∗ f2 ∗ f3 + f1 ∗
∆ f2 ∗ f3 + f1 ∗ f2 ∗∆ f3 +2.(∆ f1 ∗∆ f2 ∗ f3 +∆ f1 ∗ f2 ∗∆ f3 + f1 ∗∆ f2 ∗∆ f3)+∆ f1 ∗∆ f2 ∗∆ f3

can be simplified into ∆ f123 =∆ f1∗ f2∗ f3+ f1∗∆ f2∗ f3+ f1∗ f2∗∆ f3 by considering only

small ∆.

However, to define these fluctuations, we would be interested to keep the same metric

that we have used to compare embryos and to define the prototype as a centroid. These

equalities would require to combine Kullback Leibler divergence (relative entropy) with a

convolution.

On this point, we can quote Oliver Johnson ([114] p.33):

Although we would like to prove results concerning the behaviour of relative

entropy on convolution, it proves difficult to do so directly, [...] Specifically the

logarithm term in the definition of entropy behaves in a way that is hard to con-

trol directly on convolution.

Therefore, even if the metric that we have used to define the prototypical probabilistic

model is highly efficient to compute a prototype in the statistical manifold it is less suited

for a perturbation theory in developmental biology.

3.2 Parameters evolution

3.2.1 Waddington’s epigenetic landscape

The multi-level probabilistic model obtained for each specimen of the cohort of sea

urchin can be fruitfully brought closer to the old idea of an epigenetic landscape during

development. Indeed, the highest unknown that stays after having formalized this model

is the following question "Why does the probability laws have such parameters values?".

The life length increases at each generation, the mean volume is divided, but not exactly

in half.

One possibility is that the value of these parameters is the result of dynamics of the un-

derlying genetic network that governs these characteristics and which may imply a certain

level of variability as well. In that case, the concept an epigenetic landscape is a relevant
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illustration of this idea, see figures 3.1 and 3.2. In our model, at each cell cycles, the val-

leys widen as the result of the increase in variability (the standard deviations are added).

This increase in variability may well result in differentiation of cells into subpopulations.

The idea of the cells being pushed forward into the valleys is also relevant since the model

present an additive behavior with no regulation.

Figure 3.1: Epigenetic landscape I. “The path followed by the ball, as if rolls towards
the spectator, corresponds to the developmental history of a particular part of the egg.”
(Waddington CW. The Strategy of the Genes. London, Allen and Unwin (1957), [215])

3.2.2 Kupiec’s ontophylogenesis

Finally this work can be brought closer to Kupiec theory of ontophylogenesis. Jean-

Jacques Kupiec claimed that the processes occurring during ontogenesis, i.e. during devel-

opment, could be considered as probabilistic ([128],[127]). The reproducibility of the de-

velopment coming from a principle analog to natural selection within the organism. The

results of our study don’t disprove this approach since individual cell features can indeed

be modeled with probability distribution and the parameters values of these probability

distributions may well arise from the interaction between the cells and their environment.

Overall, this probabilistic perspective on development sheds new light on the robust-

ness of development. The high reproducibility of development seems to emerge from

highly variable individual cell features. This perspective is at the opposite of the idea of

the execution of a finely tuned developmental program. Therefore, we may need a new

theoretical framework to understand development.
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Figure 3.2: Epigenetic landscape II. “The complex system of interactions underlying the
epigenetic landscape. The pegs in the ground represent genes, the strings leading from the
chemical tendencies that the genes produce. The modeling of the epigenetic landscape,
which slopes down from above one’s head towards the distance, is controlled by the pull
of these numerous guy-ropes which are ultimately anchored to the genes.” (Waddington
CW. The Strategy of the Genes. London, Allen and Unwin (1957), [215])



Conclusion

To conclude on this part we have shown the first example of a complete integrative

approach for the study of multi-scale dynamics during the sea urchin development. This

work aimed at characterizing intra- and inter-individual variability at the level of the in-

dividual cell. By studying the dynamics occurring in a cohort of 5 digital embryos, we

showed that an intermediate level of observation was required between reproducible embryo-

level dynamics and variable individual cell features. This coarse-grained level of obser-

vation served as a basis for the establishment of a data-driven multi-level probabilistic

model. This model was found to have an invariant structure among individuals of the

cohort. Taking advantage of the branching structure of the cell lineage, the value of pa-

rameters governing probability in the model were sufficient to identify uniquely specimen

and reproduce embryo-level dynamics. The invariance of the structure relating individual

cell features and embryo-level dynamics enabled to define a prototypical representation

of the cell lineage associated to individual cell features.

This data-driven prototypic representation of the cell lineage was then used as a basis

for a biomechanical modeling using the MecaGen platform. This model allowed to infer

the value of adherence parameters by systematic parameter exploration and fit to empiri-

cal data. Because of its data-driven nature, the prototype was able to free the biomechani-

cal model of a certain number of parameters governing the proliferation rates or the shape

of cells. The remaining free parameters were associated to the hypotheses underlying the

biomechanical model.

Finally, this data-driven multi-level probabilistic model sheds new light and opens

some perspective on theoretical conception of the development. Indeed, the traditional

view of development as a finely tuned process is weakened by the observed variability at

the individual cell level. The good adequacy of the empirical data with the probabilis-

tic description enables to suggest some theoretical hypothesis, such as the development

could rely on this variability at the individual cell level. This could be interpreted as an
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extension of the evolutionary process within the organism. Although empirical results are

also compatible with a more traditional epigenetic interpretation such as the one devel-

oped by Waddington by means of an epigenetic landscape. To sum up the content of this

part, there is an intrinsic variability at the individual cell level underlying cell differentia-

tion and this variability is involved in the reproducibility of embryo-level dynamics.



Part II

Characterizing diversity
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Introduction

We propose to study in this part of the dissertation the theoretical status of biological

variability and the relations of variability during development with darwinian evolution as

well as its relation to randomness.

In the first chapter, we introduce the question of the relations between randomness,

variability and diversity in biology. We review the mechanisms at the origin of variation,

how uncertainty is modeled in mathematics and physics and how hypothesis based model

can help to explore the range of possible at the price of approximations on other levels of

organization.

In the second chapter of this part, we present the experimental results obtained when

studying variable phenotypic expression and incomplete penetrance in the squintcz35

zebrafish mutant line. The results of this experiment show that the list of possible phe-

notypes is discrete, these phenotype are obtained in unpredictable proportions and the

variations in the list of possible phenotypes may be incomplete even if the parents are

homozygote mutants. These experimental results suggest a need for a clarification of the

different levels of variability in biology, this is the subject of the following chapter.

In the third chapter of this part we study the relations between variability during de-

velopment and evolution. Using a formal analogy with quantum mechanics, we pro-

pose a clarification of the various levels of variability; probability of obtaining a given

phenotype, uncertainty on the set of possible phenotypes for a given observable and un-

predictability at the level of the observable itself. Uncertainty on the set of observable is a

much stronger form of uncertainty than a probability of obtaining a given phenotype, it is

specific to the historical nature of biological objects and prevent to consider the space of

possible a priori. Surprisingly, we find a formal analogy between quantum entanglement

and Mendel’s idealized scheme of inheritance which we relate to biological organization.

In the fourth chapter of this part, we consider the relationships between variations in

individual development and observed diversity of phenotypes. Given the path-dependency
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and historical nature of development we propose to gather individual developments, nor-

mal and pathological, into an ontogenetic tree. This ontogenetic tree structure enables

to define a developmental proximity between phenotypes revealing the influence of de-

velopmental stages. By considering a large number of empirical descriptions of zebrafish

developments we show that the pharyngula stage has the highest number of diverging de-

velopmental paths, suggesting an empirical basis for its status of phylotypic stage. How-

ever, the data set used may include possible biases.



Chapter 4

Sources of biological diversity and

randomness

Abstract In this chapter, we review the various concepts of variability developed in biol-

ogy, from gene mutation to stochastic gene expression and epigenetic effects. We then turn

to mathematical and physical theories of randomness and models of uncertainty. Prob-

ability theory provides a framework to handle unpredictable events, but doesn’t provide a

definition for randomness. This theory is extended to capture specific aspects of quantum

mechanics. Characterizations of randomness are provided for chaotic systems and in er-

godic theory. To overcome the complexity of biological organisms, one possibility consists in

using modeling approaches describing some mechanisms and explore regions of the space

of possible. However, the multi-scale nature of dynamics occurring in organisms make those

models necessarily incomplete. We propose to use multi-scale prototypical model to ground

modeling approaches.

This chapter is an extended and translated version of [210]. The idea of this chapter

is to review the various mechanisms that can be sources of variability in biology, from

gene mutation, to epigenetic and stochastic effects. Once their main characteristics have

been exhibited, we then turn to mathematics and physics to see how unpredictable phe-

nomena have been formalized. However, we show that the different frameworks are het-

erogeneous. We then explore the possibility to use models in biology to describe space

of possible associated to some mechanisms. While reducing the generality of the state-

ments, these models may integrate several aspects of biological variability. However, they

are necessarily incomplete regarding the multi-scale and historical nature of organisms.

These obstacles may be overcome by the use of multi-scale prototype of biological organ-
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isms.

4.1 Sources of variability in biology

In this section we review the main mechanisms sources of variability. We begin with

the most established results before considering more recent ones on stochasticity in gene

expression.

4.1.1 Gene mutations

Permanent alteration of the DNA sequence constitutes the most famous source of vari-

ation in biology. Some mutations correspond to a punctual alteration of the nucleotide

sequence: they can lead to changes in the encoded protein by the mutated gene, or to

a complete absence of its expression. Other mutations correspond to a more significant

modification of the DNA, as a chromosome gain for example (long chain of nucleotides).

In any cases, if the mutations are not silent, they alter the considered organism. For exam-

ple, with the zebrafish Danio rerio, if the gene encoding the Oep protein, receptor of the

Nodal signaling pathway, the development fails: fishes become cyclops [169].

It is usually assumed that these mutations happen spontaneously, independently of

their fitness in a given environment. The question of the influence of the environment

on the variation of organism’s traits is associated to a debate between Jean-Baptiste de

Lamarck and Charles Darwin theories on evolution. For the first one, whose theory is the

"transformisme Lamarckien", variations in the environment induce variations in organ-

isms and these variations are oriented, with the internal efforts of the organism, toward

the goal of being adaptive. For example, the fact that food is more abundant in height

would have led giraffes to increase the length of their neck and their front legs while try-

ing to reach it 1. For Darwin, and in contrast to Lamarck, variations occur independently

of their fitness in the environment. Living beings are continuously varying. Less adapted

individuals will be disadvantaged with respect to others and thus reproducing in smaller

1. « Relativement aux habitudes, il est curieux d’en observer le produit dans la forme particulière et la
taille de la girafe (camelo-pardalis) : on sait que cet animal, le plus grand des mammifères, habite l’intérieur
de l’Afrique, et qu’il vit dans des lieux où la terre, presque toujours aride et sans herbage, l’oblige de brouter le
feuillage des arbres, et de s’efforcer continuellement d’y atteindre. Il est résulté de cette habitude, soutenue,
depuis longtemps, dans tous les individus de sa race, que ses jambes de devant sont devenues plus longues
que celles de derrière, et que son col s’est tellement allongé, que la girafe, sans se dresser sur les jambes de
derrière, élève sa tête et atteint à six mètres de hauteur (près de vingt pieds). » [129], p. 256.
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proportions. A clear separation between variability and fitness can be found in Darwin’s

theory.

Figure 4.1: Illustration of Luria Delbrück fluctuation test. Schematic trees represent cell
proliferation in an environment containing a virus. Red colonies survive the virus attack.
Mutations induced by the presence of virus, case (A), are present in similar proportions in
every tree. Spontaneous mutations enabling survival to virus attack, case (B), appear ran-
domly in the trees resulting in highly fluctuating size of colonies - Adapted from wikipedia

In the beginning of the 1940s, before the discovery of the DNA structure by Watson and

Crick, it had been observed that bacteria had the capacity to adapt and survive an attack of

bacterial virus. In 1943, Luria and Delbrück published a famous article demonstrating that

the capacity of Escherichia coli to acquire immunity appears with time, independently of

the presence of the virus [139]. This result was proved by measuring fluctuations on the

size of colonies surviving virus attacks and comparing these fluctuations to a theoretical

model. The theoretical model enables to differentiate between mutations induced by the

virus presence and spontaneous mutations. See figure 4.1 for a schematic explanation of

the model. Acquisition of immunity have been associated to genetic mutations. By prov-

ing that this acquisition occurs spontaneously, and thus independently of their fitness,
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their non Lamarckian nature was validated. Therefore, this result contributed to give to

genetic mutation the status of main source of diversity for the living [153], [151].

It has been shown since, that the mutation rate of some bacteria could be increased

in response to variations in the environment [24]. Some mechanisms have a direct action

on the rate at which the genome varies in time. This is the case of the SOS system in Es-

cherichia coli, or as a response to the stress induced by changes in the temperature of the

environment or changes in the amount of nutrient. These examples show that internal

variations depend on environmental variations. The environment has a direct influence

on the mutation rate. Mutations are however not directed towards a better fitness: this

phenomenon does not correspond to a movement back toward Lamarckism. The envi-

ronment can induce a more or less important capacity to vary, without reconsidering the

idea that these variations are independent of their fitness.

Genetic mutations are an important source of variation in biology. They form the basis

of many mathematical evolutionary theories, particularly in population genetics [140]. In

these theoretical frameworks, mutations are supposed to be spontaneous, independent of

each other and independent of their fitness. However, these assumptions carry at least two

presuppositions that can be discussed. The first one corresponds to the assumption of a

direct (linear) relation between a gene and a phenotypic trait; the second one corresponds

to the hypothesis of an independent variation between genes or phenotypic traits within

an organism and with respect to the environment, this is an assumption on the modularity

of variation 2. The organization of living beings, the coupling between several levels of

organization, the fact that the whole and the parts form a complex network of relations

where retroactions are numerous, and where relations with the environment modify the

internal space, are many reasons to suppose on one side that the linear relation between

a gene or a set of genes and a phenotypic trait is not necessarily unequivocal, and on the

other side that variation cannot be split up among the different parts of an organism. 3

2. Some models take into account interactions between genes in the formation of phenotypes with the
concept of epistasis, complicating the picture [174]. Conversely, some models take into account the effect
of mutations on several phenotypes [201]

3. Darwin’s definition of correlated variations is very meaningful here; "Correlated Variations - I mean by
this expression that the whole organization is so tied together during its growth and development, that when
slight variations in any one part occur, and are accumulated through natural selection, other parts become
modified." [49] - chapter 5
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4.1.2 Epigenetic and stochasticity

In parallel to the study of genetic mutations, works have been conducted on other

mechanisms sources of variation. It is the case for the phenomena grouped together un-

der the term "epigenetic", although associated concepts have evolved with time. More

recently study of stochasticity in single cell reveal new mechanisms. We will see here what

are the differences that these studies have contributed to bring to the established concep-

tions of biological variations.

It is difficult to give a unique definition of what is epigenetic because the phenomena

described with this word are numerous and its definition has evolved with scientific dis-

coveries. Historically, this term has been introduced by Conrad Waddington in the 1940s

to name all the mechanisms involved in the process of expressing the genotype into the

phenotype. As from the 1960s, following the discovery of the molecular mechanisms of the

lac operon by Jacob and Monod [112], the role previously attributed to epigenetic is cap-

tured by genetic through gene regulatory networks and the metaphor of the genetic pro-

gram. To transform a static code stored in the DNA into a phenotype, it wasn’t necessary

to invoke an external mechanism anymore; genes could act directly on each other during

the execution of the genetic program [152]. Starting from there, epigenetic has become the

study of the modulation of the genetic expression by way of chromatin modification (DNA

and its protein skeleton). One of the main mechanism is histone methylation. An history

of the concept of epigenetic can be found in [110]. The first study on histone methylation

is [9]. Histone methylation is a process leading to a change in chromatin spatial organi-

zation. Opening or closing of chromatin will allow or not transcription of certain genes.

These variations in the access to DNA don’t constitute a definite modification of the tran-

scription mechanism, but still have a certain stability in time. One of the main character-

istic of the epigenetic modifications of chromatin is their transmission across generation,

through mitoses and in certain conditions through meiosis, i.e. within an organism or

during sexual reproduction. This research area is very active and has been joined by the

study of various mechanisms that share an effect on the modulation of genetic expression.

Those mechanisms are for example the inactivation of the X chromosome in mammalian

development [162], the process by which one of the two copy of the X chromosome is in-

activated in female XX mammals during early embryogenesis; or the role of the maternal

proteome in the gamete, i.e. the set of all the proteins already present in the female gamete

before fertilization; or study on prion, a protein whose spatial folding is transmissible to

other prion protein [146].
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Epigenetic modification modify the gene expression level whereas DNA mutations al-

ter the structure of the proteins and hence the qualitative effect resulting from the gene ex-

pression. It can however be noticed that quantitative modification can lead to important

qualitative effect. For example, during embryonic development, a change in the timing

of expression period of a gene can imply an important effect on the final phenotype of an

organism 4 [154]. These effects are called developmental heterochronies and the observa-

tion of the developmental sequence at every level of organization is a widely used tool to

compare embryogenesis among species. Conceptually, epigenetic modifications are close

to DNA mutations, although there is a slight difference with respect to heredity, since the

first ones can be reversed, or more precisely are less stable in time, whereas the second

ones are considered as permanent [182].

Besides, recent results have demonstrated the existence of stochastic phenomena in

gene expression. In particular, the work of Michael Elowitz’s team has shown with time-

lapse visualization of the expression of two fluorescent probes with two different colors

associated to the same regulatory sequence, that the level of protein expression is variable

in time within a cell and occur in a stochastic manner as shown on figure 4.2. Using these

two different fluorescent probes, we can differentiate between the component of variabil-

ity associated to the expression of each coding region depending on the same regulatory

sequence, it is the so-called intrinsic noise. The common component of variability is asso-

ciated to environmental variation, the so-called extrinsic noise [65]. This stochastic gene

expression is called noise because it can be associated to random fluctuations but doesn’t

change qualitatively gene expression. One of the reason for the success of this approach

comes from the mathematics used to describe this experiment. The variability observed

can be characterized with the Fano Factor η2
tot defined as the ratio of the variance of the

measure over the mean: η2
tot ≡

σ2
x

〈x〉2 . ηtot is the noise in gene expression. It can be shown

that in the dual reporter experiment, the noise can be decomposed into an intrinsic part

associated to the decorrelated variations of the two genes within a cell, i.e. an intrinsic

source of noise within the process, η2
i nt , and into an extrinsic part associated to the corre-

lated variations of the two genes within a cell, i.e. a common external influence on the pro-

cess, η2
ext . The relation reads η2

tot = η2
i nt +η2

ext ([203], [65], [168]). These relations assume a

static environment and have to be changed to account for a fluctuating environment [98].

4. These temporal variations in the sequence of events during development can also take place at other,
more macroscopic, levels. It is the case of the maxillary bone between various groups of salamanders which
is morphologically highly different because of variations in the growth periods and morphogenesis periods.
These results are presented in [6]
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Figure 4.2: This figure is adapted from Elowitz et al. 2002 paper on stochastic gene ex-
pression [65]. A and B show the basic concept of the experiment: two genes having the
same regulatory sequence express two different flurorescent protein. In the case A, both
genes have the same expression pattern, in the case B, the two genes have differing gene
expression patterns. Figure C shows the result of an experimental measurement for this
experiment in a strain of Escherichia coli (RP22). The distribution of colors from green to
red proves the presence of stochastic gene expression in individual cells

Historically, previous studies had already pointed out variability in gene expression.

This the case of the 1957 article "Enzyme induction as a all-or-none phenomenon" ([160]).

However, they weren’t able to measure gene expression in time to prove a form of stochas-

ticity in the process.

Another work reports an experiment combining stochasticity with inheritance. The ar-

ticle shows that cells can inherit a stochastic switch. A population of yeast Saccharomyces

cerevisiae change their phenotype in a stochastic way between two semi stable epigenetic

states. This stochastic switch is correlated among related individual cells, indicating an

inheritance of epigenetic determinants of stochasticity [118].

It can be shown more generally that phenotypic variability in a clonal population of

cells can reflect noise in the transcriptome underlying the choice of fate between several

metastable states of the gene regulatory network [42], [138].

When considering multicellular organisms, this noise may have dramatic effects on

development. This is the case of a mutant line of the nematode Caenorhabditis elegans

whose capacity to form intestinal cell precursor is highly variable for genetically identi-

cal individual in the same environmental conditions. This variability can be explained by

the stochasticity of the gene expression and the amplification of small variation by a bi-

modal gene regulatory network [181]. A bimodal gene regulatory network is a network that
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has two stable states. The bimodal gene regulatory network is very sensitive to fluctua-

tions in gene expression. The small number of molecules and the possibility of degrading

RNA molecules enable these small variations. Amplified by highly non-linear responses

of some gene regulatory network, these small variations, considered as noise, can have

dramatic consequences on development and thus on organisms phenotypic traits and fit-

ness 5.

In addition to these stochastic phenomena during gene expression, we can consider

the stochastic events occurring during cell division. These events contribute to differenti-

ate cells from each other. The random distribution of the proteome during mitoses is the

most studied phenomenon [105]. In the same manner than for stochastic gene expres-

sion, if the number of molecules is small and the gene regulatory network is non linear,

the effects associated to variations related to cell division can be highly amplified and have

consequences on the whole organism.

The set of epigenetic phenomena, the stochastic effects during gene expression or dur-

ing cell division constitute an important source of variability for the living, different from

classical genetic mutations. Their status is also important to understand evolution, even

if they are less permanent than mutations [182]. In particular these variations will have a

higher effect if they occur early in development for multicellular organisms.

It is possible to consider with Jean-Jacques Kupiec that organisms are built around this

intrinsic variation and a principle of natural selection acting within the organism. This

is an extension of darwinian evolution to the formation of the individual in an "ontophy-

logenetic" process [127], [128]. It seems necessary to take into account the specific de-

velopment of every organism as an essential component of biological variation in order

to understand the exploration of possible forms during evolution. The specific develop-

ment of each organism will be the sequence of singular events which has come along the

constitution of an organism [135].

By looking at the mechanisms sources of variability, we notice two important aspects,

on one side these mechanisms involve the systemic structure of organisms, in the sense

that several processes coming from different mechanisms are mixed in an organism, and

on the other side they are involved in their ontogenesis, meaning that the sequence of

events occurring during development will be decisive for the constitution of an organism.

The processes described are heterogeneous. Can they all be assembled and qualified as

random? How should this randomness modeled? Can it be associated to forms that have

5. For a review on epigenetic phenomena during development, see [103]
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already been defined in physics? And more generally, what are the impacts of these aspects

of variability on models of morphogenesis ?

4.2 Randomness and its formalisms in mathematics and physics

4.2.1 Probability theory

The main problem when we try to model situations involving random events is the

problem of prediction. We would like to determine in advance the set of all possible re-

sults for a given experiment and the way these possible results can occur, the frequency

at which they appear for example. In mathematics, the idea of randomness first appeared

with the concept of probability. The probability concept is rooted in the work of Blaise

Pascal and was also developed in the "Logique de Port-Royal" 6 in the middle of the 17th

century. Pascal’s wager is one of the first example of a mathematical reasoning in a context

of uncertainty. In this wager, he computes the gain of believing in god, given a probability

that god exists, in order to justify to believe in god even if its existence cannot be proved

(the whole wage can be found in Pensées part III, §233). Mathematization of this concept

has taken some time before being considered as a true branch of mathematics. By enun-

ciating a small set of axioms in 1933, Kolmogorov contributed to set probability theory on

a firm ground [124]. See [197] for an historical perspective of the mathematical context

surrounding the enunciation of the axioms, for an historical account of the emergence

of probability see [91]. Axioms of probability theory give constraints on the way to com-

pute probabilities and hence on the tools enabling to measure randomness. They however

avoid to define randomness as such. Probabilities always have to be interpreted. Probabil-

ities are sometimes considered as deriving from imperfect knowledge of the experimenter

relative to his object of study; they are considered as subjective. Probabilities are some

other time considered as an objective property of the object; they are considered as ob-

jective. Additional epistemological interpretations of probabilities can be found between

these two extreme positions, see for example [84] for a philosophical review of the various

meanings of probability. Probabilities don’t tell us anything about randomness in itself

since the mathematical theory is compatible with these various interpretations.

Kolmogorov’s six axioms of probability are enunciated in the following way ([124],

6. The Port-Royal Logic is a very influential book, first published anonymously in 1662 in Paris, it is ac-
knowledged to Antoine Arnauld and Pierre Nicole. It has been a reference in language theory and logic until
the 19th century
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[197]). Let E denote a set, the set of elementary events, and F denote a set of subsets

of E , which are the random events:

1. F is a field of sets (it’s an algebra over E , i.e. it is closed under the intersection and

union of pairs of sets and under complements of individual sets)

2. F contains E

3. To each set A from F is assigned a nonnegative real number P (A). This number P (A)

is called the probability of the event A

4. The probability of the E is P (E) = 1

5. If A and B are disjoint, then P (A∪B) = P (A)+P (B)

6. If A1 ⊇ A2... is a decreasing sequence of events from F with∩∞
n=1 An =;, then limn→∞ P (An) =

0

The sixth axiom, also called axiom of continuity, is equivalent to countable additivity of P

when the first five axioms are given. It means that, for any infinite sequence of disjoints

sets A1, A2, ... in F , P satisfies the equality:

P (
∞⋃

i=1
Ai ) =

∞∑

i=1
P (Ai )

Concerning this sixth axiom, it is interesting to read its interpretation by Kolmogorov (quo-

tation translated in [197], [124]):

Since the new axiom is essential only for infinite fields of probability, it is hardly

possible to explain its empirical meaning ... In describing any actual observable

random process, we can obtain only finite fields of probability. Infinite fields

of probability occur only as idealized models of real random processes. This

understood, we limit ourselves arbitrarily to model that satisfy Axiom VI. So far

this limitation has been found expedient in the most diverse investigations

We understand here that this asymptotic axiom which is needed for the probability

calculus has no empirical counterpart. It is an infinity, useful to construct the space of

possible of probability theory. It may be interesting to compare it to other forms of infinity

used to construct spaces of possible in mathematics and physics [134].

Another way formalization of probability theory states that (Ω,F ,P ) is a measure space

with P (Ω) = 1. Formalizing probability theory as a special case of measure theory is the

major contribution made by Kolmogorov. Ω is the sample space, F is the space of events
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and P is the probability measure. F is aσ-algebra; i.e. closed under complement, union of

countably many sets and intersection of countably many sets. This is the model of events

at play. These rules are those of boolean logic on sets. This logic will constrain the way

phenomena can be represented through these probabilities. In particular, it is worth not-

ing that the closure by complement require to have a space of possibles a priori that gives

the complementary of any events. Moreover, the closure by union of countably many sets

requires to assume a modularity of the modeled events, that is to say that any two events

can be associated in any order without having any influence on each other. For more detail

and interpretations, see [93].

To illustrate these notions, we can describe the example of dice throwing. The set

of elementary equally likely events correspond to each face of a dice Ω = {1,2,3,4,5,6}.

If we consider the experiment consisting in throwing two times consecutively the dice,

then we may want to compute the probability that the dice have the same value. Let’s de-

note this event by A in F . All 36 possible sequences of two throws of dice correspond to

{{1,1}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,1}, {2,2}...}, they are all the possible variants that are

a priori possible as outcomes of the experimental conditions. All 6 sequences of identi-

cal consecutive throws corresponding to {{1,1}, {2,2}, {3,3}, {4,4}, {5,5}, {6,6}} are included

in the set A, therefore, in each of these 6 cases, event A has taken place. If all the se-

quences of two consecutive throws are considered equally likely, then the probability of A

is P (A) = 6
36 = 1

6 .

Studying the axioms shows clearly that probability theory is a framework to handle

random events, but doesn’t give any definition of randomness itself. The specific char-

acteristics of the space of possible, of the probability measure, of the space of events, all

depend on the modeled situation.

4.2.2 Randomness in algorithmic theories

We have to turn our attention to algorithmic theories of information to find attempts at

defining randomness in itself. In the 1960s, the problem of characterizing an infinite ran-

dom sequence of symbols was open. Kolmogorov proposed a concept of incompressibil-

ity for finite sequences of symbols; incompressible sequences are those which can not be

produced by a shorter program that the size of the sequence itself using a universal Turing

Machine. In 1966, the swedish mathematician Martin Löf proposed a definition of infinite

random sequence of symbols by considering all the sequences that possess all conceiv-

able statistical properties of randomness using algorithmic theory to formally define the
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notion of a test of randomness [142]. It is ultimately this definition, which is considered

the best definition of randomness in mathematics. It has been shown that under certain

conditions given by Chaitin, infinite random sequences are exactly those which have all

finite incompressible initial segments. This definition of randomness is widely accepted

as the fundamental characterization of the notion of a random sequence. It should be

noted however, that this definition is based on sets of infinite sequences and statistical

tests which are not computable, leaving therefore a large gap between this definition and

empirical results.

For example, the infinite binary sequence 0101010101010101... is not random since it

can be compressed as a repetition of 01. On the hand, we can consider a Chaitin Omega

number which is defined as the halting probability of a universal self-delimiting Turing

machine. It is a computable enumerable and (algorithmically) random number. The first

64 bits of a Chaitin Omega have been computed by Calude, Dinneen and Shu in [34]:

0000001000000100000110001000011010001111110010111011101000010000.

Some results bridge the gap between these abstract characterizations of randomness

and physical systems in asymptotic cases [78]. We will now focus on physical systems

presenting unpredictable behaviors.

4.2.3 Randomness in dynamical systems and ergodic theory

Randomness in dynamical systems The idea of randomness in physics cannot be ap-

proached without considering mathematical determinism as it appears in the study of dy-

namical systems and chaos theory which is its unpredictable counterpart. To understand

randomness in dynamical systems, we have to go back to the XIXth century. Pierre Si-

mon Laplace published A Philosophical Essay on Probabilities within which he developed

his views on determinism. In his view, the world is ruled by a set of causes and effects

relationships and only an incomplete knowledge about the state of the world at a given

moment could be an obstacle to a perfect knowledge of these relationships and hence to

a prediction of its futures states. This perspective is clearly expressed in the following fa-

mous sentence where he develops the idea of a demon with an infinite knowledge about

the world:

We may regard the present state of the universe as the effect of its past and the

cause of its future. An intellect which at a certain moment would know all forces

that set nature in motion, and all positions of all items of which nature is com-

posed, if this intellect were also vast enough to submit these data to analysis, it
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would embrace in a single formula the movements of the greatest bodies of the

universe and those of the tiniest atom; for such an intellect nothing would be

uncertain and the future just like the past would be present before its eyes.

This view is mathematically supported by the Cauchy-Lipschitz theorem, (also known as

the Picard–Lindelöf theorem). For a differential equation

∂y(t )

∂t
= f (t , y(t ))

with initial condition y(t0) = y0, if the function f is regular enough (lipschitz continuous)

with respect to y and continuous in t, then for some ǫ> 0, there is a unique solution on the

interval [t0 −ǫ, t0 +ǫ]. The proof for this theorem involve the use of a fixed point result.

However the works of Henri Poincaré in the late nineteenth century on the stability

of the solar system and the three-body problem have weakened this position and laid the

foundation to what would become chaos theory. In a seminal article Poincaré shows that

in some dynamical system, ruled by a set of non linear differential equation, a small un-

certainty on the initial conditions can lead to very large fluctuations on futur behavior

[178]. This contradicts Laplace’s view since for the latter, an approximate knowledge on

the initial conditions should result in an approximation of the same magnitude for the

knowledge on the evolution of the system. This means that perturbations could not have

an important effect on trajectories. Laplace, like his contemporaries, was confident in lin-

earization methods of differential equations [141]. Poincaré’s result is therefore very im-

portant because it shows that even if the phenomena we observe are very well defined, it

may be impossible to predict the evolution of the system. Perturbations that may seem ir-

relevant can actually impact the evolution of the system highly significantly. On this point,

it is interesting to quote Poincaré from his book Science et méthode, 1908 [177]:

A very small cause which escapes our notice determines a considerable effect

that we cannot fail to see, and then we say that that effect is due to chance. If

we knew exactly the laws of nature and the situation of the universe at the ini-

tial moment, we could predict exactly the situation of that same universe at a

succeeding moment. But, even if it were the case that the natural laws had no

longer any for us, we could still only know the initial situation approximately. If

that enabled us to predict the succeeding situation with the same approxima-

tion, that is all that we require, and we should say that the phenomenon had

been predicted, that it is governed by laws. But it is not always so; it may hap-
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pen that small differences in the initial conditions produce very great ones in

the final phenomena. A small error in the former will produce an enormous

error in the latter. Prediction becomes impossible and we have the fortuitous

phenomenon.

Unpredictability resulting from sensitivity to initial conditions can be viewed as ran-

domness. Even if we knew perfectly the laws of evolution of a system, our inability to know

perfectly its state leads to its unpredictability. It is an epistemic kind of randomness stem-

ing from the interstice between the theory and the physical object. For this reason the

status of measure becomes dominating, it determines our access to the objects and thus

our ability to know the object [14].

A chaotic behavior can be quantified with Lyapunov exponents. They express mathe-

matically the sensitivity to initial conditions and the rate at which two close solutions of

dynamical system diverge. Given two trajectories in a phase space, their initial separation

is given by |δZ0|. The Lyapounov exponent λ is defined as |δZ (t )| ≈ eλt |δZ0| where |δZ (t )|
is the difference between the two solutions at time t .

Ergodic theory When considering gas, another sort of problem for the prediction of the

system’s evolution appears. Following the work of Ludwig Boltzmann, gaz are composed

of a high number of atoms and molecules, each of them having its own dynamic. Therefore

this high number of elements makes it impossible to follow each particle individually. It

is thus assumed that each individual particle has a random motion and collide with other

particles in a stochastic way. In order to derive the macroscopic behavior from the behav-

ior of each individual particle, one of the necessary condition was the ergodic hypothesis

[77]. This assumption is required to prove the equipartition of energy in the kinetic theory

of gases. This assumption says that the average of a process over time of a system and

the average over the statistical ensemble are the same [20]. It means that each element of

the system goes everywhere in the space of possible in a uniform fashion. This statement

of uniformity of individual behavior is a form of randomness and involve an asymptotic

statement which require the use of infinity. This randomness results from the too high

number of elements in interaction.

These two forms of randomness found in dynamical systems theory and in ergodic

theory are somehow opposed, they correspond respectively to a too tiny cause or too many

causes. However, they both relate to an epistemic notions. They are defined in the frame of

classical physics where trajectories of individual particles are assumed. Quantum physics
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has a radically different approach of the problem of randomness.

4.2.4 Randomness in quantum mechanics - Quantum mechanics as a

generalized probability theory

Quantum physics studies phenomena at the scale of atoms. The formalization of quan-

tum mechanics, which happened in the beginning of the XXth century, is an epistemolog-

ical revolution. The concept of trajectory itself has been changed compared to classical

physics. Schrödinger equation which describes the evolution of a quantum system, no

longer governs the path of a body but the trajectory of a probability amplitude (a normal-

ized vector state in a Hilbert space). When a quantum system is measured, the result of the

measure is related to the kind of measure applied and the results are predicted in proba-

bility. A quantum state is described as a linear combination of possible measure results.

Each of the coefficients of this combination gives the probability to obtain the associated

possible result according to the Born rule.

It is worth noting that the classical probability structure relying on Kolmogorov’s ax-

ioms (as presented above) has been replaced by a structure using a normalized state vec-

tor in a Hilbert space. The σ-algebra has been replaced by an orthoalgebra within which

various experimental contexts, sometimes incompatible, can be combined. It becomes

however difficult to use the word object, and it is more common to refer to a process insep-

arable of the experimental conditions which are also the very conditions of its existence

[22]. The traditional configuration where an observer observe a system from the outside

is blurred, this situation is part of the formalism. In this field, the theory is build around

a probability amplitude. The concept of randomness is at the center, although it seems to

be more related to our relations with the object of the study rather than to the properties

of the object as such. In any case, the form of randomness used in quantum mechanics

can be considered as objective, since the theory cannot overcome it. The violation of Bell

inequalities and their experimental measurement proves that no theory with local hidden

variables is compatible with the quantum mechanics framework. This theory has a high

predictive power. There is however no definition for the randomness in itself or character-

ization for the mechanisms sources of randomness.

After reviewing these model of randomness in physics and mathematics, we under-

stand that this notion covers very rich and varied fields. Formalisms used can be very dif-

ferent and are not necessarily compatible. To summarize, the main differences rely on the

choice of the space of possibles to describe the results of an experiment, the capacity to
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separate the object from the context of the experiment, the experimental reproducibility

and finally the asymptotic character of the studied system. Non predictability is the under-

lying concept, the inability to predict uniquely the result of an experiment. Probabilities

provide a calculus framework on the results of an experiment with uncertain results. The

choice of the rules used in the computations depend on the model of the experiment and

thus on the concept of randomness at play.

As presented in the first part of this chapter, the sources of variability in biology are

numerous and of various nature. We need a notion of variability, of non predictability and

thus of randomness that could place these effects on the same footing. The various time

scales at play, the diversity of mechanisms at play, the systemic organization of organisms

coupling these different phenomena, makes it difficult to reduce biological variability to

one or the other form of randomness met in physics. It is for example possible to have a

combination of chaotic and quantum effects [33]. The question remains as to how these

couplings between all these phenomena are an obstacle to models of biological variability.

Is it possible to decompose in a meaningful way these phenomena or to state the adequate

simplifying hypotheses in order to obtain a model of variability? Can we isolate some mor-

phogenetic processes and model them independently to capture one or the other aspect

of variability?

4.3 Variability and models in biology

4.3.1 Models and simulation as tools for exploring some dynamics of

the living

Here and in the following, we will consider that a simulation is the computation of a

specific realization of a model, whereas the model itself is a set of assumptions that aims

to describe a target phenomenon - with a lower degree of generality than a theory.

One of the first work describing at the same time a model and a simulation of a mor-

phogenetic process in the living is due to Alan Turing. In his 1952 article « The chemical

basis of morphogenesis » [207], he explores the possibilities of a mathematical model of

morphogenesis. He proposes a system of differential equations which describe the spa-

tial distribution of chemical elements in an idealized biological tissue through a reaction

diffusion mechanism. This non-linear system of equation generates stationary spatial

patterns from an initially homogeneous situations (symmetrical with respect to the op-
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eration of interchanging the cells [207] p.42) and with an initial local perturbation. Al-

though it is possible to solve this problem analytically and thus to exhibit explicitly some

solutions with simplifying hypotheses, Alan Turing recommend in his article the use of

computer simulations 7. These simulations solve numerically the system of differential

equations. They exhibit some valid solutions and enable us thus to construct a represen-

tation of some solutions. They allow avoiding simplifying assumptions, opening the way

to more complicated cases than those presented in the article, for example by integrating

mechanical constraints between cells in addition to chemical reactions. This article shows

how a mathematical model which is "a simplification and an idealization" sheds light on

some mechanisms of the living by describing fundamental characteristics. This model

of reaction-diffusion is still at the center of numerous contemporary research [156]. The

use of computer simulation enables to describe explicitly solution of models by sacrific-

ing mathematical generality in favor of the intelligibility of specific solutions. Computer

simulation is a tool for exploring mathematical models.

This practice carries with it a set of constraints that should be taken care of for the

study of biological variation. Indeed, all computer simulations rely on a Turing machine.

A Turing machine is a discrete state machine, based on a Laplacian paradigm of identical

iteration. As shown by Giuseppe Longo, the perfect iteration that underlies all computer

sciences introduces an inevitable difference between a simulation and some dynamics oc-

curing in the physico-chemical continuum like chaotic systems [133]. Turing’s 1952 work

on morphogenesis, subsequent to his invention of the so-called Turing machine, is a work

on the non-linear dynamics defined in the mathematical continuum. These dynamics are

sensitive to initial conditions, he uses the words "catastrophic growth" ([207] p. 64). Tur-

ing needed the mathematical continuum to make assumptions on morphogenetic mech-

anisms in the living. This mathematical continuum is then approximated to be simulated

on a computer. More precisely, if one considers a chaotic system, the study of its behavior

is limited by the ability to reproduce the initial conditions whose access is limited through

a necessarily finite measure. Simulation of this kind of system would be identically re-

producible if the same parameters are set as inputs. These discussions on the profoundly

reproducible status of computer simulation highlight the difference in the epistemolog-

ical status between the model which can be developed in the mathematical continuum

and the simulation which happen in the discrete. They should however not hide the ex-

7. "It might possible be possible, however, to treat a few particular cases in detail with the aid of a digital
computer. This method has the advantage that it is not so necessary to make simplifying assumptions as it
is when doing a more theoretical type of analysis [207] p.72
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ploratory power of computer simulation.

Many examples of computer simulations allow to convince oneself of the relevance of

some mechanisms in the morphogenesis of the living. Refinements of Turing’s reaction-

diffusion system describe well the formation of some patterns in the development of the

zebrafish [157], [125]. Cellular Potts model is another approach which tries to describe re-

lations between cells in terms of adhesion within a tissue by using method from statistical

physics [88]. By generalizing the Ising model, Potts model describes some cellular dis-

placements. The Ising model is one the simplest model of statistical physics presenting a

phase transition. Moreover, the deformation of a 2 dimensional tissue in a 3 dimensional

structure has been modeled with a vertex model during Drosophila morphogenesis, the

tension differences between cells is used to faithfully reproduce empirical measures [165].

At a more molecular scale, the gene regulatory network in the development of the sea

urchin has been modeled with dynamical boolean network [171] (it is a network where the

nodes can take values from a discrete set of values depending on their interactions). This

model enable to reproduce the main steps of the dynamic of the gene regulatory network

as it is observed. To take into account epigenetic effects, it is possible to introduce prob-

abilistic interactions between genes [198]. Finally, recent attempts try to model the cou-

pling between gene regulatory network and mechanical interactions between cells during

early zebrafish embryogenesis, explaining some phases of development 8.

The question then is to disturbe the mechanisms reproducing empirical phenomena

in order to test the predictive power of the model. Given the high complexity of organism,

it is to be expected that the mechanisms observed and modeled have a narrow range of ap-

plicability and that the mechanisms change highly when considering adjacent situation.

These different models aiming at describing embryogenesis offer sets of reasonable as-

sumptions for some specific phenomena at a given level of organization at a given time of

embryogenesis. They allow to describe and explore the possible results of these morpho-

genetic processes. They give an idea of what may be the repertoire of possible forms deter-

mined by the mechanisms. Yet, the question of knowing what is the scope of these models

is still open. To what extend can we draw general conclusions from the study of these

mechanisms considered separately? What is the legitimacy of the assumptions made in

the models? Are these approaches accounting for the aspects of variability described pre-

viously?

8. Thèse Julien Delile : « From Cell Behavior to Tissue Deformation: Computational Modeling and Sim-
ulation of Early Animal Embryogenesis », under the supervision of Nadine Peyriéras and René Doursat
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4.3.2 Living organisms are organized objects involving different levels

of organization with heterogeneous dynamics

These various mechanisms are not sufficient to describe the complexity of an organ-

ism if they don’t allow to integrate the various levels of organization. The experimental

results presented in the first section of this chapter show how the coupling between dif-

ferent levels of organization can have an effect on biological variability. It should hence

be taken into account in models of variability. Most of the models in developmental biol-

ogy assume a separability between the phenomena occurring at various scales concerning

measurement and modeling. For example Eric Davidson’s work consists in modeling the

gene regulatory network in the sea urchin embryo 9 from experimental results. This model

is simulated with a boolean network. It may show some limitation as it cuts the embryo

in parts of tissues that are coarser than the level of the cell and in time period of several

hours, much longer than a cell cycle. The problem is that genetic interactions occur within

a cell where genetic expression takes place. The simplifying hypothesis which consists in

abstracting the level of organization of the unique cell may lead to wrong interpretations

of the dynamics of gene expression. On the opposite, one can consider work coupling the

dynamics of genetic expression at the cellular level with physical processes at play at the

tissue level in the Drosophila during mesoderm invagination [216]. The problem which

may arise here is the role of previous developmental steps in the phenomenon. For ex-

ample early events in development may have a later effect on the tissue organization. The

simplifying assumption here consists in focusing on a short time period without consid-

ering earlier steps in study of causal mechanisms. These two approaches may show some

limitations in explaining embryogenesis while considering organisms as a whole.

It is possible to consider an alternative approach in some multi-scale approach such

as the phenomenological reconstruction of a complete organism [163] as shown in the

first part of this dissertation. This work consists in reconstructing in an automated way

the dynamics occurring at different scales. From 3D+time image acquisition, raw data are

processed in order to automatically detect the position of the nuclei of each cells in time

as well as the shape of the cellular membrane. From these data, it is possible to obtain

the spatio-temporal cell lineage. This approach enable the access to the dynamics of each

individual cells, as well as the dynamics of the tissue and the whole embryo. The obtained

data set is a digital embryo. This reconstruction of a process involving contingent events

9. http://sugp.caltech.edu/endomes/
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at various levels enable to construct a duplicate of the empirical space [208] were the phe-

nomena with heterogeneous dynamics are combined, and can be studied as a whole. The

process of automated reconstruction introduces some assumptions on the nature of the

observed phenomena it is the "thickness" of the digital object. By offering an access to the

living, which is digital, quantitative, multi-scale, taking into account the temporal dimen-

sion of the embryonic development, this phenomenology reduces the distance between

the simulations and the empirical results. It reduces this distance in two ways. First, be-

cause it allows to confront quantitatively the simulation and experimental data, which is

rarely the case in developmental biology. Secondly, because the underlying assumptions

required for the automatic processing of the data are assumptions on the observed ob-

jects, and are thus close to a model. The aim differs however from an explicative model

since the idea is to reproduce accurately the empirical data and not to test the existence of

mechanisms allowing to explain them.

Thanks to this kind of approaches, the question of variability can be asked in a multi-

scale and temporal manner. In particular, the phenomenology of variability at various

levels of organization can be studied. Variability can be transmitted from one level of or-

ganization to the other. Similarly, its transmission through time within the embryo is an

interesting question, for example along the cell lineage. By studying the phenomenolog-

ical reconstruction of five sea urchin embryos during the first hours of development, we

could quantify this variability at different scales, from the individual scale to the groups of

cells sharing the same type and generation to the whole individual. (see chapter 1 and 2 of

this dissertation). We show that the inter individual variation is high for the proliferation

dynamics and cellular volume if only the cellular level is considered, although it decreases

when considering a coarse-grained level, cells clustered by cell type and generation. Simi-

larly, we show that the variation observed at a given generation is only weakly transmitted

from generation to generation at the level of groups of cells. These groups of cells are de-

fined with morphological criteria identifiable for each specimen and seem to be a relavant

level of observation to describe embryonic development. Using these two results, the dy-

namics at the level of the group of cells can be averaged over the cohort into a prototypical

representation of development. This prototypic description takes into account intrinsic

variability of the groups of cells through the use of a probability distribution and allow to

describe the behavior at the scale of the whole embryo by combining the behavior of each

of the groups. This is a multi-scale quantitative prototypic representation of embryoge-

nesis. By shedding light on the relations between different levels of organization and by
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identifying invariant features among individuals, this kind of object seems to be a good

candidate to be at the basis of a multi-scale model of morphogenesis with a certain level

of generality and leading thus to a theoretical level of explanation.

The prototypical reconstruction of the sea urchin is a very simple case, on a model

organism which is expected to be highly reproducible. The question of integrating the

variability stemming from the different levels of organization is open in most of the cases.

4.4 Conclusion

The two main obstacles for modeling possible forms in the living are on one side the

systems aspect, which couples various levels of organization and heterogeneous dynam-

ics within a single organism and on the other side the temporal aspect, the fact that all the

steps of the ontogenetic trajectory constituted of variable phenomenon at all scales has

an impact on the organism. Biological objects are the result of an evolutive history, phy-

logenetic and of an individual trajectory, constituted of singular events, epigenetic and

stochastic. We have shown that the sources of this variability are multiple, precluding a

priori to reduce these phenomena to one or the other form of randomness already stud-

ied in physics. Moreover, probabilities only provide a framework for calculus to describe

phenomena and don’t say anything on the phenomena themselves. They are useful once

the model of variability has been established.

Biological objects are organized, multi-scale, the result of a complexe morphogenetic

process. Thus, models focusing on one level of organization and including too strong hy-

potheses on other levels of organization may not have a sufficient generalizing power in

other experimental frameworks and may neglect important phenomena. Phenomenolog-

ical reconstruction such as presented in the first part of this dissertation allow to access

multi-scale dynamics with heterogeneous dynamics. Using these multi-scale dynamics,

variability can be measured at all levels of organization. It is possible to identify the rele-

vant levels of organization to describe a model of variability. The multi-scale prototypical

representation of the embryonic development of the sea urchin embryo is an example

showing that it is possible to study variability in an integrative way, overcoming some lim-

itations described in this article. Models relying on this kind of approach could acquire

sufficient generality to reduce the distance between empirical and theoretical biology.
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Chapter 5

Variable phenotypic expressivity and

incomplete penetrance of the zebrafish

mutant line squintcz35

Abstract This chapter studies a phenomenon of incomplete penetrance in the squint

zebrafish mutant line. By measuring the distribution of phenotypes (interocular distance)

in progeny of identified pairs of homozygote parents, it is shown that the list of possible

phenotypes is discrete with intermediate phenotypes and in unpredictable proportions. The

statistical distributions put aside factors related to genetic backgrounds or environment.

These complex inheritance patterns suggest a variety of possible relationships between early

molecular events and late phenotypes.

5.1 Introduction

This chapter explores a phenomenon of incomplete penetrance and variable pheno-

type expression in a zebrafish mutant line. The experimental results and their interpreta-

tion presented here also serve as a basis for the next chapter.

The notion of incomplete penetrance describes the situation when individuals carry-

ing identical mutants alleles show either mutant or wild-type phenotypes as it has been

observed in the nematode Caenorhabditis elegans [102] by Horvitz and Sulston in 1980,

and more recently in 2010 by Raj et al. [181] . The introduction of this concept can be

traced back to Timoféeff-Ressovsky [204] and Romaschoff [187] who noticed it indepen-

dently in 1925. The notion of variable (phenotypic) expressivity describes the idea that
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individuals with identical mutant alleles have variable phenotypes, not necessarily wild

type, although it has been found associated to incomplete penetrance[102]. Incomplete

penetrance and variable expressivity can sometimes be explained by variation in environ-

mental conditions [218], variation in the genetic background [36] but also by stochastic

effects in gene expression [181]. In normal conditions this variability in gene expression

may be buffered to ensure proper development. We explore here quantitatively a zebrafish

mutant line presenting incomplete penetrance and variable phenotypic expressivity. Af-

ter having described the phenomenology of the phenotypic variation, we will point out

methodological problems raised when trying to explain this observed variability with un-

derlying molecular variability.

Figure 5.1: Main stages of Zebrafish development. The names of the stages and the cor-
responding developmental times are indicated below the figures. For the first stages, cells
are represented in blue and the yolk sac in yellow. After 12h of development the distinction
between the yolk sac and the embryo is clear. Adapted from [122]

The zebrafish is a vertebrate model organism appreciated for its high manipulability
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in laboratories, its rapid development and its transparency during early embryogenesis. It

is also known for its regenerative abilities. The main stages of its development are shown

on figure 5.1. After fertilization, the egg proliferate on the yolk sack before undergoing

complex morphogenetic movements such as epiboly, and convergence extension. At 30

hours post fertilization (hpf) the embryo shows an almost final morphology, in particu-

lar its head is well formed, and its two eyes are separated by the forebrain. One of the

main signaling pathway involved in this morphogenesis is called Nodal. Defects in Nodal

related genes such as squint, oep or cyclop lead to dramatic phenotypic defects in the mid-

line such as cyclopia and in the establishment of the embryonic axes [169] [44]. Similar

defects are found in human embryos; defects of the midline division of the developing

forebrain into cerebral hemisphere with concomitant facial midline defects are known as

holoprosencephaly (HPE) [173]. Examples of the consequences of these developmental

defects in humans and mice are shown on figure 5.2.

Figure 5.2: Spectrum of craniofacial phenotypes in humans (a-e) and Twsg1-/- mice (f-
j). (a) Single central incisor; (b) microcephaly, midface hypoplasia with bilateral cleft lip
and palate; (c) cyclopia with proboscis above the fused eye; and (d) hypotelorism and a
single nostril. (e) Agnathia with downward displacement of the ears and microstomia. (f)
Wild type; (g) severe anterior truncation; (h) cyclopia with proboscis; (i) single nostril with
agnathia; and (j) agnathia. Figure and caption from [173]

The sqtcz35 zebrafish mutant line presents a phenomenon of incomplete and variable

phenotypic expressivity. Among other phenotypes, homologous squint mutants (Sqt -/-)

show cyclopia as shown on figure 5.3 D. Some mutants escape the defectuous phenotype

and become viable and breeding adults as shown on figure 5.3 C. When two homozygote

mutants are crossed, the proportion of embryo expressing the cyclop mutant phenotype

in the progeny is highly variable, from 0% to 24 %, statistics obtained in [169] are shown on
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figure 5.3 B. The viability of some of the squint mutants may be interpreted as a recovery

since an earlier phenotype, a delayed formation of the dorsal organizer shows complete

penetrance. This incomplete penetrance may result from an otherwise buffered variability

in the nodal signaling pathway that is uncovered by the absence of the squint protein. To

establish a model for the inheritance patterns of variability in phenotypic expressivity of

the squint mutants, we characterized the phenotypes of the progeny of 10 identified pairs

of couples of homozygote mutants during 8 consecutive weeks. This experiment allowed

us to study the variations in the distribution of phenotypes through time and among cou-

ples.

Previous study on squint penetrance shows that the incidence of cyclopia among progeny

is dependent on the genetic background of the parents, statistics obtained in [169] are

shown on figure 5.3 B. Although crossing of all combination of 8 male and female heterozy-

gote mutants shows that no simple scheme of inheritance can explain the proportion of

cyclops in the progeny, statistics obtained in [169] are shown on figure 5.3 E.

Figure 5.3: A. Figure showing the insert of 1.9kb in squint gene (mutant squintcz35) [71] B.
Incidence of cyclopia in crossing of identified couple of mutants, from [169] C. Wild type
phenotype in a homozygote squintcz35 mutant D. Cyclopia phenotype in a homozygote
squintcz35 mutant E. Proportion of cyclopia in random crossings of homozygous mutants
rule out simple models of inheritance, results from [169]
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5.2 Materials and methods

Mutant line squintcz35 - 10 pairs identified by PCR The squintcz35 mutation consists

in an insert of 1.9 kb in the squint gene which is a ligand of the Nodal signaling pathway

leading to a truncated expression of the squint gene. To perform our experiment we iden-

tified 10 pairs of squint mutant sqt cz35 by fin-clipping male and female squint adults and

genotyping by PCR with specific primers [71]: reverse primers detecting the presence (5’-

ATATAAAATCAGTACAACCGCCCG-3’) or absence (5’-GCCAGCTGCTCGCATTTTATTCC-3’)

of the insertion were used with a forward primer (5’-GAGCTTTATTTCAATAACTGCGTG-3’)

present in wild-type and sqtcz35 alleles. See figure 5.3 A.

Fixation at 30 hpf Controlled fertilization was performed by using aquariums where

pairs of fishes were maintained isolated. The night before the egg laying a transparent

wall separates male and female, in the morning the wall is removed and freshly layed eggs

are controlled every 15 minutes. Fertilized eggs were then stored in an incubator at 28◦C.

Environmental conditions were similar during the 8 weeks of the experiment. After 30

hours post fertilization (30hpf), embryos were fixed with paraformaldehyde (PFA) to stop

the development and maintain the morphology comparable within the assemblies of em-

bryos.

Photographs and measures - Fiji Once the embryos were fixed, they could be pho-

tographed to provide a quantitative measure of their morphology. They were dechori-

onated to be better manipulated and have a better resolution. They were positioned with

the head in the good orientation, by using rails in agarose. Photographs were taken with a

binocular microscope in bright light. Measures of interocular distance have been manu-

ally extracted with FIJI software as shown on figure 5.4. A total of 928 measures is obtained.

5.3 Results

Protocol - Number of embryos in each egg clutch The experimental protocol is summa-

rized on the figure 5.4. It consisted in controlling the spawning of identified pairs (male

and female breeding couple) of homozygote squint mutants during 8 consecutive weeks.

Pictures of each embryo of the progeny were then taken at 30 hours post fertilization. They

were used to measure the interocular distance.
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Figure 5.4: Protocol. Every week during 8 weeks, all embryo of the progeny of identified
couples of homozygote squint mutants were photographed at 30 hpf in controlled fertil-
ized condition.

The number of embryo in the progeny of each pairs was very variable through time

although the conditions were maintained identical from one embryo to the other and

through time. Table 5.1 shows the distribution of the number of embryos through time

for the different pairs considered. We see that pair 1 and pair 5 generated embryos on the

most regular basis, they were breeding 6 times among the 8 weeks of the experiment. Pair

3 and pair 4 generated embryos half of the time of the experiment, i.e. 4 times. Pair 7 and

pair 8 generated embryos two times with a low number of embryos (max 16 embryos). Pair

6 and pair 9 generated embryos only once and it was less than 8 embryos. Pair 2 and pair

10 were unable to reproduce during the experiment.

Squint penetrance The measures performed on the embryos enable to compute the

number of cyclops during each week of the experiment, they are reported in the following

table 5.2 and correspond to the penetrance of the squint phenotype:

The values of penetrance shown in the table 5.2 are very variable among the different

couples (from 0% to 75%) and throughout the experiment for an identified pair, for ex-

ample for couple 5 from 3.3% to 32.4%. In contrast to the results obtained in [169], these

results suggest that the variations in the penetrance rate of cyclopia in Sqt-/- embryos may

be determined by other factors than the genetic background.

Couple 5 We first consider a single pair throughout the experiment. The pair number 5

has the highest number of embryo (283) during the 8 weeks of the experiment providing

therefore the most significant results. The distribution of interocular distance are reported

on figure 5.5, five histograms are shown corresponding to weeks 1, 3, 4, 6, 8. The experi-

ment performed during week 2 could not be exploited for measurement of the interocular
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27 Jan. 02 Feb. 09 Feb. 21 Feb. 28 Feb. 06 March 13 March 20 March

Week 1 2 3 4 5 6 7 8

Couple 1 5 - - 55 56 44 33 42

Couple 2 - - - - - - - -

Couple 3 53 - - 7 - - 64 47

Couple 4 - - - - 81 18 31 118

Couple 5 40 28 58 37 - 87 - 61

Couple 6 - - - - - - - 4

Couple 7 - - - - 2 - - 8

Couple 8 - - - 1 16 - - -

Couple 9 - - - - 8 - - -

Couple 10 - - - - - - - -

Table 5.1: Number of eggs for each week of the experiment. Each line corresponds to an
identified sqt-/- pair

distance.

When considering week 1, i.e. the first histogram of figure 5.5, we can observe a pro-

portion of 17.5% of cyclops embryos. In addition, we observe intermediate phenotypes

between the wild type phenotype and the cyclop phenotypes. These intermediate pheno-

types are characterized by inter ocular distances that are intermediate between 0 and 140

µm. Two intermediate phenotypic classes are identified during week 1, they correspond

to interocular distances equal to 45 µm and 90 µm. The phenotypic class corresponding

to the lowest interocular distance is also represented in the progeny obtained in week 3

and 8. The other phenotypic class corresponding to interocular distance around 140 µm

is represented in all of the considered histograms. Altogether, we see that the phenotypes

are not continuously distributed along the axis corresponding to interocular distances.

This description of the phenotypic classes rely on manual classification. It could be

interesting in the future to use automatic clustering algorithm on the phenotypic value to

classify mutants. However, in this case, given the high disproportion between embryos

corresponding to intermediate values of the phenotype (very few embryo each week, less

than 10) and embryo corresponding to wild type phenotypes (up to 80 % of the embryos),
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Week 1 2 3 4 5 6 7 8

Couple 1 0 - - 10.9% 12.5% 13.6% 15.1% 17%

Couple 2 - - - - - - - -

Couple 3 5.7% - - 28.6% - - 1.6% 4.3%

Couple 4 - - - - 6.2 % 0% 6.4% 1.7%

Couple 5 17.5% - 22.4% 32.4% - 31.03% - 3.3%

Couple 6 - - - - - - - 75%

Couple 7 - - - - 50% - - 37.5%

Couple 8 - - - 0% 23.5% - - -

Couple 9 - - - - 0% - - -

Couple 10 - - - - - - - -

Table 5.2: Proportion of cyclops for each week of the experiment in % of the number of
embryo generated during the considered week. Each line corresponds to an identified
sqt-/- pair. Photorgraphs obtained during week 2 could not be exploited

lead to inaccurate results.

Proportions when merging the measures of all weeks The histograms are represented

on figure 5.6, each histogram corresponds to the merging of the phenotypic distributions

in the progeny of one identified couple. We see that the shape of the distribution are highly

variable from one couple to the other. This result seems to rule out a dependency of the

phenotype distribution only on the gene squint. Since all the couples are heterozygote

mutants, such a unique dependency would be witnessed by a similar phenotypic distri-

bution. For each of the couples, the phenotypes are not continuously distributed from

cyclopy to two well formed eyes. The phenotypic classes are similar from one couple to

the other, although some intermediate phenotypic classes are not represented in couple

7, 8 and 9. The proportions are very variable from one couple to the other.
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Figure 5.5: Proportion of Cyclops and intermediate phenotypes for the pair number 5.
Histograms correspond to week 1, 3, 4, 6, 8 of the experiment and show the distribution of
interocular distance (id). The proportion of Cyclops varies from 3.3% to 32.4%. Mutants
with wild type phenotypes are observed (blue id ≥ 140µm). Two intermediate phenotypes
can be observed (orange 0 < id < 80µm and green 80µm ≤ id < 140µm).

5.4 Discussion

Overall, this experiment on the distribution of phenotypes in the progeny of homozy-

gote squint mutant shows variable phenotypic expression in unpredictable proportions

and with a possible incomplete list of accessible phenotypes. This last point is underlied

by the fact that the list of intermediate phenotypes is not the same among the various

couples. Therefore it can be supposed that other couples of mutants present other inter-

mediate phenotypes.

The observed variation in the phenotypes could result from a cryptic variation of β-

catenin, involved in the nodal signalling pathway, revealed by the absence of squint. This

maternal protein has a redundant role compared to the protein squint [195].
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Figure 5.6: Each histogram represents the distribution of every egg clutches merged. Re-
sults are shown for each 8 pairs having been able to have a progeny (pairs: 1, 3, 4, 5, 6, 7, 8,
9).

To find correlation, and possible causal links, between early phenotypes such as the

spatial distribution of β-catenin and late phenotypes such as the interocular distance re-

quires to measure the spatial distribution of β-catenin. This measure should lead to vari-

ous phenotypic classes. The question that will arise then is how to relate these statistical

distributions?

Figure 5.7 shows the hypothetical causal links between early molecular events, early

phenotypes, and late phenotypes. The case (a) corresponds to a direct link between an

early molecular event and a late phenotype, for example the absence of oep lead to cy-

clopia with complete penetrance. The case (b) corresponds to situations when the sym-

metry breaking hasn’t occurred yet, for example in a bimodal gene network two metastable

states are possibles. The case (c) corresponds to convergence during development, when

for example two embryos with different phenotypes converge to same phenotype. The

case (d) corresponds to the case when an early phenotype is observed but doesn’t have a

late counter part, because this causal link has been observed only once and only at the

molecular level for example. The case (e) is the same idea as (d) but when only the late

phenotype has been observed. Finally it can be assumed that some causal links may oc-
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cur but have not been observed yet.

Figure 5.7: Possible causal chains between late phenotypes (eg. interocular distance) and
early phenotypes (eg. spatial distribution of β-catenin). Each experiment trying to link
early phenotypes with late ones should deal with these causal pathways a) simplest causal
chain where an early phenotype can be linked uniquely to the late phenotype b) symmetry
breakings occur lately in development c) two early different phenotypes are buffered into
one late phenotype d) the late phenotype counterpart of an early phenotype has not been
observed e) the early counterpart of a late phenotype has not been observed f) early and
late phenotypes have not been observed but are possible

The presence of symmetry breakings (b), convergence (c), non-exhaustivity of the mea-

surement (d,e) and possible new causal relationships are important methodological ob-

stacles for statistical inference. What does these methodological obstacles imply for biol-

ogy? Can it be assumed that this situation is the norm in biology instead of a special case

of inheritance and determination? Thus, the choice of the space of possibles is a central

problem, it is the central problem of the next chapter.
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Chapter 6

Biological diversity and quantum

mechanics formalism

Abstract We present in this article a mathematical approach to account for diversity

in biology using the framework of quantum mechanics. To construct our characterization,

we rely on two principles. The first one is that the list of observables in biology is not pre-

dictable and their possible value are uncertain. The second one is that relations between

various events during establishment of a phenotype are related in a complex way. These

two statements justify the successful use of a quantum like framework to account for statis-

tics. An illustration is given with the study of the squint mutant line of the zebrafish. A

formal analog of entanglement is identified for Mendel’s idealized scheme of inheritance.

Finally, clarification of the various levels of biological variation is enabled with this formal

analogy.

6.1 Introduction

The two principles by which Darwin proposed to explain the diversity of biological

forms are descent with modification and natural selection [49]. The sources of variation

underlying descent with modification are multiple, from combinatorial genetic lottery, to

mutations of the DNA, to epigenetic effects such as DNA methylation or histone modifi-

cation, to stochastic effects during gene expression, [104], [181]. However, the theoretical

status of variability is still unclear.

Following a line of thoughts initiated by Longo, Bailly and Montévil [15], [136], [135] in-

dividual organisms can be considered as resulting from a specific onto- and phylogenetic
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trajectory involving contingent events. They are thus historical entities. This perspec-

tive has strong implications for the theoretical status of biological objects. In particular,

the space of possible is not completely predictable, radically new observables are likely

to emerge in the course of evolution, for example a new organ or a new function for an

already existing organ [137].

In this article, we propose to analyze this unpredictability in the light of the quan-

tum mechanics formalism in order to characterize the various levels of uncertainty met

in biology. Previous approaches have brought closer biology and quantum mechanics.

Schrödinger in his book "What is life" [196], Rosen in a paper discussed quantum infor-

mation as an approach for describing genetics [188]. More recently, Khrennikov and col-

leagues have extended the use of quantum mechanics formalism to biological situations

[17], with a fine analysis of epigenetic evolution [12]. The mathematical structure of quan-

tum mechanics contains several epistemological characteristics of quantum mechanics,

such as the dependency of the empirical results to the experimental context, and more

particularly the measure instruments [23], [21]. Other disciplines sharing similar episte-

mological constraints may benefit from the use of the quantum formalism. The emerging

field of quantum interaction provides examples of successful applications in cognitive sci-

ences, decision theory, computer sciences.

6.2 Variability in biology, emergence of new phenotypes

Any biological inquiry begins by studying a particular observable. An observable cor-

responds to a measurable characteristic that can provide knowledge about an organism.

It can be a phenotypic trait, a genotype, a function. Drawing a direct analogy with quan-

tum mechanics, a biological observable will be represented as an hermitian operator in a

hilbert space. The eigenvectors of the operator being the possible values of the observable.

For example, the observable can correspond to the “wrinkled” or “smooth” character of a

pea as in Mendel’s experiments. The observable can also be the presence or not of eyes,

such as in the species of fish Astyanax mexicanus which comes in at least two forms, with

or without eyes (for the blind cave form) [113].

Following the classical framework of quantum mechanics [47], in a population where

only two possible phenotypes coexist: phenotype 1 and 2 can be symbolized by the two

vectors |p1〉 and |p2〉, the observable as A. A population of similar organisms in homoge-

neous environment is described by a normalized state vector ψ = a1. |p1〉+ a2. |p2〉 with
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parameters a1 and a2 in R such that a2
1 +a2

2 = 1. Following the Born rule, the ai coefficient

corresponds to a probability amplitude and a2
i is the probability to measure the value |pi 〉

of the observable A. In practice this probability is obtained empirically from the observed

frequency fi . It captures a first level of uncertainty about the result of biological exper-

iments. The use of a probability amplitude leads to an additional degree of freedom in

the choice of the sign: ai =−+
√

fi . We notice here that we restrict our use of probability

amplitude to real value and not complex values as in quantum mechanics to avoid un-

necessary degrees of freedom. The choice of the observable depends on the observer, its

possible values and their empirical frequencies depend on the experimental system, this

is the main difference between A, |pi 〉 and ai .

For example, in Mendel’s experiment, the observable A corresponds to the outer ap-

pearance of peas, its possible values are “wrinkled” (symbolized by the vector |w〉) or

“smooth” (symbolized by the vector |s〉) and their probability fi can be measured empiri-

cally, leading to the probability amplitude ai =−+
√

fi and the descriptor of a population

of peas as a normalized state vector ψ= a1 |w〉+a2 |s〉. Similarly, the fishes of the species

Astyanax mexicanus can be characterized with an observable A detecting the presence of

the eyes, its possible values are with eyes (|eyes〉) or eyeless (|eyeless〉) and as in the previ-

ous example, the distribution of phenotypes in a population of similar organisms can be

described with the normalized state vector ψ= a1. |eyes〉+a2. |eyeless〉. If a finer approach

is necessary, the observable can correspond to size of the eye instead of a binary detection

of presence.

To summarize, we can formalize the distribution of phenotypes in a population of sim-

ilar organisms in the following way:

– an observable A which is associated to a measurement procedure

– a set of possible phenotypes,
{
|pi 〉

}
i , corresponding to the possible values of the ob-

servable actually observed, they form the basis of eigenvectors of A

– a set of probability amplitude, {ai }i , associated to the empirical frequency fi = a2
i of

each phenotype |pi 〉. To reduce the number of degree of freedom, we limit them to

real values.

– a state vector ψ = ∑
i ai |pi 〉 describing the distribution of phenotypes in the ob-

served population

By increasing the size of the population of similar organisms under study it is pos-

sible to obtain new unexpected result for the observable, because the exploration of di-

versity is still at work (even in homogeneous environment). This is where historicity of
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individual organisms plays a major role. Indeed, an ontogenetic trajectory is a sequence

of highly contingent events, for example stochastic gene expression, asymmetric cell di-

vision, epigenetic effects. These contingent events are constitutive of the final phenotype

of an organism and thus play a role in the diversity observed. The list of possible phe-

notypes may not be completely predictable because of yet unobserved contingent event.

If a new unexpected phenotype is observed, it is necessary to update the space of pos-

sible. Say, we know that the space of possible H is well described with the list of pos-

sible phenotypes (|p1〉 , |p2〉 , ..., |pn〉) for observable A. The new unexpected phenotype

will be denoted |pn+1〉. Then the new space of possible Hnew will be defined by the basis

(|p1〉 , |p2〉 , ..., |pn〉)× (|pn+1〉) = (|p1〉 , |p2〉 , ..., |pn〉 , |pn+1〉) and the corresponding observ-

able A will add |pn+1〉 to the set of its eigenvectors. While not changing fundamentally

the observable, this approach allows to capture a second level of uncertainty on the set

of possible values of an observable. The dimension of the space of possible related to the

observable is increased in a linear way. The fact that the space of possible is defined as a

vector space allows to increment its set of possible values with a cartesian product. The

use of a normalized state vector allows to avoid renormalization techniques when consid-

ering previous experimental results. Using this approach shows that the prediction of the

possible results of a biological experiment is related to the knowledge of the observer and

the context of previously observed phenotypes. We presuppose the unability to predict

completely the list of possible phenotypes for a given observable.

It is possible, moreover, that during the course of evolution, a radically new observable

emerges which doesn’t fit in the space of possible of a previously defined observable, or,

stated otherwise, that cannot be described with the same act of measuring. This is Gold-

smith’s hypothesis of hopeful monster. This level of uncertainty is captured by defining a

new observable B . It is a much more stronger form of uncertainty than a probability since

it requires to define a new space of possibles.

There is therefore a strong difference between an unpredictability in terms of proba-

bility of having a given phenotype, at the level of the set possible phenotypes for a given

observable and the unpredictability of the observable itself. To illustrate these ideas, we

present unpublished experimental data.

6.2.1 Squint experiment - an incomplete list of phenotypes

The squintcz35 mutant line of the zebrafish presents a phenomenon of incomplete

penetrance and variable phenotypic expressivity ([170] and chapter 5 of this dissertation).
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Crossing homozygote mutants lead to progeny with various phenotypes, from complete

cyclopia to two well formed eyes in unpredictable proportions. To quantify the variation

in phenotypes we conceived a protocol characterizing embryos in the most reproducible

way. Figure 5.4 presents the design of the experiment, 10 couples of identified homozy-

gote mutant (Sqt− /−) were crossed during 8 consecutive weeks and progeny grown in

controlled conditions. Each week, pictures of each embryo of the progeny were taken at

30 hours post fertilization. These pictures were used to measure an interocular distance.

Figure 6.1: Protocol. Every week during 8 weeks, progeny of homozygote squint mutants
(Sqt−/−) couples were systematically photographed at 30 hours post fertilization (hpf) in
controlled fertilized condition to measure interocular distance

The number of embryo in the progeny of each pair was very variable through time

even if the conditions were kept identical from one pair of embryo to the other. Table 5.1

shows the number of embryos through time for the different pairs considered. Notably, we

can see that couple 2 and 10 were unable to produce embryo. Couple 6, 7, 8, 9 produced

very few embryos during the course of the experiment (a total of 4, 10, 17, 8 respectively).

Couple 5 provided embryos on a regular basis.

Histograms corresponding to distributions of measures during 5 weeks are shown on

figure 6.2 for couple 5 (pictures of week 2 were unfortunately unusable, reducing the num-

ber of samples). The first observation is that the proportion of cyclops is variable through

time (embryo with null interocular distance) from 2% to 32% of the progeny. The sec-

ond observation is that the distribution of phenotypes doesn’t form a continuum between

cyclops and two eyed phenotypes. We then observe that embryos with non-zero interoc-

ular distance can be classified according to a reduced set of phenotypic classes. In the

course of the experiment, 3 phenotypic classes are identified, associated to the colors or-

ange, green and blue on figure 6.2. These classes are associated to specific morphologies

as shown on the photographs presented on the figure 6.2, and to specific values of inte-
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27 Jan. 02 Feb. 09 Feb. 21 Feb. 28 Feb. 06 March 13 March 20 March

Couple 1 5 - - 55 56 44 33 42

Couple 2 - - - - - - - -

Couple 3 53 - - 7 - - 64 47

Couple 4 - - - - 81 18 31 118

Couple 5 40 28 58 37 - 87 - 61

Couple 6 - - - - - - - 4

Couple 7 - - - - 2 - - 8

Couple 8 - - - 1 16 - - -

Couple 9 - - - - 8 - - -

Couple 10 - - - - - - - -

Table 6.1: Number of fertilized eggs during the 8 week of the experiment for each couple
of identified homozygote squint mutant

rocular distance i d which are identified manually. Cyclops corresponds to id = 0, orange

phenotypes to 0 < id < 80µm, green phenotypes to 80µm ≤ id < 140µm and blue pheno-

types to id ≥ 140µm We obtain the following empirical frequencies and state vectors:

– Week 1 - cyclops : 17,5%, orange : 2,5%, green : 5%, blue : 75%

ψ1 = 0,42.ketcyclops+0,16.ketorange+0,2.ketgreen+0,87.ketblue

– Week 3 - cyclops : 22,414%, orange : 1,7241 %, green : 8,6207%, blue : 67,241%

ψ3 = 0,47.ketcyclops+0,13.ketorange+0,29.ketgreen+0,82.ketblue

– Week 4 - cyclops : 32,432 %, orange : 0 %, green : 2,7027%, blue : 64,865%

ψ4 = 0.57.ketcyclops+0.ketorange+0.16.ketgreen+0.80.ketblue

– Week 6 - cyclops : 31,034%, orange : 0%, green : 2,2989%, blue : 66,667%

ψ6 = 0,56.ketcyclops+0.ketorange+0,15.ketgreen+0,82.ketblue

– Week 8 - cyclops : 3,2787 %, orange : 1,6393 %, green : 4,918%, blue : 90,164%

ψ8 = 0,18.ketcyclops+0,13.ketorange+0,22.ketgreen+0,95.ketblue

During the first week of observation, the 4 phenotypic classes were already observed.

However, if the measures had begun at week 4, the phenotype orange wouldn’t have been

observed until week 8. The space of possible phenotypes would then have been the Hilbert

space of dimension 3, H = (ketcyclops,ketgreen,ketblue) for week 4, 5, 6, 7. At week 8 the
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new phenotype orange would have emerged leading to increment the space of possible

with the new phenotype: Hnew = H×ketorange = (ketcyclops,ketgreen,ketblue,ketorange).

This example shows that it is possible to observe the emergence of new phenotypes for

a given observable, here the interocular distance. It is not impossible that by continuing

this experiment several more weeks, other new unexpected phenotypes would emerge.

The structure of the space of possible as a hilbert space is necessary to perform a cartesian

product with the new direction defined by a new phenotype. The use of state vector allow

to define probabilities in a space whose dimensions can be incremented while keeping its

normalization.

Figure 6.2: Distributions of interocular distance (id) among progeny for the pair number
5 during 5 weeks. The proportion of cyclops varies from 3.3% to 32% (id = 0µm). Mutants
with wild type phenotypes are observed (blue id ≥ 140µm). Two intermediate phenotypes
can be observed (orange 0 < id < 80µm and green 80µm ≤ id < 140µm).

This example, is a good example of an experiment where, for a given observable, the

list of possible phenotypes is not completely predictable and where the probabilities for

each possible phenotypes seem unpredictable. Finding causal links for the constitution
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of the various phenotypes could allow to predict with certainty the value of the observ-

able. However, these causal links can only be obtained by correlating the values of several

observables.

6.3 Correlating several observables

Given populations of similar organisms, we may be interested in correlating various

observables A, B . For example correlating phenotypes with genotypes or phenotypes with

various environments. Most of the time, causal links are difficult to identify. Organisms

involve multiple levels of organization where the causal relations can be top-down and

bottom-up, for example for the molecular level to the cellular level through gene expres-

sion, or from the tissue level to the cellular level through mechanical constraints. In the

work of Raj et al. [181], the phenotype under study is the intestinal cell fate during embryo-

genesis of the mutant nematode Caenorhabditis elegans, and it is correlated to stochastic

gene expression in an underlying bimodal gene regulatory network.

If considered independently, two observables gives two state vectors |ψ〉A and |ψ〉B ,

each of them being a distribution of phenotypes in a population of similar organisms in

homogeneous environment. They are linear combination of their eigenvectors. These

eigenvectors define two spaces of possible, HA and HB having for basis (|a1〉 , |a2〉 , ..., |an〉)
and(|b1〉 , |b2〉 , ..., |bm〉) respectively.

If considered jointly the space of possible becomes the tensor product of the two in-

dividual spaces of possible HA ⊗HB since all possible combinations of observables values

can be expected. The result of an experiment correlating two observables can be mod-

eled as a state vector |ψ〉 in the product space. It can be written as a combination of the

elements of the basis of HA ⊗HB .

|ψ〉 =
∑

i , j

ci , j . |ai 〉⊗ |b j 〉, (i , j ) ∈ {1, ...,n}× {1, ...,m} (6.1)

The size of the new space of possible is the product of the size of the two spaces as-

sociated to each observables. The presence of non-linear causal chains, possible bifurca-

tions along ontogenetic paths, complex interactions between levels of observations, im-

plies that the structure of the tensor space may be non trivial.
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Figure 6.3: Scheme representing Mendel’s model of inheritance in the first generation
from the hybrids. On the left, the distribution of inheritance factors in the population
with their relative frequencies (genotype). On the right, the distribution of phenotypes
with their relative frequencies.

6.3.1 Mendel’s model of inheritance: a formal analog of entanglement

In this section, we use an idealization of Mendel’s experimental results on transmission

of hereditary character to show the necessity of a tensor product for the space of possible

of two correlated observables. Mendel’s experiment consisted in constructing pure lines of

peas, where crossing two individuals with a given phenotypic traits led to individual with

the same phenotypic traits [150]. These pure lines were then hybridized, giving rise to a

first generation of hybrids showing only one of the two phenotypes. The first generation

from hybrid was then presenting the two ancestors phenotypes in proportion 3 to 1. To

understand these distributions of phenotypes, Mendel proposed a model of inheritance

involving hereditary factors and a phenomenon of recessivity and dominance. This model

is summarized on figure 6.3 for the first generation from the hybrids.

The first observable is the genotype, with the hereditary factors A and a. In the first

generation of hybrids possible genotypes are: {|A A〉 , |a A〉 , |Aa〉 , |aa〉}. The second observ-

able is the phenotype (“wrinkled” or “smooth”), the set possible phenotypes is {|Pdom〉 , |Pr ec〉},

dominant and recessive phenotype respectively. The state vector describing the distribu-

tion of phenotypes |ψ〉 can be written, according to the idealized experimental results:
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|ψ〉 =
p

0.25. |A A〉⊗|Pdom〉+
p

0.25. |Aa〉⊗|Pdom〉+
p

0.25. |a A〉⊗|Pdom〉+
p

0.25. |aa〉⊗|Pr ec〉
(6.2)

If the two spaces of possible were separable, we should be able to write the state vector

as

|ψ〉 = (a. |A A〉+b. |a A〉+ c. |Aa〉+d . |aa〉)⊗
(
e. |Pdom〉+ f . |Pr ec〉

)
(6.3)

However this equality leads to the following system of equations





a.e =
p

0.25

a. f = 0

b.e =
p

0.25

b. f = 0

c.e =
p

0.25

c. f = 0

d .e = 0

d . f =
p

0.25

which has no solution.

Therefore we have

|ψ〉 6= (a. |A A〉+b. |a A〉+ c. |Aa〉+d . |aa〉)⊗
(
e. |Pdom〉+ f . |Pr ec〉

)
(6.4)

∀(a,b,c,d ,e, f ) ∈R

Equation 6.4 shows the non separability of state vector on the spaces corresponding

each observable’s subspaces. This is a formal analog of quantum entanglement [64]. This

phenomenon stems from biological organization, the fact that multiple levels of organiza-

tion are related to each other. Indeed, mixes of |Pdom〉 and |Pr ec〉 do not exist at the same

time in a single organism.
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6.4 Discussion

We have shown in this article that biological variation can be handled to a certain

extend with the mathematical framework of quantum mechanics. The distinction has

been made between the unpredictability of the list of possible phenotypes correspond-

ing to a well defined observable and unpredictability of possible observables. Variations

in the choice of phenotypes is described with a probabilistic framework. This quantum

probabilistic framework uses the structure of the hilbert space to be easily updated when

new possible phenotypes are observed with a simple cartesian product between the actual

space of possible and the direction defined by the new phenotype, a non trivial operation

in Kolmogorov’s simplex framework. The possibility to perform tensor product between

spaces of possibles of several observables enables to consider complex causal relation-

ships in a sound way.

To summarize, three levels of unpredictability are defined. The first one corresponds

to the incompleteness of the set of observables, which is closely related to historicity of

evolution and to the knowledge of the observer. The second one is related to the possible

value of the observable, it involves the historicity of each developmental path and can be

described with classical and quantum probabilities, as exemplified with the squint experi-

ment. The third one is related to the complex correlations that relates various observables

and is formalized with a tensor product, it is related to the organization of biological sys-

tems as shown with Mendel’s idealized scheme of inheritance.

With no assumption on the mechanisms underlying biological variation, this approach

throws light on the theoretical status of randomness in biology. The strongest form of ran-

domness and its specificity with respect to physics is the unpredictability at the level of

the set of observables [35], [33], [95]. It involves the observer as situated in space and time

because the definition of the set observables is indexed on the knowledge of the observer,

relying on retrospective analysis of the measure and an impossibility to predict future ob-

servable.



146



Chapter 7

Evolution and development: toward an

ontogenetic tree

Abstract This chapter investigates the relations between individual developments, nor-

mal and pathological, and the space of possible forms. The ontogenetic tree structure is

proposed to organize observations on mutant developmental paths. It serve as a basis to

define a developmental distance between developments. This developmental distance can

be compared to a phenotypic distance to quantify the path dependency of a phenotype. Fi-

nally, the measure of the rate of diversification in the zebrafish development supports the

description of the pharyngula stage as a phylotypic stage.

7.1 Introduction

In this chapter, we propose some perspectives on the relationships between develop-

ment and evolution. The interaction between development and evolution is a major ques-

tion of evolutionary developmental biology ([87], [6], [5], [199], [217]). Originally, Darwin’s

theory of evolution uses as a fundamental principle the notion of descent with modifi-

cation but without characterizing the underlying mechanisms sources of variation [49].

On the other hand Mendel’s quantitative work on inheritance proposed a model explain-

ing the distribution of phenotypes in controlled population through the transmission of

inheritance factors[150].

Later during the XXth century, the proponents of the "Modern Synthesis" provided a

synthesis between these two theories [106]. Associated to this theory comes the idea that

genotype and phenotype should be clearly separated, and that the random variations oc-
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cur at the level of the genotype. These approaches of population genetics lead to systems

of equations such as P =G +E , a phenotypic trait P is the sum of genetic G and environ-

mental E effects and thus Var(P ) = Var(G)+Var(E)+2.Cov(G ,E) where Var(P ) represents

the variance of a phenotypic trait P , Var(G) represents the genetic variance, Var(E) the

variance in environmental conditions and Cov(G ,E) the covariance between variations in

the genotype and the environmental conditions [120]. As explicitly represented in this

equation, this theory completely abstracts out the concept of development, and consid-

ers a direct mapping between the genotype and the phenotype, with selection acting at

the level of the phenotype and variations occurring at the level of the genotype. However,

these kinds of models have often been criticized for reducing organisms to their genes in

a so-called "beanbag genetics" [143].

Taking the development into account as a phenomenon extended in time and occur-

ring at different scales when considering evolutionary theories requires to introduce other

concepts. The first problem consists in being able to compare developing organisms lead-

ing to phenotypes that are not necessarily comparable, for example between different

species. Before the advent of developmental genetics, the concept of heterochrony during

development has been proposed as a good operational tool to compare development in

close or distant species ([87], [6]). Heterochrony, which has first been introduced by Ernst

Haeckel, characterizes the changes in the timing of events during development. After hav-

ing identified homologous parts in various organisms, it is possible to classify the transfor-

mation between developments in several classes, Acceleration, Neoteny, Hypermorpho-

sis, Progenesis, Post displacement and Pre displacement depending of the changes in the

control parameters which are the growth rate, the shape changes and the time of onset

and offset of development of a given shape. These concepts have been successfully used

to compare and understand the differences in the morphology of three species of sala-

manders.

Embryonic developments among animals of the vertebrate phylum has been shown to

go through a very similar stage after presenting great variations in the early stages. This

is the so-called phylotypic stage, leading to a developmental hourglass model. First pro-

posed by Von Baer in 1828 [214], this model is considered as showing developmental con-

straints in development. The phylotypic stage has been supported by recent molecular

evidence [115], [107].

Many morphological approaches have been put aside for many years after the devel-

opment of developmental genetics in the 1980s. In particular, homeotic genes have been
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shown to be involved in the establishment of the body plan in many organisms [161] , for

example Hox genes in the Drosophila [184]. After these discoveries, the new field of evo-

lutionary developmental biology was concerned with explaining the evolution of these

genes which regulate development in many organisms.

Opposite to this last perspective is the "physicalist" approach developed by Vincent

Fleury who explains the body plan only with physical constraints on the tissue generated

by the early embryo, considered as a "tissue flow" [73]. This approach provides a very

interesting perspective in terms of constraints undergone by the tissue which is a physical

material. These physical constraints are relatively universal because they apply to any

tissue having the same boundary conditions. However this approach only characterizes

one level of organization, the tissular one, and neglect the behavior of individual cells.

The key concepts in the approaches bringing together development and evolution are

the notions of canalization, plasticity, developmental stability, developmental constraints,

evolvability and how development shapes evolution and how evolution constrain devel-

opment [54], [30], [123]. Cryptic developmental variation can also be considered as an

explanation for buffered phenotypic variability [61].

In the following, we would like to consider the developmental paths and the distribu-

tion of symmetry breaking as a way to characterize diversification. Following suggestions

made in the frame of the so called dynamical structuralism, we propose here to link a

historical perspective of morphogenesis with a comparison of resulting phenotypes using

the zebrafish as a model organism[217]. First we will explore a concept proposed to cor-

relate phenotype and genotype while including development in the Drosophila embryo-

genesis, under the name ontogenetic tree. We propose then to use this concept to link a

"developmental proximity" with a "phenotypic proximity" in order to highlight structural

constraints in developing zebrafish.

7.2 Reconstructing the ontogenetic tree of the Danio rerio

embryogenesis

7.2.1 The concept of an ontogenetic tree

In a series of papers, Ho and Saunders develop the idea of an ontogenetic tree as a ba-

sis for a rational approach of taxonomy [101], [99]. They refer explicitly to the Romantis-

che Naturphilosophie in Germany after the seminal work of Goethe where he introduced
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the notion of morphology and the theory of transformation from an Urpflanze in 1790

[85]. This relates also to the debate between Cuvier and Geoffroy Saint-Hilaire in 1830 on

the existence of a unique body plan for all animals [176], which later led to comparative

anatomy. Of course, these conceptions have to be considered in their historical context

and should not be transposed as such for contemporary science. On the other hand, in

Darwin’s evolutionary theory, published a few years later, the theory of forms and transfor-

mation is not central anymore, the main driving process comes from natural selection and

thus adaptation. Morphologies diverge from each other among the genus, taxa, species, as

the result of random variations. Although very interesting, these historical considerations

belong to history of science and epistemology and should be discussed elsewhere.

Figure 7.1: The ontogenetic tree of the observed morphologies in Drosophila with hypo-
thetical intermediate phenotypes (dotted outline) based on developmental rules. Figure
adapted from [101]

In their articles, Ho and Saunders refer to a set of experimental results resulting from

genetic perturbations of the Drosophila embryos. These perturbations affect the segmen-

tation process. What they argue is that these perturbations lead to phenotypic changes

that cannot be completely arbitrary and necessarily depend on the developmental path.
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Therefore, the final phenotypes are constrained by the intermediate stages through which

the embryos are passing during development. The genetic perturbations generate succes-

sive bifurcations from the normal development. All of these developments are gathered

together within an ontogenetic tree. Each bifurcation will generate a new branch in the

tree. Figure 7.1 shows an illustration of the concept of ontogenetic tree for the Drosophila

melanogaster in [101] based on data published in [100].

The approach and the structure of an ontogenetic tree are very appealing concepts,

although the underlying assumptions for the process of segmentation may not be rele-

vant anymore in regard of contemporary results. The structure of a tree can be formal-

ized mathematically. The distance between resulting phenotype can be characterized by

considering the length of the common developmental path, which constrain highly the

subsequent development.

7.2.2 Formalization of the tree

Developmental processes are usually described with successive developmental stages

corresponding to the setting up of the different parts of the organisms. Because any vari-

ation in the development will affect all the subsequent stages of the process, we can de-

scribe hierarchically the possible paths that stem from each mutational event. The pool-

ing of different development paths that arise from different mutational profiles results in

a hierarchical tree where each bifurcation corresponds to a symmetry breaking. The sym-

metry breakings that we consider here consist, for any part of the organism, in 1) change in

timing, 2) abnormal development, or 3) absence of development. We will call this tree an

ontogenetic tree in reference to previous work done on the drosophila segmentation [101]

presented in the previous subsection. Thus, we can compute a “developmental distance”,

two organisms will be developmentally close if they share long branches, i.e. if they share

a long common history.

As a toy example, let’s consider the following set of developmental sequences and sym-

metry breaking presented in table 7.1. Suppose that the development of the wild type

(WT) is composed of four developmental stages {S1,S2,S3,S4}. Then, the developmen-

tal sequence associated to the wild type is {0,0,0,0}. A symmetry breaking in a mutant

development will be denoted by a 1 in the developmental sequence at the corresponding

developmental stage. For example the mutant M1 undergoes a symmetry breaking com-

pared to the wild type at the third stage, therefore its developmental sequence is denoted

as {0,0,1,0}. If several mutant developments are considered, they can be ordered with a
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lexicographical order as shown in the table 7.1.

S1 S2 S3 S4

WT 0 0 0 0

M1 0 0 1 0

M2 0 1 0 0

M3 0 1 0 1

M4 1 0 0 0

Table 7.1: Toy model of developmental sequences covering five developmental stages.
From top to bottom, the sequences are ordered with a lexicographical order

The order obtained enables to gather the developmental sequences on a tree. With the

toy model presented on table 7.1, the following ontogenetic tree is obtained

S S1

S2 S3 S4 M4

S2

S3 S4
M3

M2

S3
S4 M1

S4 WT

There is a first symmetry breaking at stage S1, separating the developments of (WT,

M1, M2, M3) on one side and (M4) on the other side. Then, a second symmetry breaking

is observed at stage S2 separating the developments of (WT, M1) on side and (M2, M3)

on the other side. In the branch gathering (WT, M1), a symmetry breaking is observed at

stage S3 separating the two developmental paths. In the branch gathering (M2, M3) the

two developmental paths diverge at the stage S4.

If we define a developmental proximity d as the length of the common developmental

path, we obtain the following inequalities:

d(M2, M3) ≤ d(W T, M1) ≤ d(W T, M2) ≤ d(W T, M4)

The values of these developmental proximities can then be compared to a phenotypic

proximity between the resulting embryos, e.g. based on the morphological similarity or

on the functional similarity.
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7.2.3 Observing the phylotypic stage

To explore these ideas further, we used the Zebrafish Model Organism Database (zfin.org)

that gather current works on the zebrafish [29]. This database relies on a temporal on-

tology that describes the main developmental stages and a morphological ontology that

describes the main parts of the organisms. 7317 mutations have been registered, with the

description of their development using this ontology. We transformed each development

description in a binary sequence that summarizes the normal stages and the symmetry

breakings as defined in the previous section. After having ordered them using a lexico-

graphical order we were able to map them on the same tree as exemplified on figure 1.

The first observation that can be made is that the distribution of developmental paths

is spread over most of the developmental stages. At first sight, density of branches among

the various developmental stages seems uniformly distributed. Moreover, we have plot-

ted in different colors the mutant developmental paths affecting the eyes (yellow) and the

developmental paths described without indication of an effect on the eye. The two colors

seem to be well distributed along the developmental stages, indicating that there are no

preferential stages for effects on the eyes.

Are the mutant developmental paths distributed uniformly along the ontogenetic tree?

When and where do the higher number of development paths arise? One way to compute

answers to these questions is by considering for each developmental stage the number of

developmental path which undergo a first symmetry breaking at this stage, i.e. diverging

from the wild type development. For example, with the toy data set presented on the table

7.1, there is one developmental path diverging from the wild type at stage S1 (M4), two at

stage S2 (M2, M3) and one at stage S3 (M1).

Figure 7.3 shows the result of the computation of the number of diverging develop-

mental paths for each stage of the zebrafish embryogenesis. This number can be inter-

preted as a diversity potential. We can see that except for the early embryogenesis the

diversity potential increases with the succession of the developmental periods until the

pharyngula period before decreasing with the hatching period. The pharyngula period

corresponds to the period of organogenesis. This result is coherent with the fact that this

period has been considered as the phylotypic stage, the main axis are already established

and the variation can therefore take place on less critical parts of the organism.
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Figure 7.2: Reconstruction of the zebrafish ontogenetic tree using zfin.org database. Each
leaf of this tree corresponds to a set of mutant phenotypes that share a similar history, each
node corresponds to a developmental stage, each branching corresponds to a symmetry
breaking. Nodes are colored in yellow if they correspond to phenotypes having a default
on the eye and in red if not
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Figure 7.3: Diversity potential per developmental stage and period evaluated by counting
the number of diverging branches from the wild type development
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7.3 Discussion and conclusion

The main flaws of this study reside in the nature of the dataset which can be biased

by 1) the chosen structures and phenotypes for the ontology used to describe the devel-

opment (epistemic flaw) 2) the description biases related to the teams making the experi-

ments (epistemic flaw) 3) the mutagenesis methodology (sampling methodology) .

It could be interesting to provide a null model of tree, to show that the diversity po-

tential is really significantly higher for the pharyngula period compared to randomly dis-

tributed changes along the developmental paths.

Overall, we see that the concept of an ontogenetic tree can be useful to compare a large

number of developmental sequences. The divergence pattern between developmental

sequences can explain some of the morphological similarity between species, since di-

vergence is more likely after critical stages of development having been gone through.

Therefore the early stages of embryogenesis canalize the possible forms of final pheno-

type. Variation seems to proceed mostly on already established organization. Variation

cannot be considered as leading to any arbitrary possible phenotype. This view relates

to von Baer conception of diversification by successive specialization. Understanding the

development in different species, could explain and help classify the morphological dif-

ferences observed in later stages.



Conclusion

The main idea unifying the studies presented in this part of the dissertation is to under-

stand the relation between variations in individual development and generation of diver-

sity. The multi-scale nature of organisms, i.e. their organization and the path dependency

of development, i.e. their historicity, require to give to variability a specific role.

The review of the main mechanisms at the origin of diversity in Chapter 4 points out

that variability can emerge at multiple scales in an organism, from gene mutation to stochas-

tic effects and epigenetic events. The heterogeneous nature of these mechanisms make

them difficult to integrate in a common framework. However they are relevant to under-

stand diversity since they all have an effect on resulting phenotypes upon which natural

selection act.

Turning to mathematics and physics doesn’t simplify the picture. Indeed, the for-

malisms developed rely on different hypotheses, for example in chaotic systems theory

and ergodic theory, the characterizations of randomness are different. The mathematics

of probability theory provide a framework enabling calculus on uncertain events without

defining any notion of randomness. The assumptions underlying the axioms, however, in-

volve some modeling hypotheses on the described situation. These assumptions may not

be always the most suited as witnessed by the probability theory developed in quantum

mechanics, generalizing Kolmogorovian probability theory which is the most common

framework used in classical situations.

Given the heterogeneous nature of mechanisms at the origin of diversity, and the het-

erogenous nature of mathematical frameworks used to model situation of uncertainty, it

is argued that, as an alternative to a theoretical integration of sources of diversity, it is pos-

sible to use hypothesis based modeling and simulations to explore the range of possibles

allowed by a set of identified mechanisms. However, the simplifying assumptions neces-

sary to establish such models reduce the generality of their results.

After these general considerations on variability in the living, we turn our attention, in
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Chapter 5, to a specific experimental system which shows surprisingly high levels of vari-

ability. Crossing homozygote zebrafish mutants lead to a phenomenon of variable phe-

notypic expressivity and incomplete penetrance, in the squint mutant line. The mutation

affect the Nodal signaling pathway which is involved in the establishment of the main

body axes of the zebrafish. A quantitative description of the distribution of phenotypes

(interocular distance) in the progeny of identified homozygote mutant parents leads to

the following properties of variability: the discrete list of possible phenotypes is explored

in unpredictable proportions, this list is possibly incomplete. Trying to find determinants

to this variability involve complex causal relationships.

Theoretical implications of the results of the squint experiment are investigated in

Chapter 6. In this chapter, we propose an analogy with quantum mechanics to clarify the

different levels of variability encountered in biology. Indeed, variability leads, for a given

observable, such as the interocular distance in the squint experiment, to the observation

of phenotypes in variable proportions. These proportions can be described in terms of

probability. However, this list of possible phenotypes may be extended with the observa-

tion of an emerging new phenotype. In that case, the space of possible associated to the

observable needs to updated, this can be performed with a cartesian product between the

previous space of possible and the new direction defined by the new phenotype. This op-

eration requires a vector space structure for the set of probability distributions. Finally,

in the course of evolution a radically new phenotype can emerge, requiring new observ-

ables for its description. In that case, the new observables define new spaces of possibles.

This level of unpredictability is much higher than the one described by probability theory

in a pre-given set of possible phenotypes. It is specific of the historical nature of biologi-

cal objects. After having clarified these levels of uncertainty formally with a mathematical

framework analog to the framework developed in quantum mechanics, it is possible to de-

scribe a way to infer causal links or correlation between observable values. Using Mendel’s

scheme of inheritance as an example, we show that the dominance-recessivity relation-

ships imply a phenomenon formally analog to quantum entanglement. This effect can be

explained by the fact, that given biological organization, two phenotypes cannot coexist

in the same organism.

The path dependency of developmental processes implies that the relations between

genotype and phenotype are not linear. The squint experiment shows that the relations

can be highly complex. However, it is possible to try to measure and quantify the influence

of path dependency on resulting phenotypes. This is the object of Chapter 7. In this chap-
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ter, we propose a formal structure, an "ontogenetic tree", to gather mutant developments

and characterize their diverging patterns in relation to each other. Using this tree struc-

ture, we can compute a developmental distance between phenotypes by measuring the

length of their common development. This developmental distance has to be compared

to a phenotypic distance in order to highlight the effect of the different developmental

stages on the resulting phenotype. As an example we use a data set of numerous descrip-

tions of zebrafish mutant developments. By computing the ontogenetic tree, we show

that the pharyngula period of development generates the highest number of diverging de-

velopmental paths, canalizing therefore subsequent degrees of freedom for development.

These results should however be manipulated carefully since multiple biases can exist in

the data set.

Altogether, we show that variability at all scales has an effect on diversity. The inte-

gration of this variability in a unique framework is an open and difficult problem which

is not reducible to already existing mathematical framework because of the organization

and historicity of biological objects. It is a central problem of biology that should be con-

sidered in any study.
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Part III

Quantifying biological shapes

161





Introduction

In this part, we consider the question of shape. We propose to study epithelial organi-

zation in developing embryos. Epithelial tissues constitute one of the simplest structure

found in development. The question is to find invariants in this structure among several

species and genetic backgrounds and way to quantify variability in a generic manner on

this relatively universal structure.

One approach for the study of epithelial organization considers the network of cellular

contacts from static images. This mathematical structure enables to characterize the spa-

tial distribution of cells. Previous studies have used the tools of complex networks studies,

however these approaches underestimate the role of underlying topological constraints

of the tissue which reduce the power of these measures. Developmental histories lead-

ing to epithelial organization prevent to find simple symmetrical structures, epithelia are

indeed the result of cell proliferation, cell motility and cell extrusion producing complex

structures.

Departing from an analogy with the structure of the cosmic web which is highly histor-

ical in nature, we propose to define topological invariants based on the tools of persistent

homology. Using this approach we were able to compare and classify a wide range of tis-

sues and get back to species and genetic background classification.

To assess the significance of this approach, we introduce a model of random triangu-

lated surface. This model constrains local characteristics: the degree distribution in the

network is set. The choice of neighbors in the network is free and random, the only condi-

tion being that the resulting network can be embed in a surface. This approach uncovers

the higher-order spatial constraints in the distribution of the cells and shows the existence

of patterns involving groups of cells in significant proportions. These constraints can be

interpreted as the mark of individual developmental histories. Relying on a data set con-

sisting in confocal images of epithelia from Drosophila and Chick embryos, we perform a

comparative study in Chapter 8.
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Chapter 9 proposes some perspectives on a dynamical characterization of the network

of cellular contacts. In particular we argue that time should not be considered as a similar

dimension as space dimensions since its evolution changes the nature of the network. Fi-

nally we propose a measure that combine the study of genealogical relations between cells

and their spatial organization at the same time. This measure should be able to quantify

the unfolding of shape in space and time.



Chapter 8

Using persistent homology to quantify

tissue shape and organization

Abstract Epithelial tissues are simple cellular structures found in developing embryo

in different species. The organization of these tissues has been studied using local proper-

ties of the network of cellular contacts. However, accounting for global and spatial prop-

erties requires extending these approaches. Using persistent homology on the network of

cellular contacts reveals global topological characteristics. To assess the significance of these

characteristics, we provide a model of random triangulated surfaces with arbitrary degree

distribution. These oriented surfaces are obtained by randomly gluing oriented polygons;

this process results in planar graphs with appropriate degree distribution. We explore the

topological characteristics of these surfaces and compare them to a set of empirical data.

Differences between the null model and the data provide insights for the understanding of

underlying biological processes and equip us with a notion of "level of randomness". This

notion can be used to evaluate the contribution of genetic factors such as the presence of

Myosin II. 1

8.1 Introduction

Embryonic morphogenesis is a complex process involving regulations at all scales. Ep-

ithelia are simple tissular structures found in a wide range of embryo. An epithelium is a

1. The study presented in this chapter has greatly benefited from the supervision of Gunnar Carlsson
during an extended stay at Stanford University Mathematics Department (Feb.- Jul. 2014). This work has
been presented at the conference "Algebraic Topology - Methods, Computation and Science 6" at Vancouver,
Canada (05/26-30/2014)
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monolayer of densely packed cells. The spatial distribution of cells forms a complex struc-

ture shaped by cell proliferation, cell motility and cell extrusion throughout development

[90].

Resulting spatial structure and individual cell shapes within the tissue depend on this

sequence of events. Cell shapes in 2D can be modeled as polygons. This model allow

to relate cell proliferation to distribution of cell shapes in epithelia [80]. A generalization

of this approach considers the whole network of cellular contacts [67]. The network of

cellular contacts is an abstract representation of the epithelial organization. Each cell is a

node and the contacts between cells are represented as edges. Similar patterns of cellular

contacts has been studied in crack patterns [27], [26], or in foam dynamics [121].

The authors of [67] import the tools of complex networks for the study of the network

of cellular contacts. This approach is pursued in a subsequent study [191]. We take in this

chapter a different approach to study the network. Using invariants defined in algebraic

topology, we propose to quantify high-order structures in the network of cellular contacts.

We develop an algorithm of discrete pattern recognition to describe structure involving

small groups of cells in the network of cellular contacts. This approach gives us access to

intrinsic and tissue-level characteristics of the network of cellular contacts.

8.2 Global characterization of epithelial tissues

8.2.1 Network of cellular connectivity

The structure of an epithelium can be described with the network of connectivity be-

tween the cells: two cells are connected if their membranes are in contact. This network

can be formalized as a couple (V ,E) where V = {v1, v2, ...vn} is the set of vertices in the

network corresponding to each cell in the tissue and E =
{{

vi , v j
}
∈V 2

}
is the set of un-

oriented edges corresponding to each cellular contact in the tissue [7]. Figure 8.1 shows a

representation of this network in a sample of tissue. This network is obtained by segment-

ing the cells in the image. Although it is represented in space, it is a purely combinatorial

structure. In figure 8.1, the nodes positions correspond to mass center of the associated

cells. It differs from a voronoi tessellation of the space based on the cell centers because

regions defined by cell membranes may not be convex.

In a network, the degree of a node corresponds to the number of edges coming to this

node, it corresponds to the number of neighbors of a cell. The frequency distribution of n-
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sided cells in a tissue as described in [80] is exactly the degree distribution in the network

of cellular connectivity. Figure 8.2 shows this distribution in different type of epithelia.

We can see that the shape of this distribution varies greatly from one type of tissue to the

other, although they are all centered on 6-sided cells.

Figure 8.1: Sample of epithelium from the Drosophila Wing Prepupa where the cells mem-
branes are represented in black and the network of cellular connectivity is visualized in
blue. The vertices of the network are placed on the mass centers of the cells, although the
network of cellular connectivity is a purely combinatorial object

The study of the network of cellular connectivity has been recently introduced in the
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(a) chicken ectoderm (b) chicken neuroepithelium

(c) drosophila wing prepupa (d) drosophila mutant wing prepupa

Figure 8.2: Degree distribution computed from the network of cellular connectivity in var-
ious tissues. Number of neighbors varies around the mean value of 6. The proportion is
indicated as an empirical frequency: number of nodes with a given number of neighbor
divided by the total number of nodes.
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paper [67]. Authors of this paper use three measures to characterize this network: the

degree, the clustering coefficient and the average degree of neighbors. The degree is the

number of neighbors of a cell. The clustering coefficient is a measure of local packing

which is defined for a cell as the ratio between the number of observed interconnections

in its neighborhood and the number of interconnections in a complete graph having the

same number of nodes (i.e. where all the nodes are interconnected). The average degree

of neighbors is the averaged degree over the neighbors of the considered node.

8.2.2 Complex networks approach shows some limitations

The degree, the clustering coefficient and the average degree of neighbors are mea-

sures of network developed in the context of complex systems approaches [48]. If complex

network approaches are relevant for the study of sociological networks, they may show

some limitations for the study of epithelia which are highly constrained by the underly-

ing topology. Network of cellular contacts in epithelia can be assimilated to a triangulated

planar graph as a first approximation. A planar graph has the property to be embeddable

in a plane without any edge crossing. A triangulated planar graph has for dual network, a

network where each node has degree 3.

Figure 8.3: Schematic representation of the network of cellular contacts. k blue edges
connect a node to its neighbors. Red edges connect neighbors to each other. The cluster-
ing coefficient is defined for a cell as the ratio between the number of observed intercon-
nections in its direct neighborhood and the number of interconnections in a complete
graph having the same number of nodes (i.e. where all the nodes are interconnected).
A) Most common case, clustering coefficient C = 2/(k − 1) B) Case with a 3-sided cell,
C = 2.(k +1)/(k.(k −1)) C) Case with a 4-sided junction, C = 2.(k +1)/(k.(k −1))

It is easy to show that in a planar triangulation, the clustering coefficient of a node
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having k neighbors is equal to 2
k−1 . Therefore, the measure of the clustering coefficient

doesn’t provide more information than the number of neighbors. The average degree of

neighbors is a measure the connectivity of neighbors and gives information about wider

context in the network. The accuracy of this last measure is nevertheless dependent on the

dispersion of the degree in the network, and may not provide better information than the

degree distribution itself for networks with low degree variation. These classical measures

of complex networks have been introduced in the context of communications or sociolog-

ical networks where the underlying space has a complex topology [7]. They have been very

successful to describe Internet topology or networks of actors. The limitations presented

here derive from the global topology of epithelia. It is thus necessary to introduce new

measure that would be able to provide global information about the network of cellular

contacts, and which are not reducible to the number of neighbors.

Alternative approaches can be found in the study of topological properties of networks.

There is a large mathematical literature that describe the topology of network ([89]), yet

the traditional characteristics like the euler characteristics or the genus may not be accu-

rate to distinguish between different tissues since most of the time epithelia are planar

graphs (or close to it). They are contractible, that means that they have the homotopy type

of a point. Some differences may appear due to transient processes such as rosette forma-

tion that induces 4-sided or 5-sided junctions and appear transiently during the process

of cell intercalation [25], [205]. They are however described as unstable features of the net-

works and may not form the basis of stable signature of a tissue topology. The following

will present more sophisticated tools aimed at finding robust signatures of the topology of

the networks and unfolding the richness of their organization.

8.2.3 Persistent homology

A useful way to approach the topology of a complex landscape is to use the framework

of persistent homology ([38], [37], [62]). This method has been applied successfully in cos-

mology to characterize the filamentary structure of the cosmic web ([200]) among many

examples. The idea is to define a sequence of nested subspaces of the investigated space

indexed by a parameter and to observe how the topology of these spaces change with the

parameter. These changes are then summarized by a barcode or a persistence diagram,

which gives a topological signature of the space. This method refine the description of

the space by providing a multi scale representation, unfolding its organization. Moreover,

stability results show that this description is robust [43].
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In the case of the network of cellular connectivity, we can use the number of neighbors

as a proxy for the density of the space. For each network (V ,E), two filtrations are defined.

A filtration is a nested sequence of spaces. The filtrations considered here are indexed with

a parameter k (natural integer) corresponding to values of degree. They are defined as a

discrete analog of the sub- and super level sets functions. We first define two sequences of

nested networks, Sub = {Sub(k)}k∈N and Sup =
{
Sup(k)

}
k∈N:

Sub(k) = ({vi ∈V : di ≤ k}, {e = {vi , v j } ∈ E : di ≤ k & d j ≤ k}) (8.1)

Sup(k) = ({vi ∈V : di ≥ k}, {e = {vi , v j } ∈ E : di ≥ k & d j ≥ k}) (8.2)

Sub(k) and Sup(k) are subnetworks of (V ,E) such that each node and each edge con-

nect nodes having at most (at least respectively) k neighbors in (V ,E). We have therefore

Sub(1) ⊂ Sub(2) ⊂ ... ⊂ Sub(kmax), and Sup(kmax) ⊂ Sup(kmax − 1) ⊂ ... ⊂ Sup(1), with

kmax being the highest degree measured in (V ,E). These subnetworks are the analogs

of sub and super level sets in the continuous case. For each value of the parameter k,

clique complexes Sub∗(k) and Sup∗(k) are constructed from the subnetwork Sub(k) and

Sup(k). Clique complexes contain simplices for each clique of the network as shown on

figure 8.4. A clique is a complete graph, i.e. a set of nodes with an edge for each pair

of node. For example, if a set of three nodes are completely connected, the clique com-

plex of this graph is a triangle, if four nodes are completely connected, the clique com-

plex is a tetrahedron. The sets of clique complexes Sub∗ =
{
Sub∗(k)

}
k∈N and Sup∗ =

{
Sup∗(k)

}
k∈N form natural filtrations as they are constructed on top of the filtrations Sub

and Sup. Figure 8.5 gives an example of the filtration.

The idea of the persistent homology algorithm is to describe the topology of the spaces

contained in the filtrations Sub∗ and Sup∗ for each value of the parameter k. Persistent

features will correspond to intrinsic features of the object, whereas features associated to

noise will be unstable and won’t last. The topological features considered are the Betti

numbers, which measure the i-dimensional "holes" of a space. For example, for a torus,

as represented on figure 8.6, the number of 0-dimensional holes (β0) is 1, it is the number

of connected components. The number of 1-dimensional holes (β1), i.e. "circles", is 2, the

one that encircles the void in the middle of the torus and the one that encircles the torus.

The number of 2-dimensional holes (β2), i.e. "voids", is 1, the one inside the torus.

Computing these topological invariants for each subspaces of the filtrations results

in a multi-scale object called a barcode that summarizes the evolution of these features
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Figure 8.4: Example of a Clique complex on top of a network. Nodes are in red, edges in
black, triangles in light blue when three nodes are connected, tetrahedron in deep blue
when four nodes are connected - From wikipedia

throughout the value of the parameter indexing the sequence. Bars in the barcode corre-

spond to generator of i-dimensional holes. A new bar appears when a new i-dimensional

hole appears in the filtration and the bar disappears when the hole disappears. Long bars

can be interpreted as robust features features of the space whereas small bars can be in-

duced by local small variations. Implementation of the algorithm is described in [223]. We

used the javaplex library [2] to compute a barcode for each epithelium. Figure 8.7 shows

barcodes for the sample of tissue represented on figure 8.1. The first line of a barcode

shows the evolution of the number of connected components which is visualized through

the number of bars. The second line shows the evolution of cycles in the networks and the

way they are filled. The barcodes corresponding to sub and super level sets in this example

are not identical, both approaches provide useful information, and they will be considered

jointly in the following.

The filtration represented on figure 8.5 can be directly related to the barcode repre-

sented on figure 8.7 (a). When the parameter is equal to d = 5, we see that sub complexes

consist only in unrelated connected components, the barcode has bars only for Betti 0

which counts the number of connected components. When the parameter is increased to

d = 6 we see still a significant number of connected components and the birth of holes.

This is visible on the first line of the barcode where the number of bars for Betti 0 is con-

stant and new bars appears for Betti 1. For d = 7, the simplicial complex become a single

connected component where most of the nodes are connected, it contains holes. The

number of bars for Betti 0 falls to 1 the single connected component. The numbers of bars
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(a) (b)

(c) (d)

Figure 8.5: Sequence of simplicial complexes
{
Sub∗(k)

}
k for the same sample of tissue

represented in figure 8.1 (from Drosophila Wing Prepupa), with k = 5, k = 6, k = 7 and
k = 8. Cell membranes are represented in black and simplicial complexes in blue. Nodes
are positioned on the mass center of cell surface area, although simplicial complexes are
a purely combinatorial structure.
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Figure 8.6: Example of a torus, its Betti numbers have for values β0 = 1, β0 = 2, β0 = 1 -
Source wikimedia

for Betti 1 is maintained, although discontinuously indicating change of the position of

the holes. For d = 8, we still have a single connected component, where the number of

holes is highly reduced. The number of bars for Betti 0 stays at 1, the single connected

component. The number of bars for Betti 1 falls with the decrease of holes number.

Barcodes computed over the filtrations Sub∗ and Sup∗defined above offer a multi

scale representation of the epithelial topology. They carry useful information that can be

used to investigate the global organization of the network of cellular connectivity. These

barcodes provide a qualitative information that can be compared from one sample to the

other because they represent similar features in the networks. Their differences reflect

changes in the organization. To make these comparisons possible on a broad range of tis-

sue samples it is however necessary to introduce quantitative features associated to each

barcodes.

8.2.4 Quantitative comparison by computing features on top of barcodes

In order to compute quantitative features based on the barcodes which are the objects

summarizing the evolution of the topological features of the spaces along the filtration,

we used a methodology proposed in [3]. In this article the authors suggest to use the co-

ordinates of the bars of a bacode as the domain of functions that will return quantitative

value characterizing the barcodes. These functions have to satisfy a certain number of cri-

teria that makes them sufficiently generic over different types of barcodes. These criteria
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Figure 8.7: Barcodes for Sub∗ for the sample of tissue represented in figures 8.1 and 8.5.
Each individual blue line correspond to a generator of the i-dimensional homology. Di-
mension 0 shows the number of connected component. Dimension 1 shows the number
of holes. In each graph abscissa correspond to the value of the parameter in the filtration,
here the degree of a node in the network
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are sufficient to define functions in terms of tropical polynomials that will be used in the

following.

For each Betti number, corresponding barcodes can be written as sets of couples
{
(xi , yi )

}
i ,

with (yi > xi ), each of them representing a bar. Only bars of finite length will be consid-

ered. We denote by n the number of bars. We define the functions that are relevant to our

analysis in the following way:

1

n

∑

i

(yi −xi ) (8.3)

1

n

∑

i

(yi −xi )2 (8.4)

1

n

∑

i

(yi +xi )(yi −xi ) (8.5)

1

n

∑

i

(yi +xi )2(yi −xi ) (8.6)

(8.7)

Each of these functions returns a unique real value associated to one of the Betti num-

ber. They highlight different aspects of the barcodes: the lengths of the bars for the first

two, with more weight on longer bars for the second one, and the relative shift in the bar-

code for the last two of them, with more weight accorded to this shift for the fourth one.

They are divided by n, the number of bars, to avoid biases introduced by variable of the

samples.

Thanks to these functions computed over the barcodes, we obtain four features for

each Betti numbers in each filtration of each sample of tissue. Betti 0 and Betti 1 are con-

sidered only, Betti 2 have only infinite bars or no bars. In summary, 16 features are ob-

tained for each sample of tissues: 4 features x 2 barcodes x 2 filtrations. These features can

be used to compare a broad range of epithelial tissues.

8.2.5 Classification of tissues

Using the data set provided with the article [67], we used these vectors of features as a

basis for a statistical analysis over different type of epithelia. The data set consists of sam-

ple of tissues extracted from live embryo and imaged with confocal microscopy. 9 to 15

samples have been imaged in each of the different following situations: drosophila Wing



177

Prepupa, drosophila mutant Wing Prepupa (reduced level of Myosin II expressed), chicken

Neuroepithelium, chicken embryonic Ectoderm. For each sample, the network of cellular

connectivity has been extracted. Each sample of tissue is plotted with respect to the char-

acteristics of its degree distribution on figure 8.8. We can see that the different tissue types

are clustered according to their degree distributions. Even if they have a similar general

organization as an epithelium, the networks present some specificities depending on the

tissue type.

Figure 8.8: The 52 samples of epithelium are well separated using the main characteristics
of the degree distribution. Each point corresponds to one sample of tissue and is plotted in
the space defined by the mean number of neighbors versus the standard deviation. Each
color corresponds to one type of epithelium - Magenta: Drosophila Wing Prepupa (dWP)
- Green: Drosophila Mutant Wing Prepupa (dMWP) - Red: Chick Neuroepithelium (cNT)
- Blue: Chick Ectoderm (cEE)

Persistent homology has been computed on the filtrations Sub∗ and Sup∗, and the
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vector of 16 features has been computed. These samples are represented in a 16-dimensional

space. To visualize their distribution, they have been projected on the plane defined by the

two first principal components of the principal component analysis as represented in fig-

ure 8.9. This figure shows that points are clustered according to tissue type indicating a

robust topological signature generated by this methodology. The spread of points is not

the same for the different tissue types. It is the highest for samples from chicken Ectoderm,

whereas it is the lowest for sample from the drosophila’s Wing Prepupa.

Figure 8.9: Principal component analysis performed on the quantitative features, defined
in section 8.2.4, associated to each sample of tissue - Magenta: Drosophila Wing Prepupa
- Green: Drosophila Mutant Wing Prepupa - Red: Chick Neuroepithelium - Blue: Chick
Ectoderm

Given the apparent separability of the clusters, it is expected that more sophisticated

statistical analysis and machine learning tools would capture precisely the value of the
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features obtained for each type of tissue. These observations prove that images of ep-

ithelia can be compared and classified using persistent homology. Moreover, we will see

below that computing persistent homology enables to characterize some aspects of the

organization that are missing when considering the degree distribution alone.

8.2.6 Summary

The automatic pipeline that has been developed in this section is described by the

following steps (see table 8.1):

sample of tissue (membranes)

↓

cell segmentation

↓

network of cellular contacts

(purely combinatorial object)

↓

filtration on the sub and super level sets of the number of neighbors

↓

persistent homology algorithm

↓

barcodes

↓

quantitative features

↓

comparison and classification

Table 8.1: Steps of the automatic pipeline enabling comparison and classification of ep-
ithelial tissues
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8.3 Random surfaces with arbitrary degree distribution to

model tissue topology

In the previous section we provided a method to compare samples of tissues taking

into account their global organization. However, to gain a biological understanding of this

organization, the differences observed in the features values need to be interpreted. We

propose in this section a model of random graphs that tries to make sense of the observed

differences. The question that will support these investigations is the question of how local

relations between cells affect the global organization.

8.3.1 Use of a null model

One way of answering the question of how local interactions between cells influence

the global organization of the tissue is to use a null model that will match some properties

of the network while keeping other properties free. Since the question is to understand

how relations between cells affect the global topology of the network, the properties that

will be set are the local properties of cells, thus the degree. The choice of the type of con-

nections between vertices will then affect the global organization of the network. Compar-

ing an empirical network with its random counterpart having the same degree distribution

will highlight the role of the connections between nodes on topological features.

8.3.2 Topological hypotheses are necessary

The simplest model of random graph with arbitrary degree distribution is the Newman

Strogatz model [158]. In this model each node has a degree randomly drawn from the

degree distribution. The nodes are then randomly connected to each other. With this

construction process, the degree distribution is prescribed in the network and nothing is

assumed about the relations between the nodes.

We generated random networks with empirical degree distribution for each sample

of tissue. The previous section described a way to quantify global topology of any com-

binatorial network, thus random networks can be studied in the same way. Figure 8.10

shows the comparison of the barcodes between an actual sample of tissue (on the left)

and the random network having the same degree distribution (on the right). The compar-

ison of these two figures shows a clear difference in the barcodes of these two networks.
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This difference mostly rely on the barcodes obtain for Betti 1 (cycles). The barcodes corre-

sponding to Betti 0, describing the simply connected components, are very similar in the

two situations. First order topology is captured by the degree distribution. Thus, the bar-

code of Betti 0 seem to be in that case another representation for the degree distribution

which is independent of the way nodes are related to each other. Higher order structures

are much more different as highlighted by the differences in Betti 1. High order structures

arise from the interconnection between nodes.

The topology corresponding to higher order structures seems to have a very specific

organization in the actual sample of tissue compared to the random network. Connect-

ing nodes randomly induces a complex underlying topology which is very far from the

highly constrained network observed in biological tissues, which can be embeddable in

the plane. This property canalizes these higher order structures. Our approach using per-

sistent homology is proved to be relevant here, since the difference between the random

network and the empirical data wouldn’t have been noticeable based only on a compari-

son of the degree distribution.

(a) (b)

Figure 8.10: Comparison of the barcodes for an actual sample of tissue (a) and its random
counterpart (b) using the Newman Strogatz model of random networks

To understand the relations between cells in epithelial networks of cellular contacts

and refine our understanding of epithelial organization, more explicit constraints have to

be imposed in the null model.

8.3.3 Randomly gluing polygons

One way of describing epithelial topology, already proposed in [80], is to approximate

cells with polygons and consider epithelia as tessellation of the plane. Using this idea,
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a random epithelium can be modeled as a random tessellation that would maintain and

control the distribution of polygons. Random orientable surfaces can be obtained by ran-

domly gluing triangles [175]. The resulting triangulation forms a planar graph embed-

dable in the sphere. However these kinds of model don’t control the degree distribution.

We generalize this model by randomly gluing polygons (they inherit the characteristics of

the random triangulated surfaces since the dual graph is a random triangulation), while

keeping the orientation.

The steps of construction of the random surface obtained by gluing polygons are de-

scribed on the figure 8.11. The idea is to begin first with a randomly chosen polygon, then

to fill its empty sides with randomly drawn polygons (while preserving the orientation and

the degree distribution), and to reiterate with its neighbors. Whenever possible empty

sides are connected with already existing empty sides (while preserving the orientation).

The orientability of the whole surface is guaranteed by constraining the orientation when

adding any new polygon to the construction.

This model of random network imposes in addition to a prescribed degree distribution

that the dual graph has degree three. It is the easiest way to construct a graph that is

embeddable in the plane.

Any degree distribution can be provided as an input, we show several examples on

figure 8.12.

Figure 8.13 shows the barcode for a sample of tissues and its random counter part

obtained by randomly gluing polygons. Barcodes for Betti 0 are similar, which is analogous

to what has been obtained in the case of the Newman Strogatz random network. This

similarity is explained by the fact that the number of simply connected components is

mostly dependent on the shape of the degree distribution. Barcodes for Betti 1 are very

similar between the data and the model, this is a clue toward the fact that this model is able

to capture the features present in the global organization of the tissue. These results show

that the random model captures well the global organization of the network by imposing

to the graph to be embeddable in the plane, confirming that this is a major constraint on

this type of networks.

8.3.4 Topological characteristics of random surfaces

Before going into a systematic comparison of the data and the model, the stability and

robustness of the model needs to be assessed. To evaluate the stability of the model, it

is relevant to study its dependency to input parameters. The parameters are the number
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Figure 8.11: Steps of construction of the random triangulated surface with appropriate
degree distribution. Every polygons are drawn from the same degree distribution. The
order of gluing is indicated by the number on the polygons.
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(a) (b) (c)

(d) (e) (f)

Figure 8.12: Examples of random networks obtained by gluing polygons, when the distri-
bution is a) only 6-sided polygons b) only 7-sided polygons c) only 8-sided polygons d) 5
and 7 sided polygons equiprobable e) 5 and 6 sided polygons equiprobable f) 4 and 8 sided
polygons equiprobable. The spatial representation has been obtained with the gephi soft-
ware, it corresponds roughly to a minimization of repulsion forces between the nodes.
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(a) (b)

Figure 8.13: Comparison of the barcodes for an actual sample of tissue (a) and its random
counterpart (b) generated as a random triangulated surface with the same degree distri-
bution

of nodes and the shape of the degree distribution used to construct the model. A way to

evaluate the stability of the model is to compute its topological features as defined in the

first section, equations 8.4, 8.5, 8.6, 8.7, and look at their evolutions while changing the

parameter values.

To assess empirically the topological characteristics of the model of random surfaces,

we performed a systematic exploration of parameters. Degree distributions were chosen

as normal distribution with mean taking values in the set (5,6,7,8) and a standard devia-

tion taking values in the set (0.4,0.8,1.2), the number of polygons varied from 100 to 100

000. The results show a scaling of the features value with the parameters of the degree

distribution, independently of the number of polygons. Figures 8.14 and 8.15 show the

evolution of the features values. The high degree of clustering of the features values for

the simulations proves the stability of the features values, and their independence to the

number of nodes.

8.3.5 Comparison of the null model and the data for each of the features

For each sample we computed the corresponding random network by using the em-

pirical degree distribution and the same number of nodes. 5 realizations of the random

model have been simulated for each sample of tissue.

For each of the features

We found that the data and the model have similar features values for the features 1,2

and that they vary more for features 3 and 4. These features have been defined in the first
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(a)

(b)

Figure 8.14: Scaling of the topological features with the model’s parameters and indepen-
dence of the topological features’ values with respect to the number of polygons in the
model. Degree distribution were chosen as normal distribution with mean (µ) taking val-
ues in the set (5,6,7,8) and a standard deviation taking values in the set (0.4,0.8,1.2), the
number of polygons varied from 100 to 100 000. Points are colored according to standard
deviation value. Graphs (a) correspond to the evolution of feat 1/σ2. Feat 1 has been de-
fined according to equation 8.4. Left graph correspond to Sub∗ and right graph to Sup∗.

Graphs (b) correspond to the evolution of feat 2/σ3. Feat 2 has been defined according to
equation 8.5. Left graph correspond to Sub∗ and right graph to Sup∗.
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(a)

(b)

Figure 8.15: Scaling of the topological features with the model’s parameters and indepen-
dence of the topological features’ values with respect to the number of polygons in the
model. Degree distribution were chosen as normal distribution with mean (µ) taking val-
ues in the set (5,6,7,8) and a standard deviation (σ) taking values in the set (0.4,0.8,1.2), the
number of polygons varied from 100 to 100 000. Points are colored according to standard
deviation value. Graph (a)-left corresponds to the evolution of feat 3/µσ2 for Sub∗. Feat
3 has been defined according to equation 8.6. Graph (a)-right corresponds to the evolu-
tion of feat 3µ/σ2 for Sup∗. Graph (b)-left corresponds to the evolution of feat 4/(µσ)2 for
Sub∗. Feat 4 has been defined according to equation 8.7. Graph (b)-right corresponds to
the evolution of feat 4(µ/σ)2 for Sup∗.
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section, equations 8.4, 8.5, 8.6, 8.7. They correspond to functions computed on top of the

barcodes.

Distance between the null model and the data - "randomness level"

For each epithelium a degree distribution is computed using the network of cellular

contacts, 5 random triangulated surfaces are generated according to this degree distri-

bution. The 16 features described in section 8.2.5 are computed for the random sur-

faces. Distribution of random surfaces and the empirical samples are compared in the

16-dimensional space with a measure of proximity d .

For principal component i of the PCA defined in section 8.2.5

di = ei .
µ

emp
i −µr and

i

σ
emp
i

(8.8)

where ei is the eigenvalue associated to principal component i , µemp
i is the mean value

of empirical samples associated to one of the tissue type (chicken ectoderm, chicken neu-

roepithelium, drosophila wing preppie, drosophila mutant wing preppie) along i andσ
emp
i

the standard deviation (over the set of similar tissue type), µr and
i is the mean value of the

null models corresponding to the same empirical samples along i .

The measure of proximity d is defined as the sum of di over all of the 16 dimensions.

d =
16∑

i=1
di (8.9)

Figure 8.17 shows the results. Chick Neuroepithelium, in red, is the closest of the four

epithelial types examined here to the null model. It means that in this kind of epithelial

organization do not present patterns at the scales of the groups of cells, as much as the

other types of epithelia do. The Drosophila Wing Prepupa is the most distant from the

null model, it means that this tissue has the most constrained organization. Drosophila

Mutant Wing Prepupa is as expected closer to the null model than the wild type. Indeed,

Myosin II which is an element of the cytoskeleton is involved in epithelial organization.

However, surprisingly, this distance is higher than for the Chick Neuroepithelium. That

means that other factors than Myosin II contribute to epithelial organization.
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(a) Sub∗

(b) Sup∗

Figure 8.16: Computation of the features for the data and the model for sub- (a) and super-
(b) level sets. The results for the empirical data are plotted with the name superimposed
and a rounded label. The results for the null model are plotted with squared label. Ma-
genta: Drosophila Wing Prepupa - Green: Drosophila Mutant Wing Prepupa - Red: Chick
Neuroepithelium - Blue: Chick Ectoderm
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Figure 8.17: Topological distance to random null model as defined in 8.9. Magenta:
Drosophila Wing Prepupa - Green: Drosophila Mutant Wing Prepupa - Red: Chick Neu-
roepithelium - Blue: Chick Ectoderm
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8.4 Discussion and Conclusion

The use of persistent homology introduced in this article provides a new tool to quan-

tify patterns in networks of cellular contacts. A set of features characterizing the topology

of the network at several scales can be obtained automatically from raw data using ex-

clusively topological information. Epithelia of different types have reproducible features

which can be used to classify and quantify them. Although those features are less optimal

than the degree distribution alone to discriminate different tissue types, they are useful for

characterizing patterns at the level of groups of cells. These patterns at the level of groups

of cells (neighborhood) are inadequately described with traditional features used in com-

plex networks analysis because they are highly constrainted by the (quasi)-triangulated

nature of the network of cellular contacts. Using a null model of random triangulated sur-

face with arbitrary degree distribution we quantify the presence of high-order patterns in

the network. The significance of their presence varies between the various epithelial types

and can be related to the specifities of the underlying biological processes.

Using this methodology, we quantified the contribution of Myosin II and cellular cy-

toskeleton to the formation of spatial patterns at the level of groups of cells. Indeed, mu-

tant specimens present a higher proximity to null model and thus less significant pres-

ence of ordered pattern than the wild type. However, we see that chicken neuroepithelium

(cNT) is even closer to the null model. The role of Myosin II is therefore not completely

determinant for the presence of spatial patterns and should be combined to other pro-

cesses to explain the structure of epithelia. The different nature of epithelia, squamous,

tubular, may also be relevant to understand the specificities of the spatial distribution of

cells. Finally the sequence of events, such as cell proliferation, cell motility, and cell ex-

trusion, may be the most significant contributions to the morphogenesis of epithelia. To

test and quantify the contribution of the various biological processes, it seems necessary

to systematically perform perturbation experiments leading to a quantification of ordered

patterns in the resulting networks of cellular contacts.

In order to increase the applicability of the proposed method, the approach could be

generalized to characterize patterns and organization in 3D structures within epithelia

without limits a priori. Dynamical evolution of epithelia may be a more difficult problem

since the number and structure of the simplicial complex associated to the network of

cellular contacts may vary from one time step to the other with cell motility and cell pro-

liferation. Finally developing the null model into a more analytical object could lead to the
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characterization of statistical distribution of spatial networks, and for example the com-

putation of p-value for the ordered nature of the organization of the network of cellular

contacts.



Chapter 9

Tissue shape dynamics: cell proliferation

and cell displacements

Abstract This chapter proposes some perspectives for the characterization, quantifica-

tion and comparison of developing tissues as evolving networks. It is shown that time

should not be considered as simple dimension since the nature of the network is changed

through its flow. An adaptation of the persistent algorithm is proposed using genealogy and

relatedness as a parameter. Its use should highlight the intertwining between cell prolifera-

tion and cell displacement.

9.1 Introduction

In the previous chapter, we have proposed an approach characterizing the network of

cellular contacts from static images. This approach was able to uncover specific higher-

order constraints in the spatial distribution of cells that we ascribe to developmental his-

tories. However, to confirm these assumptions and describe morphogenesis, it would be

necessary to characterize dynamically the evolution of these networks. We propose in this

chapter some perspectives in this direction.

A previous study which has gained much attention characterizes the dynamic nature of

epithelial organization by means of cell division [80], [81]. A simple model describes the

evolution of the cellular contacts as shown on figure 9.1. This model leads to the estab-

lishment of a markov chain whose evolution converges toward a distribution of polygons

(degree distribution) found in various epithelia (Drosophila, Hydra and Xenopus).

However the distribution of polygons found in [80] is not as universal as expected and

193
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Figure 9.1: Empirical evidence underlying the establishment of the model of cell divi-
sion in an epithelial tissue in [80] "d, Dilation of the junctional lattice permits rounding
of a seven-sided mitotic cell during stages corresponding to prophase–metaphase. Ow-
ing to compression and stretching of the pseudocoloured neighbours, no cell-neighbour
exchanges occur (n = 18 dilating cells). Units of t are in minutes. e, During stages cor-
responding to anaphase through cytokinesis, local topology (connectivity between cells)
remains unchanged; the mitotic cell approaches abscission surrounded by the same co-
hort of seven neighbours (n = 23 cytokinetic cells). f, Two-cell clones marked by heritable
expression of GFP (green) imaged at the level of the septate junctions stained with anti-
Dlg (red). g, In approximately 94% of cell divisions, cytokinesis resolves with formation of
a new cell interface, resulting in the type I conformation of mitotic siblings. h, Summary
diagram of topology changes during cell division."

since the publication of this article, several studies have proposed alternative approaches

taking into account other mechanisms such as the mechanical constraints on cleavage
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patterns, or cell displacements to explain shifts from this theoretical distribution [192],

[4], [167], [221], [82], [219], [190].

The original model proposed by Gibson et al. [80] rely on the geometric properties of

the cells in an epithelium. It postulates that the cells don’t move and that the orientation

of division is chosen randomly. These two hypotheses seem realistic and form the basis

of the model, they can be modulated depending on the modeling context, for example if

the polarity of the cell division is highly constrained or if the cells are highly mobile. In

addition to this two hypotheses, the model use a mean field assumption. Under this as-

sumption, it is postulated that the cells divide synchronously and that each cell gain one

new contact from a neighboring dividing cell in average. This last assumption seem to be

the most difficult, in particular in development, because epithelial organization is far from

an equilibrium or asymptotic state. As shown in the previous chapter, patterns involving

groups of cells are present in significant proportions in epithelia and the underlying topol-

ogy constrains the network. Neighborhoods cannot be considered uniformly with a mean

field assumption, they are biased by these patterns.

As shown in the previous chapter, when using a measure of organization taking into ac-

count higher order spatial structures, we find that the developmental sequence of events

has had an influence on the resulting shape of the tissue. We will present in the next sec-

tions a measure considering at the same time the spatial organization and the history of

the tissue after a short review of already existing measures.

9.2 Time evolving networks

9.2.1 Time evolution of static measurements

The most straightforward approach consists in observing the dynamical evolution of

measures defined on static networks. For example, we can look at the average degree in

an evolving network. The average and standard deviation of the degree distribution ob-

tained from the network of cellular contacts in one of the digitally reconstructed sea urchin

presented in Chapter 1 of this dissertation is shown on figure 9.2. This measure shows a

tendency towards 6 neighbors in average and an increasing standard deviation.

Although very useful, this kind of approach can only describe the system at a macro-

scopic level since the detail of individual cell trajectories is not taken into account. Relat-

ing this measure with individual cell dynamics require a model, such as [80].



196

Figure 9.2: Evolution of the mean number of neighbors (red) and standard deviation (grey)
through time in the sea urchin development in one of the 5 specimens studied in chapter 1

Moreover, we have seen in the previous chapter that the degree distribution can be

misleading and doesn’t describe the spatial distribution of cells with respect to each other.

Similar to the evolution of the degree distribution in time, we can measure the evolution of

the topological signatures of epithelial organization obtained in the previous chapter. At

a given time step, the algorithm defined in the previous chapter can be applied to the net-

work of cellular contacts. The result is a barcode, which is a mathematical object describ-

ing the evolution of topological features regarding varying values of a parameter. A bar-

code contains bars representing generators of i-dimensional "holes". The value of the pa-

rameter where these bars appear and disappear are the birth and death parameter value.

A barcode can be represented as a persistence diagram where the coordinate axis are birth

and death of these bars. A generalization of the barcode for time varying system is the con-

cept of Vineyard as represented on figure 9.3 adapted from [155], [46]. The points in the

persistence diagram are extended to "spaghetti" or "vine" according to a temporal dimen-

sion. This construction has been successfully used for the study of evolving set of sensors.

The main limitation of this approach is that vineyards require a continuity of the set in
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time, meaning that mitoses or cell extrusion should be excluded in our case. Moreover,

this object is not completely stable and computable.

Figure 9.3: Vineyard as mathematical characterization of an evolving topological space.
The persistence diagram is updated at each time step - Image adapted from [155]

We see that extension of measure of static networks in time is appealing but not com-

pletely efficient to solve our problem.

9.2.2 Looking at spatiotemporal networks

Another line of thoughts consists in considering time evolution as another parameter

of the space under consideration.

In algebraic topology, at least two possibilities have been developed. The first one is

multidimensional persistence. This is the generalization of persistent homology to two or

n- parameters [39]. The main problem that appears with this approach is the fact that it

has been shown that there is no simple summary like the barcode for 1-dimensional per-

sistence [223]. Moreover, as for the vineyards, the multi-dimensional approach assume an

identical underlying topological space in each direction. Yet, in our case, cells are prolif-

erating, thus changing the nature of the underlying topological space.
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The second possibility stems from a collaboration between the mathematician Edels-

brunner and the biologist Heisenberg [63]. They propose the concept of the Medusa to

characterize the phenomenon of cell sorting during development, with an approach con-

sidering space and time as two similar dimensions. Cell sorting is a phenomenon where

two types of cells that are initial mixed segregate into two spatially distinct populations.

This mathematical construction seem to be relevant for a problem where the parts are

moving in time. However, they don’t take the proliferation dynamics into consideration.

9.3 Using genealogy as a parameter - historical dependency

of shape

As already suggested in [172] and in the previous chapter, the combination of cell pro-

liferation and cell displacement produces the specific organization of the network of cel-

lular contact. A good measure of this process should integrate these two phenomena. A

solution can be found by considering the relatedness between cells as the criteria to con-

struct the sequence of nested spaces in the filtration.

Given a network (V ,E) of cellular contacts, we can define relations among cells. Let’s

define a function R that returns the degree of relatedness of two cells. If two cells (i , j ) ∈V 2

are sisters, i.e. they share the same mother cell, we will write R(i , j ) = 1. If the two cells

(i , j ) ∈ V 2 are cousins, i.e. they share the same great mother cell, we will write R(i , j ) =
2. We can notice that R(i , j ) = 1 ⇒ R(i , j ) = 2, but the opposite is not necessarily true.

Similarly, if two cells (i , j ) ∈V 2 share the same great great mother, we will write R(i , j ) = 3,

with R(i , j ) = 1 ⇒ R(i , j ) = 2 ⇒ R(i , j ) = 3. R is defined in the same way for higher degree

of relatedness. If no ancestor is known for a couple of cells (i , j ) ∈V 2, we write R(i , j ) = 0.

An illustration of this function is shown on figure 9.4.

In a similar way as in Chapter 8, we can use the sub level sets of this function R to

define a filtration Fil = {Fil(k)}k∈N on the network of cellular contacts:

Fil(k) = ({vi ∈V }, {e = {vi , v j } ∈ E : R(vi , v j ) ≤ k}) ∀k ∈N (9.1)

This filtration contains for each value of the parameter k, all the vertices of the network.

The edges are included in the filtration with a condition on relatedness. The higher degree

of relatedness is considered, the more complete is the filtration. By taking the clique com-

plexes Fil∗(k) on this filtration for each value of k as described in Chapter 8 section 8.2.3,
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Figure 9.4: Visualization of the function R that returns the degree of relatedness of two
cells. A cell lineage is represented in black. When considering cells at the bottom of the
tree, any couple of cells in the branches below the red circles have relatedness indicated
by the value of R

we obtain the filtration Fil∗ on which we can apply persistent homology. In that case, per-

sistent homology algorithm will measure the mixing of cells through displacements and

proliferation.

For example if cells only divide with no displacement in a tissue, then the algorithm

will detect a decreasing number of connected components and no holes. Whereas, if the

cells are highly mixed, the number of connected components will decrease less rapidly

and the number of holes will increase.

This measure is a first strong step toward solving the problem of the quantification of

the intertwining between cell proliferation and cell displacement in an evolving network

of cellular contact.
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9.4 Conclusion

The perspectives presented in this chapter show that the problem of understanding

the spatial organization of epithelia in the light of cell displacement and cell proliferation

is interesting and require to be studied. The simple extension of static characterization

of networks in a dynamical framework is not that simple. Several problems may arise

from the use of another dimension when considering topological characterization. The

proliferation undergone by the cells raises numerous problems as the topological nature

of the tissue is changed in time. It is a difficult problem to match two simplicial complexes,

it is much harder when the number of elements vary in time.

However, we present in the last section an appealing perspective that would allow to

combine cell lineage and cell spatial organization. This measure which integrate cell pro-

liferation and cell movements should help to understand the unfolding of tissue shape

during morphogenesis.



Conclusion

The main goal of this part was to uncover the relations between spatial organization

of tissue and development in epithelia, which is one of the most simple tissular structure.

This approach which tries to characterize invariant features among embryo of different

species and between mutant and normal development is intended to reveal some univer-

sal pattern in the shape of embryo. Shape in a developing organism is dependent on the

specific sequence of events occurring during its developmental trajectory.

The first problem raised by such aims is the question of finding a generic way of de-

scribing tissues. The network of cellular contacts is a good candidate. It is composed

by nodes corresponding to the cells and by edges corresponding to their contacts. It is a

purely combinatorial structure and is thus not affected by questions of size. Moreover, it

allows to consider the level of individual cells in relation to the whole tissue.

Descriptive tools developed in previous studies investigating this question show some

limitations because they neglect the high constraints of the underlying tissue topology. We

proposed to reveal underlying topological invariants using the mathematical framework

of persistent homology. This mathematical framework has been proved to be relevant in

the study of the structure of the cosmic web which is a historical structure in the sense

that its establishment involve random events at multiple scales and cannot be reduced to

a small number of parameters.

To apply the mathematical framework of persistent homology on images of epithelia,

we defined for each sample of tissue two filtrations using the number of neighbors as a

proxy for density in the tissue. These filtrations, which are nested sequences of simplicial

complexes, are the basis for the establishment of a multi-scale topological signature of the

tissue. This signature can then be used to compare and classify tissue between samples

from Drosophila and Chick embryos. Signature of common tissue types are clustered,

suggesting the possibility of an automatic classification of embryo images.

The significance of these measures is assessed by comparing the topological signa-
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ture of a null model of random surface with arbitrary degree distribution. This model

constrain local features, degree distribution, while letting the connection between nodes

unconstrained. The construction process ensure that the resulting network can be em-

beddable in the plane, a realistic topological constraint. By comparing empirical sam-

ples with their random counterparts, randoms network with similar degree distribution,

we show that the different types of tissues present different "degrees of randomness" in

their spatial organization. Low "degree of randomness" reflects the significant presence

of patterns involving groups of cells. These differences between tissues reflect the type

of epithelium, squamous or tubular, and the presence of molecular determinant of shape

such as Myosin II. We conjecture that these patterns of groups of cells are the traces of the

sequence of developmental events.

Measures combining spatial organization and developmental history of a tissue are

discussed in Chapter 9. It is shown that the dynamical study of measures defined on static

networks doesn’t seem sufficiently informative to understand the effect of individual cell

histories without the use of models. Looking at the evolving network as a spatio-temporal

structure is an appealing direction. However, the proliferative nature of the cells change

the nature of the topological space under investigation in time, leading to difficult math-

ematical formalization. Finally, we propose a way to combine genealogical information

with spatial organization by adapting the persistent homology approach defined in Chap-

ter 8. This approach which uses the cell lineage should reveal the interaction between cell

displacement and cell proliferation as the origin of tissular organization.

Altogether, we see that, even for a simple structure as an epithelium, the multi-scale

nature of biological objects raises challenges that require the design of specific mathemat-

ical approaches. These mathematical approaches should tackle the question of organiza-

tion and developmental history of organisms.



General conclusion

The approach developed throughout this work is a combination of theoretical, math-

ematical and experimental considerations concerning the measure and interpretation of

variability in animal embryogenesis. This very general subject has led to a certain number

of more specific studies, the main contributions are the following:

⋆ In Part I, we considered the question of the reproducibility of development. The

study of intra- and inter-individual variability in a small cohort of digitally recon-

structed sea urchins has led to the establishment of multi-level data-driven prob-

abilistic model relating variable cell features with reproducible embryo-level dy-

namics. This model forms the basis for a prototypical representation of the sea

urchin development as the centroid of the cohort, based on empirical parameters

estimation. Surprisingly, variability at the individual cell level plays a significant role

in the establishment of reproducible embryo-level dynamics, weakening the tradi-

tional view of the development as a finely-tuned process at the individual cell level.

⋆ In Part II, we considered the question of the diversity of phenotypes in the living,

or how variations in individual developments affect the space of possible. The main

contribution consists in using a formal analogy with the mathematical framework

of quantum mechanics to clarify the various levels of randomness in biology. This

approach enables to account for the high variability observed in the zebrafish squint

mutant line and classical Mendelian scheme of inheritance. The latter is shown to be

formally analog to quantum entanglement. We also discuss the relations between

variability in biology and randomness in physical and mathematical theories.

⋆ In Part III, we study epithelial structure using the network of cellular contacts. By

using topological invariants and a generalized model of random network, we show

the presence of patterns involving groups of cells. We assume that these patterns

result from the sequence of events involved in the morphogenesis of tissues. We

propose a measure to characterize spatial organization which incorporates lineage
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relationships between cells.

**********

This work is part of a larger movement introducing quantitative approaches and com-

putation in biology. The wealth of data generated by new imaging technologies and ever

increasing computational power has opened the way for new perspectives on the un-

derstanding of biological problems such as embryonic development or evolution. The

quantitative turn undergone by biology in the last decade demands a reinterpretation of

many biological concepts. These challenges are associated to developments and exten-

sions of mathematical approaches which are required to handle and make sense of these,

sometimes massive, data sets. However, these mathematical developments cannot be per-

formed by themselves, they require an underlying theoretical and epistemological basis

to keep them interpretable. These observations form the general framework within which

this work has taken place.

The main concepts around which this thesis has evolved are the notions of organiza-

tion and of historicity of organisms. These notions are closely related to variability, the

central theme of this thesis. Indeed, organization is the result of an evolution, whose main

ingredient is variation, on the other hand, historicity stems from this intrinsic variability

which is ubiquitous in biology. The concept of organization expresses itself in the multi-

scale nature of organisms involving dynamics that can be heterogeneous in nature. The

concept of historicity expresses itself in development by the path-dependency of the pro-

cess, meaning that the specific sequence of events has an effect on the final phenotype.

Historicity in evolution is associated to the contingency of events resulting from variabil-

ity at all scales in biological organisms. In this context, we have tried in the course of this

dissertation to characterize mathematically some notions of variability at different scales,

thus in relation to the concept of organization, and along the different stages of develop-

ment in animal embryogenesis, thus in relation to historicity of development.

More precisely, in the comparative study of a small cohort of digitally reconstructed sea

urchin embryos developed in chapters 1 and 2 we are confronted with these two notions of

organization and historicity. Embryo-level developmental dynamics present similar pat-

terns from one specimen to the other, whereas individual cell features are variable and

spatial symmetries of the embryo prevent to compare individual cell between specimen

of the cohort. This multi-scale nature of the development is captured by defining groups
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of cells as an intermediate level of observation which takes advantage of these symmetries.

The historicity of the developmental process is witnessed by the accumulation of variabil-

ity and consequently the increase of the spread of distributions of individual cell features

through time. This process underlies cell differentiation (chapter 3). These interesting re-

lations between individual cell features and embryo-level dynamics shed new light on the

sources of reproducibility. Where a finely-tuned process at the cellular level would have

been expected, we find an averaged process over variable cell features.

The variety of mechanisms sources of variability in individual cells and of diversity in

population of organisms is reviewed in chapter 4. This multiplicity of phenomena is the

main obstacle for a proper characterization of biological variability. Their heterogene-

ity prevent their multi-scale integration. Indeed, we show that several concepts exist in

mathematics and physics for the formalization of the idea of randomness which underlies

frameworks modeling situations of uncertainty. These frameworks are not compatible as

such. Two common properties are the need for an a priori space of possible and the use of

an infinity to define this space of possible, or fluctuations in the case of chaotic systems.

To avoid having to integrate these various forms of randomness, an alternative can be to

use relevant simplifying assumptions on other levels of organization or on past history.

The price being a reduced generality of the results.

An experiment presenting complex patterns of variability is presented in chapter 5.

This experiment involves the squint mutant line of the zebrafish. The results of this exper-

iment show in the progeny of homozygote couples of mutants a phenomenon of variable

phenotypic expressivity and incomplete penetrance; from complete cyclopia to two well

formed eyes. We obtain embryos with phenotypes from a list of phenotypes in unpre-

dictable proportions, without being able to ensure the completeness of the list. These

results suggest complex scheme of inheritance of maternal factors and/or complex causal

processes during development, supported by the various possible sources of variability

described in chapter 4.

The variability observed and measured in chapter 4 motivates the reflections devel-

oped in chapter 5. These reflections rely on an analogy with the quantum mechanics

mathematical framework as an attempt to account for the various levels of variability ob-

served in the living. The interest of this analogy is to be able to consider sets of probability

distributions as vector spaces. The problem consists in clarifying the difference between

variable phenotypes in a fixed list (which can be described with classical probability), new

emerging phenotypes to be added to the list of already known phenotypes (which is best
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described as a cartesian product) and the emergence of a new observable which require

a new space of possible. These emergences of new phenotypes or new observables are

derived from the historical nature of onto- and phylogenetic trajectories. In addition, this

framework can account for complex relations between observables, with a tensor product

coupling the space of possible corresponding to each of these observables. This property

is used to account for Mendelian scheme of inheritance and is shown to be formally ana-

log to quantum entanglement. We interpret it as a consequence of the organization of

biological organisms preventing the coexistence of two phenotypes in the same individ-

ual.

To study the relations between variations in individual developments and patterns of

diversification, we consider in chapter 6 the concept of an ontogenetic tree which enables

to define a notion of developmental proximity. This approach is intended to compare a

phenotypical similarity with the developmental one in order to quantify the influence of

path dependency. Several assumptions are made concerning the canalization on possible

phenotypes as a result of the constraints imposed by the already undergone developmen-

tal stages before diverging, this approach is underlied by an empirical data set describing

numerous mutant zebrafish developments.

This second part on diversity and diversification involves many different situations.

The organized and historical aspects of development drive and canalize diversification,

while being at the same time the result of this evolutionary history. And if biological vari-

ability cannot be reduced to randomness as defined in physics and mathematics, this de-

pendence to an evolutionary history may give it its specific status. Biological variability

implies a stronger form of randomness, at the level of the observable and thus of the space

of possible itself.

Finally in chapter 7 and 8 we turned to a more specific problem, the characterization

of epithelial organization. Although epithelia are simple cellular structures compared to

complete organisms, their presence in many species during embryonic development gives

to this problem a high level of generality. Epithelial organization is formalized as a network

of cellular contacts whose underlying topological invariants are found to enable compar-

ison and classification over a wide range of specimens. The framework of persistent ho-

mology is used to define these topological invariants. By comparing these tissue shapes to

a null random model, we found that they contain pattern involving small groups of cells in

significant number. We interpret these patterns as resulting from the sequence of events

involved in the morphogenesis of these tissues. To characterize the relation between ep-
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ithelial shape and the developmental sequence we propose a methodology based on the

cell lineage and cell network of cellular contacts. Overall, we show in this last part that

organization and historicity are intertwined in morphogenesis.

Perspectives raised by this dissertation are hopefully numerous. We have made some

suggestions in the course of the manuscript, particularly in chapters 3 and 9. However,

here are some perspectives

The data-driven multi-level prototypical probabilistic model obtained in chapter 2 can

serve as a basis for a dynamical system description of development, a law of evolution

needs to be found to relate the value of the parameters. The approach is general enough

to be expected to be found applicable in the development of other species where there is

relative synchrony of cell cycles using the same mathematical framework. Moreover, the

approach consisting in defining a relevant coarse-grained level of observation preventing

averaging out significant information and being generic enough to enable comparison be-

tween specimens is likely to be transferable in other developing systems. As an extension

of the model it could be interesting to combine the analysis of the cell lineage with a spatial

analysis of the distribution of cells.

The probabilistic approach developed in the first part raises numerous questions on

the reproducibility and robustness of development. An interesting line of research could

be to perform experimental perturbations of the system to see if the mathematical struc-

ture uncovered stays the same. For example by modulating the length of the cell cycles.

In the second part, we have considered the diversity of the living. The main perspective

here would be to be able to integrate the variability at all scales in a theory of organisms.

Such a theory would enable to describe more formally this notion of biological random-

ness at the level of the space of possible. This would lead to better understanding of the

concept of prediction in biology

In the third part, we have considered epithelial organization, and its relations to cell

proliferation and displacement. It could be interesting to perform perturbations on de-

veloping systems, e.g. on cell proliferation or cell motility, to quantify their influence on

the resulting shape. Another perspective consists in generalizing the approach to more

complex tissues, for example during epithelial folding to describe the transition from two

to three-dimension, by taking into account the curvature for example. This approach can

also be generalized to three-dimensional situations.

Overall, we anticipate that the field of embryology will greatly benefit from an under-

standing of variation at every scales. This understanding requires quantitative and math-
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ematical approaches to be grounded on stable settings. It will hopefully enable to link

deeply development and evolution, while giving major roles to the notions of organism

and of historicity of living objects.

Placing variation at the foundation of his theory of evolution is one of the major paradigm

shifts operated by Charles Darwin. Our results suggest that we may need the same kind of

revolution for developmental biology.
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