
HAL Id: tel-01414770
https://theses.hal.science/tel-01414770

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Program Restructuring
Oleksandr Zinenko

To cite this version:
Oleksandr Zinenko. Interactive Program Restructuring. Human-Computer Interaction [cs.HC]. Uni-
versité Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS437�. �tel-01414770�

https://theses.hal.science/tel-01414770
https://hal.archives-ouvertes.fr

NNT : 2016SACLS437

THÈSE DE DOCTORAT

DE

L’UNIVERSITÉ PARIS-SACLAY

PRÉPARÉE À

L’UNIVERSITÉ PARIS-SUD

ECOLE DOCTORALE N◦ 580
Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

Par

M. Oleksandr ZINENKO

Restructuration Interactive des Programmes

Thèse présentée et soutenue à Gif-sur-Yvette, le 25 Novembre 2016.

Composition du Jury :

M. FEKETE Jean-Daniel Directeur de recherche à Inria Saclay Président

M. CONVERSY Stéphane Professeur à l’ENAC et Université de Toulouse Rapporteur

M. RAJOPADHYE Sanjay Professeur à Colorado State University Rapporteur

M. COHEN Albert Directeur de recherche à Inria Paris et ENS Paris Examinateur

M. HUOT Stéphane Directeur de recherche à Inria Lille Directeur de thèse

M. BASTOUL Cédric Professeur à l’Université de Strasbourg Co-directeur de thèse

Oleksandr Zinenko: Interactive Program Restructuring, © November
25, 2016

R É S U M É D E T H È S E

La programmation est une activité complexe et hautement spécial-
isée qui nécessite beaucoup d’effort cognitif de la part de program-
meur. Tout au long de leur histoire, les ordinateurs sont passés
des systèmes disparates et très spécialisés aux systèmes homogènes
à l’usage général, et sont revenus à la multitude des systèmes ex-
trêmement différents grâce à l’avènement de l’informatique ubiqui-
taire. Les moyens de contrôler le fonctionnement des ordinateurs ont
évolué au même temps que les architectures matérielles entraînant
la création des abstraction empilées nécessaires pour gérer la com-
plexité constamment croissante des systèmes informatiques. Cepen-
dant ces abstractions ont eu un coût de calcul non-négligeable dimin-
uant l’efficacité des ordinateurs : les programmeurs n’ont plus de
moyens, techniques ou temporelles, pour gérer les nombreux aspects
du fonctionnement de l’ordinateur et doivent recourir aux approches
génériques qui sont souvent suboptimales.

Des langages de programmation et des bibliothèques logicielles
actuels aident à créer des nouveaux programmes efficaces, des out-
ils de visualisation des logiciels permettent d’analyser l’efficacité des
programmes, cependant aucun d’entre eux n’est conçu spécialement
pour supporter la restructuration des programmes existants. La re-
structuration interactive des programmes est une interface interac-
tive unifiant des visualisations des logiciels efficaces et des outils de
haut niveau pour manipuler des programmes qui réduit à la fois le
temps d’analyse et celui de modification des programmes. Les out-
ils efficaces de restructuration des programmes doivent représenter
les données sur le programme qui sont soit indisponibles soit diffi-
cilement accessibles dans des autres représentations, y compris dans
le code source, ainsi que permettre la modification de ces données
de telle sorte que le programme représenté soit aussi modifié. La
conception de tels outils nécessite non seulement les techniques de
visualisation et d’interaction appropriée, mais aussi des modèles des
programmes puissants qui adaptés à la restructuration profonde.

Dans cette thèse, nous développons la restructuration interactive des

programmes, proposons les principes et les directives pour la con-
ception des outils de restructuration des programmes et utilisons
ces principes pour évaluer un système interactif de parallélisation
et d’optimisation des programmes basé sur le modèle polyédrique,
l’état de l’art de représentation des programmes de calcul scientifique.

Chapitre 2 propose une revue de l’état de l’art des représentations
et des visualisations des logiciels. Dans ce chapitre, nous établissons
une espace de conception qui organise les outils et les techniques de vi-

iii

sualisation des logiciels selon les informations qu’ils représentent et
les interactions qu’ils supportent au niveau de modification des pro-
grammes. S’appuyant sur l’analyse morphologique des visualisations
des logiciels, nous proposons les principes de base de la restructura-
tion interactive des programmes.

Dans le chapitre 3, nous décrivons le modèle polyédrique, une représen-
tation abstraite moderne des programmes qui fournit les outils d’analyse
précis et les techniques de manipulation de haut niveau. Nous définis-
sons la structure de la représentation polyédrique qui convient pour la
manipulation interactive des programmes.

Chapitre 4 décrit la conception orientée utilisateur d’une technique
de visualisation des logiciels basée sur le modèle polyédrique. Nous
démontrons comment cette visualisation fournit, d’une manière com-
préhensible mais brève, l’information sur l’exécution d’un programme
difficilement visible dans le code source, notamment les exécutions
individuelles des boucles et les dépendances entre elles. Cette tech-
nique de visualisation est évaluée dans une expérience contrôlée avec
un groupe des programmeurs ayant des niveaux différents. Le résul-
tats décrits dans ce chapitre étaient présentés à la conférence VL/HCC
en 2014.

Dans le chapitre 5, nous proposons une correspondance bidirec-
tionnelle entre les transformations primitives dites «classiques» des
boucles et la représentation polyédrique. Le nouveau ensemble des
transformations permet de combiner les transformation primitives
afin d’effectuer toute modification possible tant que le programme
reste valable dans le modèle polyédrique. Nous proposons aussi un
algorithme pour retrouver une séquence des transformations prim-
itives qui correspond à une optimisation d’un programme calculée
automatiquement sans que l’optimiseur automatique aient connais-
sance des nos primitives ni fonctionne au niveau syntaxique. En-
semble, l’ensemble des transformations et l’algorithme permettent à
l’utilisateur d’interagir avec un compilateur polyédrique. Les résul-
tats décrits dans ce chapitre étaient présentés à la conférence CGO en
2016.

Chapitre 6 s’appuie sur les deux chapitres précédents afin de per-
mettre manipulation directe de la visualisation des programmes. Nous
mettons en correspondance les entrées graphiques de l’utilisateur et
les séquences de transformations primitives ainsi que les transforma-
tions primitives individuelles et les visualisations animées. Le sys-
tème de manipulation des programmes ainsi conçu est évalué ex-
périmentalement pour démontrer son utilité. Dans ce chapitre, nous
étudions également l’utilisation les représentations textuelles et vi-
suelles des programmes et les choix des programmeur grâce à la
technique de suivi de l’œil. Une partie des résultats décrits dans
ce chapitre étaient présentés au workshop IMPACT pendant la con-
férence HiPEAC en 2015.

iv

Dans le chapitre 7, nous proposons d’intégrer les informations sup-
plémentaires dans l’outil de visualisation des programmes en pro-
posant une nouvelle technique d’interaction basée sur l’altération con-
trôlée du mouvement du curseur de la souris. Sur la base de cette
extension, nous démontrons comment les modèles des programmes
peuvent être adaptés aux techniques d’interaction et vice versa. Cette
technique sert aussi d’exemple pour soutenir l’intérêt de la recherche
en interaction homme-machine pour développer la restructuration in-
teractives des programmes.

Finalement, nous discutons de la conception des outils de restruc-
turation interactive des programmes dans le chapitre 8. Nous pro-
posons des implications pour les modèles d’interaction et surlignons
la nécessite de développer un partenariat homme-machine dans la
restructuration et l’optimisation des programmes.

La généralisation de la restructuration interactive des programmes
consiste à appliquer les approches de conception des logiciels cen-
trées sur l’humain afin de créer des outils pour soutenir le cycle en-
tier de la vie des programmes. Plus particulièrement, nous proposons
de concevoir des outils d’aide à la programmation qui sont adapta-
bles et modifiables par leurs utilisateurs. La conception de ces out-
ils devrait se baser sur les études des utilisateurs plutôt que sur les
détails de fonctionnement d’un système. Étant donné la puissance
de calcul actuellement atteinte, les outils de restructuration permet-
tront augmenter à la fois la performance du programmeur et celle du
programme grâce au passage simplifié entre les différents niveaux
d’abstraction. Ils donneront aussi plus de contrôle sur l’exécution de
programme sans pour autant exiger de tout contrôler en détail grâce
au partenariat homme-machine, où le développeur guidera l’ordinateur
vers la solution correcte et l’ordinateur guidera le développeur vers
la solution la plus efficace. Nous proposons de prendre en consid-
ération non seulement les langages des programmation, mais tout
l’écosystème des outils de programmation interconnectés en combi-
nant les techniques d’analyse et de manipulation pour soutenir les
développeurs.

v

C O N T E N T S

1 introduction 1

1.1 Bridging the Programming Abstraction Gap 1

1.2 Thesis Overview . 5

2 related work 9

2.1 Visual Languages and Software Visualization 9

2.1.1 Early Years of Visual Representations of Software 9

2.1.2 Defining Software Visualization 11

2.2 Taxonomies of Software Visualization 13

2.2.1 General Taxonomies 13

2.2.2 Taxonomies for specific types of software visu-
alization . 16

2.2.3 Classifications of information aspects 17

2.3 Information-centric View on Software Visualization . . 18

2.3.1 Code Lines . 20

2.3.2 Slicing and Dicing 21

2.3.3 Iteration and Repetition 23

2.3.4 Object-Oriented Hierarchies 24

2.3.5 Memory Access and Management 26

2.3.6 Data Structures 28

2.3.7 Control Structures 29

2.3.8 Execution Traces 30

2.3.9 Multithreading Synchronization 31

2.3.10 Communication 32

2.3.11 Numeric Metrics 34

2.3.12 Software as Data Source 35

2.4 Visual Elements of Software Visualization 36

2.4.1 Visualization Primitives 36

2.4.2 Program Visualization Techniques 37

2.5 InfInt Design Space . 39

2.5.1 Degree of Interactivity 39

2.5.2 Mapping Techniques into the Design Space . . 40

2.5.3 Implications for Design 40

2.6 Discussion . 42

2.7 Conclusion . 44

3 polyhedral program representation 45

3.1 Program Representations 45

3.2 The Polyhedral Model 47

3.2.1 Development of the model 48

3.2.2 Limitations . 49

3.2.3 Workflow in the Polyhedral Model 50

3.2.4 Forms of Representation 51

3.3 Representing Programs in the Polyhedral Model 52

vii

viii contents

3.3.1 Representing Statement Instances 53

3.3.2 Representing Execution Orders 55

3.3.3 Representing Memory Accesses 59

3.4 Dependence Analysis and Parallelism 59

3.5 Structure of the Polyhedral Scheduling Relation 62

3.5.1 Existing Scheduling Structures 62

3.5.2 Scheduling Structure Selection 64

3.5.3 Dimension Semantics 64

3.5.4 Scheduling Relation Equality and Equivalence . 66

3.5.5 Scheduling Normalization 67

3.5.6 Exposing Lexical Order in Scheduling Relations 68

3.5.7 Lexical Order Normalization 70

3.5.8 Scheduling Validity Conditions 71

3.6 Discussion . 73

3.7 Conclusion . 76

4 visualizing polyhedral programs 77

4.1 Visualization Techniques for Polyhedral Programs . . . 77

4.2 Participatory Design Workshop 78

4.2.1 Protocol . 78

4.2.2 Results and Discussion 79

4.3 The Clint Visualization 82

4.3.1 Statement Instance Scatter Plot 82

4.3.2 Memory Accesses as Interactive Color Coding . 86

4.3.3 Memory Accesses as Nested Parallel Coordinates 88

4.3.4 Clint Interface . 90

4.4 Architecture and Implementation 91

4.4.1 Statement Instances 91

4.4.2 Memory Accesses 93

4.5 Evaluation of Clint Visualization 95

4.5.1 Protocol . 95

4.5.2 Results . 96

4.6 Discussion . 99

4.7 Conclusion . 101

5 high-level program manipulation 103

5.1 Semi-automatic Program Restructuring 103

5.2 From Transformation Directives to Polyhedra 104

5.2.1 Loop Transformations Expressed in Polyhedral
Model . 104

5.2.2 Revisiting Classical Transformations in Clay . . 107

5.2.3 Transforming between Arbitrary Scheduling Re-
lations in Clay . 112

5.2.4 Clay Directives in Practice 114

5.2.5 Discussion of the Transformation Set 116

5.3 From Polyhedra to Transformation Directives 118

5.3.1 Combining Manual and Automatic Program Trans-
formation . 118

contents ix

5.3.2 Detecting Complementary Transformations . . 119

5.3.3 Aligning Relations and Matching Beta-vectors . 120

5.3.4 Generating Transformation Sequence 121

5.3.5 Discussion of the Algorithm 124

5.4 Directive Recovery in Practice 127

5.4.1 Recovering beta-vectors 127

5.4.2 Benchmarks . 128

5.4.3 Example . 129

5.5 Interacting with a Polyhedral Compiler 132

5.6 Conclusion . 135

6 polyhedral program restructuring 137

6.1 Augmenting Directive-based Restructuring with Direct
Manipulation . 137

6.2 Direct Manipulation of Statements and Instances . . . 138

6.2.1 Mapping Transformation Directives to Graphi-
cal Actions . 138

6.2.2 Discussion of the Mapping 141

6.3 Transformation Replay and Correction 143

6.3.1 Undoing and Replaying Transformations 143

6.3.2 Interacting with a Polyhedral Compiler Graph-
ically . 143

6.3.3 Correcting Automatically Computed Optimiza-
tion . 144

6.4 Evaluation of Direct Manipulation Benefits 149

6.4.1 Expected Benefits 149

6.4.2 Experimental Protocol 149

6.4.3 Results and Discussion 151

6.5 The Need for Code . 154

6.5.1 Protocol . 154

6.5.2 Duration and Correctness 158

6.5.3 Representation Choice 163

6.5.4 Visual Behavior 165

6.5.5 Discussion . 169

6.6 Interactive Program Restructuring in the Polyhedral Model172

6.7 Conclusion . 173

7 constrained manipulation 175

7.1 Constrained Program Manipulation and Background
Information . 175

7.2 Pointing Transfer Functions and Pseudo-haptic Feedback177

7.3 Morphology of the transfer function 178

7.3.1 Transfer function arguments 178

7.3.2 Transfer function shape structure 181

7.4 A design space for C-D gain change-based interfaces . 182

7.4.1 Design Space Dimensions 182

7.4.2 Using the Design Space: Combining Dimensions 183

7.4.3 Design Space Limitations 186

x contents

7.5 Communicating information through C-D gain 186

7.5.1 Transfer function shape for communicating in-
formation . 187

7.5.2 Evaluating information communication 188

7.6 Using C-D gain changes alone 189

7.6.1 Experimental Protocol 189

7.6.2 Data Collection 192

7.6.3 Apparatus and Implementation 192

7.6.4 Metrics and data post-processing 193

7.6.5 Ordering effects 194

7.6.6 Effects of transfer function shape 195

7.6.7 Effects of transfer function discretization 196

7.6.8 Exploratory analysis: elements of strategy . . . 197

7.6.9 Qualitative elements of strategy 199

7.6.10 C-D gain change interpretation 200

7.6.11 Discussion . 201

7.7 C-D gain change with background visualization 201

7.7.1 Experimental Protocol 202

7.7.2 Effects of visual feedback 203

7.7.3 Comparison with previous experiment 205

7.7.4 Discussion . 205

7.8 Communicating Program-Related Information 206

7.8.1 Predicting Transformation 206

7.8.2 Representing Dependence Violation 207

7.8.3 Representing Access Locality 208

7.8.4 Selecting Feedback Source 211

7.9 Guiding Manipulation around Constraints 211

8 conclusion and perspectives 215

8.1 Designing Tools For Interactive Program Restructuring 215

8.2 Contributions . 218

8.3 Interacting with Inaccessible Object of Interest 220

8.4 Future Work and Perspectives 223

a extended infint design space 227

b statistical methods 231

b.1 Key probability distributions 231

b.2 Confidence Intervals . 232

b.3 Effect sizes and hypothesis testing 233

bibliography 235

C O N V E N T I O N S

Hyperlinks to this document are highlighted in blue as in 1.
Citation hyperlinks are highlighted in green as in [275].
External URLs are highlighted in red as in https://ozinenko.com/.
Margin notes are used throughout this document polymorphically. this is a margin note

Given the mix of disciplines and methodologies, margin notes often
explain domain terms and abstractions. Notes with ←֓ symbol serve ←֓ key for margin

symbolsas reference anchors for definitions of terms back-referenced in fur-
ther text. Notes with ⊲ symbol highlight important observations, re- ⊲ Margin notes are

more contextual

than footnotes.
sults or conclusions. Nevertheless, footnotes 1 are still used for minor
citations and URLs that fit poorly into margins.

1. The electronic version of this document will be available at https://ozinenko.
com/phd.pdf

xi

https://ozinenko.com/
https://ozinenko.com/phd.pdf
https://ozinenko.com/phd.pdf

1
I N T R O D U C T I O N

1.1 bridging the programming abstraction gap

Computer programming is a complex heavily-specialized activity
that requires a lot of cognitive effort. During their history, comput-
ers went from specialized highly diverse systems to homogenized
general purpose systems, and back to the multitude of widely dis-
parate systems with the advent of ubiquitous computing [261]. The
ways to control the computer operation evolved alongside computer
architectures resulting in a stack of abstractions that is used to man-
age the constantly increasing computer systems complexity. Yet these
abstractions came at a cost of reduced computer efficiency: program-
mers can no longer control all the numerous and diverse low-level
aspects of the computer operation and rely on generic, often subopti-
mal abstraction lowering tools.

First computers were specialized, and reusable programs non-exis-
tent, letting engineers adapt every computer to the task up to the cir-
cuitry level reaching peak efficiency. Designs were so radically differ-
ent that instruction and data circuitry could be fully separated (Har-
vard architecture) or combined (von Neumann architecture). ENIAC,
often cited as the first general-purpose computer, was essentially a
collection of physically implemented arithmetical functions [105] and
was programmable by switches and rewiring (Figure 1).

In the early years, computer programming was separated from op-
erating the computer, although tightly linked to its architecture. Pro-
grams were created on paper and then reproduced on the metallic or
paper tape using special coding systems. They were specified using
the machine codes directly or using the assembly language, which
introduced textual mnemonics for machine commands. Beside being
error-prone, machine codes had to be recreated for each computer
with different internal organization and available instructions. Pro-
gram representations reflected computer operation rather than the
details of the task to solve.

High-level programming languages were designed to shift the fo-
cus from low-level computer operation to computational form of the
task, making programming more abstracted from the target machine.
Plankalkül for Konrad Zuse’s Z3 computer is often considered the first
theoretical proposal of the high-level language [143] 1 that used no-
tation closed to relational formalism in mathematics. However, it

1. [143] gives an overview of all listed early programming languages.

1

2 introduction

Figure 1 – First general-purpose computer, ENIAC, was programmed by
switches and rewiring (image credit: US Army research labora-
tory http://ftp.arl.mil/ftp/historic-computers/).

was not implemented until 1975 [121]. Short Code is another early
high-level language that allowed to translate mathematical expres-
sions into a structured numerical form. Programs in Short Code were
not translated into machine codes, but interpreted by a special pro-
gram. Mark I Autocode is arguably the first compilable programming
language: it allowed to represent mathematical expressions and used
a separate program — an autocoder — to transform autocode into
machine codes [143]. Autocode is a generic term that was used to des-
ignate first programming languages, and an autocoder is essentially
a compiler. Their main innovation was the possibility to create the
program for a computer using the same computer, hence the name.

Fortran is arguably the first high-level platform-independent pro-
gramming language. Similarly to its predecessors, it was based around
mathematical expressions. Lisp is another trailblazing high-level lan-
guage that introduced a different, functional paradigm, closer to math-
ematical abstraction than to computer operation.

New programming languages kept appearing to address the in-
creasing complexity of the tasks computers were required to solve.
Major innovations in programming languages provided increasingly
higher levels of abstraction, allowing to express more intricate domain
areas with less effort. Structured programming in Algol and object-
oriented programming in Simula, then Smalltalk were proposed to
simplify programming and make it less error-prone [29]. With the
development of graphical interfaces, visual programming languages
started to appear reflecting the early graphical representations of the
programs, such as flowcharts and graphs [62].

At the same time, computer architectures kept evolving to provide
more computing power. Generations of computer architectures are
divided by their element base: vacuum tubes were replaced by tran-
sistors, which were later packed into integrated circuits with ever-

http://ftp.arl.mil/ftp/historic-computers/

1.1 bridging the programming abstraction gap 3

increasing density. In 1965, Moore made an empirical observation
that the number of transistors in the integrated circuit doubles every
two years [189]. Nine years later, Dennard observed that, while the
transistor size decreases, their power density remains constant, i. e.
the power consumption is proportional to the area of the integrated
circuit rather than to the number of components [79], resulting in
the exponential growth of performance per watt of consumed energy.
Dennard scaling essentially allowed to improve performance by re-
placing the computer hardware by a newer one with higher clock
frequency without modifying the software.

While Moore’s observation is still valid today [168, 172], exponen-
tial performance scaling resulting from component base frequency
increase stopped due to huge thermal energy losses [141]. Instead,
processor designers turned to parallel architectures with deep mem-
ory hierarchies to maintain performance scaling [239]. Although par- Chip designers are

under so much

pressure to deliver

ever-faster CPUs

that they’ll risk

changing the

meaning of your

program, and

possibly break it, in

order to make it run

faster.

H.Sutter

allel architectures feature ever-increasing performance characteristics,
they do not allow to make software run faster immediately. Instead,
they shift the burden of performance improvements onto software de-
velopers who now have to create tools and techniques that efficiently
exploit all features of parallel architectures [159].

The independence in development of programming languages and
computer architectures, granted by constant and almost effortless per-
formance increase, resulted in radically different abstractions being
used in languages and hardware. While programming languages let
programmers express problem domains in more natural terms, they
become increasingly hard to translate to machine languages and the
result of this translation is barely understandable for programmers
(Figure 2). Worse, compilers are often opaque and provide little to
no control over the translation process. At the same time, program-
ming languages cannot fully ignore higher-level program properties,
in particular they must account for the possibility of parallel execu-
tion [35].

This abstraction gap creates an additional cost for program and
programmer performance, but also an opportunity for improvement:
when moving down in the abstraction stack, the additional details
may be filled in automatically so as to exploit the available resources
better. However, the abstraction stack is so deep and individual ab-
stractions so diverse that even automated tools cannot yield best so-
lutions and rely on imprecise heuristics [265]. Fully automatic par-
allelization has been a holy grail of program optimization for years,
and is only partially possible [76].

Therefore, to be more efficient in exploiting the power of modern
computers, developers need high-level program manipulation tools
that give them control over lower-level processes without requiring
to manage everything. This can be achieved by letting an automatic
system, e. g. a compiler, to handle boilerplate program parts and

4 introduction

Figure 2 – Modern computers are programmed by bulk of text. Heavily op-
timized and highly abstracted programs are difficult to maintain
and restructure. Left: a part of the code of a popular JavaScript
library. Right: GCC error message from a single template error.

interact with the developer when a piece of information crucial for
optimization is missing. In order to take informed decisions about
program manipulation, developers need more information than already

available in the programming code, or need to have the already available
information better accessible and easier to manipulate.

The need for representing and manipulating information shifts the
design of program restructuring into the area of Human-Computer
Interaction. While first computer operators were necessarily program-
mers, major advances in HCI allowed people to simply use comput-
ers without programming them. For example, the direct manipulation

interaction paradigm, ubiquitous in modern computer systems, was
initially proposed as a step beyond programming languages [227].

While programming languages partially address the complexity
of initial program development, they are rarely designed to simplify
further steps of software life cycle. Even if new languages or lan-
guage extensions are designed for efficient use of modern computer
systems [222], they fall short at supporting analysis and optimizing
restructuring of already existing programs. On the other hand, soft-
ware visualization tools support program analysis [80], but rarely pro-
vide means to modify the program using the same interface. By
proposing interactive program restructuring, we aim at designing ef-
ficient program manipulation tools that help programmers manage
the complexity of the software on one hand, and provide insights for
human-computer interaction research thanks to studying developers
as extreme users on another hand. Design of interactive program re-
structuring tools requires addressing both the program optimization
modeling and the interactive program visualizations.

1.2 thesis overview 5

1.2 thesis overview

This document supports the following thesis.

←֓ thesis statement
Modern parallel programming languages and libraries help create

new efficient programs, software visualization tools allow to analyze

program efficiency, yet neither of them is consistently designed to
support restructuring existing programs to improve efficiency. In-

teractive program restructuring combines effective software visual-
ization techniques with high-level program manipulation tools in
a single interactive interface, reducing both the program analysis
and the program manipulation time. Efficient restructuring tools
should present program data that is either not available or not
immediately accessible in other representations, including source
code, and allow for manipulating this data so as to change the pro-
gram. Designing such tools requires not only the relevant visual-
ization and interaction techniques, but also the high-level program
models that support deep restructuring.

This manuscript illustrates interactive program restructuring by propos-
ing guidelines for program restructuring tools and using them to
design and evaluate an interactive program parallelization and op-
timization system based on the state-of-the-art polyhedral model for
program optimization. It is structured as follows.

Chapter 2 reviews existing work in software representation and
visualization. It provides a design space structuring the software visu-
alization tools and techniques with respect to program-related infor-
mation they represent and interaction they support. Building on the
morphological analysis of software visualization, it establishes basic
principles of interactive program restructuring.

Chapter 3 presents the polyhedral model, a state-of-the-art abstract
program representation providing precise analysis and high-level pro-
gram manipulation capabilities. This chapter defines a structure of

the polyhedral representation suitable for interactive program manipula-
tion.

Chapter 4 describes the user-centered design of a software visual-
ization technique based on the polyhedral model. It demonstrates
how this visualization provides information that was hard to extract
from code in a comprehensible yet concise manner. The technique is
evaluated experimentally with a group of programmers having differ-
ent expertises. The results presented in this chapter were published
at the VL/HCC conference in 2014 [275].

Chapter 5 proposes a bidirectional mapping between high-level
program transformation directives and the polyhedral representation.
It contributes a set of directives that allow to perform an arbitrary pro-
gram modification in the polyhedral model as well as an algorithm
that allows to express an automatically computed program optimiza-

6 introduction

tion in terns of these directives. Combined, these contributions open
a way for interacting with a polyhedral-enabled compiler. The re-
sults presented in this chapter were published at the CGO conference
in 2016 [12].

Chapter 6 builds on the previous chapter to enable direct manip-
ulation of the polyhedral program visualization. It maps user ac-
tions to transformation directives and transformation directives to an-
imated transitions. The entire system is evaluated experimentally to
demonstrate its utility. The chapter also addresses the use of textual
and graphical program representations and programmers preference
through an eye-tracking study. Partial results of this chapter were
presented at the IMPACT workshop of the HiPEAC conference in
2015 [274].

Chapter 7 integrates additional information to the program visu-
alization tool by proposing a novel interaction technique based on
modifying mouse cursor motion. It demonstrates how program mod-
els can be matched to interaction techniques and exemplifies the in-
terest of human-computer interaction research in interactive program
restructuring.

Chapter 8 discusses the design of interactive program restructuring
tools in general. It presents the implications for interaction paradigms
and outlines the need for developer-compiler partnership in program
restructuring and optimization.

Contributions

This thesis is an interdisciplinary work between human-centered
computing and optimizing compilation. It resulted in following tech-
nical, empirical and theoretical contributions to the polyhedral pro-
gram optimization and the design of interactive program visualiza-
tion and manipulation tools.

interactive program restructuring tools

— Clay provides a set of high-level program transformation direc-
tives that allows to arbitrarily transform the programs that are
amenable to the polyhedral model and satisfy validity criteria;

— Chlore allows to uncover the sequence of Clay transformations
that corresponds to an automatically computed program opti-
mization even though the polyhedral optimizer does not oper-
ate in terms of directives;

— Clint provides an interactive visual program manipulation inter-
face that is likely to improve both program analysis and trans-
formation by the developer.

1.2 thesis overview 7

empirical observations

— given interactive visual representation of the loop iteration-level
representations, software developers are likely to extract and
express loop-level parallelism faster and more successfully;

— designing visual interfaces for program restructuring so that
the pertinent data discovery is faster and program manipula-
tion easier, together with sufficient training, may improve the
acceptance of visual program representations;

— modifying the speed of cursor motion can be perceived and
quantified by the user and thus can be used to communicate
supplementary, non-critical information in visually loaded pro-
gram manipulation interfaces.

theoretical perspectives

— InfInt design space classifies software visualization techniques
with respect to program-related information they present and
the level of interaction they provide, giving program manipu-
lation tool designers a framework for interactive program restruc-

turing;
— Structure of the polyhedral program scheduling combined with

global validity conditions ensures safe program transformation
in the polyhedral model and allows to ensure completeness of
the Clay transformation set.

2
R E L AT E D W O R K

2.1 visual languages and software visualization

Software development and maintenance is an extremely complex
area of activity that requires a multitude of skills and substantial
mental effort. From the early days of computer programming, peo-
ple used a variety of techniques to support creation, modification
and use of software. Similarly to many engineering areas, a lot of
these techniques leverage visual representations to provide insight
into software, improve understanding and reduce the cognitive load
of software developers. These representations allow, for example, to
describe the target hardware more intuitively or to characterize the
application domain in a more concise yet expressive manner.

Conventionally, a computer program is viewed as a sequence of in-
structions specifying its behavior and forming the programming code.
Although modern digital computers operate with numbers encoded
by electrical signals, instructions are most commonly represented as
structured text better understandable for humans thanks to a higher
level of abstraction that decreases the complexity of understanding
software. Visualization and visual programming are often opposed
to conventional "textual" programming [263]. However, evidence ex-
ists that experience in programming modern computers with code
is closer to visual processing than to text due to the structure of the
code and support tools such as syntax highlighting and code naviga-
tion [70, 202].

2.1.1 Early Years of Visual Representations of Software

From the very genesis of computer programming, people resorted
to visual representations. In the Note B to the "Sketch of The Analyt-
ical Engine Invented by Charles Babbage" 1, Ada Lovelace illustrates
the disc of the machine by a circle and a column of numbers. This

Visualization of the

Numbers on a Disc

of Babbage’s

Analytical Machine.

structure is later reused in the famous image representing the first
computer program (Note G of the same document). The representa-
tion of numbers and circle is not mandatory for the program itself,
but serves as a means to explain how a program would operate on
the machine: numbers are changed in the subsequent images to re-

1. Original text in French by Luigi Menabrea, Bibliothèque Universelle de
Genève, No. 82, Geneva, 1842.; English translation and commentary by Ada Lovelace,
in Scientific Memoirs, Vol. 3, pages 666-731, editor Richard Taylor, London, 1843.
Available online at https://www.fourmilab.ch/babbage/sketch.html.

9

https://www.fourmilab.ch/babbage/sketch.html

10 related work

flect the data input and the expected output. One can thus argue that
the first computer program included a visualization of the (partial)
program execution.

Programming first electronic computers required thorough prepa-
ration. In order to represent conditions in computer instructions, pio-
neers of computing reused flowcharts, a well-known engineering tool
for representing processes. First flowcharts with computer programs
appear, among others, in works of von Neumann 2. Once computers
become powerful enough to be used as a support tool for program-
ming, first software design and visualization techniques based on
flowcharts started to appear [118].

With the advent of higher-level programming languages like for-
tran and lisp featuring better expressivity and conciseness of pro-
grams, visual representations were adapted to representing the pro-
gramming code. While flowcharts were still used to describe algo-
rithms, it became possible to use a more concise textual representa-
tion and thus create larger programs. Algorithm description is not
necessarily made in an actual programming language, but may be
written in pseudocode. New programming paradigms that emerged
around high-level languages required new forms of visualization. For
example, structured programming allowed for a neat visualization of
the nesting structure for code blocks, combinable with flowcharts [194].⊲Early program

representations

corresponded to the

internal operation of

computers.

On the other hand, the use of visual form to create a program
rather than to explain it emerged as a separate paradigm giving
birth to the visual programming. SketchPad [238] with its innovative
graphic interface is sometimes considered as a precursor for visual
programming thanks to its support for user-specifiable constraints
and graphic element reuse operations [40]. Early visual program-
ming languages include, for example, graphical variants of the lisp

tailored to visual specification of graph and list algorithms called am-
bit/g [62] and ambit/l [63] respectively. In another early visual pro-
gramming system, Pygmalion [229], the user would create and alter
the program by connecting graphical icons representing actions and
properties. Pygmalion also defined the notion of programming by ex-

ample that is still actively used in end-user programming, often in a
form of automation or macro engines. Computer-mediated educa-
tion remains the large field of application for visual programming,
starting from the seminal "Mindstorms" book by Pappert [198] that
presented the Logo language and its famous Turtle Graphics. Mod-
ern visual programming languages, such as Scratch [216] or Looking
Glass [110, 111], are also targeted at computing education for non-
programmers.

Visual tools for programming support emerged fast and were often
multipurpose, resulting in a confusion between all pertinent aspects.

2. H.H. Goldstine and J. von Neumann. «Planning and Coding of Problems for
an Electronic Computing Instrument», Part 2, Vol. II. Institute for Advanced Study,
Princeton, NJ, 1948. 66 pages.

2.1 visual languages and software visualization 11

The terms visual programming and program visualization were often
used interchangeably [106] (as cited by [190]). Both terms were also
used to describe programmatic creation of graphical content (charts,
animations) independently of the program itself being specified in
code or using graphics. ⊲Terms visual

programming and

program

visualization were

often used

interchangeably.

Early systems for visual programming tightly coupled the program

specification and its output, i. e. visual programming was primarily
intended for creating visual content such as images or graphical in-
terfaces. On the upside, it allowed to developers to directly operate
the visual elements in the program. On the downside, it contributed
to the confusion between visual programming and programming vi-
sual interfaces. Even today, graphical user interface design tools, such
as Interface Builder [85], are used for graphically defining graphical
interfaces in the otherwise textually-specified program.

The proliferation of terms related to graphics and programming
urged the software visualization community to propose precise defi-
nitions to distinguish between program visualization and visual pro-
gramming as well as to separate adjacent technologies.

2.1.2 Defining Software Visualization

The first work to provide a definition of program visualization was
exactly motivated by the terminology confusion [190]. It separates
programming-by-example as an orthogonal concept to visualization
and draws a line between visual programming and program visual-
ization. It gives the following definition for the former.

“Visual Programming refers to any system that allows the user

to specify a program in a two (or more) dimensional fashion.”

And another definition for the latter.

“In Program Visualization, the program is specified in the con-

ventional, textual manner, and the graphics is used to illustrate

some aspect of the program or its run-time execution.”

These definitions imply that textual specification of programs is in-
herently one-dimensional, according to the way the code is written
and read. Note that textual specification by this time is considered
conventional. Although first program specifications were rather nu-
merical or based on mathematical symbols, defining programs using
mathematical formulae is one-dimensional in the same way as text
and therefore is not visual programming.

The next attempt at defining program visualization precisely in-
cludes elements of the classification [208].

“Program visualization is the visualization of actual program

code or data structures in either static or dynamic form.”

12 related work

This definition by Price is later reused in the heavily cited book by
Stasko et. al along with the book-title standing as another definition
"Programming as multimedia experience" [236].

In a later work, Price defines the term software visualization to under-
line the difference from programming or program specification, the
software is already existing. This new concept also includes means
and motivation as well as interaction [209].

“Software visualization is the use of crafts of typography,

graphic design, animation and cinematography with modern

human-computer interaction and computer graphics technology

to facilitate both the human understanding and effective use of

computer software.”

This definition is now widely accepted in the field. However, as Price
notices himself in the paper, this definition may also cover a repre-
sentation of the program written in the visual language. He further
argues that visual languages are meant for simplifying specification of
the software rather than its understanding and thus should not be con-
sidered as a form of software visualization. This argument may also
apply to textual programming aid techniques such as syntax high-
lighting or code folding.

Further remarks on software visualization concentrate on clarifying
its motivation and underlining the need for understanding complex
systems. In their overview of 3D software visualization techniques,
Teyseyre and Campo rephrase the earlier statement by Diehl [80] to
justify the use of advanced visual effects [245].

“The aim of software visualization is not to create impressive

images but images that evoke user mental images for better soft-

ware comprehension.”

Similar notions of the mental model and improved software com-
prehension is found in what the target audience expects from the
software visualization. For example, this definition given by Mili
from the software engineer’s point of view [186].

“Software visualization is a representation of computer pro-

grams, associated documentation and data, that enhances, sim-

plifies and clarifies the mental representation the software engi-

neer has of the operation of a computer system.”

Most of these definitions refer to visualization as representation of
software and do not necessarily mention the code. Code is considered
as another representation of the software and as such can be seamlessly
integrated in most classifications.

Once the term software visualization was defined, researchers were
able to separate tools and techniques specific to this field from others,
or identify visualization aspects of larger systems for assisting soft-
ware developers. These techniques required further morphological
analysis and classification according to their visual form, presented
software aspects and other characteristics.

2.2 taxonomies of software visualization 13

2.2 taxonomies of software visualization

Several taxonomies were proposed for classifying software visu-
alization techniques and tools. These taxonomies either attempt to
classify all tools and techniques [175, 209, 219] or focus on a par-
ticular aspect of visualization and data represented, such as three-
dimensionality of representation [245] or representation of software
evolution [147].

2.2.1 General Taxonomies

First taxonomies emerged shortly after the appearance of the first
software visualization techniques in an effort to provide guidance in
creating new visual representations. They were essentially proposed
as design spaces for gathering insight about what was done and what
else could possibly be done to represent increasingly complex pro-
grams graphically.

An early work by Myers [190, 191] is a result of growing interest in
the non-textual representation of programs. He is the first to propose
a distinction between visual programming and program visualization as
cited above. In order to better illustrate the distinction, Myers pro-
poses different taxonomies for the systems that support visual pro-
gram specification and for the systems that visualize already existing
programs. For program specification, he highlights visual program-
ming as a category along with programming by example and interac-
tivity of programming. 3 For program visualization, he suggests clas-
sifying the systems according to what they illustrate: code or data, and
with respect to display: static or dynamic. At the time, dynamic visu-
alizations were most often connected to the execution of the program
and are meant to explain it, making a tight semantic link between the
information being represented and the way it is represented. Static
visualizations mostly covered algorithm and data structure visualiza-
tions. This classification starts to structure the large and disparate
field and does not go into details about what aspects of code and
data are represented and using which techniques.

Price et. al coin the term software visualization to avoid confusion
with visual programming and better reflect the growing complex-
ity of the field covering algorithm visualizations, program anima-
tions, program component relation diagrams, data structure displays,
etc [208]. They propose six general categories subdivided into multi-
ple characteristics specific to software visualization as follows. ⊲First taxonomies

define the term

"software

visualization".

3. In modern terms, interactive programming roughly corresponds to read-
evaluate-print loop (REPL) in interpretable languages or to live coding, and batch
programming corresponds to compilation and execution.

14 related work

Scope regroups general characteristics of the software visualization
system and its limitations including the class of programs, scal-
ability and support for concurrency.

Content category comprises characteristics describing whether the
system can represent code, data structure, algorithms along
with it completeness with respect to the underlying execution
model.

Form category allows to provide more detail on the visualization
technique itself: use of visual attributes, animation, etc.

Method category covers the process of specifying the desired visu-
alization and customizing it by the end user.

Interaction category shows whether the end user can interact with
the visualization itself, focusing on navigation and filtering.

Effectiveness category tries to evaluate the system in general.

This arguably first taxonomy for software visualization reflects in its
complexity the size of the emerging field. It makes an important
point in distinguishing what is being visualized from how it is done.

In a later work [209], same authors characterize multiple software
visualization systems available at the time and provide more detailed
description of the categories, each of which is subdivided into mul-
tiple subcategories. For example, the Content category related to the
program aspects being represented is subdivided into subcategories
Program, Algorithm, Fidelity and Completeness and Data Gathering Time.
The first two subcategories are further described in terms of control
flow and data flow. This revisited taxonomy reflects the previous
classification by Myers [191] in the code-data separation. Finally, it
highlights the relation between program execution and dynamicity
of visualization specifying, e. g., whether the animation in the visual-
ization technique represents the time of execution or has a different
purpose.

Stasko and Patterson reinforce the distinction between visualized
information and visualization technique in their taxonomy designed
for understanding software visualization systems [234]. They pro-
pose a set of the following characteristics.

Aspect characteristic highlights a specific feature of the program
being visualized.

Animation characteristic captures the fact that an animation may
not only serve to represent dynamic properties of the program,
but to explain static aspects.

Abstractness of the visualization demonstrates how close is it to the
programming code and the execution model compared to the
semantics of the program, e. g. by representing time data on a
clock rather than as plain numbers.

Automation degree represents the effort the programmer should
make, in particular in modifying the program, in order to en-
able visualization of their software.

2.2 taxonomies of software visualization 15

This classification build an important basis for designing visual pro-
gram manipulation tools. It stresses out that different tasks under vari-

ous programming paradigms require different aspects to be visualized in its
Aspect dimension. For example, flowcharts naturally map to impera-
tive programming languages but are much less useful for functional
and declarative programming languages. In another characteristic,
Animation, it captures the fact that, during the animation process, the
program may temporarily become invalid as the animation is performed
for the sake of explanation and understandability.

Roman and Cox take a different, more graphics-oriented approach
to classifying software visualization systems [219, 220]. They propose
the following four classification criteria.

Scope describes what aspect of the program is being visualized, fo-
cusing on distinction between code, data and execution traces.

Abstraction defines what kind of information is conveyed and what
is abstracted away.

Technique specifies the particular visualization approach.
Specification Method characterizes how the visualization is constructed

from the software and how it is parameterized.
From the interactivity point of view, the Specification Method criterion
describes whether the user can interact with the visualization directly
to update it rather than writing configuration files, re-executing the
visualization software or modifying the program. This criterion es-
sentially says whether the system is interactive and, more specifically,
whether it supports direct manipulation [227, 228]. Roman and Cox
also discuss the distinction between program visualization and algo-
rithm animation arguing that program is characterized by its code
and control flow rather than by an algorithm.

More recently, Maletic et. al revisit taxonomies of software visual-
ization with task-oriented approach [175]. They propose to structure
software visualization techniques according to:

Task the visualization intends to solve;
Audience it addresses;
Target that describes aspects of the program that have to be visual-

ized for solving the given task;
Representation that specifies a particular visualization technique used

to represent the Target information; and
Medium reflecting the growth of multimodal representations.

This work not only accounts for new developments in the field in-
cluding systems leveraging large multi-display or immersive environ-
ments, but reorients the classification to a human-centric approach by
describing the user and their intent while using the system. They also
relate the Representation to general user needs for information visual-
ization applications proposed earlier by Shneiderman [226] and adapt
the Card et. al model for Visualization [46] to the software visualiza-
tion field. By doing so, they focus attention on the software-related

16 related work

data and the process of transforming it before visualization. It allows
to separately classify interaction with the visual structures and with
the data transformation.⊲Later taxonomies

included aspects of

interaction with

software

visualization tools.

At the early years, software visualization taxonomies and design
spaces aimed at clearly defining what software visualization is and
what it is not, drawing the borders between program visualization,
visual programming, algorithm animation and illustrated design doc-
umentation. Later works put the user into the center of classification
in order to better describe interaction with software visualizations.

2.2.2 Taxonomies for specific types of software visualization

Several taxonomies, design spaces or classification frameworks were
proposed for specific problems addressed by software visualization,
such as explaining algorithms through animation, modeling and ana-
lyzing the architecture of large software systems through real-world
metaphors or understanding the changes of software over time.

algorithm animation Important for exploratory and educa-
tional purposes, algorithm animation is a separate research domain
with its own classifications and frameworks [44]. Most techniques
are specific to animating classes of algorithms solving a particular
problem, e. g. Sorting Out Sorting, a video and a later case study on
using video for teaching algorithms [9, 230]. Shaffer et. al provide an
overview of algorithm animation techniques structured by the class of
algorithm represented [223, 224]. Nevertheless, several systems allow
to construct ad-hoc algorithm animations, for example Tango [232].

software architecture As the scale of software development
grew larger and faced new challenges, more and more new notions
were visualized to assist developers in the emerging tasks. It led to
the creation of software architecture visualization tools, e. g. software
cities [262] and software landscapes [14], or even visual languages for
creating and describing software architecture, e. g. UML [127]. Sev-
eral authors proposed classification frameworks [102] or structured
surveys [47] of these techniques paying attention to the effectiveness,
target audience and visual metaphors.

software evolution On the other hand, developing and sup-
porting software for the long term required a visual representation
of software evolution. This domain covers a broad range of techniques
from difference visualization [61, 86] to version control system graph
representations [268], and from source code lines modification [59,
242] to evolution of software architecture [182]. One system may
feature multiple levels of granularity for visualizing software evolu-
tion, for example the system by Eick et. al does so for both the source

2.2 taxonomies of software visualization 17

code line-by-line changes and for relations between source files in
project [87]. A framework was proposed to assess the effectiveness
of software evolution visualization tools [258] as well as a systematic
review crystallizing the research questions and the user requirements
in the software evolution visualization [196].

software metrics Finally, major advances were made in defin-
ing and visualizing software metrics [100]. To some extent, many soft-
ware visualization techniques are in fact representations of previously
extracted numeric metrics of the software. This view is consistent
with Card et. al model for visualization that separates the data trans-
formation into a separate step of the visualization design process [46]:
the raw data (programming code, execution traces, version history) is
transformed to a certain quantitative data by following the metric def-
inition. Number of source code lines modified by each revision and
their location in the file may be seen as a specific metric that may or
may not be represented visually using as in, e.g., Code Flows [242].
Lanza and Ducasse provide a clear separation between software vi-
sualization techniques and software metrics in their work on under-
standing software evolution [156].

2.2.3 Classifications of information aspects

static aspects Following on the earlier distinction between static
and dynamic visual representation and static or execution-related in-
formation [191, 219], Caserta and Zendra provide a detailed survey of
the techniques for visualizing static aspects of software [49]. In addi-
tion to describing numerous software visualization techniques, they
structure these techniques by the aspects of the software that are rep-
resented. At a large scale, they identify code-line-centered techniques,
for example SeeSoft [86] or Sv3D [176]; class-centered techniques, for
example Class Blueprint [84]; visualizations of relations in the software

which include different types of call graphs and class diagrams, such
as JavaVis [197] or Vampir [144], in addition to software architecture,
evolution and metrics described above. This work sheds some light
on the kinds of information present in software and is suitable for
visual representation and analysis.

parallelism Visualizing parallel programs was a primary con-
cern for the software visualization field since its genesis due to the
conflict between inherent sequentiality of the code and parallelism
of execution. Kraemer and Stasko are arguably the first ones to pro-
vide a structured overview of tools and techniques specific to parallel
software visualization [148]. They propose several general categories
based on what information is presented and how. Program Graphs

include various node-link diagrams mapped to the code or program

18 related work

execution data, such as call graphs featuring order of execution (in-
cluding parallel execution in, e.g., ParaGraph [119]), execution traces
and event causality graphs. Communication Graphs display communi-
cation between processors and, eventually, the hardware topology of
the underlying system. Statistical Displays provide aggregate descrip-
tive statistics using common statistics visualization techniques such
as bar charts, scatter plots or spider diagrams. Memory Access Dis-

plays are mostly focused around 2D spatial representation of memory
as a table of cells in order to observe access patterns through anima-
tion. They also qualify certain visualization techniques as application-

specific when they correspond to a particular execution model or ab-

stract when they are configurable. This classification develops specific
categories for the source and kind of information being represented vi-
sually: execution traces, system configuration, data access traces, etc.

Zhang et. al revisited the classification in their work on the role of
graphics in parallel programming [272]. They paid particular atten-
tion to graph-based visualizations and the underlying models includ-
ing dependence graphs, Petri nets and space-time diagrams. Besides
the graph model Formalism, they propose to classify software visual-
ization systems by Granularity and Scalability of the model itself rather
than of the visualization approach.

2.3 information-centric view on software visualization

Many existing classification frameworks provide means for separat-
ing software (program) visualization from visual programming. The
main separation criterion is whether the program is created and mod-
ified through the visual interface or is created in code and than repre-
sented visually [190]. Those software visualization classifications that
involve interactivity imply interactivity of the visual interface, i. e. the
possibility to interact with the visualization itself for exploration and
analysis, but assume the software is not affected by this interaction.
Visual languages, on the other hand, support interaction with software

in a sense that interacting with the visual representation will change
the software itself. Rather than binary separation, we propose to de-⊲Existing

classifications do not

account for

interaction with

software through

visual

representations.

fine a continuum of interaction: one can specify how the user interacts
with the visual representation and how these interactions affect (or
not) the software itself.

We revisit state-of-the-art related work on software visualization
techniques considering the continuum of interaction with particular as-
pects of the program, describing for each technique:←֓ Classification

criteria. — what specific aspects of the software are represented;
— how are they mapped to the visual representation;
— what level of interaction is supported: with the visual represen-

tation or with the software itself for each of these aspects.

2.3 information-centric view on software visualization 19

While some elements of the software visualization techniques are
related to the properties of the software, others may be context or
interaction-related or even have a purely aesthetic function. Identify-
ing the set of visualized aspects of the program will allow to select
a representation appropriate for a particular software development
task. Specifying the mapping between program aspects and visual el-
ements as well as evaluating the interactivity will help tool designers
to consider program manipulation through the visual representation.

Analyzing a bulk of existing software visualization techniques de-
scribed in the literature, we found that most of the early techniques
do not focus on a particular software development task, but rather
propose a tool for representing certain information about the software,
letting the user select a set of the tools according to their goal. Al-
though newer software visualization systems include multiple repre-
sentations connected by a common need, we decided to structure our
exploration by the program aspects that are visualized. We also ob-
served that certain program aspects, such as class-based inheritance
or function call order in a code block, are easier manipulable and
may thus support more advanced interaction. We systematically ex-
tracted the aspects of the program that are visualized by different
techniques and noted repetitive general characteristics, using a vari-
ation of Grounded Theory methodology [180]. These aspects were
later arranged into the following categories and subcategories. ←֓ Program-related

information

categories.
— program instructions and specification:

— code line-based statistics;
— program slicing and dicing;
— iteration and repetition;

— program structure:
— object-oriented hierarchies;
— memory management;
— data structures;
— control structures;

— program execution:
— execution traces;
— multithreading or multiprocessing synchronization;
— communication in distributed programming models or envi-

ronments;
— software metrics.

Some of the software visualization tools and techniques represent
multiple aspects of software and therefore fall into more than one of
these categories. For example, mapping synchronization primitives’
call times extracted from execution trace to per-thread temporal axes
is both execution trace and synchronization visualization, but these
aspects may be rendered independent: execution trace may be visu-
alized for one thread while synchronization is depicted separately.
They will be analyzed in detail in the most appropriate category ac-

20 related work

cording to the motivation of the particular software visualization tech-
nique, for the same example of tracing synchronization primitives for
debugging deadlocks, the target category is synchronization.

2.3.1 Code Lines

For the programs created in high-level languages, first visualiza-
tion techniques were built around their code. Moreover, such features
of the code editor as syntax highlighting or visual blocking may be
considered as visualization elements since they are used to improve
program comprehension rather than being part of the program itself.
Further development of this idea allowed to propose visual abstrac-
tions for representing large quantities of code and their properties
without demonstrating the code itself.

tools and techniques

SeeSoft is one of the first tools proposed for visual analysis of large
software projects with substantial code bases [86]. It maps categori-
cal or numerical data to a color for each line of the source code thus
keeping a tight connection between the visual and textual represen-
tation (Figure 3a). SeeSoft combines software evolution data, namely
line modification times, author and VCS comment, with analysis ofVCS — Version

Control System, e. g.

svn or git.
program execution trace. SeeSoft features basic interaction with the
visualization. The user may zoom from overview representation to
code and use brushing to select multiple parts of the program and
highlight them in the code editor. These changes does not affect the
software itself.

(a) SeeSoft, reproduced from [86] (b) Sv3D, reproduced from [176]

Figure 3 – Software visualization tools based on minimized code line repre-
sentation in two or three dimensions.

Sv3D augments the SeeSoft technique by adding the third dimen-
sion and thus allowing for different numeric values to be mapped to
color and height of the visual element [176]. Sv3D is demonstrated
with mappings from surrounding control structure type and its nest-

2.3 information-centric view on software visualization 21

ing level mapped to the shape and color of 3D graphical elements as
shown on Figure 3b. Most interactions in Sv3D provide support for
using 3D representation on a 2D display featuring pan and zoom, 3D
rotation and translation. Contrary to its predecessor, Sv3D features
element filtering by parameter through a separate interface. As in
SeeSoft, none of the visually performed changes affect the software
being visualized.

Tarantula uses a line-based technique to visualize testing results [132].
It maps test coverage information, i. e. the number of test which in-
voke a particular line, along with the information on the test run
success to the line color and opacity. Tarantula provides basic menu-
based interaction for filtering away passing or failing tests and select-
ing time intervals. It also provides precise numerical information on
failures and coverage when hovering specific code lines. It does not
support interaction with the program, even at the level of disabling
certain tests.

opportunities for interaction

Code-line based software visualization techniques provide overviews
of large code bases and characterize the code rather than represent it in
a manipulable form. When available, manipulation is often restricted
to text editing without special support for program semantics. Unless
the language imposes additional constraints on the code formatting,
e. g. mandatory block indentation in Python, non-content changes
in the code lines will not affect the behavior of the program, how-
ever they may improve readability or visual perception of the code
by the developer. Stronger semantics related to code statements and
blocks may be provided by coupling line-based abstraction with the
model of the code such as a syntax tree, in which case the entities in
this model may become manipulable through the code-line represen-
tation. Most code editors and IDEs perform some code modeling to
support features like syntax highlighting or block folding.

2.3.2 Slicing and Dicing

In program analysis and debugging, dividing the program or its
components, e. g. functions or control flow blocks, into small and
manageable parts is a recurrent task. Program slicing automates this
division by including a slicing criterion for creating these small parts,
or slices, for further analysis. Whenever the analysis requires user
attention, visualization allows to simplify the exploration of program
slices and relations between them.

tools and techniques

SeeSlice is an evolution of SeeSoft for visualizing program slices [13].
SeeSlice uses a minimized code line representation with nodes sur-

22 related work

rounding each slice, which can be a module, a function, a block or
a statement as depicted on Figure 4a. Once a slice is selected by
clicking or brushing, other slices that access the same data are high-
lighted. It also allows for slice filtering through menu-based interface
and switching between overview and full scale code representation.
However, it does not affect the slicing mechanism, nor does it allow
editing the code.

(a) SeeSlice, reproduced from [13] (b) Krinke et. al visualization [149]

Figure 4 – Tools for visualizing program slices rely on code-line representa-
tions or node-link diagrams coordinated with code selection.

Program Slice Browser is a tool for visualizing program slices fea-
turing node-link diagrams [78]. Similarly to SeeSlice, it starts with
functions or code blocks as slices and allows for dividing them into
smaller parts. Mainly intended for debugging, Program Slice Browser

features grouping slices into supernodes. This simplifies the debug-
ging by pruning correct slices and focusing on the reduced num-
ber of problematic slices and connections between them. Program

Slice Browser contains an integrated code editor featuring coordinated
selection with the graph representation. Despite this coordination,
changes to the program code can only be made textually.

Krinke proposed a graphical tool for visually representing control
and data dependences in C programs integrated with program slic-
ing [149]. Its functionality is similar to both its predecessors: coordi-
nated selection of program slices in visual and textual representation,
highlighting of dependent slices (see Figure 4b). In addition to slices,
it computes chops (sometimes also called dices) — program parts be-
tween two statements that convey the influence of one statement on
another, e. g. assignments to the variables used in both statements.
Considering the distance in the source code lines between two state-
ments belonging to a chop, the tool visualizes regions of tightly cou-
pled computations where multiple statements are influencing multi-
ple other statements in a scatterplot-like style. Similarly, it identifies
code regions accessing disjoint memory regions. This tool relies on
general purpose graph alignment algorithms, such as GraphViz [90],
and therefore offers no interaction with the visual representation.

2.3 information-centric view on software visualization 23

opportunities for interaction Program slicing visualizations
are designed to simplify debugging by isolating problematic parts [260].
However, they lack tighter integration with the debugger and the slic-
ing algorithm to enable program manipulation through the visual
representation. Slicing algorithm can also be dynamically parameter-
ized to control the slice granularity [146]. Dynamic program slicing
can benefit from a visual interface to make criterion selection easier
as well as to provide history navigation and undo mechanisms. The
slicing technique can be augmented by fully manual slice creation
and management, or by an example-based criterion specification.

2.3.3 Iteration and Repetition

Contrary to the majority of software visualization techniques that
tend to be more abstract than the code, several tools focus on individ-
ual loop iterations starving to provide more detail about the execution.
These techniques are mainly used for detecting fine-grain parallelism. Fine-grain

parallelism appears

between individual

statements or

executions thereof,

coarse-grain

parallelism appears

between larger

software

components.

tools and techniques

3D Iteration Space Visualizer represents each iteration of a loop nest [270].
Instead of extracting an access pattern from the code, it analyzes
memory accesses of every single iteration and builds a data depen-
dence graph with links between iterations that access the same data.
This graph is presented as a combination of a 3D scatterplot and a
node-link diagram. By analyzing the dependence visualization, the
user can discover loop-level parallelism present in the program, but
has to modify the source code externally to express and exploit this
parallelism. 3D Iteration Space Visualizer only provides typical inter-
action techniques for manipulating 3D objects through pan, rotation
and zoom, without affecting the code.

(a) 3D Iteration Space Visualizer,
reproduced from [270] (b) Tulipse, reproduced from [266]

Figure 5 – Loop iterations and loop-carried dependences are often visual-
ized since they are not immediately visible in the code.

24 related work

DECO is a tool that combines a memory access pattern visualiza-
tion with the source code editor. The system is targeted at cache hit
optimization [241]. It allows, for each statement within a loop nest,
to visually examine the set of addresses accessed by a statement and
its presence in multiple caches. Thanks to the selection coordination
between the visual representation and the code, DECO enables the
user to quickly switch between code editing and analysis. However,
it does not allow data restructuring, e. g. by changing alignment,
through the visualization itself.

Tulipse is an Eclipse IDE plugin that visually combines performance
measurements with loop-level dependence analysis [266]. Tulipse in-
cludes two main visual representations: the call graph as a node-
link diagram, enriched with a list of loop nests executed inside each
procedure, and the loop iteration space with data dependences as
a 3D scatter plot similar to Iteration Space Visualizer. Being an IDE
plugin, Tulipse has strong support for navigating between code and
visual representation in addition to typical pan and zoom iteraction
for node-link diagrams. Nevertheless, the iteration space or the call
graph are not modifiable in the visualization.

opportunities for interaction

Iteration-level visualizations provide more detail than the code, namely
allow to expose loop-level dependences and parallelism. To support
interaction, iteration-level representation require a program model
that abstracts per-iteration modifications to the program, significantly
restructuring the code. Such models are often used inside automatic
tools for program optimization [265] and are notoriously complex
requiring the developers to rely on imprecise characteristics. At the
same time, an expert user could analyze the visual representation and
provide complementary input to the model and rely on the automatic
tool to perform the required program modifications.

2.3.4 Object-Oriented Hierarchies

Object-oriented programming provides a higher-level abstraction
for program representation, including objects and, typically 4, classes
of objects. Objects may include other objects while object classes may
inherit other object classes, objects also belong to a class. These ag-
gregation and inheritance relations form graph structures of objects
and classes that can be represented visually using general purpose
graph visualization techniques or specific approaches for software
visualization. UML is a common base representation for these tech-
niques [152].

4. Most modern object-oriented languages use a class-based model, but alterna-
tives exist, e. g. JavaScript or Self with prototype model

2.3 information-centric view on software visualization 25

tools and techniques

SHriMP Views [237, 267] is one of the first tools to automatically ex-
tract and visually represent class information from Java programs. It
represents packages and classes as nodes and inclusion/inheritance
as edges of a node-link diagram. SHriMP Views features expandable
nodes, each of which may be transformed into an entire node-link di-
agram with edges mapped to a different property than the enclosing
diagram. In order to build its visual representation, SHriMP Views

collects Java reflection information about packages, classes, inheri-
tance, interface implementation, and a list of typed class fields and
methods. Although advanced reflection mechanisms provide means
for modifying the class content, SHriMP Views allows interaction only
with the visualization without modifying the source program.

(a) Class Blueprint, reproduced
from [84]

(b) JAVAVIS, reproduced
from [197]

Figure 6 – Visual tools for managing object-oriented programming lan-
guages focus on object and class hierarchies and class members.

JavaVis uses Java Debug Interface to create dynamically updating
representations of objects during the execution of a Java program [197].
It simultaneously builds a node-link diagram representing the struc-
ture and the values of the objects, shown on Figure 6b, and a UML-
style sequence diagram of method calls. Similarly to debuggers, it
captures and stores function call frames allowing the user to ana-
lyze variables’ values and lifetimes, even after the function returned.
JavaVis provides animated transitions for object diagram updates. It
also enables the user to navigate both diagrams visually and use
search and filter dialogs. Nevertheless, it does not allow modifying
object values through the interface as a traditional debugger does.

The Class Blueprint provides a detailed view of a class, its meth-
ods and attributes [84]. It separates the class into five layers based
on their interaction with class data: initialization, interface, imple-
mentation, accessor and attribute as depicted on Figure 6a. Edges
between nodes correspond to method calls or attribute accesses. Fi-
nally, node shapes may be mapped to numeric metrics. The Class
Blueprint allows to identify which methods may affect an attribute
and, after examining the code, how. The user can directly manipu-
late the visual representation reorganizing node layout and following
edges, but cannot modify the program without moving to the code.

26 related work

Beck et. al highlight that the graph representation of program en-
tities includes multiple different types of edges due to various re-
lationships between these entities [27]. They propose a visualiza-
tion that combines node-link diagrams and parallel coordinate plots
where these relations are represented in different parts of the visu-
alization [1]. Their tool uses the following individual relationships:
inheritance, aggregation, use, co-change (entities change in the same
revision in the VCS) and source code overlapping. The tool supports
a focus+context representation and a brushing selection, but does not
allow to modify relationships between program entities.

opportunities for interaction

Generally, these architecture-level visualizations may support high-
level program restructuring. For example, changing a link in a visual-
ized inheritance graph [243] would also change the inheritance in the
associated program. Some UML-based systems allow to either gener-
ate classes from the graph representation [8] or to reconstruct this rep-
resentation from the source code [68]. However, they offer very lim-
ited support for modifying the existing code seamlessly [152]. While
most modern object-oriented langauges provide reflection mechanisms
to examine the structure of the classes dynamically, frequently used
as data source for the visualization, they rarely allow to arbitrarily
modify it on-the-fly. Object and class-level restructuring would re-
quire integrating the visualization tool with a compiler or, at least, a
program model in order to properly resolve, e. g. , inheritance modi-
fication issues such as access to no longer available parent fields and
methods or unwanted shadowing.

2.3.5 Memory Access and Management

Memory-related visualizations typically focus on two aspects: mem-
ory access patterns, used to build and visualize dependence graphs,
and memory management strategies, including dynamic allocation
and garbage collection.

tools and techniques

MAPA is a tool for memory access pattern visualization in Fortran [43].
It is tailored to Fortran memory representation for multidimensional
arrays and allows to visually examine access to different array ele-
ments from loop-based program parts. Although MAPA rewrites ar-
ray access code to enable dynamic updates of the visualization, it rep-
resents only the accessed elements without the associated program
part thus preventing the user from modifying it directly.

GCSpy is a visual tool for monitoring the use of heap and the opera-
tion of garbage collection mechanisms in JVM-based languages [210].
Its visualization is built around memory regions that are accessed

2.3 information-centric view on software visualization 27

(a) GCSpy, reproduced from [210]

(b) Memory allocation and
death plot, reproduced

from [257]

Figure 7 – Visual aid for memory management often focuses on memory
allocation and automatic or manual deallocation.

over time using "hot-cold" metaphor (Figure 7a). Although it uses a
customized JVM implementation to track memory, it does not pro-
vide control over the garbage collection or object relocation from the
interface.

Memory allocation and death plot was designed to identify when a
memory region is no longer used, before it is collected by the sys-
tem [257]. It uses a version of the hive plot connecting allocation
times with object "death" times allowing the user to track simulta-
neous creations and deletions as well as the lifetime of an object, as
seen on the Figure 7b. The tool relies on execution tracing to collect
information about objects’ lifetimes. Memory allocation and death plot

is presented as a static picture and does not allow any interaction.

opportunities for interaction

Programming systems with manual memory management may ben-
efit from the tools that analyze memory deallocation and report po-
tential problems, e. g. leaks or double deallocation. Systems with
automatic memory management rely on garbage collection for mem-
ory deallocation [134]. Unless the garbage collection mechanism pro-
vides specific interface for controlling its behavior, the only pertinent
interaction is forcing the collection process. However, most memory-
related visualizations represented the memory itself (addresses, val-
ues) rather than the program statements that manipulate it. Without
these statements, it is challenging to deduce the program modifica-
tion from the changes to the visual representation.

28 related work

2.3.6 Data Structures

In addition to a more abstract representation of the data structures
and related algorithms, such as self-balancing binary trees or heaps,
the mapping of the data structures to the programming model is im-
portant for program understanding. For example, C-like imperative
programming languages are based on the concept of pointer that is in-
ternally used to represent almost any kind of connection while func-
tional programming languages of the Lisp family are built around
lists represented as nested pairs of heterogeneous objects.

tools and techniques

Zimmermann et. al propose to capture the program state in a memory
graph, in which data entities are connected by operations like derefer-
encing (pointer access), indexing or member access, and to use graph
visualization techniques to display it [273]. As such memory graphs
are large for real-world programs, their tool allows to explore them
by node folding and filtering along with conventional pan and zoom
interaction. Even though it piggybacks on the GNU debugger that
allows to change the data on the fly, the tool does not translate data
modification functionality to the interface.

(a) Star diagram, reproduced
from [42]

(b) Memory graphs, reproduced
from [273]

Figure 8 – Visual representations of data structures may allow modifying
the data, but rarely the structure.

The star diagram interactive visualization technique is a rare case of
a technique designed for restructuring the original program through
the visual interface [42]. An example of the star diagram is presented
on the Figure 8a. It represents data structures and successive accesses
to them for a Lisp dialect Scheme. In addition to exploring the star
diagram, which is visualized as a node-link diagram, through conven-
tional node folding, filtering, pan and zoom, this interactive visualiza-
tion supports selection of repetitive data accesses and their extraction
in a function as well as the inverse, inlining, operation. It also allows
to manipulate the number of function parameters, the function names
and introduce function calls to the existing code.

opportunities for interaction

Data structures are usually represented as separate entities in the pro-

2.3 information-centric view on software visualization 29

grams, making them easier to manipulate independelty from the rest
of the program. However, it often requires changing not only the
structure itself, but all the parts of the program that access it, which
boils down to numerous modifications at the syntactic level. The
contents of the data structure, on the other hand, can be modified rel-
atively easily thanks to debugging and memory access mechanisms.
Automatic tools were proposed to optimize memory layout [64]. As
they are based on modeling or heuristics, they may benefit from in-
teraction with the expert user.

2.3.7 Control Structures

As the code representation is mostly centered around control struc-
tures, software visualization tools often avoid representing control
structures to prevent information duplication. However, code line-
based tools such as SeeSoft [86] and Sv3D [176] do represent the sur-
rounding control structure since their visualizations are very close to
the code. On the other hand, visual programming systems often let
the user manipulate control constructs.

tools and techniques

Many visual programming systems, such as Scratch [216] and Looking

Glass [110], are built around visual representations for manipulating
the control flow, for example see Figure 9a.

(a) Scratch visual programming
language, reproduced from [216]

(b) Tiled Grace system, reproduced
from [122]

Figure 9 – Control structures are mostly visualized as a part of visual pro-
gramming language where they are turned into visual building
blocks of the program.

Tiled Grace is a system that combines textual and visual program-
ming [122]. As it can take a textual representation of a program an
turn it into a visual one, it may be considered, to some extent, a
software visualization technique. On the other hand, it provides full-
fledged visual editing capabilities for arbitrary modification of the
program. In addition to control flow and expression blocks, Tiled

Grace allows for visually creating functions and calling them by cre-
ating a node-link diagram as shown on the Figure 9b. Although it

30 related work

gives full control over the program code, Tiled Grace is not meant for
restructuring programs via instruments like function extraction, but
rather for program development and understanding.

opportunities for interaction

Numerous visual programming languages are essentially graphical
representations of the conventional control flow structures. They al-
low to fully specify and modify the program, but do not provide
supplementary information that would help analyze the program. Vi-
sual tools manipulating control flow constructions could benefit from
larger-scale refactoring manipulations, such as function extraction,
triggered by simple user actions.

2.3.8 Execution Traces

Solving software performance issues often requires analyzing the
program execution on the real hardware with the real scale of the
input data. This is often done by recording pertinent information
during the actual program execution. This data can be then analyzed
algorithmically or represented visually for the expert user. Multiple
tools rely on the execution tracing to represent program behavior,
therefore this subsection only exemplifies those where the execution
trace is a part of primary visual representation.

tools and techniques

TraceView is one of the first tool for visual representation of program
execution traces [177]. It combines Gantt charts for displaying events,
such as entering or leaving a function, performing an I/O operation,
with graphs of numerical values over time. Given the system level of
the information represented, TraceView is not intended for any manip-
ulation of the original program. However, the visual representation
can be navigated by pan and zoom.

(a) Jinsight, reproduced form [201]
(b) Google Chrome developer tools
allow to trace webpage loading

Figure 10 – Execution traces are visualized as actions with duration along
the time axis.

2.3 information-centric view on software visualization 31

Jinsight is a visual tool combining object-oriented hierarchy and exe-
cution tracing [201] for Java. In addition to object state, it visualizes
the call stack of the program as a horizontal icicle diagram with the
vertical axis representing the execution time and the horizontal axis
representing method calls demonstrated on the Figure 10a. By com-
bining object creation and access times, object states and method calls,
Jinsight lets the user identify repetitive and inefficient access patterns
and prompt them to modify the corresponding regions of the code.
However, being based on a trace of an already completed program, it
is not able to influence the code or subsequent executions.

opportunities for interaction

Execution traces are rich data sources for program analysis that con-
vey information about actual execution compared to static analyses
or heuristics. They are visualized after the program terminates and
describe a particular execution. Therefore, trace-based visualizations
cannot serve as basis for modifying the actual program unless tightly
connected to a static program model. Some tracers operate as the
program runs and provide information about, e. g., function calls. In
this case, the user may interact with the tracer connected to the de-
bugging mechanism or the language run-time in order to control the
function call stack, parameters or force immediate returns.

2.3.9 Multithreading Synchronization

Although mapping parallel execution to the sequential nature of
the code is complicated in general, synchronizing execution of the
parallel threads is particularly challenging as it leads to a whole range
of undesired effects. Multiple visualization techniques address specif-
ically synchronization and related language constructs.

tools and techniques

Gthreads is one of the first approaches to visualizing thread-level syn-
chronization primitives [235]. Gthreads is an implementation of posix

thread specification (pthread) that traces thread-related events and
stores them in a file for a subsequent visualization in Polka toolkit [233].
In addition to Gantt charts capturing which function was executed by
which thread at a specific time, Gthread represents synchronization
primitives, namely mutexes and barriers, and thread states with re-
spect to them as shown on the Figure 11a. The visualization is incre-
mental and is dynamically updated as the program executes, however
the user cannot influence the execution in any way.

JaVis leverages Java Debug Interface to display synchronized method
calls within Java classes as a UML sequence diagram [183]. It allows
to follow the call stack that led to calling a synchronized method for
each thread and thus detect a deadlock or an excessively long waiting.

32 related work

(a) Gthread/POLKA, reproduced
from [235]

(b) SyncTrace, reproduced
from [136]

Figure 11 – Tools for visualizing synchronization in parallel programs of-
fer a combination of ad-hoc views of synchronization primitives
and Gantt-like charts.

Being based on tracing, JaVis provides interaction with the visualiza-
tion through pan and zoom, but not with the underlying program.

SyncTrace is a recent visualization technique for parallel software
execution traces targeted at discovering synchronization and I/O prob-
lems [136]. It combines a Gantt-like chart with elements of an icicle
diagram to display function call stack over time. It also features a
bended Gantt-like chart, similar to SunBurst visualization technique,
in order to provide focus+context display of the execution trace as de-
picted on Figure 11b. SyncTrace provides rich interface for selection,
aggregation and filtering of traced events through direct manipula-
tion and inspector views. At the same time, it does not allow to
manipulate the program itself or immediately access the source code
from the visualization.

opportunities for interaction

Synchronization primitives require specific support from the hard-
ware and are managed by the operating system as well as by the
language runtime [35]. Therefore, any interaction with these mecha-
nisms would also require support from the OS or the runtime. Mod-
ifying the program statements accessing this functionality may help
resolve synchronization problems, but requires the program model to
identify synchronization primitives and to analyze data flow between
these primitives in order to ensure program correctness after such re-
structuring. Existing tools only provide coordinated selection to help
the user identify the relevant code regions.

2.3.10 Communication

Message passing is a frequently used paradigm to communicate
data between different objects in object-oriented systems. It allows

2.3 information-centric view on software visualization 33

to better model a distributed system where objects may belong to
different parts of the system. Message passing may influence pro-
gram performance and, when used for synchronization, correctness.
Therefore, some tools for visualizing communication in a distributed
environment also visualize multithreading synchronization.

tools and techniques

Jerding et. al used the Polka toolkit [233] to visually represent message
passing in an object-oriented system [130]. Their prototypes feature
multiple views representing object creation and deletion as well as
message-based communication between different objects over time.
Each communication line is depicted as a line connecting files, classes
or objects. Analyzing the communication data, the tool identifies
recurrent interaction patterns that can be represented in a concise
node-link form. These patterns are based on the message sending
traced during the program execution thus removing the possibility
to restructure the program. Jerding’s tool only supports structured
navigation and filtering mechanisms available in the Polka toolkit.

(a) Communication view in Vampir (b) Heatmap view in Vampir

Figure 12 – Communication visualizations may focus on individual commu-
nications or on the cumulative statistics of exchange. Images
reproduced from [144]

Vampir features an interactive visualization of MPI-based program
traces for performance analysis [144]. It combines Gantt chart of pro-
gram call stack with communication diagram similar to the Jedring et. al

tool demonstrated on the Figure 12a. In a complementary view, Vam-
pir displays the communication intensity between multiple processes
as a colored table as shown on the Figure 12b. It offers interactive
functionality for navigating visual representations: semantic zoom-
ing from overview to detailed views, to numeric values, traditional
pan and zoom techniques, filtering capabilities, coordinated selection
of communicating functions in multiple views. Nevertheless, it does
not allow to interact with the program itself or directly move from
visual element to the relevant place in the source code.

opprotunities for interaction

Message passing visualizations are typically based on tracing, but

34 related work

feature visual elements specific to parallel or distributed execution.
Whenever they rely on tracing, they do not allow to modify the
program directly from the interface for the same reasons as tracing
tools. When communication is used as a means of synchronization
in the distributed systems, interaction opportunities remain the same
as for multithreading synchronization except for additional support
from the language runtime if the user interacts with the running pro-
gram. Interactively modifying the communication itself may consist
in changing the communicated information, its structure or its prop-
agation method and participants, but would require a system-level
communication broker that is connected to the interactive visualiza-
tion tool.

2.3.11 Numeric Metrics

Large scale software systems require a rapid overview of the sys-
tem and high-level comparison capabilities. Software metrics allow
to compute numeric values quantifying various properties of the soft-
ware, from its complexity to performance. As any other numeric
data, software metrics may be represented visually using diverse tech-
niques. However, specialized tools allow to relate this information to
the particular aspects of the software such as source file structure.

tools and techniques

Shimba is a tool set that combines software metrics and their visual-
izations with object-oriented hierarchy visualization [240]. It visually
associates numerical measurements of the class properties, such as
depth of inheritance tree or weighted methods per class [157], to the
graphic aspects of the node-link diagram. It also provides a class-
indexed chart for comparing measurement values across multiple
classes of the system. Shimba is based on Rigi program visualiza-
tion environment [246] that enables the user to construct their own
visualization using a Tcl-like scripting language.

Polymetric Views [154] featured in CodeCrawler [155] allow to repre-
sent up to five metrics in a single view with various layout methods.
CodeCrawler’s layouts are essentially structured node-link diagrams
or scatter plots where several metrics are rendered as positions of
visual objects. CodeCrawler enables the user to directly manipulate
the visualization by panning, zooming or filtering. It also features
an integrated source code editor allowing the user to quickly switch
between the code and the visualization.

opprotunities for interaction

Software metrics provide brief overview of software properties [100].
In general, visualizations of software metrics do not allow to manip-
ulate the program itself otherwise than by changing its source code

2.3 information-centric view on software visualization 35

(a) Polymetric Views featured in
CodeCrawler, reproduced

from [155]
(b) Index charts featured in

Shimba, reproduced from [240]

Figure 13 – Code metrics can be represented using common information
visualization techniques or specialized program-related ap-
proaches.

in the coordinated view. The metrics are aggregated abstractions that
cannot be unfolded back to the program unambiguously.

2.3.12 Software as Data Source

Computer software is a complex, constantly evolving artifact rich
in information. It has a long life cycle with numerous tasks for speci-
fication, modification and maintenance. While software specification
is still predominantly 5 made using textual representation , i. e. code,
program analysis is often supported by supplementary visual repre-
sentations to improve software understanding.

Program understanding is a prerequisite for the program modifi-
cation. Yet most software visualization tools do not allow to modify
the program directly from the visual representation, but require the
developer to modify the code. They provide coordinated selection ⊲ Most software

visualization tools

do not allow to

modify the program.

and dynamic update mechanisms to support this analysis, but they
introduce a gap between the representation used for analysis and the
representation used for modification.

Beside long-lasting argument between visual and textual program-
ming [33, 123, 263], this situation is due to two factors:

— the program model underlying the visual representation is not
precise enough, i. e. does not fully specify the program as the
code does, but rather abstracts it;

— the visualization does not provide a meaningful backwards map-
ping from visual manipulations to the program changes.

For example, execution traces provide information about an individ-
ual execution of the program, not about the program itself. Therefore,
trace-based tools require a separate program model connected to the
trace in order to allow program manipulation from within the visual

5. Scratch is the first visual language in TIOBE programming language popularity
index (http://www.tiobe.com/tiobe-index/) and occupies 22nd place with 1.039%
score as of August 2016.

http://www.tiobe.com/tiobe-index/

36 related work

representation. On the other hand, class diagrams such as UML rarely
map the on-screen position of the visual element to the program-
related values making the user-initiated element movement useless
for program transformation.

In order to enable program restructuring from the visual interface,
it is necessary to analyze typical visual representations of software
and individual visualization primitives considering how they could
support interaction between the user and the program model.

2.4 visual elements of software visualization

Before selecting the appropriate model for visual program manipu-
lation, we review the properties of visual representations with respect
to user input. First, we analyze visual properties [45] and give some
ideas on how they can be manipulated (directly or through instru-
ments) in the program restructuring interfaces. Then, we evaluate
the general-purpose visualization techniques that we found in the
software visualization tools reviewed in the previous section.

2.4.1 Visualization Primitives

position 2D spatial coordinates are often a primary choice in vi-
sualization. They afford direct manipulation using typical spatial in-
put devices (mice, trackpads). Systems for visualizing large quanti-
ties of data often support spatial navigation and distinguish between
navigation and manipulation through (quasi-)modes or instruments.
Spatial coordinates can be selected with high precision thanks to ad-
vanced interaction techniques such as semantic pointing [34] or snap-
ping [32]. A third dimension is sometimes added to the visualization.
It trades off information density for interaction complexity: conven-
tional input and output devices are two dimensional and 3D visual-
izations require specific interaction techniques to support manipula-
tion and navigation [67]. For animated visual representation, position
in time may be considered as another mapping target, especially con-
venient for the temporal information [52]. However, it may only be
used to render information: the users cannot navigate in time time
dimension unless it is mapped to a spatial dimension.⊲ Position is

directly manipulable.

marks , size and shape Information visualization techniques
use various mark types classified by Bertin [31] and revisited by
Mackinlay [174] and Card [45]. Mark primitives basically correspond
to the one-, two- and three-dimensional geometrical primitives: points
(1D), lines (2D), areas (2D), surfaces (3D) and volumes (3D). Marks
are typically used to represent categorical information where differ-
ent shapes of the mark are mapped to different categories. The user
can interact with the mark and thus change the category by, e. g.,

2.4 visual elements of software visualization 37

clicking. Two- and three-dimensional marks also allow for changing
their shape. However, the interaction to do so would often require
either changing the position of shape control points (corners, rotation
centers) or selecting a shape from a list, also represented in space or
time. Nevertheless, as the information is mapped to the mark type
or its shape, the interaction to change it may be decoupled from the
spatial and temporal position of its individual parts. For example, the
number of loop iterations may be mapped to the number of corners of
a regular polygon without connecting any information to their spatial
position. The size of the mark along any of its dimension may encode
additional information: for example, multiple 2D areas may have the
same area while having different linear sizes as long as their product
remains the same. Interaction with linear sizes may use essentially
the same techniques as interaction with the spatial position by virtu-
ally fixing a point of the object and stretching it by, e. g., dragging
another point. ⊲ Interaction with

marks and shapes is

typically mediated

by other objects.
retinal properties Card and Mackinlay identified the follow-
ing properties relevant to the visualization: Color, Connection, En-
closure, Texture [45] as well as Size and Shape discussed above. In
modern interfaces, it makes sense to also include Opacity. Color is
ubiquitous in visualizations and is often used for representing cat-
egorical (color coding) or ordinal ("heat maps") data. However, in-
teraction with the color itself is complex and requires a set of spe-
cific tools [128]. Basic interactions with color involve selecting one
from the list or using a mixing palettes, both of which rely on spatial
representation and repositioning rather than on interaction with the
color itself. Similar argument holds for Texture. On the other hand,
Connection and Enclosure allow to encode the connection between
objects without invoking any category. They lend themselves to the
interaction that involves creating, deleting or modifying the relation
between objects.

2.4.2 Program Visualization Techniques

Minimized code

lines

code lines Representing software as its code allows, in the first
place, to resort to the multitude of text input and editing techniques
from simple typing and copy/paste, to search and replace through
regular expressions, to advanced modern techniques for interacting
with text [244, 264]. In many cases, programmers use secondary
visual cues in the text to convey additional semantic meaning, for
example horizontal alignment represents blocking and line spacing
separates logically independent parts within one block. Minimizing
the code representation, e. g. like SeeSoft [86], allows to keep these
secondary cues while abstracting away the textual content. This min-
imized representation allows for moving the lines and blocks of code

38 related work

around or between files, modules or other higher-level entities. Code
folding techniques achieve the same result still keeping parts of the
code readable [188]. To some extent, the full text representation sup-
ports the same restructuring, but is limited by the relatively small
amount of visible code.It also supports source-code level refactorings
such as function extraction or block fusion [184].

Node-link diagram node-link diagrams Node-link diagrams have a strong incen-
tive for repositioning the nodes while the links are being updated
simultaneously. However, the node position is rarely mapped to the
software-related data, it is rather used for visual arrangements or to
untangle links. Widespread node-link diagram editors routinely pro-
vide separate tools or modes for creating, deleting or retargeting links
between nodes. The links may also be associated with additional in-
formation by using color, thickness or texture, in which case supple-
mentary manipulation tools are introduced for these properties.

Icicle diagram icicle diagrams and tree maps Both icicle diagrams and tree
maps were created to represent hierarchical data. Contrary to node-
link diagrams that rely in visual connection of elements, tree maps
are based on enclosure and icicle diagrams on enclosure and adja-
cency of elements. This allows to refocus interaction on the relation

TreeMap since directly moving the element on the diagram changes its position
with respect to other elements and thus their relation. For example,
putting an element inside the area of another element in the tree map
corresponds to creating the hierarchical relation between these two
elements. Icicle diagrams, on the other hand, allow for easily moving
the element up and down in its hierarchy.

Gantt chart

Sequence diagram

gantt charts and sequence diagrams Gantt charts repre-
sent temporal information for multiple objects, namely for multi-
ple parallel processes, as well as communication and synchroniza-
tion. Elements in the Gantt diagram are often sparsely distributed
and may be directly moved along the time axis, reordered or moved
between rows. Communication and synchronization points, repre-
sented by lines similarly to node-link diagrams, may be used as land-
mark points or modified using the link editing techniques for node-
link diagrams. They may also be reordered following the position of
the associated elements. Sequence diagrams abstract away the dura-
tion of the process to focus on the order and communication. Same
link manipulation techniques apply given that spatial dimensions of-
fer a strong semantics of time and parallelism as opposed to node-link
diagrams with arbitrary or nonexistent spatial mapping.

Index chart

Scatter plot

index charts and scatter plots Index charts include key
axes and value axes. The points in the chart, usually connected to

2.5 infint design space 39

each other, may be moved along the axes, as well as grouped, aligned
or distributed, e. g. to create a continuously growing line, with ap-
propriate changes made to the value. One can also interact with the
key axis by changing the order of elements, for example if it is re-
lated to the order of statements in the program. Some keys may be
deleted, or new keys may be added given their initial value is selected
by an unambiguous rule, e. g. interpolated between adjacent values.
Scatter plots do not feature lines connecting points, but the points re-
main manipulable in mostly the same way: displacement, alignment,
grouping. Elements on the scatter plot axes can be individually mod-
ified similarly to the key axis of the indexed chart if they represent
discrete values.

Considered separately, visualization techniques support various
ways of interaction. For example, visual elements can be directly ma-
nipulated by dragging, their color can be changed indirectly through
inspector views or filling instruments. However, only few software
visualization techniques map this interaction to the changes to the
program they represent.

2.5 infint design space

We propose the InfInt design space that captures Inf ormation and
Interaction aspects of the software visualization techniques. It makes
explicit the connection between the program-related data and the as-
sociated visual element. It also includes the degree of interactivity the
technique provides for this particular element, as described below. In
general, InfInt consists of three dimensions: ←֓ Dimensions of

the InfInt design

space.
— category of the program-related information;
— associated visual element;
— degree of interactivity.

Information categories correspond to those described in Section 2.3
and visual elements to ones analyzed in Section 2.4.

2.5.1 Degree of Interactivity

For each of different information aspects visualized by various tech-
niques, we evaluate the level of interaction the given technique pro-
vides for this particular aspect. We define four interactivity levels:

No Interaction — no interaction is possible with this information,
the visual representation is a static, non-navigable picture;

General-purpose interactive visualization — the user is able to inter-
act with the visual representation itself, but not with the pro-
gram being visualized, using conventional techniques for this
kind of visualization;

40 related work

Program-specific interactive visualization — the user is able to inter-
act with the visual representation itself, but not with the pro-
gram, using interaction techniques that take into account the
specificity of the underlying software-related data;

Program Restructuring — the user is able to change the underlying
program by interacting with its visual representation.

For example, a 2D node-link diagram representing class hierarchy
for an object-oriented software that supports pan-and-zoom interac-
tion features General-purpose interaction as these techniques are used
for representing any tree-structured data [120]. However, if the same
representation allows to rearrange the layout according to class inclu-
sion into packages, it is considered to have Program-specific interaction.
Finally, if the user is able to change the actual class hierarchy by mov-
ing the class node in the node-link diagram, the technique allows for
software Restructuring.Coordinated

code-visual selection

is not considered as

a tool for program

restructuring.

2.5.2 Mapping Techniques into the Design Space

A software visualization technique is mapped into the InfInt de-
sign space by first identifying all visually represented aspects of the
software and putting them on the Information dimension, then asso-
ciating these aspects with the Visual Elements and, finally, specifying
the degree of Interactivity for each of them.

Appendix A illustrates the InfInt design space with all dimensions.
Figure 14 provides a compact view of Information and Interactivity.
Software visualization techniques appear as many times as they cover
Information categories. It demonstrates the lack of program visualiza-
tion tools that support restructuring without code modification.

A user may refer to this design space in order to chose an appro-
priate tool, or a set of tools, for the task at hand. For example, the
user willing to understand the slowdown caused by long communi-
cation on a remote cluster computer is interested in a tool for visu-
alizing communication from program execution traces. Vampir [144]
happens to be the perfect match. However, if this user wants to mod-
ify the program from the visualization, no technique currently offers
enough interaction to perform this task. This information may be
used by designers of the software visualization tools.

2.5.3 Implications for Design

Program restructuring is an iterative process that consists of two re-
peatedly alternating steps. First, understanding the program, its prop-
erties and behavior, identifying problems, e. g. incorrect results or low
performance, if necessary. Second, modifying the program to change
its properties and behavior and understanding the effects of change.

2.5 infint design space 41

Code

Slicing

Hierarchies

Traces

Sync.

Comm.

Memory

Data

Control

Metrics

Iteration

SeeSoft

SeeSoft

SeeSoft

SeeSlice

SeeSlice

Sv3D

Sv3D

Sv3D

Tarantula

Tarantula

SHriMP

SHriMP

SHriMP

JavaVis

JavaVis

JavaVis

JavaVis

JaVis

JaVis

JaVis

JaVis

Jinsight

Jinsight

Jinsight

Jinsight

SliceBrowserKrinke2004

Krinke2004

MemGraphs

MemGraphs

StarDiagram

StarDiagram

StarDiagram

Gthreads

Gthreads

Jerding1997

Jerding1997
MAPA

CodeCrawler

CodeCrawler

GCSpy

Beck2011

Beck2011Shimba

Shimba

Vampir

Vampir

3D-ISV

SyncTrace

SyncTrace

Deco

Deco

Deco

Veroy2013

Tulipse

Tulipse

TiledGrace

co
d

e-
re

la
te

d
st

ru
ct

u
re

ex
ec

u
ti

o
n

No interaction
Interactive Visualization Program

RestructuringGeneral-purpose Program-specific

Figure 14 – InfInt Software Visualization Design Space combines the notions
of software-related Information and the degree of Interactivity.

Software visualizations are mostly designed to improve the under-
standing of the program and to help finding solutions to existing
problems [80]. It reduces the time required for understanding and, oc-
casionally, the number of restructuring iterations thanks to better un-
derstanding and thus more efficient modifications. However, it does
not affect the program modification, which is still to be done in the
original, predominantly textual, representation. Worse, it introduces
the need to establish the bidirectional mental mapping between the
textual representation and the visualization on every iteration step.

Interactive program restructuring implies using the same visual repre-
sentation for understanding and modifying the program. The mapping
between the textual and the visual representation is then performed
only once as shown on Figure 15. We expect interactive program
restructuring to significantly reduce the program restructuring time.

In order to enable interactive program restructuring through the
visual interface, the system should provide: ←֓ Elements of

Interactive Program

Restructuring.
— a model of the program that contains information of a certain

type (quantitative, categorical, etc.) and unambiguously maps
modification of this information back to the program;

— a way to ensure program correctness after modification or, in
its absence, a way for understanding the changes made to the
program;

42 related work

Figure 15 – Software visualization reduces program comprehension time at
the expense of the mapping between different representations,
but does not affect the modification time.

— a mapping of this information to visual elements that support
the desired interaction and can be queried for the new values
in a consistent way.

To be efficient, interactive software visualization should not only
provide the user with pertinent program-related information, but al-
low to manipulate it easier than the source code. Representation tran-
sition techniques that facilitate the perceptual mapping between tex-
tual and visual representations, such as Fluid Documents [53] or Gli-
impse [83], may allow to minimize the time overhead for establishing
the mapping between multiple representations of the program.

2.6 discussion

visual and textual program representations Visual rep-
resentations of programs are usually opposed to textual representa-
tions, be it for creating programs through visual or textual languages
or for understanding and restructuring programs [195, 263]. Devel-
opers may be reluctant to visual representations of programs despite
empirical evidence in favor of visualization [80, 263].

primary and secondary visual notation Comparing read-
ership skills and graphical programming, Petre argues that signifi-
cant expertise is required for using both textual and visual program-
ming [202]. Moher et. al study the comprehensibility of textual and
visual programs on the case of Petri nets [187]. The find that, de-
spite their inherently graphical nature, visual specification of Petri
nets does not outperform textual forms. It rather depends on the sec-
ondary visual cues, such as alignment, not included in the specifica-
tion. CPN2000 improves interaction with the Petri nets by relying on
secondary cues [25, 26]. Generalizing, both textual and graphical pro-
gram representations include primary notation, related to program
description, and secondary notation, not affecting the program and
used by experts to improve comprehension. Secondary notation can
be modified manually, e. g. indentation and line spacing in textual
representation, or provided automatically, e. g. syntax highlighting

2.6 discussion 43

in textual representation or automatic node-link diagram alignment
in visual representation. This argument may be extended to textual
and visual representation of programs that are not necessarily meant
for programming, but for analysis and modification. A user interact-
ing with the visual representation of the program may, in fact, inter-
act with the primary or the secondary notation. In the former case,
this interaction may potentially affect the program itself. In the latter
case, however, the interaction is performed for the sake of analysis,
understanding or pure aesthetics.

reference model for information visualization Enabling
interactive program restructuring may modify the reference model
for information visualization of Card et. al [46] by making the map-
ping between program and its model bidirectional (support unam-
biguous mapping of the modifications) and by adding a back-link
from the view to the model to reflect interaction, see Figure 16.

Human Interaction

Visual
Mappings

View
Transformations

Interactive
Restructuring

Program
& Data

Program
Model

Visual
Structures

Views

Data
Transformations

Figure 16 – Adding interaction back-link to the reference model for visual-
ization [46] to support interactive restructuring.

visual analysis of textual programming Modern code edit-
ing tools use a variety of graphical properties — colors, typography,
animation, miniaturized graphical elements — blurring the line be-
tween textual and visual representations. Conversy applied Bertin’s
Semiology of Graphics [31] and ScanVis descriptive model [71] to an-
alyze the perception of programming code [69, 70]. He demonstrated
that code perception fits into the model for perceiving graphics and,
furthermore, that secondary visual cues in the code are used to im-
prove this visual perception. Conversy argues for unifying the con-
cepts of visual and textual programming.

instrumental interaction for program manipulation

We develop this argument by stating that the program is a domain
object, in a sense defined in Instrumental Interaction paradigm [23, Domain object is the

object of interest for

the user in

Instrumental

Interaction model.

24, 26], that is not directly accessible to the user. It is rather visi-
ble through a set of representations that highlight some aspects of the
program while potentially hiding others. Program representations
should be designed not only to provide relevant information, but to
enable interaction with it. In this sense, visual views and code are

44 related work

complementary representations of programs. An appropriate repre-
sentation, or a set of representations and a composition technique,
should be chosen based on the relevancy of the notation they provide
for the task at hand, accessibility of this information and possibility
to interact with it. A representation may be useful for the user if
it provides new information compared to other representations or if
this information is better available for the user to understand or inter-
act. This interaction affordance is specific to the user, but should be⊲ Program

representation

should provide the

user with either new

data, or make the

existing data easily

manipulable.

considered during the representation design process [103].

multiple representations of a program Representations
can be grouped in a single interface for program manipulation, with
advanced techniques for coordinating manipulation. Indeed, most
modern IDEs include multiple representations of the software: code,
file structure tree, node-link diagram of the class hierarchy, call stack
for debugging, etc. Such composite systems could simplify the transi-
tion between different representations through, e. g., coordinated se-
lections or animated transitions. Representations can also be stacked
on top of each other as long as there exists a consistent bidirectional
mapping between them. For example, a textual representation of the
program may be represented grouped in blocks which, in turn, can
be visually represented as a node-link diagram.

2.7 conclusion

In this section, we reviewed the related work in software visual-
ization techniques and tools. We proposed a design space to classify
these techniques according to the program-related information they
represent and the degree of interaction they provide to manipulate it.
Analyzing the existing work, we observed that few techniques allow
to perform interactive program restructuring directly from the visual
representation while most require code modification using separate
tools. We argue that the lack of interaction with the program is due
to “read-only” program models used in software visualization tools
and to imperfect mappings between program-related quantities and
manipulable visual elements.

In order to design an efficient system for interactive program re-
structuring, one should first select the program model that supports
modification and interaction, then design a visualization technique
helping to solve a particular problem with program restructuring
thanks to newly visualized information and finally propose techniques
to interact with this visualization. In the following chapters, we focus
on the program parallelization and performance optimization on the
level of individual statements and control structures by extending an
advanced program model to support interaction.

3
P O LY H E D R A L P R O G R A M R E P R E S E N TAT I O N

3.1 program representations

Automatic parallelization as a part of program optimization pro-
cess has been a cornerstone of compiler research since its genesis [265].
In the last decade, it has become increasingly important due to end
of Dennard scaling, that allowed to increase processing performance
by scaling down the element base size and scaling up the clock fre-
quency, that resulted in parallelism becoming the predominant path
for increasing performance [239]. However, fully automatic paral-
lelization remains far out of reach in the general case due to the com-
plexity of both the program analysis process and the targeted parallel
architectures, although it is feasible for domain-specific language and
particular cases. With the anticipated end of multicore scaling and
the advent of energy-saving approaches to deal with power limita-
tions [91], computer architectures and programming models become
increasingly sophisticated and difficult to handle even for the expert
programmers resulting in an underuse of processing power in the
best case and in intricate intermittent parallelism errors during the
execution in the worst case [199]. Chipmakers are busy

designing

microprocessors that

most programmers

can’t handle.

— D. Patterson

Manual parallelization being too tedious and error-prone, most
modern approaches to parallelization focus on semi-automatic meth-
ods where a programmer may provide extra information about pro-
gram behavior and properties. An automatic tool may then exploit
this information for parallelization or provide the programmer with
feedback as to problems preventing parallel execution. These semi-
automatic approaches require a program representation that is easy
for a human programmer to understand on one hand, and easy for
an automatic tool to analyze and extract parallelism on another hand.

Given the complexity of architectures and programming models,
making a representation better understandable for the human pro-
grammer requires powerful high-level abstractions, such as functions
and call graphs or communication diagrams. Most software visual-
ization techniques discussed in Chapter 2 rely on various high-level
program representations as a base for visualization. High-level rep-
resentations often bring extra information about the program or its
particular execution, such as performance counters, software metrics,
execution time statistics or bottleneck regions, that is not necessar-
ily visible in the original code representation. This extra information
is important for taking decisions as to what part of the program to
optimize, how and to which extent.

45

46 polyhedral program representation

However, these representations remain limited for program trans-
formation as they often provide aggregate data where particular de-
tails of the program were abstracted away. For example, if a function
with no side effect is called multiple times in the same block and is
reported as "5 repeated calls to pure function f() in a block", the de-
veloper is unlikely to be able to remove some of the calls and cache
the result unless they go back to the code.

On one hand, this is typically caused by the fact that the high-level
representation does not fully represent the program anymore in a
sense that a lower-level representation cannot be fully reproduced, or
that it is not modifiable. Even when it is, the question of program
behavior equivalence after a modification arises and is challenging to
answer.

On the other hand, automatic tools operate on lower-level repre-
sentations, bringing the program closer to the hardware level in or-
der to better exploit available resources. Essentially, a compiler per-
forms multiple transformation between representations. For exam-
ple, LLVM C frontend (Clang) takes the program code as text strings,
which it transforms into tokens, then builds an abstract syntax tree
and performs series of transformations on it; it then builds a con-
trol flow graph, from which an intermediate representation (that may
have a textual, a binary or a graph form) featuring static single as-
signment is generated. The process with abstract syntax tree transfor-
mations is repeated for the intermediate representation to result in a
sequence of machine codes for the target architecture [160].

While all of these representations capture full information about
the program, they are tailored for efficient automatic processing rather
than human understanding due to the abundance of low-level details
related to the functioning of both the compiler and the target archi-
tecture. They also remove multiple high-level structuring parts that
are not important for the program execution, but crucial for under-
standing, such as classes and other programming model abstractions,
comments, variable names or indentation. The transformations inside
compilers are so drastic that a reconstructed code, whenever such re-
construction is still possible, will not be any close to the original code
and often as hard to analyze as the internal representation. Finally,
the internal representations offer little information about the program
that is not already available in the code or the platform specification.

While some approaches build representations stacks, including vi-
sual representations [4, 251], on top of low-level representations like
syntax trees, they are mostly used for teaching or performing com-
piler design. Even if these representations can be manipulated by
their users, the manipulation instruments and paradigms are con-
nected to the low-level details decreasing their interest for an aggres-
sive program optimization.

3.2 the polyhedral model 47

In order to build a representation for interactive program restruc-
turing we must find a program model that: ←֓ Requirements for

the model that

supports interactive

program

restructuring.

— is at a level low enough to fully model the program and allow
answering questions like program equivalence;

— provides extra information about the program relevant for the
optimization that is not easily available in other representations;

— allows for high-level manipulation tools understandable for the
user thanks to clear effects on the representation and the under-
lying program.

The ideal high-level representation for interaction between the hu-
man developer and the automatic tool should provide an unambigu-
ous explicit mapping between the high-level user input and the fully
modifiable program model.

Most of low-level representations are centered around the notion of
statement or instruction, close to the source code or to the processor op- A statement is a

unit of a

programming

language that

expresses an action

to execute,

e. g. a = 42;

An instruction is the

smallest piece of

work executed by a

processor, e. g. put

42 in a register.

eration. However, most execution time is spent in iteration where the
statements are executed repeatedly, and this iteration offers the most
opportunity for optimization. The polyhedral model is a particular case
of abstract representation that captures individual executions of iter-
ations providing extra information for the loop-level parallelization
and vectorization, that are otherwise impossible to achieve due to the
lack of analysis granularity in statement-level models [98]. It fully
represents execution of a subset of imperative programs allowing
to demonstrate independence of certain program parts and ensure
program equivalence in case of transformation. It has been the ba-
sis for multiple major advances in compiler technology over the last
decades [37, 96, 206] and is present in major production compilers
such as GCC [204], LLVM [112] and IBM XL [39]. Thanks to the strict
mathematical formalism it allows to concisely express complex pro-
gram restructurings and provide and unambiguous back-mapping to
the other program representations, necessary for building efficient
program manipulation instruments. In the rest of this chapter, we in-
troduce the polyhedral model and constrain it so that it can serve as
a basis for a stack of visual representations and high-level program
manipulations leveraging user intuition while guaranteeing program
correctness.

3.2 the polyhedral model

The polyhedral model is an algebraic representation of a subset
of imperative programs that encodes individual executions of state-
ments, e. g. multiple iterations of a loop [98]. These executions are
represented as sets of points in a multidimensional space constrained
by affine hyperplanes forming a polyhedron, hence the name of the
model [165]. Thanks to its geometrical interpretation, it allows for an Polyhedral model is

also referrled to as

polyhedron model or

polytsope model. In

geometry polyhedron

is a 3D polytope. In

algebra, polytope is a

bounded polyhedron.

intuitive visual representation that may leverage the previous knowl-

48 polyhedral program representation

edge of the user. Figure 17 illustrates a part of the polyhedral rep-
resentation and its possible visualization for the given code snippet.
It supports aggressive program restructuring through concise high-
level transformations [104, 109, 207, 221] and may be easily trans-
formed back to the code [16]. These considerations make the polyhe-
dral model a perfect backend for interactive program restructuring.

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Z[i+j] += X[i] + Y[j];

{(
i

j

) ∣

∣

∣

∣

∣

0 6 i < N

0 6 j < M

}

Figure 17 – Example of the source code, algebraic abstraction and visualiza-
tion in the polyhedral model.

3.2.1 Development of the model

The first idea of modeling individual executions of repetitive com-
putations for extracting parallelism to build a parallel processor is
found in the seminal paper by Karp, Miller and Winograd on uni-
form recurrence equations [135]. In his paper on Fortran DO loop
parallelization, Lamport uses hyperplanes to separate independent
parts of the loop nest [151]. A combination of hyperplanes defines a
(possibly unbounded) polyhedron. Quinton proposed to use convex
multidimensional sets with a timing-function (scheduling function)
for dependence analysis during hardware generation for parallel pro-
cessing [215].

Since this linear-algebraic representation may benefit from a large
and formal mathematical apparatus developed for the optimization
problem, such as linear programming [75], it could be leveraged for
improving program performance. However, two problems prevented
its immediate application: (1) programs could depend on and be con-
trolled by their input, i. e. be parametric, otherwise they could beIn the model, a

parameter is a value

that is not known

during the

optimization, but is

guaranteed to be

constant during

execution.

Parameters are

processed

symbolically.

replaced with the computation result once known and (2) defining a
partially parallel traversal order in terms of control flow constructs
was a difficult task. The first problem was addressed by the intro-
duction of parametric integer programming [93] that allows to find
optimal solutions to a linear programming problem depending on
the values of integer parameters. The second was first solved by
Ancourt and Irigoin in their algorithm for scanning polyhedra with
DO loops [6]. The name "polytope model" was first proposed by
Lengauer [165] in his work on automatic loop parallelization.

3.2 the polyhedral model 49

Other works on loop parallelization followed including those of
Feautier on polyhedral scheduilng [95, 96], optimal parallelism ex-
traction algorithm by Darte [77] and the approach to minimize syn-
chronization by Lim and Lam [166]. Boulet gives a detailed survey of
loop-level parallelization in the polyhedral model [41].

3.2.2 Limitations

static control One of the most stringent limitations of the poly-
hedral model that prevents its widespread application is the require-
ment for staticity of control, i. e. control flow of the program should
not depend on the input data, except for parameters guaranteed to
be constant during execution, as only static control constructs can
be expressed and analyzed statically, without running the program. Polyhedral model is

applicable to static

control parts, or

SCoPs.

This limitation can be alleviated either by parametric overapproxi-
mation of the data-dependent control flow [28], generating inspector
and executor loops in order to gather all non-static control in the
former [252], dynamic change of schedules from sequential to par-
allel [11] or runtime speculation following the static analysis [131].
Manually parallelized loops can now be modeled as well [55].

affine conditions and subscripts Early versions of the poly-
hedral optimization frameworks required that loop and branching
conditions as well as array subscripts were affine expressions of outer
loop iterators. This requirement comes from the need to model the
program in linear-algebraic terms where, for example, an access A[i*j]
cannot be expressed. Furthermore, using non-affine conditions for ex-
act program analyses involves solving intractable, if not undecidable,
problems [98]. Even with affine conditions, many algorithms in the
polyhedral model are subject to combinatorial explosion that is allevi-
ated by relatively small sizes of human-written programs. Parametric
overapproximation is also suitable for circumventing the condition
affinity limitation [28] as well as the inspector/executor model [252].
Linearized multidimensional array or pointer accesses may be recon-
structed in the polyhedral representation [114].

focus on loop transformations Although the polyhedral
model allows to compute scheduling for the entire program part that
it represents, loop-level transformations remain its primary strength.
It is also limited by the affinity of the scheduling that does not allow
to express, e. g., loop unrolling or parametric tiling. Recent work
by Shirako et.al. demonstrates how polyhedral and syntactic-level
program transformations can be efficiently combined [225].

50 polyhedral program representation

3.2.3 Workflow in the Polyhedral Model

raising programs to the model Polyhedral frameworks op-
erate on a mathematical representation of loop-based programs that
differs substantially from the conventional syntax tree. The process
of transforming code, or raising it into the polyhedral representation
is mostly automated through parsing. In general, it identifies parts
of the program with static control automatically or relying on user-
specified annotations and then extracts from either the code or its
syntactical representation, e. g. AST, the affine expressions that define
loop bounds and access addresses. Integrated polyhedral analysis
tools, starting at the code level, e. g. LooPo [109] or PIPS [126], rely on
custom parsing techniques to extract polyhedra from code. Compil-
ers supporting polyhedral optimization comprise a raising algorithm,
such as Graphite for GCC [204] and Polly for LLVM [112]. emph-
Clan is an extendable polyhedral raising tool for C-like language syn-
tax [20, 28] suitable for syntax-level experiments [92]. Pet leverages
clang parser to support full C99 syntax in polyhedral extraction [254].

transforming programs in the model

Automated Transformation — when raised to the model, the program
can be transformed automatically or manually using the rich mathe-
matical apparatus available. LooPo is arguably the first practical loop
parallelizer implementation [109]. Automatic scheduling for loop-
level-parallelism extraction and locality optimization is implemented
in Pluto [37] and its successor Pluto+ [36], however some transfor-
mations, e. g. tiling, should be requested manually as a command-
line option. isl library includes its own optimizing scheduler [253].
LeTSeE allows to explore the legal transformation space, i. e. iterate
through all the possible schedules that preserve the original program
semantics [205, 206].

Semi-automatic Transformation — semi-automatic program transfor-
mation interfaces in the polyhedral model allow the user to request
specific loop-level transformations that are automatically performed
by the framework. UTF defines classical syntactic-level transforma-
tions in the polyhedral model [138]. URUK enables the composition
of transformation sequence decoupled from any syntactic form of
the program [104]. CHiLL ensures that the transformation results in
an equivalent program, i. e. verifies the transformation legality, via
intermediate dependence checks [58]. AlphaZ complements control
flow transformations by memory layout modifications for optimizing
cache usage [271].

transformation safety analysis Program transformation ap-
proaches, especially those with input from the user, rely on depen-
dency violation checkers to ensure program semantics preservation.

3.2 the polyhedral model 51

A program transformation engine must ensure that the transformed
program yields the same result as the original program. Even though
proving program equivalence is undecidable in general case [133],
one can demonstrate that a program transformation results in an equiv- By transformation,

we understand

permuting execution

order of the program

without otherwise

modifying it.

alent program if it does not violate data dependences [97]. The concept
of dependence, introduced by Bernstein [30], allows to bind together
parts of the program that access the same data. A program transfor-
mation violates a dependence, if two dependent parts are executed in
a different order after the transformation, and the program may yield
different result. For the loop-level dependence analysis, the Omega
test provided a relatively fast solution [211], but relied on impre-
cise heuristics for parametric cases. Parametric integer programming
(PIP) enabled the analysis of the parametric control flow [94]. Eisen-
beis and Sogno propose a preprocessing reduction and algorithm
selection approach to simplify the dependence analysis [88]. Vasi-
lache et. al demonstrated that with convenient representations and
algorithms, the exact instance-wise dependence tests do scale in prac-
tice [250], which may be further used to automatically correct the
user-specified transformation if it violates the original program se-
mantics [18, 249].

generating code from the model Finally, once the program
is modified in the polyhedral model, it should be transformed back
to the previous representation, code or abstract syntax tree. This task
reduces to building the loop nests that traverse all integer points in-
side the transformed polyhedra. Ancourt and Irigoin proposed the
first algorithm for code generation based on Fourier-Motzkin elimina-
tion algorithm [6]. Quilleré et. al proposed an algorithm allowing for
trade-off between control overhead and code size [214], which was
later improved by Bastoul in CLooG [16]. CodeGen+ explores the
control-size trade-off even more [57]. PPCG provides code genera-
tion for graphics accelerators with CUDA architecture [255].

3.2.4 Forms of Representation

Programs in the polyhedral model can be represented using multi-
ple different, often complementary, formalisms.

A parametric extension to the Chernikova algorithm that trans-
forms a system of inequations into a set of multidimensional vertices
is a cornerstone of the plurality of representations in the polyhedral
model [161]. PolyLib 1, one of the first libraries for polyhedral com-
putation, features the dual representation based on lines and rays on
one hand, and on inequations on another hand [167]. isl library uses
sets and maps of integer points bounded by linear constraints as its
main abstraction [253]. Its scheduling mechanism internally uses a

1. https://icps.u-strasbg.fr/polylib/

https://icps.u-strasbg.fr/polylib/

52 polyhedral program representation

tree-based representation annotated by sets of affine constraints [256].
The Parma Polyhedral Library uses ray-baysed representation of poly-
hedra defined in rational numbers and intersects polyhedra with in-
teger grids to represent loop-related information [10].

3.3 representing programs in the polyhedral model

The polyhedral model allows for multiple different mathematical
descriptions and representations. Throughout this work, we use and
extend the state-of-the-art union of relations representation. This rep-
resentation was implicitly introduced in the Omega library 2 for oper-
ations on relations defined by Presburger formulas [139]. A relation
defined by a Presburger formula containing disjunction [231] can be
transformed into a union of relations, each of which defined by one
disjunct. Thus Omega can be viewed as operating on unions of rela-
tions. The modern version of the representation that actually features
unions of relations was implemented in isl library 3 and referred
to as union of maps [253]. We use the OpenScop library 4 that fea-In isl, union of

basic maps refers to

unions of relations

with equal

dimensionality and

union of maps to

those with different

dimensionalities.

tures matrix-based representation of relations and unions thereof [17]
rather than inequation forms of isl.

A relation in our model is defined between multidimensional points
in two spaces, the input space and the output space. Mathematically,
it is an n-ary relation on Z

n where ni dimensions are considered as
input and the remaining no = n−ni dimensions as output. A convex

integer polyhedral relation is a relation that is defined by a system of
linear inequations that define a convex polyhedron in Z

n. A concaveAn equation can be

rewritten as two

complementary

inequations.

polyhedron can be represented as the union of convex polyhedra, al-
though the minimal decomposition into convex polyhedra is proven
to be NP-hard [56]. Therefore, a non-convex polyhedral relation can
be represented as a union of convex polyhedral relations.

Relations in the model are parametric as they are described involv-
ing a finite number of symbolic integer constants, or parameters. The
numerical values of these parameters are not known when operating
in the model. These parameters can be used to model compile-time
constants or values invariant throughout static control part execution.

All aspects of the static control part, namely the loop nest and its
order of traversal as well as the memory accesses, are represented as
unions of relations:

⋃

i

Ri(~P) =
⋃





~ι→ ~σ

∣

∣

∣

∣

∣

∣

∃~li ∈ Z
dim~li :

∧

j

(

fj(~ι,~σ,~li,~P) > 0
)





, (1)

2. http://www.cs.umd.edu/projects/omega/

3. http://isl.gforge.inria.fr/

4. http://icps.u-strasbg.fr/~bastoul/development/openscop/index.html

http://www.cs.umd.edu/projects/omega/
http://isl.gforge.inria.fr/
http://icps.u-strasbg.fr/~bastoul/development/openscop/index.html

3.3 representing programs in the polyhedral model 53

where fj is an integer affine function with integer coefficients of input
~ι and output ~σ dimensions, parameters ~P and local dimensions~li. ←֓ Input and

Output dimensions.

Although the terms

affine and linear

function are often

used

interchangeably, in

geometry, affine

functions include a

constant term while

linear functions do

not.

f(~ι,~σ,~li,~P) = ~kTι ·~ι+~kTσ · ~σ+~kTli ·~l+~kTP · ~P+ q;
~kι ∈ Z

dim~ι,~kσ ∈ Z
dim~σ,~kli ∈ Z

dim~li ,~kP ∈ Z
dim~P, q ∈ Z.

(2)

Local dimensions are parameters of the function f are existentially

quantified, i. e. they should exist and be integer. Local dimensions
serve to express, e. g. , non-dense sets of points. For example, ∃l ∈
Z : i = 2 · l requires i to be even. Local dimensions are individual for

Note that an

equation can be

expressed as two

non-strict

inequations.

each relation in the union, hence their name.
For the sake of consistency, we consider a set to be a degenerate

relation with no input dimensions, dim ~ι = 0, that can be processed
in the same way as all the other relations in the union of relations
representation.

3.3.1 Representing Statement Instances

Consider the loop nest for polynomial multiplication in Listing 1.
It comprises two tightly nested loops with one statement inside, and
this is roughly how it would be represented in a syntactic-level model.
The same element in the array C is accessed in multiple iterations of
the loop. In the polyhedral representation, an iteration is identified by
a vector containing values of all iteration variables ordered according
to the loop nesting. For our example, an iteration is identified by
(i, j). Two different iterations of the loop, (i0, j0) and (i1, j1), access
the same element in C if i0 + j0 = i1 + j1. Accessing the same value
makes these iterations dependent and requires to preserve their order
of execution after the program transformation in order to preserve its
semantics. In the absence of other dependences, groups of ordered
dependent iterations may be executed in any order with respect to
each other, including in parallel. The syntactic-level model, however,
does not capture individual iterations of the loop nest since they are
not visible in the syntax, and therefore does not allow parallelizing
this loop.

for (int i = 0; i < N; i++) {

for (int j = 0; j < M; j++) {

S: C[i+j] += A[i] * B[j];

}

}

Listing 1 – C code of the polynomial multiplication kernel.

The polyhedral model represents individual executions of a state-
ment in the loop nest, referred to as statement instances, as points in
multidimensional space. Each dimension of this space corresponds ←֓ Statement

instance.to a loop in the nest. The entire space is thus referred to as iteration

54 polyhedral program representation

space. Coordinates of the point in the iteration space correspond to
the values of iteration variables for this particular execution of the
statement. A statement is encoded in the polyhedral model as the set
of its instances inside the loop nests forming the iteration domain of
the statement.←֓ Iteration domain.

The iteration domain for the statement is constructed by constrain-
ing the iteration space on each dimension by lower and upper bound-
aries of the corresponding loop. For the polynomial multiplication
example, the outer loop is bounded by inequations i > 0 and i < N

and the inner loop is bounded by j > 0 and j < M. The iteration
domain for the statement S from the Listing 1 is defined in (3).

DS(N,M) =

{(
i

j

)∣

∣

∣

∣

∣

0 6 i < N

0 6 j < M

}

(3)

Polyhedral representation is inherently geometric and allows con-
sistent visual representation of iteration domains: each loop corre-
sponds to an axis, boundaries are presented as lines (or hyperplanes)
and instances as points in a multidimensional space. For the polyno-
mial multiplication example, the geometric interpretation is depicted
on the Figure 18, given the parameter values N = 3 and M = 4.

Figure 18 – Iteration domain of the polynomial multiplication kernel. Axes
correspond to loops. Dashed lines represent loop boundaries.
Circles correspond to statement executions.

The polyhedral domain also captures branch constructs surround-
ing the statement as long as their conditions are expressed as linear
forms of outer loop iterators. Conjunction terms are represented as
individual inequations, all of which should be respected inside the
domain. Disjunction terms, on the other hand, transform the con-
straint system defining the domain into a union, elements of which
differ only in the disjunction term. For example. the code in Listing 2

features a conjunctive condition (operator &&) in the upper bound of
the inner loop and a disjunctive branch condition (operator ||). The
iteration domain of the statement S in the polyhedral model is rep-

3.3 representing programs in the polyhedral model 55

resented by a union (4). Its geometric interpretation is presented in
Figure 19.

for (int i = 0; i < 3*N; i++)

for (int j = 0; j < M && j < 8; j++)

if (i < N || i >= 2*N)

S: call_function(i, j);

Listing 2 – Example of the complex conditions in C code

All parts of the iteration domain union must have identical dimen-
sionality as the same statement is only present in the one loop nest
with a known depth. Even if two statements are textually identical,
they are considered different statements in the model.

DS(N,M) =






(

i

j

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 6 i < N

j > 0

j < M

j < 8






∪






(

i

j

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2N 6 i < 3N

j > 0

j < M

j < 8






(4)

Figure 19 – Iteration domain union with embedded conditional.

3.3.2 Representing Execution Orders

Each point in the iteration domain, representing a statement in-
stance, should be executed during the program run. The order in
which the statement instances are executed is defined by the schedul-

ing relation that maps the coordinates of the statement instance in the ←֓ Scheduling

relation.

Scheduling relation

is also referred to as

mapping relation.

iteration space to multidimensional schedule space, which defines the
execution date and place. Execution place refers to the physical unit
of the parallel system, e. g. processor, that will execute the statement
instance. The dimensionality of the schedule space should not neces-
sarily correspond to the dimensionality of the iteration space. Dates
may be multidimensional, in which case the statement instances are
executed following the lexicographical order of their execution dates. Multidimensional

points are ordered

according to the first

dimension and, in

case of ties,

according to the

following

dimensions, e. g.

hours and minutes

are ordered

lexicographically.

56 polyhedral program representation

The identity scheduling relation simply maps each iteration domain
dimension to a date dimension making the statement instances ex-
ecute in the same order as the original loops. For the polynomial
multiplication example from Listing 1, (5) is the identity scheduling
relation. As see from the Figure 20, all the instances for i = 0 are
executed before any of the instances for i = 1 following the lexico-
graphical order.

θS(N,M) =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i

t2 = j

}

(5)

Figure 20 – Trivial scheduling relation for the polynomial multiplication ker-
nel. Numbers inside circles denote order of execution of the
iterations.

In many cases, one may want to schedule different parts of the
domain differently. To address this issue, one can use a union of

scheduling relations. Each relation in the union features constraints
of its applicability to a part of the iteration domain. For example,
the identity scheduling of the polynomial multiplication kernel may
be decomposed into a union (6), each part of which can be modified
independently.

θS(N,M) =






(

i

j

)

→
(

t1

t2

)

∣

∣

∣

∣

∣

∣

∣

∣

t1 = i

t2 = j

i 6 N






∪






(

i

j

)

→
(

t1

t2

)

∣

∣

∣

∣

∣

∣

∣

∣

t1 = i

t2 = j

i > N






(6)

A program transformation in the polyhedral model corresponds to
the modification of the scheduling relation for a statement or a group
of statement. This change will modify the order in which the state-⊲ Program

transformation

corresponds to the

change in

scheduling relation.

ment instances are executed.
For example, one may change the trivial scheduling relation for

polynomial multiply kernel (5) by adding the input dimension j to
the definition of the output dimension t1 (7). This transformed schedul-

3.3 representing programs in the polyhedral model 57

ing relation exploits the fact that the statement S features an array sub-
script i+j by making this subscript a fixed value for a given iteration
of the new outer loop t1.

θS(N,M) =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i

t2 = j

}
"add +j to t1"−−−−−−−−−→

θ′S(N,M) =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i+ j

t2 = j

}

(7)

In order to obtain the loop traversal order, we combine the iteration
domain and the scheduling relations (8). This combination relies on
the Generalized Change of Basis, a method based on an unpublished
work by Le Verge [162] rediscovered independently by Bastoul [16].
Generally, it consists in introducing output dimensions (t1 and t2 in
our example) that correspond to the transformed loops in the begin-
ning and keeping input (domain) dimensions in the end. If the new
dimensions are sufficient to establish the total lexicographical order, Total order means

that for any two

points in the domain,

the order is defined.

the domain dimensions are not necessary for scheduling and become
degenerate, i. e. they take a fixed value that can be expressed as a func-
tion of the previous dimensions. In practice, degenerate dimensions
correspond to nested loops that have a single iteration and can be
removed [16].

TS(N,M) =


















t1

t2

i

j













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1 = i+ j

t2 = j

0 6 i < N

0 6 j < M






(8)

Being able to express output dimensions as functions of input di-
mensions is not guaranteed for all scheduling relations. In fact, it
requires the scheduling to be an invertible function. Scheduling invert-
ibility requirement was a long-standing restriction of the polyhedral
model [6] until the introduction of the Generalized Change of Basis.
The latter relaxes invertibility requirement by keeping the input di-
mensions. For the non-invertible scheduling relations, Generalized
Change of Basis will result in less degenerate dimensions, allowing to
express, e. g., loop tiling in the scheduling relation. Tiling is a common

loop transformation

that introduces a

nested loop with a

fixed number if

iterations.

Figure 21 illustrates the Generalized Change of Basis for the poly-
nomial multiply kernel. Given that j is a degenerate dimension with
j = t2, we depict them on the same axis. Because the transformed
scheduling relation (7) is defined by an invertible function, the projec-
tion on (t1, t2) of the polyhedron defined by the combined domain-
scheduling relation corresponds to the transformed iteration domain (9).
Projection on the (i, j) gives the original iteration domain.

58 polyhedral program representation

Figure 21 – Illustration of the Generalized Change of Basis: both the original
(input) and the scheduling (output) dimensions are considered
simultaneously. Dimensions j and t2 are combined to remain
in 3D. Projection on (i, j) (light green) corresponds to the itera-
tion domain. Projection on (t1, t2) (dark red) corresponds to the
transformed iteration domain given scheduling relation invert-
ibility.

D′
S(N,M) =

{(
t1

t2

)∣

∣

∣

∣

∣

0 6 t1 − t2 < N

0 6 t2 < M

}

(9)

The transformed iteration domain can be visually represented as a
parallelogram, a skewed version of the original rectangle, as shown
in the Figure 22. Left part of the Figure shows how bounds are ex-
pressed for new loop iterators and includes the numbers featuring
original execution order within the points. Right part of the image
shows the new execution order by means of numbers inside points.

Figure 22 – Transformed domain of the polynomial multiplication kernel.
Numbers inside points correspond to the original execution or-
der on the left and to the new execution order on the right.

This transformed iteration domain corresponds to the code in List-
ing 3. Thanks to the change in the loop traversal order, iterations
of the outer loop became independent of each other and can be exe-

3.4 dependence analysis and parallelism 59

cuted in parallel. Loops that correspond to the degenerate dimensions
are commented out as they iterate only once and can be optimized
away.

#pragma omp parallel for private(t2)

for (t1 = 0; t1 <= N+M-2; t1++)

for (t2 = max(0, t1-N+1); t2 <= min(t1, M-1); t2++)

// for (i = t1; i <= t1; i++)

// for (j = t2; j <= t2; j++)

S: C[t1] += A[t2] * B[t1-t2];

Listing 3 – C code of the transformed polynomial multiplication kernel
featuring a parallel loop. Single-iteration loops corresponding
to degenerate dimensions are commented out.

Throughout this document, we refer to the relation θS as scheduling

relation, or scheduling for short. We call the set of scheduling rela-
tion unions for the entire polyhedral program part a SCoP schedule.
Finally, we refer to the set of execution dates obtained by applying
a scheduling to a particular domain (or a point in the domain) as
schedule.

3.3.3 Representing Memory Accesses

In order to allow precise analysis, the polyhedral model represents
memory accesses form multidimensional arrays with subscripts ex-
pressed as linear forms of loop iterators and parameters. Each mem-
ory access in a statement is represented by an access relation that maps
points of the iteration domain to the array identifier and the multidi-
mensional index that is accessed in this array. Access relations are
defined separately for reading from memory and writing into it. The
relation is annotated by the type of access.

For example, the polynomial multiplication kernel in Listing 1 com-
prises one statement featuring four memory accesses in one execu-
tion: read and write access to C, and read accesses to A and B. The
read from C access relation is shown in Equation (10). Other access
relations may be expressed similarly.

AS,C,read(N,M) =

{(
i

j

)

→
(

a1

id

)∣

∣

∣

∣

∣

a1 = i+ j

id = C

}

(10)

3.4 dependence analysis and parallelism

The exact instance-wise nature of the polyhedral model allows to
analyze the dependences between individual statement instances and
identify, e. g., loop-carried dependences that prevent parallelization.

60 polyhedral program representation

computing dependences Exact instance-wise dependences may
be computed in the union of relations representation by combining
iteration domains and access relations of multiple statements in a sin-
gle dependence relation [18]. This relation encodes three conditions:

existence — instances belong to the iteration domains of the re-
spective statements;

conflict — instances access the same element of the same array and
at least one of the accesses writes into that element;simultaneous reads

from the same

memory create no

concurrency conflict

causality — one instance, called dependence source, is executed be-
fore another instance, called dependence target.

If any of the polyhedral description components are unions of rela-
tions, the dependence may also be described as a union of relations.
Similarly, the dependence union is created in case of multiple accesses
to the same array in one statement. The dependence relation maps a
point in the iteration space of one statement to all the points in the
iteration space of another (or the same) statement that depend on it.
Parametric integer programming solvers allow to find the values of
parameters so that no dependence exist between statements and they
can be safely executed in parallel.

For example, the polynomial multiplication kernel has three depen-
dences caused by += operation on elements of C array. These depen-
dences only differ by their type: read after write (flow dependence),
write after read (anti dependence) and write after write (output depen-
dence). In the relational form of one of this dependences (11), first
two inequations present the existence condition, then three equations
encode the conflict condition and the final inequation is the causality
condition.

∆flow
S,C→C(N,M) =






(

i

j

)

→
(

i′

j′

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 6 i, i′ < N

0 6 j, j′ < M

a1 = i+ j

a′
1 = i′ + j′

a1 = a′
1

i′ − i > 1






(11)

computing violated dependences As the transformation in
the polyhedral model corresponds to a change in the scheduling re-
lation union, it may change the order of execution so that a pair of
dependent instances is executed in the opposite order, provoking a
dependence violation. Given two schedulings, it is possible to compute
the exact set of instance-wise dependences that are violated by the
new scheduling [18]. Again, the approach consists in creating a vi-

olated dependence relation by combining iterations domains, reference

3.4 dependence analysis and parallelism 61

Figure 23 – Arrows show which instances in the iteration domain depend
on which previously executed instances.

and new schedulings relations and access relations using the three
conditions:

dependency existence — instances belong to the iteration domains
of respective statements and access the same element of the
same array and at least one access is a write;

scheduling — with the reference scheduling, the source instance is
executed before the target instance;

causality violation — with the new scheduling, the source instance
is executed at the same time as or after the target instance.

For the polynomial multiplication kernel (3), when performing the
transformation (7), i. e. changing t1 = i to t1 = i+ j, the violated de-
pendence is expressed by Equation (12). We denote t1, t2 the output
dimensions of the reference scheduling relation and t′1, t

′
2 the out-

put dimensions of the new scheduling relation, domain and access
dimensions remain common.

ΓS,C→C(N,M) =






(

i

j

)

→
(

i′

j′

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 6 i, i′ < N

0 6 j, j′ < M

a1 = i+ j

a′
1 = i′ + j′

a1 = a′
1

t1 = i

t2 = t′2 = j

t′1 = i′ + j′

t′1 − t1 > 1






(12)

Using parametric integer programming [93], one can demonstrate
that this relation is not empty for positive parameter values. Which
means that this transformation is not legal and the transformed pro-
gram may yield incorrect result. In our example, the transformation
violates the dependence and therefore is illegal. Figure 23 allows to

62 polyhedral program representation

observe this as the direction of the dependence arrows change after
the transformation.

Violated dependence relation can also become a union if any of
these conditions are expressed by a union of relations. This relation al-
lows to ensure legality of the transformation in the polyhedral model,
i. e. to guarantee that the transformed program yields the same result
as the original one.

expressing parallelism As the polyhedral model was initially
designed for loop parallelization or parallel hardware synthesis, it al-
lows to expose all instance-level and statement-level parallelism avail-
able in the static control parts of the program. However, this paral-
lelism is not always trivially exploitable by existing parallel constructs
in programming languages and may ultimately lead to a slowdown
due to the explosion of the control and synchronization [12, 247].

Assigning equal execution dates to multiple statement instances is
the seemingly simplest way of expressing parallelism in the polyhe-
dral scheduling relation. However, in the relational form, it can only
express parallelism in the most nested dimensions as first dimensions
serve to provide a partial lexicographical order. Furthermore, iden-
tical dates allow for ambiguous interpretation: they may require in-
stances with identical dates to be executed at the same time, or may
allow them to be executed in an arbitrary order including in parallel.
For example, CLooG uses the second, permissive interpretation, but
does not allow to enforce simultaneous execution.

Therefore, we propose to express parallelism by adding indepen-
dence or parallelism semantics to the scheduling relation dimensions
as described below in Section 3.5.3.

3.5 structure of the polyhedral scheduling relation

3.5.1 Existing Scheduling Structures

In the general case, a scheduling relation union may take an ar-
bitrary form as long as it has a finite non-parametric number of el-
ements defined by affine (in)equations. However, most approaches
to program transformation in the polyhedral model impose a certain
structure on the scheduling relation to simplify its modification and
create schedule semantics better visible for the user.

unstructured schedulings Although they give the broadest
possibilities for modifying the execution order of the statement in-
stances, unstructured schedulings are hard to manipulate from a high-
level perspective.

3.5 structure of the polyhedral scheduling relation 63

d+1 structure This structure maps each loop in the nest to a
particular dimension in the polyhedral scheduling thus capturing the
shape of the source code. A loop lexically following another loop at
the same depth in the nest is scheduled to start after the last iteration
of the previous loop, e. g. if a loop has N iterations, the following will
be scheduled starting at N+ 1. The last dimension is required to rep-
resent the order of statements within the loop nest. Given maximum
d loops in the nest and an extra dimension for the lexical order, the
structure uses d+ 1 dimensions, hence its name. It was widely used
thanks to its simplicity and closeness to the code representation, mak-
ing it easier for human user to operate. However, it requires encoding
part of the iteration domain information, namely the number of loop
iterations, in the scheduling, which prevents from manipulating it
independently of the domain.

2d+1 structure To decouple the scheduling information from
the iteration domain, the 2d+ 1 structure relies on adding auxiliary
dimensions for each loop depth in the loop nest: given d loops, it uses
one auxiliary and one loop iteration dimensions as well as one dimen-
sion for the order of statements in the most nested loop. Iteration and
auxiliary dimensions, which we call α and β dimensions, respectively,
are alternating in the scheduling relation. The role of β-dimensions
is similar to the role of the last dimension in the d+ 1 structure —
establish the order in which loops or statements are executed at a
certain depth. Separating the order information into specific dimen-
sions allows for creating domain-agnostic schedulings since it is no
more necessary to know the number of the iterations available in the
domain. β-dimensions are typically expressed as non-parametric con-
stants. This choice allows to identify a particular loop or statement
by a sequence of constant values assigned to each of the auxiliary di-
mensions making this structure closer to the code representation and
easier to manipulate on loop-wise level.

pluto ploop trees Polyhedral program optimizer Pluto uses a
tree-like structure for the schedulings in addition to a variant of d+ 1

structure [37] 5. In this tree, leafs correspond to individual statements
and nodes correspond to loops containing statements. On one hand,
this allows to simplify loop-level manipulations, such as tiling for
vectorization or loop parallelization. On another hand, this lowers the
computational complexity of the scheduling algorithm as multiple
loops and statements can share a partial scheduling encoded in the
tree nodes.

5. as presented in the Spring School Maths-Info-HPC, May 9-13, 2016, St Ger-
main au Mont d’Or, France

64 polyhedral program representation

schedule trees The latest structure for the polyhedral schedul-
ings comes from the observation that optimizers, including Pluto and
isl, operate on trees while other scheduling structures are built to
encode the tree structure of the loop nest in the scheduling implic-
itly [256]. Indeed, values of β-dimensions in the 2d+ 1 structure can
be structured as a tree reflecting the nesting and the order of the
loops. Schedule trees representation makes this shape explicit, allow-
ing nodes that represent sequential or parallel execution that are not
necessarily mapped to the loops. These nodes may contain partial
schedules for their leafs corresponding to statements. Tree structure
makes it simpler to schedule a particular loop, statement or even part
of the statement iteration domain. At the same time, it reduces the
uniformity of representation requiring a tree traversal to reconstruct a
system of inequations fully defining the scheduling of the statement.

3.5.2 Scheduling Structure Selection

We combine the union of relations form with the 2d+ 1 structure:
each relation in the union has 2d+ 1 structure and defines a convex
multidimensional polyhedron. Different parts of the union are al-⊲ Combination of

2d+ 1 structure and

union of relations

form.

lowed to have different dimensionality as long as the scheduling is
compatible with the iteration domain, i. e. has the same number of the
input dimensions, related to the domain, whereas the number of the
output dimensions may vary. In section 3.5.3, we propose an extend-
able dimension typology that includes not only the type of dimen-
sion (iteration α or auxiliary β), but also a set of flags related to the
scheduling of the statement instances along this dimension, e. g. inde-
pendence, parallelism or unrolling. In section 3.5.6, we demonstrate
how a tree structure may be recovered from this structure. 2d + 1

structure alone does not guarantee that the scheduling may be com-
pletely decoupled from the iteration domain, in the section 3.5.8, we
provide conditions of global validity of the scheduling that ensure a
scheduling is applicable to any domain of the compatible dimension-
ality without previously discussed negative effects. The combination
of these properties allows to use our 2d+ 1-union representation for
building a precise and expressive program transformation engine in
the polyhedral model. This engine is based exclusively on changes to
the scheduling relations as opposed to previous approaches, such as
CHILL [58] or URUK [104], that may modify iteration domains.

3.5.3 Dimension Semantics

We assign to each dimension of the scheduling relation a flag or a
combination of flags that define its higher-level semantics. Although
this semantics may improve the modeling, it remains optional and
the relation itself fully represents the scheduling. Our dimension

3.5 structure of the polyhedral scheduling relation 65

semantics is based on the 2d+ 1 structure, but it may be applicable
to other structures. We propose the following semantics.

loops Each even output dimension, called α-dimension, corres-
ponds to a loop iteration variable, as in the basic polyhedral represen-
tation. ←֓ α and β

dimensions.

lexical order Each odd output dimension, called β-dimension,
in the scheduling relation is a constant representing the order of state-
ments in the loop of corresponding depth. Zero loop depth corre- In previous work,

these β-dimensions

are also called

auxiliary.

sponds to the statements and loops at the root of the SCoP, e.g. at a
function level, that are not enclosed by any loop.

independence Both α and β-dimensions can be declared inde-
pendent meaning that they do not carry a dependence, i. e. that the
any permutation in this dimension for the current statement is legal.
Essentially, dimension independence means that the actual values of
this dimension can be ignored when selecting the order of execu-
tion. For the sake of consistency with non-semantic relations, these
values are set to identical values. Independent α-dimensions can be
expressed as parallel loops while independent β-dimensions may cor-
respond to parallel threads or tasks. If multiple statements share a
loop, the corresponding dimension should be marked as parallel for
all of these statements in order to produce a parallel loop.

strip-mining Partitioning the loop into smaller blocks is a widely
used technique enabling, e. g., vectorization [265]. The particularity of
this transformation is that it creates a new dimension in the schedul-
ing relation, and this dimension depends on another dimension re-
quiring division and modulo operations for its definition. For integer
scheduling relations, it can be modeled by a pair of inequations [16].
Marking dimension as strip-mined allows to treat it separately when
analyzing the validity of the scheduling (see section 3.5.8) on one
hand and to perform vectorization on another hand.

unroll Loop unrolling that replaces individual iterations by new
statements cannot be represented in a polyhedral scheduling as this
scheduling is defined for each individual statement. Nevertheless,
this syntactic transformation is often used alongside polyhedral en-
gine and is included into high-level transformation engines such as
CHiLL [58]. Marking an α-dimension as unrolled allows to treat this
dimension separately in the analysis and to generate the correspond-
ing code with multiple statements when requested.

66 polyhedral program representation

3.5.4 Scheduling Relation Equality and Equivalence

Since the scheduling relation establishes the order of execution of
the iteration domain points, the actual numerical values of execution
dates may vary as long as the order is preserved.

equality Two scheduling relations are considered equal if they
yield numerically equal logical execution dates. Equal scheduling re-
lations arise, in relational form, due to description of the scheduling
as linear (in)equation-bounded relations: operations such as multi-
plication by a constant factor or per-element addition do not affect
systems of linear (in)equations. For example, two scheduling rela-
tions may be equal even though the equations defining the relation
are different (13). The linear system of the second scheduling relation
can be obtained by adding the second equation to the first one, which
does not affect the solution of the system.

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i

t2 = j

}

=

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 + t2 = i+ j

t2 = j

}

(13)

A change in any scheduling relation union that results in an equal
scheduling relation is called an invariant transformation. Any algo-
rithm operating within the polyhedral representation is free to per-
form invariant transformations for its needs since they do not affect
the resulting schedule in any way. Two scheduling relations can be
compared for equality by first defining a normal form of the con-
straints that define it and then directly comparing the constraints.

equivalence Two scheduling relations are considered equivalent

if they yield identical execution orders irrespective of the numerical
values of the execution dates. All equal scheduling relation pairs are
also equivalent. Only the entire SCoP schedulings should be com-
pared for equivalence: two scheduling relations may be equivalent
if taken separately, but lose the equivalence once combined with an-
other scheduling relation. For example, taken alone, two scheduling
relations θ1 and θ′1 (14) are equivalent as the order of execution of any
domain remains the same due to their monotonicity. However, if the
SCoP scheduling includes two statements with scheduling relations
θ1 and θ2 (15), essentially alternating the instances of two statements,
the transformed SCoP scheduling with relations θ′1 and θ2 does not
respect the initial order of instance execution with respect to each
other. Furthermore, scheduling relations may be equivalent for some
domains, but not for others, e. g. if they are defined as unions with

3.5 structure of the polyhedral scheduling relation 67

different conditions for different parts of the domain. These cases are
analyzed in Section 3.5.8.

θ1 =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i

t2 = 2j

}

; θ′1 =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i

t2 = 3j

}

(14)

θ2 =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i

t2 = 2j+ 1

}

(15)

A change to the scheduling relation union that results in an equiv-
alent scheduling relation is called equivalent transformation. A demon-
stration of SCoP scheduling equivalence for any set of domains that
may be scheduled requires considering all the scheduling relation
unions simultaneously.

3.5.5 Scheduling Normalization

In order to compare scheduling relations for equality, we need to
provide a normalized form of the scheduling relation. We start by
replacing all strict inequations by their non-strict alternatives Then, In integers,

z > 0⇔ z > 1.we replace pairs of complementary non-strict inequations z > f() and
z 6 f() by equations z = f(). We separate the set of constraints defin-
ing the relation into a set of equations and a set of inequations. In the
following, we consider a set of equations as a system of affine equa-
tions with symbolic dimensions as unknowns. We define two nor- ←֓ Normalized

forms of scheduling

relations.
malized forms, input form and output form depending on the shape
of the linear system.

input form The input form is obtained by symbolically solving
the linear system for input dimensions in the integer numbers treat-
ing output dimensions as symbolic parameters. For example, the
input form of the transformed scheduling relation (7) for polynomial
multiply kernel is

θin
S =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

i = t1 − t2

j = t2

}

(16)

Note that the solution in integers is only possible if the square matrix
formed from the coefficients for output dimensions is unimodular, i. e.
has a determinant 1. In the other cases, we allow non-unit coefficients
for input dimensions, as in 2i = t1. However, we require these coef-
ficients to be minimal positive values. Input form can be obtained
by further representing the linear system as a matrix and running a
integer variant of LU-decomposition.

68 polyhedral program representation

We also substitute input dimensions in inequations by their expres-
sions in terms of output dimensions obtained by solving the linear
system. If the equation has a non-unit coefficient for the input dimen-
sion, we multiply the inequation by this (positive) coefficient before
substitution. We then divide each inequation by the largest common
divisor of its coefficients. Finally, we remove redundant inequations,
i. e. x > 0 is redundant in presence of x > 3.

output form Similarly, the output form is obtained by symbol-
ically solving the linear system for output dimensions in the integer
numbers treating input dimensions as symbolic parameters. Most
scheduling relations presented before are in the output form, includ-
ing the transformed scheduling relation for polynomial multiplica-
tion kernel

θout
S =

{(
i

j

)

→
(

t1

t2

)∣

∣

∣

∣

∣

t1 = i+ j

t2 = j

}

Unimodularity requirements now apply to the matrix formed of the
coefficients for input dimensions. We also perform output dimension
substitution in the inequations in the similar way to the input form.

explicitly, implicitly-defined and degenerate dimensions

Given the separation between equations and inequations, we differ-
entiate the output dimensions in the output form as follows.

An output dimension is explicitly-defined if it can be expressed by an
equation that does not involve other output dimensions. An output
dimension is degenerate if it can only be expressed by an equation
involving other output dimension. Finally, an output dimension is
implicitly-defined if it is expressed by a system of inequations, e. g. t1 >

3t2 ∧ t1 6 3t2 + 2.

3.5.6 Exposing Lexical Order in Scheduling Relations

Using the 2d+1 representation allows to expose the lexical order of
statements and their nesting in loops in the scheduling relations. This
allows to target a particular statement or a loop nest with a schedul-
ing change on one hand, and simplifies the reasoning on scheduling
properties, including equality and equivalence, on another hand.

The 2d + 1 representation alternates β dimensions that represent
the lexical order and α dimensions that correspond to loop iteration
variables. For example, the transformed polynomial multiplication

3.5 structure of the polyhedral scheduling relation 69

scheduling relation, originally with two output dimensions (7), now
features five output dimensions, including three β dimensions (17).

θ′′S(N,M) =






(

i

j

)

→



















β1

α1

β2

α2

β3



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β1 = 0

α1 = i+ j

β2 = 0

α2 = j

β3 = 0






(17)

As the statement instances are executed in lexicographical order, i. e.
the latter dimensions are considered in the order when the former
dimensions are equal, including an extra dimension between any pair
of loop-related α dimensions allows to fully separate statements from
each other in the schedule. These β dimensions are non-parametric
constants. β1 encodes the lexical order of the outer loops in the SCoP
and individual statements outside any loops. Similarly, βi encodes
the lexical position of the objects iterating over αi, or, alternatively,
the order of objects in (i− 1)-th loop. The number of β-dimensions It also allows to start

numbering of both α

and β dimensions

from 1.

corresponds to the number of the loops enclosing the given statement
plus one.

As the β dimensions are constant, they can be written in a more
concise form for any scheduling relation. A β-vector or beta-vector
is an ordered list of constant values of β-dimensions. For the run-
ning example of polynomial multiplication kernel (17), the β-vector
is (0, 0, 0). Beta-vectors completely represent the lexical order of state-
ments and loops. A given β-dimension corresponds to a given loop
enclosing a statement and holds the position of this loop in its enclos-
ing block. Therefore, statement and loops that belong to the same
outer loop will share a β-prefix, a prefix of the β-vector. For a more
elaborate example using the conventional beamforming kernel in List-
ing 4, β-prefixes and β-vectors are provided as comments. Note that
the "root" of the SCoP has an empty β-prefix, meaning that it encloses
anything else in the code.

// ()

t = 0; // (0)

t_val = DBL_MIN; // (1)

for (i = 0; i < N; i++) { // (2)

a_i[i] = 0; // (2,0)

a_r[i] = 0; // (2,1)

for (j = 0; j < M; j++) { // (2,2)

a_r[i] += s_r[j]*m_r[i][j] - s_i[j]*m_i[i][j]; // (2,2,0)

a_i[i] += s_i[j]*m_r[i][j] + s_r[j]*m_i[i][j]; // (2,2,1)

}

val = a_r[i]*a_r[i] + a_i[i]*a_i[i]; // (2,3)

t = (val >= t_val)? (t_val = val, i) : t; // (2,4)

}

Listing 4 – Conventional Beamforming kernel

70 polyhedral program representation

In a sequential program, scheduling relations have unique β-vectors
as they represent not only the lexical position, but also the statement-
wise order of execution and two statements cannot be lexically at the
same position, nor executed at the same time. A β-vector cannot be
a prefix of another β-vector for the same reason. Beta-vectors form a
tree where each leaf corresponds to a statement, and each node repre-
sents a loop. This tree can be constructed from the set of β-vectors us-
ing the algorithm on Figure 25. The tree of β-vectors for the Listing 4

is shown in the Figure 24. In a parallel program with statement-level
parallelism, identical β-vectors may be used to describe parallelism.
However, it would break the semantics of the lexical order. Therefore,
we represent statement-level parallelism by adding parallel semantics
to the β dimension.

()

(0) (1) (2)

(2,2,0) (2,2,1)

(2,2) (2,3) (2,4)(2,1)(2,0)

Leaf, statement Node, loop Root, SCoP

Figure 24 – Beta-tree of the conventional beamforming kernel.

One statement has as much β-vectors as it has relations in its schedul-
ing union. Although it is a single statement, parts of its domain
will be scheduled differently, possibly in different enclosing loops or
branches leading to the multiple occurrences of the statement. Each
occurrence may have its own lexical position. Therefore, on a general
rule, each relation in the union has a different β-vector encoding the
lexical position of the corresponding occurrence.

3.5.7 Lexical Order Normalization

Like all output dimensions, β-dimensions define the order of exe-
cution rather than exact statement positions. For the sake of simplic-
ity, β-vectors can be brought to the normal form with minimal non-
negative values on each dimension that preserve the order. For exam-
ple, the normal form of the β-vector set

{
(0, 1), (2, 1)

}
is
{
(0, 0), (1, 0)

}
.

Once the beta-tree is built, the algorithm from Figure 26 allows to
update β-vectors and prefixes so that they are normalized. The β-
normalization is an equivalent transformation that does not affect other
dimensions.

3.5 structure of the polyhedral scheduling relation 71

Data : β-tree defined is a directed graph G = (V,E, root) defined
by the set of nodes V and, set of edges E and the root node

V← root ;

foreach statement beta-vector ~β do
for i = 1 to dim ~β do

let ~ρ be the prefix ~ρ = ~β1..i ;
V← V∪ ~ρ ;
if dim ~ρ = 1 then

E← E∪ (root,~ρ);
else

let ~ρ′ = ~ρ1..(i−1);

E← E∪ (~ρ′,~ρ) ;

end

end

end

Figure 25 – Algorithm for beta-tree construction

Data : β-tree G = (V,E, root), node v

/* algorithm starts with v = root */
select children of a node v, V′ ← {v′ ∈ V : (v, v′) ∈ E} ;
sort V′ by β-prefix ;
foreach v′ ∈ V′ do

change β-prefix of v′ to (ρ1, . . . , ρdim ~ρ, i) where ~ρ is the
β-prefix of the parent node v and i is the index of the
current node v′ in sorted V′ ;

recurse with v = v′ ;

end

Figure 26 – Algorithm for beta-tree normalization

When the polyhedral analysis is applied to the syntactical represen-
tation, such as the source code or a syntax tree, we use a polyhedral
raising tool, such as Clan 6, that generates normalized β-vectors for
each scheduling relation.

3.5.8 Scheduling Validity Conditions

One of the principal benefits of our vision of the union of relations
polyhedral representation is the separation of domain from scheduling.
Programs may be transformed without modifying their iteration do-
main, only by the change of scheduling relation. Beside its elegance,

6. http://icps.u-strasbg.fr/~bastoul/development/clan/index.html

http://icps.u-strasbg.fr/~bastoul/development/clan/index.html

72 polyhedral program representation

it makes scheduling relation manipulation easier and provides strong
guarantees on the transformed program correctness if the schedule
is legal, i. e. does not violate the dependences. Embedding the or-
der information solely into the scheduling relation and leaving the
iteration domain immutable allows also to reapply the precomputed
transformation to domains of different shape and size and to delay
the legality checks until after all modifications are complete, contrary
to existing approaches that may require intermediate dependence
checks [58].

However, the scheduling structure alone does not guarantee the
validity of the scheduling relation. One statement instance may be
scheduled for execution from zero to possibly unlimited number of
times. The non-execution of an instance is likely to violate the original
program semantics. Re-execution of a statement instance, although
sometimes useful for avoiding communication and synchronization
in parallel programs, may also violate semantics of the original pro-
gram if this instance has a side effect, e.g. is accumulating values in
a variable. To avoid these dangerous effects, the scheduling relation
must guarantee the existence of a unique integer execution date for
each point in any domain by respecting the following validity con-
straints.

equal input dimensionality Since the scheduling relation es-
tablishes the correspondence between the iteration domain and the
execution dates, the number of input dimensions for each relation
in the scheduling union must correspond to the dimensionality of
the iteration domain. We refer to the (dim~ι → dim~σ)-dimensional
scheduling relation applicable to d-dimensional domain, i. e. d =

dim~ι as d-compatible. All relations in the union are required to have
identical input dimensionality as they are applicable to the same do-
main. On the other hand, output dimensionality may vary within the
union. If a valid scheduling relation has more input dimension than
the domain, it becomes partially undefined. If it has less input dimen-
sions than the domain, part of the domain may be ignored violating
other conditions.

schedule existence Any d-compatible scheduling relation union
must define a date for any d-dimensional integer point. An individ-
ual relation may include inequations that restrict its applicability to
the part of the iteration domain as long as the whole union maps the
entire integer space Z

d to the corresponding logical dates.

logical date integrality All dates defined by the schedul-
ing relation must be integer. In the output form, we require explicit

definitions of the output dimensions to have a unit coefficient for the
dimension itself and be linear functions with integer coefficients, i. e.

3.6 discussion 73

have the form tx = ~kTι ~σ. This guarantees that the output dimension
values are integer. Input dimension values are integer given that they
come from a domain defined in Z

dim~ι.

logical date uniqueness Each instance in the d-dimensional
iteration domain must be executed exactly once and its logical execu-
tion date should remain unique throughout the entire schedule of the
program. Thanks to unique β-vectors in each relation, it is sufficient
to ensure date uniqueness within an individual relation.

Combining existence and uniqueness constraints, we obtain that a
scheduling relation should have at least dim~ι explicitly defined (lin-
early independent) dimensions.

We call globally valid scheduling relation unions that respect all
these conditions. Globally valid d-compatible schedulings allow to ←֓ Global and

conditional validity.assign a unique integer date for any point in Z
d. Scheduling rela-

tion unions that respect the conditions only for a subset of Z
d are

called conditionally valid, where conditions define the subset. Finally,
a scheduling relation union is called invalid if there is no point Z

d for
which it respect all validity conditions.

For example a one-dimensional scheduling that assigns execution
dates only for the first ten iterations is conditionally valid since it fails
to schedule all iterations of a larger domain (existence constraint). A
relation with implicitly defined dimension bounded by two differ-
ent explicitly defined dimensions is invalid since it assigns multiple
dates for the same point (uniqueness constraint). Even though some
polyhedral frameworks allow fractional explicitly defined dimensions,
we consider them invalid (integrality constraint). We argue that they
do not improve expressive power of the scheduling as an equivalent

transformation that multiplies all fractional dates by a constant factor
makes them integer.

3.6 discussion

structured scheduling to improve manipulation Impos-
ing a structure on the scheduling relation union in the polyhedral rep-
resentation allows to reason on a higher-level: rather than changing
individual coefficients in the (in)equations, it is possible to identify
specific statements, statement instances or groups thereof, and loops.

equality, equivalence and identical shape In their nor-
malized form, equal scheduling relation unions are likely to have
identical shape. However, this is not guaranteed. Consider, for ex-
ample, a scheduling relation union consisting of two parts that are
identical except a pair of complementary inequations (i < 0 and i > 0

74 polyhedral program representation

respectively). Although these two scheduling relation unions yield
equal dates for any compatible domain, i. e. they are equal by defini-
tion, they do not have the same shape. Specific equality and equiva-
lence tests should be developed. We suggest that an equivalence test
may be based on the dependence violation test. Namely, one may
artificially create a dependence between a statement instance and its
lexicographical predecessor. Dependence violation in this case will
correspond to the change of instance order that makes two schedul-
ing relations not equivalent.

scheduling equivalence and program equivalence

Scheduling relation equivalence leads us to the more general problem
of program equivalence that is known to be undecidable in general
case [133]. Using the data dependences, we can demonstrate that a
change in the program execution order, or a transformation, leads to an
equivalent program [30] However, it does not allow to reason more
about program equivalence or polyhedral programs with different
iteration domains or different statements that are equivalent to the
given program.

raising and lowering as equivalent transformations

Raising a program to the polyhedral model and lowering it back
to the code should be considered similarly to program transforma-
tions: multiple equivalent representations of the program are possi-
ble within the polyhedral model and multiple codes may correspond
to the same polyhedral representation. While the former case can
be mitigated by the normalized structure of the polyhedral represen-
tation, the latter is entirely subject to the code generation algorithm.
This unhandled equivalence gives code generators the flexibility nec-
essary to adapt the code to the target system or to use more efficient
generation algorithms. On the downside, formally proving the equiv-
alence of the generated code to the polyhedral representation and,
transitevely, to the original code remains an open problem.

scheduling functions and relations Earlier works on the
polyhedral model used affine functions rather than relations or rela-
tion unions to perform scheduling and represent data accesses [6, 41,
77]. In addition to the homogenization of the representation, rela-
tions allow a wider range of possible schedules to be expressed in
the model. Functions are, in fact, particular cases of relations that are
left-total and right-unique (or functional), i. e. have a single output
value for all possible input values. Relation-based scheduling remove
these constraints. At the same time, our global validity conditions cor-
respond to specific properties of relations: schedule existence implies
that the relation is left-total and logical date uniqueness implies that
it is injective and functional. Relations also help to express multidi-

3.6 discussion 75

mensional schedulings or non-unit strides thanks to the additional
dimensions that can be added and quantified if necessary.

While it seems that a left-total injective functional relation is a
more restricting than a function, in our representation, global va-
lidity should be respected by the entire relation union rather than
each individual relation having all these properties. In particular,
this allows for different dimensionalities of individual relations in the
same union. Furthermore, thanks to the generalized change of basis
method, requirements for relation bijectivity (or function invertibility)
can be relaxed.

reducing computational cost with global validity Op-
erations on polyhedra, extensively used by the program analysis en-
gine in the model, are notorious for their computational complex-
ity [247]. This complexity is primarily caused by the combinatorial
explosion due to pairwise analysis of the inequations that define the
polyhedra (present in the iteration domain, scheduling and access re-
lations). This complexity is alleviated by the fact that even large-scale
programs, when written by human programmers, rarely have numer-
ous conditions or deep loop nests as these constructs are also hard to
handle by the programmer in the code representation.

Nevertheless, decreasing the number of costly computations in the
polyhedral model remains important. Our union-of-relations repre-
sentation allows to encode all the information about the execution
in the scheduling relation union thus avoiding its combination with
the domain relation union for the sake of intermediary correctness
checks. Given that the scheduling global validity conditions are re-
spected, one may operate exclusively on scheduling relations as sys-
tems of inequations avoiding computationally expensive polyhedral
operations or dependence graph manipulations until the step.

manipulating conditionally valid schedulings Fully de-
coupling iteration domain from the scheduling relation may have its
benefits, but domain information may be precious for constructing
more efficient tailored schedules. For example, having loops with
fixed number of iterations allows to perform full unroll transforma-
tion. Global validity constraints ensure that the scheduling relation
union is applicable to any compatible domain. If a particular feature
of the domain, e. g. its size or shape, may improve the scheduling, the
conditions defining this feature may be included in the definition of
compatibility. The scheduling will then have conditional validity that
is subject to specific domain features.

A conditionally valid scheduling union can be easily turned into
a globally valid: it suffices to include in it the relations with inequa-
tions complementary to the validity conditions. These extra relations
may implement another, less optimal yet suitable in the general case,

76 polyhedral program representation

scheduling. However, this operation will significantly increase the
number of inequations defining the scheduling union and therefore
its analysis time. Therefore, resorting to conditionally valid schedul-
ing unions should be considered as a trade-off between the analysis
time and the execution time of the generated program.

global validity beyond 2d+1 representation Polyhedral
scheduling relations expressed as relations with 2d+ 1 structure sup-
port the definition and verification of global validity conditions. d+ 1

structure, on the contrary, relies on the domain properties to express
the lexical order of the statements and loops: if one loop follows an-
other at the same depth, its logical execution date is computed as
a function of the number of iterations that the first loop does, which
embeds a part of the domain information in the scheduling. Schedule
trees provide a structure of the polyhedral model that combines both
domains and scheduling rules. Such tree may contain partial domain
information as a node, connected to partial scheduling information
in its child nodes potentially followed by another part of the domain
information and so on. While it reduces description redundancy, it
does not guarantee that the scheduling information is separable from
the domain information. Even though global validity conditions can
be translated to the schedule tree form, verifying them requires con-
sidering the whole tree at once.

3.7 conclusion

In this chapter, we presented the polyhedral model, the state-of-the-
art program representation for loop-level modeling. Contrary to other
program models, it represents individual loop executions and allows
for substantial program transformations. We proposed a structure
of the polyhedral representation, 2d+ 1 union of relations, and a set
of conditions, ensuring global validity, that enable efficient program
transformation using the polyhedral model. First, it fully encodes the
program and allows to reconstruct the code after transformation. Sec-
ond, it provides information about individual loop executions and
dependences between them that is not easily accessible in other pro-
gram representations. Finally, thanks to our global validity condi-
tions, it enables higher-level program manipulation through changes
to scheduling relation union with verifiable safety.

However, before applying the program transformation on the state-
ment instance level, the user has to understand and analyze the pro-
gram with the same granularity. Using mathematical notation of poly-
hedra is challenging even for the experts and brings them far away
from the code. Fortunately, the polyhedral model has a geometrical
interpretation that can be used as a basis for an interactive program
restructuring tool resorting to visualization for program analysis.

4
V I S U A L I Z I N G P O LY H E D R A L P R O G R A M S

4.1 visualization techniques for polyhedral programs

Programs amenable to the polyhedral model are often represented
visually in the literature using various forms of scatter plots where
points correspond to individual statement instances. This representa-

Scatterplot-like

representation for

the polyhedral

construct xfor,

reproduced

from [92].

tion reifies these instances allowing to interact with them, contrary to
the code that does not allow accessing individual statement instances.
Furthermore, multiple terms in polyhedral program-optimization re-
fer to the graphical nature of the representation suggesting that ex-
perts rely on visual representation and intuition to create, verify and
evaluate program transformations. For example, loop tiling — a fre-
quently used loop optimization technique that consists in introducing
an extra loop with restricted number of iterations in the nest — is bet-
ter explained visually as a tessellation of loop iteration space.

Hexagonal tiling,

reproduced

from [113].

At the same time, points of the scatter plot may serve as nodes
in node-link diagram where links correspond to dependences, ubiq-
uitous for exploiting parallelism of the program. Therefore, sev-
eral compilation-related polyhedral libraries include tools for visu-
alizing polyhedra that describe programs, in particular iteration do-
mains. PolyLib [167] includes a VisualPolylib 1 component for gen-

VisualPolylib

visualization.

erating three-dimensional visualizations. The automatic loop paral-
lelizer LooPo 2 [109] visualizes polyhedral domains and dependen-
cies between points inside them.

LooPo visualization.

Taken from a higher-level perspective, the polyhedral model uses
a representation alternative to the code in order to reason about pro-
gram behavior contrary to syntax tree-based approaches more tightly
connected to the textual form of the program. While human program-
mers are more used and better trained to work with the code, alter-
native representations may be useful when the relevant information
is not easily accessible in this form, which is the case with instance-
wise data dependences and reuse. Existing polyhedral visualization
techniques may be used as a basis for interactive program visualiza-
tion. In order to design a representation according to the interactive
program restructuring principles, we explore the parts of visual vo-
cabulary commonly used by experts in polyhedral compilation and to
which extent they are understandable by these experts. These obser-
vations allow us to design a visual representation for polyhedral pro-
grams that is understandable for the users and suitable for program

1. https://icps.u-strasbg.fr/polylib/

2. http://www.infosun.fmi.uni-passau.de/cl/loopo/

77

https://icps.u-strasbg.fr/polylib/
http://www.infosun.fmi.uni-passau.de/cl/loopo/

78 visualizing polyhedral programs

manipulation. We propose several design alternatives and evaluate
the visualization experimentally.

4.2 participatory design workshop

We conducted a participatory design workshop in order to gather
insights about the use of visual representation in communicating pro-
gram parts in the polyhedral model. We were interested in findingIn participatory

design, target

audience members

are participating in

creating prototypes

of the future

interactive system.

both commonalities and divergences in visual representations. Our
hypothesis was that experts have implicit rules and graphic elements
for creating such representations in order to make them understand-
able to each other, but each of them uses particular parts of the repre-
sentation to represent information specific to their interest.

4.2.1 Protocol

participants Through the thematic mailing list, we recruited 4

participants (all male, aged 23-39) that have previously worked with
the polyhedral model on both applicative programming and theoreti-
cal level. Each of participants used a polyhedral library in a software
project and co-authored at least one paper on the subject. We divided
them in two pairs. Participants in a pair did not previously work
together on a visual representation. One of the experts in each pair
reported that they have manually created a visual representation for
their research project at least once.

procedure We held a 2-hour workshop with three activities fo-
cused on communicating program parts by means of polyhedral-based
visualizations.

Activity 1 — creating the representation. Participants were asked to
create a visualization for an abstract code part including at least one
loop nest in order to communicate their execution to the other mem-
ber of the pair. They were asked to include as many relevant details
as necessary. They were not given any specific code snippets, but
were allowed to create their own. The activity was being done on
paper, with no computers or printed material available.

Activity 2 — interpreting the representation. Once visualization com-
plete, participants in the pair exchanged their representations. They
would then, in turn, explain how they understand each other’s repre-
sentation. The author of the representation was not allowed to correct
his peer unless explicitly asked for clarification. After the end of ex-
planation, the author could complete or correct it.

Activity 3 — improving the representation. For the final activity, partic-
ipants were given a code snippet to represent visually (Listing 5) and
asked to focus on communicating individual loop iterations, depen-
dences between them and information relevant to parallelism. They

4.2 participatory design workshop 79

were asked to collaborate on this new version and provide a new rep-
resentation that suits both of them. They were allowed to reuse their
previous results or come up with a completely new one. This activity
was also done on paper. Once completed, they explained it to the
observer. The code is

intentionally useless

so as to avoid

participants

suggesting

algorithm-specific

representations.

s = 0;

for (i = 0; i < N; i++) {

a[i] = 0;

for (j = i; j < M; j++) {

for (k = 0; k < j; k += 2) {

Z[i][j] += A[i][k] * B[k][j];

Z[i][j] /= j / 2;

}

a[i] += Z[i][j] * s;

}

s = 0;

}

Listing 5 – Code snippet that participants had to visualize.

data collection We collected all artifacts produced by the par-
ticipants including final versions and drafts. We photographed the
artifacts as they were being made. The observer also took notes dur-
ing the explanations and the discussion phases.

4.2.2 Results and Discussion

points , shapes , arrows and axes All participants represented
loops and iterations as polygons delimited by the lines that corre-
spond to loop bounds. Three participants put points inside the poly- ⊲ Participants used

polygonal shapes for

loops and dots for

instances.

gons to represent individual iterations whereas the fourth one drew a
lattice and shaded the polygon assuming grid intersection points cor-
respond to individual executions. P4 created a 2-dimensional and a

We refer to

participant 4 as P4.3-dimensional representation, later explaining that he ". . . would need

to manipulate the 3D and take projections or sections". All participants
imagined loops with simple conditions: constant or depending on
one outer iterator, resulting in rectangular and triangular shapes. No
one assumed a loop nest with more than 3 loops.

Three participants (P1,P3,P4) used arrows to depict eventual de-
pendences between iterations. Two of them used different colors to
identify dependences or specify their properties. For example P1 re-
ferred to "blue dependence" and "black dependence". P2 decided to use
arrows to represent the order of execution of the points. He com-
mented "with this matrix of points, you don’t know if you go first by row

or by column".
All participants included axes in their representation. These axes

formed a coordinate system for the polyhedral loop iteration domain.

80 visualizing polyhedral programs

(a) Using color coding to identify
dependences.

(b) Intersecting shapes with grid
support to show statement

instances.

Figure 27 – Participants used points, shapes, arrows and axes in polyhedral
representation.

Each axis corresponded to a loop iterator. They put ticks on the axis
and attached specific numerical values for the bounds. P3 depicted
parametric upper bound by "breaking" the axis with dots and than
continuing with a values N− 1 and N.

multiple statements and nested loops Only two of the
participants (P1 and P2) had represented multiple statements in a
loop nest. P1 created multiple coordinate systems, each of which
hosted one polygon associated with one statement. He labeled this
coordinate systems as "statement 1" and "statement 2". P2 used the
same coordinate system for many statements and opted for color cod-
ing to tell them apart. In his representation, the distance between the
points of different statements and different iterations was roughly the
same. This was partly a reason to force him to use arrows to specify
execution order.

P4 created a 3D representation for three nested loops and pair-wise
projections of it. He commented later that "projections should be enough

in most cases, but 3D gives you better view of the domain size".
When asked by the observer after the end of Activity 2 about mul-

tiple statements in the loop nest, P3 explained that he "drew a common

[for all statements] iteration domain".

interpretations All participants unambiguously interpreted the
axes as loop iterators, the polygonal shapes as loop bounds and the
points as individual iterations. All of them also interpreted arrows
as dependences, although it was not the case for P2’s representation.
P1 asked if P2 had "everything depend on each other" and received an
explanation that the arrows depicted the order of execution. P2 than
added that he "thought about arrows for dependences, but the execution

order of the statements was not clear". He later suggested to have modes

4.2 participatory design workshop 81

(a) Using color coding
to differentiate

multiple statements.

(b) A 3D representation and one of its projections
onto 2D.

Figure 28 – Participants used points, shapes, arrows and axes in polyhedral
representation.

to switch between dependences and execution order, or introduce a
special time axis to show the execution order.

disagreements Most disagreement came from the interpretation
of the parts that are rarely relevant to present the research results,
but necessary to have a complete representation of a program part.
For example, P1 interpreted multiple coordinate systems of P2 as
different loop nests rather than different statements inside the same
nest. P3 labeled the bounds of polygon by the inequalities, e. g. i > 0

and j 6 N explaining that "for more complicated cases, it [was] more

precise". P4 disagreed and gave an example of a bound "with multiple

minimum functions" like min(min(min(2 ∗ i+ 1, 4), N− 2), j−N+ 5). ⊲ Participants

agreed on general

representation, and

disagreed on minor

details such as axis

orientation.

Minor representation details also resulted in discussion, although
were correctly interpreted by the participants. The vertical axis was
pointing up for P1,P3,P4 motivated by "it is how we do in mathemat-

ics", and pointing down for P2 since "it is similar to reading the code,

you go down line by line". Dependence arrows were directed from de-
pendence sink to its source for P1 and P4. P1 explained it as "the

arrow shows that this [iteration] depends on that [iteration]". On the
other hand, P3 directed the arrows from source to sink motivating it
as representation of "how the data flows between iterations". Execution
order arrows used by P2 were also directed towards the next iteration,
expressing flow of control.

The use of 3d for deep nests was also discussed. P2 suggested to
"differentiate between truly three-dimensional problems and loop nests that

iteratively solve two-dimensional problems". He justified that for iterative
computations, it did not make sense to visualize the time loop, i. e.
the one counting time steps, as computations performed on each step
were identical. He further argued that it was impossible to optimize
the time loop since each step was entirely dependent on the previous
step. P4 proposed a similar distinction for "trivial" dimensions that

82 visualizing polyhedral programs

were not involved in dependences or for dimensions created during
the program transformations such as tiling.

improvement Given a specific example, participants noticed the
edge cases that they did not consider in their initial version, namely
individual statements outside loops, imperfectly nested loops and
non-unit loop strides. Both pairs kept the initial version with 2D rep-
resentation as a basis. Due to the presence of non-unit strides they
decided to use points rather than the intersection between a lattice
and a polygonal shape. However, P3 and P4 kept the lattice as a sub-
strate for placing and identifying points. P1 and P2 tried creating a
3D view, but found it too complex to identify boundaries and to put
dependences. P4 drew a 3D shape, but was not sure about its correct-
ness. Both pairs ended up with multiple projections of the loop nest
on pair of dimensions. P1 and P2 used groups of stacked differently
colored points to represent multiple statements. P3 and P4 used dif-
ferent marks (circle, rectangle, triangle, star, plus sign) to represent
different statements. Both pairs depicted individual statements as a
single mark outside coordinate systems.

4.3 the clint visualization

4.3.1 Statement Instance Scatter Plot

Based on the collected information, we created an interactive tool,
Clint, for visualizing static control parts of the program. The visual
representation is inspired by those typically used in the literature on
the polyhedral compilation and ensures all program parts amenable
to the polyhedral model can be visualized. It relies on the set of
existing polyhedral tools and libraries to extract the polyhedral repre-
sentation from the code. Beyond visualization, we intended to make
the tool interactive, allowing to change the underlying program by
changing its visual representation and having the code automatically
regenerated.

Clint is a direct manipulation interface designed to:
— help programmers when parallelizing compute-intensive pro-

grams parts;
— ease the exploration of possible transformations; and
— guarantee the correctness of the final code.
Clint leverages the geometric nature of the polyhedral model by

presenting code statements, their instances, and dependencies in a
scatterplot-like visualization of iteration domains. The main compo-
nents of its visualization are as follows.←֓ Elements of Clint

representation. Point corresponds to an individual execution of a statement within
the loop nest, i. e. a statement instance;

4.3 the clint visualization 83

Arrow depicts a dependence between two statement instances, i. e.
when both instances access exactly the same memory address
and at least one of accesses writes to it;

Polygon encloses all instances of a statement within the loop;
Stack of Polygons represents the lexical order of the statements

in the same loop;
Axis corresponds to a loop iterator and its values;
Coordinate System corresponds to a 2D projection of a loop nest;

for (i = 0; i < N; i++)

for (j = max(3-i,i-3);

j <= min(i+3, 9-i); j++)

Z[i+j] += f(i,j);

Figure 29 – Basic elements of Clint visualization: points represent individ-
ual iterations, arrows – dependences between them, axes corre-
spond to loops.

Figure 29 gives an example of a loop nest with a single statement
inside and its visual representation in Clint. The red shape delim-
its the iteration domain of the loop nest, the points correspond to
individual executions and arrows depict the data flow between these
executions. While the code snippet does not seem to feature paral-
lelism, the visual representation of the data flow suggests, given par-
allel dependence lines, that some form of parallelism may be present.
In fact, if we consider the order of statement instance execution, we
notice that iterations of the inner loop (on j) inside a single iteration
of the outer loop (on i) do not depend on each other, but rather on
the previous iteration of the outer loop. Therefore, inner loop may be
executed in parallel as long as the outer loop is sequential. This case
is commonly referred to as wavefront parallelism.

A larger example is shown in Figure 30 that illustrates the code
from Listing 6. Statements S7,S8 share two loops and therefore vi-
sually share two axes i and j (a). Their stacking corresponds to the
execution order with S7 being topmost. Statements S6 and S7 share
only the outer loop, but are nested in different inner loops, which cor-
responds to different coordinate systems aligned vertically so that the
horizontal axis i is common (b). Statements S4,S5 are nested in one
loop only and, therefore, do not have a second axis (c). At the same
time, they are placed in the same column and aligned to i values. In-
dividual statements S9 and S10 are depicted without axes as they are
not nested in loops (d). Finally, the statement S11 with its own loop
nest is visualized in a separate coordinate system that is not aligned

84 visualizing polyhedral programs

with the first column visually creating a different reference for the i

loop (e).

for (i = 0; i < N; i++) { // (0)

for (j = 0; j < N; j++) { // (0,0)

S1(i,j); // (0,0,0)

S2(i,j); // (0,0,1)

S3(i,j); // (0,0,2)

}

S4(i); // (0,1)

S5(i); // (0,2)

for (j = 0; j < N; j++) { // (0,3)

S6(i,j); // (0,3,0)

}

for (j = 0; j < N; j++) { // (0,4)

S7(i,j); // (0,4,0)

S8(i,j); // (0,4,1)

}

}

S9; // (1)

S10; // (2)

for (i = 0; i < N; i++) { // (3)

for (j = 0; j < N; j++) { // (3,0)

S11(i,j); // (3,0,0)

}

}

Listing 6 – A code snippet with multiple imperfectly nested loops and
multiple statements.

The general order of statement instance execution is:←֓ Representing

order of statement

instance execution

in Clint.

— stacked points, front to back;
— columns of points, bottom to top, crossing polygon boundaries

and vertical boundaries of the coordinate systems;
— rows, left to right, crossing polygon boundaries, but not the

coordinate system boundaries;
— vertical piles of coordinate systems.

For example, the first point inside the light red polygon representing
S4(0) is executed after the topmost leftmost point of the green poly-
gon representing S3(0,5). The single point in light green polygon
representing S9 is executed after the topmost rightmost of the col-
umn on its left (S8(5,5)). Clint provides an animation that highlights
each point in turn according to the execution order.

Statements with iteration domains featuring more than two dimen-
sions are split up into two-dimensional projections and displayed as
a scatter-plot matrix as shown in Fig. 31. If several statements have
the same coordinates in a projection — e.g., (2, 0, 0) and (2, 0, 1) in the
〈i, j〉 projection — only one point is displayed and the intensity of its
shade is proportional to the number of the underlying points.

Beyond participatory design feedback where participants had dif-
ficulties creating and interpreting three-dimensional representations,

4.3 the clint visualization 85

Figure 30 – Statements sharing a loop also share an axis. Separate loop nests
are different coordinate systems. Individual statements outside
loop depicted as points outside coordinate systems.

the choice of using only two-dimensional projections is motivated by
the intended direct manipulation of the visual components with a
standard 2D input device (e.g. mouse) [24]. It also allows to keep
the visualization consistent regardless of the number of dimensions
in the iteration domain. Finally, stacking multiple polygons is es-
sentially equivalent to introducing another dimension interpreted as
"depth" of the polygon.

86 visualizing polyhedral programs

Figure 31 – Deep loop nests are visualized as a scatterplot matrix of two-
dimensional projections corresponding to each pair of loops.

4.3.2 Memory Accesses as Interactive Color Coding

Reorganizing repeated memory accesses is another way to improve
program performance along with exploiting parallelism. The polyhe-
dral model allows to reason about data accessed by individual loop
iterations. Given that data is structured as arrays or array-like con-
structs with affine subscripts, one is able to precisely identify the
elements accessed by each individual execution of a statement nested
in loops. These accesses are typically uniform across all executions
for static control code. Non-uniform cases may arise from statements
surrounded by branching control flow. However, it leads to a constant
non-parametric number of branches, adequately representable in the
code. The loop iteration domain is thus separated into several sub-
domains, each of which featuring uniform accesses. This uniformity
allows us to speak about data access patterns rather than individual
accesses.

Due to the definition of the dependence — two dependent state-
ment instances access the same address —, our data dependence vi-
sualization partly presents the information about array accesses. In-
deed, statement instances connected by an arrow access at least one
common address with data. However, it does not give any infor-
mation about accesses to adjacent elements. Most modern systems

4.3 the clint visualization 87

use deep memory hierarchies with multiple caches significantly de-
creasing the delay time for accessing subsequent or close memory
addresses [200], making performance gains from exploiting data lo-
cality important.

We enhanced our visualization with information about adjacent ac-
cesses. When the user hovers a specific point in the visual representa-
tion, points that correspond to statement instances accessing the same
address are highlighted in the same dark red color. Points that access
immediately preceding addresses are highlighted with lighter and
less saturated shades of red using the metaphor of "hot addresses"
meaning that they are likely to be still in the cache. Points access-
ing succeeding addresses are highlighted with shades of yellow. This
highlighting is made across all available coordinate systems in order
to hint the user about the data reuse between loops and the potential
for loop fusion.

For example, the polynomial multiplication example from Listing 1

can be prepended with a data initialization step to demonstrate data
reuse as shown in Listing 7. Figure 32 shows the Clint visual represen-
tation for this example with one point hovered. The right coordinate
system corresponds to the main computation and shows the same di-
agonal pattern as the dependence lines. The left coordinate system
also has several points highlighted suggesting that similar sets of ad-
dresses are accessed in two loops and fusing them in two loops may
leverage the access locality to improve program performance.

for (i = 0; i < N + M - 1; i++)

Z[i] = 0;

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Z[i + j] += A[i] * B[j];

Listing 7 – Array initialization and polynomial multiplication

Figure 32 – Access pattern visualization: dark red iterations access the same
address as the selected point, lighter reds access preceding ad-
dresses and yellows access immediately following addresses.

⊲ Color coding for

memory accesses is

limited to a specific

instance, rather than

gives a pattern.

Although this representation of memory accesses is easily com-
binable with the dependence/parallelism view, it has various issues.
First of all, it reacts to the user action and does not provide informa-
tion statically. It does not take into account the fact that one state-

88 visualizing polyhedral programs

ment iteration may accesses multiple addresses during its execution.
Finally, it is limited to the addresses adjacent to the selected iteration,
rather than giving general information about all points. However, the
last issue is partly alleviated by the access uniformity.

4.3.3 Memory Accesses as Nested Parallel Coordinates

We created another visual representation based on parallel coordi-
nates [125] to address these issues. Contrary to the arbitrary multi-
dimensional data, statement instances have special semantics associ-
ated with each dimension that we may embed in the visual represen-
tation. In particular, inner loop iterations are executed inside a partic-
ular outer loop iteration rather than being independent. At the same
time, the amount of data points in an individual loop is substantially
less than typical number of data points used in parallel coordinate
application. Therefore, we propose to use nested parallel coordinates,
a variant of parallel coordinates visualization where an axis is repli-
cated for each value of the previous axis. We expect this technique
to let the user trace individual lines and visually detect patterns in
nested loop executions.⊲ Nested parallel

coordinates reflect

the relation between

dimensions in the

polyhedral model.

We visualize both α and β dimensions of the scheduling relation
in order to separate executions of different statements nested in the
same loop. For example, the first statement of Listing 7 is repre-
sented in nested parallel coordinates in Figure 33. Its first axis i cor-
responds to the loop, and the set of vertically aligned axes b2 to the
β-dimension inside this loop. The axis on the right corresponds to the
subscripts of the array Z accessed by each execution of the statement
in the loop.

Figure 33 – Nested parallel coordinates access representation of access pat-
tern. Each value of t is associated with a separate axis for b2.

Similarly, Figure 34 shows which Z subscripts are accessed by which
iteration of the loop nest. The j axis is replicated for each pair of val-
ues i and b2. The b3 is replicated for each triple i, b2, j and contains
the single value as the loop nest contains only one statement. Follow-

4.3 the clint visualization 89

ing the line back from the address axis, the user is able to identify all
statements instances accessing the same data element.

Nested parallel coordinates representation allows to represent ad-
dresses accessed by all statement instances in the same view without
having the user interact with the representation. If the statement ac-
cesses multiple addresses in the same array, multiple lines are drawn
and color coded to identify each reference (see Figure 34). In case
of multiple accesses to different arrays, extra axes are added on the
right and connected with the statement instance lines. Thus parallel
coordinates enables the user to visually analyze addresses commonly
accessed together giving hints for data layout transformations such
as transforming structure of arrays into array of structures.

Figure 34 – Nested parallel coordinates access representation of access pat-
tern. Lines join on the iterator axis only if the statements share
the corresponding loop.

Multiple statements and loops are managed implicitly by this rep-
resentation thanks to the presence of beta-dimensions that encode
lexical order and nesting of statements. For example, the code from
Listing 7 can be transformed to enable loop fusion as written in List-
ing 8. The transformed code contains an imperfectly nested loop,
which the representation reflects by drawing a dashed line over the
dimensions not present for the first statement in Figure 35. Note also
that the b2 axes now have two values each, but are still separated
from each other. ⊲ Allows to reason

about loop

parallelism, but less

efficiently than

scatter plot-based

representation.

Contrary to conventional parallel coordinates, this representation
maintains the hierarchical structure of the loops and the lexical order
of the statement by using multiple axes. This hierarchy allows to
reason about iteration independence and potential parallel execution.
For example, iterations of the loop i are accessing the same addresses
as seen on the Figure 34, making them dependent on each other and
preventing parallel execution. However, iterations of the loop j access
different addresses and may be executed in parallel. In the modified
code visualized in Figure 35, different iterations of the i loop access
different addresses and are visually separated, demonstrating their

90 visualizing polyhedral programs

independence and potential parallel execution. Although potentially
helpful for identifying outer loop parallelism, this representation is
hard to use for detecting inner loop parallelism as all replications of
the inner loop axis should be analyzed visually.

for (i = 0; i < N + M - 1; i++) {

Z[i] = 0;

for (j = max(0, i - N + 1); j <= min(i, M - 1); j++)

Z[i] += A[i-j] * B[j];

}

Listing 8 – Skewed and fused array initialization and polynomial
multiplication

Figure 35 – Nested parallel coordinates access representation for multiple
imperfectly nested loops. Dashed lines correspond to state-
ments that are outside of inner loop.

4.3.4 Clint Interface

As shown in Fig. 36, Clint combines three components:

1. the visual representation of the program statements;

2. an editable history view; and

3. the source code editor, in which the program structure can be
edited manually.

The source code editor includes ad-hoc syntax highlighting so that
statements are displayed in the same color as their corresponding
polygons in the visual representation. The three views are synchro-
nized and updated according to user’s manipulations. Changes made
to the source code are immediately reflected on the visualization and
added to the history. As these changes may intentionally modify the
program semantics, dependences are recomputed but are not checked
for violation against the previous version.

4.4 architecture and implementation 91

Figure 36 – The interface of Clint consists of three coordinated editable parts:
(1) scatterplot-like visualization, (2) editable history view and (3)
source code editor.

4.4 architecture and implementation

4.4.1 Statement Instances

Clint relies on a collection of research tools and libraries that are
the building blocks for polyhedral compilers. These tools usually
work together as a single black-box from the input source code to the
output final code, with an internal flow based on a common polyhe-
dral representation specification OpenScop [17]. Figure 37 illustrates
the interplay between different parts of this tool chain. Specifically,
Clan [20] raises a C program into the polyhedral model with the
union of relations representation; Candl [250] performs the data de-
pendence analysis in the polyhedral model; and CLooG [16] generates
a C+OpenMP code that implements the current schedule. Expert pro-
grammers may use these tools separately to get feedback from either
the data dependence analysis, e.g., to check whether a given code
modification violates dependences or not, or the code generation to
get the final code. Internally, Clint relies on the polyhedral libraries
isl [253] and piplib [93] to perform projections and to create a set of
points for the scatterplot from the iteration domain relations.

instance enumeration In order to visualize the program from
polyhedral relations, Clint combines the iteration domain relation
union with the current scheduling relation union: the scheduled do-

main relation union is a result of combining inequalities from each

92 visualizing polyhedral programs

Figure 37 – Clint architecture: the user interacts only with Clint with the vi-
sualization and code being generated automatically by the poly-
hedral tool chain.

pair of domain and scheduling relations in a new relation. Each
relation in the scheduled domain is than contextualized with user-
defined values replacing symbolic constants introduced as extra equa-
tions to the relation definition. Finally, a polyhedral library trans-
forms the contextualized scheduled domain into a set of points Rather
than projecting the relation on the pair of dimensions, we compute
the set of points belong to the corresponding polyhedron. Coordi-
nates of these points are used for constructing the scatter plot. Having
a set of points rather than individual projections allows Clint to prop-
erly display cases where different amounts of statement instances are
projected to a single point. After placing all points, the surrounding
shape is created by a Graham scan algorithm for convex hull compu-
tation knowing that the model requires individual polyhedra to be
convex.

For example, the polynomial multiplication iteration domain (3)
with the transformed scheduling (7) and fixed parameters results in
a single relation with all the (in)equations combined (18).

DA =






(

i

j

)

→



















b1

a1

b2

a2

b3



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 = 0

a1 = i+ j

b2 = 0

a2 = j

b3 = 0

0 6 i < N

0 6 j < M

N = 11

M = 14






(18)

statement nesting in loops Beta-vectors of the statement’s
scheduling guide the distribution of individual polygons to the coor-
dinate systems and their layout. First, the size of the beta-vector is

4.4 architecture and implementation 93

compared with the dimensions the statement is being projected onto:
if the vector size is less than the horizontal dimension, the statement
is visualized as a single point (the loop nest is not deep enough),
if it is less than vertical dimension, the statement is visualized as
a line, otherwise the statement is visualized as a 2D polygon. The
beta-vector is than split into three parts between the beta-dimensions
surrounding projection dimensions. The lexicographical order of the
first part defines the order of "columns" of coordinate systems ar-
ranged horizontally. Statements with identical first part are placed in
the same column. The lexicographical order of the second part, given
identical first parts, defines the order of coordinate systems in the
column. The lexicographical order of the last part defines, given first
two parts being identical, the stacking order of statements within the
coordinate system. For example, the statements from Listing 6 are
distributed in Figure 30 according to their beta-vectors (provided in
comments for readability) as shown in Figure 38.

Figure 38 – Polygon alignment and distribution to coordinate systems is de-
fined by statement beta-vectors. Blue numbers are beta-vectors,
red numbers are beta-prefixes of coordinate systems. Black num-
bers are beta-prefixes of columns.

4.4.2 Memory Accesses

address enumeration Clint computes the set of addresses ac-
cessed by each statement instance similarly to the execution dates. It

94 visualizing polyhedral programs

takes the scheduled iteration domain and combines it with access rela-
tion unions resulting in scheduled access relations. If a statement ac-
cesses multiple different addresses, it is described by multiple sched-
uled access relations. After replacing the parameters by constant val-
ues, Clint uses isl to enumerate all integer points inside the polyhe-
dron defined by the scheduled access relation. Once the set of integer
points is computed, the scheduling dimensions and the array name
are used as an index to group all addresses accessed by a statement
instance.

For example, the second statement of the transformed polynomial
multiplication snippet in Listing 7 has three distinct scheduled access
relations: read/write on Z[i+j], read on A[i] and read on B[j]. The
relation (19) maps original iterators to the new ones and to the array
subscript a1 of Z.

AZ,Read,Write
S =






(

i

j

)

→





























b1

a1

b2

a2

b3

id

a1





























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 = 1

a1 = i

b2 = 0

a2 = j

b3 = 0

0 6 i < N

0 6 j < M

id = Z

a1 = i+ j

N = 11

M = 14






(19)

domain splitting As one statement may access multiple ad-
dresses and, conversely, one address may be accessed by numer-
ous statement instances, the nested parallel coordinates visualiza-
tion quickly becomes visually cluttered and difficult to interpret. At
the same time, loop-based computation amenable to the polyhedral
model features uniform access to the data, i. e. the access relation has
a concise form mapping iteration variables to addresses. Therefore,
it should be enough to only show the access pattern, repeated across
all iterations rather than showing all accesses. Within the polyhedral
model, these patterns can be expressed as piecewise affine functions.
To reduce the amount of data represented, Clint computes the number
of different addresses accessed by individual iterations. It finds the re-
gions where this number is either constant or changes monotonously
(increases or decreases with a constant factor) and only visualizes a
limited number of iterations in these regions, e. g. 4 points in Fig-
ure 35. This approach reduces the amount of presented information,
but still allows to understand the general pattern.

4.5 evaluation of clint visualization 95

For the dependence visualization, the splitting approach may also
be beneficial in order to reduce clustering, but requires a specific algo-
rithm to find iteration domain parts with uniform dependences after
transformation [108].

4.5 evaluation of clint visualization

Although similar visualizations have been already used for descrip-
tive or pedagogical purposes, there is no empirical evidence of their
appropriateness for conveying program structures. We designed an
experiment to assess the suitability and completeness of our visual
representation in the polyhedral model for programmers. We are test-
ing whether programmers with different level of expertise are able to
establish a bidirectional mapping between our visualization and the
code with different levels of complexity.

4.5.1 Protocol

participants We recruited 16 participants – 12 male, 4 female,
aged 18-53 – from our organizations. All of them have experience
in programming using imperative languages with C-like languages.
Six participants already used iteration domain visualizations in their
work and have some previous knowledge about the polyhedral model.
Therefore they were considered as experts. In this study, we focus on
the scatter plot-based visualizations as they provide information for
both parallelism and data locality and are based on the participatory
design. In a controlled study,

the environment is

maintained

consistent and only

the factors change

from task to task.

Each participants

sees all values

(levels) of a within-

factor and only one

value of between-

factor.

procedure We conducted a controlled experiment with a [3× 2]

mixed design having two factors:
— Task: mapping direction (between participants)

VC – writing a code snippet which corresponds to the given vi-
sualization using a C-like programming language featuring
loops and branches with affine conditions;

CV – drawing an iteration domain visualization given the cor-
responding code.

— Difficulty: problems may be (within participants)
Simple – two-dimensional with constant bounds;
Medium – multi-dimensional with constant bounds;
Hard – two-dimensional with branches and loops having mutu-

ally dependent bounds.
From the participatory design output, we expected deep loop nests to
be the most problematic for users. However, during pilot testing we Pilot testing consists

in running the

preliminary version

of the experimental

protocol with a small

sample of users in

order to evaluate the

protocol.

found that the the nest depth is not a source of difficulty itself, rather
it creates more room for complex mutually-dependent loop bounds,
that are difficult to envision. Therefore, we readjusted the difficulties

96 visualizing polyhedral programs

so as to avoid complex loop bounds in Simple and Medium conditions
as well as to render the Hard conditions still feasible by limiting the
dimensionality.

In order to avoid learning effect and to ensure consistent difficulty
over tasks, participants were divided in two groups with the same
number of experts. Group 1 was asked to perform the visualizationPerforming the tasks

in a certain order

may affect results.

In particular,

participants can

learn to use one

representation better

than others.

Therefore, the order

of tasks is changed,

or counterbalanced,

for different

participants.

to code task (VC), and group 2 the code to visualization task (CV).
The order of task difficulty was counterbalanced across participants.
Both tasks were performed on paper, with squared graph paper for
the CV condition. Participants were presented with the visualization
and did two practice tasks at the beginning of the session. They were
instructed to perform the tasks as accurately as possible without time
limit and were allowed to withdraw from a task. Expected solutions
were shown at the end of the experiment. Each session lasted about
20 min.

data collection For each trial, we measured Completion Time,
Error and Abandon rates. The errors were split in two categories: Pa-

rameter Errors, the shape of the resulting polyhedron was drawn cor-
rectly, but linear sizes or position were wrong; Shape Errors, the shape
of the polyhedron was incorrect. Codes describing the same itera-
tion domain were considered equivalent (e.g. i <= 4 and i < 5). We
also videotaped participants activity and collected the materials they
produced. After they completed the study, participants filled in a
questionnaire with questions regarding their strategies to accomplish
the task and suggestions for improving the visualization.

data processing We performed log-transformation of the Comple-

tion Time during the analysis to compensate the positive skew of its
distribution, natural to non-negative time measurements. This trans-
formation results in asymmetric confidence intervals.

data analysis Due to growing concerns in various research fields
over the limits of null hypothesis significance testing for reporting
and interpreting experimental results [73, 82], we base all our anal-
yses and discussions on estimation, i.e., effect sizes with confidence
intervals [74]. Furthermore, we argue that estimation results and ac-
companying graphs are better suitable for communicating results in
a work mixing methodologies from different disciplines. We describe
the computation and interpretation of effect sizes and confidence in-
tervals in Appendix B.

4.5.2 Results

We did not observe any significant learning effect on the Error Rate

or Completion Time. We discarded 7 trials in which the non-expert

4.5 evaluation of clint visualization 97

participants produced syntactically incorrect or not static control code
as we could not unambiguously interpret participants intention with
this code and attribute these problems to the visualization problems
or the lack of expertise of the participants.

completion time Task did not strongly affect the Completion

Time. VC transition took 182s (95%CI = [127s, 262s]) on average while
CV transition took 215s (95%CI = [156s, 296s]) on average, resulting in
an effect size of 16.3% (95%CI = [−39.2, 50.9]). Although the previous
exposure to similar visualization techniques was used as an expertise
criterion, no interaction between expertise and Task was observed,
mostly due to large inter-participant variability and small number of
tasks. This result may also suggest that only a short training may be
sufficient to introduce Clint visualization to Non-Experts. ⊲ Experts completed

only Hard tasks

faster than

Non-Experts.

Expertise difference affected Completion Times only for Hard tasks,
where Non-Experts took 539s (95%CI = [497s, 585s]) on average while
Experts took 301s (95%CI = [201s, 451s]), with an effect size of 56.7%
(95%CI = [26.8, 98.8]). Both Experts and Non-Experts spent similar
amounts of time for Easy, 98s (95%CI = [49s, 199s]) and 82s (95%CI =

[62s, 113s]) on average respectively, and Medium tasks, 208s (95%CI =

[95s, 455s]) and 199s (95%CI = [151s, 262s]) on average respectively. In
general, Completion Time is more consistent across Non-Expert par-
ticipants than across Expert participants (Figure 39). Combined with
our observations, this can be explained by Experts being substantially
faster on some trials thanks to their expertise and spending more time
on some other trials by looking for a potential caveat. On the other
hand, Non-Experts were performing the task following the instruc-
tion without detailed reflections. Overall, similar Completion Time re-
sults suggest that our representation is suitable for both experts and
non-experts if the complexity of the task remains limited.

0

100

200

300

400

500

600

Non−Expert Expert

Expertise

C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Difficulty

Easy

Medium

Hard

Figure 39 – Completion time increases with task difficulty but is lower for
experts. Error bars show 95% confidence intervals.

⊲ Completion Time

increases with

Difficulty.

The analysis of Completion Times also confirms our estimation of
task Difficulties. On average, Easy tasks required 88s (95%CI =

[66s, 117s]), Medium tasks required 202s (95%CI = [153s, 268s]), and Hard

98 visualizing polyhedral programs

tasks required 433s (95%CI = [354s, 530s]). Effect sizes between subse-
quent Difficulty levels reach 78.8% (95%CI = [47.7, 99.2]) for Easy →
Medium and 72.5% (95%CI = [39.9, 94.1]) for Medium → Hard showing
a consistent growth. However, for Experts, the difference between
Difficulty levels is less visible due to large variability.

errors and abandons Participants performed the tasks with
very low error rates, 8.3% (95%CI = [−3.6%, 20.3%]) for VC tasks and
4.2% (95%CI = [−4.5%, 12.8%]) for VC. As for the type of errors, two
Non-Experts proposed wrong code for Hard VC tasks, one Parame-

ter and one Shape Error. One Expert made a Parameter Errors for a
Medium. However, it is hard to conclude on the causes of errors with
such low error rates.⊲ Participants map

Clint visualization

to code reliably.
We observed only two withdrawals during a trial (one Hard VC and

one Hard CV task), both from non-experts, and after more than 500s.
In both cases, participants tried to perform the task and explicitly
stated their lack of confidence in the result as a reason for abandon.
In general, these result suggests that the users can reliably map Clint

visual representation to the code and vice versa (Figure 40).

Visualization to Code Code to Visualization

0

20%

40%

60%

80%

100%

E
rr

o
r/

A
b

an
d

o
n

 R
at

es

Trial Outcome

Abandon

Correct

Shape Error

Parameter Error

N E

Easy Medium Hard

N E N E N E N EN E

Easy Medium Hard

N Non-Experts

E Experts

Expertise

Figure 40 – Percentage of errors and withdrawal: experts were slightly more
successful than non-experts, but failed at simpler tasks. Only
non-experts abandoned tasks. The overall error rate is less than
10% for each task.

qualitative data Both Expert and Non-Expert participants lear-
ned the visualization approach rapidly and were confident in its inter-
pretation most of the time. The majority of the feedback was concen-
trated on the disagreements observed before: directions and position
of the axes and the traversal order. At the same time, when asked
if he would like to have a configuration option for changing the axis
direction, an Expert participant stated that "[he] doesn’t agree with axis

pointing up, but will stick with the default representation and will not go to

the depth of settings to change it." 50% of the participants stated that the
visualization substantially helps to understand the loop structure or

4.6 discussion 99

execution, 31% that it rather helps and 19% that it does not change
their level of understanding, but does not harm.

Overall, these results suggest that both expert and non-expert pro-
grammers could reliably map our visualization to the corresponding
code, most of them stating that it has potential in assisting them in un-
derstanding programs. While the task they performed in this study
does not belong to the program parallelization process, it shows that
the scheduled iteration domain visualization is an efficient represen-
tation of static control parts of the program.

4.6 discussion

visualizing information not available in code We de-
signed a visualization tool for representing the execution of loop-
based program parts. The base of its visualization technique is a com-
bination of scatter plots and node-link diagrams widely used in the
polyhedral compilation community. However, most existing works
feature ad-hoc images with subtle differences in order to explain com-
plex concepts of the program optimization in the polyhedral model or
the model itself. After a participatory design session with experts in
the model, we created a visual representation sharing the commonly
used features and taking decisions for previously omitted edge cases
such as individual statements or imperfectly nested loops. Our tool,
Clint, is able to visualize any program part amenable to the polyhe-
dral model. ⊲ Clint visualizes

the information that

is not immediately

accessible in the

code.

Clint visualizes information available through the polyhedral analysis,

but not immediately accessible in the code. It models the dynamic pro-
gram behavior statically and allows to reason about individual state-
ment instances executed within loop nests and dependences between
them. This information, compactly folded in the code, is however
crucial for loop-level optimization and parallelism extraction. Repre-
senting dependences as lines appeals to user’s intuition: parallel lines
correspond to potentially parallel loop.

targeting experts or novices Although based on feedback
from experts, Clint visual representation is accessible for ordinary
programmers with no specific background in loop optimization or
optimizing algorithms development. During the experimental eval-
uation, both experts and non-experts were able to establish a reli-
able bidirectional mapping between the code and the visualization
suggesting that they obtain equivalent information about program
execution from both representations. Although experts in the poly-
hedral model often rely on visualization, we observed them to be re-
luctant to visual representations of simple program parts, supporting
earlier studies on visual programming complexity [107, 202]. How-

100 visualizing polyhedral programs

ever, for complex cases, e. g. automatically optimized programs with
regenerated code that features complex loop and branching condi-
tions, visual representations preserving a clear geometric shape were
widely requested. While Clint is useful for experts to manage com-
plex cases, it may also have a potential in teaching programming,
namely explaining loops and loop-level optimization on the simple
cases, similarly to algorithm animation techniques.

single or multiple representations Beside parallelism, the
polyhedral model allows to reason about memory addresses accessed
by individual statement instances and data reuse across loop iter-
ations. Memory access optimization is often orthogonal to, if not
hindering, the parallelism extraction. After trying to integrate mem-
ory access information into the parallelism-targeted visualization, we
opted for a completely different representation, more appropriate for
this information. Contrary to parallelism extraction where the inde-
pendence of statement instances is sufficient, memory access analysis
requires identifying groups of statement instances accessing the same
or adjacent addresses. Therefore, the address, possibly multidimen-
sional, should be explicitly represented, which is possible in parallel
coordinates form. At the same time, our representation maintains the
dimension hierarchy imposed by the lexicographic ordering making
the link to the program structure clearer.⊲ Both visualization

techniques allow to

discover parallelism

and locality. Yet it

requires more effort

to discover

information in a

non-adapted

representation.

Scatter plot and parallel coordinates-based representations are tar-
geted at presenting different information, statement instance execu-
tion and memory access, respectively, extracted from the program by
polyhedral analysis. Nevertheless, each of these representations al-
lows to discover another type of information: interactive highlighting
hints the user about data access patterns in the scatter plot and non-
intersecting lines imply parallelism in the nested parallel coordinates
display. While this information can be also accessed by analyzing the
source code, the time required to obtain it is substantially longer. In
a more general case, the user may want to chose the representation
that is appropriate to the analysis task at hand depending not only
on the information that is available in this representation, but also
on how easily it can be accessed and interpreted. Multiple represen-
tations may be combined in a coordinated multiple view interface
letting the user select, but at the same time reducing the size of each
representation and potentially the amount of information presented.
It may also increase the cognitive load on the user as he would have
to take decisions and potentially maintain the mapping between the
representations [72, 203].

opportunities for interaction While these program visu-
alization techniques may be used to understand program execution
and statement instance level, they remain static and do not allow to

4.7 conclusion 101

modify the program by modifying the visual representation. These
representation may serve as a basis for comparison between the orig-
inal and the optimized program. Considering the potential for using
graphical representation to manipulate programs in such comparison,
we notice that both transformations for parallelism and for memory
access optimization are better visible in the scatter plot form where
they take form of polygon displacement and deformation. Indeed,
basic Clint visualization uses a multi-level mapping of position to the
execution order of statement instances as well as a mapping between
polygon shapes and loop bounds. One may thus directly manipu-
late these properties and expect the corresponding modification of
the code. On the contrary, parallel coordinates representation is ma-
nipulable mostly along the axes that span in one dimension reduc-
ing the opportunities for intensive direct manipulation. Finally, the
loop-level optimization vocabulary draws inspiration from polygonal
representation of loop nests proposing, for example, program trans-
formations called loop skewing and shifting, easily transferable to
our visual representation.

4.7 conclusion

In this chapter, we detail the design and implementation of Clint,
a visualization tool for representing the execution of loop-based pro-
gram parts. The base of its visualization technique is a combination
of scatter plots and node-link diagrams widely used in the polyhedral
compilation community. We used participatory design sessions with
experts in the polyhedral model to collect commonly used features
and to design around previously omitted edge cases. Clint visual-
izes any program part amenable to the polyhedral model. It provides
information available through the polyhedral analysis, but not imme-
diately accessible in the code. An empirical evaluation demonstrated
that both expert and non-expert programmers can reliably map be-
tween the visual representation and the code. While the visualization
is designed to support direct manipulation, the tool requires a high-
level transformation engine in the polyhedral engine.

In order to enable program transformation by directly manipulat-
ing the visual representation, we need a mapping between graphi-
cal actions and modifications to the scheduling relation union in the
polyhedral model. However, the visual representation is not directly
related to the relational form of the scheduling, nor is the relational
form helpful for the user. Therefore, we suggest the mapping to be
based on a set of higher-level program transformation directives that,
when combined, allow arbitrary modifications of the scheduling rela-
tion union.

5
H I G H - L E V E L P R O G R A M M A N I P U L AT I O N

5.1 semi-automatic program restructuring

Software visualization techniques simplify program analysis while
searching for optimization, but offer no support for program restruc-
turing that continues to rely on cumbersome and error-prone man-
ual code modification. Automatic program optimization alleviates
this problem, but introduces another one: if an optimization heuris-
tic fails in a particular case, the user ends up with a barely readable
and hardly modifiable automatically generated code with no speedup
and no feedback about the reasons of failure. Instead of an auto-
matic optimization, the developer may opt for a directive-based pro-
gram transformation framework. In this case, the developer chooses
a program transformation procedure from the list of available direc-
tives, e. g. loop fusion, distribution, tiling, etc. [265], and demands
the framework to perform it by rewriting the code. Directive-based
approach gives the developer more control over the optimization pro-
cess, but requires to take all optimization decisions, even those which
could be handled automatically in an optimal way. It also allows to
decouple the optimizing restructuring from the program itself. A se-
quence of transformation directives can be stored separately from the
code and reapplied as a part of the compilation process. This is es-
pecially important for sophisticated scientific computation codes that
should maintain a decent level of code readability while offering high
performance.

We propose to use a combined semi-automatic approach to program
restructuring. A program optimization algorithm computes a trans-
formation that satisfies a certain predefined criterion. Instead of mod-
ifying the program directly, it yields a sequence of program transfor-
mation directives that may be stored along the code. Once computed,
this sequence can be applied by a directive-based framework or mod-
ified by the developer. Transformation directive essentially become a
first-class object in developer-compiler interaction. Transformation se-
quences can be stored, analyzed, modified and reused. Optimization
may be performed separately, using more time and computation re-
sources than a relatively cheap transformation application, enabling
more complex and precise algorithms. However, within the poly-
hedral model, the optimization algorithm does not operate in terms of

transformation directives at any point, see Figure 41. as it relies on

Practical polyhedral

optimizers often

apply syntactic

transformations

separately from the

main algorithm, e.g.

Pluto has "–tile"

option.

mathematical representations of the program and uses, e. .g., integer
linear programming to compute optimized schedules.

103

104 high-level program manipulation

Raising
Tool

Code
Generator

directives

polyhedrapolyhedracode code

Optimizer

Translator
Polyhedral Framework

Figure 41 – Polyhedral framework is essentially a black box offering user
little control over the optimization process. We propose to trans-
late polyhedral relation changes to high-level transformation di-
rectives (light blue) to interact with the optimizer.

In order to enable semi-automatic program transformation in the
polyhedral model, which, in turn, enables interactive program re-
structuring, we need to, first, express a set of program transforma-
tion directives as operations on polyhedral unions of relations and,
second, develop an algorithm that identifies a sequence of these direc-
tives, equivalent to the modification of a given polyhedral scheduling
relation union. To ensure such sequence exists, the transformation set
should be complete, i. e. allow transforming any polyhedral schedul-
ing union into any other. Combining transformation sequence iden-
tification algorithm with the directive-based polyhedral transforma-
tion engine, the user will be able to "reverse engineer" the function-
ality of a polyhedral optimizer, understand what transformations are
performed, analyze why they may fail and manually modify the se-
quence only when necessary. Finally, transformation directives may
be mapped to graphical element manipulations in Clint enabling di-
rect manipulation for program transformation and interactive anima-
tion for program transformation visualization and analysis.

5.2 from transformation directives to polyhedra

5.2.1 Loop Transformations Expressed in Polyhedral Model

The polyhedral model is notoriously difficult to handle directly.
Over the years of model development, various algorithms and tools
were proposed to simplify routine tasks including semi-automatic
program transformation. Contrary to fully automatic optimization
where a transformation is selected and performed to reach a specific
objective, a semi-automatic approach is based on user input request-
ing program manipulations rather than defining objectives. In this
case, the program transformation framework only performs the op-
eration and provides feedback on its effect (semantics preservation,
parallelism, expected time gain) without deciding on the nature of
transformation.

Several frameworks expose a high-level interface on top of a poly-
hedral engine, UTF [138] being arguably the first of them. The URUK
framework [104] enables the composition of complex sequence of clas-
sical loop transformations [265] decoupled from any syntactic form

5.2 from transformation directives to polyhedra 105

of the program. CHiLL [58, 221] provides an alternative mapping
between syntactic loop transformations and polyhedral schedulings
with alignment pre-processing step to ensure iteration domains have
identical dimensionality. AlphaZ provides directives for user-guided
transformation of the data layout and access patterns in the classi-
cal loop transformations [271]. These frameworks provide mappings
of well-known transformations, such as loop fusion or loop tiling, to
the polyhedral representation. However, they do not strive for com-
pleteness of the transformation set, i. e. the possibility to express an
arbitrary polyhedral scheduling using only the high-level transfor-
mation. To alleviate this limitation, CHiLL and AlphaZ feature so
called linear transformations that allow to apply an affine function to
the program scheduling. A composition of such linear transforma-
tions allows to express most modifications to the polyhedral schedul-
ing except those affecting its dimensionality. Linear transformations
are in fact a workaround for schedules that cannot be expressed other-
wise. They still require at least basic understanding of the polyhedral
model by relying on a specific representation such as affine schedul-
ing functions or scheduling relations. Furthermore, some loop trans-
formations including loop tiling and index-set splitting require modi-
fication of the iteration domain within this framework. Changes to
the domain require extra care after transformation in order to pre-
serve original program semantics since they may affect the number of
statement instances executed in a loop. For example, an improperly
constructed strip-mining transformation may result in some instances
not being executed if the number of loop iterations is not evenly di-
visible by the tile size.

We present a new revisiting of classical loop transformations in the
polyhedral model, called after its implementation Clay 1. Contrary
to many existing approaches that also expose high-level transforma-
tion directives on top of a polyhedral engine, it is based on the more
general union of relations abstraction described in Section 3.3 rather
than on scheduling functions. This abstraction encodes all informa-
tion about the program schedule in the scheduling relation union
allowing us to delay the complex and expensive semantics preserva-
tion check until after the entire transformation sequence is applied.
Transformations from a sequence are applied one by one and only
modify the scheduling relation union. As long as the global validity

requirements (see Section 3.5.8) are met, each individual statement in-
stance is always assigned a unique integer execution date and place.
Therefore, the semantics preservation check based on date compar-
ison is always possible. Global validity conditions also require the
scheduling relation union to be compatible with the domain. Since
the domain is not modifiable in the union of relations abstraction,

1. Chunky Loop Alteration wizardrY

106 high-level program manipulation

there is no need to verify if it combines with the scheduling after
every transformation.

In Clay, we strive to provide a complete set of syntactic-level transfor-
mations allowing to transform any well-formed scheduling relation
union to any other well-formed scheduling union. These transfor-
mations, inspired from existing mappings and sets of classical loop
manipulations, can be expressed syntactically as well as in the poly-
hedral model. Given the low cost of transformation composition,
we avoid linear transformations and propose to decompose them into
primitive transformations with stronger semantics. Finally, we define
the transformations so as to respect the global validity requirements by
construction. With this conditions, Clay relaxes unimodularity and
invertibility limitations present in the some previous work. Clay em-
beds the complete scheduling information in a single relation union
per statement, even for the transformations previously requiring it-
eration domain modifications (StripMine and IndexSetSplit), thus
removing the previously necessary intermediate data dependence
graph updates and checks.

Clay relies on the scheduling structure with β-dimensions described
in Section 3.5.6 in order to specify transformation target. Even schedul-
ing dimensions, denoted α, define the execution order within the
loop. Odd scheduling dimensions, denoted β, encode the lexical or-
der of statements and their nesting in loops. Hence, the general form
of the scheduling output dimension vector is ~σ = (β1, α1, β2, α2 . . . ,

βn, αn, βn+1)
T . The original scheduling of a program can be con-

structed as follows. For a statement enclosed in an n-dimensional
loop, we introduce (2n+ 1) logical date dimensions. The βi dimen-
sion denotes the lexical position of loops iterating over ith nesting
level, while the αi denotes iteration variables of such loops. Last β

dimension denotes the lexical position of the statement in the most
nested loop. Beta-vectors, that consist of non-parametric constant
values involved in definitions of β-dimensions, define a statement
targeted by a particular transformation.

To express classical loop transformations using the relation formal-
ism and the union of relations structure, we use notations and opera-
tors shown in Figure 42. They are used to represent specific subsets of
scheduling union components and relation dimensions. The notion
of β-prefix is paramount. It is a prefix of a β-vector, i. e. it contains
some leading elements of the β-vector, but not all of them. β-prefixes
are used to select specific subsets of relations to be affected by the
transformation. From a syntactic point of view, a β-prefix addresses
a specific loop (or, equivalently, the set of statements enclosed in that
loop). The empty vector is a particular β-prefix used to select all
scheduling relations, or, from a syntactic point of view, the root of
the program.

5.2 from transformation directives to polyhedra 107

θ scheduling relation union with parameters ~p:
θ(~p) =

⋃

i Ti(~p)

T scheduling relation, defined by a set (system) of affine
constraints C = {af > 0}

C set of affine constraints defining the scheduling relation
T

af an arbitrary multidimensional affine function with inte-
ger coefficients af(~x) = ~k~xT + c, ~k ∈ Z

dim~x, c ∈ Z

~p vector of constant parameters

~ιT vector of input dimensions of T

~σT vector of output dimensions of T (includes interleaved α

and β dimensions)

~αT α-vector of T, i.e., the vector of even dimensions of ~σT

~βT β-vector of T, i.e., the vector of odd dimensions of ~σT

~ρ β-prefix; if empty, corresponds to the root of the SCoP
~�T,i symbolic ith element of any vector ~�; corresponds to the

symbolic expression of the ith dimension of T

T∗ set of all scheduling relations

T~ρ subset of T∗ restricted to relations such that ~ρ is a β-
prefix, i. e. ~βT,1..dim~ρ = ~ρ

T~ρ,next subset of T∗ such that ~ρ1...dim~ρ−1 is the β-prefix and
βT,dim~ρ = ~ρdim~ρ + 1; denotes all scheduling relations in-
side the loop that is immediately following the one de-
fined by ~ρ

T~ρ,> subset of T∗ restricted to relations such that ~ρ1..dim~ρ−1

is the β-prefix and βT,dim~ρ > ~ρdim~ρ; denotes all schedul-
ing relations for statements and loops following the one
defined by ~ρ within the same enclosing loop

a 7→ b substitution operator: symbolically replaces all occur-
rences of a with b throughout scheduling relations

Figure 42 – Notations and Operators used in the Clay Formalism

5.2.2 Revisiting Classical Transformations in Clay

We revisit classical loop transformations [265] using the union of
relations abstraction and notations in Fig 42. In addition to exist-
ing transformations, we propose new loop-level transformations, Re-
shape, Collapse, Densify and Linearize. These transformations
are required to ensure the completeness of the Clay transformation
set. Most of them are complementary to existing transformations,
e. g. Linearize undoes StripMine.

Each transformation is presented as a primitive, arguments of which
can be integers (i), integer vectors (v) or affine inequalities (a). It

108 high-level program manipulation

also includes preconditions for the parameters in order to enforce
global validity of the scheduling after the transformation if the initial
scheduling respected it. The rest of this Section describes Clay trans-
formations, their preconditions and effects.

reorder (~ρ, ~v)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ;

dim~v = maxT∈T~ρ

(

~βT,dim~ρ+1

)

+ 1;
∀i 1 6 i 6 dim~v, 0 6 ~vi 6 dim~v− 1;
∀i, j : i 6= j, ~vi 6= ~vj;
β-vectors are normalized.

Effect: ∀T ∈ T~ρ, ~βT,dim~ρ+1 ← ~v~βT,dim~ρ+1
;

reorganizes statements and loops inside the loop defined by ~ρ accord-

First precondition

implies that ~ρ is a

strict prefix, which

targets a loop and

not an individual

statement.

ing to the vector ~v. The ith element of ~v corresponds to the new
position of i-th statement (loop), sorted lexically.

fusenext (~ρ)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ;
∀T ∈ T~ρ, ∃~βT : ~βT,1..dim~ρ−1 = ~ρ1..dim~ρ−1∧

∧~βT,dim~ρ = ~ρdim~ρ + 1∧ dim ~βT > dim~ρ;
β-vectors are normalized.

Effect: ∀T ∈ T~ρ,next,

~βT,dim~ρ+1 ← ~βT,dim~ρ+1 + maxT∈T~ρ

(

~βT,dim~ρ+1

)

+

1;
∀T ∈ T~ρ,>, ~βT,dim~ρ ← ~βT,dim~ρ − 1

fuses the loop corresponding to ~ρ with its direct successor. Keeps the
original order of nested loops and statements.

distribute (~ρ, n)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ;

n ∈N ∧ 1 6 n < maxT∈T~ρ

(

~βT,dim~ρ+1

)

;
β-vectors are normalized.

Effect: ∀T ∈ T~ρ,>, ~βT,dim~ρ ← ~βT,dim~ρ + 1;
and normalize β-vectors using algorithm described
before in Figure 26.

distributes statements in the loop between two succeeding loops, the
first containing first n statement of the original loop, i. e. those with
~βT,dim~ρ+1 < n, and the second loop containing the remaining state-
ments.

shift (~ρ, i, amount)

Preconditions: ∀T ∈ T~ρ, i ∈N ∧ 1 6 i 6 dim~ρ < dim ~βT and
amount = ~v · ~p+C, ~v ∈ Z

dim~p, C ∈ Z

Effect: ∀T ∈ T~ρ, ~αT,i 7→ ~αT,i + amount

5.2 from transformation directives to polyhedra 109

moves all instances of statements with β-prefix ~ρ in the iteration space
by constant (parametric) amount in the ith output loop. For relations Explicitly defined

dimensions are

expressed as

equations while

implicitly defined

dimensions are

expressed by a set of

inequalities.

with only explicitly defined dimensions, it may be performed by mod-
ifying the parameters and the constant in the definition by −amount.
Substitution is required to preserve inequalities, including those im-

plicitly defining the dimension.

skew (~ρ, i, k)

Preconditions: ∀T ∈ T~ρ, i ∈N ∧ 1 6 i < dim ~βT ∧ i 6= dim~ρ;
k ∈ Z

Effect: ∀T ∈ T~ρ, ~αT,dim~ρ 7→ ~αT,dim~ρ + k · ~αT,i

makes the loop iterator at depth dim~ρ traverse the values of the loop
iterator at depth i with a coefficient k (skew factor). This operation
takes into account the output dimension, i. e. the ith loop iteration
variable in the transformed code.

reverse (~ρ)

Preconditions: ∀T ∈ T~ρ, dim~ρ < dim ~βT

Effect: ∀T ∈ T~ρ, ~αT,dim~ρ 7→ −~αT,dim~ρ

reverses the iteration order of the loop at depth dim~ρ for all statement
instances with β-prefix ~ρ.

interchange (~ρ, i)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ;
i ∈N : 1 6 i < dim~ρ

Effect: ∀T ∈ T~ρ, ~αT,i 7→ ~αT,dim~ρ ∧ ~αT,dim~ρ 7→ ~αT,i,
both substitutions are done simultaneously

in a loop nest including statements with β-prefix ~ρ, swaps the loop at
depth i with the loop at depth dim~ρ.

These preconditions

ensure that the

number of linearly

independent explicit

definitions remains

the same after the

transformation.

reshape (~ρ, i, k)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ;
i ∈N : 1 6 i < ~ρ;k ∈ Z, k 6= 0.
Either one of αT,i, αT,dim~ρ, is implicitly defined.
or, for αT,i, αT,dim~ρ explicitly defined as

αT,i = ~v ·~ιT + af1(~p) +C1 and
αT,dim~ρ = ~w ·~ιT + af2(~p) +C2,





∄d ∈ R : ∀j 6= i, d =
~vj

~wj
(

∃d ∈ R : ∀j 6= i, d =
~vj

~wj

)

∧
(

~vj

~wj+k~vj
6= d

)

In addition, for αT,dim~ρ explicitly defined as
αT,dim~ρ = w ·~ιi + f2(~p) +C2,

w 6= −k,

Effect: ∀T ∈ T~ρ, ~αT,dim~ρ 7→ ~αT,dim~ρ + k ·~ιT,i

reshapes the iteration space so that the loop iterator at depth dim~ρ

depends on the original loop iterator at depth i with a coefficient k

110 high-level program manipulation

(reshape factor). This reshape operation takes into account the input

dimension, i. e. the ith loop iteration variable as it was present in the
original code. Useful for expressing complex transformations, such
as skewing inner loop by a fraction of the outer loop. The condi-
tions prevent originally explicitly defined dimensions from becoming
linearly dependent or constant, which would violate the scheduling

existence constraint since the transformed loop would no longer fully
traverse explicitly associated input dimensions.

indexsetsplit (~ρ, constraint)

Preconditions: ∀T∈T~ρ, constraint : ~u× ~αT
T
+~v×~ιT

T
+ ~w×~pT +C > 0,

~u ∈ Z
dim ~α,~v ∈ Z

dim~ι, ~w ∈ Z
dim~p, C ∈ Z

Effect: ∀T ∈ T~ρ,>, ~βT,dim~ρ+1 ← ~βT,dim~ρ+1 + 1;
∀T ∈ T~ρ,T 7→ T′ ∪ T′′:
T′ = T ∩ constraint, T′′ = T ∩¬constraint,
~βT′′,dim~ρ+1 ← ~βT′′,dim~ρ+1 + 1

replaces every scheduling relation with β-prefix ~ρ by a union of two
disjoint relations depending on the constraint and having unique
β-vectors; further transformations may target either relation.

collapse (~ρ)

Preconditions: ∃T′,T′′ ∈ T~ρ :

∃T : T′ = T ∩ constraint ∧T′′ = T ∩¬constraint∧
∧ ~βT′,1..dim~ρ = ~βT′′,1..dim~ρ = ~ρ∧

∧ ~βT′,dim~ρ+1 + 1 = ~βT′′,dim~ρ+1

with constraint : ~u · ~αT +~v ·~ιT + ~w · ~p+C > 0,
~u ∈ Z

dim ~α,~v ∈ Z
dim~ι, ~w ∈ Z

dim~p, C ∈ Z

Effect: (T′⋃T′′) 7→ T;
∀T ∈ T~ρ

~βT ← ~βT′ ;
and normalize β-vectors using algorithm described
before in Figure 26.

squashes immediately following statements with β-prefix ~ρ sched-
uled identically by a disjoint pair of relations, replacing it with a
single relation.

grain (~ρ, i, g)

Preconditions: ∀T ∈ T~ρ, 1 6 i 6 dim~ρ < dim ~βT and g ∈N, g > 1

Effect: ∀T ∈ T~ρ, ∀(in)equation
(

~u · ~αT + af(~ι,~p) +C > 0
)

∈
C : ~ui 6= 0, replace this (in)equation with
(

g~u · ~αT − (g− 1)~ui~αi + g · af(~ι,~p) + gC > 0
)

changes, for each statement with β-prefix ~ρ, the number of iterations
n between two consecutive executions of the statement along the ~αT,i

dimension to n× g.

5.2 from transformation directives to polyhedra 111

densify (~ρ, i)

Preconditions: ∀T ∈ T~ρ, 1 6 i 6 dim~ρ < dim ~βT

Effect: ∀T ∈ T~ρ, ∀(in)equality : ∃g ∈N : g ∈N, g > 1
(

g~u · ~αT − (g− 1)~ui~αi + g · af(~ι,~p) + gC > 0
)

∈ C,

~u ∈ Z
dim ~α, C ∈ Z,

replace this (in)equation with
(

~u · ~αT + af(~ι,~p) +C > 0
)

removes, for each statement with β-prefix ~ρ, the gap between two con-
secutive executions of the statement along the ~αT,i dimension.

stripmine (~ρ, s)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ; s ∈N

Effect: let i← dim~ρ;
∀T ∈ T~ρ,

T ← ((↑i (T))∩ (s · ~αT,i 6 ~αT,i+1 6 s · ~αT,i + s− 1))

where unary operator ↑i (T) inserts a new α-
dimension and a new β-dimension before the ith α-
dimension

decomposes the loop at depth dim~ρ, for all statement instances with
β-prefix ~ρ, into two nested loops such that, for each iteration of the
first loop, the second loop iterates over a chunk of at most s consecu-
tive iterations of the original loop.

linearize (~ρ, i)

Preconditions: ∀T ∈ T~ρ,dim~ρ < dim ~βT ;
∃s ∈N, s > 1 :

∀T ∈ T~ρ, (s · ~αT,i 6 ~αT,i+1 6 s · ~αT,i + s− 1) ∈ C;

Effect: i← dim~ρ;
∀T ∈ T~ρ,T ← (↓i (T))
where unary operator ↓i (T) removes the α-
dimension and the β-dimension before the i+ 1th α-
dimension and removes all (in)equations which con-
tain the old ith α-dimension

integrates iterations of the nested loop into the host loop by extending
its iteration variable span. This transformation remains globally valid

only if applied to implicitly defined dimensions with non-parametric
bounds, e. g. a dimension created by stripmine, since it effectively
multiplies loop bounds.

parallelize (~ρ, i)

Preconditions: ∀T ∈ T~ρ, 1 6 i 6 dim~ρ < dim ~βT

Effect: Adds independence semantics to the ith α-dimension.
is an example of pseudo-transformation adding semantic information
to the ith output dimension of scheduling relations for each state-
ment with β-prefix ~ρ. See Section 3.5.3 for other possible dimension

112 high-level program manipulation

semantics. For example, pseudo-transformations may allow code gen-
erator to unroll loops or introduce vector operations.

5.2.3 Transforming between Arbitrary Scheduling Relations in Clay

Clay transformation set was designed to enable transforming any
globally valid scheduling to any other globally valid scheduling. This
transformation subsumes changing both α-dimensions, involved in
equations and inequalities, and β-dimensions arbitrarily within the
limits of global validity.

changing equations we may transform the scheduling relation
to its output form as described in Section 3.5.5. After this equivalent
transformation, each explicitly defined dimension will be involved in
exactly one equation (its definition) of the form

αexplicit = ~u · ~αT
implicit +~v ·~ιT + ~w · ~pT +C.

Reshape transformation allows to arbitrarily change coefficients in ~v

and Shift changes coefficients in ~w and C. Non-zero ~u coefficients
may appear after a Skew by an implicitly defined dimension replac-
ing the unique appearance of αexplicit by (αexplicit − u · ~αimplicit).
It suffices to take a difference between the current and the target value
before applying the transformation. Note that Skew preconditions
forbid substituting an implicitly defined dimension by a linear form in-
volving an explicitly defined dimension as this substitution turns the
explicit definition into implicit. In the output form, equations arise
only from explicit definitions of the output dimensions. These defini-
tions can be arbitrarily modified with Clay transformations. Hence all
equation coefficients can be modified arbitrarily as long as the global
validity conditions are respected.

changing inequalities existence and uniqueness constraints sub-
stantially reduce the possible structure of inequalities defining the
scheduling relation. An arbitrary inequality makes the scheduling
conditionally valid unless other relations in the scheduling union cover
the remainder of the iteration domain. IndexSetSplit transformation
adds an arbitrary inequality and enforces the existence constraint. Se-
quencing such transformations allows to build an arbitrary disjoint
scheduling union. Collapse transformation, on the other hand, joins
two disjoint parts preserving domain coverage. A combination of
these transformations may be used to redistribute domain points be-
tween scheduling relations. Implicitly defined dimensions are an-
other source of inequalities. However, the only dimensions that en-
force uniqueness for all compatible domains, are those created to ex-
press integer division as suggested by Bastoul [16]. StripMine allows
to create such dimensions that do not omit or duplicate instances, and

5.2 from transformation directives to polyhedra 113

Linearize allows to remove them. Inequalities that are not involved
in extra relations or dimensions render the scheduling conditionally

valid. Hence Clay transformations suffice to express globally valid
operations on inequalities.

Contrary to equations, Clay does not allow to modify a specific co-
efficient of an inequality. On one hand, it cannot address a single
inequality in the relation in the same way as equations associated
with unique explicitly-defined dimension. On another hand, such
non-paired modification is likely to violate the global validity condi-
tions, at least until the subsequent transformation restores the validity.
Therefore, inequality modification in Clay is done by first removing
the previous inequality and then introducing a new one. While this
may look contradicting the "transformation primitive" principle in the
transformation set design, it is a fundamental limitation of the model.
An inequality cannot be expressed as a linear combination of simpler
inequalities, e. g. one cannot achieve a constraint i+ j > k by using
i > k and j > k constraints. Bypassing this limitation would require
a way to identify and modify individual constraints.

changing beta-vectors statement position in the code (lexical
order and nesting in loops) is encoded by β-vectors. These β-vectors,
together with respective β-prefixes, form an ordered forest. Each
tree in the forest defines a loop nest at the root of the SCoP. We
consider individual statements outside loops to be zero-depth loop
nest to maintain consistency of the notation. Nodes in the tree corre-
spond to loops, and leaves correspond to statements. The depth of
the leaf corresponds to the number of loops surrounding the respec-
tive statement. IndexSetSplit and Collapse transformation allow to
increase or decrease the set of leaves. Leafs are duplicated or merged
together given the common parent node. They can be moved around
the forest by other transformations. Distribute transformation al-
lows to split a node at any level into two separate nodes, each of
which retains part of the original node’s leaves. Repeatedly apply-
ing this transformation to all nodes that have more than one child
will result in the forest of degenerate trees, where each node has
exactly one child. It allows to reduce the lexicographic ordering of β-
vectors into the simple ordering of first components of the β-vectors
and use Reorder once to establish an arbitrary total order. At this
point, one may add or remove nodes using StripMine or Linearize.
These transformations allow to control the depth of a tree. Linearize

lifts the statement in the loop nest removing one of the surrounding
loops while StripMine plunges it back by creating a new surround-
ing loop. Finally, FuseNext transformation allows to merge adjacent
nodes inside a tree so that children of both nodes become children
of the new merged node. Being applied to the forest of degenerate
trees, it allows to establish any parent-child links. For simplicity, we

114 high-level program manipulation

may transform a forest into a tree by adding a virtual root node and
connecting it to all root nodes of the trees. This node will correspond
to an empty β-vector or, in the code, to the entire SCoP. Thus same
transformations apply to nodes and trees.

⊲ Clay allows to

transform any

globally valid

scheduling into any

other globally valid

scheduling by

changing coefficients

of (in)equations that

define the

scheduling.

Combining these transformations Clay allows to modify arbitrar-
ily the number of leaves, nodes and the parent-child links that, to-
gether, fully define the forest. When β-forest represents a real pro-
gram, all transformations are only applicable if the resulting schedul-
ing remains globally valid and amenable to the polyhedral model. For
example, Linearize is only applicable to implicitly-defined dimen-
sions given that it is not parametric or the previous dimension is not
parametric. Otherwise, it would result in loop bounds expressed as
a product of parameters, which is not representable in our relational
structure.

5.2.4 Clay Directives in Practice

Let us consider the polynomial multiplication kernel in Fig. 43. The
outer loop L1 is not directly parallelizable because updates to array Z

depend on both iteration variables i and j.

for (i = 0; i <= N; i++) /* L1 */

for (j = 0; j <= M; j++) /* L2 */

Z[i + j] += X[i] * Y[j]; /* S(i,j)*/

Figure 43 – Polynomial multiplication kernel

Fig. 44(a) shows the original scheduling of this kernel and the vi-
sual intuition of the new iteration domain shape for each transfor-
mation step. The dependence on Z may be resolved by applying a
classical skew transformation such that one of the loops iterates over
i + j. In Clay, this is expressed as Skew((0, 0)T , 1, 2,−1). Follow-
ing its definition in our formalism, this transformation modifies the
scheduling relation so that α1 = i+ α2 resulting in the new relation
Fig. 44(b). The statement instances would now be executed in a dif-
ferent order, the outer loop iterating over different indices of Z. The
iterations of the outer loop are now independent of each other and
can be executed in any order or in parallel.

The parallelism is still not well balanced: only one statement in-
stance is executed at the first and the (2N+ 1)th iteration while M are
executed at Nth iteration, which will limit the efficiency of a parallel
execution. Since we are free to choose an arbitrary execution order
of the outer loop iterations, we may execute statement instances of
the ith and (i+N)th iterations in one iteration of the new outer loop.
Exactly M statement instances will be executed in each iteration of
this loop making it well balanced. This transformation is performed

5.2 from transformation directives to polyhedra 115

(a) θS =






(

i

j

)

→

















β0

α1

β1

α2

β2

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 = 0

α1 = i

β1 = 0

α2 = j

β2 = 0






(b) θ′S =






(

i

j

)

→

















β0

α1

β1

α2

β2

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 = 0

α1 = α2 + i

β1 = 0

α2 = j

β2 = 0






(c) θ′′S =






(

i

j

)

→

















β0

α1

β1

α2

β2

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 = 0

α1 = α2 + i

β1 = 0

α2 = j

β2 = 0

α1 6 N






⋃






(

i

j

)

→

















β0

α1

β1

α2

β2

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 = 0

α1 = α2 + i

β1 = 0

α2 = j

β2 = 1

α1 > N






(d) θ′′′S =






(

i

j

)

→

















β0

α1

β1

α2

β2

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 = 0

α1 = α2 + i

β1 = 0

α2 = j

β2 = 0

α1 6 N






⋃






(

i

j

)

→

















β0

α1

β1

α2

β2

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 = 0

α1 = α2 + i−N− 1

β1 = 0

α2 = j

β2 = 1

α1 > 0






Figure 44 – Scheduling Relation Transformation of the Polynomial Multiply
Kernel: (a) Original Scheduling, (b) After Skewing, (c) After
Index-set Splitting, (d) After Shifting

by index-set splitting the outer loop iterations after N and shifting them
by −N, hich is expressed in Clay as IndexSetSplit((0)T , α1 > N) fol-
lowed by Shift((0, 0, 1)T , 1,−N). The former transforms the schedul-
ing relation to a union of relations with supplementary constraints
(Fig. 44(c)) while the latter transforms only the union component that
has the required β-vector (Fig. 44(d)). Iterations of the outer loop are
still independent and can be executed in parallel, which is allowed by
the final Parallelize((0)T) transformation.

The final transformation sequence is presented in Figure 45. Our
impementation of Clay 2 transformation set uses specially structured
comments that precede the polyhedral code. These comments start
with a keyword /* Clay. Clay interprets each line of the comment as a
transformation directive. Beta-vectors and other vector-like variables
are encoded as comma-separated values in brackets, e. g. [0,0,0].
Linear constraints are encoded as groups of comma-separated values.
First group corresponds to α-dimensions, second group corresponds
to input dimensions, third group corresponds to parameters and the
last group with a single value is the constant. Groups are separated
by pipe symbol and the entire linear constraint is enclosed in braces.
As the constraints are likely to contain multiple zeros, Clay allows
to omit trailing zeros in each group. Thus {1,0||-1|0} is the same
as {1||-1|} and as {1,0|0,0|-1,0|0} for the IndexSetSplit in the

2. Clay available at https://periscop.github.io/clay

https://periscop.github.io/clay

116 high-level program manipulation

running example. This line is interpreted as 1 · i+ (−1) ·N > 0. The
comment form of the Clay transformation sequence is presented in
the right part of the Figure 45.

Skew((0, 0)T , 1, 2,−1)

IndexSetSplit((0)T , α1geqN)

Shift((0, 0, 1)T , 1,−N)

Parallelize((0)T , 1)

/* Clay

skew([0,0,0],1,2,-1);

iss([0,0], {1,0 ||-1|0});

shift([0,0,1],1,[-1],0);

parallelize([0]);

*/

Figure 45 – Parallelizing polynomial multiply kernel with Clay: left - trans-
formation sequence, right - Clay implementation syntax.

5.2.5 Discussion of the Transformation Set

similar effects Analyzing the transformation effects, one may
notice that Reverse and Grain are, in fact, variations of Skew of a
dimension by itself with coefficients −2 and (k− 1)/k where k is the
grain factor. Except these cases, Skew by itself results in fractional
explicit definitions violating the logical date integrality condition and
possibly the schedule existence condition. At the same time, loop re-
versal is a well-known transformation with clear semantics that on its
own makes sense as a part of the transformation set. Classical defi-
nition of Skew also does not imply skewing by itself, which, in the
allowed cases, has a different effect on code than skewing by another
dimension.

skew compared to reshape A Skew transformation by an expli-
citly defined dimension may be expressed as a sequence of Reshape

and Shift transformations using the coefficients of this explicit def-
inition in the affine form. However, for implicitly-defined dimen-
sions, such replacement is impossible as there is no single place with
all coefficient. Therefore, Skew and Reshape should coexist in the
transformation set. While we could limit the applicability of Skew to
implicitly-defined dimensions, we decided otherwise for multiple rea-
sons. First, Skew is a classical loop transformation with well-known
semantics whereas Reshape is not. Second, it avoids the differen-
tiation between explicitly-defined and implicitly-defined transforma-
tions at the level of the transformation set keeping it at a lower level.
Finally, it provides a useful shortcut for "taking" the current explicit
definition of dimension rather than requiring the user to analyze it
and extract various coefficient.⊲ Some

transformations

result in equal

schedulings in

simple cases, but

have different

semantics in more

intricate cases.

The difference in semantics between Skew and Reshape on the
code level is that Skew primarily affects the loop bounds, e. g. the
loop on i will iterate over i+ j instead, while Reshape primarily af-

5.2 from transformation directives to polyhedra 117

fects the array subscripts, e. g. A[i] will be replaced by A[i+j]. In
simple cases, these transformations may look identical, but they com-
bine differently with other transformations. For example, if j is al-
ready skewed by k as j+ k, it becomes impossible to skew i by the
original j without resorting to Reshape or undoing the previous trans-
formation.

minimality Although the presence of transformations with par-
tially overlapping effects evidences that Clay transformation set is
not minimal, we did not strive for minimality in the set composi-
tion. In fact, the minimal set would contain a single transformation
entirely replacing the scheduling relation union with a new one, sup-
plied as a parameter. We argue that Clay transformation provides
a good compromise between conciseness and expressiveness: trans-
formations have a single effect, thus easily composable, and most of
them are inspired by classical loop transformations with well-known
semantics.

dimension independence The corollary of schedule existence con-
dition requires explicitly defined dimensions to be linearly indepen-
dent in terms of input dimensions (otherwise, not all input dimen-
sions are connected to the output dimensions and their iterations are
lost). Thus Reshape and Skew transformations only affect the dimen-
sions involved in parameters, making these transformations easily
composable in order to reach a target schedule through small modifi-
cations.

On the other hand, implicitly-defined dimensions depend on other
dimensions by their nature. Defined by inequalities rather than equa-
tions, they redistribute the points from the iteration domain between
different dimensions or different components of the relation union.
They do not affect schedule existence if the global validity conditions
are respected. At the same time, the structure of inequalities prevents
decomposition of transformations affecting inequalities into smaller
pieces. For example, IndexSetSplit transformation may use an arbi-
trary complex affine splitting condition.

higher-level transformations Several higher-level syntac-
tic transformations may be obtained combining Clay transformations.
For instance, tiling is a classical composition of StripMine and In-
terchange. Iteration domain rotation, often used in parallelization
to prevent dependences from spanning between loop iterations, cor-
responds to the composition of Grain and Reshape with parameters
computed from the dependence vector. Although these transforma-
tions may give more freedom to the user, they do not increase the
expressive power of the already complete transformation set. The

118 high-level program manipulation

trade-off between the transformation set size and the complexity of
the transformation semantics can be a subject of a separate user study.

semantics preservation and transformation composition

In order to avoid analyzing the iteration domain and performing se-
mantics preservation verification on every step, Clay requires all trans-
formations to result in globally valid scheduling relation unions by
construction. This way, an intermediary state of the program during
the transformation may violate the original semantics as long as it
remains "verifiable" against it as ensured by validity. Therefore, trans-
formations can be easily composed as modifications to the scheduling
relation union, similarly to the linear functions. Constructing a trans-
formation sequence where each transformation preserves semantics
is not necessary with Clay. Existence of such sequence that transforms
a globally valid scheduling into another globally valid scheduling re-
mains an open question.

Conditionally valid scheduling relations can be incorporated in the
Clay transformations set in two ways. On one hand, transformation
directives preceding a conditionally valid transformation could be
applied to the domain without composing globally and conditionally
valid transformations. The transformed domain can be then checked
against the validity conditions. On the other hand, Clay transforma-
tions may be analyzed to find their effect on validity conditions ex-
pressed as affine inequalities. For example, a Shift transformation
would change the inequality involving the same dimension as Shift

parameter by an inverse coefficient. In this case, all validity condi-
tions can be propagated back to the beginning of the sequence so
as to check the domain against this conditions before applying the
transformation.

5.3 from polyhedra to transformation directives

5.3.1 Combining Manual and Automatic Program Transformation

Clay allows to manually request program transformations. The
polyhedral engine then takes care of computing the new program
schedule and implementing it by generating the source code. Even
though the transformation set is largely inspired from existing prac-
tices, using Clay still requires analysis and decision from the user.
Polyhedral model provides opportunities for automatic program op-
timization using optimization algorithms such as Pluto [36, 37] or
iterative techniques [205, 206]. However, automatic approaches may
fail due to the lack of analysis precision (caused by, e. g., over-approxi-
mation [28]) or overly simplified heuristics. Polyhedral engines oper-
ate on internal representations, such as relations or scheduling func-
tions, that have little connection to the observable changes of the code

5.3 from polyhedra to transformation directives 119

and their semantics. We propose to build on Clay transformation set
to create an algorithm that, based on the original and the optimized
polyhedral scheduling relation, identifies a sequence of transforma-
tion primitives that perform equivalent restructuring of the program.
This sequence is understandable for and modifiable by the program-
mer offering control over the automatic polyhedral optimization. It
also enables safe combination of manual and automatic transforma-
tion.

A brute force approach for building a transformation sequence is
theoretically possible but intractable due to a combinatorial explosion:
it should iterate through all possible transformation combinations of
arbitrary length with all possible parameters. We leverage the follow-
ing properties of the union of relations abstraction and Clay transfor-
mations in order to drastically reduce the search space making the
search feasible: ←֓ Properties

enabling the search

for transformation

sequence.

— all modifications are contained in the scheduling relation union,
statements are not created nor deleted in the polyhedral repre-
sentation;

— the effects of Clay transformations that do not affect β-dimensions
are limited to their target statements;

— the transformation set is complete thus allowing to reach any
globally valid scheduling union from any other;

— effects of all transformations are undoable, e. g. by complemen-
tary transformations.

The algorithm, called Chlore 3 after its implementation, consists of
two parts. First, it creates a sequence of Fuse, Distribute and Re-
order directives to restructure statement positions within loops by
reassigning their β-vectors as described in Section 5.3.3. Second, it
identifies transformations necessary to transform α-dimensions of the
scheduling relation unions following the algorithm, presented in Sec-
tion 5.3.4, for each statement individually as these transformations
cannot affect other statements. In order to manage scheduling re-
lation unions with different cardinality and dimensionality, it finds
transformation sequences transforming both the source and the tar-
get scheduling union to a predefined minimal form described in Sec-
tion 5.3.4. The final sequence consists of the directives transforming
the source relation to the minimal form and the directives undoing
the transformation of the target relation to the minimal form.

5.3.2 Detecting Complementary Transformations

Clay features pairs of complementary transformations that ensure
undoability as shown in Figure 46. In each pair, one of the transfor-
mations has less arguments as it deduces them from its preconditions
to properly undo the effect. For example, Linearize transformation

3. CHunky Loop Optimization Reverse Engineering

120 high-level program manipulation

uses a sort of pattern matching to detect inequalities implicitly defin-
ing the dimension and extract the strip-mine size from them. We
leverage this property in a procedure Complementary that searches
for transformations with smaller arity in both the original and trans-
formed scheduling relation unions. If preconditions for the trans-
formation with less arguments are met by the transformed relation,
it means that the complementary transformation was applied to the
original relation unions. The arguments of this transformation can be⊲ Some

transformations can

be undone by other

transformations

with less parameters.

partially extracted from the precondition. The set of remaining argu-
ments is small enough to allow iterating through all possible values.
In order to support Collapse that operates on a pair of scheduling
relations, the procedure iterates over all pairs of relations instead of
individual relations. As an extra precondition, only pairs of equally-
dimensional relations are considered.

Direct Inverse Deducible Others

IndexSetSplit Collapse condition ~ρ

StripMine Linearize size ~ρ, i

Grain Densify grain ~ρ, i

Distribute FuseNext i ~ρ

Figure 46 – Inverse transformations take only dimension index i as non-
deducible parameter, if any.

As Table 46 suggests, several inverse transformation require dimen-
sion index as an non-deducible argument. We may iterate through all
possible values that span from 1 to the output dimensionality of the
relation. This value corresponds to the loop nest depth that rarely
exceeds 10 in practical cases, making by-depth approach frequent for
the polyhedral algorithms, as in ,e. g. , CLooG [16] or Candl [250].

The remaining parameter for all transformations is the β-prefix ~ρ.
In our per-statement approach, it is fixed for each scheduling relation.
A β-vector of a scheduling relation can be composed from the relation
itself following its definition. A β-prefix then corresponds to a prefix
of the β-vector with length equal to either the current depth (dimen-
sion index) for StripMine and Grain or to the output dimensionality
for IndexSetSplit and Distribute.

5.3.3 Aligning Relations and Matching Beta-vectors

As discussed in Section 5.2.3, Clay allows to transform any β-vector
to any other. However, this transformation is performed in the con-
text of a particular SCoP since individual operations affect other state-
ments. For example, Reorder modifies all statements and loops
nested inside another loop. In order to be applicable, it requires
to know the number of statements in each loop. Therefore, the al-

5.3 from polyhedra to transformation directives 121

gorithm recovering the transformation sequence for β-vectors should
operate on the entire SCoP rather than on individual statements. In
fact, the algorithm relies on the β-tree structure described in Sec-
tion 3.5.6.

For each pair of the source and the target β-vectors, it is neces-
sary to identify the largest common prefix. Iterative calls to Dis-
tribute allow to enclose the statement in question in its own loop
nest. This nest can be then relocated at the new position and Fused

with other loop nests if necessary. Direct application of these manip-
ulations could lead to infinite iteration as some Reorder transforma-
tions may undo effects of previous Reorder transformations making
two mutually-undoing updates repeat infinitely. We propose a depth-
by-depth recursive variant of the algorithm that avoids mutually-
undoing updates. This algorithm, presented in Figure 47, operates
on a given β-prefix and reassigns new values to the β-dimension im-
mediately following the last dimension of the prefix, starting from the
smallest new value. It maintains the following invariant: at a given ⊲ The algorithm

proceeds

depth-by-depth and

keeps the statement

position fixed once

placed correctly.

depth, a correctly positioned statement will remain at its position.
The algorithm distributes away the statements not having the same
values in the original and transformed β-vector and temporarily as-
signs them a value larger than the current (part of the Distribute ef-
fect). Once a statement has the correct new value of the β-dimension,
it is not modified anymore because the algorithm advances to the
next mismatching value that is known to be larger than the current.

The matching algorithm requires knowing the one-to-one mapping
between original and target β-vectors for each relation. Yet schedul-
ing unions may not have the same structure: IndexSetSplit may have
changed the union cardinality and StripMine may have changed
each relation dimensionality. These transformations should be found
and applied before identifying the transformation sequence for β-
vectors. We propose to analyze effects of these transformations on
α-dimensions independently of the actual β-vectors that can be han-
dled later. For each statement, we will look for Collapse and Lin-
earize transformations that will minimize the cardinality and dimen-
sionality of the scheduling relations. After all transformations have
been found on both sides, the scheduling union cardinalities should
become equal and one-to-one mapping between relations is estab-
lished using the order of appearance of the relations in their respec-
tive unions.

5.3.4 Generating Transformation Sequence

The main part of the transformation sequence generation algorithm
consists in transforming both the source and the target scheduling
relation union to the minimal form. This form should have the mini-

122 high-level program manipulation

Data : ~ρ – the current β-prefix
let d = dim~ρ+ 1 ;

let n = maxT∈θ
~βd where ~β is the β-vector of T ;

let n′ = maxT′∈θ′~β′
d where ~β′

d is the β-vector of T′ ;

while ∃~β, ~β′ : ~βd 6= ~β′
d, ~βd → min do

/* split away until depth d */

for i = dim ~β downto d do
Reorder(~β1...(i−1), put ~βd last) ;

Distribute(~β, i) ;

end

if ~βd 6 n then
Reorder(~β1...(d−1), put ~βd right after ~β′

d) ;

FuseNext(~β1...d) ;
/* split away betas that do not belong to the same

transformed prefix */

foreach ~β, ~β′ : ~βd 6= ~β′
d do

Reorder(~β1...(i−1), put ~βd last) ;

Distribute(~β, i) ;

end

else
Reorder(~β1...(d−1), put ~βd at ~β′

d) ;

end

end
/* n = n’ at this point; recurse to sub-prefixes */
for i = 0 to n do

recurse with ~ρ← (~ρ1,~ρ2, . . . ,~ρdim~ρ, i) ;
end

Figure 47 – Algorithm of the MatchBetas procedure identifying the trans-
formation sequence for beta-vectors.

mal number of coefficients in the dimension definitions and the min-
imal number of dimensions. In the union of relations abstraction
with global validity constraints, the only inequalities that are present
in the scheduling relations correspond to IndexSetSplit or Strip-
Mine transformations. Even if the inequalities are present in both the
source and the target schedulings, they can be temporarily removed
and reintroduced later by means of the complementary transforma-
tions. Therefore, the minimal form should not feature any inequalities.
For the similar reason, it may only include one relation in the union
as all the others may be merged in it by Collapse operations. Given
the absence of inequalities, all α dimensions are explicitly defined.
These definitions contain the least non-zero coefficients when they

5.3 from polyhedra to transformation directives 123

define equalities between the input and output dimensions. Thus,
the scheduling relation union is said to be in minimal form when ←֓ Minimal Form of

scheduling relation.— it contains exactly one polyhedral relation;
— this relation is defined exclusively by identity equalities between

the input and the output dimensions in their respective orders;
— β-dimensions are removed.
For example the following relation is in the minimal form.

θS(N,M) =

{(
i

j

)

→
(

α1

α2

)∣

∣

∣

∣

∣

α1 = i

α2 = j

}

The main iteration of the algorithm considers explicit dimension
definitions as a matrix. With this structure, a Skew transformation
correspond to the matrix row addition, Grain to the multiplication of
a row by a constant, Densify to the division of the row by the largest
common factor of its values and Reshape to individual value manip-
ulation. The algorithm first tries to reduce the cardinality and the di-
mensionality by using Collapse and Linearize, respectively. It then
uses a process similar to LU decomposition (or Gaussian elimination)
in order to convert the relation to the minimal form, i. e. make the
matrix diagonal. The logical date integrality condition, necessary for
maintaining global validity, is ensured by using only integer values in
the computation. In the forward pass, a matrix is transformed into a ⊲ The main

algorithm coerces

both the original and

the transformed

scheduling into

minimal by making

coefficients zero with

Clay directives.

lower diagonal form by subtracting lines with coefficients. Instead of
fractional coefficients, we multiply both lines by integers computed
from least common multiplier of two values, subtraction of which
should result in zero. For example, before subtracting the line [4, 0, 3]

from [6, 7, 0], we multiply the first line by 3 and the second line by 2.
After subtraction, we divide each line by its largest common divisor
performing a Density transformation. If a subtrahend row has a zero
coefficient in the target column, it is swapped with another row with
a non-zero coefficient in this column, an Interchange transforma-
tion. (Note, that if there exist a column with only zeros in the matrix,
it is singular and the scheduling relation most likely violates global
validity conditions.) The algorithm removes the remaining non-zero
coefficients in the lower triangle of the matrix by Reshape transforma-
tion. Finally, the values on the diagonal are converted to 1 by means
of Densify and Reverse transformations.

Some cardinality-reducing transformations may not be applicable
if two relations in the scheduling union were not changed in the same
way after their creation, which is typically the reason for index-set
splitting transformations. To account for this situation, the algorithm
proceeds to elimination if no Collapse and Linearize transforma-
tions are currently possible, but verifies these transformations again
each time another transformation has been made as shown by 	 sym-

124 high-level program manipulation

bol in Figure 48. This iteration restart approach allows to prioritize
complex transformations by performing them as soon as possible.

When applied to the target scheduling relation union, forward
transformations are performed on the relations to transform them
into minimal form. Inverse transformations are recorded in the in-
verse order so as to apply to the original scheduling relation union
once its in the minimal form in order to reach the target scheduling
relation.

5.3.5 Discussion of the Algorithm

sequence existence and algorithm completion The ex-
istence of a sequence of Clay transformations transforming any glob-
ally valid scheduling into any other globally valid scheduling is a
corollary of the transformation set completeness. The completion
of the algorithm from Figure 48 is based on the completion of the
main loop. On every iteration of the loop, the algorithm selects one
statement and either applies a cardinality/dimensionality reduction
transformation or a group of transformations that set one of the co-
efficients to 0. The goal of the algorithm is to transform all relations
into minimal form containing 2d non-zero coefficients (one for output
and one for input dimension), where d is its dimensionality. Each it-
eration that does not perform a cardinality reduction transformation
will set one of the coefficients to 0. It may affect other non-zero pa-
rameters with Skew, but will not turn zero parameters non-zero: lines
are subtracted from bottom to top and their last coefficients are made
zero in a previous iteration. With Reshape, only one coefficient will⊲ The algorithm

makes at least one

coefficient zero on

each step and does

not introduce

non-zero coefficients.

be affected at it is selected to be non-zero. Thus after a finite number
of iterations (d2 − 2d per relation at most), the algorithm will achieve
the required number of non-zero coefficients.

Inequalities are not considered in elimination process and get re-
moved by cardinality reduction transformation separately. Their coef-
ficients are not included in the total non-zero coefficient count. When
the inequalities have a specific form allowed by the global validity
conditions, each cardinatlity reduction transformation removes a pair
of inequalities without adding new elements to the scheduling rela-
tion union. Therefore, a finite number of cardinality reduction trans-
formation is sufficient to remove all inequalities from the schedule.
If the algorithm is unable to apply such transformation even after
transforming equations to the minimal form, a special transformation

prioritization procedure may be applied as described below.
The sequence recovery algorithm consists of two parts iterative

parts, both with finite iterations. Therefore, the algorithm will eventu-
ally complete for any pair of globally valid scheduling relation unions
with compatible dimensionalities.

5.3 from polyhedra to transformation directives 125

transform all relations in both the source and target scheduling
unions to the output form;

repeat
restart iteration after each step with 	;
foreach statement S do

foreach implicitly defined dimension d do
Complementary(StripMine) 	;

end
Complementary(IndexSetSplit) 	;
foreach dimension d do

Complementary(Grain) 	;
end
foreach ~αi, i→ max, explicitly defined by
{αi = ~v ·~ιT + ~w · ~pT +C} in T or in T′ do

foreach j← 1..(i− 1) : vj 6= 0 do
let xj be the vj value in the explicit definition of αj ;
use inverse transformation if ∈θ′S ;
Grain(βT,1..i, lcm(xj, vj)/vj) ;
Skew(βT,1..i, j, −lcm(xj, vj)/xj) ;
Densify(βT,1..i) 	;

end
if ~vi < 0 then

Reverse(βT,1..i) 	;
end

end
foreach ~αi, ~α

′
i both explicitly defined by

{αi = ~v ·~ιT + ~w · ~pT +C} in T, T′ do
foreach ~vj 6= ~v′j /* loop A */ do

Reshape(βT,1..i, ~v′j −~vj) 	;

end
repeat loop A for ~w and C with Shift ;

end
foreach ~αi, ~α

′
i both implicitly defined by

{~u · ~αT +~v ·~ιT + ~w · ~pT +C > 0} in T,T′ do
foreach ~uj 6= ~u′

j /* loop B */ do
Skew(βT,1..i, j, ~u′

j − ~uj) 	;

end
repeat loop B for ~v with Reshape ;
repeat loop B for ~w and C with Shift ;

end
end

until no transformation happened in the loop;
MatchBetas (~ρ← ());

Figure 48 – Main iteration of the transformation sequence identification al-
gorithm.

126 high-level program manipulation

transformation prioritization If a cardinality reduction
transformation is blocked by a coefficient mismatch caused by an-
other transformation, it is possible to coerce the inequalities involved
in this transformation to the required form. For example, a Lin-
earize transformation requires a pair of inequalities with specific
form Cd1 6 d2 6 Cd1 + C− 1 with C ∈ Z, C = const, but may be
blocked if d2 dimension was involved in a Skew resulting in Cd1 6

d2 + d3 6 Cd1 + C − 1. In this case, we expect the algorithm to
first perform the complementary Skew transformation and a Lin-
earize. In case when all other transformations were performed and
did not enable a Linarize, we may modify the algorithm so that it
first applies Skew,Shift and Reshape transformations modifying the
inequality to the required form. Then reduces the relation dimen-
sionality and continues as normal. It may potentially increase the
number of non-zero coefficients, but will never increase relation di-
mensionality. Therefore, the algorithm still completes. Contrary to
the base algorithm proposed in Figure 48, such modification prior-

itizes α-modifying transformations to cardinality reduction transfor-
mations. In all practical cases, the base algorithm was able to detect
the transformation sequence correctly.

The base algorithm performs the cardinality reduction transforma-
tions as soon as possible, potentially resulting in, e. g. , more complex
conditions of the IndexSetSplit transformation. However, it allows
to group together transformations applicable to multiple relations in
the statement union thus reducing the total sequence length. In fact,
IndexSetSplit appears in the inverted sequence obtained from con-
verting the target scheduling union to the minimal form. As this se-
quence is applied in the inverse order, IndexSetSplit gets applied as
late as possible after all common Skew and Reshape transformation
have taken place.

sequence properties Given that each transformation in the Clay

set is undoable, there exist an infinite amount of transformation se-
quences to convert one scheduling relation union into another. To
demonstrate that, it is sufficient to introduce into any existing se-
quence an arbitrarily long subsequence of mutually undoing trans-
formations, which will not modify the outcome. Our algorithm iden-
tifies one transformation sequence leading form the source to the tar-
get scheduling relation union without any guarantee on its length
or composition. In many cases, the sequence will contain mutually
undoing transformation pairs that result from converting to minimal
form and back the relations that do not differ in the source and target
scheduling unions.⊲ Chlore provides

one out of an infinite

number of

equivalent directive

sequences.

Rather than restraining the algorithm output, we suggest to apply
a post-processing step to modify the transformation sequence once
it has been computed. Having a separate step allows to develop a

5.4 directive recovery in practice 127

more systematic view on equivalent transformation sequences and
study the properties thereof. Indeed, the transformation sequences
should be considered in a context of a particular task and empirically
evaluated with the users. For example, the shortest sequence in terms
of transformation count may not be the most understandable or the
easiest to reproduce manually.

5.4 directive recovery in practice

5.4.1 Recovering beta-vectors

The 2d+ 1 structure of the polyhedral scheduling is not mandatory.
In practice, automatic optimization tools may diverge from this struc-
ture as long as the lexical order of statements is maintained. This
divergence often results in a mixed structure between a pure 2d+ 1

and a d+ 1. When a lexical order of statements is not explicitly stated
by β-dimensions, it is inferred from the values of α-dimensions. In
particular, if all instances of the statement S2 are scheduled after all in-
stances of the statement S1, then S2 lexically follows S1 and belongs to
a different loop. However, Chlore expects schedulings to have 2d+ 1

structure.
In order to reintroduce missing β-dimensions, we rely on their se-

mantics — they represent statement order and loop nesting. Given
a polyhedral domain and a scheduling relation union, we have to
reconstruct the placement of the statements inside loop nests. This
task corresponds to the abstract syntax tree construction that hap-
pens during code generation from the polyhedral model. Therefore,
we leverage a code generation algorithm, CLooG [16], to obtain the
AST. Inside CLooG, the syntax tree consists only of loop and state-
ment nodes. It corresponds to the structure of β-tree as described in
Section 3.5.6. We then apply a variant of β-normalization algorithm
(see Figure 26) assuming the tree nodes are already sorted according
to the actual statement order. Given the newly found β-vectors, we
introduce constant dimensions with corresponding values between
each pair of relation dimensions in the scheduling union.

When generating loop structure, CLooG performs loop separation:
when a statement is executed only during some loop iterations, these
iterations are separated out from the host loop into a new one. Loop
separation allows to remove branching control flow from loop nests
and thus improve performance. However, it may duplicate state-
ments. For example, for a loop nest with two statements shifted with for (0..2)

S1;

for (3..6)

{S1; S2;}

for (6..7)

S2;

respect to each other, CLooG will generate three loops and two occur-

rences of each statement. Each statement will occur twice in the AST
and thus have to distinct β-vectors while in the polyhedral schedul-
ing it appears only once. We remove the loop separation procedure
from CLooG algorithm in order to maintain the number of statement

128 high-level program manipulation

occurrences constant by generating guard if statements within loops
instead of separate loops.

CLooG uses its own verification to detect scalar dimension, includ-
ing β-dimension, separate from the tree construction and hardly ac-
cessible to the external user. Therefore, a preexisting β-dimension
gets surrounded by a pair of new β-dimensions in our recovery pro-
cedure. After recovering the β-vectors and reintroducing them to the
scheduling relations, we replace multiple adjacent β-dimensions by
a single one following their common lexicographical order. This en-
sures that the relations with recovered β-dimension have a proper
(2d+ 1) structure.

5.4.2 Benchmarks

We implemented the transformation recovery algorithm in Chlore

project 4 based on the Clay library and transformation set. We eval-
uated this reference implementation on the widely used polyhedral
optimization benchmark suite, Polybench 5. For each benchmark, thePolybench is a set of

programs suitable

for polyhedral

analysis, commonly

used for evaluating

polyhedral

techniques.

initial polyhedral representation was obtained using Clan [20], ver-
sion 0.7.1. This tool produces OpenScop descriptions of the programs
that respect global validity conditions. We modified the Pluto opti-
mizer [38], version 0.11.1, so that it not only accepts OpenScop de-
scriptions, but outputs the transformed program in the same format
without generating the final code. Pluto was used to generated trans-
formed versions of the benchmarks. We requested Chlore to recover a
transformation sequence that transforms the original program to the
Pluto-transformed one (forward direction), and another sequence that
performs the inverse transformation (backward direction).

Our implementation successfully recovered transformation sequen-
ces for all 30 benchmarks in both directions. The resulting transfor-
mation sequence contains 24 directives on average (SD = 29), ranging
from 1 to 143 directives per benchmark as shown on Figure 49. The
lengths of the forward and backward transformation sequences are
close to each other for all benchmarks. They feature equal means and
SDs. No post-processing was applied to the transformation sequence.

Normalizing the number of transformations to the number of state-
ments in the benchmark, the resulting sequence features a mean of
4.8 transformations per statement (SD = 5.4), ranging from 0.5 for
gemm and syr2k to 22.5 for heat-3d.

In order to estimate the performance of Chlore implementation, we
measured the duration of the transformation sequence recovery on
Polybench. We compiled Chlore using clang version 3.8 with -O3

optimization enabled. The test platform was a MacBook Pro lap-
top computer with Intel i7-4850HQ CPU operating at 2.30GHz and

4. https://periscop.github.io/chlore/

5. Polybench/C 4.1, http://sourceforge.net/projects/polybench/

https://periscop.github.io/chlore/
http://sourceforge.net/projects/polybench/

5.4 directive recovery in practice 129

1313

18
15

56
58

7
4

76

1717

6867

1919

143

139

33

3839

5556

11 11

55

11
8

3031

43
45

2121

31
33

99

3231

22

53
56

1415

1010

11 22

99

44

0

50

100

150

2m
m
3m

m ad
i
at

ax
bic

g

ch
ole

sk
y

co
rr

el
at

io
n

co
var

ia
nce

der
ic

he

doitg
en

durb
in

fd
td

−2d

flo
yd−w

ar
sh

al
l

gem
m

gem
ver

ges
um

m
v

gra
m

sc
hm

id
t

hea
t−

3d

ja
co

bi−
1d

ja
co

bi−
2d lu

lu
dcm

p
m

vt

nuss
in

ov

se
id

el
−2d

sy
m

m
sy

r2
k

sy
rk

tr
is

olv

tr
m

m

Polybench Testcase Name

N
u

m
b

er
 o

f
T

ra
n

sf
o

rm
at

io
n

 D
ir

ec
ti

v
es

Direction

Pluto−>Original

Original−>Pluto

Figure 49 – Length of Clay transformation sequence transforming PolyBench
tests into their Pluto-optimized counterparts and back.

16GB DDR3 memory, running MacOS X version 10.10.2. We mea-
sured completion time using a custom code based on C++ standard
high-resolution timer. The measurement was performed on 24 subse-
quent runs of Chlore with the same input data. ⊲ Chlore

implementation is

fast enough to be ran

interactively in the

user interface.

The means and confidence intervals of duration for each bench-
mark are presented in Figure 50. Sequence recovery took on average
49 ms (SD = 63) per benchmark, ranging from 8 ms for mvt to 418 ms
for deriche. Recovering the transformation sequence in forward di-
rection was slightly longer on average (56 ms, SD = 79) than in back-
wards direction (41 ms, SD = 40). We also observed a significant
positive correlation between the number of statements in the SCoP
and the duration (Pearson’s r = 0.73, CI = [0.58, 0.83], p < 0.001).

These results suggest that, despite the apparent computational com-
plexity of the proposed transformation recovery algorithm, it may be
used in a dialog interaction with the developer without substantial de-
lays. However, more scrutiny is required to evaluate the developers’
understanding of long transformation sequences or transformations
of individual statements in large code blocks.

5.4.3 Example

Let us illustrate the operation of the Chlore algorithm by an ex-
ample. Consider the polynomial multiplication kernel in the Fig-
ure 43. Four Clay transformations are applied to it before paralleliza-

130 high-level program manipulation

0.0

0.1

0.2

0.3

0.4

2m
m

3m
m ad

i
at

ax
bic

g

ch
ole

sk
y

co
rr

el
at

io
n

co
var

ia
nce

der
ic

he

doitg
en

durb
in

fd
td

−2d

flo
yd−w

ar
sh

al
l

gem
m

gem
ver

ges
um

m
v

gra
m

sc
hm

id
t

hea
t−

3d

ja
co

bi−
1d

ja
co

bi−
2d lu

lu
dcm

p
m

vt

nuss
in

ov

se
id

el
−2d

sy
m

m
sy

r2
k

sy
rk

tr
is

olv

tr
m

m

Polybench Testcase Name

M
ea

n
 C

o
m

p
le

ti
o

n
 T

im
e

(s
)

Direction

Pluto−>Original

Original−>Pluto

Figure 50 – Duration of transformation sequence recovery for Pluto-
optimized Polybench tests using Chlore reference implementa-
tion.

tion. This kernel features only one loop nest with a single statement,
its iteration domain is encoded in Eq. (20).

D(N,M) =

{(
i

j

)∣

∣

∣

∣

∣

0 6 i 6 N

0 6 j 6 M

}

(20)

The scheduling of the original program, extracted by Clan has the
form of Eq. (21). After all transformations were performed, the schedul-
ing becomes a union of relations. When converted to the output form,
this union takes form of Eq. (22).

T(N,M) =






(

i

j

)

→













β1

α1

β2

α2

β3













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β1 = 0

α1 = i

β2 = 0

α2 = j

β3 = 0






(21)

T′(N,M) =






(

i

j

)

→



















β1

α1

β2

α2

β3



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β1 = 0

α1 = i+α2

β2 = 0

α2 = j

β3 = 1

α1 −N < 0






∪






(

i

j

)

→



















β1

α1

β2

α2

β3



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β1 = 0

α1 = i+α2 −N

β2 = 0

α2 = j

β3 = 0

α1 −N > 0






5.4 directive recovery in practice 131

(22)

In the absence of transformations permuting statement order, the
sequence recovery boils down to converting the scheduling relation
unions to minimal form using the algorithm from Figure 48. The origi-
nal scheduling, extracted from the source code, is identity. Therefore,
it is already in the minimal form (see Fig. 51d). The algorithm then
converts the transformed scheduling to the minimal form. Although
complementary inequalities are present in two relations of θ′, the Col-
lapse transformation is blocked by difference in equations of explicit
definitions, namely −N summand in the definition of α1. Represent-
ing only equations in matrix form as in Figure 51a, one can easily see
a mismatching −1 coefficient. In order to remove it, the algorithm
executes a Shift([0, 0, 1], [1, 0], 0) transformation, found by its loop A,
before restarting iteration. This transformation results in identical
equations in both relations as shown in Figure 51b. Collapse([0, 0])
is now possible. Chlore performs it on the next iteration step squash-
ing together two relations as in Figure 51c. When iteration is restarted
once again, the algorithm does not find the Skew transformation in
loop A as it only looks to turn the lower triangular coefficients on
input dimension to zero. It rather detects a Reshape([0, 0, 0], 1, 2, 1)
directive that transforms the remaining off-diagonal coefficient into
zero. This transformation results in the minimal form as shown in
Figure 51d. In the next iteration, no transformation happens and the
algorithm falls out of the loop and terminates.

The rectangle

highlights the

scheduling element

that gets removed or

nullified on the

current step.

−1 0 1 1 0 0 −1
0 −1 0 1 0 0 0

[]

α1 α2 i j N M 1

=0

=0
(a)

−1 0 1 1 0 0 0
0 −1 0 1 0 0 0

[]

α1 α2 i j N M 1

=0

=0
∪

−1 0 1 1 0 0 0
0 −1 0 1 0 0 0

[]

α1 α2 i j N M 1

=0

=0
(b)

−1 0 1 1 0 0 0
0 −1 0 1 0 0 0

[]

α1 α2 i j N M 1

=0

=0
∪

−1 0 1 1 0 0 0
0 −1 0 1 0 0 0

[]

α1 α2 i j N M 1

=0

=0
(c)

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0

[]

α1 α2 i j N M 1

=0

=0
(d)

Figure 51 – Converting transformed scheduling union into minimal form:
(a) transformed scheduling; (b) Shift applied; (c) Collapse

applied; (d) Reshape applied, minimal form same as original
scheduling.

The final sequence to turn the original schedule into the trans-
formed one consists of the sequence converting the original schedul-
ing to the minimal form, empty in this example, and the sequence
inverse to the one converting the transformed scheduling into the
minimal form. This latter sequence consists of Reshape and Shift

132 high-level program manipulation

with negated parameters and an IndexSetSplit with inequality re-
moved by Collapse as a parameter. The final sequence is presented
in Figure 52.

// Original -> Transformed

reshape([0,0,0], 1, 2, -1);

iss([0,0], {1,0 | 0,0 |-1,0 |

0});

shift([0,0,1], 1, [-1,0], 0);

(a) forward transformation

// Transformed -> Original

shift([0,0,1], 1, [1,0], 0);

collapse([0,0]);

reshape([0,0,0], 1, 2, 1);

(b) backward transformation

Figure 52 – Transformation sequences identified by Chlore.

The Chlore-recovered sequence converting the original scheduling
to the transformed one (see Figure 52a) only differs from the manu-
ally applied Clay sequence (see Figure 43) by choice of Reshape over
Skew. In fact, Clay version of Skew supports skewing a loop by the it-
eration of the following loop, which is not allowed in the classical loop
skewing. Therefore, we opt for Reshape directive to represent such
skewing. In addition, performing Skew with a triangular-shaped coef-
ficient matrix often leads to linearly dependent explicit definitions vi-
olating global validity. Reshape allows to avoid this problem. In this
particular example, Skew by α2 and Reshape by j are interchange-
able since the explicit definition of α2 is α2 = j. Choosing the most
understandable transformation may be user-subjective and is left and
requires a separate study in future.

5.5 interacting with a polyhedral compiler

compiler-assisted program restructuring The combina-
tion of the directive-based program restructuring engine and the al-
gorithm recovering the transformation sequence enables interaction
between the optimizing polyhedral compiler and the developer. A
typical standalone polyhedral compiler, such as Pluto or PPCG, usu-
ally operates on the source-to-source level: it takes the input code and
eventually a limited set of parameters, e. g. whether to transform for
parallelism, and returns the transformed code. Such source-to-source
compiler raises the program to the polyhedral model, transforms it
and generates the final code without any feedback to the user (see
black and dashed red parts of the Fig. 53). From the user’s perspec-
tive, the entire process happens as a single step with no interaction
possibility.

By adding the transformation directive recovery algorithm and the
transformation engine to the polyhedral framework (light blue parts
on the Fig. 53), we enable the user-compiler interaction:

1. the framework suggests an automatically generated transforma-
tion sequence for the user to review;

5.5 interacting with a polyhedral compiler 133

Figure 53 – Points of Interaction with the Polyhedral Framework: dashed
parts were removed and lighter solid parts are added with Clay.

2. the user either accepts the sequence as is or modifies it before
submitting to the transformation engine;

3. the latter reports on the semantics preservation (producing a list
of violated dependences, if any) and generates the final code if
required;

4. repeat transformation sequence modification at will.

The user is free to keep modifying the sequence, repeating the last
steps and forming the interaction loop with the compiler where trans-
formation directives and dependency graphs are used as a means for
communication: the framework and the user exchange sequence of
directives that transform the program. The user can also invoke the
transformation engine directly, without relying on the automatic opti-
mizer or completely ignoring the suggested transformation sequence.
We thus open a way for interaction between the developer and the
polyhedral compiler in order to leverage human-machine partnership
in compiler-assisted program optimization.

complementary approaches Multiple frameworks expose a
high-level directive approach on top of a polyhedral engine, includ-
ing UTF [138], URUK [104], CHiLL [58] and AlphaZ [271]. However,
they do not claim transformation set completeness and have more
stringent restrictions on the polyhedral schedulings such as using
only unimodular or invertible matrices. The completeness of Clay al-

134 high-level program manipulation

lows to always recover a transformation sequence. Given a mapping
between Clay transformation set and other directives, a transforma-
tion sequence may be expressed within another framework.

Sequence recovery algorithm may be also combined with itera-
tive polyhedral optimization approach [205, 206] allowing to observe
modifications to the transformation sequence introduced by each it-
eration in order to guide the space exploration.

Other directive-based tools were proposed to implement high-level
loop transformations. Xlanguage [81] uses compiler pragmas for syn-
tactic loop transformations in the C source code. A scripting lan-
guage POET [269] stores and parameterizes AST-based transforma-
tions. Goofi [192] features visual interface for transforming loops
in Fortran code. All of them operate on syntactic level and can-
not benefit from precise data dependence analysis provided by the
polyhedral model. With Clay, we are able to extract syntactic trans-
formations from the polyhedral optimization engine and introduce
them to the existing syntax-based or mixed polyhedral/syntax ap-
proaches [225].

feedback and interaction Many other tools provide the de-
veloper with the feedback about the compiler optimization stages.
The Paralax infrastructure [248] allows for completing compiler anal-
yses by manual code annotations and uses a specially modified op-
timizing compiler to suggest them. Larsen et.al. [158] instrument
a production compiler to provide feedback as to why an automatic
loop parallelization was not possible, for example highlight a state-
ment having a loop-carried dependence. Jensen et.al. [129] propose
an IDE plug-in incorporating feedback from compiler optimization
passes. They enrich the IDE warning mechanism with hints like "this
function can be inlined" or "interchanging these loops will increase
locality and performance". A tool by Göhringer and Tepelmann [117]
gives feedback on the fitness of compute-intensive loops to the poly-
hedral representation. Prospector [140] uses dynamic profiling to dis-
cover loop-level parallelism and provide feedback about the loop ex-
ecution with particular input data. Pareon 6 provides multithreaded
profiling and parallelism problems feedback along with automated
OpenMP pragma generation, yet does not perform legality checks.

These tools are limited to providing feedback keeping the burden of
time-consuming and error-prone code modification on the developer.
On the contrary, we propose to manage both the feedback and the
user input. The user analyzes and expresses a program restructuring
using concise syntax while the semantics preservation is verified and
the final code is generated by the framework.

6. https://www.vectorfabrics.com/en/pareon/profile

5.6 conclusion 135

5.6 conclusion

Automatic polyhedral optimization tools operate as a opaque black
box providing no control or details about the process. In this section,
we proposed a set of high-level program transformation directives
that allow the user to leverage the power of the polyhedral frame-
work without using its intricate mathematical structure. The Clay

transformation set is a result of a common work with L. Bagnères,
published in [12]. It is complete given global validity, i. e. allows to
transform any globally valid scheduling into any other globally valid
scheduling. Furthermore, we designed an algorithm allowing to ex-
press an arbitrary polyhedral relation union modification with Clay

directives. This algorithm could identify transformation sequences
for all PolyBench test cases.

Combining Clay transformations and Chlore algorithm, we virtu-
ally open the polyhedral black box enabling the developer to inter-
act with an optimizing compiler. Directive-based approach simpli-
fies program transformation, and transformation recovery leverages
heuristic-based algorithms to suggest transformation recipes. How-
ever, the directive-based approach alone has three major challenges:

— target loop identification throughout transformation sequence;
— discovery of optimization problem or opportunity;
— estimation of the effect made by a single transformation.

Clay transformation directives are targeted to specific statements or
loops using beta-vectors. Not only these vectors are hardly recover-
able from the code by a developer, but they change throughout the
transformations sequence. The transformation sequence recovery al-
gorithm provides the caller with the list of transformations that were
applied but not the reasons why they were applied. These reasons may
become apparent from detailed program analysis, difficult with the
source code without special tools. Program visualization techniques
may help overcome these challenges by replacing target identification
with direct manipulation and leveraging visual pattern identification
skills for transformation discovery and effect estimation.

6
P O LY H E D R A L P R O G R A M R E S T R U C T U R I N G

6.1 augmenting directive-based restructuring with di-
rect manipulation

The visualization approach for polyhedral programs, proposed in
the Chapter 4, allows to address the challenges of the directive-based
program restructuring. Manipulating a program represented visually
requires the possibility to interact with this representation. This inter-
action can be then mapped to the restructuring directives in order to
modify the program. Finally, the visual representation is updated to
reflect the changes.

We opt for the direct manipulation approach [227] for interacting
with Clint visualization. In fact, this visualization features program
statements and their instances as on-screen objects (polygons and
points) that allow for direct manipulation in a similar way to graphic
editors. Furthermore, many classical loop transformations featured in
Clay set are inspired by graphical actions, for example loop skewing
or shifting. Finally, direct manipulation allows to maintain the visu-
alization consistent throughout the program transformation: given a
full mapping between visual transformations and transformation di-
rectives, we can generate a directive sequence transforming the pro-
gram so that it matches the visualization updated by the user.

Direct manipulation greatly simplifies selection of the transforma-
tion targets. The user selects the transformation target directly, e. g.
by clicking on the polygon corresponding to the program statement,
instead of specifying the statement β-vector. Similar interaction can
be enabled in the code view by coordinating selections across views [217],
the statement is selected as the target for the following transformation
by clicking on it in the code. If the developer analyses the program
visually, he may manipulate the same representation directly rather
than moving to the code. In addition, visual representation allows
to manipulate statement instances or groups thereof, which are not
accessible in the code.

Program restructuring for loop-level parallelism exposure is a mat-
ter of reshaping loop iteration spaces to remove loop-carried depen-
dences. Traditionally, data dependence analysis results in a set of de-
pendences between statements. Polyhedral frameworks provide con-
siderably more information thanks to instance-wise analysis. How-
ever, this instance-wise information is difficult to represent without
statement instances themselves and is often compacted to, e. g., de-
pendence distance vectors for the code view. In the visual represen-

137

138 polyhedral program restructuring

tation, instance-wise dependences are immediately visible and ma-
nipulable. They can be represented entirely or as a pattern allowing
the developer to reason about performance problems and optimiza-
tion opportunities using their visual pattern identification capabili-
ties [259]. For example, scalar dependences, such as those caused
by reductions, can be easily identified visually and distributed in aIn case of scalar

dependence, all loop

iterations depend on

each other. Therefore

the loop is not

directly

parallelizable.

Reductions are

special cases of

scalar dependences

caused by associative

operations, e. g.

summing up values,

that can be executed

in parallel with

special modifications.

separate loop nest. The visualization allows to justify most reshaping
transformations (skewing, shifting) by providing immediate feedback
on how the data dependences are affected.

Interactive visualization allows to smoothly perform step-by-step
program restructuring and observe the effect of each individual trans-
formation. The visual transformation made by the user may to per-
form each transformation may be recorded and replayed later. More
generally, the mapping between visual transformations and Clay di-
rectives may be used not only to recognize user input, but also to
illustrate transformations using animated transitions. These transi-
tions can be used for training and tutorials as well as a be a part of
undo/redo mechanism. They can be also turned into a static visual-
ization as a part of interactive history view.

Once all transformation directives are mapped to animated transi-
tions, we can integrate Chlore algorithm in Clint to visually replay the
automatically computed transformation sequence entirely or step by
step. This replay will give the developer better understanding of the
reason for each transformation and its effect as well as the possibility
to correct it when needed.

6.2 direct manipulation of statements and instances

6.2.1 Mapping Transformation Directives to Graphical Actions

The scatterplot-like visualization in Clint maps program execution
properties, such as loop bounds and traversal order, to spatial posi-
tions of polygons. This geometrical representation of program state-
ments and statement instances affords direct manipulation as a way
to apply program transformations. The user may manipulate the po-
sition and the shape of the polygon and thus change the schedule
of the statement. Individual points are also manipulable in order to
reschedule individual instances (executions) of a statement. Given
the set of Clay transformations, we were able to map direct manipula-
tion operations to high-level program transformations encoded in the
polyhedral model. One operation corresponds to a sequence of trans-
formation directives that, if applied to the program, would change
its structure so that its Clint visualization matches the displayed one.
Since the Clay transformation set is complete, providing a consistent
mapping from graphical actions to directives allows the user to per-
form any polyhedral program transformation from within Clint.⊲ Graphical

manipulation is

mapped to a

transformation that,

if applied, would

change the program

so that its

visualization

matches the

displayed one.

6.2 direct manipulation of statements and instances 139

The mapping leverages the intuition behind classical transforma-
tions. A statement polygon can be dragged inside the coordinate
system and thus shifted in space as shown in Figure 54(a). If the
user drags the corner of the statement polygon, it is either skewed or
reshaped depending on which transformation can express the trans-
formation. Skew is preferred to Reshape if both are possible as it
is a more common, classical transformation. An example of Skew

transformation is depicted in Figure 56(a).

Figure 54 – Direct program manipulation in Clint: (a) drag to Shift; (b) ro-
tate using corner handles to Interchange; (c) select and double
click to StripMine, Tile or Linearize if everything is selected.

Complementary transformation pairs are mapped to similar graph-
ical actions. Expanding a polygon using side handles corresponds to
Grain transformation and shrinking it corresponds to Densify as
shown in Figure 55(a). While shrinking a polygon, the user may con-
tinue dragging the handle in the same direction to trigger "negative"
grain. Semantically, this corresponds to Reverse transformation fol-
lowed by a Grain, see Figure 55(b).

Connecting visualization to direct manipulation, we re-encounter
similarities between some transformation directives. Both Grain and
Reverse are similar in behavior to Skew, and all the manipulations
change the polygon shape. Contrary to Skew that changes the an-
gles between polygon edges since the transformation involves two di-
mensions, Grain maintains the angle and only changes the distance
between points. In order to underline the similarity, Clint uses sim-
ilar graphical operations for these transformations. They all require
dragging handles placed around the polygon.

Other transformations may be seamlessly combined using Clint di-
rect manipulation approach. Statement may be shifted along two di-
mensions in the same action, see Figure 54(a). Rotating the statement
around its center using corner handles corresponds to a combination
of loop interchange and reversal. Interchange alone would require
mirroring the statement along the coordinate system diagonal.

Transformation directives that modify statement execution order
are especially easily combined. Dragging the statement outside the
coordinate system corresponds to loop distribution as in Figure 56(c).
If the statement being distributed is released on an empty space, a

140 polyhedral program restructuring

Figure 55 – Direct program manipulation in Cilnt: (a) expand or shrink us-
ing mid-border handles to Grain, Densify, or (b) Reverse.

new coordinate system is created to match to the newly created loop
in the program. If, however, it is released over a coordinate system, it
is fused with the corresponding loop as depicted in Figure 56(b). Since
FuseNext directive in Clay allows to fuse only with immediately fol-
lowing loop, Clint inserts a Reorder directive to appropriately place
the new loop nest before fusion.

Multiple Clay transformations are defined only for loops and are
not applicable to individual statements in order to preserve global
validity. Clint allows to apply such transformations to individual
statements in the loop by creating a transformation sequence that,
first, distributes the statement away from the loop nest, then performs
the requested transformation and, finally, fuses it back to the nest.

Figure 56 – Direct program manipulation in Clint: (a) drag polygon corners
Skew and Reshape; (b) move polygons between coordinate sys-
tems to change lexical order of statements with Fuse, Split and
Reorder; (c) double click the rectangular point selection for
Tile.

⊲ Individual

instances,

statements or groups

thereof are

manipulable.

The user may use rubber-band or click selection to specify a group
of statement instances as a target of transformation. If the selection
is a convex polygon, i. e. can be expressed in the polyhedral model,
Clint will insert IndexSetSplit directives before preforming the ac-
tual transformation. For example, a subset of statement instances may
be separated into its own loop nest by dragging selected points out-
side the coordinate system as shown in Figure 56(c). Using index-set
splitting allows to schedule parts of the iteration domain differently.

6.2 direct manipulation of statements and instances 141

If more than one condition is necessary to perform the separation,
Clint will create as many parts as splitting conditions. However, the
parts that were not explicitly separated will be still manipulable as
a single entity. The affine splitting inequalities are obtained by com-
puting a convex hull of the selected points and using each pair of
consecutive points to define a line. Lines that correspond to loop
bounds are ignored.

Double-clicking a set of selected points that visually has a rectangu-
lar shape will result in loop tiling, see Figure 54(c). Clint only supports
rectangular tiling as the most common variant. Other types of tiling
may be introduced by defining a visual pattern recognizable in Clint

representation.

6.2.2 Discussion of the Mapping

parametric transformations As described in Chapter 4, Clint

replaces constant parameters with user-defined values to provide a fi-
nite visualization. However, transformation directives often accept
these parameters as arguments. Whenever it is the case, Clint tries
to recover the possible parametric shape of the transformation. For
example, if a statement nested in loop with N = 6 iterations is shifted
by 6, Clint will issue a Shift by N directive. When multiple param-
eters are involved, it prefers the parameter involved in most inequal-
ities with the loop iterator in question, and the alphabetically first
in case of ties. The user can discard parametric argument computa- ⊲ Parametric

transformations are

preferred when

inferring the

parameter is trivial.

tion by holding the alt modifier key during the manipulation. More
advanced control of parametric arguments is available in the textual
representation of the transformation directives.

multi-dimensional transformations Most transformations
in Clay operate on one or two dimensions. Therefore, they can be
expressed as graphical actions on the 2D canvas. IndexSetSplit is
the only transformation that may operate on more than two dimen-
sions: its argument is an arbitrary inequality. Due to the nature of
multidimensional inequalities, they cannot be specified by a combi-
nation of smaller, two-dimensional ones. In a general case, defining
IndexSetSplit condition graphically would require representing all
dimensions simultaneously and enabling selection. It is not feasible
with Clint visualization, nor is the multidimensional selection of nu-
merous points convenient for the user. Therefore, Clint allows at most
two dimensions to be involved in the IndexSetSplit inequality, infer-
ring its shape from the selected points. If a more complex condition
is required, the user can enter it textually using Clay comments.

forbidden transformations and automatic completion

Some graphical actions may correspond to transformations, but do

142 polyhedral program restructuring

not respect the preconditions resulting in an invalid scheduling. For
example, deforming the polygon into a linear shape along its diag-
onal, possible when moving handles for loop skewing, violates pre-
conditions for both Skew and Reshape as the transformed schedule
will not be globally valid. Some other graphical actions may be cor-
respond to incomplete transformations. For example, polygon expan-
sion that only increases it size by a half, rather than by its entire
width, corresponds to the Grain transformation with factor 0.5. We
address both issues in Clint by providing feed forward about the trans-
formation. When the user starts the manipulation, Clint identifies the
closest valid transformation and performs it immediately. Instead of
showing the result, it adds a visual shadow of the result, a light gray
polygonal shape similar to those in Figures 55, 56. This feed forward
allows to communicate the potential result to the user even before he
completed the transformation. If the user stops the manipulation, the
active polygon will transform into its shadow. Instead of an invalid
transformation directive arguments, Clint chooses the closest valid
ones. For partial arguments, it completes them by rounding to clos-
est available value. As long as the user continues manipulation, the
shadow reflects the transformation that will be made if the user stops
manipulation at this point. We expect feed forward to increase the
manipulation speed and favor exploration.

violated dependences As the transformation is already per-
formed during the manipulation, Clint may verify its legality and pro-
vide more feed forward to the user. If current transformation violatesViolated

dependences make

the program state

illegal, but remain

valid.

certain dependences, they are highlighted in red during the manip-
ulation. Similarly, axes that correspond to loops not carrying depen-
dences are highlighted in green to expose potential parallelism. With
this manipulation, program parallelization in Clint is a matter of de-
forming polygons so that data dependence lines remain black and
become perpendicular to an axis.

multiple view coordination During the manipulation, all of
Clint visualization, history and code views are kept in sync. When
the polygon shadow appears, Clint uses CLooG to generate the corre-
sponding code and displays it immediately, before the user completes
the transformation. The history view contains the current Clay direc-
tive in its textual representation in addition to those already applied.
This real-time information allows the user to observe the effect of his
current manipulation on the code and analyze its details, e. g. numer-
ical values, if needed.

editable history The history view is now filled with Clay di-
rectives in textual format. Clint allows to edit the history as a list
of text items, one item per transformation. Transformations can be

6.3 transformation replay and correction 143

undone by removing the corresponding lines or prefixing them with
a # symbol to mark as a script comment. Transformations can also
be reordered. Finally, the user may modify the arguments of any
directive or add new directives in any point of the transformation
sequence. If the directive syntax is correct, the entire sequence gets
reapplied to the current program. The visual representation and the
code are updated to reflect the new transformation. Clint also allows
to export textual form of the transformation sequence as a standalone
Clay script for reuse or to embed it in the source program in Open-
Scop format.

6.3 transformation replay and correction

6.3.1 Undoing and Replaying Transformations

replay as the mapping between graphical actions and program
transformations is bidirectional, Clint features transformation replay

capabilities. A polyhedral program transformation, expressed in Clay

framework, is mapped to the corresponding graphical action in the
Clint visualization. For example, loop shifting corresponds to moving
the polygon in the coordinate system, the same graphical action that
triggers the transformation.

undo/redo the mapping is preserved for user actions, transfor-
mation replays and undo/redo operations. In fact, in order to provide
animated replay while undoing a transformation, Clint computes a
complementary transformation and applies it to the program. It then
removes the last transformation from the history instead of adding
the newly computed one. For example, undoing a Split transfor-
mation that corresponds to putting a polygon outside of its current
coordinate system, results in a complementary Fuse transformation,
putting the polygon back to the original coordinate system — exactly
the opposite graphical manipulation.

6.3.2 Interacting with a Polyhedral Compiler Graphically

developer-compiler partnership We integrated Chlore algo-
rithm in Clint as a program comparison option. The user can com-
pare the original version of the program and the version optimized
by any external tool, e. g. Pluto or isl optimizer. The result of such
comparison is a sequence of directives that transforms the original
version into the optimized one. The transformation sequence is then
included into the transformation history of Clint. Each transforma-
tion in this sequence is mapped to a graphical action to provide a
complete visual representation of the transformation process. On one
hand, the user can replay the program transformation to better under-

144 polyhedral program restructuring

stand it in terms of code-level operations even when the polyhedral
optimizer did not reason in terms of code statements or instances. On
another hand, he can undo or modify certain transformation as well
as complete the sequence by supplementary transformations of his
choice.⊲ Clint is likely to

reduce both program

analysis and

manipulation time.

Thus, Clint enables developer-compiler partnership using the visual
representation as a medium. Essentially similar to Clay/Clore com-
bination for high-level program manipulation, Clint visualizes infor-
mation about iteration-wise dependences, crucial for polyhedral opti-
mization and not available immediately in the code. Therefore, Clint

reduces both program analysis time thanks to visualization and pro-
gram transformation refactoring thanks to replay and direct manip-
ulation. The developers now can visually analyze the effect of each
individual transformation on the program and modify it if necessary.

The transformation refactoring workflow with Clint starts with an
automatically computed optimizing transformation. This transforma-
tion is expressed as a sequence of directives and included in Clint.
The user analyzes the result of the transformation visually and even-
tually finds an optimization opportunity that the over-conservative
optimizer have missed, or transformation that gives a negative effect
due to architectural details unaccounted for in the optimizer. He then
completes the program transformation by adding extra or modifying
existing transformations using direct manipulation or Clay scripts. Fi-
nally, Clint generates the transformed code on request. It can also
store the transformation directives along with the original code if
needed for better readability.

6.3.3 Correcting Automatically Computed Optimization

We illustrate the utility of compiler-assisted program transforma-
tion compared to fully automatic approach by an example. Consider
the code snippet in Listing 9 taken from the conventional beamform-
ing radar application. The loop nest apparently features some degree
of parallelism. For example, instances of statements with β-vectors
[2,0] and [2,1] can be executed in a parallel loop. A quick glance at
the visual representation, Figure 57 shows by horizontal arrows con-
necting all points that the two last statements of the outer loop carry
dependence and prevent parallelization.

This code 1 executes in 2.37 seconds on the test platform 6-core Intel
Xeon X5650 2.67GHz architecture, GNU GCC 4.8.2 compiler with op-
tions -O3 -fopenmp. Given the loop-level parallelism, the user expects
a speedup if the code is parallelized. At this point, instead of per-
forming the transformation manually with directive scripts or Clint

interface, the user decided to rely on the automatic transformation

1. With constant parameters N and M set to 1000.

6.3 transformation replay and correction 145

#pragma scop

t = 0; // [0]

t_val = DBL_MIN; // [1]

for (i = 0; i < N; i++) { // [2]*
a_i[i] = 0; // [2,0]

a_r[i] = 0; // [2,1]

for (j = 0; j < M; j++) { // [2,2]*
a_r[i] += s_r[j]*m_r[i][j] - s_i[j]*m_i[i][j]; // [2,2,0]

a_i[i] += s_i[j]*m_r[i][j] + s_r[j]*m_i[i][j]; // [2,2,1]

}

val = a_r[i]*a_r[i] + a_i[i]*a_i[i]; // [2,3]

t = (val >= t_val)? (t_val = val, i) : t; // [2,4]

}

#pragma endscop

Listing 9 – C code of the conventional beamforming radar application.

Figure 57 – Clint visualization of the conventional beamforming radar ker-
nel.

engine, Pluto 2 to exploit both the parallelism and the data locality
as opportunities for program performance increase. Pluto generated
the optimized code listed in Listing 10. The optimized code indeed
features parallel loops. Pluto has also reordered statements so that
accesses to the same array were adjacent in the code. However, de-

2. Pluto 0.11.1 taken from http://pluto-compiler.sf.net

http://pluto-compiler.sf.net

146 polyhedral program restructuring

#pragma omp parallel for

for (i = 0; i <= N - 1; i++)

a_r[i] = 0;

#pragma omp parallel for

for (i = 0; i <= N - 1; i++)

for (j = 0; j <= M-1; j++)

a_r[i] += s_r[j]*m_r[i][j] - s_i[j]*m_i[i][j];

#pragma omp parallel for

for (i = 0; i <= N - 1; i++)

a_i[i] = 0;

#pragma omp parallel for

for (i = 0; i <= N - 1; i++)

for (j = 0; j <= M - 1; j++)

a_i[i] += s_i[j]*m_r[i][j] + s_r[j]*m_i[i][j];

t = 0;

t_val = DBL_MIN;

for (i = 0; i <= N - 1; i++) {

val = a_r[i]*a_r[i] + a_i[i]*a_i[i];

t = (val >= t_val)? (t_val = val, i) : t;

}

Listing 10 – Pluto-optimized C code of the conventional beamforming radar
application.

spite the seemingly improved program behavior, the optimized code
takes 3.32 seconds to execute on the test platform, a slowdown.

Without Clint, the user may either stick with the original sequential
code or perform modifications manually trying to expose parallelism
properly. With Clint, the user is able to analyze the code-level trans-
formations applied by Pluto to the code and replay them visually if
needed. From the Figure 58, it appears that Pluto was overly aggres-
sive in loop distribution placing each statement into individual loop.
Not only each parallel loop implicitly introduces a synchronization
barrier potentially creating overhead, but it increases the data reuse
distance between the accesses to arrays a_r and a_i. The analysis of
the transformation replay (blue dashed lines on Figure 58) and the
transformation sequence recovered by Chlore confirms the presence
of multiple Distribute directives, see Figure 60a.⊲ Automatic

optimization may

result in slowdowns

due to imprecise

heuristics.

Interactive program

restructuring allows

identifying and

solving the problems.

The user may undo the loop distributions that are potentially caus-
ing the slowdown using direct manipulation of Clint following green
arrows in Figure 58. The transformation sequence is then completed
by a series of FuseNext transformations as shown in Figure 60b. The
new transformation sequence keeps only the distribution of the two
last statements preventing parallel execution of the outer loop in the
original code. Its visualization is shown in Figure 59. Thanks to the
parallelism of the outer loop, this refined version executes in 0.81 sec-
onds, with an almost 3× speedup.

Alternatively, the user may perform the manual optimization us-
ing Clint after having observed the optimization decisions taken by

6.3 transformation replay and correction 147

Figure 58 – Pluto-computed optimization for conventional beamforming ex-
pressed as graphical transformation primitives (blue dashed
lines). Manual correction of the optimization to remove exces-
sive loop distribution (green dash-dotted lines).

148 polyhedral program restructuring

Figure 59 – The refined optimized version of the conventional beamforming
radar kernel visualized with Clint

distribute([2], 3)

distribute([2], 2)

distribute([2], 1)

distribute([4, 0], 1)

distribute([4], 1)

reorder([], [4,5,2,0,1,3,6)

(a)

reorder([], [0,2,1,3,4,5,6])

fuse_next([0])

fuse_next([0])

fuse_next([0])

fuse_next([0, 2])

(b)

Figure 60 – Transformation sequences: (a) recovered by Chlore for Pluto-
optimized conventional beamforming radar kernel; (b) con-
structed from direct manipulation in Clint to undo problematic
loop distribution.

Pluto. To enable parallelism, it is necessary to separate the two last
statements from the loop. To improve locality, the two first statements
in the outer loop should be reordered. Finally, the individual state-
ments can be placed between the two new outer loops since they are
not used in the first of them. The resulting transformation sequence
is shown in Figure 61.

distribute([2], 3)

reorder([2], [1,0,2])

reorder([], [1,2,0,3])

Figure 61 – Transformation sequence constructed from direct manipulation
in Clint without Pluto input.

In both cases, Clint allows to achieve better program performance
than automatic optimization alone. At the same time, it reduces the
time necessary for program analysis and transformation application
by using visualization and combining an automatically computed

6.4 evaluation of direct manipulation benefits 149

program transformation with the user’s input, enabling human-machine
partnership.

6.4 evaluation of direct manipulation benefits

6.4.1 Expected Benefits

Clint features both textual and visual representations, enabling the
user to transform the program from either perspective without any
extra cost since the conversion between the representations is done
automatically and in real time. ⊲ Clint may favor

reasoning about

instances and

dependences, rather

than about loops.

Interactive manipulation of program statements with Clint is likely
to ease the exploration of possible transformations, which is often
tedious in the existing setup since it requires to manually transform
source code and to perform semantics preservation check in order to
determine the applicability of a transformation. Clint’s real-time feed-
back on parallelization and dependences may favor a trial and error
strategy for exploring alternatives in order to choose the best par-
allelizing transformation to apply. Furthermore, the navigable and
editable history view allows to easily revert or reapply any transfor-
mation.

Decoupling the manipulation from the actual program transforma-
tion also allows to postpone final source code generation in order
to analyze the results of a transformation that violates dependences
and to correct it without undoing, which is not possible even with
semi-automatic tools. The transformed source code is then generated
on-demand by the user. Contrary to existing semi-automatic tools
that transform the program loops, the original program structure is
kept throughout the session. This interaction model favors finer rea-
soning in terms of statements and instances rather than in terms of
loops.

6.4.2 Experimental Protocol

We conducted a preliminary study to evaluate benefits of direct
program manipulation with Clint, where participants performed pro-
gram transformation visually or using the source code. With this
study, we assess the usability of Clint. In order to clearly separate
the effect of the direct manipulation and compensate for substantial
individual and expertise differences, participants performed an ab-
stracted program manipulation task without any external program
analysis and transformation tools. Therefore, we chose manual code
modification as a baseline for evaluating direct manipulation. The
preliminary nature of this study is caused by using an initial pro-
totype of Clint during the trials and feeding back comments of the
participants into the tool design cycle.

150 polyhedral program restructuring

Beyond the assessment of visualization efficiency, we are also inter-
ested in its acceptability by expert programmers who are more used
to text-based interfaces. Participants who already took part in the vi-
sualization study presented in Chapter 4 were asked to perform par-
allelization tasks at several levels of difficulty and in three conditions:
source code (the baseline), Clint without source code, and Clint, the
latter assessing participants’ preference between direct manipulation
and source code editing. Our hypotheses are that Clint can improve
programmers accuracy and efficiency when parallelizing code, but
also that the direct manipulation approach is likely to change their
strategy when they address a parallelization problem.

participants We recruited 8 participants (5 male, aged 23-47) via

a direct email to the participants of the polyhedral visualization study
(see Section 4.5). Since all of them participated in the previous study,
they were all familiar with the polyhedral model and Clint visualiza-
tion. Therefore, they were not divided into groups by expertise.

apparatus The study was conducted with a prototype of Clint,
implemented in C++, on a 15" MacBook Pro. Participants were inter-
acting with the laptop keyboard and a standard Apple mouse. The
language used was a subset of an imperative language with C-like
syntax that included loops, branches and affine expressions suitable
for the polyhedral modeling.

procedure The task consists in transforming a loop-based pro-
gram so that the maximum number of loops becomes parallelizable,
i. e. without any dependences that prevent parallel execution. Partici-
pants were asked to transform the program code, but do not include
specific parallelism primitives, e. g. OpenMP pragmas, in order to
avoid bias from individual expertise in various parallel frameworks.
The experiment is a [3× 3] within-subject design with two factors:

— Technique:
Code — code editing;
Viz — direct manipulation without code;
Choice — full interface, with direct manipulation and source

code editing.
— Difficulty:

Easy — two-dimensional case with at most two transformations;
Meidum — two- or three-dimensional case with rectangular bound-

aries and at most three transformations;
Hard — two- or three-dimensional case with non-trivial bound-

aries and at least two transformations.
Trials were grouped in three blocks by Technique. The Code and Viz

blocks were presented first. Their order was counterbalanced across
participants. Choice was always presented last in order to assess par-

6.4 evaluation of direct manipulation benefits 151

ticipants’ preference in using code editing or direct manipulation af-
ter having used both. In each block, participants were presented with
one task of each difficulty level in random order. Tasks were different
from one block to another. They were randomly picked into differ-
ent blocks across participants. The tasks were drawn from real-world
program examples and polyhedral benchmarks and simplified. Tri-
als were not limited in time and participants were asked to explicitly
end the trial when they thought to be done, whether they succeed
or not. Prior to the experiment, participants were instructed about
source code transformations and the corresponding direct manipu-
lation techniques. They also practiced 4 trials of medium difficulty
for each technique before the experiment and were allowed to per-
form two “recall” practice trials before each Technique block. Each
session lasted about 60 minutes. The participants filled in a short
demographics questionnaire at the end.

data collection For each trial, we measured:
— the overall trial Completion Time;
— Transform Time, the amount of time from the start to the first

change in the program structure (code edited or visualization
manipulated);

— Success Rate, the ratio between the number of loops made paral-
lel by transformation and the total number of possibly parallel
loops.

We recorded both the final state and all intermediary transforma-
tions to the program.

During the analysis, we performed a log-transform of the Comple-

tion Time and Transform Time to compensate for positive skew in dis-
tribution typical for non-negative time interval measurements.

6.4.3 Results and Discussion

Because this experiment was conducted with a small sample, we
decided not to conduct any statistical analysis. We report on mean
values of the measures and report results graphically in order to illus-
trate general trends.

We did not observe any ordering effect of Technique or Difficulty

on Completion Time and Success Rate.

accuracy and efficiency Fig. 62(left) shows the Success Rate

for each Technique and in each Difficulty condition. Despite large
variability, it suggests that participants were in general more success-
ful to find the expected transformations with direct manipulation
than with code editing for Easy and Medium tasks: Success Rate is
89% for Easy and 100% for Medium tasks in Viz condition, but only
38% for both Easy and Medium tasks with Code. Thus the introduc-

152 polyhedral program restructuring

tion of direct manipulation results in 40% 3 to 44% increase in Success

Rate for these conditions. For the Hard condition however, Success

Rates are identical (25%). Such low Success Rate for Viz condition sug-
gests that, given guaranteed transformation correctness, users strug-
gle with identification of the transformation to apply.⊲ Visualization

increased Success

Rate for Easy and

Medium tasks as

well as Completion

Time.

We discuss Completion Time according the success of the trial. Fig-
ure 62(right) suggests that, for successful trials, participants performed
the transformation consistently faster in Viz condition. The effect
sizes of Technique are 48%, 72% and 57% for Easy, Medium and
Hard tasks, respectively. The substantial decrease in variability be-
tween Code and Viz suggests that Completion Times are likely to be
more consistent over participants with the direct manipulation inter-
face, compensating for individual differences in code manipulation.
For the failed trials, the Completion Times are close for all conditions
and feature large variabilities. The lower Completion Times for Difficult

tasks with Code representation may be caused by participants quickly
abandoning the most complex cases.

0%

20%

40%

60%

80%

100%

Code Viz

S
u

cc
es

s
R

at
e

Diffculty: Easy Medium Hard

0

200

400

600

800

Code Viz Code Viz

C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Fail Success

Figure 62 – Left: Success Rate is higher with Viz for Easy and Medium tasks,
but similar to Code for Hard tasks. Right: average Completion

Time is often lower with the Viz technique, especially when tasks
were successfully performed. Error bars are 95% CIs.

strategy and exploration The ratio of tasks where partici-
pants at least tried to perform a transformation is of 76% with Code,
against 94% for Viz. Additionally, we observe that the time it took to
participants to start modifying the program is 135 s on average with
Code against 13 s with direct manipulation. Combined with quick
abandons of Hard tasks, this suggests that Viz condition is more likely
to engage participants in solving the harder task. We computed the
ratio Transform Time/Completion Time as a measure of “engagement”
of the participants (a lower value meaning that the participant started

3. Symmetric effect sizes, computed as abs(m1 −m2)/(m1 +m2) where m1,m2

are mean values for different groups.

6.4 evaluation of direct manipulation benefits 153

to transform the program faster). As shown in Figure 63, this ratio ⊲ Visual

representation

changed the strategy

from analysis-first to

exploration-first

unless the code was

also present.

increases with difficulty for Code, but drastically decreases for Viz. It
suggests that participants were more likely to adopt an exploratory
strategy for hard transformation problems with the interactive visual-
ization than with code editing. However, when both representations
are available in Choice condition, the ratio remains almost constant for
all Difficulties, suggesting that they spend time choosing the repre-
sentation or analyzing the program in a representation they will not
use for manipulation.

0.00

0.25

0.50

0.75

1.00

Choice Code Viz

Difficulty

Easy

Medium

Hard

F
ir

st
 C

h
an

g
e

T
im

e
C

o
m

p
le

ti
o

n
 T

im
e

Figure 63 – Ratio of first change time to completion time. The change in
trend between different techniques can be caused by an im-
proved problem understanding and favorisation of exploring
different transformations.

difficulty The choice of task Difficulty was based on the visu-
alization experiment and is essentially tailored to the code. In fact,
the difficulty of the task is a subjective measure for the users rather
than an objective property of the program. The presence of the visu-
alization may have changed the perceived difficulty. Figure 62(left)
may suggest that the Hard task remain complex independently of
the representation. As a general observation, an efficient interactive
program restructuring tool should decrease the perceived difficulty of
program manipulation.

choice between code editing and direct manipulation

For the Choice condition, we observed that the participants used the
interactive visualization and that only three of them edited the code
during the first 30s of two trials on average before switching to the
visual interface (12% of all the trials). In the post-experiment inter-
view, these participants explained that they were trying out the code-
visualization mapping or changing the code for the sake of analysis.
We found Success Rate and Completion Time to be very similar to those
with only the visualization.

We observed that most participants were examining the original
and transformed source code, but not editing or selecting it. These
results suggest that most users would prefer using the visual inter-

154 polyhedral program restructuring

face to perform transformations, but still need the source code view
to have a link with conventional program editing approach despite
its evident misfit for the parallelization task at hand. While these
results support the observation that expert programmers are reluc-
tant to non-code representations, they may also be caused by the in-
sufficient expertise in manipulating visual program representations
compared to the code.

6.5 the need for code

Following up on this observation, we decided to conduct a con-
trolled study in order to observe and quantify the use of textual
and visual representations in program analysis-related tasks. We are
particularly interested in how programmers distribute their attention
between multiple representations in cases where only one representa-
tion is specifically designed for a particular task and how the presence
of other representations affects their performance. We used eye track-
ing in order to precisely measure the attention distribution between
different representations. We expect that, given sufficient training,
programmers will prefer direct manipulation of the graphical repre-
sentation to code editing if there is a meaningful mapping between
visual properties and program structures in the context of the task.

Our experiment software was based on Clint’s structure and tasks.
It comprised two views of equal size: code and Clint visualization –
that represented the same program part. We created a pair of small
tasks for program analysis. Each task was designed so that either the
code or the Clint visualization support it better, but never both. The
first task consisted in verifying whether the loop nest was executed
with certain iteration variable values. We expect the visual represen-
tation to be better adapted for this task. The second task consisted in
observing whether the loop bounds in the nest had a specific form.
We expect the code to be better adapted for this task.

6.5.1 Protocol

participants We recruited 12 participants (9 male, aged 21-34,
mean=27) via mailing lists. Their self-reported experience in program-
ming was 5 to 15 years. Two of the participants were familiar with
the polyhedral model and Clint visualizations. None of them partici-
pated in the previous studies of Clint. Due to the operation of the eye
tracking device, we required all participants to have normal vision
without correction.

apparatus The experimental setup consisted of a 15" MacBook
Pro with Retina display (2880 × 1800 resolution at 86.6 pixels per
centimeter) laptop running the program representation software and

6.5 the need for code 155

SMI-ETG v1 eye-tracking system 4. The eye-tracking system itself con-
sists of a pair of glasses with embedded HD camera worn by the par-
ticipant and connected to a laptop computer with recording software.
The eye tracking is based on binocular dark pupil tracking through
two front-facing cameras with infra-red highlight. The tracking de-
vice provides the angular resolution of 0.1◦ and temporal resolution
of 30 Hz. The gaze tracking range is 80◦ horizontally and 60◦ verti-
cally. The tracking system outputs a 30 FPS video recorded by the
frontal camera of the glasses and a gaze position for each frame of
the video.

The participant was seated 70 centimeters away from the screen.
This distance was sufficient to put the entire screen in the eye track-
ing range. Given this distance, we can compute the linear accuracy
of the tracking. We only consider the accuracy at the edge of the
tracking range, at 80◦ as the upper bound. D = 70cm · atan(80◦/2) −
70cm · atan(80◦/2+ 0.1◦) = 83.42− 83.1 = 0.32 cm. Given the screen
resolution, this corresponds to Dp = 0.32cm · 86.6px/cm = 27.7px.

We placed bright-colored tokens on the screen edges and corners,
as shown in Figure 64, to be able to track its position in the output
video. Using four corners of the screen, we were able to compensate
for perspective distortion of the screen in the video and recover its
rectangular shape.

Figure 64 – Scheme of the Experiment

software We used a specially adapted version of Clint with all
manipulations disabled. In the first part of the study, it featured ei-
ther visual representation or code. In the second part, it featured both
representations simultaneously. The sizes of all representations were
identical throughout the study to ensure identical eye movement dis-
tances and equal amounts of visible information. In the first part of
the study, the screen real estate not occupied by the representation
was filled with default background color (gray) to avoid distraction.
Visual objects and code were vertically and horizontally centered in
the respective widgets. We ensured at least 60 px (0.7 cm) distances

4. http://www.eyetracking-glasses.com/

156 polyhedral program restructuring

between representations, i. e. the double of eye-tracking device reso-
lution, so as to clearly identify the gaze at one of the representations.

task The participants were asked to answer a binary question
about a loop nest represented either visually or as code. Questions
concerned either loop bounds, namely “is i <= 5 a correct and exact
upper bound for this loop nest?”, or statement instances, namely “is
the statement S1(i,j) executed with i = 4 and j = 7 in this loop
nest?”. To avoid positive answer bias, we also included negative ver-
sions of these questions, “is i <= 5 a wrong or inexact upper bound
for this loop nest?”, and “is the point i = 4 and j = 7 outside the
iteration domain of S1(i,j)”. All questions in the study had these
wordings, only the values could change.

We created an ad-hoc program to generate tasks and verify answers
using the polyhedral framework. In addition to difficulty require-
ments, we imposed a constraint that a loop nest iterates at least 5

times and each loop in the nest iterates at least 2 times. This lower
bounds allowed to avoid edge cases where a single-iteration loop
could be removed from the code or a visualization would have a
seemingly low dimensionality. We also imposed the upper limit of at
most 100 iterations in the loop nest and at most 10 iterations for each
individual loop. The upper bounds allowed participants to perform
small computations, e. g. computing minima, maxima and integer
divisions, without resorting to calculators.

procedure The study is a [3× 3× 2] within-participants experi-
ment with 4 repetitions per participant and the following factors:

Representation used in the trial, one of visual representation (Viz),
source code (Code) or both simultaneously (Both);

Difficulty of the question, one of Easy, a loop nest with constant
conditions, Medium, a loop nest with at least 3 non-constant
conditions, or Hard, a loop nest with a branch inside and at
least 5 non-constant conditions;

Question asked to the user, either focused on loop bounds (Bounds)
or on the execution of a particular statement iteration (Execu-

tion).
Conditions for task Difficulties are drawn from the previous study.
Namely, the presence of non-constant conditions or conditions with
min and max function involved seems to impact the duration of the
trial. We refined the numerical criteria for difficulty during the pi-
lot testing. Bounds questions were targeted at Code representation,←֓ Matching and

mismatching

questions.
where the answer is immediately visible, while Execution questions
were targeted at Viz representations. We refer to conditions with
such factor combinations as matching questions, while we refer to other
conditions as mismatching questions. In total, we collected data for
12 · 3 · 3 · 2 · 4 = 864 trials.

6.5 the need for code 157

Trials were first blocked by Representation and then by repetition.
First two Representations are Viz and Code in a counterbalanced or-
der. Both condition is always the last block in order to observe the
participants’ choice of representation after sufficient exposure. Each
Representation block comprises 4 repetition blocks, each of which
has 6 trials with different Questions and Difficulties in a random-
ized order. Representation blocks were preceded by a practice ses-
sion with 4 trials of Medium difficulty and varying Questions. After
each trial in the last block, participants were also asked about their
preferred representation for this trial.

First two Representation blocks were conducted without eye track-
ing since they only featured one representation. Before the third
block, the participants were asked to wear the eye-tracking glasses.
We performed a 3-point calibration procedure using a special image
with 30 px-sized elements. Before proceeding, participants were re-
quired to read aloud a short text presented on screen with the same
font size as the trial questions as the code. This procedure allowed
us to ensure that participant’s vision was not affected by the tracking
glasses and to verify the calibration.

Participants started the trial by clicking the “start” button and ended
it by clicking the answer button. In each trial, participants were given
a possibility to abandon after at least 15 seconds. The delay was im-
posed to avoid immediate abandons for Hard tasks with mismatching

questions that we observed in the pilot test. No information about
the upcoming trial was shown before its start. After the end of each
trial, the software provided feedback on the answer correctness, but
not the explanation of the correct answer. One session lasted 50 min-
utes on average. After the session, the participants filled in a short
demographics questionnaire.

data collection We collected the following data:
Completion Time of the trial;
Correctness of the answer;
Preference between Representations for the last block;
Gaze from the eye-tracking glasses for the last block.

An experimenter present in the session observed participant’s behav-
ior and their gaze reported in real time by the eye tracking system.

data processing The eye tracking system outputs a video recor-
ded from the glasses frontal camera and the spatial gaze position in
this video. We used a custom OpenCV-based script to track the bright
tokens placed on the corners of the screen in the video. Using the po-
sitions of the tokens, we computed a quadrilateral that corresponds
to the screen. We then mapped this quadrilateral to the screen rectan-
gle and linearly interpolated the gaze position in screen coordinates.
Finally, we identified the widget in the attention focus as one out of

158 polyhedral program restructuring

three: Code Widget, Viz Widget or Question Widget. Outside any of the
widget areas, the gaze was considered Off Screen. We randomly sam-
pled 10 frames from each participant’s video and manually checked
which widget was in focus. All 120 frames were an exact match with
the results of our automatic classification script.

When the participant was looking at the neutral space between two
widgets, we assumed they were looking at one of the widgets first
half of the time, and at another widget another half of the time. This
behavior was observed for all participants. It never lasted more than
300 ms in a row and represented less than 2% of the trial duration.
We did not perform any global filtering by the duration of fixation,
but rather defined specific criteria for each derived measure.

We performed a log-transformation of the Completion Time to com-
pensate for the positive skew of its distribution.

data analysis Due to growing concerns in various research fields
over the limits of null hypothesis significance testing for reporting
and interpreting experimental results [73, 82], we base all our anal-
yses and discussions on estimation, i.e., effect sizes with confidence
intervals [74]. Furthermore, we argue that estimation results and ac-
companying graphs are better suitable for communicating results in
a work mixing methodologies from different disciplines. We describe
the computation and interpretation of effect sizes and confidence in-
tervals in Appendix B.

6.5.2 Duration and Correctness

ordering effects We did not find any significant ordering effect
on Completion Time or Correctness between repetition blocks within
larger Representation blocks. Figure 65 shows the differences be-
tween means and their 95% confidence intervals. 5Assymertic

confidence intervals

are due to

log-transformation

of the Completion

Time during the

analysis.

Completion Time decreases throughout the experiment with the ef-
fect sizes 6 of −13.6% (95%CI = [−37.7, 6.1]) between blocks 0 and 1,
−6.8% (95%CI = [−30.1, 12.3]) between blocks 1 and 2, and −7.2%
(95%CI = [−30.6, 11.9]) between the last pair of blocks. Despite rel-
ative large effect sizes, their variability does not allow to observe an
order effect.

Correctness slightly increases with the effect sizes of 0.5% (95%CI =
[−6.5, 7.5]) between blocks 0 and 1, 3.0% (95%CI = [−3.9, 9.9]) be-

5. Confidence intervals for differences of means are computed using Tukey HSD
procedure as d± (q

0.05,df,N−df/
√
2)σ̂
√

2 · df/N, where d is the mean of differences,
q is the quantile function of the studentized range distribution, σ̂ =

√
MSE and MSE

is the mean standard error, N is the number of observations, df is the number of
degrees of freedom for a factor.

6. Symmetric effect sizes computed as 2 · abs(ma − mb)/(ma + mb) · 100%,
conidence intervals scaled from those computed for means differences.

6.5 the need for code 159

●

● ●

−6000

−3000

0

3000

6000

0−>1 1−>2 2−>3

Relative Block Change

D
if

fe
re

n
ce

 o
f

m
ea

n
s

fo
r

C
o

m
p

le
ti

o
n

 T
im

e,
 m

s

(a)

● ● ●

−100

−50

0

50

100

0−>1 1−>2 2−>3

Relative Block Change

D
if

fe
re

n
ce

 o
f

m
ea

n
s

fo
r

C
o

rr
ec

tn
es

s,
 %

(b)

Figure 65 – Differences of means of (a) Completion Time and (b) Correctness
between different blocks are small.

tween blocks 1 and 2, and 1.5% (95%CI = [−5.3, 8.2]) between blocks
2 and 3.

completion time Mismatching question conditions, i. e. using
Code for Execution questions and using Viz for Bounds questions, re-
quired substantially more time to complete the trial than matching

question conditions, except for Easy tasks. With Code, participants
spent 14% (95%CI = [−22, 40]) more time on Easy Execution questions,
and respectively 132% (95%CI = [108, 146]) and 134% (95%CI = [111, 147])
more time on Medium and Hard Execution questions than on the Bounds

questions of the same difficulty. Similarly, with Viz representation,
participants spent 9% (95%CI = [−20, 49]) more time on Easy, 40%
(95%CI = [1, 102]) more time on Medium, and 57% (95%CI = [10, 129])
more time on Hard Bounds questions than on Execution questions of
the same difficulty. This result supports the definition of mismatching

question suggesting that the participants had problems answering
the question using the program representation not adapted to this
question. The smaller increase of Completion Time with Viz compared
to Code suggests that Viz representations allows to reason about mis-
matching question easier than Code.

Figure 66 shows means and 95% confidence intervals of the Com-

pletion Time for all conditions. We also show the density of the under-
lying distribution using a bipartite violin plot. ⊲ Mismatching

questions required

substantially more

time to answer.

Both representations show Completion Times close to those for match-

ing representation. For Bounds questions, it took on average 6% (95%CI =

[−27, 56]), −3% (95%CI = [−40, 56]), and 7% (95%CI = [−33, 70]) more
time compared to Code for Easy, Medium and Hard difficulties, respec-
tively. For Execution questions, it took 5% (95%CI = [−27, 53]), −14%
(95%CI = [−54, 54]) and −21% (95%CI = [−63, 58]) more time compared
to Viz for increasing Difficulty. These results suggest that, given
two representations, participants are likely to chose the matching one.
The fact that they don’t spend substantially more time than with one
representation may indicate that only one of two representations is

160 polyhedral program restructuring

●
●

●● ● ●●

●

●

●

●
●

●

●

●

●

●
●

1000

3500

10000

35000

1e+05

350000

Code/
Eas

y

Code/
M

ed
iu

m

Code/
H

ar
d

Viz
/Eas

y

Viz
/M

ed
iu

m

Viz
/H

ar
d

Both
/Eas

y

Both
/M

ed
iu

m

Both
/H

ar
d

Kind / Difficulty

T
im

e
(m

s)

Question

Bounds

Execution

Matching

Mismatching

Choice

Figure 66 – Means, 95% confidence intervals and distributon densities of
the Completion Time for all conditions. Mismatching questions
require up to 4 times more time. Completion Times for Both rep-
resentations are comparable to those for matching questions.

effectively used. We analyze this supposition later using eye trakcing
data.

Note the logarithmic

scale of the y axis.

Confidence intervals

are symmertic given

logarithmic scale due

to log-transform.

correctness The participants succeeded to answer the majority
of the questions with 93% (95%CI = [90, 95]) of correct results on aver-
age. Abandoned trials were considered incorrect answers. Figure 67

shows the means, CIs and distribution densities of the correct an-
swers ratio for all conditions.

With Code, participants gave more correct answers to matching, Bounds

questions (98%, 96%, 100% for increasing Difficulty) than to the mis-

matching Execution questions (85%, 71%, 82%, respectively). These
values result in effect sizes of 13.6% (95%CI = [1.7, 25.5]) for Easy tasks,
30.0% (95%CI = [11.8, 48.2]) for Medium tasks, and 20.7% (95%CI =

[10.4, 31.0]) for Hard tasks. Similarly, with Viz representation, par-
ticipants gave more correct answer to its matching question, Execu-

tion (96%, 98%, 100% for increasing Difficulty). However, for Easy

Bounds question the Correctness ratio was also as high as 96%. It
dropped to 81% and 88% for Medium and Hard questions, respec-
tively. These values result in effect sizes of 0% (95%CI = [−8.6, 8.6])
for Easy tasks, 18.6% (95%CI = [5.1, 32.1]) for Medium tasks, and 13.3%
(95%CI = [2.6, 24.0]) for Hard tasks.

The 100% success rates for Hard matching questions suggests that
participants correctly estimated the high difficulty of the task and
were answering Hard tasks more carefully.

6.5 the need for code 161

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

0

20%

40%

60%

80%

100%

Code/
Eas

y

Code/
M

ed
iu

m

Code/
H

ar
d

Viz
/Eas

y

Viz
/M

ed
iu

m

Viz
/H

ar
d

Both
/Eas

y

Both
/M

ed
iu

m

Both
/H

ar
d

Kind / Difficulty

C
o

rr
ec

tn
es

s
R

at
e,

 %
Question

Bounds

Execution

Matching

Mismatching

Choice

Figure 67 – Means, 95% confidence intervals and distribution densities of
the Correctness for all conditions. Medium and Hard questions
with mismatching representaiton result in lower correct answers
ratios.

With Both representations available, participants generally had a
high success rate for all Questions and Difficulties. The only ex-
ception is Easy Execution questions with the average 89.5% (95%CI =

[79, 100]) correctness rate, which is 11% (95%CI = [0.4, 21.5]) less than
the 100% Correctness ratio for the Bounds question of the same diffi-
culty. This divergence may be due to the mismatching representation
selection for this condition.

abandons Throughout the experiment, the participants only aban-
doned 4 trials. All abandoned trials featured mismatching questions: 3

Execution questions with Code and 1 Bounds question with Viz. Two of
the trials had Medium difficulty and two other had Hard difficulty. Par-
ticipants abandoned tasks after long time, 91 s on average, whereas
the average duration of these kinds of trials was 13.7 s. The partic-
ipants felt engaged with the task and insisted on finishing the trial
even when the experimenter reminded them the possibility to aban-
don it. They gave different reasons to continue depending on the
Representation. For Code, participant 2 said that "[he was] a skilled

programmer and [could] understand any code . . . given enough time". Par-
ticipants liked using Viz representation and found it engaging. Par-
ticipant 6 stated that "it [was] more entertaining to answer these questions

with graphics".
Given such low abandon rates, we did not perform any further

analysis.

162 polyhedral program restructuring

interaction for matching/mismatching questions We
observed important differences in Completion Time between matching

and mismatching questions. These conditions are defined as an inter-
action of Representation and Question.

Figure 68 shows the effect of Representation-Question interac-
tion on the mean Completion Time. For Easy tasks, all Representa-
tions feature close Completion Times. This similarity suggests that
representations may be used interchangeably for easy tasks if the
Correctness levels are the same. Matching question conditions shows
substantially lower completion times than mismatching question con-
ditions. When Both representations are available, mean Completion

Times are comparable for all Difficulties.

●
● ●

● ●
● ●

●

●

●

●

●
●

●

●

●

●
●

Hard

3500

10000

35000

100000

Code Viz Both Code Viz Both Code Viz Both

Representation

C
o

m
p

le
ti

o
n

 T
im

e
(m

s)

Question

●

●

Bounds

Execution

Easy Medium

Figure 68 – Effect of interaction between Representation and Question on
Completion Time for different Difficulties. For Easy tasks, Com-
pletion Times are similar across all conditions. For Medium and
Hard tasks, participants answered faster to matching questions.

⊲ Completion time

increases with

difficulty for

mismatching

questions, but

remains stable for

matching questions.

We also observed an effect of Difficulty on the Completion Time

with mismatching question conditions. For Execution questions with
Code, the mean Completion Time increases from 8.1 s (95%CI = [6.5 s, 10.3 s])
to 40.7 s (95%CI = [24.9 s, 66.6 s]) between Easy and Medium tasks, re-
sulting in the effect size of 133.4% (95%CI = [101.3, 150.0]). This ef-
fect is negligible, 4% (95%CI = [−90, 52]), between Medium and Hard

tasks in the same condition, suggesting that the presence of complex
loop boundaries makes the task hard, rather than the complexity of
the conditions. For Bounds questions with Viz representation, the
mean Completion Time increases from 8.6 s (95%CI = [6.6 s, 11.2 s]) to
17.2 s (95%CI = [11.7 s, 25.2 s]). The effect size reaches 66.6% (95%CI =

[21.4, 93.5]). Between Medium and Hard tasks, the effect is larger than
with Code, but still negligible due to large variability, 24.7% (95%CI =

[−34.6, 60.1]).
For matching question conditions as well as with Both representa-

tions available, Difficulty has negligible effect on the mean Comple-

tion Time, with effect sizes not exceeding 20%. These results suggest

6.5 the need for code 163

that a representation properly adapted to the task is effectively allevi-
ating the complexity of the task.

Figure 69 shows the effect of Representation-Question interac-
tion on the mean Correctness rate. For mismatching question con-
ditions, correctness rates are smaller for all conditions except Easy

questions with Viz representation. Surprisingly, Easy Execution ques-
tions result in lower correctness rates with Both representations, 90%
(95%CI = [79, 100]). However, the Correctness rates of Both are simi-
lar to Code that may be explained by the participants choosing code
representation even when it is mismatching the question.

●

●

●●
●

●

●

●

●

● ●
● ●

●

●

● ●●

Easy Medium Hard

0%

25%

50%

75%

100%

Code Viz Both Code Viz Both Code Viz Both

Representation

C
o

rr
ec

tn
es

s
(%

)

Question

●

●

Bounds

Execution

Figure 69 – Effect of interaction between Representation and Question on
Correctness rate for different Difficulties. Mismatching question
conditions result in lower Correctness rates. The effect is stronger
for larger Difficulties.

⊲ Correctness rate

decreases with

difficulty for

mismatching

questions, but not

for matching

questions.

The Difficulty of the task has an impact on the Correctness rates
in mismatching question conditions. The correctness rate drops from
85% (95%CI = [79%, 91%]) to 71% (95%CI = [65%, 76%]) when mov-
ing from Easy to Medium Execution questions with Code, resulting in
the effect size of 18.6% (95%CI = [5.5, 31.7]). It also drops from 96%
(95%CI = [90%, 101%]) to 81% (95%CI = [75%, 87%]) for Bounds questions
with Viz, giving an effect size of 16.5% (95%CI = [1.2, 31.8]). Interest-
ingly, Correctness rates increase by 13.7% (95%CI = [−11.2, 38.6]) when
moving from Medium to Hard Execution tasks with Code.

6.5.3 Representation Choice

metrics We derived the following metrics using the gaze infor-
mation. They were defined prior to the study in order to observe
the effects of representation choice on Preference and on the trial Com-

pletion Time. We hypothesize that the trial completion time increases
if the participant uses both representations to answer this question
since only one is sufficient. It may increase even more when he uses
the mismatching representation.

164 polyhedral program restructuring

Visual Preference, VP — duration of gaze on the Viz representation
normalized to the duration of gaze on either Viz or Code representa-
tion. Visual preference 1 means the participant did not look at the
code at all, while visual preference 0 means he only looked at the
code.

Representation Uncertainty — the measure of attention distribution
computed as 2 · abs(VP − 0.5). The closer is this value to 1, the more
evenly distributed is the total gaze duration on Viz and on Code. 0

representation uncertainty means that the participant only looked at
one representation.

Using the eye tracking data, we quantified the distribution of par-
ticipants’ attention between two representations. Figure 70 shows
whether their eyes were dwelling more on the visual representation
(higher) or code (lower). The center line corresponds to the equal dis-
tribution of dwell duration between representations. For Medium and
Hard tasks, participants looked mostly to the matching representation.
Effect sizes reach 66.6% (95%CI = [4.8, 128.5]) for Medium and 81.2%
(95%CI = [16.7, 145.7]) for Hard tasks. However, for Easy tasks they fix-
ated more on the Code representation independent of Question. For⊲ Participants

looked mostly at the

matching

representation for

harder tasks, but

preferred Code for

easier tasks even if it

was the

mismatching

representation.

Execution questions, they only spent 39.6% (95%CI = [25.1%, 54.0%]) of
time on average on the Viz representation, while this ratio reaches
59.5% (95%CI = [36.7%, 82.2%]) and 64.5% (95%CI = [40.8%, 88.1%]) for
Medium and Hard difficulty, respectively. This observation supports
the earlier suggestion that participants estimate both Viz and Code ap-
propriate for Easy tasks. They tend to prefer Code even for mismatch-
ing questions as it is a more familiar representation. This suboptimal
choice results in lower Correctness ratio for Easy Execution questions
as seen before.

●
●

●

●

●

●

Only Code (0%)

Mostly Code (25%)

Equal Use (50%)

Mostly Viz (75%)

Only Viz (100%)

Easy Medium Hard

Difficulty

V
is

u
al

 P
re

fe
re

n
ce

Question

●

●

Bounds

Execution

Figure 70 – Effect of interaction between Representation and Question on
Visual Preference. Matching representations are more used for
Medium and Hard tasks, but Code is more used for Easy tasks
with both Questions

6.5 the need for code 165

The reported representation Preference, depicted on Figure 71, shows
the same tendency. For Easy Execution tasks, participants preferred
Code in 56% cases while for Medium and Hard Execution tasks, they
preferred it only in 6% cases. Given that we asked for "most use- ⊲ Participants

preferred matching

representations for

harder questions.

ful" representation, the difference between reported Preference and
measured Visual Preference suggests that participants tend to look at
both representations even though they don’t find one of them useful.
Nevertheless, we observed positive correlation between reported Pref-

erence and Visual Preference (r = 0.41 (95%CI = [0.20, 0.57]), p < 0.001),
which may suggest that participants tend to use more the representa-
tion that they find most useful.

●

●

●

●

●

●

Code (0/100%)

More Code than Viz (25/75%)

Equal (50/50%)

More Viz than Code (75/25%)

Viz (100/0%)

Easy Medium Hard

Difficulty

R
ep

o
rt

ed
 P

re
fe

re
n

ce

Question

●

●

Bounds

Execution

Figure 71 – Mean Preference of representation. Participants strongly pre-
ferred matching representations for Medium and Hard tasks. For
Easy Execution questions, less than half preferred matching Viz
representation.

Finally, we observed a correlation between Representation Uncer-

tainty rate and the total trial Duration (r = 0.41 (95%CI = [0.19, 0.58]),
p < 0.001). We also found a negative correlation between Repre-

sentation Uncertainty rate and the Correctness (r = −0.27 (95%CI =

[−0.47,−0.04]), p = 0.023): the more participant’s attention was dis-
tributed between representations, the less correct answers they gave.
Although the correlation does not allow to link these values causally,
the connection between the simultaneous use of different represen-
tations and the total trial duration may suggest that one matching

representation should be preferred to two.

6.5.4 Visual Behavior

During the sessions, we observed several recurring aspects of par-
ticipants’ visual behavior. Using the eye tracking information pre-
sented as a timestamped sequence of gaze areas, we constructed a
normalized timeline of the areas using linear interpolation. We ana-

166 polyhedral program restructuring

lyzed the most noticeable cases manually and defined the metrics on
the timeline to quantify these aspects of behavior.

reread question in multiple trials, the participants reread the
question before giving definitive answer. They would place the cur-
sor over the answer they thought was correct, eventually press it with-
out releasing, reread the question and either confirm the answer orThe button triggers

the action if mouse

is released while the

cursor is still over

the button.

change it to the opposite. In most cases, participants did not spend
substantial time re-analyzing the representations and just changed
the answer. This behavior suggests they reached understanding of
the program overall, but they were uncertain about the question de-
tails. We quantify this behavior as follows. The last gaze on the
question area is at least as long the first gaze on the same area. The
first gaze on the question area is at least 2 seconds long, the time we
observed sufficient for all participants to read the questions entirely.
The last gaze should also end in the last 20% of the trial duration. In
many trials, reading the question takes a large part of the trial dura-
tion. If reading a question once takes more than 20% of trial duration,
the last gaze on question will not fully fit in the last 20%. Therefore,
we require it only to end in this interval. Following our observations,
we assume that most participants find the answer to the trial ques-
tion during the middle interval of the trial. We also allow short (less
than 20% of duration) gazes on representations after a rereading a
question.

All participants consistently demonstrated this aspect of behavior,
in 17%–58% of trials. They re-read the task independent of the Ques-
tion, in 36.8% (95%CI = [28.8%, 44.8%]) of trials for Bounds and 36.1%
(95%CI = [28.2%, 44.1%]) for Execution. The Difficulty of the question
also had a negligible effect on the number of trials with re-read.

confirmation/comparison quick look the participants took
a quick look at a representation before giving the definitive answer,
often after rereading the question. In the first 80% of the trial dura-
tion, representation R1 is used more than 60% of the total duration of
gaze on representations. In the last 20% of the trial duration, a gaze
on question area is followed by a gaze on representation R2 and back
on the question again. The gaze on the representation should be at
least 0.5 seconds long, the duration we observed long enough for par-
ticipants to scan the visual representation. If R1 and R2 are the same
representation, we refer to this behavior as Confirmation Quick Look.
This behavior is most often combined with Reread Question suggest-
ing that participants were aiming at high accuracy. Otherwise, we
refer to it as Comparison Quick Look. This behavior can be explained
by the need to verify the choice of representation prior to answering
the question.⊲ Participants used

the second

representation for

confirmation.

6.5 the need for code 167

Figure 72 – Gaze timelines for selected trials featuring Comparison Quick
Look (top) and Confirmation Quick Look (bottom).

All participants performed Confirmation Quick Looks in the experi-
ment, in 21% to 79% of their trials, mean 48% (95%CI = [42%, 54%]).
Figure 72 shows participant’s gaze target throughout the selected tri-
als. The type of Question did not seem to have an effect on the
number of confirmation looks, 47% (95%CI = [38%, 55%]) and 49%
(95%CI = [41%, 58%]) of trials for Bounds and Execution, respectively.
However, Medium questions resulted in more confirmation looks, 39%
(95%CI = [27%, 48%]), than Easy questions, 56% (95%CI = [46%, 66%]),
with the effect size of 36% (95%CI = [2, 73]). Hard questions resulted
in less confirmation looks, 49% (95%CI = [39%, 59%]), but not consider-
ably.

start in reading order the participants may have started an-
alyzing the representations in their usual reading order, whether it
was matching the question or not. As all our participants have a cul-
tural background of reading left-to-right, we define this metric as the
first gaze on the representation that is on the left and lasts at least
0.5 seconds.

Participants started the trial by looking on the left representation
in 58% (95%CI = [49%, 67%]) cases on average. One may expect a 50%
ratio since in a half of trials, the matching representation is indeed on
the left. While the expected mean is within the confidence interval,
we observed large inter-participant variability. Two of the participants
started with the left representation in 83% cases, and another one in
67% cases. Nevertheless, we did not find a correlation between the
ratio of trials started with left visualization and the Completion Time

of the trial or its Correctness.

number of representation changes while Representation Un-

certainty gives a measure of attention distribution between represen-
tations, we need a more detailed description of this distribution. For

168 polyhedral program restructuring

example, whether the participants use both representations equally
throughout the trial, perform one switch, or converge fast to the
matching one. We compute the number gaze switches between rep-
resentations, possibly passing through the question area or off-screen
area. Each gaze should be at least 0.5 seconds long. This metric gives
us a better understanding of how participants use both representa-
tions than Representation Uncertainty that just signifies they do use
both representations.⊲ Participants

changed

representations more

often when Visual

representation was

matching the

question.

We observed an interesting change in representation selection. The
number of representation changes for Execution question is large for
Easy tasks, 1.7 (95%CI = [0.9, 2.6]) per trial on average, and decreases
to 0.8 (95%CI = [0.3, 1.4]) for Hard tasks, see Figure 73. On the contrary,
the number of representation changes for Bounds question is small
for Easy tasks, 0.6 (95%CI = [0.1, 1.0]), and increases to 1.0 (95%CI =

[0.3, 1.8]) for Hard tasks.

0.0

0.5

1.0

1.5

2.0

2.5

Easy Medium Hard

Difficulty#
 R

ep
re

se
n

ta
ti

o
n

 C
h

an
g

es

Question

Bounds

Execution

Figure 73 – The number of times participants changed representations dur-
ing the trial increases with Difficulty for Bounds questions and
decreases for Execution questions.

Combined, these results suggest that for Easy Execution tasks, par-
ticipants actually use both Code and Viz representation interchange-
ably. For Easy Bounds tasks they mostly use one representation, Code.
On the other hand, for Hard Code questions, they tend to look for
extra information in the Viz representation even if Code is more ap-
propriate. At the same time, for Hard Execution questions where Code

is clearly the mismatching representation, participants most often rely
on the Viz from the start.

switch representation we observed several cases where par-
ticipants chose the mismatching representation in the beginning, then
noticed it and switched to another, matching representation, possibly
after rereading the question. This behavior can be defined as follows.
In the first part of the trial, less than 80% of total duration, the par-
ticipant only looks at the representation R1 and the question. In the
second part, he only looks at another representation, R2, and the ques-
tion. We compute the relative duration of the first part in percents of

6.5 the need for code 169

the total trial duration and the number of gazes of at least 0.5 sec-
onds on the representation. We also differentiate between switches
from mismatching to matching representation and backwards.

Figure 74 – Gaze timelines for selected trials featuring Representation
Switches to the matching (top) and mismatching (bottom) rep-
resentations.

Participants switched the representation in 17% (95%CI = [13%, 21%])
of the trials. In 29% (95%CI = [15%, 42%]) of these trials, they switched
to the matching representation. Considerably more switches happened
for Bounds questions, 24% (95%CI = [17%, 31%]) of the respective trials,
while only 10% (95%CI = [5%, 15%]) of the Execution questions resulted
in a representation switch, giving an effect size of 78% (95%CI =

[27, 128]). The switch happened after 66.7% (95%CI = [60.3%, 72.9%])
of trial duration on average, with no significant difference between
Bounds and Execution questions. Relating this data with numerous
switches to mismatching representation, we theorize that participants
resorted to Viz representation, possibly due to its novelty or visual
appeal, after having already found the answer using the Code. They
may have expected Viz to have extra clues for the answer or be better
matching for both questions. Figure 74 shows participant’s gaze tar-
get throughout the selected trials featuring representation switches.

6.5.5 Discussion

matching representation to the task Overall, we observed
that participants identified the suggested matching between proposed
tasks and representations. When faced with both representations in
the second part of the experiment, they are more likely to select the
matching representation. Considering the first part of the experiment ⊲ Users were more

open to visual

representations once

code limits for the

task clearly

demonstrated.

as an extensive training in representation use, we can argue that the
developers learned the question-representation mapping successfully
thanks to the practical demonstration of the each representation’s
benefits. The choice of representation without extensive hands-on

170 polyhedral program restructuring

assessment of these benefits remains an open question. Participants
were generally more open to the visual representation even though
its drawbacks for the mismatching tasks were immediately demon-
strated.

representation choice When both representations are avail-
able, a majority of the participants used both even in the case where
one representation would suffice. This behavior can be caused by
different reasons: visual appeal and novelty of the graphical repre-
sentation, familiarity and trustworthiness of the code. Several partic-⊲ Participants used

both representations

even when one

would suffice,

sometimes resulting

in longer completion

times.

ipants stated that they were more confident in the answer using the
code. They also tried to gain in confidence by using the second repre-
sentation to confirm the answer, whenever it was possible to achieve
without considerable effort. In multiple cases, they only had a quick
glance on the second representation to self-justify the initial represen-
tation choice. On the downside, using both representations led to
longer task completion times in several cases. The presence of both
representations tricked participants into choosing the mismatching
representation, which, in turn, increased the error rate.

The current study structure did not allow us to evaluate the effect
of removing the code from the program manipulation tool, but we
may expect the negative effect on the tool perception will be lower if
the potential users have a practical example of code limitations for a
given task. This hypothesis can be operationalized and transformed
into a separate study.

strategies for mismatching representations The users
quickly developed strategies to apply given mismatching represen-
tations and stuck with them throughout the experiment. Most suc-
cessful strategies relied on pruning: for Bounds questions, checking
whether a point obviously outside bounds was present in the visu-
alization; for Execution questions, checking whether a sub-condition
did not hold for the given point. Participants resorted to this strategy
independent of the question being negative. This strategy did not
have a strong effect on the results as we asked both positive and neg-
ative questions and ensured that participants had to verify a minimal
number of conditions for harder trials before getting the definitive
answer.

Several participants were very confident about their strategies and
were tempted about using them given both representations. For ex-
ample, P7 used the Code to answer a Hard Execution question when
both representations were available. When asked about this choice,
he stated "[he] did it out of a challenge for [his] strategy". He than checked
the answer with the matching Viz representation.

6.5 the need for code 171

engagement We observed a very low number of abandoned tasks.
Participants abandoned tasks with mismatching questions when only
one representation was present independently of the type of this rep-
resentation. This observation may give a clue for improving accep-
tance of graphics-based approaches for program manipulation: it is
necessary to demonstrate on practice the limitations of the code for
a particular manipulation task. In most cases, the participants con-
tinued the trial even after the experimenter reminded them the possi-
bility to abandon. For Code, they may have been guided by necessity
to demonstrate their expertise in programming. Several participants
found the visualization appealing and engaging, encouraging them
to continue.

multiple coordinated views While our study demonstrates a
considerable decrease in completion time and error rate with the rep-
resentation designed specifically for the particular task, creating an
ad-hoc representation for a each possible program manipulation task
seems problematic. On one hand, it would require a tremendous ef-
fort from the designer. On the other hand, the user will be faced with
numerous possibly disparate representations and will have to men-
tally keep them in sync. We suggest two complementary approaches
for the general case. First, analyze the set of program manipulation
tasks together, select all the aspects of the program relevant for these
tasks and design a set of of coordinated representations for these as-
pects. Second, provide the user — who is a professional developer —
with an ability to map these aspects to the visual and textual cues
at will, letting him to appropriate and personalize his working util-
ities. Both approaches, should they involve multiple views, are to
coordinate manipulation to smoother the transition between them.

potential follow-ups This study is primarily focused on the
static visualization where users are not instructed to interact with
the representation. For evaluating program manipulation through
both representations, one should consider interaction affordances of
each of them. A study with a similar design featuring different tasks
and success criteria should be conducted to assess the representation
choice for program manipulation, after ensuring that both represen-
tations technically allow for identical program transformations.

A separate study with eye tracking may be conducted to observe
the effect of simultaneously changing multiple representations. On
one hand, keeping the changes immediately synchronized may im-
prove understanding of the program transformation effect [213]. On
the other hand, multiple moving objects are likely to distract the user
from the manipulation and cause more errors. Given Clint’s transfor-
mation replay functionality, we can differentiate between coordinated

172 polyhedral program restructuring

updates triggered by the system or performed in response to the user
interaction.

6.6 interactive program restructuring in the polyhe-
dral model

In order to enable interactive program restructuring in Clint, we mapped
direct manipulations of the program visualization to the polyhedral
program transformation directives. The visualization provides infor-
mation that is not easily accessible in the source code and the direct
manipulation provides way to interact with the program through the
visualization.

transformations to transitions The manipulation-directive
mapping is bidirectional: graphical action on the visualization are
translated into the transformation directives, and transformation di-
rectives are translated into the animated transitions. This essentially
represents program transformations graphically as transitions. Transi-
tions can be triggered by user input or by an automatic program opti-
mizer. Provided consistency between user actions and transitions, we
can store, replay, adjust and reuse sequences of program transforma-
tions in a visual way. On one hand, this allows the developer to better
understand the functioning of the polyhedral optimizer, which does
not operate in code-level terms by itself. On another hand, it gives
the developer fine-grained control over the optimization process en-
abling him to tweak and hack the program transformation in cases
where optimization heuristic fails.

direct manipulation replaces directives Compared to Clay

and Chlore combination that enable developer-compiler partnership⊲ Interactive

program

restructuring

removes the gap

between visual

analysis and hitherto

textual modification.

by themselves, interactive visual approach in Clint replaces transfor-
mation directives expressed as text with direct manipulation. Not
only this allows to address the issues of directive-based approach,
such as transformation target selection, but it removes the need for
the user to transition between the visual representation used for pro-
gram analysis and the directive-annotated code used for program
transformation.

change of strategy An empirical evaluation demonstrated the
utility of the interactive program restructuring tool and its benefits
compared to conventional code editing. Our results suggest that the
interactive approach reduces both the program analysis and the pro-
gram transformation time. Furthermore, the presence of interactive
visualization is likely to change they strategy developers use when
faced with a complex optimization problem. Instead of long and cum-
bersome program analysis, developers started to explore the space

6.7 conclusion 173

of available program transformations in order to find the most suit-
able one. While this trial-and-error strategy may not be preferred for
production-level program optimization, it may allow expert develop-
ers to alleviate automatic optimization shortcomings as well as may
allow the optimizer designers to improve their heuristics. Finally, the
combination of an automatically computed optimization and the user
input allows to prevent the developers from performing boilerplate
transformations manually (even with the help of Clint). At the same
time, they remain in control of the final program transformation and
may avoid cases where an heuristics mishap jeopardizes the program
optimization by diverging from the original intention.

representation choice During the preliminary evaluation, we
observed that developers were reluctant to abandon the code and
use exclusively the visual representation, even after its benefits were
demonstrated. We conducted a controlled study of how the develop-
ers choose between code and visualization faced with different tasks.
After a sufficient practice, they tend to chose the representation that is ⊲ Users are more

likely to rely on

novel yet more

appropriate

representations for

hard tasks.

more appropriate for the task at hand if it is difficult. For easy tasks,
they prefer the most familiar representation, the code, even though
it could make them less efficient and accurate. When both repre-
sentations are visible, the developers are susceptible to look at both
representations in the cases where one would suffice. This behavior
increases the task completion time, but may also increase developers’
confidence in the result. An additional study is necessary to assess
the perception of switch between multiple and single-representation
interfaces for program visualization.

6.7 conclusion

In this section, we introduced direct manipulation into Clint visual-
ization to implement interactive program restructuring. It allows devel-
opers to directly manipulate with the program visualization in order
to restructure it for parallelization and memory access locality. We
evaluated the usability of interactive program restructuring with pro-
grammers and observed that it effectively changes the strategy they
use when faced with complex loop parallelization tasks. Further-
more, we conducted an eye-tracking study with combined textual-
visual representation to assess the effects of multiple representation
on program manipulation. We observed that, given sufficient train-
ing, developers chose a single representation that better matches the
task at hand and rarely change it. When they decide to change rep-
resentations, they take more time to complete the task are are more
likely to complete it with errors.

174 polyhedral program restructuring

designing task-tailored representations A program is a
complex object described by numerous informational aspects. While
the source code is a primarily used representation for the program,
we argue that it is not the only possible representation since it does
not include all of the pertinent aspects, for example the statement
instance-wise dependences. The source code is rather one of multiple

representations the developer may use to interact with the program,
which is not accessible directly, but through representations. Software
visualizations are another representations that abstract away certain
aspects of the program and highlight other aspects. For a visualiza-
tion to be useful, the aspects it highlights should be different from
those already available in other representations (or, at least, more
easily available) and appropriate for a specific task in program devel-
opment or manipulation. Multiple representations may be necessary
when none of them taken individually provide all the necessary as-
pects of the program in an easy to manipulate way.

inaccessible object of interest While one very specific rep-
resentation may be the best option for a specific program manipula-
tion task, the generalization of this approach would imply creating
tailored representations for each program restructuring-related task
and making the developer switch representations along with tasks.
Aside from considerable effort in designing these representations, it
may reduce the productivity of the developers by requiring them to
learn all the different representations and constantly maintain the link
between all of them. A more balanced approach is to first perform
the analysis of the tasks in program manipulation and then design a
set of representations, textual or visual, that address all of these tasks.
This set of representations should capture all the program aspects
required by all tasks in a way that supports interactive manipulation.

primary and secondary tasks The proposed program visual-
ization and manipulation system is tailored to exploiting parallelism.
Yet parallelism is not the only potential source of performance in-
crease in the polyhedral model. Improving memory access locality,
i. e. scheduling accesses to the same or adjacent addresses to leverage
the cache system, allows to drastically increase performance. How-
ever, program transformations for locality do not necessarily corre-
sponds to transformation for parallelism. Worse, they are often con-
tradictory. For example, distributing away a reduction statement en-
ables parallelism, but reduces locality. In order to properly integrate
access locality feedback in an interface oriented towards paralleliza-
tion, we need to provide this information discreetly, without distract-
ing the user from the primary task.

7
C O N S T R A I N E D M A N I P U L AT I O N

7.1 constrained program manipulation and background

information

Program restructuring using the advanced formalism of the poly-
hedral model allows to verify semantics preservation throughout pro-
gram manipulation. In Clay transformation set, we avoid transfor-
mations that do not respect global validity conditions by construction.
Direct manipulation in Clint does not allow the user to perform trans-
formations leading to invalid schedulings. However, some valid pro-
gram transformations may have undesirable effects, in particular a
transformation may violate a data dependence and break the seman-
tics of the program. Unless compensated by a further transformation,
this manipulation makes the scheduling illegal. Another example is
a transformation that decreases the locality of the data accesses and
thus the potential performance of the program. While these transfor-
mations are jeopardous, they should remain allowed as the user may
intentionally override the conservative semantics preservation checks.
The program transformation tool can notify the user about the danger
of such transformations, but not prevent them.

In order to integrate information about potential negative effects of
transformation, let us consider the ways to extract it from the model
before selecting the appropriate channel to communicate it. Depen-

dence violation can be used as a binary property of the transformation
or can be quantified further. For example, the number of different de-
pendences violated by the transformation or the total number of de-
pendent statement instance pairs, the execution order of which was
interchanged. This information is already present in Clint visualiza-
tion as color-based feedback: violated dependences turn red. However,
as it is always the case with feedback, the user has to complete the
manipulation before receiving the information on its effect. The feed-

forward approach allows the user to evaluate the effect of the manipu-
lation before completing it. Feedforward reduces the interaction time
and allows the user to correct their manipulation as they perform
it [21, 150].

To introduce feedforward in Clint, we need to analyze the effect
of transformation before it is requested by the user. We can either
pre-analyze all possible transformations from the current schedule,
or focus on particular transformations when the user starts the ma-
nipulation. Although iterative approaches to polyhedral scheduling
space exploration exist [205, 206], they are not adapted to directive-

175

176 constrained manipulation

based transformations and lead to exponentially large search spaces.
Therefore, we have to perform the program transformation and ana-
lyze its effects during the direct manipulation. Given the simplicity
of program transformation in Clay, performing one manipulation and
analysis step is feasible. In addition to dependence violation feedfor-
ward, it allows to show the user the outcome of the transformation
during the manipulation.

Effects of transformation on memory access locality can also be com-
puted during the manipulation. However, they are hard to quan-
tify [19, 48, 181] and would require a specific visualization technique.
Attempts to integrate this information into the existing visualization
are likely to result in cluttered, harder to understand interface as Clint

already uses numerous visual cues for representing program execu-
tion and dependences. Given that transformations for locality im-
provement are often orthogonal, if not opposed, to transformations
for program exposure, it is desirable to use different interaction chan-
nels to communicate locality and parallelism information. In a gen-
eral task of increasing performance of a program using a variety of
methods, one of the methods can be considered primary and others
secondary. When all methods are related to each other, it is important
to inform the user about the effects of such secondary methods while
they are using the primary task.

A transformation is considered "dangerous" when it has an unde-
sirable effect, i. e. leads to a potentially problematic schedule of the
program. This schedule is represented as a specific state of the visu-
alization characterized by polygon shapes and positions. When the
user is directly manipulating visual objects, we can provide him with
the feedforward on the danger of certain positions and shapes. We
propose a force metaphor: potentially dangerous positions repulse user’s

manipulation making him physically overpower the system’s warning. We
rely on modifications of the cursor behavior during the direct ma-
nipulation to invoke the feeling of resistance. The simulation of hap-
tic perception (texture, weight) using only visual cues is known as
pseudo-haptic illusion [163, 169]. With conventional pointing devices,
such as mice or trackpads, visual modifications to invoke haptic ef-
fect boil down to altering the pointing transfer function — the mapping←֓ Pointing transfer

function. between the position of the pointing device in physical space and the
position of the cursor on screen.

Both dependence violation and access locality information in the
polyhedral model offer different degrees of precision, e. g. binary or
multilevel (number of violated dependences), and granularity, e. g. at
loop, statement or statement instance level. Prior to integrating this
information in Clint using pseudo-haptic channel, we need to select
the information structure and resolution according to the perceptual
limitations of the channel.

7.2 pointing transfer functions and pseudo-haptic feedback 177

While pointing transfer functions have seen a major research in-
terest, most advancements are focused on improving target selection
with semantic pointing [34] or simulating haptic perception through
vision with pseudo-haptic feedback [163]. On the contrary, we are inter-
ested in mapping the dynamically changing pointing transfer func-
tion, i. e. the cursor behavior, to the abstract information that is not
anyhow related to the cursor motion itself. While potential selection
targets can "attract" the cursor in semantic pointing, and virtual ob-
ject can have "weight" thanks to pseudo-haptics, we are interested in
human ability to interpret and quantify the cursor behavior beyond
senso-motoric illusion.

We study the morphology of the pointing transfer function and
create a design space of its properties that can be mapped to the task-
related data. We then select compelling point designs and evaluate
them empirically in order to discover whether and how well people
can perceive them. Finally, we demonstrate how information related
to polyhedral program restructuring can be mapped to cursor behav-
ior in Clint interface.

7.2 pointing transfer functions and pseudo-haptic feed-
back

The growing size of displays used for direct manipulation inter-
faces created a mismatch between the active range of the pointing de-
vice, limited by human hand reach, and the range of cursor positions
on screen. This issue was resolved by introducing a non-identity map-
ping between the input device and the cursor displacement: small
movements of the device resulted in larger movements of the cur-
sor [171]. This mapping effectively separated the coordinate space of
the device, the control space, from the coordinate space of the pointing
cursor, the display space. At first, the mapping was implemented as
constant scaling. Hence its name Control-Display gain, or C-D gain for ←֓ C-D gain

short.
Unexpectedly large cursor movements led to difficulties in selec-

tion through pointing especially for small targets. A group of tech-
niques, commonly referred to as mouse acceleration, was implemented
to ensure precise pointing and fast cursor movement. Mouse accel-
eration boils down to making the C-D gain vary as a function of
input device speed. It builds on the observation that people move the
device slowly when seeking precision and fast when seeking speed.
Generalization of the varying C-D gain led to the notion of point-

ing transfer function that maps input device movements in the control
space to the pointing cursor movements in the display space [15].

Pointing transfer functions are present in all modern graphical sys-
tems and take a variety of non-linear, often piecewise shapes [50].
Most systems do not offer precise control of the transfer function

178 constrained manipulation

shape parameters, but instead provide users with simple configura-
tion panels to disable it or adjust its base C-D gain. Casiez et. al stud-
ied the utility of dynamic pointing transfer functions techniques and
identified the usable range of C-D gains [51]. Mandryk and Gutwin
evaluated the utility and perceptibility of a “sticky target” effect cre-
ated by a dynamic piecewise transfer function [178]. They observed
that large changes of C-D gain are noticed by the users but are likely
to interfere with the pointing task.

Dynamic pointing transfer functions are the cornerstone of two
broad groups of interaction techniques. On one hand, semantic point-

ing distorts the relation between movements in control and display
spaces to improve target acquisition [34]. On the other hand, pseudo-

haptic illusion modifies the cursor speed and shape to induce a hap-
tic feeling without force feedback device [163]. Despite different ob-
jectives, both pseudo-haptic feedback and semantic pointing rely on
subtle changes in pointing transfer function that are not interpreted
consciously by the user. Pseudo-haptic feedback was demonstrated
to improve small target acquisition in a Fitts’ law task, similarly to
semantic pointing [185].

Both semantic pointing and pseudo-haptic illusion techniques have
been extensively studied in order to make C-D gain variations as
smooth and invisible as possible for the user. However, communi-
cating supplementary information through this channel – in, e. g., vi-
sually cluttered interfaces – requires to make C-D gain changes explic-
itly perceivable by the user, which in turn requires a more systematic
view and a better understanding of pointing transfer functions for
dynamic C-D gain changes and of their effects on interaction.

7.3 morphology of the transfer function

A pointing transfer function maps the position of the input device
in the control space to the position of its visual representation, e.g. a
cursor, in the display space. Not only it takes a variety of different
shapes, but may also depend on multiple arguments, such as current
velocity, acceleration, cursor position, and the context of interaction
including modes, hardware and software configuration and settings.

7.3.1 Transfer function arguments

In most graphic systems, default pointing transfer functions either
maintain a static C-D gain or increase it depending on the input device

velocity in order to ease and quicken large cursor moves. On the
contrary, semantically-loaded techniques are often based on pointing
transfer functions with more arguments, including

— input device displacement and derived values: velocity, accelera-

tion and higher-order derivatives;

7.3 morphology of the transfer function 179

— time;
— cursor position; and
— interaction context;

A combination of these arguments allows to build advanced pointing
and pointer-based interaction techniques.

displacement All pointing transfer functions take input device
displacement as an argument, even if it is kept unmodified. For ex-
ample, a constant C-D gain can be represented as a linear function of
input device displacement where the slope corresponds to the gain
and the intercept is zero. However, more advanced uses include non-
linear dependences, where the C-D gain itself may change depending
on the displacement, for example most system pointing transfer func-
tions increase the C-D gain non-linearly for large displacements [50].
Any non-linear function may be used as long as its value is zero for
zero input device displacement to ensure no cursor movement hap-
pens without moving the input device. Given that the displacement
is an N-dimensional vector, where N is the dimensionality of point-
ing (N = 2 for mouse pointing), a function can transform different
components of the displacement vector differently. For example, it
may change the direction of cursor displacement along with its dis-
tance by changing the ratio its between horizontal and vertical compo-
nents. This technique decreases the movement time in steering tasks
thanks to subtle readjustments of movement along a narrow path [2,
5]. We prefer pointing device displacement to position because most
widespread pointing devices (mice and touchpads) do not communi-
cate their absolute position, but rather the displacement between two
positions.

velocity Average velocity is computed as a displacement distance
divided by its duration. In the case of constant C-D gain, there is no
difference between applying the linear pointing transfer function to
the displacement vector, or to the velocity vector, and then using the
update velocity to compute the new position by adding the distance
traveled by the cursor during the given time interval. Depending on
the intended movement semantics, pointing transfer functions may
be specified using displacement or velocity arguments. For exam-
ple, techniques that add acceleration to the cursor movement, such
as force feedback simulation in pseudo-haptic techniques [7, 170], ex-
press pointing transfer functions for velocity.

acceleration and higher-order derivatives Acceleration,
jerk and other high-order derivatives may also be used as arguments
of pointing transfer function. However, they require multiple suc-
cessive displacement measurements to be properly computed and
tend to become inaccurate if these measurements are made over a

180 constrained manipulation

large time interval. Therefore, they are mostly used to build pre-
dictive models for pointing rather than actual pointing transfer func-
tions [153].

time The pointing transfer function may as well change depend-
ing on time. We distinguish two different cases:

— rare instantaneous changes, such as when the user changes set-
tings of the mouse acceleration in their graphic system; and

— steady dependence on time, in which case the C-D gain con-
stantly evolves with time.

Steady dependence on time may be used, for example, to gradu-
ally introduce a dynamic pointing transfer function, which combined
with other arguments adapts to user’s behavior over time [124]. In
any case, even when it is not explicitly used in the the pointing trans-
fer function, time is used to compute movement velocity, acceleration
and other derived values described above.

cursor position Techniques that dynamically change the C-D
gain to produce effects related to visual on-screen information intro-
duce pointing transfer functions that depends on the on-screen cur-
sor position rather than on the raw input device movement. While
the actual cursor position may be computed from its initial position,
pointing transfer function and all input device displacements, it also
makes the pointing transfer function recursive and increasingly com-
plex to compute over time. The cursor position provides a robust
alternative to such intricate definition, and is closer to the underly-
ing model: all visual elements have a certain shape and a position in
the same coordinate system as the cursor. For example, object point-
ing [116], target expansion [66, 115], cursor expansion [54] or snap-
ping [22] techniques heavily rely on cursor position, whether they
affect the cursor position, its speed or its shape. On the other hand,
pseudo-haptic illusions may either depend on the on-screen position
of a specific object [170] or be effective over the whole interaction
space to simulate tactile images [7].

interaction context In some cases, the mapping between the
control and display spaces may depend on the interaction context,
which is not directly related to a position in any space or of any
visible object. For example, a CAD direct manipulation interface may
change the velocity of the cursor depending on the weight of the vir-
tual object(s) being manipulated [193]. It carries contextual informa-
tion about the interaction that is happening, e.g. the weight in our
example, and its effect remains steady wherever the object is placed,
contrary to using pointing transfer function defined over cursor posi-

tions.

7.3 morphology of the transfer function 181

7.3.2 Transfer function shape structure

While the various shapes of the system pointing transfer functions
were extensively studied in the literature [50], interaction techniques
relying on C-D gain modification feature a broad range of shapes
depending on their intended use and expected effects. For exam-
ple, pseudo-haptic simulation of physical properties uses transfer
functions that reproduce the effects of the corresponding physical
laws [169, 212]. We propose two properties for classifying shapes:

— continuity that is directly related to the transfer function shape;
and

— output structure that describes whether the function affects only
the absolute value of cursor’s velocity, its direction, or both.

continuity A pointing transfer function should be defined for
the entire possible range of its arguments. However, for a particular
argument, this definition may be either:

— Continuous, featuring a single way to map control space dis-
placement to visual space displacement albeit not necessarily
linearly; or

— Piecewise, featuring different mappings for different intervals of
the input arguments.

A special case of a piecewise pointing transfer functions, often found
in practice, is the one with different values on different sides of the
interval boundary resulting in a "jump". We refer to such functions
as Piecewise with Jumps.

Piecewise functions may include definition intervals with similar
properties. In practice, one may design a function with different con-
stant levels of C-D gain over specific areas and define a transition

interval that describes how these different levels are connected to-
gether without creating jump artifacts that may hamper perception of
C-D gain change.

output structure System pointing transfer functions mostly af-
fect the absolute value of the cursor displacement by changing all its
directional components proportionally. Such direction-agnostic trans-
fer functions have Scalar output. On the contrary, transfer functions
that modify the cursor motion direction have Vector output. Even
though one can express Scalar output as a special case of Vector out-
put, their application remain different: pointing improvement tech-
niques, e. g. DynaSpot [54], use Scalar output while those for steering
rely on Vector output [2].

Note that the output structure may not be connected to the struc-
ture of the input arguments: the displacement may change differently
depending on the input device movement direction (vector input),
but keep its direction consistent (scalar output). For instance, move-

182 constrained manipulation

ment toward an attractive target may be faster than moving away
from it, but without any direction changes.

7.4 a design space for c-d gain change-based interfaces

Pointing transfer function arguments are often combined with vi-
sual feedback either to improve or to reinforce the perceptual effect
associated with the cursor behavior. For instance, decreasing cursor
size while increasing its speed could suggest it is going deeper in
a virtual third dimension [170]. In addition, C-D gain changes due
to the function’s shape and arguments can be designed either to be
seamlessly integrated in the interaction or to be explicitly noticeable
by the user. In order to better describe these possible associations,
we propose a design space that classifies pointing transfer functions
according to the following principles.

— Arguments of the pointing transfer function.
— Shape and Structure of the pointing transfer function.
— Associated Visual Channel.
— Interpretation of C-D gain change.

7.4.1 Design Space Dimensions

pointing transfer function arguments

This dimension aggregates the possible arguments of a pointing trans-
fer function, as discussed before. It is made of multiple binary sub-
dimensions: input device displacement/velocity, cursor position, interac-

tion context, time. For better accuracy, specific aspects of the argu-
ments can be specified: direction and velocity of the displacement,
particular values of the interaction context such as the state or the
number of dragged objects, etc.

pointer transfer function shape and structure

This dimension describes both the specific form of the pointing trans-
fer function, such as linear or exponential, and its structure as de-
scribed above. The shape defines how the arguments are connected
to each other and how they affect the output within its structure. We
do not restrict the shape classification to, e. g., linear and non-linear,
but rather leave the interpretation open for any definition.

associated visual channel None, Cursor, Background.
The change in cursor motion is often combined with visual modality,
which reinforces or eases its perception, most often with the modifi-
cations of Cursor shape or size. For example, bump and hole effects
were successfully simulated by the simultaneous change of the cursor
speed and size [170]. If we consider the C-D gain change as a chan-

7.4 a design space for c-d gain change-based interfaces 183

nel for communicating information, it becomes redundant with the
visual channel as they both convey they same information.

Contrary to the pointing cursor, which is displayed on top of any
other graphics, i. e. in the foreground, all the other graphical elements
can be considered in background. Visual Background information may
complement different arguments of the pointing transfer function.
For example, on-screen objects with non-standard C-D gain may be
highlighted in color as in Sticky Widgets [3]. Background may either
remain static when C-D gain changes or change as well, such as in
elastic image deformation [7]. Background and Cursor modifications
are not mutually exclusive and are often used together, for example,
the elastic image deformation technique features both.

interpretation of c-d gain change Illusion, Association.
Most of existing interaction techniques featuring dynamic C-D gain
use subtle changes that are barely perceivable by the user. Semantic
pointing techniques leverage this changes to adjust pointing on a tar-
get without necessarily making the user aware of such adjustments,
thus creating a sort of illusion of precise selection. Pseudo-haptic tech-
niques rely even more on illusion rather than conscious interpretation
to induce a haptic feeling [212]. Although recent work on elastic im-
ages [7] features more explicit connection between the mouse action
and visual feedback suggesting a deformation, it still exploits illusion.
The key difference between illusion and association is in users noticing
the change consciously and interpreting it with respect to the task at
hand, such as associating a particular cursor behavior to a value or a
category, in the same way they would do for a color in a bar chart.

7.4.2 Using the Design Space: Combining Dimensions

size

area limits

time input device
velocity

cursor
position

interaction
context

static
visuali-

zation

visual
cursor

change

cursor
motion
change

Figure 75 – "Bumps and Holes" experiment [170] in the transfer function
arguments design space.

Our design space unifies the representation of interaction techniques
based on dynamic pointing transfer functions, including semantic
pointing and pseudo-haptic effect. It covers approaches that either

184 constrained manipulation

involve dynamic C-D gain modification or rely on visual modifica-
tion of the cursor, or both. To represent an interaction technique in
the design space, we:

1. list the arguments of the transfer function and analyze how each
of them or their combination impact on the C-D gain, capturing
the shape properties of the transfer function;

2. specify which attributes of the Cursor and Background visual rep-
resentations are affected by the transfer function, e. g. cursor
size or background color, and which are statically present, e. g.
pointing targets;

3. associate the channels with similar dependencies on a specific ar-
gument, building the association diagram following the model
of Figure 75;

4. put the technique into a high-level view aggregating the changes
it makes to the Cursor visualization as one dimension and the
expected Interpretation as another (Figure 76).

Figure 76 – Most existing techniques use C-D gain modifications to create
illusions often involving cursor shape or size modifications.

The literature analysis shows that multiple successful pointing facil-
itation or effect simulation techniques leverage the redundancy between

multiple channels, propagating the effect of pointing transfer function
to cursor shape and background in a multimodal approach [65]. Our
design space captures this property with its channel association di-
mension that allows to explore C-D gain perception combined with
other visual information, in a more information-centric perspective.

As an example of argument association, Lécuyer et. al ’s Bumps
and Holes experiment [170] features a piecewise pointing transfer
function without jumps, that depends polynomially on cursor position.
The cursor position argument is connected to the dynamic Cursor size
visual feedback and a static Background delimits variable C-D gain
zones. In Figure 75, we present the shape of this function with solid

7.4 a design space for c-d gain change-based interfaces 185

line and piece boundaries with dashed lines. We also remove hori-
zontal grid lines to denote that the C-D gain change is reflected by
Visual Cursor Change (size) and connected to static visual cues (bump
area boundaries).

The Dirty desktops [124] technique feature a time, position and ve-

locity-dependent transfer function that is related to visible objects
(Figure 77), where the direction of velocity and the position are com-
bined to define the shape of the function. More specifically, C-D
gain changes increase with time, and the direction of the input device
displacement affects the sign of positional C-D gain change: going to-
ward frequent targets results in higher C-D gains, moving away from
them results in lower C-D gains.

visible targets

direction & position

time input device
velocity

cursor
position

interaction
context

static
visuali-

zation

visual
cursor

change

cursor
motion
change

Figure 77 – "Dirty Desktops" technique [124] in the transfer function argu-
ments design space.

Studies of pseudo-haptic techniques suggest that combining posi-

tion and velocity-dependent C-D gain changes with Cursor size and
shape changes is suitable for creating perceptual illusions. For in-
stance, dragging elements with weight [193] uses a pointing transfer
function that depends on the interaction context – the number and to-
tal “weight” of the objects being dragged –, that is coupled to the
Cursor modifications by having the dragged objects follow the cursor
(Figure 78).

time input device
velocity

cursor
position

interaction
context

static
visuali-

zation

visual
cursor

change

cursor
motion
change

visible targets

of objects

dragged
objects

Figure 78 – Dragging Weighted Objects technique [193] in the transfer func-
tion arguments design space.

186 constrained manipulation

7.4.3 Design Space Limitations

Our design space is targeted at visual changes: cursor movement,
shape, size or scene background are sharing the same modality. There-
fore it does not allow to represent techniques spanning beyond visual
modifications, e. g. with specific input devices, for example using in-
consistent haptic and visual feedback [164], or using pressure sens-
ing for weight perception [137]. It also assume that transfer func-
tion arguments are independent and remain loosely coupled in the
function definition, i. e. the contribution of each argument is clearly
visible, or the arguments are trivially combined. Trivial combinationFunction shapes are

represented

separately for each

argument to simplify

2D representations.

includes, for example, the case where the cursor position defines ar-
eas or “pieces”, in which the function is velocity-dependent; but does
not include, e. g. , transfer functions multiplying their arguments. In
practice, the majority of transfer functions respect this limitation.

7.5 communicating information through c-d gain

High-level view of dynamic pointing transfer function techniques
in Figure 76 shows that most techniques focus on creating illusions

and that only a few rely on association, although without completely
removing the physicality of interpretation such as weight or elastic-
ity. On the contrary, communicating abstract information such as
program execution-related data in software visualization, totally dis-
connected from physical interpretation of movement, requires to rely
only on association.

Our objective is to go beyond illusion-based transfer functions. Sim-
ilarly to sticky target techniques, we propose to associate abstract in-
formation to on-screen areas with position-dependent piecewise trans-
fer function. By making Background visualization unrelated to the
C-D gain changes, we can observe whether people can interpret C-D
gain modifications independently from the visual information. For
example, a map-based visualization may use color to encode popula-
tion density and C-D gain to encode unemployment rate of the areas
on the map.

direct association with a value Changes in C-D gain may
convey information through direct association, i. e. the value of C-D
gain or cursor speed is proportional to a task-related numerical value.
For the map example, higher unemployment density will correspond
to lower C-D gain (to attract attention of the user to this particular
area when hovering). Direct association is likely to communicate or-
der or other relative information as the user is unlikely to estimate
the absolute value of the C-D gain but rather compare the values.

7.5 communicating information through c-d gain 187

indirect association with a value C-D gain changes may
also be used through indirect association, i. e. presenting an explicit
mapping between different pointing transfer functions and their mean-
ing for the task at hand. For the same map example, three successive
slowdowns may delimit crossing the city limits. Indirect association
is more suited for categorical data, typically represented as explicit
mapping. For the C-D gain, the user should compare cursor behav-
ior over the area of interest to the “legend” area. They are likely to
learn cursor behavior patterns and recognize them given sufficient
training.

However, the information related to program execution in the poly-
hedral model, access locality and dependence violation is numerical, rather
than categorical. Therefore, we concentrate the effort on studying di-

rect association techniques for communicating abstract information.

7.5.1 Transfer function shape for communicating information

Due to its dynamic nature – changes in C-D gain are perceivable
only when moving the cursor – this channel requires specific struc-
ture of information to communicate. First, C-D gain change should
be consistent over an area that is big enough for the user to hover it
and react to cursor movement. It may be achieved by discretizing the
display space. Second, pointing transfer functions over these areas
should be distinguishable between each other, preferably allowing
to detect multiple different values in the same interface. It may be
achieved by discretizing levels of C-D gain.

discretizing transfer function over space When the user
is moving the cursor, for the C-D gain change to be perceived, it
should be consistent during an amount of time longer than user’s
reaction time to such change. As the change is only observable dur-
ing movement, the lower bound of the reaction time translates to the
minimum control or display space over which the C-D gain should
remain stable (but not necessarily constant) given the speed of move-
ment.

While it is hard to establish the minimum speed-dependent space
size in the general case, one may use an over-approximated unified
size that is sufficient for users to react when moving within typical
range of velocities. According to our design space, multiple existing
techniques feature position-dependent piecewise functions and empiri-
cally establish transfer function properties for certain piece sizes. For
instance, Lécuyer et. al used targets of 50 to 150 pixels in their orig-
inal experiment [170] while Sticky Widgets were tested with 40mm
targets on 20” screen with 1024× 768 resolution which corresponds
to 101 pixel [179]. Although these areas may take arbitrary shapes,
they should respect the minimum size in any possible direction of

188 constrained manipulation

movement, allowing the user to discover different areas and their
boundaries.

discretizing the output of transfer function The abil-
ity to recognize the pointing transfer function shape within certain
limits, as it was demonstrated by Lécuyer [170], is more suitable for
indirect association since it does not allow to compare particular func-
tion types for order. On the contrary, Direct association requires the
user to quantify the C-D gain, resulting in a “just noticeable differ-
ence” problem. The absolute value of the C-D gain should thus be
constrained to discrete distinguishable levels. As for other physical
stimuli, such as weight or friction, these levels are subject to Weber-

Fechner law stating that the just noticeable difference is proportional
to the magnitude of the stimuli [164]. Thus, the C-D gain values
should form a geometric progression with base equal to Weber frac-
tion of the effect. For example, Weber fraction in stiffness perception
induced through pseudo-haptic feedback was empirically estimated
at 0.14, while it was observed as 0.23 on average in physical stiffness
perception studies [7].

Discretized levels lead to abrupt changes in C-D gain on the edge of
two areas, which may be noticed on its own. On the other hand, sud-
den changes may hinder the usability when, for example, pointing
is required along with hovering. Smooth transition between levels,
shorter than minimum size of the area, may alleviate these effects.
Discretization also allows to include multiple distinct levels of the
C-D gain to the same function, providing a clear association between
discrete task-related value and C-D gains.

7.5.2 Evaluating information communication

Rather than directing our study towards specific usecase of poly-
hedral program optimization in Clint, we propose an abstract task
on C-D gain perception with possibly conflicting visualization. By
varying the discrete levels, the transition functions and the area sizes,
we want to observe whether and how people can perceive C-D gain
changes in visual interfaces. We observe their use strategies in order
to suggest general implications for building interfaces with supple-
mentary information communicated through cursor behavior.

In order to simplify the tool design and rule out confounding fac-
tors, we restrict the structure of the information one can communicate
so that it can be mapped to a grid of equally-sized on-screen areas us-
ing discreet ordered levels of C-D gain. First, we explore the percep-
tion of C-D gain changes without any visual feedback. We analyze
the effect of transfer function shape and the number of discernible
levels. Then, we study the relation between C-D gain changes and
possibly contradicting visual Background. Finally, we evaluate how

7.6 using c-d gain changes alone 189

well people can separate cursor motion patterns from other visual
elements.

7.6 using c-d gain changes alone

With this first experiment, we investigate how many C-D gain areas
a casual user is able to discriminate with different piecewise transfer
function shapes and which strategies he applies to perform this task.
We study the perception of multiple distinct C-D gain levels in a sin-
gle interface rather than explore the just noticeable difference since
this approach is ecologically closer to the intended use.

7.6.1 Experimental Protocol

hypotheses According to our design space, we use a piecewise
position-dependent pointing transfer function. We expect that the dis-
cretization step, the function shape within the discretized areas and
the transition between them will influence the number of discovered
zones, resulting in the following hypotheses:

— Hypotheses on transfer function shape (H1)
H1a Transitions that reach lower C-D gain levels than the fol-

lowing level improve the perception of difference.
H1b Lasting changes in C-D gain are likely to be perceived

better than short changes, even if the amount of C-D gain
change is big.

H1c Sharp C-D gain transitions are likely to distract users and
to be misinterpreted.

— Hypotheses on transfer function discretization (H2)
H2a Users are more likely to better discriminate discretized lev-

els of C-D gain than a continuous change.
H2b C-D gain changes are more likely to be perceived if they

remain stable over a larger area.

participants Fourteen unpaid volunteers recruited through a
public mailing list in authors’ organizations, 8 male and 6 female
aged 27.6 on average (SD = 4.1), participated in our study. Two of
the participants were left-handed but used the mouse with their right
hand as they are used to do everyday. All participants had normal
or corrected to normal vision. Each participant performed the full
experiment.

task Participants were instructed to hover a horizontal rectangular
strip on the screen with the mouse cursor. The strip was separated
into 8 zones with C-D gain decreasing along the horizontal dimension
following Weber-Fecnher law conforming to the resent JND result
with pseudo-haptic feedback [7] (Figure 79a). The participants only

190 constrained manipulation

see the contour of the whole area but not the separation between the
zones (Figure 79b). They were asked to press any key on the keyboard
each time they have detected a new C-D gain zone — i.e. they thought
the speed of the cursor was slower than before —, which we refer to
as a hit. A visual indication confirming each hit appeared for 500 ms,
but disappeared if another hit was made during this time so that
only one indication was visible at a time. Participants controlled the
mouse with the right hand and pressed the key with the left hand.
It allowed them to keep moving the mouse cursor when marking a
zone while preventing for unintended moves that could occur when
clicking with a mouse button. A trial started when the participant
clicked with the left mouse button on the start area at the left of the
strip, and ended when they clicked anywhere outside of the strip.
Participants were allowed to hover the area multiple times during the
same trial, as they would be able to do in normal use of a variable
C-D gain interface.

Figure 79 – Participants hovered a horizontal area divided into zones (a)
with decreasing C-D gain while seeing only its contour (b). Pre-
sented C-D gain values are normalized to the default system
value.

The first zone of the rectangular strip, referred to as warm-up area,
was larger than others zones and had a constant C-D gain equal to the
default value of 1 1. This zone allowed the participants to establish
a baseline for the cursor behavior at a constant C-D gain. The warm-

up area was lying within the visible contour of the strip, without any
visual difference from the other zones. Participants were instructed
that the C-D gain would eventually decrease when they moved to the
right but were not given any detail about the size of the warm-up
area. All the other zones were featuring decreasing C-D gain and are
thus referred to as slowdown area.

procedure The experiment is a full factorial [5× 3] within-subject
design with Shape of the C-D gain function and base Size of the
zone as factors. Six blocks with randomly permuted combinations of
all factors were performed by each participant after a training of 5

1. C-D gain values are relative to the default system gain. A value of 1 means
unaltered C-D gain, lower values correspond to slowing down the cursor, higher
values — to speeding it up.

7.6 using c-d gain changes alone 191

trials. One session took 45 minutes on average. Participants filled in
a demographics questionnaire upon completion.

shape of the c-d gain function Each zone has a base C-D

gain which follows a geometric progression with a scale of 0.8 so as
to follow Weber-Fechner law: If gn is the base C-D gain of zonen,
the base C-D gain of zonen+1 is gn+1 = 0.8× gn (Figure 79). Then,
the Shape defines how the C-D gain varies between the zones of the
rectangular strip. As shown in Figure 80, we considered five types
of Shape drawn from our design space, according to the results of a
pilot study suggesting that people detect either continuous C-D gain
levels or changes between them:

— Jumps, which assigns base C-D gain for each zone without tran-
sition (Fig. 80a);

— Smooth uses a growing side of the Gaussian function described
in [170] to smooth the boundary between zones in ±10% of
width around zone separation points (Figure 80b).

— Bumps, which decreases following the same Gaussian function
that peaks at 15% lower C-D gain than the next level. This shape
serves to analyze the effect of a local “bump” similar to those
used by Lécuyer et. al in [170].

— BumpsOnly, that features the same C-D gain transitions as Bumps

but maintains the base C-D gain equal to 1 in each zone (Fig-
ure 80c). This is a control condition for Bumps in order to deter-
mine if the participants will interpret bumps as a change even
though the C-D gain in all zones is identical.

— Continuous, that varies the C-D gain following a continuous ex-
ponential function with power 0.8, normalized so as to fit in
C-D gain range [0.2, 1.0] on the given length for each size (Fig-
ure 80c).

Comparing Continuous with Jumps, Smooth and Bumps will allow to
investigate our hypothesis H2a about the quality of the perception
of discretized C-D gain levels against continuous change. Compar-
ing Jumps against Bumps, and against Smooth will allow to study hy-
potheses H1a and H1c, respectively, about the effect of the transition
between areas with stable C-D gain. BumpsOnly compared to Bumps

will assess the effect of the transition alone, according to H1b.

size of the zones The base Size of the zones defines its length
in pixels. We considered three base Size conditions: Small (40px),
Medium (70px) and Large (100px). In order to prevent participants
from learning the relative size of the zone and relying on distance
difference rather than on cursor speed, we multiplied the size of the
warm-up zone by a random number within the range [3, 6] and ran-
domized the length of each other zone in the same trial within ±10%
of its base length. The position of the slowdown area on the screen

192 constrained manipulation

Figure 80 – Shapes of the C-D gain functions used in our experiment.

was randomized as well. Variation of the zone size will allow to in-
vestigate the hypothesis H2b by comparing short and long changes
of C-D gain.

In total, we collected data for 5 Shape × 3 Size × 6 replications ×
14 participants = 1260 trials.

7.6.2 Data Collection

For each hit, we recorded the cursor location (x and y) and the
timestamp. We also recorded an event-based cinematic log of the cur-
sor position with and without the correction imposed by the C-D
gain change. In order to measure participants behavior in the motor
space, we videotaped their hands and recorded mouse position and
rotation 30 times a second. Since the camera was controlled by our
software, we were able to synchronize the cinematic logs in both the
display and motor space. We used linear interpolation to compute in-
stantaneous linear and angular velocities at the same moment in both
spaces by taking numeric derivatives of position and angle respec-
tively. Finally, an experimenter observed the participants and took
notes summarizing their strategies for detecting C-D gain changes.

7.6.3 Apparatus and Implementation

The experiment was conducted on a MacBook Pro 15’ Retina with
a screen resolution of 1920× 1200 (57.7 ppcm) with a standard Apple
Mouse. In order to track participant movements in the motor space,
we attached a smoothly-shaped arc made of hard foam to the top of
the mouse with two bright green and orange tokens on top of it as
shown in Figure 81. The centroids of these tokens were tracked by
a web-cam mounted on a curved support at 400 mm height over the
table. The resolution of the camera was of 800 × 600 pixels and it
covered an area of 500× 315 mm, allowing to track tokens’ positions
with 1 mm precision and to compute the rotation angle between them
with 1◦ precision.

7.6 using c-d gain changes alone 193

Figure 81 – Mouse tracking and experimental setup.

We implemented a Qt widget restricting the variable C-D gain to
one particular application. On top of this widget, the system cursor
is replaced with a circular black and white cursor in order to prevent
any directional bias in the movement. When computing the cursor
displacement, we took into account all C-D gain values of the points
hovered during this movement so as to ensure small changes, e. g.
Bumps, are still perceivable.

We disabled the system transfer function (mouse acceleration) dur-
ing the experiment, since it is non-linear and may interfere with our
C-D gain changes [50]. In the post-experimental questionnaire we
also asked participants about their knowledge and preference on sys-
tem transfer function.

7.6.4 Metrics and data post-processing

In order to quantify participants’ performance in perceiving C-D
gain changes, we define the following metrics on the hits that allow
to analyze the number of simultaneously distinguishable zones and
reveal some information about participants’ strategies to find them.
We also establish metrics to describe participants behavior elements
such as repeatedly hovering a small area or changing the speed in the
motor space.

We report most data graphically with violin plot-like charts, like
Figure 83a, which present a vertical histogram of the measure distri-
bution for each value of a factor. Dark part of each histogram repre-
sents the 95% confidence interval 2 of the mean and the darkest line
the mean itself.

2. Confidence intervals are computed using single-sided t-test for means, and
using Tukey HSD procedure for differences of means.

194 constrained manipulation

Due to growing concerns in various research fields over the limits
of null hypothesis significance testing for reporting and interpreting
experimental results [73, 82], we base all our analyses and discussions
on estimation, i.e., effect sizes with confidence intervals [74]. Further-
more, we argue that estimation results and accompanying graphs are
better suitable for communicating results in a work mixing method-
ologies from different disciplines. We describe the computation and
interpretation of effect sizes and confidence intervals in Appendix B.

hits clustering and filtering Since the task allowed mul-
tiple passes over the area with variable C-D gain and thus allowed
multiple hits in the same zone, we had to post-process the initial list
of raw hits. For each trial, we aggregated all the raw hits lying in the
range of ±5% C-D gain of one of the predefined levels as a single
zoned hit for the corresponding zone (excluding the baseline value of
1.0). The number of these zoned hits correspond to the number of dif-
ferent C-D gains found in all passes during one trial. All the other hits
are considered inter-zone hits and are analyzed separately from zoned
hits. If multiple raw hits were made in the same zone throughout the
trial, all the hits after the first are treated as repetition hits, which may
suggest better detection of a particular C-D gain. Raw hits around
the bump peak in the Bumps shape condition do not count into any
zone and are treated as inter-zone hits.

number of passes The number of passes in a trial is computed
as the ratio of the distance traveled by the cursor in the slowdown
direction (left to right) by the size of the whole area. This ratio may
thus be fractional and less than 1 if the participant did not travel
across the whole area. We chose it over the number of full passes from
the start to the end of the area since participants were not required to
start over at the left of the area each time they decided to re-pass for
strategy exploration purpose.

average speed The average speed in motor space was computed
as a mean of mouse speeds registered over a specific period of time:
the entire trial, one particular pass over the slowdown area or a fixed
±150ms interval around the time of a raw hit. The speed was calcu-
lated from the logged mouse positions, i.e. in the motor space.

7.6.5 Ordering effects

We first analyzed the number of zoned hits per block and observed
an ordering effect as shown in Figure 82. The substantial change of
24% between the first block and others may be due to participants be-
ing less used to the interface and cursor parameters, and thus paying
more attention to subtle changes in cursor behavior. We also observed

7.6 using c-d gain changes alone 195

that more time was spent per trial in the first block, suggesting that
spending more time or moving slower results in higher hit rate. Con-
sequently, data from the block 0 is discarded from future analyses
unless explicitly mentioned.

Figure 82 – Mean of zoned hits. Each column depicts a histogram of distribu-
tion. Darker parts and error bars are 95% CIs. Number of zoned
hits decreases by 24% between blocks 0 and 1.

7.6.6 Effects of transfer function shape

⊲ Two more C-D

zones beyond

baseline were

consistently

detected.

number of zoned hits Two zoned hits were made on average,
implying that participants detected three different C-D gain levels
including the baseline. In 90% of trials with BumpsOnly shape, no
raw hits, and consequently zoned hits, were made (Figure 83a). Bumps

shape (mean=1.97) outperformed Jump (mean=1.86) and Smooth (mean
= 1.85) shapes by only 6% on average thanks to a slightly larger num-
ber of trials with 3 or 4 zoned hits.

analysis of average speed We observed comparable distribu-
tions of average speed with means of 0.55± 0.06 px/ms (95% CI) for
all shapes except BumpsOnly, which had a mean velocity of 0.42±
0.06 px/ms (95% CI). As for Size, Small resulted in slightly lower
speeds with mean of 0.48 ± 0.05 px/ms (95% CI) whereas Medium

and Large have a mean of 0.54 ± 0.05 and 0.55 ± 0.05 px/ms (95%
CI), respectively, similar to the behavior in Fitts’ pointing task where
participants would reach higher velocities for larger movement am-
plitude.

hypotheses h1a and h1b and h1c While the users perceive
larger transitions slightly better (H1a) as suggested by the compar- ⊲ People detect

lasting changes in

C-D gain and often

miss temporary

changes.

ison of Bumps to Smooth, transitions alone are less noticeable and
lasting steady behavior of the pointing transfer functions is required
for users to consciously differentiate two areas (H1b) as indicates
the comparison between BumpsOnly and other shapes. Contrary to

196 constrained manipulation

(a) BumpsOnly led to hits in only 10%
of cases. Continuous led to less hits
than discretized shapes.

(b) Each increase of zone size re-
sulted in 18% more zoned hits.

Figure 83 – Mean of zoned hits. Each column depicts a histogram of distri-
bution. Darker parts and error bars are 95% CIs.

our hypothesis H1c, users neither felt disrupted by abrupt changes
caused by Jumps shape nor did they misinterpret them as system lags.

7.6.7 Effects of transfer function discretization

number of zoned hits Size had the largest impact on the num-
ber of zoned hits passing from mean 1.49 for Small to 1.79 for Medium,
to 2.15 for Large with constant increase by 18% (Figure 83b). Detailed
analysis of distributions shows that only the Large size resulted in the
majority of trials having 2 or more zoned hits. Comparing Shapes,
Continuous shape to a lower number of zoned hits than other shapes
for all Sizes, with 1.58 on average.

distribution of hits by zone In order to explain smaller num-
ber of zoned hits for BumpsOnly and Continuous shapes, we computed
the percentage of trials when a zoned hit was made at each zone for
each shape. Since these shapes allow hits outside ±5% zones, we
also computed this ratio for hits between zones that gave us a better
understanding of participants’ behavior when faced with piecewise
transfer functions without jumps.

Zones with lower C-D gains are most frequently detected, going
up to 58% of trials for discretized shapes (Figure 84). Jump shape
resulted in higher detection rates for C-D gains of 0.41 (32%) and 0.26
(43%). Smooth shape peaked at C-D gain of 0.33 reaching 38% of trials.
Although raw hits in Continuous shape do not fall properly into zones,
hit rate also peaked around C-D gain 0.32. It resulted in roughly
equal number of hits within the zone and after it. Interestingly, the
percentage of hits between 0.26 and 0.21 zones with this shape is

7.6 using c-d gain changes alone 197

Figure 84 – Percetentage of trials with hits within and between zones. Jump
shape resulting exclusively in zoned hits by construction only
dominates for 0.41 and 0.26 zones. Continuous shape result in
close numbers of hits within and between the zones.

the largest, while percentages of hits within the zone itself decrease
despite the fact that interval range constantly decreases.

hypotheses h2a , h2b The comparison between Continuous and
other shapes evidences in favor of C-D gain discretization showing ⊲ Discretization

helps people to

separate C-D gain

zones.

that continuous modification of C-D gain is harder to perceive and
quantify (H2a). The size of the constant C-D gain zone had the most
influence on the perception (H2b).

7.6.8 Exploratory analysis: elements of strategy

brushing Participants had recourse to a brushing strategy – i. e.
multiple repetitive hovers of a small area – for at least one separa-
tion point in 40-50% of the trials, depending on the shape and size
(Figure 85). According to debriefing interviews, this might have al-
lowed participants to verify the presence of a separation point when
they lacked confidence. Brushing is also present in Continuous shape
even though no real separation points are present. This suggests that
brushing is a general strategy used by participants for detecting the
C-D gain change. With BumpsOnly shape, brushing was only used
in 15–35% of the cases, which could be due to the absence of last-
ing C-D gain changes being quickly noticed by the participants. The
slightly higher percentage of brushing for Smooth and Bumps for Small

size may suggest that separation points for these shapes are actually
harder to detect with confidence, contrary to our initial hypothesis
H1c.

passes Since instructions clearly allowed participants to hover the
strip multiple times, we computed the percentage of zoned hits made
before completing N full passes (Figure 86). For Small size, 3 passes

198 constrained manipulation

Small Medium Large
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
tr

ia
ls

Bumps
Continuous
Smooth
Jumps
BumpOnly

Figure 85 – Brushing was used in half of all trials except BumpsOnly shape.

are required to perform 90% of all zoned hits and at least 5 passes
to perform 95%. For Medium and Large size, 2 passes are enough to
reach 90% of hits and 3 passes for 95%.

Figure 86 – At least 90% of the all zoned hits were made during first 3 passes
over the slowdown area.

acceleration In order to compute the acceleration of the mouse
movement in the control space, we took the instantaneous speeds
computed from the cinematic log. Using mouse and cursor position
data simultaneously, we selected the parts of the trial where partic-
ipants were moving in the direction with decreasing C-D gain and
built linear regression of recorded velocities over time. We inter-
preted slope of the linear fit as acceleration that gave us less noisy
results than averaging instantaneous values of acceleration.

We observed that hovering the slowdown area for the first time in
the trial, participants tend to accelerate the mouse in control space
to compensate the cursor slowdown in display space caused by the
system. This acceleration is not present in BumpsOnly shape that does

7.6 using c-d gain changes alone 199

not feature durable slowdown. However, in other passes, including
the last one, there is a tendency for decelerating the mouse movement
in addition to the cursor slowdown (Figure 87). ⊲ Users build the

mental model of

cursor behavior: at

first they expect

constant speed, but

by the end they

expect deceleration.

Figure 87 – Acceleration is present only in first passes over the slowdown
area. Error bars are 95% CIs.

7.6.9 Qualitative elements of strategy

avoid clutching All participants planned the movement over
slowdown area in order to avoid or minimize clutching. However,
they often underestimated the slowdown effect and were forced to
clutch in the middle of the movement. Clutching considerably dis-
rupted the perception of the C-D gain change as participants were
forced to hover again the position of the cursor at the time of clutch.

looking for change point At least 6 participants experienced
difficulties deciding where to click in a slowdown area with Contin-

uous shape. They performed brushing-like moves with larger am-
plitude in order to compare cursor behavior in two points. One of
them qualified this shape as “very smooth” and explained that he
was “looking for a point where it changes”, but was not able to iden-
tify it due to continuity of the shape. The majority of participants
stated after the experiment that they were also looking for a specific
point where the C-D gain changes. Eight participants moved cursor
back after crossing the separation point if they observed a change in
the behavior. Even without performing the brushing, they were look-
ing for a point where this change took place and tried to hit exactly
over it despite not being instructed to hit a specific point.

speed and acceleration After practice, participants learned
to expect the slowdown, which made them misinterpret the absence
of lasting slowdown in BumpsOnly as acceleration. Five participants
asked if it was present in the experiment despite having read the
instructions that stated the opposite.

200 constrained manipulation

Ten participants were hovering the strip with different mouse speeds
in the control space. A typical scenario involved passing over it with
high speed for the first time and then decreasing it for the subsequent
passes. Brushing was often constituted of movements with different
speed to gain confidence about the separation point.

Six participants avoided crossing the vertical border of either strip
or the window by slowing down the mouse when the cursor ap-
proached it. This may have led to them misattributing the slowdown
in the end of area to their hand movement rather than to the intended
system change. One of the participants explained that she “was not

sure if the cursor or [her] hand was slowing down” thus resigning to hit
due to the lack of confidence.

7.6.10 C-D gain change interpretation

In the post-experiment debriefing, we asked participants whether
they associated the behavior of the cursor with any physical model.
Eight participants reported that they did not create any physical model,
but rather interpreted C-D gain as a function, exponential in most
cases, or a pictured plot of such functions. Other participants invoked⊲ Some participants

did not have a

physical association

with the cursor

slowdown, but

interpreted it

abstractly.

cursor stickiness or weight. Interestingly, one of the participants
turned the mouse over during the practice and checked whether it
was indeed sticky. Even if such abstract mental models evidence in
favor of conscious interpretation of the C-D gain change, they may be
due to the participants’ large exposure to mathematics according to
their background.

Participants evaluated their willingness to use dynamic C-D gain
change in everyday interfaces (web, document processing) as well
as in specialized interfaces (critical control systems, medical applica-
tions) on a Likert scale. Six participants disagree with the idea of us-
ing it in everyday interfaces arguing about time loss and frustration,
while only three agree with it. For everyday use, they suggested to
use lower C-D gain when performing search along with visual high-
light, where C-D gain is associated with the relevance of the search
result. On the other hand, all participants agree or strongly agree
with the presence of dynamic C-D gain changes in special interfaces,
proposing namely to convey limitations and dangerous control val-
ues on sliders by making them harder to reach, to notify the user
about an irreversible action before they do it, or to communicate the
quality of visual element position. These suggestions match exactly
the intended use of dynamic C-D gain in Clint, yet participants were
not specifically instructed about interactive program visualizations.

7.7 c-d gain change with background visualization 201

7.6.11 Discussion

Participants detected two slower C-D gain zones different form the
base one on average in most conditions, which may be caused by too
subtle difference between levels, their elevated number or the lower
limit of C-D gain levels. These results corroborate our suggestion that
in order to be perceivable alone, changes in C-D gain should be larger
than if they are combined with a visualization helping to establish a
consistent mental model.

Effects similar to those observed in pseudo-haptics studies appeared
in the first trials or the first passes over the slowdown area. This may
be due to the mismatch of users’ expectations and the actual behav-
ior of the cursor: users expected it to have constant speed when they
moved the mouse with constant speed, thus when the cursor slowed
down they accelerated the mouse to compensate. Therefore we sug-
gest to use dynamic C-D gain changes sparsely so that users do not
accommodate the change making it less noticeable.

We choose to use only decreasing C-D gain since it was less con-
sistent with mouse acceleration, familiar to some participants. How-
ever, we did not find difference in behavior between participants who
reported using mouse acceleration with those who reported having
disabled it. We also did not vary the number of different C-D gain
levels in order to better compare continuous and piecewise shapes.
Nevertheless, base size variation allowed us to explore the precision
limits for C-D gain change-based interface supporting the space dis-
cretization proposition.

Finally, we observed that when they are faced with an interface
featuring such dynamic changes, users first explore the overall high-
level behavior and then analyze particular places of interest, resulting
in a “focus+context” strategy. Furthermore, they rarely analyze areas
that were not noticed during the first exploratory passes. This suggest
that using minimal visual feedback delimiting the places of interest
in advance may be beneficial for perception of the change. We thus
conducted a second experiment to assess the effect of a background
visualization on C-D gain perception.

7.7 c-d gain change with background visualization

In this second experiment, we studied the perception of C-D gain
change with consistent and contradictory background visualization
so as to evalute the use of C-D gain to communicate complementary
information unrelated to the visual channel. We also decreased the
number of different C-D gain levels and studied its effect on change
perception.

202 constrained manipulation

7.7.1 Experimental Protocol

hypotheses

H1 Passive visual feedback mirroring the C-D gain changes (i.e.,
the zones) yields better detection of the zones in a shorter time.

H2 Passive visual feedback contradicting the C-D gain changes
may increase misinterpretation of zones, with erroneous C-D
gain separation points detected around visual separation points.

participants Six participants of the previous experiment and
six other unpaid volunteers, 8 male and 4 female, aged 25 on av-
erage (SD=3.8) participated in our study. All participants were right-
handed and had normal or corrected to normal vision. They reported
to use a mouse daily.

task and procedure The task and procedure are the same as
in the previous study, except that the rectangular strip was made of
only 4 C-D gain zones – with respective relative C-D gain values of
1.0, 0.64, 0.41, and 0.26.

The experiment is a full factorial [2× 3× 4] within-subject design
with Shape of the C-D gain function, base Size of the zone and num-
ber of Visible Zones as factors. We use the same Sizes of C-D gain
zones and the same size randomization method as in the previous ex-
periment, and kept only the Jumps and Bumps Shapes conditions (we
discarded Smooth Shape since it yielded results comparative to Jumps,
and Continuous and BumpsOnly since they were control conditions).

The number of Visual Zones is 1, 3, 4 or 5. One Visual Zone

implies that there is no visible visual separation, only the contour of
the strip being visible as in the previous experiment. Otherwise, the
interface comprises zone contours and represents C-D gain levels by
shades of gray (Figure 88). When four Visual Zones are visible, we
ensure that visual zones correspond exactly to C-D gain zones by us-
ing the same randomized values for both, assessing consistent back-
ground for hypothesis H1. For the two other cases, visual channel
represents different information, contradicting the C-D gain change.
We then randomize zones sizes independently for visual and C-D
gain zones in order to prevent participants from establishing a rela-
tion between those and assess H2 hypothesis.

Each participant performed 4 repetitions of the full experiment
with randomly permuted condition after a practice block of 8 trials
featuring all combinations of Visual Zones and Shape for a fixed
Size. They were instructed that, when the visual feedback was present,
it might or might not correspond to the cursor behavior, and were
asked to concentrate on the latter.

7.7 c-d gain change with background visualization 203

visible "slowdown" area

actual slowdown area

visible zone

actual zone

warm-up area

start
area

0.64 0.51

Figure 88 – Participants hovered a horizontal strip divided into zones with
decreasing C-D gain with potentially contradictory visual feed-
back as gray-shaded rectangles.

The experimental setup was identical to the previous study, the
only modification in software was the presence of zones visual feed-
back depending on the Visual Zones number.

We discuss the same measures as in the first experiment, and present
them in the same way (graphical representation and estimation). We
did not observe an ordering effect between blocks for both raw and
zoned hits, however the duration of the trial decreases by 28% to 37%
after each block. This may suggest that the participants were becom-
ing more confident with practice of the task. The number of both raw

and zoned hits was comparable for the users who participated in the
previous study and those who did not.

7.7.2 Effects of visual feedback

number of zoned hits On average, around two zoned hits were
made (Figure 89,left). We observed 14% more zoned hits for the Bumps

shape, 31% of which were made close to bump peak. An effect of
Size, similar to the effect observed before, was found in this study
with 22% increase in zoned hits between Small and Medium size and
only 9% change between Medium and Large for all shapes and number
of visible zones combined (Figure 89,right).

Bumps shapes outperformed Jumps for all Sizes by at least 9% for
Medium and up to 19% for Large. It also resulted in consistently
larger zoned hit rate for all sizes with increase within the same 9-19%
range. The number of zoned hits is 9± 0.4% (95% CI) larger with 4

Visual Zones comparing to 1 Visual Zone with Jumps shape, while
it changes less 3± 0.4% (95% CI) in the same comparison for Bumps.

comparison of raw and zoned hits The number of raw hits

practically did not vary between 1,3 and 4 Visible Zones with dif-
ferences of −2% and 7% respectively. More importantly, participants
did only 5% more raw hits with 3 Visible Zones comparing to 1 Vis-
ible Zone, although in the former case visible and C-D gain zones
matched exactly. This result suggests that, knowing in advance about
possible mismatch between changes in C-D gain and visualizations,

204 constrained manipulation

Figure 89 – Number of zoned hits was 14% higher for Bumps. It increased by
22% when changing from Small to Medium size, but only by
7% when moving to Large size. Darker parts and error bars are
95% CIs.

users do not associate C-D gain to the visual counterpart. However,
10% more raw hits were made with 5 Visible Zones. More detailed⊲ Users were able to

dissociate visual

background from

cursor speed

changes.

analysis of raw hit distribution shows that this increase was caused by
a larger portion of 2 and 3 raw hits in this case (Figure 90,left). While
the distribution remains similar, larger number of Visible Zones is
likely encouraging users to look for more than one separation point
in the trial.

The number of zoned hits varied less, in range of ±3% between 1

Visible Zone and 3 or 4 Visible Zones, while for 5 Visible Zones

9% more zoned hits were made (Figure 90,right). Most of the raw hits

increase for this case is thus reflected in zoned hits.
In 15% of trials with 5 Visible Zones, raw hits were made before

and after a visual separation point with no actual change in the C-D
gain. With Jumps shape, 17% of such trials were affected, and 13% for
Bumps. Medium size resulted in 17% of such mishits as well. On the
other hand, in 23% of trials with 3 Visible Zones raw hits were made
within the same visual zone, with a consistent distribution between
Shapes and ±5% difference between sizes.

Figure 90 – The number of visible zones impacted more the number of raw
hits, rather than zoned hits

hypotheses h1 and h2 We did not find evidence that supports
H1 hypothesis: participants found close number of zones in com-
parable time. This may be due to the instruction requiring to fo-

7.7 c-d gain change with background visualization 205

cus on changes of C-D gain without giving any supplementary hints
about feedback consistency. Participants seemed to ignore the visual
representation completely. However, we argue that this instruction
allowed make tasks consistent between experiments preventing par-
ticipants from establishing correspondence between visual and C-D
gain change instead of observing the latter. We also found evidence ⊲ Precise

instructions about

the mismatch helps

users dissociate

different information

channels.

against hypothesis H2 suggesting that, having a precise instruction,
participants are able to dissociate visual representation from C-D gain
changes and interpret the latter independently. In the same time,
larger number of visible zone may have urged participants to look
for more changes in the same trial resulting in higher raw hit rate.

7.7.3 Comparison with previous experiment

number of c-d gain zones Even with smaller number of si-
multaneously present C-D gain levels and higher difference between
them, the same average number of zoned hits was made. Further in-
vestigation is required as to establishing the just noticeable difference
of the C-D gain change and introducing more important slowdowns,
with relative C-D gain lower than 0.2.

effect of shape Comparing to the previous experiment results,
we found similar effects of Size and no interaction effect between it
and Shape. Combined, these results support our general observa-
tion that pointing transfer function should remain steady during a
sufficiently long time interval in order to be explicitly noticed. For
Large size the average number of hits even decreased comparing to
the previous experiment due to the absence of large (more than three)
hit numbers. However, better recognition rates were observed with
larger transition changes.

brushing we analyzed brushing moves around both C-D gain
and visual separation points. Figure 91 shows the ratio of passes
over the separation with brushing to total passes; left part of each
histogram corresponds to C-D gain separation points, and right cor-
respond to visual separation point. We observed that for 3 and 5

Visible Zones, participants performed brushing over C-D gain sepa-
ration points far more often that over visual separation points. For 4

Visible Zones, these numbers are identical since C-D gain and visual
separation points had same coordinates.

7.7.4 Discussion

The results of this experiment suggest that the number of recog-
nized C-D gain changes is mostly impacted by the size of the area
in which the C-D gain remains constant and less by the number of

206 constrained manipulation

Figure 91 – Participants perform brushing moves around C-D gain separa-
tion points, but not around visual separation points when they
were different

actually present distinct levels. At least 100 px area may be required
for more or less stable recognition of 3 levels including the baseline.

Despite relatively low hit ratios, users are able to interpret C-D gain
values independently of the visualization. This suggests that these
changes may be used for conveying abstract information to the user,
even in visually cluttered interfaces. In this study, we did not focus
on cursor acceleration that may be give more recognizable levels.

7.8 variable c-d gain for communicating information

in interactive program restructuring

7.8.1 Predicting Transformation

Having evaluated the use of variable C-D gain for information com-
munication, we can integrate this functionality in interactive program
restructuring in Clint to represent either dependence violation or ac-
cess locality information. This information is only relevant during
the transformation, i. e. when the user performs direct manipulation,
and thus is appropriate for communicating with C-D gain, only visi-
ble during manipulation. In order to evaluate the effects of the trans-
formation on dependences and access locality, Clint has to perform
the program transformation in real time while the user is still ma-
nipulating the interface. The mapping of manipulations to directives
has different starting points for different transformations. For ex-
ample, Shift transformation is triggered by dragging the statement,
Reshape transformation is triggered by dragging the corner handles
of the statement, etc. This allows to determine which transformation
is to be performed when the user just started the manipulation. Pa-
rameters of the transformations are mapped to the spatial movement
of the visible objects. During normal operation, movements length is
divided by step scale and rounded to obtain the transformation pa-
rameter. For example, moving the polygon left by 23 px left when
the distance between points is 16 px corresponds to Shift by 1, while

7.8 communicating program-related information 207

moving it left by 25 px corresponds to Shift by 2. It suffices to use
ceiling approximation instead of mathematical rounding to find the
next possible transformation even from a small movement.

Once the directive and the parameters of the transformation are in-
ferred from the user manipulation, Clint performs the transformation
in the background and computes the dependence violation and access
locality metrics. Using these metrics, it alters the C-D gain around the
guessed end position of the manipulation. If the user still has not fin-
ished the manipulation, Clint continues to compute metrics for the
same directive and subsequent integer values of the parameters and
to update the C-D gain around the respective positions.

Contrary to other manipulations, moving polygons between co-
ordinate systems may result in numerous β-modifying transforma-
tions. While a Reshape manipulation may affect only the depen-
dences and locality in the loop nest surrounding the target statement,
β-modifying transformations affect the entire polyhedral part of the
program. However, they operate on statement level rather than on
individual statement instances allowing for simpler effect analyses.
Thanks to the mandatory modifier key for polygon/coordinate sys-
tem manipulation, such transformations are easily distinguishable
even before the actual direct manipulation started. Therefore, Clint

may use different metrics for evaluating results of β-modifying trans-
formations.

7.8.2 Representing Dependence Violation

transformations operating within loops Building on the
initial idea of interface "resistance" to the potentially dangerous trans-
formation, we place a slowdown "barrier" with smaller C-D gain
around the polygon position that would violate dependences as shown
in Figure 92a. This barrier has three different levels of slowdown de-
pending on the number of violated dependences:

1. one dependence is violated by the transformation;

2. more than one dependence is violated, but not all dependences,
in which the target statement is involved;

3. all (more than one) dependences, in which the target statement
is involved, are violated.

If no dependence is violated, C-D gain is left unmodified. Once the
user reaches the program state where the dependence is violated, the
C-D gain barrier is removed to allow the user undo the action with
no interference. However, other barriers may be created, or the value
of existing ones recomputed, for the potential subsequent transforma-
tions.

transformations modifying statement nesting in loops

For β-modifying transformations, the barriers are introduced around

208 constrained manipulation

(a) Slowdown barrier for
dependence-violating

transformation.

(b) Sticky (sloppy) endpoints for
locality increasing (decreasing).

Figure 92 – C-D gain modifications in Clint interface: light blue overlays
show cursor speedup areas, darker purple overlays show cursor
slowdown areas; dashed light gray rectangle shows the polygon
form after the transformation predicted from small mouse mo-
tion is applied; blurred and grayed out mouse cursors show the
expected cursor path to complete the transformation.

the coordinate system in which the dependence would cause a viola-
tion as depicted in Figure 93a. To simplify real-time computation in
this case, we only consider between-loop dependences as follows:

— take the dependence graph for the initial state using β-vectors
as node identifiers (already computed for visualization);

— select the dependences that involve the β-vector of the target
statement at a depth corresponding to the current projection;

— modify the β-tree (maintained throughout manipulation) ac-
cording to the expected transformations without performing
the transformation itself;

— consider as violated the dependences for which the lexicograph-
ical order of dependence source and target β-vectors was in-
verted.

Before performing the actual transformation on the relational poly-
hedral representation, Clint alters the tree representation of the pro-
gram part using simple and fast operations to enable fast creation of
the slowdown areas.

7.8.3 Representing Access Locality

The polyhedral model enables precise instance-wise analysis of the
memory accesses, however the computation of spatial and temporal
access distances require both the execution-related information, such
as physical addresses of the arrays in memory and aliasing informa-
tion, and hardware-related information, such as cache sizes and mem-
ory access timings. Given that the program transformation in Clint

7.8 communicating program-related information 209

is done statically, without executing the program, and not necessarily
on the target architecture, the precision of the access locality infor-
mation remains limited. Furthermore, performing precise analysis
requires heavy computation yet it has to be done in real time in or-
der to provide feedback during the user interation. Therefore, we
resorted to a simple heuristic based on data dependences to evalu-
ate access locality. Like any heuristic it is subject to imprecision, but
this imprecision matches well the low resolution of the cursor motion
feedback we can use.

In the general case, we rely on the notion of dependence distance

vectors (DDV) for temporal locality. This vector contains along each
dimension the number of loop iterations at the corresponding depth
that separate consecutive accesses to the same memory address. For
example, if the memory address is accessed at the iteration (i, j) and
then again at the iteration (i+ 1, j− 1), the dependence distance vec-
tor is (1,−1). The elements of this vector may be parametric. The de-
pendence distance may be expressed as a single number rather than
a vector by computing the number of iterations of all outer loops,
but the final expression may involve parameter multiplication and
thus be inadequate for the polyhedral representation. However, de-
pendence distance vectors may be ordered with respect to each other
given that parameter values are also ordered.

locality within loops Prior to visualizing statements as poly-
gons in Clint, we compute the dependence distance vectors for all
statements. When the user starts the direct manipulation by drag-
ging the statement, Clint automatically predicts and applies the trans-
formation and recomputes the distance vectors only for the depen-
dences involving the current statement. For each dependence, it com-
pares the new distance vector and the old one. If the new distance
vector is ordered before the old one, the transformation is considered
to increase locality. On the contrary, if it is ordered after the old one, Changing DDV by 1

in the last dimension

is unlikely to have

strong effect, but we

keep the reasoning

uniform to simplify

computation and

avoid

platform-specific

values.

it is considered to decrease locality. Finally, identical vectors do not
influence locality. The definitive metric is the difference between the
number of dependences where locality is increased and the number
of dependences where locality is decreased by the transformation. If
this value is positive, the transformation increases the locality overall,
if it is negative, it decreases the locality.

The cursor motion feedback for locality is based on "stickiness":
polygon positions that increase locality are made sticky and those
that decrease it are made slippery. Areas are computed relative to the
mouse click position, see Figure 92b for an example. We differentiate
three two levels in each direction: increase/decrease for 1 or many
dependences.

210 constrained manipulation

(a) Slowdown barrier for
dependence-violating

transformation.

(b) Entire coordinate systems are
made sticky or sloppy to show

locality.

Figure 93 – C-D gain modifications in Clint for statement-level transforma-
tions: light blue overlays show cursor speedup areas, darker
purple overlays show cursor slowdown areas; the target coordi-
nate system features crossing diagonal lines in the background.

locality between loops For the β-modifying transformations
FuseNext and Distribute, that are likely to have stronger effect on
the access locality, we consider dependences on the statement/loop
level. Although the polyhedral model allows to obtain more preci-
sion, this choice is more consistent with the visualization approach
we use in Clint, namely inter-loop dependences are aggregated ratherWe call inter-loop

the dependences

between statements

in different loops

and intra-loop the

dependence between

statements in the

same loop nest.

than presented between each pair of points in the respective iteration
domains. The overall locality is considered to increase if a hitherto
inter-loop dependences becomes intra-loop and decrease in the case
of inverse modification. This heuristic allows to favor the fusion of
the loops accessing the same memory locations. The entire coordi-
nate system is considered as the target location and is subject to C-D
gain modifications as shown in Figure 93b.

7.9 guiding manipulation around constraints 211

7.8.4 Selecting Feedback Source

Evidently, both information sources cannot be connected simultane-
ously to the same communication channel, which would be confusing
for the user. The feedback should either be associated with the depen-
dence violation or with the access locality improvements. While we
provide the user with the settings to switch between the two sources
or to turn off cursor motion feedback completely, the default option
is to represent access locality. Indeed, this information is orthogonal to
the parallelization task which was the primary design goal of the vi-
sualization. Furthermore, the feedback on the dependence violation
can still be provided visually without cluttering the visualization: it
suffices to highlight the violated dependences in red before the trans-
formation is complete at the same time as visualizing the expected
position of the polygon after the transformation.

7.9 guiding manipulation around constraints

communicating non-critical information Using the small
changes to the pointing transfer functions, we were able to communi-
cate supplementary information about the program. This information
is related to the manipulation and therefore is provided only during
the manipulation and avoids cluttering the static representation. Al-
though memory access locality is important for program optimization
in general, it is not the primary interest of Clint visualization targeted
at parallelization. While one may argue for providing as much infor-
mation as possible in a single representation, i. e. combining both
the dependence and the locality information visually, we find that it
makes the visualization cluttered and barely legible [89]. This kind of
supplementary, non-critical information may benefit the user if per-
ceived correctly, but its absence will not impede the interaction.

"hard" and "soft" limitations Thanks to a subtle physical
metaphor, we propose to communicate the soft limitations of the in-
terface. Contrary to hard limitations which cannot be violated, soft
limitations are essentially warnings about potential issues if the ma-
nipulation is completed. In case of visual manipulation of polyhe-
drally represented programs, soft limitations are, for example, depen-
dence violations that will compromise the semantics of the program,
but keep it within the model. Hard limitations, on the other hand,
will move the program outside of the model. For instance, a general
case of loop linearization results in non-polyhedral loop bounds. Soft
limitations are frequent in programming and may range from bad
practices and antipatterns to deprecated functionality, to undefined
behaviors. While programmers tend to avoid these cases, sometimes

212 constrained manipulation

they are exploited on purpose. Therefore, these cases should result
in subtle warnings for the user rather than being flat out banned.

using cursor motion or shape We chose to use cursor mo-
tion, an underused visual element present in all target systems, to
communicate supplementary non-critical information. In order to
use it for communicating task-related information to the user, we
proposed a design space that unifies interaction techniques involv-
ing cursor movement from the information-centric perspective. It
makes explicit the relation between pointing transfer function mor-
phology and visual changes observable by the user allowing both to
analyze the information component of existing techniques and to use
the pointing transfer function for communicating abstract informa-
tion.

Contrary to the cursor shape, extensively used for communicating
system state, e. g. busy, and interaction affordances, e. g. draggable or
editable, the cursor motion is not already mapped to the pre-existing
concepts in the user’s mental model. It remains open for interpre-
tation depending on the particular task at hand. Contrary to other
visual cues, cursor is already present on screen and does not increase
the number of visual objects. It is always shown on top of the visu-
alization. It follows the object the user manipulates making the inter-
action contextual and object-related. And finally, it is disconnected
from the object highlighting that the information it is communicating
is related to the interaction rather than to the object itself.

imprecise interpretation Our experimental evaluation demon-
strated that cursor motion can be perceived independently from the
visual background. Despite the relatively low numbers of perceived
changes, it demonstrates the principle of communicating abstract in-
formation that is not related to the pointing or cursor movement. Its
low resolution makes this channel unsuitable for task-critical infor-
mation, but it remains reasonable for the secondary, non-crucial infor-
mation. However, prior to mapping task-related data to the pointing
transfer function levels, this data has to be quantified and structured
so as to respect the perceptive limitations. More generally, not only
the interaction technique should be adapted for the task, but the task
information structure should fit the interaction technique.

possible follow-ups Our studies concentrated on using scalar
modifications to the C-D gain since they were sufficient for our task.
More advanced interfaces will require exploring other parts of the
cursor motion design space, namely including movement direction
changes using vector modifications. Direction changes will allow, for
example, to guide the user towards the proposed solution in a train-
ing interface while still letting them to feel in control, contrary to

7.9 guiding manipulation around constraints 213

transformation animated replay currently implemented in Clint. Fur-
thermore, they will let the users to divert from the automatically sug-
gested decision by deviating from the guided path. Separate study
should focus on the acceptable limits of the cursor motion modifi-
cation that does not distract the user from interacting, but is still
perceivable. Overall, we find C-D gain modifications a promising
modality for communicating supplementary information or guiding
users through the interface.

interacting with primary and secondary data Introduc-
ing access locality information into the polyhedral parallelization-
oriented interface illustrates a larger problem of reconciling multi-
ple, often orthogonal, aspects of the program in a single interactive
representation, crucial for interactive program restructuring. Our ap-
proach consists in separating program restructuring in different tasks
and classifying aspects of program description by order of impor-
tance for the particular task. Non-critical aspects can still be pro-
vided if they don’t obstructed the primary information and can be
structured so as to suit the information communication channel still
available in the interface. It requires quantifying and adapting both
the interaction channel and the underlying model. Furthermore, the
user may want to be aware of the effects a program restructuring
has on the other aspects that are currently out of focus making the
transition between different representations an important part of the
restructuring tool design.

Program manipulation is a peculiar case for the instrumental inter-
action paradigm [23] the program is the object of interest that does
not have a canonical form and is not directly accessible to the in-
struments. It is rather hidden under the stack of representations (or
abstractions), e. g. a static control program part is represented as a set
of relations in the matrix form, later converted to the set of points in
relation, which is in turn represented as points. From the user’s point
of view, the instruments manipulate the top layer of the representa-
tion stack, the visualization, but the expected result lies at the deeper
layers. However, the higher-level representation that "converts" the
instrument action to other actions on the lower-level representation
may be considered an instrument itself.

8
C O N C L U S I O N A N D P E R S P E C T I V E S

8.1 designing tools for interactive program restruc-
turing

Using the advanced program representation and analysis tools pro-
vided by the polyhedral model, we demonstrated a case of designing
the system for interactive program restructuring. Building such sys-
tem for a particular programming-related task, such as performance
optimization through parallelism and locality, requires developing
both the program model and the user interaction techniques. In this
chapter, we conclude by positioning interactive program restructuring

with respect to Direct Manipulation [227], Instrumental Interaction
model [23] and juxtaposition between visual and textual program rep-
resentations [70].

unifying textual and visual The idea of interactive program
restructuring highlights the interactivity and unifies textual and visual
representations as long as they offer the user sufficient understand-
ing and manipulative power. This unification is also present in Con-
versy’s theoretical model of program representation perception [70].
In fact, the program representation should be chosen following the
two criteria:

— the representation provides new information about the program
or allows to access the information and reason about it easier;

— the representation fully depicts the information relevant for the
task and allows for manipulation.

Should the textual form be better understandable or easier to manip-
ulate for a specific program restructuring task, e. g. realigning code,
it is to be preferred to other representations as shown in chapter 6.

While most existing software visualization techniques support pro-
gram analysis thanks to tailored representations, they rarely feature
enough interactivity to manipulate the program through the visual-
ization. They focus on visualizing the software rather than on pro-
viding representation to manipulate it. On the contrary, in interactive
program restructuring, we propose to design the visual representa-
tion with the future interaction in mind. Nevertheless, a multitude of
novel program representations may be challenging to use in practice,
especially if the user has to learn the new technique for each specific
task rather than focus on the high-level problem solving. These rep-
resentations should build on existing practices and leverage domain
experts’ knowledge and intuition as we demonstrate with graphics-

215

216 conclusion and perspectives

based transformation vocabulary directly mapped to visual program
transformation. A practical demonstration of the benefits and lim-
itations of every representation to the user is of crucial importance
for improving acceptance of novel program restructuring tools. In
addition to that, new representations are to relate to the existing well-
known representations, e. g. code, through a series of supportive tech-
niques such as animated transitions or overlay connectors.

uncovering structure In an interactive representation, aspects
of the program of interest relevant to the task are mapped to the
(primary) notation of the representation, for example graphical prop-
erties such as color or size or textual content such as keywords or
spacing. This mapping is bidirectional and is subject to numerous
limitations. On one hand, changing the represented aspects of the
program should remain unambiguous and keep the program well-
formed throughout the manipulation. On the other hand, the nota-
tion of the representation is subject to human limitations, perceptual
(color recognition, just noticeable difference in sizes, etc) and manip-
ulative (pointing precision, typing speed).

Designing a task-oriented interactive program restructuring tool
consists in:

— identifying aspects of the program that are necessary for solving
the task or relevant to it;

— defining the structure of the program-related information to
represent (type of values, ranges, precision, etc.) and model
the program in a way that yields the required structure;

— designing an interactive technique that supports both the repre-
sentation and the manipulation of the required structure.

These three steps are connected by the information that represents the
program and its structure. Individual tool design cases may start with
any of the steps as long as the structure of information matches. For
example, in the polyhedral program restructuring, we started with
the pre-existing program model and created a visualization technique
from it, however we extended the model to support program trans-
formation given the visualization.

Due to the lack of canonical representation of a program (or its con-
trol and data flow), programmers are often facing multiple tools that
represent the same aspects of the program differently, e. g. the list
of available classes or the tree showing the inheritance structure, or
different representation of different aspects simultaneously, e. g. the
code and the list of functions. Interactive representations should en-
sure changes are propagated back to the program in question and,
further, to all connected representations unambiguously. In our sys-
tem, graphical changes can be immediately reflected in the code and
vice versa.

8.1 designing tools for interactive program restructuring 217

program performance and programmer performance

The effect of interactive program restructuring techniques is difficult
to evaluate. It breaks down into two separate results: effect of pro-
gram restructuring and effect of interactivity. While the program re-
structuring may be evaluated according to its goal, e. g. performance
or program readability, given appropriate metrics, the evaluation of
the interactive techniques involves user testing and is subject to indi-
vidual differences in expertise and varies substantially with relative
task complexity. In cases like polyhedral transformation sequence
recovery, restructuring becomes feasible thanks to the interactive ap-
proach, and its effect depends on the particular program and pro-
grammer. An interactive restructuring technique should be consid-
ered successful if it increases either the program performance by opti-
mizing it or the programmer performance by providing more suitable
and faster-to-use representations. Decreasing the program analysis
and restructuring time allows developers to reduce the number of
mistakes and concentrate on more complex optimization problems.
Lowering the perceived complexity of the program restructuring lets
the developers use it more extensively and thus results in more per-
formant software. In our studies, we observed an effective change of
strategy between barely manageable complex code structures and in-
teractive visual representations where the developers started to exper-
iment with transformations more easily and obtained an optimized
version instead of being stuck in analysis phase.

compiler-assisted program transformation Most conven-
tional implementations of the programming languages feature a user
interaction loop: the language user develops a program using exter-
nal tools, such as text editors or IDEs, submits it to the language
implementation, compiler or interpreter, and receives its feedback be-
fore continuing to develop the program in an external tool. Modern
IDEs try to shorten this loop by hiding compiler invocations and pro-
viding smoother feedback integration on one hand, and by model-
ing the program separately during the development. These internal
models are often less precise than those of a compiler, but easier to
manipulate.

On the other side of the chain, even the most elaborate compiler
analyses often lack high-level information about the intended pro-
gram behavior. This information is sometimes supplied using lan-
guage extensions, such as compiler pragmas, or compiler flags. How-
ever, requesting the developer to communicate this information is
hard due to the constantly growing sizes of code bases and the out-
of-reach complexity of compiler analyses. Even if the developer can
correctly interpret and augment these analyses, he does not necessar-
ily reason on the same level of abstraction while creating or restruc-
turing a program.

218 conclusion and perspectives

We propose a semi-automatic approach to program transformation.
First, an optimizing compiler automatically creates a program trans-
formation. Then, this transformation is represented in a better un-
derstandable way for the developer than internal compiler represen-
tations. The developer is able to amend the transformation using
the same higher-level description before requesting the compiler to
execute the final transformation. This approach gives the developer
control on the loop optimization process: the transformation selection
is performed on demand and each individual transformation can be
disabled if it diverts from the original intention. Furthermore, it does
not require to understand the internal functioning of the optimizing
compiler and allows to swap optimization algorithms as long as the
higher-level representation remains the same.

This reification of the program transformation also allows to manip-
ulate the program transformations separately, reuse and share them.
With time, it may allow to create transformation recipes or establish
best practices [101] that will eventually improve the automatic pro-
gram transformation.

8.2 contributions

This thesis is an interdisciplinary work between human-centered
computing and program optimization. In addition to applying human-
computer interaction methodology to design and evaluate an inter-
active system to support optimizing compilation in the polyhedral
model,we made the following technical and theoretical contributions
to the field of optimizing compilation and empirical contributions to
the field of interactive system design.

polyhedral model First, we defined the structure of the poly-
hedral scheduling relations by proposing global validity conditions that
ensure the same amount of computation performed by the program
before and after a polyhedral transformation. This structure is less re-
strictive than the previously existing constraints of scheduling invert-
ibility and unimodularity. Second, we proposed a complete mapping
between classical loop-level transformation directives and changes to
the polyhedral scheduling relations. Contrary to previous mappings,
this mapping is complete and allows to transform any globally valid
scheduling relation to any other globally valid scheduling relation.
Jointly with Bagnères [12], we proposed an algorithm that recovers a
sequence of transformation directives transforming an arbitrary poly-
hedral scheduling relation into another arbitrary scheduling relation
given only the initial and the transformed state. Moreover, we de-
signed an interactive program transformation system based on the
polyhedral transformation set and sequence recovery algorithm pro-

8.2 contributions 219

viding unprecedented control over the polyhedral transformation dis-
sociated from a particular optimization algorithm.

design of interactive program transformation systems

Our experimental evaluation of the interactive program transforma-
tion systems suggests that a visual representation oriented towards
loop-level data dependences and program parallelization effectively
changes the developer’s strategy in program optimization. The re-
sults support the idea of mapping modifiable program properties to
the modifiable elements of visual representation to create efficient
program manipulation systems.

Following up an observation, we conducted an experiment to bet-
ter understand how developers use text and visual representations si-
multaneously in a program transformation task. It demonstrated that
the preference of developers for textual representations may decrease
their performance compared to other representations better matching
the task unless benefits of alternative representations are practically
demonstrated to the developers as a part of training.

interactivity in software visualization Having proposed
a design space for software visualization systems and techniques, we
identified the lack of interactivity at the program manipulation level
due to irreversible mapping between manipulable graphical proper-
ties and program abstractions. Using the state-of-the-art polyhedral
abstraction for loop-level parallelism in the programs, we exemplified
the user-centered development of an interactive program restructur-
ing tool. It required both understanding how certain graphical prop-
erties can be used to communicate abstract information, as demon-
strated with cursor motion morphology and experiments, and aug-
menting the model to provide the information in the required form.

Combining multiple representations of a program, which itself
contains multiple layers of abstraction, in a single interactive system
is a compelling use case for interaction design. It not only requires
the program models to support interaction, but may affect the way
the interaction itself is modeled. Before proposing future research
directions and perspectives, we discuss the implications of interac-
tive program restructuring for interaction models, in particular the
Instrumental Interaction model [23].

220 conclusion and perspectives

8.3 interacting with inaccessible object of interest

domain objects and representations The Instrumental In-
teraction paradigm [24] allows to analyze the program restructuring
in the polyhedral model even independently of the visual represen-
tation. A program is a domain object and program-modifying trans-Domain Object is a

term for specifying

the current object of

interest in

Instrumental

Interaction

paradigm.

formations are instruments that affect it. The paradigm accounts for
the attention shift between different domain objects, making the in-
strument an object of interest itself if necessary for applying meta-
instruments. Thus a tool for creating and analyzing program trans-
formations becomes an instrument, and the transformation itself be-
comes a domain object. However, the transformations we defined
operate on the relational form of the polyhedral model and not on
the program directly. While we can narrow down the object of inter-
est to a particular aspect or part of the program, such as the control
flow in a given loop, it still needs a certain proxy object: a model or a
representation. The instrumental interaction model stipulates that the
representation is the domain object in this case. For example, in case
of polyhedral program transformations as instruments, relational rep-
resentation of the loops is the domain objects. However, our system
is specifically designed so as to avoid the user reasoning in terms of
polyhedral relations, but rather in terms of code-like entities and con-
trol flow. Therefore, we should decompose the object of interest into
several representation layers in order to make instruments applicable.
Having these layers will also allow us to specify the mapping and
control change propagation as discussed above.

A representation is more powerful than a simple subset of the do-
main object’s properties relevant for interaction. In particular,

— it can be obtained by a non-trivial, parameterizable procedure,
e. g. include aggregated data;

— it can affect how the interaction instrument is applied, specify
or limit its behavior.

An image histogram in a graphical editor is a good example of rep-
resentation. It aggregates color and brightness data from the entire
image and can be parameterized by, e. g. color channel. As a represen-
tation, it may serve for interacting with the image itself by, e. .g., color-
based selection [60]. Identical histogram manipulations will change
the image differently depending on what channel it represents, i. e.
the representation carries information required for the interaction. Fi-
nally, applications may limit changes to the histogram, e. g. photogra-
phy processor typically impose a certain range for brightness, while
the instrument can potentially go beyond these limitations.

interacting with and through representations The orig-
inal instrumental interaction model defines an instrument as a "medi-

ator between the user and domain objects" [23]. Using this definition, our

8.3 interacting with inaccessible object of interest 221

representation object is, in fact, an instrument. However, there are sev-
eral differences from other interaction instruments, such as scrollbars
or graphic primitive creation instruments, namely:

— a representation does not modify the domain object;
— a representation is constantly active and does not require user

action, if not for creating it;
— applying polymorphic instruments to a representation may have

different effects depending on whether it is considered domain
object or not.

Modification — while a representation could be considered as a spe-
cial instrument that modifies the domain object to that other instru-
ments can be applied, this interpretation hardly scales for an inter-
active system with multiple representations of the same domain ob-
ject. It would correspond to having multiple copies of the domain
object and a non-trivial synchronization procedure when external in-
struments are applied to representations. This synchronization pro-
cedure would become a special instrument-like object with the same
properties as the representation.

Activation — an instrument is activated by the user before applica-
tion, e. g. selecting an instrument from a tool panel corresponds to
temporal activation. Representations are constantly active and reflect
changes in the domain objects independently of user’s actions. In
a system where the user can create and destroy representations, the
fact of creating a new representation would correspond to activating
an instrument. However, in systems with fixed representations, it
happens independently of user’s action or will.

Polymorphism — instruments may be polymorphic, i. e. operate dif-
ferently on different domain objects. If an instrument is applied to a
representation, it may act on the represented domain object or on the
properties of the representation. In the former case, the user’s object
of interest remains the same, while in the latter case, the representa-
tion itself becomes an object of interest. For example, a resize instru-
ment in our program restructuring system may either make the visual
representation bigger or make the represented loop iterate more.

representation hierarchies and change propagation

Representations can build on another representations rather than on
the domain objects directly if they require new data or its structure
created by the representation. The polymorphic instruments become
applicable to any of the representation or to the initial domain ob-
ject. Each representation "layer" may either react to the user action or

object of interest

layer 1

layer 2

layer 3alayer 3b

bidirectional
change propagation

manipulate object

manipulate representations

proxy it through to the next level. Multiple different representations
can share the same level of the hierarchy providing the user with
different ways to interact with the domain objects [99].

Figure 94 illustrates the representation hierarchy in polyhedral vi-
sual program restructuring. The program, or more specifically its

222 conclusion and perspectives

control and data flow, are the central object of interest. The user may
interact with either the polyhedral representation stack or with the
code representation, but not with the program directly. When the
user intends to modify the central object of interest, the changes are
propagated down the active part of the hierarchy and back to the
other representations.

Program
(control and data flow)

Polyhedral relational
representation C code

Points and polygons

conversion

representation

representation

interaction with representation

interaction through representation

interaction

tool

object of interest

Figure 94 – Using tools to interact with the representation and with the do-
main object through the representation in interactive program
restructuring.

Two complementary views on the multi-layer representation inter-
action are possible. The user applies the instrument to the deeper lev-
els through all representations, focusing on the effect for the domain
object, and the changes are propagated from bottom to top in the rep-
resentation stack. Alternatively, the user applies instruments to the
top-level representation and it propagates changes to the deeper lev-
els according to its own rules. In this case, the upper-level represen-
tations should be transparent for interaction: a change of the higher-
level representation should correspond to the lower-level change such
that, if applied directly at the lower level, it would be represented
identically to the requested change on the higher level.

A conversion procedure allows to map one representation into an-
other without going through a deeper level of hierarchy or the central
object of interest.

representations and substrates Our notion of representa-
tion is close in its spirit to the information substrate, which are "soft-

ware artifacts that embody content, computation and interaction..." [142].
Representations embody computation, i. e. the algorithm to create
the representation and to propagate the changes back. They may also
partially include interaction in a sense that they specify how a par-
ticular instrument is applied to the object through them. Rather than
embodying content, they represent it in a various shapes thus guiding
or limiting the interaction with it.

8.4 future work and perspectives 223

While information substrates exist on the edge between applica-
tions and documents, i. e. on the operating system level, representa-

tions are initially thought for a single application displaying the same
document. However, they are not limited to the same application as
long as they represent the same object. For example, different file man-
agers executed simultaneously feature different representations of the
file system. Moreover, an application may be dedicated to represent-
ing an object and such applications combined into a larger interactive
system. Further development of the instrumental interaction model
and a deeper understanding of the connection between information
substrates and representations will allow to design interactive sys-
tems that diverge from the typical application-data separation by let-
ting users create, reuse and combine interaction instruments as they
do with physical instruments in the real world.

8.4 future work and perspectives

interactive program manipulation Given multiple repre-
sentations of the program, of the optimization algorithm and of its
result, it is important to focus on their combination and coordina-
tion. As suggested by our results, using multiple representations
that are not adapted to the task may be less efficient, in particular
when the mapping between representations is not obvious. Design-
ing techniques that help users navigate different representations may
alleviate this problem. For example, providing morphing animations
between two states of the same representation or between two differ-
ent representations. View coordination is another substantial aspect
of multi-representation interfaces that may be considered jointly with
navigating in representations.

A far-fetched development of the interactive program transforma-
tion is an interactive system constructor: the program is represented
as a set of manipulable information sources that can be mapped to
the information communication channels (visual cues, audio, haptics,
etc.) that feature the matching information structure and afford ma-
nipulation. In this case, the developer can construct a tailored inter-
active view of the relevant aspects of the program and restructure the
program through it replacing components at will.

This constructor approach will allow to diverge from the traditional
"application" view of the integrated development environments to
give developers more power and control over their tools. It is consis-
tent with the instrumental interaction paradigm where program ma-
nipulation algorithms and tools as well as representations are instru-
ments that can be used independently in many contexts. Developing
interactive program restructuring tools may also help extending the
instrumental interaction paradigm to better model the complex multi-

224 conclusion and perspectives

level domain objects with constantly shifting user focus. In a broader
perspective, making program manipulation tools substantially easier
and more widely available may blur the difference between program-
ming and software appropriation by the extreme users [145, 173],
making software easier to adapt, customize and reuse.

semi-automatic optimizing compilation An immediate ex-
tension of our work on high-level directives for program transforma-
tion in Clay and Chlore consists in a detailed study of the transfor-
mation directives, their sets and sequences. Namely, Clay set is re-
dundant by design, but other transformation sets with limitations on
the particular transformation arguments may be proposed to avoid
redundancy. One can design a user study to evaluate whether re-
dundancy or other properties of the transformation set influence the
usability of the transformation engine. At the same time, one may
study the understanding of the new transformations we proposed in
comparison with existing, classical loop transformations.

Transformation sequences recovered by Chlore feature another pos-
sibility for conducting user studies and making the algorithm output
more user-friendly. First, it requires understanding of what the devel-
opers find difficult in the transformation. For instance, the trade-off
between the transformation length and the complexity of individual
transformation semantics should be considered. Second, it requires
metrics of transformation sequence quality to be defined following
user observation and analysis. Finally, it requires an algorithm that
reworks a transformation sequence to improve the metric.

The reification of the program transformation into a script and
its subsequent decoupling from the optimizer and the program itself
open interesting possibilities for optimization. In particular, transfor-
mation scripts can be stored, tweaked and reused for different pro-
gram parts with similar characteristics without re-analyzing them.
The definition of these characteristics as well as the applicability of
the transformation scripts to modified program parts is one of the
possible research directions.

Decoupling of the transformation from the optimizing algorithm
should be extended to other optimization passes of the compilation.
Many of them already operate in syntactic terms making it easier to
express as directives. However, it may require special representations,
textual or visual, to make the developers understand and manipulate
these transformations efficiently. With advanced integration into the
development environment, developers will be given precise control
over the optimization process.

The problem of combining polyhedral and syntactic program trans-
formation has recently come into research focus [225]. Our method

8.4 future work and perspectives 225

of expressing polyhedral transformation as syntactic directives can
make the integration more seamless while maintaining the analysis
power of the polyhedral model. From the user’s point of view, the
program optimization is presented through a unified interface with
varying level of precision. He may complete the analyses by higher-
level semantic information about the intended program behavior so
that the optimizer takes into account this supplementary information.

Making the transformation sequence available in the program rather
than a temporary entity inside the optimizing compiler allows to inte-
grate the architecture-related and profiling information more explic-
itly. Instead of requiring the developer to specify all available infor-
mation about the program beforehand, it allows him to receive sys-
tem’s feedback on which information is important for optimization.
The script-based approach also allows to communicate intent, for ex-
ample specify why a particular tiling size was chosen manually or
why an automatic choice was overridden.

A generalization of the semi-automatic approach may allow to
redistribute compilation time and developer’s work time. While a
compiler continues to run heavy precise analyses, first results can be
submitted for the developer to analyze and tweak forming a sort of
pipeline in developer-compiler interaction. Furthermore, the heavy
analyses to create an optimizing transformation sequence can be run
separately from the transformation system, even on a different, more
powerful computer system, while a relatively easy transformation ap-
plication process may happen locally and more often than the analy-
sis giving room for exploration strategy.

interactive restructuring for learning programming

A different development of the interactive program restructuring tech-
niques may target less experienced programmers. Indeed, interac-
tive visualizations allowed to lower the perceptual complexity of an
advanced mathematical model of the programs without loosing its
power. Applying this idea to other intricate programming concepts
may allow to introduce them to the more general public more effec-
tively, and smooth transitions between multiple representations may
allow to use the actual production programming languages from the
start rather than relying on simplified teaching systems. For example,
animated replay of the transformation sequences bears some resem-
blance with early algorithm animation techniques, but is built on top
of a production-level programming system. Understanding the ben-
efits of interactive program restructuring for teaching will require a
longitudinal study of the corresponding techniques.

226 conclusion and perspectives

Generalizing the interactive program restructuring, we promote
a human-centric approach to designing software development tools
that support the entire software life cycle. It consists in building
adaptable and tweakable programming tools based on user studies
and developer needs rather than on the system requirements. Given
available computing power, such tools will allow improving program-
mer’s performance along with the program performance thanks to
better support for moving between abstraction levels. They will give
the user more control without requiring them to control everything
thanks to the human-machine partnership. We propose to revisit the
direct manipulation — "a step beyond programming languages" that be-
came a common interaction style, — and finally make the step from
programming languages to ecosystems of interconnected program
manipulation tools. Interactive program restructuring will support
developers throughout the software lifecycle by combining software
analysis and manipulation in a single consistent interactive system.

A
E X T E N D E D I N F I N T D E S I G N S PA C E

This appendix presents the extension of the InfInt Design Space
presented in Chapter 2. In addition to Information and Interaction di-
mensions, it includes the description of the visualization itself. The
extended version of the tool analysis in the design space is repre-
sented in Figure 95 and continued in Figure 96.

The InfInt design space uses the following values of the Information

dimension:
— code line-based statistics;
— program slicing and dicing;
— object-oriented hierarchies;
— execution traces;
— multithreading or multiprocessing synchronization;
— communication in distributed programming models or environ-

ments;
— memory management;
— data structures;
— control structures;
— numeric metrics;
— low-level software aspects.

This dimension corresponds to the horizontal axis on the figures.
Interaction dimension may take the following values and is repre-

sented with a color code:
Static — no interaction is possible with this information, the visual

representation is a static, non-navigable picture (black);
General — the user is able to interact with the visual representa-

tion itself, but not with the program being visualized, using con-
ventional techniques for this kind of visualization (dark red);

Specific — the user is able to interact with the visual representa-
tion itself, but not with the program, using interaction tech-
niques that take into account the specificity of the underlying
software-related data (blue);

Restructuring — the user is able to change the underlying pro-
gram by interacting with its visual representation (light green).

A software visualization technique is represented in the extended
InfInt design space by a row. If the technique visualizes certain infor-
mational aspect of the software, the corresponding cell (intersection
of the technique row and Information column) describes how this as-
pect is visualized. Its color shows the level of Interaction with this par-
ticular informational aspect. If multiple representations are provided
for the aspect or it is only partly visualized, it may be specified by

227

228 extended infint design space

italic text followed by → representing the mapping. The description
language used in Figures 95,96 is vaguely inspired by [45]. However,
we also use a higher-level description for commonly used visualiza-
tion techniques [120] with the following abbreviations:

xy — 2D coordinates;
xyz — 3D coordinates;
C — color;
O — opacity;
Sz — sizes;
NL — node-link diagram;
UML — UML class diagram;
Seq — sequence diagram (including UML sequence diagram);
Gtt — Gantt chart;
Scatter — Scatter plot;
Parallel — parallel coordinates plot;
Indexed — indexed (conventional x-y) plot;
Icicle — icicle diagram.

We do not mention basic visual cues (coordinates, color, sizes) if the
visualization relies on them, e. g. coordinates and sizes are essential
for Gantt chart. In case of multiple cues or visualizations available
for the same information aspect, we separate them by commas. If the
visual display is a combination of multiple visualizations, we connect
them by × symbol. For example, a combination of Gantt chart and
a node-link diagram where each segment of the Gantt diagram is a
node potentially connected to other nodes, typical for representing
traces and communication, is encoded as Gtt × NL.

Although a more detailed analysis using the structure proposed
by Card and Mackinlay [45] and the exact mapping to the quantifi-
able informational aspects of the software may provide more insight
into building software visualizations that support interactive restruc-
turing, we argue that higher-level description of the visualizations
allows to better compare techniques with each other. As these vi-
sualizations are vastly described in the literature, the technique de-
signer may have a good intuition as to the appropriate interactions,
e. g. node-link diagram easily allows for rearranging nodes by direct
manipulation or for editing links through instrumental interaction.

extended infint design space 229

Figure 95 – Extended InfInt Design Space: a row corresponds to a software
visualization technique, columns represents values of Informa-
tion dimension, cell entries contain indication of the visual rep-
resentation color coded by Interaction.

230 extended infint design space

Figure 96 – Extended InfInt Design Space (continued).

B
S TAT I S T I C A L M E T H O D S

This appendix briefly describes the statistical methods we use to an-
alyze and report data: effect sizes and confidence intervals. It serves
only as a presentation and does not provide full calculations or proofs,
which can be found in, e.g., [218].

b.1 key probability distributions

normal distribution

Normal distribution is a continuous probability distribution often ob-
served in nature and commonly used for statistical analysis. It de-
scribes the values distributed around a certain mean value µ, with the
probability of a value exponentially decreasing with its distance from
the mean. This decrease is characterized by the standard deviation σ.

Central Limit Theorem states that the mean of an infinitely large
number of samples drawn from arbitrary distributed random vari-
able is distributed normally, independently of the source distribu-
tions, making normal distribution ubiquitous in experiment analysis.
Indeed, the measures observed during the human-computer interac-
tion experiments may be influenced by numerous aspects of human
behavior or system properties. Therefore, they are likely to be (ap-
proximately) normally distributed.

student’s t distribution

The mean of a finite number n of random samples drawn from the
normal distribution is obeying the tν distribution, where the parame-
ter ν = n− 1 specifies the degrees of freedom. The shape of the probabil-
ity density function of a t-distribution becomes increasingly close to
the normal distribution for larger ν values: for ν = ∞, t-distribution
is equivalent to normal distribution (Figure 97).

log-normal distribution and log-transform HCI exper-
iments often measure time intervals to compare tool efficiency, for
example task completion times with different visualizations. Yet, in-
tervals and durations are always non-negative and thus cannot be
distributed normally: normal distribution allows for any value arbi-
trarily far from the mean, although with very low probabilities. A
log-normal distribution of a random variable means that its natural
logarithm is distributed normally. Log-normal distribution does not
allow for negative values and is generally better suited for time inter-
vals.

231

232 statistical methods

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n

ct
io

n
 p

(x
)

Distribution

t1

t5

t11

normal, t 8

Figure 97 – Probability density functions of the normal distribution with
µ = 0, σ = 1 and t-distribution with ν = 1, 5, 11.

In practice, we rely on log-transform for analyzing time interval data.
It consists in taking a natural logarithm of the raw values before anal-
ysis and performing the inverse (exponent) manipulation before re-
porting the results. This results, in particular, in the mean being less
affected by individual large values and in confidence intervals being
asymmetric.

b.2 confidence intervals

Confidence intervals (CIs) help estimating the unknown value, e. g.
the mean or difference of means, given the finite number of samples.
In particular, a 95% confidence interval of a mean will include the
mean of the samples with a 95% probability if the measurement is re-

peated with the same conditions. Note that CIs do not allow to reason
about the true mean of the unknown value. For symmetric distribu-
tions, including normal and t-distributions, confidence intervals are
also symmetric and are conventionally written as µ± c meaning the
confidence interval is [µ− c, µ+ c].

For n independent samples {s1, s2, . . . , sn} of a normally distributed
random variable with sample mean m = 1

n

∑n
i=1 si and sample vari-

ance s2 = 1
n−1

∑n
i=1(xi −m)2, we defined the standardized mean dis-

tribution as

T =
m− µ

s/
√
n
,

which has a t-distribution with (n− 1) degrees of freedom (standard

normal distribution has mean 0 and standard deviation 1). To com-

B.3 effect sizes and hypothesis testing 233

pute the 95% confidence intervals, we need to find the value x such
that Pr(−x 6 T 6 x) = 0.95, i. e. there is 95% probability that the
random sample of standardized mean T is within the interval. Con-
versely, there is 5% probability that a random sample of T is outside
[−x, x] interval, i. e. Pr(T < −x) + Pr(T > x) = 0.05. This 5% proba-
bility is called α-value. Given that the t-distribution has central sym-
metry, we can assume Pr(T < −x) = Pr(T > x) = 0.05/2 = 0.025. We
can compute the value of x from the inverse cumulative probability
function for the t-distribution, F−1

11 (0.025) ≈ 2.2. Hence,

Pr(−2.2 6 T 6 2.2) = 0.95.

In order to obtain intervals around the original (non-standardized)
mean µ, we substitute T with its definition

Pr(−2.2 6
m− µ

s/
√
n

6 2.2) = 0.95;

Pr(m− 2.2
s√
n

6 µ 6 m+ 2.2
s√
n
) = 0.95,

or µ = m± 2.2 s√
n

in the short form.

b.3 effect sizes and hypothesis testing

symmetric effect size

If an experiment factor affects the normally distributed measures,
their means differ µ1 6= µ2. Yet, it may be complex to straightly
complain means. Therefore, we define the symmetric effect size as the
difference of means normalized by their average

ES =
µ1 − µ2

(µ1 + µ2)/2
· 100%.

Normalizing by the average allows to better account for cases where
one mean is substantially larger than the other, which is the common
case in experimental data.

confidence interval of the effect size

Effect sizes alone do not give a sufficiently robust estimation of the
effect since means of measures are subject to uncertainty given fi-
nite number of samples in the experiment. Therefore, we compute
confidence intervals of the effect size. We use the Tukey method to
calculate confidence intervals for the difference of means and than
scale it linearly to obtain CIs of the effect size.

234 statistical methods

The CI for difference of means is obtained from the studentized
range distribution q, which characterizes the pairwise difference of
means of k samples of size n from the normal distribution,

q =
abs(µ1 − µ2)

σ̂
√

2/n
,

where σ̂2 = 1
k

∑k
i=1

k
n

∑
j(xi,j − µi)

2 is the mean squared error, ı.e.
the sum of squares of differences between the observed value and
the mean of its sample. The q-distribution is parameterized by two
degrees of freedom k− 1 and n− k that depend on the number and
size of samples.

Similarly to the confidence intervals for the means, we can obtain
the 95% confidence interval from the inverse cumulative probability
function of the q-distribution as

(µ1 − µ2)±
σ̂√
2
Q−1

1−0.95,k−1,n−k

√

2(k− 1)

n
.

The endpoints of the interval can be then multiplied by 2
µ1+µ2

to
obtain the CI of the effect size.

estimation for hypothesis testing

In a hypothesis testing experiment, one formulates a null-hypothesis
opposite to the expected results, e. g. using direct manipulation does
not decrease program restructuring time. Then the experimental data
is analyzed to show that the null-hypothesis is unlikely to be true.

Confidence intervals allow to estimate the hypothesis in the exper-
iment. In particular, a null-hypothesis may stipulate that the true

mean is 0 (or any other number). If the 95% confidence interval of
the measure mean does not contain 0, there is less than 5% proba-
bility that rerunning the experiment will result in a measure mean 0.
Hence, the null-hypothesis is likely to be false and may be rejected
at α = 0.05 level, i.e. 5% probability of rejecting the correct null-
hypothesis and observing a false positive effect. The farther is 0 from
the confidence interval bounds, the less likely is the null-hypothesis.

Similarly, one can estimate whether the change in factor affects the
measure using the confidence interval of the effect size with the null-
hypothesis of 0 effect size.

Contrary to null hypothesis significance testing, that typically re-
sults in a binary confirmation/rejection of the null hypothesis, estima-

tion provides more nuanced data interpretation, especially important
for small sample sizes and complex measures [82].

B I B L I O G R A P H Y

[1] A. Abuthawabeh, F. Beck, D. Zeckzer, and S. Diehl. « Finding
Structures in Multi-Type Code Couplings with Node-Link and
Matrix Visualizations. » In: 2013 First IEEE Working Conference

on Software Visualization (VISSOFT). 2013 First IEEE Working
Conference on Software Visualization (VISSOFT). Sept. 2013,
pp. 1–10.

[2] David Ahlström. « Modeling and Improving Selection in Cas-
cading Pull-down Menus Using Fitts’ Law, the Steering Law
and Force Fields. » In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. CHI ’05. New York, NY,
USA: ACM, 2005, pp. 61–70.

[3] David Ahlström, Martin Hitz, and Gerhard Leitner. « An Eval-
uation of Sticky and Force Enhanced Targets in Multi Tar-
get Situations. » In: Proceedings of the 4th Nordic Conference on

Human-Computer Interaction: Changing Roles. NordiCHI ’06. New
York, NY, USA: ACM, 2006, pp. 58–67.

[4] Francisco J. Almeida-Martínez, Jaime Urquiza-Fuentes, and J.
Ángel Velázquez-Iturbide. « VAST: Visualization of Abstract
Syntax Trees Within Language Processors Courses. » In: Pro-

ceedings of the 4th ACM Symposium on Software Visualization.
SoftVis ’08. New York, NY, USA: ACM, 2008, pp. 209–210.

[5] Jessalyn Alvina, Caroline Appert, Olivier Chapuis, and Em-
manuel Pietriga. « RouteLens: Easy Route Following for Map
Applications. » In: Proceedings of the 2014 International Working

Conference on Advanced Visual Interfaces. AVI ’14. New York, NY,
USA: ACM, 2014, pp. 125–128.

[6] Corinne Ancourt and François Irigoin. « Scanning Polyhedra
with DO Loops. » In: ACM Sigplan Notices. Vol. 26. ACM, 1991,
pp. 39–50.

[7] Ferran Argelaguet, David Antonio Gómez Jáuregui, Maud Mar-
chal, and Anatole Lécuyer. « Elastic Images: Perceiving Local
Elasticity of Images through a Novel Pseudo-Haptic Deforma-
tion Effect. » In: ACM Transactions on Applied Perception (TAP)

10.3 (2013), p. 17.

[8] Anna Armentrout. « A Tool for Designing Java Programs with
UML. » In: Proceedings of the 4th Annual SIGCSE/SIGCUE ITiCSE

Conference on Innovation and Technology in Computer Science Ed-

ucation. ITiCSE ’99. New York, NY, USA: ACM, 1999, pp. 180–.

235

236 Bibliography

[9] Ronald M. Baecker. « Sorting Out Sorting: A Case Study of
Software Visualization for Teaching Computer Science. » In:
Software Visualization: Programming as a Multimedia Experience.
Ed. by John T. Stasko. MIT Press, 1998, pp. 369–381.

[10] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. « The
Parma Polyhedra Library: Toward a Complete Set of Numeri-
cal Abstractions for the Analysis and Verification of Hardware
and Software Systems. » In: Science of Computer Programming.
Special Issue on Second issue of experimental software and
toolkits (EST) 72 (1–2 June 1, 2008), pp. 3–21.

[11] Lénaïc Bagnères and Cédric Bastoul. « Switchable Scheduling
for Runtime Adaptation of Optimization. » In: Euro-Par 2014

Parallel Processing. Ed. by Fernando Silva, Inês Dutra, and Ví-
tor Santos Costa. Lecture Notes in Computer Science 8632.
Springer International Publishing, Aug. 25, 2014, pp. 222–233.

[12] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cé-
dric Bastoul. « Opening Polyhedral Compiler’s Black Box. » In:
Proceedings of the 2016 International Symposium on Code Genera-

tion and Optimization. CGO 2016. New York, NY, USA: ACM,
2016, pp. 128–138.

[13] T. Ball and S. G. Eick. « Visualizing Program Slices. » In: , IEEE

Symposium on Visual Languages, 1994. Proceedings. , IEEE Sym-
posium on Visual Languages, 1994. Proceedings. Oct. 1994,
pp. 288–295.

[14] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus
Lewerentz. « Software Landscapes: Visualizing the Structure
of Large Software Systems. » In: Proceedings of the Sixth Joint Eu-

rographics - IEEE TCVG Conference on Visualization. VISSYM’04.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Associa-
tion, 2004, pp. 261–266.

[15] R. C. Barrett, E. J. Selker, J. D. Rutledge, and R. S. Olyha. « Neg-
ative Inertia: A Dynamic Pointing Function. » In: Conference

Companion on Human Factors in Computing Systems. CHI ’95.
New York, NY, USA: ACM, 1995, pp. 316–317.

[16] Cedric Bastoul. « Code Generation in the Polyhedral Model
Is Easier Than You Think. » In: Proceedings of the 13th Interna-

tional Conference on Parallel Architectures and Compilation Tech-

niques. PACT ’04. Washington, DC, USA: IEEE Computer Soci-
ety, 2004, pp. 7–16.

[17] Cédric Bastoul. OpenScop: A Specification and a Library for Data

Exchange in Polyhedral Compilation Tools. Technical Report. Or-
say, France: Paris-Sud University, Sept. 2011, p. 47.

Bibliography 237

[18] Cédric Bastoul. « Mapping Deviation: A Technique to Adapt
or to Guard Loop Transformation Intuitions for Legality. » In:
Proceedings of the 25th International Conference on Compiler Con-

struction. CC 2016. New York, NY, USA: ACM, 2016, pp. 229–
239.

[19] Cédric Bastoul and Paul Feautrier. « Improving Data Locality
by Chunking. » In: Compiler Construction. Ed. by Görel Hedin.
Lecture Notes in Computer Science 2622. Springer Berlin Hei-
delberg, Apr. 7, 2003, pp. 320–334.

[20] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma,
and Olivier Temam. « Putting Polyhedral Loop Transforma-
tions to Work. » In: Languages and Compilers for Parallel Com-

puting. Ed. by Lawrence Rauchwerger. Lecture Notes in Com-
puter Science 2958. Springer Berlin Heidelberg, Oct. 2, 2003,
pp. 209–225.

[21] Olivier Bau and Wendy E. Mackay. « OctoPocus: A Dynamic
Guide for Learning Gesture-Based Command Sets. » In: Pro-

ceedings of the 21st Annual ACM Symposium on User Interface

Software and Technology. UIST ’08. New York, NY, USA: ACM,
2008, pp. 37–46.

[22] Patrick Baudisch, Edward Cutrell, Ken Hinckley, and Adam
Eversole. « Snap-and-Go: Helping Users Align Objects With-
out the Modality of Traditional Snapping. » In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’05. New York, NY, USA: ACM, 2005, pp. 301–310.

[23] Michel Beaudouin-Lafon. « Instrumental Interaction: An In-
teraction Model for Designing Post-WIMP User Interfaces. »
In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. CHI ’00. New York, NY, USA: ACM, 2000,
pp. 446–453.

[24] Michel Beaudouin-Lafon. « Designing Interaction, Not Inter-
faces. » In: Proceedings of the Working Conference on Advanced

Visual Interfaces. AVI ’04. New York, NY, USA: ACM, 2004,
pp. 15–22.

[25] Michel Beaudouin-Lafon and Henry Michael Lassen. « The
Architecture and Implementation of CPN2000, a Post-WIMP
Graphical Application. » In: Proceedings of the 13th Annual ACM

Symposium on User Interface Software and Technology. UIST ’00.
New York, NY, USA: ACM, 2000, pp. 181–190.

[26] Michel Beaudouin-Lafon and Wendy E. Mackay. « Reification,
Polymorphism and Reuse: Three Principles for Designing Vi-
sual Interfaces. » In: Proceedings of the Working Conference on

Advanced Visual Interfaces. AVI ’00. New York, NY, USA: ACM,
2000, pp. 102–109.

238 Bibliography

[27] F. Beck, R. Petkov, and S. Diehl. « Visually Exploring Multi-
Dimensional Code Couplings. » In: 2011 6th IEEE International

Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT). 2011 6th IEEE International Workshop on Visualiz-
ing Software for Understanding and Analysis (VISSOFT). Sept.
2011, pp. 1–8.

[28] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Al-
bert Cohen, and Cédric Bastoul. « The Polyhedral Model Is
More Widely Applicable than You Think. » In: Compiler Con-

struction. Springer, 2010, pp. 283–303.

[29] Thomas J. Bergin and Richard G. Gibson, eds. History of Pro-

gramming Languages, Volume 2. 1 edition. New York : Reading,
Mass: Addison-Wesley Professional, Feb. 22, 1996. 864 pp.

[30] A. J. Bernstein. « Analysis of Programs for Parallel Process-
ing. » In: IEEE Transactions on Electronic Computers EC-15.5 (Oct.
1966), pp. 757–763.

[31] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps.
University of Wisconsin Press, 1983.

[32] Eric A. Bier and Maureen C. Stone. « Snap-Dragging. » In: Pro-

ceedings of the 13th Annual Conference on Computer Graphics and

Interactive Techniques. SIGGRAPH ’86. New York, NY, USA:
ACM, 1986, pp. 233–240.

[33] Alan F. Blackwell, Kirsten N. Whitley, Judith Good, and Mar-
ian Petre. « Cognitive Factors in Programming with Diagrams. »
In: Artificial Intelligence Review 15 (1-2 2001), pp. 95–114.

[34] Renaud Blanch, Yves Guiard, and Michel Beaudouin-Lafon.
« Semantic Pointing: Improving Target Acquisition with Control-
Display Ratio Adaptation. » In: Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems. CHI ’04. New
York, NY, USA: ACM, 2004, pp. 519–526.

[35] Hans-J. Boehm. « Threads Cannot Be Implemented As a Li-
brary. » In: Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 261–268.

[36] Uday Bondhugula, Aravind Acharya, and Albert Cohen. « The
Pluto+ Algorithm: A Practical Approach for Parallelization
and Locality Optimization of Affine Loop Nests. » In: ACM

Trans. Program. Lang. Syst. 38.3 (Apr. 2016), 12:1–12:32.

[37] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam,
and Ponnuswamy Sadayappan. « A Practical Automatic Poly-
hedral Parallelizer and Locality Optimizer. » In: ACM SIGPLAN

Notices. Vol. 43. ACM, 2008, pp. 101–113.

Bibliography 239

[38] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy,
Jagannathan Ramanujam, Atanas Rountev, and Ponnuswamy
Sadayappan. « Automatic Transformations for Communication-
Minimized Parallelization and Locality Optimization in the
Polyhedral Model. » In: Compiler Construction. Springer, 2008,
pp. 132–146.

[39] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Laksh-
minarayanan Renganarayanan. « A Model for Fusion and Code
Motion in an Automatic Parallelizing Compiler. » In: Proceed-

ings of the 19th International Conference on Parallel Architectures

and Compilation Techniques. PACT ’10. IBM XL. New York, NY,
USA: ACM, 2010, pp. 343–352.

[40] Marat Boshernitsan and Michael S. Downes. Visual Program-

ming Languages: A Survey. Technical Rept. UCB/CSD-04-1368.
University of California at Berkeley, Berkeley, California, Dec. 1,
2004, p. 25.

[41] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric
Vivien. « Loop Parallelization Algorithms: From Parallelism
Extraction to Code Generation. » In: Parallel Computing 24 (3–4

May 1998), pp. 421–444.

[42] Robert W. Bowdidge and William G. Griswold. « Supporting
the Restructuring of Data Abstractions Through Manipulation
of a Program Visualization. » In: ACM Trans. Softw. Eng. Methodol.

7.2 (Apr. 1998), pp. 109–157.

[43] Orlie Brewer, Jack Dongarra, and Danny Sorensen. « Tools to
Aid in the Analysis of Memory Access Patterns for FORTRAN
Programs. » In: Parallel Computing 9.1 (Dec. 1988), pp. 25–35.

[44] M. H. Brown and R. Sedgewick. « Techniques for Algorithm
Animation. » In: IEEE Software 2.1 (Jan. 1985), pp. 28–39.

[45] S. K. Card and J. Mackinlay. « The Structure of the Information
Visualization Design Space. » In: , IEEE Symposium on Informa-

tion Visualization, 1997. Proceedings. , IEEE Symposium on In-
formation Visualization, 1997. Proceedings. Oct. 1997, pp. 92–
99.

[46] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, eds.
Readings in Information Visualization: Using Vision to Think. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

[47] Sheelagh Carpendale and Yaser Ghanam. « A Survey Paper
on Software Architecture Visualization. » In: Technical Report

(June 19, 2008).

[48] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. « Com-
piler Optimizations for Improving Data Locality. » In: ACM

SIGPLAN Notices. Vol. 29. ACM, 1994, pp. 252–262.

240 Bibliography

[49] P. Caserta and O. Zendra. « Visualization of the Static Aspects
of Software: A Survey. » In: IEEE Transactions on Visualization

and Computer Graphics 17.7 (July 2011), pp. 913–933.

[50] Géry Casiez and Nicolas Roussel. « No More Bricolage!: Meth-
ods and Tools to Characterize, Replicate and Compare Point-
ing Transfer Functions. » In: Proceedings of the 24th Annual ACM

Symposium on User Interface Software and Technology. UIST ’11.
New York, NY, USA: ACM, 2011, pp. 603–614.

[51] Géry Casiez, Daniel Vogel, Ravin Balakrishnan, and Andy Cock-
burn. « The Impact of Control-Display Gain on User Perfor-
mance in Pointing Tasks. » In: Human–Computer Interaction 23.3
(2008), pp. 215–250.

[52] Bay-Wei Chang and David Ungar. « Animation: From Cartoons
to the User Interface. » In: Proceedings of the 6th Annual ACM

Symposium on User Interface Software and Technology. UIST ’93.
New York, NY, USA: ACM, 1993, pp. 45–55.

[53] Bay-Wei Chang, Jock D. Mackinlay, Polle T. Zellweger, and
Takeo Igarashi. « A Negotiation Architecture for Fluid Doc-
uments. » In: Proceedings of the 11th Annual ACM Symposium on

User Interface Software and Technology. UIST ’98. New York, NY,
USA: ACM, 1998, pp. 123–132.

[54] Olivier Chapuis, Jean-Baptiste Labrune, and Emmanuel Pietriga.
« DynaSpot: Speed-Dependent Area Cursor. » In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’09. New York, NY, USA: ACM, 2009, pp. 1391–1400.

[55] P. Chatarasi, J. Shirako, and V. Sarkar. « Polyhedral Optimiza-
tions of Explicitly Parallel Programs. » In: 2015 International

Conference on Parallel Architecture and Compilation (PACT). 2015

International Conference on Parallel Architecture and Compi-
lation (PACT). Oct. 2015, pp. 213–226.

[56] B. Chazelle. « Convex Partitions of Polyhedra: A Lower Bound
and Worst-Case Optimal Algorithm. » In: SIAM Journal on Com-

puting 13.3 (Aug. 1, 1984), pp. 488–507.

[57] Chun Chen. « Polyhedra Scanning Revisited. » In: Proceedings

of the 33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’12. New York, NY, USA: ACM,
2012, pp. 499–508.

[58] Chun Chen, Jacqueline Chame, and Mary Hall. CHiLL: A Frame-

work for Composing High-Level Loop Transformations. 2008.

[59] Fanny Chevalier, David Auber, and Alexandru Telea. « Struc-
tural Analysis and Visualization of C++ Code Evolution Using
Syntax Trees. » In: Ninth International Workshop on Principles of

Software Evolution: In Conjunction with the 6th ESEC/FSE Joint

Bibliography 241

Meeting. IWPSE ’07. New York, NY, USA: ACM, 2007, pp. 90–
97.

[60] Fanny Chevalier, Pierre Dragicevic, and Christophe Hurter.
« Histomages: Fully Synchronized Views for Image Editing. »
In: Proceedings of the 25th Annual ACM Symposium on User In-

terface Software and Technology. UIST ’12. New York, NY, USA:
ACM, 2012, pp. 281–286.

[61] Fanny Chevalier, Pierre Dragicevic, Anastasia Bezerianos, and
Jean-Daniel Fekete. « Using Text Animated Transitions to Sup-
port Navigation in Document Histories. » In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. CHI
’10. New York, NY, USA: ACM, 2010, pp. 683–692.

[62] Carlos Christensen. « An Example of the Manipulation of Di-
rected Graphs in the AMBIT/G Programming Language. » In:
Symposium on Interactive Systems for Experimental Applied Math-

ematics: Proceedings of the Association for Computing Machinery

Inc. Symposium. New York, NY, USA: ACM, 1967, pp. 423–435.

[63] Carlos Christensen. « An Introduction to AMBIT/L, a Dia-
grammatic Language for List Processing. » In: Proceedings of

the Second ACM Symposium on Symbolic and Algebraic Manipula-

tion. SYMSAC ’71. New York, NY, USA: ACM, 1971, pp. 248–
260.

[64] Philippe Clauss and Benoît Meister. « Automatic Memory Lay-
out Transformations to Optimize Spatial Locality in Parame-
terized Loop Nests. » In: SIGARCH Comput. Archit. News 28.1
(Mar. 2000), pp. 11–19.

[65] Andy Cockburn and Stephen Brewster. « Multimodal Feed-
back for the Acquisition of Small Targets. » In: Ergonomics 48.9
(July 15, 2005), pp. 1129–1150. pmid: 16251152.

[66] Andy Cockburn and Philip Brock. « Human On-Line Response
to Visual and Motor Target Expansion. » In: Proceedings of Graph-

ics Interface 2006. GI ’06. Toronto, Ont., Canada, Canada: Cana-
dian Information Processing Society, 2006, pp. 81–87.

[67] Andy Cockburn and Bruce McKenzie. « 3D or Not 3D?: Eval-
uating the Effect of the Third Dimension in a Document Man-
agement System. » In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. CHI ’01. New York, NY,
USA: ACM, 2001, pp. 434–441.

[68] « Computer-Implemented Method for Generating a UML Rep-
resentation from JAVA Source Code. » Pat. US6560769 B1. Jef-
frey Allen Moore, Joseph Peter Stefaniak, and Lonnie Dale Sul-
grove. U.S. Classification 717/100, 717/106, 717/108, 717/101,
717/118, 707/999.1; International Classification G06F9/44; Co-

16251152

242 Bibliography

operative Classification G06F8/74; European Classification G06F8/74.
May 6, 2003.

[69] Stéphane Conversy. « Existe-T-Il Une DiffÉRence Entre Lan-
gages Visuels Et Textuels En Termes De Perception? » In: Pro-

ceedings of the 25th Conference on L’Interaction Homme-Machine.
IHM ’13. New York, NY, USA: ACM, 2013, 53:53–53:58.

[70] Stéphane Conversy. « Unifying Textual and Visual: A Theoret-
ical Account of the Visual Perception of Programming Lan-
guages. » In: Proceedings of the 2014 ACM International Sympo-

sium on New Ideas, New Paradigms, and Reflections on Program-

ming & Software. Onward! 2014. New York, NY, USA: ACM,
2014, pp. 201–212.

[71] Stéphane Conversy, Stéphane Chatty, and Christophe Hurter.
« Visual Scanning as a Reference Framework for Interactive
Representation Design. » In: Information Visualization 10.3 (July 1,
2011), pp. 196–211.

[72] G. Convertino, J. Chen, B. Yost, Y. S. Ryu, and C. North. « Ex-
ploring Context Switching and Cognition in Dual-View Coor-
dinated Visualizations. » In: International Conference on Coordi-

nated and Multiple Views in Exploratory Visualization, 2003. Pro-

ceedings. International Conference on Coordinated and Multi-
ple Views in Exploratory Visualization, 2003. Proceedings. July
2003, pp. 55–62.

[73] Geoff Cumming. « The New Statistics Why and How. » In: Psy-

chological Science (Nov. 12, 2013), p. 0956797613504966. pmid:
24220629.

[74] Geoff Cumming and Sue Finch. « Inference by Eye: Confidence
Intervals and How to Read Pictures of Data. » In: American

Psychologist 60.2 (2005), pp. 170–180.

[75] George Bernard Dantzig. Linear Programming and Extensions.
Princeton University Press, 1998. 652 pp.

[76] Alain Darte, Yves Robert, and Frederic Vivien. Scheduling and

Automatic Parallelization. Google-Books-ID: 95bxBwAAQBAJ. Springer
Science & Business Media, Dec. 6, 2012. 275 pp.

[77] Alain Darte and Frédéric Vivien. « Optimal Fine and Medium
Grain Parallelism Detection in Polyhedral Reduced Dependence
Graphs. » In: International Journal of Parallel Programming 25.6
(Dec. 1997), pp. 447–496.

[78] Y. Deng, S. Kothari, and Y. Namara. « Program Slice Browser. »
In: 9th International Workshop on Program Comprehension, 2001.

IWPC 2001. Proceedings. 9th International Workshop on Pro-
gram Comprehension, 2001. IWPC 2001. Proceedings. 2001,
pp. 50–59.

24220629

Bibliography 243

[79] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. « Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions. » In: IEEE Journal of Solid-State Cir-

cuits 9.5 (Oct. 1974), pp. 256–268.

[80] Stephan Diehl. Software Visualization: Visualizing the Structure,

Behaviour, and Evolution of Software. Springer Science & Busi-
ness Media, Apr. 24, 2007. 192 pp.

[81] Sebastien Donadio, James Brodman, Thomas Roeder, Kamen
Yotov, Denis Barthou, Albert Cohen, María Jesús Garzarán,
David Padua, and Keshav Pingali. « A Language for the Com-
pact Representation of Multiple Program Versions. » In: Lan-

guages and Compilers for Parallel Computing. Ed. by Eduard Ayguadé,
Gerald Baumgartner, J. Ramanujam, and P. Sadayappan. Lec-
ture Notes in Computer Science 4339. Springer Berlin Heidel-
berg, Oct. 20, 2005, pp. 136–151.

[82] Pierre Dragicevic. « Fair Statistical Communication in HCI. »
In: Modern Statistical Methods for HCI. Ed. by Judy Robertson
and Maurits Kaptein. Human–Computer Interaction Series. Springer
International Publishing, 2016, pp. 291–330.

[83] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. « Gli-
impse: Animating from Markup Code to Rendered Documents
and Vice Versa. » In: Proceedings of the 24th Annual ACM Sym-

posium on User Interface Software and Technology. UIST ’11. New
York, NY, USA: ACM, 2011, pp. 257–262.

[84] S. Ducasse and M. Lanza. « The Class Blueprint: Visually Sup-
porting the Understanding of Glasses. » In: IEEE Transactions

on Software Engineering 31.1 (Jan. 2005), pp. 75–90.

[85] Alistair D. N. Edwards. « Visual Programming Languages: The
Next Generation. » In: SIGPLAN Not. 23.4 (Apr. 1988), pp. 43–
50.

[86] S. C. Eick, J. L. Steffen, and E. E. Sumner. « Seesoft-a Tool
for Visualizing Line Oriented Software Statistics. » In: IEEE

Transactions on Software Engineering 18.11 (Nov. 1992), pp. 957–
968.

[87] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schus-
ter. « Visualizing Software Changes. » In: IEEE Transactions on

Software Engineering 28.4 (Apr. 2002), pp. 396–412.

[88] Christine Eisenbeis and Jean-Claude Sogno. « A General Algo-
rithm for Data Dependence Analysis. » In: Proceedings of the 6th

International Conference on Supercomputing. ICS ’92. New York,
NY, USA: ACM, 1992, pp. 292–302.

[89] G. Ellis and A. Dix. « A Taxonomy of Clutter Reduction for In-
formation Visualisation. » In: IEEE Transactions on Visualization

and Computer Graphics 13.6 (Nov. 2007), pp. 1216–1223.

244 Bibliography

[90] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C.
North, and Gordon Woodhull. « Graphviz— Open Source Graph
Drawing Tools. » In: Graph Drawing. Ed. by Petra Mutzel, Michael
Jünger, and Sebastian Leipert. Lecture Notes in Computer Sci-
ence 2265. Springer Berlin Heidelberg, Sept. 23, 2001, pp. 483–
484.

[91] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. « Dark Silicon and the End of Multicore Scaling. »
In: 2011 38th Annual International Symposium on Computer Ar-

chitecture (ISCA). 2011 38th Annual International Symposium
on Computer Architecture (ISCA). June 2011, pp. 365–376.

[92] I. Fassi and P. Clauss. « XFOR: Filling the Gap between Au-
tomatic Loop Optimization and Peak Performance. » In: 2015

14th International Symposium on Parallel and Distributed Comput-

ing. 2015 14th International Symposium on Parallel and Dis-
tributed Computing. June 2015, pp. 100–109.

[93] Paul Feautrier. « Parametric Integer Programming. » In: Re-

vue française d’automatique, d’informatique et de recherche opéra-

tionnelle. Recherche opérationnelle 22.3 (1988), pp. 243–268.

[94] Paul Feautrier. « Dataflow Analysis of Array and Scalar Ref-
erences. » In: International Journal of Parallel Programming 20.1
(1991), pp. 23–53.

[95] Paul Feautrier. « Some Efficient Solutions to the Affine Schedul-
ing Problem. I. One-Dimensional Time. » In: International Jour-

nal of Parallel Programming 21.5 (Oct. 1992), pp. 313–347.

[96] Paul Feautrier. « Some Efficient Solutions to the Affine Schedul-
ing Problem. Part II. Multidimensional Time. » In: International

journal of parallel programming 21.6 (1992), pp. 389–420.

[97] Paul Feautrier. « Bernstein’s Conditions. » In: Encyclopedia of

Parallel Computing. Ed. by David Padua. Springer US, 2011,
pp. 130–134.

[98] Paul Feautrier and Christian Lengauer. « Polyhedron Model. »
In: Encyclopedia of Parallel Computing. Ed. by David Padua. Springer
US, 2011, pp. 1581–1592.

[99] Jean-Daniel Fekete and Michel Beaudouin-Lafon. « Using the
Multi-Layer Model for Building Interactive Graphical Appli-
cations. » In: Proceedings of the 9th Annual ACM Symposium on

User Interface Software and Technology. UIST ’96. New York, NY,
USA: ACM, 1996, pp. 109–118.

[100] Norman Fenton and James Bieman. Software Metrics: A Rig-

orous and Practical Approach, Third Edition. CRC Press, Oct. 1,
2014. 602 pp.

Bibliography 245

[101] Grigori Fursin, Renato Miceli, Anton Lokhmotov, Michael Gerndt,
Marc Baboulin, Allen D. Malony, Zbigniew Chamski, Diego
Novillo, and Davide Del Vento. « Collective Mind: Towards
Practical and Collaborative Auto-Tuning. » In: Scientific Pro-

gramming 22.4 (2014), pp. 309–329.

[102] K. Gallagher, A. Hatch, and M. Munro. « A Framework for
Software Architecture Visualisation Assessment. » In: 3rd IEEE

International Workshop on Visualizing Software for Understand-

ing and Analysis, 2005. VISSOFT 2005. 3rd IEEE International
Workshop on Visualizing Software for Understanding and Anal-
ysis, 2005. VISSOFT 2005. 2005, pp. 1–6.

[103] Eleanor Jack Gibson and Anne D. Pick. An Ecological Approach

to Perceptual Learning and Development. Oxford University Press,
2000. 254 pp.

[104] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Co-
hen, David Parello, Marc Sigler, and Olivier Temam. « Semi-
Automatic Composition of Loop Transformations for Deep Par-
allelism and Memory Hierarchies. » In: International Journal of

Parallel Programming 34.3 (July 21, 2006). URUK, pp. 261–317.

[105] H. H. Goldstine and Adele Goldstine. « The Electronic Nu-
merical Integrator and Computer (ENIAC). » In: Mathematical

Tables and Other Aids to Computation 2.15 (1946), pp. 97–110. JS-
TOR: 2002620.

[106] « Special Issue on VIsual Programming. » In: IEEE Computer

18.8 (Aug. 1985). Ed. by Robert B Grafton and Tadao Ichikawa,
pp. 1–135.

[107] Thomas RG Green and Marian Petre. « When Visual Programs
Are Harder to Read than Textual Programs. » In: Human-Computer

Interaction: Tasks and Organisation, Proceedings of ECCE-6 (6th

European Conference on Cognitive Ergonomics). GC van Der Veer,

MJ Tauber, S. Bagnarola and M. Antavolits. Rome, CUD. Citeseer,
1992.

[108] Martin Griebl, Paul Feautrier, and Christian Lengauer. « Index
Set Splitting. » In: International Journal of Parallel Programming

28.6 (2000), pp. 607–631.

[109] Martin Griebl and Christian Lengauer. « The Loop Parallelizer
LooPo-Announcement. » In: Proceedings of the 9th International

Workshop on Languages and Compilers for Parallel Computing. LCPC
’96. London, UK, UK: Springer-Verlag, 1997, pp. 603–604.

[110] Paul A. Gross, Micah S. Herstand, Jordana W. Hodges, and
Caitlin L. Kelleher. « A Code Reuse Interface for Non-Programmer
Middle School Students. » In: Proceedings of the 15th Interna-

tional Conference on Intelligent User Interfaces. IUI ’10. New York,
NY, USA: ACM, 2010, pp. 219–228.

http://www.jstor.org/stable/2002620

246 Bibliography

[111] Paul Gross and Caitlin Kelleher. « The Looking Glass IDE for
Learning Computer Programming Through Storytelling and
History Exploration: Conference Workshop. » In: J. Comput.

Sci. Coll. 26.1 (Oct. 2010), pp. 75–76.

[112] Tobias Grosser, Armin Groesslinger, and Christian Lengauer.
« Polly — Performing Polyhedral Optimizations on a Low-
Level Intermediate Representation. » In: Parallel Processing Let-

ters 22 (04 Dec. 1, 2012), p. 1250010.

[113] Tobias Grosser, Albert Cohen, Justin Holewinski, Ponuswamy
Sadayappan, and Sven Verdoolaege. « Hybrid Hexagonal/Clas-
sical Tiling for GPUs. » In: Proceedings of Annual IEEE/ACM

International Symposium on Code Generation and Optimization.
ACM, 2014, p. 66.

[114] Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sadayap-
pan, and Sebastian Pop. « Optimistic Delinearization of Para-
metrically Sized Arrays. » In: Proceedings of the 29th ACM on

International Conference on Supercomputing. ICS ’15. New York,
NY, USA: ACM, 2015, pp. 351–360.

[115] Tovi Grossman and Ravin Balakrishnan. « The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of the Cur-
sor’s Activation Area. » In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. CHI ’05. New York,
NY, USA: ACM, 2005, pp. 281–290.

[116] Yves Guiard, Renaud Blanch, and Michel Beaudouin-Lafon.
« Object Pointing: A Complement to Bitmap Pointing in GUIs. »
In: Proceedings of Graphics Interface 2004. GI ’04. School of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada:
Canadian Human-Computer Communications Society, 2004,
pp. 9–16.

[117] Diana Göhringer and Jan Tepelmann. « An Interactive Tool
Based on Polly for Detection and Parallelization of Loops. » In:
Proceedings of Workshop on Parallel Programming and Run-Time

Management Techniques for Many-Core Architectures and Design

Tools and Architectures for Multicore Embedded Computing Plat-

forms. PARMA-DITAM ’14. New York, NY, USA: ACM, 2014,
1:1–1:6.

[118] L.M. Haibt. « A Program to Draw Multi-Level Flow Charts. »
In: Western Joint Computer Conference. San Francisco, CA,
USA, 1959, pp. 131–137.

[119] M. T. Heath and J. A. Etheridge. « Visualizing the Performance
of Parallel Programs. » In: IEEE Software 8.5 (Sept. 1991), pp. 29–
39.

Bibliography 247

[120] Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky. « A Tour
Through the Visualization Zoo. » In: Commun. ACM 53.6 (June
2010), pp. 59–67.

[121] Joachim Hohmann. Der Plankalkül im Vergleich mit algorithmis-

chen Sprachen. Google-Books-ID: f_dLAAAACAAJ. Toeche-Mittler,
1979. 136 pp.

[122] M. Homer and J. Noble. « Combining Tiled and Textual Views
of Code. » In: 2014 Second IEEE Working Conference on Software

Visualization (VISSOFT). 2014 Second IEEE Working Confer-
ence on Software Visualization (VISSOFT). Sept. 2014, pp. 1–
10.

[123] Christopher D. Hundhausen, Sean F. Farley, and Jonathan L.
Brown. « Can Direct Manipulation Lower the Barriers to Com-
puter Programming and Promote Transfer of Training?: An
Experimental Study. » In: ACM Trans. Comput.-Hum. Interact.

16.3 (Sept. 2009), 13:1–13:40.

[124] Amy Hurst, Jennifer Mankoff, Anind K. Dey, and Scott E.
Hudson. « Dirty Desktops: Using a Patina of Magnetic Mouse
Dust to Make Common Interactor Targets Easier to Select. » In:
Proceedings of the 20th Annual ACM Symposium on User Interface

Software and Technology. UIST ’07. New York, NY, USA: ACM,
2007, pp. 183–186.

[125] Alfred Inselberg and Bernard Dimsdale. « Parallel Coordinates. »
In: Human-Machine Interactive Systems. Ed. by Allen Klinger.
Languages and Information Systems. Springer US, 1991, pp. 199–
233.

[126] François Irigoin, Pierre Jouvelot, and Rémi Triolet. « Semanti-
cal Interprocedural Parallelization: An Overview of the PIPS
Project. » In: ACM International Conference on Supercomputing

25th Anniversary Volume. New York, NY, USA: ACM, 2014,
pp. 143–150.

[127] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni-

fied Software Development Process. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[128] Ghita Jalal, Nolwenn Maudet, and Wendy E. Mackay. « Color
Portraits: From Color Picking to Interacting with Color. » In:
Proceedings of the 33rd Annual ACM Conference on Human Factors

in Computing Systems. CHI ’15. New York, NY, USA: ACM,
2015, pp. 4207–4216.

[129] Nicklas Bo Jensen, Sven Karlsson, and Christian W. Probst.
« Compiler Feedback Using Continuous Dynamic Compilation
during Development. » In: International Workshop on Dynamic

Compilation Everywhere. DCE. Vienna: ACM, Jan. 2014, A1–12.

248 Bibliography

[130] Dean F. Jerding, John T. Stasko, and Thomas Ball. « Visualizing
Interactions in Program Executions. » In: Proceedings of the 19th

International Conference on Software Engineering. ICSE ’97. New
York, NY, USA: ACM, 1997, pp. 360–370.

[131] Alexandra Jimborean, Philippe Clauss, Benoît Pradelle, Luis
Mastrangelo, and Vincent Loechner. « Adapting the Polyhe-
dral Model As a Framework for Efficient Speculative Paral-
lelization. » In: Proceedings of the 17th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming. PPoPP
’12. New York, NY, USA: ACM, 2012, pp. 295–296.

[132] James A. Jones, Mary Jean Harrold, and John Stasko. « Visu-
alization of Test Information to Assist Fault Localization. » In:
Proceedings of the 24th International Conference on Software Engi-

neering. ICSE ’02. New York, NY, USA: ACM, 2002, pp. 467–
477.

[133] Neil D. Jones and Steven S. Muchnick. « Even Simple Pro-
grams Are Hard to Analyze. » In: Proceedings of the 2Nd ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages. POPL ’75. New York, NY, USA: ACM, 1975, pp. 106–
118.

[134] Richard Jones and Rafael Lins. Garbage Collection: Algorithms

for Automatic Dynamic Memory Management. New York, NY,
USA: John Wiley & Sons, Inc., 1996.

[135] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd.
« The Organization of Computations for Uniform Recurrence
Equations. » In: J. ACM 14.3 (July 1967), pp. 563–590.

[136] B. Karran, J. Trümper, and J. Döllner. « SYNCTRACE: Visual
Thread-Interplay Analysis. » In: 2013 First IEEE Working Con-

ference on Software Visualization (VISSOFT). 2013 First IEEE Work-
ing Conference on Software Visualization (VISSOFT). Sept. 2013,
pp. 1–10.

[137] Chantal Keller, Jérémy Bluteau, Renaud Blanch, and Sabine
Coquillart. « PseudoWeight: Making Tabletop Interaction with
Virtual Objects More Tangible. » In: Proceedings of the 2012 ACM

International Conference on Interactive Tabletops and Surfaces. ITS
’12. New York, NY, USA: ACM, 2012, pp. 201–204.

[138] Wayne Kelly and William Pugh. « A Framework for Unifying
Reordering Transformations. » In: (Oct. 15, 1998).

[139] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Ta-
tiana Shpeisman, and David Wonnacott. The Omega Library In-

terface Guide. College Park, MD, USA: University of Maryland
at College Park, 1995.

Bibliography 249

[140] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. « Prospec-
tor: A Dynamic Data-Dependence Profiler to Help Parallel Pro-
gramming. » In: HotPar’10: Proceedings of the USENIX Workshop

on Hot Topics in Parallelism. 2010.

[141] Laszlo B Kish. « End of Moore’s Law: Thermal (Noise) Death
of Integration in Micro and Nano Electronics. » In: Physics Let-

ters A 305 (3–4 Dec. 2, 2002), pp. 144–149.

[142] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy
Mackay, and Michel Beaudouin-Lafon. « Webstrates: Shareable
Dynamic Media. » In: Proceedings of the 28th Annual ACM Sym-

posium on User Interface Software & Technology. UIST ’15. New
York, NY, USA: ACM, 2015, pp. 280–290.

[143] Donald E. Knuth and Luis Trabb Pardo. « The Early Devel-
opment of Programming Languages. » In: Encyclopedia of Com-

puter Science and Technology. Ed. by J. Belzer, A.G. Holzman,
and A. Kent. Vol. 6. New York: Dekker, 1977, pp. 419–493.

[144] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Ju-
renz, Matthias Lieber, Holger Mickler, Matthias S. Müller, and
Wolfgang E. Nagel. « The Vampir Performance Analysis Tool-
Set. » In: Tools for High Performance Computing. Ed. by Michael
Resch, Rainer Keller, Valentin Himmler, Bettina Krammer, and
Alexander Schulz. Springer Berlin Heidelberg, 2008, pp. 139–
155.

[145] Andrew J. Ko et al. « The State of the Art in End-User Software
Engineering. » In: ACM Comput. Surv. 43.3 (Apr. 2011), 21:1–
21:44.

[146] Bogdan Korel and Janusz Laski. « Dynamic Program Slicing. »
In: Information Processing Letters 29.3 (Oct. 26, 1988), pp. 155–
163.

[147] Rainer Koschke. « Software Visualization in Software Mainte-
nance, Reverse Engineering, and Re-Engineering: A Research
Survey. » In: Journal of Software Maintenance 15.2 (Mar. 2003),
pp. 87–109.

[148] E. Kraemer and J. T. Stasko. « The Visualization of Parallel
Systems: An Overview. » In: Journal of Parallel and Distributed

Computing 18.2 (June 1993), pp. 105–117.

[149] J. Krinke. « Visualization of Program Dependence and Slices. »
In: 20th IEEE International Conference on Software Maintenance,

2004. Proceedings. 20th IEEE International Conference on Soft-
ware Maintenance, 2004. Proceedings. Sept. 2004, pp. 168–177.

[150] G. Kurtenbach, T. P. Moran, and W. Buxton. « Contextual Ani-
mation of Gestural Commands. » In: Computer Graphics Forum

13.5 (Dec. 1, 1994), pp. 305–314.

250 Bibliography

[151] Leslie Lamport. « The Parallel Execution of DO Loops. » In:
Commun. ACM 17.2 (Feb. 1974), pp. 83–93.

[152] C. F. J. Lange, M. R. V. Chaudron, and J. Muskens. « In Prac-
tice: UML Software Architecture and Design Description. » In:
IEEE Software 23.2 (Mar. 2006), pp. 40–46.

[153] Edward Lank, Yi-Chun Nikko Cheng, and Jaime Ruiz. « End-
point Prediction Using Motion Kinematics. » In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’07. New York, NY, USA: ACM, 2007, pp. 637–646.

[154] M. Lanza and S. Ducasse. « Polymetric Views - a Lightweight
Visual Approach to Reverse Engineering. » In: IEEE Transac-

tions on Software Engineering 29.9 (Sept. 2003), pp. 782–795.

[155] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. « CodeCrawler
- an Information Visualization Tool for Program Comprehen-
sion. » In: 27th International Conference on Software Engineering,

2005. ICSE 2005. Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005. Proceedings. May 2005,
pp. 672–673.

[156] Michele Lanza and Stéphane Ducasse. « Understanding Soft-
ware Evolution Using a Combination of Software Visualiza-
tion and Software Metrics. » In: Proceedings of LMO 2002 (Lan-

gages et Mod{\‘e}les {\‘a} Objets). Langages et Mod{\‘e}les {\‘a}
Objets. Aug. 2002, pp. 135–149.

[157] Michele Lanza and Radu Marinescu. Object-Oriented Metrics

in Practice: Using Software Metrics to Characterize, Evaluate, and

Improve the Design of Object-Oriented Systems. Springer Science
& Business Media, May 16, 2007. 213 pp.

[158] P. Larsen, R. Ladelsky, J. Lidman, S. A. McKee, S. Karlsson,
and A. Zaks. « Parallelizing More Loops with Compiler Guided
Refactoring. » In: 2012 41st International Conference on Parallel

Processing. 2012 41st International Conference on Parallel Pro-
cessing. Sept. 2012, pp. 410–419.

[159] James Larus. « Spending Moore’s Dividend. » In: Commun. ACM

52.5 (May 2009), pp. 62–69.

[160] Chris Lattner. « LLVM and Clang: Next Generation Compiler
Technology. » In: The BSD Conference. The BSD Conference.
2008, pp. 1–2.

[161] Hervé Le Verge. A Note on Cherniakova’s Algorithm. Research
Report 1662. INRIA, 1992.

[162] Hervé Le Verge. « Recurrences on Lattice Polyhedra and their
Applications. » Unpublished work based on a manuscript writ-
ten by H. Le Verge just before his untimely death in 1994.
IRISA, Apr. 1995.

Bibliography 251

[163] A. Lecuyer, S. Coquillart, A. Kheddar, P. Richard, and P. Coif-
fet. « Pseudo-Haptic Feedback: Can Isometric Input Devices
Simulate Force Feedback? » In: IEEE Virtual Reality, 2000. Pro-

ceedings. IEEE Virtual Reality, 2000. Proceedings. 2000, pp. 83–
90.

[164] A. Lecuyer, J. M. Burkhardt, S. Coquillart, and P. Coiffet. « "Bound-
ary of Illusion": An Experiment of Sensory Integration with
a Pseudo-Haptic System. » In: IEEE Virtual Reality, 2001. Pro-

ceedings. IEEE Virtual Reality, 2001. Proceedings. Mar. 2001,
pp. 115–122.

[165] Christian Lengauer. « Loop Parallelization in the Polytope Model. »
In: CONCUR’93. Ed. by Eike Best. Lecture Notes in Computer
Science 715. Springer Berlin Heidelberg, Aug. 23, 1993, pp. 398–
416.

[166] Amy W. Lim and Monica S. Lam. « Maximizing Parallelism
and Minimizing Synchronization with Affine Transforms. » In:
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. POPL ’97. New York, NY,
USA: ACM, 1997, pp. 201–214.

[167] Vincent Loechner. « PolyLib: A Library for Manipulating Pa-
rameterized Polyhedra. » Strasbourg, Mar. 17, 1999.

[168] Mark Lundstrom. « Moore’s Law Forever? » In: Science 299.5604

(Jan. 10, 2003), pp. 210–211. pmid: 12522237.

[169] Anatole Lécuyer. « Simulating Haptic Feedback Using Vision:
A Survey of Research and Applications of Pseudo-Haptic Feed-
back. » In: Presence: Teleoperators and Virtual Environments 18.1
(Jan. 27, 2009), pp. 39–53.

[170] Anatole Lécuyer, Jean-Marie Burkhardt, and Laurent Etienne.
« Feeling Bumps and Holes Without a Haptic Interface: The
Perception of Pseudo-Haptic Textures. » In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. CHI
’04. New York, NY, USA: ACM, 2004, pp. 239–246.

[171] I. Scott MacKenzie. « Virtual Environments and Advanced In-
terface Design. » In: ed. by Woodrow Barfield and Thomas A.
Furness III. New York, NY, USA: Oxford University Press, Inc.,
1995, pp. 437–470.

[172] C. A. Mack. « Fifty Years of Moore’s Law. » In: IEEE Transac-

tions on Semiconductor Manufacturing 24.2 (May 2011), pp. 202–
207.

[173] Wendy E. Mackay. « Triggers and Barriers to Customizing Soft-
ware. » In: Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems. CHI ’91. New York, NY, USA: ACM,
1991, pp. 153–160.

12522237

252 Bibliography

[174] Jock Mackinlay. « Automating the Design of Graphical Presen-
tations of Relational Information. » In: ACM Trans. Graph. 5.2
(Apr. 1986), pp. 110–141.

[175] J. I. Maletic, A. Marcus, and M. L. Collard. « A Task Oriented
View of Software Visualization. » In: First International Work-

shop on Visualizing Software for Understanding and Analysis, 2002.

Proceedings. First International Workshop on Visualizing Soft-
ware for Understanding and Analysis, 2002. Proceedings. 2002,
pp. 32–40.

[176] Jonathan I. Maletic, Andrian Marcus, and Louis Feng. « Source
Viewer 3D (Sv3D): A Framework for Software Visualization. »
In: Proceedings of the 25th International Conference on Software

Engineering. ICSE ’03. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 812–813.

[177] Allen D. Malony, David H. Hammerslag, and David J. Jablonowski.
« Traceview: A Trace Visualization Tool. » In: IEEE Software 8.5
(1991), pp. 19–28.

[178] Regan L. Mandryk and Carl Gutwin. « Perceptibility and Util-
ity of Sticky Targets. » In: Proceedings of Graphics Interface 2008.
GI ’08. Toronto, Ont., Canada, Canada: Canadian Information
Processing Society, 2008, pp. 65–72.

[179] Regan L. Mandryk, Malcolm E. Rodgers, and Kori M. Inkpen.
« Sticky Widgets: Pseudo-Haptic Widget Enhancements for Multi-
Monitor Displays. » In: CHI ’05 Extended Abstracts on Human

Factors in Computing Systems. CHI EA ’05. New York, NY, USA:
ACM, 2005, pp. 1621–1624.

[180] Patricia Yancey Martin and Barry A. Turner. « Grounded The-
ory and Organizational Research. » In: The Journal of Applied

Behavioral Science 22.2 (Jan. 4, 1986), pp. 141–157.

[181] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. « Im-
proving Data Locality with Loop Transformations. » In: ACM

Trans. Program. Lang. Syst. 18.4 (July 1996), pp. 424–453.

[182] A. McNair, D. M. German, and J. Weber-Jahnke. « Visualiz-
ing Software Architecture Evolution Using Change-Sets. » In:
14th Working Conference on Reverse Engineering, 2007. WCRE

2007. 14th Working Conference on Reverse Engineering, 2007.
WCRE 2007. Oct. 2007, pp. 130–139.

[183] Katharina Mehner. « JaVis: A UML-Based Visualization and
Debugging Environment for Concurrent Java Programs. » In:
Software Visualization. Ed. by Stephan Diehl. Lecture Notes in
Computer Science 2269. Springer Berlin Heidelberg, 2002, pp. 163–
175.

Bibliography 253

[184] T. Mens and T. Tourwe. « A Survey of Software Refactoring. »
In: IEEE Transactions on Software Engineering 30.2 (Feb. 2004),
pp. 126–139.

[185] Koert van Mensvoort, Dik J. Hermes, and Maurice van Mont-
fort. « Usability of Optically Simulated Haptic Feedback. » In:
International Journal of Human-Computer Studies 66.6 (June 2008),
pp. 438–451.

[186] Rym Mili and Renee Steiner. « Software Engineering. » In: Soft-

ware Visualization (International Seminar). Ed. by Stephan Diehl.
Lecture Notes in Computer Science 2269. Dagstuhl Castle, Ger-
many: Springer, 2002, pp. 129–137.

[187] Thomas Moher, David Mak, Brad Blumenthal, and Laura Lev-
enthal. « Comparing the Comprehensibility of Textual and Graphic
Programs: The Case of Petri Nets. » In: Empirical Studies of Pro-

grammers: Fifth Workshop : Papers Presented at the Fifth Workshop

on Empirical Studies of Programmers, December 3-5, 1993, Palo

Alto, CA. Ed. by Curtis R. Cook, Jean C. Scholtz, and James C.
Spohrer. Intellect Books, 1993, pp. 137–161.

[188] Andrew F. Monk, Paul Walsh, and Alan J. Dix. « A Compar-
ison of Hypertext, Scrolling and Folding As Mechanisms for
Program Browsing. » In: Proceedings of the Fourth Conference of

the British Computer Society on People and Computers IV. New
York, NY, USA: Cambridge University Press, 1988, pp. 421–
435.

[189] Gordon E. Moore. « Cramming More Components onto Inte-
grated Circuits. » In: Electronics (Apr. 19, 1965), pp. 114–117.

[190] B. A. Myers. « Visual Programming, Programming by Exam-
ple, and Program Visualization: A Taxonomy. » In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Sys-

tems. CHI ’86. New York, NY, USA: ACM, 1986, pp. 59–66.

[191] Brad A. Myers. « Taxonomies of Visual Programming and Pro-
gram Visualization. » In: Journal of Visual Languages & Comput-

ing 1.1 (Mar. 1990), pp. 97–123.

[192] Ralph Müller-Pfefferkorn, Wolfgang E. Nagel, and Bernd Tren-
kler. « Optimizing Cache Access: A Tool for Source-to-Source
Transformations and Real-Life Compiler Tests. » In: Euro-Par

2004 Parallel Processing. Ed. by Marco Danelutto, Marco Van-
neschi, and Domenico Laforenza. Lecture Notes in Computer
Science 3149. Springer Berlin Heidelberg, Aug. 31, 2004, pp. 72–
81.

[193] Kumiyo Nakakoji, Yasuhiro Yamamoto, and Yasuharu Koike.
« Toward Principles for Visual Interaction Design for Commu-
nicating Weight by Using Pseudo-Haptic Feedback. » In: Pro-

ceedings of the 2010 International Conference on The Interaction

254 Bibliography

Design. Create’10. Swinton, UK, UK: British Computer Society,
2010, pp. 34–39.

[194] I. Nassi and B. Shneiderman. « Flowchart Techniques for Struc-
tured Programming. » In: SIGPLAN Not. 8.8 (Aug. 1973), pp. 12–
26.

[195] Raquel Navarro-Prieto and Jose J. Canas. « Are Visual Pro-
gramming Languages Better? The Role of Imagery in Program
Comprehension. » In: International Journal of Human-Computer

Studies 54.6 (June 1, 2001), pp. 799–829.

[196] Renato Lima Novais, André Torres, Thiago Souto Mendes, Ma-
noel Mendonça, and Nico Zazworka. « Software Evolution Vi-
sualization: A Systematic Mapping Study. » In: Information and

Software Technology 55.11 (Nov. 2013), pp. 1860–1883.

[197] Rainer Oechsle and Thomas Schmitt. « JAVAVIS: Automatic
Program Visualization with Object and Sequence Diagrams
Using the Java Debug Interface (JDI). » In: Software Visualiza-

tion. Ed. by Stephan Diehl. Lecture Notes in Computer Science
2269. Springer Berlin Heidelberg, 2002, pp. 176–190.

[198] Seymour Papert. Mindstorms: Children, Computers, and Powerful

Ideas. New York, NY, USA: Basic Books, Inc., 1980.

[199] D. Patterson. « The Trouble with Multi-Core. » In: IEEE Spec-

trum 47.7 (July 2010), pp. 28–32, 53.

[200] David A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Elsevier, Oct. 7, 2011. 857 pp.

[201] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John
Vlissides, and Jeaha Yang. « Visualizing the Execution of Java
Programs. » In: Software Visualization. Ed. by Stephan Diehl.
Lecture Notes in Computer Science 2269. Springer Berlin Hei-
delberg, 2002, pp. 151–162.

[202] Marian Petre. « Why Looking Isn’t Always Seeing: Readership
Skills and Graphical Programming. » In: Communications of the

ACM 38.6 (June 1995), pp. 33–44.

[203] Matthew D. Plumlee and Colin Ware. « Zooming Versus Mul-
tiple Window Interfaces: Cognitive Costs of Visual Compar-
isons. » In: ACM Trans. Comput.-Hum. Interact. 13.2 (June 2006),
pp. 179–209.

[204] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal,
Georges-André Silber, and Nicolas Vasilache. « GRAPHITE:
Polyhedral Analyses and Optimizations for GCC. » In: Pro-

ceedings of the 2006 GCC Developers Summit. GCC Developers
Summit. 2006, pp. 179–197.

Bibliography 255

[205] L. N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. « It-
erative Optimization in the Polyhedral Model: Part I, One-
Dimensional Time. » In: International Symposium on Code Gen-

eration and Optimization (CGO’07). International Symposium
on Code Generation and Optimization (CGO’07). Mar. 2007,
pp. 144–156.

[206] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John
Cavazos. « Iterative Optimization in the Polyhedral Model: Part
Ii, Multidimensional Time. » In: Proceedings of the 29th ACM

SIGPLAN Conference on Programming Language Design and Im-

plementation. PLDI ’08. New York, NY, USA: ACM, 2008, pp. 90–
100.

[207] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Al-
bert Cohen, J. Ramanujam, P. Sadayappan, and Nicolas Vasi-
lache. « Loop Transformations: Convexity, Pruning and Opti-
mization. » In: Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. POPL
’11. New York, NY, USA: ACM, 2011, pp. 549–562.

[208] B. A. Price, I. S. Small, and R. M. Baecker. « A Taxonomy
of Software Visualization. » In: Proceedings of the Twenty-Fifth

Hawaii International Conference on System Sciences, 1992. Pro-
ceedings of the Twenty-Fifth Hawaii International Conference
on System Sciences, 1992. Vol. ii. Jan. 1992, 597–606 vol.2.

[209] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. « A Prin-
cipled Taxonomy of Software Visualization. » In: Journal of Vi-

sual Languages & Computing 4.3 (Sept. 1993), pp. 211–266.

[210] Tony Printezis and Richard Jones. « GCspy: An Adaptable
Heap Visualisation Framework. » In: Proceedings of the 17th

ACM SIGPLAN Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications. OOPSLA ’02. New York, NY,
USA: ACM, 2002, pp. 343–358.

[211] William Pugh. « The Omega Test: A Fast and Practical Inte-
ger Programming Algorithm for Dependence Analysis. » In:
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing.
Supercomputing ’91. New York, NY, USA: ACM, 1991, pp. 4–
13.

[212] Andreas Pusch and Anatole Lécuyer. « Pseudo-Haptics: From
the Theoretical Foundations to Practical System Design Guide-
lines. » In: Proceedings of the 13th International Conference on Mul-

timodal Interfaces. ICMI ’11. New York, NY, USA: ACM, 2011,
pp. 57–64.

[213] Zenon Pylyshyn. « Some Puzzling Findings in Multiple Object
Tracking: I. Tracking without Keeping Track of Object Identi-
ties. » In: Visual Cognition 11.7 (Oct. 1, 2004), pp. 801–822.

256 Bibliography

[214] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. « Gen-
eration of Efficient Nested Loops from Polyhedra. » In: Interna-

tional Journal of Parallel Programming 28.5 (Oct. 2000), pp. 469–
498.

[215] Patrice Quinton. « The Systematic Design of Systolic Arrays. »
In: Automata Networks in Computer Science. Ed. by F Soulié, Y
Robert, and M Tchuenté. Manchester, UK: Manchester Univer-
sity Press, 1987, pp. 229–260.

[216] Mitchel Resnick et al. « Scratch: Programming for All. » In:
Commun. ACM 52.11 (Nov. 2009), pp. 60–67.

[217] J. C. Roberts. « State of the Art: Coordinated Multiple Views in
Exploratory Visualization. » In: Fifth International Conference on

Coordinated and Multiple Views in Exploratory Visualization, 2007.

CMV ’07. Fifth International Conference on Coordinated and
Multiple Views in Exploratory Visualization, 2007. CMV ’07.
July 2007, pp. 61–71.

[218] Judy Robertson and Maurits Kaptein, eds. Modern Statistical

Methods for HCI. Human–Computer Interaction Series. Springer
International Publishing, 2016. 350 pp.

[219] G. C. Roman and K. C. Cox. « A Taxonomy of Program Visu-
alization Systems. » In: Computer 26.12 (Dec. 1993), pp. 11–24.

[220] Gruia-Catalin Roman and Kenneth C. Cox. « Program Visual-
ization: The Art of Mapping Programs to Pictures. » In: Pro-

ceedings of the 14th International Conference on Software Engineer-

ing. ICSE ’92. New York, NY, USA: ACM, 1992, pp. 412–420.

[221] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen,
and Jacqueline Chame. « A Programming Language Interface
to Describe Transformations and Code Generation. » In: Lan-

guages and Compilers for Parallel Computing. Ed. by Keith Cooper,
John Mellor-Crummey, and Vivek Sarkar. Lecture Notes in
Computer Science 6548. Springer Berlin Heidelberg, Oct. 7,
2010, pp. 136–150.

[222] Michael L. Scott. Programming Language Pragmatics, Fourth Edi-

tion. 4 edition. Morgan Kaufmann, Dec. 25, 2015. 992 pp.

[223] Clifford A. Shaffer, Matthew Cooper, and Stephen H. Edwards.
« Algorithm Visualization: A Report on the State of the Field. »
In: Proceedings of the 38th SIGCSE Technical Symposium on Com-

puter Science Education. SIGCSE ’07. New York, NY, USA: ACM,
2007, pp. 150–154.

[224] Clifford A. Shaffer, Matthew L. Cooper, Alexander Joel D. Alon,
Monika Akbar, Michael Stewart, Sean Ponce, and Stephen H.
Edwards. « Algorithm Visualization: The State of the Field. »
In: Trans. Comput. Educ. 10.3 (Aug. 2010), 9:1–9:22.

Bibliography 257

[225] J. Shirako, L. N. Pouchet, and V. Sarkar. « Oil and Water Can
Mix: An Integration of Polyhedral and AST-Based Transforma-
tions. » In: SC14: International Conference for High Performance

Computing, Networking, Storage and Analysis. SC14: International
Conference for High Performance Computing, Networking,
Storage and Analysis. Nov. 2014, pp. 287–298.

[226] B. Shneiderman. « The Eyes Have It: A Task by Data Type Tax-
onomy for Information Visualizations. » In: , IEEE Symposium

on Visual Languages, 1996. Proceedings. , IEEE Symposium on
Visual Languages, 1996. Proceedings. Sept. 1996, pp. 336–343.

[227] Ben Shneiderman. « Direct Manipulation: A Step Beyond Pro-
gramming Languages. » In: Proceedings of the Joint Conference

on Easier and More Productive Use of Computer Systems. (Part -

II): Human Interface and the User Interface - Volume 1981. CHI
’81. New York, NY, USA: ACM, 1981, pp. 143–.

[228] Ben Shneiderman. « The Future of Interactive Systems and the
Emergence of Direct Manipulation. » In: Behaviour & Informa-

tion Technology 1.3 (July 1, 1982), pp. 237–256.

[229] David Canfield Smith. PYGMALION: A Creative Programming

Environment. Technical Rept. ADA016811. Stanford University,
June 1975, p. 199.

[230] Sorting Out Sorting (Video). University of Toronto, 1981.

[231] Ryan Stansifer. Presburger’s Article on Integer Airthmetic: Remarks

and Translation. Technical Report TR84-639. Cornell University,
Computer Science Departement, Sept. 1984, p. 20.

[232] J. T. Stasko. « Tango: A Framework and System for Algorithm
Animation. » In: Computer 23.9 (Sept. 1990), pp. 27–39.

[233] J. T. Stasko and E. Kraemer. « A Methodology for Building
Application-Specific Visualizations of Parallel Programs. » In:
Journal of Parallel and Distributed Computing 18.2 (June 1993),
pp. 258–264.

[234] J. T. Stasko and C. Patterson. « Understanding and Characteriz-
ing Software Visualization Systems. » In: , 1992 IEEE Workshop

on Visual Languages, 1992. Proceedings. , 1992 IEEE Workshop
on Visual Languages, 1992. Proceedings. Sept. 1992, pp. 3–10.

[235] John T. Stasko and Qiang Alex Zhao. Visualizing the Execution

of Threads-Based Parallel Programs. 1995.

[236] John Stasko. Software Visualization: Programming as a Multime-

dia Experience. MIT Press, 1998. 596 pp.

258 Bibliography

[237] M. A. Storey, C. Best, and J. Michand. « SHriMP Views: An In-
teractive Environment for Exploring Java Programs. » In: 9th

International Workshop on Program Comprehension, 2001. IWPC

2001. Proceedings. 9th International Workshop on Program Com-
prehension, 2001. IWPC 2001. Proceedings. 2001, pp. 111–112.

[238] Ivan E. Sutherland. « Sketch Pad a Man-Machine Graphical
Communication System. » In: Proceedings of the SHARE Design

Automation Workshop. DAC ’64. New York, NY, USA: ACM,
1964, pp. 6.329–6.346.

[239] Herb Sutter and James Larus. « Software and the Concurrency
Revolution. » In: Queue 3.7 (Sept. 2005), pp. 54–62.

[240] T. Systa, Ping Yu, and H. Muller. « Analyzing Java Software by
Combining Metrics and Program Visualization. » In: Software

Maintenance and Reengineering, 2000. Proceedings of the Fourth

European. Software Maintenance and Reengineering, 2000. Pro-
ceedings of the Fourth European. Feb. 2000, pp. 199–208.

[241] Jie Tao, Thomas Dressler, and Wolfgang Karl. « An Interactive
Graphical Environment for Code Optimization. » In: Computa-

tional Science–ICCS 2007. Springer, 2007, pp. 831–838.

[242] Alexandru Telea and David Auber. « Code Flows: Visualizing
Structural Evolution of Source Code. » In: Computer Graphics

Forum 27.3 (May 1, 2008), pp. 831–838.

[243] M. Termeer, C. F. J. Lange, A. Telea, and M. R. V. Chaudron.
« Visual Exploration of Combined Architectural and Metric In-
formation. » In: 3rd IEEE International Workshop on Visualizing

Software for Understanding and Analysis, 2005. VISSOFT 2005.
3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2005. VISSOFT 2005. 2005, pp. 1–
6.

[244] Larry Tesler. « A Personal History of Modeless Text Editing
and Cut/Copy-Paste. » In: interactions 19.4 (July 2012), pp. 70–
75.

[245] A.R. Teyseyre and M.R. Campo. « An Overview of 3D Soft-
ware Visualization. » In: IEEE Transactions on Visualization and

Computer Graphics 15.1 (Jan. 2009), pp. 87–105.

[246] S. R. Tilley and H. A. Muller. « Using Virtual Subsystems in
Project Management. » In: , Proceeding of the Sixth International

Workshop on Computer-Aided Software Engineering, 1993. CASE

’93. , Proceeding of the Sixth International Workshop on Computer-
Aided Software Engineering, 1993. CASE ’93. July 1993, pp. 144–
153.

[247] Ramakrishna Upadrasta. « Sub-Polyhedral Compilation Using
(Unit-)Two-Variables-Per-Inequality Polyhedra. » PhD thesis.
Université Paris Sud - Paris XI, Mar. 13, 2013.

Bibliography 259

[248] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. « The
Paralax Infrastructure: Automatic Parallelization with a Help-
ing Hand. » In: Proceedings of the 19th International Conference

on Parallel Architectures and Compilation Techniques. PACT ’10.
New York, NY, USA: ACM, 2010, pp. 389–400.

[249] Nicolas Vasilache, Albert Cohen, and Louis-Noel Pouchet. « Au-
tomatic Correction of Loop Transformations. » In: Proceedings

of the 16th International Conference on Parallel Architecture and

Compilation Techniques. PACT ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 292–304.

[250] Nicolas Vasilache, Cedric Bastoul, Albert Cohen, and Sylvain
Girbal. « Violated Dependence Analysis. » In: Proceedings of the

20th Annual International Conference on Supercomputing. ICS ’06.
New York, NY, USA: ACM, 2006, pp. 335–344.

[251] Steven R. Vegdahl. « Using Visualization Tools to Teach Com-
piler Design. » In: Proceedings of the Fourteenth Annual Consor-

tium on Small Colleges Southeastern Conference. CCSC ’00. USA:
Consortium for Computing Sciences in Colleges, 2000, pp. 72–
83.

[252] Anand Venkat, Manu Shantharam, Mary Hall, and Michelle
Mills Strout. « Non-Affine Extensions to Polyhedral Code Gen-
eration. » In: Proceedings of Annual IEEE/ACM International Sym-

posium on Code Generation and Optimization. ACM, 2014, p. 185.

[253] Sven Verdoolaege. « Isl: An Integer Set Library for the Poly-
hedral Model. » In: Mathematical Software – ICMS 2010. Ed. by
Komei Fukuda, Joris van der Hoeven, Michael Joswig, and
Nobuki Takayama. Lecture Notes in Computer Science 6327.
Springer Berlin Heidelberg, Sept. 13, 2010, pp. 299–302.

[254] Sven Verdoolaege and Tobias Grosser. « Polyhedral Extraction
Tool. » In: Impact 2012. Second International Workshop on Poly-
hedral Compilation Techniques, in conjuction with HiPEAC
2012. Paris, France, Jan. 23, 2012.

[255] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-
cio Gómez, Christian Tenllado, and Francky Catthoor. « Poly-
hedral Parallel Code Generation for CUDA. » In: ACM Trans.

Archit. Code Optim. 9.4 (Jan. 2013), 54:1–54:23.

[256] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert
Cohen. « Schedule Trees. » In: IMPACT - 4th Workshop on
Polyhedral Compilation Techniques, associated with HiPEAC.
ACM, Jan. 20, 2014.

[257] R. L. Veroy, N. P. Ricci, and S. Z. Guyer. « Visualizing the Al-
location and Death of Objects. » In: 2013 First IEEE Working

Conference on Software Visualization (VISSOFT). 2013 First IEEE

260 Bibliography

Working Conference on Software Visualization (VISSOFT). Sept.
2013, pp. 1–4.

[258] Stefan-Lucian Voinea. « Software Evolution Visualization. » PhD
Thesis. Eindhoven: Technische Universiteit Eindhoven, Oct. 1,
2007. 181 pp.

[259] Colin Ware. Information Visualization: Perception for Design. 3rd ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2012.

[260] Mark Weiser. « Program Slicing. » In: Proceedings of the 5th In-

ternational Conference on Software Engineering. ICSE ’81. Piscat-
away, NJ, USA: IEEE Press, 1981, pp. 439–449.

[261] Mark Weiser. « Some Computer Science Issues in Ubiquitous
Computing. » In: Commun. ACM 36.7 (July 1993), pp. 75–84.

[262] R. Wettel and M. Lanza. « Visualizing Software Systems as
Cities. » In: 4th IEEE International Workshop on Visualizing Soft-

ware for Understanding and Analysis, 2007. VISSOFT 2007. 4th
IEEE International Workshop on Visualizing Software for Un-
derstanding and Analysis, 2007. VISSOFT 2007. June 2007, pp. 92–
99.

[263] K. N. Whitley. « Visual Programming Languages and the Em-
pirical Evidence For and Against. » In: Journal of Visual Lan-

guages & Computing 8.1 (Feb. 1, 1997), pp. 109–142.

[264] J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier,
A. Schur, and V. Crow. « Visualizing the Non-Visual: Spatial
Analysis and Interaction with Information from Text Docu-
ments. » In: Information Visualization, 1995. Proceedings. Infor-
mation Visualization, 1995. Proceedings. Oct. 1995, pp. 51–58.

[265] Michael Joseph Wolfe. High Performance Compilers for Parallel

Computing. Ed. by Carter Shanklin and Leda Ortega. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[266] Yi Wen Wong, Tomasz Dubrownik, Wai Teng Tang, Wen Jun
Tan, Rubing Duan, Rick Siow Mong Goh, Shyh-hao Kuo, Stephen
John Turner, and Weng-Fai Wong. « Tulipse: A Visualization
Framework for User-Guided Parallelization. » In: Euro-Par 2012

Parallel Processing. Springer, 2012, pp. 4–15.

[267] Jingwei Wu and Margaret-Anne D. Storey. « A Multi-Perspective
Software Visualization Environment. » In: Proceedings of the

2000 Conference of the Centre for Advanced Studies on Collabo-

rative Research. CASCON ’00. Mississauga, Ontario, Canada:
IBM Press, 2000, pp. 15–.

Bibliography 261

[268] X. Xie, D. Poshyvanyk, and A. Marcus. « Visualization of CVS
Repository Information. » In: 13th Working Conference on Re-

verse Engineering, 2006. WCRE ’06. 13th Working Conference
on Reverse Engineering, 2006. WCRE ’06. Oct. 2006, pp. 231–
242.

[269] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. « POET:
Parameterized Optimizations for Empirical Tuning. » In: 2007

IEEE International Parallel and Distributed Processing Symposium.
2007 IEEE International Parallel and Distributed Processing
Symposium. Mar. 2007, pp. 1–8.

[270] Yijun Yu and Erik H. D’Hollander. « Loop Parallelization Us-
ing the 3D Iteration Space Visualizer. » In: Journal of Visual Lan-

guages & Computing 12.2 (Apr. 2001), pp. 163–181.

[271] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan,
and Sanjay Rajopadhye. « Alphaz: A System for Design Space
Exploration in the Polyhedral Model. » In: Languages and Com-

pilers for Parallel Computing. Springer, 2012, pp. 17–31.

[272] Kang Zhang, Tom Hintz, and Xianwu Ma. « The Role of Graph-
ics in Parallel Program Development. » In: Journal of Visual Lan-

guages & Computing 10.3 (June 1999), pp. 215–243.

[273] Thomas Zimmermann and Andreas Zeller. « Visualizing Mem-
ory Graphs. » In: Software Visualization. Ed. by Stephan Diehl.
Lecture Notes in Computer Science 2269. Springer Berlin Hei-
delberg, 2002, pp. 191–204.

[274] Oleksandr Zinenko, Cédric Bastoul, and Stéphane Huot. « Ma-
nipulating Visualization, Not Codes. » In: International Work-
shop on Polyhedral Compilation Techniques (IMPACT). Jan. 19,
2015, p. 8.

[275] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. « Clint:
A Direct Manipulation Tool for Parallelizing Compute-Intensive
Program Parts. » In: Visual Languages and Human-Centric Com-

puting (VL/HCC), 2014 IEEE Symposium on. IEEE, 2014, pp. 109–
112.

Titre : Restructuration Interactive des Programmes
Mots-clés : visualisation des logiciels, optimisation des programmes, techniques d’interaction, modèle
polyédrique

Le développement des logiciels et leur restructura-
tion deviennent de plus en plus complexes à cause
de l’adoption massive des architectures parallèles, ce
qui nécessite une expertise considérable de la part
des développeurs. Bien que des nombreux modèles
et langages de programmation permettent de créer
des programmes efficaces, ils n’offrent pas de sup-
port spécifique à la restructuration des programmes
existants afin d’en augmenter l’efficacité. En même
temps, les approches automatiques sont trop con-
servatives et insuffisamment précises pour atteindre
une partie substantielle de la performance du sys-
tème sans que le développeur aie à fournir des infor-
mation sémantiques supplémentaires. Pour répon-
dre à ces défis, nous adoptons l’approche de la
restructuration interactive des programmes qui lie
la manipulation semi-automatique des programmes
avec la visualisation des logiciels. Dans cette thèse,
l’approche de restructuration interactive est illus-
trée par l’extension du modèle polyédrique — une
représentation des programmes moderne et puis-
sante — pour permettre la manipulation de haut
niveau ainsi que par la conception et l’évaluation
d’une interface visuelle à manipulation directe pour

la restructuration des programmes. Cette interface vi-
sualise l’information qui n’était pas immédiatement
accessible dans la représentation textuelle et per-
met de manipuler des programmes sans en réécrire
le code. Nous proposons également une représenta-
tion de l’optimisation de programme, calculée au-
tomatiquement, telle que le développeur puisse la
comprendre et réutiliser facilement ainsi que la
modifier d’une manière textuelle ou visuelle dans
le cadre du partenariat homme-machine. Afin de
représenter plusieurs aspects de la restructuration
des programmes, nous concevons et évaluons une
nouvelle interaction qui permet de communiquer
l’information supplémentaire et non-cruciale pour
la tâche à accomplir. Après une étude empirique
de la distribution d’attention des développeurs face
aux représentations textuelles et visuelles des pro-
grammes, nous discutons des implications pour la
conception des outils d’aide à la programmation dans
le cadre du modèle d’interaction instrumentale. La
restructuration interactive des programmes est sup-
posée faciliter la manipulation des programmes dans
le but d’optimisation, la rendre plus efficace et plus
largement adoptée.

Title: Interactive Program Restructuring
Keywords: software visualization, program optimization, interaction techniques, polyhedral model

Software development and program manipulation be-
come increasingly complex with the massive adop-
tion of parallel architectures, requiring significant ex-
pertise from developers. While numerous program-
ming models and languages allow for creating ef-
ficient programs, they fall short at helping devel-
opers to restructure existing programs for more ef-
fective execution. At the same time, automatic ap-
proaches are overly conservative and imprecise to
achieve a decent portion of the systems’ performance
without supplementary semantic information from
the developer. To answer these challenges, we pro-
pose the interactive program restructuring approach,
a bridge between semi-automatic program manipu-
lation and software visualization. It is illustrated in
this thesis by, first, extending a state-of-the-art polyhe-
dral model for program representation so that it sup-
ports high-level program manipulation and, second,
by designing and evaluating a direct manipulation

visual interface for program restructuring. This in-
terface provides information about the program that
was not immediately accessible in the code and al-
lows to manipulate programs without rewriting. We
also propose a representation of an automatically
computed program optimization in an understand-
able form, easily modifiable and reusable by the de-
veloper both visually and textually in a sort of human-
machine partnership. To support different aspects of
program restructuring, we design and evaluate a new
interaction to communicate supplementary informa-
tion, not critical for the task at hand. After an empiri-
cal study of developers’ attention distribution when
faced with visual and textual program representa-
tion, we discuss the implications for design of pro-
gram manipulation tools in the instrumental inter-
action paradigm. We expect interactive program re-
structuring to make program manipulation for opti-
mization more efficient and widely adopted.

	Contents
	1 Introduction
	1.1 Bridging the Programming Abstraction Gap
	1.2 Thesis Overview

	2 Related Work
	2.1 Visual Languages and Software Visualization
	2.1.1 Early Years of Visual Representations of Software
	2.1.2 Defining Software Visualization

	2.2 Taxonomies of Software Visualization
	2.2.1 General Taxonomies
	2.2.2 Taxonomies for specific types of software visualization
	2.2.3 Classifications of information aspects

	2.3 Information-centric View on Software Visualization
	2.3.1 Code Lines
	2.3.2 Slicing and Dicing
	2.3.3 Iteration and Repetition
	2.3.4 Object-Oriented Hierarchies
	2.3.5 Memory Access and Management
	2.3.6 Data Structures
	2.3.7 Control Structures
	2.3.8 Execution Traces
	2.3.9 Multithreading Synchronization
	2.3.10 Communication
	2.3.11 Numeric Metrics
	2.3.12 Software as Data Source

	2.4 Visual Elements of Software Visualization
	2.4.1 Visualization Primitives
	2.4.2 Program Visualization Techniques

	2.5 InfInt Design Space
	2.5.1 Degree of Interactivity
	2.5.2 Mapping Techniques into the Design Space
	2.5.3 Implications for Design

	2.6 Discussion
	2.7 Conclusion

	3 Polyhedral Program Representation
	3.1 Program Representations
	3.2 The Polyhedral Model
	3.2.1 Development of the model
	3.2.2 Limitations
	3.2.3 Workflow in the Polyhedral Model
	3.2.4 Forms of Representation

	3.3 Representing Programs in the Polyhedral Model
	3.3.1 Representing Statement Instances
	3.3.2 Representing Execution Orders
	3.3.3 Representing Memory Accesses

	3.4 Dependence Analysis and Parallelism
	3.5 Structure of the Polyhedral Scheduling Relation
	3.5.1 Existing Scheduling Structures
	3.5.2 Scheduling Structure Selection
	3.5.3 Dimension Semantics
	3.5.4 Scheduling Relation Equality and Equivalence
	3.5.5 Scheduling Normalization
	3.5.6 Exposing Lexical Order in Scheduling Relations
	3.5.7 Lexical Order Normalization
	3.5.8 Scheduling Validity Conditions

	3.6 Discussion
	3.7 Conclusion

	4 Visualizing Polyhedral Programs
	4.1 Visualization Techniques for Polyhedral Programs
	4.2 Participatory Design Workshop
	4.2.1 Protocol
	4.2.2 Results and Discussion

	4.3 The Clint Visualization
	4.3.1 Statement Instance Scatter Plot
	4.3.2 Memory Accesses as Interactive Color Coding
	4.3.3 Memory Accesses as Nested Parallel Coordinates
	4.3.4 Clint Interface

	4.4 Architecture and Implementation
	4.4.1 Statement Instances
	4.4.2 Memory Accesses

	4.5 Evaluation of Clint Visualization
	4.5.1 Protocol
	4.5.2 Results

	4.6 Discussion
	4.7 Conclusion

	5 High-level Program Manipulation
	5.1 Semi-automatic Program Restructuring
	5.2 From Transformation Directives to Polyhedra
	5.2.1 Loop Transformations Expressed in Polyhedral Model
	5.2.2 Revisiting Classical Transformations in Clay
	5.2.3 Transforming between Arbitrary Scheduling Relations in Clay
	5.2.4 Clay Directives in Practice
	5.2.5 Discussion of the Transformation Set

	5.3 From Polyhedra to Transformation Directives
	5.3.1 Combining Manual and Automatic Program Transformation
	5.3.2 Detecting Complementary Transformations
	5.3.3 Aligning Relations and Matching Beta-vectors
	5.3.4 Generating Transformation Sequence
	5.3.5 Discussion of the Algorithm

	5.4 Directive Recovery in Practice
	5.4.1 Recovering beta-vectors
	5.4.2 Benchmarks
	5.4.3 Example

	5.5 Interacting with a Polyhedral Compiler
	5.6 Conclusion

	6 Polyhedral Program Restructuring
	6.1 Augmenting Directive-based Restructuring with Direct Manipulation
	6.2 Direct Manipulation of Statements and Instances
	6.2.1 Mapping Transformation Directives to Graphical Actions
	6.2.2 Discussion of the Mapping

	6.3 Transformation Replay and Correction
	6.3.1 Undoing and Replaying Transformations
	6.3.2 Interacting with a Polyhedral Compiler Graphically
	6.3.3 Correcting Automatically Computed Optimization

	6.4 Evaluation of Direct Manipulation Benefits
	6.4.1 Expected Benefits
	6.4.2 Experimental Protocol
	6.4.3 Results and Discussion

	6.5 The Need for Code
	6.5.1 Protocol
	6.5.2 Duration and Correctness
	6.5.3 Representation Choice
	6.5.4 Visual Behavior
	6.5.5 Discussion

	6.6 Interactive Program Restructuring in the Polyhedral Model
	6.7 Conclusion

	7 Constrained Manipulation
	7.1 Constrained Program Manipulation and Background Information
	7.2 Pointing Transfer Functions and Pseudo-haptic Feedback
	7.3 Morphology of the transfer function
	7.3.1 Transfer function arguments
	7.3.2 Transfer function shape structure

	7.4 A design space for C-D gain change-based interfaces
	7.4.1 Design Space Dimensions
	7.4.2 Using the Design Space: Combining Dimensions
	7.4.3 Design Space Limitations

	7.5 Communicating information through C-D gain
	7.5.1 Transfer function shape for communicating information
	7.5.2 Evaluating information communication

	7.6 Using C-D gain changes alone
	7.6.1 Experimental Protocol
	7.6.2 Data Collection
	7.6.3 Apparatus and Implementation
	7.6.4 Metrics and data post-processing
	7.6.5 Ordering effects
	7.6.6 Effects of transfer function shape
	7.6.7 Effects of transfer function discretization
	7.6.8 Exploratory analysis: elements of strategy
	7.6.9 Qualitative elements of strategy
	7.6.10 C-D gain change interpretation
	7.6.11 Discussion

	7.7 C-D gain change with background visualization
	7.7.1 Experimental Protocol
	7.7.2 Effects of visual feedback
	7.7.3 Comparison with previous experiment
	7.7.4 Discussion

	7.8 Communicating Program-Related Information
	7.8.1 Predicting Transformation
	7.8.2 Representing Dependence Violation
	7.8.3 Representing Access Locality
	7.8.4 Selecting Feedback Source

	7.9 Guiding Manipulation around Constraints

	8 Conclusion and Perspectives
	8.1 Designing Tools For Interactive Program Restructuring
	8.2 Contributions
	8.3 Interacting with Inaccessible Object of Interest
	8.4 Future Work and Perspectives

	A Extended InfInt Design Space
	B Statistical Methods
	B.1 Key probability distributions
	B.2 Confidence Intervals
	B.3 Effect sizes and hypothesis testing

	Bibliography

