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Chapter 1

Introduction

Diffusive transport is central in many areas of physics, chemistry, biology and soft
matter [1, 2, 3, 4]. The regular functionality and development of cells, and in general
of all biological organisms, could not prescind from the efficient delivery of a great
number of molecules to their proper destination. New products are continuously
synthetized and assembled inside the nucleus, and from there they have to reach
different compartments. Conversely, degraded elements have to find their way back
to the nucleus to be processed. Intracellular transport consists of two mechanisms:
passive diffusion and active transport driven by molecular motors. Passive diffusion
involves the movement of molecules through membranes (filtration) or within the
cytosol, resulting from concentration gradients between two regions. Conversely,
active transport forces particles to move against their concentration gradient. For
this reason, it requires chemical energy. Living cells are indeed complex systems,
whose maintenance involves a huge number of processes in which enzymes catalyze
reactions, interact with each other and with cell products, and where proteins feed-
back to regulate the synthesis of other molecules and to trigger defensive measures
in case of attack by hostile agents. In general, molecules diffuse in the hosting
medium, chasing the target partner for a chemical reaction to take place. Thus, to
the extent of providing an overall description of the cell metabolism, it is a matter
of fundamental importance to characterize the steps through which the actors of the
different reactions get in contact before binding. Moreover, dysfunctions in molecule
transport can compromise seriously the integrity of biological tissues, as it has been
recently pointed out by numerous studies which connected anomalous diffusion of
proteins to neurodegenerative diseases such as Alzheimers [5]. Diffusion is a key pro-
cess also for biomedical and industrial application and materials science. Catalysis,
drug delivery, filtration, development of nanotechnologies are just some examples of
activities where transport phenomena involving diffusion are central and call for a
self-consistent description.

The classical approach to diffusion, based on Fick’s law is strictly valid only
for ideal, infinitely diluted solutions, where one is allowed to neglect the interaction
among diffusing particles and between the molecules and the environment. Real me-
dia however, either biological structures or artificial technologies, are far from the
diluted limit: cells for example contain a large number of membranes, compartments,
and other smaller organelles that occupy up to 30 − 40% of the available volume
and that cannot overlap with each other. Crowding and confinement effects on
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diffusion-influenced phenomena pose hence fundamental yet unanswered questions.
Concerning molecular mobility, for example, several computational and experimen-
tal indications exist of anomalous diffusion in the cell cytoplasm depending on the
amount and type of crowding [6, 7], suggesting that living cells behave much like
fractal or otherwise disordered systems [8, 9]. However, strong evidences also exist
in favour of normal (Brownian) diffusion: in this scenario crowding and confinement
result in (often nontrivial) modifications of the diffusion coefficient [10, 11, 12, 13].
Another related issue is that of diffusion-limited reactions [14], which are ubiqui-
tous in many domains of biology and chemistry, touching upon problems such as
association, folding and stability of proteins [15, 16] and bimolecular reactions in
solution [17, 18, 19, 20, 21], including enzyme kinetics [22], but also the dynamics
of active agents [23]. Many theoretical models of intracellular diffusion have been
derived in the past 30 years, and many aspects such as viscosity, crowding, confine-
ment, and signaling mechanisms have been recently investigated in order to assess
their impact on the transport of particles and the consequent reactions between
components. Nevertheless, a full theoretical comprehension of transport in non-
ideal media remains an elusive task, Fick’s law itself and the very notion of effective
diffusion coefficient being questionable in a disordered medium [9]. The aim of this
thesis is to shed some light on the effect of crowding and complex geometries on the
mobility of molecules, and to provide different approaches to include these aspects
in the general investigation of diffusive processes and diffusion influenced reactions.
In the first part of this work we will concentrate on the effect of crowding, describing
at the microscopic level the interaction between diffusive agents, while the analysis
of diffusion-regulated processes occurring in complex geometries will be the subject
of the second part of the thesis.

The second chapter is devoted to characterize the influence of a densely popu-
late medium on the transport of molecules, in different settings which account re-
spectively for unbiased and biased diffusion in homogeneous and non homogeneous
media. For all the studied problems we aim at deriving continuum models starting
from microscopic stochastic processes with exclusion, which describe the dynamics
of the single agents. We will show how the effect of crowding is lost when passing
from the point-like agent based models to the continuum equations in the absence of
bias and spatial anisotropy. Conversely, we will see that the excluded volume effects
are always recognizable in the mean field models if some degree of asymmetry or
inhomogeneity is present or if specific agents are tagged.

The third chapter deals with the analysis of diffusion-influenced reactions occur-
ring between molecules which are diffusing in confined domains, accounting for the
presence of obstacles and traps. Different degrees of chemical affinity between the
reactants are envisioned. The general binding process is studied by solving the sta-
tionary diffusion equation using techniques of harmonic analysis, based on addition
theorems for spherical harmonics [24]. The model enables us to compute exactly
the rate of a general pseudo first order reaction for an arbitrary configuration of
bodies in a confined domain (the unbounded case is a simple generalization of this
setting), and to analyze the diffusive interaction between particles that are reactive
with the same species. Moreover, we provide closed formulas, obtained through sim-
ple approximations of the analytical solution and through perturbative expansions
in powers of appropriate parameters, which allow one to characterize the depen-
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dence of the rate of the reaction on the relevant physico-chemical and geometrical

parameters.

In chapters 4 and 5 we present two applications of our method. First, the

analytical framework is employed within an industrial-chemical setting to analyze

the catalytic optimization of a nanoreactor consisting of metal particles embedded

in a thermosensitive microgel. Thereafter, we use the analytical method to evaluate

the binding rate of an antibody-antigen reaction, and to identify the role of the

protein’s flexibility in the expression of the binding dynamics. Moreover we propose a

simplified effective description which captures the essence of the investigated process.

In the last chapter, the time dependence is re-introduced to analyze gated

diffusion-influenced reactions, where the binding process between a protein and a

substrate is limited by structural fluctuations of the protein conformation which

control the accessibility of the binding sites. The problem has been tackled through

a suitable adaptation of Duhamel’s theory to the diffusion equation with time-

dependent boundary conditions for an isolated receptor. The original problem of

computing the rate of the gated reaction is thus reduced to the solution of a lin-

ear Volterra equation of the second kind, which is then solved with an appropriate

algorithm. Finally, we present a brief analysis of the different regimes that can be

classified depending on the function that regulates the accessibility of the site.
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Chapter 2

Diffusion in crowded

environments: from microscopic

stochastic processes to modified

diffusion models

In this chapter we will provide several models for molecular diffusion in crowded
environments. As a common strategy for all the processes, we will base our analysis
on the description of the motion of the individual agents, following the procedure
presented in the next section.

2.1 The standard diffusion equation and its microscopic

derivation

Diffusion is a fundamental process in nature that describes the spread of particles
subject to random forces from regions of high density to regions of low density [1].
The standard diffusion equation was originally derived by Adolf Fick in 1855. It is
obtained by the combination of the first Fick’s law:

J = −D∇ρ

which relates the diffusive flux J to the concentration ρ of particles, together with
his second law, which is nothing but a continuity equation for the concentration:

∂ρ

∂t
+∇ · J = 0,

which states the conservation of the mass.

The result, for a constant diffusion coefficient D, is the well-known diffusion
equation:

∂ρ

∂t
= D∇

2ρ. (2.1)

However, while the mathematics of diffusive processes in dilute and simple media
is fairly well developed and understood [1], many interesting and relevant diffusive
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processes take place in strongly non-ideal conditions. These include a wealth of dif-
ferent highly dense media, from non-ideal plasmas [25] to biological membranes [26],
media with complex topological structures, including porous media [27, 28, 29] and
living cells [10, 30] and strongly confining environments [31, 32, 33, 3, 34].

In many cases it is extremely complicated to understand how to modify the stan-
dard models of transport in order to account for non-ideal conditions. For several
situations it may prove simpler or more effective to describe a complex transport
process (or a simple one occurring in a complex medium) at the microscopic level.
This means that, instead of describing the evolution of global quantities, such as the
density of particles, we concentrate on the behavior of individual molecules which
are seen as agents capable of moving according to specific rules. With this strategy
we obtain different stochastic equations (corresponding to different deviations from
the standard conditions) for the variation over time of the probability to find the
system in a certain state. The macroscopic picture can then be recovered straight-
forwardly as the continuum limit of the agent-based model. As we will see in the
following sections, the transition from the microscopic to the continuum description
is a delicate procedure that often causes the loss of important information. It is thus
important to investigate how the two levels of description interface with each other.

The standard diffusion equation (2.1) is the classic example of a macroscopic
transport equation which can be obtained starting from an agent based model. Let
us focus on the motion of the individual diffusing particles. If we denote with Pi(n)
the probability that an agent is at site i on some discrete manifold in one dimension
at time n∆t, a simple unbiased random walk corresponds to the update rule

Pi(n+ 1) =
1

2
[Pi−1(n) + Pi+1(n)] (2.2)

as it is assumed that at each time step the walker can either jump to its right or to
its left with equal probability. Thus introducing the time step ∆t and the spacing
∆x we have:

Pi(n+ 1)− Pi(n)

∆t
=

∆x2

∆t

1

2∆x2
[Pi−1(n) + Pi+1(n)− 2Pi(n)], (2.3)

where we can recognize the discrete laplacian on the right-hand side.
Letting the lattice spacing ∆x and the time step ∆t go to zero, such that

lim
∆x,∆t→0

(∆x2/2∆t) = D,

one obtains the diffusion equation (2.1) in the continuum limit.
In performing the continuum limit one is tacitly assuming that many walkers

are performing as many uncorrelated random walks and that a probability of being
at x at time t can be defined by averaging over such uncorrelated trajectories. This
requires the walkers to be transparent to each other. It is interesting to ask the
following question. If some exclusion rule is enforced, such that a walker can only
jump on an empty site, how will the macroscopic equation be modified? And what
kind of process will they describe?

Starting from microscopic models we want to understand to which extent relax-
ing the hypotheses of diluted medium, homogeneous space and absence of external
potentials leads to a modification of the standard diffusion equation.
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2.2 Diffusion of tagged particles in a crowded medium

2.2.1 Effects of crowding on the diffusion properties: normal or

anomalous diffusion?

The study of molecular diffusion under crowded conditions represents a particu-
larly crucial topic for its applications to cellular biology. At high density, particles
diffusion is impeded and excluded-volume effects may no longer be ignored.

The hallmark of diffusive transport is the linear growth in time of the mean
square displacement (MSD) of the spreading particles: 〈∆R

2〉 ∝ t. This is a simple
conclusion that follows directly from the law of conservation of matter (in the form
of a continuity equation), when a simple constitutive equation is assumed, stating
that the particle current is proportional to the concentration gradient. The latter
law, known as the (first) Fick’s law, can be regarded as a simple linear-response
prescription, thus only appropriate to describe the relaxation of small density fluc-
tuations.

Despite the fact that Fickean diffusion is generally appropriate to describe the
spontaneous spatial rearrangement of particles in suspension, deviations are ex-
pected to occur in various situations of interest, e.g. if fixed obstacles are present
(confinement) [35] or when different, and thus distinguishable species compete for the
available space at high concentration, a scenario often referred to in cellular biology
as macromolecular crowding [36, 37, 10, 38, 39, 12, 40, 41, 7, 32, 42, 43, 30, 44].
Despite the importance of crowding and confinement effects in diffusion-related
mechanisms in chemistry and biology, there is no consensus on the mechanisms
through which crowding and confinement fine-tune deviations from the classical
Fickean picture. This lively debate is reflected by conflicting experimental reports
in the literature concerning the role of complex environmental factors in the mobility
of biomolecules in the cytoplasm and extra-cellular matrix. Some authors maintain
that crowding merely slows down transport by reducing in a complex fashion the
diffusion coefficient but does not alter the MSD exponent [10, 11, 45, 43], while
others [46, 47, 7, 48] contend the identification of crowding with anomalous (typi-
cally sub-diffusive) transport [9, 49, 50, 51], a feature observed in lateral diffusion
in cellular membranes [52, 53, 54]. In this case one would have 〈∆R

2〉 ∝ t
α with

α < 1 (sub-diffusion) or 〈∆R
2〉 ∝ t

α with α > 1 (super-diffusion). It is worthwhile
to underline that reports of anomalous transport connected to crowding are not lim-
ited to sub-diffusion. For example, Upadhaya and collaborators [55] have recorded
super-diffusive behavior in the motion of endodermal Hydra cells, which they traced
back to long-range correlations within the scrutinized sample, while Stauffer and
collaborators [56] proposed a minimalistic model of random barriers in a percolation
network as a tool to mimic diffusion in a crowded environment.

To add an important piece of information to the debate, it is interesting to re-
mark that most often claims of anomalous diffusion in three-dimensional crowded
environments in vitro and in vivo rely on fluorescence recovery after photobleaching
(FRAP) data that are analyzed through ad hoc modifications [47] of standard theo-
ries of fluorescence photobleaching recovery [57, 58]. It is interesting to remark that
to our knowledge no first-principle derivations of fluorescence recovery curves in the
anomalous diffusion regime have yet been reported, analogous to the long-known
standard derivations performed in the context of normal diffusion [57, 58].
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i

i 1 i+1

Figure 2.1: The simple exclusion rule implemented in the model of tagged particle
diffusion. In this configuration, the tagged particle (filled circle) sitting at site i

can only jump towards the (empty) neighboring site i − 1. The jump towards site
i+1 is instead impeded, as the target site is occupied by a crowder (empty circles).
Crowders can also diffuse towards neighboring sites.

As it is often the case, the truth probably reflects an intermediate picture. Pos-
sibly, complex (even multiple) crossovers are to be expected between anomalous
and normal diffusion [59], or, alternatively, one needs to consider complex space-
and geometry-dependent diffusion coefficients [60, 13], as modeled e.g. by Fick-
Jacobs [61] and related theories [62, 63]. However, as it appears clear from the
above recollection, the need for further, systematic investigation of transport in
crowded and confining media is evident.

We will investigate hereafter the effect of crowding, by enforcing, in the micro-
scopic model of a random walk, the exclusion rule which prevents the agent to jump
to an occupied site. We will consider for the moment an homogeneous space, in the
absence of external forces.

Microscopic processes implementing exclusion rules go under the name of sim-
ple exclusion processes (SEP). In general, SEPs are space-discrete, agent-based
stochastic processes modeling some kind of transport according to specific rules
and bound to the constraint that no two agents can ever occupy the same site.
SEPs play a central role in non-equilibrium statistical physics [64, 65]. While the
first theoretical ideas underlying such processes can be traced back to Boltzmann’s
works [66], SEPs were introduced and widely studied in the 70s as simplified mod-
els of one-dimensional transport for phenomena like hopping conductivity [67] and
kinetics of biopolymerization [5]. Along the same lines, the asymmetric exclusion
process (ASEP), originally introduced by Spitzer [68], has become a paradigm in
non-equilibrium statistical physics [69, 70, 71] and has now found many applica-
tions, such as the study of molecular motors [72], transport in the cytoskeleton [73]
through nano-channels [74] and depolymerization of microtubules [75].

The idea is to move from a space-discrete simple exclusion process specifying the
competition for space at the microscopic level: the probability of an agent jumping
from its current position in i on a neighboring site (i ± 1) is conditioned to the
probability (1− Pi±1) of finding the site empty. If we enforce the excluded volume
effect in the master equation for a single species diffusing in an isotropic space we
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obtain again the standard diffusion equation in the continuum limit. The excluded
volume constraint is lost in the continuum limit: that happens because the agents
are not distinguishable. By contrast if we make the agent distinguishable, either
accounting for different species or (as we will show hereafter) tagging individual
particles belonging to the same population, we obtain a modified diffusive behavior.
More specifically cross-diffusive terms linking multiple diffusive components appear,
modifying the standard Laplacian term [76]. If one takes into account two popula-
tions, in [76] the following macroscopic equations are obtained for the evolution of
their densities φ and ψ:























∂φ

∂t
= Dφ

[

∇
2φ+ φ∇2ψ − ψ∇2φ

]

∂ψ

∂t
= Dψ

[

∇
2ψ + ψ∇2φ− φ∇2ψ

]

(2.4)

where the cross terms φ∇2ψ − ψ∇2φ and ψ∇2φ − φ∇2ψ derive from imposing the
excluded volume constraints in the microscopic equations.

Another way to keep track of the excluded volume effect in the macroscopic
dynamic is by making a few molecules recognizable inside a single population of
diffusive agents and monitoring the evolution of the system. In the following sections
we will consider the diffusive process of an ensemble of particles, the tagged species,
immersed in a densely populated background of co-evolving agents, hereafter the
crowders.

This is a quite general scenario, which can be invoked to describe different ex-
perimental conditions, typical of fluorescence-based single-molecule tracking experi-
ments. Hereafter we will present briefly the main experimental techniques typically
employed to track single molecules.

2.2.2 Experimental particle tracking

The direct observation of the motion of single particles in vivo is a powerful method
for describing the interaction between a diffusing molecule and the surrounding
environment. Numerous optical techniques have been developed to provide a char-
acterization of the diffusion of particles into living cells, in terms of their velocity
and diffusion coefficients. Single Particle Tracking (SPT) consists in observing sin-
gle molecules, which are made distinguishable with different probes (such as fluo-
rophores) that can be excited by laser light at specific intensities. The individual
trajectories are retraced through images acquired at different times, in which the
coordinates of the single molecules are recorded, and subsequently assembled to
reproduce the motion. The main limitation of SPT is that it is not suitable for
measuring diffusion in three dimensions (because of the high velocity of three di-
mensional diffusion and the fact that the images obtained are projected on a surface),
thus this technique is used mainly for membrane diffusion.

For diffusion in the cytosol, 3D-FRAP (Fluorescence Recovery After Photo-
bleaching) has proven to be a very useful technique. In FRAP a selected volume
is at first visualized at low intensity light, and the fluorescence (arising because the
monitored diffusing particles are fluorescently labeled) is recorded. Then the region
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Figure 2.2: Subsequent frames in a typical Single Particle Tracking experiment.

is invested with higher intensity light, causing the fluorophores to bleach and thus
reducing the fluorescence. After the fluorescence in the area has reached the mini-
mum value, it starts increasing again because of the unbleached molecules that are
diffusing back inside the region. The analysis of the fluorescence intensity curve
allows to obtain information on the diffusive parameters. The diffusion constant D
can be calculated as

D =
R

2

4tD

where R is the radius of the beam (the profile is assumed to be gaussian) and tD is
the characteristic time of diffusion.

Figure 2.3: Fluorescence intensity of the monitored volume against time. The steady
state intensity differs from the initial value because of the fraction of molecules which
are immobilized at the bleached spot.
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2.2.3 Derivation of the equations for the tagged particles and for

the bulk species

We will introduce now a strategy to describe the diffusion of recognizable agents
among a dense population. The tagged particles are assumed to be sufficiently
diluted. Following a microscopic approach, we derive a system of partial differential
equations for the mean-field densities of both the tagged particles and the crowders.
The model is formulated at the microscopic level as a stochastic process with simple
exclusion interference. In the thermodynamic limit, the excluded-volume constraints
will result in nonlinear coupling terms between the two concentrations. To simplify
the discussion, let us consider a one-dimensional problem. As shown in the following,
the derivation can be readily extended to higher dimensions without altering the
ensuing physical picture. Let us consider a one-dimensional lattice of spacing a.
Each site can be occupied by either a crowder or a tagged particle. We denote with
the binary variables mi(k) and ni(k) the occupancy of site i at time t = k∆t for the
tagged and crowding particles, respectively. Hence mi(k), ni(k) can be either zero
or one depending on whether site i is occupied or not by the respective particle.

The stochastic process that governs jumps of the tagged particles can be cast in
the following form

mi(k + 1)−mi(k) =

(z+i−1
mi−1(k) + z−i+1

mi+1(k))[1−mi(k)][1− ni(k)]

− z+i mi(k)[1−mi+1(k)][1− ni+1(k)]

− z−i mi(k)[1−mi−1(k)][1− ni−1(k)]

(2.5)

Eq. (2.5), and its analogue for species ni(k), can be regarded as the update rule for
a simple Monte Carlo process. If the target site is occupied by either a crowder or
a tagged particle, the move cannot occur. The quantities z±i are variables that take
the value 0 or 1 depending on a random number ξi uniformly distributed between 0
and 1. By considering homogeneous jump probabilities, q±j = q for j = i, i± 1, one
can formally write

z+i−1
= θ(ξi)− θ(ξi − q) (2.6)

z−i+1
= θ(ξi − q)− θ(ξi − 2q)

z+i = θ(ξi − 2q)− θ(ξi − 3q)

z−i = θ(ξi − 3q)− θ(ξi − 4q)

where θ(x) is the Heaviside step function and we are assuming q ≤ 1/4. Eqs. (2.56)
entail 〈z±j 〉 = q, where 〈. . . 〉 denotes an average over many values of ξi for a fixed
configuration {ni,mi}. The above process is entirely determined by the jump prob-
abilities q, which we here assume constant and homogeneous.

A (discrete-time) master equation can be obtained by averaging over many Monte
Carlo realizations performed according to the rule (2.5) and starting from the same
initial condition (we denote this average by 〈〈. . . 〉〉). Introducing the one-body
occupancy probabilities ρi(k) = 〈〈mi(k)〉〉 and φi(k) = 〈〈ni(k)〉〉 and assuming a
mean-field factorization for the two-body and three-body correlations, one finds



16 Diffusion in crowded environments

equations

ρi(k + 1)− ρi(k) = q (ρi−1(k) + ρi+1(k)) [1− ρi(k)] [1− φi(k)]

− q ρi(k)[2− (ρi−1(k) + ρi+1(k))− (φi−1(k) + φi+1(k))

+ φi+1(k)ρi+1(k) + φi−1(k)ρi−1(k)]

φi(k + 1)− φi(k) = w (φi−1(k) + φi+1(k)) [1− φi(k)] [1− ρi(k)]

− w φi(k)[2− (φi−1(k) + φi+1(k))− (ρi−1(k) + ρi+1(k))

+ φi+1(k)ρi+1(k) + φi−1(k)ρi−1(k)],

where w denotes the jump probability associated with crowders’ motion. To proceed
in the analysis, we assume that the concentration of tagged particles is small, ρi ≪ 1.
We therefore approximate the previous equations as

ρi(k + 1)− ρi(k) = q (ρi−1(k) + ρi+1(k)) [1− φi(k)]

− qρi(k)[2− (φi−1(k) + φi+1(k))]

φi(k + 1)− φi(k) = w (φi−1(k) + φi+1(k)− 2φi(k)) . (2.7)

Eq. (2.7) tells us that the microscopic exclusion constraint is lost in the equation
for the crowders occupancy probability φi. The tagged particles are in fact highly
diluted and thus they interfere negligibly with the diffusive motion of the crowders.

Let us now move to the continuum. This can be formally achieved by letting

ρ(x, t) = lim
a,∆t→0

ρi(k) and φ(x, t) = lim
a,∆t→0

φi(k),

where we recall that a is the lattice spacing and ∆t is the time step. In addition we
must require

lim
a,∆t→0

qa2/∆t = Dρ and lim
a,∆t→0

wa2/∆t = Dφ,

where Dρ and Dφ denote the diffusion coefficients of the tagged particles and the
crowders, respectively. Making use of the above definitions, one readily obtains the
continuum limit of Eqs. (2.7)

∂φ

∂t
= Dφ

∂2φ

∂x2

∂ρ

∂t
= Dρ

∂

∂x

{

∂

∂x
[(1− φ)ρ] + 2ρ

∂φ

∂x

}

. (2.8)

The mean-field density of crowders φ evolves in time following a standard diffusion
equation: the undisturbed dynamic is a consequence of the hypothesis of dilution
of the tagged particles, which allowed us to neglect their feedback on the crowders.
On the contrary, the density ρ obeys a Smoluchowski equation where the density
of crowders plays the role of an external potential, which embodies the excluded-
volume rules imposed at the microscopic level. In the next section we give an
alternative derivation of eqs.(2.8), following a perturbative calculation inspired by
the Van Kampen system size expansion [77]. We note that the equation for the
evolution of ρ has also been derived in Ref. [78] for a constant non-homogeneous
background field φ(x).
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A derivation analogous to the one described above can be repeated in higher
dimensions (see the next section), leading to a straightforward generalization of
Eqs. (2.8)

∂φ(x, t)

∂t
= Dφ∇

2φ(x, t)

∂ρ(x, t)

∂t
+∇ · J(x, t) = 0 (2.9)

where J = −Dρ{∇[(1 − φ)ρ] + 2ρ∇φ} is the total (osmotic plus force) current for
the tagged species. In section 2.2.6 the above equations are integrated numerically,
both in one and two dimensions. As we shall demonstrate, the effective force term
leads to the emergence of sub-diffusive or super-diffusive transients in the dynamics
of the tagged species, depending on the chosen initial conditions.

2.2.4 Derivation of the mean-field equations in higher dimensions

and alternative approaches

As stated before, the equations governing the evolution of the particles, which have
been obtained for a 1D setting, can be extended to higher dimensions. In the fol-
lowing we will provide a detailed derivation for the mean field equations in 2D.
We will first generalize straightforwardly to a higher dimensional space the proce-
dure described in the previous section and then turn to consider two alternative
approaches: the first is inspired to the work of Landman and collaborators (see e.g.

[79]), while the second makes use of the Van Kampen expansion [77].

To progress in the analysis we assume each site of the two-dimensional lattice to
be labeled with two indices (i, j). In the 2D case, the selected particle can jump to
four nearest neighboring sites. This is a slight modification of the one-dimensional
geometry where each site counts only two adjacent neighbors. The binary variables
at time k are hence here labeled with mi,j(k) and ni,j(k).

The stochastic process reads:

mi,j(k + 1)−mi,j(k) =

z+i−1
mi−1,j(k)[1−mi,j(k)][1− ni,j(k)] + z−i+1

mi+1,j(k)[1−mi,j(k)][1− ni,j(k)]

+ z+j−1
mi,j−1(k)[1−mi,j(k)][1− ni,j(k)] + z−j+1

mi,j+1(k)[1−mi,j(k)][1− ni,j(k)]

− z+i mi,j(k)[1−mi+1,j(k)][1− ni+1,j(k)]− z−i mi,j(k)[1−mi−1,j(k)][1− ni−1,j(k)]

− z+i mi,j(k)[1−mi,j+1(k)][1− ni,j+1(k)]− z−i mi,j(k)[1−mi,j−1(k)][1− ni,j−1(k)],

with the stochastic variables z± defined in analogy to the one dimensional case.
The equation governing the evolution of ni,j(·) can be equivalently modified. After
introducing the one-body occupancy probabilities

ρi,j(k) = 〈〈mi,j(k)〉〉 (2.10)

φi,j(k) = 〈〈ni,j(k)〉〉 (2.11)

and assuming a mean-field factorization for the two-body and three-body correla-
tions (the validity of these assumptions will be checked in Sec. 2.2.5 ), one eventually
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ends up with

ρi,j(k + 1)− ρi,j(k)

= q (ρi−1,j(k) + ρi+1,j(k) + ρi,j−1(k) + ρi,j+1(k)) [1− ρi,j(k)] [1− φi,j(k)]

− q ρi,j(k)[4− (ρi−1,j(k) + ρi+1,j(k))− (ρi,j−1(k) + ρi,j+1(k))− (φi−1,j(k)

+ φi+1,j(k))− (φi,j−1(k) + φi,j+1(k + 1)) + φi+1,j(k)ρi+1,j(k) + φi−1,j(k)ρi−1,j(k)

+ φi,j+1(k)ρi,j+1(k) + φi,j−1(k)ρi,j−1(k)]

φi,j(k + 1)− φi,j(k)

= w (φi−1,j(k) + φi+1,j(k) + φi,j−1(k) + φi,j+1(k)) [1− φi,j(k)] [1− ρi,j(k)]

− w φi,j(k)[4− (φi−1,j(k) + φi+1,j(k))− (φi,j−1(k) + φi,j+1(k))− (ρi−1,j(k)

+ ρi+1,j(k))− (ρi,j−1(k) + ρi,j+1(k)) + φi+1,j(k)ρi+1,j(k) + φi−1,j(k)ρi−1,j(k)

+ φi,j+1(k)ρi,j+1(k) + φi,j−1(k)ρi,j−1(k)].

If one assumes the concentration of the tagged particles to be small, namely ρi,j ≪ 1,
then the following approximated relations are found:

ρi,j(k + 1)− ρi,j(k) = q(ρi−1,j(k) + ρi+1,j(k)

+ ρi,j−1(k) + ρi,j+1(k)) [1− φi,j(k)]

− qρi,j(k)[4− (φi−1,j(k) + φi+1,j(k)

+ φi,j−1(k) + φi,j+1(k))]

φi,j(k + 1)− φi,j(k) = w(φi−1,j(k) + φi+1,j(k)− 2φi,j(k)

+ φi,j−1(k) + φi,j+1(k)− 2φi,j(k))

After introducing the continuous variables

ρ(x, y, t) = lim
a,∆t→0

ρi,j(k), φ(x, y, t) = lim
a,∆t→0

φi,j(k), (2.12)

where a and∆t respectively stand for the linear size of the lattice site and the
characteristic time step of the microscopic dynamics and after defining the diffusion
coefficients as it has been done for the one dimensional case, we get the sought-for
generalized model:

∂φ

∂t
= Dφ∇

2φ (2.13)

∂ρ

∂t
= ∇

2 [Dρ(1− φ)ρ] + 2Dρ∇ · (ρ∇φ) .

As anticipated, we shall now turn to discussing an alternative derivation of the above
equations, obtained in line with the procedure used in [80]. To this end, we define
the variable

γi,j(k) =











1, if site (i, j) is occupied by an agent of species m at time step k

2, if site (i, j) is occupied by an agent of species n at time step k

0 if site (i, j) is empty at the time step k

(2.14)
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We write then the master equation for the motion of the tagged particles as:

P
1(γi,j(k + 1) = 1)− P

1(γi,j(k) = 1) = −α

[

P
2

(

γi,j(k) = 1, γi+1,j(k) = 0

)

+ P
2

(

γi,j(k) = 1, γi−1,j(k) = 0

)

+ P
2

(

γi,j(k) = 1, γi,j+1(k) = 0

)

+ P
2

(

γi,j(k) = 1, γi,j−1(k) = 0

)]

+ α

[

P
2

(

γi,j(k) = 0, γi+1,j(k) = 1

)

+ P
2

(

γi,j(k) = 0, γi−1,j(k) = 1

)

+ P
2

(

γi,j(k) = 0, γi,j+1(k) = 1

)

+ P
2

(

γi,j(k) = 0, γi,j−1(k) = 1

)]

(2.15)

where P
2 stands for a joint probability, while P

1 is the probability of a single event
and α is the rate of success of the selected jump. The master equation for the
population n is similar, the variable γ assuming the value 2 instead of 1 and β

labeling the associated jump rate (in principle the two population can have different
jump probabilities). In the mean field limit, we factorize the joint probabilities P

2

in the master equations as:

P
2
(

γi,j(k) = 1, γi,j+1(k) = 0
)

= P
1
(

γi,j(k) = 1
)

P
1
(

γi,j+1(k) = 0
)

.

To perform the continuum limit we use the following Taylor expansion for the three
different probability functions P1:

P(γi±1,j(k) = 1) = ρ± a
∂ρ

∂x
+

1

2
a2

∂2ρ

∂x2
+ o(a2)

P(γi,j±1(k) = 1) = ρ± a
∂ρ

∂y
+

1

2
a2

∂2ρ

∂y2
+ o(a2)

P(γi±1,j(k) = 2) = φ± a
∂φ

∂x
+

1

2
a2

∂2φ

∂x2
+ o(a2)

P(γi,j±1(k) = 2) = φ± a
∂φ

∂y
+

1

2
a2

∂2φ

∂y2
+ o(a2)

P(γi±1,j(k) = 0) = µ± a
∂µ

∂x
+

1

2
a2

∂2µ

∂x2
+ o(a2)

P(γi,j±1(k) = 0) = µ± a
∂µ

∂y
+

1

2
a2

∂2µ

∂y2
+ o(a2).

(2.16)

where, as stated before, a represents the linear size of each site. Making use of the
relation µ = 1− ρ− φ and defining the usual limits:

lim
a,∆t→0

αa2

∆t
= Dρ lim

a,∆t→0

βa2

∆t
= Dφ,

we obtain the following equation for the tagged species:

∂ρ

∂t
= Dρ((1− φ)∇2ρ+ ρ∇2φ).
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Under the hypotesis of low concentration of the tagged agents, we get the coupled
equation for the evolution of the bulk density:

∂φ

∂t
= Dφ∇

2φ.

We want to introduce now another alternative approach that leads to the continuum
model (2.8), through a coarse-grained description of the scrutinized problem. The
procedure is here explained in one dimension, but it readily generalizes to the rele-
vant d = 3 setting. We consider the physical space to be partitioned in Ω patches,
also called urns. Each patch has a maximum carrying capacity (it can be filled with
N particles at most). Labeling mi the number of tagged particles contained in urn
i, and with ni the corresponding number of crowders, one can write:

ni +mi + vi = N ∀i

where vi stands for the number of vacancies, the empty cases in patch i that can be
eventually filled by incoming particles. The excluded-volume effect is here enforced
by requiring that the particles can move only into the nearest-neighbor patches that
exhibit vacancies, as exemplified by the following chemical reactions:

Mi + Vj

δ

zΩ
−→ Mj + Vi

Ni + Vj

δ

zΩ
−→ Nj + Vi.

(2.17)

Here z is the number of nearest-neighbor patches and Mi,Ni, Vi are respectively a
particle of type M (the tagged particles), of type N (the crowders) or a vacancy
belonging to the i-patch.

This is a stochastic process which is governed, under the Markov hypothesis,
by a Master equation for the probability P (n,m, t) of finding the system in a
given state which is specified at time t by the 2Ω dimensional vector (n,m) =
(n1, ..., nΩ,m1...,mΩ). The Master equation reads:

∂P (n,m, t)

∂t
=

∑

n !=n′,m !=m′

[T (n,m|n′,m)P (n′,m) + T (n,m|n,m′)P (n,m′)(2.18)

−T (n,m′|n,m)P (n,m)− T (n′,m|n,m)P (n,m)],

where T (a|b) is the rate of transition from a state b to a compatible configuration
a. The allowed transitions are those that take place between neighboring patches as
dictated by the chemical reactions (2.17). For example, the transition probability
associated with the second of equations (2.17) reads

T (ni − 1, nj + 1|ni, nj) =
δ

zΩ

ni

N

vj

N
=

δ

zΩ

ni

N

(

1−
nj

N
−

mj

N

)

. (2.19)

The transition rates introduce to the equation the explicit dependence on the system
size, that is represented by the number N of molecules per patch. To proceed in
the analysis, we adopt the Van Kampen system size expansion [77], which enables
us to separate the site-dependent mean concentration φi(t) from the corresponding
fluctuations ξi in the expression of the discrete number density of species N . The
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role of fluctuations becomes less important as the number of the agents is increased,
as made clear by the following Van Kampen ansatz:

ni

N
(t) = φi(t) +

ξi
√

N
. (2.20)

In the following we will assume the presence of a single tagged particle. However,
the analysis extends straightforwardly to the case where more diluted particles are
dispersed in the background of crowders. Since the tagged particle must be located
in only one of the patches, it is convenient to look at the evolution of the function:

Pk(n, t) = P (n, 0, 0, ..., 0
︸ ︷︷ ︸

k−1

, 1, 0, ...., 0, 0
︸ ︷︷ ︸

Ω−k

, t)

inside the master equation (2.18). Pk(n, t) is the probability that the target particle
is found in the k-patch, for a particular configuration n of species N . With these
notation the Master equation can be written in the following compact form:

∂Pk(n, t)

∂t
=

Ω∑

i=1

∑

j∈i−1,i+1

(ǫ−j ǫ
+

i − 1)T (ni − 1, nj + 1|ni, nj)Pk(ni, nj , t)

+
Ω∑

i=1






−

∑

j∈i−1,i+1

δ

zΩ

1

N

(

1−
nj

N

)

Pk +
∑

j∈i−1,i+1

δ

zΩ

1

N

(

1−
nk

N

)

Pj







(2.21)

that involves the shift operators:

ǫ±i f(...., ni, .....) = f(...., ni ± 1, .....).

Using the Van Kampen hypothesis [77], one can expand the transition rates in power
of 1/

√

N . As a result, equation (2.19) takes the form

T (ni − 1, nj + 1|ni, nj) =
δ

zΩ

{

(φi(1− φj)) +
1

√

N

[
ξi(1− φj)− ξjφi]

+
1

N
[−ξiξj −mjφi] +

1

N
3

2

[
−mjξi

]
}

.

Moreover, the shift operators can be expressed as differential operators:

(ǫ−j ǫ
+

i − 1) =
1

√

N

(
∂

∂ξi
−

∂

∂ξj

)

+
1

2N

(
∂

∂ξi
−

∂

∂ξj

)2

+O(
1

N
3

2

)

so that

(ǫ−j ǫ
+

i − 1)T (ni − 1, nj + 1|ni, nj)P (ni, nj , t) =

1
√

N

[(
∂

∂ξi
−

∂

∂ξj

)(
δ

zΩ
(φi(1− φj))Πk(ξ, t)

)]

+

1

N

[(
∂

∂ξi
−

∂

∂ξj

)(
δ

zΩ
(ξi(1− φj) + ξjφi)Πk(ξ, t)

)

+

1

2

(
∂

∂ξi
−

∂

∂ξj

)2(
δ

zΩ
(φi(1− φj))Πk(ξ, t)

)]

+O

(
1

N
3

2

)

.

(2.22)
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We stress that the variablemi/N can not be replaced by a continuum density because
the continuum limit is not appropriate to model the evolution of a single tracer.

The following step is to define a new probability distribution Πk(ξ, τ), which is
a function of the vector ξ and of the scaled time τ = t

NΩ
. In terms of Πk the left

hand side of (2.21) becomes

∂Pk

∂t
= −

1
√

NΩ

Ω
∑

i=1

∂Πk

∂ξi
φ̇i +

1

NΩ

∂Πk

∂t
.

The leading order contribution in ( 1√
N
) gives:

−

1

Ω

Ω
∑

i=1

∂Πk

∂ξi
φ̇i =

δ

zΩ

Ω
∑

i=1

∑

j∈{i−1,i+1}

φi(1− φj)(
∂Πk

∂ξi
−

∂Πk

∂ξj
) (2.23)

which yields
Ω
∑

i=1

∂Πk

∂ξi
φ̇i =

δ

z

Ω
∑

i=1

−

∂Πk

∂ξi
(2φi − φi−1 − φi+1), (2.24)

and finally allows one to obtain:

φ̇i =
δ

2
∆φi. (2.25)

Here ∆ stands for the discrete Laplacian operator defined as:

∆φi =
2

z

∑

j∈i

(φj − φi),

with the sum
∑

j∈i running over the sites j, which are nearest-neighbors of site i. By
taking the size of the patches to zero, one recovers the standard diffusion equation
for the density φ of the crowders, in agreement with the result obtained with the
other approaches. Taking the following identities:

δ

z

Ω
∑

i=1

∑

j∈{i−1,i+1}

(
∂

∂ξi
−

∂

∂ξj
)(ξi(1− φj)− ξjφi)Πk

=
δ

z

Ω
∑

i=1

(
∂

∂ξi
−

∂

∂ξi−1

)(ξi(1− φi−1)− ξi−1φi)Πk

+
δ

z

Ω
∑

i=1

(
∂

∂ξi
−

∂

∂ξi+1

)(ξi(1− φi+1)− ξi+1φi)Πk

=
δ

z

Ω
∑

i=1

∂

∂ξi

(

(ξi(1− φi−1)− ξi−1φi)Πk + (ξi(1− φi+1)− ξi+1φi)Πk

)

−

δ

z

Ω
∑

i=1

∂

∂ξi
(ξi+1(1− φi)− ξiφi+1)Πk −

δ

z

Ω
∑

i=1

∂

∂ξi
(ξi−1(1− φi)− ξiφi−1)Πk

=
δ

2

Ω
∑

i=1

−∆ξiΠk
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and

δ

z

Ω
∑

i=1

∑

j∈{i−1,i+1}

(

∂

∂ξi
−

∂

∂ξj

)2

(φi(1− φj))Πk

=
δ

z

Ω
∑

i=1

∂2

∂ξ2i

(

φi(1− φi−1)Πk

)

+
∂2

∂ξ2i

(

φi(1− φi+1)Πk

)

∂2

∂ξ2i+1

(

φi(1− φi+1)Πk

)

+
∂2

∂ξ2i−1

(

φi(1− φi−1)Πk

)

−
2∂2

∂ξi∂ξi−1

(

φi(1− φi−1)Πk

)

−
2∂2

∂ξi∂ξi+1

(

φi(1− φi+1)Πk

)

=
δ

z

Ω
∑

i=1

∂2

δξ2i
(2φi + φi−1 + φi+1 − 2φi(φi+1 + φi−1))Πk +

∂2

∂ξi∂ξi−1

(

− 2φi(1− φi−1)

)

Πk

+
∂2

∂ξi∂ξi+1

(

− 2φi(1− φi+1)

)

Πk

at the next-to-leading corrections in eq. (2.21) eventually leads to:

∂Πk

∂t
=

δ

2

Ω
∑

i=1

∂

∂ξi

(

−∆ξiΠk

)

+
δ

2z

Ω
∑

i=1

i+1
∑

i=i−1

∂

∂ξi

∂

∂ξj

(

Bi,jΠk

)

+
δ

z

(

(1− φk)Πk−1 − (2− φk+1 − φk−1)Πk + (1− φk)Πk+1

)

.

Here B is the diffusion matrix, whose entries are

Bi,i = 2φi + φi−1 + φi+1 − 2φi(φi+1 + φi−1)

Bi,i−1 = (−2φi(1− φi−1))

Bi,i+1 = (−2φi(1− φi+1)).

(2.26)

To provide a mean-field description we have to consider the probability function of
the tagged agent averaged over the fluctuations of the N -particles. This amounts
to consider the quantity:

ρk(t) =

∫

Πkdξ

that obeys the following equation:

∂ρk

∂t
=

δ

z

(

(1− φk)ρk−1 − (2− φk+1 − φk−1)ρk

+ (1− φk)ρk+1

)

=
δ

2
(∆ρk − φk∆ρk + ρk∆φk).

The last expression involves the discrete laplacian∆ defined above. In the continuum
limit, if one considers a straightforward generalization to higher dimensions of the
previous calculation, one gets :

∂ρ(r, t)

∂t
= Dρ(1− φ(r, t))∇2ρ(r, t) +Dρρ(r, t)∇

2φ(r, t),
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where Dρ is the diffusion coefficient of the tagged particle. The obtained non-linear
equation for ρ can be cast as a Fokker-Plank equation:

∂ρ(r, t)

∂t
= ∇

2

(

D(1− φ(r, t))ρ(r, t)

)

+ 2D∇

(

ρ(r, t)∇φ(r, t)

)

.

Hence, by neglecting the role of fluctuations, i.e. by operating in the mean-field
limit, even in higher dimensions one finds a nonlinear partial differential equation
for the density of the tagged species coupled to a standard diffusion equation for the
background density:























∂φ(r, t)

∂t
= D∇

2φ(r, t)

∂ρ(r, t)

∂t
= ∇

2

(

D(1− φ(r, t))ρ(r, t)

)

+ 2D∇

(

ρ(r, t)∇φ(r, t)

)

.

(2.27)

This system constitutes the generalization of model (2.8) to higher dimensions. It
is worth emphasizing that the second equation in (2.27) can be also cast in form of
a continuity equation:

∂ρ(r, t)

∂t
= ∇ · (D (1− φ(r, t))∇ρ(r, t) +Dρ(r, t)∇φ(r, t)) .

The last procedure that we described is particularly interesting despite its higher
complexity for two main reasons. First of all, it allows to extend the description
to higher dimensions with respect to the 1D setting where the traditional SEPs are
modeled. This is a matter of great importance since to describe the molecular diffu-
sion inside the cell, and in general inside real media, a three dimensional approach
is needed. The second reason that contributes to make the Van Kampen’s approach
interesting is the potential further analysis. More specifically, starting from the
microscopic model, in this framework it is possible to go beyond the mean field
analysis and monitor the evolution of the fluctuations, which arise due to the finite
size effects. However, this analysis lies outside the purpose of this work, that aims at
characterizing the effect of crowding on the macroscopic quantities. To validate the
soundness of the mean-field approach in two dimension for the aforementioned set-
ting, we will provide hereafter a brief comparison between the mean-field prediction
in 2D with the stochastic model.

2.2.5 On the validity of the mean-field approximation: comparing

stochastic and mean-field simulations in 2D

To test the adequacy of the proposed mean-field model we have performed a cam-
paign of numerical simulations, with reference to the 2D setting. More specifically
we have implemented a Monte Carlo scheme to solve the stochastic process under
scrutiny and so trace the evolution of the tagged particle in time. At each time
iteration, all crowders and the tagged particle can update their position, moving at
random, and with equal probability, in one of the four allowed directions, provided
the selected target site is unoccupied. If the destination site is occupied, the move
is rejected and the particles keep their original positions. The order of selection
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of the particles is, at each iteration, randomized. By averaging over many inde-
pendent realizations, one can reconstruct the normalized histogram of the position
visited by the tagged particles at a given time t and compare it with the density
profile ρ obtained upon integration of the mean-field system (2.27). To carry out
the numerical integration of the above partial differential equations we assumed a
forward difference approximation in time and replaced the spatial derivatives by
centered approximations. The result of the comparison is reported in figures 2.4(a)
and 2.4(b), for two choices of the initial conditions. In figure 2.4(a), the tagged
particle is initially positioned in the middle of a two dimensional waterbag, filled
with crowders, with average density equal to φ0. In figure 2.4(a), the tagged particle
is instead positioned, at time t = 0, in the center of an empty region, a square of
assigned size. The crowders are instead assumed to occupy an adjacent domain with
average uniform density φ0. In both cases, the agreement between stochastic and
mean field simulations is satisfying.

2.2.6 Evolution of the mean square displacement: sub- and super-

diffusive transients

Once the equations (2.8) describing the evolution of the density of the tagged species
and the bulk population have been recovered, we shall use the results to identify the
effect of the crowding on the global kinetics. More specifically, to understand how it
impacts the motion of the tagged species, we study the time evolution of the mean
square displacement (MSD) µ2(t) of the recognizable particle, defined as:

µ2(t) =

∫
ρ(x, t)|x− 〈x〉|2 dnx (2.28)

where 〈x〉 =
∫
ρ(x, t)x dnx, and the superscript n denotes the space dimension.

It is well known that the MSD scales linearly with time for unobstructed diffusion,
while a sub-linear growth of the MSD is often interpreted as a direct manifestation
of the microscopic competition for available space in crowded media. As we shall
prove in the following, this is an overly simplistic picture, as more complex scenarios
can easily be obtained by direct integration of Eqs. (2.8), where nonlinear MSDs
emerge only as transient regimes. We are particularly interested in a specific class
of initial condition, symmetric in the domain of definition, so that 〈x〉 = 0.

Let us first illustrate the one-dimensional case. At time t = 0, the tagged species
is localized at the origin, while the crowders populate a compact domain also cen-
tered at the origin. In formulae, ρ(x, 0) = δ(x), where δ(·) is Dirac delta, and
φ(x, 0) = φ0 [θ(x+ x0)− θ(x− x0)], with φ0 ∈ [0, 1] gauging the crowding strength
(see inset in the upper panel of Fig. 2.5). From here on, as a further simplification,
we assume Dρ = Dφ = D.

Fig. 2.5 shows the rescaled MSD of the tagged species as a function of time as
obtained by integrating Eqs. (2.8) numerically. At short times, the tagged species
is immersed in the almost uniform sea of surrounding crowders. Since φ is approx-
imately constant, the tagged particles diffuse normally with an effective diffusion
coefficient equal to D(1−φ0). In the long-time limit, the crowders are evenly spread
over the one-dimensional support (which we imagine closed but very large so as
to neglect boundary effects). Consequently, the density φ is small and its contri-
bution can be neglected in the Smoluchowski equation for the evolution of ρ (zero
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Figure 2.4: Comparison between stochastic (black solid lines) and mean field simu-
lations (red solid line). The stochastic simulations are averaged over 20000 realiza-
tions. Here φ(x, 0) = 0.5. Two dimensional snapshots of the stochastic simulations
are also displayed. The crowders are plotted as small black circles. The tagged
particle is represented by the filled red square. Upper panel: initial condition (see
first snapshot, top-left panel) originating a super-diffusive transient. Lower panel:
initial condition (see first snapshot, top-left panel) causing a sub-diffusive transient.
The two kinds of initial condition are the same considered in section 2.2.6

force). Again, we recover normal diffusion, but with a larger diffusion coefficient
D. In short, the scaled MSD µ2/2Dt is close to (1 − φ0) at short times and con-
verges asymptotically to 1. The two regimes of normal diffusion appear bridged by
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Figure 2.5: Rescaled MSD of the tagged species as function of time for different

crowding strengths in 1D. Time is expressed in units of τ1 = x2
0
/2D.

a super-diffusive crossover.

It is remarkable, and to some extent counter-intuitive, that a super-diffusive

transient is found in a model accounting for crowding in the absence of driving. In

fact, excluded-volume interactions among diffusing agents are customarily believed

to lead to slower-than-diffusive spread of concentrations. We observe that the time

duration of the super-diffusive transient increases quadratically with x0, the width
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Figure 2.6: Rescaled MSD of the tagged species as function of time for different
crowding strengths in 2D. Time is expressed in units of τ2 = r2

0
/2D. The qualitative

behavior is the same observed for the 1D domain.

of the initial density of crowders.
Of course, the origin of the observed dynamics can be traced back to the force term
in the current of tagged particles. The effective force F (x, t) = −∂φ(x, t)/∂x in-
duced by the crowders acts as a systematic bias in the evolution of the density ρ.
Initially, ρ evolves freely, as φ(x, t) ≃ φ0 for all values of x where ρ is non-zero. Then,
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after a time of the order of τ ∝ x2
0
, the support of ρ extends to a domain where it

is no longer possible to assume φ(x, t) constant. In particular, ∂φ(x, t)/∂x < 0 for
x > 0 and ∂φ(x, t)/∂x > 0 when x < 0, which implies F (x, t) > 0, hence a force-
induced boost over the osmotic current. The mean-field force, which stems from
the microscopic competition for space between crowders and tagged particles, pulls
the distribution ρ away from the origin, stretching the right (left) tail towards the
direction of positive (negative) x. This leads to the super-diffusive transient shown
in the upper figure of Fig. 2.5.

A dual situation can be imagined yielding a sub-diffusive transient. To this
end, let us consider the crowders to be initially distributed uniformly in a (large)
one-dimensional domain of size 2L. At time t = 0, the crowders that populate a
segment of width 2x0, centered around the origin, are removed from the system. This
amounts to considering the initial distribution φ(x, 0) = φ0 [1− θ(x+ x0) + θ(x− x0)]
(see inset in the bottom panel of Fig. 2.5). At short times, the diffusion of tagged
particles is not affected by the crowders. The rescaled MSD µ2/2Dt is hence approx-
imately equal to one and stays constant over a finite time window of order x2

0
/D. At

long times, the crowders will have approximately relaxed to the uniform concentra-
tion φL = φ0(1 − x0/L). Hence, the tagged particles will find themselves diffusing
in a uniform medium with a reduced diffusion coefficient D(1 − φL). The bottom
panel of Fig. 2.5 confirms our reasoning, as the rescaled MSD µ2/2Dt is seen to
decrease monotonously, interpolating between the initial plateau µ2/2Dt = 1 and
the final value µ2/2Dt = (1−φL) < 1. In this case, one thus observes a sub-diffusive
crossover. In fact, in this case ∂φ(x, t)/∂x > 0, for x > 0, which implies F (x, t) < 0,
i.e. an effective force that opposes the osmotic thrust to delocalization.

Let us now turn to considering the spreading of tagged particles in two di-
mension. To this end, we consider a straightforward generalization of the initial
conditions discussed above, as exemplified by the cartoons reported in Figure 2.6.
Sub and super-diffusive transients are again observed depending on the initial con-
ditions, in stringent analogy with what observed in one dimension. Along the same
lines, the observed behavior can be rationalized in terms of the effective force on
the tagged species caused by the crowders. In this case, the total radial current is
Jr = −D{∇r[(1− φ)ρ] + 2ρ∇rφ}. Again, we see that an effective force in the radial
direction F = 2∇rφ arises when the tagged particles diffuse into regions of changing
density of crowders, yielding a current boost (super-diffusive crossover) or a drop
(sub-diffusive crossover) depending on the initial conditions.

The situations described above can be easily recreated in laboratory experiments,
by initially confining the particles, including those whose evolution is to be tracked,
within a finite portion of the available space.

In summary, our results prove that both super-diffusion and sub-diffusion tran-
sients can occur as a result of crowding in one and higher dimensions in the absence
of driving, depending on the initial conditions. These findings strongly warn against
the simplistic identification of crowding with anomalous transport tout court.
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2.3 The persistent random walk with exclusion and its

continuum limit

In this section we want to introduce a different rule in the microscopic description
of a random walk, prescribing that the agents, in addition to being subject to the
excluded volume effects, also have a bias to keep hopping in the same direction as
they did in the past.

A random walk in which the walker has probability α of continuing in the same
direction as the previous step is known as persistent random walk (PRW). While
the continuum limit of standard RWs is the diffusion equation, which yields an infi-
nite propagation velocity, the continuum limit of the PRW is the so-called telegraph

equation, which displays a transition from ballistic to diffusive transport at a char-
acteristic time. The PRW and its connection with the telegraph equation were first
studied by Goldstein in 1951 [81]. An interesting discussion of many applications of
the telegraph equation can be found in a recent review by G. Weiss [82].

Working again in the same framework of SEPs models, we generalize the concept
of persistent random walk to the case of interest where exclusion effects are to be
accounted for. In the classical microscopic formulation of the telegraph equation,
individual walkers are assumed to jump towards neighboring sites, with constant
probability. One could imagine to modify the PRW by introducing an explicit con-
straint in the probability of jumps that weights the occupancy of the target sites.
In doing so, we will obtain a generalized telegraph equation which includes non lin-
ear terms, reflecting the microscopic competition for the available spatial resources.
It will appear how, while the nonlinear terms prove negligible in the diluted limit,
when working at high densities excluded-volume corrections do matter. We will
substantiate this claim both analytically and numerically.

From here on we will refer to the generalized model here introduced as to a
persistent simple exclusion process (PSEP).

2.3.1 Mathematical model for the persistent random walk with ex-

clusion

Let us consider a number N walkers on a one-dimensional lattice with spacing d

and length L. According to the definition of persistent random walk [81], at regular
intervals ∆t a walker can jump in the same direction as it did at the previous step
with probability p or invert its direction with probability q. We take q = 1−p, which
amounts to assuming that there is no leakage [81] in the system. Let us denote with
ai(n) the probability that a walker is at site i at time n∆t having been at site i− 1
at time (n− 1)∆t (right-bound flow) and with bi(n) the probability that a walker is
at site i at time n∆t having been at site i+ 1 at time (n− 1)∆t (left-bound flow).
If walkers are invisible to each other, the following relations hold

ai(n) = p ai−1(n− 1) + q bi−1(n− 1) (2.29)

bi(n) = p bi+1(n− 1) + q ai+1(n− 1). (2.30)

The above equations describe a discrete stochastic process. The continuum limit
can be obtained by introducing the continuous probability density

P (x, t) = 〈Pi(n)〉 ≡ 〈ai(n) + bi(n)〉,
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where 〈. . . 〉 denotes average over the trajectory of many agents, obtained by letting
d → 0, ∆t → 0, q → 0. Working in this framework, it is known that one gets the
telegraph equation [82]

∂2P

∂t2
+ 2r

∂P

∂t
= v2

∂2P

∂2x
(2.31)

with

lim
d,∆t→0

d

∆t
= v lim

q,∆t→0

q

∆t
= r. (2.32)

In this section we wish to study how a persistent random walk is modified by en-
forcing the constraint that prevents two walkers to occupy the same site at the same
time. That is, if the probability to jump to a given site is gauged by the current
occupancy of that site. Along the same line of reasoning of SEPs and ASEPs, we
modify Eqs. (2.29) and (2.30) in the following way:

ai(n)− ai(n− 1) = [p ai−1(n− 1) + q bi−1(n− 1)][1− Pi(n)] (2.33)

−ai(n− 1){p[1− Pi+1(n− 1)] + q[1− Pi−1(n− 1)]}

bi(n)− bi(n− 1) = [p bi+1(n− 1) + q ai+1(n− 1)][1− Pi(n)] (2.34)

−bi(n− 1){p[1− Pi−1(n− 1)] + q[1− Pi+1(n− 1)]}

where Pi(n) = ai(n) + bi(n). Again, the idea is to gauge jump probabilities by the
occupancy of the target sites. For example, the first term in the right hand side of
eq.(2.33) states that a net increase of the probability at site i associated with the
right-bound flow is only possible with a transition rate proportional to the amount
of free room at site i, i.e. (1 − Pi). If Pi = 1, no further increase of ai nor of bi is
possible.

In order to take the continuum limit, we first divide Eqs. (2.33) and (2.35) by
∆t and substitute q = 1− p. Then, recalling the definitions (2.32), we get

∂a

∂t
+ v

∂

∂x
[a(1− P )] = −rJ(1− P )

∂b

∂t
− v

∂

∂x
[b(1− P )] = rJ(1− P ) (2.35)

where P (x, t) = a(x, t) + b(x, t) and J(x, t) = a(x, t) − b(x, t). For the sake of the
argument, let us consider the propagation of pulses in a fluid, i.e. traveling density
fluctuations. Eqs. (2.35) contain the single-particle probability field P , which is a
number between zero and one. The value P = 1 should correspond to the maximum
density allowed in the system. Thus, more physical equations can be obtained by
introducing the agent densities

ρ(x, t) ≡ ρMP (x, t) (2.36)

J (x, t) ≡ ρMJ(x, t) (2.37)

ρ+(x, t) = ρMa(x, t) (2.38)

ρ−(x, t) = ρMb(x, t) (2.39)

where ρM is the maximum allowed density, which in principle could be regarded as
a parameter of the model. If we imagine that the agents have a finite size σ, i.e. we
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regard them as hard rods, one simply has ρM = 1/σ. Introducing the density ρM ,
eqs.2.35 become

∂ρ+

∂t
+ v

∂

∂x

[

ρ+

(

1−
ρ

ρM

)]

= −rJ

(

1−
ρ

ρM

)

∂ρ−

∂t
− v

∂

∂x

[

ρ−

(

1−
ρ

ρM

)]

= rJ

(

1−
ρ

ρM

)

. (2.40)

A system of equations for the densities ρ(x, t) and J (x, t) can be obtained by
adding and subtracting the two equations 2.35

∂ρ

∂t
+ v

∂

∂x

[

J

(

1−
ρ

ρM

)]

= 0

∂J

∂t
+ v

∂

∂x

[

ρ

(

1−
ρ

ρM

)]

= −2rJ

(

1−
ρ

ρM

)

(2.41)

As a general remark, we see that the microscopic exclusion constraint results in
the appearance of nonlinear terms. The standard evolution of the PRW leading to
the telegraph equation is obtained in the dilute limit ρ ≪ ρM . Conversely, we may
consider the full system (2.41) when describing transport in a crowded medium. The
nonlinear equations here embody the microscopic excluded-volume constraint that
impact strongly the evolution at high densities.

2.3.2 Mean square displacement in the limits t → 0 and t → ∞

We turn now to analyzing how the excluded-volume constraint affects the propa-
gation of an initially localized pulse. It is well known that the PRW displays a
transition from ballistic to diffusive transport, as exemplified by the mean square
displacement (MSD),

µ2(t) ≡
1

N

[

〈x2(t)〉ρ − 〈x(t)〉2
ρ

]

(2.42)

with

〈xm(t)〉ρ =

∫

xmρ(x, t)dx and N =

∫

ρ(x, t)dx.

As it is customarily done, we shall here restrict to a class of symmetric initial pulses,
namely such that ρ(x, t = 0) = ρ(−x, t = 0) and J (x, t = 0) = 0. This amounts to
considering the initial distribution of the right-headed agents equal to that of the
left-headed ones. In this case, it is straightforward to show that 〈x(t)〉 = 0 ∀ t.
For the PRW one has

µ2(t)− µ2(0) =
v2

2r2
(2rt− 1 + e−2rt) ≃







v2t2 for t ≪ 1/2r
(

v2
r

)

t for t ≫ 1/2r

When excluded-volume effects are important, it appears impossible to obtain a closed
expression for µ2(t). However, one can still capture the asymptotics in a particular
symmetric regime and in the absence of boundary terms. Let us consider the Taylor
expansion of µ2(t)

µ2(t) = µ2(0) + µ ′

2(0) t+
1

2
µ ′′

2 (0) t
2 +O(t3) (2.43)
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In order to evaluate the coefficients of the expansion, let us multiply the first equation
of eq. (2.41) by x2 and the second one by x and integrate. Integrating by parts and
assuming that boundary terms vanish, we obtain

d

dt
〈x2〉ρ − 2v〈x〉J +

2v

ρM
〈x〉J ρ = 0

d

dt
〈x〉J − v

∫

ρ

(

1− ρ

ρM

)

dx+ 2r〈x〉J − 2r

ρM
〈x〉J ρ = 0 (2.44)

where 〈. . . 〉J and 〈. . . 〉J ρ denote averages with respect to the corresponding (prod-
ucts of) densities.

Since the initial condition is symmetric, the first equation of (2.44) shows that
µ ′

2
(0) = 0. Differentiating the same equation with respect to time, recalling equa-

tions 2.41 and integrating by parts eventually leads to

d2

dt2
〈x2〉ρ = 2v

d

dt
〈x〉J − 2v

ρM

d

dt
〈x〉J ρ

= 2v

(

v

∫

ρ

(

1− ρ

ρM

)

dx− 2r〈x〉J +
2r

ρM
〈x〉J ρ

)

− 2v

ρM

(

v

∫

ρ2
(

1− ρ

ρM

)

dx+ v

∫

xρ

(

1− ρ

ρM

)

∂ρ

∂x
dx

)

(2.45)

Evaluating the previous expression at t = 0 makes the terms involving J disappear.
Thus

d2

dt2
〈x2〉ρ

∣

∣

∣

∣

t=0

= 2v2
∫

ρ

(

1− ρ

ρM

)2

dx

∣

∣

∣

∣

t=0

− 2v2

ρM

∫

xρ

(

1− ρ

ρM

)

∂ρ

∂x
dx

∣

∣

∣

∣

t=0

(2.46)

which yields:

µ2(t) ≈ µ2(0) + v2e t
2 (2.47)

with

ve =
v√
N

[

∫

ρ

(

1− ρ

ρM

)2

dx

∣

∣

∣

∣

t=0

− 1

ρM

∫

xρ

(

1− ρ

ρM

)

∂ρ

∂x
dx

∣

∣

∣

∣

t=0

]1/2

(2.48)

where we have used the fact that the quantity N =
∫

ρ(x, t) dx is constant if the
boundary terms can be neglected. This is the case corresponding to a broad initial
conditions, such as in the propagation of pulses initially displaying a finite support.

Fig. 2.7 shows the time evolution of µ2 obtained by integrating numerically the
system (2.44) with a forward-difference approximation in time and replacing the
spatial derivatives by centered Euler approximations. The initial conditions are
generalized Gaussian pulses of the type

ρ(x, t = 0) = φ e−x2β/2σ2

. (2.49)

This choice allows us to investigate the propagation of a pulse whose shape varies
continuously from Gaussian (β = 1) to a sharp step function β ≫ 1, while the
parameter φ < 1 gauges the crowding. It is not difficult to compute ve analytically
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Figure 2.7: Mean square displacement for a pulse of the kind (2.49) with β = 10
as a function of time for different choices of the crowding parameter φ. The dashed
lines are straight lines of slope ve as predicted by eq.(2.48). Inset: approach to the
diffusive regime. The parameter D = v2/2r is the theoretical diffusion coefficient.
The solid line refers to the PRW and vanishes as t−1. The dashed line is an inverse-
power law with exponent 0.4, to be used as a guide for the eye.

from eq. (2.48) as a function of φ for a pulse of the kind (2.49). After straightforward
calculations, one gets

ve(φ) = v

[

1−
3φ

2γ
+

2φ2

3γ

]1/2

(2.50)

where γ = 1 + 1/2β. It is clear from the figure that the approximation (2.50)
captures to an excellent extent the initial ballistic stage. Furthermore, the numerical
integration of eqs. 2.44 shows that asymptotically the propagation becomes diffusive,
with the same diffusion coefficient v2/2r as the PRW. This is to be expected as ρ → 0
as t → ∞ and therefore the excluded-volume constraints (that is, the nonlinear
terms) become negligible. Nevertheless, the inset in fig. 2.7 clearly shows that the
approach to the diffusive regime is considerably slowed down as a result of crowding,
and the more the greater the excluded-volume constraint.

Our analysis shows that the initial behavior of the mean square displacement is
qualitatively the same as in the PRW, i.e. the propagation is ballistic. The effect
of crowding is to decrease the velocity that characterizes the initial stage of the
evolution. In Fig. 2.8 the effective velocity ve, normalized to the diluted limit v, is
plotted as function of the level of crowding and for different choices of the parameter
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Figure 2.8: Effective velocity (2.50) as a function of the intensity of crowding for
a Gaussian pulse , for a generalized Gaussian with β = 10 and for a step pulse
(β → ∞).

β. Interestingly, ve depends on the shape of the initially localized density pulse. The
ballistic spreading of a super-Gaussian pulse, nearly a sharp step, proceeds with a
considerably lower speed as compared to the spreading of a pure Gaussian pulse (see
again eq. (2.48)). At large times, the mean square displacement for the telegraph
equation becomes linear. Our goal is to understand whether the excluded-volume
effects alter this behavior. Let us suppose that (ρ,J ) tends to a stationary solution
for the system (2.41) as t goes to ∞. Then we have:

{

limt→∞ ρ(x, t) = ρ∞
limt→∞ J (x, t) = 0

where ρ∞ depends on the size of the domain since
∫

ρ(x, t)dx = C, with the constant
C fixed by the initial conditions. Indeed

C = lim
t→∞

∫ L

2

−
L

2

ρ(x, t)dx = ρ∞L. (2.51)

The effect of the term due to the crowding
∫

ρ2dx within the system (2.44) is neg-
ligible with respect to

∫

ρ(x, t)dx as the domain becomes larger

lim
t→∞

∫

L

2

−
L

2

ρ2(x, t)dx

∫

L

2

−
L

2

ρ(x, t)dx
=

C

L
≪ 1 if L ≫ 1. (2.52)



36 Diffusion in crowded environments

Hence the system (2.44) for t ≫ 1 is approximated by:

{

d

dt
〈x2〉ρ − 2v[z] = 0

d

dt
〈x〉J − vC + 2r[z] = 0

where z = 〈x〉J − 2

ρM
〈x〉J ρ.

If we make the assumption that 〈x〉J tends to some constant value, we get from
the previous system

d

dt
〈x2〉ρ =

v2C

r
(2.53)

resulting in the same expression for the mean square displacement in the ∞-limit
that we find in the diluted case

µ2(t) ∼
v2

r
t+ µ2(0) if t ≫ 1/2r. (2.54)

2.4 Discussion on the emergence of transient regimes

In last two sections we have analyzed the excluded-volume effects on two examples of
random walks governed by different microscopic rules. Working with a tagged par-
ticle, we have shown that the excluded-volume effect can emerge in the macroscopic
picture as a transient regime, either sub-diffusive or super-diffusive, depending on
the specific initial conditions. When the crowders are uniformly dispersed around an
isolated patch where the tagged species is initially confined, a sub-diffusive scaling
for the mean square displacement of the density of the tagged species is observed.
This crossover regime persists within a finite, possibly very long time window. On
the contrary, if the tagged agents are trapped inside a uniform patch of crowders con-
fined in a much larger, otherwise empty container, the excluded-volume interactions
produce an effective force term in the current of tagged particles, that accelerates
their spread with respect to the osmotic current, yielding a super-diffusive transient.
The effect of the crowding is thus temporary, as standard diffusion is recovered in
the long time limit.

A similar temporary effect is observed in the analysis of the persistent random
walk with exclusion. The continuous limit of the persistent random walk with ex-
clusions undergoes a transition from ballistic to diffusive regimes, showing the same
transition as the corresponding persistent random walk which holds under diluted
conditions. Thus, from a qualitative point of view, both the SEP and the PSEP
models yield the same behavior. Nevertheless, by evaluating the parameters, we
pointed out that the crowding causes the velocity in the ballistic phase to decrease.
The effective velocity depends on the shape of the initially localized density pulse:
the ballistic spreading of a sharp step function proceeds with a considerably lower
velocity, as compared to that associated with a pure Gaussian pulse. Asymptotically,
the propagation becomes diffusive, and it displays the same diffusion coefficient as
the PRW, making the excluded-volume effect disappear in the long limit. We stress
that crowding affects the macroscopic picture by inducing transitions between non-
anomalous (standard) evolution regimes. These transitions can be mistaken for more
general hallmarks if one restricts himself to insufficiently long time series.
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2.5 Excluded-volume effects in non-homogeneous media

In the previous description we have described stochastic processes with homoge-
neous jump probabilities. More specifically, by taking qj = q in all the described
processes, we assumed that diffusion did not depend on the agent’s position within
the domain. This amounts to model diffusion of particles in homogeneous environ-
ments, and eventually leads to a constant diffusion coefficient in the macroscopic
picture. We will now move on to analyze diffusion processes inside inhomogeneus
media. This, at the microscopic level, amounts to considering stochastic processes
where the jumps are controlled by site-dependent hopping rates. We will show how,
enforcing these rules, one can obtain three different nonlinear advection-diffusion
equations in the continuum limit, depending on the particular rule that is used to
embody site inequivalence at the microscopic level. Moreover we will see that the
macroscopic description changes whether we take into account or not the excluded
volume effect.

A stochastic jump process on a 1D lattice with inequivalent sites in the presence
of a field and with excluded volume effect describes the most general SEP in one
dimension:

ni(k + 1)− ni(k) = z+i−1
ni−1(k)[1− ni(k)] + z−i+1

ni+1(k)[1− ni(k)]

−z+i ni(k)[1− ni+1(k)]− z−i ni(k)[1− ni−1(k)]. (2.55)

Similarly to the previous processes, eq. (2.55) is to be regarded as the update rule
for a Monte Carlo process, where ni(k) is the occupancy of site i at time t = k∆t,
which can be either zero or one. The variables z±i take the value 0 or 1 according to
a random number ξi which has a uniform distribution between 0 and 1. By defining
the jump probabilities q±j (j = i, i± 1) one can formally write:

z+i−1
= θ(ξi)− θ(ξi − q+i−1

)

z−i+1
= θ(ξi − q+i−1

)− θ(ξi − q+i−1
− q−i+1

)

z+i = θ(ξi − q+i−1
− q−i+1

)− θ(ξi − q+i−1
− q−i+1

− q+i )

z−i = θ(ξi − q+i−1
− q−i+1

− q+i )− θ(ξi − 1) (2.56)

where θ(·) stands for the Heaviside step function and where we are assuming that
q+i−1

+ q−i+1
+ q+i + q−i = 1. The ordering of appearance of the q±j in the above

expressions is arbitrary. Equations (2.56) entail that 〈z±j 〉 = q±j , where 〈·〉 indicates
an average over many values of ξi, for a given configuration {ni}. The above process
is fully determined by the fields q±i , specifying the probability of jumping from site
i to site i+ 1 (q+i ) or from site i to site i− 1 (q−i ) in a time interval ∆t.

A (discrete-time) master equation for the above SEP can be obtained by aver-
aging over many Monte Carlo cycles performed according to rule (2.55)

Pi(k + 1)− Pi(k) = q+i−1
[Pi−1(k)− Pi,i−1(k)] + q−i+1

[Pi+1(k)− Pi,i+1(k)]

−q+i [Pi(k)− Pi,i+1(k)]− q−i [Pi(k)− Pi,i−1(k)] (2.57)

where we have defined the one-body and two-body site occupancy probabilities

Pi(k) = 〈〈ni(k)〉〉 (2.58)

Pi,i±1(k) = 〈〈ni(k)ni±1(k)〉〉 (2.59)
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Here 〈〈·〉〉 denotes averages performed over many independent Monte Carlo cycles
performed until time k∆t starting from the same initial condition. We emphasize
that the same equation has been derived through a slightly different procedure by
Richards in 1977 [67].

A pondering pause is required at this point before carrying out the continuum
limit. In fact, a moment’s thought is enough to realize that there are (at least) three
ways one can enforce quenched disorder, corresponding to spatially varying hopping
rates, in a jump process with the aim of modeling propagation in a inhomogenous
medium. The master equation (2.57) reflects only one of the possible choices.

Let us consider the jump from site i to site i + 1. The probability of an agent
taking an i → i + 1 leap can be equally well taken as (1) proportional to q+i , (2)
proportional to q+i+1

or (3) proportional to (q+i + q+i+1
)/2.

Let a be the lattice spacing and let us define a reversal probability ǫi, such that

q+i = Qi q−i = Qi − ǫi (2.60)

The condition (2.60) (with ǫi > 0) amounts to considering a field introducing a bias
in the positive x direction. In order to take the continuum limit lima,∆t→0 Pi(k) =
P (x, t), we must require

lim
a,∆t→0

Qia
2

∆t
= D(x) (2.61)

lim
a,∆t→0

ǫia

∆t
= v(x) (2.62)

Eq. (2.61) defines the position-dependent diffusion coefficient, while eq. (2.62) de-
fines the field-induced drift velocity. Note that we are assuming that the reversal
probability vanishes linearly with a.

All three cases correspond to the same space-dependent function D(x) in the
continuum limit, as prescribed by eq. (2.61). However, as we shall see in the follow-
ing, depending on whether rule (1), (2) or (3) is chosen, one is led to totally different
advection-diffusion equations in the continuum limit.

2.5.1 Processes without exclusion

In order to illustrate this subtle point, let us start with jump processes in the pres-
ence of quenched disorder but with no exclusion constraints on the allowed moves.
Following the same reasoning on the correlation probability, it is not difficult to
realize that the three possible choices (1), (2) and (3) referred above lead to the
following master equations

Pi(k + 1)− Pi(k) = q−i+1
Pi+1(k) + q+i−1

Pi−1(k)− (q+i + q−i )Pi(k) (2.63)

Pi(k + 1)− Pi(k) = q−i Pi+1(k) + q+i Pi−1(k)− (q+i+1
+ q−i−1

)Pi(k) (2.64)

Pi(k + 1)− Pi(k) =

(

q−i+1
+ q−i
2

)

Pi+1(k) +

(

q+i−1
+ q+i
2

)

Pi−1(k)

−Pi(k)

[(

q+i+1
+ q+i
2

)

+

(

q−i−1
+ q−i
2

)]

(2.65)
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In the first case, eq. (2.63) (already obtained above), the rate for a given jump
depends on the starting site, while the second, eq. (2.64), is the opposite, the rate
depends on the index of the target site. The third case, eq. (2.65) is an intermediate,
symmetric situation where jump rates are associated with links rather than with
nodes. In the continuum limit a,∆t → 0 one has

Qi±1 ≈ Q(x)±
∂Q

∂x
a+

1

2

∂2Q

∂x2
a2 + . . .

ǫi±1 ≈ ǫ(x)±
∂ǫ

∂x
a+ . . .

Pi±1(k) ≈ P (x, t)±
∂P

∂x
a+

1

2

∂2P

∂x2
a2 + . . .

(2.66)

Therefore, recalling eqs. (2.61) and (2.62), we have from eqs. (2.63), (2.64) and (2.65),
respectively,

∂P (x, t)

∂t
= −

∂J1(x, t)

∂x
(2.67)

∂P (x, t)

∂t
= −

∂J2(x, t)

∂x
(2.68)

∂P (x, t)

∂t
= −

∂J(x, t)

∂x
(2.69)

where

J1(x, t) = −D(x)
∂P (x, t)

∂x
+

[

v(x)−
∂D(x)

∂x

]

P (x, t) (2.70)

J2(x, t) = −D(x)
∂P (x, t)

∂x
+

[

v(x) +
∂D(x)

∂x

]

P (x, t) (2.71)

J(x, t) = −D(x)
∂P (x, t)

∂x
+ v(x)P (x, t). (2.72)

We see that the stochastic processes (2.63), (2.64) and (2.65) correspond to diffu-
sion with drift (or, equivalently, in an external potential). In the cases of the two
processes (2.63) and (2.64) the drift velocity comprises two contributions: the dif-
ference between the right-bound and left-bound jump rate fields and a contribution
arising from the spatial variation of the diffusion coefficient. Interestingly, the latter
term has the opposite sign depending on whether jumps at the microscopic level are
controlled by the rates evaluated at the start or at the target sites. Conversely, con-
sidering symmetrized jump rates does not result in the appearance of such additional
term in the drift velocity.

2.5.2 Enforcing the excluded-volume constraint

We can now come back to our original aim, i.e. taking the continuum limit of the
master equation (2.55). It is now clear that, if we want to consider an inhomogeneous
medium, we must not restrict to the prescription leading to eq. (2.55), but we must
also consider the other two kinds of processes described above in the absence of
exclusion.
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Extending the reasoning that led us to eq. (2.55) and assuming the customarily
mean-field (MF) factorization from the microscopic stochastic process described by

Pi,i±1(k) ≡ 〈〈ni(k)ni±1(k)〉〉 = 〈〈ni(k)〉〉〈〈ni±1(k)〉〉 = Pi(k)Pi±1(k), (2.73)

we obtain:

Pi(k + 1)− Pi(k) = [q−i+1
Pi+1(k) + q+i−1

Pi−1(k)][1− Pi(k)]

−Pi(k){q
+

i [1− Pi+1(k)] + q−i [1− Pi−1(k)]} (2.74)

Pi(k + 1)− Pi(k) = [q−i Pi+1(k) + q+i Pi−1(k)][1− Pi(k)]

−Pi(k){q
+

i+1
[1− Pi+1(k)] + q−i−1

[1− Pi−1(k)]} (2.75)

Pi(k + 1)− Pi(k) =

(

q−i+1
+ q−i

2

)

Pi+1(k)[1− Pi(k)]

+

(

q+i−1
+ q+i

2

)

Pi−1(k)[1− Pi(k)]

−

(

q+i+1
+ q+i

2

)

Pi(k)[1− Pi+1(k)]

−

(

q−i−1
+ q−i

2

)

Pi(k)[1− Pi−1(k)]. (2.76)

The continuum limit a,∆t → 0 of the above master equations is readily obtained by
introducing as above the Taylor expansions of q(x) and P (x, t). In this way we find:

∂P (x, t)

∂t
= −

∂J1(x, t)

∂x
(2.77)

∂P (x, t)

∂t
= −

∂J2(x, t)

∂x
(2.78)

∂P (x, t)

∂t
= −

∂J3(x, t)

∂x
(2.79)

where

J1(x, t) = −[1− P (x, t)]
∂

∂x
[D(x)P (x, t)]−D(x)P (x, t)

∂P (x, t)

∂x

+ v(x)P (x, t)[1− P (x, t)] (2.80)

J2(x, t) = P (x, t)
∂

∂x
{D(x)[1− P (x, t)]}−D(x)[1− P (x, t)]

∂P (x, t)

∂x

+ v(x)P (x, t)[1− P (x, t)] (2.81)

J3(x, t) = −D(x)
∂P (x, t)

∂x
+ v(x)P (x, t)[1− P (x, t)]. (2.82)

We see that even in the case of excluded-volume interactions, the mean-field equa-
tions can be cast in the form of continuity equations with suitably defined currents
given by eqs. (2.80), (2.81) and (2.82). Moreover, as for the symmetric exclusion
process without quenched disorder, the microscopic exclusion constraint disappears
in taking the continuum limit of the master equation (2.76) for q+i = q−i , which yields
a zero-advection-diffusion equation, eq. (2.79), identical to its counterpart with no
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exclusion, eq. (2.69).

Eqs. (2.77), (2.78) and (2.79) are nonlinear advection-diffusion equation, appro-
priate for describing the continuum limit of a microscopic exclusion process occurring
on a lattice of inequivalent sites in the presence of a field. It is interesting to note
that in the case of equivalent sites, which translates to a constant diffusion coeffi-
cient, the diffusive parts become linear, i.e. the microscopic exclusion rule is lost in
the diffusive part. In the case of zero field, one then simply recovers the ordinary
diffusion equation for the three jump processes, which, as it is widely known, can
be derived from a microscopic jump process with no exclusion rules. This curious
observation has been first reported by Huber [83]. If both the diffusion coefficient
and the drift velocity are constant, eqs. (2.77), (2.78) and (2.79) all reduce to

∂P

∂t
= D∇2P − v

∂

∂x
[P (1− P )] (2.83)

an equation already obtained recently in Ref. [84].
Eqs. (2.77), (2.78) and (2.79) contain the single-particle probability field P (x, t),

which is a number between zero and one. The value P = 1 should correspond to the
maximum density ρM allowed in the system. Thus, more physical equations can be
obtained as in section 2.3 by introducing the agent density

ρ(x, t) ≡ ρMP (x, t) =
φM

vd(σ/2)
P (x, t) (2.84)

where

vd(r) =
(π1/2r)d

Γ(1 + d/2)
(2.85)

is the volume of a d-dimensional sphere 1 of radius r and φM is the maximum packing
fraction for systems of d-dimensional hard spheres, φM = 1 (d = 1), φM = π/

√
12 ≈

0.907 (d = 2) and φM = π/
√
18 ≈ 0.740 (d = 3) [85]. With these definitions, and

using a more general vector notation, eqs. (2.77), (2.78) and (2.79) become

∂ρ(x, t)

∂t
= −∇ ·J 1(x, t)

∂ρ(x, t)

∂t
= −∇ ·J 2(x, t)

∂ρ(x, t)

∂t
= −∇ ·J 3(x, t)

(2.86)

1We emphasize that we use the general terminology of d-dimensional hard spheres. Obviously,

these are hard rods in one dimension and hard disks in two.
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with

J 1(x, t) = −

(

1−
ρ

ρM

)

∇[D(x)ρ(x, t)]−D(x)

(

ρ

ρM

)

∇ρ(x, t)

+ v(x)ρ(x, t)

(

1−
ρ

ρM

)

J 2(x, t) = ρ(x, t)∇

[

D(x)

(

1−
ρ

ρM

)]

−D(x)

(

1−
ρ

ρM

)

∇ρ(x, t)

+ v(x)ρ(x, t)

(

1−
ρ

ρM

)

J 3(x, t) = −D(x)∇ρ(x, t) + v(x)ρ(x, t)

(

1−
ρ

ρM

)

.

For a homogeneous medium in the absence of a field these reduce to a simple diffusion
equation. Only for inequivalent sites and/or in the presence of a field the microscopic
exclusion constraint does survive in the mean-field limit.

As a final remark, we note that analogous models have been derived following
similar lines in Ref. [86, 87]. Nonlinear mean-field equations for exclusion process
of this type have been used since the 70s to investigate one-dimensional transport
in solids [83]. In fact, despite mean-field descriptions for the inhomogeneous ASEP
are known to provide imperfect descriptions of certain non-equilibrium observables
in one dimension, e.g. the current-density relation and critical exponents [88], con-
tinuum descriptions can be employed reliably to track the time-evolution of large-
wavelength density fluctuations [86, 89, 90, 80, 91, 92, 93, 84].

2.6 Extended crowding

In the previous section we described how to derive macroscopic mean-field equations
starting from microscopic master equations which account for exclusion effects. In
our description we did not take into account the size and the shape of the agents
by prescribing that each molecule can occupy just one site and can not jump into a
site which is already occupied by another agent. To recover a macroscopic continu-
ous description, we performed the limit for vanishing lattice spacing. This strategy
amounts to considering agents of vanishing size in the continuum limit. We term
this peculiar situation in the macroscopic world point-like crowding, as opposed to
the concept of extended crowding which takes into account the finite dimension of
the particles. As we have shown in the previous sections, considerable microscopic
information is lost in the continuum limit with point-like agents. The point-like
characterization has to be the reason why the mean-field approximation loses the
memory of the microscopic exclusion constraint and the diffusion equation is re-
covered for equivalent sites in the absence of a field. In this spirit we want to
investigate whether working in the framework of extended crowding allows one to
keep track of the excluded volume effects even in the absence of external forces or
inhomogeneities in the domain. Moreover, in many biological contexts, the different
shape and dimension of individuals in various populations which are diffusing in the
same environment do have an influence on the extent of the collective motion. For
these reasons we are interested in microscopic exclusion processes involving agents
characterized by a finite size, as opposed to standard SEPs.
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2.6.1 Extended crowding models and possible interpretations

The fact that cells are often elongated and rod-shaped inspired the development
of exclusion process models using elongated agents in the form of hard rods as the
individual units [94, 95]. The first model for the diffusion of extended particles with
exclusion interactions on a one-dimensional lattice is described in Ref. [96] for a
general process involving symmetric, as well as asymmetric, hopping dynamics of
the rods (the theory is named L-ASEP). Referring to rods of length L, where L
has to be interpreted as the aspect ratio between the dimensions of the elongated
agent, the authors derive a mean-field equation for the one-dimensional exclusion
process. In the absence of a field and for equivalent sites the equation for the density
of particles reads:

∂ρ

∂t
= D0

∂

∂x2

[

ρ

1− (L− 1)ρ

]

. (2.87)

The previous equation shows that, at least in one dimension, the extended-
crowding procedure yields a modified diffusion term even in the absence of external
fields or spatial inhomogeneities. By defining a density-dependent diffusion coeffi-
cient D(ρ) = D0/[(1−(L−1)ρ]2, which has to be regarded as a collective diffusivity,
eq. (2.87) can be reformulated as a nonlinear transport equation:

∂ρ

∂t
=

∂

∂x

[

D(ρ)
∂ρ

∂x
.

]

(2.88)

The nonlinear diffusion equation (2.87) has been derived through an ingenious but
complicate change of variables based on a quantitative mapping between the L-ASEP
and the zero-range process [96], however, it turns out that it can be regarded as the
local-density approximation (LDA) of a simple general property of one-dimensional
exclusion processes. As pointed out in 1967 by Lebowitz and Percus [97] concerning
bulk properties:

”For many purposes, however, adding a finite diameter does not introduce any

new complications; it merely requires the replacement in certain expressions of the

actual volume per particle ρ−1 by the reduced volume ρ−1
− σ, i.e. ρ → ρ/(1− σρ).”

In that sense, the quantity ρ/[1− (L− 1)ρ] is recognized as an effective density
in Ref. [98] while computing the velocity of finite sized particles which occupy L
units of lattice spacing in one dimension. By performing the substitution

ρ(x, t) →
ρ(x, t)

[1− (L− 1)ρ(x, t)]

in the Ficks law, one recovers (2.87). Point-like crowding in the mean field ap-
proximation corresponds to systems of fully penetrable spheres, while extended-size
crowding yields a transport equation suitable for systems of totally impenetrable
(hard) spheres. We stress that the case of point-like crowding is recovered for agents
of aspect ratio L = 1. The discussion above which leads to equation (2.87) applies
to one dimensional systems. Starting from this setting, one can raise the question
whether similar arguments might be employed to obtain a modified nonlinear equa-
tion accounting for excluded volume effects in the diffusion of hard spheres in two
and three dimensions. Unfortunately, the strategy used to recover equation (2.87) in
[96] can not be employed to provide a description of the extended crowding in higher
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dimensions. Several other models have been proposed for two and three dimensional
domains [94, 99, 100], starting from stochastic processes enforced with different mi-
croscopic rules. Depending on the shape of the agents (hard rods or hard spheres),
on the prescribed hopping rules, on the allowed mechanisms for changing the orien-
tation of the agents (rotation or reptation), and on the mean field assumptions made
to recover the macroscopic picture, different equations are derived for the density of
extended particles in higher dimensions.

In Ref.[99] the diffusion of dimers (hard rods with L = 2) is studied from mi-
croscopic rules in one and two dimensions. In the one dimensional lattice, for the
simplest case of a single population without overlapping processes, the authors pro-
pose a discrete model for the probability of a site i being occupied by the right side
of an agent after n time steps. A mean-field equation is then obtained by restricting
the correlation between the occupancy probabilities to the nearest neighboring sites.
The continuum limit for the average right side occupancy R in 1D reads:

∂R

∂t
= D0

∂

∂x

(

(1 + 2(L− 1)R)
∂R

∂x

)

. (2.89)

The inconsistency between equation (2.87) and (2.89) is only apparent. In fact,
due to the approximation on the probabilities of occupancy (the probability of a
site being occupied is assumed to depend only on the occupancies of the next (L−

1) neighboring sites), eq. (2.89) is more accurate at low densities. At once, the
collective diffusivity in (2.88) at low densities becomes D(ρ) ≃ D0(1+2(L−1)ρ). For
a two-dimensional domain the description is modified by allowing the agents (only
dimers are considered here) to be oriented along their longer or shorter dimension,
and to change configuration through reptation or traslation. For the simplest non-
overlapping case, after constructing a covering lattice and mapping the problem
onto a monomer problem for the motion of the center of the particles, a mean
field hypothesis on the correlation of occupancy probabilities for neighboring sites
is enforced. The resulting PDE for the total agent occupancy T (both orientations
are considered) is:

∂T

∂t
= D0∇ · [(1 + 2T )∇T ]. (2.90)

Several extension of this model are considered, for example by accounting for the
presence of k different species of dimers, the authors obtain the following equations,
respectively in 1D and 2D :

∂Rk

∂t
= D0,k

∂

∂x

(

(1−R)
∂Rk

∂x
+ 3Rk

∂R

∂x

)

, (2.91)

∂Tk

∂t
= D0,k∇ ·

[

(1−
3

2
T )∇Tk +

7

2
Tk∇T

]

(2.92)

where Rk is the right side occupancy of species k, R is the right side occupancy of all
species, Tk is the occupancy of species k and T is the total occupancy of all species.
It is interesting to note that, unlike the single species case (which can be retrieved
by summing the equations on the k index), the equation in 1D and 2D for multiple
species are different.

In Ref. [100] the excluded volume effects are analized with regard to the diffusion
of finite-size hard speres in a box in two or three dimension. Starting from stochastic
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Table 2.1: The coarse grained particle conditional pair distribution function Ḡp for
stationary ensembles of d-dimensional spheres of diameter σ [101]

d = 1 d = 2 d = 3

Fully penetrable spheres 1 1 1

Totally impenetrable spheres 1
1− φ

a0 =
1

(1−φ)2
b0 =

1+φ+φ2
−φ3

(1−φ)3

differential equations for the position of the centers of all the N particles, the authors
obtain the following equation for the packing fraction φ of the spheres in the limit
of large N :

∂φ

∂t
(x, t) = ∇ · [(1 + 4(d− 1)φ)∇φ] , (2.93)

where d is the space dimension. In all the aforementioned models, for one, two and
three dimension, the description of the transport of finite-size impenetrable particles
leads to the same structure of the nonlinear diffusion equation. This motivates us to
extend the aforementioned arguments by Lebowitz and Percus to higher dimensions.

We can identify the substitution made by Lebowitz and Percus as a mapping be-
tween certain statistical properties characterizing systems of fully penetrable spheres
and totally impenetrable (hard) spheres, with reference to standard definitions of
micro-structural descriptors in d dimensions [85]. More precisely, let us introduce
the so-called conditional pair distribution function (CPDF) Gp(r). Let r denote the
distance from the center of some reference particle in a system with bulk density
ρ0. Then, by definition ρ0sd(r)Gp(r) dr equals the average number of particles in
the shell of infinitesimal volume sd(r) dr around the central particle, given that the
volume vd(r) of the d-sphere of radius r is empty of other particle centers. Here

sd(r) =
dvd(r)

dr
=

2πd/2rd−1

Γ(d/2)
. (2.94)

The CPDF for systems of fully penetrable and totally impenetrable systems are
reported in Table (2.1) in the approximation of r ≫ σ which amounts to omit in
the definition of the CPDF additional terms which scale as negative powers of the
distance. In practical terms, restricting to large values of r amounts to imposing an
effective degree of coarse graining, and so neglecting the fine detailed modulations
which occur at small spatial scales. More precisely, this choice is expected to be
more accurate at low densities, where neglecting the density fluctuations in the first
coordinate in a shell does not introduce large errors. Form the analysis of Table
2.1 one can readily recognize the Lebowitz and Percus substitution as a mapping
between the FPS and TIS CPDFs in one dimension.

This analogy suggests a highly speculative procedure to generalize the L-ASEP
to describe excluded-volume effects in more than one dimension in the mean-field
approximation in a homogeneous medium and zero field. For a spherically symmetric
problem we posit

∂ρ

∂t
= D0∇

2[ρ Ḡp(ρ)] (2.95)

where it is understood that, according to the local density approximation, one
should replace φ with vσρ(r, t), where vσ ≡ vD(σ/2) is the volume of one hard d-
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dimensional sphere, so that Ḡp depends on r implicitly through ρ(r). This is a highly
speculative proposal, which however returns the correct description in the limit of
low density: operating in this setting, the two-dimensional and three-dimensional
non-linear equations for hard spheres (2.93) are recovered from (2.95).

In order to provide another a posteriori justification for eq. (2.95), it is instructive
to consider how the classical problem of diffusion to an absorbing sphere is modified
in a non-ideal fluid. Let us imagine a fixed sink of radius Rs that absorbs hard
spheres of radius σ/2 and bulk density ρ0. The rate k measuring the number of
particles absorbed by the sink per unit time equals the total flux into the sink. For
ordinary Fickian diffusion, one has the classical result k

.
= kS = 4πD0(Rs + σ/2)ρ0,

known as the Smoluchowski rate [14]. This result is indeed the prediction of a two-
body problem, i.e. it amounts to considering the absorption of non-interacting, or
equivalently fully penetrable, spheres. Thus, it describes the problem in the infinite
dilution limit. Eq. (2.95) can now be employed to repeat the same exercise for hard
spheres at finite densities, that is, the Smoluchowski problem with excluded-volume
interactions accounted for. One should then solve the following boundary-value
problem

∇
2[ρ Ḡp(vσρ)] = 0 (2.96)

ρ(r = Rs + σ/2) = 0 (2.97)

lim
r→∞

ρ(r) = ρ0. (2.98)

The rate can be computed readily without really solving the (modified) Laplace
equation. From (2.96), we have directly

∂

∂r

[

ρ(r)Ḡp(φ(r))
]

=
k

4πD0r2
(2.99)

where we have defined φ(r) = vσρ(r), so that φ0 = vσρ0 denotes the bulk packing
fraction of the hard spheres. Integrating eq. (2.99) between Rs+σ/2 and infinity and
taking into account the boundary conditions (2.97) and (2.98), it is straightforward
to obtain

k

kS

= Ḡp(φ0) (2.100)

where Ḡp(φ0) = limr→∞ Ḡp(φ(r)). In three dimensions, one thus has k/kS = b0(φ0),
where one can recognize b0(φ) as the compressibility Z(φ) of the hard sphere fluid
in the Carnahan-Starling approximation [102]. We see that eq. (2.95) allows one to
recover the known result k/kS = Z(φ), obtained in two different ways, by assuming
a density-dependent mobility in the diffusion equation [103] and from a transport
equation derived in the local-density approximation [104].

In all the models derived thus far the diffusion is treated as a non-ideal process
because of the high concentration of molecules. In the following part of this thesis,
we will abandon the microscopic level to examine a different kind of complexity. We
will study the interplay between reaction and diffusion, and the non-ideal conditions
will be determined by the complex geometry where the processes are analyzed.



Chapter 3

Theory of diffusion influenced

reactions in complex geometries

In the second part of this thesis, we will move on to analyze chemical reactions
occurring between different species in complex environments. Aggregation of pro-
teins in composite structures of protein-protein complexes and reactions occurring
between microscopic components such as substrates and enzymes are central ac-
tivities underlying the function of living cells. These processes can be classified as
diffusion-influenced reactions (DI), because they involve the diffusion of the reagents
and the subsequent chemical fixation of the encounter product. Virtually all bio-
chemical processes in living media can be counted among them, together with those
occurring in an ever-growing number of emerging nano-technologies. The general
goal of our study is to develop an analytical strategy to compute the reaction rate
constant of such processes, while keeping track of the complexity of the environment.
In many biological and industrial processes the diffusion of reactants takes place in
a confined and crowded environment: cells for example are occupied for over 30%
of their volume by membrane-delimited organelles and different sorts of cytoskeletal
structures, as shown in Fig. 3.1.

In general, static or moving objects placed in the domain where the reaction
occurs can modify the overall behavior of the diffusing agents and the efficiency
of the binding process. Inside a cell, for example, a diffusing ligand encounters a
large number of sinks, traps and obstacles that can slow down or even arrest its
motion towards the nucleus or the target receptor in the cytoplasm. The extent of
the alteration depends on the characteristic of the neighboring elements: number,
size, position, shape, and their nature either reactive or non-reactive. To simplify
the analysis of the reaction kinetics, these effects are often neglected for systems
which are enough diluted to allow one to overlook the influence of other reactants
and other space-filling species. In this limit the DI process can be represented
as a two-body reaction and tackled through well known analytical and numerical
schemes. On the other hand, in the majority of biological and technological media,
the concentration of receptors, obstacles and reactive boundaries is sufficiently high
to require an accurate analysis of the many-body interactions.

A general way to describe the formation of a product from a bimolecular reaction
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Figure 3.1: Scheme of the interior of a cell showing the high density and heterogeneity
of cytoskeletal structures.

between two microscopic components A and B in solution is:

[A] + [B]
kD

−−−⇀↽−−−

k−D

[AB]∗
k
∗

−→ [P ] (3.1)

where, following the standard notation, the symbol [·] denotes the concentration.
For example, this might represent the catalysis of a substrate-product conversion
or the formation of a stable protein-protein complex. The first step leads to the
formation of the encounter complex [AB]∗. This process is driven by diffusion and
characterized by a rate constant kD. Once the encounter complex is formed, it can
be either chemically fixed to give rise to a stable complex (with a finite probability
expressed by k∗, or else the two molecules can diffuse away (with rate constant k−D).
In the quasi-equilibrium approximation, which amounts to consider a stationary
intermediate product concentration (or equivalently, to be in a situation where the
concentration of the substrate molecules B that are turned into product P is much
larger than the concentration of A), the reaction scheme (3.1) can be approximated
by the pseudo first-order reaction

[A] + [B]
k
−→ [P ] (3.2)

with reaction rate constant

k =
kDk

∗

(k∗ + k−D)
.
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Figure 3.2: Scheme of the bimolecular reaction (3.1).

k is the rate of formation of products, i.e. the number of B molecules turned into
product P per unit time (it has the physical dimension of [t−1]).

For the case of chemical reactions connoted by a high chemical affinity, such as
antigen-antibody reactions (see section 5), one has k∗ ≫ k−D and the limiting step
for the process is given by diffusion, because the agents react immediately upon
getting in contact. The overall rate constant in this case is equal to the encounter
rate k ≃ kD. The reactions belonging to this class are named diffusion-controlled or
diffusion-limited.

In 1917 M. Von Smoluchowski showed how to compute the rate constant kD that
controls the diffusion-limited formation of the encounter complex between a ligand
(B) and a receptor (A) in a simple approximation of high dilution. The idea is that,
under the hypotheses that:

• both ligand and receptor are represented as diffusing spherical bodies

• A molecules diffuse much more slowly than B molecules (they are of much
larger size),

• both species are highly diluted

• the bulk concentration of A molecules is much smaller than the bulk concen-
tration of B molecules,

it is possible to consider a single receptor at rest in the domain where the ligands
are diffusing, and the chemical reaction can be mapped onto a two-body boundary
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problem [105]. More precisely, the receptor is represented as a spherical sink centered
in the reference frame, with radius equal to the sum of the linear dimensions of the
two molecules, R = RA+RB, while the ligands are point-like agents diffusing in the
open domain with the effective diffusivity D = DA +DB. When a molecule of the
species B reaches the boundary it is immediately absorbed: this physically amounts
to say that the two agents react immediately when they get in contact. Here the
hypothesis of high dilution allows one to neglect the encounter probability of two
A and the effects of crowding for the ligands, in the sense that two B agents never
interact with each other. With those assumptions, in the long time limit (we are
assuming t >> tD, being tD the characteristic relaxation time for diffusion), the
concentration of the diffusing population obeys the Laplace equation, enforced with
absorbing boundary conditions at the encounter surface, namely:











∇
2c = 0

c||r|=R = 0

lim|r|→∞
c = c0.

, (3.3)

where c0 is the bulk concentration of ligands and the boundary |r| = R is a spherical
sink of effective radius RA + RB (the ligand-receptor encounter distance). This
description applies for example to a ligand that is diffusing towards the receptor-
covered surface of a cell (see figure 3.4 and the discussion in the conclusive chapter).

The solution of the stationary problem can be worked out explicitly as:

c(r) = c0

(

1−
R

r

)

. (3.4)

The overall rate of the reaction (the parameter k defined in 3.2) corresponds
mathematically to the flux across the sink surface (number of B molecules crossing
the surface per unit time):

k = −

∫

∂Ω

J · n dσ = D

∫

∂Ω

∂c

∂r
dσ = 4πDRc0 := kS

where n is the normal vector to the surface of integration and ∂Ω is the boundary
of the sink. The specific value of the rate constant relative to the Smoluchowski
model is customarily denoted as kS

1. The perfectly absorbing boundary condition
at the separation surface of the two reactants characterizes the process as diffusion
limited, because the reaction happens with probability 1 when the agents are at the
encounter distance.

Our goal is to extend this simple setting by relaxing the hypotheses of extreme
dilution and open domain, and accounting for partially reactive surfaces and more
complex shapes of receptors. Before moving on to consider the many-body problem,
it is useful to spend a few words to see how to introduce the partial reactivity in
the mathematical description of the simple two-body setting (3.3). The idea, first
proposed by Collins and Kimball in 1949 in [106], is that the chemical fixation rate
k∗ can be thought of yielding a finite absorption probability for ligand molecules:
the encounter complex only gives rise to the chemical transformation with a certain

1We note that the same symbol kS is used in the literature to refer to the rate constant, with
dimension [M−1

s
−1]
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Figure 3.3: The problem of Smoluchowski

probability. According to this idea, the boundary condition in (3.3) can be modified
to accommodate for this effect, yielding the so-called radiative boundary conditions:











∇
2c = 0

(R ∂c

∂r
− hc)|r=R = 0

limr→∞ c = c0.

(3.5)

Here the parameter h = k∗/(4πDR) can assume an arbitrary value between the
limiting cases 0 and infinity. The meaning of the boundary condition in (3.5) is
immediately clear: the reaction rate (which is the flux across the sink) is equal to the
intrinsic rate constant, multiplied by the concentration of ligands at the separation
surface. The solution of problem (3.5) maintains the spherical symmetry of equation
(3.4):

c(r) = c0

(

1−
R

r

(

k∗

k∗ + 4πDR

))

and yields the modified rate constant:

k = kS

(

k∗

k∗ + 4πDR

)

.

By taking k∗ → ∞ in the previous expression, we recover the Smoluchowski rate
constant kS , while in the limit k∗ = 0, the rate constant vanishes and the BCs
become perfectly reflecting, ∂c/∂r = 0. In the chemical physics community, chemical
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reactions which are neither rate-limited by diffusion nor by reaction, that is with
intermediate values of k∗, are termed generically diffusion-influenced [107].

Now that we have shown how to account for the partial reactivity of a given
boundary, we can move on to describe the multi-body problem, which will provide a
more suitable instrument for modeling diffusion-reaction processes in complex envi-
ronments. In fact, in many realistic situations in chemical and biochemical kinetics,
a single ligand (B) has to diffuse among many competing reactive particles (A). In
addition, it might be forced to find its target within a specific confining geometry,
which in principle can be modeled through a collection of reflecting boundaries.

Let us consider a confined spherical domain, containing an arbitrary number of
spherical boundaries, each one characterized by a specific size and a specific reac-
tivity. These structures are meant to represent all the reactive or inert bodies with
which a diffusing molecule gets in contact while moving in a complex medium. For
example, in describing intracellular diffusion, cellular organelles and other cytoskele-
tal structures which do not react with the specific ligands, can be represented as fully
reflecting spheres or assemblies of spheres to make up other non-spherical shapes.
This choice amounts to consider k∗ = 0 in the BC, while the reactive targets are
associated with values of k∗ > 0. In this way, a diffusing molecule which gets in
contact with one of the hard spheres can either be absorbed if the body is reactive,
or just have its motion obstructed due to the steric effects of a nonreactive body.

To match this description, the Laplace equation for the density of ligands is en-
forced with (N+1) radiative boundary conditions, where Ω1, . . . ,ΩN is the collection
of reactive boundaries included in the domain Ω0:



























▽2c = 0
(

4πDR2

α

∂c

∂rα
− k∗αc

)∣

∣

∣

∣

∂Ωα

= 0 ∀α = 1...N
(

∂c

∂r0
− h0(c0 − c)

)
∣

∣

∣

∣

∂Ω0

= 0,

. (3.6)

Here c0 stands for the constant bulk density of ligands, k∗α, Rα are the chemical and
geometrical parameters which characterize the selected boundary, and h0 specifies
the reactivity of the inner surface of the confining sphere Ω0 (we will discuss its
interpretation in subsection 3.1.2). The solution of this boundary problem can not
be worked out as easily as in the previous cases, since the global spherical symmetry
is lost by taking into account multi-body boundary conditions. We will see in the
next section that the confinement of the domain and the presence of multiple spheres
require the use of more elaborate mathematical tools.

3.1 Analytical solution

The problem stated in the previous section can be solved both in the unbounded
domain outside the given set of spherical boundaries, or within a bounded spherical
domain that contains all the reactive boundaries. For the moment, we will restrict
our analysis to the domain:

Ω = Ω0 \
N
⋃

α=1

Ωα as represented in Fig. 3.4. In the following (see chapter 4) we will
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Figure 3.4: Schematic representation of the domain Ω = Ω0 \
N
⋃

α=1

Ωα where we look

for the solution of the boundary problem (3.6).

show how to describe a situation where we consider ∂Ω0 (the boundary of Ω0) as a
permeable barrier between two regions with different properties.

Let us introduce the non dimensional quantities: the density normalized on the
bulk value u(x) = c(x)/c0 and the variables ξα = rα/Rα and ξ0 = r0/R0, normalized
on the radii of the reactive boundaries. The boundary problem (3.6) becomes:



























▽2u = 0
(

∂u

∂ξα
− hαu

)
∣

∣

∣

∣

∂Ωα

= 0 ∀α = 1...N
(

∂u

∂ξ0
− h0(1− u)

)∣

∣

∣

∣

∂Ω0

= 0.

(3.7)

We will refer to the parameter hα = k∗α/4πDRα, which determines the reactivity of
the α-th sphere, as to the intrinsic reactivity of the selected boundary. Similarly, the
parameter h0 is the intrinsic reactivity of the inner surface of the spherical domain
Ω0, which can be interpreted as carrying some information on the space external to
∂Ω0, even if the problem is considered only inside. More specifically, it can be inter-
preted as the ratio between the diffusion constants within the media lying at either
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Figure 3.5: Multiple coordinate system for a general domain.

side of ∂Ω0: h0 = D/Dout (D := Din, see also the detailed discussion in subsection
3.1.2). If system (3.6) is employed to model intracellular diffusion, and ∂Ω0 is meant
to represent the cell membrane this ratio is usually < 1. Boundary problems of the
kind (3.7), featuring multi-connected domains, are customarily solved numerically,
with finite element methods, employed to avoid the substantial analytical difficulties
of the calculations. Even if the numerical strategy proves to be effective, due to its
high versatility, it does not provide any analytical insight and it involves extremely
high computational costs, even for a limited number of reactive boundaries.

Our aim is thus to provide an analytical solution, which enables one to solve the
problem to any desired accuracy for an arbitrary composition of the domain, which
means for any choice of number, position and dimension of the reactive boundaries.
The idea is to take into account (N + 1) spherical coordinate systems, one for each
spherical boundary considered in the domain. Then we can write the solution of
the Laplace equation as a sum of linear combinations of spherical harmonics, each
one expressed in the spherical system associated with the selected α− th boundary.
The global solution, which is formally expressed in (N + 1) different coordinate
systems, contains one set of coefficients per each harmonic expansion. The global
set of coefficients must be determined as usual by imposing the boundary conditions.
This poses the biggest challenge, because in the neighborhood of each sphere this
operation requires to express the global density as a function of the local coordinates.
This is required since each boundary equation is expressed in spherical symmetry
with respect to the corresponding local coordinate system.
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We start by considering the (N +1) spherical coordinate systems corresponding
to each boundary (see figure (3.1)): r0 = (r0, θ0,φ0) and rα = (rα, θα,φα) ∀α =
1, 2, . . . N , where θ and φ identify, respectively, the polar and the azimuthal angles.
It is known that the solution of the Laplace equation within a spherical boundary
can be written as a linear combination of regular harmonics:

u+0 =
∞
∑

n=0

n
∑

m=−n

Amnu
+
mn(r0) =

∞
∑

n=0

n
∑

m=−n

Amnξ
n
0 Ymn(r0)

=

∞
∑

n=0

n
∑

m=−n

Amn

(

r0

R0

)n

Pm
n (cos θ0)e

imφ0 ,

(3.8)

while a basis of irregular harmonics must be used to express the solution within
an unbounded domain outside a given spherical boundary (the regular harmonics
diverge at infinity):

u−α =
∞
∑

n=0

n
∑

m=−n

Bα
mnu

−

mn(rα) =
∞
∑

n=0

n
∑

m=−n

Bα
mnξ

−n−1
i Ymn(rα)

=

∞
∑

n=0

n
∑

m=−n

Bα
mn

(

rα

Rα

)

−n−1

Pm
n (cosθα)e

imφα .

(3.9)

Using the superposition principle for the Laplace equation, we can write the solution
in Ω as a sum of linear combinations of regular (for solving (3.7) inside Ω0) and
irregular harmonics (for expressing the solution outside each Ωα):

u = u+0 +

N
∑

α=1

u−α =

∞
∑

n=0

n
∑

m=−n

Amnξ
n
0 Ymn(r0) +

∞
∑

n=0

n
∑

m=−n

Bα
mnξ

−n−1
i Ymn(rα).

The values of coefficients of the above expansion are determined by imposing the
boundary conditions. In the neighborhood of each boundary we have to express all
the bases as a function of the local coordinates. More precisely, to determine the
values of Amn and Bα

mn, in a neighborhood of each ∂Ωα(α = 1, 2, . . . , N), we have
to express u+0 and u−j , j "= i, as a function of the rα coordinates, and similarly,

in a neighborhood of ∂Ω0, we have to write every u−α as a function of r0. To this
purpose, we will make use of the addition theorems for spherical harmonics, [24].

Let us start by imposing the condition on ∂Ω0. Let L0α be the constant vector
connecting the center of ∂Ω0 to the center of ∂Ωα, so that rα = r0 − L0α. The
relation |L0α| < |r0| holds for all value of α = 1, 2, . . . , N in a neighborhood of
∂Ω0, thus for every u−α we need the re-expansion formula from irregular to irregular
harmonics (third panel on fig. 3.6)

r−n−1
α Ymn(rα) =
∞
∑

l=0

n
∑

s=−n

(−1)l+s(n+ l −m+ s)!

(n−m)!(l + s)!
Ll
0αYsl(−L0α)r

−(n+l)−1
0 Ym−s,n+l(r0)

(3.10)

that after the change of indexes:
{

n+ l = q

m− s = g
(3.11)
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can be written as:

r−n−1
α

Ymn(rα) =

∞
∑

q=n

m+(q−n)
∑

g=m−(q−n)

(−1)q−n+m−g(q − g)!

(n−m)!(q − n+m− g)!
L
q−n
0α Ym−g,q−n(−L0α)r

−q−1
0 Ygq(r0).

(3.12)

After multiplying by Rn+1
α

we obtain the non-dimensional form of the re-expansion
formula:

ξ−n−1
α

Ymn(rα)

=

∞
∑

q=n

m+(q−n)
∑

g=m−(q−n)

(−1)q−m+n−g(q − g)!

(n−m)!(l + s)!

(

L0α

R0

)q−n

Ym−g,q−n(−L0α)

(

R0

Rα

)

−n−1

ξ
−q−1
0 Ygq(r0)

=
∞
∑

q=n

m+(q−n)
∑

g=m−(q−n)

V α,m,n

g,q
ξ
−q−1
0 Ygq(r0)

(3.13)

where

V α,m,n
g,q =

(−1)q−n+m−g(q − g)!

(n−m)!(q − n+m− g)!

(

L0α

R0

)q−n(
R0

Rα

)−n−1

Ym−g,q−n(−L0α)

=
(−1)q−m+n−g(q − g)!

(n−m)!(q − n+m− g)!
η
q−n
0α χn+1

α
Ym−g,q−n(−L0α).

(3.14)

and we have defined ∀i, j = 0, 1, . . . , N :

ηi,j :=
Li,j

R0
with ηi,j = ηj,i

χi :=
Ri

R0
.

(3.15)

Hence the solution of our problem in the vicinity of ∂Ω0 can be written as

u =
∞
∑

n=0

n
∑

m=−n

Amnξ
n
0 Ymn(r0) +

N
∑

α=1

∞
∑

n=0

n
∑

m=−n

Bα

mn

∞
∑

q=n

m+(q−n)
∑

g=m−(q−n)

V α,m,n
g,q ξ

−q−1
0 Ygq(r0)

=
∞
∑

q=0

q
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g=−q

Agqξ
q
0Ygq(r0) +

N
∑

α=1

∞
∑

n=0

n
∑

m=−n

Bα

mn

∞
∑

q=n

m+(q−n)
∑

g=m−(q−n)

V α,m,n
g,q ξ

−q−1
0 Ygq(r0)

=
∞
∑

q=0

q
∑

g=−q

Ygq(r0)

[

Agqξ
q
0 +

N
∑

α=1

∞
∑

n=0

n
∑

m=−n

Bα

mnV
α,m,n
g,q ξ

−(q+1)
0 1{q≥n}1{m−(q−n)≤g≤m+(q−n)}

]

=
∞
∑

q=0

q
∑

g=−q

Ygq(r0)

[

Agqξ
q
0 +

N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα

mnV
α,m,n
g,q ξ

−(q+1)
0 1{g−(q−n)≤m≤g+(q−n)}

]

(3.16)
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while the first derivative of the stationary density field with respect to ξ0 reads:

∂u

∂ξ0
=

∞
∑

q=0

q
∑

g=−q

Ygq(r0)

[

qAgqξ
q−1
0

− (q + 1)ξ
−(q+2)
0

N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα
mnV

α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)}

]

.

(3.17)

In the previous expression we have introduced the characteristic function:

1A = 1A(x) =

{

1 if x ∈ A

0 if x /∈ A
(3.18)

where the subset A is identified by a set of inequalities involving the indices of the
spherical harmonics. Having obtained the expression of the density in the coordinate
system relative to Ω0 allows us to impose the boundary condition on Ω0, namely:

∞
∑

q=0

q
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g=−q

Ygq(r0)
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qAgqξ
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N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα
mnV

α,m,n
g,q

1{g−(q−n)≤m≤g+(q−n)} − h0

(

Agqξ
q
0 +

N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα
mnV

α,m,n
g,q ξ

−(q+1)
0

1{g−(q−n)≤m≤g+(q−n)}

) ]

+ h0

∣

∣

∣

∣

∂Ω0

= 0.

(3.19)

Since the spherical harmonics are a base on the sphere, equation (3.19) implies:

Agq(q − h0) + (−h0 − q − 1)

N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα
mnV

α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)}

= −h0δ((g,q),(0,0))

(3.20)

which gives for every q = 0, 1, . . . , N and g = −q,−q + 1, . . . , q − 1, q:

Agq +
−h0 − q − 1

(q − h0)

N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα
mnV

α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)} = 1. (3.21)

Let us now consider the boundary conditions on the N spheres within Ω0. In the
neighborhood of each ∂Ωα, we must express u+0 and each u−β with β #= α in the rα

coordinates. Let us first focus on the re-expansion of u+0 . Once we have expressed
r0 = rα+L0α, where L0α is the constant vector connecting the center of Ω0 with the
center of Ωα, we can use the re-expansion formula from regular to regular harmonics
(see first panel on fig. 3.6)

rn0Ymn(r0) =
n
∑

q=0

q
∑

g=−q

(n+m)!

(n− q +m− g)!(q + g)!
Ln−q
0α Ym−g,n−q(L0α)r

q
αYgq(rα).

(3.22)
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After dividing by Rn

0 we obtain the non-dimensional relation:

ξn0 Ymn(r0) =
n
∑

q=0

q
∑

g=−q

(

n+m

q + g

)(

L0α

R0

)

n−q
(

rα

Rα

)

q
(

Rα

R0

)

q

Ym−g,n−q(L0α)Ygq(rα)

=

n
∑

q=0

q
∑

g=−q

H(α,g,q)
m,n

ξqαYgq(rα)

(3.23)

where we have defined the matrix H:

H(α,g,q)
m,n

=

(

n+m

q + g

)

χq

αη
n−q

0α Ym−g,n−q(L0α).

In order to express u−β with β != α on ∂Ωα, we consider rβ = Lβα+rα. Since the
relation |Lβα| > |rα| holds in a vicinity of ∂Ωα, we must use the irregular-to-regular
re-expansion formula (see the second panel in fig. 3.6)

r−n−1
β Ymn(rβ) =

∞
∑

q=0

q
∑

g=−q

(−1)q+g
(n−m+ q + g)!

(n−m)!(q + g)!
L
−(n+q)−1
βα Ym−g,n+q(Lβα)r

q

αYgq(rα).

(3.24)

that becomes as a function of dimensionless variables:

ξ−n−1
β Ymn(rβ)

=

∞
∑

q=0

q
∑

g=−q

(−1)q+g
(n−m+ q + g)!

(n−m)!(q + g)!

(

Lβα

R0

)

−(n+q)−1(
Rα

R0

)

q
(

rα

Rα

)

q
(

R0

Rβ

)

−n−1

Ym−g,n+q(Lβα)Ygq(rα)

=
∞
∑

q=0

q
∑

g=−q

(−1)q+g
(n−m+ q + g)!

(n−m)!(q + g)!
η
−(n+q)−1
βα χq

αχ
n+1
β Ym−g,n+q(Lβα)ξ

q

αYgq(rα)

=
∞
∑

q=0

q
∑

g=−q

W (α,β,g,q)
m,n

ξqαYgq(rα).

(3.25)

where

W (α,β,g,q)
m,n

= (−1)q+g
(n−m+ q + g)!

(n−m)!(q + g)!
η
−(n+q)−1
βα χq

αχ
n+1
β Ym−g,n+q(Lβα). (3.26)



3.1 Analytical solution 59

Hence in the vicinity of each ∂Ωα we can write the solution as :

u =

∞
∑

n=0

n
∑

m=−n

Bα
mnξ

−n−1
α Ymn(rα) +

N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mnξ

−n−1
β Ymn(rβ)

+
∞
∑

n=0

n
∑

m=−n

Amnξ
n
0 Ymn(r0)

=

∞
∑

q=0

q
∑

g=−q

Bα
gqξ

−q−1
α Ygq(rα) +

N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mn

∞
∑

q=0

q
∑

g=−q

W (α,β,g,q)
m,n ξqαYgq(rα)+

∞
∑

n=0

n
∑

m=−n

Amn

n
∑

q=0

q
∑

g=−q

H(α,g,q)
m,n ξqαYgq(rα)1q≤n

=
∞
∑

q=0

q
∑

g=−q

Ygq(rα)

[

Bα
gqξ

−q−1
α +

N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mnW

(α,β,g,q)
m,n ξqα

+

∞
∑

n=q

n
∑

m=−n

AmnH
(α,g,q)
m,n ξqα

]

.

(3.27)

The derivative with respect to ξα is:

∂u

∂ξα
=

∞
∑

q=0

q
∑

g=−q

Ygq(rα)

[

(−q − 1)Bα
gqξ

−q−2
α +

qξq−1
α

( N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mnW

(α,β,g,q)
m,n +

∞
∑

n=q

n
∑

m=−n

AmnH
(α,g,q)
m,n

)]

.

(3.28)

Imposing the boundary condition yields :

∞
∑

q=0

q
∑

g=−q

Ygq(rα)

[

(−q − 1− hαξα)B
α
gqξ

−q−2
α + (qξq−1

α

− hαξα)

( N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mnW

(α,β,g,q)
m,n +

∞
∑

n=q

n
∑

m=−n

AmnH
(α,g,q)
m,n

) ]∣

∣

∣

∣

∂Ωα

= 0,

(3.29)

which gives for every q = 0, 1, . . . , N and g = −q,−q + 1, . . . , q − 1, q:

−(q+1+hα)B
α
gq+(q−hα)

∞
∑

n=0

n
∑

m=−n

(AmnH
(α,g,q)
m,n 1q≤n+

N
∑

β=1,β #=α

Bβ
mnW

(α,β,g,q)
m,n ) = 0.

(3.30)
We have thus obtained the second equation:

−Bα
gq +

(q − hα)

(hα + q + 1)

∞
∑

n=0

n
∑

m=−n

(

AmnH
(α,g,q)
m,n 1q≤n +

N
∑

β=1,β #=α

Bβ
mnW

(α,β,g,q)
m,n

)

= 0.

(3.31)



60 Theory of diffusion influenced reactions

Figure 3.6: Scheme of the the application of the addition theorems (3.10), (3.22)
and (3.24) for expressing the boundary conditions in the local coordinates on ∂Ω0

and on each ∂Ωα. The choice of the appropriate addition theorem depends on the
ratio between the distance between the centers of each pair of reference systems and
the norm of the position vector in the new reference system (see the discussion in
subsection 3.1.1.)

To summarize, by using the addition theorems together with the uniqueness of
the spherical harmonics expansions, we managed to map the boundary problem (3.7)
to the solution of an infinite-dimensional linear system that has to be solved for the
coefficients of the spherical harmonics expansion. More precisely, we have for all
the multipoles q = 0, 1, . . . , N and g = −q,−q + 1, . . . , q − 1, q and for each reactive
boundary Ωα with α = 1, 2, . . . , N :



























−Bα
gq +

(q − hα)

(hα + q + 1)

∞
∑

n=0

n
∑

m=−n

(

AmnH
(α,g,q)
m,n 1q≤n +

N
∑

β=1,β $=α

Bβ
mnW

(α,β,g,q)
m,n

)

= 0

Agq +
−h0 − q − 1

(q − h0)

N
∑

α=1

q
∑

n=0

n
∑

m=−n

Bα
mnV

α,m,n
g,q 1{g−(q−n)≤m≤g+(q−n)} = δ(g,q)=(0,0).

(3.32)
where
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V α,m,n
g,q =

(−1)q−n+m−g(q − g)!

(n−m)!(q − n+m− g)!
η
q−n
0α χn+1

α Ym−g,q−n(−L0α) (3.33)

H(α,g,q)
m,n =

(

n+m

q + g

)

χq
αη

n−q
0α Ym−g,n−q(L0α) (3.34)

W (α,β,g,q)
m,n = (−1)q+g (n−m+ q + g)!

(n−m)!(q + g)!
η
−(n+q)−1
βα χq

αχ
n+1
β Ym−g,n+q(Lβα), (3.35)

where χi :=
Ri

R0
and ηi,j :=

Lij

R0
with ηij = ηji. The matrix representation of system

(3.32) reads:























































1 V 1 V 2 . . . V N

H1
−1 W 1,2 . . . W 1,N

H2 W 2,1
−1 . . . W 2,N
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HN WN,1 WN,2 . . . −1
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0
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0
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0
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where the physical, chemical and geometrical parameters (radii of the sinks, dis-
tances between the centers, reactivities of the boundaries) are hidden inside the
matrices W,V,H.

In order to solve the infinite-dimensional system (3.32) one needs to truncate the
expansion, by including a finite number of multipoles, Nt, which ensures that a de-
sired accuracy is attained. The resulting truncated system for N internal boundaries
comprises (N + 1)(Nt + 1)2 equations.

The rate of a reaction between the ligand and a selected boundary Ωα can be
computed easily, by calculating the incoming flux as

kα = −

∫

∂Ωα

Jds where J = −D
∂ρ

∂r1
= D

ρ0

R1

∂u

∂ξ1
.

Substituting equation (3.28) in the definition of kα, and using the properties of
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Legendre polynomials , we get:

kα

kSα

=
1

2

∞
∑

q=0

q
∑

g=−q

[

(−q − 1)Bα
gq + q

( N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mnW

(α,β,g,q)
m,n +

∞
∑

n=0

n
∑

m=−n

AmnH
(α,g,q)
m,n 1q≤n

)]
∫ 2π

0
eigφαdφα

∫ 1

−1
Pgq(µα)dµα

=
1

2

∞
∑

q=0

[

(−q − 1)Bα
0q + q

( N
∑

β=1,β #=α

∞
∑

n=0

n
∑

m=−n

Bβ
mnW

(α,β,0,q)
m,n +

∞
∑

n=0

n
∑

m=−n

AmnH
(α,0,q)
m,n 1q≤n

)]
∫ 1

−1
P0q(µα)dµα = −Bα

00

(3.36)

where kSα
= 4πDRαc0 is the Smoluchowski rate computed for an isolated sphere

of the same radius in the unbounded domain. The procedure that has led us to
the result is quite cumbersome, but we stress that once the initial effort is made
to derive the structure of the linear system, we can directly use it to compute the
reaction rate to an arbitrary distribution of boundaries. More precisely, given an
arrangement of spherical boundaries, it suffices to substitute the structural and
chemical parameters that characterize the configuration into the matrices V,W,H

and then choose a tolerance for the solution.
The analytical method that we have developed is an useful tool. On the one

hand it can be employed to compute the reaction rate constant for a broad choice
of reactive landscapes, made by assembling spherical boundaries of selected size at
given locations in space and endowed with arbitrary surface reactivity, with much
less computational effort than required by the usual numerical methods. On the
other, the linear system (3.32) allows one to derive simple approximate analytical
formulas that can be used to investigate naturally occurring reactive geometries and
to assist in the design of artificial technological setups such as core-shell or yolk-
shell nanoreactors. In ref. [108] a similar method based on expansion formulas
is used for solving the time dependent problem associated with eq. (3.7). The
authors explicitly compare the efficiency of the analytical calculation with numerical
methods based on finite elements, showing how the analytic approach reduces the
computation time from the orders of hours to the order of minutes. We note that
our method is utterly general, as it can be easily extended to accommodate for
reactive environments realized with more complex, non-spherical boundaries. The
only requirement is that one of the coordinate systems in which Laplace’s equation
is separable be used [109], and that addition theorems exist for the corresponding
elementary solutions [110].

3.1.1 Rules for selecting the appropriate Addition Theorem

The addition theorems for spherical harmonics allow one to express a combination
of spherical harmonics, written in multiple coordinate systems, as a function of a
chosen one. They were of fundamental importance for the analytical derivation of
the system (3.32), because they allowed us to impose the boundary condition on
each sphere. Depending on the type of spherical harmonic that one wants to re-
expand (regular or irregular) and on the geometrical parameters characterizing the
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Figure 3.7: Vectors expressing the position of a point P in two different coordinate
system Sα and Sβ

domain, one among three addition theorems has to be chosen in each specific case.
Let us suppose to have spherical harmonics u+(rβ) and u−(rβ) written in a spherical
coordinate system centered in Sβ , that we want to express in a given point P as a
function of the Sα-coordinate system (see figure 3.7). The relation rβ = Lβα + rα
holds. The regular harmonics u+(rβ) are always expressed as a function of the
regular harmonics u+(rα):

rnβYmn(rβ) =

n∑

q=0

q∑

g=−q

(n+m)!

(n− q +m− g)!(q + g)!
L
n−q

βα Ym−g,n−q(Lβα)r
q

αYgq(rα).

(3.37)

If one has to re-expand an irregular harmonic u−(rβ), two cases are possible, de-
pending on the ratio between the distance Lβα between the centers of the old and
new reference systems, and the norm of the the vector rα expressing the position of
P in the new system Sα . More precisely, if |rα| < |Lβα|, then we have to write the
irregular harmonic as a function of the regular harmonics centered in Sα:

r−n−1
β Ymn(rβ) =

∞∑

q=0

q∑

g=−q

(−1)q+g
(n−m+ q + g)!

(n−m)!(q + g)!
L
−(n+q)−1
βα Ym−g,n+q(Lβα)r

q

αYgq(rα).

(3.38)

Conversely, if |rα| > |Lβα|, then we have to write the irregular harmonic as a function
of the irregular harmonics centered in Sα:
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Figure 3.8: Schematic representation of the domain R
3 \ Ω1 where we look for the

solution of the boundary problem (3.40).

r−n−1
β Ymn(rβ) =
∞
∑

l=0

n
∑

s=−n

(−1)l+s(n+ l −m+ s)!

(n−m)!(l + s)!
Ll
αβYsl(−Lαβ)r

−(n+l)−1
α Ym−s,n+l(rα).

(3.39)

To summarize, one can use the following scheme to change variable from system Sβ

to Sα:

• u+(rβ) = f(u+(rα))

• u−(rβ) =

{

f(u+(rα)) if |rα| < |Lβα|

f(u−(rα)) if |rα| > |Lβα|
.

3.1.2 An interpretation for the boundary condition on the internal

boundary Ω0

In this section, we provide a plausible physical interpretation for the boundary con-
ditions imposed on the internal surface of the spherical cavity Ω0 considered in the
problem depicted in Fig. 3.8.

Let us consider the following stationary problem defined in R
3 \ Ω1 in spherical

coordinates


















∇ ·

[

D(r)∇ρ

]

= 0

ρ|r=R1
= 0

lim
r→∞

= ρB

(3.40)
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where the diffusion coefficient is a step function

D(r) =

{

Din if R1 < r < R2

Dout if r > R2.

The solution can be found as

ρ(r) = ρB

∫

r

r=R1

dx

x2D(x)

[
∫

∞

R1

dx

x2D(x)

]

−1

, (3.41)

and the rate of the reaction k becomes

k = 4πR2

1Din

∂ρ

∂r

∣

∣

∣

∣

r=R1

= 4πρB

[
∫

∞

R1

dx

x2D(x)

]

−1

=
kS

(1− ǫ) + χǫ
(3.42)

where χ = Din/Dout and ǫ = R1/R2 and kS = 4πDinR1ρB. Given ǫ = R1/R2 < 1,
and the fact that for many applications the ratio χ = Din/Dout < 1, the rate of the
reaction is greater than the Smoluchowski rate to a sink embedded in an infinite
domain characterized by a diffusivity Din:

k =
kS

1− ǫ(1− χ)
> kS . (3.43)

We want to understand which are the hypotheses that make the system (3.40)
equivalent to the following boundary value problem considered in the bounded do-
main Ω2 \ Ω1



















∇
2ρ = 0

ρ|
r=R1

= 0
(

4πDinR
2

2

∂ρ

∂r
− k∗(ρB − ρ)

)∣

∣

∣

∣

r=R
−

2

= 0,

(3.44)

where k∗ is the intrinsic rate constant. After defining h = k∗/4πDinR2, it is straight-
forward to show that the function

ρ(r) = ρB

[

h

h(1− ǫ)− ǫ

](

1−
R1

r

)

(3.45)

solves the problem (3.44) in Ω2 \ Ω1, and yields the reaction rate

k =
h

h(1− ǫ) + ǫ
. (3.46)

By comparing the reaction rates (3.42) and (3.46) obtained for the two systems, we
see that the two problems are equivalent provided that

h =
1

χ
=

Dout

Din

. (3.47)
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Figure 3.9: Schematic illustration of an axially symmetric arrangement of spherical
boundaries Ωα inside a larger spherical domain Ω0.

3.2 Axially symmetric problems

It is instructive to consider axially symmetric problems as a start to illustrate our
methods, as the calculations are substantially less involved. Let us consider an
axially symmetric domain, with the centers of the spheres Ω0, Ωk lying on the same
line, as depicted in figure (3.9). The origin of our reference system is located at the
center of Ω0 with the z-axis passing through the centers of the other spheres. This
choice allows us to take into account only the variables ri and θi because the solution
is no longer dependent on the azimuthal angles φi. The stationary concentration
of diffusing molecules for a configuration involving N internal spheres centered on
the z-axis is simply obtained by setting g = m = 0 in the system (3.32), since the
solution is independent of φ. For this reason, the expansions involve the simpler
expressions

u+
0
=

∞∑

n=0

Anu
+
n (r0) =

∞∑

n=0

Anξ
n

0Pn(cosθ0)

u−
α
=

∞∑

n=0

Bnu
−

n (r
−

α
) =

∞∑

n=0

Bnξ
−n−1
α

Pn(cosθα).

(3.48)
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In this case, the system (3.32) reduces to























−Bα
q +

(q − hα)

(hα + q + 1)

∞
∑

n=0

(

AnH
(α,0,q)
0,n 1q≤n +

N
∑

β=1,β #=α

Bβ
nW

(α,β,0,q)
0,n

)

= 0

Aq +
−h0 − q − 1

(q − h0)

N
∑

α=1

q
∑

n=0

Bα
nV

α,0,n
0,q = δ(q,0),

(3.49)

with

V α,0,n
0,q = (−1)q−n

(

q

n

)(

L0α

R0

)q−n(Rα

R0

)n+1

Pq−n(cos θLα0
), (3.50)

H
(α,0,q)
0,n =

(

n

q

)(

Rα

R0

)q(L0α

R0

)n−q

Pn−q(cos θL0α
), (3.51)

W
(α,β,0,q)
0,n = (−1)q

(

n+ q

q

)(

Lβα

R0

)−n−q−1(Rα

R0

)q(Rβ

R0

)n+1

Pn+q(cos θLβα
). (3.52)

The structure of the matricesH, V ,W is much simpler here because the Legendre
polynomials are evaluated in 1 or −1 (we recall that Pn(−1) = (−1)n, Pn(1) = 1)
because θLβα

= ±π depending on the relative position of the spheres. Moreover the
dimension of the linear system (3.49) is substantially reduced: fixing a number NM

of multipoles leads to a system of (N + 1)NM equations.

3.2.1 The concept of diffusive interactions

When a ligand can react with two neighboring boundaries, the overall reaction rate is
smaller than the sum of the rates associated with two isolated boundaries. This effect
amounts to the existence of an effective interaction between two neighboring reactive
surfaces. The described interaction goes by the name of Diffusive Interaction (DI).
To illustrate this, let us consider two perfectly absorbing sinks whose centers are
separated by a distance L. In 1976 Deutch, Felderhof and Saxton first introduced
the concept of DI in the context of this problem [111], whose exact solution was
first reported by Samson and Deutch in [112]. In the context of our theory, an
approximate solution can be obtained easily within the monopole approximation
(MOA) which amount to keeping but the q = 0 and n = 0 terms (Nt = 1) in
the system (3.49). By doing this in the unbounded domain (R0 → ∞) , it is
straightforward to show that the rate per sink in the two-sinks problem reads [111]

k

kS
=

1

1 +R/L
. (3.53)

As mentioned before, the overall reaction rate is less than 2kS , i.e. less than
the sum of the fluxes into two isolated sinks. The two spheres compete for the flux
of ligand molecules and shield part of the flux from each other. Furthermore, one
immediately notices that the diffusive interaction is a long range effect, akin to the
Coulomb interaction since it persists within any finite distance. This result was
extended by S. Traytak in ref. [113] to the case of two different sinks of radii Rα

and Rβ :
kα
kSα

=
1− ǫβ

1− ǫαǫβ
where ǫα =

Rα

L
, ǫβ =

Rβ

L
. (3.54)
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Figure 3.10: Rate constant normalized to the rate of an isolated sink of the same
size for a two-sink configuration with Rα/Rβ = 5 in the MOA (3.55). The rates are
plotted versus the distance L/R

This generalization is a non-trivial result, for it allows to highlight an intriguing
aspect of the diffusive interaction which arises only for different choices of the linear
dimension of the sinks. Let us re-write formula (3.54) for Rα = cR and Rβ = R and
let us consider the MOA for the rate constant relative to the boundary ∂Ωα:

kα
kSα

=
1−R/L

1− c
(

R/L
)

2
. (3.55)

If we analyze the behavior of kα/kSα
as a function of the distance L between the

centers, we find a non monotonic trend for selected values of the ratio c. More
specifically, a minimum for the rate constant exists at L = cR+R

√
c2 − c for values

of c > (1 +
√
5)/2. This means that while the rate of the smaller sink increases

monotonically with the distance L from the other particle, the same value for the
larger sphere is first seen to decrease for small L (see Fig. 3.10). This is the result of
the competition between two effects. When the small particle lies very close to the
surface of the large sink Ωα, the latter behaves as an effective isolated sink of size
Reff < Rα, absorbing a flux keff = 4πDReff . Upon increasing the distance L, the
total flux to the small sink will increase (its active surfaces get larger). The effect
of this on the flux to Ωα will depend on the size of the particle Ωβ . If Rβ is small
enough, Reff is not much smaller than Rα, so that its flux at the contact distance
is not much smaller than kα(L → ∞) = kSα

. Under these conditions, the flux into
the large sink starts decreasing, as the other screening particle effectively steal more
and more flux from it. However, upon increasing L past a critical distance, the
small particle can no longer catch enough ligand flux, so that the flux to Ωα starts
increasing, as it should, towards kSα

.
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Figure 3.11: Normalized rate to the large sink in a system of two spheres for different
choices of the ratio c = R1/R2. The rate is plotted versus the distance δ between
the boundaries, normalized to the small sink’s linear dimension. The symbols are
the results of the analytical computations, the solid lines are plots of eq. (3.55).
The position of the minimum, that is absent for c = 1, is shifted to the right as c is
increased.

To verify that the non-monotonic growth is a physical effect and not just an
anomaly introduced by the monopole truncation, we computed the exact reaction
rate by solving the system (3.49) and we compared it with the monopole approxi-
mation. As it is clear from Fig (3.11), the MOA provides a good interpolation of
the exact results, and the accuracy increases with the the ratio between the sinks’
sizes. The position of the minimum is also well approximated by eq. (3.55).

As a second simple illustration of our theoretical procedure, let us consider the
rate into a sink confined within a spherical cavity bonded by a permeable membrane.
This problem has been considered in ref. [114] where a solution is worked out by
posing the calculation in bispherical coordinates. This analysis is motivated by
the fact that some bimolecular reactions are enhanced by confining the diffusion
of the reagents to a restricted domain (see for example the recent studies on the
reactivity of reactions confined inside micelles, vesicles and nanoreactors [115, 116]).
In ref. [114] the flux into the inner surface of the spherical cavity is seen to increase
monotonically as the sink approaches the boundary of the cavity. The two limiting
cases, concentric spheres and internally tangential, are associated with the minimum
and maximum rate respectively. This result can be recovered easily by applying our
method to calculate the reaction rate for a sphere Ω1 of radius R1 placed inside a
spherical cavity Ω0 of radius R0, as shown in Fig. 3.12. The boundary conditions
read:

(

∂u

∂ξ1
− h1u

)∣

∣

∣

∣

∂Ω1

= 0 (3.56)
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Figure 3.12: Schematic illustration of a sink Ω1 confined within a spherical cavity
Ω0 with the centers of the two spheres lying on the z-axis at a distance L.

∂u

∂ξ0
− h0(1− u)

∣

∣

∣

∣

∂Ω0

= 0. (3.57)

If we let h0 → ∞, this amounts to considering a fixed concentration of ligands
at the membrane ∂Ω0 .i.e. equal to the bulk concentration (see also the subsection
3.1.2). The system (3.49) in this case takes the form























−Bl +

∞
∑

n=l

(l − h1)

(h1 + l + 1)
Hn,lAn = 0

Al +

l
∑

n=0

BnVn,l = δl,0

(3.58)

with

Vnl = (−1)l−n

(

l

n

)

ηl−nχn+1 = (−1)l−n

(

l

n

)(

L

R0

)l−n(
R1

R0

)n+1

Hnl =

(

n

l

)

χlηn−l(−1)n−l =

(

n

l

)(

R1

R0

)l(
L

R0

)n−l

(−1)n−l,

where, for the sake of clarity, we take the convention of placing the center of Ω1

below the center of Ω0 (see the scheme in Fig. 3.12). For the case of concentric
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spheres (L = 0 inside the system (3.58)), only one coordinate system is needed.
This allows one to write the density function in Ω as:

u = A0 +
B0

ξ1
= A0 +B0

R1

r
.

Thus, in this case the monopole calculation coincides with the exact solution and
the normalized rate can be explicitly computed by letting l = n = 0 in the system
(3.58):

{

B0(1 + h1) + h1A0 = 0

A0 + χB0 = 1
(3.59)

k

kS
= −B0 =

h1
(1 + h1)− h1χ

. (3.60)

where kS = 4πDR1. For two totally absorbing boundaries (h0 → ∞ and h1 → ∞)
the reaction rate is enhanced with respect to the unbounded domain (R0 → ∞),
and depends only on the ratio between the radii:

k

ks
=

1

1− R1

R0

.

Before moving on to analyze more complex geometries it is instructive to examine
another simple albeit non-trivial problem, namely the diffusive interaction between
two sinks confined within a spherical cavity, separated by a permeable membrane
from the outside (see figure 3.13). In the monopole approximation the system (3.49)
with N = 2 and perfectly absorbing boundary conditions on each sphere reduces to:











B
(1)
0 +A0 +B

(2)
0 ǫ2 = 0

B
(2)
0 +A0 +B

(1)
0 ǫ1 = 0

A0 −B
(1)
0 χ1 −B

(2)
0 χ2 = 1,

(3.61)

where χi = Ri/R0, ǫi = Ri/L. The normalized absorption rates to the two sinks Ω1

and Ω2 are:






















k1
kS1

= −B
(1)
0 = a1

[

1

1 + a1χ2 + a2χ1

]

k2
kS2

= −B
(2)
0 = a2

[

1

1 + a1χ2 + a2χ1

]

(3.62)

with

a1 =
1− ǫ1

1− ǫ1ǫ2
, a2 =

1− ǫ2

1− ǫ1ǫ2
.

The corresponding result in the unbounded domain (3.54) is recovered as R0 → ∞.
To analyze the results, it is convenient to introduce a new function that measures
the strength of the interaction between the two sinks:

HD =
k
[2]
(1+2)

k
[1]
S1

+ k
[1]
S2

− 1. (3.63)
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Figure 3.13: Two reactive spherical boundaries inside a spherical cavity separated
from the outside by a permeable barrier.

Here k
[2]
(1+2) denotes the total rate into the two-sphere system, while k

[1]
Si

= (1−χi)
−1

is the rate of a single sink inside the spherical cavity at the i-th position. All the rates
are computed here in the monopole approximation. We will refer to the function
HD as to the “diffusive interaction strength” because it quantifies the effects of
the competition and cooperation between the reactive boundaries. The sign of HD

identifies the nature of the interaction: a positive HD characterizes a cooperative
interaction, the minus sign instead flags anticooperativity, while if HD = 0 there is
no interaction at all. For two identical sinks of radius R, the previous expression
gives:

HD =
k
[2]
(1+2)

2k
[1]
S1

− 1 =

a1
1+2a1χ1

1
1−χ1

− 1 = −

R/L+ 3R/R0

1 +R/L+ 2R/R0
. (3.64)

highlighting that in the monopole approximation the behavior is always anticooper-
ative. In computing the solution, the number of multipoles that we need to include
increases as the ratio R/R0 increases. As shown in figure (3.14), if the MOA is not
a good approximation for this geometry, even for small sinks, the dipole approxi-
mation (obtained with Nt = 2) already allows one to grasp the trend, at least for a
reasonable range of the parameters. In figure (3.15) the ensemble of the two internal
spheres is considered as a rigid body where the distance L between the centers is
kept fixed and aligned to the z axis, while the two-body system is moved along the
same line. The diffusive interaction is analyzed against as a function of distance
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Figure 3.14: Diffusion interaction strength against the normalized distance between
two identical sinks of radius R. The computation (symbols) is performed for two
values of R. The monopole (dotted line) and dipole approximation (solid line) are
compared to the exact results.

between the origin and the center of the rigid body. The figure shows that the an-
ticooperativity is maximum when the barycenter of the two-sink structure is placed
in the origin, and it gets weaker as we move one of the sinks closer to the boundary
(see again figure (3.13)).

3.3 Diffusive interactions and excluded-volume effects

among multiple boundaries

The role of the environment’s geometry on the kinetics of bimolecular reactions and
the diffusive interaction between many reactive boundaries is a key aspect in mod-
ulating the rate constants of diffusion-influenced reactions. For this reason its effect
has been widely studied in the literature, mainly experimentally and with numerical
methods. The efforts for the minimization of the interaction of a biomolecule with
secondary species, that can compromise the efficiency of the primary reaction, is
a fundamental goal for example in drug development and industrial pharmacology.
Thus many studies have been carried out to quantify the effects of geometry and
reactivity characterizing the domain where the reaction takes place, mainly through
numerical simulations of mathematical models. This investigation is the goal of a re-
cent theoretical study [117] that analyzes the screening of a sink, due to the presence
of neighboring particles that can be either reactive or not with the same diffusing
species. The analysis in Ref. [117] is carried out through a numerical finite-element
(FE) method, employed to solve the stationary diffusion equation in simplified ge-
ometries. This study provides clear-cut hints of the subtle effects brought about
by the environment’s geometry but also highlights the impossibility of brute-force
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the system of two sinks, for two different choices of the distance L. The variables z1
and z2 are the z-coordinates of the centers of Ω1 and Ω2.

numerical approaches to assess the impact of more crowded and sophisticated re-
active environments. A spherical representation of the reactants alike to the one
introduced in our study is used in Ref. [117] to reproduce globular proteins and the
reaction kinetics is described through a diffusion based model. The extremely high
computational cost of the numerical FE procedure though, is a limit for the com-
plexity allowed in the environment’s representation. More specifically, the authors
were able to analyze the diffusive interactions between multiple boundaries only for
configurations involving at most 4 bodies, all of the same size. In the following, we
will first show how our analytical theory is able to recover the numerical results re-
ported in Ref. [117]. Then we will generalize this problem to include more complex
configurations comprising many spherical reactive boundaries. We will show that
a comprehensive theory to quantify the role of the environment’s reactive geometry

can be built by unfolding this many-body problem through our theoretical method,
since its generality allows one to compute the rate constant for a given reaction
occurring in arbitrary reactive landscapes, made of multiple spherical boundaries of
given size and reactivity in three dimensions. Moreover, we will demonstrate how
ready-to-use closed approximation formulas can be derived easily in most cases, pro-
viding a valuable tool to capture the effects of competition and cooperation between
neighboring particles.

Let us consider a ligand with bulk concentration c0 that is absorbed by a sink of
radius σ with its center at the origin. The screening action of N particles of specific
reactivities hα can be cast in the form of a stationary problem for the normalized
density of diffusing ligand molecules u = c(r)/c0:
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▽2u = 0
(

σα
∂u

∂rα
− hαu

)∣

∣

∣

∣

∂Ωα

= 0 ∀α = 1...N

u|∂Ω0
= 0

lim
r→∞

u = 1.

(3.65)

Even if our method could be employed to examine more complex reactive geometries,
realized by assembling a large number of spherical boundaries of arbitrary size and
reactivities, for the sake of clarity in comparing our results with the numerical data in
[117], we shall specialize here to the case of a central sink Ω0 of radius σ surrounded
by N identical spheres of radius σ1 = λσ arranged randomly at a fixed distance d

from the center of Ω0. Moreover, all the surrounding particles are taken to have the
same reactivity hα = h ∀α. The solution can be written here as an expansion in
series of irregular harmonics

u = 1 +

N
∑

α=0

u−α (rα), u−α =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

Bα
mℓ

rℓ+1
α

Ymℓ(rα). (3.66)

The expansion (3.66) guarantees that limr→∞ u(r) = 1. Following the strategy
introduced in section 3.1, we can claim that the boundary value problem is equivalent
to the system:

−Bα
gq +

(q − hα)

(hα + q + 1)

[

δg0δq0 +

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

N
∑

β=0,β $=α

B
β
mℓW

αβgq
mℓ

]

= 0 (3.67)

for α = 0, 1, . . . , N , q = 1, 2, . . . ,∞ and g = −q, ..., q, where

W
αβgq
mℓ = (−1)q+g (ℓ−m+ q + g)!

(ℓ−m)!(q + g)!
×

(

R
q
αR

ℓ+1

β

L
ℓ+q+1

βα

)

Ym−g,ℓ+q(Lβα) (3.68)

with Lβα = Xβ−Xα, where Xα is the position vector of the α-th screening sphere.
We recall that the normalized rate constant to the central sink is simply:

k0

kS0

= −B0
00.

In Ref. [117] the solution is worked out by using the default direct linear solver
FEniCS to compute the solution of the boundary problem (3.65) for N = 1, 2, 3, 4.
Only the two limiting cases hα = 0 ∀α and hα → ∞ ∀α are considered, two choices
that amount to consider, respectively, the screening spheres as perfectly reflecting
and perfectly absorbing.

In figure 3.16 we compare the numerical FE calculation with the exact solution
of (3.65) for N = 2, for both non-reactive and absorbing boundaries. It appears
clear that the screening effect is harder to capture via a FE scheme in the case of
reflecting obstacles than in the presence of competitive sinks. This discrepancy is
in line with the general trend of the computational error involved in the numerical
solution, which becomes larger as the reactivity of the neighboring spheres decreases
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Figure 3.16: Total ligand flux to the central sink in a two-neighbor model normalized
to kS = 4πDσ. Two cases are shown for the neighbors, reactive (red) and reflecting
(blu boundaries). The rate is plotted as a function of the normalized distance to
the central particle. The analytical solution of (3.67) is compared to the numerical
results taken from Ref. [117]. The different symbols correspond to different angles
between the neighbors.

[117]. One remarks immediately that for every choice of the geometrical and chemical
parameters the reaction rate to the central particle is reduced with respect to the flux
to an isolated sink, because the external objects shield part of the ligand flux from
it. It is possible to distinguish two main effects of the diffusive interaction. First
of all, one has the excluded volume effect, which arises because the surrounding
objects represent an obstacle that the diffusing molecules have to overcome in order
to bind to the target site. However, a much stronger effect is represented by the
competition among the three sinks for the common resources: the neighboring sites
may bind the diffusing ligands, making them unavailable to the target receptor. The
correction to the Smoluchowski rate appears to be short-range and non-dependent
on the mutual positions of the neighbors for the case of non-reactive boundaries,
while it becomes long-range and influenced by the mutual orientation in the case of
reactive surrounding sites.

The authors in Ref. [117] suggested that, in the case of non-reactive neighbors,
the rate function should depend linearly on the number of neighboring sites. By
fitting the rate function with

k

kS
∼ 1− α(d)N,
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where α(d) is a fit parameter dependent solely on the distance to the central sink,
the authors of Ref. [117] obtained for fixed choices of d a good agreement for the
inert spheres, and a large discrepancy for the reacting boundaries. This observation
is in line with the strong dependency on the configuration for the reactive neighbors
case. This problem lends itself perfectly to illustrate the degree of analytical insight
afforded by our theory. For this specific problem, it is expedient to look for solutions
in the form of perturbative series.

k

kS
=

∞
∑

j=0

εjCj(N, θ,φ), (3.69)

where ε = σ/d is the perturbation parameter and, in principle, the coefficients
Cj(N, θ,φ) depend on the configuration of the surrounding spheres and are given
by the sum of the many-body interactions. The perturbative procedure consists in
expanding the variables of the linear system (3.67) in powers of ε, after truncating the
multipole expansion to the value of NM which allows one to calculate the estimate
(3.69) up to power j (see subsection 3.3.1 for detailed calculations). In the case of
reflecting obstacles, one gets

k

kS
= 1−

(

λ3N

2

)

ε4 −

(

2λ5N

3

)

ε6 + . . . (3.70)

The approximation does not depend on the screening configuration and it is linear
in N , as suggested in Ref. [117]. However, in the subsequent discussion we will show
how this only holds up to sixth order in ε: it can be seen from the expansion that
the configuration enters explicitly for successive powers of ε.

A similar procedure in the case of N screening sinks yields

k

ks
= 1−λNε+

[

λN+λ2

N
∑

α,β=1

β "=α

1

Γαβ

]

ε2−

[

λ2N2+λ2

N
∑

α,β=1

β "=α

1

Γαβ

+λ3

N
∑

α,β,δ=1

β,δ "=α

1

ΓαβΓαδ

]

ε3+. . .

(3.71)
where

Γαβ = 2 sin(ωαβ/2),

ωαβ being the angle formed by the sinks α and β with respect to the origin.
Eq. (3.71) makes it very clear that the configuration of competitive reactive

boundaries does influence the screening effect on the central sink. In fact, in this
case the screening boundaries compete with each other for the ligand flux, and the
mutual orientation of the neighbors has to be taken into consideration even for small
values of ε, because the configuration enters the picture already at the second order
term of the expansion through the functions Γαβ . The second-order term in the
expansion shows clearly the competition effects between the neighboring reactive
particles: the closer are the bodies (the smaller is Γ(α,β)), the stronger is the
positive second-order contribution to the correction. Thus, the more the neighbors
are packed closely, the more the absorbing rate of the central sink is increased. This
is evident in Fig (3.16): the screening effect on the central sink is stronger when
the angle between the neighbors is larger. In this sense the competition among
neighboring reactive particles can prove beneficial to an observed site. A clear
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Figure 3.17: Comparison between the numerical solution [117], our solution, and
different degrees of approximation in the perturbative expansion (up to the first,
second and third order in ε) for N = 2 neighboring spheres separated by an angle
of 60◦. One can remark the alternation in sign of the consecutive terms of the
expansion. The rate constant is represented versus the distance to the central sink,
normalized to the diameter of the particles.

signature of this competitive effect is also that the corrections in Eq. (3.71) alternate
in sign. This observation sheds considerable light onto the many-body character of
the rate constant, whose perturbative series is alternatively reduced by the diffusive
interactions between the screening boundaries and the sink (shielding ligand flux
from it) and increased by the diffusive interactions among the screening particles
(shielding flux from each other, see Fig. 3.17). On the contrary, the screening action
of inert obstacles is largely dominated by the excluded-volume effect, and thus can
only yield negative corrections at all orders.

Due to its perturbative nature, eq. (3.71) can be used to quantify the shielding
action of specific 3D arrangements of sinks only for Nε ∝ N/d ≪ 1. However,
it still provides a powerful analytical tool to compare different geometries, as the
perturbative rate is always proportional to the true rate. In Fig. 3.18 we compare
the perturbative expansion (3.71) of the rate constant corresponding to given con-
figurations with the exact value. More specifically we plot the rate constant for
a sink surrounded by competitive perfectly absorbing spheres, computed through
eq. (3.71) truncated at the second and third order, as a function of the exact results,
obtained by solving the linear system. The purpose of these graphs is to show that
even if the perturbative approximation generally overestimates the exact results,
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Figure 3.18: Perturbative (eq. (3.71)) vs exact rates to a sink of radius σ screened
by N = 50 sinks of radius σ1 = σ/10 arranged randomly at a fixed distance d
from it. Each set comprises 100 independent configurations. The values of the
rate are normalized to the Smoluchowski rate for the central sink, kS = 4πDσ.
the perturbative rate constants are to an excellent extent proportional to the exact
values.

unless Nε ∝ N/d ≪ 1, it yields a result which is to an excellent extent proportional
to it. Thus, eq. (3.71) provides an effective figure of merit to compare the effect
of different conformations, e.g. with the aim of designing the special configurations
that minimize or maximize the screening effect on the central sink for given values
of N and d.

The competitive and excluded volume effects are highlighted in Fig.3.19, where
the influence of the configurations is shown and the calculation is compared to the
perturbative approximation, for the case of reflecting bodies, and to the MOA ap-
proximation of the system (3.67) averaged over many different configurations of the
reactive neighbors. The average shielding action exerted by N equidistant reactive
sinks can be in fact captured analytically in the monopole approximation, i.e. by
keeping only the ℓ = 0 and q = 0 terms in eqs. (3.67). The ensuing reduced system
can be averaged over different configurations in the hypothesis of vanishing many-
body spatial correlations, i.e. by averaging the equations over the multi-variate
totally uncorrelated probability density of the angles between each pair of spherical
sinks

P(−→w ) ≡
∏

α !=β

P (ωαβ), (3.72)

with P (ωαβ) = sinωαβ/2, and 2 arcsin(σ1/d) ≤ ωαβ ≤ π (excluded-volume con-
straint between screening sinks). The probability density is normalized such that

∫ π

0
dω1

∫ π

0
dω2 . . .

∫ π

0
dωN(N−1)/2P(−→w ) = 1.

The result for the mean rate is (see subsection 3.3.2 for the details)

〈

k

kS

〉

=
1− λε[N − (N − 1)(1− λε)]

1− λε[Nε− (N − 1)(1− λε)]
. (3.73)
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Figure 3.19: Total flux into a sink of radius σ surrounded by N spherical boundaries
of the same size arranged randomly at distance d (normalized to kS = 4πDσ).
Symbols denote the exact results (solution of the linear system), each point marking
the average rate computed over 100 independent configurations, while the shaded
bands highlight the regions comprised between the minimum and maximum rates.
For reflecting screening boundaries, these regions are as small as the truncation
error. The light blue and orange lines are plots of the perturbative expansion for
the inert neighbors(3.70) and of the monopole approximation (3.73) for the reactive
boundaries, respectively, with λ = 1. Two configurations with N = 50 are shown
explicitly with the screening spheres made all absorbing (bottom) and all reflecting
(top), with arrows flagging the corresponding values of d and normalized rates. The
figure illustrates that the competitive screening greatly reduces the rate constant
compared to inert obstacles, and it is strongly modulated by the configuration.

Fig. 3.19 shows that for λ = 1 eq. (3.73) provides an very good estimate of the
configurational averages of the exact results at separations greater than a few diam-
eters, highlighting the dramatic screening action of competitive reactive boundaries
with respect to inert obstacles. Furthermore, a simple analysis of the rate fluctua-

tions over the configuration ensembles at fixed d allows one to gauge how sensitive
the competitive screening is to the specific 3D arrangement of the sinks. Remark-
ably, this analysis reveals stretches between the minimum and maximum rates for
a given value of d as high as 50 % of the average (see shaded bands in Fig. 2).
More precisely, we remark that the variability associated with different geometries
is greater (i) at short distances and (ii) for few screening particles.

To stress the importance of the configuration and to relate it to the number
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of the particles, it is interesting to extend the previous analysis to the case of N
spheres randomly arranged within a spherical volume around the central sink in a
shell centered on the selected sink, and to compare the absorbing rates obtained by
varying the packing fraction and the configuration of the neighbors. Fig. 3.20 shows
in a clear fashion that the packing fraction alone cannot explain the modulation
of the reaction rate: the configuration of the spheres in the volume does matter.
Interestingly, allowing the particles to occupy an arbitrary position in a volume
around the sink, this effect is evident for both inert and reactive objects. The large
variance in the results obtained by varying the arrangement of the agents appears
related to the average distance of the crowders from the center as well as to the
homogeneity in their distribution. By choosing the standard deviation between the
N surrounding spheres as a measure of order for the crowders’ assemblies, we see
that the heterogeneity in the configuration correlates positively with the modulation
of the rate, once the packing fraction is fixed. The normalized rate into the target
sink is found to increase for less ordered configurations of the screening spheres, both
in the case of reflecting and absorbing neighbors. We can explain this correlation
with two effects: as the arrangements become more regular, the increased probability
of occurrence of holes in the screening configurations facilitates the diffusion of the
ligands. In addition to this effect, the higher competition between the spherical
boundaries increases the efficiency of the target sink. The latter effect appears to be
stronger, since the modulation of the rate is more evident when we consider the case
of screening sinks (right panel in Fig. 3.20). Even if the neighbors shield almost all
the flux from the sink (we are considering here N = 34 reacting boundaries), the
relative difference between the rates obtained in the less and most ordered settings
is as high as 80%.

3.3.1 Outline and details of the perturbative expansions

In order to explain the procedure followed to derive eqs. (3.70) and (3.71), we will
describe here in some detail the steps that led us to compute the first two non-
trivial terms for the non-reactive boundaries expansion. The extension to higher
orders involves longer but straightforward calculations along similar lines. Let us
rewrite the linear system obtained for the case of N reflecting spheres, and let us
single out the coefficients of the central sink B0

gq from the Bα
gq that characterize the

reflecting boundaries,
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(3.74)
where

Wαβgq
m,n = (−1)q+g (n−m+ q + g)!

(n−m)!(q + g)!

(

σ
q
ασ

n+1
β

Ln+q+1
βα

)

Ym−g,n+q(Lβα) (3.75)

Our goal is to obtain an expansion of the rate to the central sink, k/kS = −B0
00

in powers of the parameter ε = σ/d. For this purpose, we have to consider the
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Figure 3.20: Normalized rate to a central sink surrounded by N = 34 spheres, for
inert and reactive boundaries. Each symbol represents the result corresponding to a
given configuration, and the arrangements are ordered on the base of the standard
deviation of the distances between the spheres in a given conformation.

following expressions for all the coefficients of the linear system:

B0

m,n =
∞∑

j=0

ε
jQ0,j

m,n

Bα

m,n =
∞∑

j=0

ε
jQα,j

m,n

(3.76)

where Q
α,j
m,n is the j-th coefficient of the expansion. We have to take into account

the number of multipoles which is necessary to obtain the desired order of approx-
imation. The fourth order of the expansion in powers of ε requires only the terms
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for n = 0 and n = 1, namely
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(3.77)
Substituting the expressions (3.76) in the above equations, the unknown coefficients
Qα,j

m,n are determined by equating the coefficients of equal powers of ε. With the use
of basic trigonometric identities, including θ0β = π − θβ0 and φ0β = π + φβ0, we get
the first coefficients of the expansion:
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(3.78)
The corresponding expression for a collection of N reactive boundaries can be ob-
tained with the same procedure, the only additional difficulty being the contribution
of the pairwise distance between the neighboring boundaries Lαβ , which enter the
expansion already in the first-order terms. To carry out the approximation, it is
necessary to express Lαβ as a function of the perturbative parameter by using basic
trigonometry, i.e.

σ

Lαβ

=
ε

2 sin

(

ωαβ

2

) (3.79)

where ωαβ is the angle formed by the sinks α and β with respect to the central sink.
As a consequence, the perturbative approximation will depend on the configuration
of the surrounding boundaries.

Our perturbative procedure has shown that, in case of N reflecting boundaries,
the rate constant is linear in N and depends only on the distance between the
obstacles and the sink. The configuration does not appear explicitly. However,
this is only the case at large enough separations, as the specific three-dimensional
arrangement of obstacles indeed enters the perturbative expansion at the 7-th order
in ε = σ/d. In order to prove this statement, let us consider two distinct planar
configurations of the reflecting spheres, lying at the vertices of an equilateral triangle
(configuration C3) and of a square (configuration C4). The seventh-order correction
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Figure 3.21: Configuration-dependent parameters in the perturbative expansion
(3.71).

for a collection of spheres lying in the z = 0 plane, θ = π/2, reads
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One immediately recognizes from eq. (3.80) that the configuration enters the picture
through the parameter Γ(β, γ) and through the azimuthal angles φαβ . Evaluating

the corrections for the two regular polygons, Q0,7
00 (C3) and Q0,7

00 (C4), we find
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2
√
2
+

1

4
.

This proves that for orders higher than six in ε, the perturbative expansion of
the rate constant to the sink is no longer independent of the specific arrangement
of reflecting obstacles. Nevertheless, for a wide range of the parameters ε and
N , one can neglect the dependency on the configuration for the case of reflecting
boundaries. We have shown that this is no longer true for a collection of reactive
neighbors. In fact, already the coefficient of the second order term in the expansion
(3.71) do not have a linear dependence on the number of neighboring boundaries,
unlike the corresponding formula for the reflecting spheres. To justify this claim,
we can estimate explicitly the leading power in N of the second-order coefficient
for a particular domain. For the sake of simplicity, we will confine ourselves to a
planar configuration with the N centers of the spheres lying at the vertices of a
regular polygon and also take λ = 1. In this case, the pairwise distances for each
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pair Ωα,Ωβ can be written explicitly, so that

k

ks
= 1−Nǫ+

(

N +
N∑

α=1

N∑

β !=α=1

1

Γ(α,β)

)

ǫ2 + o

(

ǫ2
)

= 1−Nǫ+

(

N +N

N−1∑

k=1

1

2 sin(πk/N)
︸ ︷︷ ︸

a(N)

)

ǫ2 + o

(

ǫ2
)

.
(3.81)

It can immediately be concluded that the order in N of Q0,2
00 = N + a(N) is higher

than two. One has
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A more precise estimate can be obtained using the approximation
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where r(k,N) is the rest. Assuming N odd and using the properties of the harmonic
series (for large values of N one has
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Since it is possible to show that N
∑(N−1)/2

k=1 r(k,N) has order N2, we conclude that,
at least in the planar ordered configurations considered here, the second coefficient
of the expansion has order N2 lnN . In fact, we have
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3.3.2 Monopole approximation

In this subsection we will show how to compute the monopole approximation. This
is in general a very powerful approximation, especially when the reactive landscape
is dominated by a large number of sinks. Here we will illustrate this technique with



86 Theory of diffusion influenced reactions

reference to the derivation of eq. (3.73). Let us write explicitly the linear system
∀α = 0, . . . N, ∀q = 0, . . .∞, ∀g = −q . . . q:

−Bα
gq +

(q − hα)

(hα + q + 1)

[
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ℓ
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Bβ
mℓW

αβgq
mℓ

]

= 0

for a configuration of N sinks randomly placed at a distance d from the central sink
in the monopole approximation, that is, ℓ = q = 0. We get ∀α = 1, 2, . . . , N
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We recall that in general the rate to the α-th sink is:
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After summing the second equation over i, and letting x = B0
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Physically, the variable x is the negative of the rate constant to the central sink,
k/kS = −x, while the variable y stands for the total rate constant for the ensemble
of N screening spheres, namely

N
∑

α=1

kα
kSα

= −y.

Obviously the solution will depend on the configuration of the spherical boundaries,
which is embodied in the functions Γα,β . The value of the mean rate can be obtained
by averaging both equations over the multi-variate probability density (3.72) of the
angles ωαβ between each pair of spherical sinks. The excluded-volume constraint
among the screening sinks requires two given particles to lie at a distance greater
than or equal to their diameter. This means that 2 arcsin(λε) ≤ ωαβ ≤ π ∀α,β, with
λ = σ1/σ and ε = σ/d. The average of the configuration-dependent terms gives

〈

1

Γαβ

〉

=

∫ π

2 arcsinλε

P (ω) dω

2 sin(ω/2)
= 1− λε.

Noting that
N
∑

i=1

N
∑

β #=i=1

Bβ
00

= (N − 1)

N
∑

i=1

Bi
00 = (N − 1)y



3.3 Diffusive interactions and excluded volume effects 87

we finally get

〈

k

kS

〉

= −〈x〉 = 1− λε[N − (N − 1)(1− λε)]

1− λε[Nε− (N − 1)(1− λε)]
. (3.82)

This expression reduces to a well-known formula for a system of two identical
sinks [111], k/kS = 1/(1 + ε).

In figure 3.19 the averaged MOA approximation is compared to the averaged
exact results for reactive sinks in the particular case of λ = 1, which is the setting
analyzed in Ref. [117]. The picture clearly shows how, for the choice σ = σ1, the rate
to the central particle increases monotonically with its distance from the screening
spheres.

It is instructive to analyze to which extent this behavior changes if we allow the
central sink to have a different size from the screening boundaries. It is straight-
forward to prove that the averaged MOA displays a minimum as a function of the
distance d for certain choices of the parameters N and λ. Since ε ∝ d−1, the condi-
tion for the existence of a stationary point as the distance d is changed reads

d

dε
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〉

= − λN(ǫ(λǫ(λ(N − 1) + 1)− 2) + 1)

(λǫ(λ(N − 1)ǫ+N(ǫ− 1) + 1)− 1)2
= 0. (3.83)

From eq. (3.83) it follows that a minimum exists for

λ
2(N − 1) + λ− 1 ≤ 0. (3.84)

In this case, the distance d∗ at which a minimum is found is

d∗ = σ

[

√

1− λ[1 + λ(N − 1)] + 1
]

. (3.85)

If a minimum exists, it has to occur at a distance greater than or equal to the
contact distance between the central sink and the screening particles. Thus, one
should enforce the condition d∗ ≥ σ+ σ1. Therefore, in view of expression (3.85), it
follows that one has to complement eq. (3.84) with the additional requirement

√

1− λ[1 + λ(N − 1)] + 1 ≥ 1 + λ. (3.86)

The solution to the system of inequalities (3.84) and (3.86) reads

{

λ ≤ λ
∗(N) ≡ (

√
4N + 1− 1)/(2N) < 1 for fixed N

N ≤ N∗(λ) ≡ (1− λ)/λ2 for fixed λ
(3.87)

The non monotonicity is another non-trivial effect of the mutual screening and of
the diffusive interaction among the reactive boundaries (see the discussion in section
3.2.1). This effect is shown in Fig.3.22, where the exact rate to a sink surrounded
by smaller reactive neighbors is compared with the MOA approximation for an av-
erage configuration of the particle. We can note that the non monotonicity is here
more evident than in the two-sink configuration considered in 3.2.1. Upon increasing
the distance d, in fact, the total flux to the many screening sinks will increase be-
cause their active surfaces get larger and they also get farther apart from each other.
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Figure 3.22: Total flux into a sink of radius σ surrounded by N = 50 smaller sinks
of radius σ1 = σ/10 arranged randomly at a distance d (normalized to kS = 4πDσ).
The left-most and right-most cartoons depict two configurations that screen exactly
the same amount of flux, despite being at considerably different distances (d/σ = 1.1
and d/σ = 8). The configuration shown in the middle corresponds to the predicted
minimum at d/σ = 1 +

√

1− λ[1 + (N − 1)λ] ≈ 1.64. The solid line is a plot of
formula (3.73). Each symbol is the average over 250 independent configurations,
while the filled band comprises the region between the minimum and maximum
rates. The top panel illustrates the case of screening by a large number of tiny
particles, highlighting the sizeable non-monotonic effect. The curves are plots of
eq. (3.73).

In the following chapters 4 and 5 we will present the application of our model to two
examples of diffusion influenced reactions. In chapter 4 we aim at characterizing,
as a function of the structural parameters, the efficiency of complex architectures of
core-shell nanoreactors where many catalytic metallic nanoparticles are embedded
in a polymeric material around a plastic core to form a complex reactor. Chapter
5 deals with the biological, naturally occurring binding reaction between an anti-
gen and an antibody, and more generally points to a way to adapt our procedure
to account for ligands binding to complex non-spherical large biomolecules. The
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approach for modeling the antigen-antibody interaction combines a coarse grained

dynamical representation of the protein with the definition of the specific multiple

boundaries problem.
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Chapter 4

Catalytic rate constant of

complex core-shell nanoreactors

A thriving field in modern nano-sciences is the design and fabrication of novel com-
posite catalytic structures. In particular, several strategies have been devised to
employ large number of catalytic metal nanoparticles to assist a wide array of oxi-
dation, reduction and hydrogenation reactions. The interest in composite organic-
metal active nanostructures arises due to the fact that metals often have totally
different properties at the nano-scale [118]. Several metals have been studied and
adapted to be used as nanocatalysts: gold, silver, palladium, silica particles have
been assembled together within organic meshes of different sorts in various configura-
tions and many efforts have been made to optimize the structure of these composite
catalytic systems. The catalytic efficiency of an assembly of metallic nano-particles
is directly connected to their global surface area, because a larger global surface
allows more reactions to occur at the same time. However, the resulting need for
assembling a large number of nanoparticles poses a problem, because the nanopar-
ticles in liquid solutions tend to aggregate at large concentrations. To keep them
separated in a fixed position, the catalysts can be either endowed with protective
layers or fixed on the surface of static objects, or even immobilized in colloidal car-
rier systems. A recent innovative line of technology is to use organic meshes whose
properties are tunable in response to the variation of external parameters, such as
PH and temperature. In this chapter we will focus on particular reactors consisting
of several gold, silver or palladium nanoparticles immobilized in a microgel made
of poly-N-isopropylamcrylamide (PNIPAM), a polyelectrolite which can shrink and
swell following changes in temperature. The microgel is fixed around a spherical
plastic core, thus forming a shell where the catalysts are embedded and where the
reactants diffuse until they get in contact with the nanoparticles (see the scheme in
Fig. 4.1). In addition to keep the particles fixed throughout the reaction, the use of a
termosensitive colloid provides a powerful way of controlling the reaction rates, since
the varying thickness and the modified chemical properties of the carrier influence
the mobility of substrate molecule within the composite structure.. In particular,
the PNIPAM microgel undergoes a phase transition at 32◦ C: increasing the tem-
perature past this critical value, the gel passes from a swallen to a shrunk state, by
expelling water. This property has a complex effect on the reaction kinetics: on one
the hand the diffusion coefficient is decreased, because the medium becomes thicker.



92 Catalytic rate constant of a nanoreactor

Figure 4.1: Scheme of a core-shell nanoreactor with embedded gold nanoparticles. The PS
core is shown at the center.

On the other hand, depending on the specific reactant and its affinity with water,
the change of phase can have a positive or negative effect on the reactant mobility.
More precisely, the solvation free energy of substrate molecules has been shown to
play a crucial role in controlling the overall catalytic activity of the nano-reactor
[119]. In reason to the ever growing number of applications of these technologies in
chemical and biological applications, the need for a deep understanding of how the
structural parameters of these composite catalytic scaffolds influence the efficiency
of the catalysis has recently become a topic of great interest. The analythical tool
that we have developed in our work provides the perfect instrument to characterize
the best setting in terms of the dimension and arrangement of the components, tem-
perature range and choices of the materials. More specifically, we set out to employ
the model described in the previous sections to compute the overall reaction rate
constant of a composite core-shell nanoreactor, consisting of a PS core surrounded
by a hydrogel layer of varying thickness, where a given number of small reactive
spheres are embedded at prescribed positions (see the sketch in figure 4.1). These
are endowed with a prescribed intrinsic rate constant. Both the diffusion coefficient
in the hydrogel and in the bulk enter our model explicitly. As a result of our analysis
we not only provide a way of computing the reaction rates corresponding to various
configurations exactly. We also worked out a simple but very accurate analytical for-
mula for the overall rate constant, derived within the monopole approximation. Our
analytical treatment provides a very useful and flexible tool for the design of opti-
mally performing composite nanoreactors with different polymer shells and carrying
different kinds of nano-catalysts.

4.1 Mathematical model for the catalytic reaction

We model a nanoreactor consisting of a polysterene (PS) core surrounded by a
microgel (or polymer brush) layer as two concentric spheres centered at the origin of
a 3D frame, as depicted in Fig. 4.2. We denote with RS and R0 the core and shell
radius, respectively. The shell carries N small nano-catalysts (metal nanoparticles



4.1 Mathematical model for the catalytic reaction 93

Figure 4.2: Schematic representaation of a composite nanoreactor displaying the
parameters used in the analytical derivation.

or enzymes) that we model as spheres of radius a. For the sake of simplicity, we
label the PS core as the inner sphere with position vector L1 = 0 while the vectors
Lα, α = 2, 3, . . . , N + 1 denote the position of the N nanocatalysts. We want to
compute the reaction rate constant for reactions taking place at the surface of the
catalyst spheres. These are endowed with an intrinsic rate constant k∗, which in
principle could be a function of temperature of the Arrhenius-type [119]:

k∗ ∝ exp−
∆E

kBT

where ∆E is the activation energy required to trigger the reaction. Let us de-
note with S0 ≡ {r0, θ0,ϕ0} the reference frame with the origin at the nanoreactor
center and with Sα ≡ {rα, θα,ϕα} the N reference frames with the origins at the
nanospheres centers and the axes parallel to S0. This formally defines the following
3D domains

Ω
+ = {r0 ∈ (0, R0], θ0 ∈ (0,π),ϕ0 ∈ (0, 2π)} \ ∪αΩα

Ω
− = {r0 ∈ [R0,∞), θ0 ∈ (0,π),ϕ0 ∈ (0, 2π)}

(4.1)

where Ω1 = {|r0| < RS} denotes the interior of the PS core and Ωα = {|rα| =
|r0−Lα| < a}, α = 2, 3, . . . , N +1, denote the interior of the α-th nanosphere. The
ligand diffuses with diffusion coefficients Di and Do inside the microgel shell and in
the bulk, respectively (Di < Do).
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Let ρB denote the bulk density of reactants and let us introduce the time-
dependent normalized density u(r, t) = ρ(r, t)/ρB. As usual, we assume that
the system relaxation time for the diffusive flux of B particles (the ligands) tD ≃

(R0 −RS)
2 /Di is small enough to neglect time-dependent effects. Hence, in the

absence of external forces, the diffusion of ligands with normalized number density
u(r) is described by the steady-state diffusion equation

∇ · [D(r)∇u(r)] = 0 in Ω = Ω
+
∪ Ω

− (4.2)

with

D(r) =

{

Di in Ω
+ (microgel)

Do in Ω
− (bulk)

(4.3)

and with the customary bulk boundary condition

lim
|r|→∞

u(r) = 1. (4.4)

The difference with the setting considered up to now is that here the problem is
defined in both the internal (confined) Ω

+ and external (unbounded) Ω
− region.

It is well known from the general theory of partial differential equations that the
classical solution (twice continuously differentiable in Ω and continuous on Ω) of
the stationary diffusion equation (4.2) does not exist in the whole domain Ω [120].
Therefore one should consider the function

u(r) =

{

u+(r) for Ω
+ (microgel)

u−(r) for Ω
− (bulk).

(4.5)

Accordingly, we should impose a condition for the substrate concentration field at the
bulk/microgel interface, ∂Ω0 ≡ {r0 = R0}. It has been demonstrated recently that
a key factor controlling the overall reaction rate is the solvation free-energy change
∆G, a quantity that describes the partitioning of the reactant in the microgel versus
bulk [119]. It is possible to show in the case of a single catalyst that a free-energy
jump at the solvent-microgel interface can be accounted for by a modified ligand
density in the microgel versus bulk, ρB → ρB exp(−β∆G) [119]. Here we assume
that such description holds unchanged in the case of multiple catalysts. Accordingly,
we require

(

u+ − λu−
)∣

∣

∂Ω0

= 0 (4.6)

where

λ = exp(−β∆G). (4.7)

Furthermore, the following continuity condition for the local diffusion fluxes should
also hold at the bulk/microgel interface

(

∂u−

∂r0
− ζ

∂u+

∂r0

)∣

∣

∣

∣

∂Ω0

= 0 (4.8)

where we have introduced the diffusion anisotropy parameter

ζ =
Di

Do

(4.9)
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Conditions (4.6) and (4.8) for Di != Do are often called the weak discontinuity

conditions for the concentration field u(r). Finally, reflecting boundary conditions
should hold at the surface of the PS core, i.e.

∂u+

∂r0

∣

∣

∣

∣

r0=RS

= 0. (4.10)

We are interested in describing the pseudo-first-order irreversible diffusion-influenced
reaction between the N nano-catalysts C encapsulated in the microgel and the re-
actants B which are freely diffusing in the bulk and in the microgel. The process
can be cast in the usual scheme:

C +B
kD

−−−⇀↽−−−
k−D

CB∗ k∗

−→ C + P (4.11)

where as usual CB∗ denotes the encounter complex, kD and k−D are the association
and dissociation diffusive rate constants, respectively, and k∗ is the intrinsic rate
constant of the chemical reaction occurring at the sufrace of the metal nanoparticles.
In substrate excess conditions, the reaction (4.11) is equivalent to the following
pseudo-first-order kinetic scheme

C +B
k
−→ C + P. (4.12)

Our final goal is to compute the global diffusion-influenced rate constant k which
we can calculate as

k =
N+1
∑

α=2

∫

∂Ωα

Di

∂u+

∂rα

∣

∣

∣

∣

∂Ωα

dS (4.13)

and to characterize its dependence on the physical-chemical parameters of the nanore-
actor. We stress that the introduced schematization of the problem holds under the
excess reactant condition c ≪ ρB, where we denote with c the concentration of
the catalysts. Introducing in the following the usual dimensionless spatial variables
ξ0 = r0/R0, ξ1 = r0/RS and ξα = rα/a for α = 2, 3, . . . , N + 1, our problem can be
cast in the following form

∇2u± = 0 in Ω
± (4.14a)

(

∂u+

∂ξα
− hu+

)
∣

∣

∣

∣

∂Ωα

= 0 α = 2, 3, . . . , N + 1 (4.14b)

lim
ξ0→∞

u−(ξ0) = 1 (4.14c)

∂u+

∂ξ1

∣

∣

∣

∣

ξ1=1

= 0 (4.14d)

(

u+ − λu−
)∣

∣

∂Ω0

= 0 (4.14e)
(

ζ
∂u+

∂ξ0
−

∂u−

∂ξ0

)∣

∣

∣

∣

∂Ω0

= 0 (4.14f)

The parameter

h =
k∗

4πaDi

≡
k∗

k+
S

, (4.15)
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as in the previous sections is meant to gauge the character of the reaction, and it is
normalized to the Smoluchowski rate constant of a single nanosphere embedded in
the microgel, k+S = 4πaDi.

We look for the solutions of the above problem in the bulk and in the microgel
as linear combinations of regular and irregular harmonics:

u+(r) =
∞
∑

n=0

n
∑

m=−n

Amn ξ
n
0 Ymn(r0) +

N+1
∑

α=1

∞
∑

n=0

n
∑

m=−n

Bα
mn ξ

−n−1
α Ymn(rα) (4.16a)

u−(r) = 1 +

∞
∑

n=0

n
∑

m=−n

Emn ξ
−n−1
0 Ymn(r0) (4.16b)

where ξ0 = r0/R0, ξ1 = r0/RS , ξα = rα/a for α = 2, 3, . . . , N and Amn, B
α
mn and

Emn are N + 3 infinite-dimensional sets of unknown coefficients.
In order to determine the unknown coefficients we express the solution in the

local coordinates on every boundary (the N + 1 spherical surfaces ∂Ωα) and at the
microgel-bulk interface ∂Ω0, where we impose the weak discontinuity conditions for
the ligand density field.

With the same strategy introduced in section 3.1, and eliminating the coefficient
Emn, we obtain the following linear equations:

(

1

λ
+

q

q + 1

)

Agq +

(

1

λ
− ζ

) N
∑

β=1

q
∑

n=0

n
∑

m=−n

Bβ
mnV

β,m,n
g,q I{g−(q−n)≤m≤g+(q−n)} = δg0δq0

(4.17a)

−Bα
gq +

(q − hα)

(hα + q + 1)

∞
∑

n=0

n
∑

m=−n

(

AmnH
(α,g,q)
m,n Iq≤n +

N
∑

β=1,β $=α

Bβ
mnW

(α,β,g,q)
m,n

)

= 0,

(4.17b)

where h1 = 0, hα = h for α > 1. Eqs. (4.17) hold ∀ q ∈ [0,∞) with α = 1, 2, . . . , N+1
and g = −q,−q + 1, . . . , q − 1, q. The matrices V,H,W read

V α,m,n
g,q =

(−1)q−n+m−g(q − g)!

(n−m)!(q − n+m− g)!
η
q−n
0α χn+1

α Ym−g,q−n(−Lα) (4.18a)

H(α,g,q)
m,n =

(

n+m

q + g

)

χq
αη

n−q
0α Ym−g,n−q(Lα) (4.18b)

W (α,β,g,q)
m,n = (−1)q+g (n−m+ q + g)!

(n−m)!(q + g)!
η
−(n+q)−1
βα χq

αχ
n+1
β Ym−g,n+q(Lβα) (4.18c)

where Lαβ = Lβ −Lα (according to this notation L0α = Lα) and

ηαβ = ηβα =
Lαβ

R0
χα =

Rα

R0
. (4.19)

Here, for the sake of trasparency, we pose R1 = RS (radius of the PS core) and
Rα = a, for α > 1 (radius of the nanocatalysts).

If the multipole expansions are truncated at NM multipoles, the system (4.17))
comprises (N+2)(NM +1)2 equations, which can be easily solved numerically. Once
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the coefficients have been determined, the overall rate constant can be obtained
easily as:

k =
N
∑

α=2

ka = −k+S

N+1
∑

α=2

Bα
00. (4.20)

The system one has to solve has the following structure
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The above described procedure allows one to compute the reaction rate constant for
a given geometry of the system and for given values of the relevant physico-chemical
parameters, with arbitrary precision.

The monopole approximation of the solution of the system for a given config-
uration can be obtained by truncating the expansion to q = n = 0. The ensuing
equations read

1

λ
A00 +

(

1

λ
− ζ

) N
∑

β=1

Bβ
00V

β00
00 = 1 (4.21a)

−Bα
00 −

(hα)

(hα + 1)

(

A00H
(α00)
00 +

N
∑

β=1,β !=α

Bβ
00W

(αβ00)
00

)

= 0 α = 1, 2, . . . , N

(4.21b)

Recalling the definitions of the matrices, we have V β00
00 = a/R0, H

(β00)
00 = 1,

W
(αβ00)
00 = a/Lβα, and ζ = Di/Do, so that the system takes the form







































1

λ
A00 +

(

1

λ
− ζ

)

a

R0

N
∑

β=1

Bβ
00 = 1

Bα
00 +

hα
1 + hα

(

A00 +
N
∑

β=1,β !=α

Bβ
00

a

Lαβ

)

= 0 α = 1, 2, . . . , N

.

(4.22)

Since Bα
00 = −kα/k

+
S , the overall rate constant of the nanoreactor can be computed

simply as k = −

∑N+1
β=1 kSB

β
00 (note that B1

00 = 0 is identically zero as the PS core
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is modeled as a reflecting sphere). Moreover, we can average the system (4.22)
over the nanoparticles configurations P(L2,L3, . . . ,LN+1). We therefore get from
Eqs. (4.22)



















1

λ
A00 −

(

1

λ
− ζ

)

a

R0

k

k+
S

= 1

k

k+
S

−
h

1 + h

[

NA00 − (N − 1)
k

k+
S

〈

a

Lαβ

〉]

= 0

(4.23)

where we have taken hα = h = k∗/k+
S

∀ α as the N catalysts are identical. We note
that a more useful quantity is the total rate constant normalized to the Smoluchowski
rate of an isolated sink of the same size as the whole nanoreactor in the bulk,
k−
S
= 4πDoR0. Eqs. (4.23) can be solved straightforwardly, which gives

k

k−
S

= Nk∗
(

a

R0

)

ζe−β∆G

k+
S
+ k∗

[

1 + (N − 1)

〈

a

Lαβ

〉

−
Na

R0

(

1− ζe−β∆G

)

] (4.24)

where we recall that λ = e−β∆G, ζ = Di/Do and k+
S
= 4πDia. The quantity 〈a/Lαβ〉

represents the average inverse inter-catalyst separation, which can be computed an-
alytically under the reasonable assumption that spatial correlations in the catalysts
configurations are negligible. The probability density for the position of the centers
of any two particles in a shell of radii RS + a and R0 − a is thus given by

P(r,ρ) =

(

3

(R0 − a)3 − (RS + a)3

)2 r2ρ2 sin θ

4π
(4.25)

so that the average inverse inter-catalyst separation is
〈

a

Lαβ

〉

=
9 a

2[(R0 − a)3 − (RS + a)3]2
(4.26)

×

∫

R0−a

RS+a

r2 dr

∫

R0−a

RS+a

ρ2 dρ

∫ π

0

sin θ
√

r2 + ρ2 − 2rρ cos θ
dθ

=
2(1− ε)5 − 5(1− ε)2(γ + ε)3 + 3(γ + ε)5

(1− ε)6 − 2(1− ε)3(γ + ε)3 + (γ + ε)6

(

3a

5R0

)

: = εC(ε, γ) (4.27)

where γ = RS/R0 denotes the fraction of the nanoreactor size occupied by the
PS core and ε = a/R0 is the non-dimensional size of each catalyst. We see that,
since ε ≪ 1, one has 1 + ε/3 ! C ! 6(1 + ε)/5, i.e., C is of the order of unity,
1.005 ! C ! 1.217 (taking ε ≈ 0.0146 from experiments [121]). This has the
interesting implication that the exact size of the core does not play a big role for
the overall rate process for relevant values of the physical parameters, as we discuss
further below.

If the catalytic action exerted by the metal nanoparticles encapsulated in the
microgel is fast with respect to diffusion, i.e. k∗ ≫ k+

S
, expression (4.24) can be

simplified by taking the limit k∗ → ∞. This yields the expression for the fully
diffusion-controlled rate

k

k−
S

=
Nε ζe−β∆G

1 + (N − 1)εC(ε, γ)−Nε
(

1− ζe−β∆G

) . (4.28)
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Eq. (4.24) is a very important result, as it allows one to compute the overall reac-
tion rate as a function of all the relevant structural and physico-chemical parameters
that control the performance of the nanoreactor. We stress that in this formula the
ligand diffusion coefficient in the microgel, Di, the radius of the nanoreactor, R0,
and the effective intrinsic rate constant, k∗, are all functions of temperature. In the
next section we will discuss more in depth the properties and the usefulness of the
analytical solution.

4.2 Discussion of the analytical solution

We now discuss the essential features of the diffusion-controlled rate in Eq. (4.28).
For a random distribution of the nanoparticles in the shell we found 〈a/Lαβ〉 =
Ca/R0, where C depends on the ratio between the radius of the PS core and that
of the nanoreactor and is of the order of unity. Hence, we find that the exact size of
the core actually does not play a significant role for the diffusion-controlled rate for
relevant values of the physical parameters, i.e., (weak) attraction to the hydrogel
∆G < 0 and decreased internal diffusion ζ < 1. The most pronounced effect of the
core corresponds to the case ζ = 1 (bulk diffusion in the shell) and ∆G = 0. Then,
comparing the limits of vanishing core, (γ = 0 which yields C(γ = 0) ≃ 6/5) to
the thin-shell limit, (γ ≃ 1 which yields C(γ = 1) ≃ 1), shows that the two corre-
sponding values of the overall maximum rate k/k−

S
(for N → ∞) vary from 5/6 to

1, i.e. they differ by only 20 %. In other words, if the nanoparticles are distributed
uniformly inside the nanoreactor or only in the surface shell region makes only a
difference of at most 20% in the rate. In the following we neglect these effects, as
we move to a qualitative discussion of the more significant effects.

As we see from Eq. (4.29) the maximum achievable rate is k = k−
S

= 4πD0R0,
that is, the Smoluchowski rate of a sink of size equal to that of the total nanore-
actor, i.e. the nanoreactor should be big for high activity. In the limit of small
nanoparticles-to-nanoreactor size ratio, ε ≪ 1, Eq. (4.28) can be simplified to the
following form

k

k−
S

=
Nε ζe−β∆G

1 +Nε ζe−β∆G
. (4.29)

Let us recall the important parameters, that is, the nanoparticles-to-nanoreactor size
ratio 0 < ε = a/R0 ≪ 1, the number of nanoparticles N , the scaled reactant mobility
inside the shell 0 < ζ = Di/D0 ! 1, and finally the change in solvation free energy
∆G for the reactants upon entering the hydrogel. Clearly, if the mobility vanishes,
ζ ≪ 1 or the solvation free energy change ∆G ≫ kBT is substantially repulsive,
the reaction is significantly slowed down. However, in realistic systems the mobility
will be certainly slowed down to some extent but not vanish. ∆G may be even neg-
ative (attractive) if the reactant interacts favorably with the polymer as found for
rather hydrophobic reactants and collapsed PNIPAM-based hydrogels [119]. Since
∆G enters Eq. (4.29) exponentially, substantial effects are expected following small
changes in the interaction. Together with ∆G, clearly the number of nanoparticles
and their size ratio with respect to the total nanoreactor size are the key quantities
to tune. To save resources N should be small but large enough to warrant a high
catalytic activity.

The behavior of Eq. (4.29) resembles a Langmuir-binding isotherm form. The
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rate as a function of N initially rises linearly with a slope ε ζ exp(−β∆G) and fi-
nally saturates to the maximum rate k = k−S for large N → ∞. For a single
nanoparticle, N = 1, we recover essentially the result for a yolk-shell nanoreactor
k = 4πDia exp(−β∆G), where a single nanoparticle is embedded in the center of a
spherical hydrogel, apart from a slight modification of the target size, which is not
a for the yolk-shell but Ri, the radius of the interior hollow confinement [119].

It is instructive to define an efficieny factor f = k/k−S between 0 and 100%, that
quantifies the desired target efficiency of the nanoreactor. Solving Eq. (4.29) for N ,
we find

Nf =

(

eβ∆G

ε ζ

)

f

1− f
(4.30)

that is, for a fixed efficiency, the number of nanoparticles needed to maintain it
changes exponentially with the change of solvation free energy. As a numerical
example, let us assume reasonable values of ζ = 0.2, ε = 0.01, and β∆G = −1. To
obtain an efficiency of 50%, Nf = 184 nanoparticle catalysts would be needed. If
β∆G = −2, the number wold drop of a factor 1/e to Nf = 68. Note that Nf does
not scale with the catalyst surface, as typical for diffusion-guided reactions, rather
it decreases linearly with the catalyst size.

Formula (4.30) provides a simple rule of thumb for optimizing the design and
synthesis of core-shell nanoreactors. As an example, if one aims at 50% efficiency for
a relatively neutral hydrogel chemical environment (∆G = 0) where the mobility of
the substrate is not significantly reduced (ζ = 1), one needs to employ Nf = 1/ε =
R0/a nanoparticles. For ε = 0.01 that would be Nf = 100. In the case of a polymer
matrix in physical-chemical conditions leading to a reduced mobility (e.g. ζ = 0.2),
one would need five times more NPs for ∆G = 0, but about the same number for
β∆G ≃ −1.6. This clearly illustrates how the performance of a composite core-shell
nanoreactor is non-trivially shaped by the combined action of the physical chemical
properties of the hydrogel shell matrix, such as solvation free energy differences and
changes in translational mobility of the substrate molecules. To exemplify some of
the discussions also visually and compare the approximative Eq. (4.28) to our exact
approach Eqs. (4.17), we plot in Fig. 4.3 the normalized rate versus the number
of nanoparticles for two different mobility ratios ζ = 0.2 and 1.0 and core sizes
γ = 0.353 (as in previous experiments described in [119]). The nanoparticle size is
held fixed as ε = 0.0146 as also provided from experiments. We compare the full
analytical solution Eq. (4.28) (lines) to numerical solutions of Eqs. (4.17) (symbols).
First of all, we see that the analytical treatment is indeed very accurate and deviates
from the exact solution by less than one percent. Comparing the different mobilities
ζ within the gel, clearly all rates are higher in the more mobile case. Concerning the
overall form of the curves we see the initial linear rise of the rates as predicted by the
Langmuir form Eq. (4.29) and then saturating for large N values. Saturation is weak
for small ∆G values but begins markedy earlier (for smaller N) if the adsorption
free energy reaches values as small as a few kBT , the thermal energy. Hence, a
decisive factor in the design of optimized nanoreactors must be clearly the tuning
of the reactant-hydrogel interaction towards attraction.
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4.3 Analysis of the models and future perspectives

Numerous studies have been performed with the aim of characterizing the catalytic
activity of active nanoreactors, and to highlight the effect of the temperature on
the overall rate of the reaction. In Ref. [122, 123] the authors identify the inter-
play between the effects of the temperature on the diffusion coefficient, on the local
free enthalpy ∆G and on the reactivity of the particles. The most recent analytical
approach followed in [119] models the reaction rate for a single yolk-shell nanoreac-
tor (embedding a single nanoparticle) coupling the Debye-Smoluchowski approach
with a two-state model which characterizes the swallen and collapsed state. The
agreement with experimental results on yolk-shell structures accounting for single
nanoparticles is good. A fundamental assumption that allows the authors in [119]
to derive an analytical expression for the rate constant with fit parameters, is that
the nanoparticles do not interact with each other and can be treated independently.
Our contribution allows us to describe the behavior of a composite architecture in-
volving multiple catalysts because the equations (4.23) and (4.28) take into account
explicitly the interaction among many particles. The final purpose of our study
is thus to identify the values of the relevant geometrical parameters, such as size,
number and configuration of the nanoparticles, that maximize the catalytic activity
of a composite nanoreactor of the kind showed in Fig. 4.2. The solution worked out
in the previous section allows one to compute the overall reaction rate constant of
the nanoreactors for a given configuration of the N nanocatalysts (metal nanopar-
ticles or enzymes), given the thickness of the microgel layer R0 − RS , the diffusion
coefficients in the bulk Do and in the microgel Di and the intrinsic reaction constant
of the nanocatalysts k∗. As in the model described in Ref. [119], the parameters
∆G, k∗, R0 are obtained from the experimental results. However, future theoretical
works should focus on describing the temperature dependence of the ligand diffusion
coefficient inside the microgel and of the intrinsic rate constant, starting from first
principles. Once the functional dependence of the geometrical and chemical parame-
ters on the temperature are known, one can calculate the reaction rate constant and
the approximate MOA for the catalytic system taken at a given temperature, simply
by solving the system (4.17) and equation (4.23) with the corresponding parameters.

The thickness of the the microgel layer R0 − RS varies according to changes in
temperature: in the proximity of the lower critical solution temperature (LCST),
which for the PNIPAM is approximately 32◦ C, the shell starts to shrink due to a
decreased solubility of PNIPAM in water, which causes water expulsion and com-
pression of the porous network [118]. As a result, the shell volume is reduced and the
nanoparticles get closer to each other. A functional relation between temperature
and diameter of the nanoreactor can be obtained by fitting the hydrodynamic radii
of the composite particle measured at different temperatures through Dynamical
Light Scattering (DNLS).

In general, the intrinsic rate constant k∗ can be assumed to have an Arrhenius-
like dependence on temperature, with pre-factor kR and activation energy ER [118].
We can thus assume, following [119]

k∗ = kR exp

(

−

∆ER

kBT

)

.

As for the value of the diffusion coefficient inside the microgel, the situation is
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somewhat more controversial. A plausible strategy among other seems to follow
a hydrodynamic approach proposed in 1984 by Cukier [124] for the diffusion of
Brownian particles in semidilute polymer solutions with volume fraction φ

D(φ) = D0e
−κC φ3/4

(4.31)

where D0 is the diffusion coefficient at infinite dilution and κC a microgel-dependent
constant. When the temperature increases from below the critical solution tempera-
ture (LCST) and past the swollen-to-shrunk phase transition, the volume fraction of
the microgel increases as it expels water molecules. For the moment, we did not in-
clude in our models the functional dependence of the parameter on the temperature,
which can constitute a future development of our theory.

All in all in this chapter we have demonstrated how our theory can be adapted
to provide ready-to-use analytical tools to assist chemical engineers in the design of
important nano-devices employed in modern applications in the chemical sciences.
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Figure 4.3: Reaction rate constant versus number of nanoparticles of radius a =
0.0146R0 for Di = Do (upper panel, swallen phase) and Di = 0.2Do (lower panel,
shrunk phase). Symbols denote the exact results, while the solid lines are plots of
the configuration-averaged monopole approximation, eq. (4.28). Other parameters
are RS/R0 = 0.353, h → ∞.
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Chapter 5

Binding of small ligands to large

flexible biomolecules

The interplay between competing binding sites is particularly interesting for molecules
which display multi-valent activity. The coexistence of multiple binding sites can
improve the efficiency of the reaction kinetics, because it increases the probability
of getting in contact with a specific ligand. In the case of antibodies, a single pro-
tein can bind monovalently to two small ligands or multi-valently to larger antigens.
The latter setting is used by antibodies to increase the binding affinity with large
molecules and generate more stable complexes. On the other hand, we showed in the
previous chapters how the competition between multiple binding sites, which mutu-
ally shield part of the flux from each other, decreases the global rate of the reaction
with respect to the case of a single receptor with the same global active surface. In
this chapter we aim at investigating the role of structural parameters, such as the
distance and the size of active sites belonging to the same receptor, and the role of
internal dynamics on the proteins’ ability to bind other molecules. Dynamics is a
fundamental characteristic of molecular machines, and facilitates the execution of
specific biological functions [125, 126]. As underlined by many experimental data,
proteins can not be considered as rigid and static object because they exhibit a
variable degree of structural flexibility. Flexible units might act as dynamical gates
that govern the accessibility of specific sites and indirectly control the cascade of
reactions triggered by a binding event [125, 126].

A paradigmatic example of the proteins’ complexity is given by the typical
antigen-antibody reaction. Antibodies are large, extremely flexible molecules with
multiple binding sites, whose internal dynamics is certainly key to their great ability
to bind antigens of all sizes, from small hormones to giant viruses. Unarguably, they
can be counted among the most important molecular machines for the functioning of
life. Like other large biomolecular assemblies, they are increasingly being exploited
in modern nanobiotechnology [127] and biomedical [128] applications.
Hence, a satisfactory comprehension of antibodies’ structure and functional dynam-
ics poses great challenges at the interface among biology, physics, medicine and
pharmaceutical industrial research. We will base our analysis on the structure of
a particular class of antibodies, the immunoglobulin G (IgG), which is the isotype
that provides the majority of antibody-based immunity against invading pathogens.
Antibodies are large Y-shape proteins whose ultimate function is to bind hostile
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organisms, such as viruses and bacteria. The reaction between an antibody and an
antigen occurs through one (or both) of the two active sites placed on the IgG surface,
which bind to the antigen’s epitope(s). As we will precise in the following section,
the different domains of an antibody are connected together in a non-rigid fashion,
allowing the molecule to adopt extremely variable configurations. The question we
investigate is how the internal dynamic of the antibody influences the efficiency of
the binding reaction.

In this section, we first build a shape-based coarse-grained model of an IgG
molecule and then we employ it in a molecular dynamic simulation to generate
plausible 3D conformations of the molecule in agreement with experimental data
(single-molecule Cryo-ET ). Then, we apply our theoretical model, introduced in
the previous chapter, to compute the binding rate constants of small antigens to
the IgG which is assumed frozen in each one of the obtained three-dimensional
conformation. Therefore, we implicitly assume that the ligand (antigen) molecules
are small enough, so that a local equilibrium can be reached faster than the typical
rearrangement times of internal IgG conformations. Finally we compare the results
corresponding to different configurations and we identify the meaningful structural
parameters for the modulation of the rate. Moreover, we map the problem of the
binding between antibody and antigen onto a simple effective model, which can
be described with very a reduced set of parameters. Our findings pave the way for
further investigation of the subtle connection between the dynamics and the function
of large, flexible multi-valent molecular machines.

5.1 The IgG and its representation

Immunoglobulins are large glycoproteins of approximately 150kDa made of four
polypeptidic chains: two light chains (of ∼ 25 kDa) and two heavy chains (of ∼ 50
kDa) which give the IgG a characteristic Y shape, which is shown in fig 5.1. In
the macroscopic structure of the immunoglobuline it is possible to recognize three
roughly ellipsoidal subunits of length about 6 nm: two fragment binding arms (Fabs),
and a stem (Fc), connected by a flexible hinge [129, 130, 131].

The tips of the Fab domain host hypervariable regions [132] (see Fig. 5.2). These
are often referred to as the active sites or paratopes, as these are the portions of the
structure where antigens are bound (at their epitopes). The Fc stem is recognized
at its lower end by the complement system [133] and by phagocytic cells [134] in
the early steps of an immune response. These three lobes are hinged together by a
flexible stretch of polypeptide chain, which allows them to vary considerably their
mutual positions.

Atomic-force microscopy [135] and cryo-microscopy [136] measurements have re-
vealed that Fab-Fab and Fab-Fc angles are virtually limited only by steric clashes,
with measured values ranging from 15o to 128o (Fab-Fc angle) and from about 20o

to 180o (Fab-Fab angle) [136].
The intrinsic flexibility of IgG molecules reflects their ability to bind antigens of

different sizes, from small molecules such as hormones to large viruses [137, 138].
Moreover, high flexibility is also key to double-Fab (bivalent) binding to large
viruses [139], a process quantified by the so-called binding avidity [140, 141], as op-
posed to the single-binding affinity. Bivalent binding increases the overall strength of
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Figure 5.1: Schematic representation of the polypeptidic chains forming an anti-
body molecule. The yellow bonds show explicitly the structure-stabilizing disulfide
bridges.

Figure 5.2: Pictorial representation of the three-lobe structure of an antibody. VL
and VH denote the highly variable regions of the Fab domains where antigens bind.

the immune response and also allows for IgG-mediated virion aggregation [142]. Re-
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cently, it was demonstrated that the intrinsic flexibility of antibodies can be exploited
to have them literally walking on antigen-covered surfaces with specific lattice-like
arrangements of haptens with lattice spacing matching the IgG stride [143].
In this chapter we focus on the following question: given their great flexibility,
we want to assess whether IgGs are more effective in binding a co-diffusing antigen
when adopting certain specific conformations. More generally, it would be extremely
interesting to establish a quantitative link between the large-scale dynamics of anti-
bodies and their binding efficiency. Here we concentrate on this problem in the case
of small antigens, where the dynamics of substrate and IgG molecules are character-
ized by widely separated time scales. More precisely, we elaborate a model to assess
the role of the IgG conformation on the diffusion-limited reaction rate describing
the formation of an encounter complex between a diffusing antigen and a stationary
IgG molecule frozen in a given conformation.

To obtain an effective model of the antibody, we preliminary consider its static
atomistic representation, as obtained via X-ray crystallography. More specifically,
we refer to the intact map of the murine IgG 1IGT as made available by the RCSB
protein data bank, (transparent structure in figure 5.3). We built a coarse grained
model of the immunoglobulin made ofN = 96 identical spheres of radiusR, automat-
ically docked into the crystal structure by an ad hoc fitting routine made available
by the computer software VMD [144]. The diameter of the beads composing the
skeleton of the antibody is equal to the smallest distance between pairs of spheres,
multiplied by 0.95, a scaling factor which prevents unphysical merging of contiguous
units. Based on this criterion, we obtain R=4.4 Å. The radius of the active sphere,
localized on the outer edges of the Fab is assigned different values (in the following
the size of the paratopes will be indicated in the captions and figures’ legends). From
crystallographic data, the active surface for the antigen-antibody complex seems to
vary with the antigens size. It scales linearly for very small antigens, but then sat-
urates to an almost constant value which never exceeds 1200 Å. Our choice for the
number of beads in the coarse grained representation is a good trade-off between the
constraints of keeping the structure light enough (fewer spheres) and reproducing
faithfully enough the three-dimensional shape of the domains (more spheres). As
we will state in the following, the main conclusion of our study holds in general,
irrespectively at the specific level of coarse graining imposed in the model.

An illustrative sketch of the coarse grained model is depicted in Fig. 5.3. The
active sites, situated on the top of the Fab arms, are represented by two absorbing
sinks of appropriate size, while the spheres which define the bulk of the structure
are assumed to be totally reflecting. The above structure can be readily turned into
a full dynamical model to reproduce the internal dynamic of the protein. We will
describe hereafter the molecular dynamic simulation that we developed to obtain a
set of independent configuration of a single IgG molecule. Following the well known
elastic-network strategy [RFF] we map our IgG into a network of beads and springs.
This is achieved by stretching a Hookean spring of stiffness κ between any two beads
that are separated by less than a specific cutoff length Rc in the equilibrium structure
(by definition, the X-ray structure depicted as the transparent structure in Fig. 5.3).
The constant κ is chosen stiff enough so that the shape of each domain is preserved
while they fluctuate freely about one another. In order to prevent steric clashes
among the three lobes, we also introduce a repulsive potential energy between any
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Figure 5.3: Coarse grained representation of the IgG with N = 96 beads. The
docking of the N spheres is performed with the shape-based algorithm [145, 146]
implemented in the VMD package [144]. The black spheres positioned on the edges
of the Fab represent the active sites. In this schematic illustration, the beads occupy
the positions that are assigned through docking. The radius of the beads shown in
the figure corresponds approximately to the one used in the simulations (0.44 nm).
The atomic representation of the antibody is shown as a transparent structure (PDB
code: 1IGT)

two beads. The total potential energy reads:

V =
κ

2

∑

i>j

cij(rij −Rij)
2 + v0

∑

i>j

(

ℓ

rij

)12

. (5.1)

Here the position of the i-th bead as a function of time and in the equilibrium
structure are denoted by ri(t) and Ri , respectively. Accordingly, Rij = |Rj −Ri|
and rij(t) = |rj(t) − ri(t)| are the equilibrium and displaced inter-bead distances,
respectively. The matrix

cij =

{

1 if Rij < Rc

0 otherwise

specifies all the interacting pairs, and is known as the connectivity matrix. In the
following we take v0 = 5 kcal/mol, ℓ = 10 Å, κ = 50 kcal/mol/Å2 and Rc = 22 Å.
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Figure 5.4: Snapshots obtained from the coarse-grained molecular dynamics simu-
lations. The points represent the position of the centers of the units of the coarse-
graining. The dimension of the spheres is purely indicative of the position and is
not representative of the radius used in our model.

A set of different configurations was then obtained by sampling a constant-energy
trajectory with initial conditions given by the crystallographic structure and initial
velocities assigned randomly to the centers of the beads. In order to reconstruct the
trajectory, we integrated Newtons equation numerically

mr̈i = −∇iV

through a position-extended Forest-Ruth like (PEFRL) symplectic algorithm
[147] with a time step dt = 2.8 fsec. The mass m of the effective beads was fixed
at m = MIgG/96 ≈ 1.67 kDa. The trajectory was sampled every 0.56 psec to
obtain many sets of coordinates, providing the skeletons of different conformers.
The snapshots in figure 5.4 displays three samples of our trajectory.

In order to validate the results of our Coarse-grained molecular dynamics sim-
ulations, we compared the statistics of the inter-domain angles with the results
of Cryo Electron Tomography (Cryo-ET) measurements, taken from Ref [136]. In
[136] an ensemble of Cryo Electron Tomography experiments (see fig 5.5) is analyzed
to reconstruct the distribution of configurations visited by single IgG molecules in
solution. To interpret the reconstructed three-dimensional portraits, a simplified
representation of the immunoglobulin was put forward: the IgG was sketched as
composed of three rigid rods freely jointed together in a common point, the hinge.
By fitting such mechanical model to the experimental structures, the Fab-Fc angle
and the Fab-Fab angle for all the reconstructed molecules were registered and their
frequency of occurrence determined. The obtained cumulative distributions for φ

and ψ are depicted in figure 5.6 and compared to the results of our simulations. The
Fab-Fab and Fab-Fc angles were obtained for each conformer resulting from our
dynamical model by first constructing the inertial ellipsoids of the three domains.
The three angles (ψ and the equivalent φ1, φ2) were then computed from the scalar
products of the vectors describing the major axes of the three ellipsoids (pointing
outward from the hinge). The surprising conclusion of the comparison is that a
simple shape-based coarse-grained model that is able to reproduce the correct shape
of the antibody suffices to reproduce the experiments in solution. We stress that
our simulations are deterministic and carried out in vacuum: the IgG’s domains
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(a)

(b)

Figure 5.5: (a) Cryo-ET procedure: single molecules in vivo are immobilized at
cryogenic temperatures (below −150◦C) and independent snapshots of different sec-
tions of the body are taken by rotating the sample inside the cryo-microscope. The
images are then processed and assembled to reconstruct the three-dimensional struc-
ture of the molecule. (b) A set of reconstructed 3D volumes of the IgG molecules
in solution. The three different tomograms representing individual IgG molecules.
The image is reproduced from Ref. [136].
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fluctuate about the hinge (the center of mass is at rest) only subject to mutual
collisions, while preserving their shape due to the stiff springs stretched among the
beads. The reason behind this somewhat surprising finding is that we are looking at
equilibrium properties. It is then manifestly redundant what the collisions with the
solvent add to the random collisions among the domains - they would only generate
an equivalent noise spectrum that would not change the equilibrium statistics. This
also shows that hydrodynamic effects seem not to affect to an appreciable extent
the large-scale structural fluctuations of IgGs, which appear mainly controlled by
the excluded-volume effects related to the shape of the mutually hinged domains.

5.2 Mathematical model for the binding reaction

The collection of configurations obtained with the dynamical coarse grained model
represents the starting point for our analysis through the method introduced in chap-
ter 3. The chemical reaction between an antibody and an antigen can be represented
as a two-step process, according to the scheme

[IgG] + [A]
kD

−−−⇀↽−−−
k−D

[C]∗
k∗
−→ [C]

which describes first the formation of the antigen-antibody complex, and eventually
the stabilization of the antigen-antibody complex.

If we restrict our scenario to small antigens, which are diffusing sufficiently fast
so to see the antibody virtually frozen in one of the allowed configuration, and we
assume that antibodies are sufficiently diluted when compared to the concentration
of the other reactants, we can map the chemical reaction on a boundary problem
of the kind (3.6). More precisely, assuming a separation between the characteristic
time scale for the diffusion of the antigens and for the time scale associated with the
IgG’s internal dynamics, we define a set of boundary problems, one for each config-
uration obtained through the MD simulation. For a given configuration, the IgG is
represented as a collection of disconnected spherical boundaries Ωα (α = 1, ..., N)
placed at given locations in space (see Fig. 5.7). The volume external to the Ωα

spheres is imagined to be filled by a continuous concentration u of diffusing antigens,
which are moving with an effective diffusivity D = DA+DIgG and are characterized
by a bulk concentration c0 (far from the antibody). The IgG configuration is hidden
in the boundary conditions. The outer spheres at the Fab tips of radius Ra, meant
to represent the paratopes, are considered as perfectly absorbing boundaries. The
remaining N−2 spheres with equal radius R are taken to be totally reflecting. With
all these assumptions, the steady-state (t → ∞) rate constant k corresponding to
a given conformation of the IgG can be calculated analytically by computing the
total flux to the spheres which represent the paratopes (Ω1 and Ω2 hereafter). The
stationary problem that we have to solve for the normalized density u = c/c0 of the
antigens reads































▽2u = 0
∂u

∂rα

∣

∣

∣

∣

∂Ωα

= 0 for α %= 1, 2

u|
∂Ωα

= 0 for α = 1, 2

lim
r→∞

u = 1.

(5.2)
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Figure 5.6: (a) Cumulative distribution of the Fab-Fc angle φ. The shaded area
identify the regions that are inaccessible because of steric hindrance. (b) Cumulative
distribution of the Fab-Fab angle ψ. The solid line stands for the results of our
coarse-grained simulations, while symbols refer to the Cryo-ET experiments reported
in Ref. [136]. The inset in panel (a) provides a schematic view of the mechanical
model employed in the simulation, together with a definition of the relevant angles
ψ and φ.

The system (5.2) is solved by employing the method described in the previous
sections. The solution can be written formally here as combination of only irregular
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Figure 5.7: Schematic illustration of the set of boundaries corresponding to a given
conformation of an antibody molecule. Blue spheres correspond to reflecting sur-
faces, while red beads flag absorbing boundaries (paratopes).

harmonics, since we are working in an unbounded domain:

u = 1 +
N
∑

α=1

uα = 1 +
N
∑

α=1

∞
∑

n=0

n
∑

m=−n

B
α
mnu

−

mn(rα) =

1 +
N
∑

α=1

∞
∑

n=0

n
∑

m=−n

B
α
mn

(

rα

Rα

)

−n−1

P
m
n (cosθα)e

imφα .

(5.3)

The total antigen flux across the paratopes surfaces, normalized to twice the reaction
rate of an isolated spherical sink with the same radius Ra as the active paratope
spheres, reads

k

2kS
= −

(B
(1)
00 +B

(2)
00 )

2
. (5.4)

In Fig.5.8, we plot the normalized rate constant k as a function of the distance
between the two binding sites (Fab tips), after ordering the different configurations
in terms of the relative distance d between the two paratopes. Several comments
are in order after examining the results. As a first observation, the global rate of
the antibody-antigens reaction is always smaller than twice the rate of an isolated
paratope sink. This reduction stems from the competition of the paratopes for
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the target antigen molecule and from non trivial screening effects exerted by the
reflecting IgG body. The conclusion that we can draw is that the interaction among
the sinks is always anticooperative, and the rate to a selected paratope increases as
the distance between the sinks grows. The configurations which make the binding
reaction more efficient are thus the ones associated with the maximum value of the
Fab-Fab angle. We will see in the following how the configurations which result in a
higher binding efficiency are also the most visited ones (see again the second panel
in figure 5.6).

The second remark is that the points displayed in Figure 5.8 fall on a smooth
curve. The absence of appreciable scattering around the average profile seems to sug-
gest that the relative distance between the paratopes is indeed the only meaningful
parameter that needs to be retained when aiming at a quantitative characterization
of the binding performance of a dynamical IgG. The reflecting beads of the IgG body
shield out part of the incoming flux of antigens. However, such screening seems not
to depend on how the inert spheres are arranged around the paratopes, so long as
the paratopes are at a fixed distance.

Moreover, figure 5.8 shows that the results can be interpreted by mapping the
antibody to an effective and rather simple model: the IgG can be replaced by a
dumbbell made of two spherical sinks of radius Ra placed at a distance d. The red
curves in the figure represent in fact the analytical expression of the reaction rate
in the monopole approximation for each of two absorbing identical spheres (3.53),
multiplied by a constant factor fa < 1 which accounts for the excluded volume effect
of the reflecting beads:

k

2kS
= fa

1

1 +Ra/d
, (5.5)

where kS = 4πDRa is the rate constant of an isolated paratope (see caption of
Fig. 5.8). The factor fa is the only remnant of the IgG body (the other N − 2
reflecting spheres), whose action on the two sinks only causes a rather modest 6÷ 7
% reduction with respect to an isolated paratope dumbbell.

To shed further light on the above findings, it is instructive to look at the dis-
tributions of the computed reaction rate constants. These are shown in Fig. 5.9.
One can appreciate how the flexibility of the IgG impacts the statistics of the rate
constants. The profiles appear negatively skewed, which implies that the higher
weight is associated with larger values of the rate constant. Interestingly, the his-
tograms can be fitted to Gumbel profiles, which suggests that the rate constants
computed from the sampled configurations may correspond to near-maximum sam-
pled values. Moreover, the curves shift towards the right, namely to higher values
of the normalized rate constants, when Ra is reduced. This is a consequence of the
reduced diffusion interaction between the two active sites. In fact, the larger the
active regions, the greater the rate constant for an isolated paratope, but the smaller
the combined rate constants for the two-paratope system [113, 18, 148]. Therefore,
we conclude that internal flexibility forces the antibody to visit preferentially those
configurations that are associated with higher probability of forming an encounter
complex. Summarizing, our results suggest that large, flexible molecules may have
been designed by evolution to exploit their flexibility to a maximum degree in terms



116 Antigen-antibody binding reaction

 0.75

 0.8

 0.85

 0.9

 0.95

 2  4  6  8  10  12  14

k
 /

 (
2

 k
S
)

Paratope-paratope distance [nm]

R
a
 = 0.44 nm

R
a
 = 0.54 nm

Figure 5.8: Normalized rate against the distance between the active sites (red beads
in the snapshots) for two different choices of the encounter distance Ra = paratope
size + antigen size. The rate constant is normalized to twice the Smoluchowski rate
constant of an isolated paratope, kS = 4πDRa, where D = DIgG + DA ≃ DA is
the relative diffusion constant (practically equal to the antigen diffusion coefficient).
Each symbol represents the rate calculated for a given configuration of the IgG. The
radius of the reflecting spheres that define the body of the IgG was fixed at 0.44 nm
in both cases. The solid and dotted lines refer to the effective model 3.53 multiplied
by a constant factor fa. Here fa = 0.94 (Ra = 0.54 nm) and fa = 0.93 (Ra = 0.44
nm). All the calculations are performed with N = 96.

of the ability of binding small antigens. Of course, this is only part of the story.
IgGs bind also bivalently to different epitopes on the same surface, such as a virus
capsid. Thus, the mutual flexibility and shape of the three lobes must also have
been shaped by the evolutionary pressure exerted by requiring such binding events
to be optimized.

The results illustrated so far hold in general, and do not depend on the level
of coarse-graining imposed in building the effective bead-based model of IgGs. To
prove the robustness of this strategy, we want to show how the same analysis can
be repeated for different choices of the number of beads that make up the coarse-
grained IgG molecule, yielding similar conclusions. However, one could in principle
speculate that a sphere-based model will inevitably yield a structure with plenty
of holes, unphysical consequences of the coarse-graining procedure. The antigens,
assumed point-like as their size is incorporated in the size of the paratope beads, Ra,
could diffuse through the structure and this could be the reason why the whole IgGs
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Figure 5.9: Histograms of the reaction rate constants computed for different choices
of the paratopes’ size Ra. The solid lines are fits to the Gumbel density distribution
P(x) = exp

[

(x− µ)/β − e(x−µ)/β
]

/β, where µ,β are the fitting parameters. The
best-fit values of the parameters are: µ = 1.81,β = 0.010 (Ra = 0.44 nm), µ =
1.77,β = 0.012 (Ra = 0.54 nm).

behaves quite just like a nearly perfect dumbbell. In order to investigate further
into this matter, we studied a hyper-simplified model where the IgG is replaced by
three contacting spheres, two representing the Fab arms and one modelling the Fc
stem. The active paratopes were still modelled as two additional absorbing spheres
at the outer ends of the Fab spheres (see cartoons in Fig. 5.10).

Fig. 5.10 illustrates our results for this ultra-coarse-grained model. Overall,
the picture traced in the previous paragraph is confirmed, which shows that the
partially transparent nature of the multi-bead model does not introduce artifacts in
the computation of the rate constant and can be safely adopted as it allows one to
sample the large-scale configuration space in agreement with the experiments. The
rate constant in the three-bead model can still be described by a modified (rescaled)
dumbbell: the largest rate constants are invariably associated with the configurations
where the Fab arms are stretched away from each other to a maximum, while the
smallest rate constants correspond unfailingly to the situation where the active sites
are close to each other (see cartoons in Fig. 5.10). The rescaling factor to be used in
the dumbbell law is close to one for very large and very small sizes of the paratopes.
In the former case, the reason is that the active spheres are strong enough not to
feel the screening of the three-bead reflecting IgG. In the latter case, the paratopes
are so small that their separation is always several times their size. At intermediate
sizes of the active sites the reduction is largest.

To summarize, we have developed a coarse-grained dynamical model of the IgG
which has been exploited to study the interplay between the inherent dynamics of
the molecule and its specific functioning. The first result of our analysis is that
simulations of the coarse grained model of the IgG in vacuum reproduce with good
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accuracy the statistic of the main structural parameters, as extracted from single
molecule Cryo-ET experiments. We then set down to quantify the reaction rate be-
tween the dynamical coarse-grained IgG and a sea of, freely diffusing, small antigens,
inside a given volume, subject to open boundary conditions. The study exploits the
solution of the Laplace equation in spherical coordinates as it is carried out in the
previous chapter. Working in this framework, we showed how our method, together
with a coarse grained strategy, allows to extend the simpler Smoluchowski model to
the case of complex shaped large biomolecules. The spherical representation is in
fact too simplistic for many biological molecules: we showed how we can compute
the rate of a reaction for an arbitrary choice of the shape of the receptor, by repro-
ducing its configuration with assemblies of spheres. The obtained results can then
be rationalized by resorting to an elementary interpretative model, which assumes
dealing with just two sinks. The fact that the behavior of complex three dimensional
objects can be nicely explained by simplified dynamical models, constitutes another
interesting conclusion of this study.

Moreover, we underlined how the internal flexibility forces the antibody to visit
preferentially that subset of configurations which is associated with the larger val-
ues of the predicted reaction rate. We interpreted this correlation as a sign of the
efficiency of the protein, which nature could have engineered so as to minimize
the negative interference between its two active sites. The internal flexibility keeps
apart, on average, the two paratopes and thus enhances the performance of their
cooperative binding. Of course, our kinetics results are theoretical, and it would
be very interesting to compare our predictions to direct experimental measurement
on the kinetic of the IgG. Unfortunately, the effect of the internal dynamics on the
kinetics of the reaction is hard to detect experimentally, since conventional measure-
ments return global estimates and do not allow to disentangle the information on
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specific IgGs configurations. One solution could be to compare measurements per-
formed with the same antigens on wild-type antibodies and on specifically designed
molecules, whose conformational ensembles are confined to selected portions of their
phase space. This might be the case of antibodies designed to partially reduce or,
even delete the hinge domain, thus inducing a substantial loss of flexibility [149]. An
alternative route could be to compare the kinetics of (i) individual antigen-binding
fragments (Fabs) and (ii) assemblies of two, three or more recombined such frag-
ments with the kinetics of intact antibodies [150]. Another interesting and viable
route to test the predictions of our theory would be to analyze antibodies from
camelids, such as dromedary or llamas [151, 152]. About half of the antibodies of
these animals lack light chains and only feature two heavy chains with three IgG do-
mains each [152], with the missing IgG domain replaced by a flexible linker. The IgG
domain carrying the complementarity determining regions (CDR) display two point
mutations that make their surface more hydrophilic (where normal IgG feature the
interface between the terminal light-chain and heavy-chain CDR-carrying domains).
This has prompted researchers to isolate these special IgG domains, which are now
known under the name of nanobodies and hold great promise for the biotechnology
industry [151]. Interestingly, nanobodies show the same high affinities of full anti-
bodies and can be used to construct more complex molecules, such as by joining two
of them via a long and flexible hinge. It would be interesting to compare kinetics
measurements performed on a host of different antigen-binding systems, such as the
one described above, to validate our theoretical approach.

As a final remark, it is worth emphasizing that the techniques here developed
are general and could be applied to study complex formations involving a wide host
of different biomolecules of various sizes and flexibility.
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Chapter 6

Gated reactions

The fundamental assumption underlying the model described in the previous chap-
ters is that the system relaxation time for the diffusive flux of particles (the ligands)
tD is small enough to neglect time-dependent effects. Hence, for the applications
presented, we were able to consider a local equilibrium of the ligand concentration
around the reactive boundaries and hence restrict ourselves to the stationary dif-
fusion equation. Often though, fluctuations in the conformation and reactivity of
the ligand or the receptor play an important role in the extent of the binding re-
action. The classical example is the binding of oxygen and myoglobin which could
not happen if the protein were rigid, since the binding site can be occluded as a
result of the protein’s conformational dynamics. The same kinetics is observed in
the binding of acetylcholinesterase and acetylcholine, where the active site is placed
at the end of a bottleneck which opens and closes responding to thermal fluctuations
[153]. Processes like these can not be described by stationary models, because the
temporal fluctuations occur on a time scale comparable, or even smaller than the
characteristic time for the diffusion of the molecules.

In this chapter we will consider problems where the boundary conditions are
time dependent. We will use a different analytical approach, since the harmonic-
based technique used up to now can not be exploited directly for solving the time
dependent diffusion equation. We will rely on Duhamel’s theorem, a powerful the-
ory introduced by the French mathematician Jean-Marie Duhamel. Duhamel pro-
vided a convenient approach for developing a solution to diffusion equations with
time-dependent boundary conditions and equations with a time dependent energy
generation term [154]. The idea behind his method is to exploit the solution of the
corresponding problem with time-independent boundary conditions, to build the so-
lution of the original problem. This procedure is described in Duhamel’s principal
work on heat conduction. We will adopt here the same representation of the ligand
/receptor interaction introduced in chapter 3, where the hypotheses of high dilution,
little diffusivity and small concentration of one reactant allowed us to represent it
as a fixed sphere in the reference frame and to define a boundary problem for the
density of the diffusing species. For the sake of simplicity, we will restrict here to the
Smoluchowski setting, namely the approximation in which the encounter probability
of two receptors is neglected and we can consider a single particle Ω of the species
A within an unbounded domain.

To provide a description of a gated reaction we have to take into account the time
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dependent equivalent of system (3.3), complemented by time-dependent boundary
conditions on the encounter surface:



















∂ρ

∂t
= D∇

2ρ

ρ(r, 0) = ρ0(r)

r
∂ρ

∂r
− h(t)ρ = 0 on ∂A.

(6.1)

Here ρ(x, t) is the density of a population which is diffusing in the open space
Ω = R

3 \ A external to a spherical boundary of radius R centered in the origin of
the reference system. The radius R of the sphere is an effective dimension which
represents the encounter distance between the reactants, and, similarly, the coeffi-
cient D embodies an effective diffusivity, as introduced in chapter 3. The Laplacian
operator, given the radial symmetry of the problem, reduces to

∇
2ρ =

1

r2
∂

∂r
(r2

∂ρ

∂r
).

The function h(t) in the boundary condition gauges the fluctuations in the reactivity
of the boundary and it accounts for the typical time variation of the absorbing
properties of the receptor. As we will see after deriving the solution, the function
h(t) will have to match some regularity conditions to make the analytical calculations
possible.

The previous system can be reduced to a one-dimensional problem for u = rρ

by exploiting the radial symmetry of the domain :



















∂u

∂t
= D

∂2u

∂r2
in (R,∞)

u(r, 0) = rρ0(r) in (R,∞)
∂u

∂r
= g(t) for r = R,

(6.2)

where R is the effective radius of the receptor and the function g(t) allows us to
express the boundary conditions as Neumann boundary conditions:

g(t) =
1

R

(

h(t) + 1

)

u(R, t) =
h̃(t)

R
u(R, t). (6.3)

This trick is necessary to employ Duhamel’s theorem. To understand better the
philosophy of Duhamel’s approach, we will briefly describe the general statement of
the theorem for a diffusion equation subject to time-dependent boundary conditions

on arbitrary placed boundaries ∂Ωi in the open domain Ω = R
3 \

N
∑

i=1

Ωi. More

specifically Duhamel’s theorem provides a solution for the problem



















∂T (x, t)

∂t
= D∇

2T (x, t) in Ω

T (x, 0) = F (x) in Ω

∂T

∂ni

+ hiT = λi(x, t) on ∂Ωi.

(6.4)
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by means of the solution of the auxiliary problem:






















∂ϕ(x, t, τ)

∂t
= D∇2ϕ(x, t, τ) in Ω

ϕ(x, 0, τ) = F (x) in Ω

∂ϕ(x, t, τ)

∂ni

+ hiϕ(x, t, τ) = λi(x, τ) on ∂Ωi.

(6.5)

Here t is the time, while τ is an auxiliary parameter which allows one to make the
functions λi(x, τ) not dependent on time. The relation between F and ϕ is given by

T (x, t) = F (x) +

∫

t

τ=0

∂ϕ(x, t− τ, τ)

∂t
dτ. (6.6)

Once the system (6.5) is solved for ϕ(x, t, τ), it is thus possible to obtain the solution
of (6.4) using equation (6.6).

In principle, this approach can not be used directly to solve the gated boundary
problem (6.2), because the time dependency of our problem is hidden inside the
intrinsic rate constant h(t) of the radiative boundary condition. This is the reason
why in equation (6.2) we have introduced the function g(t) and we have formally
written the boundary condition as Neumann’s. This strategy will enable us to solve
the gated boundary value problem, even if the analytical expression of the solution
will be given implicitly.

Let then us focus on applying the Duhamel theory to the problem (6.2). After
introducing the parameter τ , the auxiliary problem reads:



















∂φ

∂t
(r, t, τ) = D

∂2

∂r2
φ(r, t, τ) in (R,∞)

φ(r, 0, τ) = rρ0(r) in (R,∞)
∂φ

∂r
= g(τ) for r = R.

(6.7)

We remind that here g(τ) is not a function of time. In order to solve system (6.7)
we decompose the solution as φ(r, t, τ) = φ1(r, τ)+φ2(r, t, τ), where φ1 obeys to the
steady state equation:











∂2φ1(r, τ)

∂r2
= 0 in (R,∞)

∂φ1

∂r
= g(τ) for r = R.

(6.8)

while φ2 is the solution of:


















∂φ2

∂t
(r, t, τ) = D

∂2φ2(r, t, τ)

∂r2
in (R,∞)

φ2(r, 0, τ) = rρ0(r)− φ1(r, τ) in (R,∞)
∂φ2

∂r
= 0 for r = R.

. (6.9)

Thus we have the following solution for the auxiliary problem (6.7):

φ(r, t, τ) =φ1(r, τ) + φ2(r, t, τ)

=g(τ)r +
1√
4πDt

∫

∞

x=R

(xρ0(x)− g(τ)x)

(

exp

(

− (r − x)2

4Dt

)

+exp

(

− (r − 2R+ x)2

4Dt

))

dx

(6.10)
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By using the relation (6.6) between the solution of the auxiliary problem and the
solution of the time dependent problem, we have:

u(r, t) =rρ0(r) +

∫

t

0

∂

∂t

(

1
√

4πD(t− τ)

∫

∞

x=R

(

xρ0(x)−
h̃(τ)

R
u(R, τ)x

)

(

exp

(

−

(r − x)2

4D(t− τ)

)

+ exp

(

−

(r − 2R+ x)2

4D(t− τ)

))

dx

)

dτ

=rρ0(r)−

∫

t

0

∂

∂τ

(

1
√
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xρ0(x)

(
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−

(r − x)2
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)
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(

−

(r − 2R+ x)2

4D(t− τ)

))

dx

)

dτ
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R
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)

+exp
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xρ0(x)

(

exp

(

−

(r − x)2

4Dt

)

+ exp

(

−

(r − 2R+ x)2

4Dt
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dx

−

∫

t

0

h̃(τ)

R
u(R, τ)

∂

∂t

(

√

4D

π
(t− τ) exp

(

−

(r −R)2

4D(t− τ)

)

+(r −R)erf

(

(r −R)
√

4D(t− τ)

))

dτ.

(6.11)

The solution of (6.2) obtained here is implicit in the sense that the expression of
u(r, t) involves u(R, t) and thus it can not be computed directly. Remarkably, we
notice that, for our purpose of computing the reaction rate

k = D

∫

δΩ

∂ρ

∂r
dσ,

we only need to know the value of the solution restricted to r = R. In fact, after
substituting the boundary condition in (6.2) in the definition of the normalized rate
constant one gets:

k(t)

kS
=

∂ρ(R, t)

∂r
= h(t)

ρ(R, t)

ρB
. (6.12)

where kS = 4πDRρB is the stationary Smoluchowski rate of an absorbing ungated
sphere and ρB is the bulk density. Thus, to get the reaction rate, we need to evaluate
the implicit expression (6.11) for r = R. This leads to:

u(R, t) = l(t)−

∫

t

0

K(t, τ)u(R, τ)dτ (6.13)

where

K(t, τ) = h̃(τ)

√

D

πR2(t− τ)

l(t) =
1

√

πDt

∫

∞

R

xρ0(x) exp

(

−

(x−R)2

4Dt

)

dx.

(6.14)



125

Expression (6.13) is a linear Volterra integral equation of the second kind.

Solutions of Volterra equations of the second kind can be found by Laplace
transformation only for convolution kernels K(t, τ) = K(t − τ). Since in our case
the kernel involves a convolution function multiplied by a function of the variable
t only, h̃(t) = (h(t) + 1), the equation is solvable analytically only for a choice of
h(t) = const.

It is instructive to check (6.13) with h(t) = h, which amounts to consider a time-
independent radiative boundary condition. It is not difficult, by using the Laplace
transform, to see that this choice inserted in (6.13) gives in the stationary limit

k

kS
=

h

1 + h
,

as expected.

Even though this choice allows us to compute the solution analytically, it is not
of great interest for our purposes, because the gated behavior of the boundary is lost
in the choice h(t) = const. Among other strategies for solving the Volterra integral
equation, simple algorithms based on quadrature schemes can be used to solve iter-
atively equation (6.13) when the kernel K(t, τ) and function l(t) are continuous for
all 0 ≤ τ ≤ t.

The main difficulty here is the fact that the kernel in (6.14) shows a weak dis-
continuity for t = τ . The Volterra integral equation resulting from discontinuous
but integrable kernels involving functions of the kind (t − s)αf(t, s) 0 < α < 1
is called Weakly Singular Volterra Integral Equation. Specific methods have been
proposed by several authors for equations of this kind. Here we make use of the algo-
rithm developed using a fractional backward differentiation formulae (BDF) method
described in Ref. [155, 156, 157]. This method allows one to solve a Weakly Sin-
gular Volterra-Abel Integral Equation of the second kind exhibiting the following
structure:

y(t) = s(t) +
1

π

∫
t

0

k(t− τ)√
t− τ

g(τ, y(τ))dτ, 0 ≤ t ≤ T. (6.15)

This method requires that the functions involved are sufficiently smooth. This
scheme applies directly to equation (6.13) with k(t − τ) = −D and g(τ, y(τ)) =
h̃(τ)y(τ). Once we have defined the specific boundary value problem, by choosing
a gating function h(t) for the boundary condition and the initial distribution of
the density f(r) in (6.1), then the solution u(R) is computed from (6.13) and the
normalized time dependent rate is:

k(t)

kS
=

1

RρB

h(t)u(R, t).

Together with the time dependent rate, we will compute for every choice of the
parameters the mean rate constant 〈k〉 which is the time-dependent rate constant
averaged over a typical integration time T , that is selected according to the proper-
ties of the gating function:

〈k〉 = 1

T

∫
T

0

k(t)dt.
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6.1 Gated reactions in the literature

The internal dynamic of a molecule can have a strong effect on the extent of a
reaction with another agent if the time scale associated with the conformational
or reactivity fluctuation is comparable with the characteristic time of diffusion. In
our previous analysis of the antibody/antigen interaction (see section 5) we worked
under the hypothesis that the antigens diffuse sufficiently fast with respect to the
typical time of large-scale conformational rearrangements of an IgG molecule. For a
broad choice of the parameters, assuming that a ligand sees the receptor frozen in a
given conformation (both geometrical and/or relative to the chemical properties) is
not a realistic assumption. In those cases, a time dependent description which takes
into account the role of the reactivity fluctuations has to be adopted. A quantitative
analysis of the kinetic effects of the gated binding processes was first carried out by
McCamon and Northrup [158], who identified two limiting situations for proteins
(such as lysozyme) whose active sites are either accessible or not due to internal
motions of the molecule. The first limit is the fast gating limit, for which opening
and closing of the gate is much faster than the time required by a ligand to escape
from the neighborhood of the gate. The second is the slow gating limit, in which the
protein stays for a long time in the open and in the closed state compared to the
rate of escape of the ligand. They restricted their study to sinks which are totally
absorbing when in the open state and which require negligible time to open or close.
As an application of this analysis, we recall the recent study in [159] in which Wade
et al. use a dynamical simulation to analyze the effect of fluctuations in reactivity
of ligand-receptor binding. They focus on the kinetic analysis of chicken muscle
triosephosphate isomerase, an enzyme which binds to glyceraldehyde 3-phosphate
through an active site which shows flexible loops that act as an oscillating gate.
The opening/closing of the gate occurs with an average period of 1 ns while the
characteristic time of diffusion for the ligand is estimated as 16 ns. Given these
estimates, the kinetics falls within the fast gating regime. Both simulations and
experiments show that the gating has a very little effect on the rate of the enzyme,
which is diffusion controlled. In all the mentioned studies, as well as in the majority
of the works on this topic, gated reactions have been studied mainly stochastically,
by taking the fluctuations of the gated active site as Markov processes. In this
perspective the reaction can be described by the following scheme:

[open]
a
−⇀↽−
b

[closed].

In Ref. [160] it is shown that in the regimes of fast gating, where both the rates
a and b are very large, the system behaves as if the gating did not exist, so that
the overall rate of the binding reaction is approximately the same of a constantly
reactive receptor. When the opening and closing of the gate is slow compared to the
characteristic time for diffusion, so that (a+ b)−1

≫ τD, the gated rate constant is

k =

(

b

a+ b

)

k∞ (6.16)

that is the steady state reaction rate of a totally absorbing sink multiplied by the
probability of finding the gate open. Nevertheless there exist some studies which
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employ deterministic gating functions, as in Ref.[161], where the authors control the
accessibility of the binding site with a square wave of unit amplitude h(t) that enters
the boundary condition of the diffusion equation

4πR2D
∂ρ(r, t)

∂r
|R = h(t)k∗ρ(R, t), (6.17)

which has the same structure as the BC in our system (6.1). The equation is solved
by using finite difference numerical methods for solving the equivalent formulation

∂ρ

∂t
= r−2

∂

∂r

(

r2D
∂ρ

∂r

)

−
k∗

4πR2
h(t)ρδ(r −R) (6.18)

coupled with a reflecting boundary condition at r = R and with an outer boundary
condition ρ(∞, t) = 1. Once the boundary value problem is solved numerically
for the density of ligands, the authors compute the time dependent rate coefficient
k(t) corresponding to a gate which is alternatively open and closed for intervals of
arbitrary length τO and τC . They provide an analytical approximation for k(t) in
terms of the ungated time-dependent rate ku(t) which holds in the limit τC ≫ τD,
where τC and τD stand for the gate closing time and the relaxation time, respectively.
This assumption allows the density of ligand to recover the initial value ρ(x, 0) during
the closing interval. The average rate constant is evaluated over an open/closed cycle
as the average rate constant of the ungated case times the fraction of time that the
gate is open:

〈k〉 = 〈h(t)〉
1

τO

∫

τO

0

ku(t)dt =
1

τO + τC

∫

τO

0

ku(t)dt. (6.19)

Two limiting behaviors within the regime τC ≫ τD are retrieved for short and long
opening times. If τO ≫ τD the time-averaged gated constant is equal to the fraction
of time the gate is open, 〈h(t)〉, times the stationary limit of the rate for the ungated
binding:

〈k〉 ∼
k∗kD

k∗ + kD
〈h(t)〉. (6.20)

If τO ≪ τD the average normalized gated constant becomes

〈k〉 ∼ k∗〈h(t)〉. (6.21)

6.2 Examples of time-dependent gating functions

Our goal is to develop an analysis of the gated reactions which involves the use
of arbitrary shaped deterministic gating functions. This choice can be useful for
modeling reactivity fluctuations in which the opening/closing happen gradually, and
where the time of opening and closing (both the permanence in a given state and
the velocity with which the accessibility changes) can be controlled by appropriate
parameters.

Before introducing the two classes of function that we adopted to model the
gating function, we want to stress that in order to solve the Volterra equation with
the method described in the previous section we have to require the function h(t) to
be continuous. Bearing in mind this restriction, we consider two kinds of periodic
functions for the gating h(t):
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• a continuous periodic function of arbitrary amplitude H0 that connects the
open and closed states, represented by intervals of arbitrary length τO and τC

connected by raising stages of duration ∆t

h(t) = H0

N∑

k=1

exp t−kτC−kτO
∆t

1 + exp t−kτC−kτO
∆t

−

exp t−kτC−(k+1)τO
∆t

1 + exp t−kτC−(k+1)τO
∆t

(6.22)

By prescribing very steep rises, this function mimics a square wave (the func-
tion used in Ref. [161]). The parameter H0 represents the reactivity of the
receptor when the gate is completely open.

• A periodic wave of amplitude H0

h(t) = H0
cos(ωt) + 1

2
(6.23)

The frequency ω is the parameter which controls the fast/slow gating regimes.

For all the choices of the functions and parameters we computed the time dependent
rate constant as well as its mean value in the integration time. In general, for a
periodic gating function, the integration time T is selected as a multiple of the period
so that the running average reaches a stable value. In our analysis we considered
D = 1, R = 1 and ρB = 1.

In the slow gating limit we found the same value for the averaged rate constant
obtained in the previous studies. For the fast gating regime, we could not compare
directly our findings with the limit recovered in the stochastic analysis, because
the use of a continuous gate function does not allow to model a kinetics where the
fluctuations happen infinitely fast. Nevertheless we model this particular regime
with a periodic sine wave (the second class of functions introduced before) with
high frequency. In figure 6.1 we represent the average rate constant as a function
of the amplitude of h(t) for different choices of the frequency. We can see that the
qualitative behavior of the rate as a function of the maximum reactivity is the same
as the ungated case, and the average rate tends to the corresponding stationary
ungated limit as ω is increased.

An interesting phenomenon that we want to investigate is the correlation be-
tween symmetry in the characteristic open/closing time and binding efficiency. More
specifically we wonder how the rate constant is modified by acting on the param-
eters which govern the opening and closing of the gate. In figure 6.2 we plot the
average rate as a function of the maximum amplitude of a modified gating function
of the kind (6.22), where the closing and opening dynamics are described by two
different time constants ∆t1 and ∆t2 (see Fig 6.2, top panel), and we compare the
behavior for different ratios of the rising stage parameters ∆t1 and ∆t2. One notices
immediately that the binding efficiency is increased as the symmetry of the function
which regulates the gating of the site is lost. We stress that the average reactivity
(which is given by the integral of h(t) over an arbitrary number of periods, divided
by the time of integration) is the same for all the considered gating functions h(t).
We can thus appreciate here how the asymmetry enhances functionality.

The kinetic analysis of the gated reaction rate to a homogeneously reactive sphere
can be mapped onto the stationary binding with a spatially anisotropic reactant.
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Figure 6.1: Average rate against the maximum amplitude of the gating function
h(t) = H0(cos(ωt) + 1)/2 for different choices of ω. The initial value is ρ0(r) =
(1− 1/r). .

The rate constant of a reflecting sphere featuring an absorbing patch of aperture θ0
has been computed in Ref. [162]. The result is

k = f(θ0)kS (6.24)

where the steric factor that accounts for the rate reduction can be well approximated
for small angles θ0 by:

f(θ0) ≈
θ0 + sin θ0

2π − (θ0 + sin θ0)
. (6.25)

The analysis reported in Ref. [162] can be easily extended to the case of a partially
reactive patch, that is, a patch connoted by an intrinsic reaction rate constant k∗.
In this case, one finds:

k

kS
=

H0f(θ0)

H0 + f(θ0)
. (6.26)

In fig 6.3 we illustrate the fits of the average rate constant corresponding to symmet-
ric and asymmetric gating functions to expression (6.26) with an effective reactivity

αH0:

〈
k

kS
〉 =

αH0f(θ0)

αH0 + f(θ0)
. (6.27)

where θ0 and α are fit parameters.
We conclude that the mean rate constant for a fully reactive spherical receptor

featuring a gating dynamics can be mapped onto the rate constant of an equivalent
static receptor featuring 1) a reduced reactive surface (patch) and 2) an effective
(reduced) intrinsic rate constant of the reactive patch.
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Figure 6.2: (a)Plot of the square wave gating function with asymmetric opening and
closing time constants.(b) Mean rate for different choices of the closing time ∆t2.
Other parameters are τO = 8τD, τC = 5τD, ∆t1 = 0.1τD and the integration time is
T = 70τD The initial value is ρ0(r) = (1− 1/r).
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Figure 6.3: Average reaction rate versus the maximum amplitude of the gating wave
function for symmetric and asymmetric nearly square-wave gating functions of the
form (6.22). The data are fitted to expression (6.27) via the parameters θ0 and α.
The choices of the parameters in the gating functions are τO = 8, τC = 5, ∆t1 = 0.1.
The integration time is T = 70τD The initial value is ρ0(r) = (1− 1/r).
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Chapter 7

Conclusions and perspectives

The general purpose of this thesis is to analyze diffusion-reaction processes in differ-
ent types of non-ideal conditions. Among them, we take into account the interaction
among species that are diffusing in the same space, the effects of crowding on the
motility of agents within densely populated media and the presence of obstacles,
compartmentalization and traps in the domain. These are fundamental aspects for
describing many biochemical processes in living media, as well as for studying indus-
trial and chemical applications of diffusion influenced reactions. As underlined by
several experimental results, when the features of the domain where the processes
occur are highly non-ideal (high density, complex geometries) far from the ideal ap-
proximation, the classic diffusion theory which applies to diluted media is no longer
adequate. Neglecting the interaction among diffusing agents and between the agents
and the external environment prevents one to grasp the essential features of the pro-
cesses of interest. This work aims at introducing some degree of complexity in the
description of diffusion and diffusion-reaction processes, and at identifying to which
extent these non-ideal conditions influence the mobility of particles and the rate of
the reactions occurring between molecules.

This thesis can be divided into two main blocks. The first part is devoted to
macromolecular crowding, namely the presence of a finite density of reactants and
other inert species, which is a common feature to many realistic situations in biology
and soft matter. For all the processes described in the first chapter, the crowding is
enforced in the microscopic description of a random walk, by accounting for excluded
volume effects in the analysis of the single agents’ movement. This approach allows
us in primis to recover the macroscopic description of the evolution of the particle
density for different choices of the jump rules in the mean-field limit. We show that
considerable information is lost in passing to the continuum: the excluded volume
effect introduced at the microscopic level disappears unless the description accounts
for some degree of asymmetry, such as in the presence of anisotropic domains or
biased rules for the motion of the agents. Deviations from the standard diffusion
equation emerge also by making part of the diffusing population distinguishable,
or by taking into account explicitly the size of the agents in the extended crowding

scenario. The microscopic models themselves can provide interesting information
supplementary to the mean-field description, such as the role of the fluctuations.
Such analysis is not among the purposes of this thesis, but could be carried out
starting from the agent- based models.
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In the second part of this work, the Smoluchowski theory for diffusion-influenced
reactions is adapted to non-ideal domains, where many reactive boundaries interact
with the diffusing ligands and compete for the same resources. The role of the en-
vironment’s geometry (obstacles, compartmentalization) and distributed reactivity
(competitive reactants, traps) is quantified through the explicit calculation of the
reaction rate constant in a domain arbitrarily decorated with obstacles and reactive
boundaries. The only constraint imposed is that all bodies have to be represented as
assemblies of spheres. For example, complex-shaped molecules, such as antibodies,
can be represented through coarse grained models that employ spherical beads as
elementary components. The diffusion-reaction process, initially defined as a bound-
ary value problem for the density of the ligand molecules, with boundary conditions
enforced on the surface of the spheres, is mapped onto a linear system of algebraic
equations through the use of harmonic expansion techniques. This procedure en-
ables us to compute analytically the reaction rate constant of the selected reaction
to any desired accuracy, with the employ of analytical methods only. We show that
this approach provides remarkable advantages with respect to the numerical meth-
ods based on finite-element computations, because it leads to a much more accurate
solution, and because it allows one to derive simple approximate analytical formu-
las. We show that this theoretical framework can be used to investigate naturally
occurring binding processes and to assist in the design of artificial structure such as
composite nano-reactors used in industrial catalysis. Moreover we demonstrate that
in many cases, such as in the description of the antibody-antigen binding process, a
complex system can be mapped onto a simpler schematic model that, even though
with less detail, is still able to explain the basics of the process. We stress that our
goal is to devise a mathematical framework to characterize the interplay of diffusion
and reaction with static environmental factors. Obviously, even though we relaxe
some of the basic hypotheses of the classical ideal description, we still work under
simplified assumptions with respect to real media. Nevertheless, our approach allows
us to identify important trends and correlations between physical-chemical and ge-
ometrical parameters, such as the configuration of the particles in a multi-catalyst
nano-reactor that optimize the reaction. These aspects could not be recognized
in the infinite-dilution treatment, which neglects the multi-body interactions. The
procedure followed to solve the stationary diffusion equation in the presence of mul-
tiple boundaries could be in principle extended to different geometries realized with
more complex, non-spherical bodies. The only requirement is the existence of addi-
tion theorems for the elementary solutions in the selected coordinate system, which
would allow one to express the boundary conditions over the multi-body landscape.
As an example, we can imagine to apply the same method to geometries involving
elongated agents, described in ellipsoidal coordinates.

Our method can be extended to the Laplace space, so as to work out exactly
the effect of the environment on time-dependent problems. In this case, one has
to employ addition theorems for the Bessel functions, and the difficulty lies in the
subsequent inversion of the Laplace transform [163]. In our treatment of diffusion-
induced reactions, the time-dependent effects are considered only with respect to a
simplified geometry. This is the topic of the final chapter of this work, where we
take into account a temporal variation of the reactivity of a single isolated receptor.
The analysis is performed with a different method from the previous treatment,
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Figure 7.1: Analysis of the total ligand flux toN = 100 receptors of radius a = 0.03R
on the surface of a reflecting sphere of radius R. The histogram shows the distribu-
tion of the rate over a population of over 2×104 independent random configurations
of the receptors (normalized to the population average). Explicitly shown are a) the
configuration corresponding to the least possible flux (all receptors in a spherical
patch), b,c) the configurations corresponding to the least and the largest rates over
the random ensemble, d) the configuration corresponding to the largest possible
rate. Interestingly, the latter is identical to the configuration that minimizes the
Coulomb energy of N identical charges on the sphere (Thomson configuration).

but with the same result of transforming a boundary-value problem into a simpler
mathematical structure. The differential problem with complex time-dependent
boundary conditions is in fact mapped onto an integral Volterra equations which
can be solved through well-known and stable iterative procedures.

The method derived to characterize arbitrary shaped geometries can be used
to investigate some geometric effects on chemoreception. Cellular receptors are not
uniformly distributed. For example clusters of receptors are recognizable on selected
regions of the surface of bacteria as in E.Coli, and their spatial arrangement resem-
bles lattice-like structures. One can investigate the reason why some arrangements
seem to be preferred to others, and relate them to the optimized configuration.
Along these lines, we are currently studying the effect of number, dimension and
configuration of the receptors on the overall reaction rate to a cell surface. The
receptors can be represented as spherical absorbing boundaries which cover part of
the surface of an otherwise reflecting sphere (see Fig. 7.1). Our preliminary results
indicate that ordered structures of receptors maximize the overall rate to capture,
while extended localized receptor-covered patches correspond to very low capture
rates. These preliminary results point to a highly non-trivial connection between
the geometry and the physics of chemoreception.
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 Marta GALANTI 

Processus de diffusion et réaction dans des milieux complexes et encombrés 

 

 

L'objectif général de cette thèse est d'analyser les processus de diffusion et les processus de réaction-

diffusion dans plusieurs types de conditions non-idéales, et d'identifier dans quelle mesure ces conditions 

non idéales influencent la mobilité des particules et les réactions entre les molécules. Dans la première 

partie de la thèse, nous nous concentrons sur les effets de l'encombrement macromoléculaire sur la 

mobilité, ainsi élaborant une description des processus de diffusion dans des milieux densément peuplés. 

Tous les processus sont analysés à  partir de la description microscopique du mouvement des agents 

individuels sous forme de  marche aléatoire, tenant compte de l'espace occupé par les particules voisines.  

La deuxième partie de la thèse vise à caractériser le rôle de la géométrie de l'environnement et de la 

réactivité des corps qui y sont contenus sur la réaction entre des molécules sélectionnées. La théorie 

classique de Smoluchowski, formulée pour les réactions contrôlées par la diffusion dans un milieu dilué,  

est ainsi adaptée à des domaines arbitrairement décorés par des obstacles, dont certains réactifs, et 

l'équation stationnaire de diffusion est résolue avec des techn  Finalement, le 

calcul explicit de la constante de réaction et la dérivation des formules approximées sont utilisés pour 

étudier des applications biologiques et nano-technologiques. 

Mots-clés : diffusion, réaction-diffusion, crowding moléculaire, Smoluchowski, analyse harmonique. 

 

 Diffusion-reaction processes in complex and crowded  environments  

 

The overall purpose of this thesis is to analyze diffusion processes and diffusion-reaction processes in 

different types of non-ideal conditions, and to identify to which extent these non-ideal conditions influence 

the mobility of particles and the rate of the reactions occurring between molecules. In the first part of the 

thesis we concentrate on the effects of macromolecular crowding on the mobility of the agents, providing 

therefore a description of various diffusion processes in densely populated media. All the processes are 

analyzed by modeling the dynamics of the single agents as microscopic stochastic processes that keep 

track of the macromolecular crowding. The second part of the thesis aims at characterizing the role of the 

competitive 

reactants, traps)  on the reaction between selected molecules. The Smoluchowski theory for diffusion-

influenced reactions is thus adapted to domains arbitrarily decorated with obstacles and reactive 

boundaries, and the stationary diffusion equation is explicitly solved through harmonic-based techniques. 

The explicit calculation of the reaction rate constant and the derivation of simple approximated formulas 

are used for investigating nano-technological applications and naturally occurring reactions. 

Key words: diffusion, reaction-diffusion, crowding, Smoluchowski theory, harmonic analysis 
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