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Chapter 1

Introduction

Contexte et objectifs

Le cadre général de cette étude est la production d’énergie propre à partir de turbines à gaz brûlant du
syngaz : un mélange de CO, H2 et d’autres espèces. La composition du syngaz n’est pas toujours bien
connue, car il provient de la biomasse, de la gazéification du charbon ou de divers déchets organiques.
Si la diversité de la matière première est un atout intéressant pour cette technologie, l’incertitude
quant à la composition du gaz pose problème pour une combustion complète, efficace et sûre.

Une façon d’optimiser la combustion prémélangée de syngaz est d’augmenter les interactions
flamme/turbulence, i.e. la densité de surface de flamme. Pour cela, on peut augmenter le taux de
turbulence du jet prémélangé comme l’ont montré Yuen & Gülder [1]. Cependant, un générateur de
turbulence à simple grille ne produit guère plus que 3∼4% d’intensité turbulente. Une précédente
étude expérimentale par Mazellier et al. [2] a montré qu’un système de grilles décalées avec différents
diamètres de perçage et rapports d’obstruction était capable de générer une turbulence homogène et
isotrope ayant jusqu’à 15% d’intensité. Cela a conduit à construire un brûleur expérimental de type
bec Bunsen au laboratoire français ICARE. Les flammes prémélangées à haute intensité turbulente
ainsi générées y ont été étudiées analytiquement et expérimentalement [3, 4, 5].

La motivation initiale de ce travail de thèse était de simuler numériquement ces flammes pré-
mélangées pour compléter les données expérimentales, et pour une meilleure compréhension des
phénomènes physiques sous-jacents. Cela suppose que les méthodes numériques retenues soient capa-
bles de décrire avec suffisamment de précision les phénomènes physiques complexes mis en jeu dans
les flammes turbulentes de prémélange. L’idéal serait de recourir à la Simulation Numérique Directe
(SND) associée à une cinétique chimique détaillée, mais on considère en général que les SND sont
trop coûteuses [6], bien que ce soit aujourd’hui possible pour un brûleur de laboratoire, étant entrés
dans l’ère du calcul péta, voire exaflopique. Un tel exemple de simulation d’avant-garde est la base
de données de Hawkes et al. [7]. A l’opposé, les méthodes statistiques en moyenne de Reynolds,
dites ”Reynolds Averaged Navier-Stokes” (RANS) peuvent s’exécuter sur un ordinateur de bureau
moderne, mais reposent entièrement sur des modélisations physiques [8] qui ont montré leurs limites
pour les configurations complexes [6, 9]. L’approche RANS reste néanmoins très utile, et est en fait
la méthode pratiquement applicable en configation industrielle. De complexité intermédiaire entre
les SND et l’approche RANS, la Simulation des Grandes Echelles (SGE, ou LES en anglais pour
”Large Eddy Simulation”) est aujourd’hui couramment employée grâce à l’extraordinaire augmenta-
tion de la puissance des ordinateurs. Dans les SGE, les ”grandes” échelles de l’écoulement turbulent
sont simulées explicitement tandis que les ”petites” sont modélisées. La définition des grandes et
petites échelles dépend du choix d’un filtre dont la largeur n’est pas toujours bien caractérisée. Le
maillage produit un premier filtrage à la fréquence de Nyquist, qui élimine les échelles dites ”sous-
maille”. Un second filtrage peut être explicitement appliqué aux variables de l’écoulement, ou imposé
implicitement par le schéma numérique. On doit plutôt parler alors d’échelles ”sous-filtre”. La dif-
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ficulté majeure dans la SGE d’écoulements réactifs est que la flamme, c’est à dire la région où les
réactions chimiques ont lieu, est généralement plus mince que la taille des mailles [10], donc typique-
ment à l’échelle sous-maille et doit être modélisée. Lors des deux dernières décénies, de nombreuses
approches et de nombreux modèles ont été proposés pour décrire la structure de la flamme et ses
interactions avec la turbulence [11]. La table 1 dans [12] en donne un aperçu synthétique.

Un aspect important des simulations numériques directes et des grandes échelles est que les er-
reurs (dispersives et surtout dissipatives) introduites par les schémas de résolution numérique de
l’écoulement ont un bien plus grand impact sur la solution qu’en RANS, puisqu’une large plage
d’échelles doit être fidèlement représentée [13]. Il est nécessaire d’employer des schémas à haut pou-
voir de résolution, mais possédant tout de même une certaine quantité de dissipation numérique pour
assurer la stabilité du calcul. Une technique de SGE alternative est l’approche dite d’Intégration
Monotone (MILES), ou plus généralement des SGE Implicites (ILES) qui prétendent ”capturer la
physique par le numérique” [14, 15]. Cette approche, également désignée par ”numerical LES” par
Pope [16], repose entièrement sur les propriétés des schémas numériques pour éliminer et modéliser les
petites échelles de l’écoulement simulé, au lieu d’appliquer un modèle sous-maille explicite. L’approche
ILES est très controversée dans la communauté de la combustion, et dans le cadre d’écoulements
réactifs, elle peut être combinée à un modèle de combustion sous-maille, ou utilisée dans l’approche
quasi-laminaire, i.e. sans modèle de combustion. Il y a donc quatre stratégies possibles pour la SGE
d’écoulements réactifs :

1. SGE explicite (LES) pour l’écoulement avec modèle de combustion

2. SGE explicite (LES) pour l’écoulement sans modèle de combustion

3. SGE implicite (ILES) pour l’écoulement avec modèle de combustion

4. SGE implicite (ILES) pour l’écoulement sans modèle de combustion

La première est l’approche standard, très courante dans la littérature. La seconde est moins
répandue et on peut citer les travaux de Duwig et al. [17, 18] en combustion turbulente prémélangée,
et ceux de Duwig & Fuchs [19] en combustion non-prémélangée. Les troisième et quatrième approches
sont encore plus rares.

En fait, notre équipe a déjà acquis une certaine expérience dans la simulation d’écoulements
turbulents réactifs à grande vitesse en configuration non-prémélangée (flammes de diffusion). Les
SGE explicite et implicite d’un jet supersonique (Mach 2) air/H2 non-prémélangé réactif [20] ont
été réalisées en approche quasi-laminaire [21, 22, 23], et les SGE implicites à l’aide de schémas à
capture de choc d’ordre élevé ont produit des résultats très satisfaisants. Par conséquent, il a été
décidé d’extrapoler ces méthodes numériques aux présentes expériences d’écoulement prémélangé
basse-vitesse. A cette fin, les points d’évolution nécessaires suivants ont été identifiés :

1. Modifier le code compressible pour traiter efficacement les écoulements à bas Mach.

2. Definir une méthodologie pour reproduire numériquement l’écoulement turbulent multi-échelles
expérimental en entrée.

3. Evaluer l’approche ILES pour la combustion prémélangée sans aucun modèle de combustion.

4. Eventuellement, si besoin, implémenter un modèle sous-maille de combustion prémélangée.

Ce document décrit les différentes étapes de cette aventure. En fait, il a rapidement été constaté
que les interactions complexes entre les méthodes numériques mises en œuvre et la physique simulée
sont bien plus significatives pour les flammes prémélangées que pour les flammes de diffusion : les
vitesses de flamme laminaire ou turbulente sont difficiles à reproduire sur des maillages grossiers. Par
conséquent, l’objectif initial (la simulation de l’expérience...) s’est déplacé vers une problématique
plus fondamentale : comprendre l’impact des erreurs numériques sur les résultats de (I)LES. Par
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exemple, est-il nécessaire d’épaissir artificiellement le front de flamme lorsqu’on utilise un schéma
dissipatif ? Le filtre implicite associé et le modèle sous-maille qui en découle sont-ils capables de
simuler le plissement turbulent de la flamme ? Quelle est la résolution nécessaire pour qu’un schéma
à capture de choc produise la bonne vitesse de flamme laminaire ? Dans ce but, une série d’expériences
numériques a été mise en place pour traiter des cas-test académiques. Différents schémas numériques
et différentes stratégies de modélisation ont été évalués, afin de tirer des conclusions aussi claires que
possible.

Plan de la thèse

Ce manuscrit est organisé de la façon suivante : l’expérience à simuler est d’abord décrite à la
section 1.3. Ensuite, le chapitre 2 résume les équations pour un écoulement turbulent réactif, et on
y présente un nouveau modèle de combustion prémélangée récemment développé à ICARE [24]. Le
chapitre 3 donne une description et une analyse approfondie des méthodes numériques employées. On
y examine le pouvoir de résolution et le filtrage implicite des schémas, dans le contexte des simulations
des grandes échelles. Certains points particuliers comme la formulation bas-Mach des équations ou
la génération des conditions aux limites turbulentes en entrée y sont également détaillés. Le chapitre
4 est consacré aux cas-test académiques, indispensables pour définir une stratégie fiable pour les
simulations de l’expérience en configurations non-réactive et réactive, détaillées au chaptitre 5.

Remarque: Dans ce document, on a testé de nombreuses strategies (I)LES, dont on donne ici
une nomenclature pour une bonne lisibilité. La table 1.1 aidera le lecteur à repérer rapidement les
différentes stratégies numériques tout au long du document. Elles seront détaillées au chapitre 3.
Cette table se trouve également en annexe C.
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1.1 Context and objectives

The framework of this study is the production of clean energy from gas turbines burning syngas: a
mixture of CO, H2 and other species. The syngas can not always be well characterized, since it may
come from biomass, coal gasification or various organic wastes. If the diversity of the raw material is
very attractive for these technologies, the uncertainty in the gas composition is a challenging problem
for complete, efficient and safe combustion.

One way to optimize the premixed combustion of syngas is to improve the flame/turbulence in-
teractions, i.e. the flame surface density. To that end, one can increase the turbulence intensity
of the premixed jet as shown in [1]. However, simple grid turbulence generators hardly allow for
more than 3∼4% of turbulence intensity. A previous experimental study by Mazellier et al. [2] has
shown that a system of shifted grids with different hole sizes and blockage ratios was able to generate
a homogeneous and isotropic turbulence with intensity as high as 15%. This has led to design an
experimental Bunsen burner at our laboratory ICARE, France. The resulting premixed flames with
high turbulence intensity have been studied analytically and experimentally in [3, 4, 5].

The initial motivation for this work was the numerical simulation of this experimental premixed
flame to supplement experimental data, and also for a better understanding of the underlying physics.
This supposes that the envisaged numerical methodology should be able to describe with sufficient
accuracy the complicated physics embedded in such a turbulent premixed flame. Ideally, one would
like to resort to Direct Numerical Simulation together with detailed chemistry, but it is generally ac-
knowledged that DNS is prohibitively expensive [6], although it might be feasible today for a burner
at the laboratory scale, since we are now at the peta or even exascale era. Such an example of cutting-
edge simulation is the database of Hawkes et al. [7]. At the opposite, statistical methods known as
Reynolds Averaged Navier-Stokes simulations (RANS) can run on a (modern) desktop computer, but
rely entirely on modeling considerations [8] that have proven their limits in complex situations [6, 9].
The RANS approach is however still very useful, and in fact the standard practical technique for
industrial applications. Intermediate between DNS and RANS is the Large Eddy Simulation (LES),
now routinely used thanks to the tremendous increase in computational power. In LES, the ”large”
turbulent scales of the flow are explicitly simulated whereas the ”small” ones are modeled. The def-
inition of large and small scales depends on the choice of a filter width, not always clearly defined.
One filter is produced by the grid, which segregates the ”subgrid scales” at the Nyquist frequency, the
other one may be explicitly applied to the flow variables or embedded in the numerics. One should
then rather speak of ”subfilter scales”. The central difficulty in the LES of reacting flows is that the
flame, i.e. the region where chemical reactions take place, is usually thinner than the grid size [10],
hence at the subgrid scale and should be modeled. In the last two decades, many approaches and
models have been proposed to describe the flame structure and its interactions with turbulence [11].
Table 1 in [12] gives a synthetic overview of them.
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An important feature of direct and large eddy simulations, is that numerical errors (dispersive,
and mostly dissipative) introduced by flow solvers have a much greater impact on the solution than
in RANS, since a broad range of scales has to be properly represented [13]. High-resolution schemes
are required, but still featuring some amount of numerical dissipation for stability. An alternative
LES technique is the Monotone Integrated LES (MILES) of more generally the Implicit LES (ILES)
whose claim is ”capturing physics with numerics” [14, 15]. This approach, also called numerical LES
by Pope [16], relies entirely on numerics to remove and model the small scales from the simulated flow
field, instead of applying an explicit model. ILES is quite controversial in the combustion community,
and in the context of reacting flows, it may be combined with subgrid combustion models or used in
the quasi-laminar, or ”no-model” approach. Hence, there are four possible strategies for the LES of
reacting flows:

1. Flow explicit LES with a combustion model

2. Flow explicit LES without combustion model

3. Flow ILES with a combustion model

4. Flow ILES without combustion model

The first one is the standard one, abundant in the literature. The second one is less common and
examples are given by Duwig et al. [17, 18] in turbulent premixed combustion and by Duwig & Fuchs
[19] in non-premixed combustion. The third and fourth ones are even more scarce in the literature.

In fact, our team has already gained some experience in the numerical simulation of reacting
turbulent flows in high-speed non-premixed (diffusion flame) flow configurations. The implicit and
explicit flow LES of a supersonic (Mach 2) diffusion air/H2 reacting jet [20] have been performed in [21,
22, 23] in the quasi-laminar approach, and implicit LES with higher order shock-capturing methods
performed quite well. Hence, the idea was to extrapolate these numerical methods to the present
low-speed premixed experiment. To that end, the following obvious targets have been identified:

1. Modify the fully compressible solver to handle efficiently low-Mach flows.

2. Define a methodology to reproduce numerically the multi-scale experimental turbulent inflow.

3. Assess the ILES approach to premixed combustion without any combustion model.

4. Eventually, if needed, implement a subgrid scale premixed combustion model.

This document summarizes the different steps of this venture. In fact, it has been rapidly identified
that intricate interactions between numerics and the simulated physics were much more significant for
premixed than for non-premixed combustion: both laminar and turbulent premixed flame speeds are
difficult to catch on coarse grids. As a consequence, the initial motivation (simulate the experiment...)
has moved to a more fundamental investigation: understand the impact of numerics on (I)LES results.
For instance, is it necessary to artificially thicken the flame front when dissipative numerics are used?
Does the built-in numerical filters and associated implicit subgrid model mimic properly the turbulent
flame wrinkling? What is the resolution needed for a shock capturing scheme to catch the correct
laminar flame speed? To that end, a series of numerical experiments have been set up and applied
to academic test-cases. Different numerical schemes and modeling strategies have been assessed, in
order to draw conclusions as clear as possible.

1.2 Outline of this thesis

This manuscript is organized as follows: The experiment to be simulated is first described in the
introduction section 1.3. Then, chapter 2 gives an overview of the governing equations in numerical
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combustion, and a premixed combustion model newly derived at ICARE [24] will be presented.
Chapter 3 provides thorough description and analysis of the numerical methods. The implicit filtering
and resolving efficiency of different numerical schemes are scrutinized, in the context of large eddy
simulations. Some specific points like the low-Mach formulation or the turbulent inflow boundary
conditions are also addressed. Chapter 4 is devoted to academic test-cases, mandatory to set up
reliable strategies for the final simulation of the actual experiment, both in non-reacting and reacting
configurations, detailed in chapter 5.

Remark: In this document, varieties of (I)LES strategies are tested, so a nomenclature is listed
here for legibility. Table 1.1 will help the reader all along the document to have a quick reference to
the numerical strategy. They will be detailed in chapter 3. This table can also be found in appendix C.

Table 1.1: Nomenclature of different flow and combustion (I)LES strategies.

❳
❳
❳

❳
❳
❳

❳
❳
❳

❳
❳

Flow
Combustion

Non-reacting

Combustion ILES Combustion LES

(Quasi-Laminar)
Thickened flame Thickened Flame

(F = n) +SGS Wrinkling

F
lo
w

L
E
S 4th Central+SM 4C-SM-NR

4th Central+SSF 4C-SSF-NR

F
lo
w

IL
E
S

(1− α) 4th Central
HYBα-NR HYBα-TFn-WF

+α 5th Upwind

5th Upwind UP5-NR UP5-QL UP5-TFn UP5-TFn-WF

WENO-JS5 JS5-NR JS5-QL

WENO-M5 M5-NR

WENO-Z5 Z5-NR

WENO-MZ5 MZ5-NR MZ5-QL

WENO-JS7 JS7-NR
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1.3 Experimental setup

1.3.1 The multi-scale injection

The objective of the multi-scale, multi-grid turbulence generator is to achieve a high-intensity, nearly
homogeneous and isotropic turbulence (HIT). Compared to 3∼4% with a single-grid generator, the
multi-grid generator can lead to a HIT with turbulence intensity as high as 15% [4]. The length
scales characterizing the multi-scale generated turbulence are also smaller, while the turbulent kinetic
energy produced is evidently larger, especially in the small scales [2, 3].

This idea has been applied to design a Bunsen type experimental burner as sketched in figure
1.1. This burner is equipped with a multi-scale turbulence generator constituted by 3 perforated
plates. The holes diameter, mesh size, blockage ratio and pressure drop coefficient of each plate are
listed in table 1.2. The last grid is located 60.5mm upstream the burner exit. The burner’s inner
diameter is D = 25 mm and the bulk velocity is UD = 3.5 m/s. The jet exits into a vessel in which
the pressure can be varied from 0.1 to 1 MPa, matching gas turbine combustion chambers conditions.
A photo of the pressurized combustion chamber and the burner can be found in figure 1.2. Results of
this experiment confirm that the multi-scale turbulence generator enhances the turbulent premixed
combustion by increasing the flame surface density [4, 5]. In this section, some non-reactive air/air
and reactive CH4/air experimental data will be outlined.

Table 1.2: Geometrical characteristics of the multi-scale grid where dj , Mj , σj and Kj stand for
the hole diameter, the mesh size, the blockage ratio and the pressure drop coefficient of the j-th
perforated plate [4].

Grid dj (mm) Mj (mm) σj Kj

1 1.55 2 0.46 2.43
2 3.44 5 0.57 4.41
3 7.50 12.5 0.67 8.18

D=2R 

UD 

Flame surface 

averaged 

         instantaneous 

Jet free 

boundary 

h 

Figure 1.1: Schematic of the turbulent Bunsen burner with multi-scale forcing.
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Figure 1.2: Photos of the pressurized combustion chamber (left) and the burner (right).

1.3.2 Non-reactive experiments

Non-reactive experiments are performed to obtain the flow parameters with pure air. A single hot-
wire was used to measure the longitudinal velocity component u(x) along the burner axis. The
sensing part of the probe is 5 µm in diameter and 1.25 mm in length so that the spatial resolution,
i.e. the ratio of the probe length to the Kolmogorov scale ranges between 6 and 25 depending on the
operating pressure [4] . Besides hot-wire measurements, a two-channel Laser Doppler Velocimetry
(LDV) system was used to study the longitudinal and radial velocity components, u(x) and v(x). The
variation of the longitudinal velocity along the burner axis, measured by hot-wire, and the evolution
of the turbulent kinetic energy along the burner axis near the jet exit measured by LDV can be found
in figure 1.3(a) and 1.3(b). These curves will be used as references for the numerical simulation of
the experiments. Only the case Pint = 0.1 Mpa is considered in this work. The main turbulent scales
of the mult-scale generated turbulence at the jet exit are listed in table 1.3.

(a) (b)

Figure 1.3: (a) Variation of U/UD along the burner axis (hot-wire measurements); (b) Evolution of
the turbulent kinetic energy along the burner axis (LDV measurements) [4].
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Table 1.3: Turbulence parameters at the jet exit from non-reactive experiment results [4].

Turbulent kinetic energy(k) Integral scale(L11) Taylor micro-scale(λ) Kolmogorov scale(η)

0.6125 m2/s2 4.25 mm 1.25 mm 0.08 mm

1.3.3 Reactive experiments

In reactive experiments, the flow configuration is identical to the non-reactive cases except a CH4/air
mixture is injected instead of air. The flame measurements are carried out by Mie-scattering tomog-
raphy at an acquisition rate of f = 10 kHz. The picture resolution is 0.108 mm per pixel (mm/px)
and the size of the window is 800×384 px2. The seeding of the flow is made with silicon oil droplets
supplied by an atomizer. The typical size of droplets is about 1 µm. The amount of added oil droplets
is assumed to be sufficiently small for not modifying the global flame properties [5]. Figure 1.4 dis-
plays a overview of the experiment apparatus, and figure 1.5 shows some example raw tomography
images from experimental measurements.

The reactive experiments have been performed under varieties of conditions i.e. different pressure,
equivalence ratio and types of fuel. In the current work, only the CH4/air flame at equivalence ratio
φ = 0.8 under p =0.1 MPa is used as reference experiment. The experimental flame is located on the
Borghi-Peters diagram [6] as the red dot in figure 1.6 [5]. More details about the reactive experimental
setup and results can be found in [3, 4, 5].

Figure 1.4: High-pressure Bunsen burner with multi-grid injection system used in the experiment [5]
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Figure 1.5: Example tomographic photos from reacting experiment. CH4/Air flame at φ = 0.8,
p =0.1 MPa.

Figure 1.6: The experimental condition overlaid on the turbulent premixed combustion regime dia-
gram [5].
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Chapter 2

Governing equations for turbulent
combustion

Synopsis

On présente dans ce chapitre les équations générales et les modèles physiques utilisés dans ce travail
de thèse. Ce chapitre se compose de trois parties :

• La première section rappelle les équations de Navier-Stokes pour un écoulement de fluide com-
pressible et réactif. Ces équations étant bien connues, la présentation en est volontairement
limitée à l’essentiel. L’accent est toutefois mis sur les aspects multi-espèces, la cinétique chim-
ique et les modèles de transport moléculaire.

• La seconde section présente le cadre général des SGE et détaille les équations de Navier-Stokes
filtrées, en particulier les différents termes sous-mailles émergeant du filtrage des termes non-
linéaires. On y évoque ensuite les différentes approches possibles pour l’écoulement (SGE ex-
plicites ou implicites) et les modélisations sous-maille associées.

• La troisième section est consacrée à la simulation de la combustion turbulente prémélangée. Les
difficultés qui y sont liées sont illustrées d’abord sur le cas simple de la structure d’une flamme
laminaire 1D de prémélange. On rappelle ensuite les différentes stratégies de modélisation de
la combustion, puis on présente le modèle de flamme épaissie implémenté dans nos simulations,
en association avec le nouveau modèle de plissement sous-maille dont les entrées et la façon de
les générer lors du calcul sont finalement détaillées.

The governing equations used in this work will be presented in this chapter. As these mathematical
models have already been well detailed in the literature, I would like to just briefly recall them. This
chapter will be constituted by three parts: the Navier-Stokes equations will be introduced in the first
section, a brief overview of Large-Eddy Simulations will be given after, and this chapter will end by
the presentation of the models for premixed turbulent combustion used in this research.

2.1 Navier-Stokes equations in conservation form

The well-known Navier-Stokes (N-S) equations are used in the numerical simulation of turbulent
combustion [6]. They describe the conservation laws: mass conservation, Newton’s Law of motion,
first principle of thermodynamics and balance of species’ concentrations. The equation of state and
the chemical reaction rates equations are also needed for multi-species reacting flows.

The conservation form of N-S equations for a gas mixture of Nsp components without body forces
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are recalled here with standard notation and Einstein’s convention (i, j = 1, 2, 3) as follows:

∂ρ

∂t
+ (ρuj),j = 0 (2.1a)

∂ρui
∂t

+ (ρuiuj + pδij),j = τij,j (2.1b)

∂ρE

∂t
+ [(ρE + p)uj ],j = (uiτij),j − qj,j (2.1c)

∂ρYα
∂t

+ (ρujYα),j = −Jαj,j + ω̇α for α = 1, . . . , Nsp (2.1d)

An equation of state for the gas mixture should be added to close this system. In the following, I
would like to briefly discuss these equations one by one. As the description of N-S equations can be
easily found in any classical textbook like [6, 25] and the former work of our team on this part has
already been presented in [21, 26, 27], I will just focus on the parts which are more relevant to my
premixed combustion applications.

2.1.1 The equation of state

The equation of state gives basic thermodynamic properties of the material in the N-S equations. For
gases, it is in the form of

F (ρ, p, T ) = 0

The most widely used model for dilute mono-species gas is the perfect gas:

p = ρ
R
W

T

Here R = 8.31451 J.K−1.mol−1 is the universal gas constant; W is the molecular weight of the species.
This model can be extended to multi-component cases and be used in combustion simulations. For a
mixture, the mass and mole fractions of species α in the mixture should be defined at first:

Yα ≡ mα∑
αmα

=
ρα
ρ

; Xα ≡ Nα∑
αNα

=
W

Wα
Yα (2.2)

in which, mα/Nα are the mass/moles of species α, and
∑

m/
∑

N are the total mass/moles of the
whole mixture, in a given volume. ρα is the partial density or mass concentration of species α,

ρα = ρYα

One may also calculate the molecular weight of the mixture W by

W =
1

∑Nsp

α=1
Yα
Wα

=

Nsp∑

α=1

XαWα

in which Wα is the molecular weight for species α.
The perfect gas model is extended to a mixture of gas by Dalton’s law,

p =

Nsp∑

α=1

pα where pα = ρα
R
Wα

T (2.3)

Then the equation of state for a perfect gas mixture is

p = ρ
R
W

T = ρRT

Nsp∑

α=1

Yα
Wα

(2.4)
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It should be noted that the molar concentration of species α, [Aα] is also widely used1 especially
in the context of chemistry

[Aα] ≡
Nα

V
= ρ

Yα
Wα

(2.5)

This concentration is always in the unit of mole/m3 and should not be confused with the mole fractions
Xα [6].

2.1.2 The species equations

Species mass flux

The species mass flux Jαj for species α in j direction in (2.1d) can be expressed using the species
diffusion velocity Vαj

2

Jαj ≡ ρYαVαj [kg/m2/s] (2.6)

This velocity can be obtained by

Vαj = −
Nsp∑

β=1

Dαβdβj −DT
α (lnT ),j [m/s] (2.7)

in which, in the first term, Dαβ is the inter-diffusion matrix of species α and β in the mixture, and
the diffusion driving force for the species β in the j direction is

dβj = Xβ,j + (Xβ − Yβ) (lnP ),j [m−1] (2.8)

The second term in R.H.S of (2.7), −DT
α (lnT ),j , is to model the thermal diffusion (Soret effect) and

DT
α is the thermal diffusion coefficient for species α. In this work, the coefficients in (2.7) are obtained

by the eglib library3 [28, 29, 30].

Chemical kinetics

For the simulations of combustion, the chemical system should also be modeled for the source terms
ω̇α in the species equations (2.1d). A chemical reaction system that involves Nsp species and Nreac

reactions reads
Nsp∑

α=1

ν ′αjAα ⇄

Nsp∑

α=1

ν ′′αjAα j = 1, ..., Nreac (2.9)

where ν ′αj and ν ′′αj are the molar stoichiometric coefficients of species α in reaction j, corresponding
to the reactants and products. The total molar coefficients ναj can be defined as

ναj ≡ ν ′′αj − ν ′αj

As the chemical reaction enforces the mass conservation, we have

Nsp∑

α=1

ναjWα = 0 j = 1, ..., Nreac (2.10)

The source term ω̇α in the N-S equation (2.1d) is the net production/consumption rate of species α.
It can be calculated by the sum of production/consumption rates of species α in each reaction

ω̇α =

Nreac∑

j=1

ω̇αj [kg/m3/s]

1where Aα is the chemical symbol of species α
2The unit after is the S.I. unit for any variable.
3In eglib, the diffusion velocity is obtained by solving a linear system of size Nsp × Nsp. This method is accurate

but very costly in calculation consumption. In fact, in the context of LES, this accurate method is not really necessary.
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The rate ω̇αj in reaction j can be computed from the rate of progress Qj of reaction j by

ω̇αj = WαναjQj [kg/m3/s]

The rate of progress Qj is evaluated from the rate of progress of the forward and backward reactions
for reversible reactions4

Qj = Kfj

Nsp∏

α=1

[Aα]
ν′αj −Krj

Nsp∏

α=1

[Aα]
ν′′αj [mol/m3/s]

where the molar concentration of components [Aα] is evaluated from equation (2.5). Kfj and Krj are
the forward and reverse reaction rates constants for reaction j.

The modeling of rate constants is the central problem in chemical kinetics [6]. They are usually
expressed in the form of Arrhenius laws

Kfj = AfjT
βfj exp

(
−Efj

RT

)
(2.11)

where the Afj is the pre-exponential constant, βfj is the temperature exponent and Efj the activation
energy5. For the reversible reactions, the reverse coefficients are related by the equilibrium constant
Kej of the reaction

Kej =
Kfj

Krj
=

(
Patm

RT

)∑Nsp
α=1 ν

′′

αj−ν′αj

exp

(
∆S0

j

R −
∆H0

j

RT

)
(2.12)

in which ∆H0
j and ∆S0

j are respectively enthalpy and entropy changes of reaction j.
Normally, in practice, the constants in Arrhenius law (2.11) are inputs into the numerical combus-

tion codes in chemkin format. A simple one-step methane reaction chemkin input file can be found
in appendix A.1 [31]. The pre-exponential constant, the temperature exponent and the activation
energy are given in the reactions section of the input file in c.g.s unit system. More information on
the chemkin format can be found in [32].

An interesting feature of the species equations is that, if we consider the sum of all Nsp species
equations,

Nsp∑

α=1

{
∂ρYα
∂t

+ (ρujYα),j = −Jαj,j + ω̇α

}
(2.13)

Using the facts that: i)
∑Nsp

α=1 Yα = 1; ii)
∑Nsp

α=1 VαjYα = 0; iii) sum of reaction rates

Nsp∑

α=1

ω̇α =

Nsp∑

α=1

Nreac∑

j=1

ω̇αj =

Nsp∑

α=1

Nreac∑

j=1

WαναjQj =

Nreac∑

j=1

Qj

Nsp∑

α=1

Wαναj = 0

The equation (2.13) turns into the mass conservation equation (2.1). This means that the multi-
species N-S equations (2.1) is over constrained. In fact, some simulations of N-S system are performed
without the last species equation, i.e. Nsp + 4 equations in total, and the mass fraction of the last

species is obtained by YNsp = 1−∑Nsp−1
α=1 Yα. In the current work, we keep using Nsp + 5 equations

for numerical simplicity [21, 26].

4For irreversible reactions, just take the first term
5Or in the form of activation temperature Kfj = AfjT

βfj exp
(
−

Tafj

T

)
with Tafj ≡

Efj

R
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2.1.3 The momentum equation

The momentum equation (2.1b), based on Newton’s second law, relates the fluid particle acceleration
to the surface and body forces [33]. The viscous stress in the RHS of (2.1b), τij , describes the viscous
force from the neighbor materials. For a newtonian fluid, this term is related to the velocity field in
the form:

τij = λδijuk,k + 2µS∗
ij (2.14)

with

S∗
ij =

1

2
(ui,j + uj,i) (2.15)

With the Stokes assumption applied, the viscous stress tensor can be further written as

τij = µSij = µ

(
ui,j + uj,i −

2

3
uk,kδij

)
(2.16)

The transport coefficients µ for a gas mixture can be estimated using Wilke’s formula [34], from the
viscosity µα of each species

µ =

Nsp∑

α=1

Xαµα∑Nsp

β=1Xβφαβ

; φαβ =

(
1 +

√
µα

µβ

(
Wβ

Wα

)1/4)2

√
8
(
1 + Wα

Wβ

)

The viscosity coefficient µα of species α can be obtained from a polynomial fit in the temperature
range [200K, 3000K] of the chemkin-iii model [32]. In the current work, they are calculated directly
from the eglib library [28].

2.1.4 The energy equation

The energy equation (2.1c) gives the energy balance based on the first principle of thermodynamics.
In the conservation form of N-S equations, the total energy per unit mass E ([m2/s2]) is used in the
energy equation. It is the sum of internal and kinetic energy,

E ≡
Nsp∑

α=1

(
∆h0α +

∫ T

T0

Cpα(θ)dθ

)
Yα − rT +

1

2
uiui (2.17)

In this definition of total energy, the formation enthalpy ∆h0α is already included. So there is no
additional term to represent the heat release by chemical reactions in the energy equation (2.1c) [6].

The specific heat at constant pressure Cpα and the formation enthalpy ∆h0α at temperature6 T0

of species α in equation (2.17) can be taken from thermodynamic databases like A. Burcat and B.
Ruscic polynomial thermodynamic database [35].

The heat flux qj in R.H.S of (2.1c) can be further detailed into three parts:

qj =

Nsp∑

α=1

hαJαj − λT,j − p

Nsp∑

α=1

DT
αdαj (2.18)

The meanings of these terms are
∑Nsp

α=1 hαJ
c
αj: The heat flux due to partial enthalpy fluxes of species α

−λT,j: Heat transfer by conduction computed by Fourier law, λ here is the thermal conductivity of
the mixture.

−p
∑Nsp

α=1D
T
αdαj: Heat transfer induced by concentration gradients, also known as thermal diffusion

effect, or Duffour effect [28, 30]7.

6T0 = 298.15K for chemkin and 298K for Burcat database
7In the current work, both Duffour and Soret effects are neglected in the simulations
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2.1.5 N-S equations in vector form

As summary, N-S equations rearranged in vector form read:

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= V + S (2.19)

where U is the vector of conservative variables

U ≡




ρ
ρu
ρv
ρw
ρE
ρY1
...

ρYNsp




(2.20)

F , G and H are the fluxes in x, y and z directions

F ≡




ρu
ρu2 + p
ρuv
ρuw

ρEu+ pu
ρuY1
...

ρuYNsp




G ≡




ρv
ρvu

ρv2 + p
ρvw

ρEv + pv
ρvY1
...

ρvYNsp




H ≡




ρw
ρwu
ρwv

ρw2 + p
ρEw + pw

ρwY1
...

ρwYNsp




(2.21)

V represents the viscous terms

V ≡




0
τxx,x + τxy,y + τxz,z
τyx,x + τyy,y + τyz,z
τzx,x + τzy,y + τzz,z

v5
−J1x,x − J1y,y − J1z,z

...
−JNspx,x − JNspy,y − JNspz,z




(2.22)

with
v5 = (uiτij),j − qj,j for i, j = 1, 2, 3

And the source term S is

S ≡




0
0
0
0
0
ω̇1
...

ω̇Nsp




(2.23)
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2.2 Large-Eddy Simulations

After the governing equations for turbulent combustion presented in the previous section, the me-
thods to numerically solve these PDEs are considered. As evoked in the introduction, three main
kinds of numerical approaches are used for simulations based on N-S equations. They are Direct
Numerical Simulation (DNS), Reynolds Averaged Navier-Stokes Simulations (RANS) and Large-Eddy
Simulations (LES). We recall briefly their respective features:

As the N-S equations describe all the length scales in the turbulent flow, DNS are very costly
since no modeling is used for any turbulent scale. Until now, the DNS is still not accessible for most
complex flows due to the high consumption of computational resources [33].

At the opposite, Reynolds Averaged Navier-Stokes Simulations are generally much less numeri-
cally costly with all the turbulent scales modeled. But the nature of average indicates the RANS
simulations generally lack the ability of analyzing the dynamics of the flow.

Lying between these two approaches, Large-Eddy Simulations (LES) explicitly calculate the large
scales (scales typically larger than a given filter width) to obtain the dynamics of the turbulent flow
and use models for the small and dissipative scales. This approach is developing fast in the last
decades thanks to High Performance Computing [33, 16, 36]. In this section, the basic concepts of
LES for premixed turbulent combustion will be illustrated.

2.2.1 Filtered Navier-Stokes Equations for LES

The balance equations applied in LES describe the motion of large scales. Theoretically, they should
be obtained by linear low-pass filtering operations on the N-S equations (2.1) [16, 37]. A linear filtering
process for a variable ξ(~x, t) reads

ξ(~x, t) ≡
∫

ξ(~x′, t)G(~x′ − ~x, t)d~x′ (2.24)

where the function G is called the kernel of the filter. Usually the filters used in LES are homogeneous8

low-pass filters, like cut-off (low-pass) filters in spectral space, box filters and Gaussian filters in
physical space [6, 36].

The output of the process, ξ(~x, t), is the filtered variable. Like in RANS where the variables are
separated into averages and fluctuations, after the filtering process in LES, any variable ξ can be
expressed as sum of the filtered variable and the residual :

ξ ≡ ξ + ξ′ (2.25)

Theoretically, with low-pass filters, the filtered variable ξ can be the large-scale part of the original
variable ξ. The equations for these filtered variables are then deduced by applying the filtering process
to the N-S equations. This procedure is quite similar to the averaging process for averaged equations
in RANS. Take the continuity equation (2.1a) as an example, applying filtering (2.24) to both sides
of equation, we have ∫ {

∂ρ

∂t
+ (ρuj),j

}
Gd~x′ = 0

For the homogeneous filter G, the convolution commutes with time and space differential opera-
tions [38], then

∂ρ

∂t
+ (ρuj),j = 0

To avoid sub-filter terms in continuity equation, the mass-weighted Favre filter can be used also in
LES filtered equations [36]. Similar to compressible RANS simulations, a Favre filter ·̃ can be defined
as:

ρξ̃ ≡
∫

ρ(~x′, t)ξ(~x′, t)G(~x− ~x′, t)d~x′ ≡ ρξ (2.26)

8kernel G is independent of ~x and t
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Then the filtered mass conservation equation turns into:

∂ρ

∂t
+ (ρũj),j = 0

Applying similar treatments to all the N-S equations gives:

∂ρ

∂t
+ (ρũj),j = 0 (2.27a)

∂ρũi
∂t

+ (ρũiũj + p̂δij),j =
(
µ̃S̃ij

)
,j
+ (A1ij +A2ij +A3δij),j (2.27b)

∂ρẼ

∂t
+
[(

ρẼ + p̂
)
ũj

]
,j
= (ũiτ̂ij),j − q̂j,j + (B1j +B2j +B3j +B4j),j (2.27c)

∂ρỸα
∂t

+
(
ρũj Ỹα

)
,j
= −Ĵαj,j + ˆ̇ωα + (C1αj + C2αj),j + C3α (2.27d)

Three types of variables can be found after filtering in (2.27):

1. Filtered/resolved variables. Like filtered density ρ, Favre filtered velocity ũi etc. They are
denoted by · and ·̃ . They are provided directly by the numerical solution of the LES equations.

2. Variables computed from filtered variables directly. Like T̂ , p̂, q̂j , τ̂ij , ̂̇ωα etc. These variables
can be computed directly from the variables of first type, for example, the resolved temperature
T̂ is calculated from the resolved total energy and velocity with

Ẽ =

Nsp∑

α=1

(
∆h0α +

∫ T̂

T0

Cpα(θ)dθ

)
Yα − r̃T̂ +

1

2
ũiũi (2.28)

This set of variables are denoted by ·̂ in (2.27).

3. Sub-filter scale (SFS) terms. Generally speaking, these sub-filter terms represent the effect of
scales smaller than the filter size on large scales. They are also called sub-grid scale (SGS) terms
in the literature. Their notations start with A, B and C in (2.27). Their appearance in the
filtered N-S equations is mainly due to the non-linear operations in N-S equations that can not
commute with the filtering convolution operation. They can be written as9:

A1ij ≡ −ρ (ũiuj − ũiũj) (2.29a)

A2ij ≡ µSij − µ̃S̃ij (2.29b)

A3 ≡ ρ
(
r̃T − r̃T̃

)
(2.29c)

B1j ≡ −ρ
(
Ẽuj − Ẽũj

)
(2.29d)

B2j ≡ − (puj − p̂ũj) (2.29e)

B3j ≡ uiτij − ũiτ̂ij (2.29f)

B4j ≡
(
λT,j − λ̃T̂,j

)
−

Nsp∑

α=1

(
hαJαj − ĥαĴαj

)
(2.29g)

C1αj ≡ −ρ
(
ũjYα − ũj Ỹα

)
(2.29h)

C2αj ≡ −Jαj + Ĵαj (2.29i)

C3α ≡ ω̇α − ̂̇ωα (2.29j)

9The experession of these SFS terms may be different in the literature.
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Sorting these balance equations for LES in vector form, one may get:

∂Û

∂t
+

∂F̂

∂x
+

∂Ĝ

∂y
+

∂Ĥ

∂z
= V̂ + τ + Ŝ (2.30)

where Û is the vector of primary variables resolved in LES,

Û ≡




ρ̄
ρ̄ũ
ρ̄ṽ
ρ̄w̃

ρ̄Ẽ

ρ̄Ỹ1
...

ρ̄ỸNsp




(2.31)

F̂ , Ĝ and Ĥ are, respectively, the inviscid or Euler resolved fluxes in x, y and z directions

F̂ ≡




ρ̄ũ
ρ̄ũ2 + p̂
ρ̄ũṽ
ρ̄ũw̃

ρ̄Ẽũ+ p̂ũ

ρ̄ũỸ1
...

ρ̄ũỸNsp




Ĝ ≡




ρ̄ṽ
ρ̄ṽũ

ρ̄ṽ2 + p̂
ρ̄ṽw̃

ρ̄Ẽṽ + p̂ṽ

ρ̄ṽỸ1
...

ρ̄ṽỸNsp




Ĥ ≡




ρ̄w̃
ρ̄w̃ũ
ρ̄w̃ṽ

ρ̄w̃2 + p̂

ρ̄Ẽw̃ + p̂w̃

ρ̄w̃Ỹ1
...

ρ̄w̃ỸNsp




(2.32)

V̂ is the vector of viscous fluxes,

V̂ ≡




0
τ̂xx,x + τ̂xy,y + τ̂xz,z
τ̂yx,x + τ̂yy,y + τ̂yz,z
τ̂zx,x + τ̂zy,y + τ̂zz,z

v̂5
−Ĵ1x,x − Ĵ1y,y − Ĵ1z,z

...

−ĴNspx,x − ĴNspy,y − ĴNspz,z




(2.33)

with
v̂5 = (ũiτ̂ij),j − q̂j,j

Ŝ is the vector of chemical source terms,

Ŝ ≡




0
0
0
0
0
̂̇ω1
...

̂̇ωNsp




(2.34)
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τ represents the vector of explicit sub-filter terms:

τ ≡




0
(A11j +A21j +A3δ1j), j
(A12j +A22j +A3δ2j), j
(A13j +A23j +A3δ3j), j
(B1j +B2j +B3j +B4j),j

(C11j + C21j),j + C31

...(
C1Nspj + C2Nspj

)
,j
+ C3Nsp




(2.35)

with the SFS terms in equations (2.29a) to (2.29j).

In these equations, the variables Û , F̂ , Ĝ, Ĥ, V̂ and Ŝ are available during simulation, meanwhile,
the SFS term τ has to be modeled. The closure process for LES equations will be discussed after.

2.2.2 LES subgrid modeling

Formally, the continuous LES equations (2.27) describe scales larger than the filter width ∆, and the
SFS terms (2.29) need to be modeled during simulations. When these filtered equations are solved
numerically on a grid with spacing h (h ≤ ∆), the whole process becomes much more complicated.
In numerical simulations, numerical errors are always difficult to be eliminated, especially for the
simulations with non-spectral methods. Particularly, in LES, as the subfilter terms (scales from η to
∆) are also relatively small, these numerical errors may even be at the same scale and can mimic the
SFS models.

To deal with the influence to the SFS terms by the numerics, three kinds of strategies were
proposed. One strategy is to separate the two by minimizing the numerical errors and using well
designed physical subgrid models. Normally, this leads to high computational consumption because
of fine grids and accurate numerical schemes, like spectral methods in Fourier space, or higher-order
centered compact finite difference schemes [39] in physical space for instance. This approach is called
(pure) physical LES by Pope in [16]. Or, one can use less accurate numerical schemes and the
subgrid model together, but in this case, both the schemes and subgrid models should be tuned with
great care together for reliable results as suggested in [40]; Also, as pointed out by some authors
in [15, 33, 41, 37], the numerical errors have similar properties as the subgrid model. This leads to
the third way to deal with this issue: one may give up subgrid modeling to fully count on numerical
residuals as the subgrid model. At the opposite of pure physical LES, this approach is named as
implicit LES (ILES) or numerical LES [22, 23, 33, 16].

Physical LES

In physical LES, subgrid terms are explicitly modeled from large-scale quantities. From the beginning
of LES, the pioneers in this field proposed many SGS models [33, 16, 37, 42, 43]. In this section, two
LES models used in the present work are introduced briefly; The modeling for the subgrid source
terms (C3α in (2.27d)) in species equations for reacting flows will be discussed later in section 2.3.

Generally speaking, LES subgrid models start with the modeling of the unresolved Reynolds stress
terms (A1ij in (2.27b)). At this stage, the Boussinesq assumption is commonly used for the modeling
of unresolved momentum fluxes by introducing the subgrid eddy viscosity µt

sgs as

ρ (ũiuj − ũiũj)−
2

3
ρksgsδij = −µt

sgsS̃ij (2.36)

with

S̃ij =

(
ũi,j + ũj,i −

2

3
ũk,kδij

)

The two methods of evaluating the subgrid eddy viscosity used in the current study are as follows.
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Smagorinsky model Because of its simple formulation, the Smagorinsky subgrid-scale model (SM
model) is very popular and can be used as a base model for other LES models [6]. The commonly
used form of SM model for variable density flows reads [22, 44, 45]:

µt
sgs = ρ (Cs∆)2

∣∣∣S̃∗
∣∣∣ (2.37)

∣∣∣S̃∗
∣∣∣ ≡

(
2S̃∗

ijS̃
∗
ij

) 1
2

S̃∗
ij ≡

1

2

(
ũi,j + ũj ,i

)

where CS is a model constant and ∆ is the filter size or turbulence resolution length scale. The
isotropic contribution −2

3ρksgsδij in (2.36) in unknown and is usually absorbed into the filtered pres-
sure p̂. In compressible LES, this isotropic part is generally modeled using Yoshizawa model [6, 46],
but for this study, as we focus on the low speed turbulent combustion applications, this term is
neglected.

In practice, the filter width ∆ is usually very difficult to predict. In the current work, the term
(CS∆) in (2.37) is evaluated as (εh) where h = (∆x1∆x2∆x3)

1/3 and ε is taken as ε2 = 0.02. Taking
the constant CS = 0.1, this may be interpreted as varying the numerical accuracy ∆/h =

√
2. This is

the usual range for physical LES using dissipative numerical schemes (question 7 in [16]). However,
for more accurate simulations, the Smagorinsky constant should be adapted to the build-in filter
width of the numerical scheme [47], or computed dynamically.

Selective Structure Function The Selective Structure Function (SSF) model also follows Boussi-
nesq assumption (2.36) for the calculation of unresolved Reynolds stress. This closure models the
subgrid eddy viscosity by

µt
sgs = fθ0(θ)CSF∆ρ [F2(

−→x ,∆)]
1/2

(2.38)

In the standard formulation of the SF model for a uniform grid h = ∆xi = Const, the second order
structure function F2(

−→x ,∆) is computed from differences in the resolved velocity field at neighboring
grid points, and ∆ = h. In the case of a non-uniform grid, the structure function is computed as an
algebraic mean of the 1D structure functions over the three directions of space with unit vector −→ei

F2(
−→x ,∆) =

1

6

3∑

i=1

F
(i)
2

(
∆

∆xi

)2/3

(2.39)

F
(i)
2 = ||−→̃u (−→x )−−→̃

u (−→x +∆xi
−→ei )||2 (2.40)

+ ||−→̃u (−→x )−−→̃
u (−→x −∆xi

−→ei )||2

The SSF model includes a sensor for the three-dimensionality of the vorticity field

fθ0(θ) =

{
1 if θ ≥ θ0 = 20◦

0 else
(2.41)

where θ is the angle between the local vorticity vector and the average vorticity vector built from the
six closest neighboring points. This allows to switch-off the model in regions where sharp gradients
are present but where the flow is not tree-dimensional enough.

The model constant CSF in this work is taken as

CSF = 0.105C
−3/2
K = 0.0634 (2.42)

where CK = 1.4 is the Kolmogorov constant. Further discussion on this model can be found in [36, 48].
After the unresolved Reynolds stress are evaluated by any of the above models, SGS terms in

the species and energy equations are computed using the unresolved Reynolds stress terms with
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dimensionless parameters like the SGS Schmidt number and the SGS Prandtl number [22, 6, 33]. The
sum of the two major subgrid terms B1j +B2j in energy equation (2.27c) is modeled as a whole with
a gradient assumption, using a constant subgrid Prandtl number

B1j +B2j = −
µt
sgsCp

Prsgs
T̂,j = −λt

sgsT̂,j (2.43)

The unresolved scalar fluxes ( C1αj terms in (2.27d) ) is calculated with Schmidt number Scsgs as

C1αj = −
µt
sgs

Scsgs
Ỹα,j = −ρDt

sgsỸα,j (2.44)

Other SGS terms in (2.27) are generally neglected or considered to be closed together with the modeled
SGS terms [22, 36].

After the SGS terms closed with SGS models, the LES equations (2.27) which describe scales of
motion larger than the filter width ∆ can be solved. But in practice, when the simulation of these
continous LES equations (2.27) is performed numerically on a grid with spacing h, the situation is
far more complicated. In practice, one chooses h ≤ ∆ and h >> η, where η is the Kolmogorov scale
typical of the smallest eddies that should be accurately resolved in a DNS. The projective filter at
the Nyquist frequency induced by the grid, creates another unknown correlations (or stress tensors),
which is in the range [η,∆] due to subfilter scales (SFS), while the other is due to subgrid scales
(SGS) in the range [η, h]. The effect of unresolved SGS and SFS turbulent scales must be modeled
while the SFS in the range [h,∆] can be theoretically reconstructed if the filter kernel is known [49].
In practice, the continuous filtering operation may be explicit or implicit.

ILES approach

The implemention of ILES can be written in vector form as

δÛ

δt
+

δF̂

δx
+

δĜ

δy
+

δĤ

δz
= V̂ + Ŝ (2.45)

Compared to the general LES balance equations (2.30), one may find that the subgrid terms τ̌ is
absent and the operator δ takes the place of partial difference operator ∂. This operator δ here means
numerical differential operations on the variables, and should be chosen carefully to recover the sub-
grid terms. Practically, the ILES is just a LES strategy that use some specific numerical schemes on
a under-resolved grid to simulate the N-S equations without any subgrid model.

As the ILES is less evident in physical meaning, this approach is still quite controversial and not
discussed much. Recently, the ILES has proven to be acceptable for high speed non-reactive and
reactive flows with WENO schemes [22, 23, 50]. For further assessment of ILES, especially for low
speed reacting flows, in this study, this strategy will be applied and compared with the traditional
physical LES. As the implicit LES is closely connected to the numerics, it will be illustrated in depth
in chapter 3.
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2.3 Turbulent premixed combustion

As mentioned in the last section, the SGS combustion source terms in the LES equations (2.27d)
should also be modeled. Apparently, this modeling process needs the understanding of the combus-
tion phenomenon. Therefore, in this section, a brief introduction to combustion, especially premixed
combustion will be given first with a one-dimensional laminar premixed flame test-case; The basic
physics of turbulent combustion will be illustrated after. LES models for turbulent premixed com-
bustion used in this work will be discussed at the end of this section.

2.3.1 Laminar premixed flame

A one-dimensional laminar premixed flame is a good example to illustrate the premixed flame struc-
ture. It provides the basic principles of combustion and can be the elementary building block of
numerical simulation of turbulent flames [6, 11]. The one-dimensional premixed laminar flame de-
scribes a flame propagating from the hot, burnt gas mixture into the fuel/oxidizer mixture, the fresh
gas. The mass fractions of species in the fresh gas are always denoted by the equivalence ratio, which
is defined from the stoichiometric ratio. Let denote ν ′F and ν ′O as the coefficients corresponding to
fuel and oxidizer, when an overall unique reaction is considered

ν ′FF + ν ′OO −−→ Products (2.46)

the ratio of mass fractions of fuel and oxidizer is then the mass stoichiometric ratio s

s ≡ ν ′OWO

ν ′FWF
=

(
YO
YF

)

st

(2.47)

and the equivalence ratio of a given mixture is then:

φ ≡ s
YF
YO

=

(
YF
YO

)
/

(
YF
YO

)

st

(2.48)

The equivalence ratio is a central parameter for premixed gases: rich combustion is obtained for φ > 1
(the fuel is in excess) while lean regimes are achieved when φ < 1 (the oxidizer is in excess).

The flame structure and the laminar flame propagation speed can be studied in 1D premixed
laminar flame. For example, figure 2.1 shows a H2-air 1D premixed combustion under atmospheric
pressure and ambient room temperature (300K). The equivalence ratio of this case is φ = 0.8. The
chemical mechanism used in this test case is shown in appendix A.2. The normalized fuel (H2),
product (H2O) and intermediate radicals (H2O2) mass fractions are plotted along the calculation 1D
domain in figure 2.1(a). The normalized temperature and H2 reaction rate ω̇H2

profiles are given in
figure 2.1(b).

The flame thickness is a key parameter to describe the flame structure. Among several definitions
of flame thickness, the thermal thickness is often used in numerical simulations and is a good length
scale for premixed flames. It is defined as:

δ0L ≡ Tb − Tf

max
∣∣∂T
∂x

∣∣ (2.49)

in which the Tf and Tb is the temperature in fresh and burnt gas. In this case as shown in figure 2.1,
the thermal flame thickness evaluated from this equation is δ0L = 0.345mm. The diffusive thickness δ
is defined as

δ ≡ λf

ρfCp,fS
0
L

(2.50)

where λf , ρf and Cp,f are evaluated in the fresh gas, and S0
L is the laminar flame speed, which will

be discussed right after. Generally speaking, the thermal flame thickness is larger than the diffusive
thickness and the reaction zone [6].
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(a) Mass fractions (b) Temperature & Reaction rate

Figure 2.1: Laminar premixed flame structure.

Because there is no flame stretch in this simple 1D case, the laminar flame speed S0
L can be obtained

simply from the inlet speed when the flame is steady. or can be achieved by the fuel consumption
rate, as the integral of the burning rate across the flame front:

S0
L = − 1

ρfY
f
F

∫ +∞

−∞
ω̇Fdx (2.51)

where the ρf and Y f
F denotes the density and mass fraction of fuel in fresh gas. In this test-case, the

flame speed calculated from this equation is S0
L =1.53m/s.

The progress variable of the reaction is defined as the normalized temperature (or other scalar
quantities like mass fraction, etc.) as

c =
T − Tf

Tb − Tf
(2.52)

and is 0 in the fresh gas and 1 in the burnt gas.

2.3.2 Turbulent premixed flame

A central question in turbulent premixed flame is the interaction between flame and turbulence. With
the flame speed and flame thickness introduced before, this interaction can be analyzed parametrically.

To understand how turbulence affects the flame, the time scales of turbulence and flame should
be compared. The time scale for combustion can be characterized by the ratio between the flame
thickness δ and laminar flame speed S0

L. Meanwhile, the time scale of turbulence can be defined either
based on the integral scale or the smallest scale. The Damköhler number Da is defined for the largest
eddies and corresponds to the ratio of the integral time scale τt to the chemical time scale:

Da ≡
τt
τc

=
lt/u

′(lt)

δ/S0
L

(2.53)

in which the lt denotes the integral turbulent length scale.
The Karlovitz number Ka corresponds to the smallest eddies (Kolmogorov scale) and is the ratio

of the chemical time scale to the Kolmogorov time:

Ka ≡
τc
τk

=
δ/S0

L

ηk/u′(ηk)
(2.54)

and ηk here is the Kolomogorv length scale.
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Table 2.1: Classical regimes of turbulent premixed combustion [6].

Ka < 1 (Da > 1) Ka > 1 and Da > 1 Da ≪ 1

Flamelets Wrinkled thickened flames Well stirred reactor
Flame is thinner Small turbulent scales All turbulent time scales are

than all turbulent scales may enter the flame front smaller than the chemical time scale

According to the ratio between the time scale of combustion to the largest and smallest time scales
in turbulence, three different regimes of turbulent premixed combustion can be divided as in table 2.1
from [6]. As seen in this table, for different regimes, the turbulence acts differently on combustion.
For the flamelet and wrinkled thickened flames, the most difficult task is to predict the turbulent
flame speed.

2.3.3 Turbulent flame models for LES

For different turbulent combustion regimes, different strategies of modeling should be applied [6].
In this research, our flame stays in the flamelet regimes (see figure 1.6 in section 1.3), and the main
numerical difficulty is that the flame front is normally too thin to be captured by the grid. Varieties of
LES models have been developed for this premixed combustion regime. They can be roughly divided
into two categories [12]: those based on the statistical considerations (pdf methods), and those, more
numerous, based on geometrical considerations. Statistical models, like Filtered Density Function
modeling (FDF), or the Conditional Moment Closure (CMC) are mostly applied in non-premixed
combustion, but CMC has been extended to premixed combustion [51]. Geometrical models try to
deal directly with the problem of capturing the thin flame front on the coarse LES mesh. They can
in turn be separated into three categories: (i) level set methods (G equation) either static [52, 53] or
dynamic [54] that propagate the thin flame front at the turbulent flame speed, (ii) filtered laminar
flames based on the filtered equation for the progress variable, e.g. F-TACLES from EM2C [55] that
uses tabulated one-dimensional filtered flames obtained with detailed chemistry, and (iii) artificially
thickened flames (ATF) based on the trick proposed by O’Rourke & Bracco [56]. This latter approach
is retained in this study for its simplicity, and its possible application with both infinitely fast and
detailed chemistry. However, like other geometrical models, ATF requires the evaluation of the SGS
wrinkling factor (WF), that can be viewed as the ratio of the turbulent flame speed to the resolved
one, related to the flame surface density (FSD). Pioneering works in the field are those of Colin
et al (TFLES) [57] and Charlette et al [58]. Dynamic formulations of the ATF+WF method can be
found in [59, 31, 60]. A coupling with tabulated flamelet chemistry has also been proposed by Kuenne
et al [61].

2.3.4 ATF model in turbulent combustion

The ATF method [56] is a pure mathematical treatment on the species equations (2.1d) without any
assumption. Starting with the species equations in fickian approximation:

∂ρYα
∂t

+
∂

∂xj
(ρujYα) =

∂

∂xj

(
ρDα

∂Yα
∂xj

)
+ ω̇α

a coordinates transformation can be done as:
{

ξi(xi) ≡ Fxi
τ(t) ≡ Ft

(2.55)

The equation then turns to

∂ρYα
∂τ

+
∂

∂ξj
(ρujYα) =

∂

∂ξj

(
ρFDα

∂Yα
∂ξj

)
+

ω̇α

F (2.56)
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If we solve this equation (2.56) with respect to t and x instead of τ and ξ, Yα just gets thickened F
times compared to the solution of the original (2.1d) [61]. Other properties of the flame will keep the
same. For laminar premixed flame, the flame propagation speed will not change. Figure 2.2 presents
the result of the same test case as in figure 2.1 which is done with a ATF method with thickening
factor F = 2. One can see that the flame is artificially thickened so that the flame thickness as
defined in (2.49) is changed into δ0L =0.691mm, which is almost F times as the original one. But all
the other flame characteristics keep unchanged and the flame speed keeps S0

L =1.58m/s as calculated
from equation (2.51).

(a) Mass fractions (b) Temperature & Reaction rate

Figure 2.2: Laminar premixed flame structure with thickened flame model at F = 2.

With this artificial thickening treatment of the flame front, the flame is thickened so that it may be
resolved on a relatively coarse mesh. This brings us great convenience for numerical simulation. How-
ever, for turbulent combustion, the increasing of the flame thickness will affect the flame-turbulence
interaction [6]. According to Colin et al. [57], after the flame is thickened F times, compared to the
original flame, turbulent eddies smaller than Fδ0L can not interact with the thickened flame any more
and their effects have to be incorporated in the modeling as a subgrid scale FSD effect. Also eddies
larger than Fδ0L can interact with the flame front but their efficiency may be affected by the increased
flame thickness. These effects should be modeled by the subgrid wrinkling factor [57, 58, 59] defined
as:

Ξ = ST /ST,resolved = |∇c|/|∇c| (2.57)

where ST and ST,resolved are the exact turbulent flame speed and the resolved flame speed, re-
spectively, and c is the progress variable. In the LES formalism, the Favre-filtered species equation
reads

∂ρỸα
∂t

+
(
ρũj Ỹα

)
,j
= −

(
FΞρṼ c

αj Ỹα

)
,j
+

Ξ

F
ˆ̇ωα (2.58)

where ˆ̇ωα = ω̇α(Ỹα, T̃ ) is the chemical source term in quasi-laminar formulation, i.e. computed with
resolved variables. Many models for Ξ have been proposed in the literature, either static [58] or
dynamic [31, 59]. Most of them are based on the fractal dimension of the flame surface (e.g. [62]).
The assessment of such algebraic flame surface density models has been performed by Chakraborty
& Klein [63] and Katragadda et al [64].

In the present study, a new SGS model proposed by F. Thiesset et al. [5, 65, 24] is implemented.
This model, derived from [58], has the form

Ξ =

{[
1 +

(
∆F

ηi

)α]
/

[
1 +

(
∆F

ηo

)α]}β/α

(2.59)
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where α = 2, β = Df − 2 as in fractal models, ∆F = Fδ0L is the flame filter width, ηo ≈ 3Lt is the
outer length scale (Lt: integral turbulent length scale, input for the model), ηi is the inner cut-off
length-scale, related to the local Karlovitz number Ka = τc/τk as in (2.54)

ηi
δ0L

= Ka
−2 + r∗1Ka

−1/2 ; r∗1 = (3Cq)
3/4 (2.60)

with Cq =
11
3 Cu, Cu ≈ 2 being the “universal” constant in Kolmogorov’s 2/3 law. The first term on

the rhs of (2.60) accounts for low Karlovitz numbers, whereas the second one accounts for high Ka.
The expression for β in (2.59) slightly differs from the one of [7], and reads

3β = 1 +
r∗1Ka

−1/2

Ka
−2 + r∗1Ka

−1/2
(2.61)

The main difficulty is to estimate the local Karlovitz number from the resolved field. Different
expressions for Ka are

Ka = Sc

(
δ

η

)2

= Sc−1

(
uK
S0
L

)2

=

√
ε/νu

S0
L/δ

(2.62)

where δ is the diffusive thickness of the flame such that Ref = δS0
L/νu = 1, uK is the Kolmogorov

velocity scale, and Sc = νu/Dfuel→air is the Schmidt number usually assumed close to unity. The last
expression for Ka in (2.62) can be used if a value is given to ε. This can be achieved from

ε = Cε
k
3/2
sgs

∆
≈ Cε

u3∆
∆

; Cε = 1.05 (2.63)

where ∆ and u∆ are the a length scale and velocity fluctuation at scale ∆, respectively. One possibility
is to compute ε from the subgrid scale eddy-viscosity νtsgs

10

ε = νtsgs
3
/(Cs∆)4 (2.64)

with Cs = 0.18 and ∆ ≡ h = (∆x∆y∆z)1/3. The subgrid scale eddy-viscosity in (2.64) can be
evaluated from flow SGS models, e.g., by the Smagorinsky model in equation (2.37).

Another method to evaluate the turbulent dissipation rate ε is to calculate u∆ with the operator
OP2 proposed by Colin et al. [57]. This operator estimates the turbulent velocity fluctuation u′∆ at
scale ∆ ≈ 10∆x where ∆x is the grid size as

u′∆ = ‖OP2(ũ)‖ ≡
∥∥c2∆3

x∇×∇2
OP1(ũ)

∥∥ (2.65)

where the ∇2
OP1(ũ) is a numerical Laplacian operator

∇2
OP1(ũ) ≡




δ2

δx2 (ũx) +
δ2

δy2
(ũx) +

δ2

δz2
(ũx)

δ2

δx2 (ũy) +
δ2

δy2
(ũy) +

δ2

δz2
(ũy)

δ2

δx2 (ũz) +
δ2

δy2
(ũz) +

δ2

δz2
(ũz)


 (2.66)

in which the numerical second order derivative calculation operator δ2

δx2 (•) reads11

δ2

δx2
(θ) ≡ θi+2,jk − 2θi,jk + θi−2,jk

4∆2
x

(2.67)

In (2.67), θi,jk is the value of θ at grid point xi, yj , zk. The operator OP2 can remove the dilatation part
of the velocity field thanks to the Curl operator ∇× in (2.65). Further discussion on the evaluation
of SGS flame wrinkling model can be found in chapter 4 with test cases.

In this chapter, the basic governing equations for the LES of turbulent combustion have been
introduced. The next chapter will focus on the numerics applied in this research.

10Simply according to vtsgs ∼ ul and ε ∼ u3/l.
11This operator is equivalent to perform a second order center finite difference first order derivative twice.
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Chapter 3

Numerics

Synopsis

Ce chapitre, au coeur de ce travail de thèse, décrit les méthodes numériques employées pour les
simulations des grandes échelles présentées par la suite.

• La première section donne un aperçu général de ces méthodes : schéma en temps, termes
visqueux, et annonce le traitement des flux Euler, des conditions aux limites et de l’approche
bas-Mach qui seront développés en détail aux sections suivantes.

• La seconde section est consacrée à la discrétisation des flux Euler, qui est la plus importante
source d’erreurs numériques lors des simulations. Ces erreurs sont exploitées dans les SGE im-
plicites, et doivent être caractérisées précisément. On présente d’abord la procédure de recon-
struction par schémas linéaires centrés et décentrés en amont, pour la formulation conservative
des flux numériques, puis celle par les schémas WENO non-linéaires sous diverves variantes. Le
pouvoir de résolution, le filtre implicite et la résolution sous-filtre de ces schémas sont ensuite
analysés scrupuleusement. On présente à la suite deux cas-test (tourbillons de Taylor-Green et
double réflexion de Mach) illustrant les propriétés dissipatives des divers schémas numériques
présentés plus haut.

• La troisième section traite de la formulation et de l’implémentation de la méthode ASR pour les
écoulements à faible Mach. Le principe en est illustré sur le système Euler 1D. La formulation
conservative de la méthode pour le système Euler 3D, originale, est présentée à la suite avant
de donner l’extension de la méthode au cas Navier-Stokes, i.e. avec termes de viscosité. On
illustre enfin les perfomances de la méthode ASR sur trois cas-tests : propagation d’une onde
acoustique, écoulement soumis à la gravité, et diffusion d’un pic de température.

• La quatrième section décrit la génération et l’implémentation des conditions aux limites tur-
bulentes en entrée. Un ”bloc” de turbulence homogène et isotrope, présentant des propriétés
spectrales correspondant au forçage multi-échelles expérimental est d’abord généré à partir les
mesures au fil chaud réalisées sur l’axe du jet. Ce bloc de turbulence est ensuite superposé au
profil de vitesse moyenne du jet, puis injecté dans le domaine de calcul par une formulation aux
caractéristiques des conditions aux limites.

Following the presentation of governing equations, this chapter outlines the numerics for (I)LES.
The numerical solution of the filtered, unsteady, fully compressible multi-species Navier-Stokes equa-
tions (2.27) is obtained by applying numerical methods to these equations. An overview of the main
numerical treatments used in the current work is given in the first section; The inviscid flux evalu-
ation, the low-Mach modifications and the boundary conditions will be then discussed in detail, as
they are important for the LES of the low-speed premixed turbulent combustion, especially for the
implicit LES applications.
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3.1 Overview

The numerical strategies in this study are based on our team’s former work in high-speed reactive
flows [21, 22, 23, 26, 27]. The main numerical treatments applied in the current work are:

1. Explicit third order TVD Runge-Kutta scheme [66] for time stepping;

2. Finite difference procedures for the inviscid fluxes, like Weighted Essentially Non-Oscillatory
(WENO) schemes [66];

3. Fourth order central finite difference for viscous terms;

4. Detailed finite-rate chemistry with Arrhenius laws for chemical source terms;

5. Characteristic-based boundary conditions;

6. Artificial Acoustic Stiffness Reduction (ASR) method [67] for low-Mach simulations.

I would like to briefly illustrate several points of this list in this section. Detailed discussion on other
topics can be found in the following sections.

• The time marching strategy is to first discretize the spatial derivatives only and leaving the time
continuous (method of lines). The filtered N-S equation (2.30) can then be written as a initial value
ODE problem as

∂u

∂t
= NL(u) (3.1)

in which the operatorNL represents all the spatial and local operations including inviscid fluxes (2.32),
viscous terms (2.33), source terms (2.34) and SGS terms (2.35). At a given time t, with the value of
variables u given at this time which is denoted by un, the value of u at the next time step t + ∆t,
which is denoted by un+1, is calculated by the explicit optimal third order TVD Runge-Kutta (R-K)
scheme [66]:

u(1) = un +∆tNL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tNL(u(1)) (3.2)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tNL(u(2))

The Butcher array for this R-K scheme can be found in table 3.1.

c1
c2 a21
c3 a31 a32

b1 b2 b3

=

0
1 1

1/2 1/4 1/4

1/6 1/6 2/3

Table 3.1: Butcher array for the optimal third order TVD Runge-Kutta scheme

• A Finite Difference Method (FDM) framework is applied for the evaluation of spatial derivatives
in inviscid fluxes and viscous terms. The inviscid fluxes will be discussed in section 3.2. The evaluation
of diffusion terms like

∂

∂xj

(
α
∂f

∂xj

)
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in which α is the diffusion coefficient (like viscosity µ for momentum in (2.27b) or thermal conductivity
λ for heat flux (2.27c)), is performed by applying twice a first order derivative with the 4th order
accuracy central scheme (3.3).

∂

∂x
f

∣∣∣∣
x=xi

=
1

12∆x
(fi−2 − 8fi−1 + 8fi+1 − fi+2) +O(∆x4) (3.3)

3.2 Inviscid flux calculation

The numerical errors brought out by the inviscid flux evaluation are always the main part of all the
numerical errors in LES [15, 41, 68]. This makes the choice of flux calculation schemes the central issue
in both physical and implicit LES. Especially for ILES, as shown in equation (2.45), this approach
relies entirely on the built-in filter of the scheme and its dissipative properties to remove and model
small turbulent scales in under-resolved simulations [16, 15, 14]. In this section, the spatial derivation
schemes used in this work and their performances in LES will be discussed.

3.2.1 Numerical schemes for spatial derivatives

Flux reconstruction for Finite Difference Methods

The inviscid flux terms are calculated under the finite difference method (FDM) framework in the
current study. The basis of FDM will be briefly recalled in this section.

Let us consider the scalar 1D hyperbolic conservation law, with proper initial and boundary
conditions,

∂u

∂t
+

∂f

∂x
= 0 ; x, t ∈ R (3.4)

which admits discontinuous weak solutions as in the conservative form of N-S equations (2.1). The
semi-discrete form of (3.4) on a uniform grid xi = i∆x, i = 0, · · · , N , where ui(t) is the numerical
approximation of u(xi, t), yields the conservative finite-difference formulation

dui(t)

dt
= − ∂f

∂x

∣∣∣∣
x=xi

= −
f̂i+1/2 − f̂i−1/2

∆x
(3.5)

which is exact, provided the numerical flux f̂i+1/2 is equal to h(xi+1/2), where the function h(x) is
implicitly defined, at a given time t, by

f(u(x, t)) =
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ)dξ (3.6)

Given the set of node values fi ≡ f(u(xi, t)) satisfying

fi =
1

∆x

∫ xi+1/2

xi−1/2

h(ξ)dξ = h̄i (3.7)

the intercell value h(xi±1/2) can be approximated at order k with a (k − 1)-th order interpolating
polynomial pr(x) built in the stencil Sr(i) of r cells to the left of xi, s cells to the right and the cell
Ii that contains xi, such that r + s+ 1 = k:

h
(r)
i+1/2 =

k−1∑

j=0

crjfi−r+j = h(xi+1/2) +O(∆xk) r = 0, . . . , k − 1

h
(r)
i−1/2 =

k−1∑

j=0

cr−1,jfi−r+j = h(xi−1/2) +O(∆xk) r = 0, . . . , k − 1
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In practice, the left flux h
(r)
i−1/2 is usually calculated as the right boundary flux of the cell Ii−1. For

example, the 5th order upwind scheme uses a 4th order interpolating polynomial built in the 5-cells
stencil S(i) = {Ii−2, Ii−1, Ii, Ii+1, Ii+2} of 2 cells to the left of xi and 2 cells to the right to estimate
the intercell value h(xi+1/2) by [69]

h5-up

i+1/2(f) =
1

60
(2fi−2 − 13fi−1 + 47fi + 27fi+1 − 3fi+2) = h(xi+1/2) +O(∆x5) (3.8)

and the intercell value h(xi−1/2) is interpolated in stencil S(i−1) = {Ii−3, Ii−2, Ii−1, Ii, Ii+1} of 2 cells
to the left of xi−1 and 2 cells to the right

h5-up

i−1/2(f) =
1

60
(2fi−3 − 13fi−2 + 47fi−1 + 27fi − 3fi+1) = h(xi−1/2) +O(∆x5) (3.9)

Using these equations to (3.5), one may obtain the 5th order upwind scheme

∂f

∂x

∣∣∣∣
5-up

x=xi

=
1

∆x
~a · ~f =

∂f

∂x
(xi) +O(∆x5) (3.10)

with

~a5-up =
1

60
[−2 15 − 60 20 30 − 3]T (3.11)

and
~f = [fi−3 fi−2 fi−1 fi fi+1 fi+2]

T

This scheme is an upwind scheme because it uses 3 cells to the left of xi+1/2 and 2 cells to the right.
To enforce the stability of the scheme, this scheme should only be applied to a flux f>0(u) for which
the wind blows from the left to the right

df>0

du
> 0 (3.12)

In this work, the Lax-Friedrichs flux splitting is applied to ensure condition (3.12). The flux f(u) is
separated into f>0 and f<0 as

f(u) ≡ f>0 + f<0

f>0 ≡ 1

2
(f + αu) ; f<0 ≡ 1

2
(f − αu) (3.13)

where α is taken as

α = max
u

∣∣∣∣
df(u)

du

∣∣∣∣ (3.14)

over a relevant range of u. During the flux reconstruction step, the reconstruction (3.8) will be
performed on f>0 in (3.13) instead of f , and the resulting reconstructed value will be denoted as
h−i+1/2, where the “−” superscript stands for the left side of intercell i+ 1/2,

h5-up−
i+1/2(f

>0) =
1

60

(
2f>0

i−2 − 13f>0
i−1 + 47f>0

i + 27f>0
i+1 − 3f>0

i+2

)
(3.15)

Using the stencil {Ii−1, Ii, Ii+1, Ii+2, Ii+3}, with a symmetry operation of (3.15), the flux reconstruc-
tion of f<0 is then

h5-up+
i+1/2(f

<0) =
1

60

(
2f<0

i+3 − 13f<0
i+2 + 47f<0

i+1 + 27f<0
i − 3f<0

i−1

)
(3.16)

and the “+” superscript stands for the right side of intercell i+1/2. The final reconstruction is taken
as

hi+1/2 ≡ h+i+1/2 + h−i−1/2 (3.17)

The same process can be applied for the reconstruction of hi−1/2. The derivation of the flux f in

(3.4) is obtained by taking the values hi+1/2 and hi−1/2 as f̂i+1/2 and f̂i+1/2 in (3.5).
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WENO reconstruction

Following this idea of using polynomial interpolation to estimate the intercell values, some modern
spatial derivative schemes like WENO are developed to overcome the difficulties brought by discon-
tinuities in the (weak) solutions [66]. It is well known that polynomial interpolation will generate
oscillations near discontinuities, which are called Gibbs phenomenon in spectral methods. On the
other hand, as we have already seen in the previous section, there exist different estimations of in-
tercell value which can be obtained from different stencils. The main concept of WENO schemes is
to use as much as possible stencils in which the solution is smooth in interpolation to minimize the
influence of discontinuities.

xi xi+1 xi+2xi-2 xi-1

xi-1/2 xi+1/2

S2(i)

S1(i)

S0(i)

r = 2, s = 0

r = 1, s = 1

r = 0, s = 2

S(i)

h(0)
i+1/2

h(2)
i+1/2

x

h(1)
i+1/2

fi = hi

21

0

21 /i/i hf̂

Figure 3.1: Illustration of the WENO method.

Let take 5th order WENO schemes as example. As shown in figure 3.1, for intercell xi+1/2, a
5th order WENO scheme will take three 3-cells stencils S2, S1 and S0 to perform three 2nd order

polynomial interpolations. Thus three candidate intercell values h
(2)
i+1/2, h

(1)
i+1/2 and h

(0)
i+1/2 will be

obtained [69]:

h
(2)
i+1/2 =

1

3
fi−2 −

7

6
fi−1 +

11

6
fi

h
(1)
i+1/2 = −1

6
fi−1 +

5

6
fi +

1

3
fi+1 (3.18)

h
(0)
i+1/2 =

1

3
fi +

5

6
fi+1 −

1

6
fi+2

The concept of WENO is to use a weighted average of these 3 candidates to construct the intercell
flux hi±1/2

hi+1/2 =

k−1∑

r=0

ωrh
(r)
i+1/2 (3.19)

The union of the 3 stencils makes a global stencil S(i) =
⋃

r Sr(i) of 5 cells centered on xi, in which
there exists a unique polynomial that approximate the intercell flux at fifth order accuracy :

hi+1/2 =

2∑

r=0

drh
(r)
i+1/2 = h(xi+1/2) +O(∆x5) (3.20)
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This flux should be identical to (3.8). So dr can be calculated back from (3.8) as

d0 =
3

10
, d1 =

6

10
, d2 =

1

10
(3.21)

These weights dr are called ideal linear weights, since they achieve the maximum order of accuracy
for the given stencil S(i) and do not depend on node values fi.

Furthermore, if the function h(x) is not smooth in the stencil S(i), the weights ωr in (3.19) should
be calculated differently. In the case where the function h(x) is not smooth in the stencil Sr(i), the

intercell approximate value h
(r)
i+1/2 should be excluded from the linear combination (3.20), or given

a much lower weight ωr instead of the optimal weight dr, reducing de facto locally the accuracy of
the scheme. This weighting process, depending on a smoothness indicator, is the core of the WENO
method. Several weighting process can be found in the literature:

aaaa
• WENO-OPT

The linear optimumWENO (WENO-OPT) can be constructed by applying the ideal linear weights
directly

ωOP
r = dr ; r = 0, · · · , k − 1 (3.22)

The resulted WENO-OPT scheme is in fact the upwind 5th order scheme (3.10).
aaaa

• WENO-JS
The JS weights [66, 69, 70] are given by

ωJS
r =

αr∑k−1
j=0 αj

; αr =
dr

(ǫ+ βJS
r )2

; r = 0, · · · , k − 1 (3.23)

where ǫ is a small positive constant added to prevent the denominator becoming zero and we take
ǫ = 10−80 in our simulations. The smoothness indicator βJS

r here is just a sum of the squares of scaled
L2 norms for all the derivatives of the interpolation polynomial over the interval (xi−1/2, xi+1/2)

βJS
r =

k−1∑

l=1

∫ xi+1/2

xi−1/2

∆x2l−1

(
dlpr(x)

dxl

)2

dξ (3.24)

The formulations for the evaluation of βJS
r from cell values fi up to k = 6 can be found in appendix B.1.

aaaa
• WENO-M

The method suggested by Henrick et al. [71] consists in applying a mapping to the 5th order JS
non-linear weights (k = 3), to preserve a higher order of accuracy near critical points

gr(ω) =
ω
(
dr + d2r − 3drω + ω2

)

d2r + ω(1− 2dr)
; r = 0, 1, 2 (3.25)

The new M-weights are

ωM
r =

αM
r∑2

j=0 α
M
j

; αM
r = gr(ω

JS
r ) ; r = 0, 1, 2 (3.26)

aaaa
• WENO-Z

The WENO-Z method [72] is intended to decrease the numerical dissipation and improve the
resolving efficiency of the WENO-JS scheme, by designing new stiffness indicators. At 5th order, the
WENO-Z weights read

ωZ
r =

αZ
r∑2

j=0 α
Z
j

; αZ
r =

dr
βZ
r

; r = 0, 1, 2 (3.27)
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where the stiffness indicators are

1

βZ
r

= 1 +

(
τ5

ǫ+ βJS
r

)2

; τ5 = |βJS
0 − βJS

2 | (3.28)

The method has been extended to any order (2k − 1) > 5 [73]

ωZ
r =

αZ
r∑k−1

j=0 α
Z
j

; αZ
r =

dr
βZ
r

; r = 0, · · · , k − 1 (3.29)

using the generalized smoothness indicators

1

βZ
r

= 1 +

(
τ2k−1

ǫ+ βJS
r

)p

; τ2k−1 =

{
|βJS

0 − βJS
k−1| k odd

|βJS
0 − βJS

1 − βJS
k−2 + βJS

k−1| k even
(3.30)

aaaa
• WENO-MZ

A further simple improvement is the combination of WENO-M andWENO-Z, namely WENO-MZ,
obtained by mapping the Z weights (3.27) instead of the JS weights in (3.25):

ωMZ
r =

αMZ
r∑2

j=0 α
MZ
j

; αMZ
r = gr(ω

Z
r ) ; r = 0, 1, 2 (3.31)

Apparently, the WENO schemes (except WENO-OPT) are all non-linear schemes as their coeffi-
cients for calculating the flux depend also on the local values of the original function.

Flux reconstruction for multi-variables multi-dimensions systems

The N-S system (2.19) is a three dimensional multi-variables system. To apply the FDM framework
to the hyperbolic part of this system, especially for the flux splitting, a decoupling of the system
should be performed. Let take the flux evaluation on x direction as example. To evaluate ∂F

∂x , the
jacobian matrix

A ≡ ∂F

∂U
(3.32)

should be first diagnolized in order to find the characteristic speeds as

A = RΛL (3.33)

where R and L are the matrix of right and left eigenvectors of A, such that RL = LR = I, and Λ is
a diagonal matrix composed by all the eigenvalues λi of A

Λ ≡




λ1

λ2

λ3

. . .

λNsp+5




(3.34)

A detailed derivation of this eigen decomposition process of N-S equations can be found in ap-
pendix B.2.

In the current work, for the reconstruction of F̂ i+1/2, the following steps are taken:

1. Calculate the F field with (2.21).

2. Calculate the average state U i+1/2 = 1/2(U i+1 + U i) and use this average state to calculate
the matrix of left and right eigen vectors Li+1/2 and Ri+1/2 at xi+1/2 as in equation (B.21) and
(B.20)
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3. Flux splitting. The Lax-Friedrichs flux splitting for a multi-variables system is performed in
characteristic space. The split characteristic waves L on the reconstruction stencil S

L>0
j ≡ 1

2

(
Li+1/2F j + ΛLi+1/2U j

)

L<0
j ≡ 1

2

(
Li+1/2F j − ΛLi+1/2U j

)
for Ij ∈ S (3.35)

are taken into the reconstruction process like f>0
j and f>0

j in (3.15) and (3.16) for scalar

PDEs. In (3.35), the matrix Λ is the diagonal matrix of the maximum absolute value of all the
eigenvalues over a relevant range

Λ ≡




max |λi|
max |λi|

max |λi|
. . .

max |λi|




(3.36)

4. Reconstruct the intercell value for the characterize waves like in (3.15) and (3.16). For example,
the fifth order upwind scheme is then

h
5-up−
i+1/2(L

>0) =
1

60


2 (

1

2

(
Li+1/2F i−2 + ΛLi+1/2U i−2

)
)

︸ ︷︷ ︸
L>0
i−2

−13 (
1

2

(
Li+1/2F i−1 + ΛLi+1/2U i−1

)
)

︸ ︷︷ ︸
L>0
i−1

+ 47 (
1

2

(
Li+1/2F i + ΛLi+1/2U i

)
)

︸ ︷︷ ︸
L>0
i

+27 (
1

2

(
Li+1/2F i+1 + ΛLi+1/2U i+1

)
)

︸ ︷︷ ︸
L>0
i+1

−3 (
1

2

(
Li+1/2F i+2 + ΛLi+1/2U i+2

)
)

︸ ︷︷ ︸
L>0
i+2


 (3.37)

Let denote the resulting constructed value as h
−
i+1/2(L>0) and h

+
i+1/2(L<0), the final recon-

structed value F̂ i+1/2 reads

F̂ i+1/2 = Ri+1/2

(
h
−
i+1/2(L

>0) + h
+
i+1/2(L

<0)
)

(3.38)

The same process can be applied for the left cell boundary to get F̂ i−1/2. The final result of ∂F
∂x

can be obtained by

∂F

∂x

∣∣∣∣
x=xi

=
F̂ i+1/2 − F̂ i−1/2

∆x

For the fluxes in other directions, the same procedure is performed except that the form of the
jacobian matrix has changed.

Further discusion

The 4th order central scheme is also used in this work for the evaluation of viscous terms. With a
4-cells stencil S1(i) = {Ii−1, Ii, Ii+1, Ii+2} thus 1 cell to the left of xi and 2 cells to the right, the flux
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reconstruction of 4th order central scheme reads

h4-c

i+1/2 =
1

12
(−fi−1 + 7fi + 7fi+1 − fi+2) = h(xi+1/2) +O(∆x4)

h4-c

i−1/2 =
1

12
(−fi−2 + 7fi−1 + 7fi − fi+1) = h(xi−1/2) +O(∆x4) (3.39)

This will lead to the scheme (3.3) in the previous section

∂

∂x
f

∣∣∣∣
4−c

x=xi

=
1

12∆x
(fi−2 − 8fi−1 + 8fi+1 − fi+2) =

∂f

∂x
(xi) +O(∆x4)

The flux splitting process will not affect the result of the central schemes as the h+ and h− are
identical to each other so that the splitting part ±αu will cancel each other during the process. Also,
Taylor expansion analysis indicates that central schemes do not produce any even order derivatives
errors, so no dissipation will be added to the final results when combined with the time stepping.

An interesting point here is that a linear combination of two reconstructed intercell value (3.8)
and (3.39)

hup-c

i+1/2 ≡ αh5-up

i+1/2 + (1− α)h4-c

i+1/2 (3.40)

with 0 ≤ α ≤ 1 is also a valid estimation of intercell value h(xi+1/2) with at least 4th order accuracy,
thus it will lead to a 4th order differential scheme. The usage of center schemes together with upwind
schemes can reduce the numerical dissapation introduced by upwind, thus is suitable for low speed
applications [74]. This hybrid scheme is also used in the current work and will be further discussed
in the next chapter.

3.2.2 Comparison of different schemes in the context of LES

Of primary importance for LES is the characterization of the built-in implicit filter of the numerical
scheme, related to its Modified Wave Number (MWN). For a given grid size h, the numerical scheme
having the lowest subfilter resolution

r ≡ ∆

h
(3.41)

will provide the smallest resolved eddies and is the most desirable. On the other hand, given the
smallest resolved scale ∆, a numerical scheme with r ≫ 1 will need a finer grid, hence more compu-
tational resource. To quantify the subfilter resolution of a numerical scheme, two different methods
can be applied: i) direct analysis in physical space, and ii) MWN analysis in Fourier space.

Subfilter resolution in physical space

According to Geurts and van der Bos [68], the built-in filter associated to a linear scheme can be
expressed as a linear combination of local top-hat filters. Considering a linear FD scheme involving
n+m+ 1 cells1

δ(−n,m)f(x)

δx
=

1

∆x

m∑

j=−n

ajf(x+ j∆x) (3.42)

with
∑

aj = 0 for the consistency of the scheme. Neglecting the flux splitting, the built-in filtering
process of this scheme can be defined as

δ(−n,m)f

δx
=

∂

∂x
f =

∂

∂x

[∫ +∞

−∞
G−n,m(ξ − x)f(ξ)dξ

]
(3.43)

where G−n,m is the kernel of the built-in filter.

1Let consider a simple 1D case with constant grid h ≡ ∆x
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To find the expression of this implicit filter kernel, one can write (3.42) as

δ(−n,m)f

δx
(x) =

1

∆x

m∑

j=−(n−1)

bj (f(x+ j∆x)− f(x+ (j − 1)∆x)) (3.44)

in which the coefficients bj can be calculated from the aj as in (3.42) as

bj =

m∑

i=j

ai ; j = −(n− 1), . . . ,m (3.45)

If we consider a local top-hat filter

GTOP
j (x) ≡

{
1/∆x x ∈ [(j − 1)∆x, j∆x]
0 otherwise

(3.46)

the filtered field by this kernel is then

l (f, x : (j − 1)∆x, j∆x) ≡
∫ +∞

−∞
GTOP

j (ξ − x)f(ξ)dξ

=
1

∆x

∫ x+j∆x

x+(j−1)∆x
f(ξ)dξ (3.47)

The derivative of this filtered function is clearly

∂

∂x
l (f, x : (j − 1)∆x, j∆x) =

1

∆x

∂

∂x

(∫ x+j∆x

x+(j−1)∆x
f(ξ)dξ

)
dx

=
1

∆x
(f(x+ j∆x)− f(x+ (j − 1)∆x)) (3.48)

Comparing (3.48) to (3.44), we can find that the filter kernel introduced by scheme (3.42) is

G−n,m(x) =
m∑

j=−(n−1)

bjG
TOP
j (x) (3.49)

The coefficients aj and bj in equation (3.42) and (3.45) for 2nd order central2, 4th order central (3.3)
and 5th order upwind (3.10) schemes are listed in table 3.2. The built-in filter kernel of these schemes
are plotted in figure 3.2.

Once the kernel of the built-in filter obtained as in (3.49), the sub-filter resolution r in (3.41) can
be calculated. The effective filter width should be firstly defined as in [38, 68]:

∆ =

(∫ +∞

−∞
G2(x)dx

)−1

(3.50)

For linear schemes, this quantity can be integrated directly in physical space. The resulting sub-filter
resolution (3.41) for the linear schemes in figure 3.2 read

r2nd central = 2

r4th central =
36

25
= 1.44 (3.51)

r5th upwind =
15

13
≈ 1.15

2 δ−1,1f(xi)
δx

≡
1

2∆x
[fi+1 − fi−1]
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Table 3.2: Coefficients aj and bj in equation (3.42) and (3.45) for different schemes.

aj bj

2nd order central

{
a−1 = −1/2
a1 = 1/2

{
b0 = 1/2
b1 = 1/2

4th order central





a−2 = 1/12
a−1 = −2/3
a1 = 2/3
a2 = −1/12





b−1 = −1/12
b0 = 7/12
b1 = 7/12
b2 = −1/12

5th order upwind





a−3 = −1/30
a−2 = 1/4
a−1 = −1
a0 = 1/3
a1 = 1/2
a2 = −1/20





b−2 = 1/30
b−1 = −13/60
b0 = 47/60
b1 = 9/20
b2 = −1/20

Figure 3.2: Implicit local top-hat filter induced by 2nd order central, 4th order central and 5th order
upwind scheme.

Subfilter resolution in Fourier space

A more convenient way to calculate the subfilter resolution is in Fourier space using the Parseval’s
identity to calculate the filter width:

∆ =

(∫ +∞

−∞
G2(x)dx

)−1

=

(
2π

∆x

∫ +∞

−∞
|Ĝ(ω)|2dω

)−1

(3.52)
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in which the Ĝ(ω) is the built-in kernel in Fourier space that can be got from the MWN of a numerical
scheme [37]. Let consider a single Fourier mode k : fk(x) = f̂ke

jckx. At a grid point xi, i = 0, · · · , N ,
a linear numerical differential scheme δ

δx(•) produces a derivative only at mode k

δfk
δx

∣∣∣∣
L

i

=
δ̂fk
δx

(k)ejckxi = jck
′(k)f̂ke

jckxi (3.53)

where k′(k) is called the modified wave number, because that the exact differential operator ∂
∂x(•)

should only give the non-modified wave number k instead of k′(k)

∂̂fk
∂x

(k) = jckf̂k (3.54)

This MWN is used to characterize the dissipative and dispersive errors of the spatial scheme for
equation (3.4). If we write formally the equivalence between derivation and filtering expressed as a
convolution with the filter kernel G as in (3.43):

δfk
δx

≡ ∂f̄k
∂x

=
∂

∂x

[∫ +∞

−∞
G(x− ξ)fk(ξ)dξ

]
(3.55)

In spectral space, (3.55) is
jck

′(k)f̂k = jckĜ(k)f̂k

With a scaling by
ω′(ω) = ∆xk′(k∆x) (3.56)

the filter kernel in Fourier space reads

Ĝ(ω = k∆x) =
k′(k∆x)

k
=

ω′(ω)

ω
(3.57)

The standard Fourier analysis of errors for linear schemes can also be extended to non-linear
schemes by considering only the linear part of the MWN [27, 22, 75]. Contrary to linear schemes, a
non-linear scheme operating on a single Fourier mode fk(x) = f̂ke

jkx also produces responses at other
modes than k:

δfk
δx

∣∣∣∣
NL

i

=
δ̂fk
δx

(k)ejckxi +

N/2∑

n=−N/2
n 6=k

δ̂fk
δx

(n)ejcnxi (3.58)

The response of the non-linear scheme at mode k provides, by analogy with (3.53), the linear part of
MWN k′L(k) :

k′L(k) ≡
−j

f̂k

δ̂fk
δx

(k) (3.59)

The linear part of scaled MWN of non-linear fifth order WENO-JS5 (JS), WENO-M5 (M), WENO-
Z5 (Z), WENO-MZ5 (MZ), seventh order WENO-JS7 (JS7) and linear 5th order WENO-OPT (OPT)
is plotted in figure 3.3 by their real and imaginary parts. The related built-in implicit filters of these
schemes obtained from (3.57) are shown in 3.4 by their amplitudes A(ω) (figure 3.4(a)) and phase
shifts φ(ω) (figure 3.4(b)), which are defined as

f̄k(x) ≡
∫ +∞

−∞
G(x− ξ)fk(ξ)dξ = Ĝ(ω)f̂ke

jkx = A(ω)ejφ(ω)f̂ke
jkx (3.60)

Using (3.52), the sub-grid resolution of different WENO schemes can be calculated numerically.
For the integration in (3.52), Ĝ is made periodic by even symmetry around ω = π. Hence, (3.57) has
a bounded absolute value, |Ĝ(ω)| is square-integrable and tends rapidly to zero at infinity. So, the
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Figure 3.3: Real (a) and imaginary (b) parts of the scaled linear MWN (3.59) for different WENO
schemes
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Figure 3.4: Implicit filters of different WENO schemes

integral in (3.52) converges and is estimated numerically in the interval [0, 106π] by the trapezoidal
method, with 4096 points in [0, π]. The computed subfilter resolutions are

rOP ≈ 1.1539 ≈ 15/13 ; rZ ≈ 1.2302
rMZ ≈ 1.2213 ; rJS7 ≈ 1.2368
rJS ≈ 1.2277 ; rM ≈ 1.2438

(3.61)

The value for the linear WENO-OPT scheme can also be found in (3.51) and is used to check the
methodology.

The subfilter resolution of different linear and non-linear schemes as in (3.51) and (3.61) are
not those expected, especially for nonlinear schemes. From this criterion, the WENO-JS subfilter
resolution rJS seems better than those of improved M and Z schemes, and even better than the
seventh order WENO-JS7. This is not the case in most ILES applications [23, 71, 73]. We think that
there are few points that one should take care of for this subfilter resolution analysis:

• The filter size ∆ defined in (3.52) is used to compare different schemes but may not be a good
indicator of the overall performance in actual LES applications. Using this filter width to qualify
a scheme may be misleading.
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• The subfilter resolution r for non-linear schemes only considers the linear part of the schemes.
The contribution of the non-linear part should be further examined.

• Some processes during the flux evaluation like flux-splitting, are ignored during the analysis.
These processes are usually non-linear and their impact should also be considered.

A more informative method to compare different non-linear schemes is to perform actual LES test
cases. This will be shown next.

Comparasion of different schemes in selected test cases

• Taylor-Green vortex
The nearly-incompressible inviscid Taylor-Green vortex flow is a very relevant test case to compare

the built-in dissipation and low-pass filters of numerical schemes, since the integrated kinetic energy
of the (incompressible) flow in a domain D

K(t) =

∫∫∫

D
k(x, t)dV ; k(x, t) =

1

2
ρ
−→
U · −→U (3.62)

should be conserved. Following the methodology and numerical setup of Shu et al. [76], we investigate
the temporal evolution K(t)/K(0) in a cubic computational domain [0, 2π]3, on a regular 3D grid.
At initial time, the calculation field is set to





ρ(~x, 0) = 1
u(~x, 0) = sin(x) cos(y) cos(z)
v(~x, 0) = − cos(x) sin(y) cos(z)
w(~x, 0) = 0
p(~x, 0) = p0 +

ρ
16 [(cos(2z) + 2) (cos(2x) + cos(2y))− 2]

(3.63)

and the calculation is performed with different schemes at CFL=0.6. The temporal evolution of the
integrated kinetic energy is plotted in figure 3.5. It indicates that on a 128 × 128 × 128 grid, the
time needed for non-linear interactions to generate turbulent scales that are small enough (high wave-
numbers) to be damped by the numerical dissipation is t ≈ 4 for WENO-OPT, t ≈ 3 for WENO-JS
and t ≈ 3.5 for the other non-linear schemes. The vortical structure of the flow at t = 2 and t = 6.5
can be observed in figure 3.7 using the Q-criterion[77]. The range of computed Q is −48 ∼ 84. Iso-
surface Q = 0 surfaces colored by the velocity magnitude are displayed in a 1/8 sub-domain for a
better readability, and the vorticity magnitude in the symmetry planes are projected on corresponding
walls. The WENO-OPT solution at t = 6.5 reveals some details that are absent in the JS and MZ
ones, although the differences are quite insignificant.

This is coherent with the amplitude of the built-in filter transfer function (figure 3.4) which de-
parts from unity a little earlier for WENO-JS. Then, the kinetic energy decay clearly indicates that
the most to the less dissipative schemes are JS > Z > M > JS7 > MZ > OPT.

• Double Mach reflection
The Double Mach reflection test case is a classical benchmark for shock-capturing schemes. The

computational setup of this case and the detailed discussion of this complicated problem can be
found in [78] (see also [79] for a thorough analysis of the waves pattern). A M=10 planar shock wave
impinges a 30◦ angle reflecting wedge, creating a complicated flow field sketched in figure 3.6. As
the main shock moves to the right, a reflected shock r, a Mach stem m, and a slip line s emanate
from the first triple point T that characterizes the main Mach reflection. A second triple point T’ is
formed at the intersection of the first reflection r, the second reflection r′ and the curved Mach stem
m′, yielding the second Mach reflection. The fast stream to the left above s experiences the almost
normal reflected shock r′ and turns at 180◦, to create a jet of dense fluid to the right along the wall.
The shear layer s produces vertical structures via the Kelvin-Helmholtz instability, that interact with
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the jet. This is the flow region of interest for the present study: the more detailed flow structures can
be observed on a given grid, the less dissipative the scheme.

Figure 3.8 displays density contours at time t = 0.25 in the double Mach reflection region [2.6, 3.4]×
[0, 0.6], for three grid resolutions, 800×200, 1200×300 and 1600×400. The CFL number is 1. On the
coarse grid, WENO-MZ is a little more detailed than WENO-M and WENO-Z, all being better than
WENO-JS. The same trend is observed on the medium grid. On the fine grid, all improved 5th order
schemes are quite similar, and close to WENO-JS7. The linear WENO-OPT scheme can not pass
this test case as it lacks the shock capturing feature.

Both the analysis with subfilter revolution and test cases show that the linear WENO-OPT scheme
is the less dissipative. So, for a physical LES, the WENO-OPT should be most suitable among all
WENO schemes. But for implicit LES, other non-linear WENO schemes might be preferable as they
may model small turbulent scales better. Also, the linear WENO-OPT scheme is not capable of high
speed shocky applications.

Another interesting comparison between schemes is their computational cost. The time consump-
tion of these two test cases can be found in appendix B.4. Generally speaking, the linear WENO-OPT
scheme is much faster than other non-linear shock capturing WENO schemes.
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Figure 3.5: Time evolution of the integrated kinetic energy of the Taylor-Green vortex flow, resolution
128× 128× 128.
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Figure 3.6: Sketch of the double-Mach reflection flow (inspired from [79]).
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(a) OP, t = 2 (b) OP, t = 6.5

(c) JS, t = 2 (d) JS, t = 6.5

(e) MZ, t = 2 (f) MZ, t = 6.5

Figure 3.7: Taylor-Green vortex flow. Q-criterion (Q = 0) colored by velocity magnitude, and wall
projections of the vorticity magnitude in the three symmetry planes.
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Figure 3.8: Double-Mach reflection at t = 0.25. Color: ρ ∈ [2, 20], step 0.75. Left: 800×200, middle:
1200×300, right: 1600×400. From top to bottom: JS, M, Z, MZ, JS7.
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3.3 Low Mach modifications for time step enlarging

The explicit TVD Runge-Kutta time matching schemes for time integration are constrained by the
Courant–Friedrichs–Lewy (CFL) condition, for the maximum allowed time step ∆t

∆tmax = Cmin

(∣∣∣∣
∆x

λi

∣∣∣∣
)

(3.64)

in which, C is the Courant number usually smaller than 1, ∆x is the grid size and λi are the char-
acteristic speeds of the hyperbolic PDEs involving the speed of sound c and the flow velocity in N-S
system. This means that under low-Mach conditions when Ma ≡

∣∣u
c

∣∣≪ 1, the time step is determined

by the speed of sound c and at a scale of ∆x
c , which is much too small when acoustics is not important.

In order to save computational time, two common solutions to increase the time step exist. The
first one is to use an implicit or semi-implicit time stepping instead the explicit one; another route is
to use an incompressible solver directly for low Mach flows, in which the speed of sound is infinite.
Both the two routes need very deep modifications of our existing compressible LES code.

A third possibility is to artificially decrease the speed of sound as in the Artificial Acoustic Stiffness
Reduction (ASR) method introduced by Wang and Trouvé [67]. In this section, this approach and
our implementation will be illustrated.

3.3.1 Artificial reduction of the speed of sound

The main idea of the ASR method is to reduce the speed of sound artificially. Let consider the one
dimensional, mono-species N-S equations without viscous and source terms:





∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+

rT

ρ

∂ρ

∂x
+ u

∂u

∂x
+ r

∂T

∂x
= 0

∂T

∂t
+ (γ − 1)T

∂u

∂x
+ u

∂T

∂x
= 0

(3.65)

This is the 1D Euler system for the primitive variables ~V ≡ [ρ u T ]T . Equation (3.65) can be
arranged in a vector form :

∂~V

∂t
+ Ã

∂~V

∂x
= ~0 (3.66)

with

Ã =




u ρ 0
rT/ρ u r
0 (γ − 1)T u


 (3.67)

The explicit time step constrain of system (3.66) given by the CFL condition (3.64) can be obtained
by the evaluation of characteristic speeds. This can be achieved by the diagonalization of matrix Ã :

Ã = R̃ΛL̃ (3.68)

The resulting right and left eigenvector matrix of Ã (3.67) read

R̃ =




1 1 1
−c/ρ 0 c/ρ

(γ − 1)T/ρ −T/ρ (γ − 1)T/ρ


 (3.69)

L̃ =




1/(2γ) −ρ/(2c) ρ/(2γT )
(γ − 1)/γ 0 −ρ/(γT )
1/(2γ) ρ/(2c) ρ/(2γT )


 (3.70)
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and the eigenvalue matrix of Ã is3

Λ =




u− c
u

u+ c


 (3.71)

in which
c =

√
γrT (3.72)

The characteristic speeds of the hyperbolic system (3.65) are |u− c|, |u| and |u+ c|, and the CFL
condition in (3.64) for (3.65) is then

∆tmax = Cmin

(
∆x

|u+ c| ,
∆x

|u| ,
∆x

|u− c|

)

In order to enlarge the time step constrained by c, the ASR method modifies the speed of sound
c to c/α, where α > 1, by replacing γ by γ/α2 in jacobian matrix Ã. The resulting jacobian matrix
reads

ÃASR ≡




u ρ 0
rT/ρ u r
0 (γ/α2 − 1)T u


 (3.73)

And the diagnolization of this matrix gives

ÃASR = R̃ASRΛASRL̃ASR

with

R̃ASR =




1 1 1
−c/ρ/α 0 c/ρ/α

(γ/α2 − 1)T/ρ −T/ρ (γ/α2 − 1)T/ρ


 (3.74)

L̃ASR =




α2/(2γ) −αρ/(2c) ρα2/(2γT )
(γ − α2)/γ 0 −ρα2/(γT )
α2/(2γ) αρ/(2c) α2ρ/(2γT )


 (3.75)

ΛASR =




u− c/α
u

u+ c/α


 (3.76)

Apparently, the CFL condition after this modification is

∆tmax = Cmin

(
∆x

|u+ c/α| ,
∆x

|u| ,
∆x

|u− c/α|

)
(3.77)

So, under low Mach conditions when |u| ≪ c, this time step is almost α times larger than that for
the original Euler system.

The modified 1D ASR system

∂~V

∂t
+ ÃASR

∂~V

∂x
= ~0

is then 



∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+

rT

ρ

∂ρ

∂x
+ u

∂u

∂x
+ r

∂T

∂x
= 0

∂T

∂t
+ (γ − 1)T

∂u

∂x
+ u

∂T

∂x
= S̃ASR

(3.78)

3These matrix are in fact a reduction form for 1D mono-species case of R̃, L̃ and Λ for 3D multi-species in equations
(B.18), (B.19) and (B.17).
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where

S̃ASR ≡
(
1− 1

α2

)
γT

∂u

∂x
(3.79)

This additional term in the temperature equation is the only difference between the ASR system (3.78)
and the original Euler system (3.65). Scale analysis of this ASR system indicate that the term S̃ASR

is at most of order O(Ma) thus almost no influence on the main flow properties (at order O(1))
under low Mach conditions. More details on scale analysis and validation test cases can be found
in [67, 80, 81].

3.3.2 The ASR implementation for 3D multi-species N-S equations

ASR modification on 3D Euler system

Like for the one dimensional Euler system, the ASR method can also enlarge the time step of the 3D
multi-species N-S system. As a first step, the Euler part of 3D multi-species N-S equations is written
using primitive variables as (B.9):

∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uj
∂xj

= 0 (3.80a)

∂ui
∂t

+
rT

ρ

∂ρ

∂xi
+ uj

∂ui
∂xj

+ r
∂T

∂xi
+ T

Nsp∑

k=1

(rk − r)
∂Yk
∂xi

= 0 for i = 1, 2, 3 (3.80b)

∂T

∂t
+ uj

∂T

∂xj
+ (γ − 1)T

∂uj
∂xj

= 0 (3.80c)

∂Yk
∂t

+ uj
∂Yk
∂xj

= 0 for k = 1, . . . , Nsp (3.80d)

Using the vector of primitive variables,

V ≡




ρ
u
v
w
T
Y1
...

YNsp




(3.81)

a vector form of (3.81) can be written like

∂V

∂t
+ Ã

∂V

∂x
+ B̃

∂V

∂y
+ C̃

∂V

∂z
= 0 (3.82)

with the matrix Ã same as (B.11) and

B̃ =




v 0 ρ 0 0 0 · · · 0
0 v 0 0 0 0 · · · 0
rT
ρ 0 v 0 r T (r1 − r) · · · T (rNsp − r)

0 0 0 v 0 0 · · · 0
0 0 (γ − 1)T 0 v 0 · · · 0
0 0 0 0 0 v · · · 0
...

...
...

...
...

...(0)
. . . (v)

...(0)
0 0 0 0 0 0 · · · v




(3.83)
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C̃ =




w 0 0 ρ 0 0 · · · 0
0 w 0 0 0 0 · · · 0
0 0 w 0 0 0 · · · 0
rT
ρ 0 0 w r T (r1 − r) · · · T (rNsp − r)

0 0 0 (γ − 1)T w 0 · · · 0
0 0 0 0 0 w · · · 0
...

...
...

...
...

... (0)
. . . (w)

...(0)
0 0 0 0 0 0 · · · w




(3.84)

To artificially reduce the speed of sound in the characteristic speeds, same idea as in the 1D Euler
system is applied here: replace the γ by γ/α2. For matrix Ã in x direction, it gives:

ÃASR ≡




u ρ 0 0 0 0 · · · 0
rT
ρ u 0 0 r T (r1 − r) · · · T (rNsp − r)

0 0 u 0 0 0 · · · 0
0 0 0 u 0 0 · · · 0
0

(
γ/α2 − 1

)
T 0 0 u 0 · · · 0

0 0 0 0 0 u · · · 0
...

...
...

...
...

... (0)
. . . (u)

...(0)
0 0 0 0 0 0 · · · u




(3.85)

And the resulting diagonalization of this jacobian matrix are:

L̃ASR =




α2

2γ −ρα
2c 0 0 ρα2

2γT −ρα2(r−r1)
2γr · · · −ρα2(r−rNsp)

2γr

−α2−γ
γ 0 0 0 −ρα2

γT
ρα2(r−r1)

γr · · · ρα2(r−rNsp)
γr

0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0

α2

2γ
ρα
2c 0 0 ρα2

2γT −ρα2(r−r1)
2γr · · · −ρα2(r−rNsp)

2γr

0 0 0 0 0 1 · · · (0) 0
...

...
...

...
...

... (0)
. . . (1)

...
0 0 0 0 0 0 0 1




(3.86)

R̃ASR =




1 1 0 0 1 0 · · · 0
− c

αρ 0 0 0 c
αρ 0 · · · 0

0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0

−(α2−γ)T
α2ρ

−T
ρ 0 0 −(α2−γ)T

α2ρ
(r−r1)T

r · · · (r−rNsp)T
r

0 0 0 0 0 1 · · · (0) 0
...

...
...

...
... · · · (0) . . . (1) · · ·

0 0 0 0 0 0 0 1




(3.87)

ΛASR =




u− c/α
u

u
u

u+ c/α
u

. . .

u




(3.88)

The characteristic speeds in the eigenvalue matrix (3.88) indicate that the time step for this ASR
modified system has been enlarged α times.

57



Applying the same modifications to B̃ and C̃, the ASR modified 3D Euler system in primitive
form can be obtained. In vector form, it reads

∂V

∂t
+ ÃASR

∂V

∂x
+ B̃ASR

∂V

∂y
+ C̃ASR

∂V

∂z
= 0 (3.89)

with ÃASR given in (3.85), and B̃ASR and C̃ASR being the same as (3.83) and (3.84), except that γ
is substituted by γ/α2.

The next step is then to write this modified system (3.89) in conservative form, in order to be
implemented in the calculation code. The task is to use the conservative variables U as defined
in (2.20)

U ≡




ρ
ρu
ρv
ρw
ρE
ρY1
...

ρYNsp




to write the primitive form (3.89). Firstly, the primitive form can be separated into

∂V

∂t
+ Ã

∂V

∂x
+ B̃

∂V

∂y
+ C̃

∂V

∂z

= (Ã− ÃASR)
∂V

∂x
+ (B̃ − B̃ASR)

∂V

∂y
+ (C̃ − C̃ASR)

∂V

∂z

(3.90)

where Ã is the original jacobian matrix (B.11), and

Ã− ÃASR =




0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0
(
1− 1/α2

)
γT 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · (0) 0
...

...
...

...
...

...
... (0)

. . . (0)
...

0 0 0 0 0 0 0 · · · 0




(3.91)

Multiplying the passage matrix M

M ≡ dU

dV
(3.92)

to the LHS of ASR Euler system (3.90), one may have

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z

=M(Ã− ÃASR)
∂V

∂x
+M(B̃ − B̃ASR)

∂V

∂y
+M(C̃ − C̃ASR)

∂V

∂z
(3.93)

in which the fluxes F , G and H can be found in equation (2.21). In scalar form, this system (3.93)
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reads

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (3.94a)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) = 0 for i = 1, 2, 3 (3.94b)

∂

∂t
(ρE) +

∂

∂xj
(ρEuj + puj) =

(
1− 1

α2

)
γp

γ − 1
uj,j (3.94c)

∂

∂t
(ρYk) +

∂

∂xj
(ρYkuj) = 0 for k = 1, . . . , Nsp (3.94d)

Fully conservative implementation of the 3D ASR Euler system

It is clear that this system can not be explicitly written in conservative form as the additional term

SASR ≡
(
1− 1

α2

)
γp

γ − 1

∂uj
∂xj

(3.95)

in the energy conservation equation (3.94c) is not in conservative form. This prevents the straight
forward evaluation and splitting of Euler flux. In fact, one can write this system in vector form:

∂U

∂t
+

∂FASR

∂x
+

∂GASR

∂y
+

∂HASR

∂z
= 0 (3.96)

with, e.g. the Euler flux in x direction defined from (3.93) as

∂FASR

∂x
=

∂F

∂x
+




0
0
0
0

−

(
1−

1

α2

)
γp

γ − 1

∂u

∂x
0
..
.
0




(3.97)

Although FASR, GASR and HASR are only implicitly defined, the jacobian matrix of these flux can
still be obtained. If we define the jacobian for FASR as

AASR ≡ ∂FASR

∂U
(3.98)

it can be deduced from (3.93), as
AASR = MÃASRM

−1 (3.99)

This matrix and it’s left and right eigenvectors can be found in (B.25), (B.23) and (B.24).
A numerical treatment for ASR Euler flux reconstruction is proposed here. Let take the flux

reconstruction in x direction as example. To calculate ∂FASR
∂x

∣∣∣
x=xi

, the same process as in section

3.2.1 is applied, except that

1. The eigenvalues decomposition of the jacobian at x = xi±1/2 uses the ASR modified version
as shown in (B.23) and (B.24). The eigenvalues are apparently the ASR modified reduced
eigenvalues (3.88).

2. For the reconstruction of the flux splitted characteristic waves, instead of the original form (3.35)
used in the orignal N-S system

L>0
j ≡ 1

2

(
Li+1/2F j + ΛLi+1/2U j

)
for Ij ∈ S
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the ASR system uses

L>0
j ≡ 1

2
(Li+1/2




F j +




0
0
0
0

−
(
1− 1

α2

)
γipi
γi − 1

uj

0
...
0







+ ΛLi+1/2U j) (3.100)

where the subscripts i and j indicate x = xi and x = xj . In this form, the ASR term is inserted
into the flux at x = xi, the value of p and γ are always taken at x = xi for all the involved
stencils. For example, the 5th order upwind scheme for the ASR system is then (B.26). This will
give an extra non-conservative ASR term −

(
1− 1

α2

) γp
γ−1

∂u
∂x in the energy equation compared

to the original N-S energy equation.

3. With this kind of reconstruction, the value hi+1/2 constructed for the evaluation of ∂FASR
∂x

∣∣∣
x=xi

can not be used as h(i+1)−1/2 in the calculation of ∂FASR
∂x

∣∣∣
x=xi+1

. The latter should be re-

constructed separately. This may violate the Rankine-Hugoniot conditions for the speed of
discontinuities, since this scheme is no more fully conservative (Lax-Wendroff theorem 1960).
However, in low-speed flows, this is not a crucial issue.

ASR modified 3D multi-species N-S system

The ASR modified 3D multi-species N-S system can be got by adding the viscous and source terms
to the ASR Euler system:

∂ρ

∂t
+ (ρuj),j = 0

∂ρui
∂t

+ (ρuiuj + pδij),j = τij,j for i = 1, 2, 3

∂ρE

∂t
+ [(ρE + p)uj ],j = (uiτij),j − qj,j + SASR

∂ρYk
∂t

+ (ρujYk),j = −Jkj,j + ω̇k for k = 1, . . . , Nsp

with the same SASR in (3.95). But following the analysis by Wang and Trouvé in [67], for the ASR

N-S system, the flow dilatation
∂uj

∂xj
in the additional term (3.95) should be replaced by the acoustic

part of the flow dilatation. A viscous correction VASR is added to the energy equation to achieve this.
The resulting ASR N-S equations read:

∂ρ

∂t
+ (ρuj),j = 0 (3.102a)

∂ρui
∂t

+ (ρuiuj + pδij),j = τij,j for i = 1, 2, 3 (3.102b)

∂ρE

∂t
+ [(ρE + p)uj ],j = (uiτij),j − qj,j + SASR + VASR (3.102c)

∂ρYk
∂t

+ (ρujYk),j = −Jkj,j + ω̇k for k = 1, . . . , Nsp (3.102d)

with

SASR ≡
(
1− 1

α2

)
γp

γ − 1

∂uj
∂xj
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and

VASR ≡ −
(
1− 1

α2

)
τij

∂ui
∂xj

− ∂qj
∂xj

−
Nsp∑

k=1

(
hk −

WcpT

Wk

)(
− ∂

∂xj
(ρYkVk,j) + ω̇k

)
 (3.103)

in which W and Wk are the molecular weight of the mixture and species k.

3.3.3 Test-cases for ASR method

To validate our implementation of ASR method, three simple 1D test-cases are performed. The
first one is Problem 1 in [67]. This is a one dimensional acoustic wave propagation problem. The
calculation domain is set to be4 x ∈ [−0.005, 0.035]. The initial conditions are as follows: According
to the linear acoustic wave approach, the flow field of a 1D acoustic wave can be separated into the
mean flow (p0, ρ0, u0) and the acoustic perturbation (p1, ρ1, u1),

p = p0 + p1, ρ = ρ0 + ρ1, u = u0 + u1

and the perturbation should meet the condition that

u1 = p1
ρ0c0

ρ1 = p1
c20

where c0 is the speed of sound under mean flow conditions

c0 =
√
γrT0

As initial conditions, the mean flow field is set to under atmospheric pressure and temperature with no
mean velocity: p0 = 1ATM = 101325Pa, T0 = 300K, u0 = 0, ρ0 = p0/r/T0

. The initial perturbation
field is given as

p1 =

{
pc

[
1 + cos

(
2π(x−x0)

L

)]
if x0 − L

2 6 x 6 x0 +
L
2

0 otherwise

A pulse-like initial pressure field is achieved by turning pc and L.
This test-case is calculated with (α = 10) and without ASR method (α = 1). Apparently, as

an acoustic wave, the theoretical solution of this problem should be the perturbation will travel at
the speed of sound c0 following the direction of u1 with it’s original shape unchanged. And, if this
problem is solved with ASR method, the perturbation should travel at a reduced speed of sound,
c0/α. The resulting pressure field of this simulation are shown in figure 3.9. The wave propagation
velocity can be obtained by the traveling speed of the maximum pressure location. Using ASR with
α = 10 (Fig. 3.9(b)), the traveling speed of the wave is at cα=10 = 37.5m/s, and is reduced almost
α times comparing to non-ASR setup (where cα=1 = 377.7m/s, Fig. 3.9(a)). However, the shapes of
the perturbation under both conditions keep almost identical.

Problem 2 in [67] is a test-case to assess the ASR method with the presence of volume force, e.g.
gravity. The interest of this test-case is that, some other sound speed reducing method, like PSG
method introduced by Ramshaw et al. [82], may dramatically enforce the volume force. ASR method
should not have this issue according to [67]. The calculation domain is set to x ∈ [−0.005, 0.035],
the gravity g = 9.8m/s2 is set to along the x direction. Initially, the flow is set to be uniform at
atmospheric condition without any velocity. The boundary at x = 0 is set to solid wall with ghost
points method. Theoretically, after some time, when the flow becomes steady under gravity, the
variation of pressure ∆p at x = ∆x should be

∆p ∼= ρ0g∆x
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Figure 3.9: Perturbation of pressure in the Problem 1 with (a) and without(b) ASR.
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Figure 3.10: Pressure variation between the initial and the steady condition in Problem 2 of [67] with
(a) and without (b) ASR.

Figure 3.10 displays the resulting pressure variation with (3.10(b)) and without (3.10(a)) ASR method.
One may find that they are almost the same. ASR method can deal with problems including volume
force very well.

The third test-case is performed to validate the viscous correction of ASR method. This case is
set as follows: on a 1D calculation domain [−0.02, 0.02], at t = 0 s, the initial temperature field is
given as

T (x, 0) =

{
300 + 100(1 + cos(πxδ )) −δ ≤ x ≤ δ
300 otherwise

(3.104)

with δ = 0.008 m. The velocity field is set to zero and the pressure is P0 =1 Atm on all the
domain as plotted in figure 3.11(a). The working material in this test case is air, and the grid size is
∆x = 0.5 mm. Both sides of boundary conditions are set to NSCBC perfectly non reflecting out-flow5.
This test case is performed with ASR method at a speed-up ratio α = 10 with a time step controlled
by CFL condition (3.77) ∆t ≈ 7 × 10−6 s, and also without ASR method (α = 1) with a time step
∆t ≈ 7 × 10−7 s. The resulting flow field is plotted in 3.11. One can see that, at the beginning of

4All the unit system in this case is set to International System of Units (S.I)
5The boundary condition in low-Mach formulation will be presented in the next section.
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the calculation, t = 2 × 10−5 s as in figure 3.11(b), some acoustic waves are generated both with
and without the ASR method. At t = 2 × 10−4 s in Fig. 3.11(c), these acoustic waves have already
left the calculation domain for the calculation without ASR method, but for the calculation α = 10,
the acoustic waves are still in the domain and the velocity field is almost identical to the calculation
without ASR at t = 2 × 10−5 s. The pressure field with α = 10 at t = 2 × 10−4 s has the same
shape as the pressure field without ASR at t = 2 × 10−5 s, but the amplitude is 10 times smaller.
At t = 0.01 s, after the calculation is steady, the pressure, temperature and velocity fields from both
α = 10 and α = 1 are identical to each other.

This test case shows that, even under almost zero Mach condition (maximum velocity in this test
case is about 5 mm/s), the ASR method can still work well. The acoustic features will be affected
by the ASR modification as the speed of sound is reduced, but the main flow field keeps identical to
original N-S equation solutions.

These three simple test-cases validate our implementation of ASR method in full conservative
form. In the next section, the boundary conditions used in this work will be illustrated.
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(a) Initial

(b) t =2×10−5s

(c) t =2×10−4s

(d) t =1×10−2s

Figure 3.11: Temperature, velocity and pressure field of the third ASR test case.
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3.4 Boundary conditions for “synthetic” HIT injection

As presented in section 1.3, the multi-grid turbulence generator is very complicated. Considering the
complex geometry in figure 1.1, numerical simulation of the actual flow through the multiple grids
using LES is out of reach and not necessary. Our strategy to overcome this issue is to apply a mapping
or recycling method like in [83], as follows:

1. Generate a block of “synthetic” HIT from 1D frequency spectrum using hot-wire measured
velocity time series at the jet outlet in the experiment;

2. Add this HIT field to the experimental mean velocity profile of the jet;

3. Inject this field into the computational domain with a subsonic characteristic boundary.

The generation of “synthetic” turbulent field and the implementation of this subsonic characteristic
boundary with low-Mach modification will be illustrated here after.

3.4.1 HIT field built from experimental measurements

Theoretically, a HIT field can be fully described by its 3D energy spectrum E(K). So, to generate a
HIT field from one point hot-wire experiment data, two steps are necessary: 1) obtain the 3D energy
spectrum from experimental data; 2) build a corresponding velocity field.

3D energy spectrum from experimental data

The 3D energy spectrum E(K) is defined as

E(K) ≡ 1

2

∫∫

| ~K|=K
Eii( ~K)dA( ~K) (3.105)

where A( ~K) is the sphere of radius K = | ~K|, and Eij( ~K) is the 3D energy spectrum tensor, obtained

from the 3D Fourier transform of space correlation tensor Qij(~ξ) as

Eij( ~K) ≡ 1

(2π)3

∫∫∫
Qij(~ξ)e

−jc ~K · ~ξd3~ξ (3.106)

where
Qij(~ξ) ≡ 〈u′i(~x+ ~ξ)u′j(~x)〉 (3.107)

In HIT, equation (3.105) leads to [33]:

E(K) = 2πK2Eii( ~K) (3.108)

In practice, this 3D energy spectrum is obtained from the experiment as follows. The experiment
provides a one-point velocity time series u′(~x, t) at point ~x with the hot-wire measurement [3, 4]. The
one-point time correlation of velocity is calculated as

Q11(τ) ≡ 〈u′1(−→x , t)u′1(
−→x , t+ τ)〉 (3.109)

for the sampling frequency
ω = 2πf = 2π/τ (3.110)

Using local Taylor’s hypothesis, the space correlation

Q11(ξ
−→e1) ≡ 〈u′1(−→x , t)u′1(

−→x + ξ−→e1 , t)〉 (3.111)

can be calculated for the separation −→
ξ = ξ−→e1 (3.112)
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by setting
ξ ≡ U1τ

where U1(
−→x ) is the time-mean local velocity. Apparently, according to (3.110),

ω = U1K1

where K1 is the corresponding wave number. The value of the 1D spatial spectrum F11(K1) at wave
number K1 is obtained by Fourier transform [33]

F11(K1) ≡ F (Q11(ξ
−→e1)) =

1

π

∫ ∞

−∞
Q11(ξ ~e1)e

−jcK1ξdξ (3.113)

Then, the 3D energy spectrum E(K) is calculated according to the HIT relation [33, 84],

E(K) =
1

2
K3 d

dK

(
1

K

dF11(K)

dK

)
(3.114)
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Figure 3.12: Polynomial fitting of experiment 1D energy spectrum

The experimental 1D spatial spectrum F11(K1) is plotted as red dots in figure 3.12. It is clear that
these data are not smooth enough to be used directly in (3.114), where the two steps of derivation
may produce non-physical values of E(K). A polynomial fit is applied to the experimental F11 curve
in log-log space to overcome this un-smooth issue.

The object of polynomial fitting is to find optimal coefficients {ai} of a polynomial P of order N

P(x) ≡
N∑

i=0

aix
i (3.115)

such that the distance from this polynomial to Np experimental 1D spectrum points6 has a minimum
value. This least square optimization leads to the following N equations

∂
{∑Np

j=1 [fj − P(xj)]
2
}

∂am
= 0 ; m = 0, ..., N (3.116)

6(xj = log(K1), fj = log(F11(K1)))
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This is a linear system of the form

N∑

i=1

ai

Np∑

j=1

xi+m
j =

Np∑

j=1

fjx
m
j ; m = 0, ..., N

Specifically, for this 1D spectrum, as shown in [33], the first order derivative of F11 should be 0 at
K1 = 0. To achieve this feature, we impose ∂P

∂x = 0 at the first p points

∂P
∂x

(xj) =
N∑

i=0

iaix
i−1
j = 0 ; j = 1, 2, 3...p

Substitute p equations in (3.116) using these new constrains, the final linear system for fitting is then:




N∑

i=1

iaix
i−1
m = 0 ; m = 1, 2, ..., p

N∑

i=1

ai

Np∑

j=1

xi+m
j =

∑Np

j=1 fjx
m
j ; m = p, ..., N

(3.117)

The result of this fitting procedure is presented in the figure 3.12. The experimental 1D spectrum
is plotted as red dots noted by F11 EXP. A 20th order fitting polynomial with p = 3 from (3.117)
is plotted as the green line. One may find that this polynomial fits well the experiment data and is
smooth enough for the 3D spectrum calculation (3.114). The resulting 3D spectrum is shown as the
blue curve in figure 3.12.

Initial HIT velocity field with given 3D energy spectrum

The 3D divergence free velocity field with a given experimental 3D energy spectrum is then obtained
by setting stream function Ψ̂i as

Ψ̂i( ~K) =

√
δ(~0)

E(K)

4πK4
ejcθi (3.118)

with
K = | ~K|

and θ is a random angle in (0,2π)
θi = rand(0, 2π)

A detailed proof of equation (3.118) can be found in appendix B.5. The resulting velocity field in
Fourier space reads

ûi( ~K) = jcKjǫijkΨ̂k( ~K) = jcKjǫijk

(
δ(0)

E(K)

4πK4

) 1
2

ejcθi (3.119)

Using FFT, the velocity field in physical space can be obtained.
During the whole process of generation of the HIT field, there are some other crucial details worth

to be mentioned:

1. The spectra from experiments correspond to a DNS resolution. For a LES simulation, a low-
pass filter should be firstly applied in the Fourier space. In this study, a sharp cut-off filter
corresponding to the LES simulation resolution is applied.

2. The size of the HIT field, Lx, should be large enough for the energy containing eddies to be
presented well. In the current work, as suggested by Pope [33], the domain size is taken as

Lx ≥ 8L11

where L11 is the turbulent integral length scale.
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3.4.2 Characteristic boundary conditions for HIT injection

The physical description of this inlet boundary is as follows: to inject the generated HIT field from
the boundary x = 0, one should impose the flow density7 ρ and species’ concentration Yk, and set
the velocity ui varying according to the pre-generated turbulence field. Mathematically, at any given
time t, on the boundary x = 0:





∂ρ

∂t
= 0

∂Yk
∂t

= 0; for k = 1, . . . , Nsp

∂u

∂t
=

∂u

∂t

∣∣∣∣
TURB

;
∂v

∂t
=

∂v

∂t

∣∣∣∣
TURB

;
∂w

∂t
=

∂w

∂t

∣∣∣∣
TURB

(3.120)

This boundary condition is very similar to the classic SI-2 boundary condition in [6, 85] except
that the velocity varies according to the injected turbulence field ( ∂u

∂t

∣∣
TURB

, ∂v
∂t

∣∣
TURB

and ∂w
∂t

∣∣
TURB

). Also, as mentioned in [6, 85], one viscous condition should be added for SI-2, which is

∂τ11
∂x1

= 0 (3.121)

To adapt this to our conditions, we just simply implement

∂τ11
∂x1

=
∂τ11
∂x1

∣∣∣∣
TURB

(3.122)

by forcing ghost points values.
Following the NSCBC strategy in [6], the governing equations on the boundary should be written

first. At this stage, the same ASR N-S equations (3.102) inside the calculation domain are used also
on the boundary. This is the MSSE (multi-species state equations) approach in [6].

Then, the amplitudes of characteristic waves Li should be evaluated. As this is a subsonic inlet
condition at x = 0, the wave L1 is the only outgoing wave. All the other waves should be calculated
using characteristic relations. To precisely control the velocity variation on the boundary, the full
ASR N-S equations (3.102) are used to deduce the relationships between Li instead of LODI (Local
One Dimensional Inviscid) equations. As the boundary condition described in (3.120) is in primitive
variables, the connection between the characteristic form and the primitive form should be found.
Following the strategy in appendix B.2, the ASR N-S equations (3.102) on the boundary can be
written in conservative vector form like

∂U

∂t
+

∂FASR

∂x
= SxASR (3.123)

in which the term SxASR contains the flux of y and z directions, the viscous terms and the source
terms. The subscript ASR will be abandoned in the following as in this section all operations are
performed on the ASR equations. Multiplying equation (3.123) to the left eigenvector matrix L in
(B.23), one goes to the characteristic space as in equation (B.5)

∂W

∂t
+ L = LSx ; L ≡ Λ

∂W

∂x

where L are the characteristic waves. The primitive form is obtained by multiplying (3.123) by the
passage matrix M−1 in (B.16),

∂V

∂t
+ Ã

∂V

∂x
= M−1

Sx (3.124)

7As the injected turbulence field is divergence free
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Using equation (B.10) in appendix, we can find that

∂V

∂t
+ R̃L = M−1

Sx (3.125)

Combining this equation with (3.120), a linear system for L can be obtained:

∂

∂t




ρ
u
v
w
Y1

...
YNesp




+




(R̃L)1
(R̃L)2
(R̃L)3
(R̃L)4
(R̃L)6

...

(R̃L)5+Nsp




=




0
∂u
∂t

∣∣
TURB

∂v
∂t

∣∣
TURB

∂w
∂t

∣∣
TURB

0
...
0




+




L5 + L2 + L1
c
αρ

(L5 − L1)

L3

L4

L6

...
L5+Nesp




=




(
M−1

Sx

)
1(

M−1
Sx

)
2(

M−1
Sx

)
3(

M−1
Sx

)
4(

M−1
Sx

)
6

...(
M−1

Sx

)
5+Nsp




(3.126)

The final characteristic wave amplitudes Li are given by solving the system (3.126):





L2 =
αρ

c

(
∂u

∂t

∣∣∣∣
TURB

−
(
M−1

Sx

)
2

)
+
(
M−1

Sx

)
1
− 2L1

L3 =
(
M−1

Sx

)
3
− ∂v

∂t

∣∣∣∣
TURB

L4 =
(
M−1

Sx

)
4
− ∂w

∂t

∣∣∣∣
TURB

L5 =
αρ

c

((
M−1

Sx

)
2
− ∂u

∂t

∣∣∣∣
TURB

)
+ L1

L5+k =
(
M−1

Sx

)
5+k

; k = 1, . . . , Nsp

(3.127)

The L1 wave should be evaluated with an one-sided scheme from the inner side of the calculation
domain. This outgoing wave carries the temperature, hence the pressure via the equation of state,
from the interior domain [6]. With these relations applied, the B.C. described in (3.120) can be
achieved. The HIT generated in the last sub-section can be injected into the calculation domain
using this characteristic boundary conditions (3.127).

In fact, similar boundary conditions have already been achieved by V. Moureau et al. where only
LODI relations are used [13]. Comparing our implementation (3.127) to equation (41) to (43) in [13],
one may find that the LODI parts are exactly the same when α = 1 8.

Other NSCBC boundary conditions like NSW (Isothermal no slip wall), B2 (Perfectly non re-
flecting outflow) and B3 (partially non reflecting outflow with P∞ imposed) in table 9.4 of [6] are
also implemented and tested during this work. Further discussion and examples of the boundary
conditions can be found in chapters below.

8Note that the definition of characteristic waves (Li) are different in [53]
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Chapter 4

Academic test-cases

Synopsis

Dans ce chapitre, on teste différentes stratégies numériques pour la simulation de la combustion
turbulente prémélangée à l’aide des méthodes et modèles présentés précédemment. Ces tests sont
effectués sur des cas académiques simples et peu coûteux, afin de selectionner les approches les plus
pertinentes qui seront ensuite appliquées à la simulation de l’expérience 3D en configuration non-
réactive et réactive. On présente successivement :

• Une flamme prémélangée 1D, afin de quantifier l’effet de la résolution du calcul sur la vitesse
et la structure de la flamme simulée, pour différents schémas numériques. Les conclusions sont
les suivantes : (i) avec les schémas WENO non-linéaires, le calcul est stable quelle que soit la
résolution, mais la vitesse de flamme est largement surestimée s’il y a moins de 5 mailles dans
une épaisseur de flamme théorique δ0L, et le profil de vitesse présente des oscillations que nous
n’avons pas su expliquer. Ces oscillations ne sont pas visibles sur les profils de température
et de fractions massiques. (ii) le schéma optimum décentré d’ordre 5 est instable à moins de
4 mailles dans δ0L, mais produit la bonne vitesse de flamme. (iii) l’application de l’approche
bas-Mach ASR conduit à une instabilité du calcul à moins de 12 mailles dans δ0L. (iv) le modèle
de flamme épaissie donne les résultats attendus, et peut être combiné avec la méthode ASR
pour un maillage à ∆x ≈ δ0L et un épaissisement de 12.

• L’auto-amortissement d’une turbulence homogène et isotrope, en vue de quantifier la dissipa-
tion numérique intrinsèque aux différents schémas. C’est un cas-test très classique, mais qui
permet d’analyser la ”survie” de la turbulence multi-échelles injectée dans le calcul. On constate
que même le schéma linéaire optimum décentré d’ordre 5 est trop dissipatif pour l’application
visée. Il faut l’hybrider avec un schéma centré non-dissipatif pour assurer à la fois stabilité
du calcul et faible dissipation. On a testé également l’approche SGE explicite avec 2 modèles
sous-maille différents et un schéma centré d’ordre 4, montrant un empilement d’énergie à la
fréquence de coupure de Nyquist.

• Une représentation 2D de la flamme expérimentale, permettant de tester la résolution nécessaire
aux SGE implicites et les entrées du modèle de plissement de flamme sous-maille. Ce dernier
produit des résultats corrects quelle que soit le facteur d’épaississement, sur les deux maillages
utilisés. On propose une méthode de pondération spatiale du facteur de plissement afin qu’il
prenne toujours -au moins partiellement- en compte la turbulence dans les gaz frais.

Before going to the real world of 3D reactive applications, several academic test cases have been
performed to examine our numerical strategies for turbulent premixed combustion. Three test-cases
will be presented in this chapter: i) 1D premixed flame, which may provide the performance of our
strategies in premixed combustion; ii) Self decaying Homogeneous Isotropic Turbulence (HIT), which
focuses on turbulence modeling; iii) 2D premixed turbulent reacting jet, to tune the subgrid scale
turbulent combustion models before they can be further applied to 3D applications.
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4.1 One dimensional laminar premixed flame

In the current work, the LES of the species equations (2.1d) in N-S equations is either performed
implicitly (ILES) or with thickened flame model (TFLES). In this section, an ILES laminar premixed
flame test-case will be presented at the beginning, as it is a good benchmark to assess the impact of
numerics on the physics simulated. The 1D laminar premixed flame with thickened flame model will
be discussed in the second sub-section.

4.1.1 ILES of 1D laminar premixed flame

Although ILES has already been well verified for non-reacting flows [15, 41, 14], combustion simula-
tions with ILES are still rare in the literature. In the last few years, our team has already applied the
ILES approach to reacting flows [26, 27] and the comparison between implicit and physical LES has
been done in [22, 23]. The results of these works have shown that ILES can be successfully applied
to high-speed diffusion flames. However, in this study, a low speed premixed turbulent flame is the
main topic. So the performance of ILES for premixed combustion should be examined first with great
care, since the physics is totally different.

The main difficulties in applying ILES to premixed combustion is that, as the reaction source
terms in species equation (2.27d) are highly non-linear, without any explicit model, ILES may lead
to unstable simulations. Also, the implicit filtering introduced by numerics may fail to model the
subgrid source term C3α in (2.29j). As a first step, a one dimensional laminar premixed flame is
simulated to verify the laminar flame speed and flame thickness calculated by ILES.

The setup of this test case is as follows: On a 1D domain x ∈ [−L/2, L/2] with L = 20 mm, a
methane/air premixed flame at equivalence ratio φ = 0.8 is calculated. At t = 0, the flow velocity
and pressure field are uniform at uinitial = 0.5 m/s, p = 1 Atm. Other quantities on the left (x < 0)
and right (x > 0) half of the domain are set to fresh and burnt conditions with a sinus shaped profile
between them to prevent sharp discontinuities. The initial conditions are shown in figure 4.1. The
simulations are performed on a uniform grid, but different grid sizes are used. The left boundary
condition is set to be SI-2 NSCBC in [6] where the velocity, density and chemical components are
imposed constant at x = −L/2. The right boundary condition is set to perfectly non reflecting outflow
with NSCBC strategy. The one step methane-air chemical mechanism [31] in appendix A.1 is applied
for the source terms in species equations (2.27d). The third order TVD Runge-Kutta scheme [66] in
equation (3.2) is used for time stepping.
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Figure 4.1: Initial temperature, velocity and methane mass fraction profiles for 1D laminar premix
flame test case.

During the calculation, the velocity of the whole domain is adjusted by the difference between the
push speed u(x)|x=−L/2 and the instantaneous flame speed S0

L(t) every 0.2 ms with S0
L(t) calculated

from methane burning rate as in equation (2.51). An almost steady flame structure is achieved after
some times when the push speed becomes almost invariant thus equals to the calculated flame speed.
Then, the calculated laminar flame speed and thickness are obtained from equations (2.51) and (2.49).
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Figure 4.2: Calculated flame speed (left) and thermal flame thickness (right) with different grid size.
x axis: Number of points inside one flame thickness; y axis: ratio between calculated flame speed and
reference flame speed (left) and ratio between calculated flame thickness and reference flame thickness
(right)

To understand the impact of the numerics and mesh resolution on the numerical premixed com-
bustion in ILES, different numerical schemes and different grid sizes are implemented. ILES with
WENO-JS5, WENO-MZ5, WENO-OPT5 with quasi-laminar for chemical source terms, correspond-
ing to JS5-QL, MZ5-QL and UP5-QL in table C.1, are tested with grid sizes from 0.02 mm to 0.5 mm.
A DNS with grid size ∆x = 0.01 mm using UP5-QL is performed as a reference. The thermal flame
thickness and flame speed obtained from this DNS are

δ0L = 0.50 mm; S0
L = 0.286 m/s

which match the results of the literature.
The flame speed and thickness obtained with different setups are plotted in figure 4.2. These

figures show that the non-linear JS5-QL and MZ5-QL schemes can lead to stable simulations for 1D
laminar premixed flame on a very coarse mesh, even with a grid size identical to the flame thickness,
0.5 mm. However, the resulting flame speed and thickness at this resolution are 3∼5 times larger than
the reference values. The linear UP5-QL setup is not stable until the grid size is smaller than one
quarter of the reference flame thickness, 0.125 mm, which means that there should be at least four
points inside the flame front for this linear scheme to be stable. But when the calculation is stable,
the flame speed and thickness obtained by UP5-QL are very close to the reference DNS results. All
simulations converge to the DNS, when there are at least 8 points in one flame thickness.

The resulting temperature, velocity and methane mass fractions profiles from different numerical
setups are plotted in figure 4.3. The DNS results are in the first row 4.3(a) as references. Figure
4.3(b) shows the flame obtained by MZ5-QL on a coarse mesh when ∆x = δ0L. Under this resolution,
the MZ5-QL gives δ0L = 1.955mm and S0

L = 0.848m/s. The temperature and mass fraction profiles
are quite acceptable except the flame front is much thicker than the reference. The velocity before the
flame has some oscillations. Figures 4.3(c) to 4.3(e) plot the flame obtained by UP5-QL, MZ5-QL and
JS5-QL at a grid when ∆x = 0.25δ0L. One can see that all schemes can catch the correct flame speed
and thickness at this resolution, but the non-linear JS5-QL and MZ5-QL generate more oscillations in
the velocity field than the linear UP5-QL calculation. When the grid resolution goes to δ0L/∆x = 8,
as plotted in figure 4.4, all ILES converge to DNS results.

We also tried to apply the ASR method introduced in section 3.3 on this ILES flame test case,
but we found that the calculation is unstable, except at a almost DNS resolution. At δ0L/∆x = 12.5,
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a speed up of α = 5 can be achieved successfully, and the resulting flame structure is plotted in figure
4.5. One may find that the velocity after the flame front obtained by ASR method is lower than the
calculation without ASR, but the flame speed and thickness is almost the same. This result coincides
to the DNS premixed flame test case in [67].

The conclusions of this 1D premixed flame test-case are as the following:

1. the non-linear MZ5-QL and JS5-QL ILES can be used in premixed combustion on a relatively
coarse mesh (about one point inside one flame thickness) without numerical stability issues, but
the resulting flame speed and thickness may be enlarged;

2. MZ5-QL performs better than JS5-QL for both flame speed and thickness under the same grid
resolution;

3. when the flame front is well resolved (more than four points in one flame thickness), the linear
UP5-QL is recommended as it generates less oscillations in the velocity field than non-linear
shock capturing WENO schemes.
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(b) MZ5-QL, δ0L/∆x = 1
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(c) UP5-QL, δ0L/∆x = 4
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(d) MZ5-QL, δ0L/∆x = 4
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(e) JS5-QL, δ0L/∆x = 4

Figure 4.3: Flame structures with different numerical setups. First column: temperature, second
column: flow velocity, third column: methane mass fraction.
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(b) UP5-QL, δ0L/∆x = 8
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(c) MZ5-QL, δ0L/∆x = 8
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(d) JS5-QL, δ0L/∆x = 8

Figure 4.4: Flame structures at grid resolution δ0L/∆x = 8. First column: temperature, second
column: flow velocity, third column: methane mass fraction.
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(a) Velocity (b) Temperature

Figure 4.5: Velocity and temperature field obtained with and without ASR method. Grid size
δ0L/∆x = 12.5, scheme UP5-QL.

4.1.2 1D premixed laminar flame with ATF model

The artificial thickened flame model is also tested in this 1D flame test case. This group of test
cases are performed on a fixed a grid size ∆x = δ0L = 0.5 mm. LES strategies UP5-TF4, UP5-TF6,
UP5-TF8, UP5-TF10 and UP5-TF12 are applied. Other numerical setups are the same as the test
in the last subsection. The resulting thermal flame thickness and flame speed is plotted in figure
4.6. The flame speed obtained with different thickening factors are almost the same, while the flame
thickness are artificially thickened F times. This can be clearly seen in the velocity and temperature
field as in figure 4.7. Also, we find that at this grid revolution, the UP5-TF4 simulation gives a
oscillatory velocity field, although the resulting flame speed and flame thickness are still acceptable.
The simulation with thickening factor less than 4 is not stable.

(a) Flame speed (b) Thermal flame thickness

Figure 4.6: Calculated flame speed (left) and thermal flame thickness (right) with different thickening
factor (F). x axis: flame thickening factor; y axis: ratio between calculated flame speed and reference
flame speed (left) and ratio between calculated flame thickness and reference flame thickness (right).
Grid size ∆x = 0.5 mm, scheme UP5-TFF
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(a) Velocity (b) Temperature

Figure 4.7: Velocity and temperature field around flame front obtained with different flame thickening
factor. Grid size ∆x = 0.5 mm, scheme UP5-TFF

This test case is also performed with ASR method. Same as in the ILES, the simulation is not
stable until a thickening factor as large as F = 12. At this grid resolution, the time step given by
CFL condition without ASR is about 7× 10−7 s and the chemical time step is about 4× 10−6 s. So
we take a ASR speed-up ratio α = 5 and the resulting velocity and temperature are plotted in figure
4.8. Same as DNS ASR flame in Fig. 4.5, the velocity after flame front resolved using ASR is lower
than the original solution, and the flame speed and thickness are almost identical to the non-ASR
calculation.

From this TFLES 1D laminar premixed flame test case, one can see that the ATF model works as
expected with our numerical setups, and there need to be at least 4 points inside one thickened flame
thickness to make a stable TFLES calculation; The ASR method can be applied in the TFLES, but
the limitations are quite obvious: i) The chemical time step will not be affected by ASR method so
that one can not speed up too much without other chemical treatment1, like semi-implicit chemical
source term integration [86] or tabular chemistry [55]. ii) The ASR calculation is only stable when a
very large thickening factor is used. This may bring some inconvenience in turbulent premixed flame
simulations.

(a) Velocity (b) Temperature

Figure 4.8: Velocity and temperature field obtained using thickened flame model with and without
ASR method. Grid size ∆x = 0.5 mm, scheme UP5-TF12

1In fact, in this test case, an one-step chemical scheme is used. If detailed chemistry are used, the chemical time step
can be even much smaller. Thus the ASR method will be almost useless then
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4.2 HIT decaying

The self-decaying HIT test case is performed to evaluate the turbulence modeling in our LES strate-
gies. The numerical setup of this case is very classic: in a 3D calculation box [−Lx/2, Lx/2]

3, a HIT
field is generated and used as initial condition. Periodic boundary conditions are applied on all the
boundaries. Different LES strategies presented in the last two chapters are applied and the statistics
of the velocity field at different times are calculated.

4.2.1 Initial field generation

Unlike most of the HIT simulations in the literature [40], in this study, a HIT velocity field directly
rebuilt from experimental hot-wire data is used as initial condition. Following the procedure presented
in section 3.4.1, a LES initial field is generated based on experimental data from [3, 4], in a 3D LES
domain [−30 mm, 30 mm]3 with box size Lx = 60 mm. The calculation domain is discretized with
N = 120 points in each direction such that the grid size is ∆x = 0.5 mm. The 3D spectrum recovered
from the generated LES initial field using

E(K) = 2πK2〈ûiû∗i ( ~K)〉

is plotted as red dots in figure 4.9, together with the experimental 3D energy spectrum as the green
line. One may see that the rebuilt velocity field follows the given energy spectrum well. The turbulence
integral length scale obtained from the generated LES field is 4.25 mm, thus matches the experiment
as in table 1.3. The size of this LES domain 60 mm is about 14 integral length scale. The grid size
0.5 mm is about 6 times of Kolmogorov scale and 10% of integral length scale. The resolved energy
in this inital LES field is k(0) = 0.594m2/s2, i.e. 97% of the experimental data. These parameters
indicate that this initial HIT field can be used for a LES simulation of the experimental field.

Figure 4.9: 3D energy spectrum of the LES initial velocity field rebuilt from experimental data. Red
dots: spectrum of LES field; Green line: Experimental spectrum. The x axis is normalized by the
wave number KL corresponding to the simulation box size Lx: KL = 2π/Lx. As N = 120, the LES
spectrum stops at K/KL = 60.
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4.2.2 Comparison of different LES strategies

Different LES strategies are applied to the same initial condition to understand their performance in
turbulence handling. These strategies are (see table C.1):

1. 4C-SM-NR. The numerical schemes for Euler flux evaluation is 4th order central scheme (3.3),
and the Smagorinsky model is implemented with the parameters in section 2.2.2 (LES).

2. 4C-SSF-NR. Same numerics as the first one but the SSF model in section 2.2.2 is applied (LES).

3. UP5-NR. 5th order upwind linear scheme (WENO-OPT) (3.8) for Euler flux reconstruction, no
explicit turbulence model (ILES).

4. HYBα-NR ILES. The flux reconstruction used for Euler flux is a combination of 5th order
upwind and 4th order central schemes as in (3.40)

hHYB

i+1/2 ≡ αh5-up

i+1/2 + (1− α)h4-c

i+1/2

In this test-case, α = 0.01 and α = 0.03 are used. No explicit turbulence model is added in this
approach (ILES).

Figure 4.10: Time evolution of the turbulent kinetic energy with different LES strategies.

This simulation is performed for a physical time of 10 ms. Considering that the characteristic
time scale calculated by L11/

√
k of the initial field using parameters in table 1.3 is about 5 ms, this

simulation time is enough to catch the differences between different strategies. The time evolution of
turbulent kinetic energy

k(t) ≡ 1

2
〈uiui〉

from different simulations are displayed in figure 4.10, with a normalization by the initial kinetic
energy for all simulations. It is clear that, on this mesh, the ILES with 5UP-NR is more dissipative
than the explicit Smagorinsky and SSF models. The hybrid schemes are quite similar to explicit SSF
models.
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The time evolution of the 3D energy spectrum E(K, t) from different simulations is displayed in fig-
ure 4.11. The first to fifth columns correspond to different LES strategies: 4C-SM-NR (Fig. 4.11(a)),
4C-SSF-NR (Fig. 4.11(b)), UP5-NR (Fig. 4.11(c)), HYB0.01-NR (Fig. 4.11(d)) and HYB0.03-NR (Fig.
4.11(d)). Energy spectrum from t = 2 ms, 4 ms, 6 ms and 8 ms are located in the first to the
fourth rows as red dots. The green curves display the experimental initial spectrum as a reference.
An evident difference between the energy spectrum from physical LES (4.11(a)∼4.11(b)) and ILES
(4.11(c)∼4.11(e)) is that, the spectrum from explicit LES contains more small scales, with a piling-up
of the energy at the Nyquist cut-off K = 60KL; meanwhile, the small scales in ILES are damped to
very small value from the very beginning of the simulation, t = 2 ms. In 5UP-NR simulation 4.11(c),
at t = 2 ms, the small scales with wave numbers larger than 10KL, i.e. scales smaller than 12 grid
size, have already been damped by the upwind scheme. The ILES HYB0.01-NR 4.11(d) and HYB0.03-
NR 4.11(e) can keep much smaller eddies in the simulation, in the range 30KL to 40KL, i.e. 3∼4 grid
size.

The same phenomenon can be observed directly on the flow field. In figure 4.12, the path lines
on the boundaries LES are plotted for different, using the LIC view in PARAVIEW. The initial path
lines are shown at 4.12(a). The velocity field at t = 6 ms from explicit LES (Fig. 4.12(b) and 4.12(c))
clearly contains more small scales than the ILES results of UP5-NR (Fig. 4.12(d)). The amount of
small structures from simulations with HYB0.01-NR and HYB0.03-NR are in between the explicit LES
and UP5-NR.

The results of this test-case can be explained by the MWN of the numerical schemes used in
different simulations, especially the imaginary part in figure 3.3(b) which corresponds to the dissipative
errors. For the 5th order upwind scheme, the dissipative error starts to raise from less than 1/3 of
the Nyquist cut-off wave number, so that the small scales will be damped very fast by the implicit
filtering provided by numerics. Meanwhile, the central schemes have no dissipative error, hence the
explicit LES with central schemes can keep all the small eddies, and a hybrid central-upwind scheme
can enhance the small scale resolution of ILES with upwind schemes.
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(a) 4C-SM-NR (b) 4C-SSF-NR (c) UP5-NR (d) HYB0.01-NR (e) HYB0.03-NR

Figure 4.11: 3D Energy spectrum obtained with different LES strategies. The x axis is normalized by KL = 2π/Lx. Nyquist cut-off for this simulation
is at K/KL = 60.
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(a) Initial field, t=0 (b) 4C-SM-NR, t=6ms

(c) 4C-SSF-NR, t=6ms (d) 5UP-NR, t=6ms

(e) HBY0.01-NR, t=6ms (f) HBY0.03-NR, t=6ms

Figure 4.12: Path lines on the surface of velocity field from different simulation results.
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4.3 Two dimensional turbulent flame

After the laminar premixed combustion and the HIT test-cases, the simulation of a two-dimensional
flame will be presented in this section. A major benefit of 2D simulations is that their computational
cost is much more affordable than 3D ones, so that many configurations and different LES strategies
can be tested. Also, the implementation of some crucial details are verified, including boundary
conditions, subgrid models for combustion and the post-treatment for reacting applications.

In this test case, a 2D methane-air premixed jet flame is simulated on a 2D domain [0, 0.3m] ×
[−0.125m, 0.125m]. As shown in figure 4.13, a jet with diameter D = 25mm is located at the center
of the boundary x = 0. A methane-air mixture at equivalence ratio φ = 0.8 is injected into the
calculation domain at bulk velocity UD = 3.5m/s. A pre-generated HIT field presented in the last
section is added to the injected fresh gas velocity field. For this 2D case, only one slice of the 3D HIT
domain is used and the velocity is enlarged by

√
3/2 to enforce the same turbulent kinetic energy.

The grid size is constant in the flame region. Boundaries at left and right of the domain are set to
slip-walls. The boundary x = Lx is set to perfectly non-reflecting with NSCBC strategy [6].

The setup of boundary x = 0 is illustrated in figure 4.15 and in table 4.1. Boundary conditions
B.C. I, B.C. II and B.C. III are implemented with NSCBC strategy as presented in section 3.4. To
connect the jet region and the iso-thermal wall outside, a connection function S is used:

S(r, fin, fout) ≡ fout +
fin − fout

2

[
sin

(
π

db
(D/2− r)

)
+ 1

]
(4.1)

where r is the distance to the jet axis 2

r ≡
√

y2 + z2 (4.2)

db is the thickness of this connection region, and fin, fout are the values inside and outside the jet. As
initial condition, the calculation domain is filled with burnt gas. The initial condition at boundary
x = 0 can be found in table 4.1. A 2D premixed flame will be formed during the calculation with the
fresh gas continuously injected into the domain through the jet exit.

4.3.1 Comparison between different LES strategies

Two LES strategies are used in this 2D simulation:

1. ILES. The strategies UP5-QL, JS5-QL and MZ5-QL in table C.1 are applied in this category.
In this approach, no explicit sub-grid term is added, neither for turbulence nor for combustion.
The source terms in the species equations (2.1d) are calculated directly with Arrhenius law from
the local variables, i.e. in the quasi-laminar approach.

2. Flow ILES and combustion LES. UP5-TFn and UP5-TFn-WF in table C.1 are implemented.
The subgrid scale wrinkling model introduced by F. Thiesset in (2.59) is applied for UP5-
TFn-WF simulations, and the local Karlovitz number in (2.62) is evaluated using the subgrid
eddy-viscosity calculated from the Smagorinsky model.

In the second approach, if the thickening factor and the wrinkling factor are set to 1, the simulation
is identical to the first approach, i.e. the UP5-TF1 is in fact UP5-QL.

Different grid sizes are tested to understand the grid dependency of these approaches. The grid
R-2D-1 is built with 2 points in one flame thickness, δ0L/∆x ≈ 2. The coarse grid, R-2D-2, has less
than 1 point in one flame thickness with δ0L/∆x ≈ 0.7. The grid size is constant inside the flame region
(4D × 2.4D), and is enlarged with geometric proportion outside as sketched in figure 4.14. Other
parameters of the simulation grids used in this test case can be found in table 4.2. For simulations
with thickened flame model, boundary conditions at x = 0 is also adapted by setting the connection
thickness db in equation (4.1) to the thickened flame thickness (Fδ0L), for numerical stability reasons.

2z = 0 for 2D cases.
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Figure 4.13: Sketch of the 2D flame setup.

Table 4.1: Boundary condition at x = 0 plane. The definition of function S can be found in Eq. (4.1).
The subscript f and b indicate the fresh and burnt gas conditions.

B.C. I B.C. II B.C. III

Location |r| ≤ (D − db)/2 |r −D/2| ≤ db/2 |r| ≥ (D + db)/2

Description





∂ρ
∂t = 0
∂Yk
∂t = 0
∂u
∂t = ∂u

∂t

∣∣
TURB

∂v
∂t = ∂v

∂t

∣∣
TURB

∂w
∂t = ∂w

∂t

∣∣
TURB





∂T
∂t = 0
∂Yk
∂t = 0
∂u
∂t = S(r, ∂u

∂t

∣∣
TURB

, 0)
∂v
∂t = S(r, ∂v

∂t

∣∣
TURB

, 0)
∂w
∂t = S(r, ∂w

∂t

∣∣
TURB

, 0)





∂T
∂t = 0
∂u
∂t = 0
∂v
∂t = 0
∂w
∂t = 0

Initial condition





ρ = ρf
YK = YK,f

T = Tf ;
u = u|TURB + UD

v = v|TURB

w = w|TURB





ρ = S(r, ρf , ρb)
YK = S(r, YK,f , YK,b)
T = S(r, Tf , Tb)
u = S (r, u|TURB + UD, 0)
v = S(r, v|TURB , 0)
w = S(r, w|TURB , 0)





ρ = ρb
YK = YK,b

T = Tb

u = 0
v = 0
w = 0

The resulting instantaneous filtered progress variable

c̃ ≡ T̃ − Tf

Tb − Tf
(4.3)
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Figure 4.14: Sketch of the 2D flame grid. One third of the grid density is represnted for legibility.

Table 4.2: Mesh parameters of the 2D turbulent flame test case.

R-2D-1 R-2D-2 R-2D-3

Lx × Ly(m) 0.3×0.25 0.3×0.25 0.3×0.25
Nx ×Ny 480×384 160×128 240×192
Total grid points 184320 20480 46080
Points in jet ∅ 107 36 50
∆xmin/η 3.1 9.3 6.7
∆xmin/δ

0
L 0.47 1.4 1

where Tf and Tb are the temperature of the fresh and burnt conditions, are presented in figure 4.16
for different numerical setups. The first two rows correspond to grid R-2D-1, the third row to R-2D-2
and the last row to experimental results [4, 24]. The horizontal dashed line shows the experimental
mean flame height, which is about 50 mm. In the first row, the flame length from UP5-TFn ILES
gets larger with a larger thickening factor F . Simulation results with the sub-grid scale wrinkling
model are plotted in the first three column of the second row with thickening factor equal to 12, 6
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Figure 4.15: Sketch of boundary at x = 0

and 3. The SGS combustion model can produce similar flame length with different thickening factors.
Similar results can be found on a coarser grid as plotted in first three columns of third row. The
ILES with UP5-QL, MZ5-QL and JS5-QL are also shown in the last two columns. On fine mesh
R-2D-1, the three ILES cases (UP5-QL, MZ5-QL and JS5-QL) produce similar flame lengths, close
to the experiment. On the coarse grid R-2D-2, ILES without any explicit modeling produces a too
short flame, hence a too high ST due to excessive numerical dissipation. This is particularly obvious
for JS5-QL. However, MZ5-QL is not so far from the experiment.

In summary, the full ILES approach with higher-order shock-capturing methods can lead to re-
alistic low speed 2D premixed turbulent flame simulations with WENO schemes, provided the mesh
size ∆x is about 1.5 laminar flame thickness δ0L. The explicit TFLES approach supplemented by the
subgrid scale wrinkling model provides grid-independent results close to the experiment.
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Figure 4.16: Progress variable for different 2D (I)LES strategies. Lower row: experimental flame
front at 5 different times, φ = 0.8, P = 0.1MPa.
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4.3.2 Discussion and improvements

Mechanism of ILES turbulent flame

Some interesting points might be spotted by further analysis of ILES flames. The outcome of fully
implicit LES simulations can show relatively good agreement with the experiment, but the reasons
are not the same as the explicit LES. In figure 4.16, the progress variable contours for ILES, especially
on the coarse grids R-2D-2, show that the flame surface density is not enlarged by the wrinkling of the
flame front. However, the laminar flame speed obtained from ILES are notably faster than the real
speed on these grid sizes with WENO schemes, as plotted in figure 4.2. Regarding these two points,
we may say that, on a relatively coarse grid, the correct turbulent flame speed obtained by ILES is
ensured by the filtered laminar flame speed instead of the increasing of the flame surface density.

Evaluation of SGS wrinkling factor

The explicit LES results with UP5-TFn-WF also need further discussion. Let briefly recall some details
of the process of evaluating the subgrid scale wrinkling factor, which has already been presented in
section 2.3. According to Colin et al.[57], in TFLES, the subgrid scale wrinkling factor Ξ ≡ ST∆/S

0
L

is used to model the effect of turbulence at scales roughly between δ0L and 2Fδ0L on the turbulent
flame speed. A crucial input parameter of the SGS wrinkling factor is the local dissipation rate
ε. In the simulations presented in figure 4.16, ε is estimated from SGS eddy viscosity using the

Smagorinsky model as ε = νtsgs
3
/(Cs∆)4 and νtsgs = (Cs∆)2

∣∣∣S̃∗
∣∣∣. The drawback of using the subgrid

eddy viscosity model to calculate the local dissipation rate in the combustion context is obvious:

near the flame, the thermal expansion may dominate the term
∣∣∣S̃∗
∣∣∣ instead of the resolved turbulent

velocity fluctuations [57]. In fact, considering the results of HIT test cases in the previous section 4.2,
the WENO-OPT scheme can even NOT capture any scales from δ0L to 2Fδ0L on the coarse grid R-
2D-2 (as in figure 4.11(c)). The small structures injected into the calculation domain will be damped
immediately after the jet exit. But the resulting subgrid wrinkling factor calculated from SGS eddy
viscosity is still active. This is clearly due to thermal expansion only.

Figure 4.17: Weighted average process for SGS wrinkling factor

A better way to estimate the sub-grid turbulence velocity is to use the operator OP2 proposed
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by Colin et al. [57], as explained in section 2.3. This method can remove the dilatation part of
the velocity field thanks to the curl operator ∇× in (2.65), so that the thermal expansion will be
eliminated from the subgrid velocity fluctuation. Also, following the results of HIT test cases, the
hybrid central-upwind schemes (HYBα-TFn-WF in table C.1) should be used in Euler flux instead
of full upwind scheme, so that small turbulent scales responsible for SGS flame wrinkling can be
resolved.

Another detail I would like to point out is that the SGS wrinkling factor in TFLES is calculated
and applied locally, inside the reaction region. However, the turbulent level inside the reaction zone
is very low due to the high viscosity introduced by the high temperature. In fact, SGS combustion
models are generally designed to predict the wrinkling factor using the nearby fresh gas turbulence
level (around c = 0.05). In the current work, a trick is proposed to overcome this issue. As shown
in figure 4.17, for the evaluation of the wrinkling factor at the red dot ~x = ~x0 inside the flame, a
weighted average process is performed over a domain of radius r = (F + 1)δ0l surrounding ~x0

Ξ( ~x0) =

∫∫∫
‖~x− ~x0‖≤r Ξ(~x)ω(~x)dV∫∫∫

‖~x− ~x0‖≤r ω(~x)dV
(4.4)

The weight ω in equation (4.4) is evaluated as

ω(~x) =

{
1 if c̃(~x) ≤ 0.05
0 otherwise

(4.5)

where c̃ is the local progress variable. With this treatment, the wrinkling factor at a point inside the
flame region is evaluated using the surrounding fresh gas, as the blue region in figure 4.17. This is
only a first proposal and some details like the radius r of the weighting should be further discussed.
In fact, the same local average on fresh gas idea has already been successfully applied in some a priori
tests by Veynante & Moureau [87]3.

The 2D turbulent flame test-case is then re-performed to test the improvements above. The mesh
used here is the R-2D-3 grid in table 4.2, where the grid spacing is one thermal flame thickness.
(I)LES strategies MZ5-QL, HYB0.03-TF6-WF and UP5-TF6-WF in the nomenclature C.1 is used.
Firstly, the impact of different methods to calculate the SGS wrinkling factor is examined. In figure
4.18, results from different implementations of the wrinkling factor are displayed. The wrinkling
factor evaluated by Smagorinsky eddy-viscosity model in Fig.4.18(a) confirms that the wrinkling
factor from SGS turbulence models will be dominated by the thermal expansion inside the flame
region. Wrinkling factor calculated with OP2 for UP5-TF6-WF in figure 4.18(b) shows that, small
turbulent scales responsible for SGS flame wrinkling can not be resolved on this grid using the 5th
order upwind scheme. In figure 4.18(c) and 4.18(d), simulations using HYB0.03-TF6-WF without and
with the weighting process (4.4) are plotted. The wrinkling factor is only active far from the reaction
region without weighting. On the other hand, with the weighting process, as in 4.18(d), the wrinkling
factor can go into the reaction region.

Simulations with MZ5-QL, UP5-TF6-WF and HYB0.03-TF6-WF with SGS wrinkling factor calcu-
lated by operator OP2 and the weighting process (4.4) are displayed in figure 4.20. This figure shows
that:

1. On a grid size of the order of the flame thickness, ILES can give a reasonable flame length.
Meanwhile, the vorticity field in figure 4.20(d) indicates that the turbulence field on the fresh
gas side of MZ5-QL simulation is badly resolved, and that the velocity field near flame front is
quite oscillatory, like in 1D laminar cases as shown in figure 4.3(b).

2. The HYB0.03-TF6-WF can resolve far more small scale structures in the fresh gas compared to
UP5-TF6-WF. Hence, the flame front is more wrinkled, and the subgrid scale wrinkling factor
calculated from HYB0.03-TF6-WF is also larger than that from UP5-TF6-WF.

3Eq. 6 in the paper, where the turbulence intensity in fresh gas is obtained with similar method
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After the improvement of the LES strategies discussed in this section, a statistical comparison
between 2D simulations and experiments can be performed.

Comparison between experiments and LES

The averaged progress variable and Flame Surface Density (FSD) from 2D simulations and experi-
ments are now compared. The comparison of averaged progress variable can be achieved in a quite
straight forward manner. However, the treatment for FSD should be performed with great care, since
the filtered variables obtained from TFLES can not be compared directly with experimental data.

The experimental FSD can be easily obtained as

FSDE ≡ ‖∇cE‖ (4.6)

Meanwhile, on the numerical side, LES gives the resolved progress variable c̃N . The resolved FSD is
then

FSDN ≡ ‖∇c̃N‖ (4.7)

Using the definition of the SGS wrinkling factor Ξ, one should have

‖̃∇c‖N = Ξ ‖∇c̃N‖ = Ξ ·FSDN (4.8)

Concerning equation (4.6), the two comparable variables should be the filtered experimental flame

surface density F̃SDE , and Ξ ·FSDN in simulations. But the LES filter is difficult to define, especially
for TFLES [88]. At this stage, a gaussian filter with the same filter size as the simulation grid size ∆x

is taken to perform the filtering process for experimental results. The post treatment procedure for
experimental data is described in figure 4.21. More details on the post treatment for the experimental
tomographies can be found in [5].

The comparison between experiment and 2D simulations is plotted in figure 4.19. The simulation
is performed with HYB0.03-TF6-WF with OP2 and the weighting process, on grid R-2D-3 (same as in
Fig. 4.20(c)). The LES results are averaged over 0.2s with 1000 time snapshots, and the experimental
ones are obtained by an average of 10000 tomograpic photos corresponding to a physical time of 1 s.
The filtered mean progress variable from experiment and mean resolved progress variable from LES

are plotted in figure 4.19(a). The filtered mean FSD from experiment F̃SDE , and Ξ ·FSDN from
simulations are shown in figure 4.19(b). It is clear that the numerical flame is longer than the experi-
mental one. The FSD from simulations shows that the flame flaps a lot compared to the experiment.
We think that there might be two reasons for this disagreement: i) the injected 2D turbulence field
has the same turbulence kinetic energy as in 3D experiment for a correct flame wrinkling factor, but
this means that u′ is

√
3/2 times larger than in experiments. ii) the 2D turbulence decays slower than

the real world 3D turbulence. Hence, the simulated flame may flap more than in real experiments.
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(a) UP5-TF6-WF
Smagorinsky

(b) UP5-TF6-WF
with OP2

(c) HYB0.03-TF6-WF
OP2, no weighting

(d) HYB0.03-TF6-WF
OP2, weighting

Figure 4.18: Wrinkling factor contour with different evaluation methods. The white lines are iso-value
c̃ = 0.5 which indicate the reaction zone. Grid R-2D-3 in table 4.2 (∆x ≈ δ0L).

(a) Mean Progress Variable (b) Mean Flame Surface Density

Figure 4.19: Comparison of 2D simulations and experiments. (a): Progress variable (b): Flame
surface density (1/m). The experimental data and simulation results are plotted on the left and right
half domains respectively.
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(a) MZ5-QL, c̃ (b) UP5-TF6-WF, c̃ (c) HYB0.03-TF6-WF, c̃

(d) MZ5-QL, vorticity (e) UP5-TF6-WF, vorticity (f) HYB0.03-TF6-WF, vorticity

Figure 4.20: Progress variable and vorticity (1/s) fields for (I)LES of 2D turbulent flame test case. The
black lines in the second row indicate the flame front (c̃ = 0.5). Wrinkling factor in LES calculated
with OP2 and weighting process (4.4). Grid R-2D-3 in table 4.2.
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Figure 4.21: Post treatment for experimental tomographic images. First line: average progress variable. The averaged progress variable is obtained
by binarization, filtering and averaging over time; Second line: average FSD. The FSD is achieved by binarization, gradient, filtering and averaging.
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Chapter 5

Three dimensional multi-scale forcing
turbulent premixed combustion

Synopsis

Ce dernier chapitre est consacré aux simulations 3D finales de l’expérience, en configurations non-
réactive et réactive.

• Le cas non-réactif correspond à l’expérience air/air. On cherche à reproduire la longueur du
cœur potentiel, la décroissance de la vitesse longitudinale et l’évolution de l’énergie cinétique
turbulente sur l’axe du jet. Un premier calcul dans un domaine conforme aux dimensions de
la chambre expérimentale est réalisé sur un maillage relativement grossier. Ce calcul n’est
pas suffisamment résolu pour obtenir des statistiques correctes, mais permet tout de même de
reproduire la structure globale du jet et de tester la méthodologie. Deux autres simulations sur
des maillages raffinés et dans des domaines de calcul réduits ont permis d’obtenir des statistiques
comparables à l’expérience. Ces trois simulations ont été réalisées avec le schéma WENO-JS,
dit ”classique”. Enfin, deux autres calculs sur un domaine et un maillage identiques à celui des
cas réactifs à suivre ont été réalisés en approche SGE implicite, l’un avec le schéma WENO-MZ
”amélioré”, l’autre avec le schéma hybride centré d’ordre 4/décentré d’ordre 5.

• Le cas réactif correspond à l’expérience CH4/air à p = 0.1 Mpa et φ = 0.8. On compare
l’approche quasi-laminaire pour la combustion avec le schéma WENO-MZ, au calcul avec modèle
de plissement sous-maille associé au schéma hybride. Ce dernier produit une longueur de
flamme turbulente, une variable de progrès et une densité de surface de flamme comparables à
l’expérience. L’approche ILES totale, en revanche, produit une flamme trop courte, due à un
taux de consommation de méthane trop élevée.

Once the methodology verified with academic test-cases, the 3D experiment with multi-scale
turbulent forcing is simulated in this chapter. (I)LES of the non-reactive air/air and reactive CH4/air
experiments will be performed, and the results will be discussed.

5.1 Non-reactive simulation

The LES for non-reactive experiments is first performed to reproduce the experimental flow field.
This simulation corresponds to the multi-grid turbulent air/air experiment running at p = 0.1 MPa.
The numerical setup for this simulation and the results will be discussed hereafter.

5.1.1 Numerical setup

In this simulation, a block of “synthetic” HIT field is generated following the procedure presented in
section 3.4.1 and is injected into the calculation domain at the jet exit, as shown in figure 5.1. The
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resulting HIT has the same characteristics as listed in table 1.3. The boundary condition to “inject”
this HIT block is implemented using characteristic boundary conditions as in equation (3.120) and
(3.127). The mean velocity profile added to this HIT field is taken from the experiments as plotted
in figure 5.2(a). To simplify the process, in the simulation, inside the jet, the profile is flattened at
U/UD = 1.05, and a sinus like connection with a thickness db = 4 mm is used at the jet boundary,
like in 2D flame test-cases in equation (4.1). The resulting profile is plotted in figure 5.2(b) and is
very close to the experimental data.

The simulation domain is a parallelepiped with the jet exit located at the center of the x = 0 plane.
As initial conditions, the whole domain is set at pressure p = 0.1 MPa, temperature T =300 K. The
velocity field is set to zero except at the jet exit. Boundaries are set as in figure 5.1: The boundary
at x = Lx is set to be NSCBC in-out boundary condition with a superimposed infinity pressure at
p = 0.1 MPa (B.C. B3 in table 9.4 of [6]); Boundaries for y and z directions are set to slip-wall
conditions using the symmetric ghost points method; The boundary x = 0 is set with the same
strategy as 2D flame test-cases, as presented in figure 4.15 and table 4.1, except that here, the wall
temperature at x = 0 is set also to T =300 K.

Synthetic turbulence 

 with  

prescribed spectrum 

Non-reflecting open boundary in the low-Mach formulation 

UD 

COMPUTATIONAL DOMAIN 

Solid walls 

Figure 5.1: Sketch of the 3D multi-scale forcing simulation setup.

Three groups of simulations are performed for this non-reactive case. Simulation Group I (G-
I) on the whole experimental domain aims to assess the simulation methodology and to obtain an
overview of the flow structure; Group II (G-II-1 and G-II-2) are performed on a smaller domain with
finer grids to capture the statistical results; Group III (G-III-1 and G-III-2) use the same setup as in
reactive simulations1 in order to guarantee that the flow properties in reactive case are well resolved
by the numerics. Numerical parameters of these groups are given in table 5.1. The ASR low-Mach
formulation [67] presented in chapter 3 is also applied with a speed-up ratio α = 10 to all of these
simulations. A sketch of the grid used in this 3D simulation can be found in figure 5.3, one third of
the grid density is represented for legiblity. Like 2D flame test-cases, a constant grid size is used near
the jet exit.

1The reactive case will be illustrated in the next section, Sec. 5.2.
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(a) Experiment (b) Simulation

Figure 5.2: Radial mean velocity profiles at the jet exit in the experiments (a) [4] and simulations
(b).

Figure 5.3: Sketch of the 3D non-reactive simulation grids (G-III) on the jet axis cut-plane. The
flame front, in case of the reacting flow, is also plotted.

5.1.2 Results and discussions

The result of simulation G-I confirms that our numerical treatment can be successfully applied to
this non-reactive low-speed configuration. Figure 5.4 shows the structure of the flow using the Q-
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Table 5.1: Mesh and numerical parameters of the 3D non-reacting simulations.

G-I G-II-1 G-II-2 G-III-1 G-III-2
Lx × Ly × Lz(m) 0.5×0.3×0.3 0.13×0.06×0.06 0.2×0.1×0.1 0.3×0.3×0.3 0.3×0.3×0.3
Nx ×Ny ×Nz 360×216×216 450×200×200 540×200×200 240×170×170 240×170×170
Total grid points 16.8× 106 18.0× 106 21.6× 106 6.9×106 6.9×106

Points in jet ∅ 56 100 100 50 50
∆xmin/η 6 3.3 3.3 6.7 6.7
αASR - CFL 10 - 0.8 10 - 0.8 10 - 0.8 10 - 0.8 10 - 0.8
∆t (s) 1.5× 10−5 0.8× 10−5 0.8× 10−5 1.33× 10−5 1.33× 10−5

Numerical scheme JS5-NR JS5-NR JS5-NR MZ5-NR HYB0.03-NR

criterion iso-surface (Q = 1000 s−2) colored by velocity magnitude. One can see, in the center, the
injected turbulent field that evolves independently from the Kelvin-Helmholtz structures arising from
the inflectional instability of the jet. The zoom in the right side of figure 5.4 indicates a fast decay of
the HIT (the Taylor micro-scale increases downstream) in the potential core (length ≈ 3D). Further
downstream, the breakdown to turbulence combines with the residual HIT to create a low-speed
turbulent plume.

  

Figure 5.4: Q-criterion iso-surface Q = 1000 s−2 at t = 0.8 s (left), and zoom on the potential core
(right) for simulation G-I. Colored by velocity magnitude.

The second group (simulations G-II-1 and G-II-2 on finer grids) is performed for statistical results.
With different domain sizes in x direction (0.13 m in G-II-1 v.s. 0.2 m in G-II-2), the impact of the
boundary condition at x = Lx can be spotted. Figure 5.5 is a visualization of the flow in simulation
G-II-1, in the injection region. Compared to G-I, more detailed structures can be observed since
the grid is refined. Simulation G-II-2 gives quite similar Q-criterion iso-surface so that it is not
plotted separately. The evolution of velocity and resolved turbulent kinetic energy along the jet
axis in simulations G-II-1 and G-II-2 are displayed in figure 5.6(a) and 5.6(b), in comparison with
experimental data from [4]. Although the axial energy decay is faster than in the experiment, the
length of the potential core, where production is negligible, and the velocity profiles are both quite well
predicted. Also, simulation G-II-2 on a longer domain gives better statistical results downstream, as
the partially non-reflecting boundary condition at x = Lx = 5.2D produces some non-physical impact
on the flow field in G-II-1.

Simulations G-III-1 and G-III-2 are performed with the same numerical setup as the 3D ILES and

97



  

Figure 5.5: Q-criterion iso-surface Q = 1000 s−2 at t = 0.14 s (colored by velocity magnitude) near
the injection (left), and detail of the inner structure of the jet (right) for simulation G-II-1.

(a) Mean axial velocity decay (b) Resolved turbulent kinetic energy

Figure 5.6: Evolution of the mean axial velocity (a) and resolved turbulent kinetic energy (b) on the
jet axis for 3D non-reactive simulation Group II. The x axis is normalized by jet diameter D = 25 mm
and the results are normalized with UD = 3.5 m/s.

TFLES reactive cases to validate the flow field in reactive configurations. The only difference between
these two simulations is that G-III-1 is calculated with MZ5-NR while G-III-2 is with HYB0.03-NR.
The statistical results of velocity and resolved turbulent kinetic energy on the jet axis for Group
III are plotted in figure 5.7. On this coarse mesh, the axial velocity decay after x > 3D in figure
5.7(a) is not as good as in group II, where a finer mesh is used. In fact, in reactive cases, the flame
length is only about 3 times of the jet diameter, so that these downstream velocity results should
be acceptable for reactive case. Meanwhile, one may find in figure 5.7(b) that, the kinetic energy
resolved with HYB0.03-NR is even better than in the fine mesh simulations G-II with JS5-NR, and is
very close to the experimental data. Q-criterion iso-surfaces of both simulations are given in figure
5.8, and the velocity and vorticity magnitude on the jet axial cut-plane are displayed in figure 5.9.
These figures show that simulation G-III-2 with hybrid central-upwind scheme resolves more small
scale structures than the WENO-MZ scheme does, although similar large scale structures are captured
by both simulations. These results confirm our conclusions about the central-upwind scheme in the
HIT decaying test-case (Sec. 4.2).
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(a) Mean axial velocity decay (b) Resolved turbulent kinetic energy

Figure 5.7: Same as figure 5.6, Group III.

These three groups of simulations for the non-reactive configuration air/air jet show that: i) The
higher-order shock-capturing methods (WENO-JS, WENO-MZ) can lead to stable and realistic ILES
on relatively coarse grids; ii) ILES with HYBα-NR schemes can capture more small scale structures
than with non-linear WENO schemes, as expected from the results of the HIT test-case; iii) The
numerical setup of Group III can be used in the reactive simulations.
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(a) G-III-1, near jet exit (b) G-III-1, inner structures

(c) G-III-2, near jet exit (d) G-III-2, Inner structures

Figure 5.8: Q-criterion iso-surface Q = 1000 s−2 of 3D non-reactive simulations Group III at t = 0.6 s
(colored by velocity magnitude).
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(a) Velocity, G-III-1 (b) Vorticity, G-III-1

(c) Velocity, G-III-2 (d) Vorticity, G-III-2

Figure 5.9: Velocity magnitude (m/s) and vorticity field (1/s) on the axial cut-plane of 3D non-reactive
simulations Group III.
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5.2 Simulations of 3D reactive cases

Three dimensional reactive cases corresponding to the reactive experiments are now simulated with
both ILES and TFLES. A CH4/air flame at equivalence ratio φ = 0.8 under p=0.1 MPa is simulated.
Detailed numerical setup and results are presented hereafter.

5.2.1 Numerical setup

Most of the numerical setup for this simulation has already been assessed in previous test-cases (HIT
in section 4.2, 2D flames in section 4.3 and the 3D non-reactive simulation in the last section). Like in
2D flame test-cases, MZ5-QL (ILES) and HYB0.03-TF8-WF (TFLES) are implemented and compared.
The mesh setup, turbulence injection strategy and boundary conditions in this reactive simulation
are identical to non-reactive simulations Group III (last two columns of table 5.1) except that, on
the jet exit surface x = 0, the radial velocity profiles for HYB0.03-TF8-WF are adjusted to match the
thickened flame thickness for numerical stability, like in 2D flame test-case in Sec. 4.3. The chemical
scheme used in the test case is also the CH4/air mechanism in appendix A. The low-Mach formulation
is not used in this reactive case as the time step here is mainly constrained by the chemical time step
instead of CFL condition2.

(a) MZ5-QL, vorticity (b) HYB0.03-TF8-WF, vor-
ticity

(c) HYB0.03-TF8-WF, Ξ

Figure 5.10: The vorticity (1/s) field and SGS wrinkling factor of 3D reactive simulations on the jet
axis cut-plane. The black line (c̃ = 0.5) indicates the flame front.

5.2.2 Results and discussions

Figure 5.10 shows the resolved vorticity field in the fresh gas. The fresh gas field vorticity obtained
by HYB0.03-TF8-WF in Fig. 5.10(b) is quite close to the non-reactive simulations HYB0.03-NR in
Fig. 5.9(d), however, the vorticity field in the fresh gas of MZ5-QL in Fig. 5.10(a) is quite different
from the non-reactive case G-III-1 (MZ5-NR) in Fig. 5.9(b). Here, the vorticity field of MZ5-QL in
Fig. 5.10(a) is quite oscillatory near the flame front.

2Also, we still have some difficulties in applying the ASR to a N-S system with thickened flame model: the simulation
is not stable with ASR method sometimes. We think that, for TFLES, the formulation of viscous corrections in ASR
system (3.103) should be modified, as the ratio of heat diffusion to momentum viscous stress changes quite a lot when
the thickened flame model is applied [67, 80].
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The SGS wrinkling factor from simulation HYB0.03-TF8-WF is plotted in figure 5.10(c). During
simulations, the SGS wrinkling factor is only calculated inside the flame region with OP2 proposed
in [57]. The fresh gas averaging process in equation (4.4) is also applied here. Compared with the
experimental analysis in [5] and [24], the range of the SGS wrinkling factor is reasonable.

The statistical results from both (I)LES strategies are compared with experimental results. The
post-treatment of the experimental tomographic photos is the same as for 2D cases, as illustrated
in figure 4.21. The results of the simulation are averaged azimuthally over 35 ms, once the flame
is statistically stable. In figure 5.11, the mean progress variable and FSD are plotted along the jet
axis. The TFLES catches very well the flame location and structure. The FSD given by TFLES
along the jet axis is higher than in experiments, whereas the MZ5-QL ILES provides the proper FSD
but with too short flame. The radial profiles of progress variable and FSD are displayed in figure
5.12. Near the jet exit (x/D = 0.5, Fig. 5.12(a)), both MZ5-QL and HYB0.03-TF8-WF give correct
radial profiles compared to the experiment. Further downstream (Fig. 5.12(b), 5.12(c) and 5.12(d)),
HYB0.03-TF8-WF simulation can still provide acceptable flame locations, but this is not the case for
MZ5-QL ILES, due to the too short flame compared to the experiment.

The mean progress variable and FSD on the jet axis cut-plane are also displayed in figure 5.13.
Compared to the experimental results (left half of each picture), both simulations give reasonable
flame length and flame surface density. However, HYB0.03-TF8-WF with subgrid scale wrinkling
model from [24] shows a better agreement with the experiment.

Figure 5.14 gives the iso-surfaces of c̃ = 0.5 from HYB0.03-TF8-WF and MZ5-QL at different times.
During simulation HYB0.03-TF8-WF, the SGS flame wrinkling factor is not applied until t = 0.35 ms
for a faster setup of the flame, as in Fig. 5.14(a), where the flame is much longer than other snapshots.
One can see that CH4 burning rate is much higher in MZ5-QL simulations, thus the resulting flame
length is much smaller than the HYB0.03-TF8-WF simulations.

(a) Mean progress variable (b) Mean flame surface density

Figure 5.11: Mean Progress Variable and FSD curve along the jet axis for 3D reactive simulations
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(a) x/D=0.5

(b) x/D=1

(c) x/D=1.5

(d) x/D=2

Figure 5.12: Radial profiles of mean progress variable and FSD at different locations down stream of the jet
exit.
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(a) c̃, MZ5-QL (b) c̃, HYB0.03-TF8-WF

(c) FSD, MZ5-QL (d) FSD, HYB0.03-TF8-WF

Figure 5.13: Comparison of 3D reactive simulation and experiments. (a): Mean progress variable,
MZ5-QL; (b): Mean progress variable, HYB0.03-TF8-WF; (c): Mean flame surface density, MZ5-
QL; (d): Mean flame surface density, HYB0.03-TF8-WF; Length unit is normalized by jet diameter
D = 25 mm and FSD’s unit is 1/m. The experimental data and simulation results are plotted on the
left and on the right half of each figure, respectively.
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(a) HYB0.03-TF8-WF, 34 ms (b) HYB0.03-TF8-WF, 45 ms (c) HYB0.03-TF8-WF, 80 ms

(d) MZ5-QL, 30 ms (e) MZ5-QL, 50 ms (f) MZ5-QL, t = 75 ms

Figure 5.14: Iso-surface c̃ = 0.5 for 3D reactive simulations at different times, colored by CH4 con-
sumption rate (kg/m3/s). (a): HYB0.03-TF8-WF, no SGS wrinkling model, setting up the flame; (b):
HYB0.03-TF8-WF, beginning of statistics; (c): HYB0.03-TF8-WF, end of statistics; (d): MZ5-QL,
beginning of statistics; (e): MZ5-QL. middle of statistics; (f): MZ5-QL: end of statistics.
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Chapter 6

Conclusions and perspectives

I would like now to summarize the conclusions of this work:

• A fully compressible N-S solver can be applied efficiently in low-Mach applications with some
modifications using the ASR method. This pseudo-compressibility low-Mach modification keeps
the benefits of compressible solvers, like characteristic boundary conditions. However, it is a
hard task if the conservation form of the equations and conservative schemes are used: going
to characteristic space for flux splitting implies a full rewriting and re-coding of eigen matrix.
Also, a specific treatment has been mandatory to keep the full conservative form. From our
knowledge, this is an original work.

• Combining explicit SGS models for combustion with implicit LES for the flow field should be
achieved with great care. As pointed out by Pope [33], there is no representation or estimation
of the SGS motions in a ILES resolved flow field. So a carefully examination of the explicit SGS
model inputs, and of the ILES flow resolution is necessary before using this kind of implicit-
explicit hybrid strategy.

• In this work, the new SGS flame wrinkling model introduced by F.Thiesset [5] has been ap-
plied for the first time. In practice, this model performs quite well, whatever the value of the
thickening factor.

• Pure ILES (both flow and combustion) with non-linear WENO shock capturing schemes can
provide acceptable results provided the grid size is of the order of one flame thickness. However,
the mechanism for flame speed comes from an increased laminar flame speed instead of a proper
turbulent flame surface density. Using a linear WENO-OPT scheme improves a little the results
but lacks stability.

• The final conclusion of this study is that the best strategy is to combine ILES flow resolved
by a hybrid 4th order central / linear WENO-OPT scheme, together with an explicit LES
combustion model.

There are still some further work to do following the current study:

• The impact of detailed/reduced chemistry has not been studied because of a lack of time.
Certainly, other chemical modeling like filtered tabulated chemistry [55] should be worth tested.

• The comparison of LES flames and experimental flames is still not clear in this work. The
post-treatment of FSD both in experiments and simulations should be further discussed.

• In this work, only one operating condition of experiments (CH4/air, φ = 0.8, p = 0.1 MPa) is
calculated. Other operating conditions should be simulated to complete our work.
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Conclusions et perspectives

Je voudrais maintenant tirer les conclusions de ce travail :

• Un code Navier-Stokes compressible peut être utilisé efficacement pour des applications à bas
Mach moyennant quelques modifications, à l’aide de la méthode ASR. Cette modification bas-
Mach pseudo-compressible conserve les avantages du code compressible, comme par exemple
la formulation caractéristique des conditions aux limites. Cependant, c’est un travail difficile
si la forme conservative des équations, et l’usage de schémas conservatifs sont maintenus : le
passage dans la base caractéristique pour la décomposition des flux implique une réécriture et
une reprogrammation complètes des matrices des valeurs et vecteurs propres. En outre, il a fallu
proposer une formulation particulière des flux numériques pour en garder la conservativité. A
notre connaissance, c’est un travail original.

• La combinaison d’un modèle de combustion sous-maille explicite et de l’approche SGE implicite
pour l’écoulement doit se faire avec précaution. Comme souligné par Pope [33], il n’y a ni
représentation ni même estimation des fluctuations sous-maille dans les champs simulés en
ILES. Les entrées du modèle de combustion sous-maille explicite, et la résolution adéquate de
l’écoulement doivent donc être étudiées avec soin avant d’appliquer ce type de stratégie hybride
”implicite-explicite”.

• Lors de ce travail, le nouveau modèle de plissement de flamme sous-maille introduit par F.Thiesset
[5] a été appliqué pour la première fois. En pratique, ce modèle se comporte bien quelle que
soit la valeur du facteur d’épaississement de la flamme.

• La SGE totale (écoulement et combustion) au moyen de schémas WENO non-linéaires à capture
de choc peut produire des résultats acceptables à condition que la taille des mailles soit de
l’ordre d’une épaisseur de flamme laminaire. Cependant, le mécanisme produisant une vitesse
de flamme turbulente réaliste provient d’une vitesse de flamme laminaire augmentée plutôt que
d’une densité de surface de flamme turbulente correcte. L’emploi d’un schéma WENO linéaire
optimum améliore légèrement les résultats, mais au détriment de la stabilité du calcul.

• La conclusion finale de cette étude est que la meilleure stratégie consiste à combiner la SGE
implicite de l’écoulement à l’aide d’un schéma centré d’ordre 4 hybridé avec un schéma WENO
linéaire optimum, avec un modèle explicite de combustion sous-maille.

Il y a encore du travail à réaliser à la suite de cette étude :

• L’impact d’un schéma de cinétique chimique détaillé ou réduit n’a pas été étudié par manque de
temps. Certainement, d’autres modélisations comme la chimie filtrée tabulée [55] mériteraient
d’être testées.

• La comparaison des flammes simulées en SGE et des flammes expérimentales n’est toujours pas
évidente dans ce travail. La procédure de post-traitement de la densité de surface de flamme
dans les expériences et dans les simulations doit être davantage approfondie.

• Dans ce travail, une seule condition expérimentale (CH4/air, φ = 0.8, p = 0.1 MPa) a été
simulée. Il faudrait simuler d’autres conditions pour compléter notre travail.
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Appendix A

Chemical Schemes

A.1 One step CH4/Air chemical schemes

! 1 step methane chemkin

ELEMENTS

O H C N

END

SPECIES

CH4 O2 H2O CO2 N2

END

REACTIONS

! All coefs are in CGS unit

CH4 + 2O2 => 2H2O + CO2 1.1E10 0.0 20000.0 !REF Wang et al. C&F 2011

FORD / CH4 1.0 /

FORD / O2 0.5 /

END
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A.2 9 species 28 reactions H2-Air chemical schemes

ELEMENTS

H O N

END

SPECIES

H2 O2 H O OH H2O HO2 H2O2 N2

END

REACTIONS

! All coefs are in CGS unit

H2+M <=> H+H+M 4.57E+019 -1.4 104380.00

H2 /2.5/ H2O /12/

! 1 Tsang & Hampson,J.Phys.Chem.Ref.Data,15,1986.

H2+O2 <=> OH+OH 2.5E+012 0 39000.00

! 3 Konnov

H+H+H <=> H2+H 3.2E+015 0 0.00

! 4 Konnov

H+HO2 <=> H2O+O 3E+013 0 1720.00

! 5 Konnov

O+H2 <=> H+OH 50800 2.67 6290.00

! 6 Sutherland et. al., 21st Symp. on Comb.,p929,1986.

O+O+M <=> O2+M 6.16E+015 -0.5 0.00

H2 /2.5/ H2O /12/

! 7 Tsang & Hampson,J.Phys.Chem.Ref.Data,15,1986.

H+O2 <=> O+OH 1.91E+014 0 16439.00

! 9 Pirraglia et. al. (TJK)###

H+O2(+M) <=> HO2(+M) 1.48E+012 0.6 0.00

LOW /3.482E+016 -0.411 -1115/

TROE /0.5 1E-030 1E+030/

H2 /2.5/ H2O /12/

! 10 Mueller et al Proc. Comb. Ins. 27, (1998)

H+O+M <=> OH+M 4.71E+018 -1 0.00

H2 /2.5/ H2O /12/

! 12 Tsang & Hampson,J.Phys.Chem.Ref.Data,15,1986

OH+H2 <=> H2O+H 2.16E+008 1.51 3430.00

! 13 Michael & Sutherland,J.Phys.Chem.,92,3853,1988

H2O+O <=> OH+OH 2.97E+006 2.02 13400.00

! 14 Sutherland et. al. Proc Comb. Ins., 28 51 (1990)

H2O2(+M) <=> OH+OH(+M) 2.95E+014 0 48430.00

LOW /1.2E+017 0 45500/

TROE /0.5 1E-090 1E+090/

H2 /2.5/ H2O /12/

! 15 Brouwer,Cobos,Troe,Duba,&Crim,J.Chem.Phys.86,6171,1987.

OH+H+M <=> H2O+M 2.21E+022 -2 0.00

H2 /2.5/ H2O /12/

! 17 Tsang & Hampson,J.Phys.Chem.Ref.Data,15,1986

HO2+O <=> O2+OH 3.3E+013 0 0.00

! 19 Baulch et al., JPC Ref Data, 21:411 (1992)

HO2+H <=> H2+O2 1.66E+013 0 823.00

! 20 Mueller et al. IJCK 31, 113 (1995)

HO2+H <=> OH+OH 7.08E+013 0 295.00

! 21 Mueller et al. IJCK 31, 113 (1995)

HO2+OH <=> H2O+O2 2.89E+013 0 -497.00

! 22 Keyser,L.F., J.Phys.Chem.92,1193,1988

HO2+HO2 <=> H2O2+O2 4.2E+014 0 11982.00

DUP

! 23 Hippler,Troe,Willner,J.Chem.Phys.93,1755,1990

HO2+HO2 <=> H2O2+O2 1.3E+011 0 -1629.00

DUP

! 24 Hippler,Troe,Willner,J.Chem.Phys.93,1755,1990

H2O2+O <=> OH+HO2 9.55E+006 2 3970.00

! 25 Tsang & Hampson,J.Phys.Chem.Ref.Data,15,1986

H2O2+H <=> H2O+OH 2.4E+013 0 3970.00

! 26 Tsang and Hampson, JPC Ref. Data, 15:1087 (1986)

H2O2+H <=> HO2+H2 4.82E+013 0 7950.00

! 27 Tsang & Hampson,J.Phys.Chem.Ref.Data,15,1986

H2O2+OH <=> H2O+HO2 1E+012 0 0.00

DUP

! 28 Hippler et. al. Double Exponential fit by(TJK)###

H2O2+OH <=> H2O+HO2 5.8E+014 0 9557.00

DUP

! 29 Hippler et. al. Double Exponential fit by(TJK)###

END
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Appendix B

Numerical Details

B.1 The WENO coefficients

k r j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

1 0 1

2 0 1/2 1/2
1 -1/2 3/2

3 0 1/3 5/6 -1/6
1 -1/6 5/6 1/3
2 1/3 -7/6 11/6

4 0 1/4 13/12 -5/12 1/12
1 -1/12 7/12 7/12 -1/12
2 1/12 -5/12 13/12 1/4
3 -1/4 13/12 -23/12 25/12

5 0 1/5 77/60 -43/60 17/60 -1/20
1 -1/20 9/20 47/60 -13/60 1/30
2 1/30 -13/60 47/60 9/20 -1/20
3 -1/20 17/60 -43/60 77/60 1/5
4 1/5 -21/20 137/60 -163/60 137/60

6 0 1/6 29/20 -21/20 37/60 -13/60 1/30
1 -1/30 11/30 19/20 -23/60 7/60 -1/60
2 1/60 -2/15 37/60 37/60 -2/15 1/60
3 -1/60 7/60 -23/60 19/20 11/30 -1/30
4 1/30 -13/60 37/60 -21/20 29/20 1/6
5 -1/6 31/30 -163/60 79/20 -71/20 49/20

Table B.1: Coefficients crj for k=1 to 6.

k r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
1 1
2 2/3 1/3
3 3/10 3/5 1/10
4 4/35 18/35 12/35 1/35
5 5/126 40/126 60/126 20/126 1/126
6 1/77 25/154 100/231 25/77 5/77 1/462

Table B.2: Coefficients dr for k=1 to 6.
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The coefficients β necessary for computation of the smoothness indicators βr, for different stencils
presented for reconstruction for k = 1 to 6.

k = 1
There exist single stencil for reconstruction : S0 = (i).

β0 = fifi

k = 2
There exist two stencils for reconstruction : S0 = (i, i+ 1) S1 = (i− 1, i).

β0 = (fi+1 − fi)
2

β1 = (fi − fi−1)
2

k = 3
There exist three stencils for reconstruction : S0 = (i, i + 1, i + 2) S1 = (i − 1, i, i + 1) S2 =
(i− 2, i− 1, i).

β0 =
13

12
(fi − 2fi+1 + fi+2)

2 +
1

4
(3fi − 4fi+1 + fi+2)

2

β1 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 − fi+1)

2

β2 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2

k = 4
There exist four stencils for reconstruction : S0 = (i, i+1, i+2, i+3) S1 = (i−1, i, i+1, i+2) S2 =
(i− 2, i− 1, i, i+ 1) S3 = (i− 3, i− 2, i− 1, i).

β0 = 2107f2
i − 9402fi+1fi + 7042fi+2fi − 1854fi+3fi + 11003f2

i+1 − 17246fi+2fi+1

+ 4642fi+3fi+1 + 7043f2
i+2 − 3882fi+3fi+2 + 547f2

i+3

β1 = 547f2
i−1 − 2522fifi−1 + 1922fi+1fi−1 − 494fi+2fi−1 + 3443f2

i − 5966fi+1fi

+ 1602fi+2fi + 2843f2
i+1 − 1642fi+2fi+1 + 267f2

i+2

β2 = 267f2
i−2 − 1642fi−1fi−2 + 1602fifi−2 − 494fi+1fi−2 + 2843f2

i−1 − 5966fifi−1

+ 1922fi+1fi−1 + 3443f2
i − 2522fi+1fi + 547f2

i+1

β3 = 547f2
i−3 − 3882fi−2fi−3 + 4642fi−1fi−3 − 1854fifi−3 + 7043f2

i−2 − 17246fi−1fi−2

+ 7042fifi−2 + 11003f2
i−1 − 9402fifi−1 + 2107f2

i

k = 5
There exist five stencils for reconstruction : S0 = (i, i+ 1, i+ 2, i+ 3, i+ 4) S1 = (i− 1, i, i+ 1, i+
2, i+3) S2 = (i−2, i−1, i, i+1, i+2) S3 = (i−3, i−2, i−1, i, i+1) S4 = (i−4, i−3, i−2, i−1, i).

β0 = 107918f2
i − 649501fi+1fi + 758823fi+2fi − 411487fi+3fi + 86329fi+4fi

+ 1020563f2
i+1 − 2462076fi+2fi+1 + 1358458fi+3fi+1 − 288007fi+4fi+1 + 1521393f2

i+2

− 1704396fi+3fi+2 + 364863fi+4fi+2 + 482963f2
i+3 − 208501fi+4fi+3 + 22658f2

i+4

β1 = 22658f2
i−1 − 140251fifi−1 + 165153fi+1fi−1 − 88297fi+2fi−1 + 18079fi+3fi−1

+ 242723f2
i − 611976fi+1fi + 337018fi+2fi − 70237fi+3fi + 406293f2

i+1

− 464976fi+2fi+1 + 99213fi+3fi+1 + 138563f2
i+2 − 60871fi+2fi+3 + 6908f2

i+3

β2 = 6908f2
i−2 − 51001fi−1fi−2 + 67923fifi−2 − 38947fi+1fi−2 + 8209fi+2fi−2

+ 104963f2
i−1 − 299076fifi−1 + 179098fi+1fi−1 − 38947fi+2fi−1 + 231153f2

i

− 299076fi+1fi + 67923fi+2fi + 104963f2
i+1 − 51001fi+2fi+1 + 6908fi+2

(B.1)
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β3 = 6908f2
i−3 − 60871fi−2fi−3 + 99213fi−1fi−3 − 70237fifi−3 + 18079fi+1fi−3

+ 138563f2
i−2 − 464976fi−1fi−2 + 337018fifi−2 − 88297fi+1fi−2 + 406293f2

i−1

− 611976fifi−1 + 165153fi+1fi−1 + 242723f2
i − 140251fi+1fi + 22658f2

i+1

β4 = 22658f2
i−4 − 208501fi−3fi−4 + 364863fi−2fi−4 − 288007fi−1fi−4 + 86329fifi−4

+ 482963f2
i−3 − 1704396fi−2fi−3 + 1358458fi−1fi−3 − 411487fifi−3 + 1521393f2

i−2

− 2462076fi−1fi−2 + 758823fifi−2 + 1020563f2
i−1 − 649501fi−1fi + 107918f2

i

k = 6
There exist six stencils for reconstruction : S0 = (i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5) S1 = (i− 1, i, i+
1, i+2, i+3, i+4) S2 = (i− 2, i− 1, i, i+1, i+2, i+3) S3 = (i− 3, i− 2, i− 1, i, i+1, i+2) S4 =
(i− 5, i− 4, i− 3, i− 2, i− 1, i) S5 = (i− 4, i− 3, i− 2, i− 1, i).

β0 = 6150211f2
i − 47460464fi+1fi + 76206736fi+2fi − 63394124fi+3fi + 27060170fi+4fi

− 4712740fi+5fi + 94851237f2
i+1 − 311771244fi+2fi+1 + 262901672fi+3fi+1 − 113206788fi+4fi+1

+ 19834350fi+5fi+1 + 260445372f2
i+2 − 444003904fi+3fi+2 + 192596472fi+4fi+2

− 33918804fi+5fi+2 + 190757572f2
i+3 − 166461044fi+4fi+3 + 29442256fi+5fi+3

+ 36480687f2
i+4 − 12950184fi+5fi+4 + 1152561f2

i+5

β1 = 1152561f2
i−1 − 9117992fifi−1 + 14742480fi+1fi−1 − 12183636fi+2fi−1 + 5134574fi+3fi−1

− 880548fi+4fi−1 + 19365967f2
i − 65224244fi+1fi + 55053752fi+2fi − 23510468fi+3fi

+ 4067018fi+4fi + 56662212f2
i+1 − 97838784fi+2fi+1 + 42405032fi+3fi+1 − 7408908fi+4fi+1

+ 43093692f2
i+2 − 37913324fi+3fi+2 + 6694608fi+4fi+2 + 8449957f2

i+3 − 3015728fi+4fi+3

+ 271779f2
i+4

β2 = 271779f2
i−2 − 2380800fi−1fi−2 + 4086352fifi−2 − 3462252fi+1fi−2 + 1458762fi+2fi−2

− 245620fi+3fi−2 + 5653317f2
i−1 − 20427884fifi−1 + 17905032fi+1fi−1 − 7727988fi+2fi−1

+ 1325006fi+3fi−1 + 19510972f2
i − 35817664fi+1fi + 15929912fi+2fi − 2792660fi+3fi

+ 17195652f2
i+1 − 15880404fi+2fi+1 + 2863984fi+3fi+1 + 3824847fi+2 − 1429976fi+3fi+2

+ 139633f2
i+3

β3 = 139633f2
i−3 − 1429976fi−2fi−3 + 2863984fi−1fi−3 − 2792660fifi−3 + 1325006fi+1fi−3

− 245620fi+2fi−3 + 3824847f2
i−2 − 15880404fi−1fi−2 + 15929912fifi−2 − 7727988fi+1fi−2

+ 1458762fi+2fi−2 + 17195652f2
i−1 − 35817664fifi−1 + 17905032fi+1fi−1 − 3462252fi+2fi−1

+ 19510972f2
i − 20427884fi+1fi + 4086352fi+2fi + 5653317f2

i+1 − 2380800fi+2fi+1

+ 271779f2
i+2

β4 = 271779f2
i−4 − 3015728fi−3fi−4 + 6694608fi−2fi−4 − 7408908fi−1fi−4 + 4067018fifi−4

− 880548fi+1fi−4 + 8449957f2
i−3 − 37913324fi−2fi−3 + 42405032fi−1fi−3 − 23510468fifi−3

+ 5134574fi+1fi−3 + 43093692f2
i−2 − 97838784fi−1fi−2 + 55053752fifi−2 − 12183636fi+1fi−2

+ 56662212f2
i−1 − 65224244fifi−1 + 14742480fi+1fi−1 + 19365967f2

i − 9117992fi+1fi

+ 1152561f2
i+1

β5 = 1152561f2
i−5 − 12950184fi−4fi−4 + 29442256fi−3fi−4 − 33918804fi−2fi−4

+ 19834350fi−1fi−4 − 4712740fifi−4 + 36480687f2
i−4 − 166461044fi−3fi−3

+ 192596472fi−2fi−3 − 113206788fi−1fi−3 + 27060170fifi−3 + 190757572f2
i−3

− 444003904fi−2fi−2 + 262901672fi−1fi−2 − 63394124fifi−2 + 260445372f2
i−2

− 311771244fi−1fi−1 + 76206736fifi−1 + 94851237f2
i−1 − 47460464fifi + 6150211f2

i
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B.2 Diagonalization of Jacobian Matrix

The diagonalization of the Jacobian matrix brings the hyperbolic part of N-S equations to the char-
acteristic space. This process may i) decouple the N-S equations to a set of independent equations
in characteristic space to use the scalar PDE numerical methods; ii) provide us the ability to analyze
the numerical stability, like CFL conditions; iii) be used for boundary conditions.

For the diagonalization of N-S equations in the x direction, the vector form of N-S equations (2.19)
can be written as

∂U

∂t
+

∂F

∂x
= Sx (B.2)

in which

Sx ≡ V + S − ∂G

∂y
− ∂H

∂z

with Jacobian matrix A defined as

A ≡ ∂F

∂U
(B.3)

An eigenvalue decomposition of the Jacobian matrix A is then performed. If we denote the left and
right eigenvectors as L and R1, and the eigenvalues matrix as Λ, the decomposition of A is then

A = RΛL (B.4)

Equation (B.2) is then
∂U

∂t
+RΛL

∂U

∂x
= Sx

As RL = LR = I, if we multiply matrix L on both sides of this equation, we have

∂W

∂t
+ Λ

∂W

∂x
= LSx (B.5)

with the characteristic variables W

dW ≡ LdU (B.6)

The eigenvalue matrix Λ in (B.5) is a diagonal matrix composed by all the eigenvalues λi of A.

Λ ≡




λ1

λ2

λ3

. . .

λNsp+5




(B.7)

The N-S equations in characteristic space (B.5) can be written in the form of a set of independent
scalar hyperbolic PDEs in characteristic space.





∂w1

∂t
+ λ1

∂w1

∂x
= (LSx)1

∂w2

∂t
+ λ2

∂w2

∂x
= (LSx)2

...

∂wNsp+5

∂t
+ λ1

∂wNsp+5

∂x
= (LSx)Nsp+5

The numerical methods for scalar PDEs then can be applied to this system.

1In fact, L and R are matrix whose lines (resp. columns) are the left (resp. right) eigenvectors of A.
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This strategy of direct diagnolization of the jacobian matrix in conservative form seems to be
simple. But in practice, this procedure is not easy to achieve. The primitive variables can be used as
a bridge for an easier calculation thanks to the chain rule. The primitive variables can be chosen as

V ≡




ρ
u
v
w
T
Y1
...

YNsp




(B.8)

The hyperbolic part of N-S equations using this set of variables reads




∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uj
∂xj

= 0

∂ui
∂t

+
rT

ρ

∂ρ

∂xi
+ uj

∂ui
∂xj

+ r
∂T

∂xi
+ T

Nsp∑

α=1

rα
∂Yα
∂xi

= 0

∂T

∂t
+ uj

∂T

∂xj
+ (γ − 1)T

∂uj
∂xj

= 0

∂Yα
∂t

+ uj
∂Yα
∂xj

= 0 for α = 1, . . . , Nsp

(B.9)

In vector form, the N-S equations with primitive variables read

∂V

∂t
+ Ã

∂V

∂x
= S̃x (B.10)

with the matrix Ã in primitive form obtained straightforwardly from equation (B.9):

Ã =




u ρ 0 0 0 0 · · · 0
rT
ρ u 0 0 r (r1 − r)T · · ·

(
rNsp − r

)
T

0 0 u 0 0 0 · · · 0
0 0 0 u 0 0 · · · 0
0 (γ − 1)T 0 0 u 0 · · · 0
0 0 0 0 0 u · · · (0) 0
...

...
...

...
...

... (0)
. . . (u)

...
0 0 0 0 0 0 · · · u




(B.11)

The diagnolization can be done on this matrix as

Ã = R̃ΛL̃ (B.12)

with the help of the software MAXIMA. The passage matrix M between conservative and primitive
variables is defined as

dU ≡ MdV
dV ≡ M−1dU

(B.13)

This passage matrix M is the connection between the primitive form (B.10) and the conservative
form (B.2):

Ã = M−1AM A = MÃM−1

L̃ = LM L = L̃M−1

R̃ = M−1R R = MR̃

Sx = M S̃x S̃x = M−1
Sx

(B.14)
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For multi-species N-S equations, the passage matrix is

M ≡ ∂U

∂V
=




1 0 0 0 0 0 · · · 0
u ρ 0 0 0 0 · · · 0
v 0 ρ 0 0 0 · · · 0
w 0 0 ρ 0 0 · · · 0

(e+ κ) ρu ρv ρw ρCv ρ(e1 − e) · · · ρ(eNsp
− e)

Y1 0 0 0 0 ρ · · · (0) 0
... 0 0 0 0

...(0)
. . . (ρ) 0

YNsp
0 0 0 0 0 · · · ρ




(B.15)

in which κ is the kinetic energy

κ ≡ u2 + v2 + w2

2

and eα is the internal energy of species α

eα ≡ hα − rαT = ∆h0α +

∫ T

T0

Cpα(θ)dθ − rαT

and

e =

Nsp∑

α=1

eαYα

The inverse passage matrix is

M−1 ≡ ∂V

∂U
=

1

ρ




ρ 0 0 0 0 0 · · · 0
−u 1 0 0 0 0 · · · 0
−v 0 1 0 0 0 · · · 0
−w 0 0 1 0 0 · · · 0

(κ− e)/Cv −u/Cv −v/Cv −w/Cv 1/Cv −(e1 − e)/Cv · · · −(eNsp
− e)/Cv

−Y1 0 0 0 0 1 · · · (0) 0
... 0 0 0 0

...(0)
. . . (1) 0

−YNsp
0 0 0 0 0 · · · 1




(B.16)

The eigenvalue matrix Λ is

Λ =




u− c
u

u
u

u+ c
u

. . .

u




(B.17)

where
c ≡

√
γrT

is the local speed of sound. One should notice that as multiple eigenvalues can be found in matrix
(B.17), the left and right eigenvector matrix is not unique. Normally, we choose the form the least
expesive to compute (like having more terms in common). We tested different forms of these matrix
with classical 1D and 2D test cases and very little difference can be spotted. Both the primitive
and conservative left and right eigenvector matrix used in our simulations can be found in (B.18) to
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(B.21):

R̃ =




1 1 0 0 1 0 · · · 0
− c

ρ 0 0 0 c
ρ 0 · · · 0

0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0

(γ−1)T
ρ −T

ρ 0 0 (γ−1)T
ρ

(r−r1)T
r · · · (r−rNsp)T

r

0 0 0 0 0 1 · · · (0) 0
...

...
...

...
...

... (0)
. . . (1)

...
0 0 0 0 0 0 0 1




(B.18)

L̃ = R̃−1 =




1
2γ − ρ

2c 0 0 ρ
2γT − (r−r1)ρ

2γr · · · −(r−rNsp)ρ
2γr

γ−1
γ 0 0 0 − ρ

γT
(r−r1)ρ

γr · · · (r−rNsp)ρ
γr

0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0

1
2γ

ρ
2c 0 0 ρ

2γT − (r−r1)ρ
2γr · · · −(r−rNsp)ρ

2γr

0 0 0 0 0 1 · · · (0) 0
...

...
...

...
...

...(0)
. . . (1)

...
0 0 0 0 0 0 · · · 1




(B.19)

R =




1 1 0 0 1 0 0 0
u− c u 0 0 u+ c 0 0 0
v v ρ 0 v 0 0 0
w w 0 ρ w 0 0 0

κ+ h− cu κ+ h− CvT ρv ρw κ+ h+ cu R51 · · · R5Nsp

Y1 Y1 0 0 Y1 ρ · · · (0) 0
...

...
...

...
...

...(0)
. . . (ρ)

...
YNsp YNsp 0 0 YNsp 0 · · · ρ




(B.20)

with

R5α = ρ

[
(eα − e)− CvT

(
rα − r

r

)]

L =




cu+(γ−1)κ+(1−γ)h+c2

2c2
−

(γ−1)u+c

2c2
−

(γ−1)v

2c2
−

(γ−1)w

2c2
γ−1
2c2

L11 · · · L1Nsp

−
(γ−1)κ+(1−γ)h

c2
(γ−1)u

c2
(γ−1)v

c2
(γ−1)w

c2
− γ−1

c2
−2L11 · · · −2L1Nsp

−v/ρ 0 1/ρ 0 0 0 · · · 0
−w/ρ 0 0 1/ρ 0 0 · · · 0

−
cu+(1−γ)κ+(γ−1)h−c2

2c2
−

(γ−1)u−c

2c2
−

(γ−1)v

2c2
−

(γ−1)w

2c2
γ−1
2c2

L11 · · · L1Nsp

−Y1/ρ 0 0 0 0 1
ρ

· · · (0) 0

..

.
..
.

..

.
..
.

..

.
..
.(0)

. . . ( 1
ρ
)

..

.

−YNsp
/ρ 0 0 0 0 0 0 1

ρ




(B.21)

with

L1α =
1

2c2
[(γ − 1)(e− eα)− (r − rα)T ]

The Jacobian matrix A in conservative form can be calculated by equation (B.4):

A =




0 1 0 0 0 0 0 0
−u2 + (γ − 1) (κ− h) + c2 (3− γ)u (1− γ) v (1− γ)w γ − 1 A21 · · · A2Nsp

−uv v u 0 0 0 · · · 0
−uw w 0 u 0 0 · · · 0(

(γ − 2)κ− γh+ c2
)
u (1− γ)u2 + κ+ h (1− γ)uv (1− γ)uw γu A51 · · · A5Nsp

−Y1u Y1 0 0 0 u · · · (0) 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.(0)
. . . (u) 0

−YNsp
u YNsp

0 0 0 0 · · · u




(B.22)
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with
A2α = (hα − h)− γ(eα − e)

A5α = uA2α
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L =




αcu+(γ−1)α2κ+(1−γ)α2h+α2c2

2c2
− (γ−1)α2u+αc

2c2
− (γ−1)α2v

2c2
− (γ−1)α2w

2c2
(γ−1)α2

2c2
L11 · · · L1Nsp

− (γ−1)α2κ+(1−γ)α2h+(α2−1)c2

c2
(γ−1)α2u

c2
(γ−1)α2v

c2
(γ−1)α2w

c2
− (γ−1)α2

c2
−2L11 · · · −2L1Nsp

−v
ρ 0 1

ρ 0 0 0 · · · 0

−w
ρ 0 0 1

ρ 0 0 · · · 0

−αcu+(1−γ)α2κ+(γ−1)α2h−α2c2

2c2
− (γ−1)α2u−αc

2c2
− (γ−1)α2v

2c2
− (γ−1)α2w

2c2
(γ−1)α2

2c2
L11 · · · L1Nsp

−Y1
ρ 0 0 0 0 1

ρ · · · (0) 0
...

...
...

...
... 0

. . .
...

−YNsp

ρ 0 0 0 0 0 · · · 1
ρ




(B.23)

with

κ ≡ u2 + v2 + w2

2

L1k =
γrkα

2T + (γ − 1)α2h− α2c2 + (1− γ)hkα
2

2c2

R =




1 1 0 0 1 0 · · · 0
u− c

α u 0 0 u+ c
α 0 · · · 0

v v ρ 0 v 0 · · · 0
w w 0 ρ w 0 · · · 0

κ+ h− u c
α + (1−α2)c2

(γ−1)α2 κ+ h− c2

γ−1 ρv ρw κ+ h+ u c
α + (1−α2)c2

(γ−1)α2 R51 · · · R5Nsp

Y1 Y1 0 0 Y1 ρ · · · (0) 0
...

... 0 0
...

... (0)
. . .

...
YNsp YNsp 0 0 YNsp 0 · · · ρ




(B.24)

with

R5k ≡ −γrkρT +
(
(γ − 1)h− c2 + (1− γ)hk

)
ρ

γ − 1
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A =




0 1 0 0 0 0 · · · 0
−u2 + (γ − 1)κ+ (1− γ)h+ c2 (3− γ)u (1− γ) v (1− γ)w γ − 1 A21 · · · A2Nsp

−uv v u 0 0 0 · · · 0
−uw w 0 u 0 0 · · · 0

(γ − 2)κu− γhu+
(γα2−1)c2u
(γ−1)α2 (1− γ)u2 + κ+ h− (α2−1)c2

(γ−1)α2 (1− γ)uv (1− γ)uw γu uA21 · · · uA2Nsp

−Y1u Y1 0 0 0 u · · · (0) 0
...

...
...

...
...

... (0)
. . .

...
−YNspu YNsp 0 0 0 0 0 u




(B.25)

with
A2k = γrkT + (γ − 1)h− c2 + (1− γ)hk

h5-up−
i+1/2 =

1

60




2(
1

2
(Li+1/2




F i−2 +




0
0
0
0

−

(
1−

1

α2

)
γipi

γi − 1
ui−2

0
...
0







+ ΛLi+1/2U i−2))− 13(
1

2
(Li+1/2




F i−1 +




0
0
0
0

−

(
1−

1

α2

)
γipi

γi − 1
ui−1

0
...
0







+ ΛLi+1/2U i−1))

+ 47(
1

2
(Li+1/2




F i +




0
0
0
0

−

(
1−

1

α2

)
γipi

γi − 1
ui

0
...
0







+ ΛLi+1/2U i)) + 27(
1

2
(Li+1/2




F i+1 +




0
0
0
0

−

(
1−

1

α2

)
γipi

γi − 1
ui+1

0
...
0







+ ΛLi+1/2U i+1))

−3(
1

2
(Li+1/2




F i+2 +




0
0
0
0

−

(
1−

1

α2

)
γipi

γi − 1
ui+2

0
.
.
.
0







+ ΛLi+1/2U i+2))




(B.26)
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B.3 MAXIMA code for diagonolization and NSCBC

(%i1) kill(all)

(%i1) At :




u ρ 0 0 0 0 0 0
rT
ρ u 0 0 r (r1 − r)T (r2 − r)T (r3 − r)T

0 0 u 0 0 0 0 0
0 0 0 u 0 0 0 0
0 (γ/α/α− 1)T 0 0 u 0 0 0
0 0 0 0 0 u 0 0
0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 u




(%i2) load(′′eigen′′)$ assume(p > 0, ρ > 0, γ > 0, r > 0, T > 0, α > 0, c > 0, r1 > 0, r2 > 0, r3 > 0)

(%i4) [val, vecs] : eigenvectors(At)

(%i5)
(
vect : r−r3

r T vecs[3][4],Rt : transpose
(
matrix

(
vecs[1][1], vecs[3][1]− r

(r−r3)ρ
vect, vecs[3][2],

vecs[3][3], vecs[2][1], vecs[3][5] + r−r1
r−r3

vect, vecs[3][6] + r−r2
r−r3

vect, vect
)))

(%i6) Lt : ev(invert(Rt), fullratsimp)

(%i7) Λ :




u−√
r
√
γ
√
T/α 0 0 0 0 0 0 0

0 u 0 0 0 0 0 0
0 0 u 0 0 0 0 0
0 0 0 u 0 0 0 0
0 0 0 0 u+

√
rγT/α 0 0 0

0 0 0 0 0 u 0 0
0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 u




(%i8)




M :




1 0 0 0 0 0 0 0
u ρ 0 0 0 0 0 0
v 0 ρ 0 0 0 0 0
w 0 0 ρ 0 0 0 0(

h− rT + u2
+v2

+w2

2

)
ρu ρv ρw ρCp − ρr ρ(h1 − r1T − h+ rT ) ρ(h2 − r2T − h+ rT ) ρ(h3 − r3T − h+ rT )

Y1 0 0 0 0 ρ 0 0
Y2 0 0 0 0 0 ρ 0
Y3 0 0 0 0 0 0 ρ







(%i9) (R : ev(M.Rt, fullratsimp))
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(%i10) L : ev(Lt.invert(M), fullratsimp)

(%i11) (A : ev(M.At . invert(M), fullratsimp))

(%i12)




U :




ρ
ρu
ρv
ρw

ρ
(
h− rT + u2+v2+w2

2

)

ρY1
ρY2
ρY3




,Fp : ev(A.U, fullratsimp)




(%i13) (L : Lt . invert(M), L : ratsubst(−2r,−2r3Y3 − 2r2Y2 − 2r1Y1, L), L : ratsubst(2h, 2h3Y3 + 2h2Y2 + 2h1Y1, L),

L : ratsubst
(

γr
γ−1 , Cp, L

)
, L : ev(L, fullexapnd), L : ratsubst

(
c,
√
γ
√
r
√
T , L

)
, L : ratsubst(c2, γrT, L),

L : ratsubst(2κ− u2 − w2, v2, L), L : ratsubst(Y3, 1− Y2 − Y1, L), L : ratsubst(Y3, 1− Y2 − Y1, L), L : ev(L, radcan, fullratsimp)
)

(%i14) A : ev(M.At . invert(M), fullratsimp)

(%i15) (A : ratsubst(−2r,−2r3Y3 − 2r2Y2 − 2r1Y1, A), A : ratsubst(2h, 2h3Y3 + 2h2Y2 + 2h1Y1, A),

A : ratsubst
(

γr
γ−1 , Cp, A

)
, A : ev(A, fullexapnd), A : ratsubst

(
c,
√
γ
√
r
√
T ,A

)
, A : ratsubst(c2, γrT,A),

A : ratsubst(2κ− u2 − w2, v2, A), A : ratsubst(Y1, 1− Y2 − Y3, A), A : ratsubst(Y1, 1− Y2 − Y3, A), A : ev(A, radcan, fullratsimp)
)

(%i16)
(
R : ev(M.Rt, fullratsimp), R : ratsubst

(
γr
γ−1 , Cp, R

)
, R : ev(R, fullexapnd), R : ratsubst

(
c,
√
γ
√
r
√
T ,R

)
,

R : ratsubst(c2, γrT,R), R : ratsubst(2κ− u2 − w2, v2, R), R : ev(R, radcan, fullratsimp)
)

(%i17) (Fp : ev(A.U, fullratsimp),Fp : ratsubst(−2r,−2r3Y3 − 2r2Y2 − 2r1Y1,Fp),
Fp : ratsubst(2h, 2h3Y3 + 2h2Y2 + 2h1Y1,Fp),Fp : ratsubst(Y1, 1− Y2 − Y3,Fp),Fp : ratsubst(Y1, 1− Y2 − Y3,Fp),

Fp : ratsubst
(
u2+v2+w2

2 , κ,Fp
))

(%i18) R1 : ev(ratsubst(1, α,R), fullratsimp)

(%i19) L1 : ev(ratsubst(1, α, L), fullratsimp)

(%i20) A1 : ev(ratsubst(1, α, A), fullratsimp)

(%i21) L1.A1.R1, fullratsimp
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(%i22)




Lc :




Lc 1
Lc 2
Lc 3
Lc 4
Lc 5
Lc 6
Lc 7
Lc 8




, Sc :




Sc 1
Sc 2
Sc 3
Sc 4
Sc 5
Sc 6
Sc 7
Sc 8







(%i23)
(
Rt : ratsubst

(
c,
√
γ
√
r
√
T ,Rt

)
, d : Rt .Lc

)

(%i24) LODITconst : algsys(append(d[5], d[2] + dudt, d[3] + dvdt, d[4] + dwdt, d[6], d[7], d[8]), [Lc 1,Lc 2,Lc 3,Lc 4,Lc 5,Lc 6,Lc 7,Lc 8])

(%i25) LODITconst : subst(Lc 1, last(% rnum list),LODITconst[1])

(%i26) LODIRhconst : algsys(append(d[1], d[2] + dudt, d[3] + dvdt, d[4] + dwdt, d[6], d[7], d[8]), [Lc 1,Lc 2,Lc 3,Lc 4,Lc 5,Lc 6,Lc 7,Lc 8])

(%i27) LODIRhconst : subst(Lc 1, last(% rnum list),LODIRhconst[1])

(%i28) NSCBCRhoconst : algsys(append(d[1]− Sc 1, d[2] + dudt− Sc 2, d[3] + dvdt− Sc 3, d[4] + dwdt− Sc 4, d[6]− Sc 6, d[7]− Sc 7, d[8]− Sc 8),
[Lc 1,Lc 2,Lc 3,Lc 4,Lc 5,Lc 6,Lc 7,Lc 8])

(%i29) NSCBCRhoconst : subst(Lc 1, last(% rnum list),NSCBCRhoconst[1])

(%i30) NSCBCTwall : algsys(append(d[2]− Sc 2, d[3]− Sc 3, d[4]− Sc 4, d[5]− Sc 5), [Lc 1,Lc 6,Lc 7,Lc 8,Lc 2,Lc 3,Lc 4,Lc 5])

(%i31) (NSCBCTwall : (subst(Lc 8, last(% rnum list),NSCBCTwall[1])),NSCBCTwall : subst(Lc 7,%rnum list[3],NSCBCTwall),
NSCBCTwall : subst(Lc 6,%rnum list[2],NSCBCTwall),NSCBCTwall : subst(Lc 1,%rnum list[1],NSCBCTwall)), expand

(%i32) Lc 2 = −ρSc 5
T + αρSc 2

c − γρSc 2
αc − r3Lc 8ρ

r − r2Lc 7ρ
r − r1Lc 6ρ

r + Lc 8ρ+ Lc 7ρ+ Lc 6ρ+ 2γLc 5
α2 − 2Lc 5

(%i33) NSCBCTconst : algsys(append(d[5]− Sc 5, d[2] + dudt− Sc 2, d[3] + dvdt− Sc 3, d[4] + dwdt− Sc 4, d[6]− Sc 6,
d[7]− Sc 7, d[8]− Sc 8), [Lc 1,Lc 2,Lc 3,Lc 4,Lc 5,Lc 6,Lc 7,Lc 8])

(%i34) NSCBCTconst : subst(Lc 1, last(% rnum list),NSCBCTconst[1]), expand

(%i35) (Mm1 : ratsubst(−2r,−2r3Y3 − 2r2Y2 − 2r1Y1,Mm1),Mm1 : ratsubst(2h, 2h3Y3 + 2h2Y2 + 2h1Y1,Mm1),
Mm1 : ratsubst(2κ− u2 − w2, v2,Mm1),Mm1 : ratsubst(Y1, 1− Y2 − Y3,Mm1),
Mm1 : ratsubst(Y1, 1− Y2 − Y3,Mm1),Mm1 : ev(Mm1, radcan, fullratsimp))

(%i36) M

(%i37) ratsubst(1, α, d), fullratsimp
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B.4 Computational cost for Taylor-Green and Double-Mach test
cases

Table B.3: Computational cost of the Taylor-Green vortex flow for different WENO schemes on a
128× 128× 128 grid, 16 Intel R© Xeon R© E5430 4-cores@2.66GHZ (64 cores).

JS OP M Z MZ JS7

Time steps 8415 8450 8431 8429 8438 8428
CPU/step/node (×10−5s) 5.406 1.118 5.329 5.426 5.481 5.506
CPU/step/node ratio 1 0.216 0.986 1.004 1.014 1.018

Wall-time (s) 14904 3260 14722 14982 15152 15206
Wall-time ratio 1 0.218 0.988 1.005 1.017 1.020

Table B.4: Computational cost of the double Mach reflection for different WENO schemes on the
300× 1200 grid, 4 Intel R© Sandy Bridge R© E5-4650 procs (32 cores).

JS M Z MZ JS7

Time steps 4491 4520 4509 4597 4539
CPU/step/node (×10−5s) 1.132 1.315 1.089 1.274 1.439
CPU/step/node ratio 1 1.162 0.962 1.126 1.272

Wall-time (s) 610 713 589 703 784
Wall-time ratio 1 1.169 0.966 1.152 1.285
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B.5 Stream function with a given spectrum

The task is to find a stream function Ψ̂i( ~K), such that the velocity field

ûi( ~K) = jcKjǫijkΨ̂k( ~K) (B.27)

follows a given 3D energy spectrum E(K).
Firstly, the stream function can be written as

Ψ̂i( ~K) = Ψ(K)ejcθi(
~K)

with
K = | ~K|

and θ is a random angle in (0,2π).
Then, one has

ûiû
∗
i ( ~K) = εijkεilmKjKlΨ̂k( ~K)Ψ̂∗

m( ~K)

= (δjlδkm − δjmδkl)KjKlΨ̂k( ~K)Ψ̂∗
m( ~K)

= KjKjΨ̂k( ~K)Ψ̂∗
k(

~K)−KjKkΨ̂k( ~K)Ψ̂∗
j ( ~K)

= 3K2Ψ2(K)− 1

2

[
KjKkΨ̂k( ~K)Ψ̂∗

j ( ~K) +KjKkΨ̂j( ~K)Ψ̂∗
k(

~K)
]

= 3K2Ψ2(K)−KjKkΨ
2(K) cos(θk − θj)

= 3K2Ψ2(K)−Ψ2(K)
[
K2 + 2K1K2 cos(θ2 − θ1) + 2K2K3 cos(θ3 − θ2) + 2K1K3 cos(θ3 − θ1)

]

= 2K2Ψ2(K)− 2K1K2 cos(θ2 − θ1)− 2K2K3 cos(θ3 − θ2)− 2K1K3 cos(θ3 − θ1) (B.28)

So that,

Eii( ~K) =
1

δ(~0)
〈ûiû∗i ( ~K)〉 = 1

δ(~0)
2K2Ψ2(K) (B.29)

Using equation (3.108), the 3D spectrum is then

E(K) = 2πK2Eii( ~K) =
1

δ(~0)
4πK4Ψ2(K) (B.30)

⇒
Ψ(K) =

√
δ(~0)

E(K)

4πK4
(B.31)

So that a velocity field with a stream function

Ψ̂i( ~K) =

√
δ(~0)

E(K)

4πK4
ejcθi (B.32)

and θ is a random angle in (0,2π)
θi = rand(0, 2π)

has a 3D spectrum E(K).
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Appendix C

(I)LES nomenclature

Table C.1: (I)LES nomenclature

❳
❳
❳

❳
❳
❳

❳
❳
❳

❳
❳

Flow
Combustion

Non-reacting

Combustion ILES Combustion LES

(Quasi-Laminar)
Thickened flame Thickened Flame

(F = n) +SGS Wrinkling

F
lo
w

L
E
S 4th Central+SM 4C-SM-NR

4th Central+SSF 4C-SSF-NR

F
lo
w

IL
E
S

(1− α) 4th Central
HYBα-NR HYBα-TFn-WF

+α 5th Upwind

5th Upwind UP5-NR UP5-QL UP5-TFn UP5-TFn-WF

WENO-JS5 JS5-NR JS5-QL

WENO-M5 M5-NR

WENO-Z5 Z5-NR

WENO-MZ5 MZ5-NR MZ5-QL

WENO-JS7 JS7-NR
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Song ZHAO

Simulation des grandes échelles explicite et implicite de

la combustion turbulente avec forçage multi-échelles

Résumé:
Le contexte de cette étude est l’optimisation de la combustion turbulente prémélangée de syngaz
pour la production propre d’énergie. Un brûleur CH

4
/air de type bec Bunsen avec forçage turbulent

multi-échelles produit par un système de trois grilles, est simulé numériquement par différentes
techniques de simulation des grandes échelles (SGE), et les résultats sont comparés à l’expérience.
On a développé et appliqué une formulation bas-Mach du solveur Navier-Stokes basé sur différents
schémas numériques, allant des différences finies centrées d’ordre 4 à des versions avancées des
schémas WENO d’ordre 5. La méthodologie est évaluée sur une série de cas-tests classiques (flamme
laminaire 1D prémélangée, turbulence homogène et isotrope en auto-amortissement), et sur des
simulations 2D de la flamme turbulente prémélangée expérimentale. Les SGE implicites (ILES), i.e.
sans aucune modélisation sous-maille, et explicites avec le modèle de flamme épaissie et un modèle
de plissement sous-maille nouvellement élaboré (TFLES), sont appliquées à la simulation 3D du
brûleur expérimental. Les résultats montrent que l’approche TFLES avec un schéma d’ordre élevé à
faible dissipation numérique prédit correctement la longueur de la flamme et la densité de surface
de flamme. La SGE implicite avec un schéma WENO avancé produit une flamme trop courte mais
réaliste à condition que la taille de la maille soit de l’ordre de l’épaisseur de flamme laminaire. La
représentation des interactions flamme/turbulence est néanmoins très différente entre TFLES et ILES.

Mots clés: Combustion turbulente prémélangée, Simulation des grandes échelles, formulation
bas-Mach, schémas WENO

Explicit and Implicit Large Eddy Simulation of Turbulent Combustion

with Multi-Scale Forcing

Abstract:
The context of this study is the optimization of premixed turbulent combustion of syngas for
clean energy production. A Bunsen-type CH

4
/air turbulent premixed burner with a multi-scale

grid generator is simulated with different Large Eddy Simulation (LES) strategies and compared
to experimental results. A low-Mach formulation of a compressible Navier-Stokes solver based on
different numerical methods, ranging from 4th order central finite difference to 5th order advanced
WENO schemes, is developed and applied. Classical test cases (1D laminar premixed flame, decaying
HIT), and 2D simulations of the turbulent premixed flame are performed to assess the numerical
methodology. Implicit LES (ILES), i.e. LES without any explicit subgrid modeling, and explicit LES
with the Thickened Flame model and subgrid scale flame wrinkling modelling (TFLES) are applied
to simulate numerically the 3D experimental burner. Results show that TFLES with a high-order
low dissipation scheme predicts quite well the experimental flame length and flame surface density.
ILES with advanced WENO schemes produces a slightly shorter although realistic flame provided
the grid spacing is of order of the laminar flame thickness. The representation of flame/turbulence
interactions in TFLES and ILES are however quite different.

Keywords: Turbulent premixed combustion, Large Eddy Simulation, low-Mach formulation,
WENO schemes
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