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General introduction

Ultracold atoms represent a rich environment to realize and manipulate quantum me-
chanical systems. For atomic clouds cooled to the sub-µK temperature regime, the ther-
mal de Broglie wavelength becomes comparable to the interparticle distance, and spec-
tacular quantum phenomena take place. For bosonic atoms, this has lead in 1995 to
the first observation of a Bose-Einstein condensate (BEC), a macroscopic quantum state
with features determined by the statistics of its indistinguishable components [1, 2, 3].
In comparison with solid-state systems, the peculiarity of ultracold atoms is the large
degree of control achievable in experiments, which allows to explore a wide set of phys-
ical conditions [4]. A central example is the control of the strength of interparticle inter-
actions. The original BEC observation was obtained in the weakly-interacting regime,
but the Feshbach-resonance technique currently allows to tune interactions from very
weak to arbitrarily strong [5].

In the unitary limit, the interaction strength reaches its maximum. Experiments with
fermionic atoms, close or at this limit, have lead to major discoveries concerning the
condensation of atomic pairs [6]. The low-temperature unitary Fermi gas is a universal
system, where thermodynamic properties like the equation of state are determined by
the sole available length scale, the typical interparticle distance. Bosonic systems with
unitary interactions require a more complex description, including the presence of Efi-
mov trimers. These trimers constitute an infinite sequence of three-body bound states,
linked by a geometric scale invariance [7]. The interest in strongly-interacting bosonic
system was greatly enhanced by the first observation of Efimov trimers, obtained in
2006 with ultracold atoms [8], and the study of many-body systems of bosonic atoms
with unitary interactions is an active theoretical and experimental research subject [9].
A central question is whether these systems may have a metastable gaseous phase, at
low temperature.

This thesis is centered on a system of bosonic atoms, with interactions tuned to the
unitary limit. In Chapter 2, we consider two- or three-body systems, interacting through
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6 INTRODUCTION

a zero-range model potential. For three particles, this corresponds to the universal Efi-
mov theory. As compared to fermions, universality for unitary bosons includes an ad-
ditional length scale, the three-body parameter [10]. We introduce it through a cutoff at
short three-body distance, and show that the resulting model shares several properties
with the universal theory. At finite temperature, the cutoff also assures the thermody-
namic stability of the system.

The theoretical treatment of the many-body problem is made even more difficult by
the presence of strong interactions. In Chapter 3, we describe the numerical scheme em-
ployed in this work, namely the path integral quantum Monte Carlo (QMC) technique.
It was originally developed in the context of liquid helium [11], and it is the method
of choice to treat bosonic ultracold gases. The additional difficulties caused by strong
interactions are addressed through a novel algorithm, which is optimal for two particles
and also allows an efficient treatment of the many-body problem.

The application to unitary bosons is described in Chapter 4. We consider a homoge-
neous system, which allows a precise determination of the phase diagram. This includes
the three phases previously studied in the trapped case [12]. The high-temperature,
normal-gas phase can be described within the virial-expansion approach [13, 12]. This
cannot be extended to low temperatures, where two distinct phase transitions take
place. For large values of the three-body parameter, the system enters the BEC phase.
We find that the critical temperature Tc for this transition is approximately 10% smaller
than its non-interacting counterpart, in contrast with the increase of Tc caused by weak
repulsive interactions [14]. For small three-body parameter, the system is thermody-
namically unstable towards the formation of Efimov-liquid droplets, which we identify
and characterize both via an approximate analytic model and via the QMC technique.
In the normal-gas and BEC phases, we also compute the momentum distribution. This
is an experimentally accessible observable of key importance in the context of unitary
systems, due to its universal features. The results in this chapter are the object of Publi-
cation 2.

In the infinite-temperature limit, the only relevant term of our model for the unitary
gas would be the cutoff on the three-body distance. In Chapter 5, we consider a classical
system which is entirely defined by this three-body interaction. This is a generalization
of the hard-sphere model, with a counter-intuitive behavior due to the absence of two-
body interactions. We first consider the packing problem, in two and three dimensions,
and propose a solution based on a variational ansatz and on the simulated-annealing
technique. Extending these results to finite pressure shows that the system has a dis-
continuous melting transition, which we identify through the Monte Carlo technique.
The results on the classical three-body hard-core model are the object of Publication 1.

Other research projects in the field of ultracold atoms were completed or started in
the time frame of this thesis, corresponding to the following publications:
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• M. Di Liberto, T. Comparin, T. Kock, M. Ölsclhäger, A. Hemmerich, and C. Morais
Smith. Controlling coherence via tuning of the population imbalance in a bipartite
optical lattice, Nature Communications 5, 5735 (2014).

• R. H. Chaviguri, T. Comparin, V. S. Bagnato, and M. A. Caracanhas. Phase transi-
tion of ultracold atoms immersed in a BEC vortex lattice, in preparation.
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CHAPTER 1

Bosons at low temperature

1.1 Bose-Einstein condensation

The phenomenon of Bose-Einstein condensation (BEC) for a system of indistinguish-
able particles corresponds to the macroscopic occupation of a single-particle quantum
state [15]. For low-temperature bosonic systems a novel phase of matter emerges (the
Bose-Einstein condensate), which is a direct consequence of the quantum statistics of
its constituents. Predicted in the 1920s, this phenomenon was first clearly identified
through ultracold-atomic experiments, in the 1990s.

In this chapter, we define the BEC phase, in connection with the phenomenon of su-
perfluidity, and describe the experimental set-ups where it was first observed (cf. Sec-
tion 1.2). The path-integral formalism provides a useful alternative view on the BEC
phase, which turns into a powerful calculation scheme for non-interacting bosons (cf.
Section 1.4). Its generalization to include interactions is obtained through the quantum
Monte Carlo (QMC) technique, as described in Chapter 3.

Indistinguishable quantum particles

Bose-Einstein condensation emerges as a direct consequence of quantum statistics, as is
easily shown for the non-interacting gas [16]. In the absence of interactions, the Hamil-
tonian of N particles is the sum of N commuting single-particle terms. A configuration
is defined by assigning each particle to one of the single-particle available states |i〉. This
leads to an occupation number Ni for each state |i〉, with ∑ Ni = N. Assuming here that
the number M of single-particle states is finite, we compute the number of states which
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14 CHAPTER 1. BOSONS AT LOW TEMPERATURE

realize a certain {Ni}. For distinguishable particles, this reads

Wdist ({N1, . . . , NM}) =
N!

∏M
i=1 Ni!

, (1.1)

which is the number of ways of assigning N different objects to M groups. Wdist has
a maximum for configurations where all occupation numbers are close to N/M. In
contrast, it is suppressed when a large fraction of particles occupies a small number
of states, as for {Ni} = {N, 0, . . . , 0}. This property changes drastically in the case of
indistinguishable bosonic particles. As the particles bear no difference, exchanging two
of them does not lead to a different state. Thus the number of ways to obtain a certain
occupation-number sequence {Ni} is simply

Wbos ({N1, . . . , NM}) = 1. (1.2)

In this case, unlike Wdist, the homogeneous distribution Ni = N/M has the same weight
as an extreme configuration like {Ni} = {N, 0, . . . , 0}. The different statistical weight
assigned to configurations with a large occupation number for a single state is at the
basis of the BEC phenomenon. Single-particle states have different energies, so that
a larger population of the ground state |0〉 is favored, at any finite temperature. For
bosons, the average occupation number of |0〉 is larger than any other average Ni, and
this effect is more pronounced at low temperatures. For distinguishable particles, how-
ever, a large occupation of |0〉 is prevented by the strong suppression of Wdist for con-
figurations with one occupation number much larger than the others. The difference
between distinguishable particles and bosons becomes stronger when the average oc-
cupation number per state increases. Wdist ({N, 0, . . . , 0}), for instance, decays exponen-
tially at large N, for a given M. For bosons in a periodic box, a rigorous condition for the
regime where indistinguishability has a drastic effect is found below (cf. Eq. 1.10), lead-
ing to a threshold for the temperature at which the occupation of |0〉 becomes macro-
scopic.

Bose-Einstein condensation in a periodic box

We consider three-dimensional non-interacting particles in a periodic cubic box. The
eigenstates of the single-particle Hamiltonian are plane waves, labeled by an index n ∈
Z3. The n-th state has wave number kn and energy En equal to

kn =
2π

L
n, En =

h̄2k2
n

2m
=

1
2m

(
2πh̄

L

)2

n2, (1.3)

where L is the edge length of the box, and m is the particle mass. A distribution of N
bosons in the single-particle energy states is defined through the set of occupation num-
bers {Nn}. The statistical weight of one such configuration is given by the Boltzmann
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factor

exp

(
−β ∑

n∈Z3

NnEn

)
, (1.4)

where ∑n NnEn is the total energy and β = 1/(kBT) is the inverse temperature. We com-
pute the threshold condition for Bose-Einstein condensation within the grand canonical
ensemble, where the total number of particles N = ∑n Nn can fluctuate. In this case, the
statistical weight for a given set of occupation numbers Nn is

exp

(
−β ∑

n∈Z3

Nn(En − µ)

)
= ∏

n∈Z3

[
e−β(En−µ)

]Nn
, (1.5)

where the chemical potential µ can be fixed by setting the average number of particles,
〈N〉. The thermal average for Nn reads

〈Nn〉 =
∑∞

Nn=0 Nne−βNn(En−µ)

∑∞
Nn=0 e−βNn(En−µ)

=
1

eβ(En−µ) − 1
, (1.6)

which only depends on n through the energy En. The total number of particles is the
sum of 〈Nn〉 for n ∈ Z3, which we split into two parts: 〈N0〉 is the average number of
condensed particles, occupying the single-particle ground state, while 〈Nth〉 = 〈N〉 −
〈N0〉 is the average number of thermal particles. For a given temperature and volume,
an upper bound Nmax exists for the number of thermal atoms. If N > Nmax, then at least
N − Nmax atoms necessarily occupy the single-particle ground state. We compute Nmax
through the continuous-spectrum approximation, which consists in replacing the sum
over excited single-particle states (that is, excluding the ground state) with an integral
over their wave vectors. This is valid for large systems at finite temperature, where the
spacing between energy levels (proportional to h̄2/(mL2), cf. Eq. 1.3), is much smaller
than the thermal energy kBT. The upper bound for Nth reads

Nmax = ∑
n∈Z3\{0}

1
exp (βEn)− 1

'
(

2π

L

)3 ∫
dk

1

exp
(

β h̄2k2

2m

)
− 1

=

= g3/2(1)×
V

λ3
th

,

(1.7)

where

λth ≡

√
2πh̄2β

m
(1.8)

is the thermal de Broglie wavelength, and

g3/2(1) =
∞

∑
l=1

1
l3/2 ' 2.612. (1.9)
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The critical temperature T0
c for Bose-Einstein condensation is obtained by setting Nmax =

〈N〉, so that at temperatures below T0
c any additional boson would be placed in the

ground state. From Eq. 1.7, we find

kBT0
c =

2πh̄2

m

(
ρ

g3/2(1)

)2/3

' 3.3125× h̄2ρ2/3

m
, (1.10)

where ρ = N/V is the number density of the system. This can be recast in a threshold
for the phase-space density ρλ3

th,

ρλ3
th = g3/2(1) ' 2.612, (1.11)

meaning that Bose-Einstein condensation takes place when the thermal wavelength λth
becomes comparable with the typical interparticle spacing ρ−1/3.

BEC for interacting systems

In the presence of interactions, the Hamiltonian is not a sum of commuting single-
particle terms, and a many-body eigenstate is not simply defined by the assignment of
each boson to a single-particle eigenstate. Thus the definition of BEC as the macroscopic
occupation of the single-particle ground state breaks down. This has lead to the gener-
alized definition of Bose-Einstein condensation introduced by Penrose and Onsager in
1956 [17], linked to the concept of off-diagonal long-range order (ODLRO) [18].

We consider the eigenstates Ψn(x1, . . . , xN) and eigenvalues En which solve the N-
body Schrödinger equation, and we introduce the one-body reduced density matrix,

g(1)
(
x, x′

)
=

N
Z ∑

n
e−βEn

∫
dx2 . . . dxN Ψ∗n (x, x2, . . . , xN)Ψn

(
x′, x2, . . . , xN

)
, (1.12)

where the normalizing constant in Eq. 1.12 is the partition function Z = ∑n exp(−βEn).
An equivalent definition of g(1) (x, x′) in the path-integral formalism is given in Sec-
tion 3.3.3. Due to its hermiticity, g(1) can be decomposed as

g(1)
(
x, x′

)
= ∑

j
Njχ

∗
j (x)χj(x′), (1.13)

on a complete orthogonal set of single-particle states χj, with
∫

dx′g(1)
(
x, x′

)
χj
(
x′
)
= Njχj (x) ,

∫
dxχ∗j (x) χj (x) = δij,

∑
j

Nj = N.

(1.14)
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Apart from specific cases as a non-interacting system, the states χj are different from the
eigenstates of the single-particle Hamiltonian. The Penrose-Onsager condition is that
Bose-Einstein condensation takes place when one of the eigenvalues Nj is macroscopic,
that is, it scales linearly with N for large N. By rewriting Eq. 1.14 as

g(1)
(
x, x′

)
= N0χ∗0(x)χ0(x′) + ∑

j 6=0
Njχ

∗
j (x)χj(x′), (1.15)

an equivalent version of the Penrose-Onsager criterion is that Bose-Einstein takes place
if the limit

lim
|x−x′|→∞

g(1)
(
x, x′

)
=

N0

N
(1.16)

is finite, which corresponds to a finite condensate fraction N0/N. This is known as
off-diagonal long-range order (ODLRO, cf. Section 3.3.3). The fact that the term

∑
j 6=0

Njχj(x)χ∗j (x
′) (1.17)

vanishes in the limit of large distance is due to destructive interference between the
different states. For the case of a homogeneous Bose gas, this can be directly verified
by using the explicit expression for the eigenfunctions of g(1), that is, plane-wave states
with momenta kn (cf. Eq. 1.3).

Superfluidity

Closely-related to the Bose-Einstein condensation is the phenomenon of superfluidity.
Its first signatures have been observed in the 1930s in liquid 4He: At the so called λ tran-
sition (for temperature T ' 2.17 K), several physical properties have a sudden change:
The liquid flows without apparent viscosity in a narrow channel, and its response to
a rotation of the container shows a non-classical rotational inertia. The connection be-
tween the λ transition and Bose-Einstein condensation was proposed soon after the first
experimental discoveries [19], although these remain two distinct phenomena (a strik-
ing example is the absence of a finite-temperature BEC phase for a two-dimensional
homogeneous system, for which superfluidity can take place). Due to the strong inter-
particle interactions, the theoretical description of superfluidity in 4He has mostly been
phenomenological, and the main ab initio approach (based on path integral quantum
Monte Carlo, cf. Chapter 3) only became available in the 1980s. The main phenomeno-
logical approach consists in describing liquid helium below the λ transition as a mixture
of normal and superfluid components, with densities ρn and ρs. Within this description,
the main properties of the superfluid state (for instance the decrease in the rotational in-
ertia, when the liquid is subject to rotation) directly follow from the presence of a finite
superfluid density ρs. It is convenient to introduce a superfluid order parameter, Ψ(x).
This is a complex-valued function, with squared absolute value equal to the condensate
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density. The phase φ(x) of the order parameter, in contrast, encodes information about
the superfluid velocity, vs(x):

vs(x) =
h̄
m
∇φ(x), where Ψ(x) = |Ψ(x)| eiφ(x). (1.18)

This fact is directly related to the presence of topological defects (that is, vortices) in
Ψ(x), another peculiar feature of the superfluid state [16].

Helicity modulus and superfluid fraction

While the original description of superfluidity in liquid helium is based on its dynam-
ical features, it is useful to characterize this phenomenon through equilibrium proper-
ties, accessible through thermodynamic theoretical tools. The main ingredient of this
characterization is the formal definition of the superfluid density, formulated in a gen-
eral way which also includes spin systems [20]. We concentrate on phase transitions
described by an order-parameter field M(x) with at least two dimensions. For a spin
model, this is the local magnetization, which is a two- or three-dimensional vector in the
XY and Heisenberg models (the Ising-model, in contrast, has a one-dimensional order
parameter). For the superfluid phase of a Bose gas, the local order-parameter M(x) is
the aforementioned complex field Ψ(x), corresponding to a two-dimensional real field.
If the energy of the system does not include terms favoring a specific orientation of
M, the ensemble average 〈M〉 is equal to zero, both above and below the critical tem-
perature. In the ordered phase, the average 〈M〉 can be made finite by including an
external field which breaks the rotational symmetry. This can be for instance an exter-
nal magnetic field which favors a certain spin orientation. Another way to make 〈M(x)〉
non-zero is by setting a specific boundary condition, that is, by pinning M(x) to a spe-
cific value for x on the boundaries of the system. As a concrete example, we consider a
three-dimensional system (in a cubic box of volume L3) with a two-dimensional order
parameter M(x), and we denote by φ(x) the phase angle of M with respect to a refer-
ence axis. To make 〈M(x)〉 finite, we use twisted boundary conditions, that is, we set the
values of the phase φ(x) to θ1 and θ2 on two opposite faces of the cubic box. For a small

θ1 θ2

Figure 1.1: Schematic view of the order-parameter field M(x) for a one-dimensional XY
model, with the twisted boundary conditions pinning its phase to θ1 and θ2 on the two
ends of the system.

difference θ1 − θ2, the order-parameter field changes smoothly across the system, with
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the phase angle rotating from θ1 on one wall to θ2 on the other (cf. Fig. 1.1). This would
not be possible for systems with a scalar order parameter (as the Ising model), which
would rather be separated into two domains. By imposing these boundary conditions,
the free energy F of a certain system (for given temperature and system size) acquires
a dependence on the pinning angles: F = F(θ1, θ2). We consider the free-energy dif-
ference ∆F(θ) = F(−θ, θ)− F(θ, θ), for a small twisting angle 2θ. This difference is an
extensive quantity, proportional to the system volume L3. Moreover, it is proportional to
the square of 〈〈∇φ〉〉, the average gradient1 of the order-parameter phase [20]. 〈〈∇φ〉〉
is equal to 2θ/L: The total angle difference (2θ) divided by the length over which the
change takes place (L). The expansion of ∆F for small θ leads to the definition of the
helicity modulus, Υ, through

∆F(θ) ≈ Υ
2
〈〈∇φ〉〉2L3 = (2ΥL)× θ2. (1.19)

Υ encodes the response of the system to an imposed phase twist: A large value of Υ
corresponds to a rigid systems, where the phase twist has a large free-energy cost. This
definition of Υ through the small-θ expansion of ∆F(θ) is general, and it holds for in-
stance for the XY and Heisenberg spin models. In the specific case of the Bose gas, the
helicity modulus corresponds to the superfluid density ρs, via

ρs =
(m

h̄

)2
Υ, (1.20)

which follows from the connection between (h̄/m)∇φ(x) and the superfluid velocity vs
(cf. Eq. 1.18). This definition of ρs through Eqs. 1.19 and 1.20 (or analogous expressions
related to twisted boundary conditions), is only based on equilibrium properties, and it
is of fundamental importance for several applications: It has been applied to the ideal
Bose gas, leading to the exact expression [20, 21]

ρs

ρ
=





1−
(

T
T0

c

)3/2
for T < T0

c ,

0 for T > T0
c ,

(1.21)

for a three-dimensional system in the thermodynamic limit, it is a key ingredient in the
formulation of the finite-size scaling theory (cf. Section 3.4.1 and Ref. [22]), and it is at the
basis of the measure of the superfluid density in quantum Monte Carlo (cf. Section 3.3.2
and Ref. [23]).

1.2 Ultracold atomic gases

The first atomic system used to probe low-temperature physics and the effects of quan-
tum mechanics has been liquid helium [24], for which the λ transition (cf. Section 1.1)

1The double bracket 〈〈. . . 〉〉 denotes a double average, over the statistical ensemble and over space.
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takes place at Tc ' 2.17 K. The critical temperature for Bose-Einstein condensation of
non-interacting bosons with the mass and density of 4He (ρ ' 2× 1028 m−3) is T0

c ' 3.13
K. While being quantitatively different from Tc, the non-interacting theory captures the
correct order of magnitude for Bose-Einstein condensation, which motivated the first
connection between the phenomena of BEC and superfluidity [19]. Nevertheless, liquid
helium is a strongly interacting system: The main features of the interaction potential
(the repulsive core for distances below 2.5 Å and the minimum at 2.8 Å) take place at
distances comparable to the typical interparticle separation (of the order of 3–4 Å). This
modifies the zero-temperature condensate fraction, which is reduced to below 10% (as
compared to the non-interacting case, where N0/N = 1 at zero temperature).

Liquid helium has to be compared with the currently available ultracold atomic
gases, a different class of systems where Bose-Einstein condensation takes place [25].
The progress in cooling techniques allowed to reach temperatures as low as tens of
nK. The transition to the solid phase, which would exist at such low temperature, is
avoided by using extremely dilute systems (with typical densities of the order of 1019–
1020 m−3, leading to interparticle distances of approximately 100 nm). These systems are
therefore metastable. The major instability mechanism is given by inelastic three-body
losses, which are scattering processes resulting into a bound dimer and a third atom
carrying away the binding energy. The rate of these collisions sets a finite life-time, typ-
ically larger than the other time scales of the system2. Considering the example of 87Rb,
the temperature at which the phase-space density ρλ3

th becomes of order one is ≈ 102

nK. It is in this temperature regime that the first direct observation of Bose-Einstein
condensation has been realized, with clouds of Rb, Li and Na atoms [1, 2, 3]. Alkali
atomic species are the most commonly used for ultracold experiments. Other species
are chosen for some specific features, as the long-range interactions caused by the large
magnetic dipole moment of Er atoms [26].

Differently from liquid helium, ultracold atomic systems offer an unprecedented de-
gree of control, and their application spectrum largely exceeds the sole observation of
Bose-Einstein condensation. Some of the main tunability directions include the interac-
tion strength tuning through Feshbach resonances, the confinement of the atomic clouds
on the sites of an optical lattice, the mimicking of artificial magnetic fields for neutral
atoms, and the use of anisotropic confinement to obtain low-dimensional systems (see
Ref. [4] for a review). In this work, we concentrate on the low-temperature properties of
spinless bosonic atoms, in the regime of strong interactions.

The main observable to detect the onset of Bose-Einstein condensation is the mo-
mentum distribution, n (k), which develops a narrow peak at zero momentum in the
condensed phase (cf. Section 3.3.4). In the majority of experiments, an atomic cloud of
less than 107 atoms is confined by an external trap, well approximated by an harmonic
potential. In this case the BEC transition is also visible in the non-uniform density pro-
file of the gas. More recently, the same transition has been realized for a gas confined in

2This does not hold for strongly-interacting systems, cf. Section 2.3.2.1.
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a uniform-box trap [27, 28]. This novel set-up has an advantage in the study of critical
behavior with diverging correlation lengths, since there is no inhomogeneity caused by
the external trapping potential.

A useful criterion to classify experimental and theoretical studies of ultracold atomic
systems is the strength of interactions. The theory for non-interacting bosons is only
qualitatively valid (apart from cases where interactions are artificially tuned to zero
strength), despite the correct order-of-magnitude estimate of the critical temperature in
the strongly-interacting case of liquid helium. The ideal-gas model fails in capturing
several properties of interacting systems, including the shape of the condensate wave
function in a harmonic trap. Moreover, the BEC transition is qualitatively modified by
the presence of any finite interaction strength, and the critical behavior of the interact-
ing system belongs to a distinct universality class (cf. Section 3.4.1). This motivates
why several contradictory predictions have been proposed for the lowest-order effect
of weak interactions on the Bose-gas critical temperature, taking more than 40 years
before consensus was reached (cf. Ref. [14] for a detailed review).

The next level of approximation is a mean-field approximation, as Gross-Pitaevskii
theory [29]. This approach is valid in the regime of low temperature and weak inter-
actions, where it correctly reproduces several observables, including for instance the
condensate wave function for a trapped gas. However, it cannot describe systems with
strong thermal or quantum fluctuations. A recent example of this limitation is the ob-
servation of stable quantum droplets of dipolar quantum gases in regimes where mean-
field theory predicts a mechanical collapse [30, 31]. Beyond-mean-field corrections have
been predicted [32], and later identified in the equation of state of an interacting BEC
[33].

This classification in terms of the interaction strength naturally continues towards
the regime of strong interactions and the unitary limit. This is the main subject of this
work, and the status of experiments in this direction is reviewed in Section 2.3.

1.3 Density matrix and path integrals

The density matrix is the basic tool to treat a statistical mixture of quantum states. In
particular, it is at the basis of the path-integral formulation for equilibrium thermody-
namics, extensively used in this work.

The partition function Z of a quantum system at inverse temperature β is the trace
of the density-matrix operator exp(−βH). The simplest way to represent this trace is
through a basis where the Hamiltonian H operator is diagonal, so that

Z = Tre−βH = ∑
n

exp(−βEn), (1.22)

where En are the eigenvalues of the Hamiltonian H. The formulation at the basis of the
work described here is, however, is in the position representation. For the simple case
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of one quantum particle in three dimensions, the trace in Eq. 1.22 becomes

Z =
∫

dx ρ1 (x, x; β) , (1.23)

where ρ1 (x, x; β) is the diagonal component of

ρ1
(
x, x′; β

)
= ∑

n
Ψ∗n(x

′)e−βEn Ψn(x). (1.24)

This expression includes the full set of single-particle eigenfunctions Ψn and eigenval-
ues En of H, and the summation has to be replaced by an integration in case of a con-
tinuous spectrum. An analogous definition holds for the density matrix of an N-body
system,

ρN
(
X, X′; β

)
= ∑

n
Ψ∗n(X

′)e−βEn Ψn(X), (1.25)

where Ψn and En are the eigenfunctions and eigenvalues of the N-body Schrödinger
equation, and where we use the shorthands X = {x1, . . . , xN} and X′ = {x′1, . . . , x′N}.
Despite encoding the full thermodynamics of a many-body system, the expression in
Eq. 1.25 is rarely of practical use for realistic many-body problem (that is, for a large
number of interacting quantum particles), since it requires the full knowledge of the
spectrum and eigenfunctions of H. Nevertheless, it constitutes the basis for powerful
approximation schemes, leading to unbiased solutions for some challenging problems
in many-body physics.

The density matrix is conveniently treated within the path-integral formalism. In its
original formulation, this formalism consists in a rewriting of the real-time propagator
of a quantum system [34]. The central quantity is the amplitude for the system being in
state |A〉 at time t0 and in state |B〉 at time t1, given by

〈
B
∣∣∣∣exp

(
−i

H(t1 − t0)

h̄

)∣∣∣∣ A
〉

. (1.26)

This propagator, generally unknown, can be rewritten as a weighted sum over all the
space-time paths connecting |A, t = t0〉 with |B, t = t1〉. Through the formal replace-
ment of the time interval t1 − t0 with an imaginary-time variable, the real-time prop-
agator in Eq. 1.26 is related to the density matrix in Eq. 1.25, for which the same idea
of summing over paths is applicable [35, 36]. The analogy goes even further, since the
main approximation scheme used for imaginary-time path integrals (that is, the dis-
cretization into small imaginary-time intervals) was already used to treat the original
time-evolution problem. This is discussed more in detail in Section 3.2.1. Furthermore,
the path-integral formulation provides a mapping between the thermodynamics of a
quantum system in d dimensions with a classical system in d + 1 dimensions, which
can be treated by Monte Carlo algorithms.
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For bosons, the eigenstates Ψn in Eq. 1.25 are symmetric under the exchange of any
pair of coordinates, xi ↔ xj. In this case, the bosonic density matrix ρbos

N (X, X′; β) re-
mains unchanged when X′ is replaced by PX′ ≡ x′P1

, . . . , x′PN
, where P = P1, . . . , PN is a

permutation of the indices 1, . . . , N. Starting from the N-body density matrix for distin-
guishable particles, ρN (X, X′; β), its bosonic counterpart is obtained as an average over
all permutations P,

ρbos
N
(
X, X′; β

)
=

1
N! ∑

P
ρN
(
X, PX′; β

)
. (1.27)

For a given permutation P, a cycle is a subset of {1, . . . , N} such that its elements only
exchange place with one another, upon repeated application of P (see Fig. 1.2). The cy-
cle length is the number of elements in one such subset. From the bosonic density ma-
trix, it is simple to state a rough condition for the appearance of long cycles at thermal
equilibrium. The typical interparticle distance is ρ−1/3, and the distinguishable-particle
density matrix ρN is exponentially suppressed if any pair xj, x′j is at distance larger than
λth (cf. Section 2.1.2). A permutation P different from the identity has a relevant weight
in Eq. 1.27 only if the distance between any pair xj, x′Pj

is comparable to λth. If this is
not the case, the contribution of P is strongly suppressed. Therefore, the regime where
cycles longer than one become important is when ρλ3

th is of the order of unity, corre-
sponding to the BEC criterion in Section 1.1. High temperature or low density decrease
the statistical weight of permutations which include long cycles, while low temperature
or high density have the opposite effect. In the next section, the concept of permutation

(1,1,1,1)
P=1,2,3,4

(2,1,1)
P=2,1,3,4

(2,2)
P=2,1,4,3

(3,1)
P=2,3,1,4

Figure 1.2: Schematic view of some of the 4! = 24 permutations for N = 4, together
with their decomposition into cycles (in parentheses).

cycles is quantitatively related to the appearance of a BEC phase, for non-interacting
bosons. The general connection of permutation cycles with BEC and superfluidity is
given in Sections 3.3.2 and 3.3.3, within the path-integral framework.
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1.4 Recursion method for non-interacting bosons

For the non-interacting Bose gas, the study of permutation cycles leads to a power-
ful method to exactly compute observables as the energy and the condensate fraction.
This method provides insight into the connection between permutation cycles and Bose-
Einstein condensation. Moreover, it is valuable to benchmark our QMC algorithm (cf.
Fig. 3.15 and Table 3.1).

For a single quantum particle in a three-dimensional periodic box, the partition func-
tion at inverse temperature β reads

z(β) =

[
∑

n∈Z

exp

(
− β

2m

(
2πh̄

L

)2

n2

)]3

. (1.28)

In the density-matrix formalism, this is equal to the integral of ρ1(x, x; β) (cf. Eq. 1.23).
The partition function for N non-interacting bosons can be expressed through the fol-
lowing recursion relation [37, 38],

ZN(β) =
1
N

N

∑
k=1

z(kβ) ZN−k(β), (1.29)

with Z0(β) = 1. For N = 2, Eq. 1.29 gives

Z2(β) =
(z(β))2

2
+

z(2β)

2
. (1.30)

The same quantity can be computed through the bosonic two-body density matrix (cf.
Eq. 1.27), and it reads

Z2(β) =
∫

dx1

∫
dx2 ρbos

2 ({x1, x2}, {x1, x2}; β) =

=
∫

dx1

∫
dx2

[
ρ2 ({x1, x2}, {x1, x2}; β)

2
+

ρ2 ({x1, x2}, {x2, x1}; β)

2

]
=

=
(
∫

dx ρ1 (x, x; β))
2

2
+

∫
dx1
∫

dx2 ρ2 ({x1, x2}, {x2, x1}; β)

2
.

(1.31)

This shows that the two terms in Eq. 1.30 correspond to the two available permutations
for two particles, P = 1, 2 and P = 2, 1 (with the notation of Fig. 1.2). The recursion
relation in Eq. 1.29 provides a compact way to obtain ZN(β), which would naively re-
quire a sum over all N! permutations. ZN(β) gives access to several thermodynamic
observables. The average energy, for instance, is obtained through its definition,

〈EN〉 =
1

ZN(β)

∂ZN(β)

∂β
, (1.32)
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and a recursion relation for ∂ZN(β)/∂β which is derived from Eq. 1.29.
The recursive expression for ZN(β) is connected with the statistics of permutation

cycles. The k-th term in Eq. 1.29 is the product of z(kβ) and ZN−k(β), which corre-
sponds to assigning a given particle to a cycle of length k and weighting this choice
with the partition function of the other N− k particles, ZN−k(β). Therefore, the normal-
ized probability for a given particle to be on a cycle of length k reads

πk =
1
N

z(kβ) ZN−k(β)

ZN(β)
. (1.33)

As particles are identical, the average number of particles on cycles of length k is k×πk.
In Chapter 3, this expression is used to benchmark our QMC technique (cf. Fig. 3.15).

The recursion scheme for ZN also determines the probability of having N0 particles
in the single-particle ground state, which is [39]

p(N0) =
1

ZN(β)

{
ZN−N0(β)− ZN−(N0+1)(β) if N0 < N,
1 if N0 = N,

(1.34)

for cases in which the ground state energy is equal to zero (cf. Eq. 1.3). The conden-
sate fraction 〈N0〉 is ∑N0

N0 × p(N0). Moreover, the integer derivative of the average
permutation-cycle occupation is proportional to p(N0) [40, 39, 41], that is

p(N0 = k)
N

= kπk − (k + 1)πk+1, (1.35)

for k � 1. This establishes a connection between the condensate fraction and the ap-
pearance of long permutation cycles. At large N and T < T0

c , for instance, kπk drops to
zero for k ' 〈N0〉, which allows to identify the condensate fraction with the length of
the longest cycle with a finite occupation number.

The recursion scheme for ZN(β) also gives access to other observables, like the one-
body reduced off-diagonal density matrix [40, 42] and the superfluid fraction (cf. Sec-
tion 3.3.2), but it is restricted to ideal particles. The generalization to interacting systems
can only be obtained approximately, for instance through corrections to Eq. 1.29 based
on the high-temperature virial coefficients (see for instance Ref. [43], where this is used
to study the unitary Bose gas).





CHAPTER 2

Few-body physics with strong interactions

In this chapter, we consider systems of two or three strongly-interacting quantum par-
ticles. Two limits are of particular interest, the scaling and the unitary limit. In the scal-
ing limit, the range of the interparticle potential vanishes. This is the relevant regime
for experiments with dilute ultracold atomic gases, where the interaction range is typi-
cally much smaller than the average interparticle distance between atoms. The unitary
limit corresponds to interactions which realize a diverging scattering length. This is the
extreme strongly-interacting limit, since the corresponding cross section for two-body
collisions saturates a theoretical upper bound. Unitary interactions can be induced in
ultracold atomic samples, through the Feshbach-resonance technique (see Section 2.3).

We first review the general basics of scattering theory for two quantum particles (see
Section 2.1). Analytical results for the case of zero-range unitary interactions allow us
to compute thermal correlation functions, including the momentum distribution and
the pair-correlation function. These are of particular interest, since they share some
relevant features with the case of a unitary-interacting many-body system, described in
Chapter 4. For the case of three strongly-interacting particles, the Efimov effect appears,
consisting in a scale-invariant sequence of three-body bound states. This phenomenon
is connected to universal properties, which do not depend on microscopic details of the
interparticle interactions. In Section 2.2, we review the description of the Efimov effect
and verify that our theoretical model (based on a three-body cutoff) is consistent with
the universal theory. The verification is based on numerical results for the ground-state
trimer, obtained through the quantum Monte Carlo technique (cf. Chapter 3).

Throughout Sections 2.1 and 2.2, we combine two different approaches to the few-
body problem. The study of two-body scattering and of the Efimov effect is based on
wave functions for single quantum states, while the density-matrix approach is used
to obtain finite-temperature results. For N = 2, the latter provides analytical, approx-

27
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imate expressions for the relevant correlation functions. More generally, numerically
exact results can be obtained at any temperature, by combining the density-matrix ap-
proach with the quantum Monte Carlo technique. This powerful method is also used to
describe the many-body case (cf. Chapter 4).

2.1 Two-body physics

In the present section, we describe the two-body quantum problem for strong, short-
ranged interactions. We first review the basics of scattering theory for two particles,
providing the specific examples of the square-well and zero-range model potentials (see
Section 2.1.1). From the study of wave functions, we then move to the finite-temperature
density-matrix formalism, and report the exact solution for the density matrix of two
particles with zero-range, unitary interactions (see Section 2.1.2.1). This is useful for two
applications. On one hand, it gives direct access to thermal correlation functions for two
particles, like the one-particle-reduced density matrix g(1) (r) and the pair-correlation
function g(2) (r) (see Section 2.1.3). These show the small-distance features typical of
systems with strong, short-ranged interactions, like the cusp singularity of g(1) (r) and
the divergence of the pair-correlation function. On the other hand, the exact knowledge
of the two-body density matrix constitutes the essential ingredient for our quantum
Monte Carlo scheme (see Section 3.2.1). This technique is used to benchmark other
calculations for N = 2 (e.g. for correlation functions), and to obtain new results for N ≥
3, concerning Efimov trimers (cf. Section 2.2.2) and the unitary Bose gas (cf. Chapter 4).

2.1.1 Scattering theory

We consider two distinguishable particles of mass m, interacting through a potential
V2 (|x1 − x2|) which only depends on their distance. The Hamiltonian is the sum of the
center-of-mass and relative-motion terms, Hc.m. and Hrel, as in

H =
p2

1
2m

+
p2

2
2m

+ V2 (|x1 − x2|) =
P2

4m︸︷︷︸
Hc.m.

+

[
p2

m
+ V2(r)

]

︸ ︷︷ ︸
Hrel

, (2.1)

where P = (p1 + p2), p = (p1 − p2)/2, r = x1 − x2, and r = |r|. Hc.m. corresponds
to the Hamiltonian of a free particle with mass 2m, while the presence of two-body
interactions only affects Hrel. We consider the relative-motion problem, and assume
that the V2(r) decays to zero at large r. We look for scattering eigenstates Ψrel

k (r) of Hrel,
that solve the time-independent Schrödinger equation,

(
p2

m
+ V2(r)

)
Ψrel

k (r) = EkΨrel
k (r), (2.2)
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with a positive energy Ek = h̄2k2/m. For large distance r, a scattering eigenstate is
the superposition of the incoming plane wave (with wave number k) and a scattered
spherical wave:

Ψrel
k (r) ∼ eikr cos θ + f (k, θ)

eikr

r
, (2.3)

where θ is the angle between k and r. The scattering amplitude f (k, θ) encodes the ef-
fects of interactions on a two-body collision process. The total scattering cross section
σ(k), for instance, is the solid-angle integral of | f (k, θ)|2. As the system is character-
ized by axial symmetry (for rotations with axis k), a scattering state can be written as a
partial-wave expansion

Ψrel(r) =
∞

∑
l=0

AlPl(cos θ)Rk,l(r), (2.4)

where Al are constant coefficients and Pl are the Legendre polynomials. The radial wave
function Rk,l(r) solves the one-dimensional Schrödinger equation

(
− 1

r2
d
dr

r2 d
dr

+
l(l + 1)

r2 +
mV2(r)

h̄2

)
Rk,l(r) = k2Rk,l(r), (2.5)

which depends on l through a centrifugal barrier proportional to l(l + 1)/r2. At large
distance, the solution of Eq. 2.5 satisfies

Rk,l(r) ∝
2 sin

(
kr− π

2 l + δl(k)
)

r
=

1
ir

[
(−i)lei(kr+δl(k)) − ile−i(kr+δl(k))

]
, (2.6)

where δl(k) is a constant phase shift. By using this expression and comparing Eqs. 2.3
and 2.4, the coefficients Al are found to be [44]

Al =
1
2k

(2l + 1)ileiδl(k). (2.7)

The phase shifts δl(k) encode the effect of the interaction potential V2(r) on the scat-
tering wave functions Rk,l(r), for distances much larger than the potential range. By
comparing Eqs. 2.3 and 2.4 at large r, the scattering amplitude reads

f (k, θ) =
1

2ik

∞

∑
l=0

(2l + 1)Pl(cos θ)
[
e2iδl(k) − 1

]
. (2.8)

This leads to the total cross section

σ(k) = 2π
∫ 1

−1
d cos θ | f (k, θ)|2 =

4π

k2

∞

∑
l=0

sin2 δl(k), (2.9)

for two distinguishable particles. For l > 0, the centrifugal barrier in Eq. 2.5 suppresses
Rk,l(r) at short r, that is, in the region where V2(r) is strongest. Thus the contribution of
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l > 0 partial waves should vanish in the zero-energy limit, k → 0. More precisely, the
k→ 0 limit of the phase shifts reads1

δl(k) ∝ k2l+1 modulo π. (2.10)

Therefore all contributions in Eqs. 2.8 and 2.9 vanish in the k → 0 limit, except for the
l = 0 term.

The low-energy regime for two-body scattering is realized in ultracold atomic gases,
due to the extremely low temperature. This leads to the s-wave approximation, which
consists in truncating the partial-wave expansion at l = 0. Within this scheme, the effect
of interactions on scattering properties is encoded in the phase shift δ0(k). This quantity
is conveniently expressed through the s-wave scattering length a, defined as

a = − lim
k→0

tan δ0(k)
k

. (2.11)

For k going to zero, the total cross section σ(k) tends to 4πa2 (cf. Eq. 2.9), which is the
area of a sphere of radius a. Thus the scattering length can be interpreted as the length
scale over which the incoming plane wave is substantially modified by interactions. In
the case of a hard-sphere potential (where V2(r) is infinite for distances smaller than the
particle diameter, and zero otherwise), this interpretation becomes exact, as the scatter-
ing length a is equal to the particle diameter [45].

For ultracold atomic gases, the typical interaction potential V2(r) is strongly repul-
sive at small r, has a minimum at intermediate distance, and falls off as a power law.
The attractive large-r tail is

Vtail
2 (r) = −C6

r6 , (2.12)

which allows to define the van der Waals length lvdW as

lvdW =
1
2

(
mC6

h̄2

)1/4

. (2.13)

For 87Rb, for instance, lvdW ≈ 4 nm [5]. This potential supports several molecular bound
states with large binding energy. This indicates that ultracold gases are only metastable,
while the equilibrium state would correspond to a solid phase. Therefore, this real-
istic potential cannot be used directly within thermal-equilibrium theories (including
the path-integral QMC technique) [46]. However, ultracold atomic systems are exper-
imentally realized in the dilute regime, where the range of the two-body potential is
significantly smaller than the typical interparticle distance. Theoretical predictions in
this regime only depend on the scattering properties of the potential, rather than on
the specific form of V2(r). At low temperature, in particular, they depend only on the

1If V2(r) decays at large r as r−n, with n > 3, Eq. 2.10 is only valid for the partial waves such that
l < (n− 3)/2. For larger n, the small-k limit of δl(k) is kn−2 modulo π [45].
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s-wave scattering length a. Thus an arbitrary model can be chosen, provided it repro-
duces the required value of a. The choice is dictated by simplicity in the calculations,
and by the fact the model potential should be amenable to a thermal-equilibrium treat-
ment (that is, it should not have deeply-bound molecular states, which may lead to a
instability towards a solid phase). An example of this choice is the use of the hard-
sphere potential to study bosonic gases with small scattering length (see for instance
[47]). In Sections 2.1.1.1 and 2.1.1.2, we describe two possible models: The attractive
square-well potential, and its zero-range limit. The latter is then used throughout the
rest of this chapter and in Chapter 4.

2.1.1.1 Square-well potential

The attractive square-well potential is defined as

Vsw
2 (r) =

{
−U0 for r < r0,
0 for r > r0,

(2.14)

with U0 ≥ 0 (see Fig. 2.1a). For the s-wave channel (that is, for l = 0), the solution of the

0 r0
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−U0

0

V
sw 2

(r
)
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0 π 2π 3π
k0r0

−3

0
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a
sw
/r

0

b

Figure 2.1: Panel a: Attractive square-well potential Vsw
2 (r), with range r0 and depth

U0. Panel b: s-wave scattering length asw for the attractive square-well potential (blue
solid line, cf. Eq. 2.17).

radial Schrödinger equation in Eq. 2.5 reads

Rk,0(r) =





A sin
(

r
√

k2+k2
0

)

r for r < r0,
A′ sin(kr+δsw

0 (k))
r for r > r0,

(2.15)

where k0 =
√

mU0/h̄2, and A and A′ are constant coefficients. δsw
0 (k) corresponds to the

l = 0 phase shift introduced in Eq. 2.6, as can be seen by a direct comparison of the two
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wave functions at large r. By imposing the continuity of Rk,0(r) and of its logarithmic
derivative R′k,0(r)/Rk,0(r) at r = r0, we find the l = 0 phase shift

δsw
0 (k) = −kr0 + arctan

k tan
(

r0

√
k2

0 + k2
)

√
k2

0 + k2
. (2.16)

As a consequence, the s-wave scattering length for the square-well potential reads

asw ≡ lim
k→0

−δsw
0 (k)
k

= r0

(
1− tan(k0r0)

k0r0

)
. (2.17)

This quantity (cf. Fig. 2.1b) vanishes when U0 = 0, and it is negative for a weak poten-
tial, that is, for k0r0 ≤ π/2. Upon increasing k0r0, the scattering length diverges every
time that k0r0 is an odd multiple of π/2, which corresponds to the point where new
bound states for Vsw

2 (r) appear. Thus the attractive square-well interaction can realize
all values of the scattering length: Positive or negative, and of arbitrary magnitude. A
repulsive-barrier potential (the same as in Eq. 2.14, but with U0 < 0), in contrast, only
leads to non-negative scattering lengths [45].

2.1.1.2 Zero-range potential

The square-well potential depends on two parameters, from which the scattering length
is computed as in Eq. 2.17. A more convenient choice consists in the zero-range potential
[46], which is fully determined by the value of the scattering length. Moreover, the s-
wave approximation becomes exact for this potential, as all phase shifts δl with l > 0
are identically zero [45].

One possible realization of the zero-range potential consists in taking the r0 → 0 and
U0 → ∞ limits for the square-well potential (see Eq. 2.14), while keeping the scattering
length in Eq. 2.17 fixed. In this limit, the s-wave scattering wave function reads

Rk,0(r) =

√
2
π

sin (kr− arctan(ka))
r

, (2.18)

where only the r ≥ r0 part of Eq. 2.15 is relevant, since r0 → 0. This form of Rk,0(r)
highlights the fact that the zero-range interaction is fully defined by the choice of the
scattering length a. For positive a, the contact potential also supports a dimer bound
state, with energy

ED = − h̄2

ma2 . (2.19)

The corresponding wave function reads

Rb.s.(r) =

√
2
a

e−r/a

r
, (2.20)
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as can be verified by inserting Rb.s. in the Schrödinger equation, Eq. 2.5.
An alternative way to describe the contact potential is to directly consider the zero-

range limit, rather than passing through the square-well potential. In this case, V2(r) is
identically zero in the l = 0 Schrödinger equation (cf. Eq. 2.5), but a specific boundary
condition is imposed for small distance:

Rk,0(r)
r→0≈ C

(
1
r
− 1

a

)
, (2.21)

known as Bethe-Peierls boundary condition [48, 49]. Both the diffusive and bound states
of the contact potential (cf. Eqs. 2.18 and 2.20) satisfy the boundary condition in Eq. 2.21,
with prefactors

C =




−
√

2
π

ka√
1+k2a2 for Rk,0(r),√

2
a for Rb.s.(r).

(2.22)

The small-distance divergence of the wave function has peculiar consequences on the
correlation functions of a system with zero-range interactions (see Section 2.1.3).

The phase shift δ0(k) for the zero-range model is equal to − arctan(ka) (cf. Eq. 2.18).
By using the partial-wave expansion for the total scattering cross section (Eq. 2.9, trun-
cated to l = 0), we find

σ(k) =
4πa2

1 + (ka)2 . (2.23)

For vanishing a, this expression tends to 4πa2, which is the standard result for low-
energy scattering [45]. When |a| → ∞, in contrast, σ(k) tends to 4π/k2. This saturates
the upper bound on the cross section which follows from the unitarity of the quantum
evolution operator [46]. For this reason, the |a| → ∞ limit is known as the unitary limit,
independently of the setting in which this is realized (either a theoretical zero-range
potential or a realistic finite-range potential).

A specific feature of the zero-range interaction model is that the properties of a two-
body system are fully determined by a single length scale (the scattering length a). This
leads to a continuous scaling symmetry: When a is multiplied by a real factor λ, other
physical properties should be rescaled by a certain power of λ, as dictated by dimen-
sional analysis. As an example, the dimer energy ED has to scale as λ−2, when a → λa.
This constraint is satisfied by the expression in Eq. 2.19. Another example is the total
cross section σ(k), which scales as λ2, since it has the units of an area. Continuous
scale invariance has to be confronted with the discrete scale invariance associated to the
Efimov effect (see Section 2.2.1).

2.1.2 Two-body density matrix

In Section 1.3 we have introduced the general expression for the density matrix of N
distinguishable particles (see Eq. 1.25). This quantity allows to pass from considering
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individual quantum states to a finite-temperature treatment, where each state has a sta-
tistical weight proportional to the Boltzmann factor of its energy. In this section we
consider the case of two quantum particles interacting via a zero-range potential, and
we construct an exact expression for the two-body density matrix ρ2 by making use
of the solutions in Section 2.1.1.2. The exact knowledge of ρ2 constitutes the building
block for an approximate expression of the N-body density matrix, which is at the basis
of our QMC approach (cf. Section 3.2.1) Focusing on the unitary limit, where the scat-
tering length diverges, we also use the expression of ρ2 to compute several non-trivial
correlation functions of a two-body system (cf. Section 2.1.3). These observables share
several relevant features with their many-body counterparts, in the unitary Bose gas
(see Chapter 4).

The full solution of a quantum-mechanical problem, in terms of the wave functions
and spectrum of its Hamiltonian, gives access to the corresponding density-matrix. As
an example, we consider a quantum particle in free space, with Hamiltonian H =
p2/(2m). As in Eq. 1.25, the density matrix is

ρ1(x, x′; β) =
∫

R3
dk ψ∗k(r

′)e−βEk ψk(r), (2.24)

where ψk(r) = exp(−ik · r)/(2π)3/2 are plane-wave eigenstates with energy Ek =
h̄2k2/(2m). The free-space single-particle density matrix reads

ρ1(x, x′; β) =

(
m

2πh̄2β

)3/2

exp

(
−m(x− x′)2

2h̄2β

)
. (2.25)

This expression is a necessary ingredient to construct the density matrix for N > 1.
For a two-body problem, the Hamiltonian is the sum of two commuting terms (Hc.m.

and Hrel, cf. Eq. 2.1), corresponding to the center-of-mass and relative-motion problems.
The two-body density matrix, ρ2, can be factorized as

ρ2
(
{x1, x2}, {x′1, x′2}; β

)
= ρc.m.

2
(
X, X′; β

)
ρrel

2
(
r, r′; β

)
, (2.26)

with X = (x1 + x2)/2, X′ = (x′1 + x′2)/2, r = x1 − x2, and r′ = x′1 − x′2. Since Hc.m. is the
Hamiltonian of a free particle with mass 2m, the corresponding density matrix directly
reads

ρc.m.
2

(
X, X′; β

)
= ρ1(X, X′; β/2), (2.27)

where the 1/2 factor in front of β corresponds to the fact that the reduced mass of the
center-of-mass problem is twice as large as m (cf. Eq. 2.25). In the absence of inter-
actions, also Hrel is a free-particle Hamiltonian (with reduced mass m/2), so that the
non-interacting relative-motion density matrix reads

ρrel,0
2

(
r, r′; β

)
= ρ1(r, r′; 2β). (2.28)
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The dependence of ρrel
2 on interactions can be absorbed in a correction factor grel, as in

ρrel
2
(
r, r′; β

)
= ρrel,0

2
(
r, r′; β

)
+ ∆ρrel

2
(
r, r′; β

)
= ρrel,0

2
(
r, r′; β

)
grel (r, r′; β

)
, (2.29)

where grel is defined by

grel (r, r′; β
)
≡ 1 +

∆ρrel
2 (r, r′; β)

ρrel,0
2 (r, r′; β)

. (2.30)

This correction factor is equal to one in the absence of interactions, and otherwise quan-
tifies the deviation from the non-interacting relative-motion density matrix. The knowl-
edge of grel represents the full solution of the two-body problem at finite temperature,
and it is useful for the many-body treatment described in Section 3.2.1.

2.1.2.1 Two-body correction factor for zero-range potential

We consider the zero-range two-body potential V2(r) introduced in Section 2.1.1.2. In
Eq. 2.24, the single-particle density matrix ρ1 is obtained through an integral over the
eigenstates of the Hamiltonian. In an analogous way, the eigenstates found in Sec-
tion 2.1.1.2 for the zero-range potential give access to the exact form of the two-body
density matrix ρrel

2 , as we show in this section.
The partial-wave expansion which we used for the two-body scattering states (see

Eq. 2.4) also applies to the relative density matrix ρrel
2 (r, r′; β). For the zero-range po-

tential, the difference ∆ρrel
2 (r, r′; β) only includes the l = 0 terms, while corrections for

higher partial waves vanish. The s-wave term in the expansion of ρrel
2 reads [50]

1
4π

∫ ∞

0
dk R∗k,0(r

′)Rk,0(r) exp

(
−βh̄2k2

m

)
, (2.31)

with the eigenfunctions Rk,0(r) in Eq. 2.18. If a bound state exists (that is, for a > 0),
ρrel

2 (r, r′; β) also includes the corresponding term

R∗b.s(r
′)Rb.s.(r) exp

(
h̄2

ma2

)
, (2.32)

with Rb.s. defined as in Eq. 2.20. The l = 0 contribution to ρrel
2 (r, r′; β) consists in the sum

of Eqs. 2.31 and 2.32, and can be computed analytically (cf. Appendix 3.B in Ref. [51]).
This results in a unique expression, not depending on whether the bound state exists.
∆ρrel

2 (r, r′; β) is then obtained as the difference between the l = 0 parts of ρrel
2 (r, r′; β)

and ρrel,0
2 (r, r′; β). The correction factor grel for a three-dimensional contact potential

with scattering length a thus reads

grel (r, r′; β
)
= 1 +

2βh̄2

mrr′
exp

(
−rr′ + r · r′

2βh̄2/m

)
Fa(r, r′; β), (2.33)
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where

Fa(r, r′; β) = 1 +
h̄
a

√
πβ

m
e

(√
m
β

r+r′
2h̄ −

√
β
m

h̄
a

)2

erfc

(√
m
β

r + r′

2h̄
−
√

β

m
h̄
a

)
. (2.34)

The function Fa(r, r′; β) tends to 0 for a→ 0−, giving back the non-interacting limit (that
is, grel = 1). For |a| → ∞, in contrast, Fa(r, r′; β) tends to 1, so that the correction factor
at unitarity reads

grel (r, r′; β
)
= 1 +

2βh̄2

mrr′
exp

(
−rr′ + r · r′

2βh̄2/m

)
. (2.35)

The correction factor diverges as (rr′)−1 for small r and r′, which corresponds to impos-
ing the Bethe-Peierls boundary conditions on the pair wave functions (see Eq. 2.21). This
implies that the zero-range potential at unitarity has an effective short-range attraction,
since the weight of configurations with small r and r′ is greatly enhanced when r, r′ → 0.
Nevertheless, the two particles do not form a bound state, since the binding energy ED
vanishes in the unitary limit (cf. Eq. 2.19). The short-range divergence of grel has pe-
culiar consequences on the correlation functions for two or more unitary particles (e.g.,
the non-smoothness of the single-particle correlation function g(1)), which we describe
in the next section (see Section 2.1.3).

The correction factor in Eq. 2.35 is also the building block to construct an approxi-
mate expression of the N-body density matrix (see Eq. 3.32). For this reason, it has been
used in several QMC studies of both bosonic and fermionic systems with zero-range
unitary interactions [52, 12, 53, 54, 55]. ρrel

2 has also been computed in the presence of a
trapping potential [53].

2.1.3 Correlation functions

In this section, we compute the main correlation functions for two unitary bosons, and
compare them to the exact numerical curves obtained through the QMC method (cf.
Chapter 3). We consider two particles in a periodic cubic box of edge length L. The
bosonic two-body density matrix is obtained as an average over the two possible per-
mutation structures (cf. Eq. 1.27), namely

ρbos
2
(
{x1, x2}, {x′1, x′2}; β

)
=

ρ2 ({x1, x2}, {x′1, x′2}; β) + ρ2 ({x1, x2}, {x′2, x′1}; β)

2
. (2.36)

The one-body reduced density matrix g(1) and the pair-correlation function g(2) are de-
fined as

g(1)
(
x, x′

)
= 2

∫
dx2 ρbos

2 ({x, x2}, {x′, x2}; β)∫
dx1dx2 ρbos

2 ({x1, x2}, {x1, x2}; β)
, (2.37)
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and

g(2)
(
x, x′

)
=

ρbos
2 ({x, x′}, {x, x′}; β)∫

dx1dx2 ρbos
2 ({x1, x2}, {x1, x2}; β)

. (2.38)

For a translation-invariant system, both g(1) (x, x′) and g(2) (x, x′) only depend on r =
x− x′. In the path-integral description, g(1) is the distribution for the endpoints of an
open path, while g(2) is the distance distribution for closed-path configurations. This is
developed further in Sections 3.3.1 and 3.3.3, where these observables are defined for a
general many-body system.

The effects of unitary zero-range interactions on these correlation functions are rep-
resented in Fig. 2.2. The one-body reduced density matrix has a cusp singularity at r = 0
(cf. Fig. 2.2a), so that the momentum distribution n (k) decays as a power law for large
momenta (cf. Fig. 2.2b). Moreover, the pair-correlation function g(2) (r) diverges as 1/r2

for small r (cf. Fig. 2.2c). These features have been extensively studied for bosonic or
fermionic systems in the regime of large scattering length and small range of potential
[56, 57, 58, 49, 59]. For N = 2, they can be obtained directly from the knowledge of the
two-body density matrix, see Sections 2.1.3.1 and 2.1.3.2.
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Figure 2.2: Schematic view of correlation functions at unitarity (data obtained through
the QMC simulation of two co-cyclical bosons at low temperature, see Section 3.2). The
one-body reduced density matrix g(1) (r) has a cusp at rx = ry = rz = 0 (panel a, shown
for rz/λth ≈ 0), leading to a power-law decay of its Fourier transform n (k) (panel b).
Panel c: Pair-correlation function g(2) (r), diverging at short distance.

2.1.3.1 One-body reduced density matrix and momentum distribution

Following its definition in Eq. 2.37, g(1) (r) tends to ρ = N/V for r going to zero. This
implies that the momentum distribution,

n (k) = V
∫

dr g(1) (r) e−ik·r, (2.39)
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satisfies the normalization condition
∫

dk n(k) = 2× (2π)3. We compute g(1) (r) in the
high-temperature limit, i.e. for a thermal wavelength λth much smaller than L. In this
regime, the following approximation is justified

∫

[0,L]3
dx
∫

[0,L]3
dx′ exp

(
−π

(x− x′)2

λ2
th

)
' L3

∫

R3
dr exp

(
−π

r2

λ2
th

)
= (Lλth)

3 , (2.40)

which simplifies the analytical calculation. The integral in Eq. 2.37 then gives

g(1) (r) =
ρ

γ




e
−πr2

λ2
th +

(
λth

L
√

2

)3

e
− πr2

2λ2
th

︸ ︷︷ ︸
2nd term

+

(
λth
√

2
L

)3

e
− πr2

2λ2
th erfc

(
r
√

π/2
λth

)

︸ ︷︷ ︸
3rd term




, (2.41)

where the normalization factor γ reads

γ = 1 +
(

λth

L
√

2

)3

+

(
λth
√

2
L

)3

. (2.42)

The expression in Eq. 2.41 is the sum of three terms: The result for non-interacting distin-
guishable particles, followed by the two corrections due to bosonic statistics and to uni-
tary interactions. Both corrections vanish in the infinite-temperature limit, λthρ1/3 → 0.
The second term in g(1) (r) (due to bosonic statistics) has a slower large-r decay than the
first term. This is a signature of off-diagonal long-range order, which would take place
at low temperature (see Sections 1.1 and 3.3.3). The third term in Eq. 2.41 is the effect of
zero-range, unitary interactions, for the one-body reduced density matrix of two bosons.
Due to the erfc function, the derivative of g(1) (r) with respect to r remains finite in the
r → 0 limit, generating a cusp singularity (see Fig. 2.2a). The non-smoothness of g(1)

in real space corresponds to a power-law decay of n (k) at large momentum, namely
n (k) ' C2/k4. This asymptotic scaling of the momentum distribution is a general
feature due to strong short-ranged interaction potentials, and it is also present in the
many-body case (see Sections 4.3.1 and 4.4.2). The prefactor C2, known as Tan’s contact
[57] regulates the short-distance behavior of g(1) (r) and g(2) (r) (see also Section 2.1.3.2).
Moreover, it is related to global observables, as the derivative of the total energy with
respect to the scattering length [57, 49].

A direct connection exists between the cusp singularity in g(1) (r) and the power-law
decay of its Fourier transform at large k [60]. The one-body reduced density matrix is
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Figure 2.3: Momentum distribution for two unitary bosons in a cubic box, at different
temperatures (see legend). For each temperature, the numerical Fourier transform of
Eq. 2.41 (solid lines) is indistinguishable from the exact numerical result (dots, obtained
with the QMC method described in Chapter 3). The large-k part of n (k) is well captured
by C2/k4, with the value of C2 extracted from the pair-correlation function (dashed lines,
cf. Eq. 2.48). We also show n (k) for two non-interacting distinguishable particles (red
dotted line, cf. Eq. 3.102).

conveniently rewritten as

g(1) (r) =
1

V(2π)3

∫
dk n (k) e−ik·r =

N
V

+
1

V(2π)3

∫
dk n (k)

(
e−ik·r − 1

)
=

=
N
V

+
1

V(2π)3

∫
dk

C2

k4

(
e−ik·r − 1

)

︸ ︷︷ ︸
IA

+
∫

dk
(

n (k)− C2

k4

)(
e−ik·r − 1

)

︸ ︷︷ ︸
IB

,

(2.43)
where the second term, IA, can be computed exactly. Assuming that n (k) ' C2/k4 at
large k, IB is O(r2) [58]. Thus the small-r expansion of g(1) (r) reads

g(1) (r)
r→0' N

V
− C2

8πV
r + O(r2). (2.44)

Thus the contact density c2 ≡ C2/V corresponds to the r-derivative of g(1) (r) for r → 0,
up to numerical prefactors, and it can be computed from Eq. 2.41. This leads to

c2ρ−4/3 =
128π

8 + 9
√

2
(
λ3

thρ
)
(

λthρ1/3
)2

, (2.45)

which holds for two particles in the high-temperature regime (λthρ1/3 � 1). At smaller
temperatures, the shape of the box becomes relevant and Eq. 2.41 is not valid, since it is
based on the approximation in Eq. 2.40.
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The full momentum distribution can be computed from the expression in Eq. 2.41,
by performing the Fourier transform in Eq. 2.39 numerically. For λthρ1/3 up to 0.6, the
resulting n (k) curves agree with the exact results obtained through the QMC method
(see Fig. 2.3). The small-k part is well described by the momentum distribution of non-
interacting distinguishable particles, which crosses over into the asymptotic power-law
tail at k ≈ k∗. The length scale over which the derivative of g(1) (r) is finite is set by the
thermal wavelength λth (cf. Eq. 2.41). Therefore the crossover momentum k∗ should be
proportional to 1/λth. This is confirmed by the results shown in Fig. 2.3, where we find
that k∗ ≈ 10/λth.

2.1.3.2 Pair-correlation function
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Figure 2.4: Panel a: Rescaled contact density for two bosons in a periodic cubic box.
Approximate expressions are computed starting from g(1) (r) (black solid line, cf. Eq. 2.45)
and g(2) (r) (dashed red line, cf. Eq. 2.48), and compared with the exact results (black dots,
obtained through QMC). Panel b: Pair-correlation function for two bosons in a periodic
cubic box, at different temperatures (see legend). At each temperature, the approximate
high-temperature expression (solid line, cf. Eq. 2.46) is compared with the exact QMC
curve (dots, cf. Chapter 3). The expression in Eq. 2.46 is multiplied by the distribution
of periodic distances for two non-interacting particles (different from unity only for
r > L/2), and then rescaled to obtain the correct normalization (cf. Section 4.4.3).

We also compute the pair-correlation function g(2) (r) analytically, in the limit of high
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temperature. Starting from the definition in Eq. 2.38, we find

g(2) (r) =
2

V2




1 + exp

(
−2πr2

λ2
th

)

︸ ︷︷ ︸
2nd term

+
2λ2

th
πr2 exp

(
−2πr2

λ2
th

)

︸ ︷︷ ︸
3rd term




. (2.46)

As for g(1) (r), the pair-correlation function is the sum of three terms. The first is the
result for two distinguishable non-interacting particles, where g(2) (r) is a constant. The
second term corresponds to the boson-bunching effect [61]: Bosonic statistics leads to
the doubling of the statistical weight of configurations with the two particles at zero
distance. The third term is the correction due to unitary, zero-range interactions for two
bosons, and it diverges as 1/r2 at short distance. This leads to an alternative expression
for the contact density c2, which can be obtained through [49, 59]

c2 = lim
r→0

[
(4πr)2g(2) (r)

]
, (2.47)

for any N-body system. By applying Eq. 2.48 to the high-temperature pair-correlation
function for two bosons (cf. Eq. 2.46), we find

c2ρ−4/3 = 16π
(

λthρ1/3
)2

. (2.48)

This corresponds to the second-order virial-expansion result [62, 63, 64], up to a factor
of two (which is a finite-N correction, see Appendix 4.A).

The contact densities in Eqs. 2.45 and 2.48 (obtained through g(1) (r) and g(2) (r),
respectively) are equal at high temperature. Both expressions are only approximately
valid, and cannot be used at low temperature. By a comparison with the exact QMC
data, however, we observe that Eq. 2.45 better captures the temperature dependence of
c2, for two bosons in a periodic box (see Fig. 2.4a). At high temperature, the rescaled
contact density c2ρ−4/3 is proportional to (λthρ1/3)2. c2 reaches its maximum value for
λthρ1/3 ≈ 0.9, and then decreases for larger λthρ1/3. A similar behavior is observed
for the many-body case, cf. Sections 4.3.2 and 4.4.3. Eq. 2.46 for the pair-correlation
function is only valid in the high-temperature regime, for small λthρ1/3, as is clear when
comparing it with the exact curves obtained through QMC simulations (see Fig. 2.4b).
The temperature at which deviations first appear corresponds to λthρ1/3 ≈ 0.8.

2.2 Three-body physics and Efimov effect

In the Section 2.1, we described two bosons interacting through a zero-range potential
with infinite scattering length. In the |a| → ∞ limit, the shallow dimer state (which
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exists for a > 0) becomes unbound, as its size diverges and its binding energy vanishes.
If a third identical boson is added, however, an infinite sequence of three-body bound
states appears. This was first described by V. Efimov in 1970 [7, 65], in the context of
nuclear physics. These states are characterized by a discrete scale invariance, where the
(n + 1)-th trimer has an energy which is ≈ 515 times smaller than the n-th state, and
a linear size which is ≈ 22.7 times larger. Moreover, they have universal properties,
which can be obtained starting from different two-body potentials having a short range
and a large scattering lengths. For a ≤ 0, Efimov trimers are Borromean states, since
three particles form a bound state even in the absence of any two-body binding.

Forty years after the prediction of Efimov trimers, signatures of these states have
been observed in experiments with strongly-interacting ultracold atomic gases (see Sec-
tion 2.3). This has lead to an renewed experimental and theoretical interest towards
Efimov physics, which has reached diverse fields as quantum magnets [66] and three-
stranded DNA (see [67] and references therein).

In this section, we describe the basic derivation of the Efimov effect, for the case of
a model two-body potential with zero range and infinite scattering length [10]. This
mainly consists in obtaining a certain class of solutions of the N = 3 Schrödinger equa-
tion, in the low-energy regime. This theory allows to obtain the infinite tower of scale-
invariant, universal Efimov trimers. However, using a zero-range two-body potential
leads to the Thomas collapse, where a trimer state exists with infinite binding energy
and vanishing size. To regularize the problem, we introduce a three-body regulator
(cf. Section 2.2.2), in the form of a cutoff on the three-body distance. This model only
weakly deviates from the universal Efimov theory (cf. Section 2.2.2), and it will be the
basis for our study of the many-body case (the unitary Bose gas, see Chapter 4).

Furthermore, we explain in Section 2.2.2.1 how some specific properties of Efimov
trimers also provide a method to calibrate the quantum Monte Carlo scheme described
in Chapter 3. This method is used here to study the ground-state Efimov trimer (see
Section 2.2.2), and in Chapter 4 for the unitary Bose gas.

2.2.1 Efimov trimers

Here we sketch the derivation of the universal theory for the Efimov effect, for the case
of three identical bosons with infinite scattering length and zero-range interactions2.
The three-body Hamiltonian reads

H =
3

∑
i=1

p2
i

2
+ V2(r12) + V2(r23) + V2(r31), (2.49)

and we are only interested in the relative-motion problem, in the frame of the center of
mass of the three particles. In this case, a configuration is defined through six degrees

2Section 2.2.1 is mainly based on Ref. [10].
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of freedom. It is convenient to express the three-body problem by using different sets
of variables, namely the Jacobi and hyperspherical coordinates. Given three positions
x1, x2 and x3, Jacobi coordinates read

rij = xi − xj, rk,ij = xk −
xi + xj

2
, (2.50)

for any permutation {i, j, k} of {1, 2, 3}. In the center-of-mass frame, a configuration is
specified by any pair of vectors rij and rk,ij. The hyperradial coordinates consist in the
hyperradius R, the Delves hyperangle αk, and the two unit vectors r̂ij ≡ rij/|rij| and
r̂k,ij ≡ rk,ij/|rk,ij|. The hyperradius is defined through

R ≡
√

r2
12 + r2

23 + r2
31

3
=

√
1
2

r2
ij +

2
3

r2
k,ij, (2.51)

while the Delves hyperangle reads

αk = arctan

(√
3rij

2rk,ij

)
, (2.52)

with αk ∈ [0, π/2]. We collectively denote the angular variables by Ω = (αk, r̂ij, r̂k,ij).
The three-body wave function Ψ(R, Ω), which satisfies the Schrödinger equation

for the Hamiltonian in Eq. 2.49, can be decomposed on a complete set of hyperangular
functions Φn(Ω, R):

Ψ(R, α) =
1

R5/2 ∑
n

fn(R)Φn(Ω; R), (2.53)

and the Faddeev decomposition of Φn reads

Φn(Ω; R) =
3

∑
k=1

φ(Ω; R)
sin 2αk

, (2.54)

for three identical bosons. In the low-energy regime, the dependence of φ on r̂ij and
r̂k,ij can be neglected, which is equivalent to only considering the first term in the corre-
sponding partial-wave expansions. The solution for Φn introduces an additional effec-
tive potential Vn(R) in the Schrödinger equation for the n-th hyperradial wave function,
fn(R). The different channels are in principle not independent, but their coupling can
be neglected in the low-energy limit. We consider the n = 0 channel, which is the only
one with an attractive effective potential supporting a bound state [65]. The effective
potential V0(R) is proportional to R−2, and it depends on s0 = 1.0062378.., the solution
of

s0 cosh
πs0

2
=

8√
3

sinh
πs0

6
. (2.55)
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The Schrödinger equation for f0(R) reads

− h̄2

2m

(
∂2

∂R2 +
s2

0 + 1/4
R2

)
f0(R) = E f0(R), (2.56)

and the binding momentum κ reads

κ =

√
−mE

h̄2 . (2.57)

The solution of Eq. 2.56 which decays exponentially at large hyperradius is

f0(R) =
2κ
√

R Kis0(
√

2κR)√
πs0 csch(πs0)

, (2.58)

where csch is the hyperbolic cosecant and Kis0 is the Bessel function with imaginary
index is0.

The wave function f0(R) depends on a single parameter, namely its binding mo-
mentum κ. Fixing a small-R boundary conditions for its logarithmic derivative sets a
constraint on of κ, which is restricted to take a discrete set of values κn. These values
form an infinite geometric sequence, defined by [65]

κn

κn+1
= eπ/s0 ≈ 22.694 for n ∈ Z. (2.59)

Therefore there exists an infinite sequence of states, known as Efimov trimers, with
energies En which satisfy

En

En+1
= e2π/s0 ≈ 515. (2.60)

The peculiarity of these states is their scale invariance: The n-th and (n + 1)-th are sim-
ply a rescaled version of one another, with a length scale set by 1/κn. The knowledge
of the binding momentum κn for a specific n = n∗ determines the whole sequence
{κn}. This corresponds to the fact that the universality of a system of three strongly-
interacting unitary bosons is not fully determined by the scattering length, but it also
depends on a three-body parameter. In Section 2.2.2 we show how this parameter is
fixed in our model, while in Section 2.3.2 we describe its experimental characterization.

The size of a trimer can be measured through its average squared hyperradius,

〈
R2
〉
=

∫ ∞
0 dR | f0(R)|2 R2

∫ ∞
0 dR | f0(R)|2

. (2.61)

which is connected to the trimer binding momentum κ through

κ2 =
1 + s2

0
3

1
〈R2〉 , (2.62)
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as obtained directly through Eqs. 2.58 and 2.613 . For n → ∞, the binding energy of
the n-th trimer tends to zero (cf. Eq. 2.60) and its characteristic size diverges, while for
n → ∞ the binding energy |En| diverges and the trimer collapses to a single point in
space at any temperature. The latter is known as the Thomas collapse [68], which we
discuss further in Section 2.2.2.

2.2.2 Three-body-cutoff model

As the Efimov spectrum is not bounded from below, three unitary bosons with zero-
range interactions would collapse to a single point, at any temperature. This is also
visible in the small-R behavior of the hyperradial wave function f0(R), which reads

f0(R) ' −2κ
√

R√
s0

sin (s0 log(κR) + α0) , (2.63)

where α0 ' −0.0477 is a constant depending on s0 [10]. The signature of Thomas col-
lapse is that the oscillatory function in Eq. 2.63 has infinitely many nodes, for a given
value of κ (see Fig. 2.5). Starting from the outermost node, the values of κR for these
nodes differ by integer multiples of exp(−π/s0). Therefore, for any trimer state (char-
acterized by κ) there exist infinitely many other trimers with larger energy and smaller
size [69].

10−6 10−5 10−4 10−3 10−2 10−1 100 101

κR

0.0

0.5

1.0

f 0
(R

)/
√
κ

κR ' 0.0462

f0(R)/
√
κ

2
√

κR
s0

sin (log(κR) + α0)

Figure 2.5: Hyperradial wave function of an Efimov trimer (orange solid line, cf. Eq. 2.58)
and its small-R expansion (blue dashed line, cf. Eq. 2.63). The four outermost nodes of
f0(R) are marked by blue circles.

3Eq. 2.62 is incorrectly reported in §5.5 of Ref. [10], where an additional factor of two is included in the
right hand side. The same error is present in Ref. [51].
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The pathological Thomas collapse is a consequence of using the zero-range two-
body potential. This potential does not include any information about the short-range
part of realistic interactions, which would otherwise lead to a small-R repulsive term
in the Schrödinger equation for f0(R) [70]. Using a realistic two-body potential with
range r0 would set a large energy scale ∝ 1/r2

0. This would provide a lower bound on
the Efimov spectrum, leading to the appearance of one specific ground-state trimer.

Within the model based on zero-range two-body interactions, Thomas collapse can
be avoided introducing a small-R cutoff on f0(R) [69, 10, 71, 12]. This corresponds to
setting f0(R) = 0 for any R ≤ R0, where R0 is chosen as the outermost node of f0(R) –
see Fig. 2.5. This introduces a lower bound on the Efimov spectrum, so that there exists
a well-defined ground-state trimer, with binding momentum4

κ0 =
e−(π+α0)/s0

R0
' 0.046203

R0
, (2.64)

and energy

ET = − h̄2κ2
0

m
' − h̄2

m
0.0021347

R2
0

. (2.65)

Setting a cutoff for R ≤ R0 corresponds to considering the Hamiltonian

H =
3

∑
i=1

p2
i

2m
+ ∑

i<j
V2(rij) + V3(R), (2.66)

where V3 is a three-body hard-core repulsion:

V3(R) =

{
∞ if R < R0

0 if R > R0
. (2.67)

Eq. 2.66 can be generalized to the N-body case, as in

H =
N

∑
i=1

p2
i

2m
+ ∑

i<j
V2(rij) + ∑

i<j<k
V3(Rijk), (2.68)

which constitutes the model for our study of the unitary Bose gas (see Chapter 4).
An alternative regularization scheme consists in replacing the three-body cutoff with

a soft repulsive potential V3(R) [72]. This choice is easier to treat through the QMC
method (cf. Chapter 3), at the price of an additional dependence on the functional form
for V3.

4Among the roots of the small-R asymptotic expression (cf. Eq. 2.63), we choose the one closest to the
outermost root of f0(R). The root of f0(R) is at κ0R0 ' 0.046227, with a relative deviation of 5× 10−4

from Eq. 2.64.
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The choice of the hyperradial cutoff as a regulator is in principle arbitrary, and we
need to verify the extent to which the universal properties of Efimov trimers are modi-
fied. For a trimer with binding momentum κ, the effect of the three-body cutoff on the
wave function in Eq. 2.58 depends on κR0. For the ground-state trimer, this parameter
is ≈ 0.046, while for the n-th excited state it is approximately 0.046/22.7n. This guaran-
tees that highly-excited states have a large overlap with the universal wave function in
Eq. 2.58. The deviation from universality can be measured through the relative differ-
ence of κn/κn+1 from the scaling factor exp(π/s0) ≈ 22.7, which reads [72]:

diffn =

κn
κn+1
− eπ/s0

eπ/s0
≈
(

5.297× 10−4
)
× e−6.244n. (2.69)

This is already small for the ground state (diff0 ' 0.053%), and negligible for highly
excited states (for instance, diff4 < 10−14).

We also compare universal Efimov trimers with the ground-state trimer of the three-
body-cutoff model. For the latter, the hyperradial correlation function P3(R) and the
single-particle momentum distribution n (k) are computed through the QMC method
(see Chapter 3), which gives access to thermal-equilibrium properties. Therefore, the
only accessible trimer state is the ground state, which is the dominating state when the
thermal energy kBT is much smaller than the energy gap ∆E to the first excited state.
This condition reads

1� β∆E = β|ET|
(

1− e−2π/s0
)
≈ β|ET|, (2.70)

where ET is the energy of the ground-state trimer (cf. Eq. 2.65). A technical aspect of our
QMC simulations for the ground-state trimer is that they are performed for three bosons
belonging to a single permutation cycle [51]. This is necessary to regulate the accessible
volume, which is then set to be of the order of λ3

th. An alternative option would be
to include a shallow harmonic trap. Fixing the permutation-cycle structure does not
introduce a severe bias on the trimer state realized in the QMC simulations. The paths
of the three particles come at extremely short distance, as seen in the divergence of
g(2)(r) at small r, so that a different permutation structure could be considered at no
cost (see Section 3.2.2.2). The only effect of the co-cyclicity condition is then to modify
observables which involves length scales larger than ≈ λth, or momenta smaller than
≈ 1/λth.

The hyperradial distribution function P3(R) for a universal trimer is obtained di-
rectly as | f0(R)|2, via Eq. 2.58. In a QMC simulation which includes the three-body
cutoff, P3(R) is obtained as a histogram of the hyperradii in several samples (cf. Sec-
tion 3.3.1). To compare these two curves, we need to estimate κ0 for the trimer obtained
through QMC, which can be done by measuring the average hyperradius

〈
R2〉 and us-

ing Eq. 2.62. This also provides a well-defined way to calibrate our QMC scheme, as
described in Section 2.2.2.1. The two curves for P3(R) shown in Fig. 2.6 (for the uni-
versal trimer and for the ground-state trimer of the model with a hyperradial cutoff)
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are indistinguishable, for R > R0. This shows that even the ground-state trimer of the
three-body-cutoff model is only weakly non-universal.
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κ0R
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Figure 2.6: Hyperradial probability distribution P3(R) for a universal Efimov trimer
(thin blue line, obtained as the squared modulus of f0(R), cf. Eq. 2.58), and for the
ground-state trimer of the model in Eq. 2.66 (thick orange line, through the QMC method
described in Chapter 3). The QMC simulation is performed at β|ET| ≈ 4, with
imaginary-time discretization λs = 1.52× R0 (see Section 3.2.1). The binding momen-
tum κ0 is extracted from the QMC data through Eqs. 2.64 and 2.74 (cf. Section 2.2.2.1).

The QMC method also yields the single-particle momentum distribution n (k) (see
Section 3.3.4). For a universal trimer, the numerically exact expression of n (k) has been
computed [73]. As for N = 2, n (k) has a power-law tail, C2/k4, at large-momentum.
Tan’s contact parameter reads

C2 = κ × 53.09722846 . . . , (2.71)

where κ is the trimer binding momentum [73]. Furthermore, n (k) includes the sublead-
ing term

C3

k5 cos

(
2s0 log

(√
3k
κ

)
+ φ

)
, (2.72)

where C3 is the three-body analogous of the two-body contact C2, and

C3 ' −89.26260× κ2,
φ ' −0.8727976.

(2.73)
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This term is a consequence of the Efimov effect, and it has also been predicted for a
many-body system of unitary bosons [62] (see Section 4.3.1). In Fig. 2.7 we compare the
momentum distribution of a universal Efimov trimer with the one for the ground-state
trimer of the three-body-cutoff model, obtained through our QMC simulations. The
binding momentum κ0 is extracted through Eqs. 2.64 and 2.74, so that the QMC data do
not rely on any fitting parameter. n (k) shows some weak deviation from the universal
curve for k . 2/λth, as a consequence of the finite temperature and of our choice for
the volume regulation. For kλth & 2, however, the two curves are in agreement over
at least three orders of magnitude in n (k) (cf. Fig. 2.7a). For large momenta, however,
the statistical noise prevents the accurate determination of the QMC curve (cf. Fig. 2.7b).
This is a known issue of the naive method to measure n (k), which could be improved
with dedicated QMC estimators (see discussion in Section 3.4.2). Nevertheless, it is
possible to track the first part of the universal oscillations in k4n (k) (cf. Fig. 2.7b and
Eq. 2.72). For even larger momenta (that is, for k & 1/R0), the momentum distribution
of the three-body hard-core model is expected to deviate from the universal curve.

0 5 10

k/κ0

10−2

10−1

100

101

102

n
(k

)
κ

3 0

kλth ≤ 2

a

10−1 100 101 102

k/κ0

0

20

40

60

80

k
4
n

(k
)/
κ

0

k = 1
R0

b

Figure 2.7: Momentum distribution of a universal trimer (orange solid line, from
Ref. [73]) and of the ground-state trimer in the presence of a three-body cutoff (blue
points, through QMC method, cf. Fig. 2.6). The shaded area corresponds to kλth ≤ 2,
where our choice to regulate the volume in QMC simulations induce deviations from
the universal curve.

2.2.2.1 Ground-state trimer through quantum Monte Carlo

The results for the ground-state trimer of the three-body-cutoff model (see Figs. 2.6 and
2.7) are obtained through the QMC method described in Chapter 3. An important detail
of these calculations is that there exists a discrepancy between the value of R0 which is
imposed as an input (Rinput

0 ) and the actual value of R0 which is realized in the sim-
ulation. This discrepancy follows from the fact that the QMC method is based on an
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approximate form of the three-body density matrix, which incorporates the three-body
cutoff through the Trotter approximation (see Section 3.2.1). The effective value of R0 is
obtained through this procedure [51]:

1. We set a certain Rinput
0 , which enters the approximate three-body density matrix

via the Trotter approximation.
2. We extract the average hyperradius

〈
R2〉 from the QMC simulation and obtain the

trimer binding momentum through Eq. 2.62.
3. We extract the effective value of R0 through Eq. 2.64.

The Trotter approximation depends on τ (the imaginary-time discretization interval),
and its validity requires a small value of this parameter. At low temperature, the only
available length scales are Rinput

0 and
√

h̄2τ/m, so that they should also determine the
deviation of R0 from the input value Rinput

0 . This is confirmed by the QMC results in
Fig. 2.8, which collapse on the single curve

R0

Rinput
0

' 1− 0.588

√
h̄2τ/m

Rinput
0

. (2.74)

This expression becomes invalid in the physically uninteresting regime where
√

h̄2τ/m ≈
Rinput

0 . For all other cases, it provides a method to correct the Trotter approximation, in a
way which is consistent with the universal Efimov theory for three particles (cf. Figs. 2.6
and 2.7, where the correction in Eq. 2.74 is already taken into account). Furthermore,
Eq. 2.74 can be used also to determine the value of R0 in a dilute many-body system
(see Section 4.1).

2.3 Ultracold atoms with strong interactions

After the theoretical prediction of the Efimov effect, four decades passed before its first
experimental signatures were observed [8]. This observation was achieved with ultra-
cold atomic systems, where the Feshbach-resonance technique provides an extreme con-
trol of the interaction strength and allows to reach the unitary regime (see Section 2.3.1).
Following the first observation, several results were obtained in connection with few-
body Efimov physics. Not only trimers of identical bosons were identified, but also
four-body resonances and the Efimov effect for atomic mixtures. In most experiments,
the central observable is the three-body recombination rate, the main contribution to
losses of atoms from the confining potential, which has resonances corresponding to
specific features of Efimov states (see Section 2.3.2).

While being useful to study few-body physics, three-body losses also constitute a
severe obstacle towards the realization of a quantum-degenerate many-body state with
unitary interactions. Both conditions (quantum degeneracy for a strongly-interacting
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Figure 2.8: Discrepancy between R0 and Rinput
0 , as a function of the dimensionless

ratio
√

h̄2τ/m/Rinput
0 . Different symbols correspond to different choices of Rinput

0 (cf.
legend, in arbitrary units), and all points are obtained in the low-temperature regime,
β|ET| > 2.5 (cf. Eq. 2.70). The black dashed line corresponds to the linear fit in Eq. 2.74.

system, and the unitary limit for interactions) have been independently obtained in ex-
periments [33, 74, 75, 76, 77]. A single experiment has been realized at low temperature
and with unitary interactions [78], but its interpretation has not yet reached a consensus
(see Section 2.3.2.1).

2.3.1 Feshbach resonances

The square-well model potential has a set of resonances for the s-wave scattering length,
taking place for specific combinations of its range and depth (see Fig. 2.1b). More gen-
erally, scattering resonances also exist for higher partial waves. Shape resonances take
place when the centrifugal barrier (cf. Eq. 2.5) generates a quasibound state at short dis-
tance (see for instance Refs [79] and [80]). If the energy of the incoming pair of particle is
close to the quasibound state, this induces a resonance, with an enhanced cross section.
In this case, the control parameter is the collision energy.

Both these examples involve a single channel, and their control parameters (the
range and depth of the potential, or the collision energy) are not easily tunable. Around
a Feshbach resonance, in contrast, the scattering properties can be modified through a
magnetic field, allowing to tune a across a wide interval [5]. This technique was first
demonstrated with gases of Na and Rb atoms [81, 82], and it is the method of choice to
produce strongly-interacting atomic clouds. The basic physics of a Feshbach resonance
can be understood within a two-channels model. The atomic gas is prepared in a given
hyperfine state, with the hyperspin quantum number resulting from the combination
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of electronic and nuclear spins. The interparticle potential for atoms in this state de-
fines an open channel, Vopen(r), for the low-energy scattering of two particles. Another
potential Vclosed(r), for particles in a higher hyperfine state, defines the closed channel.
This has a higher energy, and only its lowest bound states are accessible during a low-
energy collision (see Fig. 2.9a). Due to the hyperfine coupling between the two channels,
transitions between an open-channel scattering state and a closed-channel bound state
are allowed. The two channels have different magnetic moments, due to their different
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Figure 2.9: Panel a: Sketch of the open and closed interaction channels. The Feshbach
resonance takes place when the closed-channel bound state corresponds to the open-
channel scattering threshold. Panel b: Dependence of the scattering length on the mag-
netic field, cf. Eq. 2.75.

hyperspin state. Thus their energy difference can be tuned by means of the Zeeman
shift induced by an external magnetic field. A Feshbach resonance takes place when
the closed-channel bound state reaches the open-channel scattering threshold. In this
case, the scattering length is drastically enhanced, due to the vanishing gap between
these two states. For a magnetic field B close to the resonance value B0, an approximate
expression for a reads

a(B) ≈ abg

(
1 +

∆
B− B0

)
, (2.75)

where abg is the background scattering length and ∆ characterizes the resonance width
(cf. Fig. 2.9b). This provides a strong control on a, which can be tuned to both positive
and negative large values, or even made close to zero

2.3.2 Signatures of the Efimov effect

In Section 2.2.1, we described Efimov theory in the unitary limit, and its infinite tower of
scale-invariant states (cf. Eq. 2.60). This theory can be extended to the case of large, finite
|a|, and the corresponding spectrum of Efimov states is represented in Fig. 2.10. In the
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chosen coordinate system (that is, sign(E)
√
|E| vs. 1/a), the shallow dimer (cf. Eq. 2.19)

corresponds to a straight line, forming an angle of −π/4 with the 1/a axis. When
|a| → ∞, the Efimov spectrum has an accumulation point at zero energy. For finite |a|, in
contrast, there exist only a finite number of trimers (assuming that the Thomas collapse
is not present, cf. Section 2.2.2). At negative a, the n-th trimer state disappears when
a = a−n , where its energy reaches the threshold for a system of three unbound atoms. At
positive a, the trimer becomes unstable at scattering length a+n , where it dissociates into
a dimer and a single atom.

0

1/a

0

si
gn

(E
)
√
|E
|

a = a−1a = a−0 a = a+
0

A+A+A

A+D

n = 2

n = 1

n = 0

Figure 2.10: Energy spectrum for three identical bosons. For positive energy (“A+A+A”
region), the three particles are unbound, while for a > 0 they form a dimer+atom system
(“A+D” region, with the black dashed line corresponding to the dimer energy). Thick
solid lines mark the energy of the first three trimer states, which touch the zero-energy
threshold at negative scattering lengths a−n (squares). For positive scattering length a+n
(diamonds), the n-th trimer state disappears through the atom-dimer threshold. This
figure is based on the parametrization of the Efimov spectrum from Ref. [10], and it has
been deformed to make the first three states clearly visible.

In the universal regime, which is always reached for highly-excited trimer states,
the Efimov spectrum in Fig. 2.10 has a geometric scale invariance which is also valid at
finite scattering length (cf. the scale invariance at |a| = ∞, Eq. 2.60). This does not imply
that the ratio between the binding energies of two subsequent trimers is constant and
equal to ≈ 515, which is only true in the unitary limit (cf. for instance the energies for
n = 0 and n = 1 states at a . a−1 , in Fig. 2.10). Nevertheless, the values of a−n and a+n
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satisfy the universal scaling relation

a±n2
=
(

e−π/s0
)n2−n1 × a±n1

, (2.76)

This corresponds to the fact that a−n and a+n are proportional to the inverse binding
momentum of the n-th Efimov trimer, with prefactors which do not depend on n [10].

The number of Efimov states which can be identified in a single experiment is lim-
ited by several factors. Excited trimers have a large spatial extension and small binding
energy, which require a large sample and a very low temperature. Even the observa-
tion of the first excited state requires exceptional experimental conditions, with a weak
trapping potential and temperatures as low as T ≈ 10 nK [83]. Moreover, the Efimov
spectrum is universal only for binding energies smaller than h̄2/(mr2

0), where r0 is the
range of two-body interactions. In practice, the simultaneous identification of more
than two trimer states has not been achieved with systems of identical bosonic atoms.

The three-body recombination rate represents the central observable for experiments
aimed at identifying Efimov states. When a three-body recombination event (or three-
body loss) takes place, two atoms bind into a dimer state, and the third carries away the
released momentum and energy. The dimer state can be a deep molecular state, with
large binding energy, or a shallow universal dimer, for large and positive scattering
length. This process generally causes the loss of all three particles from the confining
trap, and thus represents an instability mechanism for an ultracold atomic gas. The
strength of three-body losses is characterized by the rate L3, defined through

Ṅ
N

= −L3〈ρ2〉, (2.77)

where N is the number of atoms in the system, Ṅ is its time derivative, and 〈ρ2〉 is the
mean square density (averaged over the density profile). Far from Feshbach resonances,
the three-body loss rate is small, being for instance equal to L3 ' 4× 10−29 cm6 s−1 for
non-condensed 87Rb [84]. This corresponds to a decay rate below 1/minute, for a trap-
center density lower than 5× 1013 cm−3 [45]. For large scattering length, however, L3
is greatly enhanced, and this is a severe obstacle towards a realization of the quantum-
degenerate, unitary Bose gas (cf. Section 2.3.2.1).

At low temperature and close to a Feshbach resonance, the three-body recombina-
tion rate can be factorized as [85, 86, 10]

L3 =
h̄a4

m
fη(κ∗a), (2.78)

where fη is a periodic function of s0 log(κ∗a), κ∗ is the binding momentum of a given
Efimov trimer, and η is related to the lifetime of the Efimov trimer (a typical value for
alkali atoms is η ≈ 0.1 [9]). Considering negative scattering length and starting from
vanishing |a|, fη resonantly increases each time that a is equal to a−n , that is, each time
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that a new Efimov trimer exists (cf. Fig. 2.10). The observation of these resonances
in L3 (and of the analogous features for positive a) provided the first unambiguous
signature of the existence of Efimov states, obtained in 2006 with a gas of Cs atoms [8].
More recent experiments with 7Li, 39K and 133Cs [87, 88, 83] allowed to identify features
corresponding to two trimer states, and the resulting estimates for the scaling factor
were partially consistent with the universal value, exp(π/s0) ' 22.7. Following these
original observations, the experimental and theoretical study of Efimov physics greatly
increased (see Ref. [89] for a review). A notable example is the study of heteronuclear
mixtures, where the scaling factor can be much smaller than its value of 22.7 for identical
bosons. For a Fermi-Bose mixture of 6Li and 133Cs this scaling factor is ≈ 5, which
allowed the simultaneous observation of three consecutive Efimov resonances [90].

As described in Section 2.2, the universal properties of Efimov trimers depend on an
additional three-body length scale. In our model, this is represented by the hyperradial
cutoff R0, while an alternative choice is the experimentally observable value of a−0 . This
length scale depends on all the details of the microscopic interactions which are not
simply encoded in the scattering length. For an open-channel dominated Feshbach res-
onance, the only relevant length scale of the two-body interaction is the van der Waals
length lvdW (cf. Eq. 2.13), so that it is interesting to study its connection with the three-
body parameter [89]. A surprising discovery is that the ratio

∣∣a−0
∣∣ /lvdW has very small

fluctuations: For a total of ten different Feshbach resonances in systems of 7Li, 85Rb,
133Cs, and 39K, this ratio takes values in the interval 8–10 [91]. Several theoretical stud-
ies addressed this universal property [92, 93, 94, 95], and also the more complex study
of a+0 [96]. In Refs [92] and [94], it has been proposed that the universality of

∣∣a−0
∣∣ /lvdW

follows from a strong effective repulsion for hyperradii of the order of lvdW, which sup-
presses the importance of short-range non-universal features. This barrier takes place
at5 R ≈ 2.6× lvdW, which can be used to map our theoretical value of R0 onto the van
der Waals length.

To conclude this brief account of Efimov physics, we note that N = 3 is special, and
that no Efimov effect exists for more than three identical particles [97]. For the case of
N = 4, it has been predicted that two tetramer bound states are tied to each Efimov
trimer [98, 99]. As for the N = 3 case, the experimental observation of these four-body
states was based on resonance features in the recombination rate [100]. The extension
to N > 4 is connected with the existence of a many-body Efimov liquid [71, 12], as
discussed in Section 4.2,

2.3.2.1 Stability of the unitary Bose gas

The three-body recombination rate in Eq. 2.78 increases as a4, implying that this me-
chanical instability would prevent the experimental observation of the unitary Bose

5The definitions of the hyperradius in Refs [92] and [94] differ from each other, and from Eq. 2.51 (see
footnote 1 in Ref. [94]).
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gas, where |a| → ∞. At finite temperature, however, a saturation of L3 takes place
when |a| ≈ λth, setting an upper bound for the recombination rate. The corresponding
expression at unitarity reads [74]

L3 '
h̄5

m
36
√

3π2 1− e−4η

(kBT)2 . (2.79)

The T−2 scaling of L3 has been accurately measured in experiments with Li and Cs
atoms, for temperatures spanning two orders of magnitude [74, 76].

The realization of a degenerate unitary gas would simultaneously require ρ|a|3 and
ρλ3

th to be large, which could be achieved by two experimental paths, depending on
which limit is taken first [101, 9]. In both cases, L3 would diverge in the limit of large
|a| and λth (cf. Eqs. 2.78 and 2.79). A way out of this unphysical prediction consists
in the conjecture that the only relevant length scale in this regime is set by the density,
so that an alternative expression for L3 should be used. Several steps have already
been taken towards a degenerate unitary Bose gas, by partially relaxing one of its two
defining conditions (large |a| and λth). In the degenerate non-unitary regime, beyond-
mean-field features [32] have been experimentally identified by measuring the equation
of state [33] and Tan’s contact parameter [102]. In a non-degenerate regime, several
experiments reached unitary interactions, with measurements centered on the three-
body recombination rate [74, 75, 76] or on the two- and three-body contact parameters
[77].

A single experiment has addressed the low-temperature, unitary regime, by starting
from a weakly-interacting Bose-Einstein condensate of Rb atoms and quickly ramping
up the interaction strength [78]. A lifetime of the order of 600 µs is observed, long
enough for the momentum distribution n (k) to equilibrate, at least at large k. Mea-
surements at different densities suggest a universal behavior, depending only on the
interparticle distance. Consensus on the interpretation of this experiment has not been
reached, especially concerning the effect of the fast ramp on the final temperature. On
one side, it has been suggested that the experiment is in a degenerate state, with a uni-
versal dependence on the density, and that the observed momentum distributions is
well fitted by the zero-temperature Efimovian prediction [62]. On the other side, the
same curve has been fitted by high-temperature expansions, assuming that only local
equilibrium is reached, and suggesting that the system is not degenerate [103, 63]. In
Section 4.4, we provide more details about some theoretical descriptions of the degen-
erate unitary Bose gas, and compare our results to the experimental curve of Ref. [78].

In all aforementioned experiments, the atomic cloud is confined through a harmonic
trap. The study of strongly-interacting Bose gases might benefit also from the recent
advances in the use of homogeneous-box confinement [27]. Because of the uniform den-
sity profile, this set-up avoids the problem of having three-body recombination events
taking place preferentially at the trap center, thus mitigating the effect of losses.
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Conclusion

In this chapter, we have described the physical properties of two or three strongly-
interacting bosons. For N = 2, the exact density-matrix is known for unitary, zero-range
interactions. This allows to derive analytical approximate expressions for the key cor-
relation functions, g(1) (r) and g(2) (r), which show the peculiar features for this kind of
interactions. Their validity, in the high-temperature limit, has been verified through the
QMC method.

For N = 3, we studied the Efimov trimers obtained within the three-body-cutoff
model. Through QMC simulations for the ground-state trimer, we confirmed that the
hyperradial distribution function agrees with the universal theory, for hyperradii larger
than R0. This is also true for the momentum distribution of the ground-state trimer,
for momenta approximately smaller than 1/R0. For the QMC calculations, the trimer
binding momentum is extracted from the numerical data, so that no fitting parameter
enters the results for P(R) or n (k).





CHAPTER 3

Path-Integral quantum Monte Carlo

In this chapter we discuss the quantum Monte Carlo (QMC) algorithm which is at the
basis of the results shown in Chapters 2 and 4, for strongly-interacting bosonic systems.
We start with Monte Carlo sampling (Section 3.1), which also applies to the study of
classical systems (cf. Chapter 5), and then focus on the path-integral QMC approach
(see Section 3.2). For particles interacting through a zero-range unitary potential, we
introduce a novel algorithm which constitutes the optimal solution for the two-body
problem, and can be generalized to many-body simulations (cf. Section 3.2.2.3). In
Section 3.3 we describe the main observables which can be measured, with a stress on
their relevance for bosonic systems. We conclude with Section 3.4, where two practical
aspects of QMC simulations are discussed.

3.1 Monte Carlo sampling

Given a probability distribution p(x) for x in a configuration space X, the task of sta-
tistical sampling (or Monte Carlo sampling) consists in choosing a sequence of sam-
ples x1, x2, · · · ∈ X in such a way that their observed probability corresponds to p(x)
in the limit of a large number of samples. This allows to estimate properties of p(x)
which might not be accessible analytically, the simplest example being the average of
a function of x (cf. Eqs. 3.1 and 3.2). For a selected class of probability distributions,
direct-sampling algorithms are available (cf. Section 3.1.1), that is, algorithms which can
sample the target distribution without approximations. Most distribution can however
not be sampled directly, and one must to resort to Markov-chain Monte Carlo methods
(MCMC) [104, 105, 39], typically based on the Metropolis algorithm (cf. Section 3.1.2).
This algorithm starts with a given configuration x and produces a new sample x′ which

59
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is correlated with x. By repeating this operation, the sequence x1, x2, . . . is constructed,
with elements which are distributed according to p(x), in the limit of an infinite se-
quence.

Monte Carlo sampling has a direct application the study of a physical system in
thermodynamic equilibrium, at an inverse temperature β = 1/(kBT). Each possible
configuration of the system is assigned a statistical weight which depends only on its
energy Ex, and is proportional to its Boltzmann weight e−βEx . Thus the average value
of any static observable O(x) (like the energy, or an n-points correlation function) is
defined as

〈O〉 = ∑x O(x)p(x)
Z

(3.1)

where Z ≡ ∑x p(x) is the partition function of the system, and where the sum has
to be replaced by an integral for systems with continuous degrees of freedom. The
connection with Monte Carlo sampling results from the fact that an average observable
can be estimated through the law of large numbers,

〈O〉 = lim
t→∞

Ot ≡ lim
t→∞

(
1
t

t

∑
t=1

O(xt)

)
(3.2)

where x1, . . . , xt are samples drawn from p(x) and Ot is the average over a finite num-
ber t of samples. It is essential that the partition function Z does not enter the estimator
in Eq. 3.2, as this quantity is not directly accessible, in general. The choice of the sam-
pling algorithm does not affect the validity of Eq. 3.2, but it affects the interpretation
of Ot when the number of samples t is finite, which is always the case in a practical
application. A large part of the research in the Monte Carlo field consists in designing
algorithms with a fast convergence of Ot to 〈O〉.

3.1.1 Direct sampling

Direct-sampling algorithms generate independent samples from a given probability dis-
tribution. This basic feature has to be confronted with other methods (notably Markov-
chain Monte Carlo, cf. Section 3.1.2), which rather produce correlated samples. Naive
direct-sampling algorithms can be designed for a broad class of problems, but they of-
ten become unpractical in several relevant cases, a typical example being the case of
physical systems with a large number of microscopic constituents.

In this work, we make use of several direct-sampling techniques, embedded inside
more general Markov-chain schemes. For simple distributions, standard methods as
a change of variable (cf. Section 3.1.1.1), rejection sampling (cf. Section 3.1.1.2), and
tower sampling (cf. Section 3.1.1.3) are available. The Lévy reconstruction of a quantum
path (cf. Section 3.2.2.1) is a direct-sampling algorithm to generate the discrete path of
intermediate points connecting two given endpoints. Also the quantum paths of two
particles interacting via a unitary zero-range potential can be sampled directly, through
the novel algorithm described in Section 3.2.2.3.



3.1. MONTE CARLO SAMPLING 61

3.1.1.1 Change of variable

The simplest direct sampling reduces the problem to the task of sampling a simpler
probability distribution, for which direct sampling is already available. We consider a
probability distribution p(x) for x ∈ R, and assume that the indefinite integral

f (x) =
∫

dx p(x) (3.3)

is known, and its inverse function f−1 can be obtained explicitly. A concrete example is
an exponential distribution,

p(x) =

{
1
ξ exp

(
− x

ξ

)
if x ≥ 0

0 else
, (3.4)

where ξ > 0 is a constant parameter. In this case, the integral in Eq. 3.3 is f (x) =
− exp(−x/ξ), and its inverse is f−1(z) = −ξ log(−z). Through the change of variable
z = f (x), we can write

∫

R
dx p(x) =

∫ f (∞)

f (0)
dz =

∫ 0

−1
dz =

∫

R
dz q(z) (3.5)

where we have introduced q(z), the uniform distribution

q(z) =

{
1 if −1 ≤ z < 0
0 else

. (3.6)

Therefore, a sample x∗ from p(x) can be obtained by drawing a sample z∗ from q(z) and
using the inverse transformation x∗ = f−1(z∗). Assuming that q(z) can be sampled di-
rectly, this scheme constitutes a direct-sampling algorithm for p(x). The generalization
to more complex choices of p(x) (for instance a higher-dimensional distribution) relies
on the possibility of computing

∫
dx p(x).

3.1.1.2 Rejection sampling

The rejection-sampling algorithm [106] also allows to samples p(x) directly. Its first step
is to choose an auxiliary distribution, p′(x), such that

p′(x) ≥ p(x) ∀x, (3.7)

where neither p(x) nor p′(x) need to be normalized. The distribution p′(x) is chosen
such that it can be sampled directly. Then p(x) can be sampled as follows:

1. Draw a sample x∗ from p′(x).
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2. Draw a uniform random number η between 0 and 1.
3. If η ≤ p(x∗)/p′(x∗), accept x∗, otherwise restart from step 1.

The average rejection rate in step 3 is given by

1−
∫

dx
(

p′(x)∫
dy p′(y)

)
p(x)
p′(x)

=

∫
dx [p′(x)− p(x)]∫

dx p′(x)
≤ 1, (3.8)

which is strictly larger than 0 (apart from the trivial case of p′(x) = p(x)). The value
of this rate determines the practical applicability of rejection-sampling to a specific
case. The strategy to optimize this algorithm is to construct the upper bound p′(x)
that minimizes p′(x)− p(x) (cf. Fig. 3.1). In Section 3.2.2.3, we describe an application
of rejection-sampling to the two-body density matrix of unitary quantum particles, and
explain how p′(x) is chosen.

x∗

x

0

p(x∗)

p′(x∗)
p′(x)

p(x)

Figure 3.1: Rejection-sampling scheme, in which a Gaussian upper bound p′(x) is used
for the target distribution p(x). The hatched area marks the difference between the two
curves.

3.1.1.3 Tower sampling

While rejection sampling can be easily adapted to a probability distribution over a
discrete configuration space, tower sampling represents an improved, rejection-free,
method for this case. The probabilities {pi}i=1,...,M are given, and we assume that the
partition function Z = ∑M

i=1 pi is known. Then a sample can be drawn with the follow-
ing scheme [39]:

1. Draw a sample η from the uniform distribution between 0 and Z.
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2. Construct the cumulative distribution cj = ∑
j
i=1 pi, for j = 1, . . . , M.

3. Find the value of j such that cj ≤ η < cj+1.

This value of j represents a sample from the distribution {pi}. For large M, the most
computationally expensive part is the last step, namely the search of the value of j for
a given η. The naive algorithm (sequentially checking whether cj ≤ η < cj+1, for
all j = 1, 2, . . . ) requires a number of operations which scales linearly with M, while
this scaling is reduced to log2 M by using the bisection-search method [39]. More ef-
ficient methods are available for the case in which several samples have to be drawn
from a given distribution: At the price of an initialization of the order of M operations,
Walker’s algorithm [107] allows to draw a sample in a fixed number of operation, inde-
pendent on M.

3.1.2 Markov-chain Monte Carlo

The direct-sampling methods described above allow to obtain a sequence of statisti-
cally independent samples. In this section, in contrast, we present the Markov-chain
Monte Carlo (MCMC) algorithm, which produces correlated samples. While this is a
disadvantage with respect to direct sampling, MCMC algorithms have a much broader
applicability. Here, we describe the case of a Markov chain with states in a discrete space
X, and which evolves in discrete time steps. The main idea is to consider the required
sequence of samples as the trajectory of a random walk of t steps in the configuration
space: x1, . . . , xt ∈ X. Starting from a given initial state x1, all other states are con-
structed via a sequential stochastic method: Any new state xi+1 (for i > 1) is randomly
sampled from a distribution which depends on the previous state xi. The fact that xi+1
does not depend on the entire history x1, . . . , xi is a defining property of a Markov chain.
The formal definition of this random walk consists in choosing its transition matrix, Tyx.
This is the probability to pass from a configuration x to a configuration y in one step,
that is, the conditional probability for xi+1 = y under the constraint that xi = x. This
leads to a distribution pi(x) for the i-th state being equal to x, which in general evolves
with the Monte Carlo time step i: The probability that the (i + 1)-th sample is equal to
x reads

pi+1(x) = pi(x) + ∑
y∈X

pi(y)Txy − pi(x) ∑
y∈X
Tyx. (3.9)

A MCMC algorithm is defined through its transition matrix. Given a set of condi-
tions for Tyx (namely irreducibility, aperiodicity, and stationarity, see below), the dis-
tribution pt(x) converges to the target distribution p(x) which we want to sample, in
the large-t limit [108]. The first condition is the irreducibility of the transition matrix:
For any pair of states x, y ∈ X, there exists a positive integer t0 such that

(
T t0
)

x,y > 0,
where T t0 is the t0-th power of the matrix with elements Tyx. This condition guarantees
that there does not exist a partition of the configuration space into subsets such that the
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probability of passing from one to another subset is zero. The second condition is ape-
riodicity. For an irreducible Markov chain, this consists in the following statement: For
any pair of states x, y ∈ X, there exists a positive integer t0 such that

(
T t)

x,y > 0 for any
t > t0. An obvious violation of this condition would be a chain with an oscillatory be-
havior, such that xt ∈ X1 ⊂ X for t odd and xt ∈ X \ X1 for t even. The third condition
concerns the existence of a stationary distribution peq(x) for Tyx, that is, a distribution
which is invariant under time evolution:

peq(x) = ∑
y∈X

peq(y)Txy, (3.10)

for all x ∈ X. Eq. 3.10 is known as the global-balance condition, and it corresponds
to setting pi+1(x) = pi(x) = peq(x) in Eq. 3.9. The three conditions mentioned here
(irreducibility, aperiodicity and global balance) guarantee that the Markov-chain has a
unique stationary distribution [108]. In a typical application of Markov-chain Monte
Carlo algorithm, the stationary distribution has to correspond to a given target distri-
bution, determined by the problem under study. In this case, one has to replace peq(x)
in Eq. 3.10 (or in Eq. 3.11 below) with the known target distribution p(x). The global-
balance condition corresponds to the fact that the net balance of probability flow on
a single configuration x (that is, the difference between the incoming and outcoming
probability fluxes) is equal to zero. A stricter condition consists in requiring that the net
balance of probability flow between any two states x and y is equal to zero. This is the
detailed-balance condition,

peq(y)Txy = peq(x)Tyx, (3.11)

which clearly implies Eq. 3.10, since one property of T is that ∑y Tyx = 1. All the algo-
rithms presented in this work satisfy this more strict condition.

The aforementioned criteria on the transition matrix are necessary for the conver-
gence of the Markov-chain Monte Carlo algorithm, but they leave a large freedom in
the choice of a valid transition matrix. Among the possible constructions, the Metropo-
lis algorithm [109, 110] stands out as the most frequently used. We start by splitting
the evolution during one time step in two parts: The proposal of a new state, and its
acceptance or rejection. This corresponds to factorizing Tyx into two parts:

Tyx = Ax→y × px→y
acc . (3.12)

The first term (Ax→y) is the a-priori probability for proposing y as the state at time t + 1,
provided that the state at time t is x. This needs to be a distribution from which y
can be obtained via a direct-sampling algorithm. The second factor (px→y

acc ) represents
the acceptance probability: The new proposed state is accepted with probability px→y

acc ,
while with probability 1− px→y

acc the move is rejected and the new state is equal to the
previous state. In the Metropolis algorithm, the acceptance probability is chosen as

px→y
acc = min

(
1,

p(y)Ay→x

p(x)Ax→y

)
, (3.13)
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which satisfies the detailed-balance condition in Eq. 3.11, with peq(x) = p(x). When the
a-priori probability is symmetric (Ay→x = Ax→y), the acceptance probability takes the
simpler form

px→y
acc = min

(
1,

p(y)
p(x)

)
. (3.14)

The Metropolis acceptance probability in Eq. 3.13 highlights one of the ideas behind the
factorization in Eq. 3.12: If we had a direct-sampling algorithm for the target distribu-
tion p, we could setAx→y = p(y), and make the acceptance probability in Eq. 3.13 equal
to one. The presence of a finite rejection probability, in contrast, reflects the fact that we
are generally not able to sample directly from p.

Any Monte Carlo algorithm (either direct-sampling or MCMC) produces a sequence
of samples {x1, . . . , xt} which gives access to the following estimator for the average
value of an observable O:

Ot =
1
t

t

∑
i=1

O(xi). (3.15)

In the t→ ∞ limit, the standard deviation σMC(t) of Ot (measured for instance through
several independent realizations of the sequence x1, . . . , xt) decays to zero, while Ot
converges to 〈O〉 (cf. Eq. 3.1). If the samples {x1, . . . , xt} are statistically independent
(which is the case if they are produced via a direct sampling algorithm), the standard
deviation of Ot is equal to

σMC(t) = σ
indept
MC (t) =

√
〈O2〉 − 〈O〉2

t
. (3.16)

Eq. 3.16 follows from the central limit theorem [39], and σMC(t) provides a confidence
interval to be assigned to the average-value estimator in Eq. 3.151. In contrast, Eq. 3.16
does not hold if the samples are statistically correlated, which is generally true when
they are obtained through a MCMC algorithm. Several methods are available to esti-
mate σMC(t) in this case (see for instance Ref. [104]), including those based on integrated
autocorrelation time, binning analysis, and bootstrap/jacknife techniques [111]. Apart
from providing a confidence interval for Ot, σMC(t) is also used to measure the efficiency
of a given Monte Carlo algorithm, through the ratio

σ
indept
MC (t)
σMC(t)

. (3.17)

This quantity is equal to one (its maximum value) for statistically independent data,
while it is smaller than one for correlated samples. A quantity directly related to the ra-
tio in Eq. 3.17 is the autocorrelation function at equilibrium. In a MCMC algorithm, the

1The σMC(t) confidence interval only includes statistical fluctuations, and not systematic errors. In
a MCMC simulation, for instance, the value of Ot at small t is biased by the choice of the initial con-
figuration. However, when considering large values of t this bias becomes smaller than the statistical
fluctuations of Ot.
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statistical correlation between the values of an observable O at two time steps differing
by a time lag dt� t reads

CO(dt) =
1

t−dt ∑t−dt
i=1 O(xi+dt)O(xi)−

(
1

t−dt ∑t−dt
i=1 O(xi)

)2

1
t−dt ∑t−dt

i=1 O2(xi)−
(

1
t−dt ∑t−dt

i=1 O(xi)
)2 , (3.18)

where t should be large enough that the Markov chain has reached its asymptotic sta-
tionary distribution. CO(dt) is equal to one for dt = 0 and decays to zero at large dt.
The standard deviation σMC(t) for a sequence of correlated samples is related to CO(dt)
through

σMC(t) = σ
indept
MC (t)×

√
1 + 2 ∑

dt>0
CO(dt). (3.19)

This leads to the definition of the integrated autocorrelation time for O,

τint = 1 + 2 ∑
dt>0

CO(dt), (3.20)

which corresponds to the dt time scale over which the values of O(xi) and O(xi+dt) are
significantly correlated. If CO(dt) takes a simple exponential form exp(−dt/τ∗), and if
τ∗ � 1, we have

τint = 1 + 2 ∑
dt>0

e−dt/τ∗ ' 1 + 2
∫ ∞

1
ddt e−dt/τ∗ ' 2τ∗. (3.21)

This makes the correspondence evident between τint and the time scale for the decay of
correlations.

Due to its simplicity and generality, the Metropolis algorithm represents the workhorse
for a vast range of applications, in several scientific fields. One of the practical limiting
factors is the presence of large correlations between subsequent samples, which sets a
limit for the size of the problems for which accurate calculations are feasible. In physical
application, this reflects into a limit on the maximum number of constituents that can be
included in the system, which may represent a severe issue in the study of critical phe-
nomena [104]. Several extensions of the Metropolis algorithm, either general or model-
specific, have been proposed, to mitigate this problem. Among others, a class of irre-
versible algorithms (not satisfying the detailed-balance condition) have recently been
shown to provide an efficiency gain for classical particle systems [112, 113, 114, 115]
and spin models [116, 117].

3.1.3 Variable-dimensionality sampling

In Section 3.2, we describe how a quantum system can be mapped onto a classical repre-
sentation and treated with a MCMC algorithm. A key feature of the sampling algorithm



3.1. MONTE CARLO SAMPLING 67

employed in that case is that it draws samples from an extended configuration space (cf.
Section 3.2.1). This space is partitioned into two sectors, and configurations in different
sectors have a different number of degrees of freedom. The general MCMC scheme de-
scribed in Section 3.1.2 can be applied also to this case, as described in this section. The
resulting algorithm allows to estimate the ratio between the partition functions corre-
sponding to the two sectors, which is a key observable (cf. Section 3.3.3). There exist
several other applications of MCMC sampling in an extended space:

• The diagrammatic Monte Carlo technique consists in sampling from the sequence
of terms which arise when a physical property is expressed through a series ex-
pansion. The main example is the Feynman-diagram expansion for observables of
a quantum system [118, 119], where diagrams corresponding to different orders
are associated with different numbers of variables.
• The Monte Carlo method of Ref. [120] aims at measuring Rényi entropies in a

quantum many-body system. This is achieved by simulating two replicas of the
same system, and computing the Rényi entropy through the ratio between two
partition functions: The ordinary partition function of the two independent repli-
cas, and an ad hoc partition function for the joint system in the presence of addi-
tional couplings.
• In the field of Bayesian inference, a similar algorithm is named reversible-jump

Markov-chain Monte Carlo [121, 122]. Among its first applications, there has been
the task of sampling from a mixture of different probability distributions, defined
on spaces with different dimensionalities [123].

In this section we describe a general example from the class of variable-dimension
algorithms. We consider a sequence of probability distributions pn defined on Rn. The
integral of pn over Rn is denoted by Zn, and it may differ from one (which is the rele-
vant case for statistical-physics applications with unknown partition functions). The
dimension-changing algorithm samples configurations contributing to the extended
partition function,

Ztot ≡
∞

∑
n=0

Zn = p0 +
∞

∑
n=1

∫
dx1 . . . dxn pn(x1, . . . , xn), (3.22)

where Zn should decrease fast enough for large n, so that Ztot is finite. MC moves be-
tween two configurations with the same n are constructed in the same way as in usual
MCMC algorithms (cf. Section 3.1.2), while the sector-changing moves have some spe-
cific features. We consider moves between sectors n and n + 1, and denote configura-
tions in these two sectors with x ∈ Rn and y ∈ Rn+1. The detailed-balance condition
for a n⇔ (n + 1) move reads

pn(x)An→n+1(x, y)pn→n+1
acc (x, y) = pn+1(y)An+1→n(x, y)pn+1→n

acc (x, y), (3.23)
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where An→n+1(x, y) and An+1→n(x, y) are normalized probability distributions for y
and x, respectively. The condition in Eq. 3.23 is automatically satisfied if pn→n+1

acc and
pn+1→n

acc are chosen according to the Metropolis rule:

pn→n+1
acc (x, y) = min

[
1,

pn+1(y)An+1→n(x, y)
pn(x)An→n+1(x, y)

]
, (3.24)

pn+1→n
acc (x, y) = min

[
1,

pn(x)An→n+1(x, y)
pn+1(y)An+1→n(x, y)

]
. (3.25)

When proposing a move from x ∈ Rn to y ∈ Rn+1, the a-priori probabilityAn→n+1(x, y)
also determines how to choose the (n + 1)-th coordinate of y. A simple choice for the
a-priori probabilities is to have them only acting on the last component of y:

{
An+1→n(x, y) = [∏n

i=1 δ (xi − yi)] ,
An→n+1(x, y) = [∏n

i=1 δ (xi − yi)]Alast (yn+1) ,
(3.26)

with
∫

dyn+1Alast(yn+1) = 1. In this case, the scheme for a n → n + 1 move consists
in constructing y (by setting yi = xi for i = 1, . . . , n and sampling yn+1 from Alast),
and accepting the move with probability pn→n+1

acc (x, y). The reverse move consists in
setting x = {yi}i=1,...,n and accepting the move to x with probability pn+1→n

acc (x, y). If
this n + 1→ n move is accepted, no memory of yn+1 is conserved.

As a concrete example, we set

pn(x) =
1

(n + 1)3
1

(2πσ2)n/2 exp
(
− x2

2σ2

)
, (3.27)

for x ∈ Rn and n ≥ 0. The corresponding partition functions read

Zn =
1

(n + 1)3 . (3.28)

By using the algorithm described in this section2, we estimate the ratio Zn/Z0 through
the ratio between the number of samples in the n-th and 0-th sectors. The results are in
agreement with the expected analytic values (cf. Fig. 3.2).

3.2 Sampling quantum paths

The density-matrix approach to the thermodynamics of quantum particles has been in-
troduced for non-interacting particles (cf. Section 1.3), and used to study two bosons

2A python implementation of this algorithm is available at https://github.com/tcompa/
cross_dimensional_monte_carlo.

https://github.com/tcompa/cross_dimensional_monte_carlo
https://github.com/tcompa/cross_dimensional_monte_carlo
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Figure 3.2: Statistical weight of the n-th sector for the extended probability distribu-
tion defined by Eq. 3.27, estimated via MC sampling (orange solid line, with error bars
representing the standard error of the mean for 100 independent runs of 5× 106 MC
steps each). Full agreement is obtained with the analytical expression (dashed blue line,
cf. Eq. 3.28).

interacting through a zero-range potential (cf. Section 2.1.2). To obtain results for non-
trivial cases, this approach must be complemented with Monte Carlo algorithms. This
is the case for most of the results shown in Chapter 2 (cf. Figs. 2.4 and 2.3) and Chapter 4.
In view of the applications in Chapters 2 and 4 for quantum particles with unitary in-
teractions, the current section includes a detailed description of our path integral Monte
Carlo algorithm.

3.2.1 Path integrals and Monte Carlo

The density matrix ρN for N distinguishable particles and its generalization ρbos
N for N

bosons have been introduced in Section 1.3. It is convenient to rewrite ρN(X, X′; β) as
a convolution of high-temperature density matrices ρN(X, X′; τ), where τ = β/S is the
imaginary-time discretization and we are using the shorthands X = {x1, . . . , xN} and
X′ = {x′1, . . . , x′N}. This rewriting is expressed as

ρN
(
X, X′; β

)
=
∫

dX1 . . . dXS−1
[
ρN

(
X, X1; τ

)
ρN

(
X1, X2; τ

)
. . . ρN

(
XS−1, X′; τ

)]
,

(3.29)
where Xs corresponds to {xs

1, . . . , xs
N}, and dX is a shorthand for dx1 . . . dxN. A given

value of s = 0, . . . , S− 1 defines an imaginary-time slice, and the positions xs
i on each

slice are named beads. Eq. 3.29 is exact, independently of interparticle interactions or
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external potentials. The choice of S introduces a length scale

λs =

√
2πh̄2τ

m
=

√
2πh̄2β

mS
, (3.30)

which is the thermal wavelength corresponding to the inverse-temperature interval of a
single slice. The decomposition in Eq. 3.29 does not affect the way in which the bosonic
density matrix is constructed, as the average of ρN (X, PX′; β) over all permutations P
(cf. Eq. 1.27).

While the discretization in Eq. 3.29 is exact, it is introduced because it allows to de-
vise useful approximation schemes. By increasing S, the interval τ = β/S can be made
arbitrarily small. Thus the term ρN

(
Xs, Xs−1; τ

)
in Eq. 3.29 corresponds to the density

matrix for a system of N particles at temperature (kB/β) × S, which can be made ar-
bitrarily large. In this case, approximated expressions for ρN are available. The Trotter
break-up [124] can be used for any Hamiltonian formed by a kinetic term and a general
potential term Ṽ(X), possibly including terms at any order (an external one-body po-
tential, two-body interactions, three-body interactions, . . . ). The approximation reads:

ρN(Xs, Xs+1; τ) ' exp

(
−τṼ(Xs)

2

)[
N

∏
i=1

ρ1

(
xs

i , xs+1
i ; τ

)]
exp

(
−τṼ(Xs+1)

2

)
(3.31)

The error in this approximation scales as τ3. An alternative approximation scheme is
the pair-product approximation (PPA), relevant for the cases where the potential energy
is the sum of two-body terms V2(xi − xj) for particles i and j [125, 11]. The single-slice
thermal wavelength λs ∝ 1/

√
S can be made much smaller than the typical interparticle

distance ρ1/3, where ρ = N/V is the density. If ρλ3
s � 1, the probability of having three

close-by particles (that is, in a region of volume λ3
s) is strongly suppressed with respect

to the probability of having two close-by particles. For this reason, it is sufficient to only
consider two-body terms in ρN, which leads to the following approximated expression

ρN

(
Xs, Xs+1; τ

)
'

N

∏
i=1

ρ1

(
xs

i , xs+1
i τ

)
∏
j<i

grel
(

xs
i − xs

j , xs+1
i − xs+1

j ; τ
)

. (3.32)

This approximation is most useful when grel is known exactly, including the hard-sphere
potential [126, 47] and the zero-range potential used in this work (cf. Section 2.1.2.1).

The QMC algorithm used in this thesis for the unitary-gas Hamiltonian (cf. Eq. 2.66)
is based on a combination of Trotter and PPA approximations: The interparticle inter-
actions are included via Eq. 3.32, while the Trotter break-up is used for the three-body
cutoff. For a given imaginary-time discretization, we extract a τ-dependent effective
value of R0 from three-particle simulations, which correctly reproduces Efimov physics
for small but finite τ (cf. Section 2.2.2). As shown in Section 4.1, this approach allows to
reduce the number of necessary imaginary-time slices, compared to the plain use of the
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Trotter break-up. Therefore, it reduces the difficulty of treating hard-core interactions
within this approximation, which in other works required to replace the three-body
cutoff with a soft repulsive potential [72].

Independently of the choice for the approximation scheme used, we can write the
N-body bosonic partition function as the integral of the corresponding density matrix:

Zclosed =
∫

dX ρbos
N (X, X; β) . (3.33)

For bosons, this can be directly interpreted as the integral of a non-normalized prob-
ability distribution, where ρbos

N (X, X; β) is the statistical weight of the configuration X.
For a general N-fermions system, in contrast, the integrand can take negative values, as
a consequence of anticommutation relations. This greatly complicates the use of QMC,
often requiring additional approximations. The integral in Eq. 3.33 only includes closed
paths. To extract information about off-diagonal properties as the one-body-reduced
density matrix (cf. Section 3.3.3), we introduce a second partition function,

Zopen =
1
ξ3

0

∫
dr
∫

dX ρbos
N ({x1 + r, x2 . . . , xN}, {x1, x2 . . . , xN}; β) , (3.34)

which includes one open path. Also the integrand of Zopen can be interpreted as a
statistical weight, but in this case the configuration is given by (N + 1) vectors: The N
positions x1, . . . , xN and the relative vector r between the two ends of the open path.
This also justifies the presence of the prefactor ξ−3

0 in Eq. 3.34 (where ξ0 has the units of
a length), to make Zopen dimensionless. The QMC algorithm described below is based
on an extended partition function,

Ztot = Zclosed + Zopen, (3.35)

which includes both open and closed path-integral configurations. The relative weights
of the closed and open sectors are Zclosed/Ztot and Zopen/Ztot, and they can be modified
by tuning ξ0, which is a free parameter of the QMC algorithm. Physical observables
do not depend on the choice of ξ0, but this value enters in the Monte Carlo moves that
change sector – cf. Section 3.2.4.

The path-integral formulation needs to be modified when the system consists of N
particles in a cubic box with periodic boundary conditions (PBC). In this case, the first
and last bead of a closed path (which can be formed by one or more bosons) have to be
periodic images of each other, but not necessarily coincide. As an example, if x0

j , . . . , xS
j

is the path of particle j, then x0
j and xS

j can differ by Lw, where L is the linear size of
the box. The vector w ∈ Z3 is the winding-number vector of the path, as it counts the
number of times that the paths winds around the periodic box, in each one of the three
directions. For one particle in a periodic box, the density matrix ρ1(x, x′; β) reads [39]

ρPBC
1 (x, x′; β) = ∑

w∈Z3

ρ1(x, x′ + Lw; β). (3.36)
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When L � λth (that is, at high temperature), all terms with non-zero w in the right-
hand side of Eq. 3.36 are exponentially suppressed, so that ρPBC

1 (x, x′; β) ' ρ1(x, x′; β).
This is the case when we consider a single imaginary-time slice, corresponding to a
thermal wavelength λs much smaller than L (cf. Eq. 3.30). For this reason, we do not
need to explicitly use ρPBC

1 in the partition functions with discretized imaginary time (cf.
Eqs. 3.37 and 3.38 below).

The QMC scheme described in this chapter and used in this thesis is local: All moves
take place on a small imaginary-time interval, and a change of the winding number can
only take place through a closing move (cf. Section 3.2.4). This choice is made in view
of treating large systems of interacting particles. In other cases (for small N, or for non-
interacting particles), the optimal choice would be to use QMC moves acting on a large
imaginary-time slice.

Once the integrand of the partition function (in Eq. 3.33 or Eq. 3.34) is identified with
the statistical weight of a configuration (X, for Zclosed, or {X, r}, for Zopen), the MC ap-
proach described in Section 3.1 can be used to sample a sequence of configurations dis-
tributed from this statistical weight. This gives access to several diagonal or off-diagonal
observables (see Section 3.3). In a practical application, an approximate version of the
statistical weight ρbos

N is used (like the Trotter break-up or the PPA), which requires the
discretization of the imaginary-time interval [0, β]. Thus the actual problem for which a
QMC algorithm is designed is the one defined by the closed-sector partition function

Zclosed =
∫

dX0 . . . dXS−1
S−1

∏
s=0

ρbos
N

(
Xs, Xs+1; τ

)
, (3.37)

where XS ≡ X0, and where ρbos
N
(
Xs, Xs+1; τ

)
is replaced by a suitable high-temperature

approximation. The open-sector partition function takes an analogous form:

Zopen =
1
ξ3

0

∫
dr
∫

dX0 . . . dXS−1

{[
S−2

∏
s=0

ρbos
N

(
Xs, Xs+1; τ

)]
×

ρbos
N

(
{xS−1

1 , xS−1
2 . . . , xS−1

N }, {x0
1 + r, x0

2 . . . , x0
N}; τ

)}
.

(3.38)
As mentioned above, the periodic-box density matrix can be replaced with its free-space
counterpart when it is evaluated on a small imaginary-time interval. The same reason-
ing allows to approximate ρbos

N with ρN, in the integrands of Eqs. 3.37 and 3.38, provided
that the discretization interval is small enough (that is, λsρ1/3 � 1).

Eqs. 3.37 and 3.38 can be interpreted as a classical partition function: Each bead cor-
responds to a classical three-dimensional particle, with the number of particles being
NS for a closed configuration and NS + 1 for an open one. This mapping implies
that similar MC techniques can be developed to treat the equilibrium thermodynam-
ics of classical and quantum systems. The idea of sampling path-integral configura-
tions through the Monte Carlo technique [127, 125, 128, 129, 130, 131, 23] has evolved
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into the method of choice for the finite-temperature quantum many-body problem, at
least for the case of bosons in more than one dimension [11, 119]. The study of low-
temperature liquid 4He is connected with many technical advances in the design of
PIMC algorithms [130, 23, 11]. More recently, further developments of this method
[47, 132, 133, 134, 135, 136, 137, 138] (see Ref. [119] for a review) have allowed high-
precision comparisons with the results of experiments in ultracold-atomic systems, for
two-dimensional [139, 140] and three-dimensional [33, 141] continuous systems and for
optical-lattice set-ups [142, 143]. In particular, the use of the extended partition function
Ztot (cf. Eq. 3.35) in the context of path-integral QMC was originally proposed for lattice
systems [133, 134], and it has later been generalized to the continuous-space case which
we treat here [136, 137].

Following Section 3.1 (and in particular Section 3.1.3), a MC algorithm for the parti-
tion function Ztot consists in a sequence of updates of the path-integral configuration
(that is, a sequence of Monte Carlo moves). In each move, a new configuration is
sampled from the a-priori distribution, and it is accepted or rejected according to the
Metropolis rule (which depends on the statistical weights of the previous and new con-
figurations). The proposed new configuration only partially differs from the previous
one, to avoid extremely small acceptance probabilities. In a path-integral QMC simula-
tion, we include several update schemes, aimed at modifying configuration in different
ways. The QMC algorithm proceeds by iteratively proposing updates: At each step,
moves are selected randomly, with fixed frequencies which are part of the algorithm
free parameters. When the move cannot take place (e.g. an swap move cannot be pro-
posed for a configuration in the closed sector, see Section 3.2.3.2), the loop continues as if
the move had been rejected. Provided that all these moves satisfy the criteria discussed
in Section 3.1, the resulting configurations are distributed according to their statistical
weight (given by the integrands of Eq. 3.37 and Eq. 3.38), in the limit of large number
of samples. In particular, all moves described below are designed so that they satisfy
the detailed-balance condition. In some cases (open/close and advance/recede move
pairs) this condition is only fulfilled through a pair of complementary moves.

In the following sections, we review the details of several standard QMC moves,
and we describe the novel two-body direct-sampling move (cf. Section 3.2.2.3), which is
introduced specifically for the unitary interaction used in this work. When not spec-
ified, QMC simulations for the unitary Bose gas (cf. Chapter 2 and Chapter 4) are
based on the Lévy-reconstruction, two-body direct-sampling, advance/recede, swap,
and open/close moves.

3.2.2 Closed-sector moves

3.2.2.1 Lévy reconstruction

The simplest move that we include is a Lévy reconstruction of a portion of a single
path [144, 11, 39]. Given two fixed beads xs1 and xs2 at imaginary-time slices s1 and
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s2 = s1 + ∆s, this move samples the probability distribution for the positions of the
∆s − 1 intermediate beads, given by

p
(

xs1+1, . . . , xs2−1
)

∝
s2−1

∏
s=s1

ρ1

(
xs, xs+1; τ

)
. (3.39)

The intermediate beads are sampled sequentially. First, xs1+1 is sampled from

p
(

xs1+1
)

∝ ρ1

(
xs1 , xs1+1; τ

)
ρ1

(
xs1+1, xs2 ; (∆s − 1)τ

)
, (3.40)

which is a Gaussian distribution for xs1+1, with mean
〈

xs1+1
〉
=

∆s − 1
∆s

xs1 +
1

∆s
xs2 , (3.41)

and variance 〈(
xs1+1

)2
〉
−
〈

xs1+1
〉2

=
∆s − 1

∆s
τ. (3.42)

Given the sampled value of xs1+1, the probability distribution of xs1+2 reads

p
(

xs1+2
)

∝ ρ1

(
xs1+1, xs1+2; τ

)
ρ1

(
xs1+2, xs2 ; (∆s − 2)τ

)
, (3.43)

which is also a Gaussian, so that xs1+2 can be readily sampled. The scheme continues in
the same way, until the position xs2−1 of the last bead is sampled. Paths constructed in
this way are distributed as in Eq. 3.39. This sampling scheme relies on the fact that the
probability distributions for intermediate bead positions are Gaussian. The same is true
when particles are confined through an external harmonic potential, so that the Lévy
construction can be adapted to this case [39].
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Figure 3.3: Lévy reconstruction of a portion of a single-particle path: Given two fixed
endpoints, the intermediate beads (orange path, in the left panel) are sampled.

This move directly samples a single path. For a many-body non-interacting system,
it is rejection-free. In the presence of interactions the Metropolis rule is used to accept
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or reject the move, based on the statistical weights of the current and proposed config-
urations. While it can be naturally applied to any portion of a closed path (see Fig. 3.3),
the Lévy-reconstruction move can also be used to modify an open configuration, pro-
vided that it only acts on a portion not including the two open ends. As it provides the
direct-sampling solution for a single-particle path between two given endpoints, this
sampling method is also an essential ingredient in all other QMC moves presented in
this work.

3.2.2.2 Exchange move

Lévy reconstruction directly samples the single-particle density matrix, but it does not
modify bosonic permutation cycles. This can be obtained through the exchange move,
depicted in Fig. 3.4. We start by choosing two beads on a given imaginary-time slice s1:
xs1

1 and xs1
2 . This defines two path portions in the imaginary-time interval [s1, s2], where

s2 = s1 + ∆s (cf. Fig. 3.4). The proposed move consists in exchanging the identity of
the endpoints of these two paths, by connecting xs1

1 with xs2
2 and xs1

2 with xs2
1 . The new

connections, comprising ∆s − 1 intermediate beads each, are sampled through the Lévy
construction. The acceptance probability for this exchange reads

pacc = min

[
1,

ρ1
(
xs1

1 , xs2
2 ; τ∆s

)
ρ1
(
xs1

2 , xs2
1 ; τ∆s

)

ρ1
(
xs1

1 , xs2
1 ; τ∆s

)
ρ1
(
xs1

2 , xs2
2 ; τ∆s

)Wnew

Wold

]
, (3.44)

where Wold and Wnew are the contribution to the statistical weights of the old and new
configurations given by two- and three-body interactions (cf. Section 3.2.1).
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Figure 3.4: Exchange move for a diagonal two-particle configuration, modifying the
structure of bosonic permutations.

This move is valid for an arbitrary pair of particles, but it has a very small acceptance
probability when the distance between xs1

1 and xs1
2 is much larger than λs

√
∆s. One way

to avoid this problem is to restrict this move to close-by particles. Several criteria can
be implemented, like setting a maximum-distance cutoff, or choosing xs1

2 to be the bead
closest to xs1

1 . Since the move does not change the starting points xs1
1 and xs1

2 , it is simple
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to design a symmetric a-priori probability based on one of these criteria, so that the
simplified Metropolis acceptance probability in Eq. 3.14 can be used.

3.2.2.3 Direct-sampling two-body move

For a simulation restricted to the closed sector, the combination of Lévy reconstruction
and exchange moves constitutes a valid QMC algorithm. However, this algorithm per-
forms very poorly for the case of strong, short-ranged interactions. As described in
Section 2.1.2.1, the probability distribution for a path-integral configuration diverges as
1/r2 whenever the distance r between two particles on the same slice goes to zero. In
this situation, the configuration gains a very large statistical weight, and any MC up-
date which would move the two particles away from each other has a small acceptance
probability. We refer to this situation as pinning between the two particles. While the
QMC algorithm is formally correct, the presence of pinned configurations dramatically
increases the correlation time. Previous studies of bosonic or fermionic systems with
zero-range interactions used ad-hoc Monte Carlo moves [12, 53, 54], in which the new
distance between two particles on the same slice is sampled from an a-priori distribu-
tion proportional to 1/r2. In other cases, a two-body potential with small but finite
range was used [59, 145, 146], at the cost of an additional extrapolation towards the
zero-range limit. In this section we describe a novel QMC move which performs direct
sampling of the two-body density matrix. This optimal algorithm for a system of two
particles constitutes the building block of our many-body simulations (cf. Chapter 4).

We consider the paths of two particles, which have separation vectors rs1 = xs1
1 −

xs1
2 and rs2 = xs2

1 − xs2
2 at imaginary-time slice s1 and s2 = s1 + ∆s. As described in

Section 2.1, the two-body problem can be separated into the center-of-mass and relative-
motion independent problems. The center-of-mass part corresponds to the problem
of a single particle with reduced mass equal to 2m, for which the Lévy reconstruction
algorithm is optimal, thus we concentrate on how to sample the relative-motion path.

For fixed rs1 and rs2 , our novel move reconstructs the path of intermediate rela-
tive vectors {rs1+1, . . . , rs2−1} (see Fig. 3.5) through a direct-sampling algorithm for their
probability distribution:

Ppath(rs1+1, . . . , rs2−1) =
s2−1

∏
s=s1

ρrel
2 (rs, rs+1; τ), (3.45)

where ρrel
2 is the two-body relative-motion density matrix (cf. Eqs. 2.29 and 2.35). The

basic ingredient to sample a path from Ppath is the ability to draw a sample r from

P(r|ra, rb, τa, τb) = ρrel
2 (ra, r; τa)ρ

rel
2 (r, rb; τb), (3.46)

for given values of ra, rb, τa, and τb. The full path can then be sampled sequentially, as
in the usual Lévy construction (cf. Section 3.2.2.1): First rs1+1 is drawn from

P(rs1+1|rs1 , rs2 , τ, (∆s − 1)τ), (3.47)



3.2. SAMPLING QUANTUM PATHS 77

Position
0

β
Im

ag
in

ar
y

ti
m

e

∆sτ

Position
0

β

Im
ag

in
ar

y
ti

m
e

∆sτ

Figure 3.5: Scheme of the two-body direct-sampling move.

then rs1+2 is drawn from

P(rs1+2|rs1+1, rs2 , τ, (∆s − 2)τ), (3.48)

and so on until rs2−1 is sampled.
The distribution P(r|ra, rb, τa, τb) is conveniently rewritten as

P(r|ra, rb, τa, τb) ∝ exp

(
−m (r− r∗)2

4h̄2τ∗

)
grel(ra, r; τa)grel(r, rb; τb), (3.49)

where we have introduced

r∗ =
τbra + τarb

τa + τb
, τ∗ =

τaτb
τa + τb

, (3.50)

and neglected prefactors not depending on r. To draw samples from the distribution in
Eq. 3.49, we use rejection sampling (cf. Section 3.1.1.2). Given a distribution Q(r) which
can be sampled directly and such that Q(r) ≥ P(r|ra, rb, τa, τb), the scheme to draw a
sample from P(r|ra, rb, τa, τb) is the following:

1. Draw a sample r from Q(r).
2. With probability P(r|ra, rb, τa, τb)/Q(r), accept the sample, otherwise go back to

step 1.

We consider the expression for P in Eq. 3.49, for which we have

P(r|ra, rb, τa, τb) ≤ exp

(
−m (r− r∗)2

4h̄2τ∗

)[
1 +

2τah̄2

mrra

] [
1 +

2τbh̄2

mrrb

]
. (3.51)

The right-hand side of Eq. 3.51 is governed by two scalings: A divergent r−2 term close
to the origin (core region), and an exponential decay for large distance from the origin
(tail region). Thus we choose the following piecewise function (where r = |r|):

Q(r) =





Kcore r−2 if r ≤ rcore

Ktail exp
(
−m(r−r∗)2

4h̄2τ∗

)
if r > rcore

. (3.52)
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The prefactors,

Kcore =

(
rcore +

2τah̄2

mra

)(
rcore +

2τbh̄2

mrb

)
, (3.53)

Ktail =

(
1 +

2τah̄2

mrarcore

)(
1 +

2τbh̄2

mrbrcore

)
, (3.54)

are chosen so that P(r|ra, rb, τa, τb) ≤ Q(r). The value of rcore, which determines the
boundary of the core and tail regions, is a free parameter of the algorithm, and this
choice may affect the overall efficiency of this move. A typical choice is to set rcore equal
to a small multiple of

√
τ∗h̄2/m, like 2

√
τ∗h̄2/m. As part of the rejection-sampling

scheme, we need to draw samples from the piecewise distribution Q(r). This requires
the computation of Wcore and Wtail, the integrals of Q(r) in the two regions, which gives

Wcore

Kcore
= 4π rcore, (3.55)

and

Wtail

Ktail
= 4

(
πτ∗h̄2

m

)3/2


erfc(x−) + erfc(x+) +

2
r∗

√
h̄2τ∗

πm

[
e−(x−)2 − e−(x+)2

]


 ,

(3.56)
where r∗ = |r∗|, and x± ≡ (rcore± r∗)/(2

√
τ∗h̄2/m). Given the weights Wcore and Wtail,

a fraction Wcore/ (Wcore + Wtail) of samples are drawn in the core region, and the rest
are drawn in the tail region. In the core region, we independently sample the direction
of r (by drawing three samples from a one-dimensional Gaussian distribution) and its
radius (uniformly in the [0, rcore] interval). In the tail region, we draw the vector r from
the distribution

exp

(
−m (r− r∗)2

4h̄2τ∗

)
× θ (|r| − rcore) , (3.57)

which is done by iteratively drawing samples from the Gaussian part, until one of them
has radius larger than rcore and is accepted. This concludes the description of how to
draw one sample r from the probability distribution in Eq. 3.49, which then leads to
the sequential algorithm to sample a path {rs1+1, . . . , rs2−1} from Ppath (cf. Eq. 3.45 and
subsequent paragraph).

This direct-sampling Monte Carlo move for the relative positions of a particle pair
constructs a completely new path of intermediate relative vectors, rather than propos-
ing a small modification to an existing one. For N = 2 particles, this algorithm defines
a rejection-free random walk in configuration space (only an internal rejection rate is
present, due to the use of rejection sampling). For N ≥ 3, in contrast, the new con-
figuration is accepted or rejected with the Metropolis rule. The interactions of the two
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particles involved in this move is taken care of by the a-priori probability, so that it
only interactions with the other N − 2 particles enter in the acceptance probability (cf.
Eq. 3.13).

To verify the correctness of this move, we set up a closed-sector-only QMC simula-
tion two bosons, which are restricted to be in a single permutation cycle. The proba-
bility distribution for the pair distance r is proportional to the average of ρrel

2 (r,−r; β)
over the solid-angle (cf. Eqs. 2.29 and 2.35), which can be performed analytically. The
perfect agreement of the QMC and analytic curves in Fig. 3.7 validates the two-body
direct-sampling move.

With this novel move, the pinning problem is greatly reduced. As a relevant observ-
able, we consider the fraction of distances smaller than a given threshold,

f =
2

N(N − 1)

N

∑
i=1

i−1

∑
j=1

θ
(
rmax − rij

)
, (3.58)

where rij is the distance between particles i and j on a given slice, and θ is the Heaviside
step function. We set a small distance threshold (rmax = λth/5), as we are interested in
whether the QMC algorithm is able to quickly modify the number of pinned particles.
For several physical parameters, we perform QMC simulations of the Hamiltonian in
Eq. 2.68 (that is, with zero-range unitary two-body potential and three-body hard-core
cutoff), for N distinguishable particles, by using either the single-particle Lévy recon-
struction move or the novel two-body move. We compute the autocorrelation function
C f (dt) (cf. Eq. 3.18), which encodes the efficiency of the algorithm in producing decor-
related samples, with a faster decay representing a better algorithm. The advantage
of the novel two-body move over the single-particle Lévy reconstruction is clear (see
Fig. 3.6). Both moves display a rapid decay of C f (dt) from 1 to approximately 0.5 at
small dt, while at larger time lag the Lévy reconstruction is significantly slower than the
two-body move in decorrelating the observable f .

3.2.3 Open-sector moves

For path-integral configurations in the open sector, we modify the commonly used
moves [136, 137], and adapt them so that they keep the number of particles fixed. The
advance/recede move (cf. Section 3.2.3.1) is the open-sector equivalent of the Lévy re-
construction move described in Section 3.2.2.1, as it acts on a single-particle path. The
swap move (cf. Section 3.2.3.2) provides a way to change the permutation-cycles struc-
ture. In the following, we denote by head and tail (or h and t) the two ends of the open
path (see Fig. 3.8). The imaginary-time slice of these two beads is denoted by scut.

3.2.3.1 Advance/recede move

The basic way of modifying a path-integral configuration in the open sector is to act on
the open path, without modifying the others. This path has two beads at imaginary-time
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Figure 3.6: Autocorrelation function C f (dt) for the fraction f of distances smaller than
λth/5. Simulations for distinguishable quantum particles (with different system size,
temperature, and number of reconstructed slices ∆s) are based on a single QMC move
each: Either the Lévy reconstruction (blue line) or the two-body direct-sampling move
(orange line). For all panels, λsρ1/3 ' 0.08, and the time lag dt is in units of N × S
proposed single-bead moves. The two-body direct-sampling move has a significantly
faster decay of C f (dt).
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Figure 3.7: Normalized probability distribution for the pair distance r between two co-
cyclical unitary bosons. QMC results obtained with the two-body direct-sampling move
(solid lines, inverse temperature and imaginary-time interval reported in the legend, in
units of m/h̄2) are in perfect agreement with the analytic expression (dashed black lines).

slice scut: The tail t (connected to another bead on slice scut + 1), and the head h (which
follows a bead on slice scut− 1). In the advance move, the path ending in h grows by ∆s
additional beads, determining a new head hnew on the imaginary-time slice scut + ∆s.
Moreover, the ∆s beads following t (included) are erased, so that the new tail is on the
same slice as hnew (cf. Fig. 3.8). The position of the new head hnew is sampled from
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Figure 3.8: Advance move in a single-particle off-diagonal configuration.

P(hnew) ∝ ρ1(h, hnew; ∆s τ), (3.59)

and a set of ∆s − 1 intermediate beads is obtained trough the Lévy construction, with
endpoints h and hnew.

The acceptance probability for this move is equal to one for a non-interacting system.
In the presence of interactions, the statistical weight of old and new configurations is
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computed, and the proposed update is accepted or rejected according to the Metropolis
rule. The one described here is the canonical-ensemble version of the advance move,
where the total number of beads remains fixed. If the number of beads changes, then the
acceptance probability also depends on the chemical potential (cf. Eq. 2.20 in Ref. [137]).
To satisfy the detailed-balance condition, we also introduce a complementary move (the
recede move, where scut → scut − ∆s), and choose one of the two moves with 50%
probability.

The advance/recede moves also constitutes the basic move of the Reptation QMC
technique [147], used to compute ground-state observables for a quantum system. For
that algorithm, efficiency improves with the following modification: Instead of ran-
domly choosing between the advance and recede moves, as many steps as possible are
performed in the same direction, which is changed only when one of these steps is re-
jected [148]. This is a general approach for MC algorithms, known as lifting [149, 150],
which could be added on top of our current QMC scheme.

3.2.3.2 Swap move

The swap move [136, 137] is a local move which modifies the structure of bosonic per-
mutation cycles for path-integral configurations in the open sector. We first describe
it in a simplified version, considering two non-interacting bosons, and discretizing the
[0, β] imaginary-time interval in two intervals of size τ = β/2. The swap update allows
to move between the two open configurations in Fig. 3.9, denoted with old (left panel)
and new (right panel). Their statistical weights Wold and Wnew are given by
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Figure 3.9: Old and new configurations for a swap move, in the case of two bosons
with S = 2 imaginary-time slices.

Wold = ρ1 (hnew, x2; τ) , (3.60)
Wnew = ρ1 (hold, x2; τ) , (3.61)

up to common prefactors. The scheme of the swap move is the following:
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1. We propose the move that connects hold to x ∈ {x1, x2}, with a-priori probability

Aold→new(x) =
ρ1 (hold, x; τ)

∑i∈{1,2} ρ1 (hold, xi; τ)
. (3.62)

2. We accept the move with probability

pold→new
acc (x) =





0 if x = x1,

min
[
1, ∑i∈{1,2} ρ1(hold,xi;τ)

∑i∈{1,2} ρ1(hnew,xi;τ)

]
if x = x2.

(3.63)

3. If the move is accepted, the link between hnew and x2 is erased, and a new connec-
tion is added between hold and x2.

This move satisfies the detailed balance condition

WoldAold→new(x)pold→new
acc (x) = WnewAnew→old(x)pnew→old

acc (x), (3.64)

for any x ∈ {x1, x2}, where the definitions of Anew→old(x) and pnew→old
acc (x) are analo-

gous to the ones in Eqs. 3.62 and 3.63. It is often convenient to restrict this move to the
case where hold and x2 are not too far apart, to avoid exceedingly small acceptance prob-
abilities. This is implemented by setting Aold→new(x) and pold→new

acc (x) to zero when
|hold − x| is larger than a given cutoff distance, and restricting the sum in the denomi-
nator of Eq. 3.62 accordingly.
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Figure 3.10: Swap move in a three-particle configuration, modifying the structure of
bosonic permutations.

The actual swap move (see Fig. 3.10) differs from the simplified version in three
ways: It takes place on several imaginary-time slices, it involves more than two parti-
cles, and it also includes the interaction part of the statistical weight. Here is the scheme
of this move, in the version which includes a distance cutoff to avoid extremely low
acceptance probabilities:

1. Given the slice scut where the head and tail of the open path are, we identify the
set of all beads on slice scut + ∆s which are at distance from hold smaller than a
given cutoff. This set is denoted as B = {b1, b2, . . . , }.
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2. We sample one element bj from B, with probability

P(bj) =
ρ1
(
hold, bj; ∆s τ

)

∑b∈B ρ1 (hold, b; ∆s τ)
, (3.65)

which is performed via tower sampling (cf. Section 3.1.1.3).
3. Starting from bj, we follow the path backwards for ∆s imaginary-time slices, to

identify the bead hnew (the head, in the proposed new configuration). We identify
the set B′ of the beads on imaginary-time slice scut + ∆s at distance from hnew
smaller than the chosen cutoff.

4. We finally construct the new configuration, by removing the links on the path
portion connecting hnew to bj, and by adding those between hold and bj (via the
Lévy construction). We compute the interaction contributions Wint

old and Wint
new to

the statistical weights of the old and new configuration, and set the acceptance
probability for this move to [136, 137]

pacc = min

[
1,

Wint
new

Wint
old
× ∑b∈B ρ1 (hold, b; ∆s τ)

∑b∈B′ ρ1 (hnew, b; ∆s τ)

]
, (3.66)

with the additional constraint that pacc is equal to zero if |hnew − bj| is larger than
the chosen distance cutoff. This additional constraint is needed to guarantee that
the move is always reversible.

The combination of the swap and advance/recede moves constitutes a complete algo-
rithm for sampling configurations which contributes to the open-sector partition func-
tion, cf. Eq. 3.38.

3.2.4 Sector-changing moves

Here we describe the QMC moves between the open and closed sectors. Configurations
in these two sectors include 3NS and 3N(S+ 1) spatial degrees of freedom, respectively.
Thus the opening and closing moves are an example of the sampling scheme for sub-
spaces of configurations with different dimensionality (see Section 3.1.3). We describe
these QMC moves in three steps: For a single particle at high temperature, for a single
particle at low temperature, and for N interacting particles.

We first consider the path corresponding to one quantum particle at inverse temper-
ature β, confined in a large periodic cubic box of volume V � λ3

th (corresponding to the
high-temperature limit). The statistical weights of open and closed configurations read

Pclosed(x0, . . . , xS−1) =

[
S−2

∏
s=0

ρ1(xs, xs+1; τ)

]
ρ1(xS−1, x0; τ), (3.67)

Popen(x0, . . . , xS) =

[
S−2

∏
s=0

ρ1(xs, xs+1; τ)

]
ρ1(xS−1, xS; τ)

1
ξ3

0
, (3.68)
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where S is the total number of imaginary-time slices3, and the head an tail of the open
path are on the imaginary-time slice S. The length scale ξ0 is a free parameter of the
algorithm, corresponding the choice of a relative factor between the Zopen and Zclosed
(cf. Eq. 3.34 and Section 3.2.1). We choose

ξ0 =

√
2πh̄2∆sτ

m
, (3.69)

where ∆s is the number of imaginary-time slices over which the closing and opening
moves take place.

For the opening and closing moves, we choose a intermediate slice s1 = S− ∆s, and
we propose a new configuration which differs from the old one only on imaginary-time
slices s1 + 1, . . . , S (cf. Fig. 3.11). As a-priori probabilities, we choose
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Figure 3.11: Scheme of the closing move for a single-particle path, passing from an
off-diagonal configuration (left panel) to a diagonal one (right panel). The linear size L of
the box (not shown) is much larger than λth.

Aopen→closed(xs1+1, . . . , xS−1) =

[
S−2

∏
s=s1

ρ1(xs, xs+1; τ)

]
ρ1(xS−1, x0; τ)

(
2πh̄2∆sτ

m

)3/2

,

(3.70)

Aclosed→open(xs1+1, . . . , xS) =

[
S−1

∏
s=s1

ρ1(xs, xs+1; τ)

]
ρ1(xS−1, xS; τ). (3.71)

3The imaginary-time discretization is used in view of the generalization to the N-body case, even
though it would not be necessary for N = 1.
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so that the acceptance probabilities

popen→closed
acc = min

[
1,

Pclosed(x0, . . . , xS−1)Aclosed→open(xs1+1, . . . , xS−1)

Popen(x0, . . . , xS)Aopen→closed(xs1+1, . . . , xS)

]
= 1, (3.72)

pclosed→open
acc = min

[
1,

Popen(x0, . . . , xS)Aopen→closed(xs1+1, . . . , xS)

Pclosed(x0, . . . , xS−1)Aclosed→open(xs1+1, . . . , xS−1)

]
= 1, (3.73)

are both equal to one. This corresponds to rejection-free moves. At variance with the
algorithm described in Section 3.1.3, one of the a-priori probabilities in Eqs. 3.70 and
3.71 is not normalized:
∫

dxs1+1 . . . dxS−1Aopen→closed(xs1+1, . . . , xS−1) =

(
2πh̄2∆sτ

m

)3/2

ρ1

(
xs1 , x0, ∆sτ

)
,

(3.74)
∫

dxs1+1 . . . dxSAclosed→open(xs1+1, . . . , xS) = 1. (3.75)

The definition of Aopen→closed could be modified to make its integral equal to one, but
this would change the acceptance probabilities in Eqs. 3.72 and 3.73, introducing re-
jections. A more convenient way to proceed is to introduce an intermediate stopping
probability for the closing move, given by

Pstop = 1−
∫

dxs1+1 . . . xS−1Aopen→closed(xs1+1, . . . , xS−1)∫
dxs1+1 . . . xSAclosed→open(xs1+1, . . . , xS)

= 1− exp
(
−m(xs1 − x0)2

2h̄2∆sτ

)
.

(3.76)
Therefore, the first step of a closing move consists in the choice of whether the move is
proposed (which has probability 1− Pstop). If this is the case, the move continues in the
usual way: A new configuration is proposed, and its acceptance or rejection is decided
with the probability in Eq. 3.72. No change is needed for the opening move, which has
zero stopping probability.

The description above is for a quantum particle in a periodic box. If λth is much
smaller than the box linear size L, the presence of the box does not influence the statisti-
cal weights. At low temperature, however, the thermal wavelength λth becomes larger
than L, and even a single path spreads over a region of volume comparable with L3.
In this case, the choice of the boundary conditions becomes crucial. We use periodic
boundary conditions, implying that a closed path may have a non-zero winding num-
ber (cf. Section 3.2.1). We include this possibility in the QMC algorithm through the
closing move, which can introduce a non-zero winding-number vector w∗ (cf. Fig. 3.12).

The choice of which winding-number vector w∗ has to be assigned to a new config-
uration is simplified by the assumption

√
2πh̄2∆sτ

m
� L. (3.77)
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Figure 3.12: Closing move for a single-particle path in a periodic box of linear size L,
passing from an off-diagonal configuration (left panel) to a diagonal one (right panel), and
introducing a non-zero winding number (compare with Fig. 3.11).

This corresponds to the fact that the typical spread of the portion of path reconstructed
during a sector-changing move is much smaller than the box size. Under the assump-
tion in Eq. 3.77, there is no ambiguity in the choice of w∗, which is given by

w∗ = argminw∈Z3

∣∣∣xs1 − (x0 + Lw)
∣∣∣ . (3.78)

That is, the closing move connects the bead xs1 with the periodic image of x0 at small-
est distance. This simple choice of w∗ is a consequence of Eq. 3.77, whereas with-
out this assumption, we would have to randomly choose w∗ from the distribution
P(w) ∝ ρ1

(
xs1 , x0 + wL; ∆sτ

)
. The requirement in Eq. 3.77 is easily satisfied for a system

with large N, where L is also large. In contrast, imposing this condition for a small-N
simulation is typically sub-optimal, as it requires very small values of ∆s.

It is instructive to determine the regime where winding has a negligible effect, since
this is also the criterion for the superfluid transition (see Section 3.3.2). In the large-
temperature limit (λth � L), the closed- and open-sector partition functions can be
obtained analytically, by direct integration of Pclosed and Popen, resulting in

Zclosed =
V

λ3
th

, Zopen = V
(

m
2πh̄2∆sτ

)3/2

. (3.79)

Therefore the relative statistical weight of the closed sector at high temperature reads

Zclosed

Zclosed + Zopen
=

[
1 +

(
∆s

S

)3/2
]−1

=

[
1 + ∆3/2

s

(
λs

λth

)3
]−1

. (3.80)

This expression includes the QMC parameter ∆s, as a consequence of our choice for
the length scale ξ0. Eq. 3.80 can be compared with the exact QMC calculation (valid
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at any temperature), in which Zclosed/(Zclosed + Zopen) is estimated as the fraction of
MC samples in the closed sector. We find that Eq. 3.80 is valid for (λth/L)3 . 1 (see
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Figure 3.13: Relative weight of Zclosed, for one quantum particle in a periodic cubic box
of volume L3. The high-temperature expansion (blue line, cf. Eq. 3.80) is compared with
the exact curve (orange dots), obtained through QMC simulations (with λsρ1/3 = 0.03545
and ∆s = 5).

Fig. 3.13). For smaller temperatures, the contribution of paths with non-zero winding
cannot be neglected.

The opening and closing moves can be simply generalized to the case of N interact-
ing bosons, by making it act on the two ends of the open path. The stopping probability
(cf. Eq. 3.76) does not change, but the contributions of two- and three-body interactions
to the statistical weight modify the acceptance probabilities in Eqs. 3.73 and 3.72, intro-
ducing a finite rejection probability. Furthermore, the condition in Eq. 3.77 is simple to
satisfy for a system with large N, since L grows proportionally to N1/3.

The scheme of the open/close QMC algorithm consists in repeating a certain amount
of same-sector moves before proposing a sector switch, through the opening or closing
moves. During the MC evolution in the open sector, the two ends of the open path
can get at distance significantly larger than

√
2πh̄2∆sτ/m. In this case, the stopping

probability (cf. Eq. 3.76) becomes close to one, and the chance that the closing move
takes place is small, until the distance between the two open ends decreases. The typical
number of open-sector MC steps between two accepted closing moves depends on the
temperature (see Fig. 3.14). At low temperature, the distance between the two open ends
becomes large more often, so that more open-sector steps are needed before a closing
move is accepted. This is not simply a technical feature of the QMC algorithm, but
it is directly connected with the concept of ODLRO for the one-body-reduced density
matrix, cf. Section 3.3.3.
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Figure 3.14: Histogram of the number of open-sector MC steps required before a clos-
ing move is accepted, for QMC simulations of N = 103 non-interacting bosons in a
periodic box, at different temperatures (see legend). One MC step corresponds to mov-
ing N × S beads, on average. For the fixed-sector MC evolution, the Lévy-construction,
advance/recede and swap moves are used.

3.3 Observables

In the following sections, we describe three kinds of observables: The closed-sector
observables which also exist for classical particles (cf. Section 3.3.1), the closed-sector
observables which are specific to quantum systems (cf. Section 3.3.2), and the most
relevant open-sector observable, namely the one-body-reduced density matrix (cf. Sec-
tions 3.3.3 and 3.3.4). The latter is an off-diagonal observable, but its normalization
includes the ratio of the open- and closed-sector partition functions (cf. Section 3.3.3).
None of the observable estimators described in this section depends on the choice of the
interaction potential. On the contrary, the improved momentum-distribution estimator
(cf. Section 3.4.2) is specific for the unitary-bosons model under study.

For some observables, we include in this section a comparison of QMC data for the
ideal Bose gas and results based on the recursion relations for th canonical partition
function (cf. Section 1.4). Their agreement provides a validation of the QMC algorithm
for systems without interactions.

3.3.1 Spatial correlation functions

For closed path-integral configurations, several observables can be expressed as func-
tions of the positions X = {xs

1, . . . , xs
N} of the N beads on the imaginary-time slice s. The
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normalized probability distribution for these positions is

Ppos(x1, . . . , xN) =
ρbos

N ({x1, . . . , xN}, {x1, . . . , xN}; β)

Zclosed
, (3.81)

where we dropped the superscript s since Ppos does not depend on the imaginary-time
slice. Independently of its quantum origin, Ppos can be interpreted as the probability
distribution for N classical particles, and we can introduce some observables which are
standard for classical systems [151]. The simplest of these observables is the density
profile, 〈

N

∑
i=1

δ (xi − x)

〉
=
∫

dx1 . . . dxN Ppos(x1, . . . , xN)
N

∑
i=1

δ (xi − x) , (3.82)

which gives the average local density at position x. For a homogeneous system, this is a
constant function of x, while its value depends on the position when the system is non-
homogeneous, for as for instance due to an external potential. Recording a histogram
of particle-position samples during a QMC simulation gives direct access to the density
profile.

In a similar way, we can define the pair-correlation function at positions x and x′ as

g(2)
(
x, x′

)
=

N

∑
i=1

∑
j 6=i

〈
δ (x− xi) δ

(
x′ − xj

)〉
, (3.83)

where the average is taken for {x1, . . . , xN} distributed as in Eq. 3.81. For a homoge-
neous system, g(2) (x, x′) is a function of the relative vector r = x− x′ only. In QMC, we
have direct access to the histogram of the interparticle distances, Pdist(r), normalized as

∫
dr Pdist(r) = 1. (3.84)

This histogram is related to the pair-correlation function through

g(2) (r) =
N(N − 1)

V
Pdist(r)
4πr2 , (3.85)

which is valid for an isotropic system and for distances smaller than L/2 (where L is
the edge of the cubic box where particles are confined). At larger distances, Pdist has a
dependence on the presence of the box, and it vanishes at r =

√
3L/2. For a bosonic

system with zero-range interactions, the pair-correlation functions is connected to the
contact density c2 through

lim
|r|→0

(
r2g(2) (r)

)
=

c2

(4π)2 , (3.86)

as described in Section 2.1.3.
Other n-point density correlation functions can be defined in the same way as the

pair-correlation function. In Section 2.2.2, we compute the three-body correlation func-
tion for three unitary bosons at low temperature (cf. Fig. 2.6), which provides a signature
of the Efimov effect.
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3.3.2 Permutation cycles and superfluid density

Unlike the density profile and n-point correlation functions, which are also defined for
a classical particle system, other diagonal observables are specific to quantum systems.
This is reflected in the fact that they depend on degrees of freedom located at different
imaginary-time slices.

Bosonic quantum statistics enters the path-integral formulation through permuta-
tion cycles (see Section 1.3), with the presence of long cycles being connected to the BEC
transition. In the large-temperature limit (λ3

thρ ' 0), any permutation P different from
the identity permutation {1, . . . , N} has vanishing statistical weight, so that particles
are effectively distinguishable.

As the temperature is lowered, the statistical weight of permutations including long
cycles becomes non-negligible, and in the zero-temperature limit a particle has the same
probability for being in a cycle of any length. QMC simulation allow to directly mea-
sure the average number of particles on cycles of a given length. For an ideal Bose gas,
this quantity can be computed exactly also through the recursion method for the canon-
ical partition functions. With the notation of Section 1.4 for a system of N bosons in a
periodic box, the average number of bosons on cycles of length k reads

k
N
× z(kβ)ZN−k(β)

ZN(β)
, (3.87)

which can be computed numerically for any choice of N, V, and T. As shown in Fig. 3.15,
the same result is obtained with an open/close QMC simulation for the ideal Bose gas,
in which the swap move is used to change the structure of permutation cycles. This
validates the QMC algorithm, for the non-interacting case.

The study of permutation cycles is directly related to the BEC transition. For ideal
bosons the condensate fraction can be extracted from the quantity in Eq. 3.87 [39], which
gives a quantitative connection between the statistics of permutation cycles and the BEC
transition. This is not available for the case of interacting systems [42], although permu-
tation cycles keep providing a useful ingredient for an heuristic study of the transition.
In contrast with the condensate fraction, the superfluid fraction is directly connected to
these cycles, both for ideal and interacting systems. A closed path in a periodic box can
have a non-zero winding-number vector w ∈ Z3, which is computed by counting how
many times it winds around the periodic box along each direction (cf. Section 3.2.1). The
total winding-number vector W of a configuration is the sum of the winding-number
vectors corresponding to all bosonic cycles,

W = ∑
cycles

wcycle, (3.88)

where the sum of the number of bosons belonging to each cycle is equal to N. The
symmetry of the system with respect to spatial inversion implies that 〈W〉 = 0, where
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Figure 3.15: Average number of particles on cycles of a given length, for a system of
N = 103 non-interacting bosons in a three-dimensional periodic box. Full agreement is
obtained between the exact results obtained through the QMC algorithm described in
this section (dots) and the exact recursion of Section 1.4 (dashed black lines).

the average is taken over configurations distributed according to ρbos
N . The average of

W2, in contrast, can be non-zero, and it gives direct access to the superfluid fraction
ρs/ρ, via

ρs

ρ
=

m
h̄2β

〈
W2〉 L2

3N
, (3.89)

where L is the linear size of the cubic box. This relation was first introduced in Ref. [23],
based on connection of the superfluid density with the helicity modulus (cf. Section 1.1),
and it does not depend on whether bosons are interacting. In a QMC simulation, we
can collect statistics for Wx (note that 〈W2

x 〉 = 〈W2
y 〉 = 〈W2

z 〉 = 〈W2〉/3, due to the sym-
metry under permutations of {x, y, z}), and then obtain ρs through Eq. 3.89. At high
temperature, the probability of winding numbers Wx 6= 0 is strongly suppressed (be-
low 2%, for the left panel of Fig. 3.16), while it becomes significant at low temperature
(cf. Fig. 3.16, middle and right panels). This is a direct consequence of the appearance
of long permutation cycles, which can wind several times around the box. Computing〈

W2〉 in QMC requires algorithms which can efficiently modify the structure of permu-
tation cycles. This is best achieved with simulations in the extended configuration space
(cf. Section 3.2.1 and Refs [136] and [137]), while the permutation-sampling algorithm
originally devised for liquid helium are not optimal (see for instance Ref. [152]).

For the case of N non-interacting bosons, the exact value of ρs can also be obtained
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Figure 3.16: Winding-number distribution for N = 103 non-interacting bosons at dif-
ferent temperatures (cf. panel titles), computed through QMC simulations. For high
temperature (left panel), the distribution is more narrowly peaked at Wx = 0, while it
becomes broader as the temperature decreases. The corresponding superfluid fractions
are reported in Table 3.1.

through the recursive method of Section 1.4, as described in Ref. [40]. By introducing

fk,w =
L√

2πh̄2βk/m
exp

(
−mL2w2

2kβh̄2

)
, (3.90)

we can rewrite z(kβ) (cf. Eq. 1.28) as

z(kβ) =

(
∑

w∈Z

fk,w(β)

)3

. (3.91)

Given a cycle of length k, the average of its squared winding number along x reads

〈
w2

x

〉
k
=

∑w∈Z fk,w(β)w2

∑w∈Z fk,w(β)
, (3.92)

and it is a monotonically increasing function of k ∈ {1, . . . N}. Given the probability
distribution πk for a particle to be on a cycle of length k (cf. Eq. 1.33), the variance of the
x-component of W is

〈
W2

x

〉
=

N

∑
k=1

πk

〈
w2

x

〉
k
=

N

∑
k=1

1
N

z(kβ)ZN−k(β)

ZN(β)

〈
w2

x

〉
k

. (3.93)

By combining this result with Eq. 3.89, we can compute ρs. This quantity agrees with
QMC results for the ideal Bose gas with relative errors ≤ 0.7% (cf. Table 3.1), which
represents an additional verification for our algorithm.
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T/T0
c ρs/ρ (Eqs. 3.89 and 3.93) ρs/ρ (QMC and Eq. 3.89) Relative error (QMC)

1.25786 0.000799 0.000806 ± 0.000006 0.7 %
0.94340 0.1781 0.1787 ± 0.0004 0.2 %
0.62893 0.5639 0.5619 ± 0.0013 0.2 %

Table 3.1: Superfluid fraction for N = 103 non-interacting bosons in a cubic periodic
box, with the parameters of Fig. 3.16. The values obtained through Eqs. 3.89 and 3.93
are consistent with the QMC results.

3.3.3 One-body-reduced density matrix

For a translation-invariant system, the one-body-reduced density matrix g(1) (r) is de-
fined as

g(1) (r) =
N
V
×
∫

dx1 . . . dxN ρbos
N ({x1, x2, . . . , xN}, {x1 + r, x2, . . . , xN}; β)

Zclosed
, (3.94)

which is normalized so that g(1) (r) → ρ for |r| → 0. g(1) (r) is proportional to the
marginal probability distribution for a relative vector r between the two ends of the
open path, and it is connected with the statistics of permutation cycles. For an ideal
Bose gas at high temperature (λ3

thρ � 1), the probability for cycles of more than one
particle is strongly suppressed. In this regime, the density matrix ρbos

N is approximately
equal to the density matrix of N non-interacting distinguishable particles, which is the
product of N single-particle terms. Thus the expression in Eq. 3.94 becomes

g(1) (r) =
N
V
×
∫

dx1ρ1 (x1, x1 + r; β)∫
dx1ρ1 (x1, x1; β)

=
N
V
× exp

(
− mr2

2h̄2β

)
. (3.95)

Thus g(1) (r) decays exponentially for large r, with a characteristic length scale much
smaller than L. This corresponds to the physical regime in which the winding of paths
around the periodic box is suppressed, since the presence of non-zero winding would
require the two open ends to reach a distance of the order of the box size. At low tem-
perature, in contrast, the thermal wavelength λth becomes comparable to ρ−1/3, and
the probability of longer cycles increases. The distribution of the end-to-end vector of
an isolated open path formed by k particles is proportional to ρ1(0, r; kβ). The corre-
sponding length scale for the large-r decay is

√
k times larger than the one in Eq. 3.95

Thus an open cycle made by a macroscopic number of particles can reach an end-to-end
distance of the order of

√
Nλth, which is comparable or larger than the linear box size

L = (N/ρ)1/3 (cf. Fig. 3.17). It is then clear how the ODLRO criterion for Bose-Einstein
condensation (cf. Section 1.1) is related to permutation cycles: g(1) (r) decays to zero on
the length scale set by λth, unless the system has a relevant probability of including long
cycles.
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Figure 3.17: Schematic representation of ODLRO for N = 20 bosons in a box of linear
size L: Due to the presence of a long cycle (orange line), the head and tail (orange dots)
can be at a macroscopic distance, while short-cycle paths (blue lines) have a linear size
of the order of λth.

The definition of g(1) (r) (cf. Eq. 3.94) can be rewritten as

g(1) (r) =
N
V

Zopenξ3
0

Zclosed
× P(r), (3.96)

by making use of Eqs. 3.33 and 3.34), and by introducing

P(r) =
∫

dx1 . . . dxN ρbos
N ({x1 + r, x2 . . . , xN}, {x1, x2 . . . , xN}; β)

Zopenξ3
0

. (3.97)

This distribution P(r) is normalized (
∫

dr P(r) = 1), and can be directly accessed in a
QMC simulation, by constructing a histogram for the separation vector r between head
and tail. Eq. 3.96 links the raw histogram P(r) to the one-body-reduced density matrix.
This requires the knowledge of ξ0 (a free parameter in the QMC algorithm, chosen as
in Eq. 3.69), and of Zopen/Zclosed. The general scheme for MC sampling in different
dimensions (cf. Section 3.1.3) gives access to this ratio. For the QMC case, it is directly
estimated as the ratio of the number of configurations in the closed and open sectors.

3.3.4 Momentum distribution and condensate fraction

The momentum distribution n (k) is defined as the Fourier transform of g(1) (r),

n (k) = V
∫

dr g(1) (r) exp (−ik · r) , (3.98)

for a translation-invariant system. In a periodic box of linear size L, n (k) has to be
computed for a discrete set of momenta, given by kq = (2π/L)q, with q ∈ Z3. Its
normalization is such that

∑
q∈Z3

n
(
kq
)
= NV. (3.99)
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so that the condensate fraction reads4

N0

N
=

n(k = 0)
NV

, (3.100)

where N0 is the average number of condensed particles. The average number Nth of
thermal particles is Nth = N − N0. For a large system in the normal-gas phase, the
normalization in Eq. 3.99 can be approximated as

∫
dk n (k) = N × (2π)3, (3.101)

while this breaks down in the presence of a finite condensate fraction (cf. Section 1.1). At
large temperature, the momentum distribution for non-interacting bosons is obtained
from Eq. 3.95, and it reads

n (k) = N ×
(

2πh̄2β

m

)3/2

× exp

(
−β

h̄2k2

2m

)
, (3.102)

which is the Boltzmann factor of an energy h̄2k2/(2m), that is, the result for distinguish-
able non-interacting particles.

In QMC, one could directly estimate g(1) (r) as a histogram and then use the defini-
tion in Eq. 3.98 to compute n (k). This is not optimal, as it involves a Fourier transform
of noisy data. In contrast, we use a method where n (k) for a given momentum k is
obtained directly [131, 153]. By using the expression for g(1) (r) given in Eq. 3.96, the
definition of n (k) can be rewritten as

n (k) = N
Zopenξ3

0
Zclosed

×
∫

dr P(r)e−ik·r. (3.103)

The integral in the right-hand side corresponds to the statistical average of e−ik·r. In
QMC, samples of r are distributed as P(r), so that the average of e−ik·r is directly avail-
able. We denote this measure of n (k) the naive estimator, to be compared with the es-
timator described in Section 3.4.2 below. The open/close QMC algorithm gives access
to the correctly-normalized one-body-reduced density matrix and momentum distribu-
tion (g(1) (r) and n (k)), as it allows to estimate the ratio Zopen/Zclosed [137, 136]. By
setting k = 0 in Eq. 3.103, we obtain

N0

N
=

ξ3
0

V
Zopen

Zclosed
. (3.104)

To conclude this section, we describe a peculiar property of the BEC phase, related to
the fluctuations of the number of particles in the condensate (cf. Ref. [15], §3.3). N0 and

4Here and in Chapter 4, N0 is the average occupation number of the k = 0 level, which in Chapter 1
is denoted by 〈N0〉.
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Nth are the average numbers of condensed and non-condensed particles, and they have
physical fluctuations, at any given temperature. This is the case both in the canonical
ensemble (where N = N0 + Nth is fixed) and in the grand canonical ensemble (where N
itself can fluctuate). For a typical extensive observable O, the variance σ2(O) is expected
to scale linearly with the system size N. The relative importance of fluctuation (that is,
σ(O)/〈O〉) vanishes in the large-N limit, since σ(O) ∝ N1/2 and 〈O〉 ∝ N. For a system
of non-interacting bosons in the normal-gas phase, the number Nth of non-condensed
particles has fluctuations with the ordinary linear scaling (that is, σ2(Nth) ∝ N), both
in the canonical and grand canonical ensembles [15]. In the BEC phase, however, the
variance of Nth scales as

σ2 (Nth) ∝ N4/3. (3.105)

This superlinear scaling differs from the typical case of extensive variables, and it is
a consequence of the small-k behavior of n (k) [15]. While this scaling holds both
in the canonical and grand canonical ensembles, the corresponding scaling of σ2(N0)
shows a clear difference between the two ensembles. If the total number of particles
N = N0 + Nth is constant, then the fluctuations of N0 = N − Nth scale in the same way
as those of Nth, namely σ2(N0) ∝ N4/3. In the grand canonical ensemble, in contrast,
the fluctuations of N0 for an ideal BEC scale as σ2(N0) ∝ N2, meaning that their relative
importance does not vanish in the N → ∞ limit. This anomaly is a pathological fea-
ture of the ideal Bose gas, when treated via the grand canonical ensemble. The results
mentioned here (notably the fact that σ(N0) ∝ N2/3, in the BEC phase) also hold in the
presence of interactions [154].

3.4 Additional aspects related to PIMC

In this section we describe two additional aspects of the path-integral QMC study pre-
sented in this work. The first concerns a common problem for most Monte Carlo studies
of phase transition: Most MC methods give access to the properties of finite-size system,
while the critical behavior close to phase transitions is best characterized in the infinite-
size limit. This is addressed by the finite-size scaling technique – cf. Section 3.4.1. Sec-
tion 3.4.2, in contrast, concerns a specific issue in the study of systems with zero-range
interactions, as the model for the unitary Bose gas used in this work. The naive estima-
tor for the momentum distribution (cf. Section 3.3.4) becomes unpractical at the large
momenta, and we describe an approximate scheme to overcome this problem.

3.4.1 Superfluid transition and finite-size scaling

In this section, we describe the finite-size scaling technique to characterize the BEC
phase transition. An example is provided by the case of the ideal Bose gas in a periodic
box, for which we have an explicit expression of the superfluid density (cf. Eq. 3.89).
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This quantity has a strong dependence on the system size (cf. Fig. 3.18), especially in the
intermediate-temperature region close to T0

c . Even for the largest system considered in
Fig. 3.18 (N = 4096), a clear deviation from the infinite-size result is visible. Moreover,
the smoothness of the finite-size curves makes it hard to define a critical temperature
for a system at a given N . 103.
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Figure 3.18: Superfluid fraction of N ideal bosons in a periodic box, as a function
of the rescaled temperature, and for different values of N (solid lines, obtained through
Eq. 3.89 and Eq. 3.93). Also shown is the exact result [20, 21] for an infinite system below
T0

c (dashed black line, cf. Eq. 1.21).

The fact that the transition is smeared out and only becomes sharper for large sys-
tems can be understood in terms of the correlation-length behavior. We consider a BEC
transition in three dimensions, with critical temperature Tc. The rescaled temperature
is defined as t = (T − Tc)/Tc. At the transition point (t = 0), the superfluid fraction
and correlation length5 of an infinite system have a power-law scaling, with exponents
v and ν, that is

ξ ∼ 1
tν

, for t→ 0+, (3.106)

and
ρs

ρ
∼ tv, for t→ 0−. (3.107)

The value of these exponents depends on which universality class the transition belongs
to. In three dimensions, the ideal Bose gas belongs to the complex Gaussian model
class, which has ν = 1 [20, 21]. The three-dimensional weakly-interacting Bose gas, in

5 For T > Tc, the correlation length ξ is defined via ∆F ∼ e−L/ξ , where the twist free energy ∆F is
the change in free energy corresponding to a change from periodic to antiperiodic boundary conditions
along one direction [155]. For the extension of this definition below Tc, cf. Ref. [20].
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contrast, is in the 3D XY class, with ν ' 0.67 [156] (corresponding to the value mea-
sured for 4He [157]). In a finite system, there exists a temperature region in which the
infinite-system correlation length ξ exceeds the maximum length scale of the finite sys-
tem, that is, the linear size L of the box. The finite-size scaling hypothesis is formulated
in this temperature region, and states that the free energy (or any derived observable)
is a universal function of L/ξ ∼ Ltν. When expressed for the superfluid fraction, this
hypothesis reads [22, 155]

ρs

ρ
= L−1Q

(
L1/νt

)
(3.108)

where Q(x) is a unknown universal function (which is analytic for any finite argument),
and where we have assumed that v = ν [155]. The hypothesis in Eq. 3.108 provides a
powerful technique to estimate Tc from finite-system results. The expansion of Q(x)
close to the transition point (x ' 0) gives

L× ρs

ρ
= Q(0) + Q′(0)L1/νt + . . . , (3.109)

so that L × (ρs/ρ) becomes independent on the system size at t = 0. Therefore, we
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Figure 3.19: Rescaled superfluid fraction as a function of the temperature, for a sys-
tem of N non-interacting bosons in a cubic periodic box (computed through Eq. 3.93, cf.
Ref. [40]).

can plot L× (ρs/ρ) (or, equivalently, N1/3ρs/ρ) as a function of temperature for several
values of N, and the crossing point of these lines provides an estimate of Tc. An example
for the ideal Bose gas is shown in Fig. 3.19, where the crossing point takes place near
T = T0

c . For small N, corrections to the scaling law in Eq. 3.108 cannot be neglected
[155], introducing a systematic deviation of the estimates of the critical temperature
from its actual value (not visible on the scale of Fig. 3.19).
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Similar versions of the finite-size scaling idea constitute fundamental tools in the
study of critical phenomena for several other cases, including magnetic systems [158,
159] and zero-temperature quantum phase transitions [160]. In the context of path-
integral QMC, examples of this analysis are found in Ref. [161] (for ideal and interacting
bosons) and Ref. [162] (for interacting bosons in the presence of an external potential).
In Section 4.4.1, this method is used to determine the critical temperature of the unitary
Bose gas.

3.4.2 Large-momentum tail of n (k)

The standard method to measure the momentum distribution in a QMC simulation
is described in Section 3.3.4. In this section, for simplicity, we consider the observable
n̄ (k) (rather than the actual momentum distribution n (k)), defined through a rewriting
of Eq. 3.103:

n̄ (k) =
1
N

Zclosed

Zopenξ3
0
× n (k) =

∫
dr P(r)eik·r. (3.110)

P(r) is the normalized probability distribution for the separation vector r between the
head and tail of the open path (cf. Eq. 3.97). It corresponds to the distribution of the
samples for r in a QMC simulation, so that we can estimate n̄ (k) as

n̄ (k) ' 1
Nsteps

Nsteps

∑
j=1

exp
(
−ik · rj

)
(3.111)

where r1, . . . , rNsteps are the samples of r obtained through QMC. We refer to this method
of measuring n̄ (k) (or, equivalently, the momentum distribution) as the naive estima-
tor. At k = 0, n̄ (k) is equal to one, and its physical fluctuations vanish. The relative
fluctuations of n̄ (k), in contrast, become very large in the large-k regime, where n̄ (k)
itself decays to zero. In this regime, the naive estimator gives a very poor estimate of
n̄ (k), as it consists of the average of strongly-oscillating terms. For the study of the
BEC transition, the small-k part of the momentum distribution is the most relevant, so
that this limitation of the naive estimator does not represent a practical issue. However,
the large-k behavior of the momentum distribution is of key importance for systems
with strong, short-ranged, interactions (which is the case for the unitary Bose gas, cf.
Chapters 2 and 4), as it is connected to universal properties. The naive estimator is for-
mally correct at any k, and it can be used in the absence of alternative methods (see
for instance Fig. 4.15), but it is not practical to address large-k regime. In the following
paragraphs, we describe an improved estimator, explicitly designed to solve this issue.

The estimator derived in this section is specific for particles interacting through
the zero-range unitary potential, unlike the generally applicable observable estima-
tors of Section 3.3. For an open two-particles configuration, with head x and tail y
on imaginary-time slice scut, we introduce the notation in Fig. 3.20 for a given set of
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points C = {A, B, C, D, E}. The free parameter ∆s determines the region of interest,
which corresponds to the portion of the configuration with imaginary-time slices be-
tween (scut − ∆s) and (scut + ∆s).

Position

scut −∆s

scut

scut + ∆s

Im
ag

in
ar

y
-t

im
e

sl
ic

e

x
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A B

CD
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Figure 3.20: Open configuration for two particles, with open ends x and y in the vicinity
of the imaginary-time slice scut.

We formally rewrite n̄ (k) as

n̄ (k) =
∫

dC p∗(C)
∫

dx
∫

dy Pend(x, y|C)e−ik·(x−y), (3.112)

with the shorthand dC = dA dB dC dD dE. p∗(C) is the (unknown) probability distribu-
tion for C, and Pend(x, y|C) is the conditional probability distribution for the endpoints
x and y, for a given value of C. We define

n̄ (k|C) =
∫

dx
∫

dy Pend(x, y|C)e−ik·(x−y), (3.113)

so that n̄ (k) is equal to the average of n̄ (k|C) over C, if C is distributed according to
p∗(C). n̄ (k|C) will be computed analytically. Thus one can use a QMC simulation to
sample a sequence C1, . . . , CNsteps of values of C, and obtain an alternative estimator for
n̄ (k),

n̄ (k) ' 1
Nsteps

Nsteps

∑
j=1

n̄
(
k|Cj

)
. (3.114)

This estimator has improved convergence properties, especially in the large-k regime
(corresponding to small distances between x and y, cf. Fig. 3.20), as it does not sample x
and y, but the set C.

We now turn to the analytic determination of n̄ (k|C). The conditional probability
Pend(x, y|C) is known explicitly, as it is proportional to the product of

ρ1 (A, x; ∆sτ) ρ1 (B, E; ∆sτ) ρ1 (E, C; ∆sτ) ρ1 (y, D; ∆sτ) (3.115)
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and
grel (A− B, x− E; ∆sτ) grel (D− C, y− E; ∆sτ) . (3.116)

Thus we can rewrite Eq. 3.113 as

n̄ (k|C) = h(k, A, B, E) h(−k, D, C, E)
h(0, A, B, E) h(0, D, C, E)

, (3.117)

with

h (k, A, B, E) ≡
(

2πh̄2∆sτ

m

)3/2

× exp

(
m (B− E)2

2h̄2∆sτ

)
×

×
∫

dx ρ2 ({A, B}, {x, E}; ∆sτ) e−ik·x.

(3.118)

Eq. 3.117 is such that n̄ (k = 0|C) = 1. By writing ρ2 as the sum of a non-interacting
term plus a correction (cf. Eq. 2.29), we can split h into the sum of the two corresponding
contributions, hideal and hcorr. The non-interacting term yields

hideal (k, A, B, E) = e−ik·A exp

(
− h̄2∆sτk2

2m

)
. (3.119)

The term due to interactions reads

hcorr (k, A, B, E) = e−ik·E 1
b′v

exp
(
−(e′)2 +

(b′)2 + v2

4

)
(I+ − I−) , (3.120)

with the shorthands

I± = e∓
b′v
2 erfc

(
b′ ∓ v

2

)
, (3.121)

and

b′ =
A− B√

2h̄2∆sτ/m
(3.122)

e′ =
A− E√

2h̄2∆sτ/m
(3.123)

v =

√√√√
(2e′ − b′)2 − 2h̄2∆sτ

m
k2 − 2i

√
2h̄2∆sτ

m
(2e′ − b′) · k. (3.124)

The result in Eq. 3.120 is obtained via the analytic continuation technique: The integra-
tion is first performed for an imaginary momentum k = k∗/i, and the replacement
k∗ → ik is used in the final result. To support the validity of this procedure, we have
verified that the analytical result for h (the sum of hideal and hcorr) agrees to a high pre-
cision with a direct numerical quadrature based on the definition in Eq. 3.118.
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The analytical knowledge of h gives direct access to n̄ (k|C), through Eq. 3.117, so
that we can use the improved estimator in Eq. 3.114 to measure n̄ (k). For the case
of N = 2 particles in free space, the derivation of this estimator does not include any
approximation. For particles in a periodic box, however, the derivation of hideal and hcorr
only holds approximately. The approximation consists in replacing the integrals over
the finite-box volume with the corresponding infinite-space integrals. This a completely
controlled approximation, since the factors in Eq. 3.115 decay exponentially for large
|x−A| or |y−D|, on a length scale given by

λABCDE =

√
2πh̄2∆sτ

m
(3.125)

The approximation is valid for λABCDE � L. As shown in Fig. 2.3, the improved esti-
mator correctly captures the momentum distribution at all momenta. n̄ (k|C) already
decays as k−4, with a prefactor pref(C). Thus the average of n̄ (k|C) over C necessarily
decays as k−4, with the prefactor

∫
dC p∗(C)× pref(C). (3.126)

When the distances |E−A| and |E−D| are large, compared to λABCDE, the effect of the
interactions is suppressed, and pref(C) is close to zero. If these distances are small, how-
ever, the presence of E close to the open ends x and y causes pref(C) to be significantly
different from zero.

The calculation of n̄ (k) above cannot be directly extended to more than two parti-
cles, thus we develop an approximate scheme to employ the improved estimator in a
N-body simulation. We first split the open sector into the subsets L and NL of local and
non-local configurations. These are defined through the following procedure:

1. The endpoints x and y of an open path are identified, as in Fig. 3.20.
2. A is found by starting from x and following the path backwards for ∆s imaginary-

time slices. B is the bead closest to A, on slice scut − ∆s.
3. D is found by following the path that starts at y for ∆s slices, and C is identified

as the bead on slice scut + ∆s which is closest to D.
4. If B and C belong to the same path6, and if the five positions A, B, C, D, E are

“close” to each other, then the configuration is part of the L sector, otherwise it is
assigned to the NL sector.

The criterion for closeness, in point 4, is still to be defined. The separation into L and
NL sectors naturally leads to the following exact rewriting of n̄ (k):

n̄ (k) = fL × n̄L (k) + fNL × n̄NL (k) , (3.127)

6This is always the case for the two-body configuration in Fig. 3.20, but it is not generally true for
N > 2.
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where fL and fNL are the fractions of configurations in the L and NL sectors. n̄L (k)
and n̄NL (k) are the averages of exp (−ik · r) restricted to one of the two configuration
subspaces, and they satisfy

n̄L (0) = n̄NL (0) = 1. (3.128)

The L/NL separation is useful because, under certain conditions, only n̄L significantly
contributes to the large-k tail of n̄ (k). As assumed in the pair-product approximation
(cf. Section 3.2.1), beyond-two-body physics has negligible effects at high temperature.
If λABCDE is small (as compared to the typical interparticle distance ρ−1/3), the probabil-
ity of finding two bosons in a region of volume (λABCDE)

3 is small, and the probability of
finding three bosons is strongly suppressed. This implies that for a local configuration
the probability distribution for x and y can be approximated by Pend(x, y|C), which is
the exact expression if only the two close-by bosons are considered. All the steps which
lead to the improved estimator also hold (approximately) for N-body configurations in
the L sector, and the expression for n̄ (k) can be also used for n̄L (k). However, this is
not true for a non-local configuration, since in this case the effects due to more than two
particles can be relevant. Therefore, n̄NL (k) can only be computed through the naive
estimator. We can then define the features that a “good” locality criterion (defined in
practice by the definition of closeness, in point 4 above) should have:

1. It has to be inclusive enough, which is obtained by setting a large ∆s, and by
defining closeness (cf. point 4, at page 103) through a large length scale. In this
case, the large-k part of n̄NL (k) is approximately exponentially suppressed, and
in a QMC calculation it is dominated by statistical noise. All configurations which
significantly contribute to the k−4 tail are then counted in the L sector.

2. ∆s and the leg nth scale for the definition of closeness have to be small enough,
so that for all configurations in the L sectors the effect of a third particle on the
probability of x and y can be neglected, and the two-body approximation is valid.

Given these two conditions, Eq. 3.127 is approximated by truncating the tail of n̄NL (k),
which we assume to include only statistical noise for k larger than a certain cutoff mo-
mentum. The existence of a good locality criterion is not guaranteed, and the vali-
dation of this approximation has to be performed a-posteriori, by comparing the con-
tact parameter extracted from n (k) with the unbiased value obtained from g(2) (r) (cf.
Fig. 4.11b). If the former is significantly smaller, then the estimator described in this
section cannot be used, and we have to fall back on the inefficient but unbiased naive
estimator.

In Sections 4.3 and 4.4, we measure the momentum distribution for a large system of
unitary bosons, across the whole phase diagram. The regime where the naive estimator
performs worst (that is, where n (k) has the strongest statistical fluctuations, at large k)
is for high temperature, where the prefactor of the k−4 tail is small (cf. Figs. 4.10 and
4.11). In this regime, the improved estimator is only weakly biased, since the two-body
approximation for the configurations in the L subspace is valid, at high temperature.
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Therefore we are able to use it to measure n (k) in this regime, for systems with large
N (cf. Fig. 4.10). At intermediate or low temperatures, we do not find a satisfactory
locality criterion, so that we have to fall back on the naive estimator. While this is an
unbiased estimator, it requires a considerably longer simulations, and it cannot reach
large momenta (see for instance Fig. 4.15).

Conclusion

This chapter concerns the path integral QMC technique, that gives access to the thermo-
dynamics of bosonic systems. The open/close scheme (cf. Section 3.2.1), in particular,
allows to measure key observables related to Bose-Einstein condensation and to the pe-
culiar properties of the unitary gas. Some modifications to the ordinary path integral
QMC method are necessary, to treat bosons with zero-range unitary interactions. These
are made possible by the analytic knowledge of the two-body density matrix (cf. Sec-
tion 2.1.2). As a main original contribution, we introduced a two-body direct-sampling
move, which represents the optimal Monte Carlo solution at the N = 2 level (cf. Sec-
tion 3.2.2.3). The same two-body move can be integrated in the many-body algorithm.
This solves the technical problem of pinning, that is, the difficulty for the algorithm to
separate two paths after they get at extremely short distance. Moreover, we designed
an improved momentum-distribution estimator (cf. Section 3.4.2), which can properly
capture the large-k tail of n (k) (to be compared with the strong statistical fluctuations of
the naive estimator in this regime). While being unbiased for N = 2, its generalization
to the many-body case is only valid in a certain temperature regime (cf. Section 4.3.1).





CHAPTER 4

Many-body unitary bosons

In this chapter, we study the unitary Bose gas through the QMC method described in
Chapter 3. By extending the considerations of Chapter 2 from N = 2, 3 to the full many-
body problem, we construct the phase diagram for bosons in a homogeneous periodic
box. In the unitary limit, the diverging scattering length does not provide a length scale.
The phase behavior is then determined by three parameters: The thermal wavelength
λth, the typical interparticle distance ρ−1/3 and the three-body cutoff R0. Two dimen-
sionless combinations of these parameters fix a state of the system, as schematically
represented in Fig. 4.1. The phase diagram includes the three phases previously iden-
tified for trapped systems [12]: The normal gas at high temperature, and the BEC and
Efimov-liquid phases at low temperature.

Three-body cutoff
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Gas/liquid
phase coex.

Normal gas

BEC

Figure 4.1: Phase diagram for unitary bosons in the NVT ensemble, at fixed density.
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The Efimov liquid appears through phase separation, where a stable liquid droplet
coexists with a low-density gas. In Section 4.2 we describe this coexistence, both through
an analytic model and through the QMC method.

In the normal-gas and BEC phases the system remains homogeneous. For both these
phases, we compute the momentum distribution n (k) and the two-body contact param-
eter (cf. Sections 4.3 and 4.4). At low temperature, we compare our QMC results to the
experimental momentum distribution [78] and to theoretical predictions for the ground-
state contact density [163, 164, 165]. Moreover, we determine the critical temperature Tc
for Bose-Einstein condensation.

In the construction of the many-body density matrix ρN, at the basis of the QMC
method, two- and three-body interactions are included in an approximate way (cf. Chap-
ter 3). Before studying the phase diagram of unitary bosons, we characterize these ap-
proximations, to validate the QMC scheme (cf. Section 4.1). The bias related to the
approximate way to include the hyperradial cutoff in ρN is reduced by a calibration
based on Efimov-trimers properties.

4.1 Imaginary-time discretization revisited

Our QMC scheme is based on two approximations: The two-body zero-range poten-
tial is treated via the pair-product approximation (PPA), while the three-body cutoff
is incorporated in the many-body density matrix through a Trotter break-up (cf. Sec-
tion 3.2.1). Both approximations are exact in the limit of continuous paths, where the
imaginary-time discretization τ vanishes. At density ρ, the PPA becomes exact in the
limit λsρ1/3 → 0, while the Trotter scheme for the three-body cutoff requires R0/λs → 0
(at a fixed value of R0ρ1/3). In practice, these approximations are considered valid at
a small-enough discretization interval τ = β/S, where the physical observables show
weak or no dependence on τ (within their statistical errors). For a given set of physical
parameters (density, temperature and three-body cutoff), the largest valid value of τ
(that is, the value for which observables become τ-independent) has to be determined
explicitly. The goal of high-precision approximations is to allow the use of a larger τ, to
speed up the numerical calculations.

The standard analysis consists in studying the dependence of observables on τ (or,
equivalently, on the single-slice thermal wavelength λs). For the unitary Bose gas, this
is shown in Fig. 4.2 (panels b and c), for the condensate and superfluid fractions and
for the contact density. At the values of λs shown in the figure, these observables do
not saturate towards a constant value, at small λsρ1/3. This means that an even larger
number of slices would be needed. This strong dependence on τ is a consequence of
the Trotter break-up for the three-body cutoff, rather than of the PPA. The first reason is
that the PPA-validity parameter λ3

s ρ reaches values smaller than 10−3, where λ3
s ρ � 1

is clearly true. Furthermore, the explanation follows from the results obtained for the
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Figure 4.2: Effects of imaginary-time discretization, for fixed Rinput
0 . Panel a: Three-

body cutoff given as an input (blue circles) and effective R0 (orange squares, obtained
through Eq. 2.74), for different values of the single-slice thermal wavelength λs. Panel
b: Condensate fraction (green circles) and superfluid fraction (red squares), for N = 48
unitary bosons with the three-body cutoff values reported in panel a, at temperature
T = 1.0063×T0

c . Panel c: Contact density c2, obtained from the pair-correlation function
g(2) (r) through Eq. 2.47. Physical parameters are the same as in panel b.

ground state of three unitary bosons (see Section 2.2.1). The input value Rinput
0 of the

three-body cutoff is modified by the fact that the imaginary-time interval τ is finite. This
leads to an effective cutoff R0, which is a function of τ and Rinput

0 (cf. Eq. 2.74). For the
data shown in Fig. 4.2, the deviation of R0 from Rinput

0 relevant, remaining as large as the
10% of Rinput

0 for the smallest value of λsρ1/3 considered. Therefore, keeping Rinput
0 fixed

and changing τ describes significantly different physical states, since these are defined
by R0 rather than by Rinput

0 . This confirms that the Trotter break-up is not efficient for
the case of hard-core potentials, where it requires a large number of slices, and indeed it
is rarely used in this context. For QMC simulation of hard spheres, this approximation
can be replaced by the PPA, making use of the exact two-body density matrix [47]. In
other studies of the unitary Bose gas, the three-body hard-core regulator is replaced by
a power-law three-body repulsion, simpler to treat within a Trotter break-up [72, 53].

In this work, we use the exact knowledge of the Efimov-trimer wave function to be
able to choose larger values of τ. The three-body simulations described in Sections 2.2.2
and 2.2.2.1 allow us to obtain the effective cutoff R0 as a function of τ and Rinput

0 , through
Eq. 2.74. For three particles, using the effective R0 as a state variable is fully justified, as
it leads to the agreement with some exact properties of Efimov trimers (cf. Figs. 2.6 and
2.7). In this way, the hyperradial cutoff is included exactly in the three-body density
matrix. The remaining condition for the choice of τ only concerns the PPA validity,
and not the three-body cutoff. The same approach can be generalized to the case of
a homogeneous N-body system: To obtain the physical properties of the system with
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Figure 4.3: Effects of imaginary-time discretization, for fixed R0. Same notation as in
Fig. 4.2, but the effective R0 (rather than the input Rinput

0 ) is kept constant (cf. panel a).

cutoff R0, we simulate an auxiliary system with cutoff Rinput
0 , chosen via Eq. 2.74 for

a given value of τ. The corresponding analysis of the dependence on the imaginary-
time discretization is shown in Fig. 4.3, where R0 (rather than Rinput

0 ) is kept constant.
All three observables considered (superfluid and condensate fractions, and two-body
contact) show an extremely weak dependence on λs, and they are essentially constant
for λsρ1/3 . 0.2. This justifies the use of the effective R0 as a state variable. By lifting
the requirement that λs � Rinput

0 , the only condition for the validity of the discretized
N-body density matrix is the one for the validity of the PPA. The results in Fig. 4.3 show
that this condition is clearly met.

4.2 Efimov liquid

Unitary bosons, defined by the Hamiltonian in Eq. 2.68, have two different transitions
from the normal-gas phase, upon lowering the temperature [12]: When R0 is large
enough, a homogeneous BEC phase is formed (cf. Section 4.4), while for small R0 the
Efimov-liquid phase appears. This liquid phase has a large density (with the three-
body cutoff preventing its collapse), and by the typical properties of a bosonic quantum-
degenerate phase.

The existence of the liquid phase is connected to other theoretical predictions con-
cerning clusters of N strongly-interacting bosons. In Ref. [71], up to N = 13 bosons were
studied through Diffusion Monte Carlo, within a model including short-ranged two-
body interactions with large scattering length, and the hard-core three-body regulator
(cf. Eq. 2.67). The N-body cluster states which were obtained are tied to Efimov trimers,
and inherit their universal character: Two cluster states tied to consecutive trimers at
unitarity would have energies related through Eq. 2.60. At unitarity, the energies of the
largest clusters (N & 9) scale linearly with N. This suggests the existence of well-defined
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phase, in the large-N limit, with constant energy per particle and with a bounded den-
sity (resulting from the balance between two- and three-body interactions). The QMC
studies in Ref. [12] and in the current work provide additional evidence for the exis-
tence of this phase, which here is studied for finite temperature and larger system sizes
(N ≈ 102).

More recently, the ground state for clusters up to N = 15 were computed through
path-integral Monte Carlo, for a similar model [72]. In this case, two-body zero-range
unitary interactions were used (cf. Section 2.1), as in the current work. The hard-core
three-body cutoff, however, was replaced by a power-law repulsive potential, V3(R) =
Cp/Rp. This turns into the hard-core regulator for p→ ∞. The ground states of Ref. [72]
show a dependence on the power-law exponent p, which cannot be explained in terms
of the three-body length scale 1/κ0 (cf. Section 2.2), therefore not fitting within Efimov
universal systems. Nevertheless, a weaker kind of universality is observed, since the
dependence on p is strongly reduced if the inverse N-body binding momentum is used
as a length scale.

In this section we describe Efimov-liquid droplets at thermal equilibrium, which
may be linked to the states computed in Refs [71] and [72]. After describing the instabil-
ity towards the formation of liquid droplets via an analytical model (cf. Section 4.2.1),
we present the direct observation of this instability through QMC calculations (cf. Sec-
tion 4.2.2). A systematic comparison of the Efimov-liquid droplets with the states in
Refs [71] and [72] is not pursued in this work.

4.2.1 Liquid/gas phase coexistence

In this section, we use an analytic model for unitary bosons, and compare its results
with those obtained via QMC (cf. Section 4.2.2). In the NVT ensemble, the Efimov-liquid
phase appears in the form of phase coexistence: Thermodynamically stable configura-
tions consist of a liquid droplet at equilibrium with the surrounding gas. A clear dis-
tinction between the two coexisting phases is only obtained for large N. Small droplets
are harder to describe, as their boundary is not sharply defined. The study the liquid
and gas phases independently, without phase separation, would require using different
ensembles, in which either N or V are allowed to fluctuate.

We consider an analytic model where the two coexisting phases (dilute gas and Efi-
mov liquid) are treated separately [12]. For a system characterized by the (N, V, T)
variables, we compute the free energy of a configuration where the N bosons are di-
vided into a single small cluster with l particles and a gas of Ngas = N − l particles.
The density of the liquid is kept fixed and equal to ρliq = (3.65R0)

−3 (cf. Section 4.2.2),
where R0 is the hyperradial cutoff. This implies that the gas density,

ρgas =
N − l

V − l/ρliq
, (4.1)
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depends on l. This dependence is negligible when N � l. For a liquid droplet, we
assume that the free energy Fliq corresponds to

Fliq(l) ≈ Eliq(l), (4.2)

where Eliq is the energy of the droplet, and we neglect the entropic part of Fliq (which
is valid at low temperature). The droplet is expected to be incompressible, with its
properties not depending on temperature. The cluster energies Eliq(l) are reported in
Ref. [71], for l ≤ 13, in units of the Efimov-trimer binding energy ET (cf. Eq. 2.65). The
extrapolation of these results for large-l reads

Eliq(l) = −|ET| (−37.4 + 9.75× l) . (4.3)

The free energy of the dilute unitary Bose gas, in contrast, is estimated through the
virial-expansion technique [166], which gives the physical properties of the system as an
expansion in powers of λ3

thρ. Within this scheme, the pressure at density ρ is expressed
as

βP
ρ

=
∞

∑
q=1

aq × (λ3
thρ)q−1. (4.4)

The virial coefficients aq entering Eq. 4.4 are related to the coefficients bq of the cluster
expansion, which is the analogous expansion of thermodynamic quantities in powers
of the gas fugacity. The first three virial coefficients read





a1 = 1,
a2 = −b2,
a3 = 4b2

2 − 2b3.

(4.5)

The cluster coefficients up to b3 were computed analytically for the unitary Bose gas
[13]. The first non-trivial coefficient reads

b2 =
9

25/2 , (4.6)

while b3 is obtained as an explicit function of βET. By using Eq. 4.4 and the fact that P =
−∂F/∂V, we can compute the virial expression for the gas free energy, Fgas(N, V, T).
This is obtained by integrating the pressure for volumes between V and V0, and taking
the limit of V0/λ3

th → ∞. The result reads

Fgas(N, V, T) = F0
gas(N, V, T) +

N
β ∑

q>1

aq

q− 1
(ρλ3

th)
q−1, (4.7)

where F0
gas is the free energy of an ideal classical gas

βF0
gas(N, V, T) = N log

(
λ3

th
V

)
+ log(N!). (4.8)
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Figure 4.4: Rescaled free energy per particle, βFgas/N, obtained through Eq. 4.7. The
virial expansion is truncated at the first (blue dashed line), second (orange dotted line) or
third (green solid line) order, and different panels correspond to different values of R0.

Through Eq. 4.7 and the explicit knowledge of b3, we have access to Fgas(N, V, T) up to
the third order in the virial expansion (cf. Fig. 4.4).

By combining Eqs. 4.2 and 4.7 for Fliq and Fgas, we can compute the free energy
FN

coex(l) of a liquid droplet of l particles surrounded by a dilute gas of N − l particles.
This reads

FN
coex(l) = Eliq(l) + Fgas(N − l, V − l/ρliq, T), (4.9)

for given values of N, V and T. In particular, we consider the free-energy cost for
nucleating a liquid droplet of l particles:

∆F(l) = FN
coex(l, V, T)− FN

coex(0, V, T), (4.10)

The shape of ∆F(l) strongly depends on the temperature (cf. Fig. 4.5). At high tempera-
ture, ρλ3

th � 1, the main contribution in ∆F(l) is Fgas(N− l, V− l/ρliq, T)− Fgas(N, V, T),
which is a monotonously increasing function of l. This situation corresponds to a stable
homogeneous phase. At intermediate temperature, in contrast, ∆F(l) develops a maxi-
mum, at a critical droplet size l = l∗. In this case, the homogeneous phase (where l = 0)
is only metastable, while the thermodynamically stable phase includes a liquid droplet
with large l.

When considering dynamical properties of the system, the presence of a free-energy
barrier ∆F(l∗) > 0 implies that droplets are stable only when they are formed by
l > l∗ particles. The corresponding nucleation rate per volume is proportional to
exp(−β∆F(l∗)), where ∆F(l∗) is the free-energy barrier to overcome the critical cluster
size l∗. Since l∗ > 3 (see Fig. 4.4), the presence of strong three-body losses would effec-
tively destabilize liquid droplets before the critical nucleus size is reached. This is con-
sistent with the fact that no signatures of the Efimov-liquid phase are found in current
experimental realizations of the low-temperature unitary Bose gas (cf. Section 2.3.2.1).

For a given three-body cutoff R0, the liquid-instability temperature Tliq discriminates
between a monotonous curve for ∆F(l) and one with a free-energy barrier. The phase
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Figure 4.5: Free-energy cost ∆F(l) for a liquid droplet of l particles, at different temper-
atures (cf. panel titles), for large N = 103. In each panel, the three curves correspond to
R0ρ1/3 = 0.025 (green line), 0.03 (orange line), and 0.035 (blue line). The l < 3 portion of all
curves (dashed line) is only qualitative, since liquid droplets of this size are not defined.

diagram corresponding to the Efimov-liquid transition includes two regions: A homo-
geneous dilute gas for T > Tliq, and phase coexistence of the gas with a liquid droplet
for T < Tliq (cf. Fig. 4.6) For a vanishing three-body cutoff (R0ρ1/3 → 0), the homo-
geneous gas is unstable at all temperatures (that is, Tliq becomes infinite). This is due
to the fact that the liquid energy is proportional to 1/R2

0, and then diverges at small
R0. Together with the fact that the liquid density (proportional to 1/R3

0) also diverges,
this constitutes an alternative view on the Thomas collapse for bosons with zero-range
pairwise interactions (cf. Section 2.2.1).

Since the virial expansion is valid at small ρλ3
th, the values of Tliq are not reliable for

large R0, where the instability takes place at low temperature. It is instructive to com-
pare the phase-boundary lines obtained through the virial expansion (as in the current
work) and through the cluster expansion [51] 1. The latter is expected to be more accu-
rate, since the cluster coefficient b3 correctly describes the physics of up to three bosons.
By a direct comparison (cf. Fig. 4.6), we find that the virial-expansion estimate of Tliq is
valid for R0ρ1/3 . 0.04.

4.2.2 QMC observation of the Efimov liquid

The instability towards the gas/liquid phase coexistence can also be observed directly
through QMC simulations of N particles in a fixed volume V. At high temperature
(λthρ1/3 � 1), the system realizes a homogeneous phase, with a uniform density profile
throughout the entire simulation box. As the temperature is lowered, before reaching
Tliq, the effect of two-body interactions becomes more important, and small clusters of
a few close-by particles appear. These clusters are not stable, and quickly dissolve as

1The calculations in Ref. [51] are based on the incorrect expression from Ref. [10] (cf. footnote at page
45), which we have corrected to produce the curve in Fig. 4.6.
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3. We also show points where a system of N = 64 bosons is positively
identified as phase separated, through QMC simulations (black crosses, cf. Section 4.2.2).

the simulation proceeds. This leads to an increase of the contact density c2, which is
well captured through a high-temperature expansion (cf. Section 4.3) and is not related
to the existence of the Efimov-liquid phase. At lower temperature, in contrast, phase
separation is directly observed in the QMC configurations, where we identify a dense
liquid droplet surrounded by a dilute gas region which fills the remaining volume in
the box (cf. Fig. 4.7).

During a QMC simulation for a point in the phase-separated region, it may happen
that several small droplets form at different positions. The equilibrium configuration re-
quires that these droplets move and eventually merge into a single one, which is directly
observed for long simulation times. Our QMC scheme, however, is not optimal for this
task, since moving a droplet of several bosons is a move suffering by high rejection
probabilities. Other QMC methods are more appropriate to quantitatively characterize
the two coexisting phases [167]. A method which partially solves the multiple-droplets
issue is the simulated-annealing technique (described in Section 5.2.2). For the cur-
rent case, it consists in reaching a given phase-diagram point through a sequence of
successive simulations starting from high temperature. This allows us to observe the
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nucleation process for systems of N ≈ 102 particles, as shown in Fig. 4.7, reducing the
chances of finding metastable multiple-droplets configurations. Nevertheless, a degree
of uncertainty remains about the full equilibration of the QMC sampling at tempera-
tures T . Tliq, which hinders the accurate identification of Tliq through QMC.

th 1/3 0.801

Inverse temperature

th 1/3 1.084 th 1/3 1.261

Figure 4.7: Nucleation sequence for N = 100, from a homogeneous gas (left panel) to the
phase coexistence of a large droplet with a few particles in the surrounding region (right
panel). The three-body cutoff is set to R0ρ1/3 = 0.0717, and the three configurations are
part of a single QMC simulation with decreasing temperature.

To estimate the phase-separation instability line (cf. Section 4.2.1) we assume that
the liquid droplet has a well-defined shape and a constant density, which is not valid
for small Nliq. We estimate the liquid density ρliq by studying the structure of a liquid
droplet through the pair-correlation function g(2) (r) (see Fig. 4.8). r2g(2) (r) has a peak
at r = rpeak. For a spherical droplet of constant density, this peak would be at a distance
close to the sphere radius (cf. Fig. 4.9). Thus we use the peak position in Fig. 4.8 as
a fitting parameter, and identify rpeak/1.05 with the radius of the liquid droplet. The
droplet volume Vliq is then estimated as (4π/3)× (rpeak/1.05)3. At finite distances r .
rpeak, the pair-correlation function of the unitary-bosons system and of a homogeneous
sphere agree (cf. Fig. 4.8)2, justifying the assumption that Efimov-liquid droplets have
a uniform density. At larger distances (r & rpeak), the pair-correlation function of a
perfectly spherical droplet rapidly decreases, and vanishes when r equals the sphere
diameter. This is not the case for the observed correlation function in Fig. 4.8, as due
to two reasons: The interface is not sharp, so that the distance between two particles
in the droplet is not restricted to be smaller than the diameter, and the presence of the
other particles (in the surrounding gas) modifies g(2) (r), increasing the probability of

2The two curves differ at vanishing distances, where the pair-correlation function of unitary bosons
diverges as 1/r2, with a prefactor proportional to the contact density c2 for the liquid phase.
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Figure 4.8: Pair-correlation function for N = 100 bosons in the phase-coexistence region
(solid blue lines, through QMC simulation), and for a spherical droplet of constant den-
sity (orange dashed line, cf. Fig. 4.9) The two panels correspond to phase-diagram points
(R0ρ1/3, λthρ1/3) = (0.0517, 1.049) and (R0ρ1/3, λthρ1/3) = (0.0717, 1.261). Curves in
this figure are in arbitrary units, as the normalization of g(2) (r) introduced in Sec-
tion 3.3.1 is only valid for a homogeneous system.

observing large distances. The fitting procedure provides an estimate of the radius and
volume of the liquid droplet. To estimate ρliq, we compute the number of particles in
the droplet as

Nliq = N ×
∫

r<rmax
dr g(2) (r)

∫
dr g(2) (r)

. (4.11)

The threshold rmax is set at a distance where the peak in r2g(2) (r) is suppressed (cf.
vertical dashed lines in Fig. 4.8). For the two values of R0 considered in Fig. 4.8, the
liquid fractions Nliq/N is approximately 0.9. The liquid density obtained in this way
reads

ρliq =
Nliq

Vliq
=

1
(αR0)3 (4.12)

This quantity has strong run-to-run fluctuations, related to the imprecise definitions
for Nliq and Vliq, since the boundary effects are important for the small droplet sizes
considered (Nliq . 100). We have performed 56 QMC runs, at the four phase-diagram
points defined by

(
R0ρ1/3, λthρ1/3) = (0.0517, 1.0486), (0.0717, 1.2608), (0.0817, 1.3729),

and (0.1017, 1.418). The values of α vary between 3.3 and 3.9, with an average α ' 3.65.
The results do not depend on the three-body cutoff, implying that density is a universal
property of the observed Efimov-liquid droplets. The small-r behavior of g(2) (r) for
a phase-separated droplet is connected to the Efimov-liquid contact density, cliq

2 . The
determination of cliq

2 , however, depends on the knowledge of Nliq and ρliq, which replace
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tribution has a peak at distance r ' 1.05. The curve is obtained by uniformly sampling
points inside the sphere [39] and constructing the histogram of their distance.

N and ρ in Eq. 3.85. Therefore we cannot accurately quantify the contact density, due to
the approximate definitions of Nliq and ρliq.

QMC simulations performed for several points in the phase diagram also give infor-
mation about the location of the Efimov-liquid instability line, in addition to the results
of the analytic models presented in Section 4.2.1. The precise curve for Tliq cannot be
obtained from our simulations, due to a poor efficiency of our algorithm at T . Tliq.
Nevertheless, we can use the QMC technique to map a sequence of points where a sys-
tem with a given N is phase-separated – cf. Fig. 4.6. These points lie at temperatures
slightly lower than the cluster-expansion instability line (cf. dashed line in Fig. 4.6). The
shape of the line, however, is correctly captured by the analytic model.

The Efimov liquid is a quantum-coherent phase, with the same properties as a com-
mon BEC phase. This follows from the fact that its phase space density ρliqλ3

th is signif-
icantly larger than one. The coherence properties can also be observed directly in QMC
simulations. The estimators described in Chapter 3 for the superfluid and condensate
fractions cannot be applied directly to a phase-separated system. Measuring the aver-
age occupation for bosonic cycles of length k, we find that all lengths up to k ≈ Nliq
have a finite occupation. Moreover, we observe that the one-body-reduced density ma-
trix g(1) (r) decays to zero on a length scale which is comparable with the liquid-droplet
size, which corresponds to the notion of off-diagonal long-range order (cf. Section 3.3.3).
Both these properties are characteristic of BEC phase.

In conclusion, in Section 4.2 we have described several Efimov-liquid properties,
and how this can be studied with the QMC technique. The possibility of forming and
dissolving small liquid droplets, in particular, relies on the capability of both generat-
ing and removing configurations with pairs of particles at very short distance. This
is the specific advantage of using our novel two-body direct-sampling move (cf. Sec-
tion 3.2.2.3).
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4.3 Normal-gas phase

The liquid instability described in the previous section is avoided if R0 is large enough
[12], which allows us to study the phase diagram of the homogeneous unitary Bose gas
in all regions with T > Tliq. In this section, we consider the regime of large and interme-
diate temperatures, where the system is in the normal-gas phase. The low-temperature
regime is then treated in Section 4.4.

4.3.1 Momentum distribution

As described in Chapter 3, our QMC algorithm allows to compute the momentum dis-
tribution n (k) for a many-body system of unitary bosons. An example of the n (k)
curves is shown in Fig. 4.10, corresponding to three phase-diagram points with fixed
three-body cutoff and different temperatures. In the following, we describe the differ-
ent features present in these curves, and in particular the effect of unitary interactions.
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Figure 4.10: Momentum distribution for N = 64 unitary bosons, at fixed three-body
cutoff (R0ρ1/3 = 0.184) and for variable temperatures (cf. legend). QMC results for
n (k) (solid lines, obtained through the improved estimator described in Section 3.4.2)
are shown in different units in the two panels. Dashed lines in panel a correspond
to the Boltzmann distribution (cf. Eq. 3.102), evaluated at the same temperatures as in
the QMC simulations. In panel b, dashed lines mark the asymptotic tail of the mo-
mentum distribution, n (k) ' C2/k4, with C2 extracted from the QMC data for the
pair-correlation function (cf. Eq. 2.47).

At large temperature, λthρ1/3 → 0, both quantum statistics and interparticle inter-
actions have negligible effects on the momentum distribution, and this observable is
given by the Boltzmann distribution (cf. Eq. 3.102, which is exact for non-interacting
distinguishable particles). At any finite value of λthρ1/3, however, unitary zero-range
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interactions lead to a qualitatively different momentum distribution: This curve devel-
ops a power-law asymptotic tail at large k, at variance with the Gaussian decay of the
Boltzmann distribution (cf. Fig. 4.10a). For large enough temperature, the full momen-
tum distribution is well described by the combination of a Gaussian decay at small k
and a power-law decay at large k. We define k∗ as the approximate momentum at which
the crossover between the two curves takes place. In the high temperature regime, k∗

is proportional to 1/λth (k∗ ≈ 10/λth, in Fig. 4.10a), meaning that for λthρ1/3 → 0 the
power-law tail is only visible at exceedingly large momenta. This scaling of k∗ is already
observed in the momentum distribution of N = 2 unitary bosons, cf. Section 2.1.2. The
two parts of n (k), at small and large momenta, can be described independently. At
small momentum, n (k) has the same shape as for non-interacting distinguishable par-
ticles, as clearly visible in Fig. 4.10a. To compare curves at different temperatures, we
express k in units of the Fermi momentum,

kF = (6π2ρ)1/3 (4.13)

which is a scale defined at any temperature. Using the inverse thermal wavelength as
a momentum unit, in contrast, directly shows that the small-momentum part of n (k)
has a universal shape (since it simply corresponds to the Boltzmann distribution), and
that k∗ ≈ 10/λth (cf. Fig. 4.10b). For large momentum, n (k) falls off as C2/k4. This
is the momentum regime where the naive estimator of n (k) has strong statistical fluc-
tuations, thus we replace it with the improved estimator introduced in Section 3.4.2.
The validity of this replacement is verified by independently computing C2 through the
pair-correlation function g(2) (r) (see Eq. 2.47). The two values of C2 are in agreement
only for λthρ1/3 . 0.5. Further studies on the locality criterion (cf. Section 3.4.2) could
improve this limitation. At lower temperature, a precise measure of the momentum
distribution requires to fall back on the naive estimator (cf. Section 3.3.4).

Our results for n (k) do not show signatures of subleading oscillations in the mo-
mentum distribution. For many-body states [168, 62], the predicted universal expres-
sion for the large-momentum tail of n (k) reads

n (k) ' C2

k4 +
C3

k5 A sin
(

2s0 log
(

k
κ0

)
+ φ

)
, (4.14)

where A and φ are known constants, and κ0 is the Efimov-trimer binding momentum
(cf. Section 2.2.1). The three-body contact parameter C3 is proportional to the probability
of finding three bosons at small hyperradius. In our model, the hyperradius cannot be
arbitrarily small, due to the three-body cutoff. Nevertheless, the subleading oscillations
of Eq. 4.14 may appear in the momentum distribution for momenta smaller than 1/R0.
For the curves in Fig. 4.10, the asymptotic tail in n (k) kicks in at k > 1/R0. Smaller R0
would be required to observe subleading oscillations.
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4.3.2 Contact density

We map the contact density c2 across the entire phase diagram, by using the estimator
based on the small-r limit of g(2) (r) (see Fig. 4.11a). The advantage of this estimator is
that it remains practical for any temperature, unlike the computation of limk→∞ k4n (k).
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Figure 4.11: Contact-density c2ρ−4/3, obtained through QMC simulations of N = 64
unitary bosons. Panel a: The color code is a linear interpolation of c2ρ−4/3, which is
computed at the points marked by black dots. The gray area is the phase-coexistence
region (cf. cluster-expansion line in Fig. 4.6). Panel b: Contact density for fixed three-
body cutoff (R0ρ1/3 = 0.0521, red line in panel a), estimated from n (k) (blue squares) or
g(2) (r) (orange circles), and compared to the second-order virial expansion (black dashed
line, cf. Eq. 4.15).

The contact density c2 weakly depends on the three-body cutoff R0. This follows
from the fact that constant-c2 lines in Fig. 4.11a are almost horizontal. Exceptions to this
general behavior are found only in specific regions: At the top-right corner of Fig. 4.11a,
where the small number of QMC points may lead to a poor quality of the interpolation,
and very close to the liquid-instability line, where the small system size (N = 64) might
have a relevant effect. In the rest of the phase diagram, only a weak decrease of c2 for
increasing R0 is present. This is due to the fact that the three-body repulsive potential
effectively reduces the probability of two particles to be at short distance, causing a
weak decrease of the contact density.

In Ref. [64], the contact density of the unitary Bose gas is computed within a theory
based on the upper-branch idea and on the large-N expansion, not including any three-
body regulator. The results for c2 are compared to our QMC data in Ref. [169] (see
Fig. 4.12), finding that the extrapolation of QMC data towards R0 = 0 is qualitatively
consistent with the upper-branch theory, at high temperature.

At large T, c2 is given by the second-order virial expansion (see Appendix 4.A):
c2

ρ4/3 =
N − 1

N
× 32π

(
λthρ1/3

)2
. (4.15)
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Figure 4.12: Contact-density c2ρ−4/3 for three different hyperradial cutoffs (symbols,
same QMC data as in Fig. 4.11a), compared with the large-N upper-branch theory [64,
169].

The comparison with QMC data (cf. Fig. 4.11b) shows that this is valid for λthρ1/3 .
0.3, corresponding to c2ρ−4/3 . 8. For larger λthρ1/3 (that is, for lower temperature),
the virial-expansion curve continues to increase, while the actual c2 tend to saturate
to a value smaller than c2ρ−4/3 ≈ 20 (cf. Fig. 4.11a and Fig. 4.11b). For even lower
temperatures, c2 decreases again, as discussed more in detail in Section 4.4.3.

4.4 BEC phase

For large-enough three-body cutoff, the normal-gas phase is stabilized against the nu-
cleation of an Efimov-liquid droplet. By lowering the temperature, a transition occurs
towards a BEC phase, as we describe in this section. We identify the critical temperature
of the transition (cf. Section 4.4.1), and study the momentum distribution and contact
density inside the BEC phase (cf. Sections 4.4.2 and 4.4c2).

4.4.1 Critical temperature

The distinction between the normal-gas and BEC phases is formally defined for an infi-
nite system, where the condensate fraction N0/N is finite below the critical temperature
Tc and vanishes for T > Tc. Since we consider a three-dimensional system, superfluidity
and Bose-Einstein condensation are expected to take place simultaneously, so that either
N0/N or ρs/ρ can be chosen as an order parameter. To identify the critical temperature
through the QMC results for finite systems, we use the finite-size scaling technique
(cf. Section 3.4.1). For different system sizes N, we plot the rescaled superfluid fraction
N1/3(ρs/ρ) as a function of temperature, and the crossing point of these curves provides
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an estimate of the critical temperature Tc. For three different values of the three-body
cutoff we obtain the Tc by this method (cf. Fig. 4.13a–c): At R0ρ1/3 = 0.164, 0.184 and
0.204, the critical temperature reads Tc/T0

c = 0.87, 0.9, and 0.91 (in units of the ideal-
bosons critical temperature T0

c ). These quantities are consistently smaller than T0
c , with

0.8 0.9 1.0

T/T 0
c

0.6

0.8

1.0

1.2

N
1
/
3
ρ
s
/ρ

R0ρ
1/3 = 0.164 a

N = 32

N = 64

N = 128

0.8 0.9 1.0

T/T 0
c

0.3

0.6

0.9

1.2

1.5

N
1
/
3
ρ
s
/ρ

R0ρ
1/3 = 0.184 b

N = 32

N = 64

N = 128

N = 256

0.8 0.9 1.0

T/T 0
c

0.50

0.75

1.00

1.25

1.50

N
1
/
3
ρ
s
/ρ

R0ρ
1/3 = 0.204 c

N = 32

N = 64

N = 128

0.00 0.05 0.10 0.15 0.20

R0ρ
1/3

0.0

0.4

0.8

1.2

1.6

λ
th
ρ

1
/
3

Gas/liquid
phase coex.

Normal gas

BEC

d

Figure 4.13: Panels a–c: Identification of the critical temperature for the superfluid tran-
sition, through the finite-size scaling of ρs/ρ. Different panels correspond to different
three-body cutoff values, and temperatures are expressed in units of the ideal-bosons
transition temperature T0

c (cf. Eq. 1.10). Panel d: Complete phase diagram for the uni-
tary Bose gas (cf. Figs. 4.6 and 4.11a), including the superfluid-transition critical line
(black stars). The horizontal dashed line marks the position of the BEC transition for a
non-interacting Bose gas.

a relative deviation of approximately 10%. The dependence on the three-body cutoff is
weak, and it consists in an increase of Tc with increasing R0. The fact that Tc < T0

c dif-
fers from the case of a homogeneous Bose gas with weak repulsive interactions, where
the transition takes place at temperatures larger than T0

c [14]. The shift Tc − T0
c for the

unitary Bose gas has the same sign as in liquid 4He (cf. Section 1.2).
It has been predicted that the phase diagram of the unitary Bose gas also includes

a triple point, where the three phases (Efimov liquid, normal gas, and BEC) coexist
[12]. This could be studied by extending the normal-gas/BEC critical line (cf. stars in
Fig. 4.13d) towards smaller values of R0ρ1/3, which we did not attempt in the present
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work.
Two factors limit the precision of our estimate for Tc: The finite temperature grid (cf.

Fig. 4.13) and the maximum system sizes considered (N = 128 or N = 256). Our results
are not sufficient to compute the correlation-length critical exponent ν. Its estimation
would be obtained by looking for the value that leads to a collapse of all QMC data onto
a single universal curve, when plotting N1/3ρs/ρ vs. (T− Tc) N1/(3ν) (see Section 3.4.1).
Simulations of larger systems and on a denser temperature grid would be required for
this task (cf. for instance Ref. [161]).
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Figure 4.14: Scaling of the condensate fraction in a system of N unitary bosons, with
fixed three-body cutoff (R0ρ1/3 = 0.184). QMC results are shown for T < Tc (blue dia-
monds) and T > Tc (orange circles). At temperature T = 0.88 Tc, the condensate fraction
tends to N0/N ' 0.14 for N → ∞, as obtained through a fit of the QMC data to Eq. 4.16
(blue solid line).

The critical temperature Tc identified above corresponds to the point such that for
T < Tc the superfluid density ρs/ρ of an infinite system becomes finite. To confirm
that the phase below Tc is also a Bose-Einstein condensate, we compute the condensate
fraction N0/N. Through the current QMC algorithm, this is proportional to the ratio
of the partition functions of the open and closed sectors, cf. Eq. 3.104. The finite-size
corrections of N0/N have different scaling with N in the normal-gas and BEC phase. In
the BEC phase, one finds

N0

N
= n∞

0 +
α2

N1/3 (T < Tc), (4.16)

where n∞
0 is the condensate fraction in the infinite-size limit. Eq. 4.16 follows from the

assumption that, for a large system,

(
g(1) (r)− n∞

0 ρ
)

∝
1
r

, (4.17)
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at large r. In three dimensions, Eq. 4.17 is the expected behavior for the correlation
function of systems described by a two-dimensional order parameter [20], and it is valid
for the one-body-reduced density matrix of a weakly-interacting Bose gas [15]. By using
α2 and n∞

0 as fitting parameters, we find that our QMC data for finite systems are in
good agreement with Eq. 4.16 (cf. Fig. 4.14), at T < Tc. This confirms that in the phase
identified in this section the system is simultaneously a superfluid and a Bose-Einstein
condensate.

For T > Tc, the system sizes addressed in our QMC calculations are insufficient
to access the asymptotic large-N regime. Thus we cannot reliably extract a power-law
behavior for N0/N in this phase. Nevertheless, the data at T = 1.12Tc (cf. Fig. 4.14)
decay faster than 1/N1/3, confirming that the unitary gas is not Bose-condensed at this
phase-diagram point.

4.4.2 Momentum distribution

To further characterize the BEC phase, we compute its momentum distribution (see
Fig. 4.15), and describe how it differs from the momentum distribution of an ideal Bose
gas. As mentioned in Section 4.3, the improved estimator for n (k) cannot be used at
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Figure 4.15: Momentum distribution of the unitary Bose gas in the BEC phase, at
R0ρ1/3 = 0.184 and λthρ1/3 = 1.545. Panel a: n (k) curves for different values of N (sym-
bols), and asymptotic tail C2/k4 (solid line, with C2 obtained from the pair-correlation
function). Panel b: The N = 64 QMC data are compared with the curves for N = 64
and N → ∞ ideal bosons (plus symbols and dotted line, respectively). Panel c: The N = 64
QMC data are compared with the experimental curves from Ref. [78], for average den-
sity equal to 5.5× 1018 m−3 (dotted line) and 1.6× 1018 m−3 (dashed line).

low temperature, and has to be replaced by the naive estimator in Eq. 3.103. This poses
a limit on the largest k for which we can obtain a reasonable estimate of the momen-
tum distribution, before statistical fluctuations become too strong, at large k. The issue
becomes more relevant for large N. Nevertheless, we reach momenta large enough
that the curves for n (k) can be smoothly joined with the predicted tail C2/k4, where
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C2 is obtained from the pair-correlation function (cf. Eq. 2.47). The two curves over-
lap at k ≈ 1.2kF (cf. Fig. 4.15a). Therefore we obtain a QMC estimation for the whole
momentum-distribution curve, by directly measuring n (k) at k . 1.2kF and using the
asymptotic tail for larger momenta.

In Fig. 4.15a, we show n (k) curves for different system sizes. At finite momenta, cor-
rections due to finite-size effects are already negligible for N = 64. At zero momentum,
in contrast, the presence of a condensate is clearly visible in the divergence of n(k = 0)
for large N, which is required to have a finite condensate fraction in the N → ∞ limit.

We also compare the momentum distribution with the one of non-interacting bosons
at the same phase-space density (cf. Fig. 4.15b). In the unitary Bose gas, interactions
cause a depletion of the condensate, that is, a decrease of N0/N with respect to the
ideal-gas value. The fact that the condensate fraction is lowered in the presence of
unitary interactions is consistent with the observed negative shift in the critical tem-
perature, Tc < T0

c . As the normalization of n (k) is fixed, the k = 0 depletion needs
to be compensated by the increase of the momentum distribution at other values of
k. The slow-decaying power-law tail (to be compared with the exponential decay of
n (k) for the ideal Bose gas) partly contributes to this compensation. The remaining
compensation consists in a larger weight of the unitary-gas momentum distribution in
the intermediate-k region (cf. Fig. 4.15b). No additional features are observed, and in
particular no signature of the universal subleading oscillations (see discussion below
Eq. 4.14).

The asymptotic tail in n (k) kicks in at k∗ ' 1.2kF, while 1/R0 is 1.4kF. The resolution
of QMC results and the fact that k∗ ≈ 1/R0 prevent us from observing the expected log-
periodic oscillations (cf. Eq. 4.14). It is however interesting that these could be within
reach, by slightly reducing T or R0.

We also compare our results with the experimental data of Ref. [78], the only study
of the low-temperature unitary Bose gas currently available (see Section 2.3.2.1). The
experimental and QMC curves are not in quantitative agreement (cf. Fig. 4.15c). The
large-momentum tail from Ref. [78], in particular, lies systematically above our theoret-
ical curve, approximately by a factor of two. This discrepancy is explained through the
following remarks:

1. The degree of thermalization and the final temperature of the experiment are not
clear (cf. Section 2.3.2.1), so that we cannot associate the experimental conditions
to a specific point in the phase diagram. The QMC calculation, in contrast, has a
well-defined temperature (which is chosen to lie in the BEC phase, for the com-
parison in Fig. 4.15c).

2. The experiment is performed in a harmonic trap, while the QMC curve is for a ho-
mogeneous system. The simplest approach to obtain the average contact density
for a trapped system from the current QMC data would be the use of the local den-
sity approximation (see for instance Ref. [51]). The homogeneous-system c2 has its
maximum values in the normal-gas region of the phase diagram (cf. Fig. 4.11a),
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thus the average trapped-system contact density may be larger than the one ob-
served in Fig. 4.15c. It is then possible that combining the system inhomogeneity
with our QMC data would reduce the discrepancy in the tail of n (k).

4.4.3 Contact density

Our QMC calculations also yield the finite-temperature contact density c2, which can be
compared with the several available predictions for its ground-state value. In Fig. 4.16,
c2 is shown for a fixed R0. The curve does not show any discontinuous feature at the
critical temperature for the BEC transition. This is due to the fact that BEC appears in
the long-range correlations (cf. Section 3.3.3), while c2 is a short-range physical property.
The main feature of c2, in contrast, is a smooth non-monotonic behavior, as already
visible in Fig. 4.11a. In Ref. [64], the same feature was predicted with an approximate
technique, with a peak of c2 at T ≈ 4T0

c (see also Ref. [169] for a comparison with the
QMC results from the current work). No clear physical explanation for the decrease of
c2 at low temperature is currently available.
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Figure 4.16: Exact results for the contact density for R0ρ1/3 = 0.184 and low temper-
ature (blue dots, same data as in Fig. 4.11a), and zero-temperature approximate results
from Refs. [164, 163, 165]. The value from Ref. [62] is obtained through a fit of the exper-
imental momentum distribution to the universal expression in Eq. 4.14.

Several approximate predictions exist for the ground-state value of c2ρ−4/3, obtained
via a Jastrow ansatz and hypernetted-chain approximation [164], a QMC calculations
based on a Jastrow-Feenberg ansatz [165], and a time-dependent variational ansatz for
the many-body state [163]. Our first principles low-temperature results are roughly
compatible with these known values, although we did not attempt a systematic extrap-
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olation towards zero temperature. In Ref. [62], a fit of the experimental momentum-
distribution curve [78] with the universal zero-temperature prediction (cf. Eq. 4.14)
leads to c2ρ−4/3 ' 22. As already mentioned in the comment of Fig. 4.15c, this value is
significantly larger than the theoretical predictions (cf. Fig. 4.16).

Conclusion

In this chapter we have described the finite-temperature phase diagram of the model
for unitary bosons which includes zero-range two-body interactions and a three-body
cutoff. This was obtained with the QMC method described in Chapter 3. The direct
observation of Efimov-liquid droplets (appearing as phase-separated states) allows to
compute their density, which is found to be a universal property of this phase. In the re-
maining part of the phase diagram (corresponding to homogeneous phases), we studied
the momentum distribution and its asymptotic tail. Upon decreasing the temperature
from the T → ∞ limit, the contact density has a non-monotonic behavior: It first in-
creases (following its high-temperature expansion), then saturates at intermediate tem-
peratures (with values c2ρ−4/3 . 18), and decreases at low temperature. The phase
transition to the BEC phase has also been characterized, finding a critical temperature Tc
approximately 10% smaller than the value for non-interacting bosons. The three-body
cutoff R0 is a crucial ingredient of the model, required to stabilize the homogeneous
phase and prevent the nucleation of liquid droplets. In the homogeneous-phase region,
however, changes due to R0 are smooth and of a limited magnitude. This can be seen in
c2 and in Tc, and it justifies our use of the hard-core three-body regularization scheme

Appendix 4.A Contact density at high temperature

The high-temperature expansion for the contact parameter can be obtained through
the pair-product ansatz for the many-body density matrix (cf. Eq. 3.32), and using
the exact knowledge of the correction factor grel for unitary interactions (cf. Eq. 2.35).
We consider N distinguishable quantum particles in a box of volume V, in the high-
temperature regime (λthρ1/3 � 1). Within the pair-product approximation for ρN, the
pair-correlation function g(2) (x, x′) reads

g(2)
(
x, x′

)
=

N
∑

i=1
∑
j 6=i

∫
dX δ (xi − x) δ

(
x′ − xj

) N
∏

k=1

[
ρ1 (xk, xk; β) ∏

l>k
grel (xk − xl; xk − xl; β)

]

∫
dX

N
∏

k=1

[
ρ1 (xk, xk; β) ∏

l>k
grel (xk − xl; xk − xl; β)

] .

(4.18)
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The product of the N(N − 1)/2 terms including the correction factor grel can be ex-
panded as

N

∏
k=1

∏
l>k

grel (xk − xl; xk − xl; β) ' 1 +
N

∑
k=1

∑
l>k

[
1− grel (xk − xl; xk − xl; β)

]
, (4.19)

where we neglect terms involving higher powers of (1− grel), which is valid for small
ρ1/3λth. Therefore the pair-correlation function can be rewritten as

g(2)
(
x, x′

)
' N(N − 1)

1 + f (x, x′)/VN−2

1 +
√

2λ3
th/V

, (4.20)

where we have used ∫
dy
[
1− grel (y; y; β)

]
'
√

2λ3
th, (4.21)

and defined f (x, x′) as

f (x, x′) ≡
N

∑
k=1

∑
l>k

∫
dX δ (xi − x) δ

(
x′ − xj

) [
1− grel (xk − xl; xk − xl; β)

]
. (4.22)

This function reads

f (x, x′) = VN−2

[(
1− grel (x− x′; x− x′; β

))
+

λ3
th

V

√
2
(N + 1)(N − 2)

2

]
. (4.23)

By combining Eqs. 4.20 and 4.23, we obtain the full expression for g(2) (x, x′) in the high-
temperature regime. The contact parameter can then be evaluated through Eq. 2.48. For
the contact density cdist

2 of N distinguishable particles with unitary zero-range interac-
tions, we find

ρ−4/3cdist
2 ' N − 1

N
× 16π

(
λthρ1/3

)2
, (4.24)

at high temperature. The contact density c2 for the unitary Bose gas is equal to 2× cdist
2 .

This follows from the doubling of the statistical weight for configurations where two
bosons are at zero distance [61]. The resulting expression for c2 (cf. Eq. 4.15) is the first
contribution to the contact density in the virial expansion. The same expression is often
reported without the (N− 1)/N prefactor [62, 63, 64], which is a valid approximation at
large N. The correct prefactor is crucial, however, for the comparison with the few-body
results in Section 2.1.3.





CHAPTER 5

Classical three-body hard-core model

In this chapter, we discuss the classical three-body hard-core model, which generalizes
the hard-sphere model. The hard-sphere model deals with the thermodynamic proper-
ties of impenetrable objects like rod, disks or spheres in one, two, or three dimensions,
respectively. For the case under study, the hard-core constraint consists in the three-
body cutoff introduced in Section 2.2.2. In the original hard-sphere model, particles of
radius σ interact through a hard-core repulsive potential,

V2(xi, xj) =

{
∞ if |xi − xj| < 2σ

0 if |xi − xj| > 2σ
, (5.1)

which does not include any attractive part. Despite its apparent simplicity, this model is
a cornerstone of statistical mechanics since, among others, it has provided fundamental
insight in the theory of phase transitions for continuous system, and especially on the
melting transition. Already at their early stages, studies of this model have relied heav-
ily on the most recent advances in computational techniques to treat statistical-physics
systems, including the molecular dynamics and Monte Carlo techniques [170, 171, 109].
For two dimensions, in particular, these methods shed light on the debated topic of the
existence of a transition. The occurrence of phase separation and the behavior of defects
close to the transition greatly complicate this phenomenon [172, 173], motivating the
development of improved algorithms.

Another important aspect of the hard-sphere model is its connection with the pack-
ing problem, i.e. the question of how to efficiently pack hard objects in a way that
minimizes the fraction of void space. In dimensions up to d = 3, this has evident prac-
tical applications. More generally, the packing problem is connected to similar topics
in geometry (e.g. the kissing-number problem and the covering problem), and its gen-
eralized form has been studied also in higher-dimensional spaces. Apart from purely

131
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mathematical applications, it has direct connections with the information-theory prob-
lems of data transmission and storage [174].

The hard-sphere model has been generalized in multiple directions. Apart from the
immediate generalization to non-spherical objects (see for instance Refs [175, 176]), the
large- and infinite-dimensional cases have been considered, in connection with phase
diagrams [177, 178, 179] and with the d-dimensional packing problem [180, 181]. More
recently, systems of self-propelled hard particles have represented a useful simple model
for the study of non-equilibrium statistical mechanics [182, 183, 184].

In this chapter, we describe a novel model, where the two-body hard-sphere poten-
tial is replaced by a three-body potential. For several cases, a complex physical behavior
cannot be fully described by two-body interactions, as discussed in the context of nu-
clear forces [185]. Three-body terms are also explicitly used to describe spin glasses,
as in the well-known p-spin model [186], but classical continuous systems with purely
three-body forces have not been treated, to the best of our knowledge. Inspired by
the unitary-gas phase diagram, we study the simplest possible many-body-interacting
continuous system, the three-body hard-core model. This is defined by the following
three-body potential

V3(xi, xj, xk) =

{
∞ if Rijk < R0

0 if Rijk > R0
, (5.2)

where the hyperradius Rijk is defined as

Rijk =

√
(xi − xj)2 + (xj − xk)2 + (xk − xi)2

3
. (5.3)

This potentials impose that configurations have no triplet of particles with hyperradius
smaller than R0. As for any hard-sphere model, the Boltzmann probability distribution
takes only two values

p(x1, . . . , xN) =

{
1 if legal configuration
0 else

, (5.4)

where “legal” means that there exists no triplet {i, j, k} with Rijk < R0. The properties
of this model are determined by its single parameter, R0. Despite this simplicity, it
includes counter-intuitive features, notably the structures that form at high-density. In
d = 2, these are configurations hosting two particles on each site of a regular lattice,
which is not forbidden by the three-body cutoff. Multiple occupancies can be justified
by considering the k-body interacting model in d dimensions, and we find that they are
mostly present in low-dimensional systems (see Section 5.2.1.4).

After describing the relevant computational tools to study this system (Section 5.1),
we concentrate on the packing problem (how to obtain the densest possible structure)
in Section 5.2. We propose a set of variational ansätze, which seem to obtain the correct
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optimal solutions, as supported through the results of the simulated-annealing opti-
mization algorithm. These solutions are then continued at finite pressure, in Section 5.3.
Both in d = 2 and d = 3, we identify the transition between the fluid and solid phases,
and explore the possibility of additional phases, employing several definitions of or-
dered phases. This chapter is based on Publication 1.

5.1 Sampling configurations at fixed pressure

In this section, we review several schemes which can be used to sample configurations
from the NPT ensemble, where the pressure P is fixed and the system volume can fluc-
tuate. We start by considering the probability distribution p(x1, . . . , xN) for the positions
of N particles in a volume V, at a given temperature T. This distribution corresponds
to the Boltzmann weight of the configuration energy, and its partition function reads1

ZNVT =
∫

dx1 . . .
∫

dxN p(x1, . . . , xN). (5.5)

For hard-core potentials, p takes only values zero or one, so that ZNVT/VN represents
the fraction of configuration-space volume occupied by legal configurations. This ratio
tends to one in the limit of zero density.

In the NPT ensemble, the pressure P is fixed, and fluctuations of the volume are
allowed (NPT ensemble). The partition function corresponds to the average of ZNVT
over all possible volumes V, weighted by the additional factor e−βPV [151]:

ZNPT =
∫ ∞

0
dV e−βPV ZNVT =

∫ ∞

0
dV

∫
dx1 . . .

∫
dxN e−βPV p(x1, . . . , xN). (5.6)

While the explicit knowledge of the partition function is not directly accessible for a
general case, it is possible to sample configurations which contribute to the integrals
(either in Eq. 5.5 or Eq. 5.6) according to the probability distribution determined by the
integrand. For the NVT ensemble, this corresponds to sampling the set of positions
x1, . . . , xN, while in the NPT ensemble one should draw samples from an extended
configuration space which includes both the particle positions and the total volume
V. These sampled configurations can then be used to compute estimates of the equilib-
rium average for thermodynamic quantities, like the average volume 〈V〉 or the density-
density correlation function g(2) (r).

A Monte Carlo algorithm to sample the fixed-pressure configurations entering ZNPT
defines a random walk in the extended configuration space which includes both the

1In this chapter, we only deal with the configuration partition function (also named configuration in-
tegral [151]), the integral over all spatial degrees of freedom of the Boltzmann factor for the total potential
energy. The full partition function also includes the integral over momentum variables of the kinetic-
energy Boltzmann factor, which is not relevant for the discussion in this chapter.
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particle positions and the volume. We assume that this is achieved through two dif-
ferent Monte Carlo updates: “NVT” moves only change the particle positions, while
“NPT” moves modify the volume of the system. We consider the standard choice for
the NVT updates [39, 105] (where a random displacement of randomly-chosen particle
is proposed, and accepted/rejected according to the Metropolis rule – cf. Section 3.1),
and focus on two possible choices for NPT moves: A global rescaling of the system (Sec-
tion 5.1.1) and the reshaping of the simulation box through the insertion or removal of
void space (Section 5.1.2).

5.1.1 Box rescaling

Within the Monte Carlo method, the volume can be changed through a move which
rescales the simulation box by a given factor, together with all particle positions [105].
We consider the case of a d-dimensional hypercubic box of edge L, with volume V = Ld,
and introduce the scaled coordinates si = xi/L ∈ [0, 1]d. The partition function can be
rewritten as

ZNPT =
∫ ∞

0
dV

(
e−βPVVN

) ∫
ds1 . . .

∫
dsN p(Ls1, . . . , LsN). (5.7)

where the integrals in dsi are now on the unit box [0, 1]d. The Monte Carlo move rescales
the box size and all particle positions (see Fig. 5.1),





Vold → Vnew = Vold + ∆V

Lold → Lnew = (Vnew)
1/d

xi,old = Loldsi → xi,new = Lnewsi

. (5.8)

The statistical weight of the old and new configurations corresponds to the integrand in
Eq. 5.7, so that the Metropolis acceptance probability (cf. Eq. 3.13) reads

pacc = min

[
1,
(

Vnew

Vold

)N
e−βP∆V p(Lnews1, . . . , LnewsN)

p(Lolds1, . . . , LoldsN)

]
, (5.9)

where the factor (Vnew/Vold)
N is associated with the rescaling of the N particle posi-

tions. This must be combined with NVT moves, as the volume rescaling is not sufficient
to sample the entire configuration space, since the relative positions of the N particles
are fixed. Such combination constitutes a valid Monte Carlo algorithm to sample the
configurations contributing to the partition function in Eq. 5.6.

For systems in which p(x1, . . . , xN) only takes values one or zero (as is the case for
the hard-core potentials in Eq. 5.1 and Eq. 5.2), an optimized version of the box-rescaling
move is available [187, 39]. In this case, we consider again the set of scaled particle
positions si, and define the value Lcut of the box edge such that

p(Ls1, . . . , LsN) =

{
0 if L < Lcut

1 if L > Lcut
. (5.10)
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Lold Lnew

Figure 5.1: Volume-changing move for two-dimensional hard disks (cf. Eq. 5.1), in
which all particle positions are rescaled by Lnew/Lold.

The value of Lcut depends on the form of p(x1, . . . , xN), and it is a function of the scaled
coordinates: Lcut = Lcut(s1, . . . , sN). The corresponding volume, Vcut = Ld

cut, represents
the smallest volume that can be obtained for a given set of scaled positions s1, . . . , sN,
without causing overlaps. For particles interacting through a pairwise hard-core poten-
tial of radius σ (cf. Eq. 5.1), Lcut is computed as

Lcut =
2σ

mini,j |si − sj|
. (5.11)

For L > Lcut, the set of positions xi = Lsi does not include any pair of points at distance
smaller than 2σ. A similar definition holds for particles interacting through a three-
body hard-core potential (Eq. 5.2). In this case, the value of Lcut for a given choice of
{si} reads

Lcut =
R0

mini,j,k

√
|si−sj|2+|sj−sk|2+|sk−si|2

3

. (5.12)

This definition guarantees that in the set of positions {Lsi} there exists no triplet of
particles {i, j, k} with hyperradius Rijk smaller than R0, provided that L > Lcut. Given
the value of Lcut (for a specific set of scaled positions), the NPT partition function in
Eq. 5.7 reads

Zhc
NPT =

∫
ds1 . . . dsN

∫ ∞

Vcut(s1,...,sN)
dV VNe−βPV , (5.13)

for the case of hard-core potentials. An optimal version of the box-rescaling of Sec-
tion 5.1.1 can be devised, based on Eq. 5.13, with acceptance probability equal to one.
This requires drawing a sample from the distribution pcut(V), which corresponds to the
integrand of Eq. 5.13,

pcut(V) =





0 if V < Vcut(
V

Vcut

)N
exp [−βP(V −Vcut)] if V > Vcut

, (5.14)
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where we have included the V-independent prefactor V−N
cut exp(βPVcut) for convenience.

The distribution

q(V) = exp
[(
−βP +

N
Vcut

)
(V −Vcut)

]
. (5.15)

represents an upper-bound for pcut(V). For q(V) to be normalizable, the condition
βPVcut > N is required: If this is condition is not met, the NPT update described here
is not applied, and the simulation continues with a NVT move2. Through a combina-
tion of the change-of-variable and rejection-sampling methods, we obtain the following
scheme to draw a sample from pcut(V):

1. A random sample Vnew is drawn from the exponential distribution q(V), as ex-
plained in Section 3.1.1.1.

2. A random number η is drawn from the uniform distribution between 0 and q(Vnew).
3. The new volume Vnew is accepted if η ≤ pcut(Vnew). If it is rejected, the move

restarts from the first step (generating Vnew), and we keep iterating this loop until
a sample is accepted.

The sample Vnew is sampled directly from pcut, with acceptance probability equal to one.
This is a clear advantage with respect to the (more general) move described above (see
Eq. 5.9).

5.1.2 Insertion/removal move

The two NPT moves of Section 5.1.1 consist in a global rescaling of the system, so that
the simulation-box aspect ratios (the length ratios of pairs of box edges) cannot change.
This poses no problem in the simulation of a disordered (fluid) state, where the typical
characteristic length scales are much smaller than the simulation box. However, it in-
troduces a bias when the system can form ordered structures, as it favors the formation
of lattice structures which have the same aspect ratio of the simulation box. This issue
is particularly relevant when the high-density structure of the system is not known be-
forehand, but is rather the goal of the NPT calculations (see Section 5.2.2). More general
NPT updates to overcome this limitation include the floppy-box Monte Carlo scheme
[175] where both the box size and shape are modified during the Monte Carlo simu-
lation. The simulation-box configuration is encoded in the vectors defining its edges:
For a d = 2 rectangular box [0, Lx]× [0, Ly], for instance, these vectors are e1 = (Lx, 0)
and e2 = (0, Ly). The NPT update is then designed to include changes of both the

2 This condition corresponds to Vcut > Vid, where Vid = N/(βP) is the average volume of a classical
ideal gas at temperature 1/β and pressure P. We note that this does not constitute a severe issue in
practical calculations for two-body or three-body hard-core models, for which the interesting regime is
generally the one where clear deviations from the ideal gas volume are observed. This corresponds to
large pressures and densities, so that the system typically includes at least one pair/triplet of close-by
particles which make Vcut large enough.
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magnitude and orientation of these vectors. This method has been used to predict the
high-density structures for colloidal particles of several shapes [176, 188], by simulating
small systems with N . 12.

Here, we introduce a simpler NPT move, in which the magnitudes of the d box-
defining vectors are free to change, but their orientation remains fixed (that is, the
simulation box remains a rectangular cuboid, with orthogonal edges). This method
is then used for the calculations of Section 5.2.2 and Section 5.3. This update is com-
posed by two parts: The insertion and removal moves. We describe them for the case

Insertion

Removal

Ly

Lx Lx + ∆L

∆L

Figure 5.2: Insertion and removal NPT updates, adding or removing a void portion
of space of area ∆L × Ly (hatched area). This region is defined to have one boundary
touching the position of a randomly-chosen particle, marked in blue in the figure.

of a [0, Lx] × [0, Ly] two-dimensional box, since their d-dimensional generalization is
straightforward. The insertion move consists in changing one of the box edges by
adding a random amount of void space (a rectangle aligned with the coordinate axes,
constrained to touch a randomly chosen particle). If particle k and direction x are cho-
sen, the insertion move corresponds to changing Lx into Lx + ∆L (where ∆L is chosen
randomly in a given interval). This is obtained by adding a portion of void space with
edges ∆L× Ly, starting from the x coordinate of the k-th particle. This move does not
rescale the particle positions, which are only shifted to make space to the new void
region (cf. Fig. 5.2). Therefore its acceptance probability is

pacc = min
[

1, e−βP∆V p(x′1, . . . , x′N)
p(x1, . . . , xN)

]
, (5.16)

where ∆V = ∆L × Ly is the increase in volume, and the old and new coordinates are
denoted with {xi} and {x′i}, respectively. This differs from the case of the rescaling
move described in Section 5.1.1, as there is no VN factor in the acceptance probability
(cf. Eq. 5.9). The complementary update is a removal move, in which it is proposed to
remove the two-dimensional portion of space defined as

{(x, y) : x ∈ [xk, xk + ∆L]}, (5.17)



138 CHAPTER 5. CLASSICAL THREE-BODY HARD-CORE MODEL

where ∆L is chosen randomly in a given interval, and xk is the x component of the
randomly-chosen particle xk. This move, which reduces Lx by an amount ∆L, is ac-
cepted with probability

pacc = min
[

1, eβP∆V p(x′1, . . . , x′N)
p(x1, . . . , xN)

]
, (5.18)

and provided that it does not remove any particle (that is, if any particle lies in the
region which should be removed, the move is rejected). In addition to the mentioned
acceptance conditions, for both the insertion and removal moves, we reject moves lead-
ing to very elongated box shapes. This is common for MC methods where the box shape
can change [175, 188, 189], to avoid strong finite-size effects. If the insertion and removal
moves are proposed with the same frequency during the MC simulation, their combi-
nation satisfies the detailed balance condition, so that they represent a valid algorithm
(when combined with an NVT move) to sample configurations contributing to ZNPT.

The insertion/removal move has a specific difference with respect to the other NPT
moves described above, which is important for the case where particles form an ex-
tended ordered structure. The rescaling move of Section 5.1.1 and the floppy-box MC
algorithm are based on global changes of the simulation box, so that local structural
properties (like the distance between two neighboring sites or the angle between two
lattice bonds) are modified across the entire system, and the ordered structure is dis-
torted. After such a move is accepted, it might take several NVT steps before the lo-
cal structural properties re-equilibrate. In contrast, the insertion/removal move only
changes the structural properties of a limited portion of the system. Moreover, this
move can in principle add the void space necessary for a new lattice row (in two di-
mensions) or plane (in three dimensions) to form. The insertion of this void space has
been advanced as a mechanism to change the number of lattice sites during a simula-
tion [190], in connection with the known problem of equilibrating the number of lattice
defects in a NPT simulation [173]. This motivated our choice of the insertion/removal
move, although a systematic study of its performance for equilibrating the defects num-
ber has not been addressed in this work.

5.2 Packing problem

In this section we consider the packing problem, which consists in maximizing the den-
sity of a system subject to a hard-core constraint. In the traditional formulation of this
problem, the constraint is that all pair distances must be larger than a given quantity
2σ (cf. Eq. 5.1). This corresponds to the problem of packing disks in two dimensions or
spherical particles in three dimensions, which has evident practical applications [191].

For two-dimensional disks, the solution consists in placing their centers on a tri-
angular lattice [174]. For this structure, the radius can be increased until the packing
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fraction η (the fraction of the total area which is covered by disks) reaches

ηtri
max =

π

2
√

3
' 0.9069. (5.19)

This situation is called close packing (cf. Fig. 5.3), and it corresponds to the largest den-
sity which can be reached for this chosen structure (the triangular lattice, in this case).
The close-packing condition can be obtained for any structure. As an example, if disks
are placed on a square lattice the close-packing fraction reads

η
sq
max =

π

4
' 0.7854. (5.20)

which is indeed lower than the one for the triangular lattice.

Figure 5.3: Disks forming a triangular lattice, away from close packing (left, packing
fraction η = 1/2), or in the close-packed limit (right, packing fraction η = ηtri

max).

For three dimensional spheres, the optimal packing fraction reads

ηd=3
max =

π

3
√

2
' 0.74048, (5.21)

and is obtained by either the face-centered cubic (FCC) or the hexagonal close packed
(HCP) structures [174]. The fact that this is the optimal value (known as Kepler conjec-
ture) has been proved for the class of periodic structures (that is, lattice structures) by
Gauss, in 1831, while the formal proof for the general case has been completed only in
the 21st century [192, 193].

In this section we consider the packing problem for particles interacting via the
three-body hard-core potential (Eq. 5.2), rather than disks or spheres. After the enu-
meration of several possible candidate structures (Section 5.2.1), in Section 5.2.2 we
describe the simulated-annealing technique, a Monte Carlo algorithm for the uncon-
strained search of optimal structures.
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d Structure Parameters ρmaxRd
0

1 Regular spacing, atoms –
√

2 1.4142
Regular spacing, dimers – 2

√
2/3 1.633

2 Oblique, atoms r =
√

2
√

2 1.4142
θ = 0

Oblique, dimers r = 1 (2/
√

3)3 1.5396
θ = π/6

3 Barlow ABA, atoms r = 1/2 13
27

√
26/3 1.4174

Barlow ABA, dimers r =
√

2/3 (2/
√

3)3 1.5396
Barlow ABC, atoms r = 1/

√
6 (2/

√
3)3 1.5396

Barlow ABC, dimers r =
√

2/3 (2/
√

3)3 1.5396
Tetragonal, atoms r = 1 (2/

√
3)3 1.5396

Tetragonal, dimers r = 1
√

32/27 1.0887
Simple-hexagonal, atoms r = 1/

√
2 2

√
2/3 1.633

Simple-hexagonal, dimers r = 1 8
√

2/9 1.2571

Table 5.1: Densities of d-dimensional close-packed structures. The structure may in-
clude free parameters (aspect ratio r or angle θ), and the optimal values are indicated.
For each value of d, the largest density is marked in bold.

5.2.1 Variational ansätze

As a first step towards finding high-density structures for the three-body hard-core
model, we consider a set of variational ansätze, and compute their close-packing den-
sity. For each ansatz, we first maximize the density over the free parameters of the
structure (angles and/or aspect ratios), obtaining the close-packing density ρmax. The
next step consists in comparing different ansätze, to find the overall optimal density
and structure. A structure is defined by a regular arrangement of some sites in space,
and by the choice of how many particles should be placed on each site (one or two).
The one-dimensional case is used as an example – cf. Section 5.2.1.1 – before treating the
two- and three-dimensional cases (see Sections 5.2.1.2 and 5.2.1.3). The results of this
section are summarized in Table 5.1.

5.2.1.1 One dimension

In d = 1, we consider an alternating spacing between single atoms, such that consec-
utive interparticle distances are . . . , l, (Al), l, (Al), . . . (see Fig. 5.4), where 0 ≤ A ≤ 1.
The case A = 1 corresponds to a regular (equally spaced) lattice, while the other limit
case, A = 0, gives an equally-spaced lattice where each site is filled by two particles
(note that this is not forbidden by the three-body constraint). The former is a regular
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lattice of atoms, while the latter is a lattice of dimers. For any value of A, the density of

A = 1.0

A = 0.8

A = 0.4

A = 0.2

Figure 5.4: One-dimensional structures considered, for different values of A. The close-
packing condition is enforced, that is, l is set to its minimum allowed value lmin (cf.
Eq. 5.24).

the structure reads
ρ =

2
(1 + A)l

, (5.22)

since there are two particles in any segment of length (1 + A)l. Given any triplet of
subsequent lattice sites, their distances are l, Al, and (1 + A)l, so that the squared hy-
perradius reads

R2 =
1 + A2 + (1 + A)2

3
× l2. (5.23)

The three-body constraint sets a lower bound on l, which reads

lmin(A) = R0 ×
√

3
1 + A2 + (1 + A)2 . (5.24)

Thus the close-packing density for the variational ansatz under study reads

ρmax(A) =
2

(1 + A)lmin(A)
=

1
R0

2
√

2√
3

√
1− A

(1 + A)2 . (5.25)

This is maximum at A = 0, resulting in a density

ρd=1
best =

1
R0

2
√

2√
3
' 1.63299

R0
, (5.26)

as reported in Table 5.1. The subscript “best” indicates the highest density attained
with the variational ansatz considered3. The candidate optimal structure for d = 1 is

3For d = 2 and d = 3, this also indicates the maximum over different ansätze.
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a lattice with two particles per site, which can be interpreted in more general terms –
cf. Section 5.2.1.4. As an additional check, the close-packed density for a regular lattice
with one particle per site (corresponding to A = 1) reads

ρmax(A = 1) =

√
2

R0
' 1.4142

R0
, (5.27)

which is indeed smaller than ρbest.

5.2.1.2 Two dimensions

In two dimensions, our ansatz distinguishes between two classes of structures, includ-
ing either one or two particles per lattice site. We consider an oblique lattice, with spac-
ing l along the x direction, and with aspect ratio r and angle θ, defined as in Fig. 5.5. The
basis vectors read

e1 = (l, 0) ,
e2 = (rl sin θ, rl cos θ) ,

(5.28)

so that the position of a lattice site is

xn,m = ne1 + me2, n, m ∈ Z. (5.29)

We may set r ≥ 1 and 0 ≤ θ ≤ arcsin(1/(2r)). Examples are the triangular lattice (with

θ

l

r × l

Figure 5.5: Oblique lattice with aspect ratio r and angle θ.

r = 1 and θ = π/6) and the rectangular lattice (with θ = 0).
We first consider an oblique lattice with one particle per site, which has a density

equal to

ρ =
1

l2r cos θ
, (5.30)
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since there is one particle in every cell, and the cell area is l× rl cos θ. In contrast with the
one-dimensional case, here we have to apply the three-body cutoff to several different
triplets, obtaining a combination of several constraints for l (which are all – in general –
functions of r and θ). In particular, we find

l2
min(r, θ) = R2

0 ×max
(

1
2

,
1

2r2 ,
3

2(1 + r2 − r sin θ)

)
. (5.31)

The third element in the max function is the one corresponding to a triplet forming a
triangle (for instance the triplet {x0,0, x1,0, x0,1}) while the first two concern three sites
which are aligned along a straight line, either along e1 (e.g. sites {x0,0, x1,0, x2,0}) or
along e2 (e.g. sites {x0,0, x0,1, x0,2}). Using the knowledge of lmin, we can construct the
close-packed version of an oblique lattice, for each r and θ – cf. Fig. 5.6. Among all the

r = 3/2, θ = π/8 r = 1, θ = π/6 r =
√

2, θ = 0

Figure 5.6: Three examples of close-packed oblique lattices, with a single particle per
site. The three structures have different r and θ, and their densities read ρR2

0 '
1.287, 1.155, and 1.414.

possible oblique lattices with one particle per site, the one reaching the highest density
is the rectangular one, with r =

√
2 and θ = 0 (cf. left panel of Fig. 5.7).

The same strategy can be followed for an oblique lattice with two particles per site,
which has density (cf. Eq. 5.30)

ρ =
2

l2r cos θ
. (5.32)

In this case, the constraint on the hyperradius reads

l2
min(r, θ) = R2

0 ×max
(

3
2

,
3

2r2 ,
3

2(1 + r2 − r sin θ)

)
, (5.33)

where the third argument in the max function corresponds to the case of three parti-
cles distributed on sites x0,1 and x1,0. This expression for lmin(r, θ) gives access to the
close-packing density as a function of (r, θ) (cf. Eq. 5.32, and right panel of Fig. 5.7).
The overall maximum density (maximized over r and θ) for the dimer oblique lattice is

ρR2
0 =

(
2/
√

3
)3
' 1.5396, obtained with a triangular lattice (r = 1 and θ = π/6).
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Figure 5.7: Close-packing density (in units of R−2
0 ) as a function of (r, θ), for the oblique

lattice with one particle per site (left panel) or with one dimer per site (right panel). In each
panel, the red dot marks the maximum density.

As reported in Table 5.1, the highest density found with our ansatz is for the trian-
gular lattice with two particles per site,

ρd=2
best =

1
R2

0

(
2√
3

)3

' 1.5396
R2

0
. (5.34)

In the class of oblique lattices with a single particle per site, the optimal structure is the
rectangular lattice (with θ = 0 and r =

√
2), which attains a density only 10% smaller

than ρd=2
best .

5.2.1.3 Three dimensions

For the three-dimensional case, we consider several classes of structures:

1. Tetragonal lattices, obtained by stretching a cubic lattice along one direction by a
factor r.

2. Simple-hexagonal lattice, obtained by an A-A-A stack of triangular-lattice layers
(cf. Fig. 5.8). The aspect ratio r is defined as the ratio between the interplanar
distance and the in-plane lattice constant.

3. Barlow structures [194, 191], obtained by A-B-A or A-B-C stack of triangular-lattice
layers (see Fig. 5.9). The aspect ratio r is defined as for the simple-hexagonal case.
For r =

√
2/3, the A-B-A and A-B-C classes reproduce the hexagonal close-packed

and face-centered cubic structures, respectively [191].

All these cases correspond to the three-dimensional stacking of planar structures, so that
they all share the free parameter r, defined as the ratio between the interplanar distance
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Figure 5.8: Simple-hexagonal lattice, obtained as an A-A stack of triangular lattices.

and the in-plane lattice. We shall now enumerate the close-packing densities for these
eight cases (four structures, with the possibility of either one or two particles per site),
obtaining the results shown in Table 5.1. As in Section 5.2.1.2, we first need to compute
the lower bound lmin = lmin(r) for the in-plane lattice constant l, that can be then used
to compute the density as a function of r.

B

A

B

C

B

B

C

A

B

C

A

B

B

C

A

C

A

B

Figure 5.9: Scheme to construct Barlow structures. The first two layers of particles are
placed on the sites marked by A and B, respectively. The third layer is then placed either
on sites A (for the A-B-A stack) or on sites C (for the A-B-C stack).

For the tetragonal lattices, the minimum in-plane lattice constant reads

l2
min(r)

R2
0

=





max
(

1
2r2 , 3

4 , 3
2(1+r2)

)
, for one particle per site,

max
(

3
2 , 3

2r2

)
, for two particles per site,

(5.35)
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while for the simple-hexagonal lattice this is

l2
min(r)

R2
0

=





max
(

1, 1
2r2 , 3

2(1+r2)

)
, for one particle per site,

max
(

3
2 , 3

2r2

)
, for two particles per site.

(5.36)

The Barlow A-B-A structure gives

l2
min(r)

R2
0

=





max
(

1, 1
8r2 , 9

5+6r2 , 9
2+18r2

)
, for one particle per site,

max
(

3
2 , 3

8r2 , 9
2+6r2

)
, for two particles per site,

(5.37)

and the A-B-C stack has

l2
min(r)

R2
0

=





max
(

1, 1
18r2 , 9

5+6r2 , 3
1+6r2 , 9

2+42r2

)
, for one particle per site,

max
(

3
2 , 1

6r2 , 9
2+6r2

)
, for two particles per site.

(5.38)

These expressions follow by imposing the three-body constraint on all relevant triplets
of sites forming the structure. The knowledge of lmin(r) gives access to the minimum
volume of the unit cell, so that we can directly compute the close-packing density for a
given structure and at a given aspect ratio r. As shown in Fig. 5.10, the simple-hexagonal
structure with one particle per site is the one reaching the maximum density, which
reads

ρd=3
best =

1
R3

0

(
2

√
2
3

)
' 1.63299

R3
0

. (5.39)

This is reported in Table 5.1, together with the maximum densities for all the other
three-dimensional structures considered.

5.2.1.4 Multiple occupancies with k-body hard-sphere interactions

As described in the previous sections, we find two different highest-density structures,
among the ones we considered: For d = 1 and d = 2, these are structures with two
particles per site, while in three dimensions the best candidate structure has only one
particle per site. In this section we give an heuristic argument, suggesting that only in
low dimensions the high-density structures have multiple particles per site. We con-
sider a d-dimensional system with a k-body hard-core cutoff, where the k-body distance
between positions x1, . . . , xk is defined as

R(k) ≡
√

2
k(k− 1) ∑

1≤i<j≤k
(xi − xj)2 (5.40)

and it is set to be larger than a cutoff value R0. For k = 2 and k = 3, this corresponds
to the hard-sphere and three-body hard-core models, respectively. We restrict our argu-
ment to a very specific class of structures, namely the ones that satisfy two properties:
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Figure 5.10: Maximum densities for a given structure as a function of the aspect ratio r.
The two panels correspond to one (left) or two (right) particles per site.

1. All pairs of nearest-neighboring sites are at the same distance l.
2. Each site has at least k− 1 nearest neighbors which are also nearest neighbors with

each other.

The existence of such a structure is not guaranteed, and depends on k and on the di-
mensionality d. Some examples are:

• For d = 1 and k = 2, the equally-spaced lattice.
• For d = 2 and k ∈ {2, 3}, the triangular lattice.
• For d = 3 and k ∈ {2, 3, 4}, any structure which includes groups of four particles

placed on the vertices of a tetrahedron (e.g. the hexagonal close-packed structure,
a specific case of the A-B-A stack described in Section 5.2.1.3).

For this kind of structures, it is simple to obtain the close-packing limit. Given a certain
k, we consider k sites which are all nearest neighbors, as guaranteed by the definition
of the structures we are considering, and look for different ways to place k particles on
these k sites. In particular, we try to place m particles on each site (where m has to be
smaller than k, due to the k-body constraint), as in these simple examples for m ≤ 2:

• For m = 1, we place one particle on each site, independently of k.
• For m = 2 and k even, we place two particles per site on k/2 sites, and leave the

remaining k/2 sites empty.
• For m = 2 and k odd, we place two particles per site on (k − 1)/2 sites and one

particle on a specific site, and leave the remaining (k− 1)/2 sites empty.

For a general m, the k sites are partitioned into three classes:

1. Sites hosting exactly m particles: The number of such sites is (k − Rm(k, m))/m,
where Rm(k, m) is the remainder of the integer division k/m.
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2. Sites hosting the remaining Rm(k, m) particles: If Rm(k, m) 6= 0, then there is one
such site, otherwise there is none.

3. The remaining sites hosting zero particles.

Given this partition, we can compute the number Nzero of particle pairs such that the
two particles forming the pair are on the same site:

Nzero(k, m) =
k− Rm(k, m)

m
m(m− 1)

2
+

Rm(k, m) (Rm(k, m)− 1)
2

. (5.41)

This allows to write the k-body distance for these k particles (cf. Eq. 5.40) as

R(k) =

√
2

k(k− 1)

[(
k(k− 1)

2
− Nzero(k, m)

)
l2
]

(5.42)

where l is the distance between two nearest neighbors, and
(

k(k− 1)
2

− Nzero(k, m)

)
(5.43)

is the total number of pairs at non-zero distance. By setting R(k) ≥ R0 and inverting
Eq. 5.42, we can determine a lower bound lmin on the distance l. This in turn gives
access to the scaling of the close-packing density for a given k, which reads

ρ ∝
1

Rd
0

m

(k− Nzero(k, m))d/2 , (5.44)

where we neglected all prefactors not depending on d or m. This expression allows to
compare, for a given k, the close-packing densities which can be obtained by placing
m particles on each site – cf. Fig. 5.11. We observe the same qualitative behavior for all
values of k: In low-dimensional cases, the largest density is reached by placing many
particles on each site (given the constraint m < k), while for large d the dominating
density is the one with m = 1 particles per site.

While this heuristic argument explains the qualitative difference between the can-
didate structures we have found for d = 1, 2 and 3, it remains restricted to the specific
class of structures considered in this section. As an example, the best known structure
for d = 3 (the simple-hexagonal lattice of single particles, cf. Section 5.2.1.3) does not
belong to this class. This explains why in the k = 3 panel of Fig. 5.11 the m = 1 density is
the largest one for all d ≤ 3, even though the simple-hexagonal lattice with one particle
per site has a higher density for d = 3.

We note that the formation of regular structures with more than one particle per site
(also known as microphases, or cluster phases) has been observed for realistic systems
of penetrable particles, for example purely repulsive soft spheres [195] or branching
polymers [196]. Also in these cases, as for the three-body hard-core model, the interpar-
ticle distance is allowed to vanish.
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Figure 5.11: Density of the d-dimensional close-packed structure, for the k-body hard-
core model. Each panel corresponds to a given k, while different lines correspond to
different values of m (the number of particles per site). All densities are expressed in
units of the m = 1 density.

5.2.2 Simulated annealing

In this section we describe the simulated annealing (SA) technique, and its application
to finding high-density structures for the three-body hard-core model. Simulated an-
nealing is an algorithm for the optimization of functions of many variables, inspired
by the simulations of statistical-physics models [197, 198]. It corresponds to finding the
ground state of a statistical-physics system, where the probability distribution for a con-
figuration x at inverse temperature β is pβ(x) = exp(−βE(x)). This can also be applied
to more general cases, with E(x) being the function to optimize and β a fictitious inverse
temperature. The minimization proceeds as follows:

1. Select a random initial configuration x. This step depends on the precise form of
the configuration space, but it can be generally achieved by assigning a random
value to each degree of freedom of x.

2. Set β to a value close to zero, corresponding to the infinite-temperature limit.
3. Iterate the following steps, until a convergence condition is satisfied.

(a) Perform several steps of a Monte Carlo algorithm that samples the distribu-
tion pβ(x).

(b) Increase β, according to a “cooling protocol”.



150 CHAPTER 5. CLASSICAL THREE-BODY HARD-CORE MODEL

As the inverse temperature β increases, the probability distribution pβ becomes more
peaked around the minima of f (x), while it is strongly suppressed for all configurations
at large distance from one of these minima. This change of pβ has a consequence in
the dynamics of the Monte Carlo algorithm: At large β, the acceptance probability is
suppressed for MC moves that increase the energy f . This is clear for instance if the
Metropolis algorithm is used (cf. Eq. 3.13). In the β → ∞ limit, the only accepted MC
moves are those which lower the energy, so that eventually a local minimum of f is
reached, after a large number of MC steps.

The local minimum is not guaranteed to be also global, for a given SA realization.
Nevertheless, there is a degree of control on the algorithm, which provides hints at
whether this is the case. The main control parameter for the SA algorithm is the cooling
protocol, i.e. the choice of how the inverse temperature β increases during the optimiza-
tion. This can be encoded in a function β = h(tMC) giving the value of β in terms of
the step tMC of the MC simulation. An example is given in Eq. 5.45, where the param-
eter α represents the cooling velocity. This function typically starts at h(0) ≈ 0, and it
increases towards its large-time limit, limtMC→∞ h(tMC) = ∞. In a typical application,
different cooling protocols are adopted (fast/slow, cf. Eq. 5.45 and Fig. 5.12), with sev-
eral independent runs for each (with randomized initial conditions). If the SA algorithm
is reaching the global optimum, its results should not depend on the precise choice of
the cooling protocol, provided that it is slow enough. This constitutes a useful diagnos-
tics on the SA results: If they show a clear dependence on the choice of h, this suggests
that a slower cooling protocol should be used. Nevertheless, the independence on the
cooling protocol is not sufficient to prove that the global optimum has been found.

Also due to its simplicity, the SA algorithm has been used for a broad and diverse
set of applications (see for instance Ref. [199]), and in particular it has been proposed
as a method to find optimal crystal structures [200] (cf. Ref. [201] for a review of the
techniques used for this problem). This is the application which we are interested in,
and which we describe more in detail.

We consider the finite-size version of the packing problem, where we look for the
structure which maximizes the density of a system of N particles (rather than the infinite-
system version discussed in Section 5.2.1), subject to the three-body hard-core constraint
of Eq. 5.2. The NPT partition function (cf. Eq. 5.6) is expressed in a form which can be
easily interpreted in view of the SA algorithm: The goal is to find the configuration that
maximizes the quantity NRd

0/V, and the SA approach to this minimization is to take the
result of an MC simulation during which we let βPRd

0 become very large. Notice that
in this case the probability distribution is already available from the physical model,
rather than being a fictitious one. The artificial part of the SA algorithm is considering
the βPRd

0 → ∞ limit. The practical scheme for this minimization task is the following

1. Initialize the pressure to a very small value, βPRd
0 ≈ 0.

2. Choose a large initial volume, and initialize the particle positions through direct
sampling.
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3. Iterate the following steps:

(a) Perform several steps of the fixed-pressure MC algorithm, alternating NVT
moves and the insertion/removal NPT move.

(b) If necessary, iteratively adapt the parameters of the NVT and NPT moves, to
keep a finite acceptance rate4.

(c) Increase βPRd
0, according to the chosen cooling protocol.

As an example, we choose the following protocol for the evolution of the pressure:

βPRd
0 ∝ h(tMC) = (tMC)

α , (5.45)

where α determines the speed at which βP increases. The precise definition of one
Monte Carlo time step (which corresponds to a certain number of proposed NPT and
NVT moves) is not relevant for the current discussion, as long as we keep this definition
fixed and we only deal with a fixed number of particles N. For this choice of the cooling
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Figure 5.12: Results of simulated annealing for N = 32 particles in two dimensions,
at annealing “velocity” α (cf. Eq. 5.45). The average maximum density (blue circles, av-
eraged over 40 independent SA runs) is compared with the density of a close-packed
triangular lattice of dimers (orange dashed line). The blue shaded area represents the full
spread of the density (minimum to maximum), over all SA runs. One time unit corre-
sponds to 50 sweeps (each one being formed by 32 single-particle NVT moves and 4
NPT updates), and all runs are stopped at βPR2

0 = 500.

4Note that this adaptive adjustment can introduce a bias on the measure of average quantities in an
equilibrium simulation, but the aim of SA is rather to obtain the maximum density, and not average
observables.
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protocol h, we can study the properties of the configurations obtained at large pressure,
and their dependence on the rate α. This is shown in Fig. 5.12, for the specific case of a
two-dimensional system of N = 32 particles, which is chosen so that a defect-free 4× 4
triangular lattice of dimers (which has density ρR2

0 ' 1.5396 and is our best candidate
for being the densest structure cf. Section 5.2.1.2) can be realized. This example then
serves a double goal: It can support the heuristic notion that the triangular lattice of
dimers is the optimal structure, and – once this is assumed to be true – it allows to
study the SA performance as a function of α. As with any stochastic algorithm, the
outcome can vary between different realizations, so that we need to study the statistical
properties of a set of several runs. We find the following results (cf. Fig. 5.12):

• Across the entire range of α considered, at least one of the several runs reaches the
dimer triangular-lattice structure, with density close to ρR2

0 ' 1.5396 (note that we
only reach a finite βPR2

0, so that a small deviation is to be expected).
• No density higher than ρR2

0 ' 1.5396 is observed, supporting the claim that the
dimer triangular-lattice structure represents the global optimum.
• The average final density is a decreasing function of α: When the pressure is in-

creased faster (that is, for larger α), there are more chances that particles form a
non-optimal structure.
• The non-optimal structures generally belong to one of three classes: (1) Sub-optimal

regular structures (including a rectangular lattice with one particle per site), (2)
regular structures which are not aligned with the box axis, and (3) structures with
localized defects. For the small system considered here (N = 32), the second and
third cases correspond to a strong decrease of the density, with respect to the tri-
angular lattice of dimers, but this effect would be smaller for system of larger size.

This example supports the claim that the best candidate structure identified by the
enumeration in Section 5.2.1.2 is also the global optimum for d = 2. The same is con-
firmed with SA calculations for N = 72 particles. In the same way, the densest three-
dimensional structure found with our SA calculations is a simple-hexagonal lattice with
one particle per site, which is also the result of Section 5.2.1.3. At a finite cooling rate,
the SA method only provides a lower bound for the global optimum of density, but we
base the following part of this chapter on the assumption that the best candidate struc-
tures identified for d = 2 and d = 3 really represent the configurations that would form
at infinite pressure.

5.3 Finite-pressure phase diagrams

In this section, we discuss the finite-pressure phase diagram of the three-body hard-core
model, in two and three dimensions. Our main result is the equation of state (EOS) for
a finite system, which expresses the density as a function of the pressure. At small pres-
sure (βPRd

0 → 0), the system is in a dilute disordered state. Due to the small density, the
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three-body potential acts a small perturbation, and for any βPRd
0 & 0 the virial expan-

sion of the partition function ([39], §2.2.2) describes the deviations from the ideal-gas
EOS (in which the density ρ is simply equal to βP). At infinite pressure (βPRd

0 → ∞), in
contrast, the system realizes the structure which gives the global maximum for the den-
sity. The full EOS gives the finite-pressure behavior of the system, which interpolates
between these two limits. Both cases (the disordered state at small pressure and the
high-density structure at infinite pressure) exist over finite pressure intervals, forming
fluid and solid phases.

Concerning the solid-phase structure, we assume that this corresponds to the best
candidate structure identified in Section 5.2 (namely the triangular dimer of lattice in
two dimensions and the simple-hexagonal lattice of single particles in three dimen-
sions). Thus we have a qualitative difference between the two- and three-dimensional
cases: For d = 2, large-pressure configurations are made by tightly-bound dimers, while
the solid phase for d = 3 is a lattice of single particles.

We focus on the existence of an intermediate phase, between the fluid and solid. In
two dimensions, a hypothetical intermediate phase could be made either of dimers or
of single particles. In three dimensions, we do not expect the formation of pairs, but
in principle different solid phases (separated by solid-solid structural transitions) could
exist. The search for additional phases leads us to use or introduce different criteria
to identify ordered phases. These criteria include the characterization of orientational
order, and of the magnetization of an effective spin system (for the two dimensional
case). Neither for d = 2 nor for d = 3 we find evidence for an intermediate phase.

5.3.1 Two dimensions

The solid phase is characterized by the long-range decay of positional order, as encoded
in the large-distance behavior of the density-density correlation function, g(2) (r). In the
disordered phase, this function decays exponentially. In d = 2, the existence of a crystal
with true long-range positional order is precluded by Mermin-Wagner theorem [202].
In this case, the solid-phase g(2) (r) decays algebraically.

Distinguishing between exponential and power-law decays of g(2) (r) is only possi-
ble through simulations of large systems sizes (for instance systems of N ≈ 106 particles
have been used, for the two-dimensional hard-disk model [112, 203]). For discontinu-
ous phase transitions, a simpler approach consists in calculating the NPT equation of
state, which does not involve the analysis of g(2) (r). In this case, the melting transition
is identified as the point at which the density has a discontinuity. We follow this path,
and use the Monte Carlo algorithm described in Section 5.1 to obtain the density at a
given pressure. In particular, we consider systems with N = 2× N2

d particles (where
Nd is the number of dimers), and we choose to always initialize the simulation from a
defect-free configuration corresponding to the infinite-pressure limit (that is, a triangu-
lar lattice of dimers). This is due to the difficulty of obtaining defect-free configurations
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Figure 5.13: Equation of state (density vs. pressure) for the two-dimensional three-body
hard-core model (main panel), computed for different system sizes. The inset represents
a portion of a simulation snapshot at βPR2

0 = 13, including the particle positions (red
circles) and the Voronoi cells of dimer centers of mass (dashed black lines). Given a set of
positions x1, x2, . . . , the Voronoi cell of x1 is defined as the region of points with distance
from x1 smaller than the distance to any other xj.

starting from a disordered state, which can only be obtained through a careful use of
simulated annealing (cf. Section 5.2.2). The alternative choice (that is, always starting
from a disordered configuration) would lead to configurations with defects, in the solid
phase. While these are legitimate configurations entering the partition function, their
statistical weight has to be strongly suppressed (for the small system sizes considered
here, N ≤ 200), due to the fact that their volume is significantly larger than the defect-
free configurations. This justifies the fact that we ignore them, so that our simulations
of the solid are actually simulations of the defect-free solid (which has a slightly larger
density). If larger systems were considered, the relative increase in volume due to a
defect (including the case of the formation of a lattice non-aligned with the simulation
box) would be smaller, so that this would not be an issue.

We find that the critical pressure Pc at which the solid melts is approximately βPcR2
0 '

11.75 (cf. Fig. 5.13). For small system size (N = 32) the equation of state is smooth
around Pc, while the density jump becomes sharper for larger systems (N = 128, 200).
At finite N, the discontinuous transition is rounded because at P ≈ Pc the system os-
cillates between two kinds of configurations (high density and low density), so that the
average density takes an intermediate value. The two peaks in the density distribution
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are separated by a small-probability valley (cf. Fig. 5.14), corresponding to a free-energy
barrier between the solid and fluid phases. As the number of particles N increases, the
barrier is expected to increase proportionally to N, so that the probability of the interme-
diate states is strongly suppressed. The consequence of this suppression on the Monte
Carlo dynamics is that the characteristic MC time scale for a change of phase to take
place soon exceeds the total simulation time. This is the reason why the smoothing of
the N = 32 EOS (related to frequent changes of phase) is not observed for larger N.
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Figure 5.14: Histogram of the densities measured throughout the MC simulation with
N = 32 (blue solid line), at pressure βPR2

0 = 12.5 (slightly higher than the critical value).
The vertical dashed line represents the average density.

Except for the density jump at Pc, the EOS does not suggest the presence of other
phases. In particular, we do not find any pressure where the rectangular lattice of single
atoms (the second densest structure from Section 5.2.1.2, with a close-packed density of
ρR2

0 =
√

2) is stable. By directly looking at simulation snapshots for pressure close to the
critical value, however, we do recognize the presence of small clusters with rectangular
order (see Fig. 5.15). These are only metastable structures, which eventually transform
into a dimer lattice, for instance by coalescence of two neighboring lattice rows.

The two-dimensional three-body hard-core model could be mapped onto at least
two other systems (a hard-disk model and a spin model, described below) which we
use to explore the possibility of an intermediate phase. In both cases, we need a quan-
titative definition of the term dimer, and we choose it to describe two particles that are
each other’s closest neighbor. In the solid phase, the number Nd of dimers equals N/2.
This definition also applies to the disordered phase, where not all particles participate
in tightly-bound pairs. The properties of the fluid-phase dimers, however, are signifi-
cantly different from those in the solid: The dimer fraction Nd/N is smaller than 1/2
(cf. Fig. 5.16a), and the dimer size (the distance between the two paired particles) shows
a jump at the critical pressure, being larger in the disordered phase (cf. Fig. 5.16b). Both
these properties suggest that below the critical pressure, as the dimer solid melts, the
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Figure 5.15: Snapshot for N = 128 and βPR2
0 = 14 (started from a disordered config-

uration), with particle positions (red circles) and their Voronoi cells (dashed black lines).
A patch with rectangular order (dark gray) and a nucleating dimer solid (light gray) are
highlighted.

presence of tightly-bound dimers also disappears. This opposes the existence of a low-
density phase which includes pre-formed dimers, for which we have no evidence.

As a further element of the behavior of dimers, we also consider the mapping to
an effective hard-disk model, which can be defined starting from the infinite-pressure
limit. We first consider two dimers of zero size, formed by particles (i, j) and (k, l) which
satisfy xi = xj and xk = xl. If two such dimers are placed at distance |xi − xk| = r, the
hyperradius of any three positions in {i, j, k, l} reads

R =

√
r2 + r2

3
=

√
2
3

r, (5.46)

as two of the three particle pairs are at distance r, while the third has a vanishing dis-
tance. This quantity has to be larger than R0, which corresponds to

r >

√
3
2

R0 ≡ 2σeff. (5.47)

Thus the interaction between two zero-size dimers is exactly the hard-disk potential of
Eq. 5.1, with the effective hard-disk radius σeff ≡ R0

√
3/8. This mapping is only exact in

the infinite-pressure limit, where the dimer size vanishes. Nevertheless, we can extend
it to finite values of P, and compare it with the original three-body hard-core model. In
particular, we compare the two equations of state, and the values of the orientational
order parameter – see below.
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Figure 5.16: (a) Fraction of dimers in the system, Nd/N, as a function of the pressure
and for different system sizes. (b) Average dimer size, in units of R0.

To make the mapping explicit, we need to define the transformation between the
parameters of the two models: The effective hard-disk radius is already defined by
Eq. 5.47, and we also need to multiply the pressure of the hard-disk model by a factor of
two, stemming from the fact that the configuration space of three-body particles has 2N
dimensions while these are only 2Nd = N for the hard-disk model. After this rescaling,
we find that the EOS of the effective model agrees fairly well with the one for the three-
body model, for all pressures above Pc (cf. Fig. 5.17a). The density of the hard-disk
model is systematically larger than the one of the three-body model, which is due to the
fact that finite-pressure dimers have a non-zero size, so that a larger pressure is required
to reach the same number density. Below Pc, as expected, the two equations of state are
clearly different.

In the hard-disk model, an intermediate phase exists between the fluid and the solid.
This is the hexatic phase, which is distinct from the fluid due to the presence of orienta-
tional order [173, 112]. In the same way as the positional order is described through the
large-distance behavior of the correlator between local densities, g(2) (r), the concept
of orientational order relies on the local orientational order parameter, ψ6. We give its
definition for a system of M particles (which can be the dimers of the three-body model
or the hard disks of the effective model), with coordinates x1, . . . xM (for the dimers, this
coordinate is defined as the middle point between the two particles). We first consider
a Voronoi construction, in which each point xi is assigned to the cell corresponding to
the region of space including points which are closer to xi than to any other xj. This in-
troduces a notion of neighboring points: Points xi and xj are neighbors if their Voronoi
cells share one edge, and we call the length of this edge Wij. We can then define the local
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Figure 5.17: Density (a) and global orientational order parameter (b) of the three-body
hard-core model with N = 128 particles (blue solid line, data corresponding to Fig. 5.13),
compared to the same quantities for the effective hard-disk model (orange dashed line,
with number of disks equal to N/2 – see text for the conversion rules for density and
pressure).

orientational order parameter for particle i as

ψ6,i =
∑j Wij exp(6iθij)

∑j Wij
, (5.48)

where the sums are over all the neighbors of i, and where θij is the angle between xi− xj

and a reference axis5 . The absolute value of this quantity is exactly one if the points {xi}
form a perfect triangular lattice, while it is smaller than one for a disordered configura-
tion. By knowing the quantity ψ6,i for all particles, a continuous local-orientation field
ψ6(x) can be constructed by coarse graining over small regions of space, so that the ori-
entational correlator can be defined as the statistical average 〈ψ6(x)ψ6(x+ r)〉. As noted
above, simulations of very large systems would be needed to compute this quantity to
a degree where the nature of its large-distance decay (exponential or algebraic) can be
identified. We rather consider the global orientational order parameter, Ψ6, which is the
average of ψ6,i over all particles. The comparison of Ψ6 for the dimers of the original
three-body model and for the effective hard-disk model shows a qualitative agreement
– see Fig. 5.17b.

5 The same quantity is often defined as

ψ6,i =
1
6 ∑

j
exp(6iθij),

instead of using the weighted average of Eq. 5.48. As argued in Ref. [204], this definition lacks robustness
against small changes of particle positions.
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The key information enclosed in this comparison is that the decomposition of dimers
and the melting of the effective hard disks take place at the same pressure, within our
accuracy. An hypothetical hexatic phase of dimers (where they keep orientational order)
would exist in the region of pressures larger than the dimer-decomposition pressure and
smaller than the solid-melting pressure, where the latter can be approximated with the
corresponding value for the effective hard-disk model. The fact that we do not observe
a significant difference between these two critical pressures is an evidence against the
hypothesis of an hexatic phase of dimers, although large-system simulations would be
needed to truly prove this statement. Furthermore, we also verified that the curve for
Ψ6 decreases as 1/

√
Nd in the fluid phase, which is the expected scaling for a disordered

system [205].
In the P & Pc regime, the dimer model may be mapped onto an effective system

of continuous spins, and tested for the presence of magnetic order. The mapping from
dimers to spins consists in neglecting the fluctuations in dimer sizes, and only consid-
ering the angle αj between the j-th spin and a reference axis (cf. Fig. 5.18).

α1 α2

l

ε

Figure 5.18: Mapping from a pair of dimers (with size 2ε and distance l) to a pair of
spins (forming angles α1 and α2 with the dimer-dimer axis).

When the dimers form a lattice, which is the case for P > Pc, this is reminiscent of a
continuous-spin model, with effective Hamiltonian

Heff = ∑
(i,j)

Veff(αi, αj) (5.49)

where the sum is over all bonds (i, j) between neighboring sites, and where Veff is the
effective spin-spin interaction potential. This potential depends on two parameters of
the original three-body model: The distance l between neighboring dimers, and the
dimer size 2ε. With the notation of Fig. 5.18, the effective potential between spins 1
and 2 depends on the positions of the four particles forming the two dimers, which are
expressed as 




x1,a = (ε cos α1, ε sin α1),
x1,b = (−ε cos α1,−ε sin α1),
x2,a = (l + ε cos α2, ε sin α2),
x2,b = (l − ε cos α2,−ε sin α2).

(5.50)
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In particular, Veff(α1, α2) is equal to 0 if all triplets p, q, r which can be chosen from the
four positions in Eq. 5.50 have hyperradius larger than R0. If, in contrast, any of these
triplets has hyperradius smaller than R0, then Veff(α1, α2) = ∞. Therefore the three-
body hard-core repulsion of the original model maps onto an effective hard-core spin-
spin interaction, with this effective potential becoming relevant when l is comparable
with R0 and ε/l is not too small. In this regime, the favorable configurations are the
ones where any two neighboring spins are aligned along the axis perpendicular to the
dimer-dimer connection, so that α1, α2 ≈ π/2.

Drawing an analogy with spin models, we introduce the average magnetization per
spin, defined as

z =
1

Nd
∑

j
e2iαj , (5.51)

where αj is the angle made by the j-th spin with a reference axis. The factor of two
in the exponent reflects the twofold rotational symmetry of this effective model (the
angles αj are defined up to a rotation of π). This quantity is well defined across the
whole range of pressures, but its behavior is mainly interesting for P & Pc: For P < Pc,
in the fluid phase, the dimers do not form a lattice and their fraction is smaller than
1/2, while for very large pressure the dimer size shrinks to zero and the αi values have
strong fluctuations. If a magnetically-ordered phase existed, |z| would tend to a finite
value for the system size going to infinity. In contrast, we find that the quantity |z|√Nd
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1.2

|z
|×
√
N
d

N = 32

N = 128

N = 200

Figure 5.19: Rescaled magnetization |z|√Nd of the effective spin model for dimers (cf.
Eq. 5.51). The relation between the total number N of particles and the number Nd of
dimers is given in Fig. 5.16a.

is independent on the number Nd of dimers (see Fig. 5.19), meaning that |z| vanishes
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as 1/
√

Nd as the system size is increased. This is the expected scaling for a disordered
phase, thus ruling out the existence of a magnetic order for the dimers.

The lack of magnetic order is due to the effective interaction Veff(αi, αj) between
neighboring spins, which leads to frustration, on the triangular lattice: Given three
spins a, b, c placed on the vertices of a triangle, it is not possible to have simultane-
ously Veff(αa, αb) = Veff(αb, αc) = Veff(αc, αa) = 0. The energy cost of a non-aligned
pair would be infinite (due to the fact that this is a hard-core potential), so that the only
remaining option is that the dimers shrink in size, effectively becoming non-interacting.
This is the mechanism which breaks magnetic order for the triangular lattice of dimers.

5.3.2 Three dimensions

We now turn to the three-dimensional case, where the solid phase at large pressure is
constituted by a simple-hexagonal lattice of single particles. As in the two-dimensional
case, we compute the equation of state by Monte Carlo simulations at fixed pressure,
always starting from the defect-free solid phase. The three-dimensional EOS also shows
a density jump, at a critical pressure βPcR3

0 = 18.5: The lattice melts at P = Pc, and the
system is liquid for smaller pressure (cf. Fig. 5.20).
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Figure 5.20: Equation of state (density vs. pressure) for the three-dimensional three-
body hard-core model with N = 64 (blue points), compared with the density of the close-
packed simple-hexagonal lattice (orange dashed line, corresponding to ρR3

0 ' 1.63299).

As the solid-phase structure does not include the formation of dimers, we do not
map the d = 3 system onto effective hard-sphere or spin models. The main option for
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an intermediate phase consists in the presence of a second solid phase, with different
structure, separated by the simple-hexagonal solid phase by a structural transition.

The study of structural properties for three-dimensional systems is typically based
on the use of bond-orientational order parameters (BOOP’s) [206], which are a more
general version of the sixfold orientational order parameter ψ6,i defined above for the
two-dimensional case. Following Ref. [204], we rather consider the closely-related lo-
cal Minkowski structure metrics, as the original BOOP’s are known to have important
shortcomings. The l-th order metric for particle i is defined as

ql,i =

√√√√ 4π

2l + 1

l

∑
m=−l

∣∣∣∣∣∑j∈Fi

WijYlm(θij, φij)

∣∣∣∣∣

2

, (5.52)

where Ylm are the spherical-harmonics functions, evaluated for the solid angle deter-
mined by the bond unit vector

xi − xj

|xi − xj|
. (5.53)

The set Fi of neighbors of particle i includes all particles j such that the i-th and j-th
Voronoi cells share a facet, and the area Wij of this facet (normalized so that ∑j∈Fi

Wij =
1) enters as a weight in the sum ∑j∈Fi

, cf. Eq. 5.52. As for the two-dimensional case (cf.
Eq. 5.48), we use this weighted sum of the contributions of all neighbors j: This is robust
against the main shortcoming of the BOOP, namely the dependence on the definition of
neighboring sites [204]. The local BOOP’s and Minkowski structure metrics are largely
used to identify regular structures (see references in Ref. [204]). In particular, the joint
probability distribution of q4 and q6 has been employed to identify different crystalline
structures for Lennard-Jones systems [207]. We compute this joint distribution from the
MC data at several pressures, using available software tools [208], and find the follow-
ing results (cf. Fig. 5.21):

• The distributions of q4 and q6 are broader for pressures below Pc, and become
narrower in the solid phase.
• In the solid phase, the average values of q4 and q6 tend to the values computed for

an ideal simple-hexagonal lattice as P is increased.
• In the fluid phase, q4 and q6 show no correlation. In the solid, they acquire a weak

positive correlation, which is anyway hidden by the fact that both distributions
become quite narrow, with their averages tending to the infinite-pressure values.

This calculation lacks any indication of an additional structural transition between two
solid phases: For P > Pc, the equation of state is smooth, excluding the possibility of a
stable intermediate phase.
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Figure 5.21: Joint histograms of the local Minkowski structure metrics (q4, q6) for dif-
ferent values of the pressure, below and above βPcR3

0 ' 18.5. The red cross marks the
values of the perfect simple-hexagonal lattice, q4 ' 0.6339 and q6 ' 0.4563.

Conclusion

In this chapter, we have studied the classical three-body hard-core model, in two and
three dimensions. We first considered the packing problem, by using several analytic
ansätze. The best global-optimum candidates (the triangular lattice of dimers for d =
2, and the simple-hexagonal lattice of single particles for d = 3) are independently
obtained through the simulated-annealing technique.

We extended these results to finite pressure via the NPT Monte Carlo technique,
modified through the addition of the insertion/removal move. Both for d = 2 and d =
3, we observe a discontinuous melting transition between the solid and fluid phases,
without signatures of intermediate phases. For d = 2, the closely-bound dimers which
form the solid do not show any hidden order, when mapped onto effective hard-disk or
spin models.





General conclusion

In this thesis, we address the quantum many-body problem for bosons at unitarity. The
connection with the few-body properties of this system, in particular with the Efimov
effect, is taken into account in our model, which reproduces the expected universal fea-
tures. Starting from the exact solution of the two-body problem at finite temperature,
we develop a novel QMC algorithm, which treats unitary interactions efficiently. In
Chapter 4, we compute the phase diagram for a homogeneous system. The thermody-
namic instability towards the Efimov liquid is observed in QMC simulations, and well
captured by an approximate analytic model. Through the latter, we compute the bar-
rier in the excitation free-energy, which sets a finite time scale for nucleation. In the
remaining part of the phase diagram, the system is homogeneous. This allows us to
identify the BEC critical temperature, which is reduced by approximately 10% from its
non-interacting value. Furthermore, we compute the momentum distribution at differ-
ent temperatures, observing the large-momentum power-law tail and the depletion of
the condensate due to interactions. In the homogeneous regions of the phase diagram,
physical properties have a weak dependence on the three-body cutoff R0, justifying our
use of the hard-core three-body regularization scheme.

Our novel QMC algorithm is tailored to the unitary Bose gas, but its main ingredient
(the two-body direct-sampling move) is more general. The core idea consists in combin-
ing the pair-product approximation with an optimal QMC move at the two-body level,
which may be extended to systems in reduced dimensions or with different interaction
potentials.

Efimov-liquid droplets do not show a strong dependence on temperature, and their
structural properties, like the density, are mainly determined by R0. This is a first step
towards the connection with the cluster ground states predicted for small systems of
unitary particles [71, 72]. A comparison of the different current predictions would al-
low to better assess the universality of these states, which in this work are studied at
thermal equilibrium. The study of a macroscopic liquid phase, however, would be best
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performed in a homogeneous situation, rather than in the presence of phase separation.
This can be obtained for instance within the grand canonical ensemble, for which QMC
algorithms are already available [136].

While remaining in the homogeneous regions of the phase diagram, a further open
question concerns the effect of Efimov trimers in a many-body equilibrium state. On
one hand, it would be interesting to find a method to identify them and estimate their
size. On the other hand, their presence could have noticeable effect on observables like
the energy. The latter has not been measured in this study, and would certainly need to
be addressed in a following work.

In Chapter 5, we consider the classical three-body hard-core model, which would
represent the infinite-temperature limit of our unitary-gas model. We propose solutions
for the packing problem in d = 2 and d = 3, which consist in a triangular lattice of pairs
of particles and in a simple-hexagonal lattice with one particle per site, respectively.
These counter-intuitive structures are a consequence of the purely three-body interac-
tions, and it would be interesting to verify how they are modified in the presence of
weak two-body interactions. To extend these results to finite pressure and identify the
melting transition, we use the NPT Monte Carlo technique. A systematic study of our
insertion/removal move could show whether this proposal provides a clear advantage
in the notoriously hard study of the melting transition.
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Publication 1: Liquid-solid transitions in the three-body
hard-core model

Tommaso Comparin, Sebastian C. Kapfer and Werner Krauth, EPL (Europhysics Letters),
109, 20003 (2015).

This article presents our study of the three-body hard-core model, in two and three
dimensions. We address the packing problem through a set of variational ansätze, find-
ing that the maximum density is reached for a triangular lattice of particle pairs (in
d = 2) and for a simple-hexagonal lattice of single particles (in d = 3). The Monte
Carlo method is used to identify the melting transition, taking place upon lowering the
pressure.
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Abstract – We determine the phase diagram for a generalisation of two- and three-dimensional
hard spheres: a classical system with three-body interactions realised as a hard cut-off on the
mean-square distance for each triplet of particles. Quantum versions of this model are important
in the context of the unitary Bose gas, which is currently under close theoretical and experimental
scrutiny. In two dimensions, the three-body hard-core model possesses a conventional atomic
liquid phase and a peculiar solid phase formed by dimers. These dimers interact effectively as
hard disks. In three dimensions, the solid phase consists of isolated atoms that arrange in a
simple-hexagonal lattice.

Copyright c© EPLA, 2015

Introduction. – In many fields of physics, interactions
between particles are accurately described through pair
potentials. These potentials can be long range or short
range, and may combine attractive and repulsive compo-
nents, as in the Lennard-Jones interaction. The minimal
model for pairwise-interacting systems is the hard-sphere
potential, which has played a central role in statistical me-
chanics and computational physics, and is also a promi-
nent topic in mathematical research [1–3].

In a number of cases, two-body potentials are in-
sufficient to describe complex physical behaviour. A
notorious example are nuclear forces, where three-body
interactions have long been discussed [4,5]. Explicit three-
body terms appear also in spin glasses, as in the well-
known p-spin model [6].

Recently, three-body potentials were studied in cold
atomic quantum gases. One proposed route to en-
hance their effects consists in suppressing the pair inter-
actions [7]. The unitary Bose gas at low temperature
represents another situation in which three-body physics is
relevant. For some bosonic atoms, the Feshbach-resonance
technique allows to reach the unitary regime, where the
two-particle scattering length diverges, and an additional
length scale is provided by a three-body parameter. Ex-
periments in this regime have lead to direct evidence of
the Efimov effect [8–11], a spectacular manifestation of

(a)E-mail: tommaso.comparin@ens.fr
(b)E-mail: sebastian.kapfer@fau.de
(c)E-mail: werner.krauth@ens.fr

three-body physics in the quantum realm. This has trig-
gered a massive experimental and theoretical effort on the
study of this strongly interacting system [12–18].

The above considerations motivate the study of a mini-
mal model of three-body interactions. In the current work,
we consider a classical system in which each triplet (i, j, k)
of particles interacts through the potential

V3(Rijk) =

{
∞, if Rijk < R0,

0, if Rijk > R0,
(1)

where R2
ijk = (r2ij + r2jk + r2ki)/3. The interaction term

of eq. (1) explicitly appears in recent theoretical models
of the unitary Bose gas [15,17], where it prevents the col-
lapse [19] of the quantum-mechanical wave function. In
the corresponding experimental system, the three-body
parameter R0 is related to the length scale of the van der
Waals interactions [20–22].

Among the many generalisations of the hard-sphere
model (e.g. to aspherical and polydisperse objects, or to
dimensions different from three), the three-body hard-core
model has not —to our knowledge— been studied before.

As for the hard-sphere model, the phase diagram of the
three-body hard-core model is independent of tempera-
ture, and transitions are driven purely by entropy. The
crucial distinction of the three-body hard-core model is
that two particles can exist at zero distance from each
other, and can bind into dimers.

We consider the classical three-body hard-core model in
two and three dimensions. To obtain the infinite-pressure
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Fig. 1: Close-packed structures in 1D and 2D. (a) Linear ar-
ray of isolated atoms and (b) of dimers with the smallest
spacing allowed by the three-body cut-off. (c) General case
of the 2D oblique lattice structure, (d) triangular lattice at
(r, θ) = (1, π/6), (e) rectangular lattice with (r, θ) = (

√
2, 0).

limit, we first solve heuristically the three-body equivalent
of the classic sphere-packing problem [3]: We maximise the
packing fraction for several families of structures where
the three-body constraint eq. (1) is tight. We support
our result by simulated-annealing calculations which con-
firm our highest-density close-packed structures. In two
dimensions, the densest structure is a triangular lattice of
dimers, while in three dimensions it is a simple-hexagonal
lattice of isolated atoms. Finally, we use Monte Carlo
(MC) simulations in the NPT ensemble to determine the
phase diagram at finite pressure. Both in 2D and 3D, we
find no other stable thermodynamic phases besides the
liquid and the high-density solid.

Close-packed structures. – We illustrate our proce-
dure to compute densities of close-packed structures in
the one-dimensional case. We consider evenly spaced lat-
tice sites with lattice constant l. For a lattice with a sin-
gle atom on every site —fig. 1(a)— the smallest triplet
is composed by three subsequent sites and the hard-core
condition in eq. (1) leads to the following bound on the
lattice spacing:

R =

√
l2 + l2 + (2l)2

3
= l

√
2 ≥ R0. (2)

The corresponding upper bound on the density ρ reads ρ ≤
ρmax =

√
2/R0. On the other hand, for the lattice with

every site occupied by a dimer of two atoms, the smallest
triplet consists of a dimer and an additional atom on a
neighbouring site; the root-mean-square distance is R =
l
√

2/3 and the close-packed density is ρmax = 2
√

2/3/R0.
Thus, at high pressure, the dimer lattice is favoured (see
table 1).

In two dimensions, we consider the family of oblique
lattices —see fig. 1(c)— in which the unit cell is a par-
allelogram with edges l and r × l, and where the smaller
internal angle equals π/2 − θ. Without loss of generality,
we set r ≥ 1 and 0 ≤ θ ≤ arcsin(1/(2r)). This family
includes the triangular and the rectangular lattices, as in-
dicated in figs. 1(d) and (e). For isolated particles, close
packing is obtained for a rectangular lattice with aspect
ratio

√
2, while for dimers, the close-packed structure is

Table 1: Densities of D-dimensional close-packed structures.
The structure may include free parameters (aspect ratio r or
angle θ), and the optimal values are indicated. Labels a and
d correspond to filling the lattice sites with atoms or dimers,
respectively.

D structure param. ρmaxR
D
0

1 regular spacing a –
√

2 1.41

regular spacing d – 2
√

2/3 1.63

2 oblique a r =
√

2
√

2 1.41
θ = 0

oblique d r = 1 (2/
√

3)3 1.54
θ = π/6

3 Barlow ABA a r = 1/2 13
27

√
26/3 1.42

Barlow ABA d r =
√

2/3 (2/
√

3)3 1.54

Barlow ABC a r = 1/
√

6 (2/
√

3)3 1.54

Barlow ABC d r =
√

2/3 (2/
√

3)3 1.54

tetragonal a r = 1 (2/
√

3)3 1.54

tetragonal d r = 1
√

32/27 1.09

simple-hex. a r = 1/
√

2 2
√

2/3 1.63

simple-hex. d r = 1 8
√

2/9 1.26

a triangular lattice. Again, high pressure favours the for-
mation of dimers (see table 1).

In three dimensions, we consider three families of struc-
tures: Barlow, tetragonal, and simple-hexagonal. Barlow
packings are the solutions of the conventional (two-body)
sphere packing problem and include the fcc and hcp struc-
tures [3]. In our case, the lattice parameters are regu-
lated by the three-body hard-core repulsion and not by
the hard-sphere diameter. Within this class, we consider
A-B-A and A-B-C stackings of triangular lattice planes,
with a ratio r between the interplanar spacing and the in-
plane lattice constant. For the tetragonal structures, we
stretch the simple-cubic lattice along the z-direction by an
aspect ratio r. Finally, we consider the simple-hexagonal
structure, which is an A-A-A stacking of triangular lattice
planes. As for the Barlow structures, the ratio r between
the interplanar and in-plane spacings is a free parameter.
Among the 3D structures considered, the highest density
is achieved by single particles in a simple-hexagonal lattice
with an aspect ratio r = 1/

√
2.

The formation of a structure with more than one par-
ticle per lattice site is a peculiarity of systems in which
interparticle distances can vanish [23]. In the three-body
hard-core model, close-packed systems with dimers are
only favourable in low dimensions, as we now show by
a heuristic argument: For lattices in which the three clos-
est sites are all equidistant from each other (examples
are the two-dimensional triangular lattice and the three-
dimensional hcp or fcc lattices), we compute the scaling
of the packing density with dimensionality D. We find
ρmax(dimers)/ρmax(atoms) = 2(2/3)D/2. Thus, a lattice
of dimers is favourable only for D ≤ 3, while in higher

20003-p2



Liquid-solid transitions in the three-body hard-core model

dimensions the density of the atomic lattice is larger.
(This argument ignores next-nearest neighbours and non-
uniform distances between lattice sites.) The same scaling
argument can be generalised to a hard-core k-body model
on a lattice in which the closest k sites are all at the same
distance from each other. Up to (k−1) particles can share
a lattice site. As in the k = 3 case, for large D the largest
density is obtained for isolated atoms.

From the list of densities in table 1, we infer that the
close-packed structures —in the classes considered here—
of the three-body hard-core model are a regular lattice
of dimers in D = 1, a triangular lattice of dimers in
D = 2, and a simple-hexagonal lattice of single parti-
cles in D = 3. Our approach is not exhaustive, and
does not constitute a proof. In particular, mixtures of
atoms and dimers remain to be explored. We support
our results using a simulated-annealing procedure [24,25],
in which we perform subsequent short MC simulations at
slowly increasing pressure, starting from low-density dis-
ordered configurations. Simulated annealing runs for N =
100, 72, 64 particles in D = 1, 2, 3 dimensions, respectively,
indeed yield the expected structures in the limit of infinite
pressure.

Finite-pressure results. – We now consider the phase
diagram of the three-body hard-core model at finite pres-
sure. We use a Markov-chain MC scheme to simulate the
system in the NPT ensemble (at fixed particle number
N and pressure P ). Our MC scheme involves two kinds
of moves. The first is the standard local move, where
a randomly chosen particle is displaced in its neighbour-
hood, and the move is accepted unless it violates any of
the three-body constraints of eq. (1). The second move
is a change of volume that also modifies the shape of
the simulation box: For a D-dimensional box with edges
L1, . . . , LD, the move modifies one of the L’s by adding
or removing a random amount of void space (a rectan-
gle aligned with the coordinate axes, constrained to touch
a randomly chosen particle). This move does not alter
the positions of the particles. As an example, if parti-
cle k and direction 1 are chosen, one move corresponds
to removing the D-dimensional portion of space defined
by {(x1, . . . , xD) | xk,1 < x1 < xk,1 + δ1}, where δ1 is
chosen randomly in a fixed interval. This move, which
changes L1 into L1 − δ1, is accepted only if it does not
remove any particle and if the new configuration still sat-
isfies the three-body constraint. The complementary move
consists in extending L1 to L1 +δ1, by adding a portion of
empty space with edges δ1 ×L2 × . . .×LD, starting from
xk,1. The acceptance probability for this insertion move
is pacc = exp(−βPΔV ), where ΔV = δ1Π

D
i=2Li is the

change in volume; this differs from the conventional NPT
move, which rescales the simulation box and the particle
positions and requires an additional factor V N in the sta-
tistical weight. In addition to the mentioned acceptance
conditions, we reject moves that lead to very elongated box
shapes, maxi,j(Li/Lj) > 2, as is common in MC methods

Fig. 2: (Colour on-line) Equation of state (density vs. pressure)
for the 2D three-body hard-core system, with different system
size N . The insets show snapshots of the N = 32 system at
pressures βPR2

0 = 4.5 and βPR2
0 = 13. Black lines in the inset

indicate Voronoi cells of the dimer centres of mass.

Fig. 3: (Colour on-line) Probability density function of the
specific volume V/(NRD

0 ) at fixed pressure. (a) N = 128 par-
ticles in D = 2 dimensions, (b) N = 64 particles in D = 3
dimensions. Pressures are as in figs. 2 and 8, respectively.

based on variable box shape [26–28] to avoid strong finite-
size effects.

Two-dimensional system. For the D = 2 system, we
expect a disordered isotropic liquid phase at low pressure
and a triangular solid phase of dimers at high pressure. We
initialise the MC sampling with configurations in the solid
phase, and observe melting for low values of P . Melting
is indeed observed as a jump in the density, as shown in
the equation of state (fig. 2). For small systems (N = 32),
there is an intermediate pressure regime where the system
oscillates between the two phases. For larger systems, we
only observe a single phase at each pressure, and the spe-
cific volume no longer has a bimodal distribution —see
fig. 3(a). The density gap indicates a first-order phase
transition, for the system sizes under study.

In the solid phase, defects are suppressed in our simu-
lations due to the system sizes considered. The density in
the equation of state, fig. 2, overestimates infinite-system
value (with defects). In particular, vacancies are not ob-
served on our simulation time scales, even though our
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Fig. 4: (Colour on-line) Snapshot of N = 128 particles (red
dots) at βPR2

0 = 14, during the equilibration of a simula-
tion started from a low-density disordered configuration. Black
lines represent the particles’ Voronoi cells. A patch with rect-
angular order is highlighted in dark gray, while a nucleating
dimer solid is highlighted in light gray.

volume- and shape-changing move can in principle cre-
ate the void space for a new lattice row to form (which
has been advanced as a mechanism to change the number
of lattice sites [29]).

Moreover, in two dimensions, the Mermin-Wagner the-
orem [30] precludes the existence of a crystal with truly
long-ranged positional order, but allows for a solid phase
with long-ranged orientational order and algebraically de-
caying positional order. 2D systems frequently exhibit an
intermediate hexatic phase with short-ranged positional
order, as has been recently shown for hard disks [31,32]
and soft disks [33]. Since the dimers in our system effec-
tively interact as hard disks (see below), an intermediate
hexatic phase of dimers might also exist here, and could
be observable in larger simulations.

From table 1 we identify a further candidate for an inter-
mediate phase between the monomer liquid and the dimer
solid: The rectangular close-packed structure of monomers
attains a density only 10% below the close-packed triangu-
lar lattice of dimers. In our simulations, we observe tran-
sient patches with rectangular order: fig. 4 shows both
the nucleating dimer solid and a rectangular patch. The
aspect ratio of the rectangles is consistent with the close-
packed structure, i.e., r =

√
2. However, we find no pres-

sure at which the rectangular structure is the equilibrium
phase. Instead, the rectangular patches seem to decay by
coalescence of two neighbouring lattice rows into a line
of dimers, eventually forming a triangular dimer patch.
Conversely, a dimer liquid was found to be unstable and
to decompose.

Quantitatively, we define the term dimer to describe
two particles that are each other’s closest neighbour. This
definition applies also to the disordered phase, where not
all particles participate in tightly bound pairs. We mea-
sure the dimer fraction 2Nd/N according to this defini-
tion (where Nd is the number of dimers), and we show in
fig. 5(a) that in the liquid, this quantity strongly deviates

Fig. 5: (Colour on-line) Symbols and colours as in fig. 2.
(a) Fraction 2Nd/N of dimers in the system. (b) Average
dimer size, in units of R0. (c) Ψ6 order parameter of dimers.
(d) Dimer magnetisation m, multiplied by

√
Nd (statistical un-

certainties are comparable to symbol sizes).

Fig. 6: (Colour on-line) The three-body hard-core solid com-
pared to hard disks: (a) equation of state and (b) global
orientational order parameter Ψ6 for N = 128 three-body–
interacting particles (black diamonds) and Ndisks = 64
hard-disks (green stars). The conversion from hard-disk to
three-body units follows from σ = R0

√
3/8; the density and

packing fraction of the effective model read ρdisks = ρ/2
and ηdisks = ρdisksπσ2 = ρR2

03π/16, while the pressure is
Pdisksσ

2 = 2(8/3)PR2
0. Data for the three-body model (ρ and

Ψ6) are the same as in figs. 2 and 5(c).

from its ideal-solid value of 1. Melting of the solid phase
and decomposition of the dimers thus occurs in a single
step.

The three-body model with all particles paired up
into small dimers can be mapped to a conventional two-
body hard-core system, containing composite particles
(the dimers). In the infinite-pressure limit, dimers have
zero extent and the dimer-dimer interaction makes them
equivalent to hard disks with an effective radius σ =
R0

√
3/8. At finite pressure, this mapping is approxi-

mate. In fig. 6(a), we compare the equation of state for 128
three-body–interacting particles and 64 hard disks. After
rescaling the pressure by a factor of two stemming from
the 2N -dimensional configuration space of the three-body
particles vs. the 2Ndisks = N dimensions for the hard
disks, the equations of state agree fairly well in the solid
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Fig. 7: (a) Representation of the configuration of four particles
(dots) paired up in two dimers. Each shaded circle represents
the excluded region generated by the two particles in a dimer.
(b) Partial snapshot of the simulation of N = 128 particles at
βPR2

0 = 20. For each dimer, the excluded region is shaded.
Black lines indicate Voronoi cells of the dimer centres of mass.

phase. The density of hard disks is systematically larger,
as due to the non-zero extent of the dimers at finite pres-
sure. This deviation decreases for increasing pressure.

In analogy with the hard-disk model, we define the ori-
entational order parameter of the liquid-solid transition.
We identify the Nj neighbours of the j-th dimer (where
Nj = 6 in the ideal crystal) through a Voronoi tessellation.
The local orientational order parameter is then [34]

ψ6,j =

∑Nj

k=1Wjk exp(6iθjk)
∑Nj

k=1Wjk

, (3)

where θjk is the angle of the vector rj − rk with respect
to a reference axis and Wjk is the length of the Voronoi
boundary between dimers j and k. The global orienta-
tional order parameter is Ψ6 = | ∑Nd

j=1 ψ6,j |/Nd. In the
solid phase this quantity remains finite for increasing sys-
tem sizes —fig. 5(c)— while in the fluid phase it decays
as 1/

√
Nd and hexagonal order for the residual dimers is

lost. In fig. 6(b), we show the global orientational order
parameter Ψ6 for the three-body hard-core system and its
hard-disk analogue. Within our accuracy, the decomposi-
tion of dimers and the melting of the hard disks take place
at the same pressure.

At finite pressure, the size of the dimers remains finite.
It is thus interesting to study dimer orientation as an effec-
tive spin model. Dimers can rotate in 2D and have twofold
rotational symmetry. We define the dimer magnetisation
m as

m =
1

Nd

∣∣∣∣∣∣

Nd∑

j=1

exp(2iαj)

∣∣∣∣∣∣
, (4)

where αj is the angle that the dimer forms with a reference
axis.

We first consider four particles paired up into two dimers
of fixed size, and free to rotate about their centres of
mass, as shown in fig. 7(a). Each dimer generates a cir-
cular region around its centre of mass into which none
of the two particles of the other dimer can penetrate.
The radius of the excluded region depends on the dimer’s

Fig. 8: (Colour on-line) Main panel: equation of state (den-
sity vs. pressure) for the 3D three-body hard-core model of
N = 64 particles. Left inset: q4 and q6 histograms, for each
pressure value (darker bins correspond to higher probability),
and perfect-lattice limit (red line). Right inset: representation
of the simple-hexagonal lattice (realised at high pressure).

size. When approaching each other, the dimers can no
longer rotate freely and have to progressively align with
each other, standing perpendicular to the dimer-dimer
axis (α1, α2 = π/2). In the triangular lattice, this in-
teraction is frustrated, since not all pairs of dimers in a
triangle can align. The dimers then have to shrink to sat-
isfy the three-body constraint (see fig. 7(b)). Effectively,
the dimer spins are non-interacting, and their magnetisa-
tion vanishes as 1/

√
Nd as the system size increases. This

is confirmed by the collapse of the m
√
Nd curves —see

fig. 5(d). In the thermodynamic limit, no magnetic or-
der remains. In fig. 5(b) we show that the average size of
dimers in the solid phase keeps decreasing, as required.

Three-dimensional system. Our simulations in three
dimensions are analogous to the D = 2 simulations de-
scribed above. Starting from the ideal simple-hexagonal
solid, at low pressure the system melts into a disordered
liquid phase; the equation of state is shown in fig. 8. As in
the two-dimensional case, the gap in the specific-volume
probability distribution shows that for this system size,
the transition is discontinuous —see fig. 3(b).

We quantify local structure using bond order parame-
ters [35], again following the construction of ref. [34] (i.e.,
we weight the contribution of each bond between neigh-
bours with the area of the shared Voronoi facet). In the
solid phase, the distributions of q4 and q6 (see inset of
fig. 8) are peaked, and their averages approach the perfect-
lattice limit at high pressure. In the liquid phase, these
distributions are broader, and give no indication for pre-
ferred local configurations. Except at the melting pres-
sure, the distributions evolve smoothly with P , and there
is no sign of further structural transformations.

Conclusions. – In this paper, we have studied the clas-
sical three-body hard-core model in two and three dimen-
sions, and identified a unique solid phase in both cases.
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In two dimensions, the transition involves simultaneous
appearance of two types of order: particles form dimers,
and the dimers order in a triangular solid that we expect
to have quasi–long-range positional order.

The solid phase can be mapped to an effective hard-
disk model, which reproduces the equation of state for
large enough pressure. Dimers break up right at the melt-
ing transition of the effective hard-disks. The small sys-
tem sizes considered here do not allow us to comment on
the existence of an intermediate hexatic phase of dimers.
Moreover, we note that the dimer solid phase does not
show (magnetic) order of dimer orientations. We explain
this feature through the frustration of the effective spin-
spin interaction that results from the three-body cut-off.

In three dimensions, the close-packed structure is
formed by isolated particles —rather than tightly bound
dimers— placed on a simple-hexagonal lattice. This has
an interest in connection with the model for the uni-
tary Bose gas, since pairs of particles at very small dis-
tances would be pathological in the original quantum
model [17]. Our equation of state enriches the phase di-
agram in ref. [17] at high temperature and pressure, and
one might be able to link these two different regimes for
the model.

More generally, the nature of the highest-density struc-
ture in the three-body hard-core model might represent
a mathematically non-trivial generalisation of the classic
Kepler problem [3], both in two and in three dimensions.

∗ ∗ ∗
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Publication 2: Momentum Distribution in the Unitary Bose
Gas from First Principles

Tommaso Comparin and Werner Krauth, Physical Review Letters, 117, 225301 (2016).

This article presents our study of a finite-temperature, homogeneous system of uni-
tary bosons, through a dedicated quantum Monte Carlo algorithm. Starting from the
normal-gas, we identify the two distinct transitions that take place upon lowering the
temperature. For small R0, we directly observe the formation of Efimov-liquid droplets.
For large R0, we determine the critical temperature for the BEC transition through the
finite-size-scaling analysis of QMC results. We also compute the momentum distribu-
tion, and map its large-k behavior in the homogeneous regions of the phase diagram.
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We consider a realistic bosonic N-particle model with unitary interactions relevant for Efimov physics.
Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation
is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the
gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental
data. Similar to the experiments with different atomic species, differentiated solely by a three-body length
scale, our model only depends on a single parameter. We establish a weak influence of this parameter on
physical observables. In current experiments, the thermodynamic instability of our model from the atomic
gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.

DOI: 10.1103/PhysRevLett.117.225301

First predicted in 1970 [1], the Efimov effect describes
the behavior of three strongly interacting bosons when any
two of them cannot bind. At unitarity, when the scattering
length diverges, the three-body bound states are scale
invariant and they form a sequence up to vanishing binding
energy and infinite spatial extension. Efimov trimers had
been intensely discussed in nuclear physics, but it was in an
ultracold gas of caesium atoms that they were finally
discovered [2]. To observe Efimov trimers, experiments
in atomic physics rely on Feshbach resonances [3], which
allow one to instantly switch a gas between weak inter-
actions and the unitary limit. Such a control of interactions
is lacking in nuclear physics or condensed matter experi-
ments, and singular interactions can be probed there only in
the presence of accidental fine tuning [4]. Beyond the
original system [2], Efimov trimers have now been
observed for several multicomponent systems, including
bosonic, fermionic, and Bose-Fermi mixtures [5–7]. These
experimental findings are interpreted in terms of the theory
of few-body strongly interacting quantum systems. For
three identical bosons in three dimensions, a complete
universal theory is available, on and off unitarity [4].
Further theoretical work is aimed at understanding bound
states for more than three bosons, mixtures, and the effects
of dimensionality.
Near-unitary interparticle interactions also impact the

thermodynamics of the atomic gas, the description of which
presents a challenge beyond the traditional theory of the
Efimov effect. In addition, mean-field theory does not
apply to infinite interactions [8], and the virial expansion
[9] fails to describe the low-temperature state. Moreover, in
atomic-physics experiments, strong interactions enhance
the three-body loss rate, making the gas of bosons unstable.
A characterization of the universal dynamics of these losses
has been recently achieved [10–12]. On the other hand, a
single breakthrough experiment [13] has addressed the

low-temperature thermodynamics for a unitary bosonic gas,
coming to the conclusion that equilibrium was approached
faster than the system lifetime. The importance of this
system stems from its universal character: All differences
between atomic species may be encoded in a single three-
body parameter, related to the van der Waals length [14].
However, this prominent experiment could not be inter-
preted univocally, as first-principles theoretical predictions
were lacking. In the present work, we obtain these
predictions for a model which shares the experimental
system’s universality. We develop a novel quantum
Monte Carlo algorithm [15] that overcomes the peculiar
challenges posed by the infinite interactions. This allows us
to compute the critical temperature for Bose-Einstein
condensation, and the full momentum distribution nðkÞ
throughout the entire phase diagram, including its universal
asymptotic behavior.
In the unitary limit, the scattering length diverges, and

atomic pair interactions are powerful yet very short-ranged.
The bosonic pair correlation function gð2ÞðrÞ diverges as1=r2
at short distances r ¼ jrj, yet two isolated unitary bosons
barely hold together: They form a molecule of infinite radius
and vanishing binding energy. In thermodynamic equilib-
rium, three or more such bosons, with zero-range inter-
actions, collapse into a single point, unless the unitary pair
interactions are counterbalanced by a three-body repulsion.
In experimental systems the latter is effectively realized by
the van der Waals potential [14], so that the unitary Bose
gas is stabilized against collapse. The divergence of
gð2ÞðrÞ persists in the gas, with a finite contact density
c2 ¼ limr→0ð4πrÞ2gð2ÞðrÞ. The large-k asymptotics of the
momentum distribution [16,17] is governed by Tan’s contact
parameter C2 ¼ c2V (where V is the system volume), and it
decays as nðkÞ≃ C2=k4 for k → ∞.
We considerN bosons at temperatureT in a periodic cubic

box (thermodynamic NVT ensemble). Pair interactions are
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of zero range and infinite depth, and the resonant two-body
bound state realizes an infinite scattering length. In addition,
any three particles a, b, c are subject to a hard cutoff
R > R0 on their hyperradius R, defined as the mean of their
squared pair distances:R2 ≡ ðr2ab þ r2bc þ r2acÞ=3. This real-
istic model describes ultracold atomic ensembles with an
interaction rangemuch smaller than the scattering length, the
interparticle distance, and the thermal deBrogliewavelength.
The two-body interactions, with their infinite scattering
length, provide no scale. The model’s phase diagram thus
depends on two dimensionless numbers, namely, the thermal
de Broglie wavelength λthρ

1=3, and the three-body cutoff
R0ρ

1=3, both in units of the typical interparticle distanceρ−1=3

[where λth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ2β=m
p

, β ¼ 1=ðkBTÞ, and ρ ¼ N=V].
At high temperature, three-particle effects are suppressed,
and themodel depends only on λthρ1=3. In experiments at low
temperature, three-body correlations lead to strong recombi-
nation losses, with a loss rate scaling as ∼T−2 [10–12], the
predominant source of instability of the system. In contrast,
our model conserves particle number.
Path-integral quantumMonte Carlo techniques allow us to

solve this model from first principles, that is, without
systematic errors. Computational challenges are posed by
the divergence of gð2ÞðrÞ at contact [see Fig. 1(b)] and by the
need to determine nðkÞ for large momenta k [see Fig. 1(d)].
This corresponds to computing the single-particle correlation
function gð1ÞðrÞ—the inverse Fourier transform of nðkÞ—at
small r, close to its cusp singularity at r → 0 [see Fig. 1(c)].
Our path-integral quantum Monte Carlo algorithm
[15,18–20] samples both closed and open path-integral
configurations [cf. Fig. 1(a)]. The former give access to
the superfluid fraction ρs=ρ (via the winding-number
estimator [21]) and to the pair-correlation function gð2ÞðrÞ
(from which we extract the contact density c2). Open
configurations, in contrast, sample the single-particle corre-
lation function gð1ÞðrÞ, and give access to the normalized
momentum distribution [satisfying

R

dknðkÞ=ð2πÞ3 ¼ N in
the normal gas]. A dedicated estimator allows us to sample
nðkÞ for arbitrarily large momenta k [cf. Supplemental
Material (i) [22]].
We include zero-range unitary interactions between two

bosons through the exact two-body propagator [23,24],
and treat them with a highly efficient direct-sampling
approach [15]. The many-body density matrix is then built
via the pair-product approximation. The hyperradial cutoff
is included via the Trotter breakup [18], and an effective
value of R0 is obtained—for a finite imaginary-time
discretization—through the comparison with the expres-
sion for the hyperradial wave function of a single universal
trimer [15,23]. For three unitary bosons, the length scale R0

sets a lower bound on the Efimov energy spectrum, and
specifies a three-body ground state. At low temperature,
our Monte Carlo simulations for N ¼ 3 allow us to
obtain excellent agreement of the hyperradial probability

distribution and the momentum distribution for our model
with the corresponding quantities for the universal Efimov
trimer [4,25] [see Fig. 2(a) and Fig. 2(b)], providing also a
parameter-free check of our computer program.
In the thermodynamic NVT ensemble, unitary bosons

phase separate below a given temperature into a normal or
Bose-Einstein-condensed gas dominated by entropy and a
high-density Efimov liquid of low potential energy

(c) (d)

(a) (b)

FIG. 1. Correlation functions for two unitary bosons. (a) Open
(left) and closed (right) co-cyclic configurations in the path-
integral representation. Closed configurations yield gð2ÞðrÞ. Open
configurations yield nðkÞ and its inverse Fourier transform
gð1ÞðrÞ. (b) Pair-correlation function gð2ÞðrÞ (distance distribution
in closed configurations), featuring a r−2 divergence at small r.
(c) Cut of gð1ÞðrÞ (distribution of the distance between open ends),
for r ¼ ðx; y; 0Þ, illustrating the cusp at r≃ 0. (d) Momentum
distribution nðkÞ with asymptotic decay, ∝ 1=k4, at large k.

(a) (b)

FIG. 2. Correlation functions for three unitary bosons. (a) Hy-
perradial probability distribution for three co-cyclical bosons
with hyperradial cutoff at low temperature (cyan dashed line) and
for the universal Efimov trimer (black solid line, from Ref. [4]).
(b) Momentum distribution for three co-cyclical bosons (cyan
dashed line), and for the universal trimer (black solid line, from
Ref. [25]), in units of the trimer binding momentum κ0.
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(see Fig. 3(a) and Ref. [23]). An equilibrium liquid bubble
forms inside the gas [Fig. 3(b)], and the nucleation process is
reversible across the coexistence line. For R0 → 0, the gas-
to-liquid condensation energy ∝ 1=R2

0 overcomes the gas
entropy loss at arbitrarily high temperatures, so that
the coexistence line starts at λthρ1=3 ¼ R0ρ

1=3 ¼ 0. In the
phase-coexistence region, the free energy FN

coexðlÞ is com-
posed of two terms, corresponding to the Efimov-liquid
nucleus of l particles and to the gas of the remaining N − l
particles. An analytical model, based on the virial expansion
of the gas [9] and the known ground-state energies for small
Efimov-liquid nuclei [26] (supposed incompressible),
allows us to model the excitation free energy [see
Supplemental Material (v) [22]]. In the homogeneous gas
phase,FN

coexðlÞmonotonically increaseswith l [Fig. 3(c)]. At
lower temperatures, the gas becomesmetastable, with a free-
energy barrier at a critical cluster size l�. The nucleation rate
per volume is proportional to expð−βΔFÞ, where ΔF ¼
FN
coexðl�Þ − FN

coexð0Þ is the free-energy barrier to overcome

the critical cluster size l�. At low temperature, βΔF and,
therefore, the characteristic nucleation time for the Efimov
liquid remain finite [see Fig. 3(c)]. The observed long
experimental lifetime [13] is consistent with the idea that
the phase-separation instability does not take place, in
current experiments, as three-body losses effectively desta-
bilize liquid droplets before the critical nucleus size l� ≃ 5 is
reached. A study of the many-body quantum dynamics will
be needed to confirm this hypothesis.
In the stable region of the phase diagram, the momentum

distribution nðkÞ is, in principle, obtained as the Fourier
transform of gð1ÞðrÞ, the distribution for distance vectors of
open configurations [cf. Fig. 1(a)]. This estimator, however,
poorly samples the short-distance cusp in gð1ÞðrÞ [equiv-
alently, the large-k behavior of nðkÞ]. Our approach is
rather based on an average of the analytical two-body
expression, to determine nðkÞ at arbitrarily large k
[see Supplemental Material (i) [22]]. The asymptotic
behavior of nðkÞ ¼ C2=k4 for k → ∞ is also contained

(b)

(a)

(d)

(c)

(e)

FIG. 3. Equilibrium phase diagram of unitary bosons. (a) Contact density c2ρ−4=3, as a linear interpolation of numerical results
[extracted from gð2ÞðrÞ, for N ¼ 64]. White stars: transition between normal gas and superfluid (Bose-Einstein condensed) phase. Black
crosses: Phase-separated points. Gray area: Phase-coexistence region [23]. (b) Stable Efimov-liquid droplet coexisting with a normal gas
(N ¼ 256). (c) Excitation free energy for the Efimov-liquid nucleation, vs nucleus size l. λthρ1=3 varies between lines (see labels),
between 0.5 (monotonically increasing, red line) and 0.9 (barrier, blue line). The hyperradial cutoff is fixed (R0ρ

1=3 ¼ 0.03), and the
phase-separation region sets in at λthρ1=3 ≃ 0.66. (d) Contact density c2ρ−4=3 vs λthρ1=3, for R0ρ

1=3 ¼ 0.052: Virial expansion (black
dashed line) and numerical results, via the nðkÞ and gð2ÞðrÞ estimators (crosses, circles). In the phase-coexistence region, the liquid
and gas phases have different contact densities (for the gas, the virial expansion is used). (e) Momentum distribution [in units of the
Fermi momentum kF ¼ ð6π2ρÞ1=3] for parameters corresponding to points A, B, and C, in panel (a).
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in the contact density, obtained from closed-path configu-
rations [see Fig. 3(d)]. In the normal phase, the small-k part
of the momentum distribution nðkÞ resembles the one of
ideal bosons: The peak at k ¼ 0 corresponds to the
Maxwell-Boltzmann distribution expð−βk2=2Þ in the
classical limit (at high temperature), and the narrowing
at lower temperature is enhanced by bosonic statistics [see
Fig. 3(e)]. At large k, nðkÞ crosses over into the C2=k4

asymptotic behavior, with a crossover point which scales as
k=kF ∝ 1=ðλthρ1=3Þ for large temperature, where kF ≡
ð6π2ρÞ1=3 is the Fermi momentum. In the phase-coexist-
ence region, we obtain two different contact densities for
the gas and for the Efimov liquid [see Fig. 3(d)].
Throughout the homogeneous region, the momentum

distribution only depends weakly on R0ρ
1=3, both in the

full nðkÞ and in its asymptotic tail, underlining the generality
of the model under study. The slow decrease of c2 for
increasing R0ρ

1=3 (absent at high temperature, λthρ1=3 → 0)
corresponds to a small suppression of gð2ÞðrÞ at short
distance, indirectly caused by the hyperradial cutoff.
At high temperature, our first-principles results for the
contact density rapidly fall below the predictions of the

virial expansion [27–29] [Fig. 3(d)], leveling off at inter-
mediate temperature, and finally decreasing at lower temper-
ature. This nonmonotonic behavior was already qualitatively
predicted [29]. The low-temperature values of c2ρ−4=3 fall in
the same range of previous zero-temperature approximate
results [30–32] [cf. Supplemental Material (ii) [22]].
For large three-body cutoff (R0ρ

1=3 ≳ 0.16), the normal
gas undergoes Bose-Einstein condensation before phase
separation sets in. At finite k, nðkÞ has very small finite-
size effects, making the comparison with experiments
feasible. Data for harmonically trapped Rb atoms [13]
are available up to k=kF ≃ 3 and they are considered
equilibrated for k=kF ≳ 0.5. At small k, the harmonic-trap
geometry has the strongest influence. Up to momenta
k ≈ kF, the experimental curves overlap with the theoretical
data [see Fig. 4(a)]. As the asymptotic k−4 behavior of nðkÞ
sets in for the numerical curve (k≳ 1.1kF, at the chosen
temperature), the experimental curve remains higher. This
deviation is difficult to reconcile with our model, as the k−4

prefactor is expected to decrease even further at lower
temperature [see Supplemental Material (ii) [22]].
The condensate fraction is related to the k ¼ 0 compo-

nent of nðkÞ, N0=N ¼ nðk ¼ 0Þ=ðNVÞ. Below the critical
temperature Tc, it remains nonzero for N → ∞, with finite-
size corrections ∝ N−1=3. In the normal phase, in contrast,
the large-N limit of N0=N vanishes. These two behaviors
are clearly distinguished in the data [see Fig. 4(b)]. The
scaling of the superfluid fraction yields a precise estimate
of the critical temperature [33] [see Fig. 4(c) and
Supplemental Material (iii) [22]]. In the unitary Bose
gas, Tc is reduced by 10%: The critical value of λthρ1=3

is between 1.44 and 1.48 [see Fig. 3(a)], while the ideal-
bosons transition [34] is at λthρ1=3 ≃ 1.377. The deviation
of Tc from T0

c (the ideal-bosons critical temperature) is
larger for smaller values of R0ρ

1=3. It is instructive to
compare nðkÞwith the ideal-gas curve. Unitary interactions
cause a depletion of the condensate, i.e., a decrease of
N0=N. At temperature T ≲ Tc, this follows from the
negative shift of the critical temperature, Tc < T0

c. While
the k ¼ 0 component of nðkÞ is smaller, on the other hand,
the tail of the distribution is more important [cf. the power-
law k−4 decay, vs the exponential suppression of nðkÞ for
ideal bosons]. At point D in Fig. 3(a), the depletion of the
condensate is not entirely compensated by the large-k
contribution [see Supplemental Material (iv) [22]]. This
leads to the reweighting of the unitary gas momentum
distribution with respect to the one of the ideal Bose gas,
without introducing any new features.
Both for three-body and many-body states of unitary

bosons, nðkÞ has subleading oscillations around the C2=k4

asymptotic tail. These consist in a log-periodic function of
k, modulated by C3=k5 [25,35]. The three-body contact
parameter C3 vanishes at the length scale of the short-range
hyperradial repulsion between atoms, induced by the van

(a)

(b)

(c)

FIG. 4. Full momentum distribution nðkÞ in the Bose-Einstein-
condensed gas phase. (a) nðkÞ at λthρ

1=3 ¼ 1.545, R0ρ
1=3 ¼

0.184 [point D in Fig. 3(a)]. First-principles results for N ¼ 64,
128, and 256 (black circles, green squares, brown diamonds,
respectively), and ∝ C2=k4 asymptotic behavior for k → ∞ (for
N ¼ 64, black solid line). Dashed lines are experimental data of
Ref. [13] for two different densities. The momentum distribution
for N ¼ 256 ideal bosons is also shown (cyan solid line).
(b) Scaling of the condensed fraction N0=N with the system
size, in the normal and condensed phases. The upper curve (at
T < Tc) corresponds to the parameters in panel (a), and the exact
numerical data are fitted by N1=3ðN0=NÞ≃ 1.06þ 0.14N1=3

[same symbols for N as in panel (a)]. The lower curve is at
λthρ

1=3 ≃ 1.373 (corresponding to T > Tc), and is fitted by
N1=3ðN0=NÞ≃ 1.71N−1=6. (c) Rescaled superfluid fraction vs
temperature, at R0ρ

1=3 ¼ 0.184. The crossing point at T=T0
c ≃

0.9 (corresponding to λthρ1=3 ≃ 1.45) shows that Tc is lowered by
10% with respect to the ideal Bose gas, in the limit N → ∞.
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derWaals potential [14] or by the explicit hyperradial cutoff
R0. Thus the subleading oscillations can, in our model, only
be observed for k≲ 1=R0. For our high-temperature results
[cf. Fig. 3(e)], the asymptotic tail of nðkÞ kicks in at
k > 1=R0, where C3 is effectively zero, and we do not
expect visible subleading corrections. At low temperature,
however, the crossover into the asymptotic tail is at k ≈
1=R0 [see Fig. 4(a)]. Thus, the subleading oscillations are
possibly observable within the three-body-cutoff model, for
a slightly smaller value of T or R0, despite being beyond the
current resolution.
In conclusion, we have computed the equilibrium phase

diagram and the momentum distribution of the unitary
Bose gas from first principles, overcoming the technical
challenges through a novel quantum Monte Carlo algo-
rithm [15]. Our theoretical predictions will most easily be
checked in the currently available homogeneous traps
[36,37], which are less subject to three-body losses than
the traditional harmonic traps. In the near future, we expect
high-precision experimental measurements of the super-
fluid transition and of the momentum distribution nðkÞ in
the unitary Bose gas.
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UPMC, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
(Dated: November 3, 2016)

Supplementary Item (i): Momentum-distribution estimator

In path-integral quantum Monte Carlo, the momentum distribution is usually computed from the exponential
e−ik·(x−y) (with open ends x and y), averaged over open-path configurations[1, 2]. At large momenta k – where n(k)
tends to zero – this estimator becomes unpractical, because of a vanishing signal-to-noise ratio. We construct a new
estimator (used in Fig. 3(e)), based on the solution of the two-body problem represented in Fig. S1[3]. We analytically
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FIG. S1. Open N = 2 path configuration. An estimator for the momentum distribution is derived from the analytical expression
for n(k) for fixed positions A,B,C,D,E.

determine n(k|A, . . . ,E), the average of e−ik·(x−y) for given positions A,B,C,D,E. For N = 2, n(k) is obtained
as an average of n(k|A, . . . ,E) over configurations A,B,C,D,E sampled during the simulation. For N ≥ 3, this
coarse-grained estimator holds for “local” configurations, where the two open ends are close to each other and to
the nearest of the other bosons (x ∼ y ∼ E). For non-local configurations we again resort to the direct estimator〈
e−ik·(x−y)

〉
, and finally obtain n(k) as a weighted average of the two estimators (cf. Ref. [3]). This procedure relies on

an appropriate cutoff between local and non-local configurations. At high enough temperature, where the procedure
is used, we carefully check that the contact density c2 extracted from the asymptotic behavior of n(k) for k → ∞
agrees with the r → 0 limit of g(2)(r) (see Fig. 3(c)).

Supplementary Item (ii): Contact density at low temperature

In Fig. S2, the data of Fig. 3(a) are plotted as a function of T/T 0
c , for a three-body cutoff R0ρ

1/3 ' 0.184. Our first-
principles low-temperature values for c2ρ

−4/3 are roughly compatible with the zero-temperature approximate results
from Refs. [4–6]. These are obtained via a Jastrow ansatz and hypernetted-chain approximation[4], a quantum Monte
Carlo calculations based on a Jastrow-Feenberg ansatz[5], and a time-dependent variational ansatz for the many-body
state[6]. The value c2ρ

−4/3 ' 22, extracted from an analysis of the experimental data[7], appears significantly larger
than our theoretical predictions.

Supplementary Item (iii): Superfluid transition

The critical temperature Tc is extracted from finite-N data using the scaling ansatz of Ref. [8]. This assumes
that in the critical region the rescaled superfluid fraction N1/3ρs/ρ depends on the system size N only through the
quantity N1/(3ν)(T − Tc)/Tc, where ν is the correlation-length critical exponent, and implies that N1/3ρs/ρ becomes
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FIG. S2. Contact density at low temperature (T/T 0
c = 1 corresponds to λthρ

1/3 = 1.377), for R0ρ
1/3 = 0.184 (black points),

and zero-temperature approximate results for the models in Refs. [4–6] (open symbols).

size-independent at the critical temperature T = Tc of the infinite system. The dependence of N1/3ρs/ρ on system
size, for different values of the three-body cutoff R0ρ

1/3, is shown in Fig. S3, and we observe that the crossing point is
roughly at 90% of the critical temperature of ideal bosons[9]. The critical temperature Tc weakly depends on R0ρ

1/3:
In the range 0.164 . R0ρ

1/3 . 0.204, it increases from Tc/T
0
c ≈ 0.87 to Tc/T

0
c ≈ 0.91.
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FIG. S3. Finite-size scaling of the superfluid fraction for different values of the three-body cutoff R0ρ
1/3. The crossing point

of N1/3ρs/ρ vs. T/T 0
c establishes a 10% decrease of the superfluid transition temperature with respect to ideal bosons, in the

limit N → ∞ (cf. Fig. 4(c)).

Supplementary Item (iv): Effect of interaction on n(k)

In the Bose-condensed phase, the k = 0 component of the momentum distribution is reduced by unitary interactions,
and the presence of a slowly-decaying k−4 tail at large k does not fully compensate this decrease. Therefore, the
unitary-gas momentum distribution has a stronger weight in the intermediate-k region, as clearly visible in Fig. S4.
In both the interacting and non-interacting case, n(k) does not show strong finite-size effects at k > 0.
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FIG. S4. Momentum distribution n(k) in the Bose-condensed phase (point D in Fig. 3(a)) for the unitary Bose gas with N = 64
(same data as in Fig. 4(a)), compared to the curves for finite and infinite systems of ideal bosons at the same temperature.

Supplementary Item (v): Coexistence free energy

We consider N particles in a fixed volume V , in the presence of an l-particle nucleus of Efimov liquid. The
coexistence free energy includes the liquid and gas contributions. For the liquid, we approximate Fliq(l) ' Eliq(l),
neglecting the entropic contribution, and we use the cluster energies from Ref. [10] for l ≤ 13, in terms of the trimer
energy |ET | ' 0.00214 ~2/(mR2

0) [11]. For the gas contribution, we consider N − l particles in a volume V − Vliq
(where Vliq ' l × (3.65R0)3), and compute Fgas(N − l) up to the third virial coefficient[12]. At given values of N,V,
and T , the coexistence free energy reads

FNcoex(l) ' Eliq(l) + Fgas(N − l). (S1)

Computing FNcoex(l) as a function of l allows us to check for the existence of a free-energy barrier β∆F , which does
not disappear in the low-temperature regime. The third-order virial and cluster expansions differ in their range of
validity, the cluster expansion being more accurate at low temperature (cf. Fig. 3(c)). We find that the above model is
not quantitatively reliable at large R0, for which the instability takes place at lower temperature. Its limit of validity
is R0ρ

1/3 . 0.04, while for larger values of R0 it does not correctly reproduce the coexistence line.
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