
HAL Id: tel-01412397
https://theses.hal.science/tel-01412397

Submitted on 8 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanical nonlinear dynamics of a suspended photonic
crystal membrane with integrated actuation

Avishek Chowdhury

To cite this version:
Avishek Chowdhury. Mechanical nonlinear dynamics of a suspended photonic crystal membrane with
integrated actuation. Optics [physics.optics]. Université Paris Saclay (COmUE), 2016. English.
�NNT : 2016SACLS284�. �tel-01412397�

https://theses.hal.science/tel-01412397
https://hal.archives-ouvertes.fr


 

 

 
 
 
 
 
 
 

 

 
NNT : 2016SACLS 284 

 

 

 

THESE DE DOCTORAT 
DE   

L’UNIVERSITE PARIS-SACLAY 

PREPAREE A  

L’UNIVERSITE PARIS-SUD XI 
 
 
 
 

Ecole Doctorale N° 572  
EDOM (Ondes et Matière) 

 

Spécialité de doctorat : Physique 
 

Par 

 

Avishek Chowdhury 
 
 

 
Mechanical nonlinear dynamics of a suspended photonic crystal membrane 

with integrated actuation 
 

 
 
Thèse présentée et soutenue à CNRS-C2N (Marcoussis), le 28 Septembre, 2016: 

 

Composition du Jury :  

 
Dr. Philippe Boucaud CNRS-C2N, Paris-Sud (France) Président                                                                

Dr. Francesco Marin LENS (Florence, Italie) Rapporteur 

Prof. Andrea Fiore TU Eindhoven (Pays-Bas) Rapporteur 

Dr. Alfredo de Rossi Thales Research and Technology (Palaiseau, France) Examinateur 

Dr. Rémy Braive Université Paris 7/CNRS-C2N Invité 

Dr. Isabelle Robert-Philip CNRS-C2N Directrice de these 

 

 

 
 

 



 

 

                                                    To my parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

“I went into a McDonald's yesterday and said, 'I'd like some 

fries.' The girl at the counter said, 'Would you like some 

fries with that?'” 

- Jay Leno 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Titre : Dynamique non linéaire mécanique d’une membrane photonique cristaux suspendu avec 

actionnement intégrée 

Mots clés : dynamique non linéaire, cristaux photonique, actionnement intégrée, opto-mecanique 

Résumé : Dans les résonateurs nano-

mécaniques, les non-linéarités peuvent provenir 

de différents effets tels que des mécanismes de 

ressort ou d’atténuation dans des éléments de 

circuits résistif, inductif et capacitif. Au-delà des 

intérêts fondamentaux pour tester la réponse 

dynamique de systèmes non-linéaires avec des 

nombreux degrés de liberté, les non-linéarités 

dans les systèmes nano-mécaniques ouvrent de 

nouvelles voies pour la transduction du 

déplacement, la détection nano-mécanique et le 

traitement du signal. Dans cette thèse, nous 

étudions la réponse non-linéaire d’un résonateur 

nano-mécanique consistant en une membrane 

suspendue à cristal photonique jouant le rôle 

d’un miroir déformable.  

 

L’actionnement du mouvement de la membrane 

dans la gamme de fréquence du MHz est rendu 

possible par l’utilisation d’électrodes inter-

digitées placées en dessous de la membrane. 

L’efficacité d’actionnement dépend fortement de 

la distance entre la membrane et les électrodes. 

La force électrostatique appliquée induit des 

non-linéarités mécaniques. Le cœur de cette 

thèse est l’étude des phénomènes de dynamiques 

non-linéaires sur cette plate-forme mécanique. 

Les expériences comprennent, par exemple, les 

résonances sub et super-harmoniques, 

l’amplification paramétrique et la résonance 

stochastique. 

 

 

 

Title : Mechanical nonlinear dynamics of a suspended photonic crystal membrane with integrated 

actuation 

Keywords : nonlinear dynamics, photonic-crystal, integrated actuation, opto-mechanics 

Abstract : Nonlinearities in nanomechanical 

systems can arise from various sources such as 

spring and damping mechanisms and resistive, 

inductive, and capacitive circuit elements. 

Beyond fundamental interests for testing the 

dynamical response of discrete nonlinear 

systems with many degrees of freedom, non-

linearities in nanomechanical devices, open new 

routes for motion transduction, nanomechanical 

sensing, and signal processing. In this thesis 

report, we investigate the nonlinear response of 

a nanomechanical resonator consisting in a 

suspended photonic crystal membrane acting as 

a deformable mirror. Actuation of the membrane 

motion in the MHz frequency range is achieved 

via interdigitated electrodes placed underneath 

the membrane. 

 

The efficiency of actuation is highly dependent 

on the separation between the membrane and the 

electrodes underneath. The applied electrostatic 

force can induce mechanical non-linearities. 

The focus of this thesis report is to study the 

nonlinear dynamical phenomenon of the nano-

mechanical platform. The experiments include 

sub/super-harmonic resonance, parametric 

amplification and stochastic resonance for 

example. 
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Chapter 1

Introduction

General motivation of the PhD is the development and nonlinear dynamical study of a
NOEMS platform. The system consists of a suspended 2D-membrane with embedded pho-
tonic crystal on it. The rectangular shaped membrane has interdigitated electrodes under-
neath, used to drive these membranes at its eigen-frequencies. The system therefore has
both mechanical and electrical properties enabling possibility of an electro-mechanical cou-
pling. The unique features of the nanomechanical membrane leads to high nonlinearity in
the system. The existing nonlinearity in the system enabled us to perform studies involving
nonlinear dynamic, which includes sub/super-harmonic excitation, stochastic resonance for
example. Moreover, the system being a photonic crystal has optical properties at the same
time. Therefore it has capabilities to realize a NOEMS platform, where it is possible to realize
integration with larger circuitry, coupling resonators or synchronization. In this chapter we
discuss state of the art of such system and signi�cance of the work in the domain of nonlinear
dynamics and NOEMS systems.

Over last decade we have observed huge advancement in applications with Nano/Micro-
Electro-Mechanical Systems or simply MEMS/NEMS. These involves applications in several
electronic devices including accelerometers [1], microphones [2], gyroscopes , pressure/mas/gas
sensors [3, 4], energy harvesters [5, 6], lab-on-chip [7] devices for biological applications to
name a few. Among the most popular applications in sensing the devices there are the
ones based on vibratory modes of crystals [8], micro cantilevers [9, 10, 11, 12] and other
electromechanical systems [13, 14].

1.1 Nano-Electro-Mechanical systems

Most electromechanical systems consist of two elements; a mechanical system and transduc-
ers. The mechanical system is under a force �eld induced by the transducer causing the
system to vibrate. The externally induced force and amplitude of displacement are related
as: F = kx. Where F is the external force, x is the mechanical resonator displacement and k
is what is known as the spring constant of the system. A weak spring constant k means small
force can induce high motion. Not only such a system is useful for sensors but at the same

8



CHAPTER 1. INTRODUCTION 9

time is useful to study several e�ects in nonlinear regime. The mechanical resonators are
traditionally cantilever structures with clamping on one or both sides [15]. Although rectan-
gular structures have also been realized in order to perform electro-mechanical conversions
as demonstrated by [16, 17].

1.1.1 Advantages of using a NEMS platform

The small size of these systems means, such systems can be fabricated with eigen-frequencies
ranging from a few kHz to GHz regime. For a fully clamped beam the expression of the
�exural mode eigen-frequency can be simply written as: Ω0 ∼ (keff/meff )

1/2 [18, 19]. Here,
keff is the e�ective spring constant andmeff is the e�ective mass of the system (e�ective mass
is a complex set of elasticity equations that govern the mechanical response of the system).
This e�ective mass on the other hand is proportional to cube of the linear dimension l i.e.
meff ∝ l3 while at the same time the e�ective spring constant is proportional directly to the
dimension l i.e. keff ∝ l. Thus as l decreases there is an increase of the eigen-frequency of the
system while on the other hand resonators with fast response can be designed by working with
sti�er structures. These structures can be designed either by working high-stress structures
or simply by working with structures having higher Young modulus. Devices with high
frequencies therefore can be designed with modern technology by working with nanotube or
nanowire like NEMS structures.

Another important factor of NEMS devices is what is known as the quality factor or Q-
factor. These NEMS systems can have Q-factors ranging from 103 − 105. This value greatly
exceeds from the available purely electrical devices, thanks to lack of internal dissipation
to low operating power levels. For devices used in signal processing high Q-factor implies
low insertion loss [20] and low operating bandwidth [21, 22]. Moreover thermomechanical
noise is inversely proportional to the Q-factor, thereby making such devices less susceptible
to random mechanical �uctuations and hence highly sensitive to external forcing.

These platforms also act as sensitive mass detectors thanks to the low e�ective mass
or inertia (in case of torsional resonators). The small sizes of these devices generate highly
localized spatial response and therefore these devices can be tailored in such a manner so that
they react to external forces in speci�c directions. Finally the low operating power makes
them integrable with various circuit components and low consumer of electrical power.

At the heart of any NEMS system is a mechanical resonator, where it is interfaced with
transducers used for actuating these resonators to detect mechanical displacements. In the
upcoming sections we will discuss about various ways in which a mechanical resonator can
be actuated and detected.

1.1.2 Actuation schemes

In most cases, mechanical resonators are excited in three di�erent manners: magnetomotive,
capacitive (electrostatic) and piezoelectric. In case of the former a magnetic �eld is generated
by current, providing the actuation force [23]. Depending on the orientation of the mechanical
beam with respect to the static magnetic �eld, the force can be either in or out of plane.
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Simply the force acting on the resonator can be written as: F (Ω) = I(Ω)Bl, where I(Ω) is
the drive current, B is the strength of the magnetic �eld and l is the length of the beam.
Ming et al. demonstrated magnetomotive actuation for a frequency around 1GHz [19].

In capacitive scheme of actuation, two electrodes work like a parallel plate capacitor
applying force on the resonator [24]. In order to actuate e�ciently, the electrodes need to
be at close vicinity to the resonator. The distance between the resonator and electrodes
here becomes governing factor on the electromechanical coupling term. However due to
existing parasitic capacitance in the circuit they become less e�cient at higher frequency of
operation. However, Burek et al. have shown that electrostatic actuation can work reliably
for a frequency up to 700MHz [25].

Recently some of the devices utilize piezoelectric properties in order to actuate the me-
chanical resonator. The advantage of these platforms is that its integratibility and the pos-
sibility of actuation in the GHz regime. Balram et al. showed that actuation of mechani-
cal resonators having piezoelectric properties is possible using interdigitated electrodes [26].
Other schemes of actuation involve magnetostriction or thermal actuation for example.

1.1.3 Detection schemes

The detection scheme needs to be highly sensitive, in order to detect small motion of the
nanomechanical oscillators. These schemes again can be magnetomotive, capacitive, piezo-
electric or optical for example.

In case of magnetomotive detection, it follows the actuation scheme. The resonator is
placed inside a static magnetic �eld, a movement of the resonator generates a time varying
�ux. This in turn produces an electromotive force in the loop which can be picked up by an
external circuit [23, 27].

In case of capacitive displacement detection, motion of the mechanical element changes
the capacitance between the electrodes. In order to detect this change in capacitance, one
voltage biases the capacitor and looks for a change in the voltage across the capacitor.

In the piezoelectric scheme, the polarization �eld within the strained piezoelectric ma-
terial is utilized to detect the mechanical motion. The detection is then realized by very
sensitively measuring the potential drop across the strained device [28]. However the high
source impedance of the generated piezoelectric signal makes detection challenging at higher
frequencies. Cleland et al. have proposed piezoelectric detection in NEMS using single
electron transistors (SET) in order to counter this e�ect [29].

Recent advancements in interferometric techniques in particular Fabry-Perot and Michel-
son interferometer makes it possible to detect these mechanical motions optically instead. In
case of Fabry-Perot (Figure 1.1(a)) there is a optical cavity formed between the resonator and
the substrate. As the resonator oscillates, an out of plane motion modulates the resonance of
the optical cavity and thus the intensity and phase of a re�ected laser coupled to it, allowing
to detect the mechanical motion on the optical laser re�ection. An extended version of the
Fabry-Perot scheme is used in the membrane in the middle set up in �eld of optomechanics
[30]. For a Michelson interferometer (Figure 1.1(b)), the optical signal from the resonator
and a local oscillator (LO) generates an interference signal in the detector. When there is an
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.

Figure 1.1: Detection of mechanical motion by interferometric technique: (a) uses Fabry-
Perot detection scheme where a cavity is formed between the resonator and the substrate
and (b) Michelson interferometer, a local oscillator is used to generate an interferometric
signal to detect the mechanical motion of the resonator.

out of plane motion of the resonator, a signal related to the displacement of the resonator is
detected on the interference pattern. In other kind of optical detection schemes, there is an
alternate scheme developed by the group of O.Arcizet [31]. They use a microscope objective
with a split photodiode in order to detect the mechanical modes.

1.2 Nano-Opto-Electro-Mechanical Systems

Thanks to the integrability of the optical functionalities (cavity,mirrors), it is possible to
integrate NEMS/MEMS platforms with optical circuits such as photonic crystal [32] for
example in order to design NOEMS devices. Optomechanical systems have found to be quite
e�ective in near quantum limited position read out [33, 34] or the strong back-action e�ects
to cool to its quantum ground state of motion [35].

These NOEMS platforms open up new possibilities where it is possible to realize an in-
terplay between the optic and electronic circuitry. For instance optomechanical devices can
be used for shot noise limited detection or back action modi�cation of the mechanical re-
sponse for MEMS/NEMS sensors. Integrating RF circuit and a system with both optical
and mechanical properties gives also opportunity to perform radio frequency to optical con-
version via mechanical system [36, 37, 16] and more importantly future application in signal
processing [38, 39].
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1.2.1 State of the art of NEMS/NOEMS devices

Figure 1.2: (a) Capacitive actuation and detection of a SiN nanobeam [40], (b) capacitive
actuation and optical detection of a SiN rectangular membrane realizing microwave to optical
conversion [16], (c) electrostatic control of the photonic crystal cavity by application of bias
across a p-i-n diode [41] , (d) coupling between radio waves and optical frequency by using
1D GaAs PhC [37], (e) spatially separated photonic and phononic nanobeams separated by a
narrow slot providing optomechanical coupling (f) transduction between phonon and photons
with strong optomechanical coupling by using a piezoelectric AlN PhC [36].

In past few years there has been a huge development on NOEMS devices actuated by ca-
pacitive forces while being probed by optical means. This gives an unique opportunity for
microwave to optical frequency conversion. Some of the key results are highlighted in Figure
1.2. The group of E.Weig (Figure 1.2(a)) [40] have successfully demonstrated actuation of a
suspended SiN beam by means of capacitive forces. The capacitive force polarizes the mate-
rial making a force acting on the system which is directly proportional to the amplitude of
the a.c. excitation voltage. The eigen-frequency of the system lies in the MHz regime. They
were able to show that the eigen-frequency of such systems can be modulated by an external
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d.c. voltage. However the detection scheme were completely electrical. The next example
is shown in Figure 1.2(b), this system was realized by the group of E.S.Polzik [16]. Here
they successfully transduce radio to optical frequency via an intermediate SiN rectangular
membrane. The SiN membrane is suspended over electrodes which capacitively actuate it
in a sub-MHz frequency regime. The detection is completely optical utilizing the re�ectiv-
ity of the SiN membrane. They are able to achieve an electromechanical coupling factor of
10.3kV/m with such system. The position of the membrane here is controlled via an external
piezo.

Another kind of actuation scheme proposed by the group of A.Fiore is shown in Figure
1.2(c). They showed that it is possible to design electromechanically tunable photonic crystal
cavities based on double semiconductor slabs [41]. Tuning is achieved by application of a
reverse bias on a p-i-n diode. Due to this bias an electrostatic force is generated between
the double membranes, resulting in a displacement of the upper slab. The tuning can be
reversed by reducing the bias due to restoring elastic forces.

On the other hand Balram et al. [37] used 1D PhC cavity in order to perform coupling
between optical and radio waves (Figure 1.2(d)). The used optomechanical cavity supports
co-localization of 1550nm photons and 2.4GHz phonons. The phonons are generated by
driving the optomechanical beam via Surface Acoustic Wave (SAW) generated by interdigi-
tated electrodes. The generation utilizes the piezoelectric properties of GaAs, while on the
other hand coupling between mechanics and optics utilizes the photonic properties of the
PhC. In the same group Grutter et al. [42] realized a NOEMS platform where two nanobeam
pairs patterned with photonic and phononic crystals coupled via optomechanical interaction
(Figure 1.2(e)).

Similar transduction scheme has been utilized by the group of Cleland [36], here they
utilize piezoelectric optomechanical crystal beam to interface optical phonon and microwave
signal. The system consists of a suspended AlN beam patterned with photonic crystal (Fig-
ure 1.2(f)) designed to support localized phonon modes at 4GHz and co-localized optical
mode at 196THz with strong optomechanical coupling. The device is fully compatible with
superconducting quantum circuits, potentially enabling microwave to optical quantum state
transfer.

1.2.2 Photonic crystals in optomechanics

Among the NOEMS devices presently investigated, a large part of them rely on photonic
crystals. These systems are already known for their optical properties. However their low
mass allows to use them as mechanical resonators at the same time. Moreover, their planar
geometry allows integration of electrical, optical, mechanical components on the same chip.
These devices have already been of great interest in the �eld of optomechanics. In this
section therefore we discuss in brief about the state of the art of such systems in �eld of
optomechanics.
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Figure 1.3: Fabricated photonic and phoXonic (photonic and phononic) crystals with 1D and
2D structure (a) 'Zipper cavity' fabricated by two 1D PhC doubly clamped nanobeams [32],
(b) 1D phoXonic crystal [43], (c) 2D photonic crystal clamped on both sides [44], (d) 2D
phoXonic crystal [45].

Photonic crystals (a.k.a. PhC) are dielectric structures with periodic cylindrical holes
engraved in it. These periodic holes generate an optical band gap. The band gap is deter-
mined by the hole diameter, their period and thickness of the structure. These cavities can be
exploited to implement optical cavities of di�raction-limited volumes. Such PhC can also be
designed in order to co-localize optical and mechanical modes, enhancing the optomechanical
coupling. Due to their optical properties and low masses, these devices are very interesting
candidates for optomechanics. Various kinds of structures from 1-D to 2-D PhC structures
are used in the �eld of optomechanics.

The low mass of 1D-PhC increases the frequency of operation but at the same time these
devices come with high Q-factors. The mechanical modes are usually localized at the center of
the beam, which decreases the losses due to supports (phonon tunneling for example). These
devices at the same time could be coupled to optical �eld while enhancing the optomechancial
coupling strength. The 'zipper cavity' designed by Eichen�eld[46] et al. is a combination of
two 1D-PhC nanobeams [32] creating a phononic band gap alongside with existing photonic
one. In addition to that, a single-beam design of 1D structure, named phoXonic crystal [46],
was proposed and implemented experimentally [43].

Another and more usual form of PhC membranes are 2D shaped membranes, suspended
by bridges or clamped fully to the substrate. The bridges helps to reduce losses due to
supports hence increases the overall quality factor of the system [30]. These structures are
sometimes known as the PhC slabs. Cylindrical holes are pattern in 2D manner with a
square or a triangular lattice structure. As in 1D devices, a defect can generate cavity within
the photonic crystal thereby increasing the optomechanical interaction. These membranes
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are able to generate mechanical modes in MHz frequency range by virtue of its drum like
mode or at GHz range due to the localized modes [44]. The 2D PhC slabs can not only
embed optical cavities of di�raction limited volumes but also can act as re�ectors operating
at normal incidence. The 2D PhC slabs can not only embed optical cavities of di�raction
limited volumes but also can act as re�ectors operating at normal incidence. The group
of A.Heidmann have worked extensively with such re�ective membranes : Makles et al.
[47] presented optimization of an optomechanical device based on suspended InP membrane
patterned with 2D-near wavelength grating based on 2D PhC geometry. The membrane
is used to form a compact microcavity involving the suspended nanomembrane as an end
mirror. Whereas the group of J.Lawall developed silicon nitride membrane patterned as a
subwavelength grating to demonstrate membrane in the middle optomechanical set-up [48].
With a grating re�ectivity of 99.8%, they demonstrated measurements of transmission and
refection spectra showing an avoided crossing where the two sub-cavities simultaneously come
into resonance, with a frequency splitting of 54 MHz.

1.2.3 Concept of the device utilized during this work

In order to design a NOEMS platform, which would include electrical, mechanical and optical
platform we decided to use a 2D suspended PhC membrane as the mechanical oscillator and
an optical re�ector. Since InP has some dielectric properties we decided to utilize this for
electrical actuation. The fabricated device is shown in Figure 1.5(a), the system consists
of a suspended PhC membrane attached to the substrate by four bridges. The membrane
is suspended over interdigitated electrodes used to capacitively actuate the membrane. InP
is chosen mainly because of its well known optical properties, as it works really well as an
optical re�ector. Apart from that the system has dielectric properties which makes it easier
to be excited by capacitive actuation.

Figure 1.4: (a) Scanning electron micrograph fabricated of electrode-membrane system (b)
a zoomed view of the etched cylindrical holes in the PhC membrane.

Voltage is applied externally between these two electrodes and the �eld lines penetrate
and polarize the InP membrane. This induces a capacitive force on the membrane which is
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a function of frequency at the same time as well. Therefore when the actuation frequency is
close to one of the membrane eigen-frequency, there is a major enhancement of the oscillation
amplitude of the membrane. In order to detect the mechanical motion of the membrane, we
utilize the optical properties of the InP membrane. A Michelson interferometer like set-up is
used to detect the motion of the membrane.

The probed mechanical mode of the membrane called the 'drum mode', corresponds to
motion of the entire membrane hence the name. We mainly probe the �rst order mode of the
membrane which has the highest overlap with the incident optical �eld. This mode due to its
high vibrational amplitude also is prone to exhibit nonlinearity. Hence we performed some
nonlinear dynamical study on this membrane which is discussed in details on the course of
this thesis.

1.3 Nonlinear dynamics in NEMS/NOEMS

Micro or nano-scale devices exhibit nonlinear behaviors at a relatively small excitation thanks
to their small size. Understanding of nonlinear behavior is important in order to avoid it
when it is unwanted and use it where it is needed. Recent advancement in nanofabrication
have allowed fabrication of such devices which could be driven into nonlinear regime. These
devices usually operates at the RF frequency due to their small size and have relatively high
Q-factors ranging from 102−105. At the beginning of this century, Erbe et al. demonstrated
nonlinearity in nanomechanical systems [49]. They presented a methodology to machine
nanomechanical resonators out of silicon on insulator wafers having eigen-frequencies in MHz
regime. They demonstrated higher order mechanical mixing at radio frequencies, using these
nonlinear devices. Furthermore Scheible et al. [50] showed that it was possible to push these
systems from linear to nonlinear and then to chaotic regime. Most of these nanomechanical
systems are modeled by the famous Du�ng equation. Blick et al. [51] in their comprehensive
review of NEMS, pointed out that the Du�ng equation is best suited to study nanoresonators
in the nonlinear regime. One of the most notable groups in the �eld of nanomechanics is the
group of Roukes in Caltech; their work involve from implementing nanoelectromechanical
systems [52] to tune the nonlinearity of these devices [53], to sensitive mass detection [14],
parametric ampli�cation [54] and recently phase synchronization between oscillators [55].

These devices open new �elds of applications including noise reduction, operation in
low dissipation regime or ampli�cation of a weak signal. Several coupled resonators can be
designed to be operated collectively to reduce the noise level [56]. Reduction of dissipation
can be done by operating these systems in the self-oscillation regime [40]. While ampli�cation
of a signal in a noisy background can be done by using stochastic [57] or vibrational resonance
[58]. During the PhD the main objective was to study two di�erent nonlinear behavior of our
NOEMS platform; the �rst one is called sub/super-harmonic resonance of a nonlinear system
while the second one is called as the stochastic resonance. We will discuss brie�y about the
basic concepts of these experiments. The concept and experimental results are discussed in
details in Chapter 4 and Chapter 5.
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1.3.1 Sub/super-harmonic resonance

A usual manner to excite nonlinear systems is by resonant excitation. However, nonlinear
systems may respond to excitation at its sub or super-harmonics as well. As a result they
display a resonant tongue like behavior for di�erent harmonics. These excitation schemes also
fall under the parametric excitation where a weak signal can be ampli�ed by modulating the
spring constant of the system being excited at it harmonics. The idea of sub/super-harmonic
resonance has been proposed by Zounes and Rand [59]. The phenomenon in nanomechanical
systems has been explored by Shim et al. [60] and also idea of such excitation has been utilized
by Mahboob et al. to design parametric resonator array [39]. However phase dynamics of
such systems under this regime has not been explored in details, more on this is discussed in
Chapter 4.

1.3.2 Stochastic resonance

Noise in systems in general are unwanted phenomenon, however Gammaitoni et al. [61]
showed that in a nonlinear system this noise can be used in order to amplify weak signals,
this is called stochastic resonance. Although in general stochastic resonance applies to mainly
white noise, although noises with 1/fα spectra also can be used to realize such resonance.
This technique therefore can be very useful in order to detect a low frequency signal in a noisy
background. Stochastic resonance is observed not only in nanomechanical systems but also
has been observed in other systems for example in VCSEL lasers [62]. This resonance has
been mainly demonstrated with amplitude noise in nanomechanical systems. Barbay et al.
[62] demonstrated that such resonances can be observed with polarization in VCSEL lasers.
However we have demonstrated (Chapter 5) that for nanomechanical systems such e�ects
can be observed in phase as well. Till date most of the nanomechanical systems explore
such resonance with amplitude noise, Badzey et al. [57] demonstrated such resonance for a
nanomechanical beam while Mueller et al. demonstrated for a torsional beam [63]. However
such phase stochastic resonance should exist for these nanomechanical systems for phase
noise and modulation too, this phenomenon has been explored in Chapter 5.

1.4 Organization of the manuscript

Chapter 2 gives a detailed discussion on the detection scheme and basic mechanical measure-
ments on suspended PhC membrane. The optical scheme used in the experiment is called
Balanced Homodyne Detection or simply BHD. This is a modi�ed version a simple Michelson
interferometer, to reduce the noise level and increase sensitivity. Here we talk in brief about
the actuation scheme with an external piezo of fully clamped membranes. As the actuation
frequency is swept, mechanical modes are identi�ed with a rise in the detected response.
We calculate some fundamental parameters from these experiments, including variation of
the eigen-frequency and quality factor with bridge lengths. However in order to e�ciently
actuate the membrane we go forward to integrated actuation, which is discussed in the next
chapter.
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In Chapter 3 we begin our discussion with design and optimization of the integrated elec-
trode and membrane platform. This includes optimization of the electromechanical coupling
factor, which is mainly governed by the electrode-membrane separation. Then we move for-
ward to the description of the electrode-membrane system fabrication. Here we highlight all
the necessary steps of this hybrid heterogeneous integration process of III-V semiconductor
with silicon. This includes electron beam lithography, various etching techniques, substrate
bonding technique, critical point drying for example. In the context of this we show that
how we can control the electrode-membrane separation which ultimately governs the elec-
tromechanical coupling factor. Then we discuss the integrated actuation of these membrane
in the linear regime. The actuating voltage as it will be shown, has two terms: the �rst one
is ac actuation voltage which is actually responsible for the frequency dependent response
of the mechanical oscillator. The second term is a dc term, which provides external stress
on the system. We discuss in details in�uence of both these terms on the nanomechanical
membrane. We will see that with this dc excitation, it is possible to tune the eigen-frequency
of this membrane. In this chapter we also show the process of calibration of the membrane
displacement and from there we were able to measure the electromechanical coupling coe�-
cient.

From Chapter 4 we begin our discussion on nonlinear dynamics. We will show that
it is possible to force this nanomechanical membrane into nonlinear regime with external
excitation whenever it crosses a certain threshold. Under such a regime the system has
access to two stable states instead of just one, this is referred as the bistability. We show
that such a bistability exists in amplitude as well as in phase. From here we explore what
is known as the sub and super-harmonic excitation regime. In this regime unlike resonant
excitation, the nanomechanical system is excited at the sub or super-harmonic of its natural
resonance frequency. Therefore this is also sometimes referred as the parametric excitation, as
the response is generated by modulating one of its spring constant instead of direct resonant
excitation. This phenomenon therefore is a direct consequence of the existing nonlinearity in
the system. We go ahead and perform experiments called parametric ampli�cation, where a
weak signal is ampli�ed under the sub-harmonic resonance regime. We also discuss about the
in�uence of parametric excitation on the eigen-frequency of the system under such a regime.

In Chapter 5, while discussing still about nonlinear dynamics we move to another kind
of experiments called stochastic resonance, the resonant ampli�cation of a weak signal by
application of noise. We �rst discuss the main parameters required in order to observe such
resonance. With these parameters we were then able to �rstly modulate the double well
potential with pure noise or modulation. Finally using all these optimized data we were then
able to perform stochastic resonance with phase and amplitude noise.

Chapter 6 is dedicated to conclusions and perspectives. In this chapter we highlight the
main results obtained in each chapter and propose future related experiments on these topics.
We also propose some new hybrid devices that could be fabricated in order to realize a true
electro-opto-mechanical coupling.



Chapter 2

Optical detection and external actuation
of the NOEMS platform

2.1 Introduction

This chapter is dedicated to the detection of the mechanical resonances of our nano-mechanical
resonator along with characterization of some parameters like frequency, amplitude, phase,
quality factor. The resonator consists of a suspended III-V semiconductor InP membrane,
pierced by a two dimensional photonic crystal (or simply PhC) which works as a mirror for
normal optical incidence. There are various ways to detect mechanical motion at micro-nano
scale, as for example by electrical means which involve capacitive [64]-[65], piezoelectric [66]-
[67], electrostatic [68],[69] or resonant frequency shift methods [70]. Optical means can be
used in order to detect the mechanical modes [16]-[71]; we decided to choose the later since
our system has optical properties thanks to the photonic crystal. The advantage of using
such platform is that at the same time the system can act as both mechanical and optical
resonator. This shall open the way to the implementation of a true opto-electro-mechanical
coupling using such a platform. However, during my thesis I have mainly focused on the
mechanical properties of such a resonator although optical properties were highly utilized in
order to enhance the detection e�ciency.

At the beginning of this chapter we start by discussing about the detection scheme of the
mechanical modes of such a platform using Balanced Homodyne Detection method [72]-[73].
After that we will focus on some theoretical discussion and FEM simulations on how the
mechanical mode pro�les appear and also about their natural resonance. And �nally we will
discuss about some preliminary actuation scheme and detection of the mechanical modes of
the NOEMS resonator.

2.2 Optical detection and calibration

The entire optical set-up could be segregated into two main parts; the �rst part is for the
detection of the mechanical modes by interferometric techniques. The other part being
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used for calibration which is necessary in order to determine the electromechanical coupling
between the electrical actuation and the mechanical motion of the membrane detected by
optical means. The calibration procedure is discussed in the next chapter. In this section we
will focus on the �rst part and introduce the technique called Balanced Homodyne Detection
or simply BHD used to detect the mechanical modes of the membranes.

Let us �rst introduce the basic principle of detection and then we describe how this
scheme is implemented in our set up in order to perform the measurements. The heart of
the optical set-up is basically an interferometer which is famously known as the Michelson
interferometer. The Michelson interferometer is a system that produces interference between
two di�erent optical beams. The scheme of this process is displayed in Figure 2.1(a); an
optical beam is generated from a source which is split into two beams with a beam splitter
and sent to two di�erent arms of di�erent lengths L1 and L2. At the end of this two paths are
two mirrors M1 and M2. Light re�ected from these mirrors recombines and �nally produces
an interference signal at the detector. If we de�ne the path di�erence between L1 and L2 to
be ∆L, the phase di�erence can be written as:

∆φ =
2π

λ+ ∆λ
∆L (2.1)

In case of a basic Michelson interferometer, if ∆L and ∆λ is �xed, the phase di�erence
∆φ is �xed as well. In this case the interference pattern is static. Fluctuation of wavelength
∆λ results in a �uctuation in ∆φ, this is taken care of by using a frequency stabilized laser
with ∆λ ' 0. Now if there is a �uctuation in path di�erence δ(∆L), there would be an
equivalent �uctuation in the phase di�erence δ(∆φ). This �uctuation in phase will directly
re�ect on the detected intensity and will therefore be directly related to the �uctuation in
the displacement δ(∆L). Also the frequency of phase �uctuation is related to the �uctuation
of displacement δ(∆L). Figure 2.1(b) shows scheme of detection with a single photodiode;
the photodiode converts incident photons into current (id(t)), which then can be detected in
an oscilloscope.

The scheme of a basic Balanced Homodyne Detector or commonly known as BHD is
shown in Figure 2.1(c). It is an extremely useful technique in order to measure amplitude
and phase quadratures of the incoming signal. The detected signal with power IS(t) is mixed
with a local oscillator signal of power IL(t) by means of a beam splitter. The split signal is
then fed to two photodetectors D1 and D2 which generate equivalent photocurrents i1(t) and
i2(t) each of which involves a beat signal and common noise.

The optical signal intensity IS and the local oscillator intensity IL can be written as:

IS(t) = IS + δXS(t) + iδPS(t) (2.2)

and

IL(t) = [IL + δXL(t) + iδPL(t)]eiφ (2.3)

where, IL and IS are time independent constants and δXS(t) and δPS(t) (δXL(t) and
δPL(t)) are the �uctuations in the amplitude and phase quadratures of the signal (LO). The
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Figure 2.1: (a) A simple Michelson interferoemeter, (b) single detector detection scheme, (c)
detection with a Balanced Homodyne Detector.

terms considered here are merely spatial distribution and fast oscillating term eiωt is neglected
here. The term φ is the relative phase di�erence between the signal and the LO �eld. Under
assumption that the LO �eld is much stronger than the signal i.e. IL � IS one can write
[74]:

I1 =
1√
2

[IL + IS] (2.4)

and

I2 =
1√
2

[IL − IS] (2.5)

Thus the photocurrents i1(t) and i2(t) in detectors D1 and D2 can be written as [74]:

i1(t) ∝ 1

2
[|IL|2 + ILI

∗
S + I∗LIS + |IS|2] (2.6)

i2(t) ∝ 1

2
[|IL|2 − ILI∗S − I∗LIS + |IS|2] (2.7)

Thus the current on the output of the di�erence ampli�er can be written as:

id(t) = i1(t)− i2(t) ∝ 2IL[(IS + δXS(t))cosφ+ δPS(t)sinφ] (2.8)

< i2d(t) >∼ 4I2L(δX2
Scos

2φ+ δP 2
Ssin

2φ) (2.9)

Equation (2.9) gives the variance of the output current from the di�erence ampli�er.
The equation thus shows us that it is now possible to measure the amplitude and phase
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quadratures of the signals by means of BHD. Also depending on the value of φ we can arrive
at two separate conditions:

< id(t)
2 >∝

{
4I2
LδX

2
S for φ = 0;

4I2
LδP

2
S for φ = π/2;

(2.10)

As it can be seen from equation (2.10) the detected signal in both quadratures is pro-
portional to the LO intensity and thus for a e�cient detection of a weak signal �eld, it is
desirable to have a stronger LO �eld. Thus e�ect of the BHD is to cancel the common noise
that would appear from the local oscillator or any other common source and at the same time
providing higher gain for the detected weak signal. However the calculations shown before
have been performed by considering the beam splitter to be a perfect 50/50, which unfortu-
nately is not the case for laboratory environment. This requires an additional ampli�er A on
one of the detector path (for example for D1 in Figure 2.1) in order to compensate for this
e�ect.

Figure 2.2: Optical detection scheme: Balanced Homodyne Detection.

This scheme was implemented in our system in order to detect the mechanical motion of
the PhC membrane. The membrane here acts as a mirror in one arm of the interferometer
while the local oscillator is a �xed mirror, thereby any small displacement at the membrane
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end will produce an interference at the output. The implemented scheme is displayed in
Figure 2.2. A laser signal at around 632nm is extracted from a Spectra Physics He-Ne source
(in frequency stabilized mode) which is at �rst passed though an optical isolator in order
to prevent re�ection from other parts of the set-up. This optical signal is then separated
into two parts; one is directed towards the sample and the other one is directed towards the
detectors. The splitting of the beam is performed by a Polarizing Beam Splitter (PBS) and
the fraction of splitting is controlled by placing a polarizer in front of the PBS. This path
gives an extra DC o�set to the detected optical beam in order to have a clear detection of the
mechanical modes. This path consists of a λ

2
plate and a polarizer to control the polarization

and intensity of the o�set. This path is truly crucial in order to obtain a smooth spectra of
the mechanical mode. The other optical arm is directed towards the sample which is inside a
vacuum chamber. The position of the sample can be controlled externally by virtue of some
piezo positioners (Picomotor 8752). A microscope objective is used to focus the laser on the
PhC membrane, the objective is 20x with a NA of 0.4 (Mitutoyo) which creates a beam waist
of about 0.6µm on the membrane. At the end of the optical paths, the beams are collected
by two di�erent photodetectors (Thorlabs APD 110A/M) with quantum e�ciency of η1 and
η2 and �nally are fed to a di�erence ampli�er (New Focus LB1005) which subtracts this two
electrical signals. The detectors have a quantum e�ciency of about 0.4 at the operating laser
wavelength. The subtraction gives an enhancement of the detected signals and a reduction
of the noise level. The di�erence ampli�er here also can act as a gain medium in one of the
paths in order to compensate for the beam splitter e�ect discussed before.

Another important part of the set-up is the strategy for actuation of the PhC mem-
branes which is purely electrical. The sample mounted on a piezo-electrical stack is driven
by an external signal generator which can go up to 50MHz and is synchronized with a
lock-in ampli�er (HF2LI) which demodulates the detected signal at the actuation frequency
with the chosen �lter parameters (time constant, sampling rate etc). The optimization of
the �lter parameters are crucial in order to produce a substantially smooth and reliable re-
sponse. The optimization was done by performing acquisition for various time constants
and sampling rates. The value of the chosen time constant and sampling rate were 200µs
and 103samples/sec respectively. The sample is placed inside a vacuum chamber with auto-
mated mounts which can be controlled via a Lab-View program from outside. The mounts
are steppers which are known as picomotors able to translate as small as 30nm. However the
speed of the stepper can be controlled from outside. The vacuum is controlled by one Trivac
primary vacuum pump and another Oerlikon turbo pump. The primary pump can go down
to about 10−1mbar and when the turbo pump takes control, a vacuum of about 10−4mbar
can be reached. All the experiments discussed from now on were performed under identical
vacuum conditions.

2.3 Actuation of NOEMS platform

After introducing the detection scheme we now move towards the actuation of the NOEMS
platform. We begin discussion with the modal analysis of a rectangular fully clamped un-
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Figure 2.3: (a) Scanning electron micrograph of a PhC mirror, (b) simulated re�ectivity
pro�le with the optical wavelength for various PhC hole radius, ranging from 200nm to
208nm.

pierced membrane. The rectangular membrane is a InP photonic crystal membrane which
acts as a mechanical resonator and also has optical properties [75][44]. The �rst step before
designing the membrane structures or to perform any experiment was to fully comprehend
how di�erent mechanical modes would look like and depending on that we could �nally ad-
dress the actuation scheme. In the �rst section we will introduce some theoretical modal
analysis of a rectangular membrane. This analysis to retrieve the mechanical modes will
then be extended, by FEM simulation to the exact structure we will work with. That is a
suspended rectangular membrane anchored to the substrate by four bridges still unpierced
by PhC as we are not interested in the optical properties but only in the mechanical prop-
erties. The theoretical discussion and these simulations give insight on the eigen-modes and
the eigen-frequencies of the structure, parameters that will be used in the �nal section when
measuring the mechanical response of the samples.

2.3.1 Optical properties of the PhC membrane

The suspended membrane is a rectangular 2D photonic crystal membrane. The photonic
crystal is created by etching cylindrical holes inside a 2D membrane (Figure 2.3(a)). The
membranes have a dimensions of 10×20µm2 with thickness around 260nm. For our case the
holes form a square lattice of 196nm radius having a period of 725nm. The hole arrangement,
geometries and the slab thickness are chosen in such a way so that the PhC membrane acts
as a re�ector for normal incidence. FDTD was utilized in order to simulate the re�ectivity of
this PhC structure with the incident wavelength and the spectra is shown in Figure 2.3(b).
We calculated the re�ectivity for various hole radius ranging from r = 200nm to r = 208nm.
The PhC structure showed to have highest re�ectivity for a wavelength around 1064nm,
wavelength of emission from Nd-YAG lasers. Although we found that for He-Ne laser i.e. for
a wavelength around 633nm (laser wavelength used in the experiment) the re�ectivity is still
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relatively high (about 50%). 1

2.3.2 Modal analysis of a rectangular membrane

Firstly we introduce some basic theoretical background on the mechanical modal shapes of
a rectangular membrane. Our system as it was mentioned before consists of a suspended
photonic crystal membrane. For simplicity we will consider a simple rectangular 2D mem-
brane which is fully clamped at four sides and solve the wave equation in order to determine
the mechanical modes of the membrane. The rectangular membrane has a fully clamped
structure with length and width of a and b respectively as shown in Figure 2.4.

Figure 2.4: A rectangular 2D membrane in Cartesian coordinates being �xed on four sides.

The continuity condition imposes that:

w(x, 0, t) = 0, w(x, b, t) = 0, w(0, y, t) = 0, w(a, y, t) = 0 (2.11)

where w(x, y, t) is the transverse displacement of the membrane.
Let's at this stage assume a test solution:

w(x, y, t) = W (x, y)exp(jΩt) (2.12)

where W (x, y) is the eigen-function, Ω is the angular eigen-frequency. A system under
this con�guration can described by Helmholtz equation of motion:

∇2W +
Ω2

c2
W = 0 (c being the wave velocity in a given material) (2.13)

1The membranes have indeed been optimized for this wavelength, in the context of our group's collabo-

ration with Laboratoire Kastler Brossel.
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Using the modi�ed boundary conditions:

W (x, 0) = 0, W (x, b) = 0, W (0, y) = 0, W (a, y) = 0 (2.14)

Let's use a test solution of the form:

W (x, y) = Aexp{j(kxx+ kyy)} (2.15)

where kx and ky are the wavevectors corresponding to x and y axis respectively. Substi-
tuting equation (2.15) in equation (2.13) we can determine the trivial solution as:

k2
x + k2

y =
Ω2

c2
(2.16)

Let us now de�ne kx = ±α & ky = ±β and one can write:

α2 + β2 =
Ω2

c2
(2.17)

and we can rede�ne solution of W (x, y) as:

W (x, y) = (A1exp(jαx) + A2exp(−jαx)) ∗ (A3exp(jβy) + A4exp(−jβy))

= B1cos(αx)cos(βy) +B2cos(αx)sin(βy) +B3sin(αx)cos(βy) +B4sin(αx)sin(βy)

Using boundary conditions W (x, 0) = 0 and W (0, y) = 0 we can show:

B1cos(αx) +B3sin(αx) = 0 (2.18)

and, B1cos(βy) +B2sin(βy) = 0 (2.19)

Now by knowing W (0, 0) = 0 we can conclude:

i.e. B1 = B2 = B3 = 0 (2.20)

W (x, y) = B4sin(αx)sin(βy) (2.21)

Using boundary conditions W (a, y) = W (x, b) = 0:

B4sin(αa)sin(βy) = 0 and B4sin(αx)sin(βb) = 0 (2.22)

i.e. α =
mπ

a
and β =

nπ

b
(2.23)

Substituting these values of α and β in equation (2.17) we can write:

(
mπ

a
)2 + (

nπ

b
)2 =

Ω2

c2
(2.24)
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Figure 2.5: First six modes of the rectangular membrane with �xed boundaries.

i.e. Ωmn = πc

√
m2

a2
+
n2

b2
(2.25)

And the solution of the wave equation can be written as:

W (x, y) = B4sin(
mπx

a
)sin(

nπy

b
) (2.26)

This gives the angular eigen-frequency of the (m,n) mode. However the angular frequency
as it can be seen from the equation is not integral multiple of the fundamental frequency (as
in the case of 1D string). Determination of the normalization coe�cient B4 can be done by:

< W 2(x, y) >= 1 (2.27)

Using equation (2.28) on equation (2.29) we can write:

a∫
0

b∫
0

B2
4sin

2(
mπx

a
)sin2(

nπy

b
)dxdy = 1 (2.28)

i.e. B4 =

√
4

ab
(2.29)

Thus the �nal solution of the wave equation becomes:

W (x, y) =

√
4

ab
sin(

mπx

a
)sin(

nπy

b
) (2.30)
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Figure 2.6: Suspended photonic crystal membrane structure with four bridges and the corre-
sponding eigen-modes. Here red color exhibits out of plane vertical displacement while blue
color indicates vertical displacement on the other direction.

We can now also check the orthogonality of the mechanical modes, so let us consider two
separate modes (m,n) and (p,q):

< Wmn(x, y),W pq(x, y) >=

a∫
0

b∫
0

4

ab
sin(

mπx

a
)sin(

nπy

b
)sin(

pπx

a
)sin(

qπy

b
)dxdy (2.31)

= δmpδnq (2.32)

Thus �nally the general solution of the vibrational modes of the rectangular membrane
can be written as:

w(x, y, t) =
∞∑
m=1

∞∑
n=1

sin(
mπx

a
)sin(

nπy

b
)[C1(mn)cos(Ωmnt) + C2(mn)sin(Ωmnt)] (2.33)

2.3.3 FEM simulation of the NOEMS platform

We previously discussed the mechanical resonance of a fully clamped membrane. Yet in our
experiments, we use membranes which are not exactly fully clamped. In fact the membranes
that are used for the experiment are suspended by four bridges. Aspelmeyer et al [30] dis-
cussed how clamping may e�ect the losses encountered by a mechanical oscillator. Following
their work we used instead four bridges to support the structure and compensate the loss.
The photonic crystal membrane is then suspended with the help of four bridges with width
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Figure 2.7: Mass spring damped system.

of 1µm and length which can vary starting from 2µm. The optimization of the design of this
particular kind of membranes is discussed in [76].

Knowing these speci�cations we simulated various mode pro�les for these particular kind
of membranes (Figure 2.6). The �rst step was to transfer the design of the suspended
membrane system on to a FEM simulator (COMSOL) and then use it to �nd the eigen-
frequencies and the eigen-modes. In Figure 2.5 we show here the �rst �ve modes of the
suspended structures with eigen-frequencies lying within 2-7 MHz; this range is expected
from equation (2.27) as ranges of parameters a and b are within µm range. The mode
pro�les in the �gure above also resemble the mode pro�les discussed in Figure 2.5.

2.3.4 Spectral response under forcing

In our experiments, these modes will be excited by an external force. In this section we
introduce some theoretical description of this forced oscillation regime. Let us begin by
considering a simple situation where an oscillator of mass m is suspended by some string
with spring constant k acting as a restoring force on the oscillator (Figure 2.7). At the same
time the mass is suspended inside a damped medium with a damping constant Γ. Now if the
spring is pulled downward with a force of F ′, the mass starts to oscillate inside the damped
medium. Under ideal conditions the system should oscillate forever, although in a more
practical scenario after a certain time period the damping and frictional forces would come
into play and �nally should stop the motion of the oscillator. The dynamics of such a system
can be written as:

mẍ+ Γẋ+ kx = F ′ (2.34)

A modi�ed version of the equation can be written as:

ẍ+ Γmẋ+ Ω2
m0x = F (2.35)

where Γm = Γ/m is the damping per unit mass, Ωm0 =
√

k
m

is the undamped natural

resonance frequency of the oscillator and F = F ′/m is the force acting per unit mass on the
oscillator. The idea can be extended to an oscillator under forced excitation. For our system



CHAPTER 2. OPTICAL DETECTION AND EXTERNAL ACTUATION OF THE
NOEMS PLATFORM 30

Figure 2.8: (a) Amplitude and (b) phase response of the mechanical oscillator with reduced
frequency ω for three di�erent damping coe�cients

formed by a photonic crystal membrane let's focus on one particular mode of eigen-frequency
Ωm0.

Solution of equation (2.37) gives what is known as the Mechanical Lorentzian function
and if we de�ne Fourier transform of x(t) to be X(ω), then we can write:

X(ω) =

[
F 2/4

{ω2 + (Γm/2)2}

]1/2

(2.36)

and the phase response of the oscillator can be written as:

Θ(ω) = arctan(
ω

Γm
) (2.37)

Here we de�ne ω = Ω−Ωm0 as the detuning, while Ω is the frequency of actuation. The
amplitude and the phase response with respect to reduced frequency ω is shown in Figure
2.8. In an ideal scenario when there is no damping i.e. Γm = 0, the amplitude response
X(Ω) would be a delta function. Whereas due to the presence of damping the amplitude
X(Ω) as well as the phase response Θ(Ω) become spread in frequency. As the damping
increase so increases the broadening of the response spectra (Figure 2.8). The most common
way to quantify the damping acting on the system is by what is known as the Q-factor of a
mechanical system. The Q-factor is a dimensionless quantity which is inversely proportional
to the damping coe�cient Γm and is measured as Q = ∆Ω

Ωm0
. ∆Ω is known as the FWHM of

the response and is quanti�ed as the frequency spread at half of the amplitude maxima.

2.3.5 Actuation by an external piezo

The �rst steps of experiments were performed by doing actuation of the fabricated PhC
membranes with an external piezo stack. All the membranes used in these experiments are
InP photonic crystal membranes suspended with four bridges (Figure 2.9). All the membranes
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Figure 2.9: Set up for actuation of the PhC membrane with external piezo stack.

have dimension of 10 × 20µm2 with di�erent bridge lengths (2 − 8µm) and they produce
their drum modes in the MHz regime. The piezo stacks that were used for actuation were
fabricated by PI ceramic and could produce actuation up to 10MHz. The set up for this
kind of actuation is shown in Figure 2.9; the sample is stuck on the piezo via some sticker and
after the piezo is clamped on the sample holder via screws. Contact is made on both sides
of the piezo in order to actuate it longitudinally and therefore actuate the photonic crystal
membranes indirectly. The piezo was then connected to external signal generator outside
the vacuum chamber; a sinusoidal signal is generated by this signal generator which is used
to actuate the piezo. Whenever the actuation frequency is close to the eigen-frequency Ωm0

of the mechanical membrane it will excite the corresponding eigenmode. Implementation of
such actuation scheme on PhC membrane has already been demonstrated by Antoni et al
[77]. The detection then can be performed optically, as discussed in the previous section.

The experimentally detected spectra are shown in Figure 2.10; The mechanical spectra
exhibited here is for two di�erent membranes with identical geometry i.e. they have same
dimensions (10× 20µm2) and also identical bridge lengths (2µm). As the piezo actuation is
indirect, the e�ciency of actuation process is not so high. The response is also a bit noisy
and source of this noise can be many fold; �rstly it can be purely electrical as there are
various connections from outside of the vacuum chamber to inside and �nally to the piezo
which could introduce many electrical noises. Secondly the piezo itself is a source of noise
which makes some noise to appear almost all the time even after optimization. Moreover, for
the higher order mechanical modes the spatial overlap between the laser spot and the higher
order membrane modes is not high enough to produce a considerably high response in the
detector, thereby making a lower contribution to the detected output.

We tried to detect systematically this fundamental mechanical mode for all the available
membranes with identical membrane geometry (10 × 20µm2) but di�erent bridge lengths
(2, 4, 6, 8µm). And for each case we extracted the eigen-frequency (Ωm0) and the Q-factor.
It can be seen from the Figure 2.10 that for a particular bridge length, the eigen-frequencies
(Ωm0) follow the same trend with a given dispersion of ±300kHz mainly related to the imper-
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Figure 2.10: (a) Mechanical noise spectra of two di�erent membranes with identical geometry
separated by an o�set, (b) plot of experimentally and simulated (FEM simulation) eigen-
frequency (Ωm0) .

fection in the membrane geometry (mainly bridge width or length) arising from fabrication
imperfections. While with higher bridge lengths there is a gradual decrease of Ωm0. Knowing
the geometrical parameters, in the simulations we �x the geometry while playing only with
the Young's modulus of the InP membranes. The measured Young's modulus for which we
are able to �nd a �t is around 40GPa which is of the same order compared to the bulk Young's
modulus of 70GPa. The simulated values of eigen-frequency found to suit the experimental
data quite well (Figure 2.10(b)).

The detection of Q-factor was di�cult to perform as proper �tting was di�cult to �nd
due to the existing noise in the spectra. Thus we decided to take an alternate approach in
order to faithfully recover the Q-factor. The method is known as the ring-down process; the
idea is to excite the resonator at the natural resonance Ωm0 and at the same time observe
the response signal in time domain. As soon as the excitation is turned o� the resonator
starts to decay to its rest state. Depending on how many times it oscillates before it reaches
the rest state the Q-factor could be determined. In general a resonator excited at natural
resonance Ωm0 could be described by a simple harmonic oscillator, with response:

x(t) = x0e
−Ωm0

2Q
tcos(Ωm0t

√
1− 1

4Q2
+ φ) (2.38)

Where, x0 is the amplitude of displacement and Q is the Q-factor of the resonator. The
exponential factor e−

Ω
2Q
t mainly determines how many times the resonator oscillates before

it arrives at rest state. The decay rate is generally de�ned as the time when the amplitude
of oscillation is 33% of the amplitude maxima. This happens when τd = 2Q/Ωm0, i.e.
Q = Ωm0τd/2; which gives a direct measurement of the Q-factor. The experimental method
is displayed in Figure 2.11(a); when the resonator decays to its rest state the decay trace
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Figure 2.11: (a) Ring down process in order to determine the Q-factor, (b) extracted Q-factors
by ring down process for di�erent membranes with various bridge lengths (2− 8µm)

can be �tted with an exponential decay function and from the �t decay time τd could be
extracted. This extracted τd could be then used in order to determine the Q-factor with the
method described before. For example in this particular case we extracted a τd of about 51µs
which yields a Q-factor of around 900. This method was repeated several times in order to
�nd an average value of Q-factor. And this process was performed for all other resonators
with di�erent geometries and for each case Q-factor was extracted (Figure 2.11(b)). We
observe a gradual increase in the Q-factors hence decrease in the mechanical losses with an
increase in the bridge length. However, it was di�cult to predict the Q-factors with FEM
simulations as it was not possible to introduce e�ect of surrounding losses properly.

Due to the low stress in the InP it was di�cult to fabricate InP membranes with bridge
lengths as long as described in [30]. However using lattice mismatch between the membrane
and the substrate it is possible to increase e�ective stress in a III-V material. This is achieved
for example using GaN/AlN structures (Appendix A.1). Otherwise it can be done by using
substrates which have stronger Young's modulus for example diamond (Appendix A.2).

2.4 Conclusion

In this chapter we have given a detailed description on the optical set-up in Balanced Homo-
dyne con�guration. Then we began discussion on the actuation of �rst kind of samples via
means of an external piezo stack. And �nally we observed the mechanical response of the
photonic crystal membranes under these indirect actuation regime and performed extraction
of some important parameters like resonant frequencies and quality factors. The actuation
principle however was via indirect means and hence there is a considerable reduction of the
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response amplitude. Also detection of higher order mechanical modes were not possible due
to the same problem. The target of our experiment was to explore the nonlinear dynamics of
the photonic crystal membrane system, which is not possible under this excitation con�gura-
tion. To achieve this regime it is now important to increase the actuation e�ciency. This can
be done by introducing some integrated actuation schemes which can enhance the actuation
e�ciency of the photonic crystal membrane. Integrated actuation scheme of nanomechanical
oscillators have already been implemented [78]-[36]. This kind of actuation can be achieved
by utilizing the dielectric properties of InP. Using some electrodes integrated with the pho-
tonic crystal structures on the same chip it should be possible to actuate in the desirable
frequency range of operation. The requirements here are:

1. Integration of the actuating electrodes and the mechanical resonator on the same chip.
2. Increase the actuation e�ciency while not compromising with the mechanical quality

factor of the membranes. This can only be achieved if and only if there is a spatial separation
between the actuated membrane and the actuating electrodes.

3. This separation between the membrane and the electrode governs the actuation ef-
�ciency, thus enhancement of this actuation e�ciency can be achieved by decreasing the
separation between the electrode and the membrane. This is a purely technological issue and
in the next chapter we will show how we were able to achieve a relatively satisfactory amount
of electromechanical coupling.

In the next chapter therefore we will introduce such a integrated membrane-electrode
structure. We will discuss in details the design, optimization and fabrication of the system.
And �nally will introduce some preliminary experiments on such a system in the linear regime.



Chapter 3

Integrated actuation of NOEMS in linear
rsegime

3.1 Introduction

This chapter is dedicated to the design, fabrication and excitation of the integrated NOEMS
platform. After discussing about the design and optimization, we will discuss in details
about the fabrication procedures, challenges and remedies. Finally we will discuss about the
actuation of the integrated InP PhC membrane at low power in the linear regime. In chapter
2 we discussed about the actuation via an external piezo and also included a brief discussion
on the drawbacks of such an actuation scheme. An improvement on the actuation can
be performed if we could replace the piezo stack actuation with some integrated actuation
scheme. Common voltage induced actuation schemes include piezo-electrical [39][66][38],
capacitive [71][64][17], magnetomotive [79], electrothermal [80], static dipole-based dielectric
[81] for example. The latter has less restrictive choice of system and has advantages in term
of dissipation, however su�ers from problems of integration and high frequency actuation.
For our design the goal was integration but at the same time without compromising the
quality of the mechanical modes. This could only be attained if we are able to decouple the
actuator and the resonator while at the same time being integrated on the same chip. This
could be achieved by placing the electrodes beneath the photonic crystal membranes and
then actuating the membrane via capacitive force induced due to the dielectric properties of
the InP membrane. The integration also allows control of the distance between the electrodes
and the membrane, thereby control over the electromechanical coupling. And �nally we will
also provide a very interesting scheme of experiment where we would see that it is possible to
tune the natural eigen-frequency of these micro-resonators by application of a static voltage.
These kind of experiments has already been performed where similar schemes were utilized
in order to to achieve this goal [16] [17] [15].

35
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Figure 3.1: (a) Scheme of integrated actuation of the photonic crystal membrane (b) Sim-
ulated mechanical spectrum with displacement pro�le of the �rst and second mechanical
modes.

3.2 Design and optimization of the integrated actuation

scheme

3.2.1 Interdigitated electrodes

In order to achieve e�cient actuation, primarily we need to design electrodes which are
able to excite properly the mechanical modes. We came up with a design shown in Figure
3.1(a), which is more commonly known as the interdigitated electrodes or IDEs. The choice
of the electrode architecture is mainly due to two reasons: �rstly these structures are in-
plane structures which are able to excite a dielectric medium which is situated above these
electrodes. The principle of actuation is shown in Figure 3.1(a), the electric �elds penetrate
the membrane vertically and thereby inducing a force by means of polarization of the InP
membrane. The second reason was e�ective actuation of the desirable mechanical mode;
for the experiments we decided to work with mainly the �rst mode (m = 1, n = 1), since
in principle this mode has the highest displacement compared to other modes. This makes
actuation and detection much easier compared to other higher order modes. Other reason
being that the optical detection scheme is most sensitive to this particular kind of mechanical
mode (section 2.2). The shape of this mode as it was discussed in the previous chapter is
drum like and the movement of the membrane corresponds to the movement of the entire
membrane. These kind of electrodes are very e�ective in order to actuate these kinds of
geometry. Since the electrodes are uniformly distributed along z-axis (Figure 3.1(a)) below
the membrane, they are able to homogeneously actuate these planar membranes.

To comprehend how the modes and system would behave, we decided to perform some
FEM simulation with this membrane-electrode design. The geometry is a rectangular mem-
brane (Figure 3.1(a)) with dimension 10× 20µm2 with a thickness of about 260nm and the
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bridge dimensions were selected to be 2× 1µm2. In order to reduce memory requirement for
the simulations we decided to not to draw any holes in the membrane as it mainly alternates
the optical properties but not so much the mechanical properties. Amplitude response of the
�rst two simulated mechanical modes are shown in Figure 3.1(b) and we can observe that
the modes and the eigen-frequencies lie in the same range as expected from the experimental
results with the piezo stack actuation in chapter 2. Here we do not go in detailed discussion
on the shape of the eigen-modes as it was discussed in details in the previous chapter.

3.2.2 Electromechanical coupling factor

The principal of actuation is the following: when a voltage source V (t) is connected between
the external electrodes a potential is applied on the membrane. Field lines penetrate the
membrane in a manner shown in Figure 3.1(a), these �eld lines then polarize the membrane
and as a result a dielectric force is applied on the membrane. This force causes the membrane
to oscillate at the actuation frequency. The detection principle was discussed in the previous
chapter, in short when the actuation frequency is close to the mechanical eigen-frequency,
the membrane starts to vibrate profusely and the motion can be detected by the Balanced
Homodyne Detection or simply BHD.

The system with electrode-membrane acts mainly as a capacitor; thus the force acting
on the membrane is proportional to the square of the applied voltage V (t). Thus the force
acting on the membrane is:

F = − d

dx
E(x) = −1

2

dC(x)

dx
|x=x0V

2 (3.1)

Where C(x) is the equivalent capacitance of the electrode-membrane system. Now under
small signal approximation, the �uctuating actuation force acting on the PhC membrane is:

δF =
δF

δx
|V δx+

δF

δV
|xδV (3.2)

= −1

2

d2C

dx2
|x=x0V

2δx− 1

2

dC

dx
|x=x0V δV (3.3)

Where the �rst term of equation (3.3) represents purely a static voltage acting on the
system and the second term represents in�uence of an alternating voltage acting on the
resonator. Where the �rst term of equation (3.3) represents purely a static (DC) voltage V
acting on the system and the second represents in�uence of an alternating (AC) voltage δV
actuating the resonator. The �rst term is interestingly proportional to the displacement of
the membrane δx which resembles modulation of the spring constant of the nanomechanical
resonator. The term V still exist in case of a pre-stressed membrane where we can assume a
constant stress acting on the system which can be e�ectively represented by a static voltage.
However when there is no external DC or static voltage acting on the membrane we should
be able to neglect the in�uence of the �rst term in equation (3.3) as it practically has no
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Figure 3.2: (a) Top view of the interdigitated electrodes, the electrode length remains �xed
at 8µm while the electrode widths are varied, (b) variation of the electro-mechanical coupling
factor G with the membrane-electrode separation for two electrode widths of 0.50µm (red)
and 1.00µm (green) with a period of 2.00µm.

e�ect on the membrane actuation. In that scenario only the second term remains and then
the force acting on the system is:

δF = −1

2

dC(x)

dx
|x=x0V δV (3.4)

Now any oscillator under forced oscillator regime can be described by the equation:

ẍ+ Γmẋ+ Ω2
m0x = F (3.5)

Replacing the right hand side of this equation with the expression of the forcing term in
equation (3.2), we can write:

ẍ+ Γmẋ+ Ω2
m0x = −1

2

dC(x)

dx
|x=x0V δV (3.6)

The next step was to optimize the design of the IDEs, for the optimization we decided to
look at the how the applied electric �eld couples to the mechanical motion of the membrane.
To perform this analysis we referred to Bagci et al. [16] where they provide extended anal-
ysis of a similar system (a SiN membrane without photonic crystal) actuated via electrodes
underneath by means of capacitive coupling. They proposed the coupling between the ap-
plied electric �eld and the mechanical motion to be governed by a factor G known as the
electro-mechanical coupling factor and it is expressed as:

G−1 = V C(x0)
δ

δx
(

1

C(x)
)|x=x0 (3.7)
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where, C(x) is the capacitance of the electrode-membrane system, V is the applied voltage
on the electrodes and x0 is the mean position of the membrane. In general the capacitance
C(x) is an exponential function of x which signi�es the vertical position of the membrane
(Figure 3.1(a)). This makes G automatically an exponential function of membrane position x
as well. With increasing membrane-electrode separation therefore there is a gradual decrease
in the electro-mechanical coupling factor G.

The shape of the electrodes is shown in Figure 3.2(a), the electrodes are teeth-like struc-
tures with length of 8µm which we keep �xed for all simulations, while we vary the electrode
widths taking two di�erent values of 0.50µm and 1.00µm having a �xed period of 2.00µm in
each case. For each of these electrode widths we change the electrode-membrane separation
and for each case we calculate the electro-mechanical coupling by calculating the capacitance
C(x) of the system. The resulting plot is shown in Figure 3.2(b). In each case we can observe
an exponential decrease of G with x. The value of the electromechanical coupling factor G
is found to have a higher value for an electrode width of 0.50µm. We did not go beyond
width of 1.00µm for the electrode width as it puts technological restrictions from the point
of view of fabrication. When we were in the process of designing the electrodes, due to some
technical issues we were restricted to an electrode membrane separation of about 0.4µm,
this point is highlighted in Figure 3.2(b) where theoretically we predict an electromechanical
coupling factor of about 4nm/V .

3.3 Fabrication Process

Figure 3.3: Fabricated PhC membrane-electrode structure (a) Top view of the electrode
membrane with the extended gold electrodes towards their connecting pads (b) Close view
of a fully suspended PhC membrane with interdigitated electrodes underneath.

In the previous sections we introduced the hybrid photonic crystal electrode structure in
details and discussed about the optimization of the electrode structure. In this section we
will discuss about the fabrication of such a hybrid structure. The photonic crystal membrane
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is a rectangular InP structure with a thickness of about 260nm suspended 400nm above the
interdigitated electrodes with a typical teeth length of 8.00µm. Figure 3.3 shows the scanning
electron micrograph of fabricated electrode-membrane structure.

The main challenges of the fabrication of such a device is �rstly the heterogeneous in-
tegration of electrodes with the suspended membrane. Control of the distance between the
bottom of the suspended membrane to the top of the electrodes is crucial in order to achieve
a satisfactory level of electro-mechanical coupling. Also, in order to have a proper mechanical
resonator it is essential to have a fully suspended structure over the electrodes.

3.3.1 Fabrication challenges

Figure 3.4: Main four fabrication steps in order to create suspended photonic crystal mem-
brane on top of the interdigitated electrodes fabricated on Si substrate. Step 1: electrode
patterning, step 2: bonding of electrode and InP substrate, step 3: patterning of PhC, step
4: creation of MESA and membrane release.

The entire procedure of fabrication mainly consists of four main steps (Figure 3.4). The �rst
step involves electrode patterning on top of the Si substrate which has thickness of about few
hundred microns (typically around 250µm). The second step is to bond this interdigitated
electrode on Si-substrate with an InP substrate in order to form the electrode-membrane
system. The third step is to etch periodic cylindrical holes on the InP membrane to form
a photonic crystal structure, this step involves electron beam lithography and various dry
etching techniques. The fourth step is to design a MESA to hold the suspended photonic
crystal structure, like the earlier step this also involves etching and lithography techniques.
This step also involves release the membrane and making it suspended. This step involves
wet etching techniques along with a special technique known as the Critical Point Drying
or simply CPD. Achieving a suspended membrane structure is very important in order to
have a proper mechanical oscillator which generates vibrational mechanical modes in the
MHz regime. Also distance between the electrode and the suspended membrane is really
important in order to achieve a high electro-mechanical coupling factor (Figure 3.2(b)). All
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Figure 3.5: Schematic of e-beam lithography with positive/negative tone resist.

these are achieved mainly on the last step which will be discussed later. The four main steps
are described in the following sections in details.

3.3.2 Various patterning techniques

In this section we will brie�y introduce di�erent substrate patterning techniques used for
the fabrication of the targeted device. This will mainly consist of two sections: at �rst we
will introduce the basis of electron beam lithography and then the dry etching techniques
which are essential in order to pattern and structure the PhC+Mesa structure as well as the
electrodes. The entire fabrication process rely on three di�erent electron beam lithography
steps and two dry etching steps.

3.3.2.1 Electron beam lithography

Electron beam lithography is a specialized lithography technique for drawing patterns on
substrates with a very high resolution. The resist spin coated on the sample is sensitive
to the incoming electron beam and thus deposits the incoming electron beam energy in the
desired pattern in the resist �lm. The main advantages of this process is �rstly that it is
capable of producing patterns with very high resolution and secondly the �exibility of the
technique which makes it workable with various kind of materials. The alignment process
allows a positioning accuracy which is better than 50nm. However the technique comes with
some drawbacks; for example this technique is relatively expensive and complicated.

The main idea of e-beam lithography is similar to any other lithography techniques, for
example like optical lithography. The substrate is coated with thin layer of e-beam resist.
Now when this layer is exposed to incident e-beam, depending on whether the resist is positive
(or negative) the exposed (or unexposed) layers would be dissolved. This process of using
positive or negative mask is shown in Figure 3.5.

For the fabrication procedure we have mainly dealt with structures that have sizes ranging
from few hundred of nanometers to few tenths of microns. Thus in each step we have worked
exclusively with electron beam lithography. Since each sample in general has roughly only 20
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membrane-electrode structures, the writing process although being quite slow doesn't take
too long. Fabrication of each sample in general goes through three di�erent electron beam
lithography steps; the �rst one being the design of the interdigitated electrodes. The second
step is focused on generation of the photonic crystal on the InP. And �nally the last step is
the generation of a mesa structure to create a suspended InP membrane-electrode structure.
For the �rst two cases we have used a positive tone resits known as PMMA (PolyMethyl
MethAcrylate), this is one of the most popular positive tone resist. For the later we use a
negative tone resist known as HSQ (Hydrogen SilsesQuioxane) [82][83], which also acts as a
hard mask for dry etching.

3.3.2.2 Dry etching techniques: CCP-RIE and ICP-RIE

A dry etching is a process to remove materials, typically masked pattern of substrates by
exposing them to an incoming beam of ions. A typical example of dry etching is what is
known as the RIE or Reactive Ion-Etching. RIE works in a low pressure environment with a
surrounding of chemically reactive plasma. The plasma is generated under a vacuum by an
electromagnetic �eld (RF �eld), hence the name.

The principle of operation is displayed in Figure 3.6(a), the plasma is initiated by applying
a RF �eld to the wafer platter. The �eld typically has a frequency of 13.6MHz with a power
of few hundreds of Watts. The plasma creates some ions together with some chemical radicals
that chemically react to the material one wishes to etch.

An example of RIE process is CCP-RIE (Capacitively Coupled Plasma RIE), this process
uses a combination of both physical and chemical etching to have a high level of resolution.
The ions are accelerated towards the sample by application of a high voltage between the
electrodes, this results in a physical etching of the substrate. While on the other side, the
high energy collision between the etchant and the bombarding ions helps to create more
reactive species which could react chemically and thus can be removed quickly. Since this
process uses a combination of chemical and physical etching technique, it is a much faster
process compared to either pure chemical or pure physical etching techniques. The process
of CCP-RIE is elaborated in Figure 3.6(b) & (c), the cations are produced from reactive
gases which are then accelerated with high energy by the electrodes towards the substrate
for reaction. Other than that to achieve a suitable etching condition, factors like applied
electrode power, gas �ow rate, chamber pressures are also crucial. For di�erent processes
each factors need to be optimized in order to have a desired pattern.

The advantage of this process is its directionality; since the process is mainly physical
there is a high control over the etched pattern. Also since the process is a little selective
between masked and unmasked pattern, use of a hard mask is required to transfer a desired
pattern. On the other side compared to wet etching this process is much slower, although
with wet etching it's almost impossible to design some structures with high aspect ratio.
However, when anisotropic etching is required dry etching process can be really quick and
e�cient.

The disadvantage of CCP-RIE is that the ion-energy and density can not be controlled
independently. However, this comes with an added advantage with a higher selectivity of the
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Figure 3.6: (a) Operational principle of CCP-RIE plasma (b) arrival of the accelerated ions
on top of the substrate, (c) removal of substrate by a combination of physical and chemical
etching;

available materials. Another variation of this technique is known as the Inductively Coupled
Plasma RIE or simply ICP-RIE. In this case the density and energy of the incident ions can
be controlled independently with the ICP and RF power independently. The ion acceleration
is still done by the capacitive coupling, however the control of the ion density gives an added
degree of freedom on this process.

3.3.3 Electrode patterning and Substrate bonding

In this section we will talk about the �rst step of generation of the electrode-membrane
NOEMS structure. This design is based on what is known as the adhesive bonding of
two di�erent substrates. The most well known processes can involve organic and inorganic
�lms deposited on the substrate surfaces. The most popular bonding processes involve SU-8
and BCB (benzocyclobeutene) which are specialized for MEMS/NEMS productions. This
heterogeneous integration originally was not developed for optomechanics, but rather for
MEMS/NEMS or advanced nanophotonic circuitry in order to integrate active and passive
functionalities. There are many advantages of using the substrate bonding techniques; for
example this process does not use electric current or voltage and operates at a relatively low
temperature. This low temperature operation allows integration of electronic/electrical cir-
cuitry or micro structures in the substrate. Secondly, the very nature of the bonding process
makes it possible to integrate di�erent substrates like silicon, semiconductor materials, metal
and glass for example. Among the drawbacks, the most important one would be the weak
control on the dimension of the intermediate bonding layer [84]. Among others the possibility
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Figure 3.7: (a) Mask used for the IDE patterning, (b) fabricated gold IDE's on top of the Si
substrate, (c-f) patterning of the electrodes on top of the Si substrate.

of corrosion due to out-gassed products, thermal instability and penetration of moisture that
limits the reliability of bonding process can be crucial [85].

Electrode patterning and design

The �rst step of the fabrication process was to pattern interdigitated electrodes (IDEs) on
the Si substrate. First of all a mask is prepared with the help of a specialized mask designing
software (Tanner L-Edit) which is then transferred to the electron beam lithography (Vistec
EBPG 500+) which operates at a working �eld dimension of 520× 520µm2 and at a highest
available resolution of 0.5nm. The optimization of the electrode pattern was discussed in the
previous section; all the electrodes have a length of L = 8µm and with a �xed electrode width
which varies between the membrane-electrode structures ranging from 0.5µm to 1.5µm.

First of all PMMA is deposited on the silicon substrate with help of a spin coater (Fig-
ure 3.7(c)). For the coating we choose PMMA A7 with speed of 4000rpm, acceleration
4000rpm/sec and for a duration of 30sec. This yields a PMMA pattern of 450nm of thick-
ness. After that the PMMA is soft baked inside an oven with a temperature of 160°C for
around 15'. This is a standard procedure for e-beam lithography for us, from here whenever
we use PMMA as a mask for the lithography we would use exact same parameters. Now the
sample is ready for e-beam exposure, it is then put inside the lithography chamber where
the pattern is written on top of the wafer (Figure 3.7(d)). This process is followed by re-
sist developing by a 1:4 IPA:MIBK (Isopropyle alcohol:Methyl isobutyl ketone) solution for
30sec, which is followed by 15sec IPA rinse in order to clean the obtained openings (Figure
3.7(e)). Such a low concentration of MIBK solution is used in order to preserve the maximal
resolution with the PMMA resist.
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After the pattern was developed, it was placed into metal deposition chamber. The
metallization process works in vacuum where at �rst the metal is heated over the boiling
temperature and then letting condensation deposition on top of the substrate's surface. This
yields an uniform coating of metal on top of the electrodes (Figure 3.7(f)). A combination of
Ti/Au with thickness 20/200nm is deposited on top of the substrate which follows the pro�le
of the substrate governed by lithography. The combination of Ti is used with Au in order to
make sure that the metal sticks better with the Si substrate. After the metal deposition is
performed, the sample is placed in an ultrasonic bath with Trichloroethylene. The ultrasonic
bath now removes the sacri�cial material (in this case PMMA) along with the metal that
is covering it leaving behind only the metal part directly on the silicon substrate (Figure
3.7(g)). The generated interdigitated pattern is shown in Figure 3.7(b). At the same time
marks are drawn on sample that are at known locations with respect to the electrodes. They
are used in the following sections in order to precisely position di�erent layers.

Substrate bonding

After the metallization is performed the next step is to bond this silicon substrate with
electrodes and the InP/InGaAs substrate [82]. The InP/InGaAs substrate consists of three
layers: the �rst layer is the InP membrane layer which is grown by MOCVD with a thickness
of 260nm (Figure 3.8(b)). The second layer is a thin layer of InGaAs (1µm thick) known as
the etch-top layer. And �nally there is a thick non-epitaxial InP substrate of few hundred
microns. At the end of the bonding process only the 260nm thick InP membrane would
stay on top of the Si substrate. The standard processes for wafer bonding involves either
SU-8 or BCB. For fabrication of our system we decided to choose the later due to mainly
two reasons. Firstly BCB is widely used in NEMS and MEMS system with electronics [86].
Secondly its optical properties (mainly refractive index) could give us opportunity to add
optical components like waveguide in the system. The thickness of the intermediate BCB
layer can be chosen to be as low as few nanometers depending on the concentration of the
diluting mesitylene solution (C9H12, derivative of benzene). For the adhesive bonding of
InP/InGaAs substrate on top of Si substrate we follow the process developed by Roelkens et
al. .

To perform the adhesive bonding successfully, deposition of SiO2 layer is required on
top of the InP/InGaAs substrate. This acts as an interface between the InP membrane and
BCB and its thickness determines the separation of membrane with the electrodes i.e. the
electromechanical coupling. In general only a few nanometers of SiO2 is su�cient in order
to achieve successful adhesive bonding. However, too thin SiO2 layer can make membrane
release di�cult, whereas higher thickness of this layer degrades the electromechanical cou-
pling. Thus we arrive at an optimal separation of between 100 − 400nm in order to have a
satisfactory coupling. For the designed membrane electrode system we use a SiO2 layer with
thickness of 400nm.

In order to have a bonding with high quality and e�ciency it is essential to have a
clean substrate surface, for that a strict sample cleaning procedure is required. Firstly both
substrates are cleaned in an ultrasonic bath with acetone at a frequency of 80Hz for 5'. This
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Figure 3.8: Process �ow of adhesive bonding between InP substrate and Si substrate with
the help of BCB as the intermediate layer.

is followed by a cleaning with IsoPropyl Alcohol (IPA) and N2 drying. This is preceded by
an oxygen plasma cleaning for 2'. We used a oxygen �ow rate of 50sccm and a pressure of
100mTorr. Whenever oxygen plasma is used from now on, identical parameters will be used.
This step is necessary in order to remove the remaining resist on the substrate surface. It also
creates a native oxide layer on top of the substrate surface which leads to better adhesion
while bonding.

Next step is the deposition of the adhesive BCB layer on top of the Si substrate (Figure
3.8(c)). For this step it is essential to have a smooth and uniform BCB layer on top of
the electrodes. This requires immersion of the electrodes inside the BCB layer. Since the
thickness of the electrodes is around 200nm, this limits the thickness of BCB around the same
value. For the deposition we use a combination of BCB with Mesitylene at a ratio of 4:3.
Use of syringe with �lters is necessary in order to block unnecessary particles in the solution.
Finally the BCB layer solution is spin coated on top of the silicon substrate with the help of
a spin coater. A speed of 5000rpm, an acceleration of 2000rpm/sec and a duration of 30sec
is chosen for the deposition. This is followed by a soft bake at 80° for about 15'.

On the other hand the cleaned InP/InGaAs substrate is prepared for the SiO2 layer
deposition (Figure 3.8(d)). This deposition is achieved in two steps: in the �rst step a
25nm thick layer of SiO2 is deposited on top of the substrate by using PECVD (Plasma
Enhanced Chemical Vapor Deposition). This is necessary as this deposition technique does
not damage the InP surface as it does not involve ion bombardment. For the next 375nm of
SiO2 deposition we use sputtering technique to improve adhesion compared to the PECVD
deposited silica. This however does not degrade the underlying InP layer as it is now protected
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by the thin SiO2 layer created by PECVD. The SiO2 layer with the BCB layer �nally de�nes
the electrode-membrane separation of around 400nm.

Finally when both of these dies are prepared they are ready for the bonding procedure.
For this process we use a high precision wafer bonding machine: SUSS MicroTech SB6. The
wafer is heated to a temperature around 320°C and a pressure of around 150mbar per sample
is applied for a duration of around 30′. This temperature and pressure results in complete
polymerization of BCB and �nally a layer with uniform surface and thickness. The bonded
substrates are displayed in Figure 3.8(e).

After the bonding is performed, the next step is to remove the substrate and etch-top
layer in order to expose the thin InP membrane. To achieve this the �rst step is to clean the
InP substrate surface with a H2SO4 : H2O2 : H2O solution (3:1:1) for a duration of 1'. Next
a chemical etching of the InP substrate is performed by HCL (40%) for a duration about 1
hr (Figure 3.8(f)). Finally the etch top layer is removed by the same H2SO4 : H2O2 : H2O
solution by etching it for few seconds (Figure 3.8(g)). A change of color of the bonded thin
InP layer is a very good indicator of the exposed InP membrane.

3.3.4 Patterning photonic crystal: optical component

After adhesive bonding, the thin InP membrane is now on top of the substrate. Thereby the
next step is to design the photonic crystal membrane. The alignment between the photonic
crystals and the electrodes is done by using alignment marks on four corners of the Si sub-
strate. This procedure con�rms that the photonic crystals are drawn correctly on top of the
interdigitated electrodes. The method is to etch cylindrical holes in the InP structure, the
holes are of 196nm radius and with a period of 725nm. We design a pattern of square lattice
structures which generates a band gap around 1µm. Generation of this photonic crystal
holes consists of few steps: �rstly patterning of holes via electron beam lithography, then
dry etching of the cylindrical holes and �nally removal of the mask. In order to etch InP
membrane ICP-RIE is required, but the positive resist used for e-beam doesn't have enough
resist against the bombarding ions. Thus we require an intermediate Si3N4 'hard mask' in
order to protect the underlying InP layer. Finally the InP photonic crystal will be etched
through the patterned Si3N4 structure. Design of the holes requires high precision as these
will �nally govern the optical properties of the photonic crystal membrane.

The deposition of Si3N4 is performed by PECVD at about 280°C which creates a Si3N4

layer of 300nm thickness. This hard mask ensures that the underlying layer is protected
while performing ICP-RIE (Figure 3.9(c)). Due to the requirement of high precision we use
a positive mask (PMMA). The PMMA is spin coated on top of the substrate (Figure 3.9(c)),
the deposition procedure follows identical method described before . Then the substrate is
exposed under e-beam with the designed mask and the exposed resist remains undissolved in
the resist developer thereby creating the desired pattern (Figure 3.9(d,e)). The electron beam
process used electron beam energy of 100keV , a resolution of 1nm and a dose of 1200µC/cm2.
After that the pattern needs to be transferred to the Si3N4 mask. This is done by etching
the hard mask through the holes created in PMMA after resist development. This process
is performed with CCP-RIE under a SF6 gas environment with a very low gas �ow rate of
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Figure 3.9: (a) The mask used for patterning the photonic crystal, (b) optical image of
the fabricated photonic crystal structure, (c-i) process �ow of creation of photonic crystal
pattern.

1.4sccm, low RF power and a pressure of 8mTorr (Figure 3.9(f), Figure 3.10(a)). These
parameters are necessary in order to create vertical cylindrical holes inside Si3N4 mask. This
step is usually followed by a removal of PMMA resist under an O2 plasma environment
(Figure 3.9(g)). The monitoring of PMMA removal is done by an integrated interferometer
inside the RIE itself, this helps us to stop the etching as soon as we reach the Si3N4 layer.

Figure 3.10: SEM picture of a photonic crystal lattice cross-section after its transfer into (a)
Si3N4 mask and (b) into a InP layer.

After the PMMA has been stripped, the next step is to �nally draw cylindrical holes
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inside the InP layer (Figure 3.9(h), Figure 3.10(b)). This step requires high precision and
it is imperative to make sure the drawn holes are perfect cylinders with smooth walls. This
ensures high optical quality of the PhC membrane. For this step we use ICP-RIE reactor,
mixture of three gases: HBr, O2, He was used at low pressure. This results in a long mean
free path of the volatile by products and thereby making it easier to draw them away from
the chamber. In general etching of III-V semiconductor family can be performed by halogen
gases for example F, Cl and Br. For our process we use Br as the etchant as it provides more
energy due to its higher atomic mass. Oxygen is added in the medium in order to achieve
sidewall passivation during etching process. For the etching process we use ICP power of 60W ,
working pressure of 0.5mTorr, HBr/O2/He gas ratio: 10/0.6/30. After this etching process
the photonic crystal is successfully transferred to the InP layer. This procedure ensures high
sidewall quality and thus can be employed for fabrication of photonic components with high
optical qualities (Figure 3.10(b)) [87]. This step is followed by removal of Si3N4 layer by
CCP-RIE (Figure 3.9(i)), here again we follow the interferometer signal in order to stop
etching as soon as we reach the InP layer. The fabricated PhC structure is shown in Figure
3.9(b).

3.3.5 Patterning the mesa: mechanical component

After the PhC holes are patterned the next step is to create the suspended membrane struc-
ture what is known as the mesa. The alignment procedure is repeated again with the same
marks on the Si substrate in order to make sure the mesa is drawn at correct position. The
mesa structure consists of the 10 × 20µm2 membrane with the four bridges of dimension
1 × 2µm2 and the pads supporting the bridges on the other side having a dimension of
20 × 20µm2. Since the dimensions in concern are in the micron range, high resolution is
not required. For this reason we switch from the positive tone PMMA mask to the negative
tone HSQ mask [88]. Use of a negative mask not only reduces the electron beam exposure
time but also avoids use of the hard Si3N4 mask as HSQ itself is hard enough to resist ICP
etching. These factors reduce the extra steps of Si3N4 layer deposition and removal. The
process �ow for the creation of the mesa structure is displayed in Figure 3.11(c-g).

The �rst step involves a InP surface preparation technique. This step involves at �rst a
CCP-RIE with O2 plasma for a duration of 2'. This is followed by a soft baking of 5' at a
temperature of 160°C. After the surface is ready, HSQ is deposited by spin-coating (Figure
3.11(c)). The parameters of spin coating are as follows: 1000rpm speed, 1000rpm/sec velocity
and a duration of 30sec. This results in a deposited HSQ of a thickness around 160nm. Then
the sample is baked on a hotplate at 90°C for a duration of 40'. Now the sample is ready for
e-beam exposure (Figure 3.11(d)), the electron beam process used an electron beam energy
of 100keV , a dose of 7000µC/cm2 and a resolution of 20nm. After the e-beam exposure the
sample is treated for 60� in a AZ400k : H2O (1:4) solution which dissolves the unexposed
part of the HSQ resist (Figure 3.11(e)). This is followed by a ICP-RIE etching (Figure
3.11(f)) with identical parameters as described in the previous section. After this process the
mesa and photonic crystal holes are created, however the membranes are not still suspended.
Along with the easy mask transfer to the InP layer, HSQ resist also helps to obtain a low



CHAPTER 3. INTEGRATED ACTUATION OF NOEMS IN LINEAR RSEGIME 50

sidewall roughness and good vertical structures.

Figure 3.11: (a) Mask for the design of Mesa, (b) optical image of the fabricated PhC
membrane with the Mesa (c-g) process �ow of creation of mesa structure with suspended
PhC membrane.

3.3.6 Membrane release and Critical Point Drying

To achieve suspended InP membrane now it is necessary to etch the sacri�cial SiO2 layer
underneath InP layer. This is done by using a diluted AF solution (10%) for underetching
the InP membrane (Figure 3.11(g)). The sample is placed inside the solution for about 15'
in order to fully remove the sacri�cial layer while also removing the HSQ resist.

The following step after under-etching of the sacri�cial layer is to consecutively clean the
sample in water and then drying. However, the use of water results in capillary adhesion
between the bottom layer of InP and top of the substrate. This makes proper release of
suspended membrane very di�cult (Figure 3.12(a)).

This problem however could be overcome by using a technique specialized exclusively for
this purpose called Critical Point Drying abbreviated as CPD. At the critical point liquid and
gaseous phase of a physical system is indistinguishable. Compounds which are at the critical
point can be converted into liquid or gaseous phases without going through the interface
between the liquid or gaseous phase thereby avoiding the damaging e�ects discussed before.
However, in practical situations application of this method by using water is not feasible as
critical point of water lies at 374°C and at 229bar, which will destroy any micro-structure.
Thus a more practical solution of this problem is to use CO2 as the liquid medium whose
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Figure 3.12: Comparison of membrane fabricated (a) without critical point drying (b) with
critical point drying.

critical point lies at 31°C and a pressure of around 74bar (Figure 3.13). These conditions
are more rational for the micro/nano structures and also comparatively easier to maintain.
At the same time CO2 is dangerous as a transitional �uid as it is not miscible with water
at all. The water thus has to be replaced with another liquid which is miscible in water as
well as in CO2 at the same time. This problem is solved by using isopropanol, this exchange
�uid will not be used for critical point drying as its critical point is considerably high (241°C,
61bar). Rather at pre-critical point drying step water is replaced with isopropanol. The
transfer of sample from a water bath to isopropanol bath is crucial; it has to be quick and
at the same time it is necessary to make sure the liquid adhered to the bottom surface does
not roll down which could lead to collapsed membranes even before the CPD process is
used. In the chamber then the isopropanol medium is replaced by liquid CO2, which is then
brought to the critical point and converted to gaseous phase by decreasing the pressure at a
constant critical point temperature (Figure 3.13) [89]. The result of this step is suspended
membranes with almost 90% �delity (Figure 3.12(b)). The collapsing of the remaining 10%
of membranes we believe comes from other processing or post-processing steps rather than
the capillary adhesion e�ect.

3.3.7 Wire bonding to the external environment

This is the last step of the fabrication of the NOEMS platform. This step is to connect
the on-chip electrodes with the external environment. This is necessary as this way the
electrodes could be driven by signal generators from outside the vacuum chamber. The
process of wire bonding is quite straight forward; the sample is �rstly placed on a hot plate
at a temperature of around 100°C. Keeping the temperature at this constant value, Au wires
of diameters around 50µm are pressed on top of the on chip electrode pads (Figure 3.14(a)).
With optimized conditions (for example; force on the tip, pressure on the wire, length of
the wire loop) the wire sticks to the electrode pads on the chip and now this wire can be
brought outside to connect to some external medium (Figure 3.14(b)). Even though these
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Figure 3.13: Phase diagram showing the supercritical transition of CO2 [89].

wires have low diameters, they are quite robust and can support frequency up to 100GHz.
For our experiments as we mainly focus in the MHz regime thus these wires can be used
without any issues. The diameters of the wires however limit the design of the electrode
pads on chip. Also the 'ARIES' chip on which the sample is stuck is supplied only with 44
pins which also limits the connections. For these reasons we are limited to fabricate only 20
electrode-membrane systems on a single chip.

Figure 3.14: Wire bonding: connecting on chip electrode pads (a) to the external medium
(b).
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3.4 Actuation in linear regime

The scheme of actuation is quite simple and it is shown in Figure 3.15: the system consists
of a signal generator which is able to excite the membrane electrode system up to 50MHz.
One arm of the signal generator is fed to the electrode and another arm is connected to the
lock-in ampli�er which locks to the actuation frequency. The detected optical signal is fed to
a photodetector which converts the optical signal to an electrical one and this signal is then
fed to the receiver on the lock-in ampli�er.

Figure 3.15: Actuation scheme of the integrated electrode-membrane NOEMS system.

3.4.1 Measurement of the mechanical response spectra

In this section we will look into the experimental results obtained by actuation of the PhC
membrane via the IDEs and the interferometrically detected noise spectrum. In order to fully
comprehend the experimental results we will refer to equation (3.6), where we got rid of the
second part of the forcing term which is related to the DC stress applied to the system. The
AC voltage applied to the system is actually the voltage which is responsible for excitation
of the eigenmodes. When the actuating frequency is close to the one of the eigenfrequencies,
the oscillator starts to oscillate and thereby producing signal at the receiver end. Thus in
general the actuating voltage can be written as:

V (t) = Vaccos(Ωdrivet) (3.8)

Here, we de�ne Ωdrive as the driving frequency applied to the oscillator externally. When
Ωdrive ∼ Ωm0 the oscillator starts to oscillate and amplify the motion of the corresponding
eigen-mode. In the �rst experiment we �x VDC = 0V and �x Vac = 5V . Then we vary the
driving frequency Ωdrive, this frequency is varied from 2MHz to 17MHz and the resulting
spectrum is displayed in Figure 3.16. Between 2− 10MHz six mechanical modes are clearly
visible (Figure 3.16(b)) and the corresponding simulated modes (FEM) are shown in Figure
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Figure 3.16: (a) FEM simulation of 6 di�erent mechanical modes, (b) observed mechanical
spectra while the membrane is actuated externally via interdigitated electrodes; actuation
up to 20 MHz was done in this case.

3.16(a). In the inset we show two higher order modes between 10− 17MHz. Although here
we scan up to 20MHz but thanks to the integrated actuation scheme it is possible to scan
up to any desirable frequency (no cut-o� frequency for applied voltage). Response of the �rst
six modes are quite strong and easily observable while the two higher order modes (between
10− 17MHz) are comparatively weak and di�cult to detect. The reason can be many fold;
�rstly the amplitude of displacement is smaller for higher order eigen-modes due to lower
Q-factors. Secondly for higher order mechanical modes the overlap between the incident
laser spot and the mode pro�le is smaller, thereby reducing the detected intensity. The third
reason can be attributed to the electrical noise present in the system. With higher frequency
there is a gradual enhancement in the noise level of the response (Figure 3.16(b)) which
degrades the signal to noise ratio (SNR) of the response. Thus even if there is considerably
high motion of the membrane for this mode, the response might be buried in the noise itself.
And the �nal reason can be attributed simply to the electrode design. The choice of the
electrodes as it was mentioned previously, was mainly due to the fact that it was an e�cient
design strategy in order to uniformly actuate the �rst mode i.e. the 'drum mode'. While as
we move towards higher order modes it becomes more and more di�cult to actuate them
with similar e�ciency with this kind of electrode design.

In Figure 3.17 we zoomed on the mechanical spectra of the �rst two modes each for a
drive Vac = 1.0V . Figure 3.17(a) displays the amplitude as well as the phase response of the
mode 1. We are able to retrieve the amplitude as well as the phase response of the system
thanks to the BHD scheme. This mode is centered around 2.75MHz and a Lorentzian �t
yields a Γm of 0.9kHz, that is a quality factor of around 1000, which is of the same order
compared to the one extracted for piezo stack excitation in the previous chapter. So we are
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Figure 3.17: (a) Mechanical displacement amplitude as well as phase response of the �rst
drum mode for Vac = 1.0V , (b) mechanical displacement amplitude and phase response of
the second mode for Vac = 1.0V .

able to achieve what was promised in the last chapter i.e. (1) excite the eigen-modes more
e�ciently, (2) increase the coupling between the electrical �eld and the mechanics and �nally,
(3) integration without loosing quality of the mechanical response which is governed by the
quality factor of the NOEMS platform. As the frequency of actuation is modulated around
the eigenfrequency the phase of the response rotates by 180°. While the second mode is
displayed in Figure 3.17(b), this mode has Ωm0 = 3.2625MHz and the evaluated Γm is about
1.3kHz for this mode. As the Q-factor is related inversely to the damping factor Γm, one
can conclude that this particular mode has a lower value of the Q-factor compared to the
�rst one.

3.4.2 Power dependence of the eigen-modes (under AC actuation)

In the next set of experiments we varied the AC actuating voltage Vac and performed a sweep
of Ωdrive between 2−10MHz for di�erent values of Vac ranging from 0.25V to 2.5V . We made
sure that the system is still well below the nonlinear threshold and for each sweep all other
conditions like vacuum, �lter parameters, sweep range were kept constant. The resulting
spectra is shown in Figure 3.18(a). At the lowest voltage Vac = 0.25V only the �rst order
mode is barely visible while the higher order modes do not appear. The 3rd mode starts to
appear from Vac = 0.50V while the second mode seems to appear from Vac = 0.75V . This
mode apparently is less visible because of the optical probing scheme which was discussed
in section 3.4.1. At around Vac = 2.5V as many as �ve modes are visible in the considered
spectral range. Response of the �rst three modes were �tted with the Lorentzian function
and the Q-factor was extracted for each case. The extracted values of Q-factor is plotted in
Figure 3.18(b) for the �rst three modes. These three modes exhibit quality factors which are
around 1000 inside the linear regime. There is a mild decrease of the Q-factor with Vac, this
might be due to enhanced dissipation at a higher actuating power.
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Figure 3.18: (a) Power dependence of the �rst and second mode within the linear regime (b)
Q factor dependence on the applied Vac(V ).

3.4.3 Calibration of the displacement

Figure 3.19: Set-up for optical calibration of the membrane displacement.

After we could retrieve the mechanical modes, one of the �rst objective was to perform proper
calibration of the membrane displacement. This process is essential in order to retrieve the
electro-mechanical coupling coe�cient. The calibration process was based on the method
followed by Yeo et al. [31]. The sample is placed on top of a stage which is controlled by three
piezomotors called picomotor (Newport), which gives mobility along the three axes. As the
picomotors could be controlled externally with an external Lab-View programming it gave us
an added advantage. In order to comprehend properly how the calibration works we introduce
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Figure 3.20: (a,b) XY calibration procedure of the membrane displacement; the highlighted
regions in both �gures shows the region corresponding to the laser spots (at two membrane
edges) shown in the SEM image, the di�raction of the laser beam at these edges results in
such a slope in the detected intensity (b,d) surface plot of the detected intensities at the
corresponding regions.

the part of the optical set up used for calibration in Figure 3.19. The characterization of the
membrane displacement requires speci�c attention to the beam spot on the membrane; the
beam spot should be as close to a Gaussian beam shape as possible. This part was taken care
of by using a beam shaper to obtain the desired beam pro�le before beginning the calibration
process. It was also imperative to �nd a good focal spot on the membrane, this was done by
observing the re�ected optical reading from the membrane at the BHD end. Our plan was
to use a two dimensional mapping in order to properly �nd a calibration:

� XY map: To calibrate each step of the picomotor we move the piezomotor stage from
one edge of the membrane to another end while going always in one direction to avoid
hysteresis. Knowing the distance from one end of the membrane to the other it is easy
to calibrate each step of the piezo. The idea is to place the laser spot �rst on one
edge of the membrane (Figure 3.20(a)) which gives a strong gradient on the re�ected
optical signal (Figure 3.20(b)) on CCD sensor of the spectrometer. Now the membrane
is moved (in order to move the laser spot on top of it) by a �xed amount of steps
until similar e�ect is observed on the other end (Figure 3.120(c) & (d)). Then �nally
knowing the distance traveled to be 20µm imposed by fabrication, if we divide this by
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Figure 3.21: (a) Mapping the z-axis: position of the membrane along z-axis vs. detected
voltage at the BHD output with no membrane excitation, (b) oscillation of the output voltage
while the membrane (placed at the focal point) is resonantly excited, the �uctuation is directly
related to the membrane displacement.

the number of steps the piezo traveled we will �nally achieve to calibrate the piezo.
The process is repeated many times in order to cancel out any error that might appear.
The resulting calibrated step of picomotor is about (29 ± 1.5)nm which agrees quite
well with the one speci�ed in the manual: �less than 30nm�.

� Z-axis map: This is the second map and the �nal stage to calibrate the membrane
displacement. This could be done by displacing the sample with the piezo stage along
the z-axis i.e. along the focal plane. This essentially means that when the membrane is
displaced, the beam is not properly focused on the membrane anymore and as a result
there is a change in the re�ected optical intensity which will be imposed in the detected
output voltage. Membrane position of 0µm signi�es that the membrane is at the focal
point of the laser spot, now as the membrane is displaced with the help of the piezo
we observe an exponential decrease in the detected voltage Vdet(Figure 3.21(a)). An
exponential �t with the recorded data gives (here we assume that all the piezo motors
traverse same distance at a single step):

Vdet = 0.0071 + 0.0152exp(−0.189x) (3.9)

Here we can compute small �uctuations around the focal point by doing derivation of
equation (3.9) and putting x = 0, this yields:

δVdet(mV ) = 0.0152 ∗ (−0.189)δx(µm) (3.10)

Now when the membrane is resonantly excited, the membrane starts to �uctuate about its
mean position (which is at the focal point of the laser beam). This situation is represented
in Figure 3.21(b), where we observe �uctuation of the detected voltage with time related
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to the membrane excitation. Now the �uctuation of the detected voltage is related to the
displacement governed by equation (3.10). Hereafter considering �rst the in�uence of several
mirrors, beam splitters in the path (which divides the optical intensity by several factors)
and then knowing the relation between excitation voltage Vac and detected voltage Vdet, we
�nally conclude:

δx

δVac
= 2.18 nm/V (3.11)

The obtained value of the coupling is in good agreement with the predicted 4nm/V by
FEM simulation in the previous chapter.

3.4.4 Tuning of eigenfrequency by DC polarizing voltage

Up to this section we have not considered the e�ect of the DC polarizing voltage, in this
section we will try to discuss the e�ect of this voltage on this membrane-electrode system.
The e�ect of such DC voltage on these kind of platform has already been discussed by
Unterreithmeier et al. [40] and Bagci [16] et al. on nanomechanical and nano opto mechanical
platform. When along with the �uctuating AC power Vac this DC polarizing voltage is also
turned on, the e�ective force acting on the oscillator becomes:

δF =
1

2

d2C

dx2
|x=x0V

2δx+
1

2

dC

dx
|x=x0V δV (3.12)

The e�ect of this VDC on the dielectric InP membrane is to independently control the
strength of polarization on the membrane. This polarization results in a dielectric gradient
acting across the thickness of the membrane causing it to deform and thereby producing
a DC stress on the membrane. This stress is thus independent of frequency and a higher
amount of stress can be generated just by applying higher VDC . The �rst term in equation
(3.12) represents the DC polarizing force on the membrane. What is notable here is that
this component of force is directly proportional to the �uctuation of vertical position of the
PhC membrane δx. This is equivalent to a spring where the force acting on the system is
directly proportional to the displacement i.e. F = kδx. Using this analogy we can conclude
that this force acting on the membrane directly a�ects the spring constant of the system and
eventually modi�es the equation of motion of the oscillator. Under this changed condition
one is able to write:

ẍ+ Γmẋ+ (Ω2
m0 − αV 2

DC)x = δF where, δF = −1

2

dC

dx
|x=x0V δV (3.13)

Where we assume that the factor α takes into account the amount of modulation of
spring constant the polarizing voltage is able to perform. If we perform a Fourier transform
of equation (3.13) and solve for displacement x(t) = X(Ω)exp(−jΩt), then we can write:

X =
F

(Ω2 − Ω2
m0 + αV 2

DC)2 + Γ2
mΩ2

(3.14)
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Figure 3.22: (a) Shift of eigenfrequency with VDC for a �xed geometry (b) Variation of
eigenfrequency with the membrane and electrode geometry.

Resonance occurs when the denominator is minimum. Thus if we de�ne the resonant
frequency as Ωm, one can write:

Ωm = Ωm0(1− αV 2
DC

Ω2
m0

)1/2 (3.15)

Under approximation that αV 2
DC � Ωm0 we can �nally write:

Ωm = Ωm0(1− αV 2
DC

2Ω2
m0

) (3.16)

Thus the eigenfrequency is quadratically dependent on the applied VDC , although the
factor α �nally determines how much shift in eigenfrequency is possible with VDC . This
α factor is dependent on material properties such as dielectric constant, sti�ness matrix,
membrane geometry as well as on the electrode designs. We have observed a considerable
amount of dependence of the observed shift on the electrode width and period. To fully
comprehend this e�ect we performed some FEM simulation via COMSOL Multiphysics on
such a electrode-membrane platform. The simulation results are displayed in Figure 3.22. In
the �rst simulation we �x the bridge length to 2µm and width of the electrode teeth to 1µm
and then vary the applied VDC on the oscillator. As it can be observed from Figure 3.22(a) we
are able to observe clearly an eigen-frequency shift of the oscillator and the dependence of this
shift is parabolic as predicted by equation (3.16). Next we �x VDC at 10V and start playing
with the membrane and the electrode geometry. Firstly we �x the bridge length to 2µm and
then vary the electrode width from 0.5µm to 1.5µm. Here we are able to clearly observe a
shift in eigenfrequency of about 2kHz with electrode width. We repeat the same simulations
for two other bridge lengths of 4µm and 6µm. From the results (Figure 3.22(b)) we can
conclude that there is an increase of frequency shift with bridge length. This is expected as
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Figure 3.23: Tuning of eigenfrequency with VDC with corresponding parabolic �t (white line).

higher bridge length means lesser residual stress on the membrane and thus it is much easier
to modulate the spring constant. But of course the bridge length as well as electrode width
could not be increased inde�nitely due to technical issues. However in conclusion we can
say that the parameter α mentioned above is highly dependent on the membrane, electrode
geometry.

Next, we move to the experimental realization of this principle. In the experiment �rst of
all we �x the resonant drive at a constant value while making sure the system is far beyond
nonlinear threshold, and then systematically vary VDC . We �x Vac at 400mV and for each VDC
we sweep the driving frequency Ωdrive around the mechanical resonance Ωm0 while recording
the spectral response. Figure 3.23 shows the experimental results; here VDC is varied from
0V to 20V and a shift of about 125kHz is observed. However compared to the simulated
result this shift is much higher (simulated shift was only about 2kHz). The reason can be
attributed to the overestimation of the residual stress in the simulations. The e�ect that is
observed here is called spring softening e�ect as there is a decrease in the eigen-frequency of
the system. More discussion on spring softening is done in Chapter 4. The shift as it can be
seen from the �gure is also parabolic as it was predicted by equation (3.16). This curve now
can be �tted with this equation and from that �t one should be able to extract the parameter
α.

For the estimation of the parameter α we come back to equation (3.16) and rewrite the
equation in the form:

|∆f | = |Ωm0 − Ωm

2π
| = αV 2

DC

4π
(3.17)
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When we �t the resulting frequency shift with this formula we are able to estimate value
of α of about 4.31kHz/V 2. The �t is shown by the white parabolic line in Figure 3.23.

3.5 Conclusion

This chapter was mainly focused on the implementation and preliminary investigation of the
integrated electrode membrane platform. We started by introducing the basic principle of the
membrane electrode structure: how it looks like, how the actuation works, how we optimize
the electrode architecture via calculation of electromechanical coupling parameter. As a next
step we move forward to the design and fabrication of these platforms. We discussed in
details about the fabrication principles, conditions, challenges and �nally how to overcome
them. After that we discussed in brief about the �rst experiments on this NOEMS platforms
especially actuation in the linear regime. We saw that with these integrated electrodes we
were able to actuate the membranes much more e�ciently compared to the piezo stack
excitation. We saw that with BHD set up we are able to extract the amplitude as well as the
phase response of the mechanical modes. This was followed by a discussion on the calibration
of the membrane displacement when it is actuated by the electrical forces, from here we were
able to calibrate the electromechanical coupling coe�cient experimentally which supported
the theoretical prediction quite closely. And �nally we showed that keeping the system inside
the linear regime it is possible to tune the eigen-frequency of the system by simply playing
with the DC stress applied on the system.

A noteworthy mention is that in all of these discussions we kept the actuating volt-
age in a range such that the system remains inside the linear regime. Especially in Figure
3.18(a) we can see that the response keeps on growing with a symmetric spectral shape as
we keep increasing the actuating voltage. However in next chapter we will see what hap-
pens when we cross a certain threshold voltage of actuation which pushes the system beyond
the linear regime and inside the nonlinear regime. The following two chapters will focus
on discussing some theoretical and experimental results while the system is deep inside the
nonlinear regime. Phenomena like sub/super-harmonic resonance with parametric excita-
tion/ampli�cation will be discussed in chapter 4, while chapter 5 will focus on discussion of
another nonlinear dynamical phenomenon called stochastic resonance.



Chapter 4

Actuation in Nonlinear regime

In this chapter we will concentrate on studying the behavior of our Nano Opto Electro
Mechanical System in the nonlinear regime. NOEMS and NEMS devices [90][91][92][93][52]
have witnessed huge advancement in the last decade in terms of advance in nano-technological
applications like metrology or signal processing for instance. At the same time these devices
have garnered attention for their e�ectiveness to study and explore nonlinear dynamical
behavior. The study of nonlinear dynamics is of utmost importance in terms of application in
di�erent �elds including signal/noise ampli�cation, detection etc. Also nanoscale fabrication
allows design of many coupled nanomechanical systems on a single chip, opening the way to
study collective nonlinear dynamics e�ects of intermediate numbers of degrees of freedom.

For simplicity the discussion in this chapter will begin considering most simple kind of
nonlinearity, called Du�ng nonlinearity and then gradually move towards more complicated
nonlinear dynamics. Both theoretical predictions and experimental response of a Du�ng
oscillator will be discussed in the �rst sections. The discussion will then move towards study
of sub and super harmonics in forced oscillation regime, while discussing both theoretical
and experimental aspects. This will be preceded by discussion on parametric ampli�cation
in weak actuation regime of the resonator. And �nally the chapter will conclude with study
on tuning the nonlinearity of the nano electro mechanical resonator by parametric excitation
beyond the nonlinear threshold regime.

4.1 Du�ng Nonlinearity

4.1.1 Origin of nonlinearity

Whenever a mechanical oscillator is considered, the �rst system that comes to the mind is a
simple harmonic oscillator which follows Hooke's law of linear restoring force. The restoring
force acting on such an oscillator is directly proportional to its displacement x. However this
approximation does not hold true whenever a large deformation is involved. What makes
micro and nano-mechanical systems very interesting candidates is that they can encounter
nonlinear dynamics even before the intrinsic nonlinearity is imposed. The nonlinearity can
arise in the system due to two main reasons:

63
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(1) Firstly it can arise when the external force crosses a certain threshold and thereby
induces high stress which generates nonlinearity in the system.

(2) Secondly this can happen due to e�ects induced by geometry even though the forces
in play are linear.

The second factor is more interesting, where inherent geometrical e�ects causes nonlinear-
ity to appear in the system. This situation is what is mostly encountered in NEMS/MEMS
systems rather than the former one. In general these resonators are quite thin and when the
amplitude of vibration exceeds the resonator width, nonlinearity is imposed in the system.
Any system under such constraint can be described by Euler-Bernoulli equation. If we de�ne
the transverse displacement as X(z, t), which is much smaller than the length of the doubly
clamped beam L we can write [? ]:

ρS
∂2X(z, t)

∂t2
= −EI ∂

4X

∂z4
+ T

∂2X

∂z
(4.1)

Here, z is along the length of the beam, S is the area of cross-section of the beam, E is
the Young modulus of the beam, I is moment of inertia and T is the tension arising from
clamping on the beam. Now tension T can be written as:

T = T0 + ∆T (4.2)

where, T0 is the inherent tension on the beam and ∆T is the tension induced from bending
of the beam caused by external stress. Let us consider this additional tension causes beam
length to be changed by an amount of ∆L, this change can be either tensile or compressive.
From the de�nition of Young's modulus the additional strain ∆T on the resonator can be
written as:

∆T = ES
∆L

L
(4.3)

For small displacement the total length of the beam can be expanded as:

L+ ∆L =
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dz

√
1 +
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(4.4)

using the equation above, equation (4.1) can be transformed to:

ρS
∂2X(z, t)

∂t2
= −EI ∂

4X

∂z4
+

T0 +
ES

2L

L∫
0

dz

(
∂X

∂z

)2
 ∂2X

∂z2
(4.5)

In order to �nd a perturbative solution of the equation (4.5) we de�ne solution of X(z, t)
as:

Xm(z, t) = xm(t)φm(z) (4.6)
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Here φm(z) is the spatially con�ned eigen-mode and we assume that the local maximum of
the eigen-mode that is nearest to the center of the mechanical oscillator is scaled to 1. While
xm(t) measures the actual displacement nearest to the center of the mechanical oscillator.
Now if we multiply both sides of equation (4.5) by φm(z) and integrate over z, after some
steps of integration by parts it can be shown that the equation of motion for the m-th order
mode xm(t) is [? ]:

ẍm(t) +

[
EI

ρS

∫
φ

′′2
m dz

φ2
mdz

+
T0

ρS

∫
φ

′2
mdz

φ2
mdz

]
xm +
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E

2ρL

(∫
φ

′2
mdz

)2∫
φ2
mdz

]
x3
m = 0 (4.7)

Note that the coe�cient of x3
m in equation (4.7) represents the amount of nonlinearity

present in the system. Indeed if an oscillator is under nonlinear regime, then another com-
ponent of the restoring force (along with the one obeying Hooke's law) acting on the system
becomes proportional to the cube of oscillator displacement i.e. Frestoring ∼ x3. If we de�ne
the proportionality constant as β3 we can de�ne the restoring force to be β3x

3. This turns a
simple harmonic oscillator with a linear restoring force into a Du�ng oscillator. Thus using
some approximations and dropping the su�x m, we can write equation (4.7) for the m-th
order mode as:

ẍ(t) + Ω2
mx
[
1 + β3x

2
]

= 0 (4.8)

Here we de�ne Ωm as the angular eigenfrequency of the m-th order eigen-mode and β3 as
the coe�cient of Du�ng nonlinearity.

Moreover, sign of the nonlinearity factor β3 governs the nature of the induced nonlinearity.
When sign of this β3 factor is positive, this nonlinear restoring force works in such a way
that it assists the linear restoring force thereby making the oscillator more di�cult to excite
and eventually increasing the natural resonance frequency. This e�ect for this very reason
is known as spring hardening e�ect. The opposite situation of this is when the coe�cient
β3 becomes negative. In such a situation the nonlinear restoring force works against the
linear restoring force thereby making the oscillator easier to excite and shifting the natural
resonance to a lower value. This is therefore known as the spring softening e�ect.

In other situations nonlinearities can be induced from nonlinearity in actuation or detec-
tion mechanisms that are interacting with the system. Other sources could include clamping
of the mechanical oscillators with the surrounding medium.

Finally another source of nonlinearity can arise due to damping mechanisms that act on a
mechanical oscillator. One can imagine that when a resonator is under a nonlinear restoring
force (i.e. when the restoring force is proportional to x3) then along with linear damping
which is proportional directly to the velocity ẋ there would another nonlinear damping term
proportional to ẋx2. And this damping term should increase with increase in the amplitude of
displacement x. Although in the following discussions to avoid complicacy we would neglect
this nonlinear damping term.
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4.1.2 The Du�ng Oscillator

Typical behavior of a nanomechanical system in linear regime was discussed in the last
chapter. It is well understood that behavior of a system in linear regime can be analyzed by
considering it as a simple harmonic oscillator. The equation of motion of an oscillator in this
regime can be described by equation (4.9).

ẍ+ Γmẋ+ Ω2
m0x = δF where δF = F0 cos(Ωdrivet) (4.9)

Here, Γm is the damping constant, Ωm0 is the linear natural frequency of the oscillator,
δF is the force acting on the oscillator at a drive frequency Ωdrive. In the scenario when
the system is in linear regime the response of the system follows simple Hooke's Law, which
means the spring constant of the system is linearly proportional to the displacement i.e. the
system has only a single stable point (indicated by �gure 4.1(a)).

For ease of discussion a most common form of nonlinear equation is discussed, which was
introduced in the previous section being famously known as the Du�ng nonlinearity. In the
Du�ng model of nonlinearity only third order displacement term is taken into account and
we would denote this nonlinear coe�cient by β3. The Du�ng equation is a second order
di�erential equation used to model damped and driven oscillator where the oscillator do not
follow the simple Hooke's Law. This particular equation of motion is showed in equation
(4.10).

ẍ+ Γmẋ+ Ω2
m0x(1 + β3x

2) = δF where, δF = F0 cos(Ωdrivet) (4.10)

The restoring potential of such a system will not follow a simple linear rule i.e. restoring
potential will not be a simple parabola (like in Fig. 4.1(a)). On the contrary it will have a
rather complicated shape and the system will now have more than one stable states, in this
particular case it will have two stable states and its potential will look like the one shown in
Fig. 4.1(b), this is known as the bistability.

4.1.3 Bistability in amplitude and phase response

Solution of forced response of the system in Du�ng regime is not straight forward as the linear
superposition theory is no longer valid in this regime. The approximate Du�ng response of
the system can be derived by using secular perturbation theory [94] and the resulting equation
is shown in equation (4.11).

|x|2 = F 2
0 /[(1 + β3 ∗ x2 − Ω2

drive

Ω2
m0

)2 + Γ2
m/4] (4.11)
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Figure 4.1: Potential of (a) linear oscillator with only a single stable state and of a (b)
bistable system with two stable states.

Here F0 is the amplitude of the external force, β3 is the e�ective spring constant under
Du�ng approximation, Ωm0 is the undamped mechanical resonance frequency of the oscillator
and Ωdrive is the driving frequency.

Also, the steady state response of the system does depend on the initial conditions, unlike
the situation when the system is in linear regime. Interestingly the resonance of the system
in this regime can also shift away from the natural resonant frequency attributed to the
presence of nonlinearity in the system. Depending on several factors this shift in frequency
can be either towards the red (or towards the blue side) of the frequency, this phenomena
is known as the spring softening (or spring hardening) e�ect [? ][95], as it was discussed
in the previous sections. This is mainly governed by the fact whether the system is under
compressive or is under tensile stress [96]. Depending on the initial condition the nonlinear
spring constant will either be positive or negative resulting in either decrease or increase
(hardening or softening) in the natural resonance frequency when the system is in Du�ng
regime.

Solution of x (equation (4.11)) can be found by using numerical programming. For our
case MATLAB was used to derive the solution of this equation and the result is plotted in
Figure 4.2. Both linear as well nonlinear response of the system is displayed in the �gure.
Figure 4.2(a) shows amplitude response of the system for three separate cases: �rstly when
the system is in linear regime (green curve); the response is simply a lorentzian. The response
is linear as at each frequency of actuation there is only one accessible state i.e. an unique
amplitude response of the oscillator. Secondly, when the excitation F0 in equation (4.11) is
high enough the response x also goes towards the higher side. This means the nonlinearity
factor β3 is not negligible anymore and therefore the response becomes nonlinear. The non-
linear amplitude response while β3 > 0 is shown by the blue curve in Figure 4.2(a). The blue
shift of the resonant frequency means it's spring hardening e�ect. Under such a situation at
some particular frequencies the system has access to two di�erent amplitude states hence the
bistability. This frequency range where the system exhibits such a bistable behavior is known
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Figure 4.2: Oscillator response in (a) amplitude and in (b) phase for both linear and Du�ng
regime: In green it is the linear response of the oscillator, it is plotted by using standard
lorentzian function; while in red and blue are the response of the system in spring softening
(β3 < 0) and spring hardening (β3 > 0) con�gurations respectively.

as the hysteresis region. However when the parameter β3 < 0 the eigenfrequency su�ers a
red-shift (Figure 4.2), thereby exhibiting the spring softening e�ect. Similar response can be
observed also in phase response of the system; this situation is addressed in Figure 4.2(b),
where like in the previous case we exhibit linear and spring softening as well as hardening
phase response.

4.1.4 Phase space trajectory

Another interesting representation of the nonlinear systems can be shown through what is
known as the phase space portrait of the system. A phase space of a dynamical system is
a space where all possible states of the system are represented. Each state of the system is
represented by an unique point in the phase space. For a mechanical system a phase space
will consist of all the possible values of position and momentum of the system. Generally
the displacement of the oscillator can be described as: x(t) = R exp(2πjΩmt), where R is the
displacement amplitude of the membrane while the exponential term determines the phase
of the mechanical oscillation. This term then can be expanded as x(t) = R cos(2πΩmt) +
jRsin(2πΩmt) (here Ωm is the frequency of mechanical oscillation). Now if one describes
X = R cos(2πΩmt) and Y = Rsin(2πΩmt), a polar plot with R and Θ(= arctan(Y/X)) as
the coordinates will describe the phase portrait of the system. These phase portraits can be
constructed by plotting the in-phase X and out of phase component Y of the displacement.
The phase portrait of a system under study directly reveals several information about it;
�rstly it will exhibit clearly all the stable states of the system and at the same time might
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Figure 4.3: (a) Phase space trajectory of a resonator under linear regime with only a single
phase state (b) in the bistable regime with two distinct phase states.

give indication about the existence of the unstable states of the system as well. For example
in linear regime the phase space will give only a single state (Figure 4.3(a)), while in nonlinear
regime the phase space can exhibit more than one stable state. This situation is displayed
in Figure 4.3(b) where it is shown that two stable states of the system are observed in the
bistable regime.

Such representations also allows to plot the phase space trajectory of a system under
study. Observing how the system travels from its exited state to the rest state may reveal
several information about the mechanical system under study. Firstly it gives a �rst hand
estimation of the decay time of the system to the ground state which is directly related to
the Q-factor of the system. The relation between the decay time τm and the Q-factor is
de�ned as: Q =Ωmτm/2, where Ωm is the mechanical eigenfrequency. Also by observing how
the system collapses to the rest state will give a direct indication of the nature of damping
involved. If the system is undamped then it should keep on oscillating in the phase space
even when the excitation is switched o�. While system is overdamped if it returns to the rest
state as quickly as possible without oscillating and �nally the system is underdamped when
the amplitude of oscillation gradually goes to zero with several oscillation before returning
to the rest state.

4.2 Resonant excitation

In this section we will focus on the excitation of the NOEMS platform in the Du�ng regime.
We will investigate the bistable response in both amplitude and phase and �nally focus on
the response in phase trajectory of the system as well. Also we will see that how resonant
excitation beyond nonlinear threshold generates several higher order harmonics at the same
time.
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4.2.1 Bistability of the fundamental mode: An hysteretic behavior

Spring hardened oscillator:

Figure 4.4: Normalized amplitude and phase response (at Vac = 1V ) of the system with the
corresponding lorentzian �ts shown in �gure (a) & (b) displaying the response of the system
when the system is in linear regime; (c) & (d) display the amplitude & phase response of the
system with corresponding �ts when the system is deep in the nonlinear regime (Vac = 10V ).

In this section the focus will shift towards the experimental results concerning Du�ng non-
linearity under resonant excitation. The actuation in linear regime and the set up for char-
acterizing the membrane displacement has been discussed in the earlier chapters. The force
δF acting on the system can be written as (provided the membrane is not pre-stressed by an
external DC voltage):

δF = −1

2

dC(x)

dx
|x=x0V δV where, δV = Vaccos(Ωdrivet) (4.12)

Where Vac is the amplitude of the AC voltage driving the system. In order to reach this
nonlinear regime the PhC membrane is needed to be excited with an even higher AC bias Vac.
We start the actuation from a lower Vac (1V ) making sure that the system is far from the
nonlinear threshold. The drive frequency (Ωdrive) is swept in both upper and lower direction
while the amplitude as well as the phase response of the oscillator is tracked simultaneously
(Figure 4.4 (a,b)). The response in amplitude as well as in phase are found to be identical
to each other giving no indication of existence of bistability in the system. However, when
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the external actuation Vac exceeds some threshold of excitation (VTh) the system starts to
enter in the bistable regime. For our system this happens for Vac > 4.25V . Response of
the system when it is excited well above the threshold and deep into the nonlinear regime is
shown in Figure 4.4(c,d), here the oscillator is resonantly excited at 10V and the frequency of
excitation (Ωdrive) is swept up and down consecutively. Di�erent sweeps result in two di�erent
responses with two di�erent resonant peaks and a hysteresis is being observed between these
two sweeps. In this regime, the system is allowed to have two distinct stable and one unstable
state at a particular frequency inside the hysteresis region. The width of this hysteresis region
is around 4kHz at 10V. The amplitude response is �tted separately using two di�erent �tting
procedures. For the amplitude response in linear regime the response is simply �tted with
a lorentzian function, while for the response in the bistable regime equation (4.11) is used.
From this �t mechanical eigen-frequency of the drum mode (Ωm0= 2.73 MHz) and the FWHM
(Γ1st= 0.9 kHz) can be derived. Considering 3rd order nonlinearity (Du�ng regime) the
nonlinearity factor was computed using the �t and we obtain a value of β3 = 1.4× 1018m−2.

Spring softened oscillator:

Figure 4.5: Normalized amplitude and phase response of the NOEMS oscillator in linear
(1.5V) and bistable (9.5V) regime; the plots reveals existence of spring softening in this case
unlike the previous case.

Previously the system that has been discussed exhibited only a particular kind of nonlinearity
i.e. spring hardening. But it was seen in another similar membrane-electrode system on the
same chip that it exhibited the opposite kind of behavior i.e. spring softening. The response



CHAPTER 4. ACTUATION IN NONLINEAR REGIME 72

of this system in both linear and nonlinear regime is displayed in Figure 4.5. As it can be seen
from the Figure 4.5, when the actuating voltage Vac is small (Vac = 1.5V ), the system resides
in linear regime. While at su�cient excitation the system travels to the nonlinear regime and
a hysteresis is observed. Although in this case the hysteresis is on the other side (i.e. red
side) of natural resonance, similar e�ect can be seen in both amplitude and phase response
of the system. The explanation of this di�erence in spring hardening or softening can be
many fold; in general any oscillator can be viewed as a simple harmonic oscillator with the

oscillation frequency Ω0 = 1
2π

√
keff
m

, where keff is the e�ective spring constant. This e�ective
spring constant keff can be resolved into three di�erent components; the �rst component is
basically the term which de�nes the natural resonant frequency of the oscillator, the second
term determines spring hardening and softening e�ect due to initial stress present in the
system [96] and �nally the last term is the capacitive softening term which induces spring
softening e�ect in the oscillator [97][53]. Depending on how each term is modulated, the
resonator would give rise to either spring hardening or softening e�ect. Now as mentioned
before, in a more complicated nonlinear system, many nonlinear terms contribute to the
nonlinearity. So the nonlinearity could be depicted more appropriately by replacing equation
(4.10) with equation (4.13):

ẍ+Γmẋ+Ω2
mx(1+β3x

2 +β4x
3 +β5x

4 + ....)+
1

2

dC(x)

dx
.V δV = 0 where, δV = Vac cos(Ωdrivet)

(4.13)

Here, βn is the n-th order nonlinear coe�cient of the system (n = 3,4,5...). Now as
predicted by Kozinsky et al. [53] nonlinear coe�cients of di�erent orders have di�erent kind
of impact on the response of the system: the cubic nonlinearity coe�cient β3 is mainly due
to nonlinearity in elastic properties; e�ect of this nonlinearity can be increased by increasing
the excitation on the system. Whereas the quadratic term β4 is known as the symmetry
breaking term, it appears when oscillator displacement from the central axis is broken by
some means, for example capacitive attraction. Contribution of this quadratic nonlinearity
β4 can be increased either in an intrinsic or in an extrinsic manner. In case of intrinsic
contribution to the quadratic nonlinearity, it can be increased by providing additional stress
to the system [98]. On the other hand extrinsic modulation of the nonlinearity can be done
by using DC bias for example. The in�uence of the DC bias can result in a reduction of the
natural resonance frequency of the system which has been discussed in Chapter 3 [40][99].
Younis et al. [100] showed that it is possible to tune the nature of nonlinearity in the system
by playing with the DC bias. For this particular system a very weak detuning of resonant
frequency with bias has been observed which is discussed in section 4.4.4. In conclusion,
we can say that as the system under study is not under any kind of bias, thus this spring
softening e�ect is natural to the system. This can only mean that the intrinsic reasons hence
inherent stress in the system are responsible for the existence of such nonlinearity. Although
the width of the hysteresis region for this membrane was much higher than the previous case
(40 kHz), unfortunately the sub and super-harmonic resonances discussed in the next section
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were not observed for this particular electrode membrane system. So, from next section we
will only focus on the membrane with spring hardening e�ect.

Bistability tongue:

Figure 4.6: Bistability tongue for the system can be plotted for both amplitude and phase
response; the regions in red and green are regions where the system has two stable states
and one unstable state, while the region in blue is where the system is allowed to have only
a single stable state.

An interesting representation of the bistable behavior can be done through the bistability
tongue representation of the system. These tongues are constructed by plotting the di�er-
ence spectra of sweep up and down in amplitude/phase as shown in Figure 4.6. Inside this
bistablity tongue the system will have access to 3 di�erent states; �rst two being the stable
states and another being the unstable state which is inaccessible. As it can be seen, there are
some regions of higher responses even outside the bistable regions, these can be attributed to
the presence of noise in the response. A gradual increase of the hysteresis region width can
be observed in both amplitude and phase response with applied voltage Vac. The hysteresis
region grows up to 4kHz of width at 10V of resonant excitation while the threshold of bista-
bility being about 4.25V. The broadening of the hysteresis region can be attributed to the
shift of resonance towards higher frequency induced directly by the nonlinearity. This gradual
increase is also encountered by increase in the nonlinear damping acting on the resonator and
after a certain threshold one should be able to observe a saturation in the hysteresis width.
In this case presumably we are away from such a threshold and thus above-mentioned satu-
ration is not observed. Another interesting observation is that the phase di�erence between
the two stable states is identical across the hysteresis region, while as it will be seen later
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individually each stable states goes through a 180 degree phase rotation across this hysteresis
region.

Phase space trajectories:

Figure 4.7: (a) Ring down experiment in order to retrieve the phase trajectory of the system
under study (b) Phase trajectory of the resonator under linear and nonlinear regime; exhibit-
ing only a single state inside linear regime while two distinct states are observed when it is
deep inside the nonlinear regime.

This bistable e�ect can be more readily observed while observing the phase space portrait
of the system described in Figure 4.7. The phase dynamics of a mechanical system can be
described as slowly varying quadratures X and Y. The phase trajectories of the system can be
extracted by using a process called ring down (Figure 4.7(a)). The principal of these experi-
ments is to resonantly excite the system i.e. Ωdrive = Ωm ; then when the drive is suddenly
switched o� the system slowly decays to its rest state. In each ring down measurement the
in-phase (X) and out of phase (Y) quadrature data are recorded simultaneously and plots
are constructed by taking approximately 300 points between the transition from excited to
the rest state. In the experiment the system is prepared at one of its two stable states by
either sweeping up or down the actuation frequency (Ωdrive). Depending on this initialization
procedure it should be possible to trace out the two distinct stable states.

Figure 4.7(b) explains how the phase trajectories works; the system when is resonantly
excited displays a state in phase space shown by the point I. The radial distance of this point
from origin gives the amplitude of oscillation while the angle this point makes with respect
to the x-axis gives the phase of oscillation. However when the resonant drive is switched
o� the oscillator stops to oscillate and thus the amplitude of oscillation becomes zero. In
the phase space a system in such a state will be represented by a circular point in origin
(II). As it can be observed from Figure 4.7, in case of low excitation (2V) the system only
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exhibits a single state, whereas when the excitation is high enough (10V) two distinct states
in the phase space are observed with similar amplitudes; this is a clear indication of the
existing bistability in the system. In order to extract two states with identical amplitudes
we record the response at two di�erent edges of the hysteresis which incidentally has a phase
di�erence of 180°. Thus the spatial extension between these two points is directly related to
the hysteresis width for a particular Vac. Moreover the trajectory to the rest state reveals
that the system is overdamped as it decays quite quickly to the rest state with almost no
oscillation. One interesting phenomenon observed from these phase portraits is that the
system undergoes a phase rotation when it travels from linear regime to nonlinear regime.
This happens due to the detuning of natural resonance induced by the nonlinearity. As we
keep the excitation still at Ωm0, which is not the frequency of maximum displacement under
nonlinear regime we observe a shift in the detected phase θ. In order to observe these two
states distinctly the excitation is slightly detuned from the resonance, like this it is possible
to extract this two states with similar amplitudes. At this point the measured phase o�set is
about 34° (Figure 4.7(b)). To avoid confusion in Figure 4.4 the natural resonant frequency is
referred as Ωm0, while the mechanical resonance frequency in general will be referred as Ωm.

4.2.2 Excitation of higher order harmonics

Origin of higher order harmonics:

In this section we discuss when the system is still driven resonantly but beyond the nonlinear
threshold and the response is probed at higher harmonics. A system under nonlinear forces
can be represented by the equation:

ẍ+ Γmẋ+ Ω2
m0x(1 +

∝∑
i=3

βix
i−1) +

1

2

dC(x)

dx
.V δV = 0, where δV = Vac cos(Ωdrivet) (4.14)

Due to the presence of higher order nonlinear components denoted by β′is (i = 3, 4, 5...) ,
responses at higher order harmonics can be observed when the amplitude of actuation Vac is
beyond a certain threshold. It will be shown in this section that due to the presence of this
nonlinear coe�cients some equivalent forces at the higher harmonics are generated. For ease
of discussion let us start from the nonlinear Du�ng equation, thus we de�ne the equation of
motion of the system as:

ẍ+ Γmẋ+ Ω2
m0x(1 + β3x

2) = δF0cos(Ωmt+ φ) (4.15)

Here we assume that the force on the nanomechanical system is directly proportional to
the applied sinusoidal voltage. Since there is no straight forward solution of this equation,
we assume that when the parameter β3 is weak the steady state solution somehow should be



CHAPTER 4. ACTUATION IN NONLINEAR REGIME 76

Figure 4.8: (a) Comb like frequency spectra with equally separated mechanical responses
when the resonator is excited strongly (Vac = 10V ) at natural resonance, (b) plot of the peak
amplitude of the response with the harmonics and the corresponding exponential �t.

related to the solution of the linear equation. For the time being let us denote the steady
state solution as x0 while the perturbation due to the present nonlinearity as y i.e.

x = x0 + y = Acos(Ωm0t+ φ) + y (4.16)

Let us assume that φ = 0, which is a safe assumption as value of φ in this case always keeps
constant. Now if we eliminate the linear components from the equation above and only keep
the terms concerning nonlinearity i.e. terms involving y and β3 the equation is reduced to:

ÿ + Γmẏ + Ω2
m0y + β3y

3 + β3A
3cos3(Ωm0t) + 3β3yA

2cos2(Ωm0t) + 3y2Acos(Ωm0t) = 0 (4.17)

It is possible now to replace the terms involving cos3(Ωm0t) and cos2(Ωm0t) with higher
harmonic terms like cos(3Ωm0t) and cos(2Ωm0t) by using simple trigonometry. This means
that the forcing side of the equation is not only in�uenced by the forcing component at
Ωm0 but also at 2Ωm0 and 3Ωm0. This will give rise to responses around these frequencies,
directly as a result of the existing nonlinearity in the system. Another interesting observation
from the equation (4.16) is that the forcing at these harmonics is highly dependent on the
value of the nonlinear coe�cient β3, which means that the e�ective response at these higher
harmonics will be highly dependent on the corresponding nonlinear coe�cients.

This idea can be extended for nonlinearity of n-th order and in conclusion we could say
that these nonlinearities will produce response at the corresponding harmonics and the ampli-
tude of the produced response will be completely dependent on the value of the corresponding
nonlinear coe�cients.
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Figure 4.9: (a) Experimental set up for driving and probing the higher harmonics (b)
Schematic of the probing scheme.

A comb like spectrum:

Now we move to the discussion of the experiments that were performed linked with the
discussion in the previous section. As a �rst set of experiment the actuation was �xed at the
natural resonance Ωm0, and Vac was �xed at 10V. A spectrum extending up to 25 MHz was
recorded and it revealed as much as 8 spectral peaks (Figure 4.8). Due to the increase of
noise �oor at higher frequency, we were not able to observe higher order peaks. The spectra
has a comb like structure where each peaks are equally separated in the frequency spectra.
This happens directly as a result of the existence of the higher order nonlinearity (up to 8th
order comes into play in this case). The spectrum is displayed in Figure 4.8(a); the �rst
peak with the highest intensity is the response of the system at the natural frequency Ωm0.
A gradual decrease in the response of the higher harmonics can be observed (Figure 4.8(b)).
The decay in the response is exponential and shows a gradual saturation in the response (in
logarithmic scale), from which it can be concluded that the variation of nonlinear coe�cients
with harmonics will follow similar pattern as well. If the response in amplitude is denoted as
I and the harmonics are denoted as n, the behavior of the response with di�erent harmonic
orders can be de�ned as:

I = I0 ∗ exp(−n) + INF (4.18)

where I0 is the saturated amplitude and INF de�nes the noise �oor in the response. Fitting
the response (dotted line in Figure 4.8(b)) with an exponent yields a value of I0 = −95dB
and INF = −105.6dB. Possibly with an even higher excitation, even higher order harmonics
could be excited.

Spring hardening of the higher order harmonics

The actuation at the natural resonance transforms a response to the higher order harmonics
due to presence of nonlinearity. To observe this e�ect in more details full response spectra
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Figure 4.10: (a) 2D surface plot of response of the harmonics n = 2, 3, 4 while the drive fre-
quency Ωdrive and the drive voltage Vac is swept (b) response of the 2nd harmonic, exhibiting
a Du�ng like response with spring hardening e�ect for higher excitation (Vac = 9.0V ) and
linear response at Vac = 1.5V .

around the higher order harmonics were recorded. The experimental procedure is displayed
in the Figure 4.9(a) and the schematic is shown in Figure 4.9(b). The resonator is excited at
the natural resonance (Ωm0) and the drive Vac is swept while the spectra is recorded around
the higher harmonics (nΩm0). In the experiment the resonator was driven at resonance by
a signal generator which was at the same time fed into a frequency multiplier. The output
of the frequency multiplier was fed to a lock-in ampli�er, which demodulated the signal at
that frequency. Depending on which harmonic was recorded (n = 2, 3, 4...) the order of the
frequency multiplier was selected. The drive frequency (Ωdrive) is swept across the natural
resonance (Ωm0) by an amount 2∆Ω while the response is probed withing an interval of 2n∆Ω
around nΩm0.

As a next set of experiment the response of the resonator for harmonics up to n = 4 were
recorded for various values of actuating drive Vac around the natural resonance (Ωm0). The
resulting spectra is displayed in Figure 4.10(a). The resonator was actuated in each case for
a window of 100kHz around the natural resonance and at the same time the response was
probed for n = 2, 3, 4; while the actuation voltage Vac was varied from 0.25V to 9.75V . The
window of actuation is much larger than Γm(= 0.9kHz) of the primary resonance. As it
was discussed before the system exhibits spring hardening Du�ng response in each case, the
e�ect is most visible in the �rst case Ωprobe = 2Ωm0. Although as the order of the harmonics
are increased the response becomes weaker and also the threshold required for actuation
increases. This can be attributed to the fact that higher order nonlinearities have lower
coe�cient. The higher order responses also show similar behaviors with a less pronounced
response and higher threshold but they are not displayed here. A particular situation with
Vac = 9.5V is shown in Figure 4.10(b), the 2nd harmonic (2Ωm0) is probed in this case while
the resonator is driven around the natural resonance (Ωm0). The response in this case is a
stark contrast to the results shown in the previous section. The response shows a clearly
nonlinear spring hardening e�ect. This is merely an impression of the existing nonlinear
response at resonance on the higher order harmonics due to presence of nonlinearities in the
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system. For lower excitation Vac = 1.5V , the response is quite small and it exhibits something
closer to a Lorentzian response. Similar e�ects were observed for harmonics of higher orders
as well, although the e�ect was not as pronounced as in this case with Ωprobe = 2Ωm0. This can
be attributed to the exponential decrease of nonlinear coe�cients for higher orders (Figure
4.8(b)).

4.3 Sub and super harmonic resonance

In this section forced excitation of the NOEMS system in the sub and super harmonic regime
will be discussed. Theoretical discussion of sub and super harmonic excitation has been
greatly discussed by Mallow et al. [101] and A. Prosperetti [102]. As it was discussed before
a nonlinear system can be described by equation (4.10), where several mechanical nonlinearity
are present simultaneously in the system under study. The primary resonance is known when
the system is driven at a frequency equal to the natural resonance frequency of the system i.e.
Ωdrive = Ωm. But the presence of higher order nonlinearities in the system means that several
resonant overtones can exist for the system: (i) �rstly what has been already introduced in
this chapter i.e. when the drive frequency Ωdrive is near the natural frequency Ωm; it's called
fundamental or primary resonance; (ii) when drive frequency Ωdrive is n times the natural
frequency i.e. Ωdrive = nΩm; then its called sub-harmonic resonance and (iii) when drive
frequency Ωdrive is 1/n times the natural resonance frequency i.e. Ωdrive = Ωm/n; it's called
super-harmonic resonance.

4.3.1 Theoretical introduction to sub and super harmonic excitation

These kind of excitation are also referred as the parametric excitation as the system is
excited on resonance but while being forced at some harmonic of the natural response. The
modulation at the sub or higher harmonics of the natural resonance modulates the spring
constant of the resonator and after a certain point when the excitation crosses a certain
threshold the system is able to respond resonantly. The phenomenon is directly related to
the nonlinearity of the system as the nonlinearity of n-th order helps the resonator to be
excited at n-th super or sub-harmonic resonance. Thus the threshold of excitation is related
to the order of nonlinearity in the system and the above-mentioned threshold increases for
higher order nonlinearities.

Mathieu equation without damping

The equation of motion of the system under study is written as:

ẍ+ Γmẋ+ Ω2
m0x+ β3x

3 = F where, F = −1

2

dC(x)

dx
.V δV (4.19)

The excitation of super and sub-harmonic resonance falls under parametric excitation,
where somehow the spring constant of the resonator is modulated at some harmonic of the
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natural resonance and a response is observed at the natural resonance. Since the physics of
this kind of system is quite complicated, we will start without considering any damping and
nonlinear terms, and slowly work towards more complicated situations. Thus for the time
being let's begin with assuming that the system is under no damping as well as considering the
system is excited far below from the nonlinear threshold. Which means for the time being we
can consider β3 = 0 and Γm = 0. Considering the fact that the harmonic driving causes the
spring of the system to modulate at that frequency, we replace the term F in equation (4.19)
and add the harmonic drive to the spring constant term. Furthermore as discussed before
when the system is excited at some harmonic other than the natural resonance it can directly
a�ect the spring constant of the system, thus in short the spring constant will be modulated
at the harmonic and when it exceeds a certain threshold it will produce a response at the
natural resonance. Under such conditions considering a superharmonic resonance situation
let's assume that the system is driven at a frequency Ωdrive = Ωm0/n with a modulation
amplitude of the spring constant being H. The factor H is related directly to the applied
parametric force on the resonator. So the equation (4.19) can be rewritten as:

ẍ+ (Ω2
m0 +Hcos(

Ωm0t

n
))x = 0 (4.20)

This form looks like an usual Mathieu equation which is used in order to comprehend the
dynamics of a nonlinear system [59], the general form is written as:

ẍ+ (δ + εcos(t))x = 0 (4.21)

Thus we can draw a parallel between equation (4.20) and equation (4.21) by using the

transformation τ = Ωm0

n
t, using ε = Hn2/Ω2

m0 as the external actuation and δ =
Ω2

m0

Ω2
drive

= n2

as the detuning from resonance. Under these conditions the transformed equation thereby
can be written as:

d2x

dτ 2
+ (δ + εcos(τ))x = 0 (4.22)

The solution of Mathieu equation can be derived using various techniques, for example:
Lie transformation, perturbation theory, Floquet theory, Hill's equation, harmonic balance.
The idea of all these processes above is actually to study the dependency of the parameters
δ and ε on each other. The system under nonlinear regime can be solved by using harmonic
balance theory with assumed solution of x(t) to be (for detailed derivation please refer to
Appendix (B)):

x(t) =
∞∑
n=0

ancos
nt

2
+ bnsin

nt

2
(4.23)
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Figure 4.11: The instability tongue for parametric excitation of the system; the region of
instability is bounded by δ which is dependent on the spring constants of the system. The
tongue originates at δ = δ0 and then enlarges with increase in excitation ε. The smooth line
indicates instability tongue in ideal case (damping = 0) while the dotted line indicates more
pragmatic situation taking damping into consideration.

From here it can be shown that parametric excitation is possible for drive frequencies
Ωdrive = 2Ωm0

n
(where, n = 1, 2, 3....). The dependance of detuning δ on the drive parameter

ε can be written as:

δ =
n2

4
+ δ1ε+ δ2ε

2 + ... (4.24)

The factors δ1, δ2... are related to the detuning of the resonance due to higher power
acting on the system. In our system this detuning arrives as a consequence of the existing
nonlinearity in the system. Thus e�ect of an increase of ε results in a dispersion of δ i.e.
increase in the excited frequency range for the superharmonic excitation. The resulting plot
is shown in Figure 4.11, it displays a tongue like behavior with an increase in the tongue
width with an increase in ε. This kind of plot is known as the instability tongue. Thus we
can conclude that parametric excitation is possible when the drive frequency satis�es the
condition Ωdrive = 2Ωm0

n
, where n is an integer. In the next section experimental realization

of this phenomenon will be discussed and it will be seen indeed it is possible to realize the
up conversion of the excitation for various values of n.

Mathieu equation with damping

The discussion up till now however has been a little pragmatic, as the damping coe�cient
has been completely neglected in the discussion which is very much present when a system
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Figure 4.12: Instability tongue under nonlinear regime.

is studied under laboratory environment. Thus let us now consider the damped Mathieu
equation and then observe how the transition curves are modi�ed. For that let us consider
what is known as the damped Mathieu equation:

d2x

dτ 2
+ c

dx

dτ
+ (δ + εcos(τ))x = 0 (4.25)

Here, c = nΓm

Ωm0
is linearly related to the damping coe�cient Γm. Like in the previous

section using some assumed solutions dependence of δ on ε can be found and it can be shown
that (detailed derivation in Appendix(B)):

δ =
p2

4
±
√
ε2 − c2

2
+O(ε2) (4.26)

This clearly shows that for instability to occur for a given value of c, a minimum value of ε
is required i.e. there exists a threshold in the external excitation from where output response
will be observed. Also the minimum ε is slightly detached from the δ axis depending on the
value of c. The dependence of δ on ε for low ε is a little parabolic which makes edges of the
transition curves to be a little blunt rather than sharp compared to the case when there is
no damping. Nonetheless when ε is su�ciently high, the dependence again becomes linear
(ignoring higher order perturbations) which is shown by the dotted curve in Figure 4.11.

Mathieu equation under nonlinear regime

In the previous sections it has been discussed how the unbounded states can exist inside
the transition regions de�ned by the boundaries, but in real world a physical system does
not demonstrate such unbounded behavior. The reason can be attributed to the existing
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nonlinearity in the system. This phenomenon hasn't been examined in the discussion till
now and it's due to the fact that up to now only a basic form of Mathieu equation has been
considered in order to reduce complicacy. This is due to the fact that as the system enters
into nonlinear regime due to the large motion in amplitude the eigen-frequency becomes
detuned, as a result the amplitude in the response becomes smaller thereby not reaching
the unbounded response. To study the parametric response of a system under nonlinear
conditions we will need to consider the nonlinear Mathieu equation:

d2x

dτ 2
+ (δ + εcos(τ))x+ αx3 = 0 (4.27)

Here the coe�cient α is related with the Du�ng nonlinearity factor β3 as: α = n2β3

Ω2
m0
. It can

be shown that if we assume complex displacement x(t) = Rexp(jθ), where R is the amplitude
of displacement and θ is the phase response, then under steady state approximation:

−R
2
sin(2θ) = 0 (4.28)

and R = − 4

3α
(
cos(2θ)

2
+ δ1) (4.29)

From these solutions it can be shown that (Appendix(B)) for R 6= 0 i.e. inside the
instability tongue a bifurcation exists for θ. And solution will exist only for θ = π/2 and
θ = 3π/2 i.e. there are two stable states which are separated by a phase di�erence of
π when the system is inside nonlinear regime. It will be shown in the next section that
identical situation is achieved under experimental observations, where two separate states
are observed under a parametric excitation (superharmonic resonance) being separated by a
phase di�erence π.

4.3.2 Excitation of superharmonic resonance

Figure 4.13: Schematic diagram of superharmonic resonance experiment: The drive frequency
Ωdrive is swept around Ωm0/n while at the same time the system is probed around the natural
resonance of the system Ωm0.

The observation of sub/super-harmonic resonances requires high nonlinearity in the system.
Due to some presence of damping in the system these kinds of excitation will be possible
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only after the excitation exceeds a certain threshold (VTh) as it was discussed in section 4.3.1.
These experiments were performed by exciting the system far away from resonance i.e. at
Ωm0/n and at the same time probing the response of the system at Ωm0.

Figure 4.14: Superharmonic resonances for Ωdrive = Ωm0/n; instability tongues are displayed
for up to n = 2 to 8. Note the change of drive frequencies between di�erent graphs. ∆Ω
denotes the frequency detuning nΩdrive − Ωm0.

Figure 4.13 shows a schematic diagram of how the experiments were performed. In order
to perform the experiment the drive frequency Ωdrive was swept around Ωm0/n (n = 2, 3, 4...)
by an amount 2∆Ω (Figure 4.13) and the system was always probed all the time at Ωm0.
When the drive is not strong enough only a quasiperiodic motion of the oscillator is observed;
while when the forcing amplitude is strong enough periodic oscillation at Ωm0 is observed.
In the latter case, the locking of the oscillator frequency on the periodic force frequency
occurs within the aforementioned instability tongues. Such regions for several superharmonic
resonance con�gurations are plotted in Figure 4.14. In the experimental set up a point by
point measurement was performed. Which means that the experiment was performed by
recording the spectra at a �xed frequency while repeating the experiment step by step at
a slightly shifted frequency and �nally interpolating peaks from each plot to construct the
�nal spectra. As a result the spectra unfortunately becomes a bit pixelited. Nonetheless, the
instability tongue is clearly visible in every case. For the ease of discussion we will segregate
this section into two subsections: in the �rst one we will discuss about the excited amplitude
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evolution under superharmonic con�guration, while in the later one we will shift our focus
on the evolution of the phase space trajectories under superharmonic resonance.

Amplitude evolution

Figure 4.15: (a) Cross sectional picture of the 2D surface plot (b) noise spectra of super-
harmonic resonance after data smoothing (c) plot of FWHM against external excitation for
di�erent superharmonic resonances (d) plot of extracted ∆Ωres(at Vac = 10.0V ) and VTh
values with superharmonic resonance order n.

On the 2D surface plots of Figure 4.14 x-axis represents detuning of the frequency from the
natural frequency of the system, on y-axis is the amount of AC voltage Vac applied to the
oscillator, while the color axis represents the noise spectrum of the fundamental mechanical
mode Ωm0. In relation with the theoretical discussion presented before thus ε resembles
Vac while δ represents Ωdrive. For n = 2 to n = 5 the tongue like behavior can be clearly
observed while for n > 5 it becomes di�cult to observe the tongue shape. The reason can
be attributed due to the fact that the threshold required for the superharmonic resonance
(n > 5) to be seen is directly related to the corresponding nonlinear coe�cients, which
decrease as n increases. Several interesting parameters can be deduced from the response
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spectra, one of them being how the FWHM (∆Ωres) of the spectra depends on the applied
excitation as well as on n. The raw data however are quite noisy, this happens due to the
point by point measuring procedure which was mentioned before. The raw experimental
data for n = 3 and Vac = 9.0V is shown in Figure 4.15(a). In order to extract some useful
information from these data some further data processing was needed to be performed. This
was done by performing some data smoothing algorithm on the spectrum, a simple 4th-order
average �lter was used for the signal processing. The smoothed data is displayed in Figure
4.15(b), where it can be seen that we are able to reproduce data which looks much similar to
a Lorentzian spectra. The data are successfully reproduced without much loss of information
like amplitude and bandwidth of the spectra. Now it was possible to �t this spectra with a
mechanical Lorentzian function and retrieve information. The Lorentzian function used to
extract the data is displayed in the following equation:

x = x0 +B ∗ ∆Ωres

4(Ω− Ωm0)2 + ∆Ω2
res

(4.30)

Where, ∆Ωres is the full width half maxima of the spectra. For the particular situation
displayed in Figure 4.15(b) we were able to extract ∆Ωres = 30kHz.

The extracted FWHM (∆Ωres) is plotted against the applied bias in Figure 4.15(c) for
several superharmonic resonances (n = 1, 3, 5, 7, 8). The �rst noticeable result from the plots
is the clear indication of the saturation of ∆Ωres at higher Vac; this might be due to the higher
orders of perturbation or dissipation due to temperature rise. The saturation e�ect is clear
for n = 1 to 5, while from n = 7 this saturation e�ect is not particularly evident. Especially
for n = 8 in Figure 4.15(c) the growth in ∆Ωres can still be seen even for higher Vac values.
One more important information that can be extracted from the data is the variation of the
excitation threshold referred as VTh before. The extracted ∆Ωres and threshold voltage VTh
required for the superharmonic resonance to occur is plotted in Figure 4.15(d). All the ∆Ωres

are extracted for Vac = 10V for di�erent superharmonic resonances i.e. di�erent n values. It
can be clearly seen from this plot that the FWHM (∆Ωres) gradually decreases with n, while
threshold voltage VTh increases with n. This phenomenon can be attributed to the fact that
lesser contribution from the higher order nonlinear terms, while the in�uence of these higher
order terms can be enhanced by increasing the external excitation.

Evolution of phase trajectories

The next study that was performed on the system was to understand the phase dynamics
under superharmonic resonance. The method of study is similar to what was discussed in
section 4.2.1 (Figure 4.7(b)). Using ring down technique, several trajectories for various
superharmonic resonance were tracked and some of the results are plotted in Figure 4.16
(n = 2, 4, 6) for two values of excitation Vac = 2V & Vac = 10V . The record of these
phase trajectories are done by doing several ring down measurements while keeping the drive
Vac and resonance order n �xed. We start by observing the phase trajectory for n = 2;
here we can observe that for a low level of excitation (Vac = 2V ) the system displays only
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Figure 4.16: Phase trajectories of the system for n = 2, 4, 6. The phase trajectories show
that after certain threshold the system displays in and anti-phase oscillation with respect
to the drive. This e�ect is clearly seen for up to n = 4, after that this e�ect becomes less
evident due to decrease in the corresponding nonlinear coe�cient.

a single state which oscillates at a �xed phase di�erence with respect to the drive. The
radial distance of the phase state from the center determines the amplitude of oscillation of
this state. However, when the excitation is higher (Vac = 10V ) the system enters into the
nonlinear regime and along with an enhancement in the oscillation amplitude it also starts
to display a bifurcation in phase. This resembles the discussion we had on Mathieu equation
under nonlinear regime (section 4.3.1), where it was shown that a system which is governed
by Mathieu equation beyond nonlinear threshold, will display two bifurcated states separated
by π. The system shows probability close to 50% to be in each state while di�erent switching
events are recorded. Similar situation is observed for 4th superharmonic resonance, near
or below the threshold (around Vac = 2V ) the initial phase approaches the origin (Figure
4.16). When the drive strength is weak, the resonator occupies only a single state. But for
Vac = 10V , the phase potrait follows two spiral trajectories di�ered by π phase shift. This
e�ect as it was discussed in the previous section arises due to the presence of nonlinearity in
the system (section 4.3.1), the phase di�erence between this two bifurcated points remaining
π. Similar e�ects have been demonstrated by Mahboob et al. [38][39] and Chan et al. [103].
For higher order superharmonic resonances (n > 5), these in and anti-phase resonances are
not observed due to the very narrow width of the instability tongue related to the lower value
of the higher nonlinear coe�cients.

The phase di�erence between the oscillator and the driving force is bounded and depends
on the excitation frequency detuning. In the experiment we prepare the system at one of the
two bifurcated states and then change the frequency detuning from one edge of the tongue
to another. At each point of detuning we are able to extract the phase and amplitude of
oscillation with respect to the external drive. In Figure 4.17(a) we show how the phase
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Figure 4.17: (a) Phase trajectories for n= 2 & 6 for discrete values of ∆Ω for Vac = 10V (b)
phase evolution of a single state with frequency detuning ∆Ω for n = 2 & 6.

trajectory of one of the oscillator state is evolving for 5 di�erent detuning values, identical
behavior would be observed for the other state as well. We have observed that each states
undergoes a π phase shift with the detuning while maintaining a π phase shift with the other
state at each detuning point. We start from one edge of the hysteresis where the excited
amplitude is quite small with a phase shift of −π/2 with respect to the external drive,
and gradually this phase di�erence starts to increase towards 0 as the frequency detuning
approaches 0. At 0 detuning the amplitude of oscillation is also the highest with zero degree
of phase shift measured with 4% of uncertainity. From here as the detuning is increased the
phase di�erence increases towards π/2 with a decrease in the oscillation amplitude. Similar
e�ect is observed for both n = 2 and n = 6. While for obvious reason oscillation amplitude
for n = 2 is being higher than for n = 6. Another representation of this phase shift is shown
in Figure 4.17(b) where we can clearly observe the phase of individual states undergoing a
π phase shift while crossing the tongue for a constant drive Vac. Two separate situations are
displayed with n = 2 & 6; and in both cases we can observe that each state will under go
a π phase shift as the detuning is changed. Thus in conclusion one can say that the phase
shift remains bounded within the width of the instability tongue, showing a linear behavior
(varying by π while 'crossing' the tongue).

4.4 Parametric ampli�cation

Let us consider the situation where the spring constant of the system is modulated at twice
the natural frequency, this leads to an ampli�cation of a weak drive at resonance, this is
known as parametric ampli�cation. Parametric ampli�cation is not only achieved while
modulation is done at twice the natural frequency but also when modulation is done at a
slower rate i.e. at n-th multiple of half a period of oscillation. The idea is that if a system
resides within its instability tongue, any small perturbation could cause the response to grow
exponentially, this happens when the amplitude of modulation is su�ciently strong enough
to overcome any in�uence of damping. This phenomenon is known as the parametric ampli-
�cation and it �nds many interesting applications in the �eld of MEMS/NEMS resonators.
This e�ect has been demonstrated in several nanomechanical systems; Unterreithmeier et al
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[40] showed that parametric excitation is possible for a electromechanical system, Mahboob
et al showed that parametrically coupled array could produce a network which can demon-
strate binary operations [38], while Eichler et al [104] demonstrated parametric ampli�cation
for carbon nanotube microresonators. Other nano/micro-mechanical system have been also
shown to exhibit the parametric ampli�cation e�ect [54][105]. The threshold of this para-
metric ampli�cation scales as (Q−1)n (where Q denotes the Q-factor of the resonator) [18]
for the the n-th instability tongue; so the e�ect is strongest for the case when n = 1/2 i.e.
when Ωdrive = 2 ∗ Ωm0. This is why it is customary to study the case of parametric am-
pli�cation for this particular case. The idea is really similar to what has been done in the
previous section but instead of using super-harmonic resonance we use sub-harmonic driving
con�guration. The resonator is driven at natural resonance (Ωdrive = Ωm0) far away from the
bistable threshold so that it remains well inside the linear regime and then at the same time
another drive is added; generally referred as pump at a frequency Ωdrive = 2 ∗ Ωm0. This
excitation however should be stronger than the drive. Most common case in micron scale
is to use an external electrode to pump the system at twice the natural frequency. What
happens in such a condition is basically the pump at this frequency modulates the spring
constant and at the same time the seed at natural resonance helps this oscillation to build
up provided the system is within the instability tongue. In such a condition it will be shown
that it is possible to achieve either ampli�cation or deampli�cation depending on the phase
di�erence between the drive and pump.

The discussion here on parametric ampli�cation will be divided into two sections: in the
�rst section we will discuss the situation considering the system is far below the nonlinear
regime. With this con�guration it is possible to achieve the phenomenon of parametric
ampli�cation. However when the resonant excitation exceeds the threshold VTh, the system
enters in the nonlinear regime. Here it will be shown that it is possible to tune the nonlinearity
of the oscillator.

4.4.1 Theoretical background: parametric ampli�cation

We begin our discussion considering the equation of motion under resonant drive (δV =
Vaccos(Ωdrivet+ φ)):

ẍ+ Γmẋ+ Ω2
m0x = δF (t) where, δF (t) = −1

2

dC

dx
|x=x0V δV (4.31)

As a reminder; the discussion will be done by considering the system is under the thresh-
old and thus still in the linear regime. Knowing that spring constant per unit mass (km)
related with the frequency as km = Ω2

m and considering the modulated spring constant (by
a parametric pump) being kp, we can write:

km = km0 + kp(t) (4.32)
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where, km0 is the unperturbed spring constant/unit mass (=Ω2
m0) and kp(=Ω2

p) is the
modulated spring constant/unit mass. This modulation of spring constant is done by applying
some external parametric excitation. Under the condition of parametric ampli�cation the
forcing drive at natural resonance is δF (t) = dC

dx
|x=x0V δV , while the parametric excitation on

the system modulates the spring constant. Using the same excitation scheme the modulation
on the spring constant can be de�ned as: kp = ∆δFp = ∆(dC

dx
|x=x0V δVp). Here, the parametric

voltage can be de�ned as δVp = Vpcos(2Ωm0t) which makes the parametric spring constantkp
directly proportional to the applied parametric voltage i.e. kp = ∆kcos(2Ωm0t), where ∆k =
dC
dx
|x=x0V Vp.
Thus the modi�ed equation of motion for the resonator becomes:

ẍ+ Γmẋ+ [km0 + kp(t)]x = δF (t) (4.33)

The equation can be solved by using the normal mode approach described by Louisell for
electrical parameters [106]. The transformation is de�ned as:

a =
dx

dt
+ jΩ∗1x & a∗ =

dx

dt
− jΩ1x (4.34)

where, j =
√
−1 and Ω1 = Ωm0[(1− Γ2

m/4)1/2 + jΓm/2].
The inverse transforms are:

x =
a− a∗

j(Ω∗1 + Ω1)
(4.35)

and,
dx

dt
=

Ω1a+ Ω∗1a
∗

Ω∗1 + Ω1

(4.36)

From the equations derived above, it can be shown that:

da

dt
= jΩ1a+ jkp(t)

a− a∗

Ω1 + Ω∗1
+ δF (t) (4.37)

We assume the resonant force acting on the system is expressed as δF = F0exp(jΩt+φ),
where φ is the phase di�erence between the resonant drive and the parametric pump. Now
for steady state situation the solution of the equation (4.36) would take the form of: a(t) =
Aexp(jΩm0t), where A is a complex constant.

Now, if we replace equation (4.36) with this term and by only taking the terms involving
exp(jΩm0t) one can show that:
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[j(Ω1 − Ωm0)A− ∆k

2(Ω∗1 + Ω1)
A∗ + F0exp(jφ)]exp(jΩm0t) = 0 (4.38)

Under this condition that Γm is negligible the �rst order approximation leads that: Ω∗1 +
Ω1 ' Ωm0 and Ω∗1 − Ω1 ' j2Ωm0Γm. Using these approximations it can be shown that the
amplitude of parametric ampli�cation is:

|A| = (
F0Ωm0

km0Γm
)1/2[

cos2φ

(1 + ∆k/2km0Γm)2
+

sin2φ

(1−∆k/2km0Γm)2
]1/2 (4.39)

.
substituting the expression for ∆k in the equation above gives:

|A| = (
F0Ωm0

βm0Γm
)1/2[

cos2φ

(1 + Vp/Vt))2
+

sin2φ

(1− Vp/Vt)2
]1/2 where, Vt = 2βm0Γm/(V ∗

dC

dx
|x=x0)

(4.40)

From here one can compute the amount of parametric gain achieved under this con�gu-
ration; which can be done by �nding out the ratio of amplitude of response when parametric
ampli�cation takes place to the situation when there is no parametric ampli�cation. The
expression of response without parametric ampli�cation can be found by putting Vp = 0;
which is:

|A|pump−off = (F0Ωm0/βm0Γm)1/2 (4.41)

So �nally we de�ne the gain of parametric ampli�cation as:

G(φ) =
|Apump−on|
|Apump−off |

(4.42)

Using equations de�ned above, we can �nally express gain of parametric ampli�cation as:

G(φ) = [
cos2φ

(1 + Vp/Vt))2
+

sin2φ

(1− Vp/Vt)2
]1/2 (4.43)

The expression of this gain G(φ) is plotted against the reduced parametric drive V̄ de�ned
as V̄ = Vp/Vt in Figure 4.18(a). As can be seen from the equation (4.42) when the phase
di�erence φ is π/2 between the drive and the pump, there is an ampli�cation which grows
towards in�nity with Vp → Vt. While on the other hand there is a deampli�cation for the
phase di�erence of φ = 0 between the source and the pump, and it goes asymptotically
towards 0.5 with an increase in the parametric pump. Figure 4.18(b) on the other hand plots
the parametric gain of the resonator against the phase di�erenceφ for a �xed V̄ = 0.9. The
result is shows highest value at φ = π/2, while asymptotically decreasing towards 0.5 as φ
travels towards 0.
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Figure 4.18: (a) Variation of parametric gain with the parametric drive under two separate
phase di�erences φ = 0 and φ = π/2 (b) Variation of parametric gain with the phase di�erence
between the resonant drive and parametric pump under a constant reduced parametric drive
V̄ = 0.9.

4.4.2 Experiments: parametric ampli�cation and deampli�cation

The experimental set up and the schematic of the experiment is shown in Figure 4.19. In
the experiment two separate signal generators were used for driving the system in these two
di�erent frequencies. The �rst generator was used to drive the resonator weakly at the natural
resonance (Ωm0) with a weak drive (Vac = 100mV ) well below nonlinear regime (Figure 4.6).
A second generator then was used to pump the system at 2Ωm0. At the beginning the second
generator was used to generate a signal at Ωm0 with a higher amplitude (typically 4− 10V )
being synchronized with the �rst generator. The output of the second generator was then
fed to a frequency multiplier with a multiplication factor of 2 to �nally produce a response
at 2Ωm0. In this way it was possible to keep a constant phase relationship between the drive
and the pump. A phase shifter was connected at the output of the second signal generator
in order to continuously vary the phase di�erence between the signal generators. Finally the
response was recorded at the natural resonance by using a lock-in ampli�er.

One important factor to note here is, as it will be seen later, that there is a gradual
frequency shift with the parametric pump. This results in a detuning of the eigenfrequency
of the oscillator, so every time when the pump voltage was increased the drive as well as the
pump frequency was adjusted to counter this frequency shift e�ect. Another factor is the
mixing of the drive and pump signals; since both the drive and the pump are applied to the
membrane through the same electrodes the signal applied to the system su�ers from a signal
mixing problem. This mixing e�ect is really negligible when the drive and pump strength
are similar, but increases when one of the amplitudes is much weaker than the other. So, the
experimental results required some further calibrations which is discussed in Appendix C.
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Figure 4.19: (a) Experimental set-up for parametric ampli�cation experiment, (b) scheme
of experiment on parametric ampli�cation: there is a strong pump at a frequency twice the
natural resonance (2Ωm0) while there is weaker drive at the natural resonance (Ωm0). The
system is also being probed at its natural resonance.

The experimental results are displayed in Figure 4.20, which shows variation of para-
metric gain with the phase di�erence between the resonant drive and the parametric pump.
The parametric gain is de�ned as the ratio of the amplitude response of the system when
parametric excitation is activated to response of the system when there is no parametric
actuation. In every case the resonant drive was �xed below nonlinear threshold at 100mV,
while the responses were recorded for several values of the parametric pump, from Vp = 4V to
10V . The phase di�erence between the resonant drive and parametric pump was also varied
from 0° to 180° . In every case it can be noticed that the gain in the response varies from a
region of ampli�cation to a region of deampli�cation; the e�ect is strongest for a parametric
pump of 10V. The height of ampli�cation and depth of deampli�cation is really pronounced
in this case, the di�erence between these two peaks (di�erence between highest value of am-
pli�cation and lowest value of deampli�cation) however decreases as the parametric pump
is reduced. For example, at 4V of parametric pump the response with respect to the phase
di�erence is much more �atter compared to the case where parametric excitation was 10V.

Since the experiment is susceptible to several noise source (electrical �uctuations, �uc-
tuations from detectors, lock-in to name a few) better estimation of the ampli�cation and
deampli�cation was extracted from �ts rather than providing directly from the plots. These
�ts were performed by a modi�ed version of the equation (4.42) and can be written as:

G(φ) =

[
cos2(φ+ α)

(1 + V̄ )2
+
sin2(φ+ α)

(1− V̄ )2

]1/2

(4.44)

A parameter α is introduced in equation (4.43) which acts as a constant phase o�set.
This is due to the fact that in practical conditions there is always a phase o�set between
the drive and the pump, which comes into play from various delays in electrical connections.
This makes the maxima and minima of the gain to occur at di�erent φ values (other than
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classical π/2 and 0 degree), however the phase di�erence between the crest and base should
always be π/2. It is the same reason for which these peaks and lows are observed to occur
at di�erent phase values for di�erent pump voltage Vp. From the �ts not only it's possible
to extract the maxima and minima of the gain G(φ) but also it is possible to determine the
critical parametric drive V̄ . The �ts are also represented in Figure 4.20 by dotted black lines
for each case of parametric ampli�cation. The �t follows the response quite nicely, the phase
value at which the lowest deampli�cation and highest ampli�cation is observed is about 20
and 110 degrees respectively, which gives a expected phase di�erence of 90 degrees between
them. From the �ts it is possible to determine the maxima and minima for the gain in each
case. The result is plotted in Figure 4.21(a), an increase of the ampli�cation as well as a
decrease of deampli�cation can be observed for two separate phase di�erences. For Vp = 10V
an ampli�cation of about 4.5 and de-ampli�cation close to 0.55 was observed. To compute
the �t we use equation (4.43) with �xed phase di�erences (depending on if we are looking at
gain maxima or minima) and the �ts predict a critical voltage Vt of around 14.0V .

Figure 4.20: Parametric ampli�cation of the nano-mechanical resonator for a �xed resonant
excitation of 100mV and several parametric excitation (Vp = 4-10V). While the Y-axis dis-
plays value of the parametric gain, the X-axis provides the variation of the phase di�erence
between the resonant drive and parametric pump. The �ts are shown by black dotted lines.

The critical drive V̄ was also extracted for each case and are plotted in Figure 4.21(b).
There is a monotonic increase in the critical drive with the increase in parametric excitation,
although there is a bump in V̄ around 6V , which we believe is mainly due to some experi-
mental noises rather than due to any other physical reasons. Value of the critical drive V̄ at
Vp = 10V is about 0.7 as estimated from the �ts (Figure 4.20). Now, since V̄ = Vp/Vt = 0.7,
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Figure 4.21: (a) Plot of extracted gain maxima and minima for various values of parametric
pump with the �t (b) Plot of extracted critical drive V̄ with parametric pump.

this gives a predicted value of Vt of about 14.3V , which is close to the value predicted by
the �t from Figure 4.21(a). However this value is above the range of Vp considered for the
experiment. As expected for parametric ampli�cations with other Vp's the same value of Vt is
extracted. Due to some technical reasons especially not to damage the membrane or the on
chip electrical connectors, parametric excitation with higher drive were not explored. Such
a high parametric excitation to observe this exponential enhancement in gain and hence self
oscillation, can be attributed to the fact that the electromechanical coupling for this con-
�guration is not high enough. This however can be increased by tuning the geometry of
the system. The sample being used has a separation of 400nm between the bottom of the
membrane and the top of the electrodes. This con�guration gives a calculated electrome-
chanical coupling of 3nm/V , however this coupling increases exponentially with a decrease
in the electrode membrane separation (section 3.2). With our recent optimization in the
fabrication procedure we are able to go down to as small as 200nm of electrode membrane
separation which in theory should result in approximately two time enhancement of the elec-
tromechanical coupling factor. With this high degree of coupling we can expect a lowerVt
and hence observation of self-oscillation at a much lower value of Vp.

4.4.3 Phase dependent ampli�cation

In the next set of experiments we performed some phase dependent ampli�cation schemes.
The idea is to utilize a similar scheme as described before for parametric ampli�cation, but
instead of varying the phase continuously between the pump and drive we �x the phase
di�erence at two discrete values. These discrete values being the phase di�erences where the
gain is maximum and minimum respectively. In this con�guration if we switch between these
two phase di�erences we should be able to observe periodic ampli�cation and deampli�cation
e�ects. In the experiment we �xed the resonant drive at Vac = 100mV and the parametric
pump at Vp = 10V . Both of these were kept on for the entire duration of the experiment.
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Figure 4.22: (a) Time domain response of the system as the phase di�erence between the
resonant drive and the parametric pump is switched between 20° and 110° (b) same response
when tracked in the phase space.

From Figure 4.20 we are able to identify the two phase di�erence being 20° and 110° for our
con�guration. After interfacing the computer with one of the signal generators and the lock-
in using a python program we could switch discretely between these two phases at a period
of 0.5Hz. At the same time use of the lock-in ampli�er helped us to perform acquisition of
the in-phase (X) and out of phase quadrature (Y) at the same time. So, it was possible to
observe the phase space trajectories of the oscillator during the entire process.

Figure 4.22(a) displays the time domain acquisition of the response as the phase di�erence
is switched between these two discrete values. The signal without ampli�cation is displayed
by the blue line while the modulation signal (square phase modulation between 20° and 110°)
at 0.5 Hz is displayed by the black line. We are able to observe switching at the output signal
everytime there is a switch in the phase di�erence at the input. If we de�ne the �delity as
the ratio of the number of switching observed at the output while there is a phase switching
at the input then we can conclude that for all of our experiments a �delity of 100% was
observed. Another interesting representation can be given by tracking down how the system
responds in the phase space as the switching is performed. We observe in Figure 4.22(b) that
everytime there is a switch between ampli�cation and deampli�cation a clear switch in phase
space is always observed. The radial distance of the phase points from the origin denotes the
amplitude of oscillation, therefore clearly indicating when the system is under ampli�cation
(RHigh) and when it is under deampli�cation (RLow). The advantage of a system exhibiting
such separate states under parametric excitation is that it can be used to exhibit memory
devices with binary like states as well as realizing complicated binary networks as exhibited
by Mahboob et al. [39].
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4.4.4 Eigenfrequency tuning with parametric excitation

Another very interesting e�ect under parametric excitation is the tuning the eigenfrequency
of the resonator under study. It was mentioned earlier that when a system is well below the
nonlinear threshold, the action of the parametric pump is to modulate the spring constant of
the system at twice the natural resonance frequency. Thus the simpli�ed equation of motion
of a system under parametric excitation can be written as:

ẍ+ Γmẋ+ Ω2
m0x ∗ (1−Hpcos(2Ωm0t)) = F where, F = F0cos(Ωm0t) (4.45)

We de�ne here Ωm0 as the unmodulated natural resonance frequency, similarly we de�ne
Γm is the damping factor of the resonator, F is the force acting on the system at natural
resonance frequency and H = Hpcos(2Ωm0t) is the modulation of the spring constant of the
system due to parametric excitation. The parameter H is directly related to the amount of
parametric pump acting on the system. If we transform the equation (4.45) in frequency
domain then it takes the form (considering displacement vector as x(t) = X ∗ exp(jΩt)):

−Ω2X + jΩΓmX + Ω2
m0X ∗ (1−Hp)) = F (4.46)

which if simpli�ed takes the form:

|X| = F/
√

[{−Ω2 + Ω2
m0(1−Hp)}2 + Ω2Γ2

m] (4.47)

Now at resonance, ideally the displacement should diverge to in�nity i.e. the denominator
should approach minimum. Considering the modi�ed resonance to be Ωm one can write:

{−Ω2
m + Ω2

m0(1−Hp)}2 = 0 (4.48)

which can be reduced to:

Ω2
m = Ω2

m0(1−Hp) (4.49)

i.e.
Ω2
m

Ω2
m0

= (1−Hp) (4.50)
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So, as expressed by equation (4.50) the eigenfrequency has a parabolic dependence on the
intensity of modulation of the spring constant Hp. As this intensity Hp increases there is a
decrease in the natural resonance i.e. the eigenfrequency of the system Ωm. As there is a
decrease in the eigenfrequency with the applied parametric pump, it can be identi�ed as a
spring softening e�ect. Similar equations may be derived for other superharmonic frequencies
as well, but as it was mentioned before the threshold required for parametric ampli�cation is
higher for those cases which will make the amplitude of spring modulation Hp lower. Thereby
making the observed frequency shift to be much smaller.

Figure 4.23: (a) Normalized spectra for eigenfrequency shift with an increase of the para-
metric pump (b) change in the response spectra as the parametric pump is activated, a clear
spring softening shift in the frequency response can be observed when the parametric pump
is activated (Vp = 10V ) (c) Eigenfrequency shift with a DC pump on the same membrane
electrode system (d) Shift in the response spectra as DC bias is activated, a small shift of
only 0.5kHz is observed at VDC = 20V .

The experiment was set up by �rst of all making sure that the system is under the
nonlinear threshold, and then increasing the parametric excitation gradually while tracking
down the resonant response at the same time. So the resonant excitation was �xed at 100mV
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and the parametric excitation Vp was increased from 0.25V gradually towards 10V. The
resulting surface plot is shown in Figure 4.23(a), the spectra has been normalized to give a
clear indication about the shift in the eigenfrequency. This supports strongly the equation
where it clearly shows a gradual decrease in the eigenfrequency as the pump voltage is
increased. To quantify the observed shift, we now focus on �gure 4.23(b). Here we plot the
response spectra of the system under two di�erent conditions; the conditions have been chosen
in such a way that the amplitude response is identical in both cases. The red graph shows
the response of the system with only resonance excitation and no parametric excitation. The
excitation voltage is �xed at 1V and the excitation frequency is swept around the natural
resonance. Next, the pump was activated at twice the natural resonance frequency and at an
excitation of 10V while the resonant excitation was �xed at 100mV . Like before the excitation
frequency was swept across the resonance and the response spectra was recorded around the
natural resonance, this is shown by the blue curve. Clearly a shift in the eigenfrequency is
observed, the shift is towards the red side of the spectra and thus this is a spring softening
e�ect. To extract clearly the resonance, these graphs were �tted with lorentzian response and
the resonance frequencies were extracted. A shift of 2.25kHz was observed at a parametric
pump of 10V . This phenomenon is what was discussed previously in equation (4.50) where
we could observe a parabolic shift in the eigenfrequency with increase in parametric actuation
which is identical with the experimental result.

This now brings us to the comparison between the case when a DC voltage is applied on
the system instead of the parametric pump. This case was discussed in the previous chapter,
but it was on a di�erent membrane. In the case of this particular membrane however the
e�ect was much less pronounced, the reason can be many fold. It may come from the
fabrication imperfections, from variation in electrode designs or simply from the material
properties. The surface plot of the response under this actuation scheme is shown in Figure
4.23(c), although it is very di�cult any substantial shift in this graph. A little improvement
is observed if we directly look at the spectra with no DC bias and with a DC bias of 20V
(4.23(d)). The shift observed however is still very small and the Lorentzian �ts produce a
shift of only 0.5kHz. With this we can conclude that for this sample frequency shift with
parametric excitation seems to be more e�ective than usual DC bias which has been the
norm used in many architectures [40][104]. The observed frequency shift with parametric
excitation (2.25kHz) is more than the FWHM of the spectra which is about 0.9kHz. This
relative shift in frequency can be enhanced by playing with the geometry of the membrane.
As mentioned above with a decrease in the electrode-membrane separation we expect to
see an increase in the electromechanical coupling factor which in turn should increase the
observed eigenfrequency shift.

4.4.5 Nonlinearity tuning by parametric excitation

In this section we will discuss on the situation where the system is still under parametric
excitation but the resonant excitation crosses the nonlinear threshold (VTh = 4.25V ). This is
basically an extension to the discussion done in the previous section. In the previous section
it was observed that it was possible to tune the eigenfrequency by parametric excitation as



CHAPTER 4. ACTUATION IN NONLINEAR REGIME 100

a direct result of spring constant modulation of the resonator. The result as it was observed
is a spring softening e�ect which decreases the eigenfrequency of the system. When however
the system is above the nonlinear threshold this softening should directly modulate the
nonlinearity in the system. In order to understand the phenomenon better we comeback to
the Du�ng equation again but with an added quadratic nonlinear component along with the
parametric excitation term.

ẍ+ Γmẋ+ Ω2
m0x(1−Hpcos(2Ωm0t) + β2x+ β3x

2) = Fcos(Ωm0t+ φ) (4.51)

Where β2 and β3 are the quadratic and 3rd order nonlinear coe�cients. As it was men-
tioned before, the odd nonlinear component is responsible for the spring hardening e�ect in
the system, while the quadratic nonlinear term which is known as the symmetry breaking
term in general like the DC term, responsible for the spring softening e�ect of the resonator.
This gives us an unique opportunity to play with the quadratic nonlinearity and induce a
spring softening e�ect on a already spring hardened resonator.

In the experiment the set up was kept same as in the case of parametric excitation,
however with a resonant excitation above the nonlinear threshold. The experimental spectra
is displayed in Figure 4.24(a), the resonant excitation is kept at 9V while �rstly (in blue) the
parametric excitation is turned o� (Vp = 0V ). The Du�ng like response in the amplitude can
be observed for this case exhibiting the nonlinearity in response. While when the parametric
excitation is turned on with Vp = 4V (in red) a clear change in the response is observed.
A reduction in the hysteresis as a result of decrease in the nonlinearity is observed in this
scenario. With an even higher parametric actuation of Vp = 10V an even higher reduction
in the hysteresis of the response is observed due to even more lowering in the nonlinearity
(green).

The above experiments were performed for a �xed phase di�erence of 0 degree between
the resonant drive and the parametric pump. An interesting factor was observed as the phase
di�erence between the resonant drive and the parametric pump was varied. The detuning
of nonlinearity seems to be present for any given phase di�erences, yet its magnitude of
detuning happen to vary depending on the phase di�erence. Interestingly highest detuning
was observed when the phase di�erence between the drive and the pump was 110 degrees
and the least detuning was observed when the phase di�erence between the drive and the
pump was about 20 degrees. This corresponds exactly to the phase di�erence values where
highest parametric ampli�cation and lowest parametric deampli�cation was observed. This
we believe is in a direct consequence of the parametric ampli�cation process which enhances
and diminishes the e�ect of spring softening in the respective cases. Figure 4.24(b) explains
how the system responds to situations when �rst of all there is no parametric excitation
(in blue), then when there is a parametric pump of 10V at a phase di�erence of 20 degrees
(orange) and �nally for a parametric pump of 10V with a phase di�erence of 110 degrees
(green). The same situation is observed while the pump voltage Vp was varied from 10V to
5V . If the resonant drive is weaker (for example 5V ) almost a pure linear response is been
able to observe for the parametric pump of 10V . The spectra with other pump voltages Vp
are not shown here although they will be used in the discussion below.
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Figure 4.24: (a) Comparison between resonant excitation at Vac = 9V without any parametric
excitation (blue) and with parametric excitation at 4V (red) & 10V (green) at a 0° phase
di�erence between the resonant drive and the parametric pump (b) comparison between
resonance excitation at Vac = 9V with no parametric excitation (blue) and with parametric
excitation at Vp = 10V with two di�erent phase di�erences 20° (orange) and 110° (green)
between the resonant drive and the parametric pump.

To properly comprehend the e�ect of this nonlinearity tuning it was then important to
properly quantify the evolution of the nonlinear factor. The nonlinear coe�cient could be
extracted from the �tting with the Du�ng equation described. We have changed the factor β3

to βeff in order to include the in�uence of the quadratic nonlinear coe�cient on the Du�ng
nonlinear factor β3:

|x|2 = F 2/[(1 + βeff ∗ x2 − Ω2
drive

Ω2
m0

)2 + Γ2
m/4] (4.52)

which is identical to equation (4.11). For the �tting we neglect the quadratic nonlinearity
factor and only consider the 3rd order nonlinearity coe�cient i.e. the Du�ng coe�cient. In
this way we can quantify how the Du�ng nonlinearity is modi�ed by the parametric pump
intensity and as well as by the phase di�erence between the resonant drive and the parametric
pump.

Figure 4.25(a) describes how the nonlinearity coe�cient is modi�ed as a function of the
phase di�erence between the resonant drive and the parametric pump. The resonant drive
was �xed at 10V while the parametric pump was also kept at a value of 10V and then the
phase di�erence between the drive and the pump was varied from 0 degree to 160 degrees.
For each phase di�erence value the response spectra was �tted with equation (4.52) and then
the Du�ng nonlinearity parameter βeff was extracted. The resulting plot shows sinusoidal
like variation of the nonlinear coe�cient of the βeff factor with the phase di�erence. This
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Figure 4.25: (a) Variation of nonlinear coe�cient for a �xed resonant drive and parametric
excitation with phase di�erence between the drive and the pump (b) Variation of nonlin-
ear coe�cient with a �xed resonant drive with parametric excitation (red) and variation of
detuning with parametric pump for a �xed resonant drive (green).

behavior is related to the sinusoidal variation of parametric ampli�cation in Figure 4.20 under
the nonlinear threshold; these factors in�uence the nonlinear e�ects when the the pump is
placed at di�erent phase di�erences compared to the resonant drive. For example, when
the phase di�erence between the drive and the pump is 20° there is a deampli�cation under
the nonlinear threshold, however when the resonant drive is above nonlinear threshold this
results in a lesser reduction of nonlinear coe�cient βeff (Figure 4.25(b). While on the other
side when this phase di�erence is 110° there is an ampli�cation below the nonlinear threshold,
however above the nonlinear threshold this results in a higher reduction in the factor βeff .
The highest value of the βeff was computed to be around 0.05 at 20 degrees while the lowest
value of βeff was found to be around 0.025 at a phase di�erence of 120 degrees. These regions
are highlighted by red and green color respectively.

Next, we tried to observe how this βeff factor varies with the parametric pump at a
�xed resonant drive for a �xed phase di�erence φ. In the experiment we keep the resonant
excitation at Vac = 10V and �x a phase di�erence of 110° between the drive and the pump.
At the beginning the pump remains switched o�, however from here we start to increase the
pump voltage Vp in steps of 2V . The detuning is measured by measuring the deviation of
the hysteresis edge i.e. modulated eigenfrequency Ωm with respect to the natural resonance
frequency Ωm0. When the pump is switched o� i.e. Vp = 0V , we observe no shift in the
hysteresis edge as expected and thus the nonlinearity coe�cient βeff remains on the higher
side (around 0.06). While as we start to increase the parametric pump Vp we observe a
detuning of the resonance frequency Ωm and at the same time a decrease in the nonlinearity.
Initially the drop in nonlinearity is quite a lot, for Vp = 2V the βeff factor drops to around
0.025 and after that slowly decays towards 0.013 at Vp = 10V . Finally we can conclude
that with the parametric pump at Vp = 10V we are able to achieve almost 75% decrease in
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the nonlinearity factor βeff which occurs due to the spring softening e�ect discussed in the
previous section. At the same time we also plot the detuning of eigenfrequency against the
parametric pump Vp for a �xed resonant drive of 10V and phase di�erence φ = 110°. The
highest detuning is about 8.8kHz for Vac = 10V with no parametric excitation. Whereas, as
soon as the parametric excitation is activated a detuning is observed in the eigenfrequency.
For Vp = 10V at φ = 110°, a detuning of 0.8kHz is achieved. For an even higher excitation it is
possible to completely nullify the nonlinearity. But due to some technical reasons parametric
excitation for higher V ′ps were not performed.

4.5 Conclusion

In this chapter we studied in depth the nonlinear behavior of our Nano-Opto-Electro-Mechanical
system. We began the chapter by introducing a nonlinear Du�ng system with spring hard-
ening as well as softening e�ect and focused on extracting useful parameters about the non-
linearity. Then we shifted our attention to sub/super-harmonic excitation; this produced
instability tongues for a damped resonator for up to 8th order. When the system is then ex-
cited in the nonlinear regime it is shown to exhibit bifurcation where it exhibits two distinct
states separated by an angle of π radians in the phase space. Existence of such bifurcations
have been previously demonstrated for sub-harmonic excitation (i.e. frequency down conver-
sion) [39] but not for super-harmonic excitation (frequency up conversion). Rigorous study
of phase dynamics across the instability tongue was also carefully performed which gave a
clear understanding on how the system evolves as one moves across the instability tongue.
We were able to observe such e�ects up to 7th order and probably beyond if the excitation
was increased. We then shifted our focus on parametric ampli�cation experiments, where it
was shown that it is possible to enhance the resonant response by modulating the spring con-
stant of the resonator at twice the natural resonance provided the system is under nonlinear
threshold. An ampli�cation close to 5 was observed; by increasing the pump further it was
theoretically possible to observe higher gain in response. We also demonstrate that tuning of
the eigen-frequency is possible by playing with the excitation at twice the natural resonance
frequency. As this resembles spring softening e�ect we decided to go further and explore
what happens when the resonant excitation is beyond nonlinear threshold. As a result we
were able to tune the nonlinearity of the resonator by directly playing with the parametric
pump. The nonlinearity is not only tunable by the parametric pump but also more markedly
by the phase di�erence between the drive and pump. This gives us a unique opportunity to
continuously tune the nonlinearity of the system just by varying the phase di�erence from 0
to 180 degree.

Finally in this chapter we have seen that there exist a bistability in frequency for the
NOEMS system. Bistability or hysteresis should also exist in amplitude as well as in phase.
This gave us a platform to perform some experiments known as Stochastic Resonance, where
it will be seen that it is possible to switch between the stable states (inside the bistable tongue)
by using appropriate noise. These experiments followed by the results will be discussed in
the next chapter.



Chapter 5

Stochastic Resonance

5.1 Introduction

The phenomenon of stochastic resonance corresponds to the ampli�cation of a weak signal
in a nonlinear system by application of external noise. The concept was actually put forward
by Benzi and his collaborators [107] in order to explain the problem of periodically recurring
ice ages; its modeling was put forward by Kramer in 1940 [108]. The role of stochastic reso-
nance has become very important in recent years in �elds of physics, chemistry, biology and
engineering. The theory since then has been applied for many applications e.g. penning trap
[109], superconducting loops with a Josephson junctions [110], atomic cloud in a magneto-
optical trap [111] and in VCSEL lasers [112]. Recently this phenomenon has been extended
to nanomechanical systems. These highly nonlinear systems include for example double
clamped beams [113]-[114], cantilever structures [115] and torsional oscillators [116][63]. All
of them display stochastic resonances by means of injected noise in the system. Most of
them rely on injected amplitude noise. However it will be shown in the coming sections that
another way to implement stochastic resonance can be by using phase of the driving signal.

In this chapter we start by introducing the externally induced bistability in amplitude and
phase, and after that we show how this bistability can be utilized in order to jump between
the bistable states. Later sections will focus on giving some idea about how switching between
metastable states can be achieved by introducing noise in the system. Here we talk about
switching rates and the threshold of switching. Moving to the next sections, we will realize
stochastic resonance in amplitude and phase and will give a comparative study between the
processes. In conclusion we will introduce a methodology by which the ampli�cation of weak
signal could be enhanced.

104
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5.2 Basic concepts

5.2.1 The double well potential

In the previous chapter we talked about bistability of our NOEMS platform under strong
excitation regime. We had shown that a hysteresis exists in frequency when a system is
under this regime. When a system is inside such a regime, it has access to two stable and
one unstable states, this is called bistability. This bistability can exist in amplitude, phase,
polarization etc. A system in bistable regime can be represented by two di�erent states
in phase space (Chapter 4) which are commonly referred as the basins of attraction. An
externally driven nonlinear system can be expressed by Du�ng equation:

ẍ+ Γmẋ+ Ω2
m0x(1 + β3x

2) = −1

2

dC(x)

dx
.V δV (5.1)

Figure 5.1: The normalized double well potential.

where, Γm is the damping factor, Ωm0 is the natural eigen-frequency of the resonator, β3

is the Du�ng nonlinearity parameter and the right hand side consists of the driving term
where δV refers to the external voltage applied to the system (refer to Chapter 3 for detailed
discussion on the forcing). From equation (5.1) the nonlinear forcing term therefore can be
expressed as:

F = −dV
dx

= −(Ω2
m0x+ Ω2

m0β3x
3) (5.2)

which gives us the potential function:

V (x) = −a
2
x2 +

b

4
x4 (5.3)

where, a = Ω2
m0 and b = Ω2

m0β3. Plot of the function described in equation (5.3) is
shown in Figure 5.1; it gives a symmetric double-well potential with two minima located at
±xm where xm =

(
a
b

)1/2
. The minima are separated by barrier of height ∆V = a2/4b. In

absence of any external disturbance the system prefers to stay in one of the minima i.e. stable
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states. However, if an external disturbance is used by means of modulation of the bistable
potential by external modulation or noise, the stable states can become metastable. Under
such circumstances the system can switch back and forth between these two states. When
purely an external noise is used in order to facilitate this switching, the rate of these switching
is de�ned by the so called Kramer's rate [108][117] and its normalized form is expressed as:

r =
1√
2π
exp(−∆V/η) (5.4)

where, r is the Kramer's rate and η is the externally injected noise.

5.2.2 Stochastic resonance

Figure 5.2: Evolution of the bistable potential well under modulation

Stochastic resonance is a phenomenon of ampli�cation of a low amplitude low frequency
signal by a bistable system under application of external noise. Let us consider our system
with the bistable potential well (Figure 5.2), the bistability in this case is induced externally
by driving the system within the hysteresis regime. In general if there is no modulation of
the bistable potential, the jumps between the metastable states is random. Let us assume
now that the bistable potential is modulated weakly by a external periodic drive with a time
period of Tmod = 2π

Ωmod
. The modulation is small enough so that the system can not make

jump from one state to another; in other words the system stays in one of the states always
if not in�uenced externally. Under such conditions if some external noise is introduced, the
system can jump between the metastable states. Under in�uence of external noise the jumps
can be synchronized with the external modulation. In order to have a perfect synchronization
therefore the system has to jump two times between the metastable states in a single period of
driving. This yields fundamental stochastic resonance which will be realized provided Ωmod <
r(= 2π/T ), the Kramer's rate. Thus one can write the optimal condition for stochastic
resonance as:

Tmod = 2T = 2νexp(1/4η) (5.5)

or the noise strength:

η = η0 =
1

4
ln(

Tmod
2ν

) (5.6)
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Figure 5.3: Spectral ampli�cation by stochastic resonance for three di�erent amplitude of
modulations A = 0.5, 1.0 & 1.5.

At this resonance the coherent contribution to the jump processes has maximum. This
behavior can be thereby used to realize stochastic resonance where weak modulation can be
ampli�ed by synchronizing the jumps with the external modulation, with the use of some
external noise. The ampli�cation in such case thus will be de�ned as the ratio of the output
spectral power and the power of the input modulation. Gammaitoni et al. [61] showed that
the expression of the spectral ampli�cation can be written as:

M(A, η) = π

(
Axm
η

)2

r (5.7)

Here A is the amplitude of the external modulation. This modulation can be either
in amplitude or in phase for our system. We will show later in this chapter that indeed
modulation of the double well potential is possible either by modulation in amplitude or in
phase.

In Figure 5.3 we plot the spectral ampli�cation with applied external noise η for a �xed
modulation frequency Ωmod. We plot the same for di�erent amplitude of modulations with
A = 0.5, 1.0 and 1.5. We observe that for a higher modulation there is an enhancement of
the spectral ampli�cation M . This happens as for higher modulation it becomes easier for
the system to jump between the metastable states, hence there is an increase in the spectral
ampli�cation. If we de�ne the optimized noise required for the maximum ampli�cation to
be η = ηmax (indicated by dashed line in Figure 5.3), then we observe a very weak to no
dependence of ηmax on A. However it is shown by Jung et al. [118], that ηmax has a strong
dependence on Ωmod. With an increase in the modulation frequency Ωmod there is an increase
in ηmax as well. This phenomenon is directly related to the Kramer's rate r of the system;
with an increase in Ωmod one requires higher r in order to achieve spectral ampli�cation.

Realization of stochastic resonance hence requires combination of both external modu-
lation and noise in the system. In this section we have introduced many parameters which
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needs to be physically understood and optimized in order to realize stochastic resonance.
These parameters are:

� Determination of the threshold of amplitude of modulation Ath: we de�ne the threshold
of amplitude of modulationA = Ath beyond which jumps between the states takes place.
Below Ath modulation of the bistable potential is not enough to induce the switching,
however when the modulation crosses this value system can jump between the states.
This value is important in order to modulate the system well under this threshold under
stochastic resonance con�guration.

� Determination of the cut-o� of Ωmod (frequency of modulation): we need to �nd the cut-
o� to make sure the system is modulated always well under this frequency. Otherwise
the system would not be able to follow the weak external modulation thereby producing
no stochastic resonance.

� Determination of the Kramer's rate r: as it was shown by equation (5.5), in order to
realize stochastic resonance, the system has to be modulated at a frequency lower than
its Kramer's rate. Therefore before starting experiments with stochastic resonance it is
imperative to determine Kramer's rate of the system, so that we can keep the external
modulation below that frequency.

In the upcoming sections we will therefore at �rst systematically determine all the above-
mentioned parameters and �nally use them to realize stochastic resonance with both ampli-
tude and phase. We start by reintroducing bistability in our NOEMS platform, however with
a di�erent perspective. In the previous chapter we showed that spectral bistability exists in
our system, however here we will show that bistability also exist with the actuation voltage.
This characterization is important in order �nd a proper operating point where we could set
the system in the bistable regime and realize stochastic resonance.

5.3 Bistability: revisit

In this section we brie�y revisit the externally induced bistability in our NOEMS platform.
In the last chapter we showed that when the nanomechanical resonator is driven beyond a
certain threshold (Vac > 4.5V ) nonlinearity is imposed in the system. This is what we call
bistability induced by external excitation; in Figure 5.4(a) & (b) we exhibit such a bistability
(with the induced hysteresis) against driving frequency Ωdrive. This phenomenon and some
of its applications were vastly discussed in the previous chapter, where we probed sub and
super-harmonic resonances with excitation inside the hysteretic region. However bistability
could also be observed while the driving power is swept at a �xed driving frequency; this is
shown in Figure 5.4(c) & (d).

5.3.1 Power hysteresis

In order to retrieve the power hysteresis �rstly we prepare the system in the upper branch
of the hysteresis by sweeping the excitation frequency upwards; we start from a frequency
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Figure 5.4: Existence of bistability in (a) amplitude and (b) phase response while the fre-
quency of actuation is swept for an actuation voltage Vac = 9.0V , bistability in (c) amplitude
and (d) phase when the driving power is swept for a �xed drive frequency Ωdrive = 2.825MHz.

of 2.80MHz for a Vac = 10V , which is far from the hysteresis regime. We scan the drive
frequency up to Ωdrive = 2.825MHz and �x it to this particular value shown by the dashed
line in Figure 5.4(a) & (b). From here we start to decrease the excitation slowly. From
now on we will select this frequency (i.e. Ωdrive = 2.825MHz) as the operating point and
will refer to this frequency as Ωop (Figure 5.4(a) & (b)) for convenience. Choice of this
frequency is related to the shape of the bistable potential, which will be described in details
in section 5.5.1. As we keep decreasing Vac we observe now a gradual decrease in amplitude
and phase response. When the drive crosses a certain threshold (Vac ∼ 5V ) the system goes
out of the bistable regime and we observe a sudden shift in the amplitude and phase (Figure
5.4(c) & (d)). This sudden shift in response occurs due to the change in the eigen-frequency
induced by the nonlinearity in the system. For this very reason the phase response below
the threshold (for Vac < 5.0V ) is a little random. The red dots in the concerning �gure
however only describes evolution of only one of the states of the two stable states. To �nd
the evolution of the other branch we need to prepare the system in the other state; this can
be done by sweeping the actuation frequency downward. Like before we begin at a frequency
far away from the hysteresis regime (Ωdrive = 2.850MHz) and sweep the actuation frequency
down to Ωop. We �x the Ωdrive at this point and start to decrease Vac gradually; like before we
observe a gradual decrease of the response accompanied with a jump at around Vac = 5.0V .
This is represented by the gray dotted line in Figure 5.4(c) & (d).

These two branches now represent evolution of the two stable states with Vac. However
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Figure 5.5: Periodic modulation of the bistable potential.

in the Figure 5.4 we do not observe closure of the hysteresis region as one needs to be at a
higher value of Vac in order to observe this e�ect. Regions with higher Vac were not explored
due to some technical reasons. Here if we �x Ωdrive and Vac at certain values so that system
have access to two stable states at once, then depending on the initial conditions the system
has equal probabilities to stay at each one of these states.

After we have established the bistable regime for our nanomechanical system, the next
step was to switch between these states via external periodic modulation. From there we will
quantify values of the threshold of amplitude modulation and cut-o� frequency.

5.4 Switching via external modulation

In this section we will discuss about the periodic modulation of the double well potential.
The basic concepts is reintroduced in Figure 5.5; under ideal situation the bistable potential
is perfectly symmetric with equally probable states. However if the potential is modulated
by a periodic force, the probability of being in one state becomes higher than the other. On
one half cycle of the modulation if the left sided well gains higher probability, then in the
other half cycle the right handed well gains the same. Then governed by the modulation
strength the system can switch between di�erent states.

5.4.1 Periodic driving of the bistable potential by phase modulation

Switching between the states with such periodic modulation has been demonstrated in a
doubly clamped nanomechanical beam by Badzey et al. [57] with amplitude and Guerra
et al. [119] with phase. Although it was possible to perform either kind of modulation in
our system, we decided to proceed with only one kind of modulation i.e. phase modulation.
Since the main reason to perform these modulations were to extract some system parameters,
therefore we decided to proceed with only one kind of modulation for the time being. For
such a modulation the externally applied voltage can be written as:
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Figure 5.6: (a) Bistability in amplitude & (b) phase response with the actuation power at a
drive frequency Ωdrive = Ωop; switching between bistable states in (c) amplitude & (b) phase
response for a modulation frequency Ωmod = 500Hz and phase deviation ∆φ = 140°.

δV = Vaccos(Ωdrivet+ ∆φsgn(Ωmodt) + φ0) (5.8)

here Vac is the carrier excitation, Ωmod is the frequency of modulation, ∆φ is the amplitude
of phase modulation, φ0 is a phase o�set of the drive and the drive frequency is Ωdrive, which
we �x at Ωop. The sgn function actually refers to a square wave signal which is used for
modulation instead of a sinusoidal wave. In order to experimentally obtain the spectra we
needed to �x the drive at a Vac value such that the system lies in the hysteresis region. For
all the experiments we decided to �x the excitation at Vac = 9.0V , shown by the dashed line
in Figure 5.6(a) & (b). From now on we refer this voltage as Vop (Figure 5.6(a)), thus the
operating point is at (Ωop, Vop). Now keeping the system at this operating point, we start to
modulate the phase of the drive between the two phases highlighted by the green lines at 5
and 95 (Figure 5.6). The system then starts tp switch back and forth between its two stable
states.

The switching in the detected output signal is synchronized with the switching in the
input phase modulation (Figure 5.6(c) & (d)). Since the amplitude and the phase response
are correlated, every time we observe a switching in output amplitude it is accompanied
with a switching in output phase. In Figure 5.6 we observe that the switching in amplitude
and in phase always happens between two discrete values, from here we are able to identify
two separate states in phase space and we refer to them as state {xU} and {xL}. The
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abbreviation stands as 'Upper' for 'U' and 'Lower' for 'L'. The state parameters are given
as follows; for the upper state: {xU} ∼ {x, θ} ∼ {125mV, 95°} and for the lower state:
{xL} ∼ {x, θ} ∼ {50mV, 5°}. These values are rounded approximations of the mean of the
experimentally observed data. In the following sections we will see that everytime the system
switches, it's always between these two speci�c states. Thus the modulation has two free
parameters; namely the amplitude of modulation ∆φ and the frequency of modulation Ωmod.
We will see in the next sections how these factors in�uence the jumps between the metastable
states.

Amplitude of phase modulation: Switching fraction

After we are able to observe jumps between the metastable states, the next step was to
quantify some of the system parameters. The �rst system quanti�cation was the amplitude
of phase modulation required to observe jumps. For this purpose we use the drive in equation
(5.8), here we �x the operating point at (Ωop, Vop) and Ωmod at 500Hz. To obtain the statistics
of switching we had to calculate a parameter known as the switching fraction; de�ned as
the number of times there is jump in the output (between the metastable states) divided
by the number of times there is a switching in the input phase. In order to perform these
calculations we needed to �rst of all mark a threshold which we de�ne to be around 85mV for
the output amplitude (dotted line in Figure 5.7(a)). The choice is done simply by averaging
the response amplitudes of the two states. Now we calculate the switching by calculating
every time the system crosses the threshold in the output. We vary ∆φ i.e. the amplitude
of phase modulation in order to observe how the input of phase modulation is synchronized
with the modulated output. The resulting plots are displayed in Figure 5.7; we start from
∆φ=0 with no phase modulation and increase the modulation by a step of 5° and for each
case we record the time response for a relatively longer time (around 60s) in order to obtain
a higher amount of statistics. In Figure 5.7(b) we observe the evolution of switching fraction
with the amplitude of phase modulation ∆φ; when ∆φ < 100° we are not able to observe
any switching, this is shown in the top most �gure in Figure 5.7(a). Instead we see is a
small modulation of the output signal around {xU}, although it does not jump to the other
state {xL}. This is known as the intra-well modulation of the system, where the system is
modulated inside one of the potential wells. However when the modulation is around 110° the
system occasionally jumps from state {xU} to {xL} by crossing the threshold. This situation
is represented by the response at 110° modulation in Figure 5.7(a). The reason of such a
behavior can be attributed to the phase hysteresis width at (Ωop, Vop). It was previously
mentioned that the hysteresis width in phase is about 90°, thus in order to switch from
one state to the other the phase modulation in the input has to be higher than this value.
Therefore beyond 110° we are able to observe a perfect synchronization between the input
and the output. This situation is represented by the 160° modulation scenario in Figure
5.7(a), where we see a perfectly periodic signal at 500Hz between the states {xU} and {xL}.
In the �gures although we only show the amplitude response, but it's needless to say that
it's correlated with the phase response.
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Figure 5.7: Dependence of switching fraction on the amplitude of phase modulation; (a) time
traces of switching as the amplitude of phase modulation is swept for a �xed Ωmod = 500Hz
(b) dependence of switching fraction on the amplitude of phase modulation.

Frequency of phase modulation: Cut-o� frequency

It was shown by P.Jung [118] that the output modulation scales inversely to the square of the
modulation frequency i.e. when the modulation frequency goes beyond a certain threshold
the system is not able to follow the modulation anymore and the escape rate decreases rapidly.
For realization of this experiment we go back to equation (5.8) but instead of varying ∆φ,
we vary Ωmod. In order to have a switching fraction of 100% we �x ∆φ to a value of 135°.
Like in the previous case we make long measurements in order to have high statistics and in
each case we calculate what we call the normalized amplitude of deviation; this is de�ned
as the ratio of amplitude of deviation (in degrees) in the output at a certain frequency with
amplitude of deviation (in phase) at the lowest modulation frequency which is 10Hz. In order
to calculate this ratio we needed to de�ne a threshold like before and is represented by the
dotted line in Figure 5.8. The threshold is de�ned at 40° by taking an average of the upper
and lower phase values. We start from a low Ωmod(= 10Hz) and slowly increase it towards a
higher value. In Figure 5.8(b) we show how the normalized amplitude of modulation varies
with the modulation frequency Ωmod, with a relatively low Ωmod(= 100Hz), we see that
the system switches e�ciently back and forth between the metastable states. As we start to
increase Ωmod we then observe that the switching between these states increases (see response
at 1kHz in Figure 5.8(a)) and as Ωmod increases beyond this point the system has trouble
following the modulation. At each case we have kept same time scales in order to be able
to compare di�erent scenarios. For Ωmod = 3kHz we see from Figure 5.8(a) the system is
no more able to switch between the metastable states. If we observe the evolution of the
normalized amplitude modulation with Ωmod we observe a sharp decrease as we go in the
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Figure 5.8: (a) Evolution of time traces of the phase responses with the modulation frequency
Ωmod for a phase deviation ∆φ = 135°, (b) dependence of the normalized amplitude of
deviation with the modulation frequency Ωmod.

kHz regime. From the response then we calculate the 3-dB response frequency, which we
�nd to be at around 1kHz. In conclusion thus we say that the system is not able to follow
the modulation when Ωmod goes beyond 1kHz, thus for all the future experiments we keep
the Ωmod value below this regime.

After we established the system behavior via external modulation, in the next sections
we will modulate the bistable potential via both phase and amplitude noise. From there we
will establish Kramer's rate of the system with both phase and amplitude noise.

5.5 Switching by phase noise

In the new set of experiments, we replace the modulation by noise in order to realize a
stochastic modulation of the double well potential. In presence of noise η(t) the system
jumps from one state to the other, however in a stochastic manner governed by the Kramer's
rate. The phase noise is introduced in the system by phase modulating the drive with an
external noise. The noise has a Gaussian shape with zero mean. The drive acting on the
system hence looks like:

δV (t) = Vaccos(Ωdrivet+ ηφ(t)) (5.9)

〈ηφ(t)ηφ(t′)〉 = 2Dφδ(t− t′), 〈ηφ(t)〉 = 0 (5.10)
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where, ηφ is the injected phase noise in the system. This is an uncorrelated noise with
Gaussian distribution and zero mean. As the noise is introduced in terms of phase, the range
of ηφis 0°→ 360°. Calibration of the noise is discussed in details in Appendix (D).

5.5.1 Determination of the operating point

Figure 5.9: (a) Phase response for sweeping frequency up (red) and down (gray). Time
traces of the phase response (for three di�erent Ωdrive) (b-d) for a phase noise of ηφ1 = 30°,
the corresponding histograms (e-g). Histograms of the responses at the same Ωdrive but for
a di�erent noise of ηφ2 = 35°.
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In the previous sections we discussed about the selection of the operating point (Ωop, Vop).
Choice of Vop is obvious, with just making sure that the system lies inside the bistable regime.
However the choice of Ωop is not straightforward. For a system in bistable regime, depending
on the value of Ωdrive the system can prefer to stay in either of the states. In absence of
any noise the residence time for each of the states can be relatively longer, thus to have a
better statistics we decided to inject some phase noise in the system which follows equation
(5.9). From here we start to vary Ωdrive and for each Ωdrive we record the time trace for
di�erent values of ηφ. Although we had to perform several measurements to retrieve the
correct operating point, here we show only a few striking results.

Firstly we �x Ωdrive at Ωop − 300Hz and we record the time trace (Figure 5.9(b)) and
obtain the histogram of the metastable states for di�erent values of ηφ. Figure 5.9(e) & (h)
shows histograms for ηφ1 = 30° and ηφ2 = 35° respectively. Here we can see that at this value
of Ωdrive the system prefers to stay at {xU} and with an increase in noise the system starts
to have a higher probability to stay at {xU}. Same thing is observed for the other state (i.e.
{xL}), for Ωdrive = Ωop + 300Hz. Here with an increase in noise the system becomes more
trapped in the state {xL} with the bistable potential becoming more distorted. However, for
Ωdrive = Ωop we see that the bistable potential is almost symmetric for ηφ = ηφ1 (Figure 5.9(c)
& (f)) and for a higher noise the bistable potential changes shape and becomes asymmetric.
This phenomenon can be explained by considering the e�ect of multiplicative noise instead of
an additive noise which appears due to the injection of phase noise in the system [120][121].

In Figure 5.9(i) we also observe that with noise even at Ωdrive = Ωop the symmetry between
the states are lost. We see that with higher noise ηφ2, the state {xU} becomes more probable
than {xL}. Thus not only the drive frequency Ωdrive but the injected noise is also crucial in
order to have a symmetry in the bistable potential. In the next section we talk about the
optimization of the injected phase noise ηφ in order to have a symmetrical potential.

5.5.2 Residence time and Kramer's rate distribution

The Kramer's rate is de�ned as the switching rate between the metastable states. The
Kramer's rate was introduced in the previous section and is de�ned as:

r =
1√
2π
exp(−∆Vφ/ηφ) (5.11)

Where ηφ is the externally injected phase noise in degrees and ∆Vφ is the activation
barrier for phase noise in degrees.

If one takes logarithm on both sides of the equation then by considering non-normalized
form of Kramer's rate one can write:

ln(r) = C − ∆Vφ
ηφ

(5.12)

C being a proportionality constant. The logarithm of the Kramer's rate r thereby has
a linear dependence on the inverse of the applied noise ηφ. Moreover, from the slope of the
plot it should be also possible to calculate the depth of the double well barrier ∆Vφ.



CHAPTER 5. STOCHASTIC RESONANCE 117

Figure 5.10: (a) Variation of probability of residence with phase noise at ηφ, (a) evolution of
Kramer's rate with ηφ for Ωdrive = Ωop (blue) and Ωdrive = Ωop − 300Hz (red).

We start by preparing the system at the upper state {xU} and at the operating point
(Ωop, Vop); from here we start to increase the phase noise in steps and record the time domain
amplitude as well as phase response of the system. For each value of phase noise ηφ we record
the response for a duration of about 60sec. It was now possible to extract various information
from these data including evolution of the probability of residence and Kramer's rate with
applied phase noise ηφ.

We started injecting phase noise from a low value of ηφ = 18° and start increasing in
steps. At a low noise the system stays mostly in {xU}, however with an enhancement in the
applied noise the stable states start to become metastable and the system starts to jump back
and forth between these states. At �rst we extracted distribution of probability of residence
for various applied phase noise ηφ which is shown in Figure 5.10(a). The red dots represents
state {xU} while the gray dots represents state {xL}. In order to properly de�ne the two
states discretely we de�ned the threshold at around 40°, which is the average of the upper
and lower values of the phase. Since the amplitude and phase response are correlated we
could use any of the values in order to perform calculation. For this case and later as well we
will use the phase response in order to perform the data extractions. The calculations were
performed by simply calculating the amount of time the system spends on one of the states
divided by the total acquisition time (60sec). The system is seen to have equal probabilities
to reside in any one of the states for ηφ ∼ 30, this is highlighted in Figure 5.10(a). Thereby
this is the value of the noise ηφ required in order to have a symmetric potential well.

The next step was to calculate the Kramer's rate r for the phase noise. The threshold
is still at 40◦ and we calculate the �ux of jumps between {xU} and {xL}. This calculated
�ux then had to be divided by the average time the system spends in the corresponding
states in order to �nally calculate the Kramer's rate. The plot of the Kramer's rate with
the injected phase noise is displayed in Figure 5.10(b) for two di�erent operating points i.e.
for Ωdrive = Ωop and for Ωdrive = Ωop − 300Hz. As expected from the previous discussions
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the later had a lesser value for the Kramer's rate compared to the former for the same phase
noise ηφ. From the plot for Ωdrive = Ωop we observe that r = 100Hz for ηφ ∼ 30°, where the
bistable potential well is symmetric. This symmetry of the potential will be used in order to
realize stochastic resonance with phase noise in the following sections as stochastic resonance
is most e�ective when the bistable potential is symmetric.

5.5.3 Evolution of phase trajectory with phase noise

Figure 5.11: (a) Time trace of jumps between the metastable states with phase noise, (b)
evolution of the same in terms of phase trajectories for ηφ = 20° to 40°.

In this section we will show how the system evolves in the time domain as well as in the phase
space. Five di�erent situations are displayed in Figure 5.11; on the left hand side (Figure
5.11(a)) we have the time traces of the phase response of the system. While on the right
hand side (Figure 5.11(b)) we show the constructed phase portrait for the corresponding
time domain responses. The phase space is constructed from the recorded amplitude and
phase response of the system using the method described in section (4.2.1). Selection of the
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bandwidth of the applied noise is also quite important, we were able to observe most frequent
jumps around 10kHz of noise bandwidth.

When ηφ is relatively low (ηφ = 20°) the system prefers to stay mostly at {xU} with
some scarce jumps to the state {xL}. In the phase space space we observe only a single
circular state as the system stays mostly in state {xU}. As we start to increase ηφ(=25°)
more frequent jumps between {xU} and {xL} are observed. This is also observed in the
phase space con�guration, where another weak state starts to appear with the increased
noise close to the x-axis. This is basically the state {xL}, the radial distance of these states
from the origin gives the corresponding amplitude of oscillation R, and the angle that the
line individual state and the origin makes to the x-axis, gives away the oscillation phase
θ. From the phase space thus evidently we are able to observe the states {xU} and {xL}
very distinctly. When we keep on increasing ηφ(30°), the state {xL} becomes more and more
prominent as the jumps between the states becomes more frequent. For phase noise injection
here we computed the bistable potential to be most symmetric (Figure 5.11(b)). As we
start increasing the injected noise, the bistable potential starts to become more and more
asymmetric, however the jumps keeps on increasing due to the increase in the noise in the
system. This asymmetry in the bistable well is what was predicted by Jia et al [120], where
the multiplicative noise is introduced in the system along with the additive noise component
which deforms the bistable potential. Hasegawa et al [121] also predicted similar e�ect. When
ηφ is around 40° the lower state xL becomes much more brighter in the phase space and we
can observe a deformation of the bistable potential well.

5.5.4 Activation barrier scaling with frequency detuning

Figure 5.12: (a) Variation of the switching rate with inverse of the applied phase noise (b)
variation of the calculated barrier height (from the switch rate vs noise plot) with frequency
detuning.

It was shown in equation (5.12), that the switching rate has a dependence on the activation
barrier governed by the relation:
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ln(r) = C − ∆V

η
(5.13)

Thereby the slope of ln(r) with applied noise η will give an indication of the activation
barrier ∆V . However close to the bifurcation point where one of the states disappears, the
activation energy should have a scaling governed by the following relation [27,28]:

∆V ∝ (∆Ω)ν (5.14)

where ∆Ω = |Ωdrive − Ωbif |, is the detuning of the drive frequency from the frequency of
bifurcation Ωbif i.e at the point where one of the stable states completely vanishes. For our
case we choose Ωbif = 2.8245MHz where we are able to observe only the upper state {xU}
i.e. the lower state {xL} completely vanishes. ν is the exponent which governs the variation
of the activation energy with ∆Ω. As it is proposed by Aldridge et al. [112] the activation
barrier ∆V should have a quadratic dependence on the frequency detuning ∆Ω which makes
ν ∼ 2.

In order to determine how the activation barrier scales with the frequency detuning, we
decided to use phase noise experiments in order to determine the activation barriers for
di�erent frequency detuning ∆Ω. The experimental scheme is identical to what was done
in the previous sections, however we repeat the experiments for several values of frequency
detuning ∆Ω. Since the logarithm of the Kramer rate should have a linear dependence on
the applied noise, we found that the Kramer's rate actually scales linearly with inverse of the
square of applied phase noise ηφ. In each case we calculate the Kramer's rate for various phase
noise ηφ(with a bandwidth of 10kHz) and we plot the logarithm of r with square of the phase
noise η2

φ. In each case we �t a linear slope in the graph in order to retrieve ∆V . Firstly we
prepare the system in the state {xU} by sweeping the actuation frequency upwards identical
to the previous section. Then at this point we calculate the Kramer's rate r by varying the
applied phase-noise ηφ to the system. A particular example is given here in Figure 5.12(a)
for ∆Ω = 100Hz, here we are able to retrieve a ∆V value of 55640 degree2. We do the
same experiments for ∆Ω = 50, 200, 300 & 400Hz. The calculated activation barrier ∆V for
various ∆Ω values are shown in Figure 5.12(b). ∆V is seen to have a quadratic dependence
on ∆Ω (i.e. ν = 2) as predicted by Aldridge et al. [112]. While the switching rate r is seen
to decrease as one moves further away from the operating point and towards the bifurcation
point.

5.6 Switching by amplitude noise

In the next set of experiment we changed the phase noise to amplitude noise in order to play
on the other quadrature and retrieve the evolution of the bistable potential with amplitude
noise. The use of amplitude noise is quite straight forward where we just add the noise with
the applied drive. Therefore the expression of the drive for injection of amplitude noise is:

δV (t) = Vaccos(Ωdrivet+ φ) + ηR (5.15)
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Figure 5.13: (a) Variation of probability of residence with amplitude noise at ηR, (a) evolution
of Kramer's rate with ηR for Ωdrive = Ωop (blue) and Ωdrive = Ωop − 300Hz (red)

〈ηR(t)ηR(t′)〉 = 2DRδ(t− t′), 〈ηR(t)〉 = 0 (5.16)

Here ηR refers to the amplitude noise power injected in the system, the noise is a zero mean
Gaussian spectra. Here we also quantify the amplitude noise power in terms of the standard
deviation of the injected noise and thus we de�ne the amplitude noise ηR = (225V 2

pp)/50 (mW )
(for noise calibration refer to Appendix (D)). The optimized bandwidth for amplitude noise
ηR was 10kHz, identical to the previous section. The rest of the experiment resembles the
one with the phase noise in the section before. We could calculate the same parameters like
residence time, Kramer's rate and retrieve phase portrait of the system under study from the
recorded data.

5.6.1 Residence time and Kramer's rate distribution

The method of calculation of the parameters are identical to the phase noise scheme. Here
also we record both the amplitude and phase response for a duration of 60s. We use the phase
response in order to calculate the relevant parameters, while we de�ne threshold like before
at 40° identical to the previous section. We calculate the probability of residence for each of
the states ({xU} and {xL}); the resulting plot is shown in Figure 5.13(a). The states show
equal probability for a amplitude noise of around ηR = 30mW where the bistable potential
is symmetric.

Here like in the section before we calculate the Kramer's rate for two di�erent Ωdrive.
One is for Ωdrive = Ωop and another one for Ωdrive = Ωop − 300Hz and we calculate the
Kramer's rate for each scenario. The resulting plot is shown in 5.13(b); expectedly like the
situation before the later has a Kramer's rate which is lower than the former for each ηR. We
retrieve a Kramer's rate of about 100Hz for a phase noise ηR = 30mW where the bistable
potential is symmetric. This value is very important in order to realize stochastic resonance
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with amplitude noise as the best results could be achieved when the bistable potential is
symmetric.

5.6.2 Evolution of the phase trajectory with amplitude noise

Figure 5.14: (a) Time trace of the jumps between the metastable states with amplitude
noise, (b) evolution of phase trajectories as the amplitude noise is changed for ηR = 10mW
to 80mW .

Here again we reconstruct the phase portrait of the system under study from the recorded
amplitude and phase response. On the left hand side of Figure 5.14 we show the time traces
of the recorded phase response (Figure 5.14(a)) and on the other side we show the constructed
phase space response of the system. Firstly we prepare the system in the upper branch by
sweeping the frequency up to the operating point (Ωop, Vop). When the excitation is low
(ηR = 10mW ) the system prefers to stay in the upper state {xU}. That is what is seen
from the time traces of phase response and the phase trajectories. When value of the noise
is increased to ηR = 20mW , the jumps between {xU} and {xL} start to increase and the
lower state {xL} in phase space starts to become more and more prominent. We encounter



CHAPTER 5. STOCHASTIC RESONANCE 123

highest number of jumps for a ηR of 30mW and both states at this stage seem to appear
with equal probabilities. Finally with a high enough power the bistable potential becomes
asymmetric and the shape becomes deformed. The potential well becomes deformed although
the switching rate keep on increasing because of the enhancement of injected noise in the
system.

5.6.3 Hysteretic quenching

Following the discussion in the previous section on how the injected noise deforms the bistable
potential, one can ask whether the noise has any e�ect on the bistable/hysteretic regime.
Venstra et al. [115] showed that they observed some kind of quenching of the hysteretic
regime when noise was injected in the system. Therefore we decided to observe if similar
kind of behavior was observed for our system under comparable conditions.

P. Jung [118] showed that when the modulation of the bistable potential is weak, two
separate metastable states are observed and the system can switch back and forth between
the states. However when the modulation is too strong this behavior does not exist any more,
in turn system starts to exhibit a single state under such a high amount of modulation. From
there we can draw a similar conclusion for noise as well as the e�ect of noise on the system
should be somehow similar to the periodic modulation. The only di�erence is that with noise
the modulation of the bistable potential is not periodic but rather stochastic. However with
noise of higher intensity we should be able to observe similar e�ects.

In order to do that we decided to reconstruct the hysteretic/bistable regime against
external excitation for di�erent noise powers. The construction of these bistable regimes
can be done by doing subtraction of the sweep up and sweep down system responses. We
start from zero noise power and then go to some intermediate value and �nally to relatively
high amount of noise. When operating with phase noise due to some technical reasons we
are limited in the upper cut-o� of the applied noise, while for amplitude noise we are not
limited by such issues. This is why we use amplitude noise in order to construct the hysteresis
responses in various scenarios.

The generated hysteretic regimes are displayed in Figure 5.15; �rstly we start by con-
structing the hysteretic regime without introducing any noise in the system (Figure 5.15(a)).
The threshold of Vac for which bistability is observed in this case is found to be about 4.25V ,
while the width of the bistable region is about 40kHz for a Vac of 10.0V . Next we start
injecting amplitude noise ηR in the system with the method described by equation (5.15);
�rstly we inject a noise at an intermediate level of ηR = 180mW and with a bandwidth of
10kHz. Under such condition we start to vary the drive Vac from 0V to 10V . As a result of
noise injection we observe that the threshold of Vac required to induce bistability is increased;
for this particular case it's around 5.5V . A consequence of that is quenching of the hysteretic
regime, the hysteretic width becomes signi�cantly smaller in this case with a width of around
20kHz for Vac = 10.0V . Furthermore we increase ηR to even higher values (Figure 5.15(c)).
For ηR = 725mW we observe a drastic change in the hysteretic region. The hysteresis region
almost vanishes and we see a very faint hysteresis regime starting from Vac ∼ 7.0V with a
hysteresis width of only about 0.5kHz for Vac = 10.0V . E�ectively thereby we can conclude
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Figure 5.15: Quenching of the hysteretic/ bistable region with amplitude noise: (a) without
any amplitude noise (b) with ηR = 180mW , there is a small quenching of the hysteresis
region (c) with ηR = 725mW there is almost no hysteresis region i.e. somehow the bistability
in the system is lost due to modulation of the spring constant by means of the added noise.

that the injection of noise changes the e�ective spring constant of the resonator and thereby
modulates the double well potential. This therefore results in quenching of the hysteretic
regime and loss in the bistability.

5.6.4 Comparison between these two noise schemes

In this section we will give a comparative study between the two types of noise induced
switching processes i.e. amplitude and phase shown previously. In order to �nd a better
comparison between these switching processes the phase portrait with amplitude and phase
noise are plotted side by side in Figure 5.16(a) & (b). The plots represent more or less identical
scenarios in the respective cases. The advantage of using phase space representation of the
system dynamics is that from these plots it is possible to retrieve evolution of the individual
states with applied noise. We can retrieve the trajectory between the attractors but not only
that we can also observe how the phase angle between individual states evolve with noise
and also how noise in�uence individual states.

Trajectory between the basins of attraction

We start from a situation when the system is prepared in the state {xU} preceded to when
noise is injected in the system. Under injection of noise the system starts to exhibit the other
state {xL} and jumps back and forth between this state and state {xU}. The transitions
between the basins of attraction can not follow an arbitrary path in the phase; the system
always should and does have preferred paths in which it makes the transition. With phase
noise we see that the system prefers a path which is almost a straight line between the two
states; while for amplitude noise the system prefers strongly curved path between the states.
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Interestingly another observation from the phase portrait is the collapsing of one of the states
at a high noise. However, the e�ect of noise has di�erent consequences for the di�erent states
e.g. for phase noise if one looks closely to Figure 5.16(a) the state {xU} appears to move
with injection of noise. In the beginning the state has a phase angle θ which is close to 90°,
however with increase in the phase noise the phase angle decreases and apparently the state
{xU} moves closer to state {xL}.On the other hand, for amplitude noise it's the opposite; in
this case the lower state {xL} starts to move away from the upper state {xU}.

Figure 5.16: (a) Comparison of the phase trajectory evolution with phase and amplitude
noise (b) change of phase angle between the two states as the phase and amplitude noise is
changed.
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Phase angle between the basins of attraction

In order to formulate this behavior we decided to quantify this shift of the states for each
scenario. The idea was to �nd how the phase angle di�erence between the states deviate as
more noise is injected in the system. Each state as it was shown in Figure 5.9 has a Gaussian
distribution, thus it was possible for us to �t each distribution with a Gaussian function and
extract the mean and standard deviation for noise value. The di�erence between the mean of
each states {xU} and {xL} gave us the phase angle di�erence and it is plotted for amplitude
and phase noise in Figure 5.16(c). The blue triangles are indicator of evolution of the phase
angle with amplitude noise while the red triangles give how the phase angle evolves with
injected phase noise. For amplitude noise the phase angle di�erence between {xU} and {xL}
was around 89° for low noise injection. However, with an increase in the injected noise the
phase angle di�erence increases and �nally for a noise of ηR = 200mW this value becomes
around 96°. On the other hand, for phase noise the change in the phase angle di�erence is
much more rapid. As soon as we start to introduce some phase noise ηφ in the system the
phase angle di�erence starts to decrease rapidly and for ηφ = 38°, the phase angle di�erence
becomes as small as 55°. This could be a direct consequence of the e�ect of multiplicative
noise introduced in the system by means of phase noise ηφ. Whereas the amplitude noise ηR
being additive has a smaller e�ect on the same.

Distortion of the individual states

The mean of the �ts gave us the phase angle, while the standard deviation of the �ts in
principle are correlated with the injected noise in the system. Increase of the injected noise in
the system is accompanied with broadening of the individual states. The resulting standard
deviations of states {xU} and {xL} are plotted against the injected phase noise in Figure
5.17(a) and for injected amplitude noise in Figure 5.17(b). Although the manner in which
the individual states are in�uenced with injected amplitude and phase noise are di�erent in
the respective cases. Firstly let's start with Figure 5.17(a) where we show the evolution of
standard deviation for state {xU} (in red) and {xL} (gray) with injected phase noise. We
see that somehow the broadening of {xU} is more than that of {xL} starting from ηφ ∼ 30°
highlighted in Figure 5.17(a) (symmetric potential for phase noise), incidentally this is the
same state which shifts in the phase space under in�uence of the injected phase noise (Figure
5.17(a)). Similar e�ect is observed for amplitude noise ηR as well, where the state {xL} is
seemingly more in�uenced by the noise than {xU} starting from ηR ∼ 30mW (symmetric
potential for amplitude noise) highlighted in Figure 5.17(b). Again, the state which shifted
under the in�uence of the injected amplitude noise was {xL}. This leads us to believe that
broadening of the states are in direct correlation to the shifting of the same. The amplitude
and phase noise while in�uencing the switching rate also selectively in�uences individual
states causing one of the states to move in the phase space.
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Figure 5.17: Evolution of standard deviation for each bistable states ({xU} in red, {xL} in
blue) with (a) phase and (b) amplitude noise.

Therefore at this point we are able to calculate all the important parameters in order
to realize stochastic resonance. It involves the threshold of amplitude of modulation, the
cut-o� frequency, Kramer's rate for both amplitude and phase noise and last but not the
least, operating point inside the bistable regime.

5.7 Stochastic resonance with phase

In order to realize stochastic resonance in phase we require to modulate the phase of the
drive with two signal; �rst one is with the low amplitude low frequency signal and secondly
with noise. The operating point is kept at {Ωop, Vop}, the drive can be written as:

δV (t) = Vaccos(Ωdrivet+ ∆φsgn(Ωmodt) + φ0 + ηφ(t)) (5.17)

〈ηφ(t)ηφ(t′)〉 = Dφδ(t− t′) , 〈ηφ(t)〉 = 0 (5.18)

Here, ∆φ is the amplitude of phase modulation and the modulation is a square like wave.
The frequency of modulation is Ωmod and φ0 is a phase o�set, while ηφ is the external phase
noise injected in the system. The noise like in previous sections is Gaussian like with zero
mean and has a bandwidth of 1kHz.

From the discussions in the previous measurements with pure phase noise and pure phase
modulation, we can impose some values for the parameters:

� We choose an operating point at {Ωop, Vop} in order to have a bistable potential which
is symmetric in order to achieve highest e�ciency for stochastic resonance.
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� In order to realize stochastic resonance it is imperative that the natural Kramer's rate
of the system is higher than the modulation frequency i.e. r > Ωmod. Since for a
symmetric bistable potential the value of r was found to be around 100Hz, we choose
Ωmod = 50Hz. This is done in order to make sure that the system can jump twice
between the metastable states in one period of modulation.

� It was shown in the previous section (Figure 5.7) that the threshold for amplitude of
phase deviation ∆φ in order to observe jumps between the metastable states was about
110°. Thereby in this set of experiments the modulation was kept signi�cantly below
this level.

Based on these preconditions for the experiments we choose mainly two values of phase
deviation: ∆φ = 5° & 10°, with Ωmod = 50Hz. Thereafter, we start to inject noise in the
system and observe the system response as a function of the injected noise.

5.7.1 Time and frequency domain response

Before starting the experiment, we needed to bring the system in the operating point {Ωop, Vop}.
To do that the drive frequency Ωdrive is swept in upward direction to be in state {xU}. From
here we start by doing a small phase modulation of ∆φ = 10°, the evolution of time and
frequency domain response is shown in Figure 5.18(a) & (b). We start by pure modulation
i.e. ηφ = 0° and the time domain response is shown in the Figure. We perform Fast Fourier
Transform (FFT) on the acquired signal for a duration of t = 60s. The FFT response is
shown in Figure 5.18(b), we see that for ηφ = 0° there is a small peak at 50Hz. This peak
appears a direct consequence of the intra-well modulation of the system by the external phase
modulation. It is important to note here that the system in such a situation still does not
start to jump between the metastable states; in order to achieve that more noise has to be
inserted into the system. It is worth reminding that we de�ne jumps in the system when it
crosses the threshold de�ned at a phase of 40°.

Thereby from here we start to inject noise in the system, and record amplitude and
phase response in time domain. For each recording we calculate FFT in order to observe
how the peak at Ωmod evolves with noise. When the noise is relatively small (ηφ = 22.0°)
we immediately observe an enhancement in the intra-well dynamics thereby resulting in an
ampli�cation of the injected signal, however the jumps between the metastable states are
still scarce. With an even higher noise introduced in the system (ηφ = 25.0° & 27.5°) we
start to observe jumps between the metastable states more often and as it can be observed
from the time domain responses, some of the jumps are well synchronized with the external
modulation. This results in an even higher FFT response at Ωmod. With even higher noise
injection (ηφ = 30.0°) the jumps become more random and the synchronization is lost. This
results in a decrease in the FFT peak (Figure 5.18(b)), however a small peak is still observed
due to the inter-well dynamics discussed before. However it was very di�cult to �nd a perfect
synchronization between the external modulation and the jumps between the metastable
states {xU} and {xL}. The reason for the loss of synchronization is related to the loss of
the symmetry of the bistable potential well discussed in section 5.5.1. As the potential well
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becomes asymmetric due to the multiplicative noise, the two states merge into almost to a
single state and thereby the jumps are lost.

Figure 5.18: (a) Resonance in time domain for di�erent phase noise values (b) FFT spectra
of stochastic resonance for di�erent phase noise values with ∆φ = 10°.

If we observe the FFT response carefully, we would be able to see presence of some odd
harmonics on the spectra. This is attributed to the modulation scheme, as we use square
wave instead of a sinusoidal one, along with the main spectral component odd harmonics
also arrive with the drive. The same experiment was then repeated for a ∆φ = 5, and we
measure the time domain amplitude and phase response of the system like before and after
calculate the FFT response for each ηφ. The time and frequency domain response are not
shown here as it essentially shows the same behavior, important aspects of the results are
discussed in the next section.

5.7.2 Gain due to stochastic resonance

From the FFT spectrum shown previously we can extract the evolution of ampli�cation at
Ωmod as a function of applied phase noise ηφ. This evolution of the FFT at Ωmod = 50Hz
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Figure 5.19: Ampli�cation by stochastic resonance with phase modulation and noise for a
modulation frequency of Ωmod = 50Hz and for a phase modulation of (a) 5° and (b) 10°.

against square of the applied phase noise ηφ is plotted in Figure 5.19(a) for a modulation
of 5°. The evolution is �tted with the expression of spectral ampli�cation in equation (5.7),
and it follows the behavior quite well. The ampli�cation for a certain ηφ is normalized with
respect to the one without any noise i.e. ηφ = 0°. We observe that the ampli�cation increases
as more noise is applied to the system, we achieve highest ampli�cation of about 1.75 for a
ηφ ∼ 25°. Interestingly this is around the same value at where the same system under similar
conditions (without the external modulation) had a Kramer's rate of about 100Hz (Figure
5.10). This is expected since the modulation frequency Ωmod is 50Hz, thereby we require
r ∼ 100Hz in order to realize ampli�cation. This scenario is explained in Figure 5.19(b);
here we plot the resulting FFT for stochastic resonance with ∆φ = 10° and with identical
conditions as before. In this case we observe an increase in the ampli�cation as higher phase
modulation makes the system easier to synchronize with respect to the drive. Here we are
able to observe a ampli�cation of about 3.25 for a ηφ ∼ 28°. The behavior of enhancement in
spectral ampli�cation with increase in the amplitude of modulation was described in Figure
5.3, where we observed similar e�ect with increase in amplitude of modulation. Also the
optimized ηφ required to achieve ampli�cation is identical in the both cases, this is also
reminiscent of the e�ect described in Figure 5.3.

5.7.3 Phase trajectories

In order to have a deeper understanding we constructed the phase trajectories of the system
under stochastic resonance. The resulting trajectories are shown in Figure 5.20 with two
separate situations; Figure 5.20(a) shows stochastic resonance for a phase modulation ∆φ =
5° and Figure 5.20(b) shows for a modulation of ∆φ = 10° for a phase noise ηφ = 30°. In
both cases we observe that there is a small modulation around the metastable states (due to
the intra-well modulation) as a consequence of the small phase modulation. With an increase
in the modulation (Figure 5.20(b)) we observe higher modulation in the phase space. The
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transitions takes place along a �xed path in the phase space similar to the case in Figure
5.11. Interestingly the modulation in the phase space is perpendicular to the trajectory
between the states {xU} and {xL}. According to us this is the reason why it was di�cult to
synchronize perfectly the drive and the response.

Figure 5.20: (a) Phase trajectory of stochastic resonance with a phase modulation of 5°, (b)
phase trajectory of stochastic resonance with a phase modulation of 10° for a phase noise
ηφ = 30°.

5.8 Stochastic resonance with amplitude

In this section we switch to the stochastic resonance by amplitude modulation. The idea
like before is to weakly amplitude modulate the drive around the operating point Vop, while
injecting some noise with the drive into the system. However, in this case instead of plugging
the noise inside the modulation we directly add a noise signal ηR to the drive. The noise is
Gaussian like with zero mean and uncorrelated. The drive acting on the NOEMS resonator
thus can be written as:

V (t) = Vac(1 +mcos(Ωmodt))cos(Ωdrivet+ φ0) + ηR(t) (5.19)

〈ηR(t)ηR(t′)〉 = Dδ(t− t′) , 〈ηR(t)〉 = 0 (5.20)

where Vac is the excitation voltage, Ωdrive is the frequency of the drive,m is the modulation
index, φ0 is the phase o�set of the drive and ηR is the amplitude noise applied to the system.
As it was mentioned before like previous section the drive is at the operating point {Ωop, Vop}
while ηR has a bandwidth of 10kHz. The process of selecting Ωmod is similar compared to
the case with phase stochastic resonance where it is dependent on the Kramer's rate (r) of
the system. Since the Kramer's rate r for equally probable metastable states was found to



CHAPTER 5. STOCHASTIC RESONANCE 132

be 100Hz (Figure 5.13), for amplitude as in phase we keep the modulation frequency Ωmod

at the same value i.e. 50Hz.

5.8.1 Time and frequency domain response

Figure 5.21: (a) Time evolution of phase switching with increase in the amplitude noise
(at 50Hz of modulation frequency); we observe the best situation of synchronization for
a amplitude noise of 80mW , (b) evolution of the corresponding FFT spectra; we observe
several harmonics along with the main resonance peak at 50Hz.

From here we start a weak amplitude modulation of the drive (m = 0.1) with ηR = 0mW
and we record the time domain response in amplitude and phase. We reconstruct the FFT
using the phase response although FFT with similar components could be constructed with
the amplitude response as well. Figure 5.21(a) shows the time domain response while Figure
5.21(b) shows the reconstructed FFT from the acquired signal.

Like before the system needs to be prepared at state {xU} by sweeping the actuation
frequency up to the operating point Ωdrive = Ωop. When there is only a pure modulation of
the amplitude, a weak intra-well modulation in phase response is observed for ηR = 0mW .
This is observed in the reconstructed FFT as a weak peak at Ωmod. As we start increasing
the injected noise power ηR (= 20mW ) from here we start observing jumps between the
metastable states, as a reminder we de�ne jumps whenever the system crosses the prede�ned
threshold. This is re�ected in a small enhancement of resonance at FFT spectra. However, as
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we start increasing the injected amplitude noise in the system for ηR = 60mW and 80mW the
jumps become more frequent and most of them become synchronized with the modulation.
This results in signi�cant enhancement of the FFT peak. From here as we start increasing
the noise ηR even further, for ηR = 245mW the jumps loose the synchronization completely
and the FFT peak starts to decrease considerably. This is again related to the change in
the bistable potential like for phase noise, as the bistable potential starts to become more
unistable.

From here we repeat the experiment with an amplitude modulation ofm = 0.2 and repeat
the experiment for several values of ηR. Each case we record the amplitude and phase response
of the system in time and construct FFT spectra from the time domain measurements.

5.8.2 Ampli�cation of stochastic resonance

Figure 5.22: Ampli�cation by stochastic resonance with amplitude modulation and noise for
a modulation frequency of 50Hz and for a modulation depth m of (a) 10% and (b) 20%.

In this section we study the ampli�cation from stochastic resonance with amplitude mod-
ulation and noise. In Figure 5.22 we plot the ampli�cation due to stochastic resonance in
amplitude with applied amplitude noise ηR. Firstly in Figure 5.22(a) we plot the ampli�ca-
tion versus noise for m = 0.1; we de�ne the ampli�cation like before i.e. with respect to the
one with zero noise i.e. ηR = 0mW . We were able to �t the experimental data with equation
(5.7), which shows to follow the data points satisfactorily. For these particular conditions we
were able to achieve an ampli�cation of 5.5, this is higher than the ampli�cation achieved
for stochastic resonance with phase noise. For m = 0.2, the ampli�cation versus amplitude
noise ηR is plotted in Figure 5.22(b). Similar to the situation before we are able to observe
ampli�cation for a certain range of the applied noise ηR. The highest ampli�cation observed
in this particular case was about 5.75. Slightly higher value can be attributed to the fact
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that higher modulation makes the system easier to switch between the metastable states. In
this case the experimental data seems to �t the theoretical equation quite well as seen in
Figure 5.22(b) by the red line.

5.8.3 Behavior of the subharmonics

Apart from the fundamental resonance at Ωmod, one can also observe sub-harmonic or super-
harmonic resonances. Instead of following the modulation directly (two escape periods in one
period of driving) it can wait for the next cycle in both wells. This means the system can
perform two escapes in one driving period, thereby leading to sub-harmonic resonances. Also
instead of waiting, the system can instead jump two times more between the wells leading to
exhibit super-harmonic resonances. Thereby extending this concept if the system waits for
n periods in both the wells, we can write [61]:

Tsub = (n− 1

2
)Tmod (5.21)

i.e. Ωsub =
Ωmod

(n− 1
2
)
for n = 1, 2.... (5.22)

Figure 5.23: Stochastic resonance for the subharmonics n = 1, 2 & 3

This particular situation is shown in Figure 5.21(b), where we highlight the existence of
such subharmonics in the spectra. Considering the modulation Ωmod = 50Hz, we should be
able to observe harmonics at around 20Hz, 33Hz and 100Hz for n = 1, 2 and 3 respectively.
This is exactly what we observe in our case, as highlighted in Figure 5.21(b). As the next
step we plot the evolution of the FFT peaks of the harmonics with applied noise. The
resulting plot is displayed in Figure 5.23, we observe the harmonics at Ω = 20, 30 & 100Hz
show stochastic resonance like behavior and �t quite well with the expression for spectral
ampli�cation in equation (5.7). Highest response is obtained for 20Hz at a noise of about
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75mW , while for the other the response becomes relatively smaller and they occur at a lower
value of ηR compared to the former. For the FFT responses in these cases normalization was
not possible as for ηR = 0mW no FFT peak appear. Thereby unlike Figure 5.22, instead of
plotting ampli�cation here we plot only the FFT amplitudes with applied noise.

5.8.4 Phase trajectories

Figure 5.24: (a) Phase trajectory for stochastic resonance for an amplitude modulation of
10% (b) phase trajectory for stochastic resonance at an amplitude of modulation of 20%; with
expectedly higher dispersion of the states are observed for higher modulation in amplitude.

Here again we plot the phase trajectory of the system under stochastic resonance with ampli-
tude modulation and noise. The resulting plots for m = 0.1 and m = 0.2 are shown in Figure
5.24(a) & (b). We can observe that for m = 0.1 the modulation of the states {xU} and {xL}
are small around the mean value while for m = 0.2 the modulation is relatively larger. The
reason of such behavior is that when the system is modulated in amplitude, the intra-well
modulation is parallel to the x-axis and thereby making the system easier to transit between
the metastable states (Figure 5.24). This enhances the spectral ampli�cation for amplitude
noise and amplitude modulation. While on the other hand for amplitude modulation the
modulation of the system is along the y-axis which is not the preferred transition path for
phase noise (Figure 5.20). This makes overall spectral ampli�cation lower for stochastic
resonance with phase noise and modulation.
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5.9 Conclusion and perspectives

In conclusion we can say that in this chapter we demonstrated the implementation of stochas-
tic resonance with pure amplitude noise and pure phase noise. In order to realize stochastic
resonance, we had to �rst of all optimize many parameters. First of all we had to deter-
mine how the bistable potential well behaves as a function of the drive frequency Ωdrive,
in order to realize stochastic resonance it is imperative that both the metastable states are
equiprobable. Next we needed to determine the frequency range of operation for the double
well system, we found a cut-o� frequency of about 1kHz for the NOEMS system. We also
had to �nd out the Kramer's rate of the system for various externally applied noise (both in
amplitude as well as in phase), this step was necessary in order to �nd a suitable modulation
frequency of operation for the system. And �nally we gave a overall understanding experi-
mental point of view for the stochastic resonance. Interestingly we found that somehow the
amplitude stochastic resonance seemed to have a higher spectral ampli�cation compared to
the one with phase stochastic resonance. The phase trajectory was quite revealing in order
to explain this behavior, we saw that the transitions between the metastable states happen
along di�erent paths for injected phase and amplitude noise. Finally this factor governs the
di�erence in achieved ampli�cation in the system for di�erent kind of noise schemes.

In order to improve the ampli�cation due to phase stochastic resonance thereby we pro-
pose an idea where we can combine the two modulation schemes (i.e. amplitude and phase)
at the same time in order to tilt the intra-well modulation along the transition path in order
to improve the spectral ampli�cation. Thus under such conditions the applied voltage signal
to the system can be written as:

V (t) = Vac(1 +mcos(Ωmodt))cos(Ωdrivet+ ∆φsgn(Ωmodt) + φ0) (5.23)

The amplitude modulation index m needs to very small and also has to be optimized in
order to reach optimized ampli�cation.

The next set of experiments were a natural extension to the stochastic resonance, called
vibrational resonance. Vibrational resonance is de�ned as the ampli�cation of the low am-
plitude, low frequency signal applied to a bistable system by using an externally injected
high frequency signal instead of noise. Detailed discussion of this phenomenon is out of the
scope of this report. With vibrational resonance it is not only possible to amplify the low
frequency signal but at the same time second harmonic generation of this low frequency signal
is possible [122][58].



Chapter 6

Conclusion and perspectives

6.1 General conclusion

Main objective of this work is aimed at investigating the nonlinear dynamics in a fully
integrated NOEMS platform, combining the mechanical and optical resonators as well as
actuation tools. Such integrability is essential in view of potential applications in metrology
or signal processing for instance. The platform under study consists of a two dimensional
photonic crystal mirror. Actuation was realized by integrating underneath the interdigitated
electrodes, implementing capacitive transduction. Compared to external actuators such inte-
grated actuation scheme allows for high electromechanical coupling and hence higher trans-
duction, opening a way to reach the high excitation regime. Such high excitation pushes
the system into nonlinear regime where the system is described by Du�ng equation instead
of linear one. A system under such a regime has two di�erent stable points instead of just
one, this is known as the bistability. We used this existing nonlinearity to perform what is
known as sub/super-harmonic resonance on the nonlinear system. We showed that with the
excitation, these resonances generate tongue like response known as the instability tongues.
We were able to show such behavior for up to 8th order. At the same time we also probed
the evolution of the system in the phase space, as the detuning of excitation is changed. The
system goes under a 180° of phase rotation with the drive as the frequency is detuned from
one edge of the tongue to the other. Such platform exhibits phase dependent ampli�cation
of a weak resonant drive under application of a strong modulation at a frequency twice the
natural resonance, this is known as parametric ampli�cation. We extended this scheme fur-
ther in order to show that it can be utilized to tune the eigen-frequency and nonlinearity of
the system.

Noise in any nonlinear system is usually considered as prejudicial, it can however some-
times provide a signal processing bene�t. This is the case when implementing stochastic
resonance, corresponding to the resonant ampli�cation of a weak coherent signal by intro-
ducing noise in a nonlinear system. In order to implement such resonance, we had to optimize
some parameters; including the drive frequency, the amplitude and frequency of modulation
of the weak coherent signal. Once we could determine these parameters, �rst of all we had to
�nd how the system responds to the injected noise. We studied the behavior of the system
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with both amplitude and phase noise injected externally. From these data we were able to
estimate what is known as the Kramer's rate, the characteristic switching rate of the system
between the bistable states. We showed that for optimized conditions this value was about
100Hz for both amplitude and phase noise. We therefore could use this value to �nally per-
form stochastic resonance on our NOEMS platform at a frequency of 50Hz. We performed
stochastic resonance with both amplitude and phase modulation. Stochastic resonance with
phase noise revealed to be less e�ective than the one with amplitude noise. The explanation
was found when looking at the phase portrait with both situations. It was seen that with
amplitude noise the intra-well modulation is in similar direction with the inter-well transi-
tions, unlike that with the phase noise. This causes amplitude stochastic resonance gain to
be higher compared to the one with phase. Finally we proposed a scheme which combines
these two schemes in order to enhance the gain attained by phase stochastic resonance.

6.2 Perspectives

6.2.1 Electro-opto-mechanical platforms

Figure 6.1: (a) Schematic of the PhC membrane and waveguide system; light is injected
through one end of the waveguide and it interacts with the PhC cavity and the modi�ed �eld
is collected at the other end of the waveguide, (b) An scanning electron micrograph of the
fabricated membrane-waveguide structure where the membrane is suspended about 230nm
above the Si waveguide.

Previous to present work, a �rst step towards integration aimed at combining an optical
and mechanical system on the same chip, as well as optical functionalities to inject light
into the resonator. One example of such integrated device was implemented in the lab by
Tsvirkun et al. [123], where heterogeneous integration of a III-V material Indium Phosphide
(InP) with Silicon on insulator waveguide was performed. The fabricated device and the
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Figure 6.2: (a) The modi�ed interdigitated electrodes along with the waveguide, (b) the
suspended photonic crystal membrane with a L3 cavity on top of the interdigitated electrodes
and the waveguide.

light coupling mechanism are shown in Figure 6.1(a); light is injected through one side of
the tapered waveguide and is coupled to the PhC cavity (L3 cavity) residing above it. The
injected light after interacting with the PhC cavity is modi�ed via optomechanical coupling
and is collected at the other end of the waveguide. This enables detection of the Brownian
motion of the membrane. Figure 6.1(b) shows the fabricated scanning electron micrograph of
the PhC-waveguide system, the PhC having a dimension of 10× 20µm2 is suspended about
230nm above a Si waveguide.

During the course of this thesis, we extended such approach to integrate a suspended PhC
membrane having both electrical and optical properties and integrated actuation tools on the
same chip. The next step is therefore to integrate these two schemes in order to implement
a system with a true electro-opto-mechanical coupling. This required a new design of the
electrodes as shown in Figure 6.2(a). The pair of interdigitated electrodes are separated
by a waveguide with thickness varying from 250 to 550nm. Optimization of the electrode-
waveguide separation was important in order to minimize plasmonic e�ects observed in FDTD
simulations. A separation of 1µm between the electrodes and the waveguide center was chosen
to minimize this e�ect. Also we required to spatially separate the electrodes and membrane
on the chip; this required use of 'via' to connect the electrodes from outside world on to the
chip. The fabricated suspended membrane, electrode and the waveguide system is shown
in Figure 6.2(b). The membrane also embeds a L3 cavity used to couple the light from the
waveguide. Such platforms shall thus realize an electro-opto-mechanical coupling.

6.2.2 Towards phase locking of coupled oscillators

Phase locking is a branch of synchronization where one harmonic oscillator is disturbed by
another harmonic oscillator operating at a nearby frequency. When the coupling is strong
enough and the frequencies are close enough, the second oscillator could capture the �rst
oscillator and �nally having identical frequencies. Due to this reason it is also referred as
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injection locking. When the second oscillator follows the �rst oscillator but do not capture
it, it is called injection pulling. Observing the phase dynamics of the coupled oscillators is
an usual way in general to observe this behavior. Synchronization can be observed between
from two oscillators to N number of oscillator provided N ≥ 2. Synchronization is of great
importance in view of enhancing the performance of electro-opto-mechanically driven sen-
sors or in implementation of high spectral purity RF oscillators exploiting photon-phonon
interaction.

Figure 6.3: (a) Synchrnoization between mechanically coupled oscillators in sub-harmonic
excitaion regime [60], (b) synchronization between oscillators via a photonic resonator [124],
(c) synchronization by reactive coupling force [125], (d) phase locking between two anhar-
monic oscillators [55], (e) synchronization of two oscillators by common optical noise [126],
(f) synchronization between oscillator array by common optical noise [127].

In past few years nanomechanical/optomechanical systems have exhibited such synchro-
nization e�ect and have grown a tremendous interest in the �eld of NEMS/NOEMS. For
nanomechanical devices, it was shown by the group of P.Mohanty [60] that two mechanically
coupled oscillator were able to display synchronization behavior under sub-harmonic excita-
tion regime. They exhibited what is famously known as the Arnold's tongue like behavior, a
signature of phase locking (Figure 6.3(a)). Bagheri et al. [124] demonstrated synchronization
between two spatially separated nanomechanical oscillator via a photonic resonator (Figure
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Figure 6.4: (a) Synchronization possible by placing several PhC membrane nanomechanical
oscillators on same waveguide, (b) a control over eigen-frequencies and coupling strength
of these membranes are possible by using integrated electrodes along with the waveguide
membrane systems on the same chip.

6.3(b)). They showed the evolution of the power spectrum in four di�erent regimes; ther-
mal state regime, regenerative oscillation regime, chaotic regime and �nally the synchronized
regime. Agarwal et al. [125] showed synchronization in silicon micromachined resonators by
reactive coupling force between the oscillators (Figure 6.3(c)). While the group of Roukes
studied theoretically and experimentally, coupling between two reactively coupled Du�ng
oscillators with saturated feedback gain [55] (Figure 6.3(d)). They were able to show phase
locking between these two anharmonic oscillators by controlled feedback loop. The feedback
reduced signi�cant amount of phase noise of the oscillators which can be important for sen-
sor and clock applications. The group of Lipson were able to demonstrate synchronization
between two oscillators by means of common optical noise [126] (Figure 6.3(e)), a concept
they later extended for oscillator arrays [127] (Figure 6.3(f)).

Therefore the next step of experiments on the NOEMS platform shown in Figure 6.2 is to
realize such synchronization phenomenon between two or more oscillators via common optical
noise. Placing several oscillators over same waveguide allows oscillator coupling via a common
optical noise (Figure 6.4(a)) However, due to fabrication imperfections these devices might
have eigen-frequencies far away from each others. This eigen-frequency then could be tuned
by using a DC bias on the electrodes fabricated on the same chip (Figure 6.4(b)) (following the
method described in section 3.4.4). The electrodes could also be used to amplify the resonant
(or sub/super-harmonic) oscillation of the membranes and drive them in the self-oscillation
regime, in order to increase the coupling strength between the oscillators.

6.2.3 Nonlinearity with electro-opto-mechanical systems

Potential future experiments on nonlinear dynamics involve what is known as the vibrational
resonance [58]. The concept of vibrational resonance is somewhat similar to that of stochastic
resonance, with the noise being replaced by a high frequency signal. The bistable potential is
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Figure 6.5: (a) Stochastic resonance coupled underdamped bistable systems [129], (b) op-
tomechanically induced stochastic resonance [130].

modulated by a weak low frequency signal and a strong high frequency signal. At a certain
strength of the high frequency signal, the system is able to jump twice between the two
stable points at a single period of the low frequency signal. This results in ampli�cation of
the low frequency signal at the output. Vibrational resonance like stochastic resonance should
be also applicable for amplitude as well as phase. Another extension of such experiments
concerns with vibrational resonance in Du�ng oscillators using time delayed feedback [128].
Such time delayed feedback gives rise to a periodic or quasiperiodic pattern of vibrational
resonance pro�le with respect to the time delayed parameter. It was shown, that with such
a scheme it is possible to achieve resonance in an overdamped single well system with an
optimized time delay.

However, systems with electro-opto-mechanical coupling can possibly open new doors to
realize other experiments involving nonlinear dynamics. This involves for example, stochastic
resonance in coupled underdamped bistable systems [129]. Consider two driven bistable
systems, coupled and subject to independent noises. When a coupling between these two
systems is turned on, stochastic resonance although is not a�ected, however under strong
coupling regime SNR of the subsystems match (Figure 6.5(a)). It was also shown that for
a certain value of the coupling strength the stochastic resonance is optimum. Moni� et al.
[130] recently demonstrated chaos mediated stochastic resonance in optomechanical systems
(Figure 6.5(b)), this not only essential for fundamental understanding of nonlinear dynamics
induced by optomechanical coupling, but also interesting for implementation of stochastic
resonance in optomechanical systems in order to enhance signal processing capabilities; to
detect, amplify or manipulate weak signals.



Appendix A

Characterization of GaN/AlN and
diamond PhC membranes

It was mentioned in Chapter 2 that due to the small residual stress in InP membrane, it
was di�cult to fabricate suspended membranes with higher bridge lengths. However this
can be countered by using substrates with higher stress. Highly stressed membranes could
be generated either by using sandwich of two di�erent substrates with lattice mismatch
(for example GaN/AlN) or by using bulks having higher inherent Young's modulus (for
example diamond), which was fabricated in collaboration with X.Checoury of IEF (Paris-sud
University). Such devices were fabricated and their mechanical properties are discussed in
this section.

A.1 Characterization of GaN/AlN PhC membrane

Figure A.1: (a) Fully clamped GaN/AlN membrane of dimension 30µm × 30µm, (b) closer
view of the etched cylindrical photonic crystal holes, (c) cross-sectional view of the photonic
crystal membrane.
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Apart from working with InP membranes we characterized GaN/AlN fully clamped mem-
branes as well. The membrane consists of AlN layer of thickness 200nm and GaN layer of
thickness 160nm on silicon substrate. The double layer is required in order to reach a thick-
ness of around 400nm. This can be attributed to the lattice mismatch between the GaN
layer and silicon. This is the reason we require to use AlN layer as an intermediate layer
to reach this thickness. Another advantage is that such structure results in a high stress
membrane resulting in higher mechanical Q-factors. The GaN/AlN membrane results in a
highly stressed membrane which produces mechanical response with higher quality factor
and higher eigen-frequencies. The fabricated fully clamped GaN/AlN membrane is shown
in Figure A.1(a), the membrane is 30µm × 30µm of size. The membrane is patterned with
cylindrical holes of diameter varying from 175nm to 215nm (however these values are un-
optimized for this design). The etched cylindrical holes and their cross-sectional pro�le is
shown in Figure A.1(b) & (c). The sample is then placed inside the vacuum chamber where it
is mounted on top of the piezo stack. The detection of the mechanical modes were performed
optically with the help of the Balanced Homodyne Detector (BHD).

Figure A.2: (a) Experimentally detected fundamental mode of the GaN/AlN rectangular
membrane for two di�erent hole diameters: 175nm and 185nm, (b) experimental results
and simulation �t for the eigen-frequencies of GaN/AlN membrane, the inset shows FEM
simulation of the fundamental mechanical mode of the fully clamped membrane.

The piezo was driven by an external signal generator at an excitation voltage of about
5V . The actuation frequency is swept in order to �nd the mechanical modes. The retrieved
fundamental mechanical mode for a membrane with a dimension of 30µm× 30µm is shown
in Figure A.2(a). In Figure A.2(a) we show the mechanical modes for membranes with hole
diameters 175nm and 185nm. The fundamental eigen-frequency was found to be around
8.75MHz and at around 8.78MHz for membrane with hole diameter 195nm and 175nm
respectively. The values of the obtained eigen-frequencies are signi�cantly higher than that
of the InP membranes. This happens due to the high stress induced because of AlN/GaN
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structure. We recorded the mechanical spectra for membranes with same size (i.e. 30µm ×
30µm) but with di�erent hole diameters. The result is shown by the red line in Figure
A.2(b). We were able to simulate the mechanical modes for identical design and structures
for various hole diameters. The simulated results are plotted in Figure A.2(b) and shown by
the black line. The simulated results support the experimental results quite well, an e�ective
Young's modulus of 1860MPa for AlN and 1116MPa for GaN was used in order to achieve
comparable eigen-frequency with the experimental result. This required use of an e�ective
Young's modulus which was almost 6 times higher than that of the bulk for either cases,
rise in the Young's modulus occurs due to the existing strain in the structure. The FEM
simulation of the fundamental mode is shown in the inset of Figure A.2(b). Detection of
higher order modes were not possible as the next visible mode predicted by FEM simulations
were around 30MHz which is far beyond 10MHz, the limit of piezo stack actuation. The
Q-factors of these membranes were detected via ring-down technique and were found to be
between 500 and 1000. This value is similar to the one found for InP but with optimized
mechanical geometry.

The sample also contained membranes with dimension of 10 × 10µm2 and 20 × 20µm2,
although we couldn't retrieve any mechanical modes for these membranes. The reason can
be attributed to the fact that intuitively one can say that these membranes have fundamental
eigen-frequency which is higher than that of the one discussed previously (due to the reduced
dimension). Thereby the fundamental eigen-frequency have a value more than 10MHz,
which is beyond the frequency range of operation.

Figure A.3: (a) The fabricated diamond photonic crystal membrane suspended by four
bridges (fabricated in collab. with X.Checoury (IEF)) (b) closer view on the etched cylindri-
cal PhC holes in the membranes, (c) image of the suspended PhC membrane in an optical
microscope.
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A.2 Characterization of the diamond PhC membrane

Diamond photonic crystals were fabricated in collaboration with X.Checoury of IEF, Paris-
sud University. The membranes contain cylindrical holes etched inside of diameter of 145nm
with a period of 425nm. The dimension of the membranes are 10×20µm2 having a thickness
of 140nm. Unlike the fully clamped GaN/AlN and fully clamped InP membranes these
diamond membranes are suspended by four bridges on both side of the rectangular membrane
(Figure A.3). The width of the bridges are between 0.5µm and 1.0µm while having bridge
lengths varying between 2µm to 12µm with a step of 2µm. These factors �nally de�ne
the mechanical properties of these membranes. The FEM simulations show the mechanical
modes to lie around the MHz frequency regime. These membranes are also highly re�ective for
the He/Ne laser wavelength at around 633nm. The SEM pictures of the fabricated diamond
photonic crystal membranes are shown in Figure A.3. Unlike the InP membranes the diamond
photonic crystal membranes exhibited suspended structures even with high bridge lengths
(12µm) as shown in Figure A.3(a). This can be attributed to the high existing high stress
in the membranes. The high stress also makes the diamond PhC membranes to be very
interesting candidate for optomechanics as this ensures high mechanical quality factor for
these membranes.

Figure A.4: Experimentally detected fundamental mechanical mode of

The experimentally detected fundamental mechanical mode with a lorentzian �t is shown
in Figure A.4(a). The method of detection is identical to the one described in the previous
section; the membrane mounted on a piezo stack placed inside the vacuum chamber and
is driven externally by a signal generator. The excitation voltage was set to 5V , as the
actuation frequency is changed when this frequency is close one of the mechanical mode of the
membrane, the membrane starts to oscillate and the mode then is detected by the BHD. The
mechanical mode retrieved is for a fully clamped diamond photonic crystal membrane (shown
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in the inset) of dimension 20 × 20µm2 having a fundamental mechanical eigen-frequency
around 7.125MHz. Higher order modes were not detected possibly due to the upper cut-o�
frequency of the piezo stack in use, which was 10MHz. A ring-down measurement gave a
Q-factor of about 591 ± 20 for this particular membrane. We were able to characterize the
bridged membranes of di�erent bridge lengths as well. Evolution of this quality factor with
bridge lengths is shown in Figure A.4(b); we observe a monotonous increase of the quality
factors with the bridge length. However the drop of the quality factor for the bridge length
of 12µm can be attributed to the shift in eigen-frequency due to increase in bridge length.
Thus the probed mode is probably the second order one rather than the �rst order one.



Appendix B

Derivation of Mathieu equation for a
nonlinear system

Excitation of super and sub-harmonic resonance falls under the situation of parametric exci-
tation, where somehow the spring constant of the resonator is modulated at some harmonic of
the natural resonance and a response is observed at the natural resonance. Since the physics
of this kind of system is quite complicated, we will start from the basic Mathieu equation
and slowly work towards more complicated situations. The phenomenon is directly related
to the nonlinearity of the system as the nonlinearity of n-th order helps the resonator to be
excited at n-th super or sub-harmonic resonance. Thus the threshold of excitation is related
to the order of nonlinearity in the system and the above-mentioned threshold increases for
higher order nonlinearities.

B.1 Mathieu equation without damping

A nonlinear system under study can be described by using a special di�erential equation
which is known as the Mathieu equation [59]. The general form of Mathieu equation can be
described as:

ẍ+ (δ + εcos(t))x = 0 (B.1)

The idea of Mathieu equation is that the dynamics of a system under study could be
described by using equation of this form. To understand how this actually works let us
consider the equation under study with Du�ng nonlinearity:

ẍ+ Γmẋ+ Ω2
mx+ βx3 = F (B.2)

Thus for the time being lets start with assuming the system is under no damping as well
considering the system is excited far below from the nonlinear threshold. Which means for

148



APPENDIX B. DERIVATION OF MATHIEU EQUATION FOR A NONLINEAR
SYSTEM 149

the time being we can consider β = 0 and Γm = 0. Considering the fact that the harmonic
driving causes the spring of the system to modulate at that frequency, we replace the term
F in equation (B.2) and add the harmonic drive to the spring constant term. Furthermore
as discussed before when the system is exited at some harmonic other than the natural
resonance it can directly a�ect the spring constant of the system, thus in short the spring
constant will be modulated at the harmonic and when it exceeds a certain threshold it will
produce a response at the natural resonance. Under such conditions considering a super-
harmonic resonance let's assume that the system is driven at a frequency Ωdrive = Ωm/n
with a modulation amplitude of the spring constant being H. So the equation (B.2) can be
transformed to:

ẍ+ (Ω2
m +Hcos(

Ωmt

n
))x = 0 (B.3)

using the transformation τ = Ωm

n
t the equation reduces to:

d2x

dτ 2
+ (δ + εcos(τ))x = 0 (B.4)

Where ε = Hn2/Ω2
m and δ = n2, this equation now completely resembles Mathieu equa-

tion and we can now proceed to �nd a solution of the equation. The solution of Mathieu
equation can be derived using various techniques, for example: Lie transformation, perturba-
tion theory, Floquet theory, Hill's equation, harmonic balance. The idea of all these processes
above is actually to study the dependency of the parameters δ and ε on each other. Since the
system under study is shown to have a nonlinear behavior thus we decided to use harmonic
balance theory in order to �nd the response of the system. So for the time being let us
assume the solution of x(t) in terms of Fourier series:

x(t) =
∞∑
n=0

ancos
nt

2
+ bnsin

nt

2
(B.5)

We now can substitute equation (B.5) into equation (B.4) and using some trigonometric
simpli�cations and collection of harmonic terms (harmonic balance) we are able to generate
four sets of algebraic equations involving coe�cients an and bn(for details please refer to
[59]). These four sets being for coe�cients aeven, beven, aodd and bodd. All the four sets are
homogeneous and of in�nite order, in order to �nd a nontrivial solution determinants for
each set must vanish. Which leads us to the four determinants:

aeven :

∣∣∣∣∣∣∣∣
δ ε/2 0 0
ε δ − 1 ε/2 0 ...
0 ε/2 δ − 4 ε/2

...

∣∣∣∣∣∣∣∣ = 0 (B.6)
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Figure B.1: The instability tongue for parametric excitation of the system; the region of
instability is bounded by δ which is dependent on the spring constants of the system. The
tongue originates at δ = δ0 and then diverges with increase in excitation ε. The smooth line
indicates instability tongue in ideal case (damping = 0) while the dotted line indicates more
pragmatic situation taking damping into consideration.

beven :

∣∣∣∣∣∣∣∣
δ − 1 ε/2 0 0
ε/2 δ − 4 ε/2 0 ...
0 ε/2 δ − 9 ε/2

...

∣∣∣∣∣∣∣∣ = 0 (B.7)

aodd :

∣∣∣∣∣∣∣∣
δ − 1/4 + ε/2 ε/2 0 0

ε/2 δ − 9/4 ε/2 0 ...
0 ε/2 δ − 25/4 ε/2

...

∣∣∣∣∣∣∣∣ = 0 (B.8)

bodd =

∣∣∣∣∣∣∣∣
δ − 1/4− ε/2 ε/2 0 0

ε/2 δ − 9/4 ε/2 0 ...
0 ε/2 δ − 25/4 ε/2

...

∣∣∣∣∣∣∣∣ = 0 (B.9)

In all the determinants a typical row is of the form (except for the �rst one or two rows):

... 0 ε/2 δ − p2/2 ε/2 0 ... (B.10)

Each of these four determinants now give a particular dependence of δ on ε which will
produce some unique transition curves in the δ, ε plane. By setting ε = 0 in the above
determinants it is easy to obtain the intersection with the δ axis. The transition curves for
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aeven and beven intersects the δ axis at δ = p2(p = 1, 2, 3...). While transition curves for aodd
and bodd intersects δ axis for δ = (2p+1)2

4
(p = 1, 2, 3..). Thus for ε > 0, each point on δ axis

will give rise to two transition curves, �rst one is generated from the associated transition
curve originating from a determinant while the other one associated with the parameter b
determinant. Thus there is a tongue originating from the δ axis provided:

δ =
p2

4
, p = 1, 2, 3.... (B.11)

Now knowing that δ = n2, we can write n = p/2. Which means the parametric excitation
would be observed for drive frequencies Ωdrive = Ωm

n
= 2Ωm

p
(p = 1, 2, 3....). Equation (B.10)

however merely gives the originating point of the transition curve from the δ axis, but to
properly understand the nature of these transition curves in δ, ε plane one needs to take
into account the in�uence of ε in the above determinants. Considering e�ect of the drive
parameter ε the dependence between δ and ε can be written as (for detailed derivation please
refer to [59]):

δ =
p2

4
+ δ1ε+ δ2ε

2 + ... (B.12)

Thus e�ect of an increase of ε (external excitation) is a dispersion of δ i.e. increase in
the excited frequency range for the super-harmonic excitation. The resulting plot is shown
in Figure B.1. Thus we can conclude that parametric excitation is possible when the drive
frequency satis�es the condition Ωdrive = 2Ωm

n
, where n is an integer.

B.2 Mathieu equation with damping

The discussion up till now however has not been very practical, as the damping coe�cient has
been completely neglected in the discussion. Thus let us now consider the damped Mathieu
equation and then observe how the transition curves are modi�ed. For that let us consider
what is known as the damped Mathieu equation:

d2x

dτ 2
+ c

dx

dτ
+ (δ + εcos(τ))x = 0 (B.13)

Using the procedure of harmonic balance to �nd a solution of these equations can become
quite complicated. So in order to make this discussion a little easier we will try another
technique called the perturbation method in order to derive the transition curves. For that
case we will use a special situation for which δ = 1/4 which could be extended for all of the
other cases. In order to facilitate the perturbation we will assume:
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c = εµ (B.14)

Along with that in order to use this perturbation methods let us use some more transfor-
mations:

ζ = τ and η = ετ (B.15)

Using this transformations the equation (B.13) can be written as:

∂2x

∂ζ2
+ 2ε

∂2x

∂ζ∂η
+ ε2

∂2x

∂η2
+ εµ(

∂x

∂ζ
+ ε

∂x

∂η
) + (δ + εcos(ζ))x = 0 (B.16)

let us assume the solution of x(ζ, η) to be of the form:

x(ζ, η) = x0(ζ, η) + εx1(ζ, η) + ..... (B.17)

Substituting this into equation (B.16) and equating coe�cients of '1' and ε (while ne-
glecting higher orders O(ε2)) we can write:

∂2x0

∂ζ2
+ δx0 = 0 (B.18)

∂2x1

∂ζ2
+

1

4
x1 = −2

∂2x0

∂ζ∂η
− x0cos(ζ)− µ∂x0

∂ζ
+ δx1 + x0cos(ζ) (B.19)

Solution of equation (B.18) is just a superposition of sinusoidal signals and can be written
as:

x0(ζ, η) = A(η)cos(
√
δζ) +B(η)sin(

√
δζ) (B.20)

At this stage to simplify the equations in hand let us consider a particular situation where:

δ =
1

4
+ δ1ε (B.21)

Using equation (B.20) and (B.21) into equation (B.19) and using some trigonometrical
identities we derive the following equation:

∂2x1

∂ζ2
+

1

4
x1 = −{−dA

dη
sin(

ζ

2
) +

dB

dη
cos(

ζ

2
)} − 1

2
{Acos(3

2
ζ) + Acos(

1

2
ζ) +Bsin(

3ζ

2
)

+Bcos(
ζ

2
)} − µ

2
{−Asin(

ζ

2
) +Bcos(

ζ

2
)} − δ1{Acos(

ζ

2
) +Bsin(

ζ

2
)}

Removal of resonance terms gives:
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dA

dη
= −µA

2
+ (δ1 −

1

2
)B (B.22)

dB

dη
= −µB

2
− (δ1 +

1

2
)A (B.23)

Intuitively we can assume the solution of parameters A(η) and B(η) as A(η) = A0exp(λη)
and B(η) = B0exp(λη). Using these trial solutions in equation (B.23) & (B.24), we can say
a trivial solution could exist only when:∣∣∣∣ −µ/2− λ −1/2 + δ1

−1/2− δ1 −µ/2− λ

∣∣∣∣ = 0 (B.24)

Which gives the allowed values of δ1for λ = 0 (for transition between stable and unstable
regime):

δ1 = ±
√

1− µ2

2
(B.25)

This gives values of δ as:

δ =
1

4
± ε
√

1− µ2

2
+O(ε2) =

1

4
±
√
ε2 − c2

2
+O(ε2) (B.26)

This clearly shows us for instability to occur for a given value of c, a minimum value of ε
is required. Also the minimumε is slightly detached from the δ axis depending on the value of
c. The dependence of δ on ε for low ε is a little parabolic which makes edges of the transition
curves to be a little blunt rather than sharp compared to the case when there is no damping.
Nonetheless when ε is su�ciently high the dependence again becomes linear (ignoring higher
order perturbations) which is shown by the dotted curve in Figure B.1.

B.3 Mathieu equation under nonlinear regime

In the previous sections it has been discussed how the unbounded states can exist inside the
transition regions de�ned by the boundaries, but in real world a physical system does not
demonstrate unbounded behavior. The reason can be attributed to the existing nonlinearity
in the system. This phenomenon hasn't been examined in the discussion till now and its due
to the fact that up to now only linear Mathieu equation has been considered. This is due to
the fact that as the system enters into nonlinear regime due to the large motion in amplitude
the eigen-frequency becomes detuned. As a result the amplitude in the response becomes
smaller. To study the parametric response of a system under nonlinear conditions we will
need to consider the nonlinear Mathieu equation:

d2x

dτ 2
+ (δ + εcos(τ))x+ εαx3 = 0 (B.27)
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Figure B.2: Instability tongue under nonlinear regime.

Here we use the nonlinear coe�cient as εα, considering the fact that the nonlinearity is
directly related to the external excitation. We assume this as more excitation means higher
amplitude of motion which in turn means higher tuning of resonance. Here we use the similar
transformations and assumptions as in the last section and �nally for the coe�cients of ε we
can write:

∂2x

∂ζ2
+ 2ε

∂2x0

∂ζ∂η
+ ε2

∂2x

∂η2
+ (δ + εcos(ζ))x+ εαx3 = 0 (B.28)

Again in order to avoid complicacy we can use approximated value of δ as: δ = 1
4

+ δ1ε,
which transforms equation above to:

∂2x1

∂ζ2
+

1

4
x1 = −2ε

∂2x0

∂ζ∂η
− δ1x0 − x0cos(ζ)− αx3

0 (B.29)

Now using the approximate solution of x0(ζ, η) = A(η)cos( ζ
2
) +B(η)sin( ζ

2
) with removal

of resonant terms and neglecting some additional cubic terms we are able to write:

dA

dη
= (δ1 −

1

2
)B +

3α

4
B(A2 +B2) (B.30)

dB

dη
= −(δ1 +

1

2
)A− 3α

4
A(A2 +B2) (B.31)

Simplifying these equations by using polar coordinates A = Rcosθ and B = Rsinθ in the
above equations, it can be transformed and we can show that for nontrivial solution to exist
the following conditions must hold (for details refer to [59]):

−R
2
sin(2θ) = 0 (B.32)
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−δ1 −
cos(2θ)

2
− 3α

4
R2 = 0 or R2 = − 4

3α
(
cos(2θ)

2
+ δ1) (B.33)

Solution of equation (B.33) for R 6= 0 requires θ = 0, π
2
, π or 3π

2
. For a nontrivial real

solution of equation (B.34) we must have R2 > 0. With α > 0 we have two possible states
with θ = 0 or θ = π and in that case a nontrivial solution would exist only when δ < −1

2
. On

the other hand for θ = π
2
or θ = 3π

2
a nontrivial solution would exist when δ1 <

1
2
. This shows

existence of a bifurcation as one traverses across the transition region. As the bifurcation is
bounded by δ > ±1

2
a bifurcation between θ = π

2
and 3π

2
is observed as δ is detuned from

the transition curve at the right side (Figure B.2) for a �xed ε. The amplitude also grows
as δ is detuned and a second bifurcation is observed on the left side transition curve, this
bifurcation happens between θ = 0 and π. Although this e�ect is not observed in our system
as it will be seen later, this can be attributed to the fact that in this region the system
simply just do not respond as R = 0 for this regime. A special case of parametric excitation
called parametric ampli�cation will be discussed in later sections with both theoretical and
experimental viewpoint.



Appendix C

Calibration for parametric resonance

In this section we discuss about how the resonant excitation (Vac) is in�uenced by the para-
metric excitation (Vp). As we use the same electrodes in order to inject both the drives to the
NOEMS system, the weak resonant drive is somewhat in�uenced by the strong parametric
drive. In order to retrieve how the resonant excitation evolves with the parametric excitation
we �x the resonant excitation at Vac = 0.20V and vary the parametric excitation from 0V to
10V while recording the evolution of the resonant excitation in an oscilloscope. We observe
that the weak resonant drive Vac has little to almost no in�uence on the high parametric drive
Vp. However the opposite is not true, how Vp in�uences Vac is shown in Figure C.1. When
Vp = 0V peak to peak voltage retrieved in the oscilloscope is about 0.181V . The discrepancy
in the detected voltage comes from presence of some noise in the electrical paths. We observe
an exponential dependence expressed as:

Figure C.1: (a) Suppression of resonant drive at Vac = 0.2V due to parametric excitation
ranging from Vp = 0V to 10V .

Vpeak−peak = 0.022 + 0.159exp

(
− Vp

1.65

)
(C.1)
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Vpeak−peak is the detected peak to peak Vac in the oscilloscope. If one observe closely at
Figure C.1(b) a saturation of the detected voltage for a high Vp around 0.022V is seen.

Moreover, the resonant drive Vac also has a dependence on the phase of the parametric
drive Vp. In order to retrieve how this is in�uenced we use similar scheme like before i.e. we
�x the drive the resonant drive at Vac = 0.2V and the parametric drive at Vp = 1.0V while
changing the phase of the parametric drive Vp. From there we calculate the in�uence of the
parametric drive Vp on the resonant drive Vac for phase di�erence θ ranging from 0° to 360°.
The result is plotted in Figure C.1(b), we calculate the above-mentioned in�uence in terms
of percentage. We see that Vp has a sinusoidal in�uence over the resonant drive Vac. Fitting
with a sinusoidal function we can write:

δVpeak−peak = 9.1 + 9.5sin

[
π(θ − 54.7)

192.15

]
(C.2)

where δVpeak−peak is de�ned as the percentage of error in the applied and the detected

voltage i.e. δVpeak−peak =
∣∣∣Vac−V peak−peakVac

∣∣∣ (%).

Knowing now the full mapping i.e. how the amplitude as well as the phase θ of the
parametric drive Vp in�uences the resonant drive Vac, we could calculate the e�ective resonant
drive for each parametric drive amplitude Vp and its phase.
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Calibration of phase and amplitude noise

Figure D.1: (a) Time trace of the noise and its distribution with zero mean, (b) FFT of the
acquired signal of bandwidth 10kHz.

In this section we discuss about the calibration of the injected phase noise in the system,
we needed this calibration in order to quantify the injected noise. We decided to calibrate
the phase noise in terms of the standard deviation. To do this, �rst of all we generated a
noise signal by the signal generator under consideration with peak to peak noise amplitude
of Vpp = 1V and a bandwidth of 10kHz. The time domain signal is shown in Figure D.1(a),
with an acquisition time of 2sec. The histogram of the acquired signal is shown in the same
�gure, the histogram with the Gaussian �t shows clearly that the noise has zero mean with
a �nite value of standard deviation. The standard deviation is de�ned as:

S.D =
√
mean(signal2)− {mean(signal)}2 (D.1)

Figure D.1(b) on the other hand shows the frequency domain representation of the same
signal, this is constructed by performing Fast Fourier Transform (FFT) of the time domain
signal. We observe that the noise has almost a pink noise like feature, however it is more or
less white in nature in the 10kHz bandwidth.
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Figure D.2: Variation of the standard deviation of the acquired signal with the peak to peak
amplitude.

To obtain a relation between the standard deviation and the peak to peak to amplitude
we calculate this value for di�erent values of the noise amplitude. The resulting plot is shown
in Figure D.2, from there we are able to �nd a relationship: S.D = 0.225Vpp. Knowing the
speci�ed conversion (in the signal generator manual) between the external electrical signal
and the output phase to be 36°/V, we can �nally write the conversion between the standard
deviation of the phase noise ηφ and the input voltage as: ηφ = 8.1Vpp.

The amplitude noise however is represented in Watts, the relation between power and
voltage is written as: P = V 2/R. Knowing the termination resistance to be 50Ω, the
amplitude noise is quanti�ed as ηR = (0.225Vpp)

2/50.



Appendix E

Résumé en Français

Cette thèse est basée sur l'observation des dynamiques non linéaires d'un système mécanique
commandé de l'extérieur par les électrodes. Le plan du travail est tout d'abord concevoir le
système, puis le fabriquer et �nalement valider par des expériences sur le système développé.
Le système développé pendant cette thèse est une membrane de cristal photonique suspendu
par quatre ponts au-dessus des électrodes interdigitales. Le système est représenté dans la
Figure E.1.

Figure E.1: Faux couleur SEM du système. En bleu, il est la membrane cristaux photonique
suspendu sur électrodes intégrée. La lumière est incidente verticalement sur la membrane.
Mode mécaniques sont détectes par interférométrie optique.

La conception du système a été suivie d'une étude des simulations numérique sur un
système identique. La membrane de cristal photonique est un structure rectangle des di-
mensions 10 × 20µm2 avec des trous cylindriques fabriqué sur elle. Cela rend la structure
opaque à la lumière incidente. D'autre côté, la structure est suspendue par quatre ponts de
dimensions 1×2µm2 qui génère des modes mécaniques dans le régime MHz. La membrane de
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cristal photonique est suspendue à 400 nm au-dessus des électrodes interdigitales. L'e�cacité
d'excitation des modes mécanique est contrôlée par cette séparation. Un détecteur homo-
dyne équilibré optiquement a été utilisé pour mesurer ces modes mécaniques. Dans la section
suivante, nous décrirons en bref sur l'actionnement en régime linéaire et en suite nous allons
décrire brièvement l'étude de la dynamique non linéaire sur le même système.

E.1 Actionnement dans le régime linéaire

L'actionnement en régime linéaire a été fait en gardant la tension d'actionnement en dessous
d'un certain seuil tout en balayant la fréquence d'actionnement Ωdrive. Avec cette con�gu-
ration plusieurs modes mécaniques ont été identi�és. Toutes ces mesures ont été e�ectuées
à la température ambiante et sous vide. Les spectres pour les modes mécaniques mesuré
expérimentalement ont représenté sur la Figure E.2 avec les pro�les des modes mécaniques
correspondants. Ces pro�les ont été calculé par une simulation MEF (COMSOL). Toutes les
expériences réalisées à partir de ce point a été porté sur le premier mode mécanique autour
de 2.75MHz. Désormais, nous pouvons augmenter la tension d'actionnement pour mettre le
système dans le régime non linéaire.

Figure E.2: (a) Simulation MEF de mode mécanique (b) mode mécanique observées avec
balayage de fréquence, la tension d'actionnement est maintenu constante.
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Figure E.3: (a) & (b) Réponse du système en amplitude et phase dans le régime linéaire, (c)
& (d) Réponse du système en amplitude et phase dans le régime non-linéaire. La réponse
pressentant une hystérésis avec balayage 'up' et 'down'.

E.2 Actionnement dans le régime non linéaire

Il est possible de mettre le même système dans le régime non linéaire en utilisant la ten-
sion d'actionnement au-delà d'un certain seuil. Cette situation apparait dans la Figure E.3.
Lorsque la tension d'actionnement est maintenu petit à ∼ 1V la réponse est linéaire en am-
plitude et également en phase. Cependant, comme la tension d'actionnement est augmentée
à ∼ 10V nous avons observé une bistabilité en amplitude et en phase. Ceci est une indi-
cation claire de la non-linéarité induite dans le système. Avec le système en régime non
linéaire, plusieurs expériences intéressantes ont été réalisées comme le résonance harmonique
(sub/super), excitation paramétrique et résonance stochastique. Dans les sections suivantes,
nous allons décrire brièvement les résultats expérimentaux concernant la dynamique non
linéaire.

E.2.1 Résonance super-harmonique

Résonances (sub/super) harmoniques peuvent être utilisés pour génère une réponse réson-
nante, même en conduisant le système loin de la résonance, grâce à la non-linéarité dans
le système. Réalisation de résonance super-harmonique peut être e�ectuée en excitant le
système dans le sous-harmonique de la fréquence propre, tout en générant la réponse de réso-
nance. La réponse est généré seulement après un certain seuil de la tension d'actionnement
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et au-delà de ce seuil, la fréquence de la réponse se règle a la fréquence d'entrainement par
l'excitation extérieure. Cet ajustement se traduit par une réponse qui ressemble une 'tongue',
connue par la 'tongue' de Mathieu. De telles réponses sont observées pour notre système pour
une non-linéarité jusqu'à 8eme ordre.

Cependant, au-delà le 8eme ordre, il devient di�cile d'observer cette réponse en raison
de la moindre contribution des composants non linéaires d'ordre supérieur. Nous avons
également été en mesure de voir la rotation de la phase de la réponse par rapport à la
fréquence d'entrainement lorsque'il est balayé sur la 'tongue' de l'instabilité.

Figure E.4: Super-harmonique réponse généré jusqu'à huitième ordre, il y a réponses comme
'tongue' est observes avec tension d'actionnement.

E.2.2 Résonance stochastique

Résonance stochastique fait référence de l'ampli�cation d'un signal périodique faible par
l'introduction de bruit dans un système non linéaire. La première démonstration d'une telle
résonance a été faite pour prédire l'occurrence des âges de glace. Depuis lors, ces résonances
ont été démontrées dans de nombreux systèmes, y compris optique, électrique et mécanique.
En raison de l'avance en nano fabrication, il y a eu récemment une certaine démonstration
de résonance stochastique dans les systèmes nano mécaniques. Cependant, la plupart de ces
manifestations a porté principalement sur la résonance stochastique de l'amplitude. Au cours
de ma thèse, nous avons été en mesure d'e�ectuer la résonance stochastique de la phase. Les
mesures expérimentales sont montrées sur la Figure E.5.
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Stochastique résonance avec une modulation de phase et bruit de phase avec un gain de
1.75 a été montrée avec notre système. Avec la résonance de l'amplitude on a obtenu un
gain de 4.5. La raison a été attribuée simplement à la façon dont le système évolue dans
l'espace de phase sous l'in�uence de la phase ou l'amplitude du bruit. Et aussi une nouvelle
technique a été proposée dans laquelle une très faible modulation d'amplitude peut avoir été
ajouté à la résonance stochastique de phase, a�n d'augmenter le gain en phase de résonance
stochastique.

Figure E.5: (a) Résonance stochastique avec bruit de phase (b) résonance stochastique avec
bruit de amplitude.

E.3 Conclusion

En conclusion, au cours de la thèse plusieurs expériences en ce qui concerne la dynamique
non linéaire ont été réalisées sur le système. Les expérience sur la dynamique non linéaire
impliquées la résonance (sub/super) harmonique, ampli�cation paramétrique et la résonance
stochastique (avec une amplitude ainsi que la phase). Aussi une compréhension profonde
de cette plate-forme électromécanique a été faite au cours de cette thèse. L'étape suivante
consiste à inclure des fonctionnalités optiques du système pour réaliser ce qui est une plate-
forme complet d'opto-électro-mécanique. Ceci implique l'intégration des guides d'ondes, des
électrodes et résonateur mécanique sur la même puce. Première réalisation d'un tel système
est représenté sur la Figure E.6. Avec un tel système, il est possible de mettre plusieurs
oscillateurs sur la même puce et les coupler via un bruit optique commun. Cela pourrait
conduire à des expériences sur la synchronisation.
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Figure E.6: (a) Électrodes 'integerdigitated' avec guide d'ondes sur la mémé puce (b) la
système avec la membrane cristaux photonique suspendu sur électrodes intégrée et guide
d'ondes. La membrane contient une cavité L3.
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