
HAL Id: tel-01412638
https://theses.hal.science/tel-01412638v1
Submitted on 8 Dec 2016 (v1), last revised 6 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Decomposition of Parallel Programs for
Optimization and Performance Prediction

Mihail Popov

To cite this version:
Mihail Popov. Automatic Decomposition of Parallel Programs for Optimization and Performance
Prediction . Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Versailles Saint
Quentin en Yvelines (UVSQ), France, 2016. English. �NNT : 2016SACLV087�. �tel-01412638v1�

https://theses.hal.science/tel-01412638v1
https://hal.archives-ouvertes.fr

NNT : 2016SACLV087

1

Thèse de doctorat
de l’Université Paris-Saclay

préparée à l’Université de Versailles
Saint-Quentin-en-Yvelines

Ecole doctorale n◦580

Sciences et Technologies de l’Information et de la Communication
Spécialité de doctorat : Informatique

par

M. Mihail Popov
Décomposition Automatique des Programmes Parallèles pour

l’Optimisation et la Prédiction de Performance

Thèse présentée et soutenue à Versailles, le 7 octobre 2016.

Composition du Jury :

Mme. Alexandra Jimborean Professeure associée (Présidente)
University of Uppsala

M. Michael O’Boyle Professeur des Universités (Rapporteur)
University of Edinburgh

M. François Bodin Professeur des Universités (Rapporteur)
Université de Rennes et INRIA

Mme Christine Eisenbeis Directrice de recherche (Examinatrice)
Université Paris-Sud et INRIA

M. Pablo de Oliveira Castro Maître de conférences (Co-encadrant)
Université de Versailles

M. William Jalby Professeur des Universités (Directeur)
Université de Versailles

Remerciements

Cette thèse est le fruit de trois années de travail. Elle n’aurait jamais été ce
qu’elle est sans l’aide et la présence de nombreuses personnes que je tiens à
remercier.

Je tiens à exprimer ma gratitude à mon directeur de thèse, William
Jalby, pour m’avoir accueilli dans son laboratoire et permis de réaliser ce
travail dans les meilleures conditions. Une mention spéciale à son humour.

J’adresse mes remerciements à mes rapporteurs, Mike O’Boyle et
François Bodin pour la lecture de mon travail. Je remercie aussi mes exam-
inatrices, Christine Eisenbeis et Alexandra Jimborean, d’avoir accepté de
faire partie du jury de thèse.

Je remercie vivement mon encadrant, Pablo de Oliveira Castro. Son
écoute, ses conseils, ainsi que sa confiance en moi ont rendu ces années très
épanouissantes et plaisantes. Pour être simple, son professionnalisme et son
investissement m’ont permis de devenir le chercheur que je suis. J’espère
que nous aurons l’occasion de retravailler ensemble.

J’aimerai remercier Chadi. Nous avons travaillé trois ans ensemble et
c’était vraiment cool. Vivement le 45.

Je remercie également mes camarades de bureau, Clément et Loic pour
l’ambiance studieuse et chaleureuse. Un petit poolday ?

Je remercie Sébastien, Marie, Antoine et Alex pour ces années ensemble.
Un petit Issac ? Mais surtout, lune, pollution ou famille ?

Je remercie Yuri, Yohan, Lavanya et Florent pour avoir travaillé en-
semble sur CERE et les codelets. Merci aussi à Eric pour ses discussions.
J’aimerai également remercier tous les autre membres de mon laboratoire
pour la bonne ambiance et leurs conseils ! Merci aussi à mes amis de brunch
et du Josnes pour m’avoir soutenu ces années !

Blagodaria ce6to na Ilika i Ca6o. Lobopitno mi e kolko xora 6te razberat
tazi 4act, no v vci4ki cly4i, te ca ce6to zna4italna 4act. Pour finir, je remercie
Alexis, Benjamin, François et Xavier pour avoir rendu tout ça aussi fun.

Au delà des mots, mes remerciements vont à ma mère pour avoir
toujours été là pour moi.

Enfin, je te remercie toi, lecteur anonyme. Puisses-tu utiliser ce
manuscrit à tes fins (l’hiver est froid mais sache que le papier n’est pas
un très bon combustible).

ii

For science,

Travail terminé ! -3 juillet 2002,

Tout est une question de thresholds.

iii

Résumé :

Dans le domaine du calcul haute performance, de nombreux programmes
étalons ou benchmarks sont utilisés pour mesurer l’efficacité des calculateurs,
des compilateurs et des optimisations de performance. Les benchmarks de
référence regroupent souvent des programmes de calcul issus de l’industrie
et peuvent être très longs. Le processus d’étalonnage d’une nouvelle archi-
tecture de calcul ou d’une optimisation est donc coûteux.

La plupart des benchmarks sont constitués d’un ensemble de noyaux de
calcul indépendants. Souvent l’étalonneur n’est intéressé que par un sous-
ensemble de ces noyaux, il serait donc intéressant de pouvoir les exécuter
séparément. Ainsi, il devient plus facile et rapide d’appliquer des opti-
misations locales sur les benchmarks. De plus, les benchmarks contien-
nent de nombreux noyaux de calcul redondants. Certaines opérations, bien
que mesurées plusieurs fois, n’apportent pas d’informations supplémentaires
sur le système à étudier. En détectant les similarités entre eux et en
éliminant les noyaux redondants, on diminue le coût des benchmarks sans
perte d’information.

Cette thèse propose une méthode permettant de décomposer automa-
tiquement une application en un ensemble de noyaux de performance, que
nous appelons codelets. La méthode proposée permet de rejouer les codelets,
de manière isolée, dans différentes conditions expérimentales pour pou-
voir étalonner leur performance. Cette thèse étudie dans quelle mesure
la décomposition en noyaux permet de diminuer le coût du processus de
benchmarking et d’optimisation. Elle évalue aussi l’avantage d’optimisations
locales par rapport à une approche globale.

De nombreux travaux ont été réalisés afin d’améliorer le processus de
benchmarking. Dans ce domaine, on remarquera l’utilisation de techniques
d’apprentissage machine ou d’échantillonnage. L’idée de décomposer les
benchmarks en morceaux indépendants n’est pas nouvelle. Ce concept a été
appliqué avec succès sur les programmes séquentiels et nous le portons à
maturité sur les programmes parallèles.

Évaluer des nouvelles micro-architectures ou la scalabilité est 25× fois
plus rapide avec des codelets que avec des exécutions d’applications. Les
codelets prédisent le temps d’exécution avec une précision de 94% et perme-
ttent de trouver des optimisations locales jusqu’à 1.06× fois plus efficaces
que la meilleure approche globale.

Mots Clés : Prédiction de performance, Parallélisme, Compilation,
Optimisation, Approche par morceaux, Checkpoint restart

iv

Automatic Decomposition of Parallel Programs for

Optimization and Performance Prediction

Abstract:

In high performance computing, benchmarks evaluate architectures,
compilers and optimizations. Standard benchmarks are mostly issued from
the industrial world and may have a very long execution time. So, evaluating
a new architecture or an optimization is costly.

Most of the benchmarks are composed of independent kernels. Usually,
users are only interested by a small subset of these kernels. To get faster
and easier local optimizations, we should find ways to extract kernels as
standalone executables. Also, benchmarks have redundant computational
kernels. Some calculations do not bring new informations about the system
that we want to study, despite that we measure them many times. By
detecting similar operations and removing redundant kernels, we can reduce
the benchmarking cost without loosing information about the system.

This thesis proposes a method to automatically decompose applications
into small kernels called codelets. Each codelet is a standalone executable
that can be replayed in different execution contexts to evaluate them. This
thesis quantifies how much the decomposition method accelerates optimiza-
tion and benchmarking processes. It also quantify the benefits of local op-
timizations over global optimizations.

There are many related works which aim to enhance the benchmarking
process. In particular, we note machine learning approaches and sampling
techniques. Decomposing applications into independent pieces is not a new
idea. It has been successfully applied on sequential codes. In this thesis we
extend it to parallel programs.

Evaluating scalability or new micro-architectures is 25× faster with
codelets than with full application executions. Codelets predict the ex-
ecution time with an accuracy of 94% and find local optimizations that
outperform the best global optimization up to 1.06×.

Keywords: Performance prediction, Parallelism, Compilation, Opti-
mization, Piecewise approach, Checkpoint restart

Contents

1 Introduction 1

1.1 General Context . 1

1.2 Contributions . 5

1.3 Thesis Outline . 7

2 Background 9

2.1 Introduction . 9

2.2 Performance Metrics . 10

2.2.1 Static Analysis . 11

2.2.2 Hardware Performance Counters 12

2.2.3 Micro-architecture Independent Metrics 13

2.3 Data Processing . 14

2.3.1 Clustering . 15

2.3.2 Principal Component Analysis 18

2.3.3 Genetic Algorithms . 19

2.3.4 Training Validation . 20

2.4 Benchmarks Reduction . 21

2.4.1 Application Subsetting 22

2.4.2 Intra Application Subsetting 24

2.5 Code Isolation . 26

2.5.1 Source Versus Assembly 27

2.5.2 Execution Context . 29

2.5.3 Performance Tuning with Source Isolation 30

2.6 Tuning Strategies . 31

2.7 Conclusion . 32

3 CERE: Codelet Extractor and REplayer 35

3.1 Introduction . 35

3.2 Intermediate Representation Isolation 38

3.3 The Challenge of OpenMP Isolation 38

3.3.1 OpenMP Support . 38

3.3.2 OpenMP Isolation . 39

3.4 Application Partitioning . 40

3.5 Codelet Capture and Replay 43

3.5.1 Codelet Checkpoint-Restart Strategy 43

3.5.2 Capturing the Memory 46

3.5.3 Capturing the Cache State 47

3.5.4 Replay Codelets . 51

3.5.5 Parallel Replay . 53

v

vi CONTENTS

3.6 Hybrid Compilation . 54

3.7 Related Work . 55

3.7.1 Code Isolation . 55

3.7.2 Sampling Simulation 55

3.8 Conclusion . 56

4 Benchmark Reduction Strategies with Codelets 57

4.1 Introduction . 57

4.2 Temporal Subsetting . 60

4.2.1 Invocations Reduction 60

4.2.2 Accelerating System Evaluation 62

4.3 Spatial Subsetting . 64

4.3.1 Regions Reduction . 64

4.3.2 Architecture Selection 66

4.3.3 Clustering Metrics with Genetic Algorithms 69

4.4 Conditional Subsetting for Scalability Prediction 70

4.5 Discussion . 71

4.5.1 Related Works . 71

4.5.2 Combine Spatial and Temporal Clustering 72

4.5.3 Enhance Spatial Clustering 73

4.6 Conclusion . 74

5 Experimental Validation 75

5.1 Introduction . 75

5.2 Experimental Setup . 76

5.2.1 Applications . 76

5.2.2 Execution Environments 77

5.3 CERE Coverage and Replay Accuracy 78

5.3.1 Serial Codelets Validation 78

5.3.2 OpenMP Codelets Validation 80

5.4 Codelet Exploration . 82

5.4.1 Scalability Exploration 84

5.4.2 Cross Architecture Scalability Replay 86

5.4.3 NUMA Aware Replay 86

5.4.4 Compiler Exploration 88

5.5 Conclusion . 89

6 Holistic Tuning 91

6.1 Introduction . 91

6.2 Motivating Example . 92

6.3 Thread Configurations . 95

6.4 Architecture Selection . 96

6.5 Compiler Optimizations . 104

6.5.1 Monolithic Tuning . 104

CONTENTS vii

6.5.2 Piecewise Tuning . 106
6.6 Discussion . 109

6.6.1 Data Sensitivity of Piecewise Tuning 109
6.6.2 Region Dependency Checker 109

6.7 Conclusion . 110

7 Conclusion 113
7.1 Publications . 114
7.2 Perspectives . 114

viii CONTENTS

List of Figures

1.1 There are different layers of abstraction for computing. Each
layer rely on the layers below. End users select a program-
ing model and write their applications. These applications
take advantage of different runtimes and libraries. Compil-
ers produce assembly executable code from the previous lay-
ers. Finally the operating system is in charge to monitor the
hardware. It ensures that the hardware correctly executes the
assembly. 2

2.1 Application and system study. The workload coverage and
reduction is explained in the following section 2.4. 15

2.2 An demonstration of PCA applied to a data cloud. u1 is the
first component and u2 the second. This example was taken
from Hyvarinen et al. [55]. 19

2.3 Assembly versus source isolation. Source is retargetable but
less faithful while assembly is faithful but less retargetable. . 28

3.1 CERE usage diagram. Applications are partitioned into a set
of codelets, which may be pruned using different criteria. A
subset of representative codelet invocations are selected and
captured. The codelets can then be replayed with different
options and on different targets to do piecewise optimization
or performance prediction. 36

3.2 Clang outlines each C parallel region as an independent IR
function:omp microtask. The call to kmpc fork spawns a
pool of threads that runs the outlined microtask. 39

3.3 (top) CERE call graph, before and after filtering, for SPEC
2006 gromacs. Each node represents a captured codelet. The
percentage inside the node is the codelet’s self time. Edges
represent calls to other codelets, the edge percentage is the
time spent in calls to those nested codelets. (bot) Replay per-
centage error of gromacs codelets using Working Set warmup. 41

3.4 Mean and median captured execution time as a function of the
tolerated replay error. the NAS and SPEC 2006 FP bench-
marks. The mean is lower than the median due to the IO-
intensive and short kernel benchmarks described in the vali-
dation section 5.3, which skew the distribution. 42

3.5 The memory dump process operates at page granularity.
Each page accessed is dumped by intercepting the first touch
using memory protection support. 46

ix

x LIST OF FIGURES

3.6 Comparison between the page capture and full dump size on
NAS.A benchmarks. CERE page granularity dump only con-
tains the pages accessed by a codelet. Therefore it is much
smaller than a full memory dump. 47

3.7 Cache page tracer on a simple codelet adding two arrays.
Each page access is logged. Recently unprotected pages are
kept in a FIFO with N slots (here N = 4). Once evicted from
the FIFO, the pages are protected again. 48

3.8 Comparison of the three cache warmup techniques included
in CERE on NAS codelets. The plot shows the percentage of
execution time as a function of the replay error. Page Trace
and Working Set warmup achieve the best results. Page Trace
is more accurate than Working Set on the LU benchmark. . 49

3.9 CERE capture overhead. (top) CERE capture overhead
(Class A). For each plot we measure the slowdown of a full
capture run against the original application run. The over-
head takes into account the cost of writing the memory dumps
and logs to disk and of tracing the memory accesses during
the whole execution. (bot) Overhead of other memory trac-
ers. We compare to the overhead of other memory tracing
tools as reported by [79]. Gao et al. did not measure bt, is,
and ep. 50

4.1 CERE benchmark reduction workflow for tuning. With orig-
inal evaluations, new parameters are directly evaluated over
the applications. This is a costly and time consuming pro-
cess. CERE reduces the benchmarks to a representative sub-
set. The reduction is composed of both a temporal subsetting
(see section 4.2) and a spatial subsetting (see section 4.3).
Evaluating systems on the subset is faster because we avoid
the redundant full application executions. Hence, we quickly
amortize the reduction initialization cost because of the huge
exploration space. 59

4.2 invocation reduction: (a) A clustering analysis of tonto’s trace
detects four different performance behaviors depending on the
workload. The initial 3587 invocations are captured with only
four representative replays. (b) Most of the NAS codelets can
be captured with less than four representative working sets. 61

4.3 The region fftxyz 152 is executed 8 times during the appli-
cation lifetime. The first invocation is slower due to the cold
cache state. 61

LIST OF FIGURES xi

4.4 MG resid invocations execution time on Sandy Bridge over
-O3 and -O0 with respectively 2 and 4 threads. Each repre-
sentative invocation predicts its performance class execution
time. Tuning compiler optimizations and thread configura-
tions has a similar impact on invocations within the same
cluster. 63

4.5 CERE spatial benchmark reduction method. Representative
codelets are extracted and serve as proxies to evaluate the
whole applications. 64

4.6 Predicted and Real execution times on Atom for clusters 1
and 2. Representatives are enclosed in angle-brackets. They
have a 0% prediction error because they are directly mea-
sured. The representative speedup is applied to all its sib-
lings to predict their target performance. Because the scale
is logarithmic, applying the speedup is depicted by the arrow
translation. 68

5.1 Evaluation of CERE on NAS and SPEC FP 2006. The Cov-
erage is the percentage of the execution time captured by
codelets. The Accurate Replay is the percentage of execution
time replayed with an error less than 15%. 79

5.2 Percentage of execution time accurately replayed (error <
15%) on the NAS and SPEC FP benchmarks with differ-
ent replay configurations. Reinlining and explicitly marking
cloned variables as NoAlias improve replay accuracy in eleven
benchmarks. 81

5.3 Real vs. CERE execution time predictions on Xeon Sandy
Bridge for the SP compute rhs codelet 84

5.4 Prediction accuracy of a single threaded warmup versus a
NUMA aware warmup on BT xsolve on Xeon Sandy Bridge.
Only a NUMA aware warmup is able to predict this region
execution time on a multi NUMA node configuration. We
note that the capture was performed with 16 threads. 86

5.5 SP ysolve codelet. 1000 schedules of random passes combi-
nations explored based on O3 passes. We only consider com-
pilation sequences that produce distinct binaries. The passes
combinations are ordered according to their real execution
time. 88

6.1 Tuning exploration for two SP regions. For each affinity, we
plot the best, worst, and -O3 optimization sequences. Custom
optimization beats -O3 for s2 (i.e. scatter with 2 threads),s4,
and s8 on ysolve. 93

xii LIST OF FIGURES

6.2 Violin plot execution time of SP regions using best NUMA
affinity. Measures were performed 31 times to ensure repro-
ducibility. When measuring total execution time, Hybrid out-
performs all other optimization levels, since each region uses
the best optimization sequence available. 94

6.3 Original and CERE predicted speedup for two thread config-
urations. Replay speedup is the ratio between the replayed
target and the replayed standard configuration. CERE ac-
curately predicts the best thread affinities in six out of eight
benchmarks. For CG and MG, we miss-predict configurations
that use all the physical cores. 97

6.4 Evolution of prediction error and benchmarking reduction
factor on NAS codelets as the number of clusters increases.
The dotted vertical line marks 18, the number of clusters se-
lected by the elbow method. 98

6.5 Predicted and Real execution times on Sandy Bridge com-
pared to the Nehalem reference execution. Each box presents
the codelets extracted from one of the NAS applications.
Only three codelets in BT, LU, and SP are mispredicted. . . 99

6.6 Predicted and Real execution times on the target architecture
compared to the execution time on the reference architecture. 100

6.7 Geometric mean speedup per architecture using CF codelets. 100

6.8 Genetic-Algorithm metric clustering compared to random
clustering. For each number of clusters, from 2 to 24, 1000
random clusters are evaluated. Clustering with our GA met-
ric set is consistently close or better than the best random
clustering (out of 1000). 102

6.9 NAS geometric mean speedup on three architectures. Base-
line is a NAS run on Nehalem compiled with icc 12.1.0 -O3

-xsse4.2. The predicted speedup is computed by using the
replay performance of eighteen CERE representative codelets
using Working Set warmup. There is a difference between
the speedups of this plot compared to the ones presented in
the Figure 6.7 because using CERE requires to compile the
target architectures code with LLVM instead of icc. 103

6.10 Compiler sequences required to get a speedup over 1.04×
per region. CERE evaluates the sequences in the same order
for all the regions. Exploring regions separately is cheaper
because we stop tuning a region as soon as the speedup is
reached. 106

LIST OF FIGURES xiii

6.11 Speedups over -O3. We only observe speedups from the iter-
ative search over BT, SP, and IS. Best standard is the more
efficient default optimization (either -O1, -O2, or -O3). Mono-
lithic is best whole program sequence optimization. Hybrids
are build upon optimizations found either with codelets or
with original application runs. 108

xiv LIST OF FIGURES

List of Tables

3.1 Codelet capture and replay main steps. 44

3.2 CERE predicted execution times of the FDTD codelet com-
piled with -O2 using the three warmup techniques. 51

3.3 Feature comparison of sequential code isolation tools. 55

4.1 Performance metric set used to cluster regions. 65

4.2 NR clustering with 14 clusters and speedups on Atom. The
dendrogram on the left shows the hierarchical clustering of the
codelets. The height of a dendrogram node is proportional to
the distance between the codelets it joins. The dashed line
shows the dendrogram cut that produces 14 clusters. The
table on the right gives for each codelet: the cluster number
C, the Computation Pattern, the Stride, the Vectorization,
and the Speedup on Atom s. The speedup of the selected
representative is emphasized with angle brackets. 67

4.3 Prediction errors on Numerical Recipes with 14 and 24 clus-
ters. NR contain 28 benchmarks. Selecting 24 codelets lead
to replay more than half of the benchmarks: this justifies why
the median is equal to zero. The fact that the elbow produces
a number of clusters near to the total number of benchmarks
means that according our performance metrics, the NR are
quite diverse. 69

5.1 Applications use cases. 77

5.2 Test architectures. 78

5.3 Codelet Replay Accuracy . 83

5.4 NAS 3.0 C version average prediction accuracy and bench-
marking acceleration per architecture. 84

5.5 Overall CERE accurately predicts the scalability on the three
architectures. The average prediction error is 4.9%. The pre-
diction is in average 25 × faster with CERE. In this exper-
iment a separate initialization step was performed on each
architecture. In Xeon Sandy Bridge the error is higher on IS
and with 32 threads. IS misprediction is due to the fact that
changing the number of threads changes the memory layout
which impacts the sequential regions violating our model as-
sumptions. 85

5.6 Cross Architecture Replay Accuracy 87

xv

xvi LIST OF TABLES

6.1 Execution time in megacycles of SP parallel regions across dif-
ferent thread affinities with -O3 optimization. For n threads,
we consider three affinities: scatter sn, compact cn, and hy-
perthread hn. Executing SP with the c8 affinity provides an
overall speedup of 1.71× over the standard (s16). 94

6.2 Thread configurations evaluated on Xeon Sandy Bridge. s16
maps a single thread to all the physical cores and uses two
NUMA domains. It is considered as the default thread con-
figuration for this test machine. 95

6.3 The accuracy of the codelet prediction is the relative dif-
ference between the original and the replay execution time.
The benchmark reduction factor or acceleration is the
exploration time saved when studying a codelet instead of
the whole application. CERE fails to accelerate EP and MG
evaluation: EP has a single region with one invocation while
MG displays many performance variations. 96

6.4 Codelet Exploration of Thread Configurations on Xeon Sandy
Bridge . 97

6.5 Benchmarking acceleration by replaying only the representa-
tives. CERE replays are 7.3× to 46.6× faster than running
the whole NAS.B suite. CERE benchmark acceleration is
comparable to the results achieved with Codelet Finder. . . . 103

6.6 CERE performance predictions for different Clang optimiza-
tion levels on the FDTD codelet with LLVM 3.3. 104

6.7 Evaluation of 3.3 and 3.4 LLVM versions on the FDTD
codelet using -O2. 105

6.8 LLVM 3.3 best compilation sequence for RTM on Ivy Bridge. 105
6.9 Codelet Exploration of Compiler Passes on Ivy Bridge 107

Chapter 1

Introduction

1.1 General Context

Architecture complexity has increased a lot in the past 20 years with hierar-
chical cache systems, simultaneous multithreading, out-of-order execution,
parallelism and heterogeneity. The conventional way to guide and eval-
uate these architectural innovations is to study a benchmark suite based
on existing programs [1], such as SPEC [2] (Standard Performance Eval-
uation Corporation) or NAS [3]. Each benchmark suite targets a specific
field: NAS targets parallel supercomputers and high performance comput-
ing (HPC) while SPEC are for more general computations. Architectural
designers have to understand these workloads and tune future systems for
them [4, 5].

A first well known issue of this model is that there are new emerging
workloads that were never considered before. Computer science evolution
opens new domains of computing such as deep learning, gaming, big data
analytics, or bioinformatics that bring new workloads with them. Driving
the architectural design on a set of existing source code applications may
lead to a suboptimal result [6] for the new workloads. Designers achieve
good-enough results by adapting, evolving and proposing new benchmark
suites that incorporate these new workloads.

Before building new prototypes, architects rely on simulators to evaluate
new architectural updates. A second issue is that simulating new architec-
tures with all their complexity is time and resource consuming: an appli-
cation simulation is easily 10000 [7] times slower than a native execution.
This expensive simulation cost limits the number of iterations engineers can
perform in a given budget. Different approaches have been proposed by
the community to overcome this limitation, such as analytical models [8, 9],
machine learning [10, 11], checkpoint-restart [12], or simulation reduction
techniques [13].

Figure 1.1 presents the different components involved in the computation
process. They are organized in layers and each layer rely on the elements
below. The workloads are evolving and so must the rest of the stack.

For instance, the Graphics Processing Units (GPUs) were designed to
speedup embarrassingly parallel image processing applications. GPUs are
composed of a large number of simple cores that allow them to take ad-
vantage of the regular Single Instruction Multiple Data (SIMD) parallelism.

1

2 CHAPTER 1. INTRODUCTION

Hardware

Operating System

Compiler

Programing
Models

Applications

Runtime / Library

System stack

Figure 1.1: There are different layers of abstraction for computing. Each
layer rely on the layers below. End users select a programing model and
write their applications. These applications take advantage of different run-
times and libraries. Compilers produce assembly executable code from the
previous layers. Finally the operating system is in charge to monitor the
hardware. It ensures that the hardware correctly executes the assembly.

In the 2000s, the GPUs starts performing tasks that are traditionally han-
dled by the Central Processing Unit (CPU). Using GPUs for CPU tasks is
defined as the General Purpose computing on Graphics Processing Units
(GPGPUs). GPGPUs guide software developers into updating their work-
loads by using new programing models and languages (OpenCL or CUDA).
This example illustrates how, to achieve fully efficient computations, both
the software and the hardware adapt to each other.

Designing multiple elements at the same time by taking feedback from
all of them is called co-design. Designers have already attempted to co-
design both the hardware and the software [14]. They have also combined
the architectural design with the compiler design [15].

However, an issue remains: as long as there is no global consensus during
early design stages, design decisions must be taken with only limited knowl-
edge of other system components. Achieving such consensus is challenging:
for instance right now there is no fully accepted programming model that
supports parallel heterogeneous supercomputers.

To partially reduce the gap between the codes and the architectures,
both the runtime and the compiler provide standard configurations that
achieve good-enough performance across most of the codes and the archi-
tectures. Re-engineering the compiler and the runtime to adapt them to
the architectures and codes evolution is challenging: modern compilers and
runtimes contain millions of lines of code. To validate a new optimization, it
must be tested over all possible inputs instead of the few test cases required
to publish a paper in a research conference [1].

A common approach to enhance the software system layer is autotuning.
Autotuned compilers [16] illustrate this idea: they apply successive compiler

1.1. GENERAL CONTEXT 3

transformations to a program and evaluate them by executing the resulting
code. So, autotuners generate many variants of a given kernel or benchmark
and each variant targets a specific execution point. Unlike standard con-
figurations, autotuned configurations can take advantage of target-specific
optimizations since they are not required to correctly work on a large panel
of systems.

Finding the optimal parameters may lead to substantial improvement
but is a costly and time consuming process for two reasons:

• there is a huge parameter space to explore. For instance, The
LLVM [17] 3.4 compiler provides more than sixty optimization passes.
Passes have different impact depending on their order of execution
and can be applied multiple times. So, it is not feasible to try all
the possible combinations in a reasonable amount of time. Popular
approaches [18, 19] minimize this problem by pruning the exploration
space and hence reduce the number of points to evaluate,

• each resulting point in the search space must be evaluated. The issue
is that for some applications, the evaluation of the optimizations can
be extremely expensive since we have to execute the applications.

Reducing the evaluation cost of applications or a set of benchmarks is
also a problem that is faced the hardware designers. Both hardware and
software designers rely on benchmark reduction techniques to accelerate the
evaluation. The idea is to avoid the evaluation of redundant parts within
the benchmarks or the applications.

Let us consider multiple benchmarks with a similar execution behavior
and sharing the same performance bottlenecks. They should be sensitive
to the same parameters or to the same optimizations [20]. For instance,
increasing cache size will benefit the performance of all the memory bound
loops. There is no need to evaluate all of them through the search space: we
will only pay more evaluation time without collecting any new informations
about the system.

To avoid such scenarios, researchers profile the benchmarks to detect
and discard the redundant ones. Different approaches exist to quantify the
diversity of a benchmark suite [21]. A popular approach consists into using
performance characterization metrics [4]. Benchmarks with similar metrics
have a similar execution behavior and hence are considered as redundant.

Reduction strategies use the performance metrics to detect and cluster
the redundant benchmarks [22]. Each cluster contains benchmarks that
can be replaced by a single representative without diminishing the suite
behavior diversity. Evaluating the representatives allows to extrapolate the
whole suite behavior without considering redundant benchmarks and hence
accelerate the evaluation.

4 CHAPTER 1. INTRODUCTION

Redundancies appear across applications but can also exist within a
fixed application. Applications have different phases during their execution.
A phase [23] is a set of intervals within a program execution with similar
behavior.

Simulators [24] take advantage of these phases to reduce the evaluation
cost. By using performance metrics [25] or Basic Bloc Vectors [13] (BBVs) as
signatures for each phase, designers cluster them. Representative phases are
extracted and used as proxies for the whole benchmarks. To avoid replaying
the redundant phases, simulators rely on checkpoint restart or fast forward
simulation functionalities to directly target the representative ones.

Unlike simulators, the real hardware do not provide such abilities. Hence,
phase reduction cannot be directly applied on real hardware for tuning.

There is an interesting and versatile approach which is code isolation [26].
Code isolation extracts regions of code from an application as standalone
fragments of code. These fragments can be compiled and replayed indepen-
dently from the original application on a real hardware. Yet, it is challenging
to isolate fragments of code that can faithfully be replayed across multiple
execution environments: there are currently no versatile enough code isola-
tor tools with these two properties.

To summarize this introduction, we note that:

• both hardware and software are evolving and understanding them is
challenging,

• benchmarking scientific applications and systems is a costly but vital
process to validate software and hardware optimizations,

• benchmark reduction techniques detect phase redundancies that can-
not be applied on a real hardware to reduce the tuning cost of appli-
cations,

• tuning the system stack outperforms the standard execution configu-
ration but requires a prohibitive one-off search,

• no current code isolator is versatile enough to produce proxies for
parameter tuning.

In this thesis we propose a new code isolation method that can be used as
a fast way to benchmark High Performance computing (HPC) parallel codes.
We extract the representative pieces of code and use them as proxies to tune
the applications. Each piece of code can map an application phase and so
avoid redundant evaluations. The code isolation must have two related
properties that we will to demonstrate. First, the fragments of code should
be replayable on a large panel of target execution environments. Second, to
achieve accurate performance measurements, the replay must be faithful to
the original execution.

1.2. CONTRIBUTIONS 5

1.2 Contributions

During this thesis, I participated in the development and the design of
Codelet Extractor and REplayer [27] (CERE). The contributions of this
thesis strongly rely on CERE.

CERE (http://benchmark-subsetting.github.io/cere/) is a collab-
orative open source framework for code isolation developed at University of
Versailles and Exascale Computing Research. It extracts the hotspots (ei-
ther loops or OpenMP regions) of an application as isolated fragments of
code, called codelets. Codelets can be modified, compiled, run, and mea-
sured independently while remaining faithful to the original execution. In
other words, they are versatile and accurate enough to be used as a proxy
to evaluate hardware or system designs tradeoffs.

Unlike previous approaches, CERE isolates codes at the compiler Inter-
mediate Representation (IR) level. IR is a good candidate for extraction
because it provides a good trade-off between the traditional assembly and
source code isolation. Unlike assembly isolation, IR isolation allows to re-
target the replay to new Instruction Set Architectures (ISA) or compiler op-
timizations. It also avoids hazards such as costly support of new languages
or replay discrepancies introduced by the compilation front end required by
the source isolation.

CERE is evaluated on the SPEC 2006 FP benchmarks: codelets cover
90.9% and accurately replay 66.3% of the execution time. This evaluation
was published at the ACM Transactions on Architecture and Code Opti-
mization (TACO) [27].

This thesis has two major and one minor contributions.

Major Contributions

Scalability Prediction Model

Evaluating the strong scalability of OpenMP applications is a costly and
time consuming process. It involves executing the whole application mul-
tiple times with different number of threads. The first contribution of this
thesis is the design and the implementation of a scalability prediction model
incorporated into CERE.

CERE maps each parallel region to a codelet. To accelerate scalabil-
ity prediction, CERE replays codelets while varying the number of threads.
Prediction speedup comes from two reasons. First, for codelets called repeat-
edly and for which the performance does not vary across calls, the number
of invocations is reduced. Second, the sequential parts of the programs do
not need to be replayed for each different thread configuration.

We evaluate CERE on a C version of the NAS Parallel Benchmarks
(NPB) by achieving an average speedup of 25× and a median error of 5%.

6 CHAPTER 1. INTRODUCTION

This work was published at International Parallel and Distributed Process-
ing Symposium (IPDPS) [28].

Piecewise Holistic Tuning

The second contribution is a piecewise holistic approach to tune compiler
optimizations and thread configurations. Codelet autotuning achieves better
speedups at a lower tuning cost. With the codelet prediction model, CERE
reduces the number of loops or OpenMP regions to be evaluated. Moreover
unlike whole-program tuning, CERE customizes the set of best parameters
for each specific OpenMP region or loop.

We demonstrate the autotuner capability by obtaining a speedup of
1.08× over the NAS 3.0 benchmarks. This contribution led to a publica-
tion at the International European Conference on Parallel and Distributed
Computing (Euro-Par)[29].

Minor Contribution

Finding Metrics for Benchmarks Reduction

Selecting the best architecture for a set of programs and workloads leads
to significant performance improvements but requires long running bench-
marks. I participated in the elaboration of a method that reduces this
benchmarking cost for architecture selection. The method combines code
isolation methodology with benchmark reduction techniques.

We extract a set of codelets out of the benchmarks. Then, we identify
two causes of redundancy. First, codelets that perform similar operations.
Second, codelets called repeatedly. The key idea is to minimize redundancy
inside the benchmark suite to speed it up. For each group of similar codelets,
only one representative is kept. For codelets called repeatedly and for which
the performance does not vary across calls, the number of invocations is
reduced.

The third contribution consists into defining distances between the
codelets. We gather performance metrics that are used as signatures for
each codelet. CERE uses these signatures to cluster the codelets.

This method was evaluated on the NAS Serial (SER) benchmarks, pro-
ducing a reduced benchmark suite 30 times faster in average than the orig-
inal suite. The reduced suite predicts the execution time on three target
architectures with a median error between 3.9% and 8%. The reduction
approach is published at The International Symposium on Code Generation
and Optimization (CGO) [30].

1.3. THESIS OUTLINE 7

1.3 Thesis Outline

Chapter 2 presents the context and the state of the art in the domain of
workload characterization. In particular, we detail the different benchmark
reduction strategies and tuning heuristics. Chapter 3 presents CERE, the
codelet extractor and replayer. Chapter 4 shows CERE reduction strategy to
accelerate the benchmarking process. Chapter 5 validates CERE extraction
process. Chapter 6 demonstrates how CERE can be used to tune different
compiler optimizations, thread configurations or architectures.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Contents

2.1 Introduction . 9

2.2 Performance Metrics 10

2.2.1 Static Analysis . 11

2.2.2 Hardware Performance Counters 12

2.2.3 Micro-architecture Independent Metrics 13

2.3 Data Processing 14

2.3.1 Clustering . 15

2.3.2 Principal Component Analysis 18

2.3.3 Genetic Algorithms 19

2.3.4 Training Validation 20

2.4 Benchmarks Reduction 21

2.4.1 Application Subsetting 22

2.4.2 Intra Application Subsetting 24

2.5 Code Isolation . 26

2.5.1 Source Versus Assembly 27

2.5.2 Execution Context 29

2.5.3 Performance Tuning with Source Isolation 30

2.6 Tuning Strategies 31

2.7 Conclusion . 32

2.1 Introduction

In high performance computing (HPC), benchmarks evaluate architectures,
compilers and optimizations. Since benchmarks may have very long execu-
tion times, evaluating a new architecture or an optimization is costly.

Also, we note that benchmarks have redundant computational behav-
iors [13]. Some calculations do not bring new informations about the sys-
tem that we want to study, despite that we measure them many times. This
thesis, like many related works, aims to enhance the benchmarking process
by detecting and reducing these redundant calculations.

This chapter presents the background of this thesis. We start by present-
ing methods that aim to understand the applications behaviors. Chapter 2.2

9

10 CHAPTER 2. BACKGROUND

shows the different metrics that characterize the behavior of an application.
In section 2.3, we explain the statistical approaches used by the current
state of the art benchmark reduction techniques themselves presented in
section 2.4.

This thesis does not contribute to any novel data processing approaches.
It rather takes advantage of them in order to enhance the benchmark tuning
process with code isolation. Section 2.5 gives an overview the different code
isolation techniques while section 2.6 presents popular tuning strategies.

2.2 Performance Metrics

The purpose of performance metrics is to understand an application behavior
on a system. Good metrics are highly dependent on the situation and finding
a general representative set of metrics is challenging because of architecture
heterogeneity. In other words, we cannot apply the same methodology across
all the architectures.

Modern high performance processors have special hardware registers that
detect and count performance events. These counters use the performance
monitoring units [31] (PMU). For example, the Intel microachitecture Ne-
halem provides the counter FIXC0. It is used to measure the event IN-
STR RETIRED ANY i.e. the number of retired instructions during the
execution.

The problem is that the performance events and the counters are not
consistent across the different architectures. Let us consider Nehalem which
has three levels of cache. During the execution, the PMU can access the
number of hits or misses on the third cache level (L3). Unlike Nehalem,
Intel Core2 has only two cache levels: measuring L3 events on a Core2
is impossible. Hence, the architecture disparity prevents from an unified
approach to measure the hardware counters across all the systems.

Also, current applications have a large spectrum of performance behav-
iors and pathologies [32] such as poor vectorization, useless data dependen-
cies, and high register pressure. Sprunt et al. [33] illustrates how hardware
performance counters can be used to identify memory access problems and
to eliminate some register stalls. Considering the wide range of architec-
tures and applications, many performance metrics have been developed to
evaluate the different execution behaviors.

Another point to consider is the profiling cost. Metrics not only pro-
vide different informations but are also more or less costly to collect. For
instance, some data dependencies can be detected by simply analyzing the
assembly. On the other hand, measuring the memory bandwidth requires a
full application execution. It is important for a user to select both relevant
and affordable metrics for his problem.

In this thesis, we use performance metrics for benchmarking reduction

2.2. PERFORMANCE METRICS 11

i.e. to detect if two applications have a similar behavior. We expect that
codes with similar performance metrics yield similar micro-architectural be-
havior. We are looking for metrics with must:

1. correctly discriminate two applications if their behaviors are different.
In other words, they must encompass all of the key factors that af-
fect the performance by covering a large enough range of behavioral
aspects,

2. be as cheap as possible to collect. We must avoid evaluating correlated
metrics since they do not provide new information.

This section gives an overview of different approaches that characterize
applications behavior. Performance metrics are divided in two groups: static
and dynamic. The first study the code while the second execute it to get
the information. Both have different trade-offs, and are used depending
on the situation. We compare the different approaches by looking at the
information they provide and their collecting cost.

2.2.1 Static Analysis

Static analysis consists in deriving information from a code without exe-
cuting it. It is traditionally used to find security issues or to debug ap-
plications [34] but can also be extended for code profiling [35, 36]. Both
source [34, 37] and assembly [35, 32] levels are fit for static analysis. Study
of assembly instructions may be difficult to map to source code but has
the advantage to look at what is really executed after compilation and link
steps.

There are different static metrics that are related to the performance.
Producing them usually requires from the static analysis to rely on an ma-
chine model. In this thesis, we use Modular Assembly Quality Analyzer and
Optimizer (MAQAO) Code Quality Analyzer (CQA) [35, 32].

MAQAO CQA is a loop centric code quality analyzer that provides high
level metrics which are data set independent. It relies on a performance
model which assumes that all data are resident in the first level cache. Here
is a list of some MAQAO CQA static metrics that we select to characterize
diverse behaviors:

• dispatch ports pressure studies the pressure from micro operands
dispatch on execution ports and allows to find which one is the bot-
tleneck,

• peak performance in L1 helps to find an upper bound of the per-
formance. It is build by assuming no memory related issues, infinite
size buffers, and infinite number of iterations,

12 CHAPTER 2. BACKGROUND

• arithmetic intensity measures the amount of computational instruc-
tions over the total number of instructions,

• vectorization ratio is the proportion of the vector instructions over
the total number of instructions that can be vectorized. This metric
indicate for a code the benefits of the vectorization.

Static analysis is relatively cheaper to achieve compared to a full program
execution and provides a wide range of analyzes. The drawback is the fact
that not all the aspects of the execution behavior can by analyzed. It cannot
estimate dynamic factors such as the branch miss predictions or the cache
misses that impact the execution time. So, despite its speed, static analysis
is not sufficient to fully characterize an application behavior.

2.2.2 Hardware Performance Counters

Unlike static studies, dynamic analysis relies on code execution. It provides
information that cannot be statically obtained such as the memory behav-
ior. However, executing the code raises two issues. First, it is costly and
time consuming. Second, the results are bound to a particular execution.
Workloads executed with different data sets may exhibit different execution
behaviors, depending on the data set. Also, due to thread concurrency, par-
allel programs may have different behaviors across multiple executions: a
single region can have different dynamic results across the executions. So,
we must profile the application multiple times. The problem is that even
with multiple executions, we cannot assert that we fully characterize all the
behaviors.

The previously described PMUs provide dynamic data about the CPU
resource utilization [31]. To do so, the processors provide the capability to
monitor performance events through the monitoring counters. The counters
are either with a general or with a fixed purpose. We saw the Nehalem
FIXC0 counter that has the fixed purpose of measuring the number of re-
tired instructions. Developers configure general purpose counters to measure
the events that interest them. A large panel of events can be assigned to
them, including the architecture memory behavior (cache accesses, cache
hits ratios, memory footprints, or the RAM bandwidth), the cycles per in-
struction (CPI) or the power and energy consumption. We also note that the
number of hardware performance counters increases with the more recent
micro-architectures.

There are two methods currently used to get the PMU data: sampling
and tracing. Tracing measures the total number of events between two
probes manually placed by the developer within the code. It allows us to
target a specific region of code for profiling but introduces an overhead noise
due to the probes.

2.2. PERFORMANCE METRICS 13

Sampling records the events from the counters only at specific moments
during the execution. There are different approaches to choose when to
record a counter. The counter can be measured every N elapsed cycles or
every I executed number of instructions. To perform accurate sampling
measurements, it is mandatory to select a good frequency for the sampling
points. Performing to few measurements may miss some performance events
while too many introduce measurements overhead.

There is a limited number of PMU in a CPU and only some fixed purpose
PMU can collect specific performance events. So, if developers are interested
into too many performance events at the same time, they have to profile the
application multiple times. To address this issue, the CPU provides the
multiplexing. The PMU measures multiple events during the same run: the
counter alternates the measured events. The disadvantage is that alternating
the events may introduce noise in the measurements. In this thesis, we use
two hardware performance counters tools: Lprof [38], MAQAO dynamic
performance profiler and Likwid [39].

A way to overcome some of the respective limitations of the static and
the dynamic analysis is to couple them together. The two methods are com-
plementary: static metrics are useful to evaluate the assembly code quality
while dynamic metrics cover the memory and data-dependent behavior.

2.2.3 Micro-architecture Independent Metrics

We rely on an architecture model to get the static analysis. We also collect
the performance counter metrics with executions on a micro-architecture
by looking at its performance monitoring counters. We call these previous
metrics microarchitecture dependent metrics because they are depend on to
the micro-architecture that they target.

With architecture dependent metrics, an applications has different per-
formance metrics depending on the profiled architecture. On the opposite,
we have the microarchitecture independent metrics [4, 40]. They are inher-
ent to the application we profile. The goal of the architecture independent
metrics is to ensure that an application has the same performance signature
across all the architectures. We abstract the application behavior from the
architecture.

Here is a list of some architecture independent metrics proposed by Hoste
et al. [4] and Phansalkar et al. [4]:

• instruction mix is the percentage of appearance of various operations
performed by the application,

• instruction level parallelism (ILP) quantify the instructions in-
dependence. It is usually defined as the instructions per cycle (IPC)
achievable for an idealized out-of-order processor constrained only by
a window size and data dependencies,

14 CHAPTER 2. BACKGROUND

• branch prediction computes the percentage of forward branches out
of the total branch instructions in the dynamic instruction stream,

• memory foot print is the amount of memory touched for both in-
struction and data streams,

• reuse distance characterizes the cache behavior of the application.
For each memory read, the corresponding 64-byte cache block is de-
termined. For each cache block accessed, the number of unique cache
blocks accessed since the last time it was referenced is determined,
using a last recently used (LRU) stack. We traditionally gather these
accesses into buckets to characterize the application.

The main advantage is that independent metrics may outline some ap-
plication behaviors that are not observable with dependent metrics. Host
et al. [41, 42] compared the profiling diversity of the micro-architecture de-
pendent and independent metrics over 6 benchmark suites. Architecture
independent metrics observe different behaviors over 98% of the applications
where architecture dependent metrics only observe 57% different behaviors.

The main disadvantage independent metrics is that they are very costly
to obtain: despite being faster than simulations, getting these metrics incurs
a significant slowdown (between 10 and 200 times slower[4]).

To summarize, there is a wide range of methods to analyze applications.
Some are intrusive and more costly but provide more information. Others
are lighter but only target specific components. There is no single best
method, users must choose or combine different approaches according to
their motivation and the price that they are ready to pay.

We do not have to bound to a single approach. For instance, static
and dynamic analysis have been combined to characterize hot loops [43, 44].
Marin et al. [9] predict the behavior metrics and execution time of applica-
tions also by using a combination of static and dynamic analysis. In partic-
ular, they combine static metrics such as instruction mix and dynamic one
as histograms of the memory reuse distance. The benefits of this approach
is that it models both the instructions execution cost and the memory hier-
archy penalty.

In this thesis, we characterize the applications through both static and
dynamic metrics. Combining them allows to easily model a diverse range of
behaviors. Section 4.3.3 explains how we choose our performance metrics.
The next section presents methods that help understanding and manipulat-
ing these performance metrics.

2.3 Data Processing

The previous section reviewed methods to characterize an application behav-
ior. They produce performance metrics that describe the different behaviors.

2.3. DATA PROCESSING 15

Applications Profiling Coverage and
reduction

Data
processing

Static and
dynamic
analysis

Clustering
PCAOptional metrics

training
Performance

extrapolation and prediction

Figure 2.1: Application and system study. The workload coverage and
reduction is explained in the following section 2.4.

This section presents approaches that analyze and process these metrics.
Figure 2.1 displays how many state of the art methods [2, 45, 4, 40, 46,

22, 47, 42] study a set of applications on a system, to either predict the
execution time or to enhance the benchmarking process. First, they profile
the applications to get their static and dynamic metrics. These metrics
represent aspects of the applications behavior (see section 2.2). Since there
is a wide range of metrics, it is challenging to know which metrics are relevant
for which purpose.

There are three commonly used complementary methods to analyze and
process the performance metrics:

• Clustering : an unsupervised machine learning method which consists
into gathering elements that are similar (see section 2.3.1),

• Principal Component Analysis: a statistical procedure that converts
a set of data into linearly uncorrelated variables called principal com-
ponents (see section 2.3.2),

• Evolutionary Algorithms: a supervised machine learning method
which is trained to find the most relevant metrics for the user ob-
jective (see section 2.3.3).

Finally, machine learning predictions must be validated. Section 2.3.4
describes how such predictions quality is quantified.

2.3.1 Clustering

Clustering is a statistical method for data processing. It gathers elements
that are similar into groups called clusters. Elements in a cluster are more
similar to each other than to those in other clusters.

Clustering is used on applications characterization to gather similar ap-
plications. Eventually, researchers extend the clustering to a fine granularity
to detect and gather phase behaviors within the applications.

To cluster elements, we must define what is the meaning of similarity
and how to quantify it. We associate a vector of metrics to each element.

16 CHAPTER 2. BACKGROUND

As said earlier, elements are either applications or phases and metrics are
usually performance metrics described in section 2.2. To visualize multiple
elements, we plot them as points into a multi-dimensional space. Coordi-
nates of the points are defined according to the values of the metric vectors
of the points. To define the similarity between two elements, we compute the
distance between their respective metric vectors i.e. the distance between
their respective points.

In this section, we present two commonly used distances for applications
characterization: Euclidean [23] and Manhattan [48] distances. We use in
this thesis the two following clustering methods: hierarchical clustering with
Ward’s criterion and CLustering LARge Applications (CLARA). CLARA
is an extension of the K-Medoids clustering that supports a large number of
objects. K-Medoids is related to the K-Means clustering but has a better
support of outliers. To fully understand CLARA clustering, we present the
associated clustering approaches.

Distance Between Vectors

The Euclidean and Manhattan distances between two vectors X and Y with
n values are respectively defined as:

1. EuclideanDist(X,Y) =

�

n
�

i=1

(xi − yi)2

2. ManhattanDist(X,Y) =
n
�

i=1

|xi − yi|

More intuitively, we define two vectors as single points in a n dimen-
sional space. Euclidean is the straight-line distance between the two points.
Manhattan is the sum of the absolute differences of their Cartesian coordi-
nates, or the distance between two points if we follow a parallel path to the
dimensional space axes.

For some high dimensional performance vectors, Sherwood et al. [48]
indicate in their experiments that Manhattan works better than Euclidean
distance. The reason is that a high difference in each dimension has more
impact on a Manhattan than on a Euclidean distance. Also, we note that
K-Means usually uses the euclidean distance.

Both the two distances and clustering methodologies are currently used
for application characterization. There is no consensus about which one is
the best one: it depends on the data and the use case.

K-Means

K-means [49] is a simple and fast clustering approach but requires a pre-
viously known K number of clusters. It starts by selecting K points in

2.3. DATA PROCESSING 17

the parameter space. Different heuristics [50] such as the random partition
describe how to select the K elements. K-means performs the following
steps:

1. each selected point is defined as the center of a cluster,

2. for each point that is not in a cluster, integrate it to the cluster with
the closest centroid,

3. when the K clusters cover all the points, locate their centroids and
select the K nearest points to these centroids,

4. repeat step 1,2,3 until the clusters converge: the output clusters do
not change between two iterations.

The converged clusters are the output of the K-Means clustering.

K-Medoids

K-Medoids is a similar method as K-Means. The only difference is that
in step 3, instead of selecting the centroid of each cluster, the K-Medoids
selects the medoid. In fact, K-Medoids selects the K cluster centers of
the next iteration directly among the points themselves. However, since
computing an average value is easier than a medoid value, K-means requires
more computations than K-means.

The most common realization of K-Medoid clustering is the Partitioning
Around Medoids (PAM) algorithm. PAM tries to reduce the computation
cost of the medoid points search. It tries out all of the points in each cluster
as new medoid and selects the ones that lead to lower within-cluster variance
per cluster. The within-cluster variance of a cluster is defined as the variance
of all the metric vectors of elements belonging to this cluster or as Sum of
Squares Error (SSE). SSE is the sum of the squared differences between each
point and its cluster mean.

CLARA

CLARA extends the k-medoids for large number of points. It works by clus-
tering a sample from the dataset. Then, CLARA assigns all the remaining
points from the dataset to the clusters from the sample. The quality of the
clustering strongly depends on the sample. Small samples accelerate the
clustering but lead to poor clustering efficiency while big samples improve
the quality but are more consuming to perform. Section 4.2 presents an
example of CLARA clustering over a region execution time across different
invocations.

18 CHAPTER 2. BACKGROUND

Hierarchical Clustering

Hierarchical clustering [51] is a greedy method. It starts with as many
clusters as elements. At each step, the method merges a pair of clusters.
The pair is selected to minimize the total within-cluster variance after the
merge. Reducing the within-cluster variance forms compact clusters of ele-
ments with close metric vectors. The clustering method ends when a single
cluster is left. All the successive merges between clusters are recorded in
a dendrogram. The final number of clusters K is selected by cutting the
dendrogram at different heights. An example of dendrogram is described in
section 6.4.

Kaur et al. [52] compare the clustering results of K-means versus hier-
archical clustering over query redirections. As a general comparison, they
conclude that K-means algorithm is better suited for large dataset while hier-
archical is more efficient for small datasets. Hierarchical clustering produces
clusters with lower entropy than K-Means but is more costly to perform.

Another advantage of the hierarchical clustering is that it does not re-
quire a previously known number of threads. Selecting the optimal number
of cluster is important to better understand the data. Too few clusters
gather elements that have different properties in the same cluster while too
many lead to cluster redundancies.

Elbow Method

A usual method to select the optimal number of the hierarchical clustering
is the Elbow method [53]. By ploting the average within-cluster variance
versus the number of clusters, we expect that the first clusters significantly
reduce the average within-cluster variance. However, at some point, adding
clusters stops significantly decreasing the within-cluster variance. This point
is the elbow criterion since it minimizes both the number of clusters and the
within-cluster variance. The Elbow method cuts the dendrogram tree of
the hierarchical clustering at the elbow criterion number of clusters. Sec-
tion 6.4 illustrates how use the elbow method to detect the optimal number
of clusters for architecture selection.

2.3.2 Principal Component Analysis

Principal Component Analysis [54] (PCA) is a statistical procedure that
extracts significant information from some data. It reduces the dimension-
ality of the dataset of possibly correlated variables by converting them into
a set of values of uncorrelated variables called principal components. Each
principal component is a linear combination of the original variables. This
transformation is defined in such a way that the first principal component
has the largest possible variance. Each succeeding component in turn has the
highest variance possible under the constraint that they are not correlated

2.3. DATA PROCESSING 19

Figure 2.2: An demonstration of PCA applied to a data cloud. u1 is the
first component and u2 the second. This example was taken from Hyvarinen
et al. [55].

to the previous components. So, the method reduces the dimensionality of
the data while controlling the amount of information that is lost by keeping
the mandatory components.

More formally, PCA converts n vectors X1, X2, ..., Xn into m principal
components Y1, Y2, ..., Ym, such as:

Yi =

n
�

j=1

aijXj , aij ∈ R

The transformation has the two following properties:

1. V ar[Y1] ≥ V ar[Y2] ≥ ... ≥ V ar[Ym]

2. ∀i �= j, Cov[Yi, Yj] = 0

PCA is usually applied to metric performance space exploration [41]. It
helps find and remove metrics that are similar. Figure 2.2 illustrates the
methodology.

2.3.3 Genetic Algorithms

Predicting the performance from execution parameters [56] or selecting the
best compiler optimizations [57] or performance metrics [58] is a challenging

20 CHAPTER 2. BACKGROUND

task. In all these cases, we face a huge exploration space where it is too
costly to evaluate each point separately. Hence, we use heuristics to guide
the exploration space.

A common technique to explore such space are Genetic Algorithms [59]
(GAs). A GA is a search heuristic that mimics the process of natural selec-
tion.

GA starts by initializing a random population generation. Each individ-
ual is a potential solution of the problem (a point in the search space) and
has a set of chromosomes named features. These features might be compiler
passes for compiler tuning or performance features for characterization. An
objective function evaluates the fitness of each individual.

GA is an iterative process producing multiple generations. Fit individ-
uals according to the objective function from the previous generation are
selected and mixed to form a new generation. Individuals mixing consists
in random recombination of their genome with possible mutations. We ex-
pect that the individuals in the new generation have a better fitness than
the previous one. We repeat this process until satisfying individuals are
found. The search may stop because we do not observe any enhancements
in the individuals across the new generations or because we reached a fixed
threshold of iterations.

Many parameters such as the crossover probability (chromosomes recom-
bination), the mutation probability or population size tweak GA to enhance
it. Moreover, the algorithm can be improved by different techniques such
as isolating local optimal populations or using swarm strategies. Despite
the diversity of the method, GA is very popular for some computer science
problems (see section 2.6).

2.3.4 Training Validation

A last point to consider for machine learning approaches is the validation
of the results. GA produces a set of features that can be applied in new
scenarios. Similarly, clustering gathers elements that are expected to be
similar.

A common way to evaluate the quality of these results is the cross-
validation. It consists into evaluating the prediction results with the previ-
ously trained features on new unseen data sets.

For instance, we trained though GA in section 6.4 a set of performance
metrics to cluster similar applications together. The training was performed
on the Numerical Recipes (NR) [60] benchmarks. We use the resulting
metrics to cluster an unseen benchmark suite, the NAS benchmarks [3]. In
section 6.4, we validate how our clustering was able to correctly gather the
similar benchmarks.

Cross validation tries to avoids the overfitting. A learning approach
overfits when the features are too much trained for a specific data set and

2.4. BENCHMARKS REDUCTION 21

so produces poor results on new data sets.

Overfitting usually occurs in two scenarios: the learning process was to
long, or to short. Short training is not reliable because it only predicts well
for a subset of the problem while long training may reduce the portability
of the predictions.

We presented in this section different methods to manipulate perfor-
mance data. These methods are used by applications reduction techniques
to eventually accelerate the benchmarking. The following section presents
these reduction techniques.

2.4 Benchmarks Reduction

Researchers use benchmarks to evaluate design trade-offs for architectures
or systems. To exhaustively evaluate a new design idea, researchers evaluate
the resulting hardware through all the benchmarks of interest. The bench-
marks of interest depend on the evaluation target. Usually each benchmark
suite targets a specific domain such as HPC and biology or some hardware
components. For example the SPEC CPU2006 [2] proposes two versions:
the Integer and the Floating Point (FP) Benchmarks. The first aims to
evaluate integer applications behavior on desktop computers while the sec-
ond targets floating points. Assuming that we want to test the gain of a
new floating-point unit of a CPU, it makes sense to directly use the relevant
benchmark suite, currently the FP benchmarks.

System and hardware evolutions make possible the emergence of new
workloads. Designers adapt the benchmark suites to match and represent
these newcomers. Their goal is simple yet challenging to solve: first, bench-
marks must be diverse enough to cover all the requirements of the domain
of interest, and second, they must be as reduced as possible.

An approach to build a benchmark suite consists into selecting relevant
industrial applications and incorporating them into the suite. The issue is
that it is very hard to quantify how much a benchmark suite is representative
of a domain. In particular, proving that a benchmark suite exhaustively
represents a domain is almost impossible [5]. Also, industrial applications
benchmarking may be limited due to copyright issues.

For such scenarios, designers implement proxy workloads that rely on the
same algorithms [1] as the targeted industrial applications. Unfortunately,
we cannot ensure that the original and the proxy applications strictly have
the same behaviors. Eventually, industrial applications are long to execute
and have a lot of redundancies. They are not the best candidates for the
benchmark suites because they evaluate multiple times the same components
which leads to a high benchmarking cost.

A common way to evaluate a benchmark suite is to study its representa-
tion into a workload space [40] with performance metrics (such as the ones

22 CHAPTER 2. BACKGROUND

presented in section 2.2). We map the benchmarks into a N dimensional
space called a workload space, where each dimension is a performance metric
and each point is an application. Close points in the workload space rep-
resent benchmarks with similar metrics, hence with similar behaviors and
targeting the same architectural components. They are redundant and can
be removed without any loss in the information retrieved by the benchmark
suite.

The challenging part is how to define and process the dimensions of the
workload space. Using wrong metrics to techniques for the benchmarking
reduction lead to unreliable and non representative benchmark subsets [45].
Experts search these workload dimensions by relying on their knowledge of
the architectures but also on machine learning approaches [4] or statistical
methods such as PCA [40].

The workload space can be used to guide the design of the benchmark
suites. Designers develop the benchmarks to produce diverse performance
behaviors i.e. distant points in the workload space. Metrics quantify the pro-
gram characteristics, allowing a systematic analysis of the benchmarks [5].
However, the workload space is not an homogeneous representation of the
requirements of a domain. In other words and for a fixed domain of in-
terest, some portions of the workload space are more important than the
others. So, basing the overall design choices on to relevant and irrelevant
space portions leads to a suboptimal result.

This section presents the state of the art methods that are used to lower
the cost of the benchmarking. These methods are called benchmark reduc-
tion techniques. Most of them take advantage of the workload space char-
acterization. They remove overlapping benchmarks or parts within them
while still conserving the diversity of the benchmark suite. This is essential
to guaranty that the suite is still representative of the domain of interest.
First, we focus on methods which remove redundant applications within a
benchmark suite. Second, we present methods that avoid inner application
redundancies.

2.4.1 Application Subsetting

A simple way to reduce the benchmarking cost is to remove redundant
benchmarks. Developers identify redundant benchmarks by ensuring that
the suite diversity is not impacted when the benchmark is removed. There
are different approaches to quantify a benchmark suite diversity [21].

The most popular method is to use the suite workload space coverage
i.e. the space covered by all the benchmarks within the suite. Two bench-
mark are evaluating similar components if their workload coverages overlap.
Developers study the benchmark suites quality and diversity by looking at
their workload spaces.

Joshi et al. [46] perform an application subsetting across three bench-

2.4. BENCHMARKS REDUCTION 23

mark suites: MediaBench, MiBench, and SPEC CPU2000. To find a subset
of representative benchmarks, they measure different microarchitecture in-
dependent metrics to characterize each application. Then they apply PCA
to both reduce the dimension space and remove correlated metrics. By us-
ing K-means over the workload space, they produce 8 clusters out of 22 of
the CPU2000 benchmarks. The cluster representatives predict the average
ILP or the speedup of the whole suites across different architectures with
a maximal error of 9.1%. Moreover, they also study the SPEC CPU evo-
lution across four successive generations (up to the CPU2000), showing that
the main difference over the different versions is that both the data local-
ity has become increasingly poor and the number of dynamic instructions
significantly higher.

Phansalkar et al. [22] compare SPEC CPU2000 and CPU2006. They
measure different architecture dependent metrics using the hardware perfor-
mance counters through PMU and statistical methods. They also process
results with PCA and K-means. Unlike architecture independent metrics,
PMU can be biased by the idiosyncrasies of a test configuration. To re-
duce this bias, they measure the metrics across four compilers and ISA.
They conclude that only half of the benchmarks are enough to capture most
of the information from both the integer and the floating point CPU2006.
In particular, 6 integer programs and 8 floating point programs capture
the weighted average speedup with an error of 10% and 12% respectively.
They also note that benchmarks from the CPU2000 suite that were retained
show similar behaviors while the exclusive CPU2006 benchmarks increase
the suite diversity.

Vandierendonck and Bosschere [47] analyze SPEC CPU 2000 execution
time. They group applications according to their performance bottlenecks
with PCA, showing that SPEC CPU 2000 contains redundant benchmarks.
The main difference of this approach is the characterization analysis: the
study focus on bottlenecks rather than on metrics. Using 14 or 9 benchmarks
instead of the whole suite diminish the feedback information respectively by
5% and 10%.

Hoste et al. [58, 42, 41] rely on microarchitecture-independent metrics
to build a performance database that is used to predict performance of new
programs. They compare the diversity of the microarchitecture dependent
and independent metrics over 6 benchmark suites. They build two workload
spaces, the first based on dependent and the second on independent metrics,
and use them to measure the overall distance between the applications. 98%
of the applications have a large distance within the independent space ver-
sus only 57% within the dependent one. Thus, they show that architecture
independent metrics such as ILP or reuse distance exhibit more variances
than architecture dependent metrics on these benchmarks. Host et al. [58]
also compare different approaches to process the performance metrics: nor-
malization, PCA, and genetic algorithms. Their results suggest that genetic

24 CHAPTER 2. BACKGROUND

algorithms outperform both PCA and normalization by reducing the pre-
diction error of the benchmark subsetting to 0.89%.

Bienia et al. [61] with statistical and machine learning methods study
redundancy between SPLASH-2 and PARSEC applications. They use
execution-driven simulation with the Pin tool to characterize program’s
workloads and collect a large set of metrics, similar to the set presented
before by Hoste et al. [41] and Phansalkar et al. [22]. They use PCA to
improve the original feature space and hierarchical clustering to find redun-
dancies between applications. They conclude that workloads for programs
from SPLASH-2 and PARSEC are fundamentally different. We note that
the two suites are both composed of multi-threaded benchmarks and tar-
get HPC. SPLASH-2 and PARSEC distinct workload spaces outline how
challenging it is to properly characterize a domain of interest.

A major pitfall of these reduction techniques is that each benchmark
is represented by a single set of metrics. The workload characterization
methodology can miss underlying behaviors not captured by the selected
metrics, thus considering distinct benchmarks as similar. The following
section shows how such scenarios can appear and how the reduction methods
adapt to support them.

2.4.2 Intra Application Subsetting

Programs can have wildly different behaviors during a single execution [13].
In particular, the program execution changes over time in ways that are of-
ten structured as sequences of a small number of reoccurring behaviors, and
which are called behavior phases [25]. Each interval of execution labeled as
a phase is expected to yield some distinct execution properties, e.g. perfor-
mance metrics, compared to the other phases. Popular methods to define
such phases include basic block vectors [48], performance metrics [25], or
parallel synchronizations [62].

Previously presented reduction methods assume that benchmarks are ho-
mogeneous elements: each benchmark is labeled with a single set of metrics.
Yet, applications have phases with distinct behaviors. Porting the applica-
tions to new systems outlines the suboptimal application grain clustering:
new compiler optimizations or architectures impact each phase differently.

A fine grained analysis enhances the overall benchmark reduction process
because:

• distinct phases within the same application can be separated in differ-
ent clusters. As clusters aim to gather code with similar properties, a
fine grained analysis enhance the overall clustering quality,

• representative phases can be selected as proxy instead of whole ap-
plications for evaluation. Fine grained analysis accelerates the bench-

2.4. BENCHMARKS REDUCTION 25

marking because it avoids both redundancies across the applications
but also within the applications.

As simulating the full execution of an industrial benchmark may take
weeks [25], a lot of research try to accelerate it. Fine grained analysis is
a popular method to reduce the benchmarking time of architecture simula-
tions: simulators evaluate a few representative phases or execution slices [63],
instead of the whole applications.

Usually, the same criteria or performance metrics are used to cluster ap-
plications and phases within them. Once representative slices are selected,
the simulator evaluate them and extrapolate the whole application behav-
ior. For example, Lafage et al. [63] propose a method to find slices of a
program that are representative for data cache simulation. It uses hierarchi-
cal clustering on two metrics: memory spatial locality and memory temporal
locality both accessed through reuse distances.

SimPoint [13, 48] is another popular simulator using phase clustering. It
identifies similar program phases by comparing Basic Block Vectors (BBV).
Phases are samples of 100 million instructions. Simpoint reduces simulation
time by removing repeated phases. BBV are program dependent, therefore
SimPoint cannot use representatives of one program to predict another.
Hence, the tool do not take advantage on common redundancies between
different applications.

Eeckhout et al. [25] extend SimPoint by matching inter-application
phases using microarchitecture-independent features. Carlson et al. [62]
propose a simulation method that also define phase representativeness with
micro-architecture independent information and data signatures. It targets
multi-threaded applications phases, by detecting globally synchronizing bar-
riers. These methods take advantage of both redundancies within and across
the applications .

Phase reduction has also been applied to multi-threaded simulations.
Extending sampling techniques to multi-threaded simulations is difficult be-
cause of the threads interactions. Wenisch et al. [64] and Van Biesbrouck
et al. [65] both propose techniques to accelerate multi-threaded simulations.
They both build their model under the assumption that each thread is inde-
pendent. Therefore, they do not support explicit threads synchronization.

Perelman [66] applies the SimPoint [48] methodology to parallel appli-
cations using instruction-based sampling. However, Carlson et al. [67] and
Ardestani et al. [68] both show that instructions are not a good proxy for ex-
ecution time in multi threaded programs. Instead, they propose a time based
sampling method. Carlson et al. [67] provide a methodology for sampling
multi-threaded workloads with up to a 5.8 × simulation time reduction over
the NPB and Parsec benchmarks with an average absolute error of 3.5%.

Carlson et al. [62] also propose BarrierPoint, a sampling methodology
which detects globally synchronizing barriers in multi-threaded applications.

26 CHAPTER 2. BACKGROUND

BarrierPoint estimates total application execution time through detailed
simulation of the most representative inter-barrier regions. Regions rep-
resentativeness is defined with micro-architecture independent information
and data signatures. BarrierPoint achieves an average speed up of 24.7 ×
over the NPB and Parsec benchmarks with an average error of 0.9%.

Also, phase detection can be extended to message-passing applications.
Gonzalez et al. [69] propose to use density-based clustering algorithms with
hardware performance counters to detect these phases.

To accelerate the tuning or the evaluation of a benchmark suite on real
hardware, designers look for redundancies. Once a redundant application
is identified, it can easily be removed from the benchmark suite. On the
other side, avoiding multiple phases evaluation within an application is more
challenging. The application must be rewritten or the system must jump to
the region of interest. Simulators handle this issue: they have a checkpoint
restart or fast forward simulation functionalities to directly target the phases
of interest. But the real hardware do not provide such abilities. Hence, phase
reduction cannot be directly applied on benchmarks that are executed on a
real system.

An interesting and versatile approach is code isolation [26]. Code isola-
tion finds and extracts regions of code from an application. Through check-
point restart techniques, these regions ca be replayed without executing the
whole application.

It is important to notice that some of the some code isolators can capture
and replay the regions on a real hardware. By matching extracted regions
with representative phases, code isolation techniques can take advantage
of intra application redundancies to accelerate the benchmarking. Also,
depending on the isolation technique, it may be possible to retarget the
fragments of code to evaluate new configurations. The following section
presents the state of the art of the code isolation.

2.5 Code Isolation

Code isolation was originally proposed to quickly debug and tune large ap-
plications. Usually, in scientific applications, the hotspots, the regions of
the application where most of the execution time is spent, represent a small
fraction of the total source lines [70]. Code isolation finds and extracts the
hotspots. Then, it evaluates them without executing the whole application.

This thesis proposes to use a code isolator technique presented in chap-
ter 3 to extract regions and quickly replay them across different configura-
tions. To understand our methodology in the following chapter, this section
presents the benefits, the challenges, and the state of the art methods on
code isolation. Also, we perform a detailed comparison between the isolation
method used in this thesis and the others in section 3.7.

2.5. CODE ISOLATION 27

Outlining and isolating regions of code from the rest of the applications
enhances the benchmarking process because:

• the user can concentrate on each code region separately, with a reduced
build and run cost,

• regions can be individually modified to evaluate the payoff of new
optimizations,

• different code regions may expose different performance bottlenecks,
and react differently to optimizations. So, isolating regions can be
used to tune performance at a fine-grain level,

• redundant regions evaluation is avoided to accelerate the benchmark-
ing process.

Effective code isolation and replay has benefits but raises several chal-
lenges. First, to be practical, isolation must support many programming lan-
guages, applications, and optimizations. Second, the extracted code should
be replayable on a variety of target architectures, compilers, or thread con-
figurations. Third, to achieve accurate performance measures, the memory
working set and cache state must be captured and restored before each re-
play. Tracing the memory is a complex and costly process which must be
tuned to get a good trade-off between capture overhead and accuracy of
replay. Fourth, different invocations of the same region of code may have
different performance behaviors, which depend on the working set and cache
state of each invocation.

Different approaches try to address these challenges in an appropriate
way. Related works have considered two moments in the compilation process
to isolate the code: assembly isolation and source isolation. Section 2.5.1
presents the benefits and disadvantage of both methods. Section 2.5.2 de-
scribes how some code isolators capture and restore the execution context.
Finally, section 2.5.3 presents some use cases of code isolation techniques for
performance tuning.

2.5.1 Source Versus Assembly

Pieces of code are outlined by the state of the art method at two moments
during the compilation: at source level before any optimizations, or at as-
sembly after the back end process. We compare the two approaches in this
section.

Simulators have a checkpoint restart functionality to only evaluate spe-
cific regions of code: they perform an assembly isolation. Simulation stud-
ies [13, 48, 63, 67, 67, 62] extract regions as blocks of assembly instructions
that are evaluated without considering the whole application. Using assem-
bly isolation, Simpoint [13] successfully speeds up architecture simulation
by sampling a limited number of assembly instructions.

28 CHAPTER 2. BACKGROUND

same assembly �= assembly
hard to retarget (compiler, ISA) easy to retarget
costly support various ISA costly support various languages

Figure 2.3: Assembly versus source isolation. Source is retargetable but less
faithful while assembly is faithful but less retargetable.

Yet assembly isolation is not practical for performance tuning on real
hardware because the assembly code cannot be recompiled with different
performance flags or easily retargeted to a new architecture. The extrac-
tion software is tied to a specific instruction set architecture (ISA). It is
also difficult to map assembly regions to source code regions. Compiler
optimizations such as loops distribution and fusion respectively split and
merge loops. However, this approach is language agnostic and resilient to
the compiler effect: what you extract is what is executed.

Source code isolation [71, 26, 72, 73, 74] on the other side is portable.
Source code isolation consists into extracting source loops or functions and
both recompiling and executing them on different real hardware configura-
tions. Because extraction occurs at source level, before compiler transfor-
mations, the performance information gathered during replay can be easily
mapped to the source high-level constructs. Kashnikov et al. [75] show the
retargetability of source isolation be tuning compiler options.

Unfortunately, source code isolation requires a specific parser and extrac-
tion process for each language. Therefore supporting multiple languages is
extremely costly because writing a robust extraction pass for complex lan-
guages, such as C++, is technically challenging. Finally one must ensure
that the source level extraction process does not alter the performance be-
havior of the original hotspot. Indeed, some of the transformations used
during source isolation may hinder compiler optimization passes [71, 73].

Code isolation faces a trade-off between a faithful and retargetable re-
play (see Figure 2.3). Retargetable replay allows the extracted code to be
executed on new architectures or with different runtime parameters and to
be compiled with other optimizations. On the other side, faithful replay is
essential to validate the process of using isolated parts as proxies for bench-
marking. We consider a faithful replay as an execution which behaves just
as the original one: the extraction do not alter the performance.

A common way to evaluate how much a replay faithfully reproduce the
original behavior is to study their respective performance metrics (see sec-
tion 2.2). Depending on the goal, the search requires more or less complex
metrics and strict thresholds: studying compiler optimizations may requires

2.5. CODE ISOLATION 29

that the replay procures the same assembly as the original one. On the
other side, for application debugging, simply reproducing the isolated code
semantics is enough. In this thesis, to quantify the similarity between the
original and the replay execution, we compute the relative difference be-
tween the their respective execution times. Only evaluating the execution
time is sufficient to evaluate new optimizations.

Another factor that impacts replay quality is the extraction granular-
ity. Depending on the compilation level (either source or assembly), the
granularity of the extraction change. Assembly isolation favors assembly in-
structions sampled according to their number [66], the elapsed time [67, 68],
or contained between successive synchronization points [62]. On the other
side, source code isolation [73] target way bigger structure such as loops or
functions. A fine grained isolation could accelerate benchmarking processes
because more redundancies can be detected and avoided. However, it also
complicates the context restoration: since the isolated piece is smaller, it is
more sensitive its execution context.

2.5.2 Execution Context

Before replaying an isolated region, the memory state from the original
execution must be restored. This ensures that the replay will be equivalent
to the original run, even for data dependent branching code. So, to execute
isolated regions on real hardware, code isolators must capture and restore
the working set for each region. We note that this section does not refer to
assembly isolation since simulators already have integrated checkpoit restart
strategies.

Capturing the memory working set of the original execution ensures that
during the replay, the data accessed are the same as during the original run.
However, it is not enough to guarantee that the replay and original run have
the same execution time. Indeed, to faithfully capture the performance of
the original region it is necessary to warmup the system to match as close
as possible the original context. This issue is referred to as the cold start
bias [76].

Working Set Capture

Multiple techniques exist to checkpoint the original memory state. A first
approach to capture the working set, used by Codelet Finder [74, 71], takes
a full snapshot of the original application address space. The application is
frozen using the ptrace system call, then a helper process dumps the mem-
ory contents to disk, and returns the control to the original application. Full
memory dumps are large, but have the advantage of perfectly capturing the
memory layout, handling pointer aliasing, and preserving the relative align-
ment and the offsets among data structures. Nevertheless, a full snapshot

30 CHAPTER 2. BACKGROUND

of the application memory for each codelet can be prohibitive in terms of
memory and replay time.

Code Isolator [26] reduces the memory dumps by analyzing the static
data flow of the original application to determine which data structures
need to be captured. This method produces small dumps because only the
required data are captured, but cannot deal with pointer aliasing. Astex [72]
captures the convex hulls of the memory accesses. However it does not
preserve the data layout information and does not remap the memory at
the same addresses during replay. Therefore pointer based structures such
as linked lists are not supported.

Cache Warmup

Usual techniques [76] mitigate cold start bias by modeling the warmup ef-
fects during a window of time preceding the region of interest. Multiple
heuristics [77, 78] have been proposed to optimally determine the window’s
size.

Two main approaches have been proposed in the literature for cache
state warmup in code isolation. The first approach is to warmup the cache
by running a few warmup executions of the region itself [72, 74, 71]. It is an
optimistic heuristic that assumes that the codelet working set is hot in the
original run. The rationale is that the hotspots forming the regions are loop
based and thus can be warmed up by their own previous iterations. This
heuristic proves to be efficient in many cases [71].

The second, more accurate approach, warms up the cache by replaying
the history of the memory accesses in a simulator [13] or using a warmup
routine [26]. These techniques require to trace memory accesses which is
costly and incurs significant slowdowns [79].

2.5.3 Performance Tuning with Source Isolation

Code isolation is used for performance tuning. Section 2.4.2 presents how
assembly isolation speeds up architecture simulations by avoiding redundant
phases. However, unlike source isolation, it cannot be applied to tune real
hardware configurations. We describe bellow some of the source isolation
techniques

Lee et al. [26] introduce the concept of code isolation for debugging
and iterative performance tuning. Their tool, Code Isolator, leverages the
Stanford SUIF compiler to outline and generate codelets. They use Code
Isolator on a finite element application, LS-DYNA, to quickly evaluate the
L1 cache misses of the hotspots.

Petit et al. [72] and Liao et al. [73] both use source code isolation for
automatic kernel tuning and specialization. The tool developed by Petit et

2.6. TUNING STRATEGIES 31

al. [80], Astex, uses code isolation to accelerate and facilitate value profiling
and code specialization for speculative execution.

Akel et al. [71] evaluate the Codelet Finder (CF) tool, developed by Caps
Entreprises [74] and study under which conditions isolated regions preserve
the performance characteristics of the original programs. Over the NAS
benchmarks, 63.6% of the isolated regions have the same assembly as the
original hotspots and 81.6% of the replays have the same execution time
performance as the original hotspots.

Source code isolation focus both sequential and parallel codes. While
there are many sequential code isolator frameworks, to the best of our knowl-
edge, only Liao et al. [73] has proposed a parallel OpenMP source code iso-
lator. Their approach is based on the ROSE [81] compiler infrastructure.
Isolation is achieved through a source to source outliner which extracts tun-
able kernels out of OpenMP programs. They use the isolator to accelerate
computation kernel tuning and show how to find the best parameters for
the number of OpenMP threads, the schedule policy, and the chunk sizes.
Liao et al. isolate parallel for loops at the source level. Outlining a source
loop from a parallel region removes the loop from the lexical extent of the
parallel region and alters the semantics of the program because the scope
of OpenMP data clauses (private, shared, or reduction) is lost. The source
outlining approach requires an additional step that repairs the lost scopes.

To conclude this section, there is a wide range of isolation techniques.
However it is challenging to get an isolated code which is both faithful and
retargetable: source isolation may not be faithful just as assembly isolation
is not retargetable.

In this thesis we use a third approach for the isolation: the compiler
Intermediate Representation (IR). IR appears to be a good trade-off between
them: it is more faithful than source isolation and is more retargetable than
assembly isolation. Section 3.2 details this new code isolation approach.

In the following section, we describe some popular tuning strategies.
This thesis applies some of these strategies on isolated pieces to enhance the
tuning process.

2.6 Tuning Strategies

The current increase of architecture complexity, multiple cores, out-of-order
execution, complex memory hierarchies, and non-uniform memory access
(NUMA) complicates the performance characterization. Moreover, to switch
to multicore, systems are not only complex but also diverse. Current top500
supercomputers are composed of small simple GPU processors, regular desk-
top processors and hybrid Xen Phi cores. Finding the best architecture is
an important problem for high performance computing, data centers, and
embedded computers.

32 CHAPTER 2. BACKGROUND

Also, achieving full efficiency on a system requires a fine tuning of pa-
rameters such as the degree of parallelism, thread placement or compiler
optimization. Runtime and compiler standard parameter levels (such as
-O3 compiler flag or scatter thread placement) achieve good-enough per-
formance across most of the codes and the architectures. But they cannot
take advantage of target-specific optimizations since they must correctly
work on a large panel of architectures.

Finding the optimal parameters may lead to substantial improvement
but is a costly and time consuming process. For example, compilers such
as LLVM [17] 3.4 provide more than sixty passes. Passes have different
impact depending on their order of execution and can be executed many
times. This leads to a huge exploration space: considering only sequences
of 30 passes requires to explore a space over 6030 points.

So, to achieve full efficiency, developers must select for their applications
the best architecture with the best tuned execution parameters. This pro-
cess involves running or simulating the applications over the different system
configurations. Developers take advantage of the previously described meth-
ods to prune the exploration space. They can also rely, in some cases, on
benchmark reduction and isolation techniques or on analytical prediction
models to accelerate the search.

The most straightforward method is to directly evaluate new architec-
tures or the parameters. Iterative compilation [82] is a well known auto-
mated search method for solving the compiler optimization phase ordering
problem. The idea is to apply successive compiler transformations to a
program and to evaluate them by executing the resulting code. Similar exe-
cution driven studies [83, 84] explore the efficiency of different thread place-
ment strategies or frequencies. Smart search algorithms [85, 18] through
the parameter space reduce the evaluation cost. Genetic algorithms [57, 19]
or adaptive learning [86, 20] accelerate the search by avoiding unnecessary
parameters.

There have been many works on iterative compilation. Most of the re-
search try to accelerate the iterative compilation by pruning the exploration
space [85, 18, 57, 19, 20] usually using genetic algorithms (see section 2.3.3).

Iterative compilation takes also advantage of benchmark reduction. The
problem with some of the traditional fine grained benchmark reduction tech-
niques (see section 2.4.2) is that they operate at assembly level [13]: they
cannot be directly used for compiler tuning. Fursin and al. [87] still managed
to take advantage the application phases: they evaluate multiple optimiza-
tions for a region with a single run by versioning the different iterations of
the region. However, they do not use any code isolation techniques so they
cannot focus the search which is problematic when a region of interest has
a few invocations compared to the others.

2.7. CONCLUSION 33

2.7 Conclusion

In this chapter, we saw the different concepts required to understand this
thesis. In particular, we presented the benchmark reduction strategies, the
code isolation, and some tuning strategies. These methods are combined in
this thesis to improve the tuning process.

In the next chapter 3 we propose a novel code isolator. Then, chapter 4
presents how this isolator can take advantage of the benchmark reduction
strategies to accelerate the benchmarking process.

34 CHAPTER 2. BACKGROUND

Chapter 3

CERE: Codelet Extractor

and REplayer

Contents

3.1 Introduction . 35

3.2 Intermediate Representation Isolation 38

3.3 The Challenge of OpenMP Isolation 38

3.3.1 OpenMP Support 38

3.3.2 OpenMP Isolation 39

3.4 Application Partitioning 40

3.5 Codelet Capture and Replay 43

3.5.1 Codelet Checkpoint-Restart Strategy 43

3.5.2 Capturing the Memory 46

3.5.3 Capturing the Cache State 47

3.5.4 Replay Codelets 51

3.5.5 Parallel Replay . 53

3.6 Hybrid Compilation 54

3.7 Related Work . 55

3.7.1 Code Isolation . 55

3.7.2 Sampling Simulation 55

3.8 Conclusion . 56

3.1 Introduction

In this chapter, we presentCERE (Codelet Extractor and REplayer), a code
isolation framework based on LLVM. CERE finds and extracts the hotspots
of applications as isolated fragments of code, called codelets. CERE supports
both serial and OpenMP applications: codelets are extracted from hot loops
and OpenMP non nested parallel regions. Codelets can be modified, com-
piled, run, and measured independently from the original applications.

Studying isolated regions instead of whole applications is attractive be-
cause the user can concentrate on each codelet separately, with a reduced
run cost. Codelets can be individually modified to evaluate the payoff of new
compiler optimizations or runtime parameters such as the number of threads

35

36 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

Applications
Region

outlining

Region
Capture

Fast
performance

prediction

Retarget for:
 different architectures
 different optimizations

Change: number of threads, affinity,
runtime parameters

Warmup
+

Replay

Working set
and cache

capture

Generate
codelets
wrapper

Working sets
memory dump

Codelet
Replay

Invocation
&

Codelet
subsetting

Figure 3.1: CERE usage diagram. Applications are partitioned into a set of
codelets, which may be pruned using different criteria. A subset of represen-
tative codelet invocations are selected and captured. The codelets can then
be replayed with different options and on different targets to do piecewise
optimization or performance prediction.

or the thread affinity. Different codelets may expose different performance
bottlenecks, and react differently to optimizations. Isolating codelets allows
tuning performance at a fine-grain level.

CERE is composed of a compiler instrumenter, a clustering module
to find representative invocations and representative codelets, a working
set capture mechanism operating at the system memory page granularity,
a realistic cache warmup, and a piecewise compiler module. This chap-
ter presents all these components except the clustering approach which is
detailed in the next chapter. CERE is made available under the GNU
Lesser General Public License (LGPL) version 3 open-source license at:
https://github.com/benchmark-subsetting/cere.

Unlike previous approaches, CERE isolates codes at the compiler In-
termediate Representation (IR) level after Clang front-end translation but
before LLVM middle-end optimizations. Therefore CERE is language ag-
nostic and supports many input languages such as C, C++, Fortran, and
D. Also, LLVM middle-end and back-end can respectively recompile the
codelets with new optimizations and retarget them to new architectures.

Figure 3.1 presents the full CERE pipeline. CERE operates in two main
steps: capture and replay.

During the capture, CERE detects the hotspots and instruments them
in the original program with calls to the memory capture library. The
execution state is captured at the start of each region of interest.

During the replay, the user selects a particular region to replay. CERE
generates a standalone codelet that restores the execution context and jumps
to the region of interest. Codelets can be retargeted to evaluate new archi-

3.1. INTRODUCTION 37

tectures, compiler and runtime optimizations.
CERE leverages the LLVM compiler framework to implement the instru-

mentation and isolation passes. LLVM provides a rich API for manipulating
the IR code, which greatly simplifies the process.

Let us consider a benchmark suite. CERE takes as an input the source
files of the applications. All the languages supported by the LLVM front-
ends (C, C++, Fortran, D, etc.) are accepted. The loops or OpenMP
regions are outlined and instrumented with profiling probes to identify the
applications hotspots. The hot regions are kept and form the full codelet
set.

By using reductions strategies, CERE accelerates the benchmarking pro-
cess of the full suite. CERE prunes the full codelet set and only keep a re-
duced set of representative codelets. Then, a clustering algorithm analyzes
the invocation performance trace of each codelet to find a representative
subset of invocations. These strategies are detailed in the next chapter 4.
The memory and cache state of each selected codelet invocation is then
captured and dumped to the disk.

The output of this process is a set of representative codelets and invo-
cations, which can be redistributed, recompiled and replayed on different
systems and architectures. Through a prediction model, the codelet set can
be used as a proxy for the benchmark suite to evaluate new optimizations or
execution systems. Since the optimization tuning is performed on separate
pieces, CERE can detect the best optimizations for each piece.

We note that loops and OpenMP regions follow a common capture and
replay process. Yet, due to the parallelism, replaying OpenMP regions re-
quires some additional steps to guaranty a correct codelet execution. Sec-
tion 3.5.5 presents these steps.

The capture requires executing the application once to get the execution
context of all the regions of interest. If the user wants to measure an ap-
plication on a single architecture with a fixed number of threads, extracting
and replaying the codelets does not pay off. It is quicker and more accurate
to fully measure the benchmark. But, if the user is interested in comparing
the performance of different architectures, thread configurations, or compiler
optimizations, the codelet approach is quickly amortized because codelets
are only extracted once but replayed many times.

This chapter presents CERE in details. In section 3.2, we justify why
we extract the code at the IR instead of the traditional source or assembly
isolation. Section 3.3 presents the OpenMP challenges that make multi-
threaded isolation more complex. In particular, we motivate our choice of
why we focus on extracting outer OpenMP parallel regions. Section 3.4
shows how CERE selects good candidate regions for the codelet extraction
process. Section 3.5 demonstrates the codelet extraction and replay pro-
cess. CERE is an isolation approach that allows to tune each piece of code
separately. Section 3.6 shows how CERE combines all the best found opti-

38 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

mizations in a single binary. Finally, we review and compare CERE to other
existing code isolation methods in section 3.7.

3.2 Intermediate Representation Isolation

As discussed in the background in section 2.5.3, CERE (Codelet Extractor
and REplayer) targets code isolation at the LLVM [17] compiler IR. IR ex-
traction provides multiple advantages over source or assembly code isolation
techniques and is a good trade-off between them. Extracting codelets at the
IR level is much simpler than at the source code level which requires pars-
ing complex input languages. It also facilitates the process of instrumenting
the code, capturing the memory and outlining the codelet thanks to the
powerful integrated flow analysis passes.

Unlike assembly extraction, IR codelets provide many performance tun-
ing opportunities. For instance, the codelet can be replayed using differ-
ent optimization passes or compiler versions, enabling compiler flag auto-
tuning [75]. By leveraging the available LLVM code generation back-ends,
codelets can be replayed on different architectures to facilitate system co-
design.

The drawback of the CERE IR extraction is that CERE is tied to the
LLVM compiler. However, CERE supports all of LLVM front-ends and back-
ends with no extra engineering cost. For example CERE has been tested on
all NAS and SPEC 2006 FP programs. While C and C++ benchmarks used
the Clang front-end, Fortran programs used the GCC gfortran front-end
through the dragonegg plugin [88]. CERE also works on less mainstream
languages. For example CERE successfully extracts codelets from D [89]
applications compiled with the LLVM D front-end, LDC.

In the following section, we explain why outlining parallel applications
is more complicated than serials.

3.3 The Challenge of OpenMP Isolation

Isolating parallel regions of code raises new challenges such as the parallel
non determinism of the execution, the support of different thread configu-
rations or the NUMA effects. So, in order to extract regions from OpenMP
applications, CERE needs to tackle these challenges.

3.3.1 OpenMP Support

In OpenMP programs, the application concurrency is described through a
set of compiler directives and library calls. For instance, a parallel region
can be declared using the directive #pragma omp parallel. The left part

3.3. THE CHALLENGE OF OPENMP ISOLATION 39

void main()
{
 #pragma omp parallel
 {
 int p = omp_get_thread_num();
 printf("%d",p);
 }
}

C code

Clang OpenMP
front end

define i32 @main() {
entry:
...
call @__kmpc_fork_call @.omp_microtask.(...)
...
}

define internal void @.omp_microtask.(...) {
entry:
 %p = alloca i32, align 4
 %call = call i32 @omp_get_thread_num()
 store i32 %call, i32* %p, align 4
 %1 = load i32* %p, align 4
 call @printf(%1)
}

LLVM simplified IR

Parallel region
=

codelet

Thread execution model

Figure 3.2: Clang outlines each C parallel region as an independent IR
function:omp microtask. The call to kmpc fork spawns a pool of threads
that runs the outlined microtask.

of figure 3.2 shows a simple C OpenMP program where each thread prints
its thread identifier.

In most compilers, including GCC and LLVM, parallel directives are
expanded in the front-end before doing any code optimization [90]. Usually,
the first step in OpenMP expansion is outlining parallel regions. To outline
a region the compiler moves the region code inside a separate function.
The compiler preserves data dependencies by passing live-in and live-out
values through the outlined function arguments. Then the original region
is replaced by a call that spawns multiple threads running the outlined
function.

The LLVM compiler infrastructure provides a partial support for
OpenMP 4.0 [91] since version 3.4. Figure 3.2 shows how LLVM expands
a simple OpenMP directive and the IR code it produces. LLVM outlines
the region code in a microtask function. kmpc fork, an OpenMP Runtime
library function, spawns a pool of threads. Then, every thread runs the
outlined microtask function which describes the region parallel work. To
define the kmpc fork function, we need to link the OpenMP application
with the Intel/LLVM OpenMP runtime library [92].

3.3.2 OpenMP Isolation

Parallel codelets should satisfy three important properties. First, each
codelet must capture a specific region of code in the original application.
Second, it should be possible to change the number of threads and other
runtime parameters at replay and it should be possible to replay codelets
across different architectures. Third, the set of extracted codelets must faith-
fully capture the behavior of the original application so that it can be used
as a proxy for measuring performance and scalability. In particular, each
codelet replay must be deterministic: different replays of the same codelet
should execute the same code and have the same performance.

Multi-threaded execution is a well known source of non determinism:

40 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

race conditions and synchronization delays between threads may change the
order of the operations from one execution to the next. In particular, when
multiple threads are running, each one may be executing a different region
of code. This makes it difficult to isolate a particular region of code.

Loops are attractive candidates for code isolation. Akel and al. [71]
show that they cover more than 90% of the NAS SER benchmarks original
execution time. However, extracting loops is incompatible with the OpenMP
isolation requirements.

Let us consider a loop in a parallel region executed with multiple threads.
The memory context at the beginning of the loop depends on the thread con-
figuration. So, we can only replay such loops at the thread configuration that
we used to capture them. In other words, we cannot explore through loop
isolation multiple thread configurations with a single capture. Also, there
are no synchronizations encapsulating the loop. When multiple threads are
executing the loop in the original execution, they do not necessarily start
or finish its execution at the same time. However, when we replay the loop
with multiple threads, all the threads start at the same time and do not ex-
ecute further instructions when they finish the loop. For these two reasons,
isolated loops in parallel regions may not faithfully reproduce the original
behavior.

To avoid thread non determinism issues, CERE codelets start at the
beginning of a parallel region and finish at the end of the region. The
beginning of an OpenMP region is a global synchronization point where
all threads positions in the program are known. Capturing codelets at the
start of the region also avoids to perform a memory capture for each thread
configuration: it enables changing the number of threads at replay. Indeed,
the capture happens just before the call to kmpc fork that decides how
many threads are spawned. The capture of the thread stack and the Thread
Local Storage (TLS) are also simplified as they are handled by the kmpc

fork.

Since OpenMP regions are already outlined, we simply isolate the kmpc

fork that calls them. We detail the chackpoint restart process bellow in
section 3.5.1.

3.4 Application Partitioning

To find interesting regions for performance optimization, CERE concentrates
on the application hotspots. CERE supports both serial and OpenMP ap-
plications. So, this section presents how CERE selects codelet candidates
among loops and OpenMP regions.

In sequential scientific applications, performance is mainly concentrated
on loops. Similarly, parallel regions contain all the parallelism of the ap-
plications. Therefore, CERE considers all the loops and parallel regions of

3.4. APPLICATION PARTITIONING 41

gromacs

core:1403 (4.7%)

19.2%

do_longrange:1264 (0.1%)

0%

do_fnbf:232 (0.76%)

78.1%

gromacs

13.5%

13.4%

inl1130:3932 (88.4%)

88.4%
inl1100:3130 (0.6%)

0.6%

inl0100:84 (0.6%)

0.6%

inl1120:3594 (0.6%)

0.6%

core:1403 (4.8%)

19.2%

do_fnbf:232 (2.55%)

78.1%

13.4%

inl1130:3932 (88.4%)

88.4%

Filtering

codelet error (%)

do longrange 2.3
do fnbf 1.1
inl1130 0.1
inl0100 10.1
inl1120 4.6
inl1100 7.5
core 2.5

Figure 3.3: (top) CERE call graph, before and after filtering, for SPEC 2006
gromacs. Each node represents a captured codelet. The percentage inside
the node is the codelet’s self time. Edges represent calls to other codelets,
the edge percentage is the time spent in calls to those nested codelets. (bot)
Replay percentage error of gromacs codelets using Working Set warmup.

the original program as potential candidates to be extracted as codelets.
Then, CERE profiles the candidate regions and keeps the ones significantly
contributing to the total execution time.

CERE provides two region level profiler modes. First, a low overhead
sampling profiler based on the Google Performance Tools library [93]. Sec-
ond, an instrumentation profiler, which is slower but more precise. When
using sampling, CERE outlines the regions before executing the applica-
tion; all the outlined regions are profiled using Google’s performance toolkit.
When using the instrumentation mode, probes to capture the time stamp
counter are inserted directly before and after the region.

Despite our efforts to restore the original execution environment through
warmup code reinlining, and variable cloning (see sections 3.5.3), the codelet
replay sometimes does not match the original region performance. Clearly,
those ill behaved codelets cannot be used as a performance proxy in bench-

42 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

0

25

50

75

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Tolerated Percentage Error

%
 o

f
E

xe
c
u
ti
o
n
 T

im
e

NAS & SPEC mean median

Figure 3.4: Mean and median captured execution time as a function of the
tolerated replay error. the NAS and SPEC 2006 FP benchmarks. The mean
is lower than the median due to the IO-intensive and short kernel bench-
marks described in the validation section 5.3, which skew the distribution.

marking or optimization studies. Therefore CERE runs a sanity check where
it replays and profiles each codelet to ensure that only well behaved codelets
are returned to the user. The tolerated discrepancy threshold can be con-
figured. Its sensitivity is presented on figure 3.4.

After collecting profile data, CERE produces an annotated call graph
such as the graph in figure 3.3. This call graph is then pruned by remov-
ing the regions contributing for less than 1% to the total execution time.
We note that in many experiments, we also remove OpenMP regions con-
tributing for less than 5%. Furthermore, if an ill behave codelet is detected,
CERE also removes it from the call graph. When removing a region from
the call graph, we propagate its self time to its parent codelets. In our ex-
ample, the time from the three inl removed regions is propagated to their
caller do fnbf. In the example of figure 3.3, since all the codelets match the
original execution time, none would be removed.

Once the removal process is over, CERE extracts all the remaining loops
as standalone codelets.

The above selection algorithm extracts all the well behaved codelets
whose contribution to the program execution time is over a given threshold.
To trade coverage for replay time, for example, when using codelets to ac-
celerate system benchmarking, the user wants the minimal set of codelets
that can be quickly replayed while simultaneously capturing the application
performance accurately. For this purpose, CERE includes a codelet selector
that uses integer linear programming to find an optimal codelet set. It is
similar to the tuning selection algorithm proposed by [94]. In the example in

3.5. CODELET CAPTURE AND REPLAY 43

figure 3.3 it would drop codelets do fnbf and core, losing less than 7.35%
coverage but significantly reducing the replay cost.

3.5 Codelet Capture and Replay

This section presents how codelets are extracted and replayed. Table 3.1
demonstrates this process for a codelet. In Step 1, the input program is
compiled to LLVM IR by the compiler.

In Step 2, the region to be captured is outlined in a separate function
using the CodeExtractor LLVM pass. Codelets are either loops or OpenMP
parallel regions. If the region is a loop, CERE outlines the loop body. Else,
it outlines the kmpc fork call of the parallel region. The OpenMP support
of CERE and LLVM is discussed in section 3.3. Then, CodeExtractor [95]
does a flow analysis to detect all the live-in and live-out dependencies of the
region to extract. This pass simplifies the codelet extraction process, since it
extracts the region code in its own function. The codelet region is outlined in
a new function. Finally CodeExtractor inserts a call to the outlined function
in the original code. The dependencies are preserved by passing the live-
in and live-out values through function arguments. CodeExtractor is also
the starting point for the portable memory capture mechanism discussed in
section 3.5.2.

Step 3 generates the instrumented binary for memory capture. It inserts
special calls to the capture library before and after the outlined region in
the original application. The calls are used to trigger the memory and
cache warmup state captures, described in sections 3.5.2 and 3.5.3. The
instrumented binary execution generates a set of dump files that can be
used during replay to restore the memory state and to warmup the caches.
The aim is to ensure that the replay context closely mimics the original
execution context.

Step 4 is the replay mechanism. It generates a wrapper to directly call
the outlined region. This wrapper restores the original execution environ-
ment, such as variable cloning, cache and memory restoration. The replay
IR code can be compiled with different optimization flags to find the best
performance configuration. Or it can be compiled with different back-ends
to evaluate the performance on multiple targets. The replay process is de-
tailed in section 3.5.4.

3.5.1 Codelet Checkpoint-Restart Strategy

Traditional checkpoint techniques [96] can save the state of a program at
any given point. A full dump of the memory and of the register banks
including the program counter allows to restart the program after capture.
Yet, this approach requires that the replayed code keeps the same code
layout and uses exactly the same registers as during the capture. Traditional

44 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

Step A loop output

1 Front-end: Transform the
C, C++, Fortran, D possibly
OpenMP input program into
LLVM Intermediate Representa-
tion (uses Clang, dragonegg, or
LDC).

original:

%0 = load i32* %i, align 4

%1 = load i32* %s.addr, align 4

%cmp = icmp slt i32 %0, %1

br i1 %cmp, ; loop branch here

label %for.body,

label %for.exitStub ...

2 Outline: Outline either the loop
region or the kmpc fork call of the
OpenMP region to extract. Flow
analysis is used to compute all
live-in and live-out values which
are passed as arguments. (see sec-
tion 3.5.1)

define internal void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr) {

%0 = load i32* %i, align 4

...

ret void }

original:

call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr)

3 Capture: Insert calls to CERE
capture library. Run the instru-
mented binary to capture the run-
time state. (see sections 3.5.2 and
3.5.3)

define internal void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr) {

call void @start_capture(i32* %i,

i32* %s.addr, i32** %a.addr)

%0 = load i32* %i, align 4

...

call void @end_capture()

ret void }

4 Replay: Generate minimal re-
play wrapper that calls the out-
lined region. Compile and run re-
play possibly with new optimiza-
tion options or on a different ar-
chitecture. (see section 3.5.4)

define i32 @main(i32 %argc, i8** %argv){

; Allocate clone variables

%i = alloca i32

%s.addr = alloca i32

%a.addr = alloca i32*

; Restore arguments and memory

call void @restore(...)

; Call outlined region

call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr

; Anti-deadcode for live-out values

call void @antideadcode(i32* %i)}

Table 3.1: Codelet capture and replay main steps.

3.5. CODELET CAPTURE AND REPLAY 45

checkpointing is therefore not suited to test compiler optimizations which
may remap registers or change code layout. Also it limits codelet portability
to architectures sharing the same Application Binary Interface (ABI) and
register layout.

Codelet based piecewise iterative optimization and architecture selection
require a portable checkpoint-restart strategy. The outlining pass (Step 2
in Table 3.1) wraps and isolates the region of interest (either the loop body
or the kmpc fork call) inside a separate function. Because the region now
follows a function call, we can guarantee that the accessed data is either in
memory or is passed as arguments to the outlined function.

This enables us to simplify the memory capture process: only the mem-
ory and arguments to the outlined function must be recorded. Also, the
outlined function prototype acts as a clean interface that enables us to re-
compile and apply transformations to the codelet before replay. Because
no assumptions about the register layout are made, codelets are portable
across architectures that do not change the memory layout, such as word
size and endianness. Our tests have shown, for example, that our codelet
replayer allows to recompile changing optimization flags, capturing on -O0
but replaying on -O3, or changing architectures, capturing on Core Duo and
replaying on Atom.

Both loop and OpenMP region Codelets portability has been extensively
tested and works across six different Intel CPU generations (Atom, Core 2
Duo, Nehalem, Sandy Bridge, Ivy Bridge, and Haswell) running various
64-bit Linux distributions on the NAS and SPEC codelets.

We also tested codelet portability between an Intel Core i3 running 32-
bit Linux and an embedded target, an ARM1176JZF-S on a Raspberry
Pi Model B+ running 32-bit Linux. This test was conducted on a simple
benchmark summing the elements of a large integer array. The capture was
performed on the Core i3 system and could be faithfully replayed on the
ARM embedded target.

In a second experiment the capture was done on the same Intel Core i3,
but this time the system was 64-bit Linux; therefore some of the dumped
pages were over the 32 bit address space limit. The replay on the ARM
system failed because addresses over 32 bits overflowed. This example il-
lustrates the limits of CERE: portability does not work out of the box for
systems with different memory address sizes. Nevertheless, in this case we
were able to overcome this limitation by manually remapping the memory
dump to fit the 32 bit address space by masking the address’ upper bits.
After the manual remapping, we were able to replay the benchmark in the
ARM1176JZF-S processor.

The outlining process guarantees that codelets captured once, can be
distributed and replayed many times on multiple architectures.

To ensure a semantically accurate replay, we need to capture the memory
state of each codelet. Also, to faithfully reproduce the performance of the

46 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

region
to capture

protect static and currently allocated
process memory (/proc/self/maps)

intercept memory allocation functions
with LD_PRELOAD

1 allocate memory

2 protect memory and return
to user program

segmentation
fault handler

1 dump accessed memory to disk

2 unlock accessed page and return
to user program

a[i]++;

memory
access

a = malloc(256);

memory
allocation

Figure 3.5: The memory dump process operates at page granularity. Each
page accessed is dumped by intercepting the first touch using memory pro-
tection support.

original execution, codeles must be executed with a similar the cache state
as the original execution. In the following sections, we decries how CERE
captures both the memory and the cache state of each region.

3.5.2 Capturing the Memory

CERE proposes a page level granularity snapshot. Using the memory pro-
tection mechanism we capture the memory pages containing the working
set. During replay we remap this set of pages at their original addresses.
This ensures that the dump remains small and fast. Furthermore, the re-
play works even with complex pointer aliasing, because the memory layout
is preserved.

CERE captures codelet’s working sets by intercepting accesses to the
memory pages. Page level capture combines the advantages of the full
memory dump in Codelet Finder [71] with the advantages of the data flow
capture in Code Isolator [26] or Astex [72]. First, CERE guarantees that
all the memory locations accessed by the original program are dumped,
including aliases that are not handled with static analysis. The set of cap-
tured pages contain the full original working set. Second, because only the
touched pages are saved, the memory dump is the smallest page-granularity
over-approximation. Therefore, it can be easily stored and distributed.

Figure 3.5 shows the memory dump process. First, all the memory pages
of the process are protected and a special segmentation fault handler is set.
Each time a protected page is accessed, a segmentation fault occurs and
triggers the handler. The handler dumps the touched memory page to disk
and unprotects it before continuing the original program execution.

3.5. CODELET CAPTURE AND REPLAY 47

94

27

106

26

51

1

367

117
131

46

89

8

472

101 96

22

0

50

100

150

200

bt cg ep ft is lu mg sp

S
iz

e
 (

M
B

)

full dump (Codelet Finder) page granularity dump (CERE)

Figure 3.6: Comparison between the page capture and full dump size on
NAS.A benchmarks. CERE page granularity dump only contains the pages
accessed by a codelet. Therefore it is much smaller than a full memory
dump.

It is important to protect all newly allocated memory. If memory is
allocated but returned to the user unprotected, the tracer misses the ac-
cess to the memory segment. We catch all calls to the memory allocation
library, such as malloc, realloc, or memalign using the LD PRELOAD mecha-
nism. However, some special memory sections must not be protected, such
as the pages containing the code of the tracing library and the segmentation
fault handler itself. Therefore CERE carefully avoids protecting its own
pages and system specific memory segments.

Figure 3.6 compares the average dump size for the NAS benchmark
codelets for two techniques: CERE’s page granularity dump and Codelet
Finder’s full dump. As can be seen, the page granularity dump is 3 to 51
times smaller than a full dump. With this technique CERE extracts light
portable codelets from industrial application with large working sets.

3.5.3 Capturing the Cache State

In this section, we address the problem of cache warmup for codelet replay
previously discussed in section 3.4. CERE includes three warmup strategies:
Cold, Working Set, and Page Trace.

The Cold strategy does not do any warmup before executing the codelet.
It is therefore inaccurate but has no overhead. It can be used on long codelets
for which the cold start bias is negligible.

The Working Set strategy prefetches the full working set of the codelet
before its execution. It is an optimistic strategy that assumes that the
codelet working set was already in cache in the original execution.

The Page Trace strategy mitigates cold start bias by replaying a memory

48 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

for (i=0; i < size; i++)
 a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {
FIFO
(most recently unprotected)

warmup page trace

Figure 3.7: Cache page tracer on a simple codelet adding two arrays. Each
page access is logged. Recently unprotected pages are kept in a FIFO with
N slots (here N = 4). Once evicted from the FIFO, the pages are protected
again.

trace at a page level granularity. It is less accurate than a full memory trace
warmup, but much faster. It provides a good trade-off between cost of
codelet capture and replay accuracy. The technique is similar to the page
tracing technique in [97].

Our page tracer is implemented on top of the memory dump process
described in section 3.5.2: all the memory pages are protected, and a special
segmentation fault handler intercepts accesses to memory. The difference
is that unlike the memory dump in which only the first touch to a page
is important, the page tracer should capture all the memory accesses to a
page.

An exact, but costly, technique involves reprotecting each page after each
access. Because this page is immediately reprotected, further accesses to the
page will provoke a segmentation fault and will be logged by the tracer. The
slowdown is too high for our purposes.

To reduce the cost of the technique, we keep the mostN recently accessed
pages unprotected. The tracer uses a FIFO to track the recently accessed
pages. Each time an access to a page is detected, the page is unprotected and
added to the FIFO. The oldest page is popped from the FIFO, reprotected,
and added to the page access log. Figure 3.7 illustrates this approach on a
codelet that adds two arrays together.

If a codelet simultaneously accesses less than N separate memory
streams, the FIFO ensures that a page remains unprotected for all the con-
secutive streamed accesses. Assuming a stride-one access, the page tracer
handler is only invoked every 4096 byte (for 4K pages). Therefore we choose
N higher than the number of separate memory streams accessed by most
loops. Kashnikov et al.[75] show that most application loops use less than 16
simultaneous streams. In our experiments we choose N = 64. Nevertheless,

3.5. CODELET CAPTURE AND REPLAY 49

lu

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Tolerated Error (%)

%
 o

f
E

xe
c
u
ti
o
n
 T

im
e

cold (no warmup) working set page trace

Figure 3.8: Comparison of the three cache warmup techniques included in
CERE on NAS codelets. The plot shows the percentage of execution time as
a function of the replay error. Page Trace and Working Set warmup achieve
the best results. Page Trace is more accurate than Working Set on the LU
benchmark.

by keeping the most recent N pages unprotected, our trace is less accurate.
In the code of figure 3.7 for instance, each cell of array a is accessed twice (it
is first read then written to), but the page tracer only sees the first access.
When interpreting the trace, one must keep this inaccuracy in mind: the
trace presents which pages were accessed but neither how many times nor
the precise ordering.

We note that the current version of CERE does not support the page
tracer strategy for multi-threaded applications. Since each thread touches
its own pages, to faithfully restore the context, we must keep a trace of
pages for each threat. OpenMP isolation currently rely on the working set
strategy, by replaying the codelet over itself.

Figure 3.8 compares the three warmup techniques implemented in CERE
on the NAS benchmarks. The tolerated error is the maximum percentage
difference between the original execution time and the replayed execution
time. The plot shows the percentage of execution time of NAS codelets
replayed with an error smaller than the tolerated error. For example, if we
use the Cold strategy, 70% of the execution time can be replayed with an
error under 15%.

Figure 3.9 shows the overhead of the capture run for the NAS bench-
marks. For each benchmark we compute the slowdown between the original
run-time and a full capture run. This measure includes initialization of the
capture library, writing the dumped pages and the memory trace logs to

50 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

27.6
19.4

1.5

24.1

257.1

62.4

8.9

73.2

59.3

0

25

50

75

100

bt cg ep ft is lu m
g sp

av
er

ag
e

c
a

p
tu

re
 s

lo
w

d
o
w

n

ATOM 3.25 PIN 1.71 Dyninst 4.0

cg.a 98.82 222.67 896.86
ft.a 44.22 127.64 1054.70
lu.a 80.72 153.46 >>301.4
mg.a 107.69 168.61 989.53
sp.a 67.56 93.04 >>203.66

Figure 3.9: CERE capture overhead. (top) CERE capture overhead (Class
A). For each plot we measure the slowdown of a full capture run against the
original application run. The overhead takes into account the cost of writing
the memory dumps and logs to disk and of tracing the memory accesses
during the whole execution. (bot) Overhead of other memory tracers. We
compare to the overhead of other memory tracing tools as reported by [79].
Gao et al. did not measure bt, is, and ep.

3.5. CODELET CAPTURE AND REPLAY 51

Original Page Trace Working Set Cold

Time (e+11 cycles) 2.34 2.40 2.08 3.13
Error (%) - 2.56 11.45 25.16

Table 3.2: CERE predicted execution times of the FDTD codelet compiled
with -O2 using the three warmup techniques.

disk for all the codelets in the application. IS is particularly slow because
one of its codelets accesses memory randomly. This rapidly fills the pages
FIFO and slows down the tracer. Figure 3.9 also compares CERE capture
cost with the overhead of other memory tracing tools. CERE overhead is
similar to ATOM 3.25 overhead and lower than PIN 1.71 and Dyninst 4.0
overhead.

When the user is only interested in a single codelet, CERE includes a
single-capture mode which is much faster. The capture library fast-forwards
the execution and starts the memory tracer and memory protection when the
execution is reaching the zone of interest, but leaving a big-enough window
to capture the cache warmup log. Different studies [77, 78] propose multiple
techniques to determine the best window size.

We observe that the Working Set and Page Trace strategies significantly
improve the replay accuracy. On the NAS codelets, the Page Trace strategy
is slightly better than the Working Set one. The improvement comes from
LU codelets whose irregular accesses are better captured by the Page Trace
warmup. The next section shows another example where the Page Trace
warmup is more accurate than the Working Set optimistic warmup.

Table 3.2 compares the predicted replay execution times using the three
warmup techniques. This codelet is sensible to warmup: Cold warmup and
Working Set warmup are not highly accurate because the replays over and
under-estimate memory access costs. In this case, the more realistic Page
Trace warmup gives the more accurate results. For this reason and except
if we mention, all the following experiments were all performed using Page
Trace warmup.

3.5.4 Replay Codelets

This section describes CERE strategy to preserve the original performance
of the codelets. It also presents how codelet replay can be retargeted to new
configurations such as recompiling the codelet with different optimizations
passes.

Once the memory and cache state are captured, a codelet can be re-
played. To replay a codelet, CERE generates the special wrapper shown
in Step 4 of Table 3.1. First, it allocates clone variables for the input and
output flow dependencies to the outlined region. Second, it restores memory

52 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

and cache state. Finally, it calls the outlined region.
When we only execute the codelet, the outlined region results are not

used when returning from the call to the codelet. Therefore, LLVM dead
code elimination pass is free to fully optimize by removing this call. Clearly
that is not our purpose. So, during replay we insert, for each live-out vari-
able, a special antideadcode call. It is an empty extern function which
forces LLVM to keep the codelet’s code, even when using highly aggressive
optimization levels such as -O3.

Also, we note that the outlining compilation pass dereferences the in-
put and output dependencies. By passing the variables by reference, it
is easy to preserve the values modifications during the codelet execution.
This is a classic technique in code outliners [26, 73] which has the unfortu-
nate side-effect of disabling many compiler optimizations. In many codelets,
dereferencing makes codelet replay slower and therefore unfit to be used as
performance proxies of the original code. We solve this problem in three
steps. First, we tag each dereferenced pointer with the IR attribute NoAlias
which informs LLVM that the dereferenced pointer is not aliased. This is
known because the extra dereference is created by CERE outliner and used
only once during replay. Second, we tag the outlined function itself with
the attribute AlwaysInline which forces LLVM to reinline the function in
the replay wrapper. Third, LLVM alias analysis optimization pass removes
the extra layer of dereference. In section 5.3 of our validation experiments,
the effect of reinlining and marking cloned variables as NoAlias are mea-
sured. These two techniques improve replay accuracy in eleven applications
without degrading the other benchmarks

One could think that the outlining step is unnecessary since it is re-
verted later on by LLVM inliner pass. But as explained in section 3.5.1, the
outlining step guarantees that CERE finds a safe checkpoint to capture the
context just before a procedure call.

To generate the final replay binary, CERE uses a custom link script,
that reserves the virtual memory segments occupied by the working set
pages during the memory capture. This step is needed so that CERE can
preserve the original memory layout.

Codelets can be replayed with a different configuration as the one used
during the capture. CERE uses LLVM to compile the codelets. LLVM
includes middle-end optimizations targeting the IR which can be controlled
using opt, the LLVM optimizer. LLVM also includes back-end optimizations
that are architecture specific and are controlled using llc, the LLVM static
compiler. Finally, the compiler links the binary with the OpenMP library
to execute the OpenMP applications.

CERE extracts the codelets at the IR before any middle-end optimiza-
tions. Once the replay wrapper is generated without any optimizations,
CERE can apply though opt compiler optimizations that we want to eval-
uate. The compiler optimizations are passed through flags to opt and are

3.5. CODELET CAPTURE AND REPLAY 53

not necessary the same as the one used during the capture. Similarly, llc
allows to evaluate back-end optimizations. It also provide the ability to re-
target the code and execute it on new architectures. Finally, CERE can also
retargets the thread configurations through runtime environment variables.

3.5.5 Parallel Replay

While the previous steps are sufficient to replay serial codelets, two addi-
tional steps are required for parallel regions. This section presents the two
steps required by parallel codelets to preserve the original performance.

NUMA-Aware Allocation

A replay has to faithfully reproduce the original invocation context. CERE
already handles two issues: it restores the memory working set of the region
and it warms up the cache to avoid cold-start bias.

CERE uses the same mechanism to warmup loops and OpenMP regions:
it relies on a snapshot of the memory at page level granularity. With a
memory protection mechanism, the memory pages containing the working
set are captured. During replay, pages are remapped to their original ad-
dresses. However, this mechanism may be insufficient to faithfully replay
the codelets in some cases.

Multi threaded applications raise a new challenge: the placement of
the pages across the NUMA nodes. Due to the first touch policy, a page is
mapped to the core which first attempts to use it. We must ensure that pages
are mapped to the same NUMA nodes as they have been in the original run.
The problem is that pages are not necessarily bound to the same NUMA
nodes across the different thread affinities. For example, OMP scatter

maximizes the number of NUMA nodes while compact minimizes it.

At replay, CERE serial warmup uses a single thread to remap the pages
to their original addresses. Using this strategy on a multi-NUMA nodes
architecture bind all the pages to a single NUMA node. The replay pays
NUMA latencies that do not appear in the original run and which cause
prediction discrepancies.

To solve this issue, we enhance the page capture by saving, for each
page, the first thread that touches it. During replay, before replaying the
codelet code, each thread touches the pages that it has saved at the capture.
Hence, pages are mapped to the NUMA node of the thread which is the first
to touch them.

CERE NUMA aware thread exploration has a limitation. Let us consider
a NUMA aware capture with N threads. CERE cannot faithfully explore
NUMA configurations that have more than N threads. At capture, we
track the touched pages for each thread. Capturing with four threads a
region allows to get all the pages for these threads. We can remap the pages

54 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

to preserve the NUMA placement with two threads since we know which
pages were touched by the threads. However, when replaying the region
with five threads, we cannot determine which pages will be touched by the
fifth thread. We can still replay the code with five threads, but the pages of
this thread will not necessary be bound to the right NUMA node.

Lock Support

Unlike sequential applications, parallel codes use synchronizations with
locks. OpenMP uses futex (fast userspace mutexes) calls to implement the
lock support on Linux. So, to fully support replay of codelets using OpenMP
lock primitives, a special lock capture step is required.

In Linux, each futex requires a kernel space wait queue. System calls
are used to request operations on the wait queue from user space. Our
memory capture only saves the user space process memory, therefore it does
not preserve the state of the futex wait queue.

To properly support OpenMP locks, we need a special lock capture step
that detects all the locks accessed by a codelet. This is achieved by intercept-
ing calls to the lock OpenMP library during capture. Before replaying the
codelet, the replay wrapper takes care to properly initialize all the required
locks in kernel space.

3.6 Hybrid Compilation

As explained in section 2.6 of the background, exploring the different com-
piler optimizations for an application is a costly and time consuming process.
Moreover, we observe that some applications may have different optimal pa-
rameters for different regions of code. For example, compute bound loops
and memory bound loops within the same function will not be sensitive to
the same compiler optimizations. As regions of code do not benefit from the
same parameters, a traditional overall program-evaluation (or monolithic
evaluation) is not able to achieve the optimal per region optimization.

CERE piecewise tuning finds the best compiler optimizations for each
loop and OpenMP region. Unfortunately, LLVM does not provide a mech-
anism to select compiler optimizations at the function or loop granularity.
To compile each region with a different set of optimizations we must extract
each region in its own compilation unit. We leverage the extract tool in-
cluded in LLVM which allows to extract an IR function to a separate IR
file.

The first step is outlining each region of interest in its own IR function.
Before any middle-end optimization is applied, each region is moved to a
separate compilation unit using LLVM extract. A special pass changes the
visibility of symbols used by the extracted region from internal to global so
that they are not removed by the compiler. Then, the best compiler sequence

3.7. RELATED WORK 55

CERE Code Isolator Astex Codelet Finder

Support

Language C(++), Fortran, ... Fortran C, Fortran C(++), Fortran
Extraction IR source source source

Indirections yes no no yes

Reduction

Capture size reduced reduced reduced full
Temporal yes manual manual manual

Spatial yes no no no

Table 3.3: Feature comparison of sequential code isolation tools.

found is applied to each separate IR file and an object file is produced.
Finally, all the objects files are linked together producing an hybrid binary.
We evaluate the quality of the hybrid binaries in section 6.5.2.

3.7 Related Work

In this section, we compare CERE to related code isolator tools and sampling
methods.

3.7.1 Code Isolation

Table 3.3 compares the features of the main serial code isolation tools on
multiple criteria. First we compare the supported input languages, the isola-
tion level and the support of indirect memory accesses. Second, we examine
whether the tool attempts to reduce the capture size, the number of work-
ing sets, or the number of representative pieces to replay. The reduction is
explained in the next chapter.

As stated in the background (see section 2.5.3), to the best of our knowl-
edge, only Liao et al. [73] have also published on parallel OpenMP code
isolation without simulators. Their approach is based on the ROSE [81]
compiler infrastructure. Isolation is achieved through a source to source
outliner which extracts tunable kernels out of OpenMP programs.

The source outlining approach requires an additional step that repairs
the lost scopes. On the contrary, CERE IR level outlining is simpler because
it is done after OpenMP data clauses expansion. Also, unlike CERE which
is evaluated on all the NPB, Liao et al. outliner is demonstrated on a single
OpenMP for loop from the SMG2000 benchmark.

3.7.2 Sampling Simulation

Sampling techniques [13] (i.e. used with assembly isolation) are similar to
our work in that they extract representative phases from applications and

56 CHAPTER 3. CERE: CODELET EXTRACTOR AND REPLAYER

allow accurate replay. Nevertheless, all of these sampling techniques must be
used in a simulator, whereas our method is more versatile since it produces
IR codelets that can be recompiled and run both on simulators and on real
hardware.

So, code isolation accuracies of CERE prediction and these methods are
not directly comparable since the methods measures accuracy on a functional
simulators whereas CERE measures accuracy on real hardware.

Also, another key difference is that current sampling techniques do not
allow changing the number of threads at replay. Each thread configuration
requires a separate capture. Therefore, unlike CERE, they cannot be easily
used to evaluate parallel scalability.

Acknowledgments

CERE is an open source tool developped collaboratively, the full list of con-
tributors can be found at https://github.com/benchmark-subsetting/

cere/blob/master/THANKS.

3.8 Conclusion

This chapter presents CERE, an LLVM based Codelet Extractor and Re-
play framework. CERE finds and extracts the hotspots of an application as
codelets. Codelets can be modified, compiled, run, and measured indepen-
dently from the original application. The following chapter presents how
the codelets can be reduced to accelerate the benchmarking cost.

Chapter 4

Benchmark Reduction

Strategies with Codelets

Contents

4.1 Introduction . 57

4.2 Temporal Subsetting 60

4.2.1 Invocations Reduction 60

4.2.2 Accelerating System Evaluation 62

4.3 Spatial Subsetting 64

4.3.1 Regions Reduction 64

4.3.2 Architecture Selection 66

4.3.3 Clustering Metrics with Genetic Algorithms 69

4.4 Conditional Subsetting for Scalability Prediction 70

4.5 Discussion . 71

4.5.1 Related Works . 71

4.5.2 Combine Spatial and Temporal Clustering 72

4.5.3 Enhance Spatial Clustering 73

4.6 Conclusion . 74

4.1 Introduction

Finding the best architecture and compiler optimizations for an application
is an important problem for high performance computing, data centers, and
embedded computers. Traditionally performance benchmarks are conducted
to determine the best architecture and execution options. This process in-
volves running all the benchmark programs in different system configura-
tions. This chapter proposes a method to lower the cost of benchmarking
by extracting a subset of representative codelets sufficient to capture the
performance characteristics of the original benchmarks or applications.

Related studies [46, 22] identify many similarities or redundancies among
different programs in the same benchmark suite. Redundant pieces are
stressing the performance of the same architectural components. So profiling
similar benchmarks means that we are not only paying the evaluation cost

57

58CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

multiple times but also that we are targeting the same components without
getting any new information about the system.

Working at a fine granularity level allows to detect more redundancy.
The larger a code fragment is, the harder it is to find a similar redundant
fragment in another program. But, when codes are broken into elementary
pieces, it is common to find duplicate computation patterns [98] such as dot
products, array copies or reductions.

CERE takes advantage of those fine granularity similarities to reduce
the benchmarking time. In particular, codelets address three sources of
redundancy in the benchmarking process:

• similar computation kernels or regions: Many benchmark suites
share many similar codelets: simple ones, like set-to-zero or memory
copy loops, and more complex ones, like Single-precision real Alpha X
Plus Y (SAXPY) loops. There is no need to measure multiple copies
of the same code. We categorize these redundancies as spatial since
they concern regions of code with different locations,

• similar code invocations: Regions that are repeatedly invoked with
the same context in an application lifetime, have the same running time
for each invocation. Therefore, a single invocation replay is sufficient
to characterize them. In applications where a single region is called
thousands of times, measuring only a few invocations achieves signif-
icant gains in benchmarking time. We categorize these redundancies
as temporal since they originated from the same code but at different
moments during the execution,

• sequential regions across different thread configurations:
When varying the number of threads, performance of sequential re-
gions is not strongly impacted. With codelets, scalability can be eval-
uated by only replaying parallel regions: there is no need to replay
multiple times the sequential parts. We consider parts of an appli-
cation that are not impacted by some transformations (e.g. thread
configurations, compiler optimizations, architectures) as conditional
redundancies. Sequential regions are an example: for scalability stud-
ies, the sequential parts can be ignored. However, if the user wants to
tune the compiler, he cannot avoid the serial parts.

Taking advantage of the sequential regions with codelets to predict the
scalability is easy. CERE measures the sequential time once. Then, it
replays the codelets across the different threads configurations. To predict
the scalability with a specific number of threads, CERE sums the sequential
time with the codelets execution times at the targeted thread configuration.
As long as the sequential time remains constant across the different thread
configurations, CERE does not need to remeasure it.

4.1. INTRODUCTION 59

is a proxy for

Spatial
clustering

Select
representative

regions

Temporal
clustering

Select
representative

invocations

Static and
dynamic
analysis

Execution
time

Exploration space:
- architectures
- compiler and

runtime parameters

Benchmark
Reduction

Representative
Subset

Applications
benchmark

suites

Evaluation Evaluation

Optimized
configurations

Full applications Small subset

Original
Evaluation

Codelet
Evaluation

Figure 4.1: CERE benchmark reduction workflow for tuning. With origi-
nal evaluations, new parameters are directly evaluated over the applications.
This is a costly and time consuming process. CERE reduces the benchmarks
to a representative subset. The reduction is composed of both a temporal
subsetting (see section 4.2) and a spatial subsetting (see section 4.3). Eval-
uating systems on the subset is faster because we avoid the redundant full
application executions. Hence, we quickly amortize the reduction initializa-
tion cost because of the huge exploration space.

To address the spatial redundancies, CERE breaks down complex ap-
plications into a set of codelets and clusters them. Each cluster contains
codelets with similar computation patterns. Since they are similar, we as-
sume that they target and stress the same architectural components. So
replaying one codelet per cluster is sufficient to characterize the components
that are targeted by the cluster. Determining which regions share common
computation patterns is challenging. We handle this issue by comparing
performance metrics vectors (see section 2.2).

CERE also addresses temporal redundancies with clustering. Invoca-
tions of a region of code that are called with the same working set have the
same performance and are grouped together. CERE subsets the invocations
of the region. Both the spatial and temporal clustering criteria are discussed
in section 4.5.

Combining both spatial with temporal clustering allows CERE to ac-
celerate the benchmarking process. It generates a subset of representative

60CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

codelets. The invocations of each of these codelets are clustered and a rep-
resentative invocation per cluster is extracted. CERE uses these invocations
as proxies for the benchmarks. Figure 4.1 illustrates this strategy over an
application. Evaluating CERE representatives is faster than full benchmark-
ing as we avoid to replay redundant codelets and invocations. Also, since
only redundant pieces are removed, the subsetting preserves the diversity of
the benchmarked components.

Invocations within the same cluster share a common execution behavior
and should react in the same way to architecture or parameter changes. For
example, memory-bound regions will benefit from faster caches, whereas
highly vectorized regions will benefit from wider vectors. Therefore, by
measuring a single representative invocation per cluster we can extrapolate
the performance of all its siblings. We discuss the behavior extrapolation to
the cluster siblings in section 4.5.

This chapter presents how the CERE benchmark reduction strategy op-
erates over different use cases. First, we subset a benchmark suite with the
temporal reduction in section 4.2. Second, we focus on the spatial reduction
to also subset a benchmark suite in section 4.3. Third, section 4.4 illustrates
the scalability prediction model. Finally, we discuss the limitations and the
future improvements of our methodology in section 4.5.

4.2 Temporal Subsetting

4.2.1 Invocations Reduction

Inside an application, the same region (either loop or OpenMP region) may
be called multiple times. While many invocations of the same region have
a similar execution time, in some codes, two invocations may have different
execution times. This is due to the different working sets or initial condi-
tions.

For example, the codelet make ft@shell2.F90:1133 extracted from
tonto (from the SPEC benchmarks) is one of the steps of a specialized
Fast Fourier Transformation. In the original application, this loop is called
3587 times with different workloads. Figure 4.2a shows its execution trace.
A cluster analysis of the invocations reveal that they can be sorted into 4
performance behaviors, which are represented with different colors in the
figure. Other regions such as FT fftxyz 152:58 extracted from FT, have a
constant workload size but the first invocation is slower because of cache
warmup effects (see Figure 4.3).

To accurately replay a codelet, we must capture each different invocation
state. When the number of invocations is high, this process becomes costly
both in time and space. Fortunately, applications exhibit some regularity;
and most of the time the invocations can be reduced to a few representative
performance classes. Figure 4.2b shows the distribution of the number of

4.2. TEMPORAL SUBSETTING 61

0e+00

2e+07

4e+07

6e+07

8e+07

0 1000 2000 3000

invocation

C
y
c
le

s

replay

(a) SPEC tonto make ft@shell2.F90:1133 exe-
cution trace.

0

10

20

30

1 2 3 4 5 6 7 8

Performance classes

F
re

q
u
e
n
c
y

(b) Distribution of the number of
representative performance classes
across all NAS benchmarks.

Figure 4.2: invocation reduction: (a) A clustering analysis of tonto’s trace
detects four different performance behaviors depending on the workload.
The initial 3587 invocations are captured with only four representative re-
plays. (b) Most of the NAS codelets can be captured with less than four
representative working sets.

Figure 4.3: The region fftxyz 152 is executed 8 times during the application
lifetime. The first invocation is slower due to the cold cache state.

62CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

different classes across all NAS benchmarks. One can note that most of the
codelets can be captured with less than 4 representatives. The fact that the
performance of a program can be reduced to a small number of representa-
tives has been observed in other domains such as value profiling [99, 80, 100]
and iterative compilation [101].

To automatically detect the performance classes and generate a set of
representative captures, we use a clustering algorithm. Some of the codelets
in our benchmarks have large traces with more than 109 invocations and
cannot be analyzed using traditional clustering algorithms such as hierar-
chical clustering or K-means. To be able to efficiently process such large data
sets CERE uses CLARA (CLustering LARge Applications) algorithm [102].
CLARA (see section 2.3.1) relies on sampling to reduce the cost of cluster-
ing. It extracts a random sample from the original data set and find the
cluster medoids. The sampling process is repeated to reduce the bias in the
medoid selection. Finally, each point of the original data set is assigned to
the nearest medoid’s cluster.

Once the performance classes are identified, CERE selects one repre-
sentative invocation per class. CERE selects the invocation closest to the
medoid of the cluster, in other words, the invocation closely matching the
median performance of all the invocations inside the cluster. When re-
playing the benchmark, CERE extrapolates the full region performance by
weighting each representative replay time according to the contribution of
its performance class in the original execution.

Thanks to invocations reduction, CERE is able to accelerate perfor-
mance evaluation considerably since only a representative subset of the in-
vocations is replayed: for example, only two out of ten thousand invocations
are replayed for codelet updateTestEv@soplex.c:204 in SPEC 2006 soplex
benchmark.

4.2.2 Accelerating System Evaluation

We consider that an execution system includes the choice of the compiler
optimizations, the runtime parameters (such as thread configurations or fre-
quencies of execution), and the architecture. Benchmarks and applications
are widely used to evaluate new systems to improve the performance. This
is a costly process because the exploration space is huge and even a single
execution may be time consuming.

Temporal reduction identifies invocations of code with similar perfor-
mance to reduce the benchmarking cost. To detect and remove the redun-
dant invocations, CERE profiles the benchmarks on a reference system and
produces a subset of representative invocations.

CERE allows to evaluate new systems by only replaying the represen-
tative invocations on them. To correctly predict the execution time of the
benchmarks on the new target system, we assume that: invocations in a

4.2. TEMPORAL SUBSETTING 63

original trace replay

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

O
0
 +

 4
 th

re
a
d
s

O
3
 +

 2
 th

re
a
d
s

0 10 20 30 40

invocation

m
e
g
a
c
y
c
le

s

Figure 4.4: MG resid invocations execution time on Sandy Bridge over -O3
and -O0 with respectively 2 and 4 threads. Each representative invocation
predicts its performance class execution time. Tuning compiler optimiza-
tions and thread configurations has a similar impact on invocations within
the same cluster.

region sharing the same performance class have the same speedup when they
are executed on a new system.

More formally, let the execution time of an invocation be trefi for the
reference system and ttari for the target system. For invocation pi, si =

trefi /ttari is the speedup between the reference and the target. The speedup
of any invocation from cluster Ck, is close to srk , the speedup of the cluster
representative,

∀pi ∈ Ck, si � srk .

We predict the performance of each original invocation by using the
following formula:

∀pi ∈ Ck, t
tar
i � trefi ×

1

srk
= trefi ×

ttarrk

trefrk

.

Figure 4.4 illustrates the invocation assumption on MG resid, an
OpenMP parallel region. Resid has 42 invocations grouped in 3 perfor-
mance classes. We observe that changing the system, currently the compiler
optimizations and the thread configurations, has a similar impact on invo-
cations within the same performance class. So, by replaying 3 instead of
42 invocations, CERE predicts the region execution for each parameter to
explore.

64CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

Maqao

Likwid

Static & Dynamic
Profiling Vectorization ratio

FLOPS/s
Cache Misses
...[] Clustering

f1
f2
f3
...

Step A: Perform static and dynamic analysis on a reference
architecture to capture codelet's feature vectors.

BT

SP

Step B: Using the proximity between feature
vectors we cluster similar codelets and select one
representative per cluster.

Step C: CERE extracts the
representatives as standalone
codelets.

Figure 4.5: CERE spatial benchmark reduction method. Representative
codelets are extracted and serve as proxies to evaluate the whole applica-
tions.

4.3 Spatial Subsetting

4.3.1 Regions Reduction

A second reduction in the number of replays can be achieved by detect-
ing and exploiting similar and repeated computation patterns. Benchmark
suites and applications naturally contain redundant computation patterns
across different benchmarks. For instance, two linear algebra solvers, despite
using different algorithms, will share common computation patterns such as
vector copy loops, dot product computations, or matrix vector multiplica-
tions.

The method presented in figure 4.5 detects repeated computation pat-
terns, and keeps only one representative copy of each, reducing a suite of
benchmarks to an essential set of micro-benchmarks.

Because only duplicated patterns are removed, the performance diversity
of the original benchmarks is preserved.

Different methods and metrics are used to detect the similar compu-
tation patterns in codes are described in section 2.4. We select the static
metrics because they provide useful information about the codes signature
and because they are cheap to access. We also rely on hardware performance
counters to complete our analyzes. Performance counters capture the dy-
namic hazards i.e. the memory behavior that cannot be modeled by the
static characterization. We note that other means can be used to achieve
this characterization and discuss them in section 4.3.3.

CERE statically analyzes and profiles each region. Static metrics are
extracted by the MAQAO Code Quality Analyzer [35, 75] which provides
detailed low-level performance metrics. Dynamic metrics are provided by
Likwid 3.0 [39] or Lprof [38] which read hardware performance counters.

4.3. SPATIAL SUBSETTING 65

Likwid dynamic metrics

- Floating point rate in MFLOPS.s−1

- L2 bandwidth in MB.s−1

- L3 miss rate
- Memory bandwidth in MB.s−1

MAQAO static metrics

- Bytes stored per cycle assuming L1 hits
- Data dependencies stalls
- Estimated IPC assuming only L1 hits
- Number of SD instructions
- Pressure in dispatch port P1
- Ratio between ADD+SUB/MUL
- Vectorization ratio for Multiplications (FP +INT)
- Vectorization ratio for Other (FP)
- Vectorization ratio for Other (INT)

Table 4.1: Performance metric set used to cluster regions.

MAQAO and Likwid gather 76 different metrics. Irrelevant metrics add
noise that degrades the clustering. Therefore, it is important to wisely select
metrics, keeping only those that adequately capture program behavior and
improve clustering.

Section 4.3.3 explains how we explore the metric space to find a set of
metrics with an optimal clustering quality. Table 4.1 presents the 13 per-
formance metrics used by CERE. CERE profiles each region and produces
a metric vector per region that contains the selected metrics. We rely on
these vectors to quantify the regions similarities.

CERE groups regions sharing similar metrics vectors into clusters by
computing euclidean distances across the vectors. To cluster similar regions,
we use the hierarchical clustering with Ward’s criterion [51]. The final num-
ber of clusters is selected with the Elbow method [53] (see section 2.3.1).
Metrics are normalized to have unit variance and to be centered on zero.
Normalization ensures that metrics have equal weight when computing a
distance between two metric vectors.

We select a representative region for each cluster and extract it as a stan-
dalone codelet. A representative must adequately capture the performance
metrics of the cluster: as a representative, we choose the codelet closest to
the cluster centroid. Using the centroid reduces the approximations caused
by the subsetting since the centroid cluster is the closest point to the cluster
average values.

Thanks to region reduction, CERE produces a subset of regions out of
the initial benchmark suite that preserves its diversity. The next section
illustrates how this methodology accelerates the evaluation of new architec-
tures.

66CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

4.3.2 Architecture Selection

Like temporal reduction, spatial reduction also accelerates the evaluation of
new systems. We assume that regions in a cluster share the same speedup
when they are executed on a new system: they react in the same way to
system changes. So, by measuring a single representative codelet per cluster,
we can extrapolate the performance of all its siblings.

In this thesis, we test the spatial reduction only for architecture selection:
we reduce the benchmarking time required to evaluate new architecture
configurations. First, we present the method over the 28 Numerical Recipes
(NR) [60] codelets provided by Noudohouenou [103]. Each NR codelet is
composed of a single computation kernel. There is a one-to-one mapping
between the NR benchmarks and the NR codelets extracted. Moreover, all
the NR codelets are well-behaved i.e. their prediction errors are bellow 15%.
NR codes are simple but cover a large spectrum of algorithms.

We start by profiling the NR on a reference architecture Nehalem and
predict the suite execution time on Atom and Sandy Bridge by replaying
the representative codelets. We note that in our experiments, we have never
used spatial subsetting alone. It is always combined with temporal reduction
since the two methods are orthogonal. Section 6.4 performs a full validation
of the reduction methodology by predicting the NAS over Atom, Sandy
Bridge, and Core2.

Table 4.2 shows a 14-group clustering built on the reference architecture
using the NR codelets. We use the metrics presented in table 4.1 to perform
the clustering.

Our goal is to ensure that codelets in the same clusters exhibit similar
characteristics and a common behavior. An initial supporting observation is
that the vectorization is homogeneous among clusters. We evaluate cluster
similarity using two other similarity criteria.

First, we note that many clusters are formed of codelets with similar
computation patterns. For example, cluster 10 gathers codelets that di-
vide elements in a vector, cluster 11 codelets that perform a reduced sum,
cluster 14 codelets that compute element-wise multiplications on vectors or
columns. The two ”Dense Matrix x vector product” codelets have been
separated because they use different floating point precision.

Second, the stride captures the distance between the data points accessed
by two successive iterations of a codelet. For example, a stride of one means
that the codelet is accessing memory sequentially. A stride of zero means an
access to a constant memory location. A Leading Dimension Array (LDA)
stride means a row-wise access to a column-wise stored array. If a codelet has
two or more types of stride, we separate them with a ’&’ symbol. Stencil
stride means that the kernel uses a five points stencil to access the data.
Cluster 14 is composed only of codelets with contiguous access to memory.
Cluster 11 contains only (0 & 1) codelets: one contiguous access to sweep

4.3. SPATIAL SUBSETTING 67

c
u
t fo

r K
 =

 1
4

C1234567891
0

1
1

1
2

1
3

1
4

C
o

d
e
le

t

to
e
p
lz

_
1

rs
trc

t_
2
9

m
p
ro

ve
_
8

to
e
p
lz

_
4

re
a
lft_

4

to
e
p
lz

_
3

s
v
b
k
s
b
_
3

lo
p
_
1
3

to
e
p
lz

_
2

fo
u
r1

_
2

trid
a
g
_
2

trid
a
g
_
1

lu
d
c
m

p
_
4

h
q
r_

1
5

re
la

x
2
_
2
6

s
v
d
c
m

p
_
1
4

s
v
d
c
m

p
_
1
3

h
q
r_

1
3

h
q
r_

1
2
_
s
q

ja
c
o
b
i_

5

h
q
r_

1
2

s
v
d
c
m

p
_
1
1

e
lm

h
e
s
_
1
1

m
p
ro

ve
_
9

m
a
ta

d
d
_
1
6

s
v
d
c
m

p
_
6

e
lm

h
e
s
_
1
0

b
a
la

n
c
_
3

C
o

m
p

u
ta

tio
n

 P
a
tte

rn

D
P

: 2
 s

im
u
lta

n
e
o
u
s
 re

d
u
c
tio

n
s

D
P

: M
G

 L
a
p
la

c
ia

n
 fin

e
 to

 c
o
a
rs

e
 m

e
s
h
 tra

n
s
itio

n

M
P

: D
e
n
s
e
 M

a
trix

 x
 ve

c
to

r p
ro

d
u
c
t

D
P

: V
e
c
to

r m
u
ltip

ly
 in

 a
s
c
./d

e
s
c
. o

rd
e
r

D
P

: F
F

T
 b

u
tte

rfly
 c

o
m

p
u
ta

tio
n

D
P

: 3
 s

im
u
lta

n
e
o
u
s
 re

d
u
c
tio

n
s

S
P

: D
e
n
s
e
 M

a
trix

 x
 ve

c
to

r p
ro

d
u
c
t

D
P

: L
a
p
la

c
ia

n
 fin

ite
 d

iffe
re

n
c
e
 c

o
n
s
ta

n
t c

o
e
ffic

ie
n
ts

D
P

: V
e
c
to

r m
u
ltip

ly
 e

le
m

e
n
t w

is
e
 in

 a
s
c
./d

e
s
c
. o

rd
e
r

M
P

: F
irs

t s
te

p
 F

F
T

D
P

: F
irs

t o
rd

e
r re

c
u
rre

n
c
e

D
P

: F
irs

t o
rd

e
r re

c
u
rre

n
c
e

S
P

: D
o
t p

ro
d
u
c
t o

ve
r lo

w
e
r h

a
lf s

q
u
a
re

 m
a
trix

S
P

: A
d
d
itio

n
 o

n
 th

e
 d

ia
g
o
n
a
l e

le
m

e
n
ts

 o
f a

 m
a
trix

D
P

: R
e
d
 B

la
c
k
 S

w
e
e
p
s
 L

a
p
la

c
ia

n
 o

p
e
ra

to
r

D
P

: V
e
c
to

r d
iv

id
e
 e

le
m

e
n
t w

is
e

D
P

: N
o
rm

 +
 V

e
c
to

r d
iv

id
e

D
P

: S
u
m

 o
f th

e
 a

b
s
o
lu

te
 va

lu
e
s
 o

f a
 m

a
trix

 c
o
lu

m
n

S
P

: S
u
m

 o
f a

 s
q
u
a
re

 m
a
trix

S
P

: S
u
m

 o
f th

e
 u

p
p
e
r h

a
lf o

f a
 s

q
u
a
re

 m
a
trix

S
P

: S
u
m

 o
f th

e
 lo

w
e
r h

a
lf o

f a
 s

q
u
a
re

 m
a
trix

D
P

: M
u
ltip

ly
in

g
 a

 m
a
trix

 ro
w

 b
y
 a

 s
c
a
la

r

D
P

: L
in

e
a
r c

o
m

b
in

a
tio

n
 o

f m
a
trix

 ro
w

s

D
P

: S
u
b
s
tra

c
tin

g
 a

 ve
c
to

r w
ith

 a
 ve

c
to

r

D
P

: S
u
m

 o
f tw

o
 s

q
u
a
re

 m
a
tric

e
s
 e

le
m

e
n
t w

is
e

D
P

: S
u
m

 o
f th

e
 a

b
s
o
lu

te
 va

lu
e
s
 o

f a
 m

a
trix

 ro
w

D
P

: L
in

e
a
r c

o
m

b
in

a
tio

n
 o

f m
a
trix

 c
o
lu

m
n
s

D
P

: V
e
c
to

r m
u
ltip

ly
 e

le
m

e
n
t w

is
e

S
trid

e

0
 &

 1
 &

−

1

s
te

n
c
il

0
 &

 1

0
 &

 1

 0
 &

 2
 &

−

2

0
 &

 1
 &

−

1

0
 &

 1

s
te

n
c
il

 1
 &

−

1

4−
1

0
 &

 1

0
 &

 L
D

A
 &

 1

L
D

A
 +

 1

L
D

A
 &

 0

0
 &

 1

1

0
 &

 1

0
 &

 1

0
 &

 1

0
 &

 1

 L
D

A

 L
D

A

11

0
 &

 L
D

A

11

V
e

c
.

V
 +

 S

V
 +

 S

V
 +

 S

SSVVVSSSS

V
 +

 S

SSVVVVVVSSVV

V
 +

 S

VV

V
e
c

. %

 7
8

 8
3

 6
0

 2
0

 1
8

1
0
0

1
0
0

1
0
0

 0

 8

 0

 0

 8
3

 0

 1
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

 0

 0

1
0
0

1
0
0

 3
3

1
0
0

1
0
0

s

<
0

.2
4

>

0
.2

5

0
.1

5

0
.4

4

<
0

.4
2

>

0
.3

1

<
0

.3
5

>

<
0

.2
0

>

<
0

.3
6

>

0
.2

2

0
.4

4

<
0

.3
2

>

<
0

.4
5

>

<
0

.3
9

>

<
0

.1
2

>

0
.2

8

<
0

.1
7

>

0
.4

1

<
0

.4
6

>

0
.3

4

0
.3

4

<
0

.3
3

>

0
.4

7

0
.5

0

0
.5

3

<
0

.3
0

>

0
.4

4

<
0

.4
7

>

Table 4.2: NR clustering with 14 clusters and speedups on Atom. The
dendrogram on the left shows the hierarchical clustering of the codelets.
The height of a dendrogram node is proportional to the distance between the
codelets it joins. The dashed line shows the dendrogram cut that produces
14 clusters. The table on the right gives for each codelet: the cluster number
C, the Computation Pattern, the Stride, the Vectorization, and the Speedup
on Atom s. The speedup of the selected representative is emphasized with
angle brackets.

68CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

e
rr

o
r

=
 0

%

e
rr

o
r

=
 3

.6
9
%

e
rr

o
r

=
 3

6
%

e
rr

o
r

=
 4

.5
2
%

e
rr

o
r

=
 0

%

Cluster 1 (s = 0.24) Cluster 2 (s = 0.42)

2

5

10

20

40

80

160

<t
oe

pl
z_

1>

rs
trc

t_
29

m
pr

ov
e_

8

to
ep

lz
_4

<r
ea

lft
_4

>

E
xe

c
u
ti
o
n
 t

im
e
 (

m
s
 /

 i
n
vo

c
a
ti
o
n
)

Reference (Nehalem) Atom real Atom predicted

Figure 4.6: Predicted and Real execution times on Atom for clusters 1
and 2. Representatives are enclosed in angle-brackets. They have a 0%
prediction error because they are directly measured. The representative
speedup is applied to all its siblings to predict their target performance.
Because the scale is logarithmic, applying the speedup is depicted by the
arrow translation.

the vector and one constant access for the accumulator. Other clusters have
more complex stride behaviors.

The clustering is not perfect, but still gathers codelets sharing similar
computation patterns, stride accesses, and vectorization.

Our assumption is that codelets with similar metrics have similar
speedups on the target architectures. Column s on the table shows Atom
speedups. The two codelets in cluster 10 suffer high slowdowns on Atom
because they use high-latency division operations. Our metric set captures
this pattern and isolates them in their own cluster.

In most of the clusters, speedups are homogeneous. Close codelets in the
dendrogram such as in clusters 2, 3, or 14 exhibit close speedups. Yet in some
clusters such as 10 or 12 the speedups are distinct. Our dendrogram cut is
too rough and a higher number of clusters is needed. In this case, 24 clusters,
as recommended by the elbow method, fix the most striking discrepancies.
Yet the 24 elbow clustering, though more conservative in terms of prediction,
is less interesting to analyze because it has many singleton clusters.

We evaluate the prediction error using the 14 clusters’ representatives
on Atom and Sandy Bridge. Figure 4.6 details the prediction model for
the cluster 1 and 2. As expected, the representatives codelets toeplz 1

and realft 4 are perfectly predicted. The prediction is accurate except for
mprove 8. Table 4.2 dendrogram shows that slightly increasing K puts the
offending codelet in a different cluster.

Table 4.3 summarizes the prediction errors for all the NR codelets on

4.3. SPATIAL SUBSETTING 69

K = 14 K = 24 elbow

error median average median average

Atom 1.8% 12% 0% 1.70%
Sandy Bridge 3.2% 9.30% 0% 0.97%

Table 4.3: Prediction errors on Numerical Recipes with 14 and 24 clusters.
NR contain 28 benchmarks. Selecting 24 codelets lead to replay more than
half of the benchmarks: this justifies why the median is equal to zero. The
fact that the elbow produces a number of clusters near to the total number
of benchmarks means that according our performance metrics, the NR are
quite diverse.

Atom and Sandy Bridge. The overall accuracy of the prediction is good.
Nevertheless, this was expected because as presented in the next section,
the NR were used during the metric selection training. The metric set was
selected to minimize prediction accuracy. Section 6.4 performs our method
on an unseen benchmark set and test architecture to quantify the resilience
of the methodology. In the following section, we explain how we select the
performance metrics that gather codelets with similar computation patterns.

4.3.3 Clustering Metrics with Genetic Algorithms

Performance metrics must ensure that codelets in the same clusters have
similar computation patterns. Since MAQAO and Likwid gather 76 different
metrics, it is important to wisely select metrics, keeping only those that
adequately represent the program behavior. This section explains how we
select our metrics to cluster applications for architecture evaluation.

Evaluating the 276 combinations is too costly. To find a good set of met-
rics in a reasonable time, we use genetic algorithms [59] (see section 2.3.3).
Genetic algorithms (GAs) start with a population of randomly generated
individuals. In our case, each individual represents a candidate metric set.
This population evolves towards an optimal solution by recombining the
best individuals with crossover and mutation operators.

An individual is encoded as a 76 boolean vector. The ith bit is set if and
only if metric i is selected. For instance, the vector with all bits set to one
corresponds to the individual containing all the 76 metrics. Crossover and
mutation operators are provided by the genalg [104] GNU R package.

To evaluate individuals, we consider the average prediction error of NR
benchmarks on two architectures: Atom and Sandy Bridge. Best individuals
should have a high prediction accuracy on both architectures but with a low
number of representatives. To achieve this objective we choose the fitness
function: max(error atom, error sandybridge)×K where K is the number
of clusters.

70CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

We perform 100 GA iterations for a population size of 1000 and a mu-
tation probability of 0.01. The Genetic algorithm converges to the optimal
metric set presented in Table 4.1 by generation 47.

We intentionally train our metrics on a subset of our configurations. We
leave an architecture i.e. Core2 and a benchmark suite i.e. NAS out of
the training process. It is fairer to evaluate how our metric set fares on
new architectures and new benchmarks. It also allows to avoid the ma-
chine learning overfitting presented in section 2.3.3. Section 6.4 validates
the performance prediction of the metrics over new untrained systems and
applications. Section 4.5 discuss about the relevance of these metrics for a
more general usage. In particular, one could try to use these metrics to tune
compiler optimizations.

4.4 Conditional Subsetting for Scalability Predic-

tion

We previously presented the spatial and temporal reductions. This section
shows the third and last reduction technique that is used by CERE: con-
ditional subsetting. Unlike the previous approaches, conditional subsetting
can only be applied when targeting some specific parameters evaluation.

Some system updates do not impact all parts of the applications code.
For instance, Amdahl’s law [105] stipulates that the execution time t(n) of
an application being executed on n threads is,

t(n) = T (1)× (s+
1− s

n
),

where s is the fraction of the algorithm that is strictly serial. In other words,
increasing the number of threads will only speedup parallel regions. We do
not need to execute the serial parts across the different thread configurations.
Serial parts are removed by the conditional subsetting when CERE evaluates
scalability.

Traditionally, the scalability of an application is evaluated by plotting
the application execution time against the number of parallel threads m.
This requires measuring one application run for each thread configuration
and so executing m times the serial parts.

Through fast codelet replay, CERE is able to quickly estimate the strong
scalability with a single measurement of the serial parts: we only replay the
parallel regions.

Our prediction scalability method has two steps. First, initialization
extracts the codelet set and measures the sequential part of each applica-
tion, Tseq. Second, prediction replays the codelets with different number of
threads to predict the scalability of the original applications.

4.5. DISCUSSION 71

Let C be the set of all the parallel regions extracted as codelets from
an application. Our model estimates the application execution time with n
threads as,

tpredicted(n) = tseq +
�

c∈C

T tar
c (n),

where T tar
c (n) is the predicted execution time of the codelet c at the tar-

geted n number of threads. By only measuring the parallel regions execution
time, we get the full application execution time.

CERE accelerates the scalability evaluation process because:

1. the sequential part is only measured once during the initialization,

2. codelet replay is faster because the number of invocations of the par-
allel regions is reduced through temporal reduction.

This method is validated by our experiments in section 5.4.1.

4.5 Discussion

In this section, we discuss the three previously introduced reduction tech-
niques can compare to existing approaches.

4.5.1 Related Works

On of the challenge in code isolation is reducing the replay and codelet cap-
ture cost. The replay and capture cost is related to two quantities: the num-
ber of codelets and the number of invocations to capture and replay. When
codelets or invocations have similar behaviors, it is desirable to only capture
and replay a representative subset. A single region in a program may be
called thousands of times with different working sets and cache states. Cap-
turing each individual invocation is prohibitive. A first set of studies [71],
[26], and [72] allow the user to manually choose which invocations should be
captured and replayed.

Previously described approaches for benchmarking reduction can be ap-
plied to select the representative subset. Sherwood and al. [48] identify
similar computation phases by computing the distance between the region’s
Basic Block Vectors. Other works [25, 58, 41, 42, 22] use performance feature
vectors as a measure of region similarity.

Yang et al. [106] proposes a partial execution framework without code
isolation based on relative performance between platforms. They manually
insert probes around the kernels of the application. The probes allow to
stop the execution during replay after a large enough number of invocations

72CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

has been measured. Like CERE, this method reduces the number of invo-
cations of the kernels but it is not automatic. The user must hand-tag the
computation kernels with source annotations.

4.5.2 Combine Spatial and Temporal Clustering

In our experiments, we base the clustering of the invocations of a region on
a single dimension: the execution time of the invocations. However, it is
possible that while two invocations share a common execution time, they
have distinct behaviors.

Let us consider two invocations, respectively memory and compute
bound, with a similar execution time. Moving these invocations to a new
system with more memory, speedups the first invocation but should not im-
pact the second. Since they have the same execution time on the reference
system, CERE clusters them in the same performance cluster. So, CERE
uniformly predicts the same speedup over the two invocations. Depending
on which invocation is selected as representative, CERE will either underes-
timate the memory bound invocation speedup or overestimate the compute
bound invocation speedup.

An approach to avoid such scenarios is to rely on the performance char-
acterization used to cluster regions. In our example, by measuring the
hardware performance counters, we can detect which invocation is memory
bound or compute bound. It could be interesting to compare the current
temporal clustering against the spatial one over the invocations and check
the performance prediction quality.

Nevertheless, in our experiments using the time clustering was sufficient
most of the time. Here is our hypothesis why a simple execution time clus-
tering is so efficient.

Currently, CERE only clusters invocations from the same region of code.
Each invocation is executed with its own working set which explains why
invocations of the same region may have different performance. However,
since invocations are multiple executions of the same region, they share some
common properties i.e. they are all compiled from the same source code.
In particular, we expect invocations from the same region to have similar
static metrics.

CERE does not cluster invocations only through their execution time, it
also takes advantage of the fact that invocations share common static prop-
erties. Nine out of our thirteen performance metrics describing applications
behavior (see table 4.1) are issued from static analysis which explains why
the current temporal clustering is so successful.

As a future work, we can extend the temporal clustering on invocations
from different regions i.e. combine spatial and temporal subsetting. In such
scenarios, we lose the static properties of the invocations: only using the
execution time as clustering criteria will not be enough. So, we will have

4.5. DISCUSSION 73

use the full set of performance metrics for each invocation.

4.5.3 Enhance Spatial Clustering

Two complementary approaches can be used to enhance the spatial clus-
tering. First, we can use fitter metrics for the clustering. Second, we can
improve the statistical process that uses the metrics to cluster the regions.

Architecture Independent Metrics

Despite depending on the reference architecture, the metric set that we
used to perform the spatial reduction in section 4.3 is closely related to
architecture-independent metrics [58, 42]. For example, codelets can use
scalar instructions (S), vector instructions (V), or a mix of both (V + S).
We manually analyzed the vectorization of the codelets, Vec., and compared
it to the vectorization ratio, Vec. %, reported by MAQAO. They are highly
correlated. Nevertheless, an improvement of our methodology remains to
use these architecture independent metrics to cluster the applications.

Improve the Statistical Process

We rely on a GA to find the relevant metrics. We observe in our final results
that there are a lot of strongly correlated metrics. For example, three of the
performance metrics describe the vectorization. Also some of the memory
behavior metrics are related: the L3 miss rate and the bandwidth.

Correlated metrics carry a similar information about the codes. Sim-
ilarly, uncorrelated metrics provide different information. The GA selects
multiple correlated metrics. This means that the information that they carry
is more important for the clustering than the information that is provided
by metrics that are not correlated to any other metrics. In other words, the
GA artificially gives importance to some information by selecting multiple
redundant metrics.

The limitation of this approach is that a metric may be more important
than the others but cannot be correctly weighted in the clustering process.
An important metric which is not correlated to any other metrics illustrates
this idea. A proper way to fix such scenarios is to apply a PCA over the
metrics before starting the GA. The GA takes a liner combination of the
principal components as inputs to produce the final performance metric set.
We believe that this approach can enhance the overall prediction process.

We can also improve the machine learning process by using a more ef-
ficient approach. For instance, Artificial Neuronal Networks (ANNs) we
successfully applied to predict the execution time of applications [56]. So,
we can replace the GA training by Artificial Neuronal Networks.

74CHAPTER 4. BENCHMARKREDUCTION STRATEGIESWITH CODELETS

4.6 Conclusion

This chapter presented the three reduction strategies used by CERE to
accelerate the evaluation of new systems. In next chapter, we will validate
the codelet extraction process.

Chapter 5

Experimental Validation

Contents

5.1 Introduction . 75

5.2 Experimental Setup 76

5.2.1 Applications . 76

5.2.2 Execution Environments 77

5.3 CERE Coverage and Replay Accuracy 78

5.3.1 Serial Codelets Validation 78

5.3.2 OpenMP Codelets Validation 80

5.4 Codelet Exploration 82

5.4.1 Scalability Exploration 84

5.4.2 Cross Architecture Scalability Replay 86

5.4.3 NUMA Aware Replay 86

5.4.4 Compiler Exploration 88

5.5 Conclusion . 89

5.1 Introduction

In chapter 3, we presented the CERE codelet extraction and replay method-
ology. Chapter 4 describes how we can reduce the benchmarking evaluation
cost of different systems with CERE.

This chapter presents the experimental setup used in this thesis and
validates the codelet methodology. In particular, we check codelet’s replay
quality on both serial and parallel benchmarks in section 5.3. We use the
benchmark reduction factor to quantify the acceleration of codelet runs over
application runs and the accuracy to measure the condifance of the codelets
replays. Accuracy is defined as the relative difference between the original
and replay execution times of a region. The original time is the time spent
inside the loop or the parallel region in the original application. The re-
play time is the predicted time by the temporal subsetting model which is
explained in section 4.2.

We also check that codelets can be used to evaluate the impact of:

• the strong scalability in section 5.4.1,

75

76 CHAPTER 5. EXPERIMENTAL VALIDATION

• the scalability on a new mirco-architecture in section 5.4.2,

• NUMA thread configurations 5.4.3,

• compiler optimizations 5.4.4.

5.2 Experimental Setup

This section describes the experiment setup used during this thesis.

5.2.1 Applications

We performed our experiments on various benchmark suites and an indus-
trial application. Most of the benchmarks that we used focus on High Per-
formance Computing (HPC).

Sequential Benchmarks

As sequential applications, we use the NAS SER [3] 3.0 benchmarks, 28 Nu-
merical Recipes (NR) [60] benchmarks provided by Nodohouenou [103], the
SPEC 2006 FP benchmarks, and a Reverse Time Migration [107] (RTM)
proto-application. RTM is used in geophysical depth imaging and imple-
ments the finite-difference time-domain (FDTD) step used to solve the wave
propagation equation in an isotropic medium. A full description and char-
acterization of the FDTD proto-application is provided by [86].

All the benchmarks from NAS and SPEC FP are used in our evaluation,
therefore we performed our serial experiments on 55 different applica-
tions. NAS benchmarks were tested on class A and B data sets. SPEC
benchmarks were tested on ref data sets.

Parallel Benchmarks

We performed the experiments on a C OpenMP parallel version [108] of the
NAS Parallel Benchmarks [109] (NPB). NPB are an established OpenMP
benchmark suite and a good target to evaluate OpenMP isolation with
CERE. Yet, most of the NPB are written in Fortran and we cannot use
dragonegg because it does not support OpenMP directives.

The Omni Compiler Project (OCP) [110] maintains an unofficial C ver-
sion of NPB 2.3. Unfortunately, it is based on an outdated NPB 2.3 which
was released in 1997. In particular, in the NPB 2.3 version the OpenMP
parallelism is coarse grained: most of the benchmarks only have one huge
parallel region. This makes them a poor choice to evaluate CERE. To over-
come this problem, we have updated the OCP unofficial NAS benchmarks so
that they mimic the structure of the NPB 3.0 OpenMP official version. This
effort involved carefully porting the changes in the official Fortran version

5.2. EXPERIMENTAL SETUP 77

CERE Spatial Temporal Architecture Compiler Thread
validation subsetting subsetting selection tuning tuning

NAS SER yes yes yes yes yes no
NAS NPB yes no yes yes yes yes
SPEC FP yes no yes no no no
NR no yes no yes no no
RTM yes no yes no yes no
PARSEC yes no yes no no yes

Table 5.1: Applications use cases.

to the unofficial C version. Our 3.0 C version of NPB is publicly available
at http://benchmark-subsetting.github.io/cNPB.

The CG benchmark was slightly modified to overcome a bug in the LLVM
OpenMP front-end. A global barrier was added after omp for reduction

clauses. According to the OpenMP specification, this synchronization is
implicit and mandatory, but the LLVM OpenMP implementation did not
honor it. This issue has since been reported to Intel and corrected [111].

The OpenMP C benchmarks were all run with CLASS A datasets. Also,
to evaluate more parallel codes, we used Blackscholes, an option pricing
with Black-Scholes Partial Differential Equation , from the PARSEC bench-
marks [112] . Unlike NAS benchmarks which focus HPC, PARSEC Blacksc-
holes focus finance computing.

Table 5.1 summarizes for all the applications, their usage in this thesis.

5.2.2 Execution Environments

Table 5.2 describes the machines we used in this thesis. They belong to six
different Intel CPU generations (Atom, Core2 Duo, Nehalem, Sandy Bridge,
Ivy Bridge, and Haswell) and possess quite distinct memory hierarchies.
They include different brands that target consumer workstations but also
servers and embedded systems. These machines were selected to validate
that benchmarking reduction strategy is applicable on significantly different
architectures. They also attest that CERE replay process is portable across
architectures. Each test machine in this thesis refer to one of these eight
architectures.

We use Clang 3.3 and 3.4 to compile the C/C++ applications. For-
tran codes were supported through Dragonegg with GCC 4.6 and 4.7 for
respectively Clang 3.3 and 3.4. We also use the Intel compiler 12.1.0 for
architecture selection in section 6.4. We compile all OpenMP codes in this
thesis with Clang 3.4. To execute OpenMP applications, we use the open
source OpenMP Runtime Library libiomp5 [92].

78 CHAPTER 5. EXPERIMENTAL VALIDATION

Atom Core2 Nehalem Xeon Nehalem

CPU D510 E7500 L5609 E5620
Freq (GHz) 1.66 2.93 1.86 2.40
Sockets 1 1 1 1
Cores per socket 2 2 4 4
Threads per core 2 1 1 2
L1 (KB) 56 64 64 64
L2 (KB) 512 3 MB 256 256
L3 (MB) - - 12 12
Ram (GB) 4 4 8 24

Haswell Ivy Bridge Sandy Bridge Xeon Sandy Bridge

CPU i7-3770 i7-4770 E3 1240 E5
Freq (GHz) 3.40 3.40 3.30 2.40
Sockets 1 1 1 2
Cores per socket 4 4 4 8
Threads per core 2 2 2 2
L1 (KB) 64 64 64 64
L2 (KB) 256 256 256 256
L3 (MB) 8 8 8 20
Ram (GB) 16 16 6 64

Table 5.2: Test architectures.

5.3 CERE Coverage and Replay Accuracy

The codelet based benchmarking process is only viable if the codelets faith-
fully capture the original application behavior. This section evaluates the
quality of codelet’s extraction and replay.

CERE starts by extracting all representative codelets from the test
benchmarks. For each codelet, we evaluate the accuracy of its replay. As
discussed in section 3.4, we consider that a codelet is accurately replayed if
its replay performance is within 15% of the original execution time.

In this section, we validate CERE on the NAS and SPEC benchmarks.
CERE includes a report generator that automatically captures the execu-
tion traces, selects representative invocations and computes coverage and
replay accuracy of a given set of benchmarks. The reports can be visual-
ized in any modern web browser. The user clicks on a captured codelet
in the call graph to see its temporal subsetting and replay accuracy statis-
tics. The reports for all NAS and SPEC benchmarks can be viewed at
http://benchmark-subsetting.github.io/cere/.

5.3.1 Serial Codelets Validation

CERE is evaluated on the NAS 3.0 serial benchmarks and the SPEC 2006 FP
benchmarks compiled with -O3 and LLVM 3.3. Performance is measured

5.3. CERE COVERAGE AND REPLAY ACCURACY 79

Core2 Haswell

0

25

50

75

100

N
A

S
.A

lu cg m
g sp ft bt is ep lu cg m

g sp ft bt is ep

%
 o

f
E

xe
c
.
T

im
e

accurate replay codelet coverage

Haswell

0

25

50

75

100

S
P

E
C

F
P

0
6

ga
m

es
s

sp
hi
nx

3

de
al
II

w
rf

po
vr

ay

ca
lc
ul
ix

so
pl
ex

le
sl
ie
3d

to
nt

o

gr
om

ac
s

ze
us

m
p

lb
m

m
ilc

ca
ct
us

AD
M

na
m

d

bw
av

es

ge
m

sf
dt

d

sp
ec

ra
nd

%
 o

f
E

xe
c
.
T

im
e

Figure 5.1: Evaluation of CERE on NAS and SPEC FP 2006. The Coverage
is the percentage of the execution time captured by codelets. The Accurate
Replay is the percentage of execution time replayed with an error less than
15%.

using the Time Stamp Counter (TSC) which provides a precision around
200 cycles. To ensure that the error upper bound due to measurement noise
remains approximately 10% for all codelets, we removed codelets whose
execution time was less than 2000 cycles per invocation.

Figure 5.1 shows for the NAS and SPEC 2006 FP benchmarks the per-
centage of execution time captured by codelets and the percentage of exe-
cution time that could be accurately replayed. On average, the extracted
codelets cover 97.3% of the execution time in NAS and 76.6% in SPEC.

On NAS, both coverage and replay accuracy are very high. MG matching
is a bit lower (65.1%) than the other benchmarks because of two borderline
codelets with replay errors at 16.8% and 18.5%. With a tolerated error of
20%, we would have reached 95% coverage.

NAS codelets were captured and replayed on Haswell and Core2 to show
that CERE reliably supports multiple architectures. The small differences in
coverage between Haswell and Core2 are due to the changes in contribution
of codelets to the execution time, for example CG spends relatively more
time on I/Os on Haswell architecture.

80 CHAPTER 5. EXPERIMENTAL VALIDATION

SPEC FP results are evaluated on the Haswell architecture. Eleven out
of eighteen benchmarks have high coverage and replay accuracy. Here is a
list of the problems affecting the seven remaining benchmarks:

• sphinx3, wrf, povray, and calculix have low coverage because most of
the time is spent in I/O operations. The current version of CERE
does not capture codelets performing I/O because the dump does not
preserve file descriptors state. However 100% of captured codelets
match.

• gamess and dealII have low coverage because most of the performance
is spent in loops taking less than 2000 cycles, which were not consid-
ered.

• gamess has low matching because the only remaining codelet, covering
40% of the execution time, is not accurately replayed. It is due to a
warmup bug which is being investigated.

• calculix has low matching because of a borderline codelet isortii

which has a replay error of 16% but accounts for 10% of the running
time. It is a sort function which is very sensitive to warmup effects.

• soplex has low matching because CERE fails, due to a capture bug,
to replay its main codelet covering 47.4% of the execution time.

Figure 5.2 shows that the reinlining and NoAlias-tagging performed dur-
ing the replay compilation pass are beneficial in 11 benchmarks. Overall
CERE coverage and accuracy are high in both NAS and SPEC benchmarks,
showing that CERE codelets can be efficiently used as performance proxies
for many applications.

CERE has higher replay accuracy than the state of the art code isolator
tool, Codelet Finder. On NAS, Codelet Finder accurately replays 69% [71]
of the execution time, whereas CERE replays 90.9%. On SPEC, Codelet
Finder has very low replay accuracy or fails to extract codelets for many
benchmarks (the 2013 version of Codelet Finder hangs on gamess, gromacs,
cactus, calculix, tonto, specrand, and wrf), whereas CERE accurately re-
plays 66.3% of the SPEC execution time.

5.3.2 OpenMP Codelets Validation

We start the OpenMP codelet validation on a simple case: we capture
OpenMP regions on a fixed thread configuration and architecture. Then,
we replay the codelets on the same architecture, with varying number of
threads, but with the same thread placement affinity. While simple, this
process ensures that codelets can be used to measure parallel regions exac-
tion time. Section 6.3 extends this validation by varying the thread affinities
in order to tune the thread placement strategy.

5.3. CERE COVERAGE AND REPLAY ACCURACY 81

NAS.A

0

25

50

75

100

lu cg m
g sp ft bt is ep

%
o
f
E

xe
c
.
T

im
e

base reinlining reinlining+noalias

SPECFP06

0

25

50

75

100

ga
m

es
s

sp
hi
nx

3

de
al
II

w
rf

po
vr

ay

ca
lc
ul
ix

so
pl
ex

le
sl
ie
3d

to
nt

o

gr
om

ac
s

ze
us

m
p

lb
m

m
ilc

ca
ct
us

AD
M
na

m
d

bw
av

es

ge
m

sf
dt

d

sp
ec

ra
nd

%
 o

f
E

xe
c
.

T
im

e

Figure 5.2: Percentage of execution time accurately replayed (error < 15%)
on the NAS and SPEC FP benchmarks with different replay configurations.
Reinlining and explicitly marking cloned variables as NoAlias improve replay
accuracy in eleven benchmarks.

82 CHAPTER 5. EXPERIMENTAL VALIDATION

To evaluate OpenMP replay accuracy, we extracted the full set of
codelets from all the NAS NPB applications. The codelet set maps exactly
to the parallel regions of the original OpenMP application. We reduced this
full set, by removing the codelets that represent less than 5% of the original
execution time. Originally 59 codelets were captured, and after filtering only
25 were kept. Then we measured the original and codelet execution time for
each codelet, and computed the replay accuracy.

During this validation, the CERE page tracing capture presented in sec-
tion 3.5.2 was not yet supporting OpenMP applications. Instead, to capture
the working set of OpenMP applications, CERE used to take a full snap-
shot of the original application address space. The application is frozen
using the ptrace system call, then a helper process dumps the memory con-
tents to disk, and returns the control to the original application. Codelet
Finder [74, 71] presented in the background uses a similar technique. This
method is simple but presents some limitations. In particular, full memory
dumps are large, and do not keep a trace of the pages touched during the
parallel region execution. So, they are incompatible with the CERE NUMA
aware capture and replay methodology described in section 3.5.5.

In these experiments, we ran capture using a single thread run and di-
rectly changed the thread number at replay to evaluate the different thread
configurations.

Table 5.3 summarizes the replay accuracy over the NPB codelet set mea-
sured on Xeon Nehalem using a default scatter thread placement. CERE
faithfully replays most of the parallel regions: the original and replay perfor-
mance is close. This test machine has a single socket: there are no NUMA
effects across the threads which explains why the NUMA aware replay was
not required to faithfully replay the codelets. Also, a single working set was
enough to faithfully replay the benchmarks parallel regions except for MG
for which we needed to extract multiple working sets to accurately replay
its codelet execution time.

Only two codelets are misreplayed: SP xsolve and CG residual norm.
CG residual norm error is due to cache state differences between the orig-
inal and the replay executions. We rely on an optimistic warmup strategy
for parallel codes described in section 3.5.3 which is not accurate enough for
this benchmark. CG residual norm working set is cold in the original run
but incorrectly warmed-up during replay. We also suspect warmup issues
for SP xsolve.

5.4 Codelet Exploration

In the previous section, we validated codelets replay by showing that it is
similar to the original execution. This section illustrates how codelets can
be used as proxies to evaluate different parameters.

5.4. CODELET EXPLORATION 83

Benchmark Threads
Parallel region 1 2 4 8 weight %

CG
conj grad iteration loop 11.18 8.05 0.23 2.66 95.8

conj grad residual norm 12.26 11.27 31.756 3.08 66.4

MG
resid 0.68 0.03 1.19 0.46 53.5

psinv 1.42 1.07 0.57 1.43 22.8

interp 8.76 8.09 8.18 1.75 07.2

rprj3 1.31 3.15 2.09 7.27 05.8

norm2u3 0.12 0.89 1.53 0.14 05.6

zero3 4.03 4.86 5.46 10.50 05.4

EP
main 0.01 2.00 0.10 1.36 99.99

IS
main random generator 0.22 0.50 0.52 3.76 80.6

rank 0.28 0.84 1.64 5.30 39.9

SP
xsolve 23.27 17.37 10.59 4.37 33.4

zsolve 2.64 1.30 1.86 2.07 30.9

ysolve 8.46 5.55 6.66 5.61 32.7

compute rhs 1.61 1.60 2.1 0.57 26.8

BT
zsolve 0.14 3.52 2.5 10.80 33.6

ysolve 0.20 3.76 1.82 6.25 32.3

xsolve 0.33 0.26 4.16 11.13 30.5

compute rhs 0.84 0.77 0.08 2.34 11.1

FT
cffts2 0.38 2.58 3.29 3.20 31.3

cffts3 5.12 4.71 5.06 5.27 30.9

cffts1 1.29 0.99 0.11 0.84 30.7

compute indexmap 3.09 5.20 0.32 3.82 06.6

LU
ssor iteration 0.03 0.86 0.53 0.03 98.7

rhs 0.89 1.09 0.58 2.01 27.4

The table shows the relative error between the original and codelet execution time for
each NPB codelet over different thread configurations. Measures were performed on Xeon
Nehalem. The weight % column is the contribution of the region to the total running time
(the weight changes across thread configurations, here we consider the maximum).

Table 5.3: Codelet Replay Accuracy

84 CHAPTER 5. EXPERIMENTAL VALIDATION

Core2 Xeon Nehalem Xeon Sandy Bridge

Accuracy 1.84% 2.9% 7.4%
Reduction factor 25.2 27.4 23.7

Table 5.4: NAS 3.0 C version average prediction accuracy and benchmarking
acceleration per architecture.

� � � � �� ��

�������

�

�

�

�

�

�

�

�
�
�
��
�
�
��
�
�
��
�

��� ��������������

����

���������

Figure 5.3: Real vs. CERE execution time predictions on Xeon Sandy
Bridge for the SP compute rhs codelet

5.4.1 Scalability Exploration

This section describes how CERE predicts strong scalability of applications.
These experiments validate over the NAS NPB the prediction model de-
scribed in section 4.4

Table 5.5 details NPB prediction and benchmarking acceleration over
three different architectures. As explained in section 5.3.2, codelets were
extracted on a single thread.

Overall CERE scalability prediction is fast and accurate. Table 5.4 sum-
marizes the average accuracy and acceleration over all the NPB. In fig-
ure 5.3 we compare the real and predicted execution time on SP compute

rhs codelet which has the biggest execution time per invocation within SP.
Problems are highlighted in gray on table 5.5 and explained below:

• EP benchmark shows no acceleration at all with our method. EP

5.4. CODELET EXPLORATION 85

TABLE I
SCALABILITY PREDICTION ON NPB

CORE2 NEHALEM

Accuracy Reduction factor Accuracy Reduction factor

Threads 1 2 1 2 1 2 4 8 1 2 4 8

CG 0.25 1.72 28.77 19.55 10.64 5.38 0.38 22.62 40.41 23.07 12.65 8.07

MG 1.94 1.13 0.55 1.14 0.32 0.74 1.25 0.11 1.81 1.94 2.26 2.73

EP 0.11 0.13 1.0 1.0 0.01 0.19 0.1 1.13 1.0 1.0 1.0 0.99

IS 4.16 4.29 1.01 1.23 0.37 1.63 2.08 4.89 1.12 1.12 1.15 1.2

SP 1.22 2.38 92.82 81.58 8.32 5.69 4.49 5.38 103.02 97.52 94.69 92.74

BT 0.87 4.1 36.48 26.41 0.16 3.1 0.59 7.98 38.33 41.05 44.26 49.18

FT 1.26 3.34 1.76 1.22 0.93 0.75 0.05 0.21 1.93 1.96 2.11 2.32

LU 1.72 1.0 54.44 54.2 0.24 1.0 0.63 0.67 52.91 52.53 51.81 50.25

SANDY BRIDGE

Accuracy Reduction factor

Threads 1 2 4 8 16 32 1 2 4 8 16 32

BT 1.51 2.47 2.64 12.99 18.28 15.66 35.83 39.83 43.86 51.13 55.47 46.99

EP 0.1 0.09 5.06 0.31 2.81 0.7 1.0 1.0 1.05 1.0 1.02 0.98

LU 0.01 2.08 1.96 1.95 0.19 2.43 51.86 50.9 50.67 47.7 45.39 20.78

FT 3.09 1.35 0.91 1.3 0.68 2.52 1.9 1.98 2.17 2.49 2.96 2.77

SP 0.78 0.06 0.14 0.05 3.38 0.67 92.19 88.72 85.89 83.01 75.04 49.21

CG 15.15 3.37 9.51 18.77 13.86 26.62 37.28 17.95 9.64 5.29 4.31 4.82

IS 1.53 6.22 24.83 17.14 30.57 27.57 1.12 1.08 1.61 1.61 1.0 0.99

MG 1.07 6.08 4.24 2.3 4.73 54.24 1.88 1.92 2.32 3.01 3.77 1.7

Table 5.5: Overall CERE accurately predicts the scalability on the three
architectures. The average prediction error is 4.9%. The prediction is in
average 25 × faster with CERE. In this experiment a separate initialization
step was performed on each architecture. In Xeon Sandy Bridge the error
is higher on IS and with 32 threads. IS misprediction is due to the fact that
changing the number of threads changes the memory layout which impacts
the sequential regions violating our model assumptions.

sequential part is negligible and its single parallel region is only invoked
once. Therefore CERE replay strategy is not faster than the original
run.

• IS has low accuracy on Xeon Sandy Bridge. This is because the mem-
ory layout in IS depends on the number of threads. A higher number
of threads changes the blocking and impacts the execution time of
sequential regions as demonstrated in [113]. This violates our base
assumption of invariant sequential execution time.

• On Xeon Sandy Bridge, replays running with 16 threads or above
show high misprediction errors in many cases. The test machine has 2
NUMA sockets. The CERE warmup and replay strategy that was used
in these experiments do not support NUMA behaviors. Thread con-
figurations with high number of threads are more sensitive to NUMA
latencies which explains why we have more prediction errors.

86 CHAPTER 5. EXPERIMENTAL VALIDATION

1 NUMA domain (compact) 2 NUMA domains (scatter)

0e+00

1e+10

2e+10

3e+10

4e+10

2 4 8 16 2 4 8 16 32

thread number

C
y
c
le

s

Original Single Thread Warmup NUMA Warmup

Figure 5.4: Prediction accuracy of a single threaded warmup versus a NUMA
aware warmup on BT xsolve on Xeon Sandy Bridge. Only a NUMA aware
warmup is able to predict this region execution time on a multi NUMA node
configuration. We note that the capture was performed with 16 threads.

5.4.2 Cross Architecture Scalability Replay

CERE codelets are portable: they can be extracted on an architecture and
replayed on another one. To demonstrate cross-architecture portability, we
extracted the NPB codelets on Xeon Nehalem and replayed them on Xeon
Sandy Bridge. Table 5.6 summarizes the results. Overall accuracy is high,
except for CG replays and high number of threads replays.

As explained in section 3.5.1, codelets replay made no assumptions about
the register layout. So codelets are portable across architectures that have
the same memory layout. Since Xeon Sandy Bridge and Xeon Nehalem have
the same memory layout, we can cross capture and replay our codelets.

As before, the misprediction with many threads is caused by the inability
of CERE to correctly predict scalability when there are NUMA behaviors.
The following chapter rely on the NUMA aware capture and replay strategy
which diminishes these scenarios. CG misprediction is caused by our heuris-
tic warmup which, in this case, proves to be insufficient. Indeed our warmup
strategy is optimistic: it assumes that the working set is hot in the original
execution, which is not true in this scenario. Perspectives for improving the
warmup strategy are discussed in the conclusion.

5.4.3 NUMA Aware Replay

In the previous sections, we observe that without a NUMA aware capture, we
cannot faithfully replay the codelets with some scatter placement thread
configurations. This section illustrates how the CERE NUMA aware capture
operates over a parallel region.

Figure 5.4 outlines this problem on a 2-NUMA nodes architecture. Pre-
vious CERE warmup uses a single thread to remap the pages to their original
addresses: all the pages are bound to a single NUMA node. Replays accu-
rately predict the execution time as long as the affinity binds threads to the

5.4. CODELET EXPLORATION 87

Benchmark Threads
Parallel region 1 2 4 8 16 32 weight %

CG
conjgrad iteration loop 7.57 4.44 1.69 1.35 5.44 3.06 95.6

conjgrad residual norm 18.86 15.65 6.99 24.3 42.63 36.7 93.5

MG
resid 1.34 1.64 1.72 1.59 1.03 63.20 56.0

psinv 20.27 3.13 2.09 37.25 10.06 80.41 23.1

zero3 6.98 3.20 8.12 8.23 3.33 71.06 09.2

interp 7.13 6.55 6.22 2.48 7.50 92.03 07.4

rprj3 7.53 6.50 9.86 11.93 15.38 94.72 05.6

EP
main 0.04 0.10 0.05 0.03 0.26 0.44 99.99

IS
main random generator 0.63 1.09 0.67 9.59 29.14 1.98 82.4

rank 0.69 0.42 0.24 0.22 1.49 8.24 42.8

SP
zsolve 2.54 0.01 6.02 10.4 3.94 4.77 35.1

xsolve 2.80 2.21 4.84 4.25 0.90 9.48 31.9

compute rhs 2.04 1.60 1.30 0.19 1.42 0.53 27.7

ysolve 0.51 0.03 5.23 10.94 1.84 3.72 27.1

BT
zsolve 0.30 2.00 1.58 12.51 21.08 24.02 33.7

xsolve 0.87 3.97 5.01 12.53 19.78 15.56 33.4

ysolve 0.13 1.75 5.58 16.30 22.39 13.05 33.1

compute rhs 0.19 0.99 1.96 1.43 2.30 3.619 09.5

FT
cffts2 1.66 0.47 1.57 0.80 0.70 0.91 30.5

cffts3 9.49 7.93 7.83 7.58 7.13 2.10 30.4

cffts1 0.03 0.84 1.5 0.08 1.16 0.34 30.2

compute indexmap 0.80 1.39 2.70 0.30 0.83 8.78 10.1

LU
ssor iteration 1.44 0.01 2.58 2.27 0.32 0.48 76.8

rhs 0.12 0.54 0.26 0.11 0.45 0.73 26.1

In this experiment, codelets were extracted on Xeon Nehalem and replayed on Xeon
Sandy Bridge, enabling quick cross architecture scalability prediction. The table shows
the relative error between the original and codelet execution time for each NPB codelet
over different threads configurations. The prediction error is low, except for CG residual
norm codelet and thread configurations with high number of threads. CG misprediction is
caused by our heuristic warmup which, in this case, proves to be insufficient. Misprediction
on high number of threads is again due to current used warmup and replay approach
which does not support NUMA behaviors. The weight % column is the contribution of
the region to the total running time (the weight changes across thread configurations, here
we consider the maximum).

Table 5.6: Cross Architecture Replay Accuracy

88 CHAPTER 5. EXPERIMENTAL VALIDATION

LLVM middle−end optimization passes combination

C
y
c
le

s
 (

Iv
y
b
ri

d
g
e
 3

.4
G

H
z
)

6.0e+07

8.0e+07

1.0e+08

1.2e+08

0 200 400 600

real
prediction
O3

Figure 5.5: SP ysolve codelet. 1000 schedules of random passes combina-
tions explored based on O3 passes. We only consider compilation sequences
that produce distinct binaries. The passes combinations are ordered accord-
ing to their real execution time.

same NUMA node. Otherwise, the replay paies NUMA latencies that do
not appear in the original run and which cause prediction discrepancies.

The following chapter 6 takes advantage of this approach to tune different
thread configurations.

5.4.4 Compiler Exploration

In this section, we test codelets ability to explore compiler sequences through
an example.

Here is the experiment setup used to explore different compiler optimiza-
tion sequences. The compilation search was performed on LLVM 3.4 using
a random pass selection. We use LLVM opt and llc to change respectively
middle-end and back-end optimizations.

Middle-end passes have different impact depending on their order of
execution, and can be executed multiple times. -O3 is a manually tuned
sequence composed of 65 ordered passes aiming to provide good perfor-
mances. In this thesis, random compilation sequences were generated by
down-sampling the -O3 default sequence. Each pass was removed with a
0.7 probability, and the process was repeated four times to explore the im-
pact of pass repetitions. We empirically found that this generation method
produces good and diverse candidates.

Back-end passes were selected among -O0,-O1,-O2 and -O3. We also
consider two types of vectorial instructions: AVX and SSE.

Figure 5.5 illustrates the compiler tuning on a region. It presents SP

5.5. CONCLUSION 89

ysolve original execution time versus CERE predicted execution time over
1000 complier sequences. Original compiler sequences are sorted in a de-
scending order. CERE model faithfully predict the different optimizations
execution time.

Chapter 6 extends this tuning to all the NAS benchmarks. It also pro-
duces the hybrid binaries described in section 3.6.

Acknowledgments

The validations of CERE were done in collaboration with Chadi Akel, Eric
Petit, William Jalby, and Pablo de Oliveira Castro. I also would like to
thank Florent Conti for his contribution to the scalability prediction model.

5.5 Conclusion

This chapter presented the validation of the codelet approach for bench-
marking. It also extends the validation to scalability problems. We note
that, predicting the scalability of applications raises NUMA problems. Cor-
rectly supporting NUMA behaviors requires a supplementary step in order
to faithfully capture and replay the parallel regions. The following chapter
uses the page tracing strategy that tackles these NUMA behaviors.

90 CHAPTER 5. EXPERIMENTAL VALIDATION

Chapter 6

Holistic Tuning

Contents

6.1 Introduction . 91

6.2 Motivating Example 92

6.3 Thread Configurations 95

6.4 Architecture Selection 96

6.5 Compiler Optimizations 104

6.5.1 Monolithic Tuning 104

6.5.2 Piecewise Tuning 106

6.6 Discussion . 109

6.6.1 Data Sensitivity of Piecewise Tuning 109

6.6.2 Region Dependency Checker 109

6.7 Conclusion . 110

6.1 Introduction

There are different approaches to tune parameters or to select the best ar-
chitecture for an application. For instance, iterative compilation presented
in section 2.6 is a well known search method which outperforms default -O3
compiler optimization level. The idea is to apply successive compiler trans-
formations to a program and to evaluate them by executing the resulting
code. Other execution driven studies [83, 84] are used to find the best archi-
tectures for a set of programs or to explore the efficiency of different thread
placement strategies or frequencies.

A common point of these search studies is that they require many pro-
gram evaluations and executions. The problem is that executing applica-
tions is a costly and time consuming process, especially if we have thousands
parameters to evaluate on multiple architectures.

In this chapter, we perform a piecewise holistic exploration to find the
best compiler optimizations, thread configurations, and architectures for a
set of applications. We rely on CERE: representative loops or OpenMP
parallel regions are extracted as codelets. Instead of evaluating parameters
or architectures on the whole applications, we separately evaluate them on
each codelet.

91

92 CHAPTER 6. HOLISTIC TUNING

The codelet based search enhances both the search cost and the search
benefits:

• through the reduction strategies presented in chapter 4, codelets mini-
mize the evaluation of the redundancies within the applications during
the search process,

• the piecewise evaluation finds the best parameters for each region.
CERE combines them in a single hybrid binary that outperforms stan-
dard overall program monolithic tuning.

Similarly to chapter 5 we also use the benchmark reduction factor and the
accuracy to quantify the quality of the codelet exploration. We also note
that we apply only temporal reduction to accelerate thread and compiler
configurations tuning. Architecture selection is currently the only use case
where we perform both spatial and temporal reductions.

In Section 6.2, through a motivating example, we present how costly it
is to simultaneously explore compiler optimizations and thread configura-
tions. We also demonstrate the benefits of the piecewise tuning. Section 6.3
gives an overview how codelets cane tune thread NUMA configurations.
Section 6.4 applies the codelet reduction model to quickly evaluate new ar-
chitectures. In section 6.5, we use codelets to explore for each region of code,
different compiler optimizations. Finally, we discuss the limitation and the
future work of the codelet tuning methodology in section 6.6.

6.2 Motivating Example

We demonstrate how CERE operates on SP from the NAS NPB benchamrks
over Xeon Sandy Bridge. CERE autotuning achieves a 1.82× performance
speedup over the standard parameters levels. Thanks to the CERE codelet
approach, the exploration time is approximately five times cheaper compared
to the whole program iterative compilation.

CERE starts by profiling SP and automatically selecting representative
OpenMP regions to tune. Xsolve, ysolve, zsolve, and rhs are selected and
cover 93% of SP execution time. CERE extracts these regions as codelets
and tunes them with a holistic exploration across three dimensions: thread
number, thread placement, and LLVM compiler passes. Once satisfying
parameters are found, CERE produces an hybrid application where each
region uses the best found parameters.

We explore the 12 thread configurations presented in section 6.3 and 150

LLVM optimization sequences generated using the random sub-sampling
presented in section 5.4.4. Combining them produces an exploration space
of 1800 points, which gives an insight of how costly it is to simultaneously
tune multiple parameters.

6.2. MOTIVATING EXAMPLE 93

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●

rhs

ysolve

5

10

20

40

80

160

320

20

40

80

160

s2 c2 h2 s4 c4 h4 s8 c8 h8 s1
6

c1
6

h3
2

m
e
g
a
c
y
c
le

s

● O3 best worst s16.O3

Figure 6.1: Tuning exploration for two SP regions. For each affinity, we
plot the best, worst, and -O3 optimization sequences. Custom optimization
beats -O3 for s2 (i.e. scatter with 2 threads),s4, and s8 on ysolve.

Figure 6.1 shows the performance of two SP parallel regions across this
exploration space. We notice that there is a strong interaction between
the compiler and the thread parameters as they both significantly impact
the performances. Moreover, the best parameters are different for the two
regions: scatter placement is best for rhs while compact benefits ysolve.

CERE makes it possible, through codelet replay, to explore each region
independently. Also, thanks to the temporal reduction model presented in
section 4.2, CERE accelerates the evaluation of thread affinities and compiler
optimizations on SP, which are respectively 5.84× and 4.52× times faster
than a full application evaluation while keeping a low average error of 2.33%.

Custom parameters outperform the standard 16 threads scatter s16

-O3 on SP. Table 6.1 shows the performance of different thread affinities com-
piled with -O3. The best custom thread affinity 0;1;2;3;4;5;6;7 (single
NUMA socket) achieves a speedup of 1.71× over the standard 16 threads

scatter (two NUMA sockets).

We explored with CERE 350 compiler optimization sequences on the
best single NUMA configuration found above. Xsolve and ysolve work
best at the default -O2 level, but a custom best sequence is found for
zsolve and rhs. Figure 6.2 shows the performance of each region compiled
with the default optimization and the best custom sequences. No single
sequence is the best for all regions. CERE hybrid compilation presented in

94 CHAPTER 6. HOLISTIC TUNING

thread affinity xsolve ysolve zsolve rhs total

s2 0;8 32.3 23 28.5 23 106.8

c2 0;1 21.4 17.6 18.1 23.7 80.8

h2 0;16 40 32.6 23 46.1 141.7

s4 0;8;1;9 25.9 20.9 26 12.1 84.9

c4 0;1;2;3 15.5 12.7 13.8 13.2 55.2

h4 0;16;1;17 23.8 17.5 16 24.3 81.5

s8 0;8;1;9;2;10;3;11 24.4 21.9 28.6 6.9 81.8

c8 0;1;2;3;4;5;6;7 14.4 13.4 14.3 9.1 51.2

h8 0;16;1;17;2;18;3;19 17.7 14.2 13.9 13.5 59.3

s16 16 scatter 25.1 21.4 35.5 5.3 87.4

c16 16 compact 17 15 15.5 9.7 57.2

h32 32 scatter 36 31.2 38.9 6.4 112.4

Table 6.1: Execution time in megacycles of SP parallel regions across dif-
ferent thread affinities with -O3 optimization. For n threads, we consider
three affinities: scatter sn, compact cn, and hyperthread hn. Executing SP
with the c8 affinity provides an overall speedup of 1.71× over the standard
(s16).

rhs zsolve xsolve+ysolve total

8.6

9.0

9.4

13

14

15

16

27.5

30.0

32.5

50

55

60

hy
br

id O
2

O
3

rh
s−

be
st

z−
be

st

hy
br

id O
2

O
3

rh
s−

be
st

z−
be

st

hy
br

id O
2

O
3

rh
s−

be
st

z−
be

st

hy
br

id O
2

O
3

rh
s−

be
st

z−
be

st

compiler optimizations

g
ig

a
c
y
c
le

s
 −

 c
o

m
p

a
c
t

8

Figure 6.2: Violin plot execution time of SP regions using best NUMA
affinity. Measures were performed 31 times to ensure reproducibility. When
measuring total execution time, Hybrid outperforms all other optimization
levels, since each region uses the best optimization sequence available.

6.3. THREAD CONFIGURATIONS 95

thread affinity Explicit affinity # NUMA domains # physical cores

s2 0;8 2 2

c2 0;1 1 2

h2 0;16 1 1

s4 0;8;1;9 2 4

c4 0;1;2;3 1 4

h4 0;16;1;17 1 2

s8 0;8;1;9;2;10;3;11 2 8

c8 0;1;2;3;4;5;6;7 1 8

h8 0;16;1;17;2;18;3;19 1 4

s16 16 scatter 2 16

c16 16 compact 1 8

h32 32 scatter 2 16

Table 6.2: Thread configurations evaluated on Xeon Sandy Bridge. s16

maps a single thread to all the physical cores and uses two NUMA domains.
It is considered as the default thread configuration for this test machine.

section 3.6 produces a binary where each region is compiled using its best
sequence, achieving a speedup that cannot be reproduced using traditional
monolithic compilation.

6.3 Thread Configurations

We tuned the thread configurations of the NAS NPB over the Xeon Sandy
Bridge. We chose this test machine to explore thread affinities because it
has 2 NUMA sockets and each socket has 8 physical (16 hyper-threaded)
cores.

Thread configurations were selected to explore different degrees of par-
allelism, NUMA and hyper-threading effects. Xeon Sandy Bridge has 16
physical cores, so we did not explore configurations beyond 32 threads.

We used the Intel kmp affinity [114] notation to characterize the thread
placement. Cores ranked between 0 and 7 reference the physical cores of the
first NUMA node while cores between 8 and 15 reference the physical cores
of the second NUMA node. Similarly, cores from 16 to 23 and from 24 to 31
reference the hyper-threaded cores of respectively the first and the second
NUMA node. Table 6.2 describes the 12 threads configurations combining
different number of threads and affinity mappings that we explore. The
purpose is to outperform the default 16 threads scatter configuration.

CERE page memory capture was performed on a 16 threads scatter

run using the NUMA aware capture described in section 3.5.5. Thanks to the
temporal reduction model presented in section 4.2, it is possible to quickly
evaluate the impact of each thread configuration on only a few datasets.

Table 6.3 evaluates CERE thread affinities replay accuracy and reduction
factor over NAS OpenMP. We focused on regions representing more than
5% of the application execution time. Detailed reports of these regions are

96 CHAPTER 6. HOLISTIC TUNING

Compiler passes Thread affinity
#Regions Accuracy Reduction factor #Regions Accuracy Reduction factor

BT 3 98.73 79.63 4 95.24 5.28

CG 2 98.65 3.39 2 79.48 1.23

FT 5 98.3 2.6 5 90.71 2.17

IS 3 96.64 1.26 2 94.85 1.04

SP 6 98.78 68.9 4 97.66 20.07

LU 7 95.04 8.49 2 99.00 12.64

EP 1 83.08 0.36 1 99.31 0.25

MG 4 97.22 0.28 4 93.04 0.45

AVG 95.8 20.61 93.66 5.39

Table 6.3: The accuracy of the codelet prediction is the relative differ-
ence between the original and the replay execution time. The benchmark
reduction factor or acceleration is the exploration time saved when study-
ing a codelet instead of the whole application. CERE fails to accelerate EP
and MG evaluation: EP has a single region with one invocation while MG
displays many performance variations.

presented in table 6.4. On average, a region exploration is 6.55× faster 1

with codelets than with whole program evaluations. This reduction factor
is achieved due to the CERE temporal reduction: CERE only replays the
representative invocations.

As we increase the data sets, the warmup cost overhead becomes smaller
compared to the replay execution time. We tested xsolve BT with CLASS
B data sets and a single warmup invocation to achieve an acceleration of
9.48×, twice the one achieved in class A, with an accuracy of 98.36%.

The average CERE prediction accuracy is 93.66%. It allows the auto-
tuner to outperform the standard scatter s16 over EP, FT, LU, and SP and
to perform an average speedup of 1.40× (see Fig. 6.3). We note that there
there is no best thread affinity that wins over all the others: h32, s16, and
c8 are all optimal on at least two applications.

6.4 Architecture Selection

Selecting the best architecture for a set of applications is a costly pro-
cess which requires benchmarking the applications on the different systems.
Given an initial benchmark suite, our method produces a set of reduced
benchmarks that can be used in place of the original one to select the best
architecture per benchmark.

While we only rely on temporal reduction for compiler and thread tuning,

1Unlike in section 5.3.2, we always replay codelets with four warmup invocations. Even
if they are called once in the original execution. This choice explains why CERE is four
times slower to evaluate EP.

6.4. ARCHITECTURE SELECTION 97

Benchmarks Regions Invocations Accuracy Benchmark reduction factor Coverage

BT xsolve 201 92.33 4.96 35.4

ysolve 201 96.7 4.54 28

zsolve 201 97.07 3.99 29.7

rhs 201 95.68 18.71 5.7

CG conjgrad@405 400 72.71 1.46 71.1

conjgrad@551 16 95.48 0.8 24.6

FT cffts1 8 95.54 1.7 21.2

cffts2 8 94.25 1.68 23.8

cffts3 8 96.5 1.18 22.9

evolve 6 82.06 0.94 14

indexmap 2 79.76 5.59 18.1

IS main 1 95.2 0.35 71.4

rank 11 93.77 2.86 27.6

SP xsolve 401 96.24 20.03 28.3

ysolve 401 97.11 20.25 27.7

zsolve 401 98.98 18.95 38.1

rhs 402 98.37 28.12 5.6

LU ssor 250 99.51 12.45 81

rhs 251 96.79 12.73 18.7

EP main 1 99.31 0.25 99.7

MG resid 42 93.78 0.52 52.7

psinv 40 94.32 0.57 16.2

interp 35 87.06 0.53 8.9

zero3 39 78.27 0.5 7.4

The accuracy of the codelet prediction is based on the relative difference between the
original and the replay execution time. The Benchmark reduction factor or accelera-
tion is the exploration time saved when studying a codelet instead of the whole application.
Invocations display the number of times a region is called inside the application. Only
regions covering more than 5% of the application execution time are selected.

Table 6.4: Codelet Exploration of Thread Configurations on Xeon Sandy
Bridge

hyperthread.h32 compact.c8

0.0

0.5

1.0

1.5

BT CG EP FT IS LU MG SP BT CG EP FT IS LU MG SP

S
p

e
e

d
−u

p
 o

ve
r

s
ta

n
d

a
rd

 (
s
1

6
)

original

replay

Figure 6.3: Original and CERE predicted speedup for two thread configu-
rations. Replay speedup is the ratio between the replayed target and the
replayed standard configuration. CERE accurately predicts the best thread
affinities in six out of eight benchmarks. For CG and MG, we miss-predict
configurations that use all the physical cores.

98 CHAPTER 6. HOLISTIC TUNING

Number of clusters

M
e

d
ia

n
 %

 e
rr

o
r

5

10

15

20

25

5 10 15 20

8%

x44

Atom

5 10 15 20

3.9%

x25

Core 2

5 10 15 20

0

10

20

30

40

50

B
e

n
c
h

m
a

rk
in

g
 r

e
d

u
c
ti
o

n
 f
a

c
to

r

5.8%

x23

Sandy Bridge

Median % error Benchmarking reduction factor

Figure 6.4: Evolution of prediction error and benchmarking reduction factor
on NAS codelets as the number of clusters increases. The dotted vertical
line marks 18, the number of clusters selected by the elbow method.

we also take advantage of spatial reduction which is presented in section 4.3
to reduce the evaluation cost of new architectures.

We profile and extract the codelets on a reference architecture, Nehalem,
and extrapolate the benchmarks performance on various target architec-
tures. The metric set used to cluster the codelets is trained across Sandy
Bridge and Atom over Numerical Recipes (NR) benchmarks. We validate
this model by applying it on a new target architecture, Core2, over an un-
seen benchmark suite, the NAS SER benchmarks using the CLASS B data
sets.

Some of the experiments described in this section are prior to CERE re-
lease so we extracted the codelets with Codelet Finder (CF) [74, 71]. Unlike
CERE, CF does not provide a temporal reduction strategy. So, we manually
select a representative invocation for each region of code. It also relies on
an optimistic working set warmup approach: it replays the codelet over it-
self. CF codelets were compiled in these experiments with icc 12.1.0 -O3

-xsse4.2 except on Atom which does not support -xsse4.2

First, we focus on the number of clusters used during the spatial reduc-
tion. In particular, we notice that the elbow method selects a clustering
that provides a good trade-off between benchmarking reduction factor and
prediction accuracy. Then we analyze codelets and applications prediction.
Finally, to validate the spatial clustering with CERE, we reproduce the same
methodology with CERE codelets.

Reduction Factor Versus Accuracy

Figure 6.4 shows the trade-off between prediction accuracy and benchmark-
ing reduction factor while we increase the number of spatial clusters. As
expected the more clusters we add, the lower the median error becomes. On
the other hand, the benchmarking reduction becomes less effective because
we have more codelets to run on the target architecture. The dashed line in

6.4. ARCHITECTURE SELECTION 99

bt cg ft is lu mg sp

5

10

25

50

100

200

500

5

10

25

50

100

200

500

1000

2000

1
2

5
10

25
50

100
200

500

10

25

50

100

200

500

1000

2000

4000

1

2

5

10

25

50

100

5

10

25

5

10

25

50

100

E
xe

c
u
ti
o
n
 t
im

e
 (

m
s
 /
 i
n
vo

c
a
ti
o
n
)

Reference (Nehalem) Sandy Bridge real Sandy Bridge predicted

Figure 6.5: Predicted and Real execution times on Sandy Bridge compared
to the Nehalem reference execution. Each box presents the codelets ex-
tracted from one of the NAS applications. Only three codelets in BT, LU,
and SP are mispredicted.

figure 6.4 marks the number of clusters chosen by the elbow method, here
18. If needed, the user can tune the number of clusters depending on what
he wants to optimize: faster benchmarking or better prediction accuracy.

The elbow clustering achieves a high reduction factor 2 between 23 and
44, while maintaining a low prediction error between 3.9% and 8%. Unsur-
prisingly, Atom, the most different architecture from the reference, has the
highest prediction error.

Codelet Performance Prediction

Figure 6.5 shows the predicted and real execution times on Sandy Bridge.
The boxes gather the codelets by application. The applications may contain
codelets coming from different clusters with different speedups. The execu-
tion time on Sandy Bridge is predicted with a median error of 5.8%. The
error mainly comes from short-lived codelets (less than 10 ms per invoca-
tion) which are more affected by measurement errors such as instrumentation
overhead. Codelets are faster on Sandy Bridge than on the reference. It is
not surprising as Sandy Bridge frequency is almost twice the reference one.
The median prediction error is 8% for Atom and 3.9% for Core2.

Application Performance Prediction

Codelet Finder Codelets capture 92% of the execution time of the original
NAS applications [71]. Therefore, by aggregating the individual codelet
predictions, we accurately predict the original applications performance.

The whole application prediction is done in two steps. First, we estimate
the speedup of the part of the application covered by codelets. The appli-
cation’s codelets predictions are aggregated and weighted by their number

2The reduction factor is the result of both spatial and temporal reductions.

100 CHAPTER 6. HOLISTIC TUNING

Atom

Core 2

Sandy Bridge

0

1000

2000

3000

0

100

200

300

0

100

200

300

bt cg ft is lu mg sp

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

Reference Real Predicted

Figure 6.6: Predicted and Real execution times on the target architecture
compared to the execution time on the reference architecture.

0.15 0.19

0.97 1.00

1.98
1.89

0.0

0.5

1.0

1.5

2.0

Atom Core 2 Sandy Bridge

G
e
o
m

e
tr

ic
 m

e
a
n
 s

p
e
e
d
u
p

Real Speedup

Predicted Speedup

Figure 6.7: Geometric mean speedup per architecture using CF codelets.

6.4. ARCHITECTURE SELECTION 101

of invocations. Second, we assume that the speedup of the unknown part of
the application is equal to the one of the covered part.

Figure 6.6 shows the application prediction on the three target architec-
tures. Atom is significantly different from the reference: it is an in-order
processor, without L3 cache, nor SSE4 vector instructions. Moving to Atom
slows down all the benchmarks. The prediction accuracy on Atom is high,
except for the Conjugate Gradient (CG) benchmark. CG’s huge error is
caused by a single codelet representing 95% of its execution time. This
codelet is well-behaved on Nehalem and is selected as the representative.
Yet, on Atom the extracted microbenchmark is much faster than the origi-
nal codelet and incurs 1.6 times less cache misses. The microbenchmark is
not preserving the cache state. This behavior was only observed on Atom.

On Sandy Bridge, all the applications are faster. Sandy Bridge has the
fastest frequency and a more modern microarchitecture than the reference.
The prediction accurately captures the speedups for all the original appli-
cations.

Core2 microarchitecture is older than our reference, yet it has a higher
frequency. The performance between both architecture is very close, pro-
viding an interesting challenge for system selection. Indeed, the best archi-
tecture depends on the application of interest. Some applications are faster,
like BT and FT, while other are slower, like LU. Our reduced benchmark
set captures this behavior and correctly predicts the trend allowing the user
to smartly select the best architecture depending on the application.

In order to evaluate the overall benefits of an architecture, we compute
the geometrical mean of the applications speedups. Figure 6.7 shows the
predicted and the real speedup for each architecture. The reduced bench-
marks accurately predict the expected speedup for each architecture.

Capturing Architectural Changes

To illustrate how our method captures architecture change, we consider two
of the 18 clusters. Cluster A contains two codelets LU/erhs.f:49-57 and
FT/appft.f:45-47. Both are a triple-nested loop with high latency opera-
tions such as division and exponential. They are computation bound. Clus-
ter B also contains two codelets BT/rhs.f:266-311 and SP/rhs.f:275-320.
Both are computing a three-point stencil on five planes. Codelets from clus-
ter B are memory bound.

Our metrics correctly separate the two performance patterns: static IPC
is high in cluster A whereas memory and cache bandwidths are high in
cluster B. The compute bound cluster A is 1.37 times faster on Core 2 due
to higher clock frequency. On the contrary, the memory bound cluster B is
1.34 times slower on Core 2 because the last-level cache is four times smaller
than the reference. The clustering correctly separates the two behaviors
producing an accurate prediction for both groups.

102 CHAPTER 6. HOLISTIC TUNING

Atom

Core 2

Sandy Bridge

10

20

30

40

50

10

20

30

40

10

20

30

40

0 5 10 15 20 25

Number of clusters

M
e
d
ia

n
 %

 e
rr

o
r Worst

Median

Best

GA features

Figure 6.8: Genetic-Algorithm metric clustering compared to random clus-
tering. For each number of clusters, from 2 to 24, 1000 random clusters are
evaluated. Clustering with our GA metric set is consistently close or better
than the best random clustering (out of 1000).

Evaluation of the Metric-Guided Clustering

Figure 6.8 compares our metric-guided clustering against 1000 random clus-
terings. We make K, the number of clusters, vary from 1 to 24. For each
value of K, we generate 1000 random partitionings into K clusters. We
compute the prediction error for each partitioning after applying steps D
and E.

The proposed metric-guided clustering is most of the time close or better
than the best random clustering. Our choice of metrics and clustering yields
competitive results.

Architecture Selection with CERE

We reproduce the same methodology with CERE. CERE profiles and ex-
tracts the codelets from the NAS on Nehalem. Then, through the spatial
and temporal reduction presented in section 4 it reduces the codelets to a
representative subset. Finally, we replay this subset on the target architec-
tures.

Figure 6.9 compares the speedup computed using CERE replays to the
real speedup measured by running the full benchmark suite. The perfor-
mance predictions are very close, but CERE replays are 7.3× to 46.6×
cheaper than running the full benchmarks.

Table 6.5 details the benchmark reduction cost achieved by only replay-
ing the selected representative codelets. We observe that the Working Set

6.4. ARCHITECTURE SELECTION 103

0.12 0.15

0.83 0.83

1.55 1.59

0.0

0.5

1.0

1.5

Atom Core 2 Sandy Bridge

G
e
o
m

e
tr

ic
m

e
a
n
 s

p
e
e
d
u
p

Real Speedup

Predicted Speedup

Figure 6.9: NAS geometric mean speedup on three architectures. Baseline
is a NAS run on Nehalem compiled with icc 12.1.0 -O3 -xsse4.2. The
predicted speedup is computed by using the replay performance of eighteen
CERE representative codelets using Working Set warmup. There is a differ-
ence between the speedups of this plot compared to the ones presented in the
Figure 6.7 because using CERE requires to compile the target architectures
code with LLVM instead of icc.

CERE Codelet Finder

Warmup mode Working Set Page Trace Working Set
Core 2 × 30.5 × 9.9 × 24.7
Atom × 46.6 × 10.7 × 44.3
Sandy Bridge × 18.3 × 7.3 × 22.5

Table 6.5: Benchmarking acceleration by replaying only the representatives.
CERE replays are 7.3× to 46.6× faster than running the whole NAS.B suite.
CERE benchmark acceleration is comparable to the results achieved with
Codelet Finder.

104 CHAPTER 6. HOLISTIC TUNING

Original (e+11 cycles) Replay (e+11 cycles) Error (%)

-O0 2.78 2.88 3.54
-O1 2.33 2.38 2.12
-O2 2.34 2.40 2.25
-O3 2.32 2.42 4.13

Table 6.6: CERE performance predictions for different Clang optimization
levels on the FDTD codelet with LLVM 3.3.

warmup is much faster than the Page Trace warmup that has the overhead
of replaying the memory access history. In this particular experiment, the
prediction is the same for both warmup techniques, therefore we recommend
to use Working Set warmup which is much faster. The benchmark cost re-
duction and prediction accuracy are comparable to the results achieved using
Codelet Finder.

6.5 Compiler Optimizations

This section presents how codelets are used to accelerate the evaluation of
different compiler optimizations. First, we focus on an industrial application
that contains a single region. We extract and use the codelet version of the
region to find better compilation sequences. Second, apply the piecewise
tuning methodology described in section 3.6.

6.5.1 Monolithic Tuning

In the previous section, we showed CERE fast thread evaluation through
temporal reduction. Yet, CERE can also be used for quick compiler auto-
tuning. We showcase CERE auto-tuning capabilities on a Reverse Time
Migration (RTM) [107] proto-application on Ivy Bridge.

The FDTD proto-application is dominated by one Jacobi stencil com-
putation that represents 91.1% of the total running time. In the original
application it is called 3 000 000 times. CERE is able to extract the Ja-
cobi stencil codelet. Thanks to the temporal reduction algorithm presented
in section 4.2, CERE is able to accurately capture the original 3 000 000
invocations behavior using only two representative captures. These cap-
tures were performed with the -O2 optimization level. After accounting for
the replay overhead due to warmup and performing four meta-repetition
for accuracy, the replay only takes 0.3 seconds. Compared to the original
proto-application run time, 71.1 seconds, the replay is 237 times cheaper.

Table 6.6 show that CERE accurately captures the performance when
exploring the Clang 3.3 default optimization levels. We see there is a sig-

6.5. COMPILER OPTIMIZATIONS 105

Original (e+11 cycles) Replay (e+11 cycles) Error (%)

LLVM 3.3 2.34 2.40 2.25
LLVM 3.4 2.03 1.92 5.23

Table 6.7: Evaluation of 3.3 and 3.4 LLVM versions on the FDTD codelet
using -O2.

compilation passes

opt -targetlibinfo -no-aa -tbaa -basicaa -globalopt -basiccg
-prune-eh -inline-cost -always-inline -simplify-libcalls
-lazy-value-info -jump-threading -correlated-propagation
-reassociate -domtree -loops -loop-simplify -licm
-lazy-value-info -domtree -memdep -gvn -O1

llc -O1 using SSE instructions

Original (e+11 cycles) Replay (e+11 cycles) Error (%)

1.55 1.60 3.31

Table 6.8: LLVM 3.3 best compilation sequence for RTM on Ivy Bridge.

nificant performance improvement between the -O0 and -O1 optimization
levels. This performance jump is accurately captured by CERE replays.

We extend this study and perform a compiler search of 300 passes over
the RTM codelet. Section 5.4.4 describes how we selected these compilation
passes.

RTM codelet remains at least 200× faster to evaluate and finds a com-
piler optimization 1.11× faster than -03.

CERE fast replay could also be used to evaluate changes in performance
across LLVM compiler versions. The idea is that a codelet captured in LLVM
3.3, can be replayed with a later version of the compiler. Currently in CERE,
for this to work the IR must be compatible between the capture and replay
LLVM versions. Backwards compatibility of the IR is generally possible
between minor LLVM version, but not a strong guarantee of the LLVM
project. We captured the FDTD codelet using LLVM 3.3 and replayed it
using both LLVM 3.3 and LLVM 3.4. Table 6.7 shows that CERE replay
accurately predicts the real execution times achieved when compiling the
FDTD proto-application with the two compiler versions.

Finally, table 6.8 presents a custom compiler optimization sequence that
we accidentally found for LLVM 3.3. Executing RTM over LLVM 3.4 de-
fault -O3 achieves a speedup of 1.31× and which is observed by the RTM
codelet. We ensure the validity of the resulting code through the RTM nu-

106 CHAPTER 6. HOLISTIC TUNING

BT IS SP

xsolve

ysolve

zsolve

createseq

fullverify

rank

rhs@166

rhs@273

rhs@64

xsolve

ysolve

zsolve

0 1000 2000 3000 0 5 10 0 250 500 750 1000

Compiler optimization sequences

cost of piecewise exploration overhead of monolithic exploration

Figure 6.10: Compiler sequences required to get a speedup over 1.04× per
region. CERE evaluates the sequences in the same order for all the regions.
Exploring regions separately is cheaper because we stop tuning a region as
soon as the speedup is reached.

merical validation. We were not able to translate this compilation sequence
to LLVM 3.4 since there are no direct equivalence of the compilation pass
simplify-libcalls in LLVM 3.4. We also note the impact of the vectorial
instructions on the performance: using AVX instead of SSE with the com-
pilation sequence slowdowns the code with a factor of 0.86×. The RTM
codelet faithfully reproduces this behavior.

6.5.2 Piecewise Tuning

Regions within an application may not be sensitive to the same compiler
optimizations. SP rhs and zsolve regions from the motivating example in
section 6.2 illustrates this idea as they have different best found compiler
optimizations. So, instead of evaluating compiler optimizations on the whole
application, we separately evaluate them on each codelet. Unlike monolithic
approaches, CERE enables tuning each codelet independently: each region
is optimized with the best found compiler sequences.

Until now, we always tune a single parameter which is already challeng-
ing and time consuming. In this section, we show a motivating example that
demonstrates how costly it is to simultaneously tune multiple parameters.
CERE piecewise holistic approach both accelerates the motivating example
tuning and outperforms its benefits over standard monolithic approaches.
Then, we evaluate the hybrid binaries.

This section details how CERE takes advantage of such scenarios. First,
we present the hybrid compilation, and second, we validate the piecewise
approach over the NAS SER.

Table 6.9 presents CERE predictions accuracy and reduction factor
through compiler optimizations with 3000 compiler sequences for BT, 500
for MG and 1000 for the others NAS SER. The average CERE prediction
accuracy and acceleration for a region is 95.8% and 20.61×.

6.5. COMPILER OPTIMIZATIONS 107

Benchmarks Regions Invocations Accuracy Benchmark reduction factor Coverage

BT xsolve 201 98.65 102.17 25.2

ysolve 201 98.44 99.54 27.3

zsolve 201 98.13 98.55 27.1

CG conjgrad@491 16 99.07 3.02 88

conjgrad@607 16 94.44 7.65 9.6

FT appft 1 94.2 4.48 5

fft3d@152 8 98.18 3.84 27.6

fft3d@137 8 99.37 4.91 26.8

fft3d@112 8 97.85 4.2 30.6

evolve 6 98.94 5.84 7.8

IS rank 11 91.64 3.91 21.6

createseq 1 97.94 0.38 60.0

fullverify 1 97.92 1.24 15.2

SP xsolve 401 99.71 161.67 11.2

ysolve 401 99.02 149.29 16.3

zsolve 401 99.32 152.25 17.4

rhs@273 402 98.36 154.97 10.8

rhs@64 402 96.02 159.07 8.5

rhs@166 402 95.6 159.81 8.9

LU buts 15500 93.23 8.75 18.2

jacu 15500 94.02 37.07 14.4

blts 15500 94.91 8.75 17.8

jacld 15500 93.45 8.67 15.2

rhs@166 251 95.22 164.73 8.0

rhs@64 251 94.97 162.35 8.2

rhs@273 251 97.26 170.11 6.3

EP main 1 82.8 0.24 98.4

MG interp 35 97.37 1.55 8.0

rprj3 35 96 0.3 6.0

resid 42 96.5 0.29 48.3

psinv 18 97.09 0.47 22.0

The accuracy of the codelet prediction is based on the relative difference between the
original and the replay execution time. The Benchmark reduction factor or accelera-
tion is the exploration time saved when studying a codelet instead of the whole application.
Invocations display the number of times a region is called inside the application. Only
regions covering more than 5% of the application execution time are selected.

Table 6.9: Codelet Exploration of Compiler Passes on Ivy Bridge

108 CHAPTER 6. HOLISTIC TUNING

0.90

0.95

1.00

1.05

1.10

BT IS SP

Benchmarks

S
p

e
e

d
u

p
 o

ve
r

−
O

3

hybrid (original exploration)

hybrid (replay exploration)

monolithic

best standard

Figure 6.11: Speedups over -O3. We only observe speedups from the itera-
tive search over BT, SP, and IS. Best standard is the more efficient default
optimization (either -O1, -O2, or -O3). Monolithic is best whole program
sequence optimization. Hybrids are build upon optimizations found either
with codelets or with original application runs.

Figure 6.10 presents the number of explored compiler sequences required
to find a sequence achieving a speedup over 1.04× (empirically defined) per
region. Unlike monolithic approaches which must continue exploration until
all regions are optimized, codelets can stop the search over a region once
a satisfying speedup is found and focus the exploration on other regions.
Here, CERE evaluates BT ysolve 461 times instead of 3000 times. Each
evaluation is on average 99 times cheaper than a full application run due to
the codelet invocations clustering.

The focus of this thesis is not on the compiler flag selection, that is why
a naive random compiler pass search was used. Nevertheless, CERE results
could be improved with more sophisticated techniques for passes selection
such as genetic algorithms [18] which would also benefit from the piecewise
approach.

The piecewise search also allows to emphasis the parameter search on
a specific region. IS illustrates this idea: it only times a sorting algorithm
included in a region which represents 22% of the application execution time.
Through a codelet, CERE extracts the sorting region and can tune it without
executing the rest of the application.

CERE outperforms the standard -O3 over BT, SP, and IS with an av-
erage speedup of 1.06× (see Fig. 6.11). IS random generator and sorting
algorithm do not benefit from the same optimizations which explains the sig-
nificant difference between the hybrid and the monolithic approach. Hybrid
binaries based on original or replay explorations have the same performances
which ensure that we do not miss any optimizations through the codelets.

We make the simplifying assumption that optimizing a region does not
affect other regions. This is not always true: due to memory effects, it
is possible to have performance interactions between neighbors. We find
a compilation sequence which gives a speedup of x1.08× over LU jacu.
Unfortunately, optimizing jacu has the side effect of slowing down by 0.92×

6.6. DISCUSSION 109

the neighboring region jacld.

To stress the CERE prediction accuracy model, we performed a simul-
taneous search of 1000 compiler sequences across the thread affinities on LU
ssor. CERE predicted region execution time with a mean accuracy of 99%
across parameters.

6.6 Discussion

Previous studies [115, 101] already consider a fine grained benchmarking at
loops or functions level. The main limitation was the large increase of the
design space. We tackle this problem by reducing the search evaluation.
Nevertheless, using piecewise tuning raises some questions that we detail
bellow.

Like us, Kulkarni and al. [115] propose a piecewise search at the function
level granularity. They propose a per-function compilation using the VPO
compiler framework. Yet, they do not use any extraction mechanism during
the search: exploring two functions within the same file requires to execute
the program many times.

6.6.1 Data Sensitivity of Piecewise Tuning

Up to now, all the iterative compiler studies that we presented find the best
optimizations through multiple runs of the same data set. A problem of
the iterative compilation is to determine the resilience of the optimizations
found across other unseen data sets.

Chen and al. [101] perform an iterative compilation over 32 programs.
For 14 out of the 32 programs, they achieve 85% of the program-optimal
performance using a single data set for training. Also to reach 99% perfor-
mance on 14 of their benchmarks, they need to use between 154 and 856 data
sets. Adding more data sets in the training process avoids the overfitting of
the iterative compilation. overfitting is explained in section 2.3.3.

Understanding if a more fine grained optimization increases the chances
of overfitting should be considered. Fine grained optimization increases the
performance benefits. Chen and al. [101] show that increasing the number of
trained data sets increases the overall performance on multiple applications.
The fine grained optimization increases the overall performance. So, maybe
the the piecewise tuning may require additional data sets to handle the
tuning benefits.

6.6.2 Region Dependency Checker

We assume in this thesis that we can apply compiler optimizations to each
region separately without impacting the others. Even if we often take ad-
vantage of this assumption to produce hybrids, LU proves that it is wrong.

110 CHAPTER 6. HOLISTIC TUNING

Understating if two regions can be separately optimized without impacting
each other is a challenging task.

Lets consider two regions A and B and the architectural state e.g. cache
state branch predictor state of our test machine. We execute A, N in-
structions, and then B. We have two leads to determine if two regions are
related.

IfN , the number of instructions separating the regions is a small number,
it is likely that the architectural state is still strongly impacted by A when
we reach B. Ans so, changing A impacts the execution context of B. To
avoid such scenarios, a first insight is to ensure that N is big enough. This
number can be defined according to the machine test cache sizes (we present
a similar data size adapting method in section in section 4.5.3).

However, even if two regions have no architectural impact on each other,
they can still use the same data sets. For instance, changing A data locality
through an optimization will impact B when it reuses this data. To ensure
that A and B are independent, they must operate on distinct data sets. We
can statically analyze the data sets or dynamically profile the regions: we
must execute A and B with different data sets and observe the correlation of
their respective performance. If their performance are strongly correlated,
we can expect that they use a common data sets.

Acknowledgments

These experiments are the result of a collaboration with Chadi Akel, William
Jalby, Yuriy Kashnikov, and Pablo de Oliveira Castro. I also would like to
thank Asma Farjallah for providing the RTM proto-application.

6.7 Conclusion

Tuning a system for a set of applications is a costly process which requires
benchmarking the applications on the different configurations. We propose
to reduce the tuning cost by extracting a set of representative codelets which
captures the performance characteristics of the original applications.

Thanks to CERE reduction model, evaluating new architectures is 30×
faster. Similarly, finding the best compiler optimization or thread configu-
ration for a region of code is 30× faster. These accelerations make costly
iterative search techniques such as the iterative compilation accessible in rea-
sonable amount of time. For instance, executing the RTM prot-application
codelet only takes 0.3 seconds instead of 71.1 seconds and is reliable to tune
diverse compiler optimizations.

CERE not only accelerates the parameter space search but also enables
an hybrid compilation which outperforms traditional monolithic compiler

6.7. CONCLUSION 111

tuning. In particular, We achieved 1.11× speedup over the NAS SER
benchmarks.

112 CHAPTER 6. HOLISTIC TUNING

Chapter 7

Conclusion

Optimizing computer systems is complex and involve three main components
working together: the applications, the software stack, and the hardware.
Hardware is designed to improve the performance of the current applications
while developers write codes that try to take advantage of the hardware.
Meanwhile, the system stack tries to reduce the gap between them. However,
since hardware and application are both complex and diverse, achieving
optimal performance is challenging.

The system stack provides standard configurations that achieve good-
enough performance across most of the codes and the existing architectures.
A common approach to enhance the performance is system autotuning. It
consists into applying successive transformations and evaluating the result-
ing codes. The huge exploration space combined with the evaluation time
required to measure each configuration limits application tuning.

The main limitation of parameter tuning approaches is their high explo-
ration cost. Yet, applications have phases with redundant behaviors. So,
current tuning approaches waste resources by evaluating multiple times the
same redundant behaviors.

The first contribution of this thesis is a method that takes advantage of
these phases to accelerate the tuning process. Instead of running applica-
tions, we explore each configuration through codelets. Codelets are pieces
of code extracted from the applications hotspots that can be executed as
standalone programs. To extract and replay these codelets, we collabora-
tively design and implement Codelet Extractor and REplayer (CERE), an
open source framework presented in chapter 3.

To tune a set of applications, CERE extracts the codelets once. Chap-
ter 4 shows how CERE removes the redundancies by keeping a subset of
representative codelets and use them as proxies to quickly evaluate the dif-
ferent configurations. Using codelets as proxies for autotuning requires that
codelets faithfully reproduce the application behavior with the exploring
parameters. In particular, we show how through a new NUMA ownership
strategy, we can explore thread configurations on NUMA architectures.

Codelet acceleration makes affordable a simultaneous exploration of com-
piler optimizations and thread configurations. We validate in chapters 5
and 6 how CERE faithfully predicts applications execution across compiler
optimizations, thread configurations, and architectures. In particular, we
predicted the NAS benchmarks execution time with an average accuracy of

113

114 CHAPTER 7. CONCLUSION

94.5%. We also evaluate new micro-architectures or thread scalability on
average 27× faster than with whole program executions.

Regions of code are not sensitive to the same optimizations. So exploring
each region separately allows to optimize regions at a fine granularity. A
second contribution of this thesis is a piecewise holistic tuning approach. In
chapter 6, we demonstrate the fine granularity tuning benefits over standard
approaches. By tuning regions with their best compiler sequence, piecewise
optimization provides speedups up to 1.06× over the best overall configura-
tion.

7.1 Publications

Parts of the work presented in this thesis were published in the following
proceedings and journals:

• Piecewise Holistic Autotuning of Compiler and Runtime Pa-
rameters. Mihail Popov, Chadi Akel, William Jalby, and Pablo de
Oliveira Castro. In Euro-Par 2016 Parallel Processing - 22nd Interna-
tional Conference, Lecture Notes in Computer Science. Springer, 2016
(to appear).

• PCERE: Fine-grained Parallel Benchmark Decomposition for
Scalability Prediction. Mihail Popov, Chadi Akel, Florent Conti,
William Jalby, and Pablo de Oliveira Castro. In Parallel and Dis-
tributed Processing Symposium (IPDPS), 2015 IEEE International,
pages 1151–1160. IEEE, 2015.

• CERE: LLVM Based Codelet Extractor and REplayer for
Piecewise Benchmarking and Optimization. Pablo de Oliveira
Castro, Chadi Akel, Eric Petit, Mihail Popov, and William Jalby.
ACM Transactions on Architecture and Code Optimization (TACO),
12(1):6, 2015.

• Fine-grained Benchmark Subsetting for System Selection.
Pablo de Oliveira Castro, Yuriy Kashnikov, Chadi Akel, Mihail Popov,
and William Jalby. In Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’14,
pages 132:132–132:142, New York, NY, USA, 2014. ACM.

7.2 Perspectives

The methodology proposed in this thesis can be improved. It also provides
new research clues and challenges for future works.

7.2. PERSPECTIVES 115

Better Exploration Strategy

This thesis tunes compiler passes through a naive random pass search.
CERE tuning methodology is transverse to the traditional space exploration
techniques [18, 19] which focus on how to guide the user over the parameter
space. We could improve the piecewise tuning by guiding the optimizations
that we explore. Improving the exploration strategy accelerates the tuning
by making it quickly reaching better configurations.

Also, instead of targeting the whole optimization space, we can focus
on a small subspace. Purini and al. [116] find, through LLVM iterative
compilation runs, good general sets of compilation sequences that should
work well on any given program. They can quickly tune new applications
by directly searching passes within the good set instead of exploring the
whole optimization space. Codelets could serve as proxies to quickly find
and test these optimal sequences.

Unifying Temporal and Spatial Reduction

As discussed in section 4.5, the codelet subsetting can be improved by com-
bining both spatial and temporal reductions. Related studies [42, 22, 48]
detect redundant computation patterns or phases in codes with performance
metrics. They take advantage of these redundancies to accelerate the pro-
cess.

Currently, CERE only clusters invocations from the same region of code.
An easy way to accelerate the tuning is to cluster invocations that are not
necessarily from the same region. To detect these similar invocations, we can
use the same performance metrics as the one used for the spatial clustering
presented in section 4.3. Improving the reduction strategy may enhance the
codelets prediction accuracy but also accelerate the tuning process.

OpenMP Codelet Prediction Accuracy

To use codelets as proxies for tuning, they must faithfully reproduce the
performance of the original regions. So, it is necessary to warmup the system
to match as close as possible the original context [76].

In this thesis, we use two warmup strategies: a realistic page tracing [97]
and an optimistic working set [72] approaches. The page tracing strategy is
more accurate because it replays a memory trace at a page level granularity.

CERE current version only replays OpenMP regions with the optimistic
strategy. Despite our efforts, CERE model still miss-predicts some applica-
tions execution time in multi threaded environments.

To tackle this issue, we can use the realistic strategy for the OpenMP
regions. We have to keep a trace of the pages touched by each thread. At
replay, each thread has touch its recored pages.

116 CHAPTER 7. CONCLUSION

Extend Hybridization to Thread configurations or Architectures

In this thesis, we only use hybridization for compiler optimization. Nev-
ertheless, we can apply this method on other parameters such as thread
configurations.

SP from the motivating example in section 6.2 illustrates this idea. SP
regions rhs and xsolve do not benefit from the same thread placements.
With codelets, we can determine the best thread configuration for each
region, and change the affinities during the execution.

Similarly, we can detect the best architecture for each piece of code.
CERE can be useful to detect the best core for each region of code on
heterogeneous architectures.

However, unlike most of the compiler optimizations, changing the thread
configurations raises an execution time overhead [83] that needs to be com-
pensated. Similarly, migrating data to an other core also raises an overheard.
So, to apply a piecewise tuning for architectures or thread configurations we
need to ensure that the overhead of moving to a new system is compensated
by the speedup it provides.

Use Codelets to Guide Architecture Design

Current benchmark suites are guiding the evolutions of the future hard-
ware [1]. CERE automatically extracts codelets and reduces the benchmark
suites while preserving their diversities. We could replace the original bench-
mark suites with codelets [30]. Codelet simulation is faster because of the
reduction strategy and will allow designers to evaluate more architectural
trade-offs.

Codelets can also be applied to find or evaluate new dwarfs [1]. Berke-
ley Dwarfs are algorithmic methods that capture patterns of computation
and communication which are representative of the real world applications.
Dwarfs purpose is to represent the application requirements without over-
looking specific optimizations for some hardware platforms. CERE similar
computation patterns detection can be used to ease new dwarfs integration
or to detect similar dwarfs.

Energy Prediction

We only use codelets to tune applications execution time. Prediction can
be extended to other performance metrics such as energy consumption or
memory behaviors. Similarly to Host et al. [19], we could apply a Pareto
frontier with a fine grained compiler tuning over execution time and energy
consumption.

The possible issue is that we may have to train a new set of metrics to
handle the energy.

7.2. PERSPECTIVES 117

Spatial Reduction for Compilers or Threads

We use Genetic Algorithms [59] (GAs) to train the spatial reduction metrics
for architecture selection. Architecture selection metrics gather together
codes with similar computation patterns. An architectural change impacts
in the same way codes with the same computation patterns.

We suppose that compiler optimization or thread configuration changes
may also have the same impact on codes with the same computation pat-
terns. Fursin et al. [20] take advantage of this idea for compiler optimiza-
tions: they cluster applications and expect that applications in the same
cluster are sensitive to the same compiler optimizations. We can extend
this idea, by clustering codelets instead of applications.

Reducing the granularity should improve the detection of the computa-
tion patterns and enhance the overall clustering quality [98]. Let us consider
an application with two small regions, respectively memory and compute
bound. An overall characterization study may conclude that the applica-
tion is balanced because of the regions compensation. A fine grained study
on the other side is able to detect the distinct behaviors.

We can already evaluate this approach with our methodology. Cavazos
et al. [117] use hardware performance metrics to chose the best compiler
optimization. It is interesting to see if the performance metrics that we use
for architecture selection are also relevant to gather codes that are impacted
in the same way by compiler optimizations or thread configurations.

118 CHAPTER 7. CONCLUSION

Bibliography

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley, Tech. Rep., 2006.

[2] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[3] D. Bailey et al., “The NAS parallel benchmarks summary and pre-
liminary results,” in Proceedings of the conference on Supercomputing.
ACM/IEEE, 1991, pp. 158–165.

[4] K. Hoste, “Analysis, estimation and optimization of computer sys-
tem performance using machine learning.” Ph.D. dissertation, Ghent
University, 2010.

[5] C. Bienia and K. Li, Benchmarking modern multiprocessors. Prince-
ton University New York, 2011.

[6] J. J. Yi, H. Vandierendonck, L. Eeckhout, and D. J. Lilja, “The exi-
gency of benchmark and compiler drift: designing tomorrow’s proces-
sors with yesterday’s tools,” in Proceedings of the 20th annual inter-
national conference on Supercomputing. ACM, 2006, pp. 75–86.

[7] K. C. Barr, “Summarizing multiprocessor program execution with ver-
satile, microarchitecture-independent snapshots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2006.

[8] S. Hong and H. Kim, “An integrated gpu power and performance
model,” in ACM SIGARCH Computer Architecture News, vol. 38,
no. 3. ACM, 2010, pp. 280–289.

[9] G. Marin and J. Mellor-Crummey, “Cross-architecture performance
predictions for scientific applications using parameterized models,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 32, no. 1.
ACM, 2004, pp. 2–13.

[10] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. O’Boyle,
G. Fursin, and O. Temam, “Automatic performance model construc-
tion for the fast software exploration of new hardware designs,” in
Proceedings of the 2006 international conference on Compilers, archi-
tecture and synthesis for embedded systems. ACM, 2006, pp. 24–34.

119

120 BIBLIOGRAPHY

[11] E. Petit, P. de Oliveira Castro, T. Menour, B. Krammer, and W. Jalby,
“Computing-kernels performance prediction using dataflow analysis
and microbenchmarking,” in International Workshop on Compilers
for Parallel Computers, 2012.

[12] C. Haine, O. Aumage, E. Petit, and D. Barthou, “Exploring and eval-
uating array layout restructuration for SIMDization,” in Proceedings
of the 27th international conference on Languages and Compilers for
Parallel Computing, ser. LCPC’14, (to appear) 2014.

[13] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applica-
tions,” in Parallel Architectures and Compilation Techniques, 2001.
Proceedings. 2001 International Conference on. IEEE, 2001, pp. 3–
14.

[14] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Pro-
ceedings of the IEEE, vol. 85, no. 3, pp. 349–365, 1997.

[15] C. Dubach, T. M. Jones, and M. F. O’Boyle, “Exploring and predicting
the architecture/optimising compiler co-design space,” in Proceedings
of the 2008 international conference on Compilers, architectures and
synthesis for embedded systems. ACM, 2008, pp. 31–40.

[16] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimiza-
tion and auto-tuning on state-of-the-art multicore architectures,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, p. 4.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International symposium on
Code Generation and Optimization. IEEE, 2004, pp. 75–86.

[18] S. R. Ladd, “Acovea: Analysis of compiler options via evolutionary
algorithm,” 2007.

[19] K. Hoste and L. Eeckhout, “Cole: compiler optimization level explo-
ration,” in Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, 2008, pp.
165–174.

[20] G. Fursin et al., “Milepost gcc: Machine learning enabled self-tuning
compiler,” International Journal of Parallel Programming, vol. 39,
no. 3, pp. 296–327, 2011.

BIBLIOGRAPHY 121

[21] J. Y. Joshua, R. Sendag, L. Eeckhout, A. Joshi, D. J. Lilja, and L. K.
John, “Evaluating benchmark subsetting approaches,” in 2006 IEEE
International Symposium on Workload Characterization. IEEE, 2006,
pp. 93–104.

[22] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2. ACM, 2007,
pp. 412–423.

[23] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction
Level Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[24] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 1.
ACM, 2003, pp. 318–319.

[25] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program mi-
croarchitecture independent characteristics and phase behavior for
reduced benchmark suite simulation,” in Workload Characterization
Symposium, 2005. Proceedings of the IEEE International. IEEE,
2005, pp. 2–12.

[26] Y.-J. Lee and M. Hall, “A code isolator: Isolating code fragments from
large programs,” in Languages and Compilers for High Performance
Computing. Springer, 2005, pp. 164–178.

[27] P. de Oliveira Castro, C. Akel, E. Petit, M. Popov, and W. Jalby,
“CERE: LLVM Based Codelet Extractor and REplayer for Piecewise
Benchmarking and Optimization,” Transactions on Architecture and
Code Optimization, vol. 12, no. 1, p. 6, 2015.

[28] M. Popov, C. Akel, F. Conti, W. Jalby, and P. de Oliveira Castro,
“Pcere: Fine-grained parallel benchmark decomposition for scalabil-
ity prediction,” in International Parallel and Distributed Processing
Symposium. IEEE, 2015, pp. 1151–1160.

[29] M. Popov, C. Akel, W. Jalby, and P. d. O. Castro, “Piecewise holis-
tic autotuning of compiler and runtime parameters,” in Euro-Par
2016 Parallel Processing - 22nd International Conference, ser. Lec-
ture Notes in Computer Science. Springer, 2016 (to appear).

[30] P. de Oliveira Castro, Y. Kashnikov, C. Akel, M. Popov, and W. Jalby,
“Fine-grained Benchmark Subsetting for System Selection,” in Inter-
national symposium on Code Generation and Optimization. ACM,
2014, pp. 132–142.

122 BIBLIOGRAPHY

[31] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra, “Using
papi for hardware performance monitoring on linux systems,” in Proc.
Conf. on Linux Clusters: The HPC Revolution, 2001, pp. 25–27.

[32] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and
G. Lartigue, “Cqa: A code quality analyzer tool at binary level,” in
High Performance Computing (HiPC), 2014 21st International Con-
ference on. IEEE, 2014, pp. 1–10.

[33] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE
Micro, no. 4, pp. 64–71, 2002.

[34] S. C. Johnson, Lint, a C program checker. Citeseer, 1977.

[35] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva,
W. Jalby et al., “Maqao: Modular assembler quality analyzer and
optimizer for itanium 2,” in The 4th Workshop on EPIC architectures
and compiler technology, San Jose, 2005.

[36] “Intel Architecture Code Analyzer.” [Online]. Available: https:
//software.intel.com/en-us/articles/intel-architecture-code-analyzer/

[37] “Clang Static Analyzer.” [Online]. Available: http://clang-analyzer.
llvm.org/

[38] “Lprof ,” http://www.vi-hps.org/upload/material/tw21/MAQAO.
pdf.

[39] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on. IEEE, 2010, pp. 207–216.

[40] A. S. Phansalkar, Measuring program similarity for efficient bench-
marking and performance analysis of computer systems. ProQuest,
2007.

[41] K. Hoste and L. Eeckhout, “Comparing benchmarks using key
microarchitecture-independent characteristics,” in Workload Charac-
terization, 2006 IEEE International Symposium on. IEEE, 2006, pp.
83–92.

[42] ——, “Microarchitecture-independent workload characterization,”
Micro, IEEE, vol. 27, no. 3, pp. 63–72, 2007.

[43] V. Palomares, “Combining static and dynamic approaches to model
loop performance in hpc,” Ph.D. dissertation, Université de Versailles-
Saint Quentin en Yvelines, 2015.

BIBLIOGRAPHY 123

[44] Z. Bendifallah, “Generalization of the decremental performance
analysis to differential analysis,” Ph.D. dissertation, Université de
Versailles-Saint Quentin en Yvelines, 2015.

[45] H. Vandierendonck and K. De Bosschere, “Experiments with subset-
ting benchmark suites,” inWorkload Characterization, 2004. WWC-7.
2004 IEEE International Workshop on. IEEE, 2004, pp. 55–62.

[46] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring
benchmark similarity using inherent program characteristics,” Com-
puters, IEEE Transactions on, vol. 55, no. 6, pp. 769–782, 2006.

[47] H. Vandierendonck and K. De Bosschere, “Many benchmarks stress
the same bottlenecks,” in Workshop on Computer Architecture Eval-
uation Using Commercial Workloads, 2004.

[48] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automati-
cally characterizing large scale program behavior,” in ACM SIGARCH
Computer Architecture News, vol. 30, no. 5. ACM, 2002, pp. 45–57.

[49] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oak-
land, CA, USA., 1967, pp. 281–297.

[50] G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm that
find better clusterings,” in Proceedings of the eleventh international
conference on Information and knowledge management. ACM, 2002,
pp. 600–607.

[51] J. H. Ward, “Hierarchical grouping to optimize an objective function,”
Journal of the American Statistical Association, vol. 58, no. 301, pp.
236–244, 1963. [Online]. Available: http://www.tandfonline.com/doi/
abs/10.1080/01621459.1963.10500845

[52] M. Kaur and U. Kaur, “Comparison between k-mean and hierarchical
algorithm using query redirection,” International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 3, no. 7,
2013.

[53] R. Thorndike, “Who belongs in the family?” Psychometrika,
vol. 18, no. 4, pp. 267–276, 1953. [Online]. Available: http:
//dx.doi.org/10.1007/BF02289263

[54] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[55] A. Hyvärinen, J. Hurri, and P. O. Hoyer, Natural Image Statistics:
A Probabilistic Approach to Early Computational Vision. Springer
Science & Business Media, 2009, vol. 39.

124 BIBLIOGRAPHY

[56] E. Ipek, B. R. De Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in European Con-
ference on Parallel Processing. Springer, 2005, pp. 196–205.

[57] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for
reduced code space using genetic algorithms,” in SIGPLAN Notices,
vol. 34, no. 7. ACM, 1999, pp. 1–9.

[58] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proceedings of the 15th international conference on Par-
allel architectures and compilation techniques. ACM, 2006, pp. 114–
122.

[59] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[60] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical recipes: The art of scientific computing. Cambridge uni-
versity press, 1986.

[61] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,” in Workload Characterization, 2008. IISWC 2008.
IEEE International Symposium on. IEEE, 2008, pp. 47–56.

[62] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout,
“Barrierpoint: Sampled simulation of multi-threaded applications,”
in Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[63] T. Lafage and A. Seznec, “Choosing representative slices of program
execution for microarchitecture simulations: A preliminary applica-
tion to the data stream,” in Workload characterization of emerging
computer applications. Springer, 2001, pp. 145–163.

[64] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Fal-
safi, and J. C. Hoe, “Simflex: statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[65] M. Van Biesbrouck, T. Sherwood, and B. Calder, “A co-phase ma-
trix to guide simultaneous multithreading simulation,” in Performance
Analysis of Systems and Software, 2004 IEEE International Sympo-
sium on-ISPASS. IEEE, 2004, pp. 45–56.

[66] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and
C. Dulong, “Detecting phases in parallel applications on shared mem-

BIBLIOGRAPHY 125

ory architectures,” in International Parallel and Distributed Processing
Symposium. IEEE, 2006, p. 10.

[67] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of
multi-threaded applications,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 2–12.

[68] E. K. Ardestani and J. Renau, “Esesc: A fast multicore simulator using
time-based sampling,” in High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium on. IEEE,
2013, pp. 448–459.

[69] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of
parallel applications computation phases,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–11.

[70] D. E. Knuth, “An empirical study of Fortran programs,” Software:
Practice and Experience, vol. 1, no. 2, pp. 105–133, 1971.

[71] C. Akel, Y. Kashnikov, P. de Oliveira Castro, andW. Jalby, “Is Source-
code Isolation Viable for Performance Characterization?” in Interna-
tional Workshop on Parallel Software Tools and Tool Infrastructures
(PSTI). IEEE Computer Society, 2013.

[72] E. Petit, G. Papaure, F. Bodin et al., “Astex: a hot path based thread
extractor for distributed memory system on a chip,” in Proceedings of
Compilers for Parallel Computers workshop (CPC2006), 2006.

[73] C. Liao, D. J. Quinlan, R. Vuduc, and T. Panas, “Effective source-to-
source outlining to support whole program empirical optimization,”
in Languages and Compilers for Parallel Computing. Springer, 2010,
pp. 308–322.

[74] CAPS entreprises. (CAPS) Codelet finder. [Online]. Available:
http://www.caps-entreprise.com/

[75] Y. Kashnikov, P. de Oliveira Castro, E. Oseret, and W. Jalby, “Eval-
uating architecture and compiler design through static loop analysis,”
in High Performance Computing and Simulation (HPCS). IEEE,
2013, pp. 535–544.

[76] R. E. Kessler, M. D. Hill, and D. A. Wood, “A comparison of
trace-sampling techniques for multi-megabyte caches,” Transactions
on Computers, vol. 43, no. 6, pp. 664–675, 1994.

126 BIBLIOGRAPHY

[77] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss
for effective trace sampling of superscalar processors,” in Computer
Design: VLSI in Computers and Processors, 1996. ICCD’96. Pro-
ceedings., 1996 IEEE International Conference on. IEEE, 1996, pp.
468–477.

[78] J. W. Haskins Jr and K. Skadron, “Memory reference reuse latency:
Accelerated warmup for sampled microarchitecture simulation,” in
Performance Analysis of Systems and Software, 2003. ISPASS. 2003
IEEE International Symposium on. IEEE, 2003, pp. 195–203.

[79] X. Gao, M. Laurenzano, B. Simon, and A. Snavely, “Reducing over-
heads for acquiring dynamic memory traces,” in Workload Charac-
terization Symposium, 2005. Proceedings of the IEEE International.
IEEE, 2005, pp. 46–55.

[80] E. Petit and F. Bodin, “Code-Partitioning for a Concise Characteri-
zation of Programs for Decoupled Code Tuning,” Mar. 2010. [Online].
Available: http://hal.archives-ouvertes.fr/hal-00460897

[81] D. Quinlan and C. Liao, “The rose source-to-source compiler infras-
tructure,” in Cetus Users and Compiler Infrastructure Workshop, in
conjunction with PACT, vol. 2011, 2011, p. 1.

[82] T. Kisuki, P. M. Knijnenburg, M. F. O’Boyle, F. Bodin, and H. A.
Wijshoff, “A feasibility study in iterative compilation,” in High Per-
formance Computing. Springer, 1999, pp. 121–132.

[83] A. Mazouz, S.-A.-A. Touati, and D. Barthou, “Performance evalua-
tion and analysis of thread pinning strategies on multi-core platforms:
Case study of spec omp applications on intel architectures,” in High
Performance Computing and Simulation (HPCS). IEEE, 2011, pp.
273–279.

[84] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: making dvs practical for complex
hpc applications,” in Proceedings of the conference on Supercomputing.
ACM/IEEE, 2009, pp. 460–469.

[85] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in Code Generation and
Optimization, 2003. CGO 2003. International Symposium on. IEEE,
2003, pp. 204–215.

[86] P. de Oliveira Castro, E. Petit, A. Farjallah, and W. Jalby, “Adap-
tive sampling for performance characterization of application kernels,”
Concurrency and Computation: Practice and Experience, 2013.

BIBLIOGRAPHY 127

[87] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam, “Quick and practical
run-time evaluation of multiple program optimizations,” T. HiPEAC,
vol. 1, pp. 34–53, 2007.

[88] D. Sands, “Reimplementing llvm-gcc as a gcc plugin,” in Third Annual
LLVM Developers’ Meeting, 2009.

[89] A. Alexandrescu, The D Programming Language. Pearson Education,
2010.

[90] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng,
“Openuh: An optimizing, portable openmp compiler,” Concurrency
and Computation: Practice and Experience, vol. 19, no. 18, pp. 2317–
2332, 2007.

[91] A. B. . A. Bataev, “Towards OpenMP Support in LLVM,” in 2013
European LLVM Conference, 2013.

[92] “LLVM OpenMP runtime,” https://www.openmprtl.org/.

[93] “Google Performance Tools,” gperftools v2.2.1. [Online]. Available:
http://code.google.com/p/gperftools

[94] Z. Pan and R. Eigenmann, “Fast, automatic, procedure-level perfor-
mance tuning,” in Proceedings of the 15th international conference on
Parallel architectures and compilation techniques. ACM, 2006, pp.
173–181.

[95] D. Mikushin, N. Likhogrud, E. Z. Zhang, and C. Bergström,
“Kernelgen–the design and implementation of a next generation com-
piler platform for accelerating numerical models on gpus,” Technical
Report 2013/02, University of Lugano, July 2013. http://www. old.
inf. usi. ch/file/pub/75/tech report2013. pdf, Tech. Rep., 2013.

[96] J. Duell, “The design and implementation of Berkeley lab’s linux
checkpoint/restart,” Lawrence Berkeley National Laboratory, 2005.

[97] A. N. Burton and P. H. Kelly, “Performance prediction of paging work-
loads using lightweight tracing,” Future Generation Computer Sys-
tems, vol. 22, no. 7, pp. 784–793, 2006.

[98] M. Arenaz, J. Touriño, and R. Doallo, “Xark: An extensible frame-
work for automatic recognition of computational kernels,” Transac-
tions on Programming Languages and Systems, vol. 30, no. 6, p. 32,
2008.

[99] M. A. Khan, H.-P. Charles, and D. Barthou, “An effective automated
approach to specialization of code,” in Languages and Compilers for
Parallel Computing. Springer, 2008, pp. 308–322.

128 BIBLIOGRAPHY

[100] B. Calder, P. Feller, and A. Eustace, “Value profiling,” in Microar-
chitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM Interna-
tional Symposium on. IEEE, 1997, pp. 259–269.

[101] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and
C. Wu, “Evaluating iterative optimization across 1000 data sets,” in
Proceedings of the ACM SIGPLAN 2010 Conference on Programming
Language Design and Implementation (PLDI’10), Toronto, Canada,
2010.

[102] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an intro-
duction to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[103] J. Noudohouenou, “Performance prediction based on codelet driven
application characterization,” Ph.D. dissertation, 2013.

[104] E. Willighagen, “GNU R package ‘genalg’,” 2013. [Online]. Available:
http://cran.r-project.org/web/packages/genalg/

[105] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[106] L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance pre-
diction of parallel applications using partial execution,” in Proceedings
of the conference on Supercomputing. ACM/IEEE, 2005, pp. 40–40.

[107] E. Baysal, “Reverse time migration,” Geophysics, vol. 48, no. 11, p.
1514, Nov. 1983.

[108] M. Popov, “NAS 3.0 C OpenMP,” http://benchmark-subsetting.
github.io/cNPB.

[109] D. H. Bailey, Nas parallel benchmarks. Springer, 2011.

[110] “Omni Compiler Project Benchmarks.” [Online]. Available: http:
//www.hpcs.cs.tsukuba.ac.jp/omni-compiler/

[111] “LLVM implicit barrier issue report,” https://github.com/clang-omp/
clang/issues/52, accessed: 2015-01-01.

[112] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disserta-
tion, Princeton University, January 2011.

[113] S. N. Natarajan, B. Swamy, A. Seznec et al., “Modeling multi-threaded
programs execution time in the many-core era,” 2013.

[114] Intel, “Reference Guide for the Intel(R) C++ Compiler 15.0,” https:
//software.intel.com/en-us/node/522691.

BIBLIOGRAPHY 129

[115] P. A. Kulkarni, M. R. Jantz, and D. B. Whalley, “Improving both
the performance benefits and speed of optimization phase sequence
searches,” in SIGPLAN Notices, vol. 45, no. 4. ACM, 2010, pp.
95–104.

[116] S. Purini and L. Jain, “Finding good optimization sequences covering
program space,” Transactions on Architecture and Code Optimization,
vol. 9, no. 4, p. 56, 2013.

[117] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and
O. Temam, “Rapidly selecting good compiler optimizations using per-
formance counters,” in International Symposium on Code Generation
and Optimization (CGO’07). IEEE, 2007, pp. 185–197.

