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L’Université Paris-Saclay
Préparée à
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PRÉSENTATION DES RÉSULTATS

En géométrie algébrique, la notion d’amplitude des fibrés en droites apparaît naturellement pour
caractériser les variétés projectives.

Definition 0.1. Soient X un schéma, et L un fibré en droites sur X. Alors on dit que L est:

� très ample, s’il existe un plongement quelconque i : X ↪→ PN à valeurs dans un espace
projectif PN tel que L = i∗OPN (1);

� ample, s’il existe un nombre entier k > 1 tel que le fibré en droites L k est très ample.

Il est un fait étonnant que l’amplitude des fibrés en droites bénéficie de critères divers, par exem-
ple, ceux cohomologiques via les théorèmes d’annulations, ou celui numérique via le théorème de
Nakai-Moishezon-Kleiman. De plus, sur le corps des nombres complexes, le célèbre théorème de
plongement de Kodaira affirme que, sur une variété complexe compacte lisse, un fibré en droites
holomorphe L est ample si et seulement s’il existe une métrique hermitienne de L dont la forme
de courbure est strictement positive.

Pour des fibrés vectoriels, on peut aussi introduire la notion d’amplitude comme suit. Soit E un
fibre vectoriels sur une variété X. Notons π : P(E) −→ X le fibré projectif des quotients de E de
dimension 1, et notons OP(E)(1) le fibré en droites de Serre sur P(E), i.e. le quotient tautologique
de π∗E.

Definition 0.2. Le fibré vectoriel E est (très) ample sur X si et seulement si le fibré en droites de
Serre OP(E)(1) est (très) ample sur P(E).

Sur une variété lisse X, le fibré vectoriel le plus naturel serait, soit le fibré cotangent ΩX, soit
le fibré tangent TX = Ω∨X. Rappelons que, dans sa solution célèbre de la Conjecture d’Hartshorne,
Mori a établi que les seules variétés lisses ayant un fibré tangent ample sont les espaces projectifs.
Par conséquent, un problème naturel surgit: déterminer les variétés lisses dont le fibré cotangent
est ample.

Les variétés X à fibré cotangent ample jouissent de plusieurs propriétés intéressantes:

� toutes les sous-variétés de X sont de type général;

� il y a nombre fini d’applications rationnelles non constantes d’une variété projective fixée
vers X;

� si X est définie sur C, alors X est hyperbolique complexe au sens de Kobayashi, i.e. chaque
application holomorphe C −→ X doit être constante.

De plus, si X est définie sur un corps de nombres K, alors l’ensemble des points K-rationnels de
X est conjecturé par Lang avoir un cardinal fini.

Dans le cas de la dimension 1, nous avons une compréhension complète des variétés à fibré
cotangent ample: ce sont les courbes algébriques lisses de genre > 2. Cependant, en dimension
supérieure, peu d’exemples étaient connus jusqu’à très récemment, même s’ils étaient censés être
raisonnablement abondants.

Dans cet objectif, Debarre a conjecturé que l’intersection de c > N/2 hypersurfaces génériques
de degrés élevés dans PN

C devrait avoir un fibré cotangent ample.
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Inspiré par les travaux de Debarre et Brotbek, dans cette thèse, nous établissons la Conjecture
d’amplitude de Debarre en toute généralité, et notamment, nous obtenons une borne effective in-
férieure sur les degrés des hypersurfaces.

Théorème Principal. Le fibré cotangent ΩX d’une intersection X := H1 ∩ · · · ∩ Hc ⊂ PN
C de

c > N/2 hypersurfaces génériques H1, . . . ,Hc de degrés élevés d1, . . . , dc � NN2
est ample.

En fait, au lieu de nous contenter de , nous allons montrer que ce résultat est valide pour chaque
corps algébriquement clos, sans restriction sur sa caractéristique.

Esquissons maintenant la preuve.
Tout d’abord, nous élaborons une interprétation géométrique des différentielles symétriques sur

les espaces projectifs. De cette manière, nous reconstruisons les différentielles symétriques de
Brotbek sur X, lorsque les équations définissantes des hypersurfaces H1, . . . ,Hc sont de type Fer-
mat généralisé. De plus, nous dévoilons des familles nouvelles de différentielles symétriques de
degré inférieur sur toutes les intersections possibles de X avec des hyperplans de coordonnées.

Ensuite, nous introduisons ce que nous appelons la ‘Méthode des Coefficients Mobiles’ ainsi que
le ‘Coup du Produit’ afin d’accomplir une démonstration de la conjecture d’amplitude de Debarre.
De plus, nous obtenons une borne effective inférieure sur les degrés: d1, . . . , dc > NN2

. Enfin, grâce
à des résultats connus au sujet de la conjecture de Fujita, nous établissons que Symκ ΩX est très

ample pour tout κ > 64
(∑c

i=1 di

)2
.
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Summary
In the first part of this thesis, we establish the Debarre Ampleness Conjecture: The cotangent bundle

ΩX of the intersection X = H1 ∩ · · · ∩ Hc of c > N/2 generic hypersurfaces Hi ⊂ PN
C

of high degrees
d1, . . . , dc � 1 is ample.

First of all, we provide a geometric interpretation of symmetric differential forms in projective spaces.
Thereby, we reconstruct Brotbek’s symmetric differential forms on X, where the defining hypersurfaces
H1, . . . ,Hc are generalized Fermat-type. Moreover, we exhibit unveiled families of lower degree symmetric
differential forms on all possible intersections of X with coordinate hyperplanes.

Thereafter, we introduce what we call the ‘moving coefficients method’ and the ‘product coup’ to settle
the Debarre Ampleness Conjecture. In addition, we obtain an effective lower degree bound: d1, . . . , dc >
NN2

. Lastly, thanks to known results about the Fujita Conjecture, we establish the very-ampleness of

Symκ ΩX for all κ > 64
(∑c

i=1 di
)2

.
In the second part, we study the General Debarre Ampleness Conjecture, which stipulates that, over an

algebraically closed field K with any characteristic, on an N-dimensional smooth projective K-variety P
equipped with c > N/2 very ample line bundles L1, . . . ,Lc, for all large degrees d1, . . . , dc > d � 1, for
generic c hypersurfaces H1 ∈

∣∣∣L ⊗ d1
1

∣∣∣, . . . , Hc ∈
∣∣∣L ⊗ dc

c

∣∣∣, the complete intersection X := H1 ∩ · · · ∩ Hc has
ample cotangent bundle ΩX .

On such an intersection variety X, we construct what we call ‘generalized Brotbek’s symmetric differen-
tial forms’, and we establish that, if L1, . . . ,Lc are almost proportional mutually, then the General Debarre
Ampleness Conjecture holds true. Our method is effective, and in the case where L1 = · · · = Lc, we obtain
the same lower degree bound d = NN2

as in the first part.
These two works have been posted on arxiv.org.

———————-

Keywords. Debarre Ampleness Conjecture, Complete intersection, Cotangent bundle, Symmetric differential form,
Moving Coefficients Method, Product coup, Cramer’s rule, Base loci, Fibre dimension estimate, Core Lemma, Gauss-
ian elimination, Formal matrices, Determinants, Complex hyperbolicity, Fujita Conjecture.
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ON THE AMPLENESS
OF THE COTANGENT BUNDLES
OF COMPLETE INTERSECTIONS

SONG-YAN XIE

Abstract. Based on a geometric interpretation of Brotbek’s symmetric differential forms, for the
intersection family X of general Fermat-type hypersurfaces in PN

K defined over any field K, we
construct

/
reconstruct explicit symmetric differential forms by applying Cramer’s rule, skipping co-

homology arguments, and we further exhibit unveiled families of lower degree symmetric differential
forms on all possible intersections of X with coordinate hyperplanes.

Thereafter, we develop what we call the ‘moving coefficients method’ to prove a conjecture made
by Olivier Debarre: for a generic choice of c > N/2 hypersurfaces H1, . . . ,Hc ⊂ PN

C
of degrees

d1, . . . , dc sufficiently large, the intersection X := H1 ∩ · · · ∩Hc has ample cotangent bundle ΩX , and
concerning effectiveness, the lower bound d1, . . . , dc > NN2

works.
Lastly, thanks to known results about the Fujita Conjecture, we establish the very-ampleness of

Symκ ΩX for all κ > κ0, with a uniform lower bound κ0 = 64
(∑c

i=1 di

)2
independent of X.

1. Introduction

In 2005, Debarre established that, in a complex abelian variety of dimension N, for c > N/2
sufficiently ample generic hypersurfaces H1, . . . ,Hc, their intersection X := H1 ∩ · · · ∩ Hc has
ample cotangent bundle ΩX, thereby answering a question of Lazarsfeld (cf. [18]). Then naturally,
by thoughtful analogies between geometry of Abelian varieties and geometry of projective spaces,
Debarre proposed the following conjecture in Section 3 of [18], extending in fact an older question
raised by Schneider [58] in the surface case:

Conjecture 1.1. [Debarre Ampleness Conjecture] For all integers N > 2, for every integer
N/2 6 c < N, there exists a positive lower bound:

d � 1

such that, for all positive integers:
d1, . . . , dc > d,

for generic choices of c hypersurfaces:

Hi ⊂ PN
C (i =1 ··· c)

with degrees:
deg Hi = di,

2010 Mathematics Subject Classification. 14D99, 14F10, 14M10, 14M12, 15A03, 32Q45.
Key words and phrases. Complex hyperbolicity, Fujita Conjecture, Debarre Ampleness Conjecture, Generic,

Complete intersection, Cotangent bundle, Cramer’s rule, Symmetric differential form, Moving Coefficients Method,
Base loci, Fibre dimension estimate, Core Lemma, Gaussian elimination.

This work was supported by the Fondation Mathématique Jacques Hadamard through the grant No ANR-10-
CAMP-0151-02 within the “Programme des Investissements d’Avenir”.
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the intersection:
X := H1 ∩ · · · ∩ Hc

has ample cotangent bundle ΩX.

Precisely, according to a ground conceptualization due to Hartshorne [36], the expected ample-
ness is that, for all large degrees k > k0 � 1, the global symmetric k-differentials on X:

Γ
(
X, Symk ΩX

)

are so abundant and diverse, that firstly, at every point x ∈ X, the first-order jet evaluation map:

Γ
(
X, Symk ΩX

)
� Jet1 Symk ΩX

∣∣∣
x

is surjective, where for every vector bundle E → X the first-order jet of E at x is defined by:

Jet1 E
∣∣∣
x

:= Ox(E)
/

(mx)2 Ox(E),

and that secondly, at every pair of distinct points x1 , x2 in X, the simultaneous evaluation map:

Γ
(
X,Symk ΩX

)
� Symk ΩX

∣∣∣
x1
⊕ Symk ΩX

∣∣∣
x2

is also surjective.
The hypothesis:

c > n

appears optimal, for otherwise when c < n, there are no nonzero global sections for all degrees
k > 1:

Γ
(
X,Symk ΩX

)
= 0,

according to Brückmann-Rackwitz [8] and Schneider [58], whereas, in the threshold case c = n,
nonzero global sections are known to exist.

As highlighted in [18], projective varieties X having ample cotangent bundles enjoy several
fascinating properties, for instance the following ones.

• All subvarieties of X are all of general type.

• There are finitely many nonconstant rational maps from any fixed projective variety to X
([51]).

• If X is defined over C, then X is Kobayashi-hyperbolic, i.e. every holomorphic map C→ X
must be constant ([20, p. 16, Proposition 3.1], [27, p. 52, Proposition 4.2.1]).

• If X is defined over a number field K, the set of K-rational points of X is expected to be
finite (Lang’s conjecture, cf. [38], [48]).

Since ampleness of cotangent bundles potentially bridges Analytic Geometry and Arithmetic
Geometry in a deep way, it is interesting to ask examples of such projective varieties. In one-
dimensional case, they are in fact our familar Riemann surfaces

/
algebraic curves with genus > 2.

However, in higher dimensional case, not many examples were known, even though they were
expected to be reasonable abundant.

In this aspect, we would like to mention the following nice construction of Bogomolov, which
is written down in the last section of [18]. If X1, . . . , X` are smooth complex projective varieties
having positive dimensions:

dim Xi > d > 1 (i =1 ··· `),
2



all of whose Serre line bundles OP(TXi )(1)→ P(TXi) enjoy bigness:

dim Γ
(
P(TXi), OP(TXi )(k)

)
= dim Γ

(
Xi, SymkΩXi

)
>

k→∞
constant︸     ︷︷     ︸

> 0

· k2 dim Xi−1,

then a generic complete intersection:

Y ⊂ X1 × · · · × X`

having dimension:

dim Y 6
d (` + 1) + 1

2 (d + 1)
has ample cotangent bundle ΩY .

In his Ph.D. thesis under the direction of Mourougane, Brotbek [5] reached an elegant proof of
the Debarre Ampleness Conjecture in dimension n = 2, in all codimensions c > 2, for generic
complete intersections X2 ⊂ P2+c(C) having degrees:

d1, . . . , dc >
8 (n + c) + 2

n + c − 1
,

by extending the techniques of Siu [62, 63, 64], Demailly [20, 23, 22], Rousseau [56], Păun [52,
53], Merker [43], Diverio-Merker-Rousseau [26], Mourougane [50], and by employing the concept
of ampleness modulo a subvariety introduced by Miyaoka in [47]. Also, for smooth complete
intersections Xn ⊂ Pn+c(C) with c > n > 2, Brotbek showed using holomorphic Morse inequalities
that when:

d1, . . . , dc >
[
2n−1 (

2n − 2
) n2

n + c + 1

(
2n − 1

n

)
+ 1

]( n
b n

2c
)
(2n + c)!
(n + c)!

(c − n)!
c!

,

bigness of the Serre line bundle OP(TX)(1)→ P(TX) holds:

dim Γ
(
P(TX), OP(TX)(k)

)
= dim Γ

(
X, Symk ΩX

)
>

k→∞
1
2 χEuler

(
X, Symk ΩX

)

>
k→∞

constant︸     ︷︷     ︸
> 0

·k2 n−1,

whereas a desirable control of the base locus of the inexplicitly given nonzero holomorphic sections
seems impossible by means of currently available techniques.

To find an alternative approach, a key breakthrough happened in 2014, when Brotbek [7] ob-
tained explicit global symmetric differential forms in coordinates by an intensive cohomological
approach. More specifically, under the assumption that the ambient field K has characteristic zero,
using exact sequences and the snake lemma, Brotbek firstly provided a key series of long injective
cohomology sequences, whose left initial ends consist of the most general global twisted sym-
metric differential forms, and whose right target ends consist of huge dimensional linear spaces
well understood. Secondly, Brotbek proved that the image of each left end, going through the full
injections sequence, is exactly the kernel of a certain linear system at the right end. Thirdly, by
focusing on pure Fermat-type hypersurface equations ([7, p. 26]):

F j =

N∑

i=0

s j
i Ze

i ( j = 1 ··· c), (1)

with integers c > N/2, e > 1, where s j
i are some homogeneous polynomials of the same degree

ε > 0, Brotbek step-by-step traced back some kernel elements from each right end all the way to
3



the left end, every middle step being an application of Cramer’s rule, and hence he constructed
global twisted symmetric differential forms with neat determinantal structures ([7, p. 27–31]).

Thereafter, by employing the standard method of counting base-locus-dimension in two ways in
algebraic geometry (see e.g. Lemma 8.15 below), Brotbek established that the Debarre Ampleness
Conjecture holds when:

4c > 3 N − 2,

for equal degrees:
d1 = · · · = dc > 2N + 3, (2)

the constructions being flexible enough to embrace ‘approximately equal degrees’, in the same
sense as Theorem 5.2 below.

Inspired much by Brotbek’s works, we propose the following answer to the Debarre Ampleness
Conjecture.

Theorem 1.2. The cotangent bundle of the intersection in PN
C of at least N/2 generic hypersurfaces

with degrees > NN2
is ample.

In fact, we will prove the following main theorem, which coincides with the above theorem for
r = 0 and K = C, and whose effective bound d0 = NN2

will be obtained in Theorem 11.2.

Theorem 1.3 (Ampleness). Over any field K which is not finite, for all positive integers N > 1,
for any nonnegative integers c, r > 0 with:

2c + r > N,

there exists a lower bound d0 � 1 such that, for all positive integers:

d1, . . . , dc, dc+1, . . . , dc+r > d0,

for generic choices of c + r hypersurfaces:

Hi ⊂ PN
K (i =1 ··· c+r)

with degrees:
deg Hi = di,

the cotangent bundle ΩV of the intersection of the first c hypersurfaces:

V := H1 ∩ · · · ∩ Hc

restricted to the intersection of all the c + r hypersurfaces:

X := H1 ∩ · · · ∩ Hc ∩ Hc+1 ∩ · · · ∩ Hc+r

is ample.

First of all, remembering that ampleness (or not) is preserved under any base change obtained
by ambient field extension, one only needs to prove the Ampleness Theorem 1.3 for algebraically
closed fields K.

Of course, we would like to have d0 = d0 (N, c, r) as small as possible, yet the optimal one is at
present far beyond our reach, and we can only get exponential ones like:

d0 = NN2
(Theorem 11.2),
4



which confirms the large degree phenomena in Kobayashi hyperbolicity related problems ([26, 2,
22, 16, 64]). When 2 (2c + r) > 3N − 2, we obtain linear bounds for equal degrees:

d1 = · · · = dc+r > 2N + 3,

hence we recover the lower bounds (2) in the case r = 0, and we also obtain quadratic bounds for
all large degrees:

d1, . . . , dc+r > (3N + 2)(3N + 3).

Better estimates of the lower bound d0 will be explained in Section 12.

Concerning the proof, primarily, as anticipated
/
emphasized by Brotbek and Merker ([7, 44]), it

is essentially based on constructing sufficiently many global negatively twisted symmetric differ-
ential forms, and then inevitably, one has to struggle with the overwhelming difficulty of clearing
out their base loci, which seems, at the best of our knowledge, to be an incredible mission.

In order to bypass the complexity in these two aspects, the following seven ingredients are
indispensable in our approach:

À generalized Brotbek’s symmetric differential forms (Subsection 6.10);
Á global moving coefficients method (MCM) (Subsection 7.2);
Â ‘hidden’ symmetric forms on intersections with coordinate hyperplanes (Subsection 6.4);
Ã MCM on intersections with coordinate hyperplanes (Subsection 7.3);
Ä Algorithm of MCM (Subsection 7.1);
Å Core Lemma of MCM (Section 10);
Æ product coup (Subsection 5.3).

In fact, À is based on a geometric interpretation of Brotbek’s symmetric differential forms ([7,
Lemma 4.5]), and has the advantage of producing symmetric differential forms by directly copying
hypersurface equations and their differentials. Facilitated by Á, which is of certain combinatorial
interest, À amazingly cooks a series of global negatively twisted symmetric differential forms,
which are of nice uniform structures. However, unfortunately, one still has the difficulty that all
these obtained global symmetric forms happen to coincide with each other on the intersections with
any two coordinate hyperplanes, so that their base locus stably keeps positive (large) dimension,
which is an annoying obstacle to ampleness.

Then, to overcome this difficulty enters Â, which is arguably the most critical ingredient in
harmony with MCM, and whose importance is much greater than its appearance as somehow a
corollary of À. Thus, to compensate the defect of À-Á, it is natural to design Ã which completes
the framework of MCM. And then, Ä is smooth to be devised, and it provides suitable hypersur-
face equations for MCM. Now, the last obstacle to amplness is about narrowing the base loci, an
ultimate difficulty solved by Å. Thus, the Debarre Conjecture is settled in the central cases of al-
most equal degrees. Finally, the magical coup Æ thereby embraces all large degrees for the Debarre
Conjecture, and naturally shapes the formulation of the Ampleness Theorem.

Lastly, taking account of known results about the Fujita Conjecture in Complex Geometry (cf.
survey [21]), we will prove in Section 13 the following

Theorem 1.4 (Effective Very Ampleness). Under the same assumption and notation as in the
Ampleness Theorem 1.3, if in addition the ambient field K has characteristic zero, then for generic
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choices of H1, . . . ,Hc+r, the restricted cotangent bundle Symκ ΩV

∣∣∣
X

is very ample on X, for every
κ > κ0, with the uniform lower bound:

κ0 = 16
( c∑

i=1

di +

c+r∑

i=1

di

)2
.

In the end, we would like to propose the following

Conjecture 1.5. (i) Over an algebraically closed field K, for any smooth projective K-variety P
with dimension N, for any integers c, r > 0 with 2c + r > N, for any very ample line bundles
L1, . . . ,Lc+r on P, there exists a lower bound:

d0 = d0 (P,L•) � 1

such that, for all positive integers:

d1, . . . , dc, dc+1, . . . , dc+r > d0,

for generic choices of c + r hypersurfaces:

Hi ⊂ P (i =1 ··· c+r)

defined by global sections:
Fi ∈ H0 (

P, L ⊗ di
i

)
,

the cotangent bundle ΩV of the intersection of the first c hypersurfaces:

V := H1 ∩ · · · ∩ Hc

restricted to the intersection of all the c + r hypersurfaces:

X := H1 ∩ · · · ∩ Hc ∩ Hc+1 ∩ · · · ∩ Hc+r

is ample.
(ii) There exists a uniform lower bound:

d0 = d0 (P) � 1

independent of the chosen very ample line bundles L•.
(iii) There exists a uniform lower bound:

κ0 = κ0 (P) � 1

independent of d1, . . . , dc+r, such that for generic choices of H1, . . . ,Hc+r, the restricted cotangent
bundle Symκ ΩV

∣∣∣
X

is very ample on X, for every κ > κ0.
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2. Preliminaries and Restatements of the Ampleness Theorem 1.3

2.1. Two families of hypersurface intersections in PN
K. Fix an arbitrary algebraically closed field

K. Now, we introduce the fundamental object of this paper: the intersection family of c + r
hypersurfaces with degrees d1, . . . , dc+r > 1 in theK-projective space PN

K of dimension N, equipped
with homogeneous coordinates [z0 : z1 : · · · : zN].

Recalling that the projective parameter space of degree d > 1 hypersurfaces in PN
K is:

P
(

H0(PN
K,OPN

K
(d)

)
︸             ︷︷             ︸

dimK=(N+d
N )

)
= P

{ ∑

|α|=d

Aα zα : Aα ∈ K
}
,

we may denote by:

P
(
⊕c+r

i=1 H0(PN
K,OPN

K
(di)

)
︸                    ︷︷                    ︸

dimK =
∑c+r

i=1 (N+di
N )

)
= P

{
⊕c+r

i=1

∑

|α|=di

Ai
α zα : Ai

α ∈ K
}

the projective parameter space of c + r hypersurfaces with degrees d1, . . . , dc+r. This K-projective
space has dimension:

♦ :=
c+r∑

i=1

(
N + di

N

)
− 1, (3)

hence we write it as:
P♦K = ProjK

[{Ai
α}16i6c+r
|α|=di

]
, (4)

where, as shown above, Ai
α are the homogeneous coordinates indexed by the serial number i of

each hypersurface and by all multi-indices α with the weight |α| = di associated to the degree di

monomials zα ∈ K[z0, . . . , zN].
Now, we introduce the two subschemes:

X ⊂ V ⊂ P♦K ×K PN
K,

where X is defined by ‘all’ the c + r bihomogeneous polynomials:

X := V
( ∑

|α|=d1

A1
α zα, . . . ,

∑

|α|=dc

Ac
α zα,

∑

|α|=dc+1

Ac+1
α zα, . . . ,

∑

|α|=dc+r

Ac+r
α zα

)
, (5)

and where V is defined by the ‘first’ c bihomogeneous polynomials:

V := V
( ∑

|α|=d1

A1
α zα, . . . ,

∑

|α|=dc

Ac
α zα

)
. (6)

Then we view X ,V ⊂ P♦K ×K PN
K as two families of closed subschemes of PN

K parametrized by
the projective parameter space P♦K.
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2.2. The relative cotangent sheaves family of V . A comprehensive reference on sheaves of
relative differentials is [42, Section 6.1.2].

Let pr1, pr2 be the two canonical projections:

P♦K ×K PN
K

pr1

{{

pr2

$$
P♦K PN

K.

(7)

Then, by composing with the subscheme inclusion:

i : V ↪→ P♦K ×K PN
K,

we receive a morphism:
pr1 ◦ i : V −→ P♦K,

together with a sheaf Ω1
V /P♦K

of relative differentials of degree 1 of V over P♦K.
Since pr1 is of finite type and P♦K is noetherian, a standard theorem ([42, p. 216, Proposi-

tion 1.20]) shows that the sheaf Ω1
V /P♦K

is coherent.

We may view Ω1
V /P♦K

as the family of the cotangent bundles for the intersection family V , since

the coherent sheaf Ω1
V /P♦K

is indeed locally free on the Zariski open set that consists of smooth
complete intersections.

2.3. The projectivizations and the Serre line bundles. We refer the reader to [37, pp. 160-162]
for the considerations in this subsection.

Starting with the noetherian scheme V and the coherent degree 1 relative differential sheaf Ω1
V /P♦K

on it, we consider the sheaf of relative OV -symmetric differential algebras:

Sym•Ω1
V /P♦K

:=
⊕

i>0

Symi Ω1
V /P♦K

.

According to the construction of [37, p. 160], noting that this sheaf has a natural structure of
graded OV -algebras, and moreover that it satisfies the condition (†) there, we receive the projec-
tivization of Ω1

V /P♦K
:

P
(
Ω1

V /P♦K

)
:= Proj

(
Sym•Ω1

V /P♦K

)
. (8)

As described in [37, p. 160], P(Ω1
V /P♦K

) is naturally equipped with the so-called Serre line bundle
OP(Ω1

V /P♦
K

)(1) on it.

Similarly, replacing V by P♦K ×K PN
K, we obtain the relative differentials sheaf of P♦K ×K PN

K with
respect to pr1 in (7):

Ω1
P♦K×KPN

K/P
♦
K

� pr∗2 Ω1
PN
K

,

and we thus obtain its projectivization:

P
(
Ω1
P♦K×KPN

K/P
♦
K

)
:= Proj

(
Sym•Ω1

P♦K×KPN
K/P

♦
K

)
� P♦K ×K Proj

(
Sym•Ω1

PN
K

)
. (9)

We will abbreviate Proj
(
Sym•Ω1

PN
K

)
as P(Ω1

PN
K

), and denote its Serre line bundle by OP(Ω1
PN
K

)(1).

Then, the Serre line bundle OP(Ω1
P♦
K
×KPN

K
/P♦
K

)(1) on the left hand side of (9) is nothing but the line

8



bundle π̃∗2 OP(Ω1
PN
K

)(1) on the right hand side, where π̃2 is the canonical projection:

π̃2 : P♦K ×K P(Ω1
PN
K

)→ P(Ω1
PN
K

). (10)

Now, note that the commutative diagram:

V � � i //

pr1◦i ##

P♦K ×K PN
K

pr1

��
P♦K

induces the surjection (cf. [37, p. 176, Proposition 8.12]):

i∗Ω1
P♦K×KPN

K/P
♦
K

� Ω1
V /P♦K

,

and hence yields the surjection:

i∗ Sym•Ω1
P♦K×KPN

K/P
♦
K

� Sym•Ω1
V /P♦K

.

Taking ‘Proj’, thanks to (9), we obtain the commutative diagram:

P(Ω1
V /P♦K

)

��

� � ĩ // P♦K ×K P(Ω1
PN
K

)

��
V � � i // P♦K ×K PN

K.

(11)

Thus, the Serre line bundle OP(Ω1
V /P♦

K

)(1) becomes exactly the pull back of ‘the Serre line bundle’

π̃∗2 OP(Ω1
PN
K

)(1) under the inclusion ĩ:

OP(Ω1
V /P♦

K

)(1) = ĩ∗
(̃
π∗2 OP(Ω1

PN
K

)(1)
)

= (̃π2 ◦ ĩ)∗OP(Ω1
PN
K

)(1). (12)

2.4. Restatement of Theorem 1.3. Let π̃ be the canonical projection:

π̃ : P♦K ×K P(Ω1
PN
K

)→ P♦K ×K PN
K,

and let π1, π2 be the compositions of π̃ with pr1, pr2:

P♦K ×K P(Ω1
PN
K

)

π1:=pr1◦π̃

��

π2:=pr2◦π̃

��

π̃

��
P♦K ×K PN

K

pr1
yy

pr2
%%

P♦K PN
K.

(13)

Let:
P := π̃−1(X ) ∩ P(Ω1

V /P♦K
) ⊂ P(Ω1

V /P♦K
) ⊂ P♦K ×K P(Ω1

PN
K

) (14)

be ‘the pullback’ of:
X ⊂ V ⊂ P♦K ×K PN

K
9



under the map π̃, and let:

OP(1) := OP(Ω1
V /P♦

K

)(1)
∣∣∣
P = π̃∗2 OP(Ω1

PN
K

)(1)
∣∣∣
P [see (12)] (15)

be the restricted Serre line bundle.
Now, we may view P as a family of subschemes of P(Ω1

PN
K

) parametrized by the projective pa-

rameter space P♦K under the restricted map:

π1 : P −→ P♦K. (16)

Thus Theorem 1.3 can be reformulated as below, with the assumption that the hypersurface degrees
d1, . . . , dc+r are sufficiently large:

d1, . . . , dc+r � 1.

Theorem 1.3 (Version A). For a generic point t ∈ P♦K, over the fibre:

Pt := π−1
1 (t) ∩ P,

the restricted Serre line bundle:
OPt(1) := OP(1)

∣∣∣
Pt

(17)

is ample.
From now on, every closed point:

t =
[
{Ai

α}16i6c+r
|α|=d

]
∈ P♦K

will be abbreviated as:
t = [F1 : · · · : Fc+r],

where:
Fi :=

∑

|α|=di

Ai
α zα (i = 1 ··· c+r).

Then we have:
Pt = {t} ×K Fc+1,...,Fc+r PF1,...,Fc ,

for a uniquely defined subscheme:

Fc+1,...,Fc+r PF1,...,Fc ⊂ P
(
Ω1
PN
K

)
. (18)

Theorem 1.3 (Version B). For a generic closed point:

[F1 : · · · : Fc+r] ∈ P♦K,
the Serre line bundle OP(Ω1

PN
K

)(1) is ample on Fc+1,...,Fc+r PF1,...,Fc .

To have a better understanding of the above statements, we now investigate the geometry behind.

3. The background geometry

Since K is an algebraically closed field, throughout this section, we view each scheme in the
classical sense (cf. [37, Chapter 1]), i.e. its underlying topological space (K-variety) consists of all
the closed points.
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3.1. The geometry of PN
K and OPN

K
(1). Recall that, the projective N-space PN

K is obtained by pro-
jectivizing the Euclidian (N + 1)-space KN+1, i.e. is defined as the set of lines passing through the
origin:

PN
K := P

(
KN+1) := KN+1∖{0} / ∼, (19)

where the quotient relation ∼ for z ∈ KN+1\{0} is:

z ∼ λz (∀ λ ∈K×).

On PN
K, there is the so-called tautological line bundle OPN

K
(−1), which at every point [z] ∈ PN

K has
fibre:

OPN
K
(−1)

∣∣∣
[z]

:= K · z ⊂ KN+1.

Its dual line bundle is the well known:

OPN
K
(1) := OPN

K
(−1)∨.

3.2. The geometry of P(Ω1
PN
K

) and OP(Ω1
PN
K

)(1). For every point [z] ∈ PN
K, the tangent space of PN

K at

[z] is:
TPN
K

∣∣∣
[z]

= KN+1/K · z,
and the total tangent space of PN

K:

TPN
K

:= ThorK
N+1/ ∼, (20)

is the quotient space of the horizontal tangent space of KN+1 \ {0}:
ThorK

N+1 :=
{
(z, [ξ]) : z ∈ KN+1 \ {0} and [ξ] ∈ KN+1/K · z

}
, (21)

by the quotient relation ∼:
(z, [ξ]) ∼ (λz, [λξ]) (∀ λ ∈K×).

0

λz

ξ

CN+1

z

X̂

λξ
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Now, the K-variety associated to P(Ω1
PN
K

) is just the projectivized tangent space P(TPN
K
), which is

obtained by projectivizing each tangent space TPN
K

∣∣∣
[z]

at every point [z] ∈ PN
K:

P(TPN
K
)
∣∣∣
[z]

:= P
(
TPN
K

∣∣∣
[z]

)
.

And the Serre line bundle OP(Ω1
PN
K

)(1) on P(Ω1
PN
K

) corresponds to the ‘Serre line bundle’ OP(T
PN
K

)(1)

on P(TPN
K
), which after restricting on P(TPN

K
)
∣∣∣
[z]

becomes OP(T
PN
K
|[z])(1). In other words, the Serre line

bundle OP(T
PN
K

)(1) is the dual of the tautological line bundle OP(T
PN
K

)(−1), where the latter one, at
every point ([z], [ξ]) ∈ P(TPN

K
), has fibre:

OP(T
PN
K

)(−1)
∣∣∣
([z],[ξ])

:= K · [ξ] ⊂ TPN
K

∣∣∣
[z]

= KN+1 /
K · z.

3.3. The geometry of P(Ω1
V /P♦K

), P and Pt. Recalling (6), the K-variety V associated to V ⊂
P♦K ×K PN

K is:

V :=
{(

[F1, . . . , Fc+r], [z]
) ∈ P♦K × PN

K : Fi(z) = 0, ∀ i = 1 · · · c
}
.

Moreover, recalling (11), the K-variety:

P(TV/P♦K) ⊂ P♦K × P(TPN
K
)

associated to P(Ω1
V /P♦K

) ⊂ P♦K ×K P(Ω1
PN
K

) is:

P(TV/P♦K) :=
{(

[F1, . . . , Fc+r], ([z], [ξ])
)

: Fi(z) = 0, dFi

∣∣∣
z
(ξ) = 0,∀ i = 1 · · · c

}
.

Similarly, the K-variety:
P ⊂ P(TV/P♦K)

associated to P ⊂ P(Ω1
V /P♦K

) is:

P :=
{(

[F1, . . . , Fc+r], ([z], [ξ])
)

: Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0,∀ i = 1 · · · c + r,∀ j = 1 · · · c

}
,

and the K-variety:

Fc+1,...,Fc+rPF1,...,Fc ⊂ P(TPN
K
)

associated to (18) is:

Fc+1,...,Fc+rPF1,...,Fc :=
{
([z], [ξ]) : Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0,∀ i = 1 · · · c + r,∀ j = 1 · · · c

}
. (22)

Now, the K-variety Pt of Pt is:

Pt := {t} × Fc+1,...,Fc+rPF1,...,Fc .

4. Some hints on the Ampleness Theorem 1.3

The first three Subsections 4.1–4.3 consist of some standard knowledge in algebraic geometry,
and the last Subsection 4.4 presents a helpful nefness criterion which suits our moving coefficients
method.
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4.1. Ampleness is Zariski open. The foundation of our approach is the following classical theo-
rem of Grothendieck (cf. [33, III.4.7.1] or [40, p. 29, Theorem 1.2.17]).

Theorem 4.1. [Amplitude in families] Let f : X → T be a proper morphism of schemes, and let
L be a line bundle on X. For every point t ∈ T, denote by:

Xt := f −1(t), Lt := L
∣∣∣
Xt
.

Assume that, for some point 0 ∈ T, L0 is ample on X0 . Then in T , there is a Zariski open set U
containing 0 such that Lt is ample on Xt, for all t ∈ U.

Note that in (13), π1 = pr1 ◦π is a composition of two proper morphisms, hence is proper, and so
is (16). Therefore, by virtue of the above theorem, we only need to find one (closed) point t ∈ P♦K
such that:

OPt(1) is ample on Pt. (23)

4.2. Largely twisted Serre line bundle is ample. Let:

π0 : P(Ω1
PN
K

)→ PN
K

be the canonical projection. [37, p. 161, Proposition 7.10] yields that, for all sufficiently large
integer ` 1, the twisted line bundle below is ample on P(Ω1

PN
K

):

OP(Ω1
PN
K

)(1) ⊗ π∗0 OPN
K
(`). (24)

Recalling (10) and (13), and noting that:

π2 = π0 ◦ π̃2, (25)

for the following ample line bundle H on the scheme P♦K ×K PN
K:

H := pr∗1 OP♦K(1) ⊗ pr∗2 OPN
K
(1),

the twisted line bundle below is ample on P♦K ×K P(Ω1
PN
K

):

π̃∗2 OP(Ω1
PN
K

)(1) ⊗ π̃∗H ` = π̃∗2 OP(Ω1
PN
K

)(1) ⊗ π̃∗
(
pr1
∗OP♦K(`) ⊗ pr2

∗OPN
K
(`)

)

= π̃∗2 OP(Ω1
PN
K

)(1) ⊗ (pr1 ◦ π̃)∗OP♦K(`) ⊗ (pr2 ◦ π̃)∗OPN
K
(`)

[use (13)] = π̃∗2 OP(Ω1
PN
K

)(1) ⊗ π∗1OP♦K(`) ⊗ π∗2OPN
K
(`) (26)

[use (25)] = π̃∗2 OP(Ω1
PN
K

)(1) ⊗ π∗1OP♦K(`) ⊗ π̃∗2
(
π∗0 OPN

K
(`)

)

= π∗1 OP♦K(`)
︸ ︷︷ ︸

ample

⊗ π̃∗2
(
OP(Ω1

PN
K

)(1) ⊗ π∗0 OPN
K
(`)

︸                       ︷︷                       ︸
ample on P(Ω1

PN
K

)

)
.

In particular, for every point t ∈ P♦K, recalling (15), (17), restricting (26) to the subscheme:

Pt = π−1
1 (t) ∩ P,

1 In fact, ` > 3 is enough, see (222) below.
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we receive an ample line bundle:

OPt(1) ⊗ π∗1OP♦K(`)
︸    ︷︷    ︸

trivial line bundle

⊗ π∗2OPN
K
(`) = OPt(1) ⊗ π∗2OPN

K
(`). (27)

4.3. Nefness of negatively twisted cotangent sheaf suffices. As we mentioned at the end of
Subsection 4.1, our goal is to show the existence of one such (closed) point t ∈ P♦K satisfying (23).
In fact, we can relax this requirement thanks to the following theorem.

Theorem 4.2. For every point t ∈ P♦K, the following properties are equivalent.

(i) OPt(1) is ample on Pt.
(ii) There exist two positive integers a, b > 1 such that OPt(a) ⊗ π∗2OPN

K
(−b) is ample on Pt.

(iii) There exist two positive integers a, b > 1 such that OPt(a) ⊗ π∗2OPN
K
(−b) is nef on Pt.

Proof. It is clear that (i) =⇒ (ii) =⇒ (iii), and we now show that (iii) =⇒ (i).
In fact, the nefness of the negatively twisted Serre line bundle:

S a
t (−b) := OPt(a) ⊗ π∗2OPN

K
(−b) (28)

implies that:
(27)⊗ b
︸ ︷︷ ︸

ample

⊗ (28)⊗ `︸︷︷︸
nef

= OPt(b + a `)︸        ︷︷        ︸
ample !

= OPt(1)︸ ︷︷ ︸
ample

⊗ (b + a `)

is also ample, because of the well known fact that “ample ⊗ nef = ample” (cf. [40, p. 53, Corollary
1.4.10]). �

By definition, the nefness of (28) means that for every irreducible curve C ⊂ Pt, the intersection
number C ·S a

t (−b) is > 0. Recalling now the classical result [37, p. 295, Lemma 1.2], we only
need to show that the line bundle S a

t (−b) has a nonzero section on the curve C:

H0(C,S a
t (−b)

)
, {0}. (29)

To this end, of course we like to construct sufficiently many global sections:

s1, . . . , sm ∈ H0(Pt,S
a

t (−b)
)

such that their base locus is empty or discrete, whence one of s1

∣∣∣
C
, . . . , sm

∣∣∣
C

suffices to con-
clude (29).

More flexibly, we have:

Theorem 4.3. Suppose that there exist m > 1 nonzero sections of certain negatively twisted Serre
line bundles:

si ∈ H0(Pt,S
ai

t (−bi)
)

(i = 1 ···m; ai, bi > 1)

such that their base locus is discrete or empty:

dim ∩m
i=1 BS (si) 6 0,

then for all positive integers a, b with:
a
b > max

{a1
b1
, . . . , am

bm

}
,

the twisted Serre line bundle S a
t (−b) is nef.
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Proof. For every irreducible curve C ⊂ Pt, noting that:

C︸︷︷︸
dim = 1

1 ∩m
i=1 BS (si)︸       ︷︷       ︸

dim6 0

,

there exists some integer 1 6 i 6 m such that:

C 1 BS (si).

Therefore si

∣∣∣
C

is a nonzero section of S ai
t (−bi) on the curve C:

si ∈ H0(C,S ai
t (−bi)

) \ {0},
and hence:

C ·S ai
t (−bi) > 0.

Thus we have the estimate:
0 6 C · (S ai

t (−bi)
)⊗ a

[ = a C ·S ai
t (−bi) ]

= C · OPt(ai a) ⊗ π∗2OPN
K
(−bi a) [see (28)]

= ai C · (OPt(a) ⊗ π∗2OPN
K
(−b)

) − (bi a − ai b) C · π∗2OPN
K
(1)

= ai C · (S a
t (−b)

) − b bi (a/b − ai/bi︸       ︷︷       ︸
> 0

) C · π∗2OPN
K
(1).

Noting that OPN
K
(1) is nef and hence is π∗2 OPN

K
(1) (cf. [40, p. 51, Example 1.4.4]), the above estimate

immediately yields:

C · (S a
t (−b)

)
>

b bi

ai
(a/b − ai/bi) C · π∗2OPN

K
(1)

︸         ︷︷         ︸
> 0

> 0. �

Repeating the same reasoning as in the above two theorems, we obtain:

Proposition 4.4. For every point t ∈ P♦K, if OPt(`1) ⊗ π∗2OPN
K
(−`2) is nef on Pt for some positive

integers `1, `2 > 1, then for any positive integers `′1, `
′
2 > 1 with `′2/`

′
1 < `2/`1, the twisted line

bundle OPt(`
′
1) ⊗ π∗2OPN

K
(−`′2) is ample on Pt. �

4.4. A practical nefness criterion. However, in practice, it is often difficult to gather enough
global sections (with discrete base locus) to guarantee nefness of a line bundle. We need to be
more clever to improve such a coarse nefness criterion with the help of nonzero sections of the
same bundle restricted to proper subvarieties. First, let us introduce the theoretical reason behind.

Definition 4.5. Let X be a variety, and let Y ⊂ X be a subvariety. A line bundle L on X is said
to be nef outside Y if, for every irreducible curve C ⊂ X with C 1 Y , the intersection number
C ·L > 0.

Of course, L is nef on X if and only if L is nef outside the empty set ∅ ⊂ X.

Theorem 4.6 (Nefness Criterion). Let X be a noetherian variety, and let L be a line bundle on
X. Assume that there exists a set V of closed subvarieties of X satisfying:

(i) ∅ ∈ V and X ∈ V ;
(ii) for every element Y ∈ V with Y , ∅, there exist finitely many elements Z1, . . . ,Z[ ∈ V with

Z1, . . . ,Z[ $ Y such that the restricted line bundle L
∣∣∣
Y

is nef outside the union Z1∪· · ·∪Z[.
Then L is nef on X.
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Proof. For every irreducible curve C ⊂ X, we have to show that C ·L > 0.
Assume on the contrary that C · L < 0. Then introduce the subset N ⊂ V consisting of all

subvarieties Y ∈ V which contain the curve C. Clearly, N 3 X, so N is nonempty. Note that
there is a natural partial order ‘<’ on N given by the strict inclusion relation ‘$’. Since X is
noetherian, N has a minimum element M ⊃ C. We now show a contradiction.

In fact, according to (ii), there exist some elements V 3 Z1, . . . ,Z[ $ M such that L
∣∣∣
M

is nef
outside Z1 ∪ · · · ∪ Z[. Rembering that:

0 > C ·L = C ·L
∣∣∣
M
,

the curve C is forced to lie in the union Z1 ∪ · · · ∪ Z[, and thanks to irreducibility, it is furthermore
contained in one certain:

Zi︸︷︷︸
$M

∈ N ,

which contradicts the minimality of M! �

Now, using the same idea as around (29), we may realize (ii) above with the help of sections
over proper subvarieties.

Corollary 4.7. Let X be a noetherian variety, and let L be a line bundle on X. Assume that there
exists a set V of closed subvarieties of X satisfying:

(i) ∅ ∈ V and X ∈ V ;

(ii’) every element ∅ , Y ∈ V is a union of some elements Y1, . . . ,Y� ∈ V such that the union
of base loci:

∪�•=1

(
∩s∈H0(Y•,L |Y• )

{
s = 0

})

is contained in a union of some elements V 3 Z1, . . . ,Z[ $ Y, except discrete points.

Then L is nef on X. �

5. A proof blueprint of the Ampleness Theorem 1.3

5.1. Main Nefness Theorem. Recalling Theorem 4.2, the Ampleness Theorem 1.3 is a conse-
quence of the theorem below, whose effective bound d0(r) for r = 1 will be given in Theorem 11.2.

Theorem 5.1. Given any positive integer r > 1, there exists a lower degree bound d0(r) � 1 such
that, for all degrees d1, . . . , dc+r > d0(r), for a very generic2 t ∈ P♦K, the negatively twisted Serre
line bundle OPt(1) ⊗ π∗2OPN

K
(−r) is nef on Pt.

It suffices to find one such t ∈ P♦K to guarantee‘very generic’ (cf. [40, p. 56, Proposition 1.4.14]).

We will prove Theorem 5.1 in two steps. At first, in Subsection 5.2, we sketch the proof in the
central cases when all c + r hypersurfaces are approximately of the same large degrees. Then, in
Subsection 5.3, we play a product coup to embrace all large degrees.

2 t ∈ P♦K \ ∪∞i=1 Zi for some countable proper subvarieties Zi $ P
♦
K.
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5.2. The central cases of relatively the same large degrees.

Theorem 5.2. For any fixed c + r positive integers ε1, . . . , εc+r > 1, for every sufficiently large
integer d � 1, Theorem 5.1 holds with di = d + εi, i = 1 · · · c + r.

When c + r > N, generically X is discrete or empty, so there is nothing to prove. Assuming
c + r 6 N − 1, we now outline the proof.

Step 1. In the entire family of c + r hypersurfaces with degrees d + λ1, . . . , d + λc+r, whose
projective parameter space is P♦K (see (3)), we select a specific subfamily which best suits our
moving coefficients method, whose projective parameter space is a subvariety:

P©
K ⊂ P♦K [see (140)].

For the details of this subfamily, see Subsection 7.1.
Recalling (5) and (7), we then consider the subfamily of intersections Y ⊂X :

pr−1
1

(
P©
K

)
∩ X =: Y ⊂ P©

K ×K PN
K = pr−1

1

(
P©
K

)
.

Recalling (13), (14), we introduce the subscheme of P:

P′ := π̃−1(Y ) ∩ P ⊂ P♦K ×K P(Ω1
PN
K

),

which is parametrized by Y . By restriction, (13) yields the commutative diagram:

P′

π1 = pr1◦π̃

��

π2 = pr2◦π̃

��

π̃
��

Y

pr1~~ pr2   
P©
K PN

K.

(30)

Introducing the restricted Serre line bundle OP′(1) := OP(1)
∣∣∣
P′ over P′, in order to establish

Theorem 5.2, it suffices to provide one such example. In fact, we will prove

Theorem 5.3. For a generic closed point t ∈ P©
K, the bundle OP′t(1)⊗π∗2OPN

K
(−r) is nef on P′t := Pt.

Step 2. The central objects now are the universal negatively twisted Serre line bundles:

OP′(a, b,−c) := OP′(a) ⊗ π∗1 OP©
K
(b) ⊗ π∗2 OPN

K
(−c),

where a, c are positive integers such that c/a > r, and where b are any integers.
Taking advantage of the moving coefficients method, firstly, we construct a series of global

universal negatively twisted symmetric differential n-forms:

S ` ∈ Γ
(
P′, OP′(n,N,−♥`)) (`= 1 ···d), (31)

where n := N − (c + r) > 1 and all ♥`/n > r, and where we always use the symbol ‘d’ to denote
auxiliary positive integers, which vary according to the context.

Secondly, for every integer 1 6 η 6 n − 1, for every sequence of ascending indices :

0 6 v1 < · · · < vη 6 N,
17



considering the vanishing part of the corresponding η coordinates:

v1,...,vηP
′ := P′ ∩ π−1

2 {zv1 = · · · = zvη = 0}︸                   ︷︷                   ︸
=: v1 ,...,vηP

N

,

we construct a series of universal negatively twisted symmetric differential (n − η)-forms on it:

v1,...,vηS ` ∈ Γ
(

v1,...,vηP
′, OP′(n − η,N − η,− v1,...,vη♥`)

)
(`= 1 ···d). (32)

where all v1,...,vη♥`/(n − η) > r.
This step will be accomplished in Sections 6 and 7.

Step 3. From now on, we view every scheme as its K-variety.
Firstly, we control the base locus of all the global sections obtained in (31):

BS := Base Locus of {S `}16`6d ⊂ P′.

In fact, on the coordinates nonvanishing part of P′:

P′
◦

:= P′ ∩ π−1
2 {z0 · · · zN , 0} ,

we prove that:
dim BS ∩ P′

◦
6 dim P©

K. (33)
Secondly, we control the base locus of all the sections obtained in (32):

v1,...,vηBS := Base Locus of {v1,...,vηS `}16`6d ⊂ v1,...,vηP
′.

In fact, on the corresponding ‘coordinates nonvanishing part’ of v1,...,vηP′:

v1,...,vηP
′◦ := v1,...,vηP

′ ∩ π−1
2 {zr0 · · · zrN−η , 0} ,

where:
{r0, . . . , rN−η} := {0, . . . ,N} \ {v1, . . . , vη} , (34)

we prove that:
dim v1,...,vηBS ∩ v1,...,vηP

′◦ 6 dim P©
K. (35)

This crucial step will be accomplished in Sections 9 and 10. Anticipating, we would like to em-
phasize that, in order to lower down dimensions of base loci for global symmetric differential forms
(or for higher order jet differential forms in Kobayashi hyperbolicity conjecture), a substantial
amount of algebraic geometry work is required, mainly because some already known

/
constructed

sections have the annoying tendency to proliferate by multiplying each other without shrinking
their base loci (0 × anything = 0). Hence the first main difficulty is to devise a wealth of inde-
pendent symmetric differential forms, which the Moving Coefficients Method is designed for, and
the second main difficulty is to establish the emptiness

/
discreteness of their base loci, an ultimate

difficulty that will be settled in the Core Lemma 9.5.

Step 4. Firstly, for the regular map:

π1 : P′ −→ P©
K,

noting the dimension estimates (33), (35) of the base loci, applying now a classical theorem [35,
p. 132, Theorem 11.12], we know that there exists a proper closed algebraic subvariety:

Σ $ P©
K

18



such that, for every closed point t outside Σ:

t ∈ P©
K \ Σ,

(i) the base locus of the restricted symmetric differential n-forms:

BSt := Base Locus of
{
S `(t) := S `

∣∣∣
P′t

}
16`6d ⊂ P′t

is discrete or empty over the coordinates nonvanishing part:

dim BSt ∩ P′
◦

t 6 0, (36)

where:
P′
◦

t := P′
◦ ∩ π−1

1 (t);

(ii) the base locus of the restricted symmetric differential (n − η)-forms:

v1,...,vηBSt := Base Locus of
{

v1,...,vηS `(t) := v1,...,vηS `

∣∣∣
v1 ,...,vηP′t

}
16`6d

⊂ v1,...,vηP
′
t

is discrete or empty over the corresponding ‘coordinates nonvanishing part’:

dim v1,...,vηBSt ∩ v1,...,vηP
′◦
t 6 0 , (37)

where:

v1,...,vηP
′◦
t := v1,...,vηP

′◦ ∩ π−1
1 (t).

Secondly, there exists a proper closed algebraic subvariety:

Σ′ $ P©
K

such that, for every closed point t outside Σ′:

t ∈ P©
K \ Σ′,

the fibre:
Yt := Y ∩ pr−1

1 (t)

is smooth and of dimension n = N − (c + r), and it satisfies:

dim Yt ∩ pr−1
2

(
v1,...,vnP

N)
= 0 (06 v1 < ···< vn 6N), (38)

i.e. the intersection of Yt — (under the regular map pr2) viewed as a dimension n subvariety in PN

— with every n coordinate hyperplanes:

v1,...,vnP
N := {zv1 = · · · = zvn = 0}

is just finitely many points, which we denote by:

v1,...,vnYt︸  ︷︷  ︸
#<∞

⊂ v1,...,vnP
N . (39)

Now, we shall conclude Theorem 5.3 for every closed point t ∈ P©
K \ (Σ ∪ Σ′).
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Proof of Theorem 5.3. For the line bundle L = OP′t (1) ⊗ π∗2OPN
K
(−r) over the variety P′t , we claim

that the set of subvarieties:
V :=

{
∅, P′t , v1,...,vηP

′
t

}
16η6n

06v1<···<vη6N

satisfies the conditions of Theorem 4.6.
Indeed, firstly, recalling (36), the sections {S `(t)}`=1···d have empty

/
discrete base locus over the

coordinates nonvanishing part, i.e. outside ∪N
j=0 jP′t . Hence, using an adaptation of Theorem 4.3,

remembering r/1 6 min {♥`/n}16`6d , the line bundle OP′t (1) ⊗ π∗2 OPN (−r) is nef outside ∪N
j=0 jP′t .

Secondly, for every integer η = 1 · · · n − 1, recalling the dimension estimate (37), again by
Theorem 4.3, remembering r/1 6 min {v1,...,vη♥`/(n− η)}16`6d, the line bundle OP′t (1) ⊗ π∗2 OPN (−r)
is nef on v1,...,vηP′t outside ∪N−η

j=0 v1,...,vη,r jP′t (see (34)).
Lastly, for η = n, noting that under the projection π : P′t → Yt, thanks to (38), every subvari-

ety v1,...,vnP′t contracts to discrete points v1,...,vnYt, we see that on v1,...,vnP′t , the line bundle OP′t (1) ⊗
π∗2OPN

K
(−r) � OP′t (1) is not only nef, but also ample!

Summarizing the above three parts, by Theorem 4.6, we conclude the proof. �

5.3. Product Coup. We will use in an essential way Theorem 5.2 with all εi equal to either 1 or
2. To begin with, we need an elementary

Observation 5.4. For all positive integers d > 1, every integer d0 > d2 + d is a sum of nonnegative
multiples of d + 1 and d + 2.

Proof. According to the Euclidian division, we can write d0 as:

d0 = p (d + 1) + q

for some positive integer p > 1 and residue number 0 6 q 6 d. We claim that p > q.
Otherwise, we would have:

p 6 q − 1 6 d − 1,
which would imply the estimate:

d = p (d + 1) + q 6 (d − 1) (d + 1) + d = d2 + d − 1,

contradicting our assumption.
Therefore, we can write d0 as:

d0 = (p − q)︸ ︷︷ ︸
>0

(d + 1) + q (d + 2),

which concludes the proof. �

Proof of Theorem 5.1. Take one sufficiently large integer d such that Theorem 5.2 holds for any
integers εi ∈ {1, 2}, i = 1 · · · c + r. Now, the above observation says that all large degrees
d1, . . . , dc+r > d2 + d can be written as di = pi (d + 1) + qi (d + 2), with some nonnegative in-
tegers pi, qi > 0, i = 1 · · · c + r. Let Fi := f i

1 · · · f i
pi

f i
pi+1 · · · f i

pi+qi
be a product of some pi homo-

geneous polynomials f i
1, . . . , f i

pi
each of degree d + 1 and of some qi homogeneous polynomials

f i
pi+1, . . . , f i

pi+qi
each of degree d + 2, so that Fi has degree di.

Recalling (22), a point ([z], [ξ]) ∈ P(TPN
K
) lies in Fc+1,...,Fc+rPF1,...,Fc if and only if:

Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0 (∀ i = 1 ··· c+r,∀ j = 1 ··· c).
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Note that, for every j = 1 · · · c, the pair of equations:

F j(z) = 0, dF j

∣∣∣
z
(ξ) = 0 (40)

is equivalent to either:

∃ 1 6 v j 6 p j + q j s.t. f j
v j

(z) = 0, d f j
v j

∣∣∣
z
(ξ) = 0, (41)

or to:
∃ 1 6 w1

j < w2
j 6 p j + q j s.t. f j

w1
j
(z) = 0, f j

w2
j
(z) = 0. (42)

Therefore, ([z], [ξ]) ∈ Fc+1,...,Fc+rPF1,...,Fc is equivalent to say that there exists a subset {i1, . . . , ik} ⊂
{1, . . . , c} of cardinality k (k = 0 for ∅) such that, firstly, for every index j ∈ {i1 · · · ik}, (z, ξ) is a
solution of (40) of type (41), secondly, for every index j ∈ {1, . . . , c} \ {i1 · · · ik}, (z, ξ) is a solution
of (40) of type (42), and lastly, for every j = c + 1 · · · c + r, one of f j

1 , . . . , f j
p j+q j

vanishes at z. Thus,
we see that the variety Fc+1,...,Fc+rPF1,...,Fc actually decomposes into a union of subvarieties:

Fc+1,...,Fc+rPF1,...,Fc = ∪k=0···c ∪16i1<···<ik6c ∪16vi j6pv j +qv j
j=1···k

∪{r1,...,rc−k}={1,...,c}\{i1,...,ik}
16w1

rl
<w2

rl
6prl +qrl

l=1···c−k

∪16u j6p j+q j
j=c+1···c+r

f r1
w1

r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r
P f i1

vi1
,..., f

ik
vik

.

Similarly, we can show that the scheme Fc+1,...,Fc+r PF1,...,Fc also decomposes into a union of sub-
schemes:

Fc+1,...,Fc+r PF1,...,Fc = ∪k=0···c ∪16i1<···<ik6c ∪16vi j6pv j +qv j
j=1···k

∪{r1,...,rc−k}={1,...,c}\{i1,...,ik}
16w1

rl
<w2

rl
6prl +qrl

l=1···c−k

∪16u j6p j+q j
j=c+1···c+r

f r1
w1

r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r

P f i1
vi1
,..., f

ik
vik

.
(43)

Note that, for each subscheme on the right hand side, the number of polynomials on the lower-left
of ‘P’ is #L = 2(c−k)+r, and the number of polynomials on the lower-right is #R = k, whence 2#R+

#L = 2c+r > N. Now, applying Theorem 5.2, we can choose one { f •• }•,• such that the twisted Serre
line bundle OP(Ω1

PN
K

)(1)⊗π∗0 OPN
K
(−r) is nef on each subscheme f r1

w1
r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r

P f i1
vi1
,..., f

ik
vik

,

and therefore is also nef on their union Fc+1,...,Fc+r PF1,...,Fc . Since nefness is a very generic property
in family, we conclude the proof. �

6. Generalization of Brotbek’s symmetric differentials forms

6.1. Preliminaries on symmetric differential forms in projective space. For a fixed algebraically
closed field K, for three fixed integers N, c, r > 0 such that N > 2, 2c + r > N and c + r 6 N − 1,
for c + r positive integers d1, . . . , dc+r, let:

Hi ⊂ PN
K (i = 1 ··· c+r)

be c + r hypersurfaces defined by some degree di homogeneous polynomials:

Fi ∈ K[z0, . . . , zN],

let V be the intersection of the first c hypersurfaces:

V := H1 ∩ · · · ∩ Hc

=
{
[z] ∈ PN

K : Fi(z) = 0,∀ i = 1 · · · c}, (44)
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and let X be the intersection of all the c + r hypersurfaces:
X := H1 ∩ · · · ∩ Hc︸           ︷︷           ︸

= V

∩Hc+1 ∩ · · · ∩ Hc+r︸                ︷︷                ︸
r more hypersurfaces

=
{
[z] ∈ PN

K : Fi(z) = 0,∀ i = 1 · · · c + r
}
.

(45)

It is well known that, for generic choices of {Fi}c+r
i=1 , the intersection V = ∩c

i=1 Hi and X = ∩c+r
i=1 Hi

are both smooth complete, and we shall assume this henceforth. In Subsections 6.1–6.4, we fo-
cus on smooth K-varieties to provide a geometric approach to generalize Brotbek’s symmetric
differential forms, where the ambient field K is assumed to be algebraically closed. In addition,
in Subsection 6.5, we will give another quick algebraic approach, without any assumption on the
ambient field K.

Recalling (19), let us denote by:

π : KN+1 \ {0} −→ PN
K

the canonical projection.
For every integer k, the standard twisted regular function sheaf OPN

K
(k), geometrically, can be

defined as, for all Zariski open subset U in PN
K, the corresponding section set Γ

(
U, OPN

K
(k)

)
consists

of all the regular functions f̂ on π−1(U) satisfying:

f̂ (λz) = λk f̂ (z) (∀ z ∈ π−1(U), λ ∈K×). (46)

For the cone V̂ := π−1(V) of V:

V̂ =
{
z ∈ KN+1 \ {0} : Fi(z) = 0, ∀ i = 1 · · · c},

recalling (20), (21), we can similarly define its horizontal tangent bundle ThorV̂ which has fibre at
any point z ∈ V̂:

ThorV̂
∣∣∣
z

=
{
[ξ] ∈ KN+1

/
K · z : dFi

∣∣∣
z
(ξ) = 0, ∀ i = 1 · · · c}.

Its total space is:

ThorV̂ :=
{
(z, [ξ]) : z ∈ V̂ , [ξ] ∈ KN+1

/
K · z, dFi

∣∣∣
z
(ξ) = 0, ∀ i = 1 · · · c}. (47)

Then similarly we receive the total tangent bundle TV of V as:

TV = ThorV̂/ ∼, where (z, [ξ]) ∼ (λz, [λξ]), ∀ λ ∈ K×.
Let ΩV be the dual bundle of TV , i.e. the cotangent bundle of V , and let ΩhorV̂ be the dual

bundle of ThorV̂ . For all positive integers l > 1 and all integers ♥ ∈ Z, we use the standard notation
Syml ΩV to denote the symmetric l-tensor-power of the vector bundle ΩV , and we use Syml ΩV(♥)
to denote the twisted vector bundle Syml ΩV ⊗ OV(♥).

Proposition 6.1. For two fixed integers l > 1, ♥ ∈ Z, and for every Zariski open set U ⊂ V together
with its cone Û := π−1(U), there is a canonical injection:

Γ
(
U,Syml ΩV(♥)

)
↪→ Γ

(
Û,Syml ΩhorV̂

)
,

whose image is the set of sections Φ enjoying:

Φ
(
λz, [λξ]

)
= λ♥Φ

(
z, [ξ]

)
, (48)

for all z ∈ Û, for all [ξ] ∈ ThorV̂
∣∣∣
z

and for all λ ∈ K×.
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Proof. Note that we have two canonical injections of vector bundles:

π∗Syml ΩV ↪→ SymlΩhorV̂ ,
π∗OV(♥) ↪→ OV̂ ,

since the tensor functor is left exact (torsion free) in the category ofK-vector bundles, the tensoring
of the above two injections remains an injection:

π∗Syml ΩV ⊗ π∗OV(♥) ↪→ SymlΩhorV̂ ⊗ OV̂ .

Recalling that:
Syml ΩV(♥) = Syml ΩV ⊗ OV(♥),

we can rewrite the above injection as:

π∗Syml ΩV(♥) ↪→ SymlΩhorV̂ .

With U ⊂ X Zariski open, applying the global section functor Γ(Û, · ), which is left exact, we
receive:

Γ
(
Û, π∗Syml ΩV(♥)

)
↪→ Γ

(
Û, SymlΩhorV̂

)
.

Lastly, we have an injection:

Γ
(
U, Syml ΩV(♥)

)
↪→ Γ

(
Û, π∗Syml ΩV(♥)

)
,

whence, by composing the previous two injections, we conclude:

Γ
(
U, Syml ΩV(♥)

)
↪→ Γ

(
Û, SymlΩhorV̂

)
.

To view explicitly the image of this injection, notice that in the case l = 0, it is the standard
injection:

Γ
(
U,OV(♥)

)
↪→ Γ

(
Û,OV̂)

f 7→ π∗ f ,

whose image consists of, as a consequence of the definition (46) above, all functions f̂ on Û
satisfying f̂ (λz) = λ♥ f̂ (z), for all z ∈ Û and for all λ ∈ K×.

Furthermore, in the case ♥ = 0, the image of the injection:

Γ
(
U,Syml ΩV

)
↪→ Γ

(
Û,SymlΩhorV̂

)

ω 7→ π∗ω,

consists of sections ω̂ on Û satisfying:

ω̂ (z, [ξ]) = ω̂ (λz, [λξ]),

for all z ∈ Û, all [ξ] ∈ ThorV̂
∣∣∣
z

and all λ ∈ K×.
As Syml ΩV(♥) = Syml ΩV ⊗ OV(♥), composing the above two observations by tensoring the

corresponding two injections, we see that any element Φ in the image of the injection:

Γ
(
U,Syml ΩV(♥)

)
↪→ Γ

(
Û,Syml ΩhorV̂

)
, (49)

automatically satisfies (48). On the other hand, for every element Φ in Γ
(
Û,Syml ΩhorV̂

)
satisfying

(48), we can construct the corresponding element φ in Γ
(
U,Syml ΩV(♥)

)
, which maps to Φ under

the injection (49). �
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Let Y ⊂ V be a regular subvariety. Replacing the underground variety V by Y , in much the same
way we can show:

Proposition 6.2. For two fixed integers l > 1, ♥ ∈ Z, and for every Zariski open set U ⊂ Y together
with its cone Û := π−1(U), there is a canonical injection:

Γ
(
U,Syml ΩV(♥)

)
↪→ Γ

(
Û,Syml ΩhorV̂

)
,

whose image is the set of sections Φ enjoying:

Φ
(
λz, [λξ]

)
= λ♥Φ

(
z, [ξ]

)
, (50)

for all z ∈ Û, for all [ξ] ∈ ThorV̂
∣∣∣
z

and for all λ ∈ K×. �

In future applications, we will mainly interest in the sections:

Γ
(
Y,Syml ΩV(♥)

)
,

where Y = X or Y = X ∩ {zv1 = 0} ∩ · · · ∩ {zvη = 0} for some vanishing coordinate indices
0 6 v1 < · · · < vη 6 N.

6.2. Global regular symmetric horizontal differential forms. In our coming applications, we
will be mainly concerned with Fermat-type hypersursurfaces Hi defined by some homogeneous
polynomials Fi of the form:

Fi =

N∑

j=0

A j
i zλ j

j (i = 1··· c+r), (51)

where λ0, . . . , λN are some positive integers and where A j
i ∈ K[z0, z1, . . . , zN] are some homoge-

neous polynomials, with all terms of Fi having the same degree:

deg A j
i + λ j = deg Fi =: di (i = 1··· c+r; j = 0 ···N). (52)

Differentiating Fi, we receive:

dFi =

N∑

j=0

B j
i zλ j−1

j , (53)

where:
B j

i := z j dA j
i + λ j A j

i dz j (i = 1··· c+r; j = 0 ···N). (54)
To make the terms of Fi have the same structure as that of dFi, let us denote:

Ã j
i := A j

i z j, (55)

so that:

Fi =

N∑

j=0

Ã j
i zλ j−1

j .

Recalling (45), we denote the cone of X by:

X̂ =
{
z ∈ KN+1 \ {0} : Fi(z) = 0, ∀ i = 1 · · · c + r

}
.

For all z ∈ X̂ and [ξ] ∈ ThorV̂
∣∣∣
z
, by the very definition (47) of ThorV̂ , we have:



∑N
j=0 Ã j

i zλ j−1
j (z) = 0 (i = 1··· c+r),

∑N
j=0 B j

i (z, ξ) zλ j−1
j (z) = 0 (i = 1··· c).

(56)
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For convenience, dropping z, ξ, we rewrite the above equations as:


∑N
j=0 Ã j

i zλ j−1
j = 0 (i = 1··· c+r),

∑N
j=0 B j

i zλ j−1
j = 0 (i = 1··· c),

and formally, we view them as a system of linear equations with respect to the unknown variables
zλ0−1

0 , . . . , zλN−1
N , of which the associated coefficient matrix, of size (c + r + c) × (N + 1), is:

C :=



Ã0
1 · · · ÃN

1
...

...

Ã0
c+r · · · ÃN

c+r
B0

1 · · · BN
1

...
...

B0
c · · · BN

c



, (57)

so that the system reads as:

C



zλ0−1
0
...

zλN−1
N


= 0. (58)

Recalling our assumption:
n = N − (c + r)︸       ︷︷       ︸

= dim X

> 1,

since 2c + r > N, we have 1 6 n 6 c.
Let now D be the upper (c + r + n︸    ︷︷    ︸

=N

)× (N + 1) submatrix of C, i.e. consisting of the first (c + r + n)

rows of C:

D :=



Ã0
1 · · · ÃN

1
...

...

Ã0
c+r · · · ÃN

c+r
B0

1 · · · BN
1

...
...

B0
n · · · BN

n



. (59)

For j = 0 · · ·N, let D̂ j denote the submatrix of D obtained by omitting the ( j + 1)-th column:

D̂ j :=



Ã0
1 · · · ̂̃A j

1 . . . ÃN
1

...
...

Ã0
c+r · · · ̂̃A j

c+r . . . ÃN
c+r

B0
1 · · · B̂ j

1 . . . BN
1

...
...

B0
n · · · B̂ j

n . . . BN
n



, (60)

and let Dj denote the ( j + 1)-th column of D.
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Denote:
W j := {z j , 0} ⊂ PN

( j = 0 ···N) (61)
the canonical affine open subsets, whose cones are:

Ŵ j := π−1(W j) ⊂ KN+1 \ {0}. (62)

Denote also:
U j := W j ∩ X (63)

the open subsets of X, whose cones are:

Û j := π−1(U j) ⊂ X̂. (64)

Recalling the horizontal tangent bundle of KN+1:

ThorK
N+1 =

{
(z, [ξ]) : z ∈ KN+1 \ {0} and [ξ] ∈ KN+1/K · z},

now let ΩhorK
N+1 be its dual bundle.

Proposition 6.3. For every j = 0 · · ·N, on the affine set:

Ŵ j = {z j , 0} ⊂ KN+1 \ {0},
the following affine symmetric horizontal differential n-form is well defined:

ω̂ j :=
(−1) j

zλ j−1
j

det
(
D̂ j

) ∈ Γ
(
Ŵ j, Symn ΩhorK

N+1
)
. (65)

The essence of this proposition lies in the famous Euler’s Identity.

Lemma 6.4. [Euler’s Identity] For every homogeneous polynomial P ∈ K[z0, . . . , zN], one has:
N∑

j=0

∂F
∂z j
· z j = deg F · F,

where using differential writes as:

dF
∣∣∣
z
(z) =: dF(z, z) = deg F · F(z), (66)

at all points z = (z0, . . . , zN) ∈ KN+1. �

Proof of Proposition 6.3. Without loss of generality, we only prove the case j = 0.
Recalling the notation (55) and (54) where all Ã j

i are regular functions and all B j
i are regular

1-forms on KN+1, we can see without difficulty that:

ω̂0 =
1

zλ0−1
0

det
(
D̂0

)

=
1

zλ0−1
0

det



Ã1
1 · · · ÃN

1
...

...

Ã1
c+r · · · ÃN

c+r
B1

1 · · · BN
1

...
...

B1
n · · · BN

n



∈ Γ
(
V̂0, Symn ΩKN+1

)

is a well defined regular symmetric differential n-form. Now we need an:
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Observation 6.5. Let N > 1 be a positive integer, let L be a field with Card L = ∞, and let F be a
polynomial:

F ∈ L[z0, . . . , zN].

Then F is a polynomial without the variable z0:

F ∈ L[z1, . . . , zN] ⊂ L[z0, . . . , zN]

if and only if the evaluation map:

evF : LN+1 −→ L
(x0, . . . , xN) 7−→ F(x0, . . . , xN)

is independent of the first variable x0 ∈ L. �

For the same reason as the above Observation, in order to show that ω̂0 descends to a regular
symmetric horizontal differential n-form in Γ

(
V̂0, Symn ΩhorK

N+1), we only have to show, at every
point z ∈ V̂0, for all ξ ∈ TzK

N+1 � KN+1, λ ∈ K×, that:

ω̂0(z, ξ + λ z) = ω̂0(z, ξ). (67)

In fact, applying Euler’s Identity (66) to the above formula (54), we receive:

B j
i (z, z) = λ j A j

i (z) dz j(z, z) + dA j
i (z, z) z j(z)

= λ j A j
i (z) z j(z) + deg A j

i · A j
i (z) z j(z)

= (λ j + deg A j
i ) Ã j

i (z).

Since B j
i are 1-forms, we obtain:

B j
i (z, ξ + λ z) = B j

i (z, ξ) + λB j
i (z, z)

= B j
i (z, ξ) + λ (λ j + deg A j

i )︸            ︷︷            ︸
‘constant’

Ã j
i (z).

Therefore, the matrix: 

Ã1
1 · · · ÃN

1
...

...

Ã1
c+r · · · ÃN

c+r
B1

1 · · · BN
1

...
...

B1
n · · · BN

n



(z, ξ + λ z)

not only has the same first c + r rows as the matrix:


Ã1
1 · · · ÃN

1
...

...

Ã1
c+r · · · ÃN

c+r
B1

1 · · · BN
1

...
...

B1
n · · · BN

n



(z, ξ),
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but also for ` = 1 · · · n, the (c + r + `)-th row of the former one equals to the (c + r + `)-th row of
the latter one plus a multiple of the `-th row. Therefore both matrices have the same determinant,
which verifies (67). �

Inspired by the explicit global symmetric differential forms in Lemma 4.5 of Brotbek’s paper [7],
we carry out a simple proposition employing the above notation. First, let us recall the well known
Cramer’s rule in a less familiar formulation (cf. [39, p. 513, Theorem 4.4]).

Theorem 6.6. [Cramer’s rule] In a commutative ring R, for all positive integers N > 1, let:

A0, A1, . . . , AN ∈ RN

be (N + 1) column vectors, and suppose that z0, z1, . . . , zN ∈ R satisfy:

A0 z0 + A1 z1 + · · · + AN zN = 0. (68)

Then for all index pairs 0 6 i < j 6 N, there holds the identity:

(−1) j det
(
A0, . . . , Â j, . . . , AN)

zi = (−1)i det
(
A0, . . . , Âi, . . . , AN)

z j. (69)

Proof. By permuting the indices, without loss of generality, we may assume i = 0.
First, note that (68) yields:

A0 z0 = −
N∑

`=1

A` z`. (70)

Hence we may compute the left hand side of (69) as:

(−1) j det
(
A0, A1, . . . , Â j, . . . , AN)

z0 = (−1) j det
(
A0 z0, A1, . . . , Â j, . . . , AN)

[substitute (70)] = (−1) j det
(
−

N∑

`=1

A` z`, A1, . . . , Â j, . . . , AN
)

= (−1) j+1
N∑

`=1

det
(
A`, A1, . . . , Â j, . . . , AN)

z`

[only ` = j is nonzero] = (−1) j+1 det
(
A j, A1, . . . , Â j, . . . , AN)

z j

= (−1)0 det
(
Â0, A1, . . . , AN)

z j,

which is exactly the right hand side. �

Proposition 6.7. The following (N + 1) affine regular symmetric horizontal differential n-forms:

ω̂ j :=
(−1) j

zλ j−1
j

det
(
D̂ j

) ∈ Γ
(
Û j, Symn ΩhorV̂

)
( j = 0 ···N)

glue together to make a regular symmetric horizontal differential n-form on X̂:

ω ∈ Γ
(
X̂, Symn ΩhorV̂

)
.

Proof. Our proof divides into two parts.
Part 1: To show that these affine regular symmetric horizontal differential n-forms ω̂0, . . . , ω̂N

are well defined.
Part 2: To show that any two different affine regular symmetric horizontal differential n-forms

ω̂ j1 and ω̂ j2 glue together along the intersection set Û j1 ∩ Û j2 .
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Proof of Part 1. The Proposition 6.3 above shows that the:

ω̂ j :=
(−1) j

zλ j−1
j

det
(
D̂ j

) ∈ Γ
(
Ŵ j, Symn ΩhorK

N+1
)

( j = 0 ···N),

are well defined, where:
Ŵ j = {z j , 0} ⊂ KN+1 \ {0}.

Thanks to the canonical inclusion embedding of vector bundles:
(
Û j, ThorV̂

)
↪→

(
Ŵ j, ThorK

N+1
)
,

a pullback of ω̂ j concludes the first part.
Proof of Part 2. Recalling the equations (58), in particular, granted that D consists of the first
(c + r + n) rows of C, we have:

D



zλ0−1
0
...

zλN−1
N


= 0.

Now applying the above Cramer’s rule to all the (N + 1) columns of D and the (N + 1) values
zλ0−1

0 , . . . , zλN−1
N , for every index pair 0 6 j1 < j2 6 N, we receive:

(−1) j2 det
(
D̂ j2

)
z
λ j1−1
j1

= (−1) j1 det
(
D̂ j1

)
z
λ j2−1
j2

.

When z j1 , 0, z j2 , 0, this immediately yields:

(−1) j1

z
λ j1−1
j1

det
(
D̂ j1

)

︸             ︷︷             ︸
= ω̂ j1

=
(−1) j2

z
λ j2−1
j2

det
(
D̂ j2

)

︸             ︷︷             ︸
= ω̂ j2

,

thus the two affine symmetric horizontal differential n-forms ω̂ j1 and ω̂ j2 glue together along their
overlap set Û j1 ∩ Û j2 . �

By permuting the indices, the above Proposition 6.7 can be trivially generalized to, instead of
the particular upper (c + r + n) × (N + 1) submatrix D, all (c + r + n) × (N + 1) submatrices of C
containing the upper c + r rows, as follows.

For all n ascending positive integers 1 6 j1 < · · · < jn 6 c, denote C j1,..., jn the (c+ r +n)× (N +1)
submatrix of C consisting of the first upper c + r rows and the rows c + r + j1, . . . , c + r + jn. Also,
for j = 0 · · ·N, let Ĉ j1,..., jn; j denote the submatrix of C j1,..., jn obtained by omitting the ( j + 1)-th
column.

Proposition 6.8. The following (N + 1) affine regular symmetric horizontal differential n-forms:

ω̂ j1,..., jn; j :=
(−1) j

zλ j−1
j

det
(
Ĉ j1,..., jn; j

) ∈ Γ
(
Û j, Symn ΩhorV̂

)
( j = 0 ···N)

glue together to make a global regular symmetric horizontal differential n-form on X̂. �

One step further, the above Proposition 6.8 can be generalized to a larger class of (c + r + n) ×
(N + 1) submatrices of C, as follows.

For any two positive integers l1 > l2 with:

l1 + l2 = c + r + n,
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for any two ascending sequences of positive indices:

1 6 i1 < · · · < il1 6 c + r,
1 6 j1 < · · · < jl2 6 c

satisfying:
{ j1, . . . , jl2} ⊂ {i1, . . . , il1},

denote C
i1,...,il1
j1,..., jl2

the (c + r + n) × (N + 1) submatrix of C consisting of the rows i1, . . . , il1 and the

rows c + r + j1, . . . , c + r + jl2 . Also, for j = 0, . . . ,N, let Ĉ
i1,...,il1
j1,..., jl2 ; j denote the submatrix of C

i1,...,il1
j1,..., jl2

obtained by omitting the ( j + 1)-th column.
By much the same proof of Proposition 6.7, we obtain:

Proposition 6.9. The following N + 1 affine regular symmetric horizontal differential l2-forms:

ω̂
i1,...,il1
j1,..., jl2 ; j :=

(−1) j

zλ j−1
j

det
(
Ĉ

i1,...,il1
j1,..., jl2 ; j

)
∈ Γ

(
Û j, Syml2 ΩhorV̂

)
( j = 0 ···N)

glue together to make a global regular symmetric horizontal differential l2-form:

ω̂
i1,...,il1
j1,..., jl2

∈ Γ
(
X̂, Syml2 ΩhorV̂

)
. �

6.3. Global twisted regular symmetric differential forms. Now, using the structure of the above
explicit global forms, and applying the previous Proposition 6.2, we receive a result which, in the
case of pure Fermat-type hypersurfaces (1) where all λ0 = · · · = λN = ε are equal, with also equal
deg F1 = · · · = deg Fc = e + ε, coincides with Brotbek’s Lemma 4.5 in [7]; Brotbek also implicitly
obtained such symmetric differential forms by his cohomological approach.

Proposition 6.10. Under the assumptions and notation of Proposition 6.9, the global regular sym-
metric horizontal differential l2-form ω̂

i1,...,il1
j1,..., jl2

is the image of a global twisted regular symmetric
differential l2-form:

ω
i1,...,il1
j1,..., jl2

∈ Γ
(
X,Syml2 ΩV(♥)

)

under the canonical injection as a particular case of Proposition 6.2:

Γ
(
X,Syml2 ΩV(♥)

)
↪→ Γ

(
X̂,Syml2 ΩhorV̂

)
,

where the degree:

♥ :=
l1∑

p=1

deg Fip +

l2∑

q=1

deg F jq −
N∑

j=0

λ j + N + 1. (71)

For all homogeneous polynomials P ∈ Γ
(
PN ,OPN (deg P)

)
, by multiplication, one receives more

global twisted regular symmetric differential l2-forms:

Pω
i1,...,il1
j1,..., jl2

∈ Γ
(
X,Syml2 ΩV(deg P + ♥)

)
. �

It is worth to mention that, again by applying Cramer’s rule in linear algebra, one can construct
determinantal shape sections concerning higher-order jet bundles on Fermat type hypersurfaces, as
well as on their intersections.
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Proof. According to the criterion (50) of Proposition 6.2, it is necessary and sufficient to show, for
all z ∈ X̂, for all [ξ] ∈ ThorV̂

∣∣∣
z

and for all λ ∈ K×, that:

ω̂
i1,...,il1
j1,..., jl2

(
λz, [λξ]

)
= λ♥ ω̂

i1,...,il1
j1,..., jl2

(
z, [ξ]

)
. (72)

We may assume z ∈ Û0 = {z0 , 0} for instance. Now, applying Proposition 6.9, we receive:

ω̂
i1,...,il1
j1,..., jl2

(
λz, [λξ]

)
= ω̂

i1,...,il1
j1,..., jl2 ;0

(
λz, [λξ]

)

=
1

zλ0−1
0



Ã1
i1 · · · ÃN

i1
...

...

Ã1
il1
· · · ÃN

il1
B1

j1 · · · BN
j1

...
...

B1
jl2
· · · BN

jl2



(
λz, λξ

)
.

(73)

For all j = 0 · · ·N, for all p = 1 · · · l1, and for all q = 1 · · · l2, recall the degree identity (52) which
shows that the entry Ã j

ip
= z j A j

i is a homogeneous polynomial of degree:

deg A j
ip

+ 1 = deg Fip − λ j + 1,

and therefore satisfies:

Ã j
ip

(λz) = λdeg Fip−λ j+1Ã j
ip

(z). (74)

Recalling also the notation (54), the entry B j
jq

is a 1-form satisfying:

B j
jq

(
λz, λ[ξ]

)
= λ

deg A j
jq

+1 B j
jq

(
z, [ξ]

)

= λdeg F jq−λ j+1 B j
jq

(
z, [ξ]

)
.

(75)

Now, let us continue to compute (73), starting by expanding the determinant:



Ã1
i1
· · · ÃN

i1
...

...

Ã1
il1
· · · ÃN

il1
B1

j1
· · · BN

j1
...

...
B1

jl2
· · · BN

jl2



(
λz, λξ

)
=

∑

σ∈SN

sign(σ) Ãσ(1)
i1
· · · Ãσ(l1)

il1
Bσ(l1+1)

j1
· · ·Bσ(l1+l2)

jl2

(
λz, λξ

)
. (76)

With the help of the above two entry identities (74) and (75), each term in the above sum equals to:

sign(σ) Ãσ(1)
i1
· · · Ãσ(l1)

il1
Bσ(l1+1)

j1
· · ·Bσ(l1+l2)

jl2

(
z, ξ

)
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multiplied by λ?, where:

? =

l1∑

p=1

(
deg Fip − λσ(p) + 1

)
+

l2∑

q=1

(
deg F jq − λσ(l1+q) + 1

)

=

l1∑

p=1

deg Fip +

l2∑

q=1

deg F jq −
( l1∑

p=1

λσ(p) +

l2∑

q=1

λσ(l1+q)

︸                        ︷︷                        ︸
=

∑l1+l2
j=1 λσ( j)

)
+ l1 + l2︸︷︷︸

=N

=

l1∑

p=1

deg Fip +

l2∑

q=1

deg F jq −
N∑

j=1

λ j + N

[Use (71)] = ♥ + λ0 − 1,

therefore (76) factors as:

λ♥+λ0−1
∑

σ∈SN

sign(σ) Ãσ(1)
i1
· · · Ãσ(l1)

il1
Bσ(l1+1)

j1
· · ·Bσ(l1+l2)

jl2

(
z, ξ

)
= λ♥+λ0−1



Ã1
i1
· · · ÃN

i1
...

...

Ã1
il1
· · · ÃN

il1
B1

j1
· · · BN

j1
...

...
B1

jl2
· · · BN

jl2



(
z, ξ

)
,

and thus (73) becomes:

1
(λz0)λ0−1 λ

♥+λ0−1



Ã1
i1
· · · ÃN

i1
...

...

Ã1
il1
· · · ÃN

il1
B1

j1
· · · BN

j1
...

...
B1

jl2
· · · BN

jl2



(
z, ξ

)
= λ♥

1

zλ0−1
0



Ã1
i1
· · · ÃN

i1
...

...

Ã1
il1
· · · ÃN

il1
B1

j1
· · · BN

j1
...

...
B1

jl2
· · · BN

jl2



(
z, ξ

)

= λ♥ ω̂
i1,...,il1
j1,..., jl2 ;0

(
z, [ξ]

)

= λ♥ ω̂
i1,...,il1
j1,..., jl2

(
z, [ξ]

)
,

which is exactly our desired equality (72). �

Now, let K be the (c + r + c) × (N + 1) matrix whose first c + r rows consist of all (N + 1) terms
in the expressions of F1, . . . , Fc+r in the exact order, i.e. the (i, j)-th entry of K is:

Ki, j := A j−1
i zλ j−1

j−1 (i=1 ··· c+r; j = 1 ···N+1), (77)

and whose last c rows consist of all (N + 1) terms in the expressions of dF1, . . . , dFc in the exact
order, i.e. the (c + r + i, j)-th entry of K is:

Kc+r+i, j := d
(
A j−1

i zλ j−1

j−1
)

(i=1 ··· c; j = 1 ···N+1).

The j-th column K j of K and the j-th column C j of C are proportional:

K j = C j zλ j−1−1
j−1 ( j = 1 ···N+1). (78)
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In later applications, we will use Proposition 6.10 in the case:

l1 = c + r, l2 = n,

and in abbreviation, dropping the upper indices, we will write these global symmetric differen-
tial forms ω1,...,c+r

j1,..., jn
as ω j1,..., jn . Since we will mainly consider the case where all coordinates are

nonvanishing:
z0 , 0, . . . , zN , 0,

the corresponding symmetric horizontal differential n-forms ω̂ j1,..., jn; j of Proposition 6.8 read, in
the set {z0 · · · zN , 0}, as:

ω̂ j1,..., jn; j =
(−1) j

zλ j−1
j

det
(
Ĉ j1,..., jn; j

)

[Use (78)] =
(−1) j

zλ j−1
j

( ∏

06i6N,i, j

1

zλi−1
i

)
det

(
K̂ j1,..., jn; j

)

=
(−1) j

zλ0−1
0 · · · zλN−1

N

det
(
K̂ j1,..., jn; j

)
( j = 0 ···N),

(79)

where K̂ j1,..., jn; j is defined as an analog of Ĉ j1,..., jn; j in the obvious way.

6.4. Regular twisted symmetric differential forms with some vanishing coordinates. Investi-
gating further the construction of symmetric differential forms via Cramer’s rule, for every integer
1 6 η 6 n − 1, for every sequence of ascending indices:

0 6 v1 < · · · < vη 6 N,

by focusing on the intersection of X with the η coordinate hyperplanes:

v1,...,vηX := X ∩ {zv1 = 0} ∩ · · · ∩ {zvη = 0},
we can also construct several twisted symmetric differential (n − η)-forms:

Γ
(

v1,...,vηX, Symn−η ΩV(?)
)

(? are twisted degrees)

as follows, which will be essential ingredients towards the solution of the Debarre Ampleness
Conjecture.

For every two positive integers l1 > l2 with:

l1 + l2 = c + r + n − η = N − η,
for any two sequences of ascending positive integers:

1 6 i1 < · · · < il1 6 c + r
1 6 j1 < · · · < jl2 6 c

such that the second one is a subsequence of the first one:

{ j1, . . . , jl2} ⊂ {i1, . . . , il1},
let us denote by v1,...,vηC

i1,...,il1
j1,..., jl2

the (N − η) × (N − η + 1) submatrix of C determined by the (N − η)
rows i1, . . . , il1 , c + r + j1, . . . , c + r + jl2 and the (N − η + 1) columns which are complement to
the columns v1 + 1, . . . , vη + 1. Also, for every index j ∈ {0, . . . ,N} \ {v1, . . . , vη}, let v1,...,vηĈ

i1,...,il1
j1,..., jl2 ; j
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denote the submatrix of v1,...,vηC
i1,...,il1
j1,..., jl2

obtained by deleting the column which is originally contained
in the ( j + 1)-th column of C. Analogously to (61)-(64), we denote:

v1,...,vηW j := {zv1 = 0} ∩ · · · ∩ {zvη = 0} ∩ {z j , 0} ⊂ PN ,

whose cone is:
v1,...,vηŴ j := π−1(

v1,...,vηW j
) ⊂ KN+1 \ {0},

and we denote also:
v1,...,vηU j := v1,...,vηW j ∩ X ⊂ v1,...,vηX,

whose cone is:
v1,...,vηÛ j := π−1(

v1,...,vηU j
) ⊂ v1,...,vη X̂ := π−1(

v1,...,vηX
)
.

Now we have two very analogs of Propositions 6.9 and 6.10.
First, write the (N − η + 1) remaining numbers of the set-minus:

{0, . . . ,N} \ {v1, . . . , vη}
in the ascending order:

r0 < r1 < · · · < rN−η. (80)
It is necessary to assume that λ0, . . . , λN > 2.

Proposition 6.11. For all j = 0 · · ·N − η, the following (N + 1 − η) affine regular symmetric
horizontal differential l2-forms:

v1,...,vηω̂
i1,...,il1
j1,..., jl2 ; r j

:=
(−1) j

z
λr j−1
r j

det
(

v1,...,vηĈ
i1,...,il1
j1,..., jl2 ; r j

) ∈ Γ
(

v1,...,vηÛr j , Syml2 ΩhorV̂
)

glue together to make a regular symmetric horizontal differential l2-form on v1,...,vη X̂:

v1,...,vηω̂
i1,...,il1
j1,..., jl2

∈ Γ
(

v1,...,vη X̂, Syml2 ΩhorV̂
)
.

Proposition 6.12. Under the assumptions and notation of the above proposition, the regular sym-
metric horizontal differential l2-form v1,...,vηω̂

i1,...,il1
j1,..., jl2

on v1,...,vη X̂ is the image of a twisted regular
symmetric differential l2-form on v1,...,vηX:

v1,...,vηω
i1,...,il1
j1,..., jl2

∈ Γ
(

v1,...,vηX,Syml2 ΩV(v1,...,vη♥i1,...,il1
j1,..., jl2

)
)

under the canonical injection:

Γ
(

v1,...,vηX,Syml2 ΩV(v1,...,vη♥i1,...,il1
j1,..., jl2

)
)
↪→ Γ

(
v1,...,vη X̂,Syml2 ΩhorV̂

)
,

where the twisted degree is:

v1,...,vη♥i1,...,il1
j1,..., jl2

:=
l1∑

p=1

deg Fip +

l2∑

q=1

deg F jq −
( N∑

j=0

λ j −
η∑

µ=1

λvµ

)
+ (N − η) + 1. (81)

Furthermore, for all homogeneous polynomials P ∈ Γ
(
PN ,OPN (deg P)

)
, by multiplication, one

receives more twisted regular symmetric differential l2-forms:

P v1,...,vηω
i1,...,il1
j1,..., jl2

∈ Γ
(

v1,...,vηX,Syml2 ΩV(deg P + v1,...,vη♥i1,...,il1
j1,..., jl2

)
)
. �
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In our coming applications, we will use Proposition 6.12 in the case:

l1 = c + r, l2 = n − η,
and in abbreviation we write these symmetric differential forms v1,...,vηω

1,...,c+r
j1,..., jn−η as v1,...,vηω j1,..., jn−η .

Since we will mainly consider the case when all coordinates but zv1 , . . . , zvη are nonvanishinig:

zr0 , 0, . . . , zrN−η , 0,

the corresponding symmetric horizontal differential (n−η)-forms v1,...,vηω j1,..., jn−η of Proposition 6.11
read, in the set {zr0 · · · zrN−η , 0}, as:

v1,...,vηω̂ j1,..., jl2 ; r j :=
(−1) j

z
λr j−1
r j

det
(

v1,...,vηĈ
i1,...,il1
j1,..., jl2 ; r j

)

[Use (78)] =
(−1) j

z
λr j−1
r j

( ∏

06i6N−η,i, j

1

z
λri−1
ri

)
det

(
v1,...,vηK̂ j1,..., jn−η; r j

)

=
(−1) j

z
λr0−1
r0 · · · zλrN−η−1

rN−η

det
(

v1,...,vηK̂ j1,..., jn−η; r j

)
( j = 0 ···N−η),

(82)

where v1,...,vηK̂ j1,..., jn−η; r j is defined as an analog of v1,...,vηĈ j1,..., jn−η; r j in the obvious way.
The two formulas (79), (82) will enable us to efficiently narrow the base loci of the obtained

symmetric differential forms, as the matrix K directly copies the original equations
/
differentials of

the hypersurface polymonials F1, . . . , Fc+r. We will heartily appreciate such a formalism when a
wealth of moving coefficient terms happen to tangle together.

6.5. A scheme-theoretic point of view. In future applications, we will only consider symmetric
forms in coordinates. Nevertheless, in this subsection, let us reconsider the obtained symmetric
forms in an algebraic way, dropping the assumption ‘algebraically-closed’ on the ambient field K.

Recalling (3), (4), we may denote the projective parameter space of the c + r hypersurfaces in
(51) by:

P©
K = ProjK

[{
A j

i,α

}
i=1···c+r
j=0···N
|α|=di−λ j

]
,

so that the hypersurface coefficient polynomials A j
i are written as:

A j
i :=

∑

|α|=di−λ j

A j
i,α zα (i = 1 ··· c+r, j = 0 ···N). (83)

Now, we give a scheme-theoretic explanation of Proposition 6.3, firstly by expressing ω̂ j in
terms of affine coordinates.

For every index j = 0 · · ·N, in each affine set:

Ŵ j = {z j , 0} ⊂ KN+1 \ {0},
the c + r homogeneous hypersurface equations (51) in affine coordinates:

(z0

z j
, . . . ,

ẑ j

z j
, . . . ,

zN

z j

)
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become:

(
Fi

)
j =

N∑

k=0

(
Ak

i
)

j

(zk

z j

)λk

[see (55)] =

N∑

k=0

(
Ãk

i
)

j

(zk

z j

)λk−1
,

(84)

where for any homogeneous polynomial P, we dehomogenize:

(
P
)

j :=
P

zdeg P
j

.

Differentiating (84) for i = 1 · · · c, we receive:

d
(
Fi

)
j =

N∑

k=0

Bk
i, j

(zk

z j

)λk−1
,

where:

Bk
i, j :=

zk

z j
d
(
Ak

i
)

j + λk
(
Ak

i
)

j d
(zk

z j

)
( j, k = 0 ···N). (85)

Computing zk d
(
Ak

i
)

j, we receive:

zk d
(
Ak

i
)

j = zk d
( Ak

i

zdi−λk
j

)
[use (52)]

[Leibniz’s rule] =
zk d Ak

i

zdi−λk
j

− (di − λk)
zk Ak

i

zdi−λk+1
j

dz j

[use (53)] =
(
Bk

i − λk Ak
i dzk

) 1

zdi−λ j

j

− (di − λk)
zk Ak

i

zdi−λ j+1
j

dz j,

therefore (85) become:

Bk
i, j =

(
Bk

i − λk Ak
i dzk

) 1

zdi−λ j+1
j

− (di − λk)
zk Ak

i

zdi−λ j+2
j

dz j + λk
(
Ak

i
)

j d
(zk

z j

)

=
Bk

i

zdi−λ j+1
j

− λk
(
Ak

i
)

j
dzk

z j
− (di − λk)

(
Ak

i
)

j
zk

z2
j

dz j + λk
(
Ak

i
)

j

(dzk

z j
− zk

z2
j

dz j

)

=
1

zdi−λ j+1
j

Bk
i − di

zk

z2
j

dz j
(
Ak

i
)

j

=
1

zdi−λ j+1
j

Bk
i −

di

z j
dz j

(
Ãk

i
)

j. (86)
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Recalling the matrix C in (57), which is obtained by copying the homogeneous hypersurface
equations F1, . . . , Fc+r and the differentials dF1, . . . , dFc, we define the matrix:

(
C
)

j :=



(
Ã0

1
)

j · · · (
ÃN

1
)

j
...

...(
Ã0

c+r
)

j · · ·
(
ÃN

c+r
)

j
B0

1, j · · · BN
1, j

...
...

B0
c, j · · · BN

c, j



, (87)

which is obtained by copying the dehomogenized hypersurface equations
(
F1

)
j, . . . ,

(
Fc+r

)
j and

the differentials d
(
F1

)
j, . . . , d

(
Fc

)
j. Recalling the matrices (59), (60), in the obvious way we also

define
(
D
)

j,
(
D̂k

)
j as:

(
D
)
j :=



(
Ã0

1
)

j · · · (
ÃN

1
)

j
...

...(
Ã0

c+r
)

j · · ·
(
ÃN

c+r
)

j
B0

1, j · · · BN
1, j

...
...

B0
n, j · · · BN

n, j



, (88)

and:

(
D̂k

)
j :=



(
Ã0

1
)

j · · · (̂
Ãk

1
)

j . . .
(
ÃN

1
)

j
...

...
(
Ã0

c+r
)

j · · · ̂(Ãk
c+r

)
j . . .

(
ÃN

c+r
)

j

B0
1, j · · · B̂k

1, j . . . BN
1, j

...
...

B0
n, j · · · B̂k

n, j . . . BN
n, j



(k = 0 ···N). (89)

Recalling ω̂ j of Proposition 6.3, now thanks to (86), we have the following nice:

Observation 6.13. For every j = 0 · · ·N, one has the identity:

ω̂ j =
(−1) j

zλ j−1
j

det
(
D̂ j

)
=

(−1) j

z−♥j
det

((
D̂ j

)
j

)
, (90)

where for the moment ♥ is defined in (71) for ω1,...,c+r
1,...,c :

♥ :=
c+r∑

p=1

dp +

n∑

q=1

dq −
N∑

j=0

λ j + N + 1.

The proof is much the same as that of Proposition 6.10, hence we omit it here. �
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Now, let pr1, pr2 be the two canonical projections:

P©
K ×K PN

K

pr1

{{

pr2

##
P©
K PN

K.

Then thanks to the formula (90), we may view ω̂ j as a section of the twisted sheaf:

Symn Ω1
P©
K×KPN

K/P
©
K

⊗ pr∗1 OP©
K
(N) ⊗ pr∗2 OPN

K
(♥)

over the pullback:
pr−1

2 (W j) ⊂ P©
K ×K PN

K

of the canonical affine scheme
W j := D (z j) ⊂ PN

K.

Using the same notation as (5), (6), recalling (51), (83), we now introduce the two subschemes:

X ⊂ V ⊂ P©
K ×K PN

K,

where X is defined by ‘all’ the c + r bihomogeneous polynomials:

X := V
( N∑

j=0

A j
1 zλ j

j , . . . ,

N∑

j=0

A j
c zλ j

j ,

N∑

j=0

A j
c+1 zλ j

j , . . . ,

N∑

j=0

A j
c+r zλ j

j

)
,

and where V is defined by the ‘first’ c bihomogeneous polynomials:

V := V
( N∑

j=0

A j
1 zλ j

j , . . . ,

N∑

j=0

A j
c zλ j

j

)
.

Now, we may view each entry of the matrix (87) as a section in:

Γ
(
X ∩ pr−1

2 (W j), Sym•Ω1
V /P©

K

⊗ pr∗1 OP©
K
(1)

)
,

where the symmetric degrees are 0 for the first c + r rows and 1 for the last n rows. Noting that the
N + 1 columns C0, · · · ,CN of this matrix satisfy the relation:

N∑

k=0

Ck zλk−1
k

zλk−1
j

= 0,

in particular, so do the columns of the submatrix (88). Now, recalling the submatrices (89) of (88),
an application of Cramer’s rule (Theorem 6.6) yields:

(−1)k1 det
((

D̂k1

)
j

) z
λk2−1

k2

z
λk2−1
j

= (−1)k2 det
((

D̂k2

)
j

) z
λk1−1
k1

z
λk1−1
j

∈ Γ
(
X ∩ pr−1

2 (W j), Symn Ω1
V /P©

K

⊗ pr∗1 OP©
K
(N)

)
(k = 0 ···N).

(91)

Now, recalling (90), we may interpret Proposition 6.7 as follows. First, for j = 0 · · ·N, we view
each:

ω̂ j =
(−1) j

z−♥j
det

((
D̂ j

)
j

)
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as a section in:

Γ
(
X ∩ pr−1

2 (W j), Symn Ω1
V /P©

K

⊗ pr∗1 OP©
K
(N) ⊗ pr∗2 OPN

K
(♥)

)
.

Then, thanks to an observation below, for every different indices j1 < j2, over the open set:

X ∩ pr−1
2 (W j1 ∩W j2) ⊂ X ,

the twisted sheaf:
Symn Ω1

V /P©
K

⊗ pr∗1 OP©
K
(N) ⊗ pr∗2 OPN

K
(♥)

has the two coinciding sections:

ω̂ j1 =
(−1) j1

z−♥j1
det

((
D̂ j1

)
j1

)
[Observation 6.13]

[ use (91) ] =
(−1) j2

z−♥j1

z
λ j2−1
j1

z
λ j2−1
j2

det
((

D̂ j2
)

j1

)

[ Observation 6.14 below ] =
(−1) j2

z−♥j1

z
λ j2−1
j1

z
λ j2−1
j2

z
♥+λ j2−1
j2

z
♥+λ j2−1
j1

det
((

D̂ j2
)

j2

)

=
(−1) j2

z−♥j2
det

((
D̂ j2

)
j2

)

= ω̂ j2 .

Thus, the N + 1 sections ω̂0, . . . , ω̂N glue together to make a global section:

ω̂ ∈ Γ
(
X , Symn Ω1

V /P©
K

⊗ pr∗1 OP©
K
(N) ⊗ pr∗2 OPN

K
(♥)

)
.

Observation 6.14. For all distinct indices 0 6 j1, j2 6 N, one has the transition identities:

det
((

D̂ j2
)

j1

)
=

z
♥+λ j2−1
j2

z
♥+λ j2−1
j1

det
((

D̂ j2
)

j2

)
.

The proof is but elementary computations, so we omit it here. �

Next, repeating the same reasoning, using the obvious notation, we interpret Propositions 6.9
and 6.10 as:

Proposition 6.15. Each of the following N + 1 symmetric forms:

ω̂
i1,...,il1
j1,..., jl2 ; j =

(−1) j

zλ j−1
j

det
(
Ĉ

i1,...,il1
j1,..., jl2 ; j

)
=

(−1) j

z−♥j
det

( (
Ĉ

i1,...,il1
j1,..., jl2 ; j

)
j︸       ︷︷       ︸

guess what?

)
( j = 0 ···N)

can be viewed as a section of:

Γ
(
pr−1

2 (W j), Symn Ω1
P©
K×KPN

K/P
©
K

⊗ pr∗1 OP©
K
(N) ⊗ pr∗2 OPN

K
(♥)

)
,

with the twisted degree:

♥ :=
l1∑

p=1

deg Fip +

l2∑

q=1

deg F jq −
N∑

j=0

λ j + N + 1.
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Moreover, restricting on X , they glue together to make a global section:

ω̂
i1,...,il1
j1,..., jl2

∈ Γ
(
X , Syml2 Ω1

V /P©
K

⊗ pr∗1 OP©
K
(N) ⊗ pr∗2 OPN

K
(♥)

)
. �

We may view Propositions 6.11 and 6.12 in a similar way.

7. Moving Coefficients Method
7.1. Algorithm. As explained in Subsection 4.3, we wish to construct sufficiently many nega-
tively twisted symmetric differential forms, and for this purpose we investigate the moving coeffi-
cients method as follows. We will be concerned only with the central cases that all c + r hypersur-
faces are of the approximating big degrees d + ε1, . . . , d + εc+r, where ε1, . . . , εc+r are some given
positive integers negligible compared with the large integer d � 1 to be specified.

To understand the essence of the moving coefficients method while avoiding unnecessary com-
plexity (see Section 12), we first consider the following c + r cumbersome homogeneous polyno-
mials F1, . . . , Fc+r, each being the sum of a dominant Fermat-type polynomial plus an ‘army’ of
moving coefficient terms:

Fi =

N∑

j=0

A j
i zd

j +

N∑

l=c+r+1

∑

06 j0<···< jl6N

l∑

k=0

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
, (92)

where all coefficients A•i ,M
•;•
i ∈ K[z0, . . . , zN] are some degree εi > 1 homogeneous polynomials,

and all integers µl,k > 2 , d � 1 are chosen subsequently by the following Algorithm, which is
designed to make all the twisted symmetric differential forms obtained later have negative twisted
degrees.

The procedure is to first construct µl,k in a lexicographic order with respect to indices (l, k), for
l = c + r + 1 · · ·N, k = 0 · · · l, along with a set of positive integers δl.

Recall the integer r > 1 in Theorem 5.1. We start by setting:

δc+r+1 > max {ε1, . . . , εc+r}. (93)

For every integer l = c + r + 1 · · ·N, in this step, we begin with choosing µl,0 that satisfies:

µl,0 > l δl + l (δc+r+1 + 1) + 1 + (l − c − r)r, (94)

then inductively we choose µl,k with:

µl,k >
k−1∑

j=0

l µl, j + (l − k) δl + l (δc+r+1 + 1) + 1 + (l − c − r)r (k = 1 ··· l). (95)

If l < N, we end this step by setting:
δl+1 := l µl,l (96)

as the starting point for the next step l + 1. At the end l = N, we demand the integer d � 1 to be
big enough:

d > (N + 1) µN,N . (97)
Roughly speaking, the Algorithm above is designed for the following three properties.

(i) For every integer l = c + r + 1 · · ·N, in this step, µl,• (• = 0 · · · l) grows so drastically that
the former ones are negligible compared with the later ones:

µl,0 � µl,1 � · · · � µl,l. (98)
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(ii) For all integer pairs (l1, l2) with c + r + 1 6 l1 < l2 6 N, all the integers µl1,•1 chosen in the
former step l1 are negligible compared with the integers µl2,•2 chosen in the later step l2:

µl1,•1 � µl2,•2 (∀ 06 •1 6 l1; 06 •2 6 l2). (99)

(iii) All integers µl,k are negligible compared with the integer d:

µl,k � d (∀ c+r+16 l6N; 06 k6 l). (100)

7.2. Global moving coefficients method. First, for all i = 1 · · · c + r, we write the polynomial Fi

by extracting the terms for which l = N:

Fi =

N∑

j=0

A j
i zd

j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N

l∑

k=0

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
+

+

N∑

k=0

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k ,

(101)

and now this second line consists of exactly all the moving coefficient terms which associate to all
variables z0, . . . , zN , namely of the form M•;•

i z•0 · · · z•N .
To simplify the structure of the first line, associating each term in the second sums:

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk

with the ‘corresponding’ term in the first sum:

A jk
i zd

jk ,

and noting a priori the inequalities guaranteed by the Algorithm:

d − l µl,k > d − (N − 1) µN−1,N−1︸              ︷︷              ︸
= δN [By (96)]

(∀ c+r+16 l6N−1; 06 k6 l),

we rewrite the Fi as:

Fi =

N∑

j=0

C j
i zd−δN

j +

N∑

k=0

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k , (102)

where the homogeneous polynomials C j
i are uniquely determined by gathering:

C j
i zd−δN

j = A j
i zd

j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N
jk= j for some 06k6l

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
, (103)

namely, after dividing out the common factor zd−δN
j of both sides above:

C j
i := A j

i zδN
j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N
jk= j for some 06k6l

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zδN−lµl,k

jk
. (104)

Next, we have two ways to manipulate the (N + 1) remaining moving coefficient terms in (102):

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k (k = 0 ···N),

in order to ensure the negativity of the symmetric differential forms to be obtained later.
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The first kind of manipulations are, for every chosen index ν = 0 · · ·N, to associate all these
(N + 1) moving coefficient terms:

N∑

k=0

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k

with the term Cν
i zd−δN

ν by rewriting Fi in (102) as:

Fi =

N∑

j=0
j,ν

C j
i zd−δN

j + T ν
i zµN,0

ν , (105)

where T ν
i is the homogeneous polynomial uniquely determined by solving:

T ν
i zµN,0

ν = Cν
i zd−δN

ν +

N∑

k=0

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k ; (106)

in fact, guided by properties (98), (99), (100), our algorithm a priori implies:

µN,0 6 d − δN , µN,k, d − N µN,k (k = 0 ···N),

thus the right hand side of (106) has a common factor zµN,0
ν .

The second kind of manipulations are, for every chosen integer τ = 0 · · ·N − 1, for every chosen
index ρ = τ + 1 · · ·N, to associate each of the first (τ + 1) moving coefficient terms:

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k (k = 0 ··· τ)

with the corresponding terms Ck
i zd−δN

k and to associate the remaining (N − τ) moving coefficient
terms:

N∑

j=τ+1

M0,...,N; j
i zµN, j

0 · · · ẑµN, j

j · · · zµN, j

N zd−N µN, j

j

with the term Cρ
i zd−δN

ρ by rewriting Fi as:

Fi =

τ∑

k=0

Ek
i zd−N µN,k

k +

N∑

j=τ+1
j,ρ

C j
i zd−δN

j + Pτ,ρ
i zµN,τ+1

ρ , (107)

where Ek
i and Pτ,ρ

i are the homogeneous polynomials uniquely determined by solving:

Ek
i zd−N µN,k

k = Ck
i zd−δN

k + M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k (k = 0 ··· τ),

Pτ,ρ
i zµN,τ+1

ρ = Cρ
i zd−δN

ρ +

N∑

j=τ+1

M0,...,N; j
i zµN, j

0 · · · ẑµN, j

j · · · zµN, j

N zd−N µN, j

j ,
(108)

which is direct by the inequalities listed below granted by the Algorithm:

d − N µN,k 6 d − δN (k = 0 ··· τ),

µN,τ+1 6 µN, j,

µN,τ+1 6 d − N µN, j ( j = τ+1 ···N).

(109)
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Now thanks to the above two kinds of manipulations (105), (107), applying Proposition 6.8,
6.10, we receive the corresponding twisted symmetric differential forms with negative degrees as
follows.

Firstly, for every index ν = 0 · · ·N, applying Proposition 6.8, 6.10 with respect to the first kind
of manipulation (105) on the hypersurface polynomial equations F1, . . . , Fc+r, for every n-tuple
1 6 j1 < · · · < jn 6 c, we receive a twisted symmetric differential n-form:

φνj1,..., jn ∈ Γ
(
X,Symn ΩV(♥νj1,..., jn)

)
, (110)

whose twisted degree ♥νj1,..., jn , according to the formula (71), is negative:

[Use deg Fi = d + εi 6 d + δc+r+1] ♥νj1,..., jn 6 N (d + δc+r+1) − [
N (d − δN) + µN,0

]
+ N + 1

= N δN + N (δc+r+1 + 1) + 1 − µN,0

[Use (94) for l = N] 6 −nr.

Secondly, for every integer τ = 0 · · ·N − 1, for every index ρ = τ + 1 · · ·N, applying Proposi-
tion 6.8, 6.10 with respect to the second kind of manipulation (107) on the hypersurface polynomial
equations F1, . . . , Fc+r, for every n-tuple 1 6 j1 < · · · < jn 6 c, we receive a twisted symmetric
differential n-form:

ψ
τ,ρ
j1,..., jn

∈ Γ
(
X,Symn ΩV(♥τ,ρj1,..., jn

)
)
, (111)

whose twisted degree ♥τ,ρj1,..., jn
, according to the formula (71), is negative too:

♥τ,ρj1,..., jn
6 N (d + δc+r+1) −

τ∑

k=0

(d − N µN,k) − (N − τ − 1) (d − δN) − µN,τ+1 + N + 1

=

τ∑

k=0

N µN,k + (N − τ − 1) δN + N (δc+r+1 + 1) + 1 − µN,τ+1

6 −nr [use (95) for l = N, k = τ + 1].

7.3. Moving coefficients method with some vanishing coordinates. To investigate further the
moving coefficients method, for all integers 1 6 η 6 n−1, for every sequence of ascending indices
:

0 6 v1 < · · · < vη 6 N,

take the intersection of X with the η coordinate hyperplanes:

v1,...,vηX := X ∩ {zv1 = 0} ∩ · · · ∩ {zvη = 0}.
Applying Proposition 6.12, in order to obtain more symmetric differential (n − η)-forms having
negative twisted degree, we carry on manipulations as follows, which are much the same as before.

First, write the (N − η + 1) remaining numbers of the set-minus:

{0, . . . ,N} \ {v1, . . . , vη}
in the ascending order:

r0 < · · · < rN−η.

Note that in Proposition 6.12, the coefficient terms associated with the vanishing variables zv1 , . . . , zvη
play no role, therefore we decompose Fi into two parts. The first part (the first two lines below)
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is a very analog of (101) involving only the variables zr0 , . . . , zrN−η , while the second part (the third
line) collects all the residue terms involving at least one of the vanishing coordinates zv1 , . . . , zvη:

Fi =

N−η∑

j=0

Ar j

i zd
r j

+

N−η−1∑

l=c+r+1

∑

06 j0<···< jl6N−η

l∑

k=0

M
r j0 ,...,r jl ;r jk
i zµl,k

r j0
· · · ẑµl,k

r jk
· · · zµl,k

r jl
zd−lµl,k

r jk
+

+

N−η∑

k=0

Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk +

+ (Residue Terms)v1,...,vη
i︸                     ︷︷                     ︸

negligible in the coming applications

.

(112)

Since every power associated with the vanishing variables zv1 , . . . , zvvη
is > 2 thanks to the Algo-

rithm in subsection 7.1, all the (Residue Terms)v1,...,vη
i lie in the ideal:

(z2
v1
, . . . , z2

vη) ⊂ K[z0, . . . , zN].

Moreover, using for instance the lexicographic order, we can write them as:

(Residue Terms)v1,...,vη
i =

η∑

j=1

Rv1,...,vη;v j

i z2
v j
, (113)

where Rv1,...,vη;v j

i are the homogeneous polynomials uniquely determined by solving:

Rv1,...,vη;v j

i z2
v j

= Av j

i zd
v j

+

N∑

l=c+r+1

∑

06 j0<···< jl6N
min

(
{ j0,..., jl}\{v1,...,vη}

)
=v j

l∑

k=0

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
.

Observing that the first two lines of (112) have exactly the same structure as (101), by mimicking
the manipulation of rewriting (101) as (102), we can rewrite the first two lines of (112) as:

N−η∑

j=0
v1,...,vηC

r j

i zd−δN−η
r j +

N−η∑

k=0

Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk , (114)

where the integer δN−η was defined in (96) for l = N − η − 1:

δN−η = (N − η − 1) µN−η−1,N−η−1,

and where the homogeneous polynomials v1,...,vηC
r j

i are obtained in the same way as C j
i in (104):

v1,...,vηC
r j

i := Ar j

i zδN−η
j +

N−η−1∑

l=c+r+1

∑

06 j0<···< jl6N−η
jk= j for some 06k6l

M
r j0 ,...,r jl ;r jk
i zµl,k

r j0
· · · ẑµl,k

r jk
· · · zµl,k

r jl
z(N−η−1)µN−η−1,N−η−1−lµl,k

r jk
.

Now substituting (114), (113) into the equation (112), we rewrite Fi as:

Fi =

N−η∑

j=0
v1,...,vηC

r j

i zd−δN−η
r j +

N−η∑

k=0

Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk +

+

η∑

j=1

Rv1,...,vη;v j

i z2
v j
.

︸              ︷︷              ︸
negligible in the coming applications

(115)
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Now, noting that the first line of Fi in (115) has exactly the same structure as (102), we repeat
the two kinds of manipulations, as briefly summarized below.

The first kind of manipulations are, for every chosen index ν = 0 · · · N −η, to associate all these
(N + 1 − η) moving coefficient terms:

N−η∑

k=0

Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk

with the term v1,...,vηC
rν
i zd−δN−η

rν by rewriting (114) as:

N−η∑

j=0
j,ν

v1,...,vηC
r j

i zd−δN−η
r j + v1,...,vηT

rν
i zµN−η,0

rν , (116)

where v1,...,vηT
rν
i is the homogeneous polynomial uniquely determined by solving:

v1,...,vηT
rν
i zµN−η,0

rν = v1,...,vηC
rν
i zd−δN−η

rν +

N−η∑

k=0

Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk . (117)

The second kind of manipulations are, for every integer τ = 0 · · ·N − η − 1, for every index
ρ = τ + 1 · · ·N − η, to associate each of the first (τ + 1) moving coefficient terms:

Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk (k = 0 ··· τ)

with the corresponding term v1,...,vηC
rk
i zd−δN−η

rk and to associate the remaining (N − η − τ) moving
coefficient terms:

N−η∑

j=τ+1

Mr0,...,rN−η;r j

i zµN−η, j
r0 · · · ẑµN−η, j

r j · · · zµN−η, j
rN−η zd−(N−η) µN−η, j

r j ,

with the term v1,...,vηC
rρ
i zd−δN−η

rρ by rewriting (114) as:

τ∑

k=0
v1,...,vηE

rk
i zd−(N−η) µN−η,k

rk +

N−η∑

j=τ+1
j,ρ

v1,...,vηC
r j

i zd−δN−η
r j + v1,...,vηP

rτ,rρ
i zµN−η,τ+1

rρ , (118)

where v1,...,vηE
rk
i and v1,...,vηP

rτ,rρ
i are the homogeneous polynomials uniquely determined by solving:

v1,...,vηE
rk
i zd−(N−η) µN−η,k

rk = v1,...,vηC
rk
i zd−δN−η

rk + Mr0,...,rN−η;rk

i zµN−η,k
r0 · · · ẑµN−η,k

rk · · · zµN−η,k
rN−η zd−(N−η) µN−η,k

rk ,

v1,...,vηP
rτ,rρ
i zµN−η,τ+1

rρ = v1,...,vηC
rρ
i zd−δN−η

rρ +

N−η∑

j=τ+1

Mr0,...,rN−η;r j

i zµN−η, j
r0 · · · ẑµN−η, j

r j · · · zµN−η, j
rN−η zd−(N−η) µN−η, j

r j ,
(119)

which is possible by the Algorithm in subsection 7.1.
To summarize, taking the two forms (116), (118) of the first line of (115) into account, we can

rewrite Fi in the following two ways. The first one is:

Fi =

N−η∑

j=0
j,ν

v1,...,vηC
r j

i zd−δN−η
r j + v1,...,vηT

rν
i zµN−η,0

rν +

η∑

j=1

Rv1,...,vη;v j

i z2
v j

︸             ︷︷             ︸
negligible in our coming applications

,
(120)
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and the second one is:

Fi =

τ∑

k=0
v1,...,vηE

rk
i zd−(N−η) µN−η,k

rk +

N−η∑

j=τ+1
j,ρ

v1,...,vηC
r j

i zd−δN−η
r j + v1,...,vηP

rτ,rρ
i zµN−η,τ+1

rρ +

η∑

j=1

Rv1,...,vη;v j

i z2
v j

︸              ︷︷              ︸
negligible in our coming applications

. (121)

Firstly, applying Proposition 6.12 to (120), for every (n − η)-tuple:

1 6 j1 < · · · < jn−η 6 c,

we receive a twisted symmetric differential (n − η)-form:

v1,...,vηφ
ν
j1,..., jn−η ∈ Γ

(
v1,...,vηX,Symn−η ΩV (v1,...,vη♥νj1,..., jn−η)

)
, (122)

whose twisted degree v1,...,vη♥νj1,..., jn−η , according to the formula (81), is negative:

v1,...,vη♥νj1,..., jn−η 6 (N − η) (d + δc+r+1) − [
(N − η) (d − δN−η) + µN−η,0

]
+ (N − η) + 1

= (N − η) δN−η + (N − η) (δc+r+1 + 1) + 1 − µN−η,0
[use (94) for l = N − η] 6 − (n − η)r.

Secondly, applying Proposition 6.12 to (121), for every (n − η)-tuple:

1 6 j1 < · · · < jn−η 6 c,

we receive a twisted symmetric differential (n − η)-form:

v1,...,vηψ
τ,ρ
j1,..., jn−η ∈ Γ

(
v1,...,vηX,Symn−η ΩV(v1,...,vη♥τ,ρj1,..., jn−η)

)
, (123)

whose twisted degree v1,...,vη♥τ,ρj1,..., jn−η , according to the formula (81), is negative also:

v1,...,vη♥τ,ρj1,..., jn−η
6 (N − η) (d + δc+r+1) −

τ∑

k=0

(d − (N − η) µN−η,k) − (N − η − τ − 1) (d − δN−η)−

− µN−η,τ+1 + N − η + 1

=

τ∑

k=0

(N − η) µN−η,k + (N − η − τ − 1) δN−η + (N − η) (δc+r+1 + 1) + 1 − µN−η,τ+1

6 − (n − η)r [use (95) for l = N − η, k = τ + 1].

8. Basic technical preparations

8.1. Fibre dimension estimates. The first theorem below coincides with our geometric intuition,
and one possible proof is mainly based on Complex Implicit Function Theorem. Here, we give a
short proof by the same method as [59, p. 76, Theorem 7].

Theorem 8.1. (Analytic Fibre Dimension Estimate) Let X,Y be two complex spaces and let
f : X → Y be a regular map. Then the maximum fibre dimension is bounded from below by the
dimension of the source space X minus the dimension of the target space Y:

maxy ∈Y dimC f −1(y) > dimC X − dimC Y.

Equivalently:
dimC X 6 dimC Y + maxy ∈Y dimC f −1(y). (124)
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Proof. For every point x ∈ X, let f (x) =: z ∈ Y , and denote the germ dimension of Y at this point
by:

dz := dimC (Y, z).

Then we can find holomorphic function germs g1, . . . , gdz ∈ OY,z vanishing at z such that:

(Y, z) ∩ {g1 = · · · = gdz = 0} = {z}.
Pulling back by the holomorphic map f , we therefore realize:

(X, x) ∩ {g1 ◦ f = · · · = gdz ◦ f = 0} =
(
f −1(z), x

)
.

Now, counting the germ dimension, we receive the estimate:

dimC
(
f −1(z), x

)
> dimC (X, x) − dz = dimC (X, x) − dimC (Y, z),

hence:
dimC (X, x) 6 dimC (Y, z) + dimC

(
f −1(z), x

)

6 dimC Y + maxy ∈Y dimC f −1(y).

Finally, let x ∈ X vary in the above estimate, thanks to:

dimC X = maxx ∈ X dimC (X, x),

we receive the desired estimate (124). �

With the same proof (cf. [54, p. 169, Proposition 12.30; p. 140, Corollary 10.27]), here is an
algebraic version of the analytic fibre dimension estimate above, for every algebraically closed field
K and for the category of K-varieties in the classical sense ([37, §1.3, p. 15]), where dimension is
defined to be the Krull dimension ([37, §1.1, p. 6]).

Theorem 8.2 (Algebraic Fibre Dimension Estimate). Let X,Y be twoK-varieties, and let f : X →
Y be a morphism. Then the dimension of the source variety X is bounded from above by the sum
of the dimension of the target variety Y plus the maximum fibre dimension:

dim X 6 dim Y + maxy ∈Y dim f −1(y). (125)

In our future applications, f will always be surjective, so one may also refer to [59, p. 76,
Theorem 7]. The above theorem will prove fundamental in estimating every base locus involved
in this paper.

Corollary 8.3. Let X,Y be two K-varieties, and let f : X → Y be a morphism such that every fibre
satisfies the dimension estimate:

dim f −1(y) 6 dim X − dim Y (∀ y ∈Y).

Then for every subvariety Z ⊂ Y, its inverse image:

f −1(Z) ⊂ X

satisfies the transferred codimension estimate:

codim f −1(Z) > codim Z. �
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8.2. Matrix-rank estimates. This subsection recalls some elementary rank estimates in linear
algebra.

Lemma 8.4. Let K be a field and let W be a finite-dimensional K-vector space generated by a set
of vectors B. Then every subset B1 ⊂ B that consists of K-linearly independent vectors can be
extended to a bigger subset B2 ⊂ B which forms a basis of W. �

Lemma 8.5. Let K be a field, and let V be a K-vector space. For all positive integers e, k, l > 1
with k > l, let v1, . . . , ve, ve+1, . . . , ve+k be (e + k) vectors such that:

(i) v1, . . . , ve are K-linearly independent;
(ii) for every sequence of l ascending indices between e + 1 and e + k:

e + 1 6 i1 < · · · < il 6 e + k,

there holds the rank inequality:

rankK {v1, . . . , ve, vi1 , . . . , vil} 6 e + l − 1.

Then there holds the rank estimate:

rankK {v1, . . . , ve, ve+1, . . . , ve+k} 6 e + l − 1.

Proof. Assume on the contrary that:

rankK {v1, . . . , ve, ve+1, . . . , ve+k} =: e + l0 > e + l,

that is, l0 > l.
Now applying the above lemma to:

W = SpanK {v1, . . . , ve, ve+1, . . . , ve+k}︸                          ︷︷                          ︸
= B

,

B1 = {v1, . . . , ve},
we receive a certain basis of V:

B2 = {v1, . . . , ve, vi1 , . . . , vil0
}.

In particular, as l0 > l, the first (e + l) vectors in B2 are K-linearly independent:

rankK {v1, . . . , ve, vi1 , . . . , vil} = e + l,

which contradicts condition (ii). �

Let K be a field, and let p, q, e, l be positive integers with:

min{p, q} > e + l.

Let M ∈ Matp×q(K) be a p × q matrix. For all sequences of ascending indices :

1 6 i1 < · · · < ik 6 p,

let us denote by Mi1,...,ik the k × q submatrix of M that consists of the rows i1, . . . , ik, and for all
sequences of ascending indices:

1 6 j1 < · · · < jl 6 q,

let us denote by M j1,..., jl
i1,...,ik

the k × l submatrix of Mi1,...,ik that consists of the columns j1, . . . , jl.
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Lemma 8.6. If the first e rows of the matrix M are of full rank:

rankKM1,...,e = e,

and if all the (e + l) × (e + l) submatrices always selecting the first e rows of M are degenerate:

rankKM j1,..., je+l
1,...,e,i1,...,il

6 e + l − 1 (∀ e+16 i1 < ···< il 6 p; 16 j1 < ···< je+l 6 q), (126)

then there holds the rank estimate:

rankKM 6 e + l − 1

Proof. For every fixed sequence of ascending indices:

e + 1 6 i1 < · · · < il 6 p,

the rank inequalities (126) yields:

rankKM1,...,e,i1,...,il 6 e + l − 1

Now applying the previous lemma to the rows of the matrix M, we conclude the desired rank
estimate. �

Lemma 8.7. Let K be a field and let e,m be positive integers. Let H ∈ Mate×m(K) be an e × m
matrix with entries in K such that the sum of all m columns of H vanishes:

H1 + · · · + Hm = 0, (127)

where we denote by Hi the i-th column of H. Then for every integer j = 1 · · ·m, the e×m submatrix
Ĥ j of H obtained by omitting the j-th column still has the same rank:

rankK Ĥ j = rankK H.

Proof. Note that (127) yields:

H j = −(H1 + · · · + H j−1 + H j+1 + · · · + Hm),

therefore H j lies in the K-linear space generated by the columns of the matrix Ĥ j, thus we receive:

SpanK {H1, . . . , Ĥ j, . . . ,Hm} = SpanK {H1, . . . ,Hm}.
Taking the dimension of both sides, we receive the desired rank equality. �

8.3. Classical codimension formulas. In an algebraically closed field K, for all positive integers
p, q > 1, denote by:

Matp×q(K) = Kp×q

the space of all p × q matrices with entries in K. For every integer 0 6 ` 6 max{p, q}, we have a
classical formula (cf. [31, p. 247 exercise 10.10, and the proof in p. 733]) for the codimension of
the subvariety:

Σ
p,q
` ⊂ Matp×q(K)

which consists of all matrices with rank 6 `.

Lemma 8.8. There holds the codimension formula:

codim Σ
p,q
` = max

{
(p − `) (q − `), 0

}
. �

In applications, we will use the following two direct consequences.
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Corollary 8.9. For every integer 0 6 ` 6 max{p, q − 1}, the codimension of the subvariety:
0Σ

p,q
` ⊂ Σ

p,q
` ,

which consists of matrices whose sum of all the columns vanish, is:

codim 0Σ
p,q
` = max

{
(p − `) (q − 1 − `), 0

}
+ p. �

Proof. Since every matrix in 0Σ
p,q
` is uniquely determined by the first (q − 1) columns, thanks to

Lemma 8.7, the projection morphism into the first (q − 1) columns:

π : 0Σ
p,q
` −→ Σ

p,q−1
`

is an isomorphism. Remembering that:

dim Σ
p,q
` = dim Σ

p,q−1
` + p,

now a direct application of the preceding lemma finishes the proof. �

8.4. Surjectivity of evaluation maps. Given a field K, for all positive integers N > 1, denote the
affine coordinate ring of KN+1 by:

A (KN+1) := K[z0, . . . , zN].

For all positive integers λ > 1, also denote by:

Aλ(KN+1) ⊂ A (KN+1)

the K-linear space spanned by all the degree λ homogeneous polynomials:

Aλ(KN+1) := ⊕α0+···+αN=λ
α0,...,αN>0

K · zλ0
0 · · · zλN

N � K(N+λ
N ).

For every point z ∈ KN+1, denote by vz the K-linear evaluation map:

vz : A (KN+1) −→ K
f 7−→ f (z),

and for every tangent vector ξ ∈ TzK
N+1 � KN+1, denote by dz(ξ) theK-linear differential evaluation

map:
dz(ξ) : A (KN+1) −→ K

f 7−→ d f
∣∣∣
z
(ξ).

For every polynomial g ∈ A (KN+1), for every point z ∈ KN+1, denote by (g · v)z the K-linear
evaluation map:

(g · v)z : A (KN+1) −→ K
f 7−→ (g f )(z),

and for every tangent vector ξ ∈ TzK
N+1 � KN+1, denote by dz(g· )(ξ) the K-linear differential

evaluation map:
dz(g· )(ξ) : A (KN+1) −→ K

f 7−→ d (g f )
∣∣∣
z
(ξ).

The following Lemma was obtained by Brotbek in another affine coordinates version [7, p. 36,
Proof of Claim 3].
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Lemma 8.10. For all positive integers λ > 1, at every nonzero point z ∈ KN+1 \ {0}, for every
tangent vector ξ ∈ TzK

N+1 � KN+1 which does not lie in the line of z:

ξ < K · z,
restricting on the subspace:

Aλ(KN+1) ⊂ A (KN+1),
the evaluation maps vz and dz(ξ) are K-linearly independent. In other words, the map:

(
vz

dz(ξ)

)
: Aλ(KN+1) −→ K2

is surjective.

Proof. Step 1. For the case λ = 1, this lemma is evident. In fact, now every polynomials ` ∈
A1(KN+1) can be viewed as, by evaluating `(z) at every point z ∈ KN+1, a K-linear form:

` ∈ (
KN+1)∨,

thus there is a canonical K-linear isomorphism:

A1(KN+1) �
(
KN+1)∨.

Moreover, it is easy to see:
d`

∣∣∣
z
(ξ) = `(ξ).

Since z, ξ ∈ KN+1 are K-linearly independent, now recalling the Riesz Representation Theorem in
linear algebra:

KN+1 �
((
KN+1)∨)∨, (128)

we conclude the claim.
Step 2. For the general case λ > 2, first, we choose a degree (λ − 1) homogeneous polynomial

g ∈ Aλ−1(KN+1) with g(z) , 0 (for instance, one of zλ−1
0 , . . . , zλ−1

N succeeds), and then we claim,
restricting on the K-linear subspace obtained by multiplying A1(KN+1) with g:

g ·A1(KN+1) ⊂ Aλ(KN+1),

that the evaluation maps vz and dz(ξ) are K-linearly independent.
In fact, for all f ∈ A (KN+1), we have:

(g · v)z ( f ) = (g f )(z)
= g(z) f (z)
= g(z) vz( f ),

and by Leibniz’s rule:

dz(g· )(ξ) ( f ) = d (g f )
∣∣∣
z
(ξ)

= g(z) d f
∣∣∣
z
(ξ) + f (z) d g

∣∣∣
z
(ξ)

= g(z) dz(ξ) ( f ) + d g
∣∣∣
z
(ξ) vz( f ),

in other words: (
(g · v)z

dz(g· )(ξ)
)

=

(
g(z) 0

d g
∣∣∣
z
(ξ) g(z)

)

︸            ︷︷            ︸
invertible, since g(z), 0

(
vz

dz(ξ)

)
. (129)
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Now, restricting (129) on the K-linear subspace:

A1(KN+1) ⊂ A (KN+1),

and recalling the result of Step 1 that the evaluation maps vz, dz(ξ) are K-linearly independent, we
immediately see that the evaluation maps (g · v)z, dz(g· )(ξ) are K-linearly independent too. In other
words, restricting on the K-linear subspace:

g ·A1(KN+1) ⊂ Aλ(KN+1),

the evaluation maps vz, dz(ξ) are K-linearly independent. �

Lemma 8.11. For all positive integers λ > 1, for all polynomials g ∈ A (KN+1), at every nonzero
point z ∈ KN+1 \ {0} where g does not vanish:

g(z) , 0,

and for every tangent vector ξ ∈ TzK
N+1 � KN+1 which does not lie in the line of z:

ξ < K · z,
restricting on the subspace:

Aλ(KN+1) ⊂ A (KN+1),
the evaluation maps (g · v)z and dz(g· )(ξ) are K-linearly independent. In other words, the map:

(
(g · v)z

dz(g· )(ξ)
)

: Aλ(KN+1) −→ K2

is surjective.

Proof. This is a direct consequence of formula (129) and of the preceding lemma. �

8.5. Codimensions of affine cones. Usually, it is more convenient to count dimension in an Eu-
clidian space rather than in a projective space. Therefore we carry out the following lemma (cf.
[37, p. 12, exercise 2.10]), which is geometrically obvious, as one point (dimK = 0) in the projective
space PN

K corresponds to one K-line (dimK = 1) in KN+1.

Lemma 8.12. In an algebraically closed field K, let π : KN+1 → PN
K be the canonical projection,

and let:
Y ⊂ PN

K

be a nonempty algebraic set defined by a homogeneous ideal:

I ⊂ K[z0, . . . , zN].

Denote by C(Y) the affine cone over Y:

C(Y) := π−1(Y) ∪ {0} ⊂ KN+1.

Then C(Y) is an algebraic set in KN+1 which is also defined by the ideal I (considered as an
ordinary ideal in K[z0, . . . , zN]), and it has dimension one more than Y:

dim C(Y) = dim Y + 1.

In other words, they have the same codimension:

codim C(Y) = codim Y. �

The essence of the above geometric lemma is the following theorem in commutative algebra (cf.
[42, p. 73, Cor. 5.21]):
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Theorem 8.13. Let B be a homogeneous algebra over a field K, then:

dim Spec B = dim Proj B + 1. �

8.6. Full rank of hypersurface equation matrices. In an algebraically closed field K, for all
positive integers N > 2, for all integers e = 1 · · ·N, for all positive integers ε1, . . . , εe > 1 and
d > 1, consider the following e hypersurfaces:

H1, . . . ,He ⊂ PN
K,

each being defined as the zero set of a degree (d + εi) Fermat-type homogeneous polynomial:

Fi =

N∑

j=0

A j
i zd

j (i = 1 ··· e), (130)

where all A j
i ∈ Aεi(K

N+1) are some degree εi homogeneous polynomials.
Now, denote by H the e × (N + 1) matrix whose i-th row copies the (N + 1) terms of Fi in the

exact order, i.e. the (i, j)-th entries of H are:

Hi, j = A j−1
i zd

j−1 (i = 1··· e; j = 1 ···N+1),

so H writes as:

H :=



A0
1 zd

0 · · · AN
1 zd

N
...

. . .
...

A0
e zd

0 · · · AN
e zd

N


, (131)

which we call the hypersurface equation matrix of F1, . . . , Fe. Passim, remark that by (130), the
sum of all columns of H vanishes at every point [z] ∈ X := H1 ∩ · · · ∩ He.

Also introduce:
P(M ) := P

(
⊕ 16i6e

06 j6N
Aεi(K

N+1)
︸               ︷︷               ︸

=: M

)

the projectivized parameter space of (A j
i ) 16i6e

06 j6N
∈M .

First, let us recall a classical theorem (cf. [59, p. 57, Theorem 2]) that somehow foreshadows
Remmert’s proper mapping theorem.

Theorem 8.14. The image of a projective variety under a regular map is closed. �

The following lemma was proved by Brotbek in another version [7, p. 36, Proof of Claim 1],
and the proof there is in affine coordinates ( z0

z j
, . . . ,

ẑ j

z j
, . . . , zN

z j
):

KN � {z j , 0} ⊂ PN
K ( j = 0 ···N).

Here, we may present a proof by much the same arguments in ambient coordinates (z0, . . . , zN):

KN+1 \ {0} −→ PN
K

(z0, . . . , zN) 7−→ [z0 : · · · : zN].

Lemma 8.15. In P(M ), there exists a proper algebraic subset:

Σ $ P(M )
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such that, for every choice of parameter outside Σ:
[(

A j
i
)

16i6e
06 j6N

]
∈ P(M ) \ Σ,

on the corresponding intersection:

X = H1 ∩ · · · ∩ He ⊂ PN
K,

the matrix H has full rank e everywhere:

rankK H(z) = e (∀ [z] ∈ X).

Sharing the same spirit as the famous Fubini principle in combinatorics, the essence of the proof
below is to count dimension in two ways, which is a standard method in algebraic geometry having
various forms (e.g. the proof of Bertini’s Theorem in [37, p. 179], main arguments in [18, 7], etc).

Proof. Now, introduce the universal family X ↪→ P(M ) × PN
K of the intersections of such e

Fermat-type hypersurfaces:

X :=
{(

[A j
i ], [z]

) ∈ P(M ) × PN
K :

∑N
j=0 A j

i zd
j = 0, for i = 1 · · · e

}
,

and then consider the subvariety B ⊂X that consists of all ‘bad points’ defined by:

rankK H 6 e − 1. (132)

Let π1, π2 below be the two canonical projections:

P(M ) × PN
K

π1

yy

π2

$$
P(M ) PN

K.

Since P(M )×PN
K ⊃ B is a projective variety and π1 is a regular map, now applying Theorem 8.14,

we see that:
π1(B) ⊂ P(M )

is an algebraic subvariety. Hence it is necessary and sufficient to show that:

π1(B) , P(M ). (133)

Our strategy is as follows.

Step 1. To decompose PN
K into a union of quasi-subvarieties:

PN
K = ∪N

k=0 kP
N
K

◦
, (134)

where kP
N
K

◦
consists of points [z] = [z0 : z1 : · · · : zN] ∈ PN

K with exactly k vanishing homogeneous
coordinates, the other ones being nonzero.

Step 2. For every integer k = 0 · · ·N, for every point [z] ∈ kP
N
K

◦
, to establish the fibre dimension

identity:
dim π−1

2 ([z]) ∩B = dimP(M ) − (
max {N − k − e + 1, 0} + e

)
. (135)
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Proof of Step 2. Without loss of generality, we may assume that the last k homogeneous coordi-
nates of [z] vanish:

zN−k+1 = · · · = zN = 0, (136)

and then by the definition of kP
N
K

◦
, none of the first (N − k + 1) coordinates z0, . . . , zN−k vanish.

Noting that:

π−1
2 ([z]) ∩B = π1

(
π−1

2 ([z]) ∩B
)

︸               ︷︷               ︸
by Theorem 8.14 is an algebraic set

× {
[z]

}
︸︷︷︸

one point set

,

and considering the canonical projection:

π̂ : M \ {0} −→ P(M ),

we receive:
dim π−1

2 ([z]) ∩B = dim π1

(
π−1

2 ([z]) ∩B
)

[use Lemma 8.12] = dim π̂−1
(
π1

(
π−1

2 ([z]) ∩B
)) ∪ {0} − 1.

(137)

Now, observe that whatever choice of parameters:
(
A j

i
)

16i6e
06 j6N

∈M ,

the vanishing of the last k coordinates of [z] in (136) makes the last k columns of H(z) in (131)
vanish. It is therefore natural to introduce the submatrix N+1−kH of H that consists of the remaining
nonvanishing columns, i.e. the first (N + 1− k) ones. Since the sum of all columns of H(z) vanishes
by (130), the sum of all columns of N+1−kH(z) also vanishes.

Observe that the set:

M ⊃ π̂−1
(
π1

(
π−1

2 ([z]) ∩B
)) ∪ {0}

=
{(

A j
i
)

16i6e
06 j6N

∈M : sum of all the columns of N+1−kH(z) vanishes,

and rankK
N+1−kH(z) 6 e − 1︸                        ︷︷                        ︸

from (132)

}

is nothing but the inverse image of:

0Σe,N+1−k
e−1 ⊂ Mate×(N+1−k)(K) [use notation of Lemma 8.9]

under the K-linear map:
N−k+1Hz : M −→ Mate×(N+1−k)(K)

(A j
i )i, j 7−→ N−k+1H(z),

which is surjective by Lemma 8.11.
Therefore we have the codimension identity:

codim π̂−1
(
π1

(
π−1

2 ([z]) ∩B
)) ∪ {0} = codim 0Σe,N+1−k

e−1 [N−k+1Hz is linear and surjective]

[use Lemma (8.9)] = max {N − k − e + 1, 0} + e,
(138)
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and thereby we receive:

dim π−1
2 ([z]) ∩B = dim π̂−1

(
π1

(
π−1

2 ([z]) ∩B
)) ∪ {0} − 1 [use (137)]

[by definition of codimension] = dim M − codim π̂−1
(
π1

(
π−1

2 ([z]) ∩B
)) ∪ {0} − 1

[exercise] = dimP(M ) − codim π̂−1
(
π1

(
π−1

2 ([z]) ∩B
)) ∪ {0}

[use (138)] = dimP(M ) − (
max {N − k − e + 1, 0} + e

)
,

which is exactly our claimed fibre dimension identity (135). �

Step 3. Applying Lemma 8.2 to the regular map:

π2 : π−1
2

(
kP

N
K

◦ ) ∩B −→ kP
N
K

◦
,

remembering:

dim kP
N
K

◦
= N − k (k = 0 ···N),

together with the identity (135), we receive the dimension estimate:

dim π−1
2

(
kP

N
K

◦ ) ∩B 6 dim kP
N
K

◦
+ dimP(M ) − max{N − k − e + 1, 0} − e

6 (N − k) + dimP(M ) − (N − k − e + 1) − e
= dimP(M ) − 1.

(139)

Note that B can be written as the union of (N + 1) quasi-subvarieties:

B = π−1
2

(
PN
K

) ∩B

= π−1
2

( ∪N
k=0 kP

N
K

◦ ) ∩B

=
(
∪N

k=0 π
−1
2

(
kP

N
K

◦ )) ∩B

= ∪N
k=0

(
π−1

2
(

kP
N
K

◦ ) ∩B
)
,

each one being, thanks to (139), of dimension less than or equal to:

dimP(M ) − 1,

and therefore we have the dimension estimate:

dim B 6 dimP(M ) − 1.

Finally, (133) follows from the dimensional comparison:

dim π1(B) 6 dim B 6 dimP(M ) − 1. �

In the more general context of our moving coefficients method, we now want to have an every-
where full-rank property analogous to Lemma 8.15 just obtained.

Observing that in (92), the number of terms in each polymonial Fi is:

(N + 1) +

N∑

`=c+r+1

(
N + 1
` + 1

)
(` + 1),
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and recalling that the K-linear subspace Aεi(K
N+1) ⊂ K[z0, . . . , zN] spanned by all degree εi homo-

geneous polynomials is of dimension:

dimKAεi(K
N+1) =

(
N + εi

N

)
,

we may denote by P©
K the projectivized parameter space of such c + r hypersurfaces, with the

integer:

© :=
[
(N + 1) +

N∑

`=c+r+1

(
N + 1
` + 1

)
(` + 1)

] c+r∑

i=1

(
N + εi

N

)
. (140)

Now, by mimicking the construction of the matrix H in (131), employing the notation in Sub-
section 7.2, for every integer ν = 0 · · ·N, let us denote by Hν the (c + r) × (N + 1) matrix whose
i-th row copies the (N + 1) terms of Fi in (105). Also, for every integer τ = 0 · · ·N − 1, for every
index ρ = τ + 1 · · ·N, let us denote by Hτ,ρ the (c + r) × (N + 1) matrix whose i-th row copies the
(N + 1) terms of Fi in (107).

Lemma 8.16. In P©
K, there exists a proper algebraic subset:

Σ $ P©
K

such that, for every choice of parameter outside Σ:
[
A••,M

•
•
] ∈ P©

K \ Σ,

on the corresponding intersection:

X = H1 ∩ · · · ∩ Hc+r ⊂ PN
K,

all the matrices Hν,Hτ,ρ have full rank c:

rankK Hν(z) = c + r, rankK Hτ,ρ(z) = c + r (∀ [z]∈X).

We can copy the proof of Lemma 8.15 without much modification and thus everything works
smoothly. Alternatively, we may present a short proof by applying Lemma 8.15.

Proof. Observation 1. We need only prove this lemma separately for each matrix Hν (resp. Hτ,ρ),
i.e. to show that there exists a proper algebraic subset:

Σν (resp. Στ,ρ) $ P©
K

outside of which every choice of parameter succeeds. Then the union of all these proper algebraic
subsets works:

Σ := ∪N
ν=0 Σν ∪ ∪τ=0···N−1

ρ=τ+1···N
Στ,ρ $ P©

K.

Observation 2. For each matrix Hν (resp. Hτ,ρ), inspired by the beginning arguments in the proof
of Lemma 8.15, especially (133), we only need to find one parameter:

[
A••,M

•
•
] ∈ P©

K \ Σ

with the desired property.
Observation 3. Now, setting all the moving coefficients zero:

M•
• := 0,
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thanks to (103), (106), the equations (105) become exactly the equations (130), and therefore all
the matrices Hν become the same matrix H of Lemma 8.15 (with e = c + r). Similarly, so do all the
matrices Hτ,ρ.

Observation 4. Now, a direct application of Lemma 8.15 clearly yields more than one parameter,
an infinity! �

Once again, by mimicking the construction of the matrix H in Lemma 8.15, employing the
notation in subsection 7.3, let us denote by v1,...,vηH

ν (resp. v1,...,vηH
τ,ρ) the c × (N + 1) matrix whose

i-th row copies the (N + 1) terms of Fi in (120) (resp. (121)).

Lemma 8.17. In P©
K, there exists a proper algebraic subset:

v1,...,vηΣ $ P
©
K

such that, for every choice of parameter outside v1,...,vηΣ:
[
A••,M

•
•
] ∈ P©

K \ v1,...,vηΣ

on the corresponding intersection:

X = H1 ∩ · · · ∩ Hc+r ⊂ PN
K,

all the matrices v1,...,vηH
ν and v1,...,vηH

τ,ρ have full rank c + r:

rankK v1,...,vηH
ν(z) = c + r, rankK v1,...,vηH

τ,ρ(z) = c + r (∀ [z] ∈ X). �

The proof goes exactly the same way as in the preceding lemma.

9. Controlling the base locus

9.1. Characterization of the base locus. Now, we are in a position to characterize the base locus
of all the obtained global twisted symmetric differential n-forms in (110), (111):

BS := Base Locus of {φνj1,..., jn , ψτ,ρj1,..., jn
}ν,τ,ρ16 j1<···< jn6c ⊂ P

(
TV

∣∣∣
X

)
, (141)

where P
(
TV

∣∣∣
X

) ⊂ P(TPN
K
) is given by:

P
(
TV

∣∣∣
X

)
:=

{
([z], [ξ]) : Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0,∀ i = 1 · · · c + r,∀ j = 1 · · · c

}

To begin with, for every ν = 0 · · ·N, let us study the specific base locus:

BSν := Base Locus of {φνj1,..., jn}16 j1<···< jn6c ⊂ P(TV

∣∣∣
X

)

associated with only the twisted symmetric differential forms obtained in (110).
For each sequence of ascending indices:

1 6 j1 < · · · < jn 6 c,

by mimicking the construction of the matrices K, K̂ j1,..., jn; j at the end of Subsection 6.3, in accor-
dance with the first kind of manipulation (105), we construct the (c + r + c) × (N + 1) matrix Kν in
the obvious way, i.e. by copying terms, differentials, and then we define the analogous K̂ν

j1,..., jn; j.
First, let us look at points

(
[z], [ξ]

) ∈ BSν having all coordinates nonvanishing:

z0 · · · zN , 0. (142)
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For each symmetric horizontal differential n-form φ̂νj1,..., jn which corresponds to φνj1,..., jn in the sense
of Propositions 6.10, 6.9, for every j = 0 · · ·N, we receive:

0 = φ̂νj1,..., jn; j (z, ξ) [since ([z], [ξ]) ∈ BSν]

[use (79)] =
(−1) j

z?0 · · · z?N︸    ︷︷    ︸
, 0

det
(
K̂ν

j1,..., jn; j
)

(z, ξ),

where all integers ? are of no importance here. Indeed, we can drop the nonzero factor (−1) j

z?0 ···z?N
and

obtain:
det

(
K̂ν

j1,..., jn; j︸   ︷︷   ︸
N×N matrix

)
(z, ξ) = 0.

In other words:
rankK K̂ν

j1,..., jn; j (z, ξ) 6 N − 1.
Now, letting the index j run from 0 to N, we receive:

rankK Kν
j1,..., jn (z, ξ)︸        ︷︷        ︸

N×(N+1) matrix

6 N − 1, (143)

where Kν
j1,..., jn

is defined analogously to the matrix Cν
j1,..., jn

before Proposition 6.8 in the obvious
way.

Note that the first c + r rows of Kν
j1,..., jn

constitute the matrix Hν in Lemma 8.16, which asserts
that for a generic choice of parameter:

rankK Hν(z) = c + r.

Now, in (143), letting 1 6 j1 < · · · < jn 6 c vary, and applying Lemma 8.5, we immediately
receive:

rankK Kν (z, ξ) 6 N − 1.
Conversely, it is direct to see that any point

(
[z], [ξ]

) ∈ XP(TV) satisfying this rank inequality lies
in the base locus BSν.

Note that a point
(
[z], [ξ]

) ∈ P(TPN ) lies in P
(
TV

∣∣∣
X

)
if and only if the sum of all columns of

Kν (z, ξ) vanishes. Summarizing the above analysis, restricting to the coordinates nonvanishing
part of P(TPN

K
):

P
◦

(TPN
K
) := P(TPN

K
) ∩ {z0 · · · zN , 0},

we conclude the following generic characterization of:

BSν ∩ P◦ (TPN
K
),

where the exceptional locus Σ just below is defined in Lemma 8.16.

Proposition 9.1. For every choice of parameter outside Σ:
[
A••,M

•
•
] ∈ P©

K \ Σ

a point: (
[z], [ξ]

) ∈ P◦ (TPN
K
)

lies in the base locus: (
[z], [ξ]

) ∈ BSν
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if and only if:
rankK Kν (z, ξ) 6 N − 1, and the sum of all columns vanishes. �

Now, for every integer τ = 0 · · ·N − 1 and for every index ρ = τ + 1 · · ·N, the base locus:

BSτ,ρ := Base Locus of {ψτ,ρj1,..., jn
}16 j1<···< jn6c ⊂ P(TV

∣∣∣
X

)

associated with the twisted symmetric differential forms obtained in (111) enjoys the following
generic characterization on the coordinates nonvanishing set {z0 · · · zN , 0}. Of course, the matrix
Kτ,ρ is defined analogously to the matrix Kν in the obvious way. A repetition of the preceding
arguments yields:

Proposition 9.2. For every choice of parameter outside Σ:
[
A••,M

•
•
] ∈ P©

K \ Σ

a point:
(
[z], [ξ]

) ∈ P◦ (TPN
K
)

lies in the base locus: (
[z], [ξ]

) ∈ BSτ,ρ

if and only if:

rankK Kτ,ρ (z, ξ) 6 N − 1, and the sum of all columns vanishes. �

It is now time to clarify the (uniform) structures of the matrices Kν, Kτ,ρ.
Thanks to the above two Propositions 9.1, 9.2, we may now receive a generic characterization

of:
BS ∩ P◦ (TPN ).

Firstly, we construct the (c + r + c) × (2N + 2) matrix M such that, for i = 1 · · · c + r, j = 1 · · · c,
its i-row copies the (2N + 2) terms of Fi in (102) in the exact order, and its (c + r + j)-th row is the
differential of the j-th row. In order to distinguish the first (N + 1) ‘dominant’ columns from the
last (N + 1) columns of moving coefficient terms, we write M as:

M =
(
A0 | · · · | AN | B0 | · · · | BN

)
.

For every index ν = 0 · · ·N, comparing (105), (106) with (102), the matrix Kν is nothing but:

Kν =
(
A0 | · · · | Âν | · · · | AN | Aν +

N∑

j=0

B j

)
. (144)

Similarly, for every integer τ = 0 · · ·N − 1 and for every index ρ = τ + 1 · · ·N, comparing (107),
(108) with (102), the matrix Kτ,ρ is nothing but:

Kτ,ρ =
(
A0 + B0 | · · · | Aτ + Bτ | Aτ+1 | · · · | Âρ | · · · | AN | Aρ +

N∑

j=τ+1

B j

)
. (145)

Secondly, we introduce the algebraic subvariety:

M N
2c+r ⊂ Mat(2c+r)×2(N+1)(K) (146)

consisting of all (c + r + c) × 2(N + 1) matrices (α0 | α1 | · · · | αN | β0 | β1 | · · · | βN) such that:
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(i) the sum of these (2N + 2) colums is zero:

α0 + α1 + · · · + αN + β0 + β1 + · · · + βN = 0; (147)

(ii) for every index ν = 0 · · ·N, replacing αν with αν + (β0 + β1 + · · · + βN) in the collection of
column vectors {α0, α1, . . . , αN}, there holds the rank inequality:

rankK
{
α0, . . . , α̂ν, . . . , αN , αν + (β0 + β1 + · · · + βN)

}
6 N − 1; (148)

(iii) for every integer τ = 0 · · ·N−1, for every index ρ = τ+1 · · ·N, replacing αρ with αρ+(βτ+1+

· · ·+βN) in the collection of column vectors {α0+β0, . . . , ατ+βτ, ατ+1, . . . , αρ, . . . , αN}, there
holds the rank inequality:

rankK
{
α0 + β0, α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αN , αρ + (βτ+1 + · · · + βN)

}
6 N − 1.

(149)

Proposition 9.3. For every choice of parameter outside Σ:
[
A••,M

•
•
] ∈ P©

K \ Σ

a point: (
[z], [ξ]

) ∈ P◦ (TPN )
lies in the base locus: (

[z], [ξ]
) ∈ BS

if and only if:
M (z, ξ) ∈M N

2c+r. �

Furthermore, for all integers 1 6 η 6 n − 1, for every sequence of ascending indices:

0 6 v1 < · · · < vη 6 N,

we also have to analyze the base locus of the twisted symmetric differential forms (122), (123):

v1,...,vηBS := Base Locus of {v1,...,vηφ
ν
j1,..., jn−η , v1,...,vηψ

τ,ρ
j1,..., jn−η}

ν,τ,ρ
16 j1<···< jn−η6c (150)

in the intersection of the η hyperplanes:

v1,...,vηP(TPN ) := P(TPN ) ∩ {zv1 = · · · = zvη = 0},
and more specifically, we focus on the ‘interior part’:

v1,...,vηP
◦

(TPN ) := v1,...,vηP(TPN ) ∩ {zr0 · · · zrN−η , 0} [see (80) for the indices r0, . . . , rN−η].

Firstly, we construct the (c + r + c)× (2N + 2− 2η) matrix v1,...,vηM, which will play the same role
as the matrix M, whose i-row (i = 1 · · · c + r) copies the (2N + 2 − 2η) terms of (114) in the exact
order, and whose (c + r + j)-th row ( j = 1 · · · c) is the differential of the j-th row.

Secondly, in correspondence with M N
2c+r, by replacing plainly N with N − η, we introduce the

algebraic variety:
M N−η

2c+r ⊂ Mat(2c+r)×2(N−η+1)(K). (151)
Thirdly, let us recall the exceptional subvatiety:

v1,...,vηΣ $ P
©
K

defined in Proposition 8.17.
By performing the same reasoning as in the preceding proposition, we get:
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Proposition 9.4. For every choice of parameter outside v1,...,vηΣ:
[
A••,M

•
•
] ∈ P©

K \ v1,...,vηΣ

a point:
(
[z], [ξ]

) ∈ v1,...,vηP
◦

(TPN )
lies in the base locus (150): (

[z], [ξ]
) ∈ v1,...,vηBS

if and only if:

v1,...,vηM (z, ξ) ∈ M N−η
2c+r . �

9.2. Emptiness of the base loci. First, for the algebraic varieties (146), (151), we claim the fol-
lowing codimension estimates, which serve as the engine of the moving coefficients method. How-
ever, we will not present it here but in the next section.

Lemma 9.5 (Core Lemma of MCM). (i) For every positive integers N > 1, for every integers
c, r > 0 with 2c + r > N, there holds the codimension estimate:

codim M N
2c+r > dimP

◦
(TPN ) = 2N − 1.

(ii) For every positive integer η = 1 · · ·N − (c + r) − 1, for every sequence of ascending indices:

0 6 v1 < · · · < vη 6 N,

there holds the codimension estimate:

codim M N−η
2c+r > dim v1,...,vηP

◦
(TPN ) = 2N − η − 1. �

Now, let us show the power of this Core Lemma.
Bearing Proposition 9.3 in mind, by mimicking the proof of Proposition 8.15, it is natural to

introduce the subvariety:

MN
2c+r ↪→ P©

K × P
◦

(TPN ),
which is defined ‘in family’ by:

MN
2c+r :=

{(
[A••,M

•
•]; [z], [ξ]

) ∈ P©
K×P

◦
(TPN ) : M(z, ξ) ∈M N

2c+r

}
.

Proposition 9.6. There holds the dimension estimate:

dim MN
2c+r 6 dimP©

K.

Proof. Let π1, π2 be the two canonical projections:

P©
K × P

◦
(TPN )

π1

zz

π2

%%

P©
K P

◦
(TPN ).

By mimicking Step 2 in Lemma 8.15, for every point ([z], [ξ]) ∈ P◦ (TPN ), we claim the fibre dimen-
sion estimate:

dim π−1
2 ([z], [ξ]) ∩ MN

2c+r = dimP©
K − codim M N

2c+r (152)
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Proof. Noting that:

π−1
2 ([z], [ξ]) ∩ MN

2c+r = π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)
︸                         ︷︷                         ︸
by Theorem 8.14 is an algebraic set

× {
([z], [ξ])

}
︸     ︷︷     ︸
one point set

,

and considering the canonical projection:

π̂ : K© \ {0} −→ P©
K,

we receive:

dim π−1
2 ([z], [ξ]) ∩ MN

2c+r = dim π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)

[use Lemma 8.12] = dim π̂−1
(
π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)) ∪ {0} − 1.
(153)

Now, notice that the set:

K© ⊃ π̂−1
(
π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)) ∪ {0}
=

{(
A••,M

•
•
) ∈ K© : M(z, ξ) ∈M N

2c+r

}

is nothing but the inverse image of:

M N
2c+r ⊂ Mat(2c+r)×2(N+1)(K)

under the K-linear map:
Mz, ξ : K© −→ Mat(2c+r)×2(N+1)(K)

(
A••,M

•
•
) 7−→ M(z, ξ),

which is surjective by the construction of M — see (102), (103), and by applying Lemma 8.11 —
since z0 , 0, . . . , zN , 0 and ξ < K · z.

Therefore, we have the codimension identity:

codim π̂−1
(
π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)) ∪ {0} = codim M N
2c+r [Mz, ξ is linear and surjective], (154)

and thereby we receive:

dim π−1
2 ([z], [ξ]) ∩ MN

2c+r = dim π̂−1
(
π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)) ∪ {0} − 1 [use (153)]

[by definition of codimension] = dimK© − codim π̂−1
(
π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)) ∪ {0} − 1

[why?] = dimP©
K − codim π̂−1

(
π1

(
π−1

2 ([z], [ξ]) ∩ MN
2c+r

)) ∪ {0}
[use (154)] = dimP©

K − codim M N
2c+r,

which is exactly our claimed fibre dimension identity. �

Lastly, by applying the Fibre Dimension Estimate 8.2, we receive:

dim MN
2c+r 6 dimP

◦
(TPN ) + dimP©

K − codim M N
2c+r [use (152)]

[use Core Lemma 9.5] 6 dimP
◦

(TPN ) + dimP©
K − dimP

◦
(TPN )

= dimP©
K,

which is our claimed dimension estimate. �
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Now, restricting the canonical projection π1 to MN
2c+r:

π1 : MN
2c+r −→ P©

K,

according to the dimension inequality just obtained, we gain:

Proposition 9.7. There exists a proper algebraic subset Σ′ $ P©
K such that, for every choice of

parameter outside Σ′:
P =

[
A••,M

•
•
] ∈ P©

K \ Σ′,
the intersection of the fibre π−1

1 (P) with MN
2c+r is discrete or empty:

dim π−1
1 (P) ∩ MN

2c+r 6 0. �

Combining Propositions 9.3 and 9.7, we receive:

Proposition 9.8. Outside the proper algebraic subset:

Σ ∪ Σ′ $ P©
K,

for every choice of parameter: [
A••,M

•
•
] ∈ P©

K \ (Σ ∪ Σ′),
the base locus in the coordinates nonvanishing set:

BS ∩ {z0 · · · zN , 0}
is discrete or empty. �

Moreover, bearing in mind Proposition 9.4, by repeating the same reasoning as in the preceding
proposition, consider the subvariety:

v1,...,vηM
N−η
2c+r ↪→ P©

K × v1,...,vηP
◦

(TPN )

which is defined ‘in family’ by:

v1,...,vηM
N
2c+r :=

{(
[A••, B

•
•]; [z], [ξ]

) ∈ P©
K × v1,...,vηP

◦
(TPN ) : v1,...,vηM(z, ξ) ∈M N−η

2c+r

}
,

and hence receive a very analog of Proposition 9.6.

Proposition 9.9. There holds the dimension estimate:

dim v1,...,vηM
N−η
2c+r 6 dimP©

K. �

Again, restricting the canonical projection π1 to v1,...,vηM
N−η
2c+r:

π1 : v1,...,vηM
N−η
2c+r −→ P©

K,

according to the dimension inequality above, we receive:

Proposition 9.10. There exists a proper algebraic subset v1,...,vηΣ
′ $ P©

K such that, for every choice
of parameter outside v1,...,vηΣ

′:

P =
[
A••,M

•
•
] ∈ P©

K \ v1,...,vηΣ
′,

the intersection of the fibre π−1
1 (P) with MN−η

2c+r is discrete or empty:

dim π−1
1 (P) ∩ MN−η

2c+r 6 0. �

Combining now Propositions 9.4 and 9.10, we receive:
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Proposition 9.11. Outside the proper algebraic subset:

v1,...,vηΣ ∪ v1,...,vηΣ
′ $ P©

K

for every choice of parameter:
[
A••,M

•
•
] ∈ P©

K \ (v1,...,vηΣ ∪ v1,...,vηΣ
′),

the base locus in the corresponding ‘coordinates nonvanishing’ set:

v1,...,vηBS ∩ {zr0 · · · zrN−η , 0}
is discrete or empty. �

10. The Engine of MCM

10.1. Core Codimension Formulas. Our motivation of this section is to prove the Core Lemma 9.5,
which will succeed in Subsection 10.6.

As an essential step, by induction on positive integers p > 2 and 0 6 ` 6 p, we first estimate the
codimension `Cp of the algebraic variety:

`Xp ⊂ Matp×2p(K) (155)

which consists of p × 2p matrices Xp = (α1, . . . , αp, β1, . . . , βp) such that:

(i) the first p column vectors have rank:

rankK
{
α1, . . . , αp

}
6 `; (156)

(ii) for every index ν = 1 · · · p, replacing αν with αν+ (β1 + · · ·+βp) in the collection of column
vectors {α1, . . . , αp}, there holds the rank inequality:

rankK
{
α1, . . . , α̂ν, . . . , αp, αν + (β1 + · · · + βp)

}
6 p − 1; (157)

(iii) for every integer τ = 1 · · · p−1, for every index ρ = τ+1 · · · p, replacing αρ with αρ+(βτ+1+

· · ·+βp) in the collection of column vectors {α1 +β1, . . . , ατ+βτ, ατ+1, . . . , αρ, . . . , αp}, there
holds the rank inequality:

rankK
{
α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αp, αρ + (βτ+1 + · · · + βp)

}
6 p − 1. (158)

Let us start with the easy case ` = 0.

Proposition 10.1. For every integer p > 2, the codimension value `Cp for ` = 0 is:

0Cp = p2 + 1. (159)

Proof. Now, (i) is equivalent to:
α1 = · · · = αp = 0︸                ︷︷                ︸

codim = p2

.

Thus (ii) holds trivially, and the only nontrivial inequality in (iii) is:

rankK
{
0 + β1, . . . , 0 + βp

}
6 p − 1︸                                      ︷︷                                      ︸

codim = 1 by Lemma 8.8

,

which contributes one more codimension. �

For the general case ` = 1 · · · p, we will use Gaussian eliminations and do inductions on p, `.
First, let us count the codimension of the exceptional locus of Gaussian eliminations.
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Proposition 10.2. For every integer p > 2, the codimensions `C0
p of the algebraic varieties:

{α1 + β1 = 0} ∩ `Xp ⊂ Matp×2p(K)

read according to the values of ` as:

`C0
p =


p + 2 (`= p−1, p),

p + (p − `)2 (`= 0 ··· p−2).

The following lemma is the key ingredient for the proof.

Lemma 10.3. In a field K, let W be a K-vector space. Let p > 1 be a positive integer. For any
(p + 1) vectors:

α1, . . . , αp, β ∈ W,
the rank restriction:

rankK {α1, . . . , α̂ν, . . . , αp, αν + β} 6 p − 1 (ν= 1 ··· p), (160)

is equivalent to either:
rankK {α1, . . . , αp, β} 6 p − 1,

or:
rankK {α1, . . . , αp} = p, (α1 + · · · + αp) + β = 0.

Proof. Since ‘⇐=’ is clear, we only prove the direction ‘=⇒’.
We divide the proof according to the rank of {α1, . . . , αp} into two cases.
Case 1: rankK {α1, . . . , αp} 6 p − 1. Assume on the contrary that:

rankK {α1, . . . , αp, β} > p. (161)

Since we have the elementary estimate:
rankK {α1, . . . , αp, β} 6 rankK {α1, . . . , αp} + rankK {β}

6 (p − 1) + 1
= p,

(162)

the inequalities ‘>’ or ‘6’ in (161) and (162) are exactly equalities ‘=’, and thus we have:

β < SpanK {α1, . . . , αp}, (163)

rankK {α1, . . . , αp} = p − 1.
Consequently, it is clear that we can find a certain index ν ∈ {1, . . . , p} such that:

rankK {α1, . . . , α̂ν, . . . , αp} = p − 1,

whence the above rank inequality (160) implies:

αν + β ∈ SpanK {α1, . . . , α̂ν, . . . , αp}, (164)

which contradicts the formula (163).
Case 2: rankK {α1, . . . , αp} = p. Here, inequalities (160) also yield (164) for every ν, whence:

β + (α1 + · · · + αp) ∈ SpanK {α1, . . . , α̂ν, . . . , αp}.
Now, letting ν run from 1 to p, and noting that:

∩p
ν=1 SpanK {α1, . . . , α̂ν, . . . , αp} = {0},

we immediately conclude the proof. �
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Proof of Proposition 10.2. For every matrix Xp = (α1, . . . , αp, β1, . . . , βp) such that:

α1 + β1 = 0︸        ︷︷        ︸
codim = p

, (165)

the conditions (158) in (iii) is trivial, and the restriction (157), thanks to the lemma just obtained,
is equivalent either to:

rankK {α1, . . . , αp, β1 + · · · + βp} 6 p − 1, (166)
or to:

rankK {α1, . . . , αp} = p, β1 + · · · + βp = − (α1 + · · · + αp). (167)
Now, since α1 + β1 = 0, adding the first column vector of (166) to the last one, we get:

rankK {α1, . . . , αp, β2 + · · · + βp} 6 p − 1︸                                               ︷︷                                               ︸
codim = 2 by Lemma 8.8

,

and similarly, (167) is equivalent to:

rankK {α1, . . . , αp} = p, (α2 + · · · + αp) + (β2 + · · · + βp) = 0︸                                           ︷︷                                           ︸
codim = p

.

Therefore, when ` = p − 1 or ` = p, we obtain the codimension formulas:

p−1C0
p = p + 2,

pC0
p = min {p + 2, p + p} = p + 2.

When ` = 0 · · · p − 2, the restriction (ii) is a consequence of (i):
rankK

{
α1, . . . , α̂ν, . . . , αp, αν + (β1 + · · · + βp)

}

6 rankK
{
α1, . . . , α̂ν, . . . , αp

}
+ rankK

{
αν + (β1 + · · · + βp)

}

6 rankK
{
α1, . . . , αp

}
+ 1

6 ` + 1
6 p − 1.

Lastly, applying Lemma 8.8, restriction (i) contributes codimension (p − `)2. Together with (165),
this finishes the proof. �

Now, we claim the following Codimension Induction Formulas, the proof of which will appear
in Subsection 10.5. In order to make sense of `−2Cp−1 in (170) when ` = 1, we henceforth make a
convention:

−1Cp−1 := ∞.
Proposition 10.4 (Codimension Induction Formulas). (i) For every positive integer p > 2, for
` = p, the codimension value pCp satisfies:

pCp = min
{
p, p−1Cp

}
. (168)

(ii) For every positive integer p > 3, for ` = p − 1, the codimension value `Cp satisfies:

p−1Cp > min
{

p−1C0
p, p−1Cp−1 + 2, p−2Cp−1 + 1, p−3Cp−1

}
. (169)

(iii) For all integers ` = 1 · · · p − 2, the codimension values `Cp satisfy:

`Cp > min
{
`C0

p, `Cp−1 + 2(p − `) − 1, `−1Cp−1 + (p − `), `−2Cp−1
}
. (170)
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In fact, all the above inequalities ‘>’ should be exactly equalities ‘=’. Nevertheless, ‘>’ are
already adequate for our purpose.

Now, let us establish the initial data for the induction process.

Proposition 10.5. For the initial case p = 2, there hold the codimension values:

0C2 = 5, 1C2 = 3, 2C2 = 2.

Proof. Recalling formulas (159) and (168), we only need to prove 1C2 = 3.
For every matrix:

(α1, α2, β1, β2) ∈ 1X2 \ 0X2,

we have:

rankK
{
α1, α2

}
= 1, (171)

rankK
{
α1 + (β1 + β2), α2

}
6 1, (172)

rankK
{
α1, α2 + (β1 + β2)

}
6 1, (173)

rankK
{
α1 + β1, α2 + β2

}
6 1. (174)

Either α1 or α2 is nonzero. Firstly, assume α1 , 0. Then (171) yields:

α2 ∈ K · α1, (175)

and (173) yields:
α2 + (β1 + β2) ∈ K · α1,

whence by subtracting we receive:

β1 + β2 ∈ K · α1. (176)

Next, adding the second column vector of (174) to the first one, we see:

rankK
{
α1 + α2 + (β1 + β2), α2 + β2

}
6 1. (177)

By (175) and (176):
α1 + α2 + (β1 + β2) ∈ K · α1,

therefore (177) yields two possible situations, the first one is:

α1 + α2 + β1 + β2 = 0, (178)

and the second one is α1 + α2 + β1 + β2 , 0 plus:

α2 + β2 ∈ K · α1.

Recalling (175), the latter case immediately yields:

β2 ∈ K · α1,

and then (176) implies:
β1 ∈ K · α1,

thus:
rankK

{
α1, α2, β1, β2

}
= 1. (179)

Summarizing, the set: (
1X2 \ 0X2

) ∩ {α1 , 0}
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is contained in the union of two algebraic varieties, the first one is defined by (175), (176), (178),
and the second one is defined by (179). Since both of the two varieties are of codimension 3, we
get:

codim
(

1X2 \ 0X2
) ∩ {α1 , 0} > 3.

Secondly, by symmetry, we also have:

codim
(

1X2 \ 0X2
) ∩ {α2 , 0} > 3.

Hence the union of the above two sets satisfies:

codim 1X2 \ 0X2 > 3.

Now, recalling (159):
codim 0X2 = 5 > 3,

we immediately receive:
codim 1X2 > 3.

Finally, noting that 1X2 contains the subvariety:
{
rank {α1, α2, β1, β2} 6 1

}
︸                          ︷︷                          ︸

codim = 3 by Lemma 8.8

⊂ Mat2×4(K),

it follows:
codim 1X2 6 3.

In conclusion, the above two estimates squeeze out the desired codimension identity. �

Admitting temporally Proposition 10.4, it is now time to deduce the crucial

Proposition 10.6 (Core Codimension Formulas). For all integers p > 2, there hold the codimen-
sion estimates:

`Cp > ` + (p − `)2 + 1 (`= 0 ··· p−1) , (180)

and the codimension identity:
pCp = p. (180′)

Proof. The case p = 2 is already done by the previous proposition.
Reasoning by induction, assume the formulas (180) and (180′) hold for some integer p − 1 > 2,

and prove them for the integer p.
Firstly, formula (159) yields the case ` = 0.
Secondly, for the case ` = p − 1, thanks to Proposition 10.2 and to the induction hypothesis,

formula (169) immediately yields:

p−1Cp > min
{

p−1C0
p, p−1Cp−1 + 2, p−2Cp−1 + 1, p−3Cp−1

}

> min
{
p + 2, (p − 1) + 2, (p − 2) + 12 + 1 + 1, (p − 3) + 22 + 1

}

= p + 1

= (p − 1) + 12 + 1.

(181)

Similarly, for ` = 1 · · · p − 2, recalling formula (170):

`Cp > min
{
`C0

p, `Cp−1 + 2(p − `) − 1, `−1Cp−1 + (p − `), `−2Cp−1
}
,
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and computing:

`C0
p = p + (p − `)2

= ` + (p − `)2 + (p − `)︸ ︷︷ ︸
> 2

,

`Cp−1 + 2(p − `) − 1 >
[
` + (p − 1 − `)2 + 1

]
+ 2(p − `) − 1

= ` + (p − `)2 − 2(p − `) + 1 + 1 + 2(p − `) − 1

= ` + (p − `)2 + 1︸             ︷︷             ︸
the desired lower bound!

,

`−1Cp−1 + (p − `) > [
(` − 1) + (p − `)2 + 1

]
+ (p − `)

= ` + (p − `)2 + (p − `)︸ ︷︷ ︸
> 2

,

`−2Cp−1 > (` − 2) + (p − ` + 1)2 + 1

= (` − 2) +
[
(p − `)2 + 2(p − `) + 1

]
+ 1

= ` + (p − `)2 + 2(p − `)︸   ︷︷   ︸
> 4

,

we distinguish the desired lower bound without difficulty.
Lastly, the formula (168) and (181) immediately yield (180′):

pCp = p,

which concludes the proof. �

Remark 10.7. In fact, the above estimates “>” in (180) are exactly identities “=”. By the same
reasoning, in Section 12, we will generalize the Core Codimension Formulas to cases of less
number of moving coefficients terms, and thus receive better lower bounds on the hypersurfaces
degrees.

10.2. Gaussian eliminations. Following the notation in (155), we denote by:

Xp = (α1, . . . , αp, β1, . . . , βp)

the coordinate columns of Matp×2p(K), where each of the first p columns explicitly writes as:

αi = (α1,i, . . . , αp,i)T,

and where each of the last p columns explicitly writes as:

βi = (β1,i, . . . , βp,i)T.

First, observing the structures of the matrices in (157), (158):

X0,ν
p :=

(
α1 | · · · | α̂ν | · · · | αp | αν + (β1 + · · · + βp)

)
,

Xτ,ρ
p :=

(
α1 + β1 | · · · | ατ + βτ | ατ+1 | · · · | α̂ρ | · · · | αp | αρ + (βτ+1 + · · · + βp)

)
,

where, slightly differently, the second underlined columns are understood to appear in the first
underlined removed places, we realize that they have the uniform shapes:

X0,ν
p = Xp I0,νp ,

Xτ,ρ
p = Xp Iτ,ρp ,

(182)
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where the 2p × p matrices I0,νp explicitly read as:



p︷        ︸︸        ︷ 


p

1

1

1 
p

1

ν-th column

the upper p × p submatrix being the identity, the lower p × p submatrix being zero except its ν-th
column being a column of 1, and where lastly, the 2p × p matrices Iτ,ρp explicitly read as:

1

1

1

1
1

1
1

1



p︷                        ︸︸                        ︷ 



p


τ


p−τ

ρ-th columnτ-th column

the upper p× p submatrix being the identity, the lower p× p submatrix being zero except τ copies
of 1 in the beginning diagonal and p − τ copies of 1 at the end of the ρ-th column.

Observation 10.8. For all p > 3, τ = 1 · · · p − 1, ρ = τ + 1 · · · p, the matrices Iτ,ρp transform to
Iτ−1,ρ−1
p−1 after deleting the first column and the rows 1, p + 1. �

Next, observe that all matrices Xτ,ρ have the same first column:

α1 + β1 = ( α1,1 + β1,1 | · · · | αp,1 + βp,1)T.
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Therefore, when α1,1 + β1,1 , 0, operating Gaussian eliminations by means of the matrix:

G :=



1
−α2,1+β2,1

α1,1+β1,1
1

...
. . .

−αp,1+βp,1

α1,1+β1,1
1


, (183)

these matrices Xτ,ρ become simpler:

G Xτ,ρ
p =



α1,1 + β1,1 • · · · •
0 ? · · · ?
...

...
. . .

...
0 ? · · · ?


, (184)

where the lower-right (p − 1) × (p − 1) star submatrices enjoy amazing structural properties. At
first, we need an:

Observation 10.9. Let p > 1 be a positive integer, let A be a p × 2p matrix, let B be a 2p × p
matrix such that both its 1-st, (p + 1)-th rows are (1, 0, . . . , 0︸  ︷︷  ︸

zeros

). Then there holds:

(A B)′ = A′′ B′′′,

where (A B)′ means the (p − 1) × (p − 1) matrix obtained by deleting the first row and column of
A B, and where A′′ means the (p − 1) × 2(p − 1) matrix obtained by deleting the first row and the
columns 1, p + 1 of A, and where B′′′ means the 2(p − 1) × (p − 1) matrix obtained by deleting the
first column and the rows 1, p + 1 of B. �

Now, noting that:
G Xτ,ρ

p = G
(
Xp Iτ,ρp

)
=

(
G Xp

)
Iτ,ρp ,

thanks to the above two observations, the (p − 1) × (p − 1) star submatrices enjoy the forms:


? · · · ?
...

. . .
...

? · · · ?

 = XG
p Iτ−1,ρ−1

p−1 , (185)

where XG
p is the (p−1)×2(p−1) matrix obtained by deleting the first row and the columns 1, p + 1

of G Xp.
Comparing (185) and (182), we immediately see that the star submatrices have the same struc-

tures as X0,ν
p ,X

τ,ρ
p , which is the cornerstone of our induction approach.

10.3. Study the morphism of left-multiplying by G. Let us denote by:

D(α1,1 + β1,1) ⊂ Matp×2p(K)

the Zariski open set where α1,1 + β1,1 , 0. Now, consider the regular map of left-multiplying by
the function matrix G:

LG : D(α1,1 + β1,1) −→ D(α1,1 + β1,1)
Xp 7−→ G Xp.

Of course, it is not surjective, as (184) shows that its image lies in the variety:

∩p
i=2 {αi,1 + βi,1 = 0}.
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In order to compensate this loss of surjectivity, combing with the regular map:

e : D(α1,1 + β1,1) −→ Mat(p−1)×1(K)

Xp 7−→ (α2,1 + β2,1 | · · · | αp,1 + βp,1)T,

we construct a regular map:

LG ⊕ e : D(α1,1 + β1,1) −→
(
∩p
`=2 {αi,1 + βi,1 = 0} ∩ D(α1,1 + β1,1)

)
⊕ Mat(p−1)×1(K)

︸                                                                       ︷︷                                                                       ︸
=:z

,

which turns out to be an isomorphism. In fact, it has the inverse morphism:
(
∩p
`=2 {αi,1 + βi,1 = 0} ∩ D(α1,1 + β1,1)

)
⊕ Mat(p−1)×1(K)

︸                                                                       ︷︷                                                                       ︸
=z

−→ D(α1,1 + β1,1)

Y ⊕ (s2, . . . , sp)T 7−→ −1G · Y,

where the matrix −1G is the “inverse” of the regular function matrix G in (183):


1
s2

α1,1+β1,1
1

...
. . .

sp

α1,1+β1,1
1


. (186)

Now, let us denote by:

πp : Matp×2p(K) −→ Mat(p−1)×2(p−1)(K)

the projection map obtained by deleting the first row and the columns 1, p + 1. Let us denote also:

LG := πp ◦ LG.

It is worth to mention that there is a natural isomorphism:

R : z
∼−−→ D(α1,1 + β1,1),

Y ⊕ (s2, . . . , sp)T 7−→ ?

where ? is Y but replacing (b2,1, . . . , bp,1)T by (s2, . . . , sp)T, and thus we obtain a commutative
diagram:

D(α1,1 + β1,1)
LG ⊕e //

LG ))

z

πp ⊕ 0
��

R // D(α1,1 + β1,1)

πpuu
Mat(p−1)×2(p−1)(K),

(187)

where the horizontal maps are isomorphisms, and where the right vertical map is surjective with
fibre:

ker πp︸︷︷︸
K-linear space

∩ D(α1,1 + β1,1).

Recalling the end of Subsection 10.2, we in fact received the following key observation.
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Observation 10.10. For every positive integer p > 3, for every integer ` = 0 · · · p − 1, the image
of the variety:

`Xp ∩ D(α1,1 + β1,1) ⊂ D(α1,1 + β1,1)
under the map:

LG : D(α1,1 + β1,1) −→ Mat(p−1)×2(p−1)(K)
is contained in the variety:

`Xp−1 ⊂ Mat(p−1)×2(p−1)(K). �

10.4. A technical lemma. Now, we carry out one preliminary lemma for the final proof of Propo-
sition 10.4.

For all positive integers p > 3, for every integer ` = 0 · · · p − 1, for every fixed (p − 1) × (p − 1)
matrix J of rank `, denote the space which consists of all the p × p matrices of the form:



z1,1 z1,2 · · · z1,p

z2,1
... J

zp,1



by JS p,` � K2p−1. For every integer j = `, `+ 1, denote by JS j
p,` ⊂ JS p,` the subvariety that consists

of all the matrices having rank 6 j.

Lemma 10.11. The codimensions of JS j
p,` are:

codim JS j
p,` =


2(p − 1 − `) + 1 ( j = `),

p − 1 − ` ( j = `+1).

Proof. Step 1. We claim that the codimensions of JS j
p,` are independent of the matrix J.

Indeed, choose two invertible (p − 1) × (p − 1) matrices L and R, which normalize the matrix J
by multiplications on both sides:

L J R =



0
. . .

0
1

. . .

1



=: J0,

where all the entries of J0 are zeros except the last ` copies of 1 in the diagonal. Therefore, we
obtain an isomorphism:

LR : JS p,`
∼−−→ J0S p,`

S 7−→
(
1

L

)
S

(
1

R

)

whose inverse is:
L−1R−1 : J0S p,`

∼−−→ JS p,`

S 7−→
(
1

L−1

)
S

(
1

R−1

)
.
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Since the map LR preserves the rank of matrices, it induces an isomorphism between JS j
p,` and

J0S
j
p,`, which concludes the claim.

Step 2. For J0, doing elementary row and column operations, we get:

rankK



z1,1 z1,2 · · · z1,p

z2,1
... J0

zp,1



= rankK



z1,1 z1,2 · · · z1,p−` z1,p−`+1 · · · z1,p

z2,1

0 0...
zp−`,1

zp−`+1,1

0
1

...
. . .

zp,1 1



= rankK



z1,1 −∑p
k=p−`+1 zk,1 z1,k z1,2 · · · z1,p−` 0 · · · 0

z2,1

0 0...
zp−`,1

0
0

1
...

. . .

0 1



= rankK



z1,1 −∑p
k=p−`+1 zk,1 z1,k z1,2 · · · z1,p−`

z2,1

0...
zp−`,1


+ `.

Step 3. In the K-Euclidian space K2N−1 with coordinates (z1,1, z1,2, . . . , z1,N , z2,1, . . . , zN,1), the
algebraic subvariety defined by the rank inequality:

rankK



z1,1 −∑p
k=p−`+1 zk,1 z1,k z1,2 · · · z1,p−`

z2,1

0...
zp−`,1


6 0 (resp. 6 1)

has codimension 2(p − 1 − `) + 1 (resp. p − 1 − `). �

10.5. Proof of Proposition 10.4. Recalling the definition (155), and applying Lemma 10.3, we
receive:

Corollary 10.12. For every integers p > 1, the difference of the varieties:

pXp \ p−1Xp ⊂ Matp×2p(K)
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is exactly the quasi-variety:
{
α1 + · · · + αp + β1 + · · · + βp = 0

}
︸                                       ︷︷                                       ︸

codim = p

∩
{

rankK {α1, . . . , αp} = p︸                       ︷︷                       ︸
⇔ det (α1 |···|α2), 0

}
,

whose codimension is p.

Proof. For every p × 2p matrix:

pXp \ p−1Xp 3 Xp = (α1, . . . , αp, β1, . . . , βp),

applying now Lemma 10.3 to condition (157):

rankK
{
α1, . . . , α̂ν, . . . , αp, αν + (β1 + · · · + βp)︸           ︷︷           ︸

=: β

}
6 p − 1 (ν= 1 ··· p),

since:
rankK

{
α1, . . . , αp

}
= p,

we immediately receive:
α1 + · · · + αp + β1 + · · · + βp = 0.

On the other hand, for all matrices:

Xp = (α1, . . . , αp, β1, . . . , βp)

satisfying the above identity, (ii) holds immediately. Noting that the p × p matrix in (158) has a
vanishing sum of all its columns, it has rank 6 p − 1, i.e. (iii) holds too. �

Now, we give a complete proof of the Codimension Induction Formulas.

Proof of (168). This is a direct consequence of the above corollary. �

Proof of (169). By Observation 10.10, under the map:

LG : D(α1,1 + β1,1) −→ Mat(p−1)×2(p−1)(K),

the image of the variety:
p−1Xp ∩ D(α1,1 + β1,1)

is contained in the variety:
p−1Xp−1 ⊂ Mat(p−1)×2(p−1)(K).

Now, let us decompose the variety p−1Xp−1 into three pieces:

p−1Xp−1 = p−3Xp−1 ∪ (
p−2Xp−1 \ p−3Xp−1

) ∪ (
p−1Xp−1 \ p−2Xp−1

)
, (188)

where each matrix (α1, . . . , αp−1, β1, . . . , βp−1) in the first1 (resp. second2, third3) piece satisfies:

rankK (α1, . . . , αp−1)6 p − 3
1

(resp. = p − 2
2
, = p − 1

3
). (189)

Pulling back (188) by the map LG, we see that:

p−1Xp ∩ D(α1,1 + β1,1)

is contained in:

L −1
G (p−3Xp−1) ∪ L −1

G
(

p−2Xp−1 \ p−3Xp−1
) ∪ L −1

G
(

p−1Xp−1 \ p−2Xp−1
)
. (190)

Firstly, for every point in the first piece:

Y ∈ p−3Xp−1,
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thanks to the commutative diagram (187), we receive the fibre dimension:

dim L −1
G (Y) = dim ker πp ∩ D(α1,1 + β1,1)

= dim Matp×2p(K) − dim Mat(p−1)×2(p−1)(K).

Now, applying Corollary 8.3 to the regular map L restricted on:

L −1
G (p−3Xp−1) ⊂ Matp×2p(K)

we receive the codimension estimate:

codim L −1
G (p−3Xp−1) > codim p−3Xp−1︸          ︷︷          ︸

p−3Cp−1

. (191)

Secondly, for every point in the second piece:

Y ∈ p−2Xp−1 \ p−3Xp−1,

to look at the fibre of L −1
G (Y), thanks to the commutative diagram (187), we can use:

L −1
G =

(
R ◦ (LG ⊕ e)︸          ︷︷          ︸

an isomorphism

)−1 ◦ π−1
p , (192)

and obtain:
L −1

G (Y) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

)

�R ◦ (LG ⊕ e) L −1
G (Y) ∩ R ◦ (LG ⊕ e)

(
p−1Xp ∩ D(α1,1 + β1,1)

)

� π−1
p (Y) ∩ R ◦ (LG ⊕ e)

(
p−1Xp ∩ D(α1,1 + β1,1)

)
︸                                                           ︷︷                                                           ︸

=:♣

[use (192)].

Observe now that every matrix:

(α1 | · · · | αp | β1 | · · · | βp) ∈ ♣
satisfies the rank estimate:

rankK
(
α1 | · · · | αp

)
6 p − 1.

Moreover, noting that the lower-right (p − 1) × (p − 1) submatrix J of
(
α1 | · · · | αp

)
— which is

the left (p − 1) × (p − 1) submatrix of Y — has rank:

rankK J = p − 2 [see (189)],

by applying Lemma 10.11, we get that:

♣ ⊂ π−1
p (Y)

has codimension greater or equal to:

codim JS p−1
p,p−2 = p − 1 − (p − 2) = 1.

In other words:
L −1

G (Y) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

) ⊂ L −1
G (Y)

has codimension > 1. Thus, applying Corollary 8.3 to the map LG restricted on:

L −1
G

(
p−2Xp−1 \ p−3Xp−1

) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

)
︸                                                                  ︷︷                                                                  ︸

=: II

⊂ Matp×2p(K),
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we receive the codimension estimate:
codim II > codim

(
p−2Xp−1 \ p−3Xp−1

)
+ 1

> codim p−2Xp−1 + 1︸                 ︷︷                 ︸
p−2Cp−1 + 1

. (193)

Thirdly, for every point in the third piece:

Y ∈ p−1Xp−1 \ p−2Xp−1,

thanks to the diagram (187):

L −1
G = (LG ⊕ e︸  ︷︷  ︸

�

)−1 ◦ (πp ⊕ 0)−1, (194)

we receive:

L −1
G (Y) ∩ (

p−1Xp ∩ D(α1,1 + β1,1)
)

� (LG ⊕ e) L −1
G (Y) ∩ (LG ⊕ e)

(
p−1Xp ∩ D(α1,1 + β1,1)

)

� (πp ⊕ 0)−1(Y) ∩ (LG ⊕ e)
(

p−1Xp ∩ D(α1,1 + β1,1)
)

︸                                                              ︷︷                                                              ︸
=: ♠

[use (194)].

Recalling Corollary 10.12, the sum of all columns of Y — the bottom (p − 1) rows of (α2 | · · · |
αp | β2 | · · · | βp) — is zero. Thus, every element:

(α1 | · · · | αp | β1 | · · · | βp) ⊕ (s2, . . . , sp)T ∈ ♠
not only satisfies:

rankK (α1 | · · · | αp) 6 p − 1, (195)

but also satisfies:

α2 + · · · + αp + β2 + · · · + βp = (α1,2 + · · · + α1,p + β1,2 + · · · + β1,p︸                                      ︷︷                                      ︸
only this first entry could be nonzero

, 0 , . . . , 0︸   ︷︷   ︸
(p−1) copies

)T.

Remembering that:
α1 + β1 = (α1,1 + β1,1, 0 , . . . , 0︸   ︷︷   ︸

(p−1) copies

)T,

summing the above two identities immediately yields:

α1 + · · · + αp + β1 + · · · + βp = α1,1 + · · · + α1,p + β1,1 + · · · + β1,p, 0 , . . . , 0︸   ︷︷   ︸
(p−1) copies

)T. (196)

Now, note that (157) (‘matrices ranks’) in condition (ii) are preserved under the map LG (‘Gaussian
eliminations’), in particular, for ν = 1, the image satisfies:

rankK
{
α1 + (β1 + · · · + βp), α2, . . . , αp

}
6 p − 1,

which, by adding the column vectors 2 · · · p to the first one, is equivalent to:

rankK
{
α1 + · · · + αp + β1 + · · · + βp, α2 . . . , αp

}
6 p − 1.

Remember (196), and recalling Corollary 10.12:

the bottom (p − 1) × (p − 1) submatrix of (α2 | · · · | αp) is of full rank (p − 1), (197)
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we immediately receive:
α1,1 + · · · + α1,p + β1,1 + · · · + β1,p = 0︸                                            ︷︷                                            ︸

codim = 1

.

Therefore, by applying Lemma 10.11, the restrictions (195) and (197) contribute one extra codi-
mension:

codim JS p−1
p,p−1 = 1.

Thus, we see that ‘the fibre in fibre’:

(πp ⊕ 0)−1(Y) ∩ ♠ ⊂ (πp ⊕ 0)−1(Y)

has codimension greater or equal to:
1 + 1 = 2.

Now, applying once again Corollary 8.3 to the map LG restricted on:

L −1
G

(
p−1Xp−1 \ p−2Xp−1

) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

)
︸                                                                  ︷︷                                                                  ︸

=: III

⊂ Matp×2p(K),

we receive the codimension estimate:

codim III > codim
(

p−1Xp−1 \ p−2Xp−1
)

+ 2
> codim p−1Xp−1 + 2︸                 ︷︷                 ︸

p−1Cp−1 + 2

. (198)

Summarizing (190), (191), (193), (198), we receive the codimension estimate:

codim p−1Xp ∩ D(α1,1 + β1,1) > min
{
codim p−3Xp−1, codim p−2Xp−1 + 1, codim p−1Xp−1 + 2

}
.

By permuting the indices, we know that all:

p−1Xp ∩ D(αi,1 + βi,1) ⊂ Matp×2p(K) (i = 1 ··· p)

have the same codimension, and so does their union:

p−1Xp ∩ D(α1 + β1) = ∪p
i=1

(
p−1Xp ∩ D(αi,1 + βi,1)

) ⊂ Matp×2p(K).

Finally, taking codimension on both sides of:

p−1Xp =
(

p−1Xp ∩ V(α1 + β1)
) ∪ (

p−1Xp ∩ D(α1 + β1)
)
,

Proposition 10.2 and the preceding estimate conclude the proof. �

Proof of (170). If ` > 2, decompose the variety `Xp−1 into three pieces:

`Xp−1 = `−2Xp−1 ∪ (
`−1Xp−1 \ `−2Xp−1

) ∪ (
`Xp−1 \ `−1Xp−1

)
;

and if ` = 1, decompose the variety `Xp−1 into two pieces:

`Xp−1 = `−1Xp−1 ∪ (
`Xp−1 \ `−1Xp−1

)
.

Now, by mimicking the preceding proof, namely by applying Lemma 10.11 and Corollary 8.3,
everything goes on smoothly with much less effort, because there is no need to perform delicate
codimension estimates such as (198). �
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10.6. Proof of Core Lemma 9.5. If N = 1, there is nothing to prove. Assume now N > 2.
Comparing (146) and (155), it is natural to introduce the projection:

π2c+r,N : Mat(2c+r)×2(N+1)(K) −→ MatN×2N(K)
(
α0, . . . , αp, β0, . . . , βp

) 7−→ (
α̂1, . . . , α̂p, β̂1, . . . , β̂p

)
,

where each widehat vector is obtained by extracting the first N rows (entries) out of the original
2c + r rows (entries).

Now, for every point:

(α0, . . . , αp, β0, . . . , βp) ∈ M N
2c+r ⊂ Mat(2c+r)×2(N+1)(K),

in restriction (148), by setting ν = 0, we receive:

rankK
{
α1, . . . , αN , α0 + (β0 + β1 + · · · + βN)

}
6 N − 1.

Dropping the last column and extracting the first N rows, we get:

rankK
{
α̂1, . . . , α̂N

}
6 N − 1.

Similarly, in restriction (149), by dropping the first column and extracting the first N rows, for all
τ = 0 · · ·N − 1 and ρ = τ + 1 · · ·N, we obtain:

rankK
{
α̂1 + β̂1, . . . , α̂τ + β̂τ, α̂τ+1, . . . α̂ρ . . . , α̂N , α̂ρ + (̂βτ+1 + · · · + β̂N)

}
6 N − 1,

where we omit the column vector α̂ρ in the box. Summarizing the above two inequalities, (α̂1, . . . , α̂p, β̂1, . . . , β̂p)
satisfies the restriction (156) – (158):

π2c+r,N (α0, . . . , αp, β0, . . . , βp)︸                                ︷︷                                ︸
= (α̂1,...,̂αp ,̂β1,...,̂βp)

∈ N−1XN ⊂ MatN×2N(K).

Therefore:

π2c+r,N (M N
2c+r) ⊂ N−1XN .

Moreover, for every point Y ∈ N−1XN , the ‘fibre in fibre’:

π−1
2c+r,N(Y) ∩ M N

2c+r ⊂ π−1
2c+r,N(Y),

thanks to (147), has codimension > 2c + r. Thus a direct application of Corollary 8.3 yields:

codim M N
2c+r > codim N−1XN + 2c + r

[use (180)] > N + 1 + 2c + r.

Repeating the same reasoning, we obtain:

codim M N−η
2c+r > codim N−η−1XN−η + 2c + r

[use (180)] > N − η + 1 + 2c + r.

Remembering 2c + r > N, we conclude the proof. �
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10.7. ‘Macaulay2’, ‘Maple’ et al. vs. the Core Lemma. Believe it or not, concerning the Core
Lemma or the Core Codimension Formulas, ‘Macaulay2’ – a professional software system devoted
to supporting research in algebraic geometry and commutative algebra – is not strong enough to
compute the precise codimensions of the involved determinantal ideals, even in small dimensions
p > 4. And unfortunately, so do other mathematical softwares, like ‘Maple’...

This might indicate some weaknesses of current computers. Since the Core Lemma or a variation
of it should be a crucial step in the constructions of ample examples, the dream of finding explicit
examples with rational coefficients, firstly in small dimensional cases, could be kind of a challenge
for a moment.

11. A rough estimate of lower degree bound

11.1. Effective results. Recalling Subsection 5.3, we first provide an effective

Theorem 11.1. For all N > 3, for any ε1, . . . , εc+r ∈ {1, 2}, Theorem 5.2 holds for r = 1. and for
all d > NN2/2 − 1.

Proof. Setting δc+r+1 = 2 in (93), and demanding all (94) – (96) to be equalities, we thus receive
the desired estimate:

[see (97)] (N + 1) µN,N 6 NN2/2 − 1.

For the sake of completeness, we present all computational details in Subsection 11.2 below. �

Hence, the product coup in Subsection 5.3 yields

Theorem 11.2. In Theorem 5.1, for r = 1, the lower bound d0(−1) = NN2
works. �

11.2. Computational details. We specify (94) – (97) as follows. Recalling that δc+r+1 = 2 and
r = 1, for every integer l = c + r + 1 · · ·N, we choose:

µl,0 = l δl + 4 l + 1, (199)

and inductively we choose:

µl,k =

k−1∑

j=0

l µl, j + (l − k) δl + 4 l + 1 (k = 1 ··· l). (200)

Actually, we take the above values in purpose, because they also work in the degree estimates in
our coming paper.

For every integer l = c + r + 1 · · ·N, for every integer k = 0 · · · l, let:

S l,k :=
k∑

j=0

µl, j. (201)

For k = 1 · · · l, we have:

[see (200)] S l,k − S l,k−1︸       ︷︷       ︸
= µl,k

= l S l,k−1 + (l − k) δl + 4 l + 1.

Moving the term ‘−S l,k−1’ to the right hand side, we receive:

S l,k = (l + 1) S l,k−1 + (l − k) δl + 4 l + 1.
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Dividing by (l + 1)k on both sides, we receive:

S l,k

(l + 1)k =
S l,k−1

(l + 1)k−1 +
(
l δl + 4 l + 1

) 1
(l + 1)k − δl

k
(l + 1)k .

Noting that the two underlined terms have the same structure, doing induction backwards k · · · 1,
we receive:

S l,k

(l + 1)k =
S l,0

(l + 1)0 +
(
l δl + 4 l + 1

) k∑

j=1

1
(l + 1) j − δl

k∑

j=1

j
(l + 1) j .

Now, applying the following two elementary identities:
k∑

j=1

1
(l + 1) j =

1
l

(
1 − 1

(l + 1)k

)
,

k∑

j=1

j
(l + 1) j =

l + 1
l2

(
1 +

k
(l + 1)k+1 −

1 + k
(l + 1)k

)
,

and recalling (199):
S l,0 = µl,0 = l δl + 4 l + 1,

we obtain:
S l,k

(l + 1)k = l δl + 4 l + 1 +
(
l δl + 4 l + 1

) 1
l

(
1 − 1

(l + 1)k

)
− δl

l + 1
l2

(
1 +

k
(l + 1)k+1 −

1 + k
(l + 1)k

)
.

Next, multiplying by (l + 1)k on both sides, we get:

S l,k =
(
l δl + 4 l + 1

) (
(l + 1)k +

(l + 1)k

l
− 1

l

)
− δl

l2

(
(l + 1)k+1 + k − (1 + k) (l + 1)

)

=
(
l δl + 4 l + 1

) ((l + 1)k+1

l
− 1

l

)
− δl

l2

(
(l + 1)k+1 + k − (1 + k) (l + 1)

)
.

(202)

Recalling (96), we have:

δl+1 = l µl,l

[use (200) for k = l] = l
( l−1∑

j=0

l µl, j + 4 l + 1
)

[use (201) for k = l − 1] = l2 S l,l−1 + l (4 l + 1)

[use (202) for k = l − 1] =
(
l δl + 4 l + 1

) (
l (l + 1)l − l

)
− δl

(
(l + 1)l + l − 1 − l (l + 1)

)

+ l (4 l + 1)

= δl

(
l2 (l + 1)l − (l + 1)l + 1

)
︸                         ︷︷                         ︸

> 0

+ (4 l + 1) l (l + 1)l. (203)

Throwing away the first positive part, we receive the estimate:

δl+1 > (4 l + 1) l (l + 1)l. (204)
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Therefore, for all l > c + r + 2, we have the estimate of (203):

δl+1 = l2 (l + 1)l δl −
(
(l + 1)l − 1

)
δl + (4 l + 1) l (l + 1)l

[use (204)] < l2 (l + 1)l δl −
(
(l + 1)l − 1

) (
4 (l − 1) + 1

)
(l − 1) ll−1 + (4 l + 1) l (l + 1)l

= l2 (l + 1)l δl − 4
[(

(l + 1)l − 1
)

(l − 1)2 ll−1 − l2 (l + 1)l
]

1

−
[(

(l + 1)l − 1
)

(l − 1) ll−1 − l (l + 1)l
]

2
.

Since 2c + r > N > 1, c, r cannot be both zero, hence l > c + r + 2 > 3 above, thus we may realize
that the first underlined bracket is positive:

[(
(l + 1)l − 1

)
(l − 1)2 ll−1 − l2 (l + 1)l

]
= l2 (l + 1)l

[(
1 − 1

(l + 1)l

)
(l − 1)2 ll−3 − 1

]

> l2 (l + 1)l

[(
1 − 1

(3 + 1)3

)
(3 − 1)2 33−3 − 1

]

> 0,

and that the second underlined bracket is also positive:

[(
(l + 1)l − 1

)
(l − 1) ll−1 − l (l + 1)l

]
= l (l + 1)l

[(
1 − 1

(l + 1)l

)
(l − 1) ll−2 − 1

]

> l (l + 1)l

[(
1 − 1

(3 + 1)3

)
(3 − 1) 33−2 − 1

]

> 0.

Consequently, we have the neat estimate suitable for the induction:

δl+1 6 l2 (l + 1)l δl (l = c+r+2···N−1), (205)

which for convenience, we may assume to be satisfied for l = N by just defining δN+1 := NµN,N .
In fact, using these estimates iteratively, we may proceed as follows:

(N + 1) µN,N =
N + 1

N
N µN,N︸ ︷︷ ︸

= δN+1

=
N + 1

N
δN+1 (206)

[use (205)] <
N + 1

N
δc+r+2

N∏

l=c+r+2

l2 (l + 1)l.

Noting that (203) yields:

δc+r+2 =
[
δl

(
l2 (l + 1)l − (l + 1)l + 1

)
+ (4 l + 1) l (l + 1)l

] ∣∣∣∣∣
l=c+r+1

[recall δc+r+1 = 2] < 6 l2 (l + 1)l
∣∣∣∣∣
l=c+r+1

,
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thus the above two estimates yield:

(N + 1) µN,N <
N + 1

N
6

N∏

l=c+r+1

l2 (l + 1)l. (207)

For the convenience of later integration, we prefer the term (l + 1)l+1 to (l + 1)l, therefore we firstly
transform:

N∏

l=c+r+1

l2 (l + 1)l =

N∏

l=c+r+1

l
l + 1

l (l + 1)l+1

=

N∏

l=c+r+1

l
l + 1

N∏

l=c+r+1

l
N∏

l=c+r+1

(l + 1)l+1

=
c + r + 1

N + 1

N∏

l=c+r+1

l
N∏

l=c+r+1

(l + 1)l+1,

whence (207) becomes:

(N + 1) µN,N < 6
c + r + 1

N

N∏

l=c+r+1

l
N∏

l=c+r+1

(l + 1)l+1

[recall c + r 6 N − 1] 6 6
N∏

l=c+r+1

l
N∏

l=c+r+1

(l + 1)l+1.

(208)

Now, we estimate the dominant term:

N∏

l=c+r+1

l
N∏

l=c+r+1

(l + 1)l+1.

as follows.
Remembering 2c + r > N, we receive:

c + r > (2c + r)/2 > N/2,

and hence for N > 2 we obtain:

ln
N∏

l=c+r+1

l = ln N +

N−1∑

l=c+r+1

ln l

< ln N +

∫ N

c+r+1
ln x dx

6 ln N +

∫ N

N/2+1
ln x dx

= ln N + (x ln x − x)
∣∣∣∣∣
N

N/2+1
.
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Similarly, when N > 4, noting that N > N/2 + 2, we get the estimate:

ln
N∏

l=c+r+1

(l + 1)l+1 = (N + 1) ln (N + 1) + N ln N +

N−1∑

l=c+r+2

l ln l

6 (N + 1) ln (N + 1) + N ln N +

∫ N

N/2+2
x ln x dx

= (N + 1) ln (N + 1) + N ln N +
(1
2

x2 ln x − x2

4

)∣∣∣∣∣
N

N/2+2
.

Summing the above two estimates, for N > 4 we receive:

ln
N∏

l=c+r+1

l + ln
N∏

l=c+r+1

(l + 1)l+1

6 ln N + (x ln x − x)
∣∣∣∣∣
N

N/2+1
+ (N + 1) ln (N + 1) + N ln N +

(1
2

x2 ln x − x2

4

)∣∣∣∣∣
N

N/2+2

=
1
2

N2 ln N − 1
2

(N/2 + 2)2 ln (N/2 + 2) −
( 3
16

N2 − 2
)
− (N/2 + 1) ln (N/2 + 1) +

+ (N + 1) ln (N + 1) + (2N + 1) ln N (209)

=
3
8

N2 ln N − O (N2), as N → ∞. (210)

In order to have a neat lower bound, we would like to have:

(N + 1) µN,N 6 NN2/2 − 1. (211)

In fact, using the estimates (208), (209), when N > 48, we can show by hand that (211) holds
true. For N = 14 · · · 47, we can use a mathematical software ‘Maple’ to check the above estimate.
Finally, for N = 3 · · · 13, we ask ‘Maple’ to compute δN+1 explicitly, and thereby, thanks to (206),
we again prove the estimate (211).

12. Some Improvements of MCM

12.1. General core codimension formulas. In order to lower the degree bound d0 of MCM, we
will modify the hypersurface constructions. Of course, we would like to reduce the number of
moving coefficient terms, and this will be based on the General Core Lemma 12.6 below.

For every integers p > q > 2, for every integer 0 6 ` 6 q, we first estimate the codimension
`Cp,q of the algebraic variety:

`Xp,q ⊂ Matp×2q(K)
which consists of p × 2q matrices Xp,q = (α1, . . . , αq, β1, . . . , βq) such that:

(i) the first q column vectors have rank:

rankK
{
α1, . . . , αq

}
6 `;

(ii) for every index ν = 1 · · · q, replacing αν with αν + (β1 + · · ·+βq) in the collection of column
vectors {α1, . . . , αq}, there holds the rank inequality:

rankK
{
α1, . . . , α̂ν, . . . , αq, αν + (β1 + · · · + βq)

}
6 p − 1;

85



(iii) for every integer τ = 1 · · · q−1, for every index ρ = τ+1 · · · q, replacing αρ with αρ+(βτ+1+

· · ·+βq) in the collection of column vectors {α1 +β1, . . . , ατ+βτ, ατ+1, . . . , αρ, . . . , αq}, there
holds the rank inequality:

rankK
{
α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αq, αρ + (βτ+1 + · · · + βq)

}
6 q − 1.

Repeating the same reasoning as in Section 10, we may proceed as follows. Firstly, here is a
very analogue of Proposition 10.1:

Proposition 12.1. For every integers p > q > 2, the codimension value `Cp,q for ` = 0 is:

0Cp,q = p q + p − q + 1. �

Next, we obtain an analogue of Proposition 10.2:

Proposition 12.2. For every integers p > q > 2, the codimensions `C0
p,q of the algebraic varieties:

{α1 + β1 = 0} ∩ `Xp,q ⊂ Matp×2q(K)

read according to the values of ` as:

`C0
p,q =



p + min {2 (p − q + 1), p} (`= q),

p + 2(p − q + 1) (`= q−1),

p + (p − `) (q − `) (`= 0 ··· q−2).

The last two lines are easy to obtain, while the first line is a consequence of Lemma 10.3. �
Now, we deduce the analogue of Proposition 10.4:

Proposition 12.3 (General Codimension Induction Formulas). (i) For every positive integers
p > q > 2, for ` = q, the codimension value qCp,q satisfies:

qCp,q = min
{
p, q−1Cp,q

}
.

(ii) For every positive integers p > q > 3, for ` = q − 1, the codimension value `Cp,q satisfies:

q−1Cp,q > min
{
q−1C0

p,q, q−1Cp−1,q−1 + p − q + 2, q−2Cp−1,q−1 + 1, q−3Cp−1,q−1
}
.

(iii) For all positive integers p > q > 3, for all integers ` = 1 · · · q − 2, the codimension values
`Cp,q satisfy:

`Cp,q > min
{
`C0

p,q, `Cp−1,q−1 + (p − `) + (q − `) − 1, `−1Cp−1,q−1 + (q − `), `−2Cp−1,q−1
}
. �

Similar to Proposition 10.5, we have:

Proposition 12.4. For the initial cases p > q = 2, there hold the codimension values:

0Cp,2 = 3p − 1, 1Cp,2 = 2p − 1, 2Cp,2 = p. �

Finally, by the same induction proof as in Proposition 10.6, we get:

Proposition 12.5 (General Core Codimension Formulas). For all integers p > q > 2, there hold
the codimension estimates:

`Cp,q > (p − `) (q − `) + p − q + l + 1 (`= 0 ··· q−1) ,

and the core codimension identity:
qCp,q = p. �

Actually, we could prove that the above estimates are identities, yet it is not really necessary.
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12.2. General Core Lemma. Similar to (146), for every integer k = 1 · · ·N − 1, we introduce the
algebraic subvariety:

M N, k
2c+r ⊂ Mat(2c+r)×(N+1+k+1)(K)

consisting of all (c + r + c)× (N + 1 + k + 1) matrices (α0 | α1 | · · · | αN | β0 | β1 | · · · | βk) such that:

(i) the sum of these (N + 1 + k + 1) colums is zero:

α0 + α1 + · · · + αN + β0 + β1 + · · · + βk = 0; (212)

(ii) for every index ν = 0 · · · k, replacing αν with αν + (β0 + β1 + · · · + βk) in the collection of
column vectors {α0, α1, . . . , αN}, there holds the rank inequality:

rankK
{
α0, . . . , α̂ν, . . . , αN , αν + (β0 + β1 + · · · + βk)

}
6 N − 1;

(iii) for every integer τ = 0 · · · k−1, for every index ρ = τ+1 · · · k, replacing αρ with αρ+(βτ+1 +

· · ·+βk) in the collection of column vectors {α0 +β0, . . . , ατ+βτ, ατ+1, . . . , αρ, . . . , αN}, there
holds the rank inequality:

rankK
{
α0 + β0, α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αN , αρ + (βτ+1 + · · · + βk)

}
6 N − 1.

Lemma 12.6 (Sharp Core Lemma of MCM). For every positive integers N > 3, for every in-
tegers c, r > 0 with 2c + r > N, for every integer k = 1 · · ·N − 1, there holds the codimension
estimate:

codim M N, k
2c+r > k+1C2c+r−N+k+1,k+1 + (2c + r)
> 2 (2c + r) − N + k + 1.

The term (2c + r) comes from (212). When k = N − 1, there is nothing to prove. When
k < N − 1, noting that all matrices in (ii) and (iii) have the same last column αN , we may do
Gaussian eliminations with respect to this column, and then by much the same argument as before,
we receive the estimate. �

Actually, these two estimates are identities.

12.3. Minimum necessary number of moving coefficient terms. Firstly, letting:

codim M N, k
2c+r > dimP

◦
(TPN ) = 2N − 1,

we receive the lower bound:
k > 3N − 2 (2c + r) − 2,

which indicates that at the step N, the least number of moving coefficient terms, if necessary,
should be:

3N − 2 (2c + r) − 2 + 1.
When 3N − 2 (2c + r) − 2 6 0, no moving coefficient terms are needed, thanks to the following:

Lemma 12.7. (Elementary Core Lemma) Let:

M N,−1
2c+r ⊂ Mat(2c+r)×(N+1)(K)

consist of all (c + r + c) × (N + 1) matrices (α0 | α1 | · · · | αN) such that:

(i) the sum of these (N + 1) colums is zero:

α0 + α1 + · · · + αN = 0; (213)
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(ii) there holds the rank inequality:

rankK
{
α0, . . . , α̂ν, . . . , αN

}
6 N − 1 (ν= 0 ···N).

Then one has the codimension identity:

codim M N,−1
2c+r = 2(2c + r) − N + 1. �

Next, for η = 1 · · · n − 1, in the step N − η, letting:

codim M N−η, k
2c+r > dim v1,...,vηP

◦
(TPN ) = 2N − η − 1,

we receive:

2 (2c + r) − (N − η) + k + 1 > 2N − η − 1,

that is:

k > 3N − 2 (2c + r) − 2 − 2η,

which indicates that, at the step N − η, the least number of moving coefficient terms, if necessary,
should be:

3N − 2 (2c + r) − 2 − 2η + 1.

When 3N−2 (2c+r)−2−2η 6 0, no moving coefficient terms are needed, thanks to the Elementary
Core Lemma.

12.4. Improved Algorithm of MCM. When 3N−2 (2c+r)−2 > 0, in order to lower the degrees,
we improve the hypersurface equations (92) as follows.

Firstly, when 3N − 2 (2c + r)− 2 = 2p is even, the following hypersurface equations are suitable
for MCM:

Fi =

N∑

j=0

A j
i zd

j +

p−1∑

η=0

∑

06 j0<···< jN−η6N

2p−2η∑

k=0

M j0,..., jN−η; jk
i zµN−η,k

j0
· · · ẑµN−η,k

jk
· · · zµN−η,k

j2p−2η
zd−(2p−2η)µN−η,k−2(N+η−2p)

jk
z2

j2p−2η+1
· · · z2

jN−η .

(214)

Secondly, when 3N − 2 (2c + r) − 2 = 2p + 1 is odd, the following hypersurface equations are
suitable for MCM:

Fi =

N∑

j=0

A j
i zd

j +

p∑

η=0

∑

06 j0<···< jN−η6N

2p+1−2η∑

k=0

M j0,..., jN−η; jk
i zµN−η,k

j0
· · · ẑµN−η,k

jk
· · · zµN−η,k

j2p+1−2η
zd−(2p+1−2η)µN−η,k−2(N+η−2p−1)

jk
z2

j2p−2η+2
· · · z2

jN−η .

(215)
Of course, all integers µ•,• and the degree d are to be determined by some improved Algorithm,

so that all the obtained symmetric forms are negatively twisted. And then we may estimate the
lower bound d0 accordingly. We leave this standard process to the interested reader.
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12.5. Why is the lower degree bound d0 so large in MCM. Because we could not enter the
intrinsic difficulties, firstly of solving some huge linear systems to obtain sufficiently many (nega-
tively twisted, large degree) symmetric differential forms (see [7, Theorem 2.7]), and secondly of
proving that the obtained symmetric forms have discrete base locus. What we have done is only
focusing on the extrinsic negatively twisted symmetric forms with degrees 6 n, obtained by some
minors of the hypersurface equations

/
differentials matrix.

Our tool is coarse, based on some robust extrinsic geometric
/
algebraic structures, yet our goal

is delicate, to certify the conjectured intrinsic ampleness. So a large lower degree bound d0 � 1 is
a price we need to pay.

13. Uniform Very-Ampleness of SymκΩX

13.1. A reminder. In [34], Fujita proposed the famous:

Conjecture 13.1. (Fujita) Let M be an n-dimensional complex manifold with canonical line bun-
dle K . If L is any positive holomorphic line bundle on M, then:

(i) for every integer m > n + 1, the line bundle L ⊗m ⊗K should be globally generated;
(ii) for every integer m > n + 2, the line bundle L ⊗m ⊗K should be very ample.

Recall that, given a complex manifold X having ample cotangent bundle ΩX, the projectivized
tangent bundle P(TX) is equipped with the ample Serre line bundle OP(TX)(1). Denoting n := dim X,
one has:

dimP(TX) = 2n − 1.
Anticipating, we will show in Corollary 13.3 below that the canonical bundle of P(TX) is:

KP(TX) � OP(TX)(− n) ⊗ π∗KX
⊗ 2,

where π : P(TX) → X is the canonical projection. Thus, for the complex manifold P(TX) and the
ample Serre line bundle OP(TX)(1), the Fujita Conjecture implies:

(i) for every integer m > 2n, the line bundle OP(TX)(m − n) ⊗ π∗KX
⊗ 2 is globally generated;

(ii) for every integer m > 2n + 1, the line bundle OP(TX)(m − n) ⊗ π∗KX
⊗ 2 is very ample.

In other words, we receive the following by-products of the Fujita Conjecture.
A Consequence of the Fujita Conjecture. For any n-dimensional complex manifold X having
ample cotangent bundle ΩX, there holds:

(i) for every integer m > n, the twisted m-symmetric cotangent bundle SymmΩX ⊗ K ⊗ 2
X is

globally generated;
(ii) for every integer m > n + 1, the twisted m-symmetric cotangent bundle SymmΩX ⊗K ⊗ 2

X is
very ample.

13.2. The canonical bundle of a projectivized vector bundle. In this subsection, we recall some
classical results in algebraic geometry.

Let X be an n-dimensional complex manifold, and let E be a holomorphic vector bundle on X
having rank e. Let P(E) be the projectivization of E. Now, we compute its canonical bundle KP(E)

as follows.
Let π be the canonical projection:

π : P(E) −→ X.
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First, recall the exact sequence which defines the relative tangent bundle Tπ:

0 −→ Tπ −→ TP(E) −→ π∗ TX −→ 0, (216)

and recall also the well known Euler exact sequence:

0 −→ OP(E) −→ OP(E)(1) ⊗ π∗ E −→ Tπ −→ 0. (217)

Next, taking wedge products, the exact sequence (216) yields:

∧n+e−1 TP(E) � ∧e−1 Tπ ⊗ π∗ ∧n TX, (218)

and the Euler exact sequence (217) yields:

OP(E)(e) ⊗ π∗ ∧e E � OP(E) ⊗ ∧e−1 Tπ � ∧e−1 Tπ. (219)

Thus, we may compute the canonical line bundle as:

KP(E) = ∧n+e−1 Ω1
P(E)

�
( ∧n+e−1 TP(E)

)∨

[use the dual of (218)] �
( ∧e−1 Tπ

)∨ ⊗ (
π∗ ∧n TX

)∨

[use the dual of (219)] �
(
OP(E)(e)

)∨ ⊗ (
π∗ ∧e E

)∨ ⊗ (
π∗ ∧n TX

)∨

� OP(E)(− e) ⊗ π∗ ∧e E∨ ⊗ π∗ ∧n Ω1
X

� OP(E)(− e) ⊗ π∗ ∧e E∨ ⊗ π∗KX,

where KX is the canonical line bundle of X.

Proposition 13.2. The canonical line bundle KP(E) of P(E) satisfies the formula:

KP(E) � OP(E)(− e) ⊗ π∗ ∧e E∨ ⊗ π∗KX. �

In applications, first, we are interested in the case where E is the tangent bundle TX of X.

Corollary 13.3. One has the formula:

KP(TX) � OP(TX)(− n) ⊗ π∗KX
⊗ 2. �

More generally, we are interested in the case where X ⊂ V for some complex manifold V of
dimension n + r, and E = TV

∣∣∣
X
.

Corollary 13.4. One has:

KP(TV |X) � OP(TV |X)(− n − r) ⊗ π∗KV

∣∣∣
X
⊗ π∗KX . �

In our applications, X,V are some smooth complete intersections in PN
C , so their canonical line

bundles KX,KV have neat expressions by the following classical theorem, whose proof is based
on the Adjunction Formula.

Theorem 13.5. For a smooth complete intersection:

Y := D1 ∩ · · · ∩ Dk ⊂ PN
C

with divisor degrees:
deg Di = di (i = 1 ··· k),

the canonical line bundle KX of X is:

KX � OX

(
− N − 1 +

k∑

i=1

di

)
. �
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13.3. Proof of the Very-Ampleness Theorem 1.4. Assume for the moment that the ambient field
K = C. Recall that in our Ampleness Theorem 1.3, V = H1 ∩ · · · ∩ Hc and X = H1 ∩ · · · ∩ Hc+r

with dimC X = n = N − (c + r). Then the above Corollary 13.4 and Theorem 13.5 imply:

KP(TV |X) � OP(TV |X)(− n − r) ⊗ π∗2 OPN
K

(
− 2 (N + 1) +

c∑

i=1

di +

c+r∑

i=1

di

)
.

Also, recalling Theorem 5.1 and Proposition 4.4, for generic choices of H1, . . . ,Hc+r, for any
positive integers a > b > 1, the negatively twisted line bundle below is ample:

OP(TV |X)(a) ⊗ π∗2 OPN
K

(−b).

Recall the Fujita Conjecture that, by subsequent works of Demailly, Siu et al. (cf. the sur-
vey [21]), it is known that L ⊗m ⊗K ⊗ 2 is very ample for all large m > 2 +

(
3n+1

n

)
. Consequently,

the line bundle:

OP(TV |X)

(
m a − 2n − 2r

)
⊗ π∗2 OPN

K

(
− m b − 4 (N + 1) + 2

c∑

i=1

di + 2
c+r∑

i=1

di

)
(220)

is very ample.
Also note that, for similar reason as the ampleness of (24), for all large integers ` > `0(N):

OP(T
PN
K

)(1) ⊗ π∗0 OPN
K
(`)

is very ample. Consequently, so is:

OP(TV |X)(1) ⊗ π∗2 OPN
K

(`). (221)

Now, recall the following two facts:

(A) if OP(TV |X)(κ) ⊗ π∗2 OPN
K

(?) is very ample, then for every ?′ > ?, OP(TV |X)(κ) ⊗ π∗2 OPN
K

(?′)
is also very ample;

(B) the tensor product of any two very ample line bundles remains very ample.

Therefore, thanks to the very-ampleness of (220), (221), we can already obtain the very-ampleness
of OP(TV |X)(κ) for all large integers κ > κ0, for some non-effective κ0. In other words, the restricted
cotangent bundle Symκ ΩV

∣∣∣
X

is very ample on X for every κ > κ0. But to reach an explicit κ0, one
may ask the

Questions. (i) Find one explicit `0(N).

(ii) Find one explicit κ0.

Answer of (i). The value `0(N) = 3 works. One can check by hand that the following global
sections:

zk z`−1
j d

( zi

z j

)
(i, j, k = 0 ···N, i, j) (222)

guarantee the very-ampleness of OP(T
PN
K

)(1) ⊗ π∗0 OPN
K
(`).

Answer of (ii). The second fact (B) above leads us to consider the semigroup G of the usual
Abelian group Z ⊕ Z generated by elements (`1, `2) such that OP(TV |X)(`1) ⊗ π∗2 OPN

K
(`2) is very
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ample. Then, the following elements are contained in G , for all m > 2 +
(

3n+1
n

)
:

[see (220), ∀ b > 1, a > b + 1]
(
m a − 2n − 2r, −m b − 4 (N + 1) + 2

c∑

i=1

di + 2
c+r∑

i=1

di

)
,

[see (221), ` > `0(N) = 3] (1, `).

Also, the first fact (A) above says that if (`1, `2) ∈ G , then (`1, `3) ∈ G for all `3 > `2. Thus,
Question (ii) becomes to find one explicit κ0 such that (κ, 0) ∈ G for all κ > κ0.

Paying no attention to optimality, taking:

b = 1, a = 2, m = −4 (N + 1) + 2
c∑

i=1

di + 2
c+r∑

i=1

di + 3,

we receive that (m a − 2n − 2r,−3) ∈ G . Adding (1, 3) ∈ G , we receive (m a − 2n − 2r + 1, 0) ∈ G .
Now, also using (m a − 2n − 2r, 0) ∈ G , recalling Observation 5.4, we may take:

κ0 = (m a − 2n − 2r − 1) (m a − 2n − 2r) 6 a2 m2,

or the larger neater lower bound:

κ0 = 16
( c∑

i=1

di +

c+r∑

i=1

di

)2
.

Thus, we have proved the Very-Ampleness Theorem 1.4 for K = C. Remembering that very-
ampleness (or not) is preserved under any base change obtained by ambient field extension, and
noting the field extensions Q ↪→ C and Q ↪→ K for any field K with characteristic zero, by
some standard arguments in algebraic geometry, we conclude the proof of the Very-Ampleness
Theorem 1.4.

When K has positive characteristic, by the same arguments, we could also receive the same
very-ampleness theorem provided the similar results about the Fujita Conjecture hold over the
field K.
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[52] Păun, M.: Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Mathematische Annalen

340 (2008), 875–892.
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GENERALIZED BROTBEK’S
SYMMETRIC DIFFERENTIAL FORMS

AND APPLICATIONS

SONG-YAN XIE

Abstract. Over an algebraically closed fieldKwith any characteristic, on an N-dimensional smooth
projective K-variety P equipped with c > N/2 very ample line bundles L1, . . . ,Lc, we study the
General Debarre Ampleness Conjecture, which expects that for all large degrees d1, . . . , dc > d � 1,
for generic c hypersurfaces H1 ∈

∣∣∣L ⊗ d1
1

∣∣∣, . . . , Hc ∈
∣∣∣L ⊗ dc

c

∣∣∣, the complete intersection X := H1 ∩
· · · ∩ Hc has ample cotangent bundle ΩX .

First, we introduce a notion of formal matrices and a dividing device to produce negatively twisted
symmetric differential forms, which extend the previous constructions of Brotbek and the author.
Next, we adapt the moving coefficients method (MCM), and we establish that, if L1, . . . ,Lc are
almost proportional to each other, then the above conjecture holds true. Our method is effective: for
instance, in the simple case L1 = · · · = Lc, we provide an explicit lower degree bound d = NN2

.

1. Introduction

Smooth projective varieties having ample cotangent bundle suit well with the phenomenon/phil-
osophy that ‘geometry governs arithmetic’, in the sense that, on one hand, over the complex num-
ber field C, none of them contain any entire curve, on the other hand, over a number field K, each
of them is expected to possess only finitely many K-rational points (Lang’s conjecture). For in-
stance in the one-dimensional case, the first property is due to the Uniformization Theorem and
the Liouville’s Theorem, while the second assertion is the famous Mordell Conjecture

/
Faltings’s

Theorem.
For a long time, few such varieties were known, even though they were expected to be reasonably

abundant. In this aspect, Debarre conjectured in [4] that the intersection of c > N/2 generic
hypersurfaces of large degrees in PN

C should have ample cotangent bundle.
By introducing the moving coefficients method (MCM) and the product coup, the Debarre Am-

pleness Conjecture was first established in [5], with an additional effective lower degree bound.

Theorem 1.1 ([5]). The cotangent bundle ΩX of the complete intersection X := H1∩ · · ·∩Hc ⊂ PN
C

of c > N/2 generic hypersurfaces H1, . . . ,Hc with degrees d1, . . . , dc > NN2
is ample.

The proof there extends the approach of [2], by adding four major ingredients as follows.

(1) Generalizations of Brotbek’s symmetric differential forms [2, Lemma 4.5] by means of a
geometric approach, and also by a scheme-theoretic approach.

2010 Mathematics Subject Classification. 14M10.
Key words and phrases. Debarre Ampleness Conjecture, Cotangent bundle, Symmetric differential form, Mov-

ing Coefficients Method (MCM), Product coup, Almost proportional, Formal matrices.
This work was supported by the Fondation Mathématique Jacques Hadamard through the grant No ANR-10-

CAMP-0151-02 within the “Programme des Investissements d’Avenir”.
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(2) Make use of ‘hidden’ symmetric differential forms constructed over any intersection of
Fermat-type hypersurfaces with coordinate hyperplanes:

H1 ∩ · · · ∩ Hc︸           ︷︷           ︸
= X

∩ {zν1 = · · · = zνη = 0} (∀ η= 1 ···N−c−1; 06 ν1 < ···< νη 6N).

(3) ‘Flexible’ hypersurfaces designed by MCM, which produce many more negatively twisted
symmetric differential forms than pure Fermat-type ones.

(4) The product coup, which produces ample examples of all large degrees d1, . . . , dc.

Recently, Brotbek and Darondeau [3] provided another approach to the Debarre Ampleness Con-
jecture, by means of new constructions and deep theorems in algebraic geometry. As mentioned
in [3, p. 2], it is tempting to extend the Debarre Ampleness Conjecture from projective spaces to
projective varieties, equipped with several very ample line bundles.

General Debarre Ampleness Conjecture. For any smooth projective K-variety P of dimension
N > 1, for any positive integer c > N/2, for any very ample line bundles L1, . . . ,Lc over P, there
exists some lower bound:

d = d (P,L1, . . . ,Lc) � 1
such that, for all large degrees d1, . . . , dc > d, for c generic hypersurfaces:

H1 ∈
∣∣∣L ⊗ d1

1

∣∣∣, . . . ,Hc ∈
∣∣∣L ⊗ dc

c

∣∣∣,
the complete intersection X := H1 ∩ · · · ∩ Hc has ample cotangent bundle ΩX.

Sharing the same flavor as [5, p. 6, Conjecture 1.5], this general conjecture attracts our interest.
To this aim, we develop further our previous method in [5], and generalize several results.

We work over an algebraically closed field K with any characteristic. First of all, by adapting
the techniques in [5], we can confirm the General Debarre Ampleness Conjecture in the case
L1 = · · · = Lc = L .

Theorem 1.2. Let P be an N-dimensional smooth projectiveK-variety, equipped with a very ample
line bundle L . For any positive integer c > N/2, for all large degrees d1, . . . , dc > NN2

, for c
generic hypersurfaces H1 ∈

∣∣∣L ⊗ d1
1

∣∣∣, . . . ,Hc ∈
∣∣∣L ⊗ dc

c

∣∣∣, the complete intersection X := H1∩· · ·∩Hc

has ample cotangent bundle ΩX.

In fact, we will prove a stronger result, in the case that the c rays:

R+ · [L1], . . . , R+ · [Lc] ⊂ Ample Cone of P
have small pairwise angles. More rigorously, we introduce the

Definition 1.3. Let P be an N-dimensional projective K-variety, and let L , S be two ample
line bundles on P. Then S is said to be almost proportional to L , if there exist two elements
α ∈ R+ · [S ] and β ∈ R+ · [L ] such that β < α < (1 + ε0) β, i.e. both α − β, (1 + ε0) β − α lie in the
ample cone of P, where ε0 := 3/(NN2/2 − 1).

The value ε0 is due to the effective degree estimates of MCM, see Proposition 6.1.

Theorem 1.4. Let P be an N-dimensional smooth projectiveK-variety, equipped with a very ample
line bundle L . For any integers c, r > 0 with 2c + r > N, for any c + r ample line bundles
L1, . . . ,Lc+r which are almost proportional to L , there exists some integer:

d = d (L1, . . . ,Lc+r,L ) � 1
2



such that, for all large integers d1, . . . , dc, dc+1, . . . , dc+r > d, for generic c + r hypersurfaces:

H1 ∈
∣∣∣L ⊗ d1

1

∣∣∣, . . . ,Hc+r ∈
∣∣∣L ⊗ dc+r

c+r

∣∣∣,
the cotangent bundle ΩV of the intersection of the first c hypersurfaces V := H1∩· · ·∩Hc restricted
to the intersection of all the c + r hypersurfaces X := H1 ∩ · · · ∩ Hc ∩ Hc+1 ∩ · · · ∩ Hc+r is ample.

We will see that in our proof, the lower degree bound d = d(L1, . . . ,Lc+r,L ) is effective. In
particular, when r = 0 and all L1 = · · · = Lc = L coincide, we will obtain the effective degree
bound NN2

of Theorem 1.2. See Subsection 6.8 for the details.

This paper is organized as follows. In Section 2, we outline the general strategy for the Debarre
Ampleness Conjecture, which serves as a guiding principle of our approach. Next, in Section 3, we
introduce a notion of formal matrices, and use their determinants to produce symmetric differential
forms. Then, for the purpose of making negative twist, we devise a dividing trick in Section 4, and
thus generalize the aforementioned ingredient (1). Consequently, we are able to generalize (2)
in Section 5. Thus, by adapting the ingredients (3), (4) as well, we establish Theorem 1.4 in
Section 6, by means of the moving coefficients method developed in [5]. Lastly, we fulfill some
technical details in Section 7.

It is worth to mention that, by means of formal matrices, we can also construct higher order
jet differential forms. Therefore, we can also apply MCM to study the ampleness of certain jet
subbundle of hypersurfaces in PN

C , notably when N = 3. We will discuss this in our coming paper.

Acknowledgments. I would like to thank Damian Brotbek and Lionel Darondeau for inspiring
discussions. Also, I thank my thesis advisor Joël Merker for valuable suggestions and remarks.

2. General Strategy

It seems that, up to date, there has been only one strategy to settle the Debarre Ampleness Con-
jecture. To be precise, for fixed degrees d1, . . . , dc of hypersurfaces, the strategy is firstly to choose
a certain subfamily of c hypersurfaces, and then secondly to construct sufficiently many negatively
twisted symmetric differential forms over the corresponding subfamily of intersections, and lastly
to narrow their base locus up to discrete points over a generic intersection. Thus, there exists one
desirable ample example in this subfamily, which suffices to conclude the generic ampleness of the
whole family thanks to a theorem of Grothendieck.

Following this central idea, the first result [1] was obtained in the case c = N − 2 for complex
surfaces X = H1 ∩ · · · ∩ Hc ⊂ PN

C , by employing a method related to Kobayashi hyperbolicity
problems, in which the existence

/
quantity of negatively twisted symmetric differential forms was

guaranteed
/
measured by the holomorphic Morse inequality. Such an approach would fail in the

higher dimensional case, simply because one could not control the base locus of the implicitly
given symmetric forms.

To find an alternative approach, the key breakthrough happened when Brotbek constructed ex-
plicit negatively twisted symmetric differential forms [2, Lemma 4.5] by a cohomological ap-
proach, for the subfamily of pure Fermat-type hypersurfaces of the same degree d + ε defined
by:

Fi =

N∑

j=0

A j
i zd

j (i = 1··· c),

3



where d, ε > 1, and where all coefficients A j
i are some homogeneous polynomials with deg A j

i =

ε > 1. Then, in the case 4c > 3N − 2, Brotbek showed that over a generic intersection X, the
obtained symmetric forms have discrete base locus, and hence he established the conjectured am-
pleness.

However, when 4c < 3N − 2, this approach would not work, because the obtained symmetric
differential forms keep positive dimensional base locus, for instance in the limiting case 2c = N,
there is only one obtained symmetric form, whereas dimP(ΩX) = N − 1 � 1.

To overcome this difficulty, the author [5] introduced the moving coefficients method (MCM),
the cornerstone of which is a generalization of Brotbek’s symmetric differential forms for general
Fermat-type hypersurfaces defined by:

Fi =

N∑

j=0

A j
i zλ j

j (i = 1··· c), (1)

where λ0, . . . , λN > 1 and where all polynomial coefficients A j
i satisfy deg A j

i + λ j = deg Fi. Then,
by employing the other major ingredients (2), (3), (4) mentioned before, the Debarre Ampleness
Conjecture finally turned into Theorem 1.1.

Recently, Brotbek and Darondeau [3] discovered a new way to construct negatively twisted
symmetric differential forms for a certain subfamily of hypersurfaces, using pullbacks of some
Plücker-embedding like morphisms, and they successfully controlled the base loci by means of
deep theorems in algebraic geometry. Their approach together with the product coup gives another
proof of the Debarre Ampleness Conjecture. Also, it is expected to achieve an effective lower
bound on hypersurface degrees, which would ameliorate the preceding bound NN2

of Theorem 1.1.

3. Formal Matrices Produce Symmetric Differential Forms

Aiming at the General Debarre Ampleness Conjecture, and following the general strategy above,
we would like to first construct negatively twisted symmetric differential forms. Recalling the
determinantal structure of Brotbek’s symmetric differential forms [2, Lemma 4.5], in fact, we can
take any formal matrices for construction, regardless of negative twist at the moment.

Take an arbitrary scheme P. For any positive integers 1 6 n 6 e, for any e line bundles
S1, . . . ,Se over P, we construct an (e + n) × (e + n) formal matrix K such that, for p = 1 · · · e its
p-th row consists of global sections F1

p, . . . , F
e+n
p ∈ H0(P,Sp), and for q = 1 · · · n its (e + q)-th row

is the formal differential — to be defined — of the q-th row:

K :=



F1
1 · · · Fe+n

1
...

...
F1

e · · · Fe+n
e

dF1
1 · · · dFe+n

1
...

...
dF1

n · · · dFe+n
n



. (2)

We will see later that the determinant of K produces a twisted symmetric differential form on P.
First of all, we define the above formal differential entries dF j

i in a natural way.

Definition 3.1. Let S be a line bundle over P, with a global section S . For any Zariski open set
U ⊂ P with a trivialization S

∣∣∣
U

= OU · s (s ∈ H0(U, S ) is invertible), denote S/s for the unique
4



s̃ ∈ OP(U) such that S = s̃ · s. Also, define the formal differential d S in the local coordinate (U, s)
by:

dS (U, s) := d (S/s) · s ∈ H0(U, Ω1
P ⊗S ),

where ‘d’ stands for the usual differential.

Let us check that the above definition works well with the usual Leibniz’s rule. Indeed, let S1,
S2 be two line bundles over P, with any two global sections S 1, S 2 respectively. For any Zariski
open set U ⊂ P with trivializations S1

∣∣∣
U

= OU · s1 and S2

∣∣∣
U

= OU · s2, we may compute:

d(S 1 ⊗ S 2) (U, s1 ⊗ s2) = d (S 1/s1 · S 2/s2) · s1 ⊗ s2

= d (S 1/s1) · S 2/s2 · s1 ⊗ s2 + d (S 2/s2) · S 1/s1 · s1 ⊗ s2

[ identify S 1 ⊗ S 2 � S 2 ⊗ S 1 ] = d (S 1/s1) · s1 ⊗ S 2/s2 · s2 + d (S 2/s2) · s2 ⊗ S 1/s1 · s1

= dS 1 (U, s1) ⊗ S 2 + dS 2 (U, s2) ⊗ S 1.

Dropping the tensor symbol ‘⊗’ and coordinates (U, s1, s2), we abbreviate the above identity as:

d(S 1 · S 2) = dS 1 · S 2 + dS 2 · S 1.

Now, let us compute the determinant of (2) in local coordinates. For any Zariski open set U ⊂ P
with trivializations S1

∣∣∣
U

= OU · s1, . . . , Se

∣∣∣
U

= OU · se, writing f j
i := F j

i /si ∈ OP(U), we may
factor:

K (U, s1, . . . , se) :=



f 1
1 · s1 · · · f e+n

1 · s1
...

...
f 1
e · se · · · f e+n

e · se

d f 1
1 · s1 · · · d f e+n

1 · s1
...

...
d f 1

n · sn · · · d f e+n
n · sn



=



s1
. . .

se

s1
. . .

sn


︸                               ︷︷                               ︸

=: TU
s1 ,...,se

·



f 1
1 · · · f e+n

1
...

...
f 1
e · · · f e+n

e

d f 1
1 · · · d f e+n

1
...

...
d f 1

n · · · d f e+n
n


︸                    ︷︷                    ︸

=: (K)U
s1 ,...,se

. (3)

Denoting the last two matrices by TU
s1,...,se

, (K)U
s1,...,se

, we obtain:

det K (U, s1, . . . , se) = det TU
s1,...,se

· det (K)U
s1,...,se

= s1 · · · se s1 · · · sn · det
(
K
)U

s1,...,se
∈ H0

(
U, Symn Ω1

P ⊗S (♥)
)
,

(4)

where for shortness we denote:

S (♥) :=
( ⊗e

p=1 Sp
) ⊗ ( ⊗n

q=1 Sq
)
. (5)

Proposition 3.2. The local definition:

det K
∣∣∣
U

:= det K (U, s1, . . . , se) ∈ H0
(
U, Symn Ω1

P ⊗S (♥)
)

does not depend on the particular choices of invertible sections s1, . . . , se over U.

Proof. Assume that s′1, . . . , s
′
e are any other invertible sections of S1

∣∣∣
U
, . . . ,Se

∣∣∣
U

. Abbreviating the
p-th row of the formal matrix K by Fp, we may compute:

Fp/s′p = sp/s′p · Fp/sp (p = 1··· e),

[Leibniz’s rule] d
(
Fq/s′q

)
= d (sq/s′q) · Fq/sq + sq/s′q · d

(
Fq/sq

)
(q = 1··· n).
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Thus we receive the transition identity:
(
K
)U

s′1,...,s
′
e

= Ts1,...,se
s′1,...,s

′
e
· (K)U

s1,...,se
, (6)

where Ts1,...,se
s′1,...,s

′
e

is an (e+n)×(e+n) lower triangular matrix with the diagonal entries s1/s′1, . . . , se/s′e,
s1/s′1, . . . , sn/s′n in the exact order. Taking determinant on both sides of (6) thus yields:

det
(
K
)U

s′1,...,s
′
e

= det Ts1,...,se
s′1,...,s

′
e
· det

(
K
)U

s1,...,se

=
(

det TU
s′1,...,s

′
e

)−1

︸            ︷︷            ︸
= (s′1···s′e s′1···s′n)−1

· ( det TU
s1,...,se

)
︸         ︷︷         ︸

= s1···se s1···sn

· det
(
K
)U

s1,...,se

Multiplying by det TU
s′1,...,s

′
e

on both sides, we conclude the proof. �

Consequently, we receive

Proposition 3.3. The determinant of the formal matrix (2) is globally well defined:

det K ∈ H0
(
P, Symn Ω1

P ⊗S (♥)
)
. �

To grasp the essence of the above arguments, we provide another wholly formal

‘Smart Proof’. Suppose that we do not know the meaning of formal differential dF, for any global
section F of a line bundle S over P. Nevertheless, we still try to compute the determinant of the
formal matrix (2).

First of all, we would like to extract some useful information out of the ‘mysterious’ dF. A
priori, we may assume that the formal differential satisfies the Leibniz’s rule in a certain sense,
and also that when S = OP it coincides with the usual differential d. Thus, starting with any local
section z of S , we would have:

F = z · F/z,
dF = dz · F/z + z · d (F/z),

that is: (
F

dF

)
=

(
z 0
? z

) (
F/z

d
(
F/z

)
)
, (7)

where ? = dz is meaningless
/
negligible in our coming computations. Indeed, all we need is that

the above underlined 2 × 2 formal matrix is lower triangular, with meaningful diagonal.
Back to our formal proof, we abbreviate every row of K as F1, . . . , Fe,dF1, . . . ,dFn, and for

convenience we write:
K =

(
F1, . . . , Fe,dF1, . . . ,dFn

)T
.

Over any Zariski open set U ⊂ P with invertible sections z1, . . . , ze of S1, . . . ,Se respectively,
using identity (7), we can dehomogenize K with respect to z1, . . . , ze by:

K = Tz1,...,ze ·
(
F1/z1, . . . , Fe/ze, d

(
F1/z1

)
, . . . , d

(
Fn/zn

))T

︸                                                    ︷︷                                                    ︸
=: (K)z1 ,...,ze

, (8)

where Tz1,...,ze is a lower triangular (e+n)×(e+n) formal matrix with diagonal entries z1, . . . , ze, z1, . . . , zn

in the exact order. Now, it is desirable to notice that, on the right-hand-side of (8), the matrix
(K)z1,...,ze and the diagonal of the formal matrix Tz1,...,ze are well-defined, thus all the ‘mysterious

6



differentials’ of the matrix K appear only in the strict lower-left part of Tz1,...,ze , which would im-
mediately disappear after taking determinant on both sides of (8):

det K
∣∣∣
U

= det Tz1,...,ze · det
(
K
)

z1,...,ze

= z1 · · · ze z1 · · · zn · det
(
K
)

z1,...,ze
∈ H0

(
U, Symn Ω1

P ⊗S (♥)
)
.

Bien sûr, it is independent of the choices of z1, . . . , ze, since the left-hand-side — a formal
determinant — is. �

Remark 3.4. The formal differential d is much the same as the usual differential d, in the sense
that both of them can be defined locally, and both of them obey the Leibniz’s rule. These two facts
constitute the essence of Proposition 3.3.

Next, we consider e sections:

Fi =

e+n∑

j=0

F j
i ∈ H0 (P,Si) (i = 1··· e), (9)

each Fi being the sum of e + n + 1 global sections of the same line bundle Si. Let V be the
intersection of the zero loci of the first n sections:

V := {F1 = 0} ∩ · · · ∩ {Fn = 0} ⊂ P,

and let X be the intersection of the zero loci of all the e > n sections:

X := {F1 = 0} ∩ · · · ∩ {Fe = 0} ⊂ V ⊂ P.

Let K be the (e + n) × (e + n + 1) formal matrix whose e + n rows copy the e + n + 1 terms of
F1, . . . , Fe,dF1, . . . ,dFn in the exact order:

K :=



F0
1 · · · Fe+n

1
...

...
F0

e · · · Fe+n
e

dF0
1 · · · dFe+n

1
...

...
dF0

n · · · dFe+n
n



.

Also, for j = 0 · · · e+n, let K̂ j denote the submatrix of K obtained by omitting the ( j+1)-th column.
Since the restricted cotangent sheaf Ω1

V

∣∣∣
X

is formally defined by the e + n equations:

F1 = 0, . . . , Fe = 0, dF1 = 0, . . . ,dFn = 0,

i.e. the sum of all e + n + 1 columns of K vanishes, by Observation 3.6 below, we may receive

Proposition 3.5. For all j = 0 · · · e + n, the e + n + 1 sections:

ψ j = (−1) j det K̂ j ∈ H0
(
P, Symn Ω1

P ⊗S (♥)
)
,

when restricted to X, give one and the same section:

ψ ∈ H0
(
X, Symn Ω1

V ⊗S (♥)
)
.
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Observation 3.6. In a commutative ring R, for all positive integers N > 1, let A0, A1, . . . , AN ∈ RN

be N + 1 column vectors satisfying:

A0 + A1 + · · · + AN = 0.

Then for all 0 6 j1, j2 6 N, there hold the identities:

(−1) j1 det
(
A0, . . . , Â j1 , . . . , AN)

= (−1) j2 det
(
A0, . . . , Â j2 , . . . , AN)

. �

Proof of Proposition 3.5. Using the same notation as in (4), for j = 0 · · · e + n, we obtain an
(e + n) × (e + n) matrix (K̂ j)U

s1,...,se
. We also define:

K (U, s1, . . . , se) := TU
s1,...,se

· (K)U
s1,...,se

,

where the (e + n)× (e + n + 1) matrix (K)U
z1,...,ze

satisfies that, for j = 0 · · · e + n, the matrix (K̂ j)U
s1,...,se

is obtained by omitting the ( j + 1)-th column of (K)U
s1,...,se

.
We may view all entries of (K)U

s1,...,se
as sections in H0(U ∩ X,Sym•Ω1

V), where:

Sym•Ω1
V := ⊕∞k=0 Symk Ω1

V .

Thus the sum of all columns of (K)U
s1,...,se

vanishes, and hence Observation 3.6 yields:

(−1) j1 det (K̂ j1)
U
s1,...,se

= (−1) j2 det (K̂ j2)
U
s1,...,se

∈ H0(U ∩ X,Symn Ω1
V) ( j1, j2 = 0 ··· e+n).

By multiplication of det TU
s1,...,se

on both sides, we conclude the proof. �

Remember that our goal is to construct negatively twisted symmetric differential forms. One
idea, foreshadowed by the constructions in [2, 5], is to find some e + n + 1 line bundles T0, . . . ,
Te+n with respective global sections t0, . . . , te+n having empty base locus, such that the line bundle:

S (♥) ⊗T −1
0 ⊗ · · · ⊗T −1

e+n =: S (♥′) < 0,

is negative, and such that:

ω̂ j :=
ψ j

t0 · · · te+n
=

(−1) j

t0 · · · te+n
det K̂ j ∈ H0

(
D(t j), Symn Ω1

P ⊗S (♥′)
)

( j = 0 ··· e+n) (10)

have no poles. Then, these e + n + 1 sections, restricted to X, would glue together to make a global
negatively twisted symmetric differential form:

ω ∈ H0
(
X, Symn Ω1

V ⊗S (♥′)
)
.

For the purpose of (10), we may require that every t0, . . . , te+n subsequently ‘divides’ the cor-
responding column of K in the exact order. With some additional effort, we shall make this idea
rigorous in our central applications.

4. A Dividing Trick

Let L be a line bundle over P such that it has N + 1 global sections ζ0, . . . , ζN having empty
common base locus. Let c > 1, r > 0 be two integers with 2c + r > N and c + r < N. Let
A1, . . . ,Ac+r be c + r auxiliary line bundles to be determined. Now, we consider c + r Fermat-type
sections having the same shape as (1):

Fi =

N∑

j=0

A j
i ζ

λ j

j ∈ Ai ⊗L ε
j
i ⊗L λ j = Ai ⊗L di

︸     ︷︷     ︸
= Si

(i = 1··· c+r), (11)
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where ε j
i , λ j, di > 1 are integers satisfying ε j

i + λ j = di, and where every A j
i is some global section

of the line bundle Ai ⊗L ε
j
i .

For the first c equations of (11), a formal differentiation yields:

dFi =

N∑

j=0

d(
A j

i ζ
λ j

j
)

=

N∑

j=0

ζ
λ j−1
j

(
ζ j dA j

i + λ j A j
i dζ j

)
︸                   ︷︷                   ︸

=: B j
i

(i = 1··· c). (12)

Now, we construct the (c + r + c)× (N + 1) matrix M, whose first c + r rows consist of all (N + 1)
terms in the expressions (11) of F1, . . . , Fc+r in the exact order, and whose last c rows consist of all
(N + 1) terms in the expressions (12) of dF1, . . . ,dFc in the exact order:

M :=



A0
1 ζ

λ0
0 · · · AN

1 ζ
λN
N

...
...

A0
c+r ζ

λ0
0 · · · AN

c+r ζ
λN
N

d(
A0

1 ζ
λ0
0
) · · · d(

AN
1 ζ

λN
N

)
...

...

d(
A0

c ζ
λ0
0
) · · · d(

AN
c ζ

λN
N

)



=



A0
1 ζ

λ0
0 · · · AN

1 ζ
λN
N

...
...

A0
c+r ζ

λ0
0 · · · AN

c+r ζ
λN
N

B0
1 ζ

λ0−1
0 · · · BN

1 ζ
λN−1
N

...
...

B0
c ζ

λ0−1
0 · · · BN

c ζ
λN−1
N



. (13)

Denote n := N − c − r, observe that 1 6 n 6 c. For every 1 6 j1 < · · · < jn 6 c, denote by
M j1,..., jn the (c + r + n) × (N + 1) submatrix of M consisting of the first upper c + r rows and the
selected rows c + r + j1, . . . , c + r + jn. Also, for j = 0 · · ·N, denote by M̂ j1,..., jn; j the submatrix of
M j1,..., jn obtained by omitting the ( j + 1)-th column.

Let V ⊂ P be the subvariety defined by the first c sections F1, . . . , Fc, and let X ⊂ P be the
subvariety defined by all the c + r sections F1, . . . , Fc+r. Now, applying Proposition 3.5, denoting:

A 1,...,c+r
j1,..., jn

:= A1 ⊗ · · · ⊗Ac+r ⊗A j1 ⊗ · · · ⊗A jn ,

we receive

Proposition 4.1. For every 1 6 j1 < · · · < jn 6 c, for all j = 0 · · ·N, the N + 1 sections:

ψ j1,..., jn; j = (−1) j det M̂ j1,..., jn; j ∈ H0
(
P, Symn Ω1

P ⊗A 1,...,c+r
j1,..., jn

⊗L ♥ j1 ,..., jn
)
,

when restricted to X, give one and the same symmetric differential form:

ψ j1,..., jn ∈ H0
(
X, Symn Ω1

V ⊗A 1,...,c+r
j1,..., jn

⊗L ♥ j1 ,..., jn
)
,

with the twisted degree:

♥ j1,..., jn =

c+r∑

p=1

dp +

n∑

q=1

d jq . (14)
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Observe in (13) that the N + 1 columns of M are subsequently divisible by ζλ0−1
0 , . . . , ζλN−1

N .
Dividing out these factors, we receive the formal matrix:

C :=



A0
1 ζ0 · · · AN

1 ζN
...

...
A0

c+r ζ0 · · · AN
c+r ζN

B0
1 · · · BN

1
...

...
B0

c · · · BN
c



.

By mimicking the notation of the submatrices M j1,..., jn , M̂ j1,..., jn; j of M, we analogously define the
submatrices C j1,..., jn , Ĉ j1,..., jn; j of C.

Now, we interpret Proposition 4.1 in terms of the matrix C, starting by the formal computation:

(−1) j det M̂ j1,..., jn; j = (−1) j ζλ0−1
0 · · · ζ̂λ j−1

j · · · ζλN−1
N det Ĉ j1,..., jn; j

=
(−1) j

ζ
λ j−1
j

det Ĉ j1,..., jn; j · ζλ0−1
0 · · · ζλN−1

N .

Dividing by ζλ0−1
0 · · · ζλN−1

N on both sides above, we receive the following N +1 ‘coinciding’ forms:

(−1) j det M̂ j1,..., jn; j

ζλ0−1
0 · · · ζλN−1

N︸                 ︷︷                 ︸
independent of j

=
(−1) j

ζ
λ j−1
j

det Ĉ j1,..., jn; j

︸                  ︷︷                  ︸
have no pole over D(ζ j)

( j = 0 ···N). (15)

This is the aforementioned dividing trick.

Proposition 4.2. For all j = 0 · · ·N, the formal symmetric differential forms:

ω̂ j1,..., jn; j =
(−1) j det M̂ j1,..., jn; j

ζλ0−1
0 · · · ζλN−1

N

are well-defined sections in:

H0
(
D(ζ j), Symn Ω1

P ⊗A 1,...,c+r
j1,..., jn

⊗L ♥′j1 ,..., jn
)
,

with the twisted degree:

♥′j1,..., jn :=
c+r∑

p=1

dp +

n∑

q=1

d jq −
N∑

k=0

(λk − 1).

Moreover, when restricted to X, they glue together to make a global section:

ω j1,..., jn ∈ H0
(
X, Symn Ω1

V ⊗A 1,...,c+r
j1,..., jn

⊗L ♥′j1 ,..., jn
)
.

While the formal identity (15) transparently shows the essence of this proposition, it is not yet
a proof by itself, since both sides are to be defined. Indeed, to bypass the potential trouble of
divisibility, the rigorous proof below is much more involved than one would first expect.
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Proof. Without loss of generality, we only prove the case j1 = 1, . . . , jn = n, and we will often
drop the indices j1, . . . , jn, since no confusion could occur. Here is a sketch of the proof.

Step 1. Over each Zariski open set U ⊂ D(ζ j) with trivializations A1

∣∣∣
U

= OU · a1, . . . , Ac+r

∣∣∣
U

=

OU · aa+r, we compute the expression of ω̂ j := ω̂ j1,..., jn; j in coordinates (U, a1, . . . , ac+r, ζ j).

Step 2. We show that the obtained symmetric form ω̂ j

∣∣∣
U

is independent of the choices of trivializa-
tions a1, . . . , ac+r, whence we conclude the first claim.

Step 3. For any distinct indices 0 6 `1, `2 6 N, over any Zariski open set U ⊂ D(ζ`1) ∩ D(ζ`2) with
trivializations A1

∣∣∣
U

= OU · a1, . . . , Ac+r

∣∣∣
U

= OU · aa+r, we show that:

ω̂`1 = ω̂`2 ∈ H0
(
U, Symn Ω1

V ⊗A 1,...,c+r
j1,..., jn

⊗L ♥′j1 ,..., jn
)

(16)

by computations in coordinates. Thus we conclude the second claim.

Proof of Step 1. Recalling (3), by trivializations:

Ai ⊗L di

︸     ︷︷     ︸
=: Si

∣∣∣
U

= OU · ai ζ
di
j︸︷︷︸

=: si

(i = 1··· c+r),

the formal matrix K := M j1,..., jn has coordinates:

K = Tζ j
a1,...,ac+r ·

(
F1/s1, . . . , Fc+r/sc+r, d

(
F1/s1

)
, . . . , d

(
Fn/sn

))T

︸                                                         ︷︷                                                         ︸
=: (K)

ζ j
a1 ,...,ac+r

, (17)

where Tζ j
a1,...,ac+r is an N × N diagonal matrix with the diagonal s1, . . . , sc+r, s1, . . . , sn, and where

like (8) we abbreviate the first c + r rows of K by F1, . . . , Fc+r. Further computation yields:

Fi / si :=
(
A0

i ζ
λ0
0 , . . . , A

N
i ζ

λN
N

)
/ si =

(
A0

i /α
0
i · (ζ0/ζ j)λ0 , . . . , AN

i /α
N
i · (ζN/ζ j)λN

)
(i = 0 ··· c+r),

where α j
i := ai · ζε

j
i

j . ‘Dividing’ every column of (K)ζ j
a1,...,ac+r subsequently by (ζ0/ζ j)λ0−1, . . . , (ζN/ζ j)λN−1,

we obtain an N × (N + 1) matrix (C)ζ j
a1,...,ac+r . For every ` = 0 · · ·N, we denote by (Ĉ`)

ζ j
a1,...,ac+r the

submatrix of (C)ζ j
a1,...,ac+r obtained by deleting its (` + 1)-th column. Now, formula (4) yields:

det M̂ j1,..., jn; j = s1 · · · sc+r s1 · · · sn (ζ0/ζ j)λ0−1 · · · (ζN/ζ j)λN−1 det (Ĉ j)
ζ j
a1,...,ac+r . (18)

Thus, in coordinates (U, a1, . . . , ac+r, ζ j), we obtain
/
define:

ω̂ j =
(−1) j det M̂ j1,..., jn; j

ζλ0−1
0 · · · ζλN−1

N

:= (−1) j s1 · · · sc+r s1 · · · sn

ζ(λ0−1)+···+(λN−1)
j

· det (Ĉ j)
ζ j
a1,...,ac+r

= (−1) j a1 · · · ac+r · a1 · · · an · ζ
♥′j1 ,..., jn
j · det (Ĉ j)

ζ j
a1,...,ac+r

∈ H0
(
U, Symn Ω1

P ⊗A 1,...,c+r
j1,..., jn

⊗L ♥′j1 ,..., jn
)
.

(19)

Proof of Step 2. We only need to show that:

a1 · · · ac+r a1 · · · an · det (Ĉ j)
ζ j
a1,...,ac+r ∈ H0

(
U, Symn Ω1

P ⊗A 1,...,c+r
j1,..., jn

)

is independent of the choices of a1, . . . , ac+r.
11



Let ã1, . . . , ãc+r be any other choices of invertible sections of A1

∣∣∣
U
, . . . ,Ac+r

∣∣∣
U

. Accordingly, we

obtain the matrices (C)ζ j

ã1,...,̃ac+r
, (Ĉ j)

ζ j

ã1,...,̃ac+r
, and we denote α̃ j

i := ãi · ζε
j
i

j . Then, for i = 1 · · · c + r,

the i-th row of the matrix (C)ζ j

ã1,...,̃ac+r
is:

[ αk
i /α̃

k
i = ai/̃ai ]

(
A0

i /α̃
0
i · (ζ0/ζ j), . . . , AN

i /α̃
N
i · (ζN/ζ j)

)
= ai/̃ai ·

(
A0

i /α
0
i · (ζ0/ζ j), . . . , AN

i /α
N
i · (ζN/ζ j)

)
︸                                            ︷︷                                            ︸

the i-th row of the matrix (C)
ζ j
a1 ,...,ac+r

.

Also, for i = 1 · · · n, k = 0 · · ·N, using:

d (Ak
i /α̃

k
i ) = d (Ak

i /α
k
i · ai/̃ai) = ai/̃ai · d (Ak

i /α
k
i ) + Ak

i /α
k
i · d (ai/̃ai),

we see that the (c + r + i, k + 1)-th entry of (C)ζ j

ã1,...,̃ac+r
satisfies:

(ζk/ζ j) · d (Ak
i /α̃

k
i ) + λk (Ak

i /α̃
k
i ) · d (ζk/ζ j)

= ai/̃ai · [(ζk/ζ j) · d (Ak
i /α

k
i ) + λk (Ak

i /α
k
i ) · d (ζk/ζ j)

]
︸                                                  ︷︷                                                  ︸

= the (c+r+i, k+1)-th entry of (C)
ζ j
a1 ,...,ac+r

+ d (ai/̃ai) · Ak
i /α

k
i · (ζk/ζ j)︸           ︷︷           ︸

= (i, k+1)-th entry

. (20)

Hence we receive the transition identity:

(C)ζ j

ã1,...,̃ac+r
= Ta1,...,ac+r

ã1,...,̃ac+r
· (C)ζ j

a1,...,ac+r ,

where Ta1,...,ac+r
ã1,...,̃ac+r

is a lower triangular matrix with the product of the diagonal:

det Ta1,...,ac+r
ã1,...,̃ac+r

=
a1 · · · ac+r · a1 · · · an

ã1 · · · ãc+r · ã1 · · · ãn
.

In particular, we have:
(Ĉ j)

ζ j

ã1,...,̃ac+r
= Ta1,...,ac+r

ã1,...,̃ac+r
· (Ĉ j)

ζ j
a1,...,ac+r ,

hence, by taking determinant on both sides above, we obtain:

ã1 · · · ãc+r · ã1 · · · ãn · det (Ĉ j)
ζ j

ã1,...,̃ac+r
= a1 · · · ac+r a1 · · · an · det (Ĉ j)

ζ j
a1,...,ac+r ,

which is our desired identity.

Proof of Step 3. First of all, we recall the famous

Cramer’s Rule. In a commutative ring R, for all positive integers N > 1, let A0, A1, . . . , AN ∈ RN

be N + 1 column vectors, and suppose that z0, z1, . . . , zN ∈ R satisfy:

A0 z0 + A1 z1 + · · · + AN zN = 0.
Then for all indices 0 6 `1, `2 6 N, there hold the identities:

(−1)`1 det
(
A0, . . . , Â`1 , . . . , AN)

z`2 = (−1)`2 det
(
A0, . . . , Â`2 , . . . , AN)

z`1 . �

In the rest of the proof, we shall view all entries of the matrices (K)ζ j
a1,...,ac+r , (C)ζ j

a1,...,ac+r as elements
in the ring H0(U ∩ X,Sym•Ω1

V). Note that the sum of all columns of (K)ζ j
a1,...,ac+r vanishes:

C0

(ζ0

ζ j

)λ0−1
+ · · · + CN

(ζN

ζ j

)λN−1
= 0,

where we denote the (i + 1)-th row of (C)ζ j
a1,...,ac+r by Ci. Applying Cramer’s rule, we receive:

(−1)`1 det(Ĉ`1 )ζ j
a1,...,ac+r ·

(ζ`2

ζ j

)λ`2−1
= (−1)`2 det(Ĉ`2 )ζ j

a1,...,ac+r ·
(ζ`1

ζ j

)λ`1−1 ∈ H0
(
U ∩ X, Symn Ω1

V

)
(06 `1, `2 6N). (21)
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Lastly, we can check the desired identity (16) by the following computation:

ω̂`1 = (−1)`1 a1 · · · ac+r · a1 · · · an · ζ
♥′j1 ,..., jn
`1

· det (Ĉ`1 )
ζ`1
a1,...,ac+r [use (19)]

[use (21) for j = `1] = (−1)`2 a1 · · · ac+r · a1 · · · an · ζ
♥′j1 ,..., jn
`1

· det (Ĉ`2 )
ζ`1
a1,...,ac+r ·

(ζ`1

ζ`2

)λ`2−1

[use Proposition 4.3 below] = (−1)`2 a1 · · · ac+r · a1 · · · an · ζ
♥′j1 ,..., jn
`1

·
(ζ`2

ζ`1

)♥(`2) · det (Ĉ`2 )
ζ`2
a1,...,ac+r ·

(ζ`1

ζ`2

)λ`2−1

[♥(`2) = ♥′j1 ,..., jn + λ`2 − 1] = (−1)`2 a1 · · · ac+r · a1 · · · an · ζ
♥′j1 ,..., jn
`2

· det (Ĉ`2 )
ζ`2
a1,...,ac+r

[use (19)] = ω̂`2 [,].

Thus we finish the proof. �

An essential ingredient in the above proof is to compare the same determinant in different trivi-
alizations ζ`1 , ζ`2 . Now we give general transition formulas.

Proposition 4.3. For all 0 6 j, `1, `2 6 N, for any Zariski open set U ⊂ D(ζ`1) ∩ D(ζ`2) with
trivializations A1

∣∣∣
U

= OU · a1, . . . , Ac+r

∣∣∣
U

= OU · aa+r, there hold the transition formulas:

det (Ĉ j)
ζ`1
a1,...,ac+r =

(ζ`2

ζ`1

)♥( j) · det (Ĉ j)
ζ`2
a1,...,ac+r ∈ H0

(
U, Symn Ω1

P

)
, (22)

with ♥( j) = ♥′j1,..., jn + λ j − 1.

Proof. Our idea is to expand the two determinants and to compare each pair of corresponding
terms. Without loss of generality, we may assume j = 0.

For i = 1 · · ·N, k = 1 · · ·N, we denote the (i, k)-th entry of (Ĉ0)
ζ`1
a1,...,ac+r (resp. (Ĉ0)

ζ`2
a1,...,ac+r ) by c1

i, j

(resp. c2
i, j). First of all, we recall all the entries:

cδp,k :=
Ak

p

ap · ζε
k
p

`δ

· ζk

ζ`δ
, cδc+r+q,k := d

( Ak
q

aq · ζε
k
q

`δ

)
· ζk

ζ`δ
+ λk

Ak
q

aq · ζε
k
q

`δ

· d
( ζk

ζ`δ

)
(δ= 1, 2; p = 1 ··· c+r; q = 1 ··· n; k = 1 ···N).

By much the same reasoning as in (20), we can obtain the transition formulas:

c1
p,k = c2

p,k · (ζ`2/ζ`1)
εk

p+1,

c1
c+r+q,k = c2

c+r+q,k · (ζ`2/ζ`1)
εk

q+1 + c2
q,k · (εk

q + λk) (ζ`2/ζ`1)
εk

q d (ζ`2/ζ`1).

Recalling that εk
p + λk = dp, we thus rewrite the above identities as:

c1
p,k = c2

p,k · (ζ`2/ζ`1)
dp−(λk−1),

c1
c+r+q,k = c2

c+r+q,k · (ζ`2/ζ`1)
dq−(λk−1) + c2

q,k · dq (ζ`2/ζ`1)
dq−λk d (ζ`2/ζ`1).

(23)

Now, comparing (23) with the desired formula (22), we may anticipate that, the underlined
terms would bring some trouble, since no terms d (ζ`2/ζ`1) appear on the right-hand-side of (22).
Nevertheless, we can overcome this difficulty firstly by observing:
∣∣∣∣∣∣

c1
q,k1

c1
q,k2

c1
c+r+q,k1

c1
c+r+q,k2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
c2

q,k1
c2

q,k2

c2
c+r+q,k1

c2
c+r+q,k2

∣∣∣∣∣∣ · (ζ`2/ζ`1)
dq−(λk1−1) · (ζ`2/ζ`1)

dq−(λk2−1)
(q = 1 ··· n; k1, k2 = 1 ···N),

(24)
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and secondly by using a tricky Laplace expansion of the determinant:

det (Ĉ0)
ζ`1
a1,...,ac+r =

∑
Sign(±) ·

n∏

q=1

∣∣∣∣∣∣∣
c1

q,k1
q

c1
q,k2

q

c1
c+r+q,k1

q
c1

c+r+q,k2
q

∣∣∣∣∣∣∣
·

c+r∏

p=n+1

c1
p,kp
, (25)

where the sum runs through all choices of N = 2n + (c + r − n) indices k1
1 < k2

1, . . . , k1
n <

k2
n, kn+1, . . . , kc+r such that their union is exactly {1, . . . ,N}, and where Sign(±) is either 1 or −1

uniquely determined by the choices of indices. Now, using (24), we see that each term in (25) is
equal to:

Sign(±) ·
n∏

q=1

∣∣∣∣∣∣∣
c2

q,k1
q

c2
q,k2

q

c2
c+r+q,k1

q
c2

c+r+q,k2
q

∣∣∣∣∣∣∣
·

c+r∏

p=n+1

c2
p,kp

multiplied by (ζ`2/ζ`1)
♥, where:

♥ :=
n∑

q=1

[
dq − (λ1

kq
− 1) + dq − (λ2

kq
− 1)

]
+

c+r∑

p=n+1

(
dq − (λkp − 1)

)

=

c+r∑

p=1

dp +

n∑

q=1

dq −
N∑

k=1

(λk − 1)

= ♥′j1,..., jn + λ0 − 1.

Thus (25) factors as:

det (Ĉ0)
ζ`1
a1,...,ac+r = (ζ`2/ζ`1)

♥ ·
∑

Sign(±) ·
n∏

q=1

∣∣∣∣∣∣∣
c2

q,kq
1

c2
q,kq

2

c2
c+r+q,kq

1
c2

c+r+q,kq
2

∣∣∣∣∣∣∣
·

c+r∏

p=n+1

c2
p,kp

[use Laplace expansion again] = (ζ`2/ζ`1)
♥ · det (Ĉ0)

ζ`2
a1,...,ac+r ,

whence we conclude the proof. �

5. ‘Hidden’ Symmetric Differential Forms

Comparing the two approaches in [5, Section 6], the scheme-theoretic one has the advantage in
further generalizations, while the geometric one is superior in discovering the ‘hidden’ symmetric
differential forms [5, Proposition 6.12]. Skipping the thinking process, we present the correspond-
ing generalizations of these symmetric forms as follows.

We assume that λ0, . . . , λN > 2 in this section. For any η = 1 · · · n − 1, for any indices 0 6 v1 <
· · · < vη 6 N and 1 6 j1 < · · · < jn−η 6 c, write {0, . . . ,N} \ {v1, . . . , vη} in the ascending order
r0 < r1 < · · · < rN−η, and then denote by v1,...,vηM j1,..., jn−η the (N − η) × (N − η + 1) submatrix of
M determined by the first c + r rows and the selected rows c + r + j1, . . . , c + r + jn−η as well as
the (N − η + 1) columns r0 + 1, . . . , rN−η + 1. Next, for every index j ∈ {0, . . . ,N} \ {v1, . . . , vη},
let v1,...,vηM̂ j1,..., jn−η; j denote the submatrix of v1,...,vηM j1,..., jn−η obtained by deleting the column which
is originally contained in the ( j + 1)-th column of M. Lastly, denote by v1,...,vηP ⊂ P the subvariety
defined by sections ζv1 , . . . , ζvη (‘vanishing coordinates’), and denote v1,...,vηX := X∩v1,...,vηP. Setting:

A 1,...,c+r
j1,..., jn−η := A1 ⊗ · · · ⊗Ac+r ⊗A j1 ⊗ · · · ⊗An−η,

by much the same reasoning as in Proposition 4.1, we have
14



Proposition 5.1. For all j = 0 · · ·N − η, the following N + 1 − η sections:

v1,...,vηψ j1,..., jn−η; r j := (−1) j det
(

v1,...,vηM̂ j1,..., jn−η; r j

)

∈ H0
(

v1,...,vηP, Symn−η Ω1
P ⊗A 1,...,c+r

j1,..., jn−η ⊗L ♥ j1 ,..., jn−η
)
,

when restricted to v1,...,vηX, give one and the same symmetric differential form:

v1,...,vηψ j1,..., jn−η ∈ H0
(

v1,...,vηX, Symn−η Ω1
V ⊗A 1,...,c+r

j1,..., jn−η ⊗L ♥ j1 ,..., jn−η
)
,

with the twisted degree:

♥ j1,..., jn−η =

c+r∑

p=1

dp +

n−η∑

q=1

d jq . �

Moreover, playing the dividing trick again, we obtain an analogue of Proposition 4.2.

Proposition 5.2. For all j = 0 · · ·N − η, the formal symmetric differential forms:

v1,...,vηω̂ j1,..., jn−η; r j =
(−1) j det

(
v1,...,vηM̂ j1,..., jn−η; r j

)

ζ
λr0−1
r0 · · · ζλrN−η−1

rN−η

are well-defined sections in:

H0
(
D(ζr j) ∩ v1,...,vηP, Symn−η Ω1

P ⊗A 1,...,c+r
j1,..., jn−η ⊗L v1 ,...,vη♥′j1 ,..., jn−η

)
,

with the twisted degree:

v1,...,vη♥′j1,..., jn−η :=
c+r∑

p=1

dp +

n−η∑

q=1

d jq −
N∑

k=0

(λk − 1) +

η∑

µ=1

(λvµ − 1).

Moreover, when restricted to v1,...,vηX, they glue together to make a global section:

v1,...,vηω j1,..., jn−η ∈ H0
(

v1,...,vηX, Symn−η Ω1
V ⊗A 1,...,c+r

j1,..., jn−η ⊗L v1 ,...,vη♥′j1 ,..., jn−η
)
. �

6. Applications of MCM

6.1. Motivation. Recall [5, Section 7] that the moving coefficients method is devised to produce
as many negatively twisted symmetric differential forms as possible, by manipulating the deter-
minantal structure of the constructed symmetric differential forms. Since Propositions 4.2, 5.2
exactly share the same determinantal shape, it is possible to adapt MCM for the aim of Theo-
rem 1.2, which coincides with Theorem 1.1 in the case that P = PN

K, L = OPN
K
(1). Indeed, by

introducing c auxiliary line bundles A1, . . . ,Ac ≈ trivial line bundle, we can even treat the case of
c ample line bundles L + A1, . . . , L + Ac ≈ L , and eventually we will obtain Theorem 1.4.

6.2. Adaptation. Let P be a smooth projective K-variety of dimension N, equipped with a very
ample line bundle L . By Bertini’s theorem, we may choose N + 1 simple normal crossing global
sections ζ0, . . . , ζN of L , and we shall view them as the ‘homogeneous coordinates’ of P. Thus, we
may ‘identify’ (P,L ) with

(
PN
K,OPN

K
(1)

)
in the sense that locally they have the same coordinates

[ξ0 : · · · : ζN] ≈ [z0 : · · · : zN], and therefore we can generalize local computations of the later one
to the former one, like what we perform in Section 4. This treatment is also visible in [3].
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Let c > 1, r > 0 be two integers with 2c + r > N and c + r < N, and let A1, . . . ,Ac+r be c + r
auxiliary line bundles to be determined. Now, we start to adapt the machinery of MCM. First of
all, introduce the following c + r ‘flexible’ sections which copy the major ingredient (3):

Fi =

N∑

j=0

A j
i ζ

d
j +

N∑

l=c+r+1

∑

06 j0<···< jl6N

l∑

k=0

M j0,..., jl; jk
i ζ

µl,k
j0
· · · ζ̂µl,k

jk
· · · ζµl,k

jl
ζ

d−lµl,k
jk

∈ H0 (P, Ai ⊗L εi ⊗L d) (i = 1 ··· c+r),

(26)

where all coefficients A•i ,M
•;•
i are some global sections of Ai ⊗L εi for some fixed integers εi > 1,

and where all positive integers µl,k, d are to be chosen by a certain Algorithm, which is designed
to make all the symmetric differential forms obtained later have negative twist. For better com-
prehension, we will make the Algorithm clear in Subsection 6.4 below, and for the time being we
roughly summarize it as:

1 6 max {εi}i=1···c+r � µc+r+1,0 � · · · � µc+r+1,c+r+1︸                              ︷︷                              ︸
µc+r+1,• grow exponentially

� · · · · · · � µN,0 � · · · � µN,N︸                 ︷︷                 ︸
µN,• grow exponentially

� d. (27)

Let V ⊂ P be the subvariety defined by the first c sections F1, . . . , Fc, and let X ⊂ P be the
subvariety defined by all the c + r sections F1, . . . , Fc+r. A priori, we require all the line bundles
Ai ⊗L εi to be very ample, so that for generic choices of parameters:

A•i ,M
•;•
i ∈ H0 (P, Ai ⊗L εi) (i = 1 ··· c+r),

both intersections V , X are smooth complete (the proof is much the same as that of Bertini’s
Theorem, see Subsection 7.2).

6.3. Manipulations. Now, we apply MCM to construct a series of negatively twisted symmetric
differential forms. For shortness, we will refer to [5, Section 7] for skipped details, in which the
canonical setting {PN

K,OPN
K
(1), (z0, . . . , zN)} there plays the same role as that of {P,L , (ζ0, . . . , ζN)}

in our treatment here.
To begin with, we rewrite each section Fi in (26) as (cf. [5, p. 43, (104)]):

Fi =

N∑

j=0

(
A j

i ζ
d
j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N
jk= j for some 06k6l

M j0,..., jl; jk
i ζ

µl,k

j0
· · · ζ̂µl,k

jk
· · · ζµl,k

jl
ζ

d−lµl,k

jk

)

︸                                                                                   ︷︷                                                                                   ︸
for each j = 0 ···N, we view this whole bracket as one section

+

N∑

k=0

M0,...,N;k
i ζ

µN,k

0 · · · ζ̂µN,k

k · · · ζµN,k

N ζ
d−N µN,k

k︸                                         ︷︷                                         ︸
for each k = 0 ···N, we view it as one section

.

(28)
Thus, we view each Fi as the sum of 2N + 2 =

∑N
j=0 1 +

∑N
k=0 1 sections of the same line bundle,

as indicate above.
Next, we construct a (c + r + c) × (2N + 2) formal matrix M such that, for every i = 1 · · · c + r,

j = 1 · · · c, its i-th row copies the 2N + 2 sections in the sum of Fi in the exact order, and its
(c + r + j)-th row is the formal differential of the j-th row.

Write the 2N + 2 columns of M as:

M =
(
A0 | · · · | AN | B0 | · · · | BN

)
. (29)

For every ν = 0 · · ·N, we construct the matrix:

Kν :=
(
A0 | · · · | Âν | · · · | AN | Aν +

N∑

j=0

B j

)
, (30)
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where the last column is understood to appear in the ‘omitted’ column. Also, for every τ = 0 · · ·N−
1 and every ρ = τ + 1 · · ·N, we construct the matrix:

Kτ, ρ :=
(
A0 + B0 | · · · | Aτ + Bτ | Aτ+1 | · · · | Âρ | · · · | AN | Aρ +

N∑

j=τ+1

B j

)
. (31)

Now, fix a positive integer r > 1 such that:

Ai ⊗L −r < 0 (i = 1 ··· c+r). (32)

Recalling the rough Algorithm (27), observe in (28), (30) that the N + 1 columns of Kν are subse-
quently divisible by:

ζd−δN
0 , . . . , ζ̂d−δN

ν , . . . , ζd−δN
N , ζ

µN,0
ν ,

where δN := (N − 1) µN−1,N−1. Thus, applying Proposition 4.2, for every 1 6 j1 < · · · < jn 6 c, we
obtain a global symmetric differential form:

φνj1,..., jn ∈ H0(X,Symn ΩV ⊗ A 1,...,c+r
j1,..., jn

⊗L ♥νj1 ,..., jn
︸                  ︷︷                  ︸
< 0, because of (32),(33)

)
(ν= 0 ···N),

with negative twist:

♥νj1,..., jn =

c+r∑

p=1

(d + εp) +

n∑

q=1

(d + ε jq ) −
N∑

j=0, j,ν

(d − δN − 1) − (µN,0 − 1)

= − µN,0 + N δN +

c+r∑

p=1

εp +

n∑

q=1

ε jq + N + 1

[by Algorithm (27)] 6 −N r.

(33)

Similarly, observe that the N + 1 columns of Kτ, ρ are subsequently divisible by:

ζ
d−N µN,0
0 , . . . , ζ

d−N µN,τ
τ , ζd−δN

τ+1 , . . . , ζ̂d−δN
ν , . . . , ζd−δN

N , ζ
µN,τ+1
ν ,

thus by Proposition 4.2 we obtain:

ψ
τ, ρ
j1,..., jn

∈ H0(X,Symn ΩV ⊗ A 1,...,c+r
j1,..., jn

⊗L ♥τ, ρj1 ,..., jn

︸                  ︷︷                  ︸
< 0, because of (32),(34)

)
(τ= 0 ···N−1, ρ= τ+1 ···N),

with negative twist:

♥τ, ρj1,..., jn
=

c+r∑

p=1

(d + εp) +

n∑

q=1

(d + ε jq ) −
τ∑

k=0

(d − N µN,k − 1) −
N∑

j=τ+1, j,ρ

(d − δN − 1) − (µN,τ+1 − 1)

= − µN,τ+1 +

τ∑

k=0

N µN,k + (N − τ − 1) δN +

c+r∑

p=1

εp +

n∑

q=1

ε jq + N + 1

[by Algorithm (27)] 6 −N r.
(34)

Recalling the notation in Section 5, for any η = 1 · · · n − 1, for any ‘vanishing’ indices 0 6
v1 < · · · < vη 6 N, by applying Proposition 5.2, we can construct a series of negatively twisted
symmetric differential forms over the ‘coordinates vanishing part’:

ω` ∈ Γ
(

v1,...,vηX,Symn−η ΩV ⊗ negative twist
)

( `= 1, 2, ... ).
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The procedure is much the same as before. First, we rewrite each section Fi in (26) as:

Fi =

N−η∑

j=0

Ar j

i ζ
d
r j

+

N−η∑

l=c+r+1

∑

06 j0<···< jl6N−η

l∑

k=0

M
r j0 ,...,r jl ;r jk
i ζ

µl,k
r j0
· · · ζ̂µl,k

r jk
· · · ζµl,k

r jl
ζ

d−lµl,k
r jk

+ negligible terms,

so that Fi has the same structure as (26), in the sense of replacing:

N ↔ N − η, {0, . . . ,N} ←→ {r0, . . . , rN−η}.
Thus, we can repeat the above manipulations. For shortness, we skip all details (cf. [5, Subsection
7.3]) and only state the results.

For every 1 6 j1 < · · · < jn−η 6 c, for every ν = 0 · · ·N − η, we obtain a symmetric differential
form:

v1,...,vηφ
ν
j1,..., jn−η ∈ Γ

(
v1,...,vηX,Symn−η ΩV ⊗A 1,...,c+r

j1,..., jn−η ⊗L v1 ,...,vη♥νj1 ,..., jn−η
︸                          ︷︷                          ︸

< 0, because of (35)

)
,

with negative twist (set δN−η := (N − η − 1) µN−η−1,N−η−1):

v1,...,vη♥νj1,..., jn−η = − µN−η,0 + (N − η) δN−η +

c+r∑

i=1

εi +

n−η∑

`=1

ε j` + (N − η) + 1 6 − (N − η)r. (35)

Also, for every τ = 0 · · ·N − η − 1 and every ρ = τ + 1 · · ·N − η, we obtain:

v1,...,vηφ
τ, ρ
j1,..., jn−η ∈ Γ

(
v1,...,vηX,Symn−η ΩV ⊗A 1,...,c+r

j1,..., jn−η ⊗L v1 ,...,vη♥
τ, ρ
j1 ,..., jn−η

︸                          ︷︷                          ︸
< 0, because of (36)

)
,

with negative twist:

v1,...,vη♥τ, ρj1,..., jn−η
= − µN−η,τ+1 +

τ∑

k=0

(N−η) µN−η,k +(N−η−τ−1) δN−η+

c+r∑

i=1

εi +

n−η∑

`=1

ε j` +(N−η)+1 6 − (N−η)r. (36)

6.4. A Natural Algorithm. We will construct µl,k in a lexicographic order with respect to indices
(l, k), for l = c + r + 1 · · ·N, k = 0 · · · l, together with positive integers δl.

For simplicity, we start by setting:

δc+r+1 > max {ε1, . . . , εc+r}. (37)

For every l = c + r + 1 · · ·N, in this step, we begin with choosing µl,0 that satisfies:

[see (35), (33)] µl,0 > l δl + l δc+r+1 + l + 1 + lr + 1, (38)

then inductively we choose µl,k satisfying:

[see (36), (34)] µl,k >
k−1∑

j=0

l µl, j + (l − k) δl + l δc+r+1 + l + 1 + lr + 1 (k = 1 ··· l). (39)

If l < N, we end this step by setting:
δl+1 := l µl,l (40)

as the starting point for the next step l + 1. At the end l = N, we require that:

d > (N + 1) µN,N

be large enough.
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6.5. Controlling the base loci. We will provide some technical preparations in Section 7.
By adapting the arguments in [5, Section 9], we can show that, for generic choices of parameters

A••,M
•;•
• , firstly, the:

Base Locus of
{
φνj1,..., jn , ψ

τ, ρ
j1,..., jn

}ν, τ, ρ
16 j1<···< jn6c

=: BS (41)

is discrete
/
empty over the ‘coordinates nonvanishing part’ {ζ0 · · · ζN , 0}, and secondly, for every

1 6 η 6 n − 1, for every 0 6 v1 < · · · < vη 6 N, the:

Base Locus of
{

v1,...,vηφ
ν
j1,..., jn−η , v1,...,vηψ

τ, ρ
j1,..., jn−η

}ν, τ, ρ
16 j1<···< jn−η6c

=: v1,...,vηBS (42)

is discrete
/
empty over the corresponding ‘coordinates nonvanishing part’ {ζr0 · · · ζrN−η , 0}.

For the sake of completeness, we sketch the proof in Subsection 7.3 below.

6.6. Effective degree estimates. In the Algorithm above, we first set r = 2, ε1 = · · · = εc+r = 1,
and next we demand all inequalities (37) – (40) to be exactly equalities. Thus we receive the
estimate (cf. [5, Section 11]):

(N + 1) µN,N < NN2/2 − 1 := d0 (∀N > 3).

Now, recall the value ε0 = 3/d0 in Definition 1.3. In fact, the motivation is the following

Proposition 6.1. Let L , S be two ample line bundles on P. Then S is almost proportional to L
if and only if there exist some positive integers d > d0, s, l > 1, such that S s = A ⊗L l ⊗L l d,
where the line bundle A satisfies that A ⊗L l is very ample and that A ⊗L −2 l < 0 is negative.

Proof. “⇐=” We can take α = s · [S ] and β = l d · [L ], so that α − β = [A ⊗L l] > 0, and that
(1 + ε0) β − α > (1 + 3/d) β − α = − [A ⊗L −2 l] > 0.

“=⇒” Since Q+ is dense in R+, we may assume that α ∈ Q+ · [S ] and β ∈ Q+ · [L ]. Next, we
can choose a sufficiently divisible integer m > 0 such that m · α = s0 · [S ] and m · β = l0 d0 · [L ]
for some positive integers s0, l0 > 0. Set the line bundle A0 := S s0 ⊗ (L l0 ⊗ L l0 d0)−1, hence
S s0 = A0 ⊗L l0 ⊗L l0 d0 . Now, using β < α < (1 + ε) β, we receive:

0 < m · (α − β) = m · α − m · β = s0 · [S ] − l0 d0 · [L ] = [S s0 ⊗L −l0 d0 ] = [A0 ⊗L l0 ],

0 > m · [α − (1 + ε0) β
]

= m · α − (1 + 3/d0) m · β = s0 · [S ] − (1 + 3/d0) l0 d0 · [L ] = [A0 ⊗L −2 l0 ].

The first line above implies that (A0 ⊗ L l0)⊗m′ is very ample for some positive integer m′ > 0.
Thus we can set s := s0 m′, l := l0 m′, A := A m′

0 , then S s = A ⊗L l ⊗L l d0 satisfies that A ⊗L l

is very ample and that A ⊗L −2 l < 0 is negative. �

Remark 6.2. In the above proof, we see that the second assertion holds for d = d0. In fact, it holds
for any positive integer d′ 6 d, since we have:

L s (1+d′) =
(
A ⊗L l (1+d))1+d′

= A 1+d′ ⊗L l (1+d) ⊗ (
L l (1+d))d′

,

where:
A 1+d′ ⊗L l (1+d) =

(
A ⊗L l
︸   ︷︷   ︸
very ample

)1+d′ ⊗L l (d−d′)

is very ample and where:

A 1+d′ ⊗L −2 l (1+d) =
(
A ⊗L −2 l
︸      ︷︷      ︸

negative

)1+d′ ⊗L −2 l (d−d′) < 0.

Thus the second assertion holds not only for (d, s, l) but also for
(
d′, s (1 + d′), l (1 + d)

)
.
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6.7. Proof of Theorem 1.4. Summarizing the above Subsections 6.2 – 6.6, we can obtain

Theorem 6.3. Let P be a smooth projective variety of dimension N, and let L be a very ample
line bundle over P. For any integers c, r > 0 with 2c + r > N, for any integer d > d0, for any c + r
line bundles Ai (i = 1 · · · c + r) such that Ai ⊗L are very ample and that Ai ⊗L − 2 < 0, setting:

Li = Ai ⊗L ⊗L d
(i = 1 ··· c+r),

then, for generic c + r hypersurfaces:

H1 ∈
∣∣∣L1

∣∣∣, . . . ,Hc+r ∈
∣∣∣Lc+r

∣∣∣,
the cotangent bundle ΩV of the intersection of the first c hypersurfaces V = H1∩· · ·∩Hc restricted
to the intersection of all the c + r hypersurfaces X = H1 ∩ · · · ∩ Hc ∩ Hc+1 ∩ · · · ∩ Hc+r is ample.

Denote the projectivization of the cotangent bundle ΩP of P by:

P(ΩP) := Proj
( ⊕k>0 Symk ΩP

)
,

and denote the associated Serre line bundle by OP(ΩP)(1). For any integers a, b > 0, for any a + b
global sections F1, . . . , Fa, Fa+1, . . . , Fa+b of arbitrary a + b line bundles over P, denote by:

Fa+1,...,Fa+bPF1,...,Fa ⊂ P(ΩP).

the unique subscheme defined by equations F1, . . . , Fa+b,dF1, . . . ,dFa. Thus, we reformulate the
above theorem as:

Theorem 6.3’. For generic c + r sections:

F1 ∈ H0 (P,L1), . . . , Fc+r ∈ H0 (P,Lc+r),

the Serre line bundle OP(ΩP)(1) is ample over the subvariety Fc+1,...,Fc+rPF1,...,Fc .

Proof of Theorem 6.3. We may assume that N > 3 and c + r < N, otherwise there is nothing to
prove. Set n = N − c − r, observe that 1 6 n 6 c. Since ampleness is a Zariski open condition in
family (Grothendieck), we only need to provide one ample example H1, . . . ,Hc+r. In fact, we will
construct c + r sections F1, . . . , Fc+r of the MCM shape (26) to conclude the proof.
Step 1. Since d > d0, by the effective degree estimates in preceding subsection, we can construct
integers {µl,k} that satisfy the Algorithm in Subsection 6.4. Now, the structure of (26) is fixed, and
we will choose some appropriate coefficients A•i ,M

•;•
i for i = 1 · · · c + r.

Step 2. For generic choices of parameters A••,M
•;•
• , both X,V are smooth complete, and moreover,

for all 1 6 η 6 n = N − c− r, for all indices 0 6 v1 < · · · < vη 6 N, the further intersection varieties
v1,...,vηX are all smooth complete. The reasoning is much the same as in Bertini’s Theorem. For the
sake of completeness, we provide a proof in Subsection 7.2 below.
Step 3. For generic choices of parameters A••,M

•;•
• , all the constructed negatively twisted symmetric

differential forms have discrete based loci outside ‘coordinates vanishing part’, see Subsection 6.5
for details. This is the core of the moving coefficients method.
Step 4. Choose any generic parameters A••,M

•;•
• that satisfy the properties in the above two steps.

We claim that the corresponding sections F1, . . . , Fc+r constitute one ample example.

Proof of the claim. Abbreviate P := Fc+1,...,Fc+rPF1,...,Fc and v1,...,vηP := Fc+1,...,Fc+r ,ζv1 ,...,ζvη
PF1,...,Fc . Let

π : P(ΩP) −→ P be the canonical projection. Note that all the obtained symmetric differential
forms in Step 3 can be viewed as sections (when η = 0, we agree v1,...,vηP = P):

v1,...,vηωd ∈ H0(
v1,...,vηP,OP(ΩP)(n − η) ⊗ π∗v1,...,vηLd

)
, (43)
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where we always use d to denote auxiliary integers, and where all v1,...,vηLd < 0 are some negative
line bundles. Choose an ample Q-divisor S > 0 over P such that all v1,...,vηLd/(n− η) + S < 0 are
still negative. Then we claim that N := OP(ΩP)(1) ⊗ π∗S −1 is nef over P.

Indeed, for any irreducible curve C ⊂ P, if C lies in at least n ‘coordinate hyperplanes’ defined
by ζv1 , . . . , ζvn , then by Step 2 we see that C must contract to a point by π, thus N

∣∣∣
C
� OP(ΩP)(1)

∣∣∣
C

is
not only nef but ample. Assume now that C lies in at best η < n ‘coordinate hyperplanes’ defined
by ζv1 , . . . , ζvη (η could be zero). Since the base locus of all sections in (43) is discrete over the
‘coordinates nonvanishing part’ {ζr0 · · · ζrN−η , 0}, and C ∩ {ζr0 · · · ζrN−η , 0} is one-dimensional, we
can find some v1,...,vηωd such that v1,...,vηωd

∣∣∣
C
, 0. Thus the intersection number C · OP(ΩP)(n − η) ⊗

π∗v1,...,vηLd is > 0. Since v1,...,vηLd/(n − η) + S < 0, we immediately conclude that C ·N > 0.
Lastly, since S > 0 over P, there exists some large integer m � 1 such that P := OP(ΩP)(1) ⊗

π∗S m > 0 is positive over P(ΩP). In particular, it is also positive over P. Since ‘nef+ample=ample’,
we have m N + P > 0 over P, that is OP(ΩP)(1)

∣∣∣
P
> 0. �

Thus we conclude the proof. �

Finally, using the product coup, we obtain

Proof of Theorem 1.4. For every i = 1 · · · c + r, since Li is almost proportional to L , by Propo-
sition 6.1, there exist some positive integers si, li > 1, di > d0 such that L si

i = Ai ⊗L li ⊗L li di ,
where the line bundle Ai satisfies that Ai ⊗L li is very ample and that Ai ⊗L −2 li < 0 is negative.
In order to apply Theorem 6.3’, first of all, we need an

Observation 6.4. There exist some positive integers s̃1, . . . , s̃c+r, ` > 1 and d > d0 such that:

L s̃i
i = Ãi ⊗ L̃ ⊗ L̃ d, L s̃i+1

i = B̃i ⊗ L̃ ⊗ L̃ d
(i = 1 ··· c+r),

where L̃ := L ` is very ample, and where Ãi ⊗ L̃ , B̃i ⊗ L̃ are very ample, and where Ãi ⊗ L̃ −2,
B̃i ⊗ L̃ −2 are negative.

Proof. First, by Remark 6.2, we may assume that d1 = · · · = dc+r = d > d0.
Next, we may assume that l1 = · · · = lc+r = l. Otherwise, we can choose a positive integer l

which is divisible by l1, . . . , lc+r, then we receive
/
rewrite:

L si l/li
i =

(
Ai ⊗L li ⊗L li d)l/li = A l/li

i ⊗L l ⊗L l d
(i = 1 ··· c+r),

while A l/li
i ⊗L l =

(
Ai ⊗L li

)l/li remains very ample and also A l/li
i ⊗L −2 l =

(
Ai ⊗L −2 li

)l/li < 0.
Lastly, we can choose one large integer m � 1 such that, for all i = 1 · · · c + r, not only

Li ⊗ (Ai ⊗L l)m are very ample, but also Li ⊗ (Ai ⊗L −2 l)m < 0 are negative. Thus, the following
data:

` := m l, s̃i := m si, Ãi := A m
i , B̃i := Li ⊗A m

i (i = 1 ··· c+r)

satisfy the claimed observation. �

Now, we can set:

d = d(L1, . . . ,Lc+r,L ) = max16i6c+r
{
s̃i (s̃i − 1)

}
. (44)

For any integers d1, . . . , dc+r > d, all of them can be written as:

di = pi s̃i + qi (s̃i + 1) (i = 1 ··· c+r)

for some integers pi, qi > 0. Let every:

Fi := f i
1 · · · f i

pi
f i
pi+1 · · · f i

pi+qi
∈ H0 (

P, L di
i
)
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be a product of some sections:

f i
1, . . . , f i

pi
∈ H0 (

P, L s̃i
i
)
, f i

pi+1, . . . , f i
pi+qi

∈ H0 (
P, L s̃i+1

i
)

to be chosen, then the product coup reveals the decomposition:

Fc+1,...,Fc+rPF1,...,Fc = ∪k=0···c ∪16i1<···<ik6c ∪16vi j6pv j +qv j
j=1···k

∪{r1,...,rc−k}={1,...,c}\{i1,...,ik}
16w1

rl
<w2

rl
6prl +qrl

l=1···c−k

∪16u j6p j+q j
j=c+1···c+r

f r1
w1

r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r
P f i1

vi1
,..., f

ik
vik

.

Now, applying Theorem 6.3’, for generic choices of { f •• }, the Serre line bundle OP(ΩP)(1) is ample
on every subscheme f r1

w1
r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r
P f i1

vi1
,..., f

ik
vik

, and therefore is also ample on their union

Fc+1,...,Fc+rPF1,...,Fc . Since ampleness is a generic property in family, we conclude the proof. �

6.8. Effective lower degree bound NN2 of Theorem 1.2. Now, we provide an effective degree
estimate of Theorem 1.4 in the case L1 = · · · = Lc+r = L .

When N = 1, 2, Theorem 1.4 holds trivially for d = NN2
. When N > 3, denote the trivial line

bundle on P by 0P. Note that in Observation 6.4 we can take s̃1 = · · · = s̃c+r = d0 + 1, ` = 1, so
that:

L d0+1 = 0P ⊗L ⊗L d0 , L d0+2 = L ⊗L ⊗L d0

satisfy the requirements. Thus by (44) we can set:

d = d(L ) = max16i6c+r
{
s̃i (s̃i − 1)

}
= d0 (d0 + 1) = (NN2/2 − 1) NN2/2 < NN2

.

In particular, when r = 0, we recover Theorem 1.2.

7. Some Technical Details

7.1. Surjectivity of evaluation maps. Recalling the notation in Definition 3.1, at every closed
point z ∈ P, for every tangent vector ξ ∈ TP

∣∣∣
z
, we can choose any local trivialization (U, s) of the

line bundle S near point z, and then evaluate S , dS at (z, ξ) by:
S (z) (U, s) := S/s (z) ∈ K,

dS (z, ξ) (U, s) := d (S/s) (z, ξ) ∈ K.
If (U, s′) is another local trivialization of S , then we have the transition formula:(

S
dS

)
(z, ξ) (U, s) =

(
s′/s 0

d (s′/s) s′/s

)

︸             ︷︷             ︸
invertible

·
(

S
dS

)
(z, ξ) (U, s′) (45)

Thanks to the above identity, in assertions which do not depend on the particular choice of (U, s),
we can just write S (z), dS (z, ξ) by dropping (U, s).

Proposition 7.1. Let S be a very-ample line bundle over a smooth K-variety P. Then one has:
(i) at every closed point z ∈ P, for any nonzero tangent vector 0 , ξ ∈ TP

∣∣∣
z
, the evaluation

map: (
vz

dz(ξ)

)
: H0(P,S ) −→ K2

S 7−→ (
S (z),dS (z, ξ)

)T

is surjective;
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(ii) at every closed point z ∈ P, for any N = dim P linearly independent tangent vectors
ξ1, . . . , ξN ∈ TP

∣∣∣
z
, the evaluation map:



vz

dz(ξ1)
...

dz(ξN)


: H0(P,S ) −→ KN+1

S 7−→ (
S (z),dS (z, ξ1), . . . ,dS (z, ξN)

)T

is surjective.

Proof. We have the following three elementary observations.
(1) By transition formula (45), property (i) is independent of the choice of local trivialization

(U, s) of S near z, so it makes sense.
(2) In any fixed local trivialization (U, s) of S near z, by basic linear algebra, properties (i),

(ii) are equivalent to each other.
(3) Property (i) is the usual property of ‘very-ampleness’.

Thus we may conclude the proof by the reasoning ‘very-ampleness’ =⇒ (i)⇐⇒ (ii). �

Proposition 7.2. Let S be a very ample line bundle over a smooth K-variety P, and let A be any
line bundle over P with a nonzero section A , 0. Then, at every closed point z ∈ D(A) ⊂ P, for any
nonzero tangent vector 0 , ξ ∈ TP

∣∣∣
z
, the evaluation map:

(
A · vz

dz(A· )(ξ)
)

: H0(P,S ) −→ K2

S 7−→
(
(A · S ) (z),d(A · S ) (z, ξ)

)T

is surjective.

Proof. It is a direct consequence of the formula:
(

A · vz

dz(A· )(ξ)
)

=

(
A(z) 0

dA(z, ξ) A(z)

)

︸              ︷︷              ︸
invertible since A(z) , 0

·
(

vz

dz(ξ)

)

︸ ︷︷ ︸
surjective

[Leibniz’s rule]

and of the preceding proposition. �

7.2. Bertini-type assertions. Recalling (26) and that for all i = 1 · · · c+r the line bundles Ai⊗L εi

are very ample, we now fulfill the step 2 in the proof of Theorem 6.3. We start with
Observation 1. ‘Smooth complete’ is a Zariski open condition in family.
Observation 2. We only need to prove that, for generic choices of A•1,M

•;•
1 , the hypersurface

H1 = {F1 = 0} ⊂ P is smooth complete.

Proof. Indeed, replacing P by H1, we can repeat the same argument to choose A•2,M
•;•
2 , and so on.

Thus we know that there exists at least one choice of parameters A••,M
•;•
• such that X,V are both

smooth complete. Immediately, by Observation 1 above, it holds for generic choices of parameters.
Next, to show that generically v1,...,vηX is smooth complete, we can start with v1,...,vηP instead of

P, and use the same reasoning to conclude the proof. �
23



Observation 3. We can first set all M•;•
1 = 0, and then thanks to the following proposition, we can

find some appropriate A•1 such that H1 is smooth complete. Thus we finish the proof of step 2.

Proposition 7.3. Let P be a smooth K-variety of dimension N, and let A , B be two line bundles
over P. Assume that A is very ample, and that B has N + 1 global sections B0, . . . , BN having
empty common base locus. Then, for generic choices of parameters A0, . . . , AN ∈ H0(P,A ), the
section:

F =

N∑

j=0

A j B j ∈ H0 (P, A ⊗B)

defines a smooth complete subvariety.

Proof. Denoting M := ⊕N
j=0 H0(P,A ), then P(M ) stands for the projective parameter space of

t = (A0, . . . , AN). Now we introduce the universal subvariety:

S :=
{
([t], z) : Ft(z) = 0, dFt (z, ξ) = 0, ∀ ξ ∈ TP

∣∣∣
z

}
⊂ P(M ) × P

consisting of singular points. We claim that dim S < dimP(M ). It suffices to show that, for every
closed point z ∈ P, the fibre Sz ⊂ P(M ) × {z} � P(M ) over z satisfies that codim Sz > dim P.

Indeed, choose N linearly independent tangent vector ξ1, . . . , ξN at point z, and then consider the
formal K-linear map:

ev : M −→ KN+1

t 7−→ (
Ft(z),dFt (z, ξ1), . . . ,dFt (z, ξN)

)T
.

By Proposition 7.2, ev is surjective. Note that Sz ⊂ P(M ) consists of points [t] ∈ P(M ) such that
ev(t) = 0. Thus we see that:

codim Sz = codim
({0} ⊂ KN+1) = N + 1 > N = dim P. �

We will see in the proof of Proposition 7.6 that the Core Lemma of MCM plays the same role
as that of the above underlined codimension equality

/
estimate.

7.3. Emptiness of the base loci. Recalling (41), (42), in order to characterize the base loci

BS, v1,...,vηBS ⊂ P(ΩP),

we introduce the following subvarieties (cf. [5, p. 62, (148)]):

M a
b ⊂ Matb×2(a+1)(K) (∀ 26 a6 b)

consisting of all b × 2(a + 1) matrices (α0 | α1 | · · · | αa | β0 | β1 | · · · | βa) such that:

(i) the sum of all 2a + 2 colums is zero:

α0 + α1 + · · · + αa + β0 + β1 + · · · + βa = 0; (46)

(ii) for every ν = 0 · · · a, there holds the rank inequality:

rankK
{
α0, . . . , α̂ν, . . . , αa, αν + (β0 + β1 + · · · + βa)

}
6 a − 1; (47)

(iii) for every τ = 0 · · · a − 1, for every ρ = τ + 1 · · · a, there holds:
rankK

{
α0 + β0, α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αa, αρ + (βτ+1 + · · · + βa)

}
6 a − 1. (48)
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From now on, we only consider the closed points in each scheme. For instance, we shall regard:

P(ΩP) =
{
(z, [ξ]) : ∀ z ∈ P, ξ ∈ TP

∣∣∣
z

}
.

By the same reasoning as in [5, Proposition 9.3], we get:

Proposition 7.4. For generic choices of parameters A••,M
•;•
• , a point:

(z, [ξ]) ∈ P(ΩP) \ {ζ0 · · · ζN , 0}
lies in BS if and only if:

[recall (29)] M (z, ξ) ∈M N
2c+r. �

Now, we introduce the engine of MCM (slightly different from the original [5, Lemma 9.5]):

Core Lemma. For all positive integers 2 6 a 6 b, there hold the codimension estimates:

codim M a
b > a + b − 1. �

‘Naive proof’. First of all, the equation (46) eliminates the first variable column:

α0 = − (α1 + · · · + αa + β0 + β1 + · · · + βa),

so it contributes codimension value b. Next, denoting S i :=
∑a

j=i β j for i = 0 · · · a, we may rewrite
the restriction (47) as:

rankK
{
α0, . . . , α̂ν, . . . , αa, αν + S 0

}
6 a − 1 (ν= 0 ··· a).

By (46), the sum of all columns above vanishes, hence we can drop the first column and state it
equivalently as:

rankK
{
α1, . . . , α̂ν, . . . , αa, αν + S 0

}
6 a − 1 (ν= 0 ··· a). (49)

Similarly, we can reformulate (48) equivalently as:

rankK
{
α1 + S 1 − S 2, . . . , ατ + S τ − S τ+1,ατ+1, . . . , α̂ρ, . . . , αa, αρ + S τ+1

}
6 a − 1

(τ= 0 ··· a−1, ρ= τ+1 ··· a).
(50)

Observe in (49), (50) that the variable columns S 0, . . . , S a have distinct status, and moreover that
for i = 1 · · · a, subsequently, each variable S i satisfies nontrivial new equations involving only the
former variables α•, S 1, . . . , S i−1. Thus, the restrictions (49), (50) shoud contribute at least a + 1
codimension value. Summarizing, we should have:

codim M a
b > b + (a + 1) > a + b − 1. �

Remark 7.5. However, a rigorous proof (cf. [5, Subsection 10.6]) is much more demanding and
delicate, because of the unexpected algebraic complexity behind (cf. [5, Subsection 10.7]).

Thereby, we can exclude positive-dimensional base locus in Proposition 7.4.

Proposition 7.6. For generic choices of parameters A••,M
•;•
• , the base locus over the ‘coordinates

nonvanishing part’:
BS \ {ζ0 · · · ζN , 0}

is discrete or empty.
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Proof. The proof goes much the same as that of Proposition 7.3, in which the underlined codimen-
sion estimate is replaced by:

codim M N
2c+r > N + 2c + r − 1 [by the Core Lemma]

[use 2c + r > N] > N + N − 1
[exercise] = dimP(ΩP)

[,] = dim
(
P(ΩP) \ {ζ0 · · · ζN , 0}).

For the remaining details, we refer the reader to [5, Propositions 9.6, 9.7]. �

This is exactly the first emptiness assertion on the base loci in Subsection 6.5. By much the
same reasoning, we can also establish the second one there (cf. [5, Proposition 9.11]).
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ON THE AMPLENESS
OF THE COTANGENT BUNDLES
OF COMPLETE INTERSECTIONS

SONG-YAN XIE

Abstract. For the intersection family X of general Fermat-type hypersurfaces in PN
K defined over

an algebraically closed field K, we extend Brotbek’s symmetric differential forms by a geometric
approach, and we further exhibit unveiled families of lower degree symmetric differential forms on
all possible intersections of X with coordinate hyperplanes.

Thereafter, we develop what we call the ‘moving coefficients method’ to prove a conjecture made
by Olivier Debarre: for a generic choice of c > N/2 hypersurfaces H1, . . . ,Hc ⊂ PN

C
of degrees

d1, . . . , dc sufficiently large, the intersection X := H1 ∩ · · · ∩Hc has ample cotangent bundle ΩX , and
concerning effectiveness, the lower bound d1, . . . , dc > NN2

works.
Lastly, thanks to known results about the Fujita Conjecture, we establish the very-ampleness of

Symκ ΩX for all κ > κ0, with a uniform lower bound κ0 = 64
(∑c

i=1 di

)2
.

1. Introduction

The goal of this article is to answer the Debarre Ampleness Conjecture.

Theorem 1.1. The cotangent bundle ΩX of the complete intersection X := H1 ∩ · · · ∩ Hc ⊂ PN
C of

c > N/2 generic hypersurfaces H1, . . . ,Hc with degrees > NN2
is ample.

Precisely, ampleness means that, for all large k > k0 � 1, for all pairs of distinct points x, y ∈ X,
the two evaluation maps:

H0 (
X, Symk ΩX

)
� Jet1 Symk ΩX

∣∣∣
x
, H0 (

X,Symk ΩX
)
� Symk ΩX

∣∣∣
x
⊕ Symk ΩX

∣∣∣
y

are both surjective, where Jet1 E
∣∣∣
x

:= Ox(E)
/

(mx)2 Ox(E) for every vector bundle E over X.
The hypothesis c > N/2 appears optimal, for otherwise H0(X,Symk ΩX

)
= 0 for all k > 1,

according to Brückmann-Rackwitz [3] and Schneider [15].
As highlighted in [4], projective algebraic varieties X with ample cotangent bundles have several

interesting properties, for instance, the canonical line bundles of all subvarieties of X are ample;
there are finitely many nonconstant rational maps from any fixed projective variety to X ([14]); if
X is defined over C, then every holomorphic map C → X must be constant ([9]); if X is defined
over a number field K, the K-rational points of X are conjectured by Lang to be finite ([10], [13]).

In [1], Brotbek reached a proof of the Debarre Ampleness Conjecture for complex surfaces:
dimC X = N − c = 2. Recently, Brotbek [2] constructed explicit global symmetric differential

2010 Mathematics Subject Classification. 14D99, 14F10, 14M10, 14M12, 15A03, 32Q45.
Key words and phrases. Debarre Ampleness Conjecture, Complete intersection, Cotangent bundle, Symmetric

differential form, Moving Coefficients Method, Base locus, Core Lemma.
This work was supported by the Fondation Mathématique Jacques Hadamard through the grant No ANR-10-

CAMP-0151-02 within the “Programme des Investissements d’Avenir”.
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forms in coordinates by a cohomological approach, and thereby proved the Debarre Ampleness
Conjecture in the case 4c > 3 N − 2 for equal degrees d1 = · · · = dc > 2N + 3.

In this article, we work over an algebraically closed field K with any characteristic. Our main
theorem is the following, which coincides with Theorem 1.1 for r = 0 and K = C.

Theorem 1.2 (Ampleness). For all positive integers N > 1, for any nonnegative integers c, r > 0
with 2c + r > N, for all large integers d1, . . . , dc, dc+1, . . . , dc+r > NN2

, for generic choices of c + r
hypersurfaces H1, . . . ,Hc+r ⊂ PN

K with the corresponding degrees d1, . . . , dc+r, the cotangent bundle
ΩV of the intersection of the first c hypersurfaces V := H1 ∩ · · · ∩ Hc restricted to the intersection
of all the c + r hypersurfaces X := H1 ∩ · · · ∩ Hc ∩ Hc+1 ∩ · · · ∩ Hc+r is ample.

When 2 (2c + r) > 3N − 2, we obtain a linear bound for equal degrees d1 = · · · = dc+r > 2N + 3,
hence we recover the previous lower bound of Brotbek in the case r = 0, and we also obtain a
quadratic bound for all large degrees d1, . . . , dc+r > (3N + 2) (3N + 3). More information on the
lower degree bound NN2

will be given in Section 12.

Lastly, taking account of known results about the Fujita Conjecture in Complex Geometry (cf.
the survey [5]), we will prove in Section 13 the following

Theorem 1.3 (Effective Very Ampleness). Under the same assumption and notation as in the
Ampleness Theorem 1.2, if in addition the ambient field K has characteristic zero, then for generic
choices of H1, . . . ,Hc+r, the restricted cotangent bundle Symκ ΩV

∣∣∣
X

is very ample on X, for every

κ > κ0, with the uniform lower bound κ0 = 16
(∑c

i=1 di +
∑c+r

i=1 di

)2
.

Concerning organization, we provide basic preliminaries in Sections 2, 3, 4. In Section 5, we
present the proof blueprint of Theorem 1.2, which extends the previous method of [2] by adding
new ingredients in four aspects as follows.

As a matter of fact, our initial idea is to reconstruct Brotbek’s symmetric differential forms [2,
Lemma 4.5] by means of a geometric approach, which turns out to be fruitful in that, not only
we obtain symmetric forms on intersections of general Fermat-type hypersurfaces, but also in
that we discover unveiled symmetric forms on all possible further intersections with coordinate
hyperplanes — see Section 6.

Fundamentally, our central idea is to design more ‘flexible’ hypersurfaces than the pure Fermat-
type ones of [2], so that we can construct many more negatively twisted symmetric differential
forms. To this aim, we develop the moving coefficients method (MCM) in Section 7. Then, we
devote Section 8 to control the base locus of the obtained symmetric forms over the part where all
coordinates are nonvanishing. Lastly, the ultimate difficulty lies in the Core Lemma, whose proof
constitutes the technical heart of this article, and which will be accomplished in Section 11.

Playing an essential role, another key idea is to make use of symmetric differential forms con-
structed over the part where some coordinates vanish, a new feature which removes the last obsta-
cle towards ampleness, and that therefore determines the shape of our desired hypersurfaces — see
Section 9.

Surprisingly, one neat idea, which we term product coup, enables us to construct ample exam-
ples of intersections of hypersurfaces with any large degrees. This settles the Debarre Ampleness
Conjecture and shapes the formulation of our main theorem — see Subsection 5.4.

Finally, we achieve the effective degree estimates of Theorem 1.2 in Section 12.
For shortness, we will often refer to the long version [16] for skipped details.
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2. Restatements of the Ampleness Theorem 1.2

Recalling the projective parameter space of c + r hypersurfaces with degrees d1, . . . , dc+r > 1 is:

P
(
⊕c+r

i=1 H0(PN
K,OPN

K
(di)

))
= P

{
⊕c+r

i=1

∑

|α|=di

Ai
α zα : Ai

α ∈ K
}
,

for shortness we write it as:

P♦K = ProjK
[{Ai

α}16i6c+r
|α|=di

]
. (1)

First, we introduce the two subschemes:

X ⊂ V ⊂ P♦K ×K PN
K,

where X is the family of intersections of all the c + r hypersurfaces:

X := V
( ∑

|α|=d1

A1
α zα, . . . ,

∑

|α|=dc

Ac
α zα,

∑

|α|=dc+1

Ac+1
α zα, . . . ,

∑

|α|=dc+r

Ac+r
α zα

)
, (2)

and where V is the family of intersections of the first c hypersurfaces:

V := V
( ∑

|α|=d1

A1
α zα, . . . ,

∑

|α|=dc

Ac
α zα

)
. (3)

Now, let pr1, pr2 be the two canonical projections of P♦K ×K PN
K onto its two components. By

restricting pr1

∣∣∣
V

: V → P♦K, we receive the sheaf Ω1
V /P♦K

of relative differentials of degree 1 of V

over P♦K, which should be viewed as the family of cotangent bundles of the intersections. Then,
we consider the projectivization P

(
Ω1

V /P♦K

)
, equipped with the Serre line bundle OP(Ω1

V /P♦
K

)(1) on it.

Recalling the cotangent bundle Ω1
PN
K

of PN
K and its projectivization P(Ω1

PN
K

), now looking at:

P(Ω1
V /P♦K

)

��

� � ĩ // P♦K ×K P(Ω1
PN
K

)
π̃∗2 //

��

P(Ω1
PN
K

)

V �
� i // P♦K ×K PN

K,

(4)

we see that OP(Ω1
V /P♦

K

)(1) is the pullback of π̃∗2 OP(Ω1
PN
K

)(1) by ĩ, where OP(Ω1
PN
K

)(1) is the Serre line

bundle of P(Ω1
PN
K

).

Next, let π̃ : P♦K ×K P(Ω1
PN
K

) → P♦K ×K PN
K be the canonical projection, and let π1, π2 be the com-

positions of π̃ with pr1, pr2:
3



P♦K ×K P(Ω1
PN
K

)

π1:=pr1◦π̃

��

π2:=pr2◦π̃

��

π̃

��
P♦K ×K PN

K

pr1
yy

pr2
%%

P♦K PN
K.

(5)

Let:
P := π̃−1(X ) ∩ P(Ω1

V /P♦K
) ⊂ P(Ω1

V /P♦K
) ⊂ P♦K ×K P(Ω1

PN
K

) (6)

be the ‘pullback’ of X ⊂ V ⊂ P♦K ×K PN
K under the map π̃, and let:

OP(1) := OP(Ω1
V /P♦

K

)(1)
∣∣∣
P = π̃∗2 OP(Ω1

PN
K

)(1)
∣∣∣
P (7)

be the restricted Serre line bundle. Then, Theorem 1.2 can be reformulated as below, with the
assumption that the hypersurface degrees are sufficiently large d1, . . . , dc+r � 1.
Theorem 1.2 (Version A). For a generic point t ∈ P♦K, over the fibre Pt := π−1

1 (t)∩P, the restricted
Serre line bundle OPt(1) := OP(1)

∣∣∣
Pt

is ample.

We will abbreviate every closed point t =
[{Ai

α}16i6c+r
|α|=d

] ∈ P♦K as t = [F1 : · · · : Fc+r], where

Fi :=
∑
|α|=di

Ai
α zα. Then Pt = {t} ×K Fc+1,...,Fc+r PF1,...,Fc for a uniquely defined subscheme:

Fc+1,...,Fc+r PF1,...,Fc ⊂ P
(
Ω1
PN
K

)
. (8)

Theorem 1.2 (Version B). For a generic closed point [F1 : · · · : Fc+r] ∈ P♦K, the Serre line bundle
OP(Ω1

PN
K

)(1) is ample on Fc+1,...,Fc+r PF1,...,Fc .

To understand better the above statements, we now show the geometric picture.

3. The Background Geometry

For each scheme mentioned above, we consider its underlying topological space (K-variety) that
consists of all the closed points.

3.1. The geometry of P(Ω1
PN
K

) and OP(Ω1
PN
K

)(1). Recalling the tangent space of PN
K at every point [z]

is TPN
K

∣∣∣
[z]

= KN+1/K · z, thus the total tangent space of PN
K is TPN

K
:= ThorK

N+1/ ∼, where:

ThorK
N+1 :=

{
(z, [ξ]) : z ∈ KN+1 \ {0} and [ξ] ∈ KN+1/K · z

}
, (9)

and where the quotient relation is (z, [ξ]) ∼ (λz, [λξ]), for all λ ∈ K×.
Note that the K-variety associated to P(Ω1

PN
K

) is just the projectivized tangent space P(TPN
K
). Also,

the Serre line bundle OP(Ω1
PN
K

)(1) on P(Ω1
PN
K

) corresponds to the Serre line bundle OP(T
PN
K

)(1) on

P(TPN
K
), whose dual is the tautological line bundle OP(T

PN
K

)(−1) defined by:

OP(T
PN
K

)(−1)
∣∣∣
([z],[ξ])

:= K · [ξ] ⊂ TPN
K

∣∣∣
[z]

= KN+1
/
K · z (∀ ([z],[ξ]) ∈P(T

PN
K

) ).
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3.2. The geometry of P(Ω1
V /P♦K

), P and Pt. Recalling (3), the K-variety of V is:

V :=
{(

[F1, . . . , Fc+r], [z]
) ∈ P♦K × PN

K : Fi(z) = 0, ∀ i = 1 · · · c
}
.

Moreover, recalling (4), the K-variety of P(Ω1
V /P♦K

) ⊂ P♦K ×K P(Ω1
PN
K

) is:

P(TV/P♦K ) :=
{(

[F1, . . . , Fc+r], ([z], [ξ])
) ∈ P♦K × P(TPN

K
) : Fi(z) = 0, dFi

∣∣∣
z(ξ) = 0, ∀ i = 1 · · · c

}
.

Similarly, the K-variety P ⊂ P(TV/P♦K) associated to P ⊂ P(Ω1
V /P♦K

) is:

P :=
{(

[F1, . . . , Fc+r], ([z], [ξ])
)

: Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0, ∀ i = 1 · · · c + r,∀ j = 1 · · · c

}
,

and the K-variety Fc+1,...,Fc+rPF1,...,Fc ⊂ P(TPN
K
) associated to (8) is:

Fc+1,...,Fc+rPF1,...,Fc :=
{
([z], [ξ]) : Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0, ∀ i = 1 · · · c + r, ∀ j = 1 · · · c

}
. (10)

4. Some Hints on the Ampleness Theorem 1.2

4.1. Ampleness is Zariski open. The foundation of our approach is the following theorem due to
Grothendieck (cf. [6, III.4.7.1], [11, p. 29, Theorem 1.2.17]).

Theorem 4.1. [Amplitude in families] Let f : X → T be a proper morphism of schemes, and let
L be a line bundle on X. For every point t ∈ T, denote by Xt := f −1(t) and Lt := L

∣∣∣
Xt

. If L0 is
ample on X0 for some point 0 ∈ T, then there exists a Zariski open set U ⊂ T containing 0 such
that Lt is ample on Xt, for all t ∈ U.

Note that in (5), π1 = pr1 ◦ π is proper, and so is its restriction to P. Therefore, by virtue of the
above theorem, one only needs to find one point t ∈ P♦K such that OPt(1) is ample on Pt.

4.2. Largely twisted Serre line bundle is (very) ample. Let π0 : P(Ω1
PN
K

)→ PN
K be the canonical

projection. By a classical result [8, p. 161, Proposition 7.10], for all large integers ` � 1, the
twisted line bundle OP(Ω1

PN
K

)(1) ⊗ π∗0 OPN
K
(`) is ample on P(Ω1

PN
K

).

In fact, one can check by hand that, for all ` > 3, the following global sections:

zk z`−1
j d

( zi

z j

)
(i, j, k = 0 ···N, i, j) (11)

even guarantee the very-ampleness.
Consequently, when ` > 3, for every point t ∈ P♦K, the positively twisted Serre line bundle

OPt(1) ⊗ π∗2OPN
K
(`) is (very) ample on Pt = π−1

1 (t) ∩ P.

4.3. Nefness of negatively twisted cotangent sheaf suffices. Thanks to the above ampleness,
now we may relax the ampleness goal mentioned below Theorem 4.1.

Theorem 4.2. For every point t ∈ P♦K, the following properties are equivalent.

(i) OPt(1) is ample on Pt.
(ii) There exist two positive integers a, b > 1 such that OPt(a) ⊗ π∗2OPN

K
(−b) is ample on Pt.

(iii) There exist two positive integers a, b > 1 such that OPt(a) ⊗ π∗2OPN
K
(−b) is nef on Pt.

Proof. (i) =⇒ (ii) =⇒ (iii) is clear. To show (iii) =⇒ (i), noting that “ample ⊗ nef = ample”
(cf. [11, p. 53, Corollary 1.4.10]), one can use any ample positively twisted Serre line bundle to
compensate the negative twisted degree of the nef line bundle. �
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Repeating the same reasoning, we may obtain:

Proposition 4.3. For every point t ∈ P♦K, if OPt(`1) ⊗ π∗2OPN
K
(−`2) is nef on Pt for some positive

integers `1, `2 > 1, then for any positive integers `′1, `
′
2 > 1 with `′2/`

′
1 < `2/`1, the twisted line

bundle OPt(`
′
1) ⊗ π∗2OPN

K
(−`′2) is ample on Pt. �

By definition, the nefness of S a
t (−b) := OPt(a) ⊗ π∗2OPN

K
(−b) means that, for every irreducible

curve C ⊂ Pt, the intersection number C · S a
t (−b) is > 0. Recalling now a classical result [8,

p. 295, Lemma 1.2], one only needs to show H0(C,S a
t (−b)

)
, {0}. To this end, one would desire

sufficiently many global nonzero sections s1, . . . , sm ∈ H0(Pt,S a
t (−b)

)
such that their base locus is

empty or discrete, whence one of s1

∣∣∣
C
, . . . , sm

∣∣∣
C

suffices to conclude.
More flexibly, without fixing a and b, we have

Theorem 4.4. Suppose that there exist some m > 1 nonzero sections:

si ∈ H0(Pt,S
ai

t (−bi)
)

(i = 1 ···m; ai, bi > 1)

such that their base locus is discrete or empty, then for all positive integers a, b with:

b/a 6 min
{
b1/a1, . . . , bm/am

}
,

the negatively twisted Serre line bundle S a
t (−b) is nef. �

5. A Proof Blueprint of the Ampleness Theorem 1.2

5.1. Main Nefness Theorem. Recalling Theorem 4.2, the Ampleness Theorem 1.2 is a conse-
quence of the theorem below, whose effective bound d0(r) for r = 1 will be given in Theorem 12.2.

Theorem 5.1. Given any positive integer r > 1, there exists a lower degree bound d0(r) � 1 such
that, for all degrees d1, . . . , dc+r > d0(r), for a very generic1 t ∈ P♦K, the negatively twisted Serre
line bundle OPt(1) ⊗ π∗2OPN

K
(−r) is nef on Pt.

It suffices to find one such t ∈ P♦K to guarantee‘very generic’ (cf. [11, p. 56, Proposition 1.4.14]).

We will prove Theorem 5.1 in two steps. At first, in Subsection 5.3, we sketch the proof in the
central cases when all c + r hypersurfaces are approximately of the same large degrees. Then, in
Subsection 5.4, we play a product coup to embrace all large degrees.

5.2. A refined nefness criterion. In practice, it is delicate to gather enough global sections with
empty

/
discrete base locus to guarantee the desired nefness. To overcome this difficulty, we will

also use nonzero sections of the same bundle restricted to proper subvarieties, and such an idea
will be a key feature of our approach compared with that of [2].

Definition 5.2. Let X be a variety, and let Y ⊂ X be a subvariety. A line bundle L on X is said to
be nef outside Y if, for every irreducible curve C ⊂ X with C 1 Y , the intersection number C ·L
is > 0.

A standard reasoning on irreducibility and Noetherian topology gives ([16, p. 16, Theorem 4.6])

Theorem 5.3. Let X be a Noetherian variety, and let L be a line bundle on X. Assume that there
exists a set P of closed subvarieties of X satisfying:

(i) ∅ ∈P and X ∈P;

1 t ∈ P♦K \ ∪∞i=1 Zi for some countable proper subvarieties Zi $ P
♦
K.

6



(ii) for every element Y ∈P with Y , ∅, there exist finitely many elements Z1, . . . ,Zm ∈P with
Z1, . . . ,Zm $ Y such that the restricted line bundle L

∣∣∣
Y

is nef outside the union Z1∪· · ·∪Zm.
Then L is nef on X. �

5.3. The central cases of relatively the same large degrees.

Theorem 5.4. For any fixed c + r positive integers ε1, . . . , εc+r > 1, for every sufficiently large
integer d � 1, Theorem 5.1 holds with di = d + εi, i = 1 · · · c + r.

When c + r > N, generically X is discrete or empty, so there is nothing to prove. Assuming
c + r 6 N − 1, we now outline the proof.

Step 1. In the entire family of c+r hypersurfaces with degrees d+ε1, . . . , d+εc+r, whose projective
parameter space is P♦K, we will work with some specific subfamily which suits our coming moving
coefficients method, and whose projective parameter space will be denoted by P©

K ⊂ P♦K. The
presentation of P©

K will be made partially in Section 7, and then completely in Subsection 9.2.

Recalling (2) and (5), we then consider the subfamily of intersections Y ⊂X :

pr−1
1

(
P©
K

) ∩ X =: Y ⊂ P©
K ×K PN

K = pr−1
1

(
P©
K

)
.

Recalling (5), (6), we introduce the subscheme P′ := π̃−1(Y ) ∩ P ⊂ P. By restriction, (5) yields
the commutative diagram:

P′

π1 = pr1◦π̃

��

π2 = pr2◦π̃

��

π̃
��

Y

pr1~~ pr2   
P©
K PN

K.

(12)

Introducing the restricted Serre line bundle OP′(1) := OP(1)
∣∣∣
P′ over P′, in order to establish

Theorem 5.4, it suffices to prove the

Theorem 5.5. For a generic closed point t ∈ P©
K, the bundle OP′t(1)⊗π∗2OPN

K
(−r) is nef on P′t := Pt.

Step 2. The central objects now are the universal negatively twisted Serre line bundles:

OP′(a, b,−c) := OP′(a) ⊗ π∗1 OP©
K
(b) ⊗ π∗2 OPN

K
(−c),

where a, c are positive integers such that c/a > r, and where b are any integers.
Using the moving coefficients method, we will firstly construct a series of global universal neg-

atively twisted symmetric differential n-forms:

S ` ∈ H0(P′, OP′(n,N,−♥`)) (`= 1 ···d), (13)

where n := N − (c + r) > 1 and all ♥`/n > r, and where we always use the symbol ‘d’ to denote
auxiliary positive integers, which vary according to the context.

Secondly, for every integer 1 6 η 6 n − 1, for every 0 6 v1 < · · · < vη 6 N, considering:

v1,...,vηP
′ := P′ ∩ π−1

2 {zv1 = · · · = zvη = 0},
we will construct a series of universal negatively twisted symmetric differential (n − η)-forms:

v1,...,vηS ` ∈ H0(
v1,...,vηP

′, OP′(n − η,N − η,− v1,...,vη♥`)
)

(`= 1 ···d), (14)
7



with all v1,...,vη♥`/(n − η) > r.
This step will be accomplished partially in Section 7, and then completely in Section 9, and thus

determines the Algorithm of MCM in Subsection 12.1.

Step 3. From now on, we only consider the closed points of every scheme.
Firstly, we will control the base locus of all the global sections obtained in (13):

BS := Base Locus of {S `}16`6d ⊂ P′ (15)

by proving that, on the ‘coordinates nonvanishing part’ P′
◦

:= P′ ∩ π−1
2 {z0 · · · zN , 0}, there holds:

dim BS ∩ P′
◦
6 dimP©

K. (16)

Secondly, for η = 1 · · · n − 1, we will control the base locus of all the sections obtained in (14):

v1,...,vηBS := Base Locus of {v1,...,vηS `}16`6d ⊂ v1,...,vηP
′.

by proving that, on v1,...,vηP′
◦

:= v1,...,vηP′ ∩ π−1
2 {zr0 · · · zrN−η , 0}, where:

{r0, . . . , rN−η} := {0, . . . ,N} \ {v1, . . . , vη} , (17)

there holds:
dim v1,...,vηBS ∩ v1,...,vηP

′◦ 6 dimP©
K. (18)

This step will be performed mainly by the Core Lemma in Section 8.

Step 4. For the regular map π1 : P′ → P©
K, noting the dimension estimates (16), (18), applying

now a classical theorem [7, p. 132, Theorem 11.12], we know that there exists a proper subvariety
Σ $ P©

K such that, for every closed point t ∈ P©
K \ Σ:

(i) the base locus of the restricted symmetric differential n-forms:

BSt := Base Locus of
{
S `(t) := S `

∣∣∣
P′t

}
16`6d ⊂ P′t

is discrete or empty over the coordinates nonvanishing part:

dim BSt ∩ P′
◦

t 6 0, (19)

where P′
◦

t := P′
◦ ∩ π−1

1 (t);
(ii) for η = 1 · · · n − 1, the base locus of the restricted symmetric differential (n − η)-forms:

v1,...,vηBSt := Base Locus of
{

v1,...,vηS `(t) := v1,...,vηS `

∣∣∣
v1 ,...,vηP′t

}
16`6d

⊂ v1,...,vηP
′
t

is discrete or empty over the coordinates nonvanishing part:

dim v1,...,vηBSt ∩ v1,...,vηP
′◦
t 6 0, (20)

where v1,...,vηP′
◦

t := v1,...,vηP′
◦ ∩ π−1

1 (t).

Lastly, for η = n, there exists a proper subvariety Σ′ $ P©
K such that, for every closed point

t ∈ P©
K\Σ′, the fibre Yt := Y ∩pr−1

1 (t) — corresponding to the intersection of the c+r hypersurfaces
defined by t in PN

K — is of dimension n = N − (c + r), and moreover all intersections:

Yt ∩ pr−1
2

(
v1,...,vnP

N)
= {t} × v1,...,vnYt (06 v1 < ···< vn 6N) (21)

are just finitely many points.
Now, we shall conclude Theorem 5.5 for every closed point t ∈ P©

K \ (Σ ∪ Σ′).
8



Proof of Theorem 5.5. For the line bundle L = OP′t (1) ⊗ π∗2OPN
K
(−r) over the variety P′t , we claim

that the set of subvarieties:

V :=
{
∅, P′t , v1,...,vηP

′
t

}
16η6n

06v1<···<vη6N

satisfies the conditions of Theorem 5.3.
Indeed, firstly, recalling (19), the sections {S `(t)}`=1···d have empty

/
discrete base locus over the

coordinates nonvanishing part, i.e. outside ∪N
j=0 jP′t . Hence, using an adaptation of Theorem 4.4,

remembering r/1 6 min {♥`/n}16`6d , the line bundle OP′t (1) ⊗ π∗2 OPN (−r) is nef outside ∪N
j=0 jP′t .

Secondly, for every integer η = 1 · · · n − 1, recalling the dimension estimate (20), again by
Theorem 4.4, remembering r/1 6 min {v1,...,vη♥`/(n− η)}16`6d, the line bundle OP′t (1) ⊗ π∗2 OPN (−r)
is nef on v1,...,vηP′t outside ∪N−η

j=0 v1,...,vη,r jP′t (see (17)).
Lastly, for η = n, noting that under the projection π : P′t → Yt, thanks to (21), every subvari-

ety v1,...,vnP′t contracts to discrete points v1,...,vnYt, we see that on v1,...,vnP′t , the line bundle OP′t (1) ⊗
π∗2OPN

K
(−r) � OP′t (1) is not only nef, but also ample!

Summarizing the above three parts, by Theorem 5.3, we conclude the proof. �

5.4. Product Coup. We will use in an essential way Theorem 5.4 with all εi equal to either 1 or
2. To begin with, we need an elementary

Observation 5.6. For all positive integers d > 1, every integer d0 > d2 + d is a sum of nonnegative
multiples of d + 1 and d + 2. �

Proof of Theorem 5.1. Take one sufficiently large integer d such that Theorem 5.4 holds for any
integers εi ∈ {1, 2}, i = 1 · · · c + r. Now, the above observation says that all large degrees
d1, . . . , dc+r > d2 + d can be written as di = pi (d + 1) + qi (d + 2), with some nonnegative in-
tegers pi, qi > 0, i = 1 · · · c + r. Let Fi := f i

1 · · · f i
pi

f i
pi+1 · · · f i

pi+qi
be a product of some pi homo-

geneous polynomials f i
1, . . . , f i

pi
each of degree d + 1 and of some qi homogeneous polynomials

f i
pi+1, . . . , f i

pi+qi
each of degree d + 2, so that Fi has degree di.

Recalling (10), a point ([z], [ξ]) ∈ P(TPN
K
) lies in Fc+1,...,Fc+rPF1,...,Fc if and only if:

Fi(z) = 0, dF j

∣∣∣
z
(ξ) = 0 (∀ i = 1 ··· c+r,∀ j = 1 ··· c).

Note that, for every j = 1 · · · c, the pair of equations:

F j(z) = 0, dF j

∣∣∣
z
(ξ) = 0 (22)

is equivalent to either:

∃ 1 6 v j 6 p j + q j s.t. f j
v j

(z) = 0, d f j
v j

∣∣∣
z
(ξ) = 0, (23)

or to:

∃ 1 6 w1
j < w2

j 6 p j + q j s.t. f j
w1

j
(z) = 0, f j

w2
j
(z) = 0. (24)

Therefore, ([z], [ξ]) ∈ Fc+1,...,Fc+rPF1,...,Fc is equivalent to say that there exists a subset {i1, . . . , ik} ⊂
{1, . . . , c} of cardinality k (k = 0 for ∅) such that, firstly, for every index j ∈ {i1 · · · ik}, (z, ξ) is a
solution of (22) of type (23), secondly, for every index j ∈ {1, . . . , c} \ {i1 · · · ik}, (z, ξ) is a solution
of (22) of type (24), and lastly, for every j = c + 1 · · · c + r, one of f j

1 , . . . , f j
p j+q j

vanishes at z. Thus,
9



we see that the variety Fc+1,...,Fc+rPF1,...,Fc actually decomposes into a union of subvarieties:

Fc+1,...,Fc+rPF1,...,Fc = ∪k=0···c ∪16i1<···<ik6c ∪16vi j6pv j +qv j
j=1···k

∪{r1,...,rc−k}={1,...,c}\{i1,...,ik}
16w1

rl
<w2

rl
6prl +qrl

l=1···c−k

∪16u j6p j+q j
j=c+1···c+r

f r1
w1

r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r
P f i1

vi1
,..., f

ik
vik

.

Similarly, we can show that the scheme Fc+1,...,Fc+r PF1,...,Fc also decomposes into a union of sub-
schemes:

Fc+1,...,Fc+r PF1,...,Fc = ∪k=0···c ∪16i1<···<ik6c ∪16vi j6pv j +qv j
j=1···k

∪{r1,...,rc−k}={1,...,c}\{i1,...,ik}
16w1

rl
<w2

rl
6prl +qrl

l=1···c−k

∪16u j6p j+q j
j=c+1···c+r

f r1
w1

r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r

P f i1
vi1
,..., f

ik
vik

.

Note that, for each subscheme on the right hand side, the number of polynomials on the lower-left
of ‘P’ is #L = 2(c−k)+r, and the number of polynomials on the lower-right is #R = k, whence 2#R+

#L = 2c+r > N. Now, applying Theorem 5.4, we can choose one { f •• }•,• such that the twisted Serre
line bundle OP(Ω1

PN
K

)(1)⊗π∗0 OPN
K
(−r) is nef on each subscheme f r1

w1
r1
, f r1

w2
r1
,..., f

rc−k
w1

rc−k
, f

rc−k
w2

rc−k
, f c+1

uc+1 ,..., f
c+r
uc+r

P f i1
vi1
,..., f

ik
vik

,

and therefore is also nef on their union Fc+1,...,Fc+r PF1,...,Fc . Since nefness is a very generic property
in family, we conclude the proof. �

6. Generalizations of Brotbek’s Symmetric Differential Forms

6.1. Preliminaries on symmetric differential forms in projective space. For three fixed integers
N > 2, c, r > 0 such that 2c + r > N and c + r 6 N − 1, for c + r positive integers d1, . . . , dc+r,
for all i = 1 · · · c + r, let Hi ⊂ PN

K be c + r hypersurfaces defined by some degree di homogeneous
polynomials Fi ∈ K[z0, . . . , zN]. Let V be the intersection of the first c hypersurfaces:

V := H1 ∩ · · · ∩ Hc =
{
[z] ∈ PN

K : Fi(z) = 0, ∀ i = 1 · · · c
}
, (25)

and let X be the intersection of all the c + r hypersurfaces:

X := H1 ∩ · · · ∩ Hc+r =
{
[z] ∈ PN

K : Fi(z) = 0, ∀ i = 1 · · · c + r
}
. (26)

It is well known that, for generic choices of {Fi}c+r
i=1 , the intersections V = ∩c

i=1 Hi and X = ∩c+r
i=1 Hi

are both smooth complete, and we shall assume this henceforth. Set:

n := N − (c + r) = dim X,

and observe that 1 6 n 6 c.
Let us denote by π : KN+1 \ {0} → PN

K the canonical projection. For every k ∈ Z, over any Zariski
open subset U ⊂ PN

K, sections in H0 (
U, OPN

K
(k)

)
can be defined as regular functions f̂ on π−1(U)

satisfying f̂ (λz) = λk f̂ (z), for all z ∈ π−1(U) and all λ ∈ K×.
For the cone V̂ := π−1(V) =

{
z ∈ KN+1 \ {0} : Fi(z) = 0,∀ i = 1 · · · c} of V , we define the

horizontal tangent bundle ThorV̂ which has fibre at any point z ∈ V̂:

ThorV̂
∣∣∣
z

=
{
[ξ] ∈ KN+1

/
K · z : dFi

∣∣∣
z
(ξ) = 0, ∀ i = 1 · · · c

}
.

Its total space is:

ThorV̂ :=
{
(z, [ξ]) : z ∈ V̂ , [ξ] ∈ KN+1

/
K · z, dFi

∣∣∣
z
(ξ) = 0, ∀ i = 1 · · · c

}
. (27)
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Thus the total tangent bundle TV of V can be viewed as:

TV = ThorV̂/ ∼, where (z, [ξ]) ∼ (λz, [λξ]), ∀ λ ∈ K×.

Let ΩV be the dual bundle of TV , and let ΩhorV̂ be the dual bundle of ThorV̂ . For all l > 1 and for
all ♥ ∈ Z, we denote by Syml ΩV(♥) := Syml ΩV ⊗OV(♥) the twisted symmetric cotangent bundle.

Proposition 6.1. Let Y ⊂ V be any regular subvariety. For every Zariski open set U ⊂ Y together
with its cone Û := π−1(U), there is a canonical injection:

H0(U,Syml ΩV(♥)
)
↪→ H0(Û,Syml ΩhorV̂

)
,

whose image is the set of sections Φ satisfying:

Φ
(
λz, [λξ]

)
= λ♥Φ

(
z, [ξ]

)
, (28)

for all z ∈ Û, for all [ξ] ∈ ThorV̂
∣∣∣
z

and for all λ ∈ K×. �

In future applications, Y = X or Y = X∩{zv1 = 0}∩ · · ·∩ {zvη = 0} for some vanishing coordinate
indices 0 6 v1 < · · · < vη 6 N.

6.2. Symmetric horizontal differential forms. Now, we introduce the Fermat-type hypersur-
faces Hi ⊂ PN

K defined by some homogeneous polynomials Fi of the form:

Fi =

N∑

j=0

A j
i zλ j

j (i = 1··· c+r), (29)

where λ0, . . . , λN > 2 are some positive integers and where A j
i ∈ K[z0, z1, . . . , zN] are some homo-

geneous polynomials with deg A j
i + λ j = deg Fi for j = 0 · · ·N.

Differentiating Fi for i = 1 · · · c, we receive:

d Fi =

N∑

j=0

B j
i zλ j−1

j (i = 1··· c),

where B j
i := z j d A j

i + λ j A j
i d z j. Now, set Ã j

i := A j
i z j, so that Fi =

∑N
j=0 Ã j

i zλ j−1
j has the same

structure as d Fi.
We denote the cone of X by:

X̂ :=
{
z ∈ KN+1 \ {0} : Fi(z) = 0, ∀ i = 1 · · · c + r

}
.

For all z ∈ X̂ and for all [ξ] ∈ ThorV̂
∣∣∣
z
, by the definition (27) of ThorV̂ , we have:



∑N
j=0 Ã j

i zλ j−1
j (z) = 0 (i = 1··· c+r),

∑N
j=0 B j

i (z, ξ) zλ j−1
j (z) = 0 (i = 1··· c).

(30)
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Now, we view these c + r + c equations as a linear system with N + 1 unknowns zλ0−1
0 , . . . , zλN−1

N :

C



zλ0−1
0
...

zλN−1
N


= 0, where C :=



Ã0
1 · · · ÃN

1
...

...

Ã0
c+r · · · ÃN

c+r
B0

1 · · · BN
1

...
...

B0
c · · · BN

c



. (31)

Next, let D be the upper (c + r + n) × (N + 1) = N × (N + 1) submatrix of C. For every
j = 0 · · ·N, let D̂ j denote the submatrix of D obtained by omitting the ( j + 1)-th column, and let
Dj denote the ( j + 1)-th column of D. Introduce the affine W j := {z j , 0} ⊂ PN

K having cone
Ŵ j := π−1(W j) ⊂ KN+1 \ {0}. Denote also U j := W j ∩ X, whose cone is Û j := π−1(U j) ⊂ X̂. Lastly,
let ΩhorK

N+1 be the dual bundle of ThorK
N+1, and let ΩKN+1 be the cotangent bundle of KN+1.

Proposition 6.2. For every j = 0 · · ·N, on the affine set Ŵ j, the following affine symmetric hori-
zontal differential n-form is well defined:

ω̂ j :=
(−1) j

zλ j−1
j

det
(
D̂ j

) ∈ H0
(
Ŵ j, Symn ΩhorK

N+1
)
. (32)

Proof. It suffices to treat the case j = 0. First of all, we may view ω̂0 ∈ H0
(
V̂0, Symn ΩKN+1

)
, and

in order to show ω̂0 ∈ H0(V̂0, Symn ΩhorK
N+1), we only have to check that:

ω̂0(z, ξ + µ z) = ω̂0(z, ξ) (∀ z ∈ V̂0, ξ ∈KN+1, µ ∈K×). (33)

Coming back to the definitions of B j
i and Ã j

i , Euler’s identity gives:

B j
i (z, ξ + µ z) = B j

i (z, ξ) + µ
(
λ j + deg A j

i
)
Ã j

i (z) (i = 1 ··· c, j = 0 ···N).

Therefore, the matrix D̂0 (z, ξ + λ z) not only has the same first c + r rows as the matrix D̂0 (z, ξ),
but also for every ` = 1 · · · n, the (c+r +`)-th row of the former one is equal to the (c+r +`)-th row
of the latter one plus a multiple of the `-th row. Therefore both matrices have the same determinant,
which verifies (33). �

Cramer’s Rule. In a commutative ring R, for all positive integers N > 1, let A0, A1, . . . , AN ∈ RN

be (N + 1) column vectors, and suppose that z0, z1, . . . , zN ∈ R satisfy:

A0 z0 + A1 z1 + · · · + AN zN = 0.

Then for all 0 6 i, j 6 N, there hold the identities:

(−1) j det
(
A0, . . . , Â j, . . . , AN)

zi = (−1)i det
(
A0, . . . , Âi, . . . , AN)

z j. �

We may thus glue horizontal symmetric differential forms.

Proposition 6.3. The following (N + 1) affine symmetric horizontal differential n-forms:

ω̂ j :=
(−1) j

zλ j−1
j

det
(
D̂ j

) ∈ H0
(
Û j, Symn ΩhorV̂

)
( j = 0 ···N)
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glue together to make a symmetric horizontal differential n-form on X̂.

Proof. Proposition 6.2 yields that, by restriction, each ω̂ j ∈ H0
(
Û j, Symn ΩhorV̂

)
is well defined.

We now show that, for every 0 6 j1 < j2 6 N, the two forms ω̂ j1 and ω̂ j2 glue together along
Û j1 ∩ Û j2 .

Indeed, recalling (31), granted that D consists of the first (c + r + n) rows of C, applying the
above Cramer’s rule to all the (N + 1) columns of D and the (N + 1) values zλ0−1

0 , . . . , zλN−1
N , we

receive:
(−1) j2 det

(
D̂ j2

)
z
λ j1−1
j1

= (−1) j1 det
(
D̂ j1

)
z
λ j2−1
j2

.

When z j1 , 0, z j2 , 0, dividing by z
λ j1−1
j1

z
λ j2−1
j2

on both sides, we conclude the proof. �

By permuting the indices, the preceding Proposition 6.3 generalizes to any (c + r + n) × (N + 1)
submatrix of C containing the upper c + r rows. Indeed, for every 1 6 j1 < · · · < jn 6 c, denote by
C j1,..., jn the (c + r + n)× (N + 1) submatrix of C consisting of the first upper c + r rows and the rows
c + r + j1, . . . , c + r + jn. Also, for j = 0 · · ·N, let Ĉ j1,..., jn; j denote the submatrix of C j1,..., jn obtained
by omitting the ( j + 1)-th column.

Proposition 6.4. The following (N + 1) affine symmetric horizontal differential n-forms:

ω̂ j1,..., jn; j :=
(−1) j

zλ j−1
j

det
(
Ĉ j1,..., jn; j

) ∈ H0
(
Û j, Symn ΩhorV̂

)
( j = 0 ···N)

glue together to make a global symmetric horizontal differential n-form ω̂ j1,..., jn on X̂. �

6.3. Twisted symmetric differential forms. Now, applying Proposition 6.1 to the above sym-
metric forms, we thus generalize [2, Lemma 4.5].

Proposition 6.5. The symmetric horizontal differential n-form ω̂ j1,..., jn is the image of a global
twisted symmetric differential n-form:

ω j1,..., jn ∈ H0(X,Symn ΩV(♥)
)

under the canonical injection as a particular case of Proposition 6.1:

H0(X,Symn ΩV(♥)
)
↪→ H0(X̂,Symn ΩhorV̂

)
,

with the twisted degree:

♥ :=
c+r∑

p=1

deg Fp +

n∑

q=1

deg F jq −
N∑

j=0

λ j + N + 1. (34)

For all homogeneous polynomials P ∈ H0(PN ,OPN (deg P)
)
, by multiplication:

Pω j1,..., jn ∈ H0(X,Symn ΩV(deg P + ♥)
)
. �

Proof. According to the criterion (28), we only need to check, for all z ∈ X̂, for all [ξ] ∈ ThorV̂
∣∣∣
z

and for all λ ∈ K×, that:
ω̂ j1,..., jn

(
λz, [λξ]

)
= λ♥ ω̂ j1,..., jn

(
z, [ξ]

)
, (35)

which follows from direct computations (cf. [16, Proposition 6.10]). �
13



Now, let K be the (c + r + c) × (N + 1) matrix whose first c + r rows consist of all (N + 1) terms
in the expressions of F1, . . . , Fc+r in the exact order, i.e. the (i, j)-th entry of K is:

Ki, j := A j−1
i zλ j−1

j−1 (i = 1 ··· c+r, j = 1 ···N+1), (36)

and whose last c rows consist of all (N + 1) terms in the expressions of d F1, . . . , d Fc in the exact
order, i.e. the (c + r + i, j)-th entry of K is:

Kc+r+i, j := d
(
A j−1

i zλ j−1

j−1
)

(i = 1 ··· c, j = 1 ···N+1).

The j-th column K j of K and the j-th column C j of C are proportional:

K j = C j zλ j−1−1
j−1 ( j = 1 ···N+1). (37)

In later applications, we will be mainly interested in determining the base locus of ω j1,..., jn in the
coordinates nonvanishing part {z0 · · · zN , 0}, thus, using (37), we may compute the corresponding
symmetric horizontal differential n-forms ω̂ j1,..., jn as:

ω̂ j1,..., jn; j =
(−1) j

zλ j−1
j

det
(
Ĉ j1,..., jn; j

)
=

(−1) j

zλ0−1
0 · · · zλN−1

N

det
(
K̂ j1,..., jn; j

)
( j = 0 ···N), (38)

where K̂ j1,..., jn; j is defined as an analog of Ĉ j1,..., jn; j.

6.4. Twisted symmetric differential forms with some vanishing coordinates. Investigating fur-
ther the above construction of symmetric differential forms, for every integer 1 6 η 6 n − 1, for
any indices 0 6 v1 < · · · < vη 6 N, by focusing on:

v1,...,vηX := X ∩ {zv1 = 0} ∩ · · · ∩ {zvη = 0},
we can also construct a series of twisted symmetric differential (n − η)-forms as follows.

For indices 1 6 j1 < · · · < jn−η 6 c, denote by v1,...,vηC j1,..., jn−η the (N − η)× (N − η+ 1) submatrix
of C determined by the first c+ r rows and the selected rows c+ r + j1, . . . , c+ r + jn−η as well as the
(N − η+ 1) columns which are complement to the columns v1 + 1, . . . , vη + 1. Next, for every index
j ∈ {0, . . . ,N} \ {v1, . . . , vη}, let v1,...,vηĈ j1,..., jn−η; j denote the submatrix of v1,...,vηC j1,..., jn−η obtained by
deleting the column which is originally contained in the ( j + 1)-th column of C. Lastly, denote:

v1,...,vηU j := v1,...,vηX ∩ {z j , 0},
whose cone is v1,...,vηÛ j := π−1(

v1,...,vηU j
)
.

Now, we have two very analogs of Propositions 6.4 and 6.5. Before, we write the (N − η + 1)
remaining numbers of {0, . . . ,N} \ {v1, . . . , vη} in the ascending order r0 < r1 < · · · < rN−η.

Proposition 6.6. For all j = 0 · · ·N − η, the following (N + 1 − η) affine symmetric horizontal
differential (n − η)-forms:

v1,...,vηω̂ j1,..., jn−η; r j :=
(−1) j

z
λr j−1
r j

det
(

v1,...,vηĈ j1,..., jn−η; r j

) ∈ H0
(

v1,...,vηÛr j , Symn−η ΩhorV̂
)

glue together to make a symmetric horizontal differential (n − η)-form:

v1,...,vηω̂ j1,..., jn−η ∈ H0
(

v1,...,vη X̂, Symn−η ΩhorV̂
)
. �
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Proposition 6.7. The symmetric horizontal differential (n− η)-form v1,...,vηω̂ j1,..., jn−η on v1,...,vη X̂ is the
image of a twisted symmetric differential (n − η)-form on v1,...,vηX:

v1,...,vηω j1,..., jn−η ∈ H0
(

v1,...,vηX,Symn−η ΩV(v1,...,vη♥ j1,..., jn−η
))

under the canonical injection:

H0
(

v1,...,vηX,Symn−η ΩV(v1,...,vη♥ j1,..., jn−η
))
↪→ H0 (

v1,...,vη X̂,Symn−η ΩhorV̂
)
,

with the twisted degree:

v1,...,vη♥ j1,..., jn−η :=
c+r∑

p=1

deg Fp +

n−η∑

q=1

deg F jq −
( N∑

j=0

λ j −
η∑

µ=1

λvµ

)
+ (N − η) + 1. (39)

Furthermore, for all homogeneous polynomials P ∈ H0(PN ,OPN (deg P)
)
, by multiplication:

P v1,...,vηω j1,..., jn−η ∈ H0
(

v1,...,vηX,Symn−η ΩV (deg P + v1,...,vη♥ j1,..., jn−η
))
. �

In our coming applications, we will be mainly interested in determining the base locus of
v1,...,vηω j1,..., jn−η in the coordinates nonvanishing part {zr0 · · · zrN−η , 0}, thus, using (37), we may
compute the corresponding symmetric horizontal differential (n − η)-forms v1,...,vηω̂ j1,..., jn−η as:

v1,...,vηω̂ j1,..., jn−η; r j =
(−1) j

z
λr j−1
r j

det
(
v1,...,vηĈ j1,..., jn−η; r j

)
=

(−1) j

z
λr0−1
r0 · · · zλrN−η−1

rN−η

det
(
v1,...,vη K̂ j1,..., jn−η; r j

)
( j = 0 ···N−η), (40)

where v1,...,vηK̂ j1,..., jn−η; r j is defined as an analog of v1,...,vηĈ j1,..., jn−η; r j .
The two identities (38), (40) will enable us to efficiently narrow the base loci of the obtained

twisted symmetric differential forms, as the matrix K directly copies the original equations
/
differentials

of the hypersurface polynomials F1, . . . , Fc+r.

Remark 6.8. We may also give a scheme-theoretic point of view on the obtained twisted symmet-
ric differential forms, over an arbitrary field K, see [16, Subsection 6.5].

7. Moving Coefficients Method (I)

7.1. Motivation and ideas. It would be natural to try to settle the Debarre Ampleness Conjecture
by means of pure Fermat-type hypersurfaces Fi =

∑N
j=0 A j

i ze
j with deg A j

i = ε > 1, a strategy
which was indeed successful in [2] for the case 4c > 3N − 2.

However, one could soon realize that this approach would not work, simply because, for instance
in the limiting case N = 2c (with r = 0), one could only obtain a single symmetric form ω ∈
H0(X,Symc ΩX(−♥)

)
for such intersection X = H1 ∩ · · · ∩ Hc, since 1 6 j1 < · · · < jn 6 c = n

forces j1 = 1, . . . , jn = n, whereas dimP(TX) = 2 dim X − 1 = N − 1 � 1.
To overcome this difficulty, our core idea is to look for more ‘flexible’ hypersurface equations,

such that they can be expressed as general Fermat-type polynomials in several distinct ways, while
keeping negative twist for all the symmetric differential forms obtained by Proposition 6.5.

To be more precise, assume that N = 2c, r = 0, and that all hypersurface equations F1, . . . , Fc

have the same degree d. First, every Fi can have a lot of homogeneous monomials, and we arbitrar-
ily gather them in N + 1 parts as Fi =

∑N
j=0 F j

i . Next, for every j = 0 · · ·N, choose the maximum
15



integer λ j such that zλ j

j divides F j
1, . . . , F

j
c, so Fi rewrites under the form Fi =

∑N
j=0 A j

i zλ j

j . Hence
by applying Proposition 6.5, we receive a symmetric differential form with twisted degree:

♥ = N d −
N∑

j=0

λ j + N + 1 [use (34)].

Lastly, we think on how to make ♥ 6 −1. Observe that, although each λ j 6 d, yet the total number
of λ• is N + 1 > N = the multiple number of d, and it is this feature that leaves some room to
design the moving coefficients method (MCM). Indeed, we can choose all but one λ j ≈ d � 1,
and let the remaining one λν >

∑
j,ν (d − λ j) + N + 1 be large enough, so as to ensure:

♥ = − λν +
∑

j,ν

(d − λ j) + N + 1 ≈ − λν � −1. (41)

Let us best illustrate this central idea of MCM by the following c hypersurface equations, each
being a Fermat-type polynomial plus one moving coefficient term:

Fi =

N∑

j=0

A j
i zd

j + Mi zλ0
0 · · · zλN

N (i = 1 ··· c),

where A j
i , Mi are some homogeneous polynomials of degree ε > 0, and where λ0 + · · ·+λN = d are

some positive integers to be determined. For every ν = 0 · · ·N, associating the moving coefficient
term Mi zλ0

0 · · · zλN
N to the term Aν

i zd
ν , we may rewrite:

Fi =
(
Aν

i zd
ν + Mi zλ0

0 · · · zλN
N

)
+

N∑

j,ν

A j
i zd

j (i = 1 ··· c),

and thus by Proposition 6.5, we obtain a symmetric differential form with twisted degree ♥ν =

−λν + N ε + N + 1. Therefore we require all λν > N ε + N + 1 + 1 to make ♥ν 6 −1.

7.2. Global moving coefficients method. Recalling Theorems 5.1, 5.4, we first fix positive in-
tegers r, ε1, . . . , εc+r > 1. Skipping some thinking process which essentially roots in the above
example, we construct the following c + r hypersurface equations, each being a Fermat-type poly-
nomial plus N + 1 moving coefficient terms:

Fi :=
N∑

j=0

A j
i zd

j +

N∑

k=0

Mk
i zµk

0 · · · ẑµk
k · · · zµk

N zd−N µk
k (i = 1 ··· c+r), (42)

where all coefficients A j
i , Mk

i ∈ K[z0, . . . , zN] are some degree εi homogeneous polynomials, and
where all positive integers µ•, d are to be chosen by a certain Algorithm, so as to make all the
symmetric differential forms to be obtained later have negative twisted degrees. For the moment,
instead of making the Algorithm clear, we prefer to roughly summarize it as:

1 6 max {εi}i=1···c+r � µ0 � · · · � µN︸                ︷︷                ︸
µ• grow exponentially

� d. (43)

There are two kinds of manipulations in MCM to transform the polynomials F1, . . . , Fc+r to
Fermat-type. The first one is much like the above example, in the sense that we view all the N + 1
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moving coefficient terms as a whole. Precisely, for every ν = 0 · · ·N, for all Fi, we associate all
(N + 1) moving coefficient terms with the term Aν

i zd
ν by rewriting:

Fi =
∑

j,ν

A j
i zd

j +
(
Aν

i zd
ν +

N∑

k=0

Mk
i zµk

0 · · · ẑµk
k · · · zµk

N zd−N µk
k

)
(i = 1 ··· c+r). (44)

By (43), all terms in the bracket are divisible by zµ0
ν . Now applying Proposition 6.5, for every

1 6 j1 < · · · < jn 6 c, we receive a twisted symmetric differential n-form:

φνj1,..., jn ∈ H0(X,Symn ΩV(♥νj1,..., jn)
)
,

whose twisted degree ♥νj1,..., jn according to formula (34) is negative:

♥νj1,..., jn = − µ0 +

c+r∑

i=1

εi +

n∑

`=1

ε j` + N + 1 6 − nr [compare with (41), use (43)]. (45)

The second kind of manipulations is, for every τ = 0 · · ·N − 1, for every ρ = τ + 1 · · ·N, for
all Fi, to associate each of the first (τ + 1) moving coefficient terms with the corresponding terms
A•i zd

•, to associate all the remaining (N − τ) moving coefficient terms with the term Aρ
i zd

ρ, hence to
rewrite:

Fi =

τ∑

k=0

(
Ak

i zd
k + Mk

i zµk
0 · · · ẑµk

k · · · zµk
N zd−N µk

k

)
+

N∑

j=τ+1
j,ρ

A j
i zd

j +

[
Aρ

i zd
ρ +

N∑

j=τ+1

M j
i zµ j

0 · · · ẑ
µ j

j · · · z
µ j

N zd−N µ j

j

]
(i = 1 ··· c+r).

(46)
Each bracket in the first sum is divisible by the corresponding zd−N µk

k , and remembering (43), the
last square bracket is divisible by zµτ+1

ρ . Now applying Proposition 6.5 again, for every 1 6 j1 <
· · · < jn 6 c, we receive a twisted symmetric differential n-form:

ψ
τ, ρ
j1,..., jn

∈ H0(X,Symn ΩV(♥τ, ρj1,..., jn
)
)
,

whose twisted degree ♥τ, ρj1,..., jn
according to formula (34) is negative:

♥τ, ρj1,..., jn
= − µτ+1 +

τ∑

k=0

N µk +

c+r∑

i=1

εi +

n∑

`=1

ε j` + N + 1 6 − nr [compare with (41), use (43)]. (47)

8. Controlling The Base Locus

Recalling the claimed step (16), at first we shall determine the:

Base Locus of
{
φνj1,..., jn , ψ

τ, ρ
j1,..., jn

}ν, τ, ρ
16 j1<···< jn6c

=: BS ⊂ P©
K × P(TPN

K
). (48)

To keep fluidity, we leave some technical preparations in Section 10, and start with

8.1. Characterization of BS. For a fixed ν = 0 · · ·N, we first study:

Base Locus of
{
φνj1,..., jn

}
16 j1<···< jn6c

=: BSν ⊂ P©
K × P(TPN

K
).

For every 1 6 j1 < · · · < jn 6 c, by mimicking the construction of the matrices K, K̂ j1,..., jn; j at
the end of Subsection 6.3, in accordance with the manipulation (44), we construct the (c + r + c) ×
(N + 1) matrix Kν analogously, i.e. by copying terms, differentials, and then we also define the
corresponding K̂ν

j1,..., jn; j.
17



Now, let us look at points
(
[A••,M

•
•], [z], [ξ]

) ∈ BSν with z0 · · · zN , 0. For the sake of readability,
we will keep in mind the parameter (A••,M

•
•) without writing it. Recalling Propositions 6.4, 6.5, for

every φ̂νj1,..., jn corresponding to φνj1,..., jn , for every j = 0 · · ·N, we have:

0 = φ̂νj1,..., jn; j (z, ξ) =
(−1) j

z?0 · · · z?N
det

(
K̂ν

j1,..., jn; j
)

(z, ξ) [use (38)],

where all integers ? are of no importance here. Indeed, we can drop the nonzero factor (−1) j

z?0 ···z?N
:

det
(

K̂ν
j1,..., jn; j︸   ︷︷   ︸

N×N matrix

)
(z, ξ) = 0.

In other words:
rankK K̂ν

j1,..., jn; j (z, ξ) 6 N − 1.
Now, letting the index j run from 0 to N, we receive:

rankK Kν
j1,..., jn (z, ξ)︸        ︷︷        ︸

N×(N+1) matrix

6 N − 1, (49)

where Kν
j1,..., jn

is defined analogously to Cν
j1,..., jn

before Proposition 6.4.
Now, denote by Hν the same submatrix of all Kν

j1,..., jn
that consists of the first c + r rows. Then

Proposition 10.9 below asserts that:

rankK Hν(z) = c + r, (50)

for all parameter [A••,M
•
•] ∈ P©

K \ Σν, where Σν $ P©
K is some exceptional proper subvariety.

Now, in (49), letting 1 6 j1 < · · · < jn 6 c vary, by Lemma 10.2 below, we receive:

rankK Kν (z, ξ) 6 N − 1. (51)

Also, note that ([z], [ξ]) lies in the variety (10) defined by [A••,M
•
•], in other words:

the sum of all columns of Kν (z, ξ) vanishes. (52)

Conversely, it is direct to check that any
(
[A••,M

•
•], [z], [ξ]

) ∈ P©
K × P

◦
(TPN

K
) satisfying the above

two conditions (51), (52) must lie in the base locus BSν, where:

P
◦

(TPN
K
) := P(TPN

K
) ∩ {z0 · · · zN , 0}.

Thus we conclude the following generic characterization of BSν ∩ {z0 · · · zN , 0}.
Proposition 8.1. A point ([A••,M

•
•], [z], [ξ]) ∈ (P©

K \ Σν) × P◦ (TPN
K
) lies in the base locus BSν if and

only if:
rankK Kν (z, ξ) 6 N − 1, and the sum of all columns vanishes. �

Now, for every τ = 0 · · ·N − 1 and ρ = τ+ 1 · · ·N, we may repeat the same reasoning to analyze
the base locus BSτ, ρ of {ψτ, ρj1,..., jn

}16 j1<···< jn6c. Naturally, we define the matrix Kτ, ρ in accordance with
the manipulation (46), and we receive some analogous Στ, ρ $ P©

K.

Proposition 8.2. A point ([A••,M
•
•], [z], [ξ]) ∈ (P©

K \ Στ, ρ) × P◦ (TPN
K
) lies in BSτ, ρ if and only if:

rankK Kτ, ρ (z, ξ) 6 N − 1, and the sum of all columns vanishes. �
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To give a neat characterization of BS, which is equal to the intersection of all BSρ, BSτ, ρ, it is
now time to clarify the (uniform) structures of the matrices Kν, Kτ, ρ.

First of all, we construct the (c + r + c) × (2N + 2) ambient matrix M such that, for every
i = 1 · · · c + r, j = 1 · · · c, its i-th row copies the (2N + 2) terms of Fi in (42) in the exact order,
and its (c + r + j)-th row is the differential of the j-th row. In order to distinguish the first (N + 1)
‘dominant’ columns from the last (N + 1) ‘moving coefficients’ columns, we write M as:

M =
(
A0 | · · · | AN | B0 | · · · | BN

)
.

For every ν = 0 · · ·N, comparing (44) with (42), the matrix Kν is nothing but:

Kν =
(
A0 | · · · | Âν | · · · | AN | Aν +

N∑

j=0

B j

)
, (53)

where the last column is understood to appear in the ‘omitted’ column. Similarly, for every τ =

0 · · ·N − 1 and every ρ = τ + 1 · · ·N, comparing (46) with (42), the matrix Kτ, ρ is nothing but:

Kτ, ρ =
(
A0 + B0 | · · · | Aτ + Bτ | Aτ+1 | · · · | Âρ | · · · | AN | Aρ +

N∑

j=τ+1

B j

)
. (54)

Next, the two preceding propositions lead us to consider the subvariety:

M N
2c+r ⊂ Mat(2c+r)×2(N+1)(K) (55)

consisting of all (c + r + c) × 2(N + 1) matrices (α0 | α1 | · · · | αN | β0 | β1 | · · · | βN) such that:

(i) the sum of all 2N + 2 colums is zero:

α0 + α1 + · · · + αN + β0 + β1 + · · · + βN = 0; (56)

(ii) for every ν = 0 · · ·N, there holds the rank inequality:

rankK
{
α0, . . . , α̂ν, . . . , αN , αν + (β0 + β1 + · · · + βN)

}
6 N − 1; (57)

(iii) for every τ = 0 · · ·N − 1, for every ρ = τ + 1 · · ·N, there holds:
rankK

{
α0 + β0, α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αN , αρ + (βτ+1 + · · · + βN)

}
6 N − 1. (58)

Finally, letting Σ′ $ P©
K be the union of all exceptional loci Σν and Στ, ρ, we thus receive

Proposition 8.3. A point ([A••,M
•
•], [z], [ξ]) ∈ (P©

K \ Σ′) × P◦ (TPN
K
) lies in BS if and only if:

M (z, ξ) ∈M N
2c+r. �

8.2. Emptiness of the base locus. Now, it is natural to introduce the subvariety:

MN
2c+r ↪→ P©

K × P
◦

(TPN ),

which is defined according to Proposition 8.3 by:

MN
2c+r :=

{(
[A••,M

•
•]; [z], [ξ]

) ∈ P©
K × P

◦
(TPN ) : M(z, ξ) ∈M N

2c+r

}
. (59)

In order to estimate the dimension of MN
2c+r, we now claim the following Core Lemma in ad-

vance, whose proof will constitute the most technical part of this article (see Section 11 below).

Core Lemma. For all positive integers 2 6 N 6 M, there hold the codimension estimates:

codim M N
M > M + N − 1. �
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Proposition 8.4. There holds the dimension estimate:

dim MN
2c+r 6 dimP©

K. (60)

Proof. Let π1, π2 be the two canonical projections of P©
K × P

◦
(TPN ) onto two components. For every

ζ = ([z], [ξ]) ∈ P◦ (TPN ), we now estimate the dimension of:

π−1
2 (ζ) ∩ MN

2c+r ⊂ P©
K × {ζ},

which is isomorphic to its image ζMN
2c+r ⊂ P©

K under π1.
Let π̂ : K©+1 \ {0} → P©

K be the canonical projection. From (59) we see that:

π̂−1(
ζMN

2c+r
) ∪ {0} ⊂ K©+1

is nothing but the inverse image of M N
2c+r under the K-linear map:

Mz, ξ : K©+1 −→ Mat(2c+r)×2(N+1)(K)
(
A••,M

•
•
) 7−→ M (z, ξ).

Moreover, Lemma 10.4 below asserts that Mz, ξ is surjective. Thus we have:

codim M N
2c+r = codim π̂−1(

ζMN
2c+r

) ∪ {0} = codim ζMN
2c+r [use Theorem 10.7 below],

and hence:
dim π−1

2 (ζ) ∩ MN
2c+r = dim ζMN

2c+r = dimP©
K − codim M N

2c+r.

Finally, applying the Core Lemma:

codim M N
2c+r > 2c + r + N − 1 > dimP

◦
(TPN ),

we receive the desired estimate:

dim π−1
2 (ζ) ∩ MN

2c+r 6 dimP©
K − dimP

◦
(TPN ).

By the standard argument on dimensional counting, we finish the proof. �

Now, by the projection π1 : MN
2c+r → P©

K and the dimension estimate (60), thanks to a familiar
result [7, p. 138, Theorem 11.12] in algebraic geometry, we obtain

Proposition 8.5. There exists a proper algebraic subset Σ′′ $ P©
K such that, for all t ∈ P©

K \ Σ′′, the
fibre π−1

1 (t) ∩ MN
2c+r is discrete or empty.

Combining Propositions 8.3 and 8.5, we successfully control the base locus BSt := BS∩ π−1
1 (t).

Proposition 8.6. For all parameters t =
[
A••,M

•
•
] ∈ P©

K \ (Σ′ ∪ Σ′′), the base locus BSt is discrete
or empty over the coordinates nonvanishing part {z0 · · · zN , 0}.

9. Moving Coefficients Method (II)

9.1. Obstacles of MCM when some coordinates vanish. It would be desirable to find one pa-
rameter t such that BSt ∩ {z0 · · · zN = 0} is discrete or empty, whence the semicontinuity theorem
would guarantee the same property for all generic t. Then, together with the above Proposition 8.6,
we would prove the Debarre Ampleness Conjecture! However, this is impossible because, for in-
stance when zN = 0, we can check that all the obtained global symmetric differential forms either
vanish or become the same one, up to a scalar of the form z•0 · · · z•N−1. Moreover, all hypersurface
equations in (42) become exactly Fermat-type Fi =

∑N−1
j=0 A j

i zd
j , so even with the further help of
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Propositions 6.6, 6.7, we cannot construct enough negatively twisted symmetric forms. Neverthe-
less, supposing at this moment that we still have abundant moving coefficient terms:

Fi

∣∣∣
zN=0
≈

N−1∑

j=0

A j
i zd

j +

N−1∑

k=0

Mk
i zµk

0 · · · ẑµk
k · · · zµk

N−1 zd−N µk
k ,

we may then continue to move on by adapting MCM . . . Yet when further coordinates vanish, the
same obstacle might appear . . .

9.2. Refined construction of hypersurfaces for MCM. The above reasoning process leads us to
construct the following c + r refined homogeneous polynomials F1, . . . , Fc+r, each being the sum
of a dominant Fermat-type polynomial plus an ‘army’ of moving coefficient terms:

Fi =

N∑

j=0

A j
i zd

j +

N∑

l=c+r+1

∑

06 j0<···< jl6N

l∑

k=0

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
(i = 1 ··· c+r), (61)

where all coefficients A•i ,M
•;•
i ∈ K[z0, . . . , zN] are some degree εi > 1 homogeneous polynomials,

and where all positive integers µl,k, d are to be chosen by a certain Algorithm, which is designed to
make all the symmetric differential forms to be obtained later have negative twisted degrees. For
the moment, we just roughly summarize the Algorithm as:

1 6 max {εi}i=1···c+r � µc+r+1,0 � · · · � µc+r+1,c+r+1︸                              ︷︷                              ︸
µc+r+1,• grow exponentially

� · · · · · · � µN,0 � · · · � µN,N︸                 ︷︷                 ︸
µN,• grow exponentially

� d, (62)

and we will state it explicitly in Subsection 12.1 below when it is really necessary.
The above construction fulfills the claimed Step 1 in Subsection 5.3. Now, we illustrate how to

transform (61) into the form (42), so as to apply MCM that we have developed in Section 7.
First, we rewrite the polynomial Fi by extracting the terms for which l = N:

Fi =

N∑

j=0

A j
i zd

j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N

l∑

k=0

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
+

+

N∑

k=0

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k (i = 1 ··· c+r).

Next, we associate each term M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
in the second sums with the cor-

responding term A jk
i zd

jk
in the first sum by rewriting Fi as:

Fi =

N∑

j=0

C j
i zd−δN

j +

N∑

k=0

M0,...,N;k
i zµN,k

0 · · · ẑµN,k
k · · · zµN,k

N zd−N µN,k
k (i = 1 ··· c+r), (63)

where δN := (N − 1) µN−1,N−1 and C j
i are uniquely determined by gathering:

C j
i zd−δN

j = A j
i zd

j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N
jk= j for some 06k6l

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zd−lµl,k

jk
,
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namely, after dividing out the common factor zd−δN
j — guaranteed by (62) — of both sides above:

C j
i := A j

i zδN
j +

N−1∑

l=c+r+1

∑

06 j0<···< jl6N
jk= j for some 06k6l

M j0,..., jl; jk
i zµl,k

j0
· · · ẑµl,k

jk
· · · zµl,k

jl
zδN−lµl,k

jk
.

Note that by the Algorithm (62), we now have the rough estimates:

deg C j
i = εi + δN = εi + (N − 1) µN−1,N−1 � µN,0 � · · · � µN,N � d, (64)

with the same growth structure as the previous Algorithm (43)!
Thus, we are able to adapt the MCM in Subsection 7.2 to produce a series of negatively twisted

symmetric differential forms. Indeed, using the same kind of manipulations and the corresponding
notation, for every 1 6 j1 < · · · < jn 6 c, for every ν = 0 · · ·N, we receive:

φνj1,..., jn ∈ H0(X,Symn ΩV(♥νj1,..., jn)
)
,

with negative twisted degree:

♥νj1,..., jn = − µN,0 + N δN +

c+r∑

i=1

εi +

n∑

`=1

ε j` + N + 1 6 − nr [compare with (45), use (64)]. (65)

Also, for every τ = 0 · · ·N − 1, for every ρ = τ + 1 · · ·N, we receive:

ψ
τ, ρ
j1,..., jn

∈ H0(X,Symn ΩV(♥τ, ρj1,..., jn
)
)
,

with negative twisted degree:

♥τ, ρj1,..., jn
= − µN,τ+1 +

τ∑

k=0

N µN,k + (N − τ − 1) δN +

c+r∑

i=1

εi +

n∑

`=1

ε j` + N + 1 6 − nr [see (47), use (64)]. (66)

Thus, we complete the claimed construction (13).
To respect the coherence of notation, we will continue to denote by P©

K the projective parameter
space of F1, . . . , Fc+r in (61), and we will also use the same notation as in Section 8, and then
by exactly the same arguments, everything goes on smoothly, and finally we get the analogue
Proposition 8.6, which is our claimed estimate (19).

9.3. MCM with vanishing coordinates. For every 1 6 η 6 n−1, for every 0 6 v1 < · · · < vη 6 N,
consider the intersection of X with the η coordinate hyperplanes:

v1,...,vηX := X ∩ {zv1 = 0} ∩ · · · ∩ {zvη = 0}.
Recalling the claimed step (14), we now investigate further the MCM to construct a series of:

ω` ∈ H0 (
v1,...,vηX,Symn−η ΩV(♥`)) (`= 1 ···d),

with all ♥` 6 −(n − η)r, as follows.
First, we write the complement elements of {v1, . . . , vη} in {0, . . . ,N} as r0 < · · · < rN−η. Observe

that in Propositions 6.6, 6.7, the polynomial terms in F1, . . . , Fc+r involving zv1 , . . . , zvη eventually
play no role — because they just vanish. Thus, we may decompose Fi into two parts:

Fi =

N−η∑

j=0

Ar j

i zd
r j

+

N−η∑

l=c+r+1

∑

06 j0<···< jl6N−η

l∑

k=0

M
r j0 ,...,r jl ;r jk
i zµl,k

r j0
· · · ẑµl,k

r jk
· · · zµl,k

r jl
zd−lµl,k

r jk
+

+ (Residue Terms)v1,...,vη
i︸                     ︷︷                     ︸

negligible

(i = 1 ··· c+r),
(67)
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where the first part (1st line above) only involves the variables zr0 , . . . , zrN−η , and where the second
part (2nd line above) collects all terms involving at least one of zv1 , . . . , zvη .

Next, before applying Propositions 6.6, 6.7 to (67), it is appropriate to write:

Fi =

N−η∑

j=0

Ar j

i zd
r j

+

N−η∑

l=c+r+1

∑

06 j0<···< jl6N−η

l∑

k=0

M
r j0 ,...,r jl ;r jk
i zµl,k

r j0
· · · ẑµl,k

r jk
· · · zµl,k

r jl
zd−lµl,k

r jk
(i = 1 ··· c+r). (68)

Now, we see that the above (68) has the same structure as (61), in the sense of replacing:

N ↔ N − η, {0, . . . ,N} ←→ {r0, . . . , rN−η}.
Thus, we are able to adapt the MCM in the preceding Subsection 9.2 to produce negatively twisted
symmetric differential forms.

Indeed, using the same kind of manipulations and the corresponding notation, for every 1 6 j1 <
· · · < jn−η 6 c, for every ν = 0 · · ·N − η, we receive:

v1,...,vηφ
ν
j1,..., jn−η ∈ Γ

(
v1,...,vηX,Symn−η ΩV (v1,...,vη♥νj1,..., jn−η)

)
,

with negative twisted degree:

v1,...,vη♥νj1,..., jn−η = − µN−η,0 + (N − η) δN−η +

c+r∑

i=1

εi +

n−η∑

`=1

ε j` + (N − η) + 1 6 − (n − η)r [compare with (65)], (69)

where δN−η is defined by replacing:

(N − 1) µN−1,N−1 = δN ←→ δN−η := (N − η − 1) µN−η−1,N−η−1.

Also, for every τ = 0 · · ·N − η − 1, for every ρ = τ + 1 · · ·N − η, we receive:

v1,...,vηψ
τ, ρ
j1,..., jn−η ∈ Γ

(
v1,...,vηX,Symn−η ΩV(v1,...,vη♥τ,ρj1,..., jn−η)

)
,

with negative twisted degree:

v1,...,vη♥τ, ρj1,..., jn−η
= − µN−η,τ+1 +

τ∑

k=0

(N−η) µN−η,k + (N−η−τ−1) δN−η+

c+r∑

i=1

εi +

n−η∑

`=1

ε j` + (N−η)+1 6 − (n−η)r. (70)

For all details, we refer the reader to [16, Section 7].
The above construction fulfills our claimed step (14). So now, we complete the Step 2 in

Subsection 5.3.
To prove the claimed estimate (18), we now determine the:

Base Locus of {v1,...,vηφ
ν
j1,..., jn−η , v1,...,vηψ

τ, ρ
j1,..., jn−η}

ν, τ, ρ
16 j1<···< jn−η6c =: v1,...,vηBS ⊂ P©

K × v1,...,vηP(TPN
K
), (71)

where:
v1,...,vηP(TPN ) := P(TPN ) ∩ {zv1 = · · · = zvη = 0}.

Employing the same arguments, here is an analog of Proposition 8.6.

Proposition 9.1. There exists some proper subvariety v1,...,vηΣ $ P
©
K such that, for all parameters t ∈

P©
K \ v1,...,vηΣ, the base locus v1,...,vηBSt := v1,...,vηBS ∩ π−1

1 (t) is discrete or empty over the coordinates
nonvanishing part {zr0 · · · zrN−η , 0}.
Proof. We sketch the proof in two parts. First, by mimicking the reasoning of Proposition 8.3, we
characterize v1,...,vηBS over the coordinates nonvanishing part:

v1,...,vηP
◦

(TPN ) := v1,...,vηP(TPN ) ∩ {zr0 · · · zrN−η , 0}
by the variety M N−η

2c+r — see (55).
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Next, we prove an analog estimate of Proposition 8.4, in which the essential step:

codim M N−η
2c+r > dim v1,...,vηP

◦
(TPN ) = 2N − η − 1

is provided by the Core Lemma.
We refer the reader to [16, p. 66, Proposition 9.9] for details. �

Thus, we finish the claimed Step 3 in Subsection 5.3. Now, the proof of Theorem 5.5 is com-
plete, and so are the proofs of Theorems 5.4, 5.1.

10. Basic Technical Preparations

10.1. Matrix-rank estimates. First, we recall a basic fact in linear algebra.

Lemma 10.1. Let K be a field and let W be a finite-dimensional K-vector space generated by a set
of vectors B. Then every subset B1 ⊂ B that consists of K-linearly independent vectors can be
extended to a bigger subset B2 ⊂ B which forms a basis of W. �

Lemma 10.2. Let K be a field, and let V be a K-vector space. For all positive integers e, k, l > 1
with k > l, let v1, . . . , ve, ve+1, . . . , ve+k be (e + k) vectors such that:

(i) v1, . . . , ve are K-linearly independent;
(ii) for every e + 1 6 i1 < · · · < il 6 e + k, there holds:

rankK {v1, . . . , ve, vi1 , . . . , vil} 6 e + l − 1.

Then one has the rank estimate:

rankK {v1, . . . , ve, ve+1, . . . , ve+k} 6 e + l − 1.

Proof. Using the preceding lemma and reasoning by contradiction, we conclude the proof. �

10.2. Surjectivity of evaluation maps. For every N > 1, denote:

A (KN+1) := K[z0, . . . , zN].

For every λ > 1, the K-linear space spanned by all degree λ homogeneous polynomials is:

Aλ(KN+1) ⊂ A (KN+1).

For every z ∈ KN+1, denote by vz the K-linear evaluation map:

vz : A (KN+1) −→ K, f 7−→ f (z),

and for every ξ ∈ TzK
N+1 � KN+1, denote by dz(ξ) the K-linear differential evaluation map:

dz(ξ) : A (KN+1) −→ K, f 7−→ d f
∣∣∣
z
(ξ).

For every g ∈ A (KN+1), for every z ∈ KN+1, denote by (g · v)z the K-linear evaluation map:

(g · v)z : A (KN+1) −→ K, f 7−→ (g f )(z),

and for every ξ ∈ TzK
N+1 � KN+1, denote by dz(g· )(ξ) the K-linear differential evaluation map:

dz(g· )(ξ) : A (KN+1) −→ K, f 7−→ d (g f )
∣∣∣
z
(ξ).
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Lemma 10.3. For all λ > 1, at every z ∈ KN+1 \ {0}, if ξ ∈ KN+1 \ K · z, then the K-linear map:
(

vz

dz(ξ)

)
: Aλ(KN+1) −→ K2

is surjective.

A similar result was obtained in [2, p. 36, Claim 3].

Proof. We present a proof which works for all fields K.
For λ = 1, it is clear.
For λ > 2, first, choose one g ∈ Aλ−1(KN+1) with g(z) , 0. Note that Leibniz’s rule yields:

(
(g · v)z

dz(g· )(ξ)
)

=

(
g(z) 0

d g
∣∣∣
z
(ξ) g(z)

)

︸            ︷︷            ︸
invertible, since g(z), 0

(
vz

dz(ξ)

)
. (72)

Now, restricting (72) on the K-linear subspace:

A1(KN+1) ⊂ A (KN+1),

we see that the map
(
vz, dz(ξ)

)T is surjective on the K-linear subspace:

g ·A1(KN+1) ⊂ Aλ(KN+1),

which suffices to conclude the proof. �

Lemma 10.4. For all λ > 1, for all g ∈ A (KN+1), at any z ∈ KN+1 \ {0} with g(z) , 0, for every
ξ ∈ KN+1 \ K · z, the K-linear map:

(
(g · v)z

dz(g· )(ξ)
)

: Aλ(KN+1) −→ K2

is surjective.

Proof. This is a direct consequence of formula (72) and of the preceding lemma. �

10.3. Fibre dimension estimates. The following classical theorem will prove fundamental in
dimensional estimations of all base loci in this article.

Theorem 10.5. Let X,Y be two K-varieties, and let f : X → Y be a morphism. Then one has:

dim X 6 dim Y + maxy ∈Y dim f −1(y). �

10.4. Classical codimension formulas for determinantal ideals. For all p, q > 1, denote by:

Matp×q(K) = Kp×q

the space of all p × q matrices with entries in K. For every 0 6 ` 6 max{p, q}, denote by:

Σ
p,q
` ⊂ Matp×q(K)

all p × q matrices with rank 6 `.

Theorem 10.6. There holds the codimension formula:

codim Σ
p,q
` = max

{
(p − `) (q − `), 0

}
. �
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10.5. Affine cones preserve codimensions. In our practice, it would be more convenient to count
dimension in an Euclidean space rather than in a projective space.

Theorem 10.7. Let π : KN+1 → PN
K be the canonical projection, and let Y ⊂ PN

K be a nonempty
algebraic set defined by a homogeneous ideal I ⊂ K[z0, . . . , zN]. Denote by C(Y) the affine cone:

C(Y) := π−1(Y) ∪ {0} ⊂ KN+1.

Then C(Y) is an algebraic set in KN+1, and it preserves codimension:

codim C(Y) = codim Y. �

10.6. Full rank of hypersurface equation matrices. For all N > 2, for every e = 1 · · ·N, given
integers ε1, . . . , εe > 1 and d > 1, consider the following e hypersurfaces:

H1, . . . ,He ⊂ PN
K,

each being defined by the degree (d + εi) Fermat-type homogeneous polynomial:

Fi =

N∑

j=0

A j
i zd

j (i = 1 ··· e), (73)

where all A j
i are some degree εi homogeneous polynomials.

Now, denote by H the e × (N + 1) matrix whose every i-th row copies the (N + 1) terms of Fi:

H :=



A0
1 zd

0 · · · AN
1 zd

N
...

. . .
...

A0
e zd

0 · · · AN
e zd

N


. (74)

Also introduce:
P(M ) := P

(
⊕ 16i6e

06 j6N
Aλi(K

N+1)
︸               ︷︷               ︸

=: M

)

the projectivized parameter space of F1, . . . , Fe.

Proposition 10.8. There exists a proper subvariety Σ $ P(M ) such that, for every parameter:
[(

A j
i
)

16i6e
06 j6N

]
∈ P(M ) \ Σ,

on the corresponding intersection:

X = H1 ∩ · · · ∩ He ⊂ PN
K,

the matrix H has full rank everywhere:

rankK H(z) = e (∀ [z] ∈ X).

A similar result was obtained in [2, p. 35, Claim 1].

Proof. We refer the reader to [16, p. 55, Lemma 8.15] for details. �

Recalling the matrix Hν before (50), now we prove the desired full rank identities.
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Proposition 10.9. For every ν = 0 · · ·N, there exists a subvariety Σν $ P©
K such that, for every:

[
A••,M

•
•
] ∈ P©

K \ Σ,

on the corresponding intersection:

X = H1 ∩ · · · ∩ Hc+r ⊂ PN
K,

the matrix Hν have full rank:
rankK Hν(z) = c + r (∀ [z]∈X).

Proof. ‘Full-rank’ is a Zariski open condition, so we only need to provide one example.
First, by setting all M•

• = 0, the equations (44) become exactly the equations (73), thus the
matrix Hν becomes the matrix H of Proposition 10.8 with e = c + r. Now, a direct application of
Proposition 10.8 clearly yields more than one example. �

11. The Engine of MCM

11.1. Core Codimension Formulas. To prove the Core Lemma, as an essential step, by induction
on positive integers p > 2 and 0 6 ` 6 p, we first estimate the codimension `Cp of:

`Xp ⊂ Matp×2p(K) (75)

which consists of p × 2p matrices Xp = (α1, . . . , αp, β1, . . . , βp) such that:

(i) the first p column vectors have rank:

rankK
{
α1, . . . , αp

}
6 `; (76)

(ii) for every ν = 1 · · · p, there holds:

rankK
{
α1, . . . , α̂ν, . . . , αp, αν + (β1 + · · · + βp)

}
6 p − 1; (77)

(iii) for every τ = 1 · · · p − 1, for every ρ = τ + 1 · · · p, there holds:

rankK
{
α1 + β1, . . . , ατ + βτ, ατ+1, . . . , α̂ρ, . . . , αp, αρ + (βτ+1 + · · · + βp)

}
6 p − 1. (78)

Let us start with the easy case ` = 0.

Proposition 11.1. For every integer p > 2, the codimension value `Cp for ` = 0 is:

0Cp = p2 + 1. (79)

Proof. It is a direct application of Theorem 10.6. �

For the general case ` = 1 · · · p, we will use Gaussian eliminations and do inductions on p, `.
First, we count the codimension of the exceptional locus of Gaussian eliminations.

Proposition 11.2. For every integer p > 2, the codimensions `C0
p of the subvarieties:

{α1 + β1 = 0} ∩ `Xp ⊂ Matp×2p(K)

read according to the values of ` as:

`C0
p =


p + 2 (`= p−1, p),

p + (p − `)2 (`= 0 ··· p−2).

The following lemma is the key ingredient for the proof.
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Lemma 11.3. Let W be a K-vector space, and let p > 1 be a positive integer. For any p+1 vectors
α1, . . . , αp, β ∈ W, the rank restriction:

rankK {α1, . . . , α̂ν, . . . , αp, αν + β} 6 p − 1 (ν= 1 ··· p), (80)

is equivalent to either:
rankK {α1, . . . , αp, β} 6 p − 1,

or to:
rankK {α1, . . . , αp} = p, (α1 + · · · + αp) + β = 0.

Proof. We refer the reader to [16, p. 68, Lemma 10.3] for details. �

Proof of Proposition 11.2. We refer to [16, p. 68, Proposition 10.2] for details. �

Next, we claim the following Codimension Induction Formulas, the proof of which will appear
in Subsection 11.5. To make sense of `−2Cp−1 in (83) when ` = 1, we henceforth agree −1Cp−1 := ∞.

Proposition 11.4. For all p > 3, there hold the codimension induction formulas:

pCp = min
{
p, p−1Cp

}
(`= p), (81)

p−1Cp > min
{

p−1C0
p, p−1Cp−1 + 2, p−2Cp−1 + 1, p−3Cp−1

}
(`= p−1), (82)

`Cp > min
{
`C0

p, `Cp−1 + 2(p − `) − 1, `−1Cp−1 + (p − `), `−2Cp−1
}

(`= 1 ··· p−2). (83)

Now, we may claim the initial data for the induction process.

Proposition 11.5. For the initial case p = 2, there hold the codimension values:

0C2 = 5, 1C2 = 3, 2C2 = 2.

Proof. We refer the reader to [16, p. 70, Proposition 10.5] for details. �

Admitting temporally Proposition 11.4, we may use induction to obtain

Proposition 11.6. For all p > 2, there hold:

pCp = p, `Cp > ` + (p − `)2 + 1 (`= 0 ··· p−1). (84)

Proof. We refer the reader to [16, p. 71, Proposition 10.6] for details. �

11.2. Gaussian eliminations. Following the notation in (75), we denote by:

Xp = (α1, . . . , αp, β1, . . . , βp)

the coordinate columns of Matp×2p(K), where each of the first p columns explicitly writes as:

αi = (α1,i, . . . , αp,i)T,

and where each of the last p columns explicitly writes as:

βi = (β1,i, . . . , βp,i)T.

First, observing the structures of the matrices in (77), (78):

X0,ν
p :=

(
α1 | · · · | α̂ν | · · · | αp | αν + (β1 + · · · + βp)

)
,

Xτ, ρ
p :=

(
α1 + β1 | · · · | ατ + βτ | ατ+1 | · · · | α̂ρ | · · · | αp | αρ + (βτ+1 + · · · + βp)

)
,

28



where the second underlined columns are understood to appear in the first underlined places, we
realize that they have the uniform shapes:

X0,ν
p = Xp I0,νp , Xτ, ρ

p = Xp Iτ, ρp , (85)

where the 2p × p matrices I0,νp explicitly read as:



p︷        ︸︸        ︷ 


p

1

1

1 
p

1

ν-th column

the upper p × p submatrix being the identity, the lower p × p submatrix being zero except its ν-th
column being a column of 1, and where lastly, the 2p × p matrices Iτ, ρp explicitly read as:

1

1

1

1
1

1
1

1



p︷                        ︸︸                        ︷ 



p


τ


p−τ

ρ-th columnτ-th column

the upper p× p submatrix being the identity, the lower p× p submatrix being zero except τ copies
of 1 in the beginning diagonal and p − τ copies of 1 at the end of the ρ-th column.

Next, observe that all matrices Xτ, ρ have the same first column:

α1 + β1 = ( α1,1 + β1,1 | · · · | αp,1 + βp,1)T.
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Therefore, when α1,1 + β1,1 , 0, operating Gaussian eliminations by means of the matrix:

G :=



1
−α2,1+β2,1

α1,1+β1,1
1

...
. . .

−αp,1+βp,1

α1,1+β1,1
1


, (86)

these matrices Xτ, ρ become simpler:

G Xτ, ρ
p =



α1,1 + β1,1 • · · · •
0 ? · · · ?
...

...
. . .

...
0 ? · · · ?


, (87)

where we will soon see the (p − 1) × (p − 1) star submatrices enjoy amazing structural properties.

Observation 11.7. Let p > 1 be a positive integer, let A be a p × 2p matrix, let B be a 2p × p
matrix such that both its 1-st, (p + 1)-th rows are (1, 0, . . . , 0). Then there holds:

(A B)′ = A′′ B′′′,

where (A B)′ means the (p − 1) × (p − 1) matrix obtained by deleting the first row and column of
A B, and where A′′ means the (p − 1) × 2(p − 1) matrix obtained by deleting the first row and the
columns 1, p + 1 of A, and where B′′′ means the 2(p − 1) × (p − 1) matrix obtained by deleting the
first column and the rows 1, p + 1 of B. �

Observation 11.8. For all p > 3, τ = 1 · · · p − 1, ρ = τ + 1 · · · p, the matrices Iτ, ρp transform to
Iτ−1,ρ−1
p−1 after deleting the first column and the rows 1, p + 1, i.e. Iτ−1,ρ−1

p−1 = (Iτ, ρp )′′′. �

Now, thanks to the above two Observations, noting that:

G Xτ, ρ
p = G

(
Xp Iτ, ρp

)
=

(
G Xp

)
Iτ, ρp ,

denoting XG
p := (G Xp)′′, the (p − 1) × (p − 1) star submatrices in (87) thus have the forms:



? · · · ?
...

. . .
...

? · · · ?

 = XG
p Iτ−1, ρ−1

p−1 . (88)

Comparing (88) and (85), we immediately see that the star submatrices have the same structures
as X0,ν

p ,X
τ, ρ
p .

11.3. Study of the morphism of left-multiplication by G. Let us denote by:

D(α1,1 + β1,1) ⊂ Matp×2p(K)

the Zariski open set defined by α1,1 + β1,1 , 0. Now, consider the morphism of left-multiplication
by the regular function matrix G:

LG : D(α1,1 + β1,1) −→ D(α1,1 + β1,1)
Xp 7−→ G Xp.

Of course, it is not surjective, as (87) shows that its image lies in the variety:

∩p
i=2 {αi,1 + βi,1 = 0}.

30



In order to compensate this loss of surjectivity, combining with:

e : D(α1,1 + β1,1) −→ Mat(p−1)×1(K)

Xp 7−→ (α2,1 + β2,1 | · · · | αp,1 + βp,1)T,

we construct a morphism:

LG ⊕ e : D(α1,1 + β1,1) −→ ( ∩p
`=2 {αi,1 + βi,1 = 0} ∩ D(α1,1 + β1,1)

) ⊕ Mat(p−1)×1(K)︸                                                                       ︷︷                                                                       ︸
=:z

,

which turns out to be an isomorphism. Indeed, it has the inverse morphism:

z −→ D(α1,1 + β1,1)

Y ⊕ (s2, . . . , sp)T 7−→ −1G · Y,

where the regular function matrix −1G is the ‘inverse’ of the matrix G in (86):


1
s2

α1,1+β1,1
1

...
. . .

sp

α1,1+β1,1
1


. (89)

Now, denote by:
πp : Matp×2p(K) −→ Mat(p−1)×2(p−1)(K)

the projection obtained by deleting the first row and the columns 1, p + 1. Denote also:

LG := πp ◦ LG.

We can define an isomorphism:

R : z
∼−−→ D(α1,1 + β1,1),

Y ⊕ (s2, . . . , sp)T 7−→ ?

where ? is Y but replacing (b2,1, . . . , bp,1)T by (s2, . . . , sp)T, and thus we obtain a commutative
diagram:

D(α1,1 + β1,1)
LG ⊕e //

LG ))

z

πp ⊕ 0
��

R // D(α1,1 + β1,1)

πpuu
Mat(p−1)×2(p−1)(K),

(90)

where the horizontal maps are isomorphisms.
Recalling the end of Subsection 11.2, we in fact receive the following key

Observation 11.9. For every p > 3, for every ` = 1 · · · p − 1, the image of the variety:

`Xp ∩ D(α1,1 + β1,1) ⊂ D(α1,1 + β1,1)

under the map:
LG : D(α1,1 + β1,1) −→ Mat(p−1)×2(p−1)(K)

is contained in the variety:
`Xp−1 ⊂ Mat(p−1)×2(p−1)(K). �
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11.4. A technical lemma. For all p > 3, for every ` = 0 · · · p−1, for every (p−1)× (p−1) matrix
J of rank `, denote by JS p,` � K2p−1 the space which consists of all the p× p matrices of the form:



z1,1 z1,2 · · · z1,p

z2,1
... J

zp,1


.

For every j = `, ` + 1, denote by JS j
p,` ⊂ JS p,` all the matrices having rank 6 j.

Lemma 11.10. The codimensions of JS j
p,` are:

codim JS j
p,` =


2(p − 1 − `) + 1 ( j = `),

p − 1 − ` ( j = `+1).

Proof. We refer the reader to [16, p. 76, Lemma 10.11] for details. �

11.5. Proof of Proposition 11.4. First, applying Lemma 11.3, we receive:

Corollary 11.11. For every p > 1, the difference of the varieties:

pXp \ p−1Xp ⊂ Matp×2p(K)

is exactly the quasi-variety:
{
α1 + · · · + αp + β1 + · · · + βp = 0

}
∩

{
rankK {α1, . . . , αp} = p

}
,

whose codimension is p. �

Now, we give a complete proof of Proposition 11.4.

Proof of (81). This is a direct consequence of the above corollary. �

Proof of (82). By Observation 11.9, under the map:

LG : D(α1,1 + β1,1) −→ Mat(p−1)×2(p−1)(K),

the image of the variety:
p−1Xp ∩ D(α1,1 + β1,1)

is contained in the variety:
p−1Xp−1 ⊂ Mat(p−1)×2(p−1)(K).

Now, we decompose the variety p−1Xp−1 into three pieces:

p−1Xp−1 = p−3Xp−1 ∪ (
p−2Xp−1 \ p−3Xp−1

) ∪ (
p−1Xp−1 \ p−2Xp−1

)
, (91)

where each matrix (α1, . . . , αp−1, β1, . . . , βp−1) in the first1 (resp. second2, third3) piece satisfies:

rankK (α1, . . . , αp−1)6 p − 3
1

(resp. = p − 2
2
, = p − 1

3
). (92)

Pulling back (91) by the map LG, we see that:

p−1Xp ∩ D(α1,1 + β1,1)

is contained in:

L −1
G (p−3Xp−1) ∪ L −1

G
(

p−2Xp−1 \ p−3Xp−1
) ∪ L −1

G
(

p−1Xp−1 \ p−2Xp−1
)
. (93)
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Firstly, for every point in the first piece:

Y ∈ p−3Xp−1,

thanks to the commutative diagram (90), we receive the fibre dimension:

dim L −1
G (Y) = dim ker πp ∩ D(α1,1 + β1,1)

= dim Matp×2p(K) − dim Mat(p−1)×2(p−1)(K).

Now, applying Theorem 10.5 to the regular map L restricted to:

L −1
G (p−3Xp−1) ⊂ Matp×2p(K)

we receive the codimension estimate:

codim L −1
G (p−3Xp−1) > codim p−3Xp−1. (94)

Secondly, for every point in the second piece:

Y ∈ p−2Xp−1 \ p−3Xp−1,

looking at the fibre L −1
G (Y), thanks to the commutative diagram (90), we can use:

L −1
G =

(
R ◦ (LG ⊕ e)︸          ︷︷          ︸

an isomorphism

)−1 ◦ π−1
p , (95)

and obtain:
L −1

G (Y) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

)

�R ◦ (LG ⊕ e) L −1
G (Y) ∩ R ◦ (LG ⊕ e)

(
p−1Xp ∩ D(α1,1 + β1,1)

)
[ isomorphism ]

� π−1
p (Y) ∩ R ◦ (LG ⊕ e)

(
p−1Xp ∩ D(α1,1 + β1,1)

)
︸                                                           ︷︷                                                           ︸

=:♣

[use (95)].

Observe now that every matrix:

(α1 | · · · | αp | β1 | · · · | βp) ∈ ♣
satisfies the rank estimate:

rankK
(
α1 | · · · | αp

)
6 p − 1.

Moreover, noting that the lower-right (p − 1) × (p − 1) submatrix J of
(
α1 | · · · | αp

)
is exactly the

left (p − 1) × (p − 1) submatrix of Y, it follows:

rankK J = p − 2 [see (92)].

By applying Lemma 11.10, we get that:

♣ ⊂ π−1
p (Y)

has codimension greater than or equal to:

codim JS p−1
p,p−2 = p − 1 − (p − 2) = 1.

In other words:
L −1

G (Y) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

) ⊂ L −1
G (Y)

has codimension > 1. Thus, applying Theorem 10.5 to the map LG restricted to:

L −1
G

(
p−2Xp−1 \ p−3Xp−1

) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

)
︸                                                                  ︷︷                                                                  ︸

=: II

⊂ Matp×2p(K),
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we receive the codimension estimate:

codim II > codim
(

p−2Xp−1 \ p−3Xp−1
)

+ codim JS p−1
p,p−2

> codim p−2Xp−1 + 1.
(96)

Thirdly, for every point in the third piece:

Y ∈ p−1Xp−1 \ p−2Xp−1, (97)

thanks to the diagram (90):
L −1

G = (LG ⊕ e)−1 ◦ (πp ⊕ 0)−1, (98)
we receive:

L −1
G (Y) ∩ (

p−1Xp ∩ D(α1,1 + β1,1)
)

� (LG ⊕ e) L −1
G (Y) ∩ (LG ⊕ e)

(
p−1Xp ∩ D(α1,1 + β1,1)

)
[ isomorphism ]

� (πp ⊕ 0)−1(Y) ∩ (LG ⊕ e)
(

p−1Xp ∩ D(α1,1 + β1,1)
)

︸                                                              ︷︷                                                              ︸
=: ♠

[use (98)].

Recalling Corollary 11.11, the sum of all columns of Y — the bottom (p − 1) rows of (α2 | · · · |
αp | β2 | · · · | βp) — is zero. Thus, every element:

(α1 | · · · | αp | β1 | · · · | βp) ⊕ (s2, . . . , sp)T ∈ ♠
not only satisfies:

rankK (α1 | · · · | αp) 6 p − 1, (99)
but also satisfies:

α2 + · · · + αp + β2 + · · · + βp = (α1,2 + · · · + α1,p + β1,2 + · · · + β1,p, 0, . . . , 0)T.

Remembering that:
α1 + β1 = (α1,1 + β1,1, 0 , . . . , 0)T,

summing the above two identities immediately yields:

α1 + · · · + αp + β1 + · · · + βp = (α1,1 + · · · + α1,p + β1,1 + · · · + β1,p, 0 , . . . , 0)T. (100)

Now, note that matrices ranks (77) in condition (ii) are preserved under the map LG, in particular,
for ν = 1, the image satisfies:

rankK
{
α1 + (β1 + · · · + βp), α2, . . . , αp

}
6 p − 1,

which, by adding the columns 2 · · · p to the first one, is equivalent to:

rankK
{
α1 + · · · + αp + β1 + · · · + βp, α2 . . . , αp

}
6 p − 1. (101)

Recalling (97) and Corollary 11.11:

the bottom (p − 1) × (p − 1) submatrix of (α2 | · · · | αp) is of full rank (p − 1), (102)

combining (100), (101), we immediately receive:

α1,1 + · · · + α1,p + β1,1 + · · · + β1,p = 0.

Therefore, by applying Lemma 11.10, the restrictions (99) and (102) contribute one extra codi-
mension:

codim JS p−1
p,p−1 = 1.
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Thus, we see that ‘the fibre in fibre’:

♠ ∩ (πp ⊕ 0)−1(Y) ⊂ (πp ⊕ 0)−1(Y)

has codimension greater than or equal to:

1 + 1 = 2.

Now, applying once again Theorem 10.5 to the map LG restricted to:

L −1
G

(
p−1Xp−1 \ p−2Xp−1

) ∩ (
p−1Xp ∩ D(α1,1 + β1,1)

)
︸                                                                  ︷︷                                                                  ︸

=: III

⊂ Matp×2p(K),

we receive the codimension estimate:
codim III > codim

(
p−1Xp−1 \ p−2Xp−1

)
+ 2

> codim p−1Xp−1 + 2.
(103)

Summarizing (93), (94), (96), (103), we receive the codimension estimate:

codim p−1Xp ∩ D(α1,1 + β1,1) > min
{
codim p−3Xp−1, codim p−2Xp−1 + 1, codim p−1Xp−1 + 2

}
.

By permuting the indices, we know that all:

p−1Xp ∩ D(αi,1 + βi,1) ⊂ Matp×2p(K) (i = 1 ··· p)

have the same codimension, and so does their union:

p−1Xp ∩ D(α1 + β1) = ∪p
i=1

(
p−1Xp ∩ D(αi,1 + βi,1)

) ⊂ Matp×2p(K).

Finally, taking codimension on both sides of:

p−1Xp =
(

p−1Xp ∩ V(α1 + β1)
) ∪ (

p−1Xp ∩ D(α1 + β1)
)
,

Proposition 11.2 and the preceding estimate conclude the proof. �

Proof of (83). If ` > 2, decompose the variety `Xp−1 into three pieces:

`Xp−1 = `−2Xp−1 ∪ (
`−1Xp−1 \ `−2Xp−1

) ∪ (
`Xp−1 \ `−1Xp−1

)
;

and if ` = 1, decompose the variety `Xp−1 into two pieces:

1Xp−1 = 0Xp−1 ∪ (
1Xp−1 \ 0Xp−1

)
.

Now, by mimicking the preceding proof, namely by applying Lemma 11.10 and Theorem 10.5,
everything goes on smoothly with much less effort, because there is no need to perform delicate
codimension estimates such as (103). �

11.6. Proof of Core Lemma. Comparing (55) and (75), it is natural to introduce the projection:
πM,N : MatM×2(N+1)(K) −→ MatN×2N(K)
(
α0, . . . , αp, β0, . . . , βp

) 7−→ (
α̂1, . . . , α̂p, β̂1, . . . , β̂p

)
,

where each widehat vector is obtained by extracting the first N entries.
It is direct to check that:

πM,N (M N
M ) ⊂ N−1XN .

Moreover, for every Y ∈ N−1XN , the ‘fibre in fibre’:

π−1
M,N(Y) ∩ M N

M ⊂ π−1
M,N(Y),
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thanks to (56), has codimension > M. Thus a direct application of Theorem 10.5 yields:

codim M N
M > codim N−1XN + M > N + 1 + M [use (84)]. (104)

12. Algorithm of MCM and Estimates on Hypersurface Degrees

12.1. A must design. Given the integer r > 1 in Theorem 5.1, recalling the Step 2 in Subsec-
tion 5.3, we naturally carry out the Algorithm of MCM as follows.

The procedure is to first construct µl,k in a lexicographic order with respect to indices (l, k), for
l = c + r + 1 · · ·N, k = 0 · · · l, along with a set of positive integers δl.

For simplicity, we start by setting:

δc+r+1 > max {ε1, . . . , εc+r}. (105)

For every integer l = c + r + 1 · · ·N, in this step, we begin with choosing µl,0 that satisfies:

[see (69), (65)] µl,0 > l δl + l (δc+r+1 + 1) + 1 + (l − c − r)r, (106)

then inductively we choose µl,k with:

[see (70), (66)] µl,k >
k−1∑

j=0

l µl, j + (l − k) δl + l (δc+r+1 + 1) + 1 + (l − c − r)r (k = 1 ··· l). (107)

If l < N, we end this step by setting:

δl+1 := l µl,l (108)

as the starting point for the next step l + 1. At the end l = N, we make the integer d large enough:

d > (N + 1) µN,N . (109)

12.2. Effective lower degree bounds. Recalling Subsection 5.4, we first provide an effective

Theorem 12.1. For all N > 3, for any ε1, . . . , εc+r ∈ {1, 2}, Theorem 5.4 holds for all d > NN2/2−1.

Proof. Setting δc+r+1 = 2 in (105), and demanding all (106) – (109) to be equalities, we thus receive
the desired estimate without much difficulty. See [16, Section 11] for details. �

Hence, the product coup in Subsection 5.4 yields

Theorem 12.2. In Theorem 5.1, for r = 1, the lower bound d0(−1) = NN2
works. �

12.3. Some improvements of MCM. In fact, the hypersurface equations (61) contain many more
moving coefficient terms than required — as indicated by (104) which strengthens the Core Lemma
— which make the lower bound d0(−1) big.

Indeed, for instance when 2 (2c + r) > 3N − 2, pure Fermat-type hypersurfaces are adequate for
Theorem 5.1. Thus, by setting ε1 = · · · = εc+r = 1, in order to make (41) negative, we only need
to require d1 = · · · = dc+r > 2N + 3. Also, the product coup asserts that the lower degree bound
d1, . . . , dc+r > (3N + 2) (3N + 3) works.

More improvements and estimates of lower degree bounds can be found in [16, Section 12].
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13. Uniform Very-Ampleness of SymκΩX

13.1. The canonical bundle of a projectivized vector bundle. Let X be an n-dimensional com-
plex manifold, with canonical line bundle KX. Let E be a holomorphic vector bundle on X having
rank e, with dual bundle E∨, and let π : P(E) −→ X be the projectivization of E.

Theorem 13.1. (See [16, Proposition 13.2]) The canonical line bundle KP(E) of P(E) satisfies:

KP(E) � OP(E)(− e) ⊗ π∗ ∧e E∨ ⊗ π∗KX. �

In applications, we are interested in the case where X ⊂ V for some complex manifold V of
dimension n + r, and E = TV

∣∣∣
X
.

Corollary 13.2. One has:

KP(TV |X) � OP(TV |X)(− n − r) ⊗ π∗KV

∣∣∣
X
⊗ π∗KX . �

Moreover, assume that X,V are some smooth complete intersections in PN
C , so their canonical

line bundles KX,KV have neat expressions by the following classical theorem.

Theorem 13.3. For a smooth complete intersection:

Y := D1 ∩ · · · ∩ Dk ⊂ PN
C

with divisor degrees:
deg Di = di (i = 1 ··· k),

the canonical line bundle KY of Y satisfies:

KY � OY

(
− N − 1 +

k∑

i=1

di

)
. �

13.2. Proof of the Very-Ampleness Theorem 1.3. Now, assume K = C. Recall our Ampleness
Theorem 1.2, dimC X = N − (c + r) = n. Then the above Corollary 13.2 and Theorem 13.3 imply:

KP(TV |X) � OP(TV |X)(− n − r) ⊗ π∗2 OPN
K

(
− 2 (N + 1) +

c∑

i=1

di +

c+r∑

i=1

di

)
.

Also, recalling Theorem 5.1 and Proposition 4.3, for generic choices of H1, . . . ,Hc+r, for any
positive integers a > b > 1, the negatively twisted line bundle below is ample:

OP(TV |X)(a) ⊗ π∗2 OPN
K

(−b).

It is now time to recall (cf. the survey [5])

A known result about the Fujita Conjecture. Let M be an n-dimensional complex manifold with
canonical line bundle KM. If L is any positive holomorphic line bundle on M, then L ⊗m ⊗K ⊗ 2

M

is very ample for all large m > 2 +
(

3n+1
n

)
.

Consequently, the line bundle below is very ample:

OP(TV |X)

(
m a − 2n − 2r

)
⊗ π∗2 OPN

K

(
− m b − 4 (N + 1) + 2

c∑

i=1

di + 2
c+r∑

i=1

di

)
. (110)

Also recalling (11), for all ` > 3, the line bundle below is very ample:

OP(TV |X)(1) ⊗ π∗2 OPN
K

(`). (111)
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Note the following two facts:

(A) if OP(TV |X)(κ) ⊗ π∗2 OPN
K

(?) is very ample, then so it is for every ?′ > ?;
(B) the tensor product of any two very ample line bundles remains very ample.

We now consider the semigroup G of the usual Abelian group Z⊕Z generated by elements (`1, `2)
such that OP(TV |X)(`1) ⊗ π∗2 OPN

K
(`2) is very ample. Then, for all m > 2 +

(
3n+1

n

)
, G contains:

[see (110)]
(
m a − 2n − 2r, −m b − 4 (N + 1) + 2

c∑

i=1

di + 2
c+r∑

i=1

di

)
,

[see (111)] (1, `), ∀ ` > 3.

Paying no attention to optimality, taking:

b = 1, a = 2, m = −4 (N + 1) + 2
c∑

i=1

di + 2
c+r∑

i=1

di + 3,

we receive that (m a − 2n − 2r,−3) ∈ G . Adding (1, 3) ∈ G , we receive (m a − 2n − 2r + 1, 0) ∈ G .
Now, also using (m a − 2n − 2r, 0) ∈ G , recalling Observation 5.6, we may take:

κ0 = (m a − 2n − 2r − 1) (m a − 2n − 2r) 6 a2 m2,

or the larger neater lower bound:

κ0 = 16
( c∑

i=1

di +

c+r∑

i=1

di

)2
.

Thus, we have proved the Very-Ampleness Theorem 1.3 for K = C. Remembering that very-
ampleness (or not) is preserved under any base change obtained by ambient field extension, and
noting the field extensions Q ↪→ C and Q ↪→ K for any field K with characteristic zero, by
some standard arguments in algebraic geometry, we conclude the proof of the Very-Ampleness
Theorem 1.3. �
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Méthode des coefficients mobiles, Coup du produit, Règle de Cramer, Lieu-base
Résume: Nous établissons la Conjecture d’amplitude de
Debarre: Le fibré cotangent ΩX d’une intersection X =

H1∩· · ·∩Hc de c > N/2 hypersurfaces génériques Hi ⊂ PN
C

de degrés élevés d1, . . . , dc � 1 est ample.
Tout d’abord, nous élaborons une interprétation
géométrique des différentielles symétriques sur les
espaces projectifs. De cette manière, nous reconstruisons
les différentielles symétriques de Brotbek sur X, lorsque
les équations définissantes des hypersurfaces H1, . . . ,Hc

sont de type Fermat généralisé. De plus, nous dévoilons
des familles nouvelles de différentielles symétriques de
degré inférieur sur toutes les intersections possibles de X
avec des hyperplans de coordonnées.

Ensuite, nous introduisons ce que nous appelons la ‘Méth-
ode des Coefficients Mobiles’ ainsi que le ‘Coup du Pro-
duit’ afin d’accomplir une démonstration de la conjecture
d’amplitude de Debarre. De plus, nous obtenons une borne
effective inférieure sur les degrés: d1, . . . , dc > NN2

. Enfin,
grâce à des résultats connus au sujet de la conjecture de
Fujita, nous établissons que Symκ ΩX est très ample pour

tout κ > 64
(∑c

i=1 di

)2
.

Title: On the ampleness of the cotangent bundles of complete intersections
Keywords: Debarre Ampleness Conjecture, Complete intersection, Symmetric differential form,

Moving Coefficients Method, Product coup, Cramer’s rule, Base loci
Abstract: We establish the Debarre Ampleness Conjec-
ture: The cotangent bundle ΩX of the intersection X =

H1 ∩ · · · ∩ Hc of c > N/2 generic hypersurfaces Hi ⊂ PN
C

of high degrees d1, . . . , dc � 1 is ample.
First of all, we provide a geometric interpretation of sym-
metric differential forms in projective spaces. Thereby, we
reconstruct Brotbek’s symmetric differential forms on X,
where the defining hypersurfaces H1, . . . ,Hc are general-
ized Fermat-type. Moreover, we exhibit unveiled families
of lower degree symmetric differential forms on all possi-
ble intersections of X with coordinate hyperplanes.

Thereafter, we introduce what we call the ‘moving coeffi-
cients method’ and the ‘product coup’ to settle the Debarre
Ampleness Conjecture. In addition, we obtain an effec-
tive lower degree bound: d1, . . . , dc > NN2

. Lastly, thanks
to known results about the Fujita Conjecture, we establish

the very-ampleness of Symκ ΩX for all κ > 64
(∑c

i=1 di

)2
.
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