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ÉCOLE DOCTORALE 422:

SCIENCES ET TECHNOLOGIES DE L’INFORMATION DES
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Abstract

The multiple applications related to networked multi-agent systems such as satellite

formation flying, coupled oscillators, air traffic control, unmanned air vehicles,

cooperative transport, among others, has been undoubtedly a watershed for the

development of this thesis. The study of cooperative control of multi-agent systems

is of great interest for his extensive field work and applications. This thesis is devoted

to the study of consensus seeking of multi-agents systems and trajectory tracking of

nonholonomic mobile robots.

In the context of consensus seeking, first we study a ring topology of dynamic agents

with time-dependent communication links which may disconnect for long intervals of

time. Simple checkable conditions are obtained by using small-gain theorem to guarantee

the achievement of consensus. Then, we deal with a network of dynamic agents with

time-dependent communication links interconnected over a time-varying topology. We

establish that consensus is reached provided that there always exists a spanning tree for

a minimal dwell-time by using stability theory of time-varying and switched systems.

In the context of trajectory tracking, we investigate a simple leader-follower tracking

controller for autonomous vehicles following straight lines. We show that global tracking

may be achieved by a controller which has a property of persistency of excitation

tailored for nonlinear systems. Roughly speaking the stabilisation mechanism relies on

exciting the system by an amount that is proportional to the tracking error. Moreover,

the method is used to solve the problem of formation tracking of multiple vehicles

interconnected on the basis of a spanning-tree topology. We derive stability conditions

for the kinematic and dynamic model by using a Lyapunov approach.

Keywords: consensus, time-varying systems, mobile robot, persistence of excitation

(PE), trajectory tracking, dwell time, stability analysis, Lyapunov theory.





Résumé

Les multiples applications liées aux systèmes multi-agents en réseau, tels que les satellites

en formation, les oscillateurs couplés, les véhicles aériens sans pilote, entre autres, ont

été sans aucun doute, une motivation majeure dans le développement de cette thèse

qui est consacrée à l’étude du consensus de systèmes dynamiques et à la commande en

formation de robots mobiles non holonomes.

Dans le contexte du consensus, nous étudions la topologie en anneau avec de liens de

communication variant dans le temps. Notamment, la communication peut être perdue

pendant de longs intervalles de temps. Nous donnons de conditions suffisantes pour

le consensus qui restent simples à vérifier, par exemple, en utilisant le théorème du

petite gain. En suite, nous abordons le problème de consensus en supposant que la

topologie de communication est variable. Nous établissons que le consensus est atteint

à condition qu’il existe toujours un chemin de communication du type � spanning-tree

� pendant un temps de séjour minimal. L’analyse, s’appuie sur la théorie de stabilité

des systèmes variant dans le temps et les systèmes variant dans le temps et les systèmes

à commutation.

Dans le contexte de la commande en formation de véhicles autonomes nous adressons le

problème de commande en suivi de trajectoire sur ligne droite en suivant une approche

type mâıtre-esclave. Nous montrons que le suivi global peut être obtenu à partir d’un

contrôleur qui possède la propriété d’excitation persistante. En gros, le mécanisme de

stabilisation dépend de l’excitation du système par une quantité qui est proportionnelle

à l’erreur de suivi. Ensuite, la méthode est utilisée pour résoudre le problème de suivi de

formation de plusieurs véhicles interconnectés sur la base d’une topologie � spanning-

tree �. Nous donnons des conditions de stabilité concernant les modèles cinématique

et dynamique, en utilisant la seconde méthode de Lyapunov.

Mot clés: consensus, systèmes variant dans le temps, robot mobile, excitation

persistante (PE), suivi de trajectoire, temps de séjour, analyse de la stabilité, théorie de

Lyapunov.
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Chapter 1

Introduction

1.1 Motivation

During the last twenty years, considerable advances in communications technology and

electronics have enabled the development of multiple agents systems to help accomplish

tasks that cannot be completed with individual ones acting alone. The tasks previously

performed with a big, expensive and complicated to operate equipment, today can be

achieved using a certain number of systems, less expensive and much smaller with greater

reliability.

The idea of multiple agents working and cooperating was inspired by many examples in

biology and life science. Figure 1.1 illustrates a few biological examples of multi-agent

systems in nature: Fireflies, neuron firing, flocking of migrating birds and fish schooling.

In certain species of the tropical far east the fireflies gather in trees by thousands and the

males flash in rhythmic synchrony with the sole purpose of sexual adaptation [5]. Many

species of birds fly together in V formation to reduce energy expenditure and enhance

the locomotor performance individuals in the assemblage [48].

1
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(a) (b)

(c) (d)

Figure 1.1: Biological examples of multi agent systems in nature: (a) Fireflies (b)
neuron firing, (c) flocking of migrating birds, and (d) fish schooling.

Around the year 2000, the consensus control of swarm mobile agents increased the

attention and is still of great interest for researchers of several disciplines related

to networked multi-agent systems, due to the multiple applications that exist. The

consensus problem consists in establishing conditions under which the differences

between any two motions among a group of dynamic systems, converge to zero

asymptotically. Satellite formation flying [7, 55], coupled oscillators [10, 17], formation

tracking control for mobile robots [11], coupled air traffic control [58], cooperative control

of unmanned air vehicles (UAVS) [20, 49], spacecraft [51], just to mention a few. These

applications justify the design of appropriate consensus protocols to drive all dynamic

agents to a common value.

Nowadays, studies of multi agent systems and their cooperative controls are a popular

research area [50, 57]. We are interested in the study of two important issues related

to cooperative control: consensus seeking and trajectory tracking. Consensus seeking is

the study of consensus in a network of agents that communicates with each other and

need to agree upon a certain objective of interest. In a network of multi-agents systems

interconnected the information exchange among the agents plays an important role since

of it depends that the objective of control is carried out. However, sometimes, due to
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failures or an obstacle between them, the communication links can fail for long intervals

of time and is necessary that the group of agents achieve a consensus data.

The control techniques for the tracking control problem of mobile robots have been

studied during the last years. One of the drawbacks to these techniques is that the

controller relies on the assumption that the angular velocity of the leader robot must

be different from zero. Ruling out straight-line paths. This motivates the research of

new approaches to design new nonlinear control techniques that can help to the mobile

robots to follow straight lines.

1.2 State of the art

1.2.1 Consensus seeking

Consensus pertains to the case in which a set of individuals have a synchronised motion

towards a common goal. One of the main features is that the motion of no individual has

priority over that of any other one. Although such type of synchronisation is known for

many years in the scientific community, the term consensus stems from the literature on

computer science. Scientific studies strictly following the scientific method date centuries

back but have boomed at least from the 19th century, among physicists and biologists.

Numerous attempts to throw in rigorous mathematics have also been made. Exhaustive

simulations triggered by the exponential evolution of computing power have led to the

development of so-called consensus theory as an area of study in its own right, within

computer science.

The case of constant fixed topologies with permanent all-to-all interconnections is

completely solved by various means –see [53], the problem of consensus under

intermittent interconnections is still of actual interest. It is clearly motivated, for

instance, by scenarios in which communication failures appear. In the pioneer paper

[39] the author presents a coordination problem for a network of agents with single

integrator dynamics. The network coupling is allowed to be time-dependent and non-

bidirectional. It is represented by a linear time-varying system in continuos time with

a Metzler matrix. Stability analysis shows that all state components converge to a

common value as time grows unbounded using a Lyapunov function.

In [26] the authors provide a theoretical explanation for the observed behavior of Vicsek

model [59]. Explicitly takes into account possible changes of each agent’s nearest

neighbors over time, can be thought of as a consensus problem. Using a classical
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convergence result show that all agents converge to a common steady state provided

all agents are “linked together” with sufficient frequency as the system evolves.

The approaches in [39] and [26] are based on undirected graphs. When the information

exchange is unidirectional, that is, consensus may to be achieved in the presence of

limited information exchange. In [52] the authors present both continuous and discrete

time consensus problem for switching directed graphs. Considering that the Laplacian

matrix is piecewise constant it is shown that consensus is achieved if and only if the

topology has a directed spanning tree. In [43] a class of nonlinear consensus protocol

for networks of dynamic agents whose dynamics are simple integrators is prescribed.

A Lyapunov function is introduced and quantifies the total disagreement among the

agents, guaranteeing that consensus problem is globally asymptotically achieved.

1.2.2 Trajectory tracking

For many years the study of mechanical control systems called nonholonomic systems

has been very active research field. An example of a nonholonomic systems is a mobile

robot. The stabilization problem at a given position requires a nontrivial controller

[54]. The tracking problem for mobile robots has been studied by [29, 40]. Several

control approaches have been used to design formation-tracking controllers such as:

backstepping [8], sliding mode [1], artificial neural network [18], feedback linearization

[14, 29], etc. The seminal paper [29] shows how a feedback controller guarantees that

a mobile robot follows a desired reference which is generated by “virtual” robot; the

convergence proof is based on local stability results for time-varying systems.

One of the most popular control approaches is the leader-follower technique which

consists in specifying one or several leader robots and several followers. For instance,

there may be one single leader which specifies the trajectory for the formation and all the

rest are set to follow the leader, modulo a position and orientation offset determined by

the physical configuration. Then, following the seminal work [29] on tracking control of

mobile robots, one can use a variety of nonlinear control techniques to ensure individual

tracking control on each follower. Alternatively, one may form a cascade of leader-

follower configurations in which each robot follows one leader [12], [56], [9]. Backstepping

control is used in [8] and the problem under additive disturbances is solved via sliding

mode in [12]. The control approach based on the construction of transverse functions

is presented in [45] which guarantees the practical stabilization of the nonholonomic

system to any desired trajectory. Another approach is that of virtual structure control,

in which the swarm is regarded as a virtual rigid structure advancing as a unit. This

approach is tractable for small groups of autonomous robots [16], [13].
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In [46] a very simple cascades-based controller was introduced to solve the leader-follower

control problem for two robots. The approach was used subsequently, for instance in

[32], [21],[6]. The control design is very simple to implement, roughly, it relies on a

separation principle by which it is demonstrated that the translational and orientational

kinematics may be stabilized independently of each other. The disadvantage of this

method is that the controller relies on the assumption that the angular velocity of the

leader robot must be different from zero. This rules out straight-line paths. As a matter

of fact, there is a structural impediment to stabilize the robot on straight-line paths due

to loss of controllability. Only very few works address the problem of formation control

along straight-line paths; in [6], [31] where complex nonlinear time varying controls are

designed to allow for reference velocity trajectories that converge to zero. It is worth

to emphasis that [31] covers the case when also the forward velocity v0 may converge

to zero that is, tracking control towards a fixed point. In [6] the controller is designed

so as to make the robot converge to the straight-line trajectory resulting in a path that

makes it go back and forth on the path.

In [21], the formation control problem in a leader-follower configuration without the

need of knowing the leader’s velocity is studied. There are two leaders which govern the

group’s motion. The stability analysis shows that the triangular formation is stable while

the colinear one is not. In [28] the method of feedback linearisation is used to design

control laws to solve the problem of leader-follower for multiple robots under different

geometries of formation. The motion of the leader robot is computed by minimizing a

suitable cost function. In [19] the nonlinear formation control law for the coordination

of a group of N mobile robots force the robots’ relative positions with respect to the

centre of the virtual structure. Using the backstepping technique and Lyapunov’s direct

method the control problem is solved for the follower robot. The proposed method

guarantees asymptotic stability for the closed-loop error system dynamics. The authors

of [49] use consensus-based controllers combined with a cascades-based approach to

tracking control, resulting in a group of linearly coupled dynamical systems. Stability

analysis relies on cascaded systems and nonlinear synchronization theory.

1.3 Summary of results and organization

The aim of this Thesis is to contribute to the study of consensus of multi-agent systems.

Taking as a starting point the work carried out by [39], that considers a coordination

problem for a network of agents with single integrator dynamics where the network

coupling is allowed to be time-dependent and non-bidirectional, the first result of our

research, which are presented in this thesis, consist in the study of consensus problem
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over a network of dynamic agents with time-dependent communication links which may

disconnect for long intervals of time. We assume that the nodes are interconnected in

a ring topology. The originality of our results lays, in part, in our method of proof: we

leave behind graph theory for linear time-invariant systems and use instead, stability

theory. In particular, we employ the small-gain theorem to establish simple checkable

conditions on the network interconnections, to guarantee the achievement of consensus

[2]. Moreover, we also studied the consensus problem over a network of dynamic agents

with time-dependent communication links interconnected over a time-varying topology.

We establish that consensus is reached provided that there always exists a spanning

tree for a minimal dwell-time. We leave behind graph theory for linear time-invariant

systems and use stability theory of time-varying and switched systems [3].

The second part of this thesis is dedicated to the study of trajectory tracking of

nonholonomic mobile robots. We assume that only one swarm leader robot has the

information of the reference trajectory and each robot receives information from one

intermediary leader. This is, the communication graph forms a simple spanning directed

tree. The main goal of our control approach is to solve the problem of stabilisation over

straight line paths. We do this via nonlinear smooth time-varying controls which rely

on a property of persistency of excitation, tailored for nonlinear systems. Our main

results ensure uniform global asymptotic stabilisation of the closed-loop system [35, 36].

Inspired by this ideas, we easily extend this result to the case when the mathematical

models of the mobile robots are dynamic [34].

The work consist of five chapters. In Chapter 2 we provide an overview of standard

mathematical results Control Theory used throughout the thesis. Chapter 3 is devoted

to studying the consensus seeking problem in the following sense:

1. dynamic agents with time-dependent communication links over a ring topology,

and

2. dynamic agents over a spanning tree topology with time-dependent communication

links interconnected over a time-varying topology.

Then, in the Chapter 4, first, we present a result on leader-follower tracking control

(two robots only) and describe the control approach. Then, we present a result for a

cascade-like configuration of leader-follower mobile robots following straight lines. We

derive stability conditions for the kinematic and dynamic model by using a Lyapunov

approach. Finally, in Chapter 5 a conclusion sums up the results of this thesis.



Chapter 2

Mathematical Preliminaries

In this Chapter, we recall a few notions and results that we use throughout this thesis.

First, we consider some fundamental mathematical definitions [42]. Next some results in

adaptive systems and some introductory concepts about graph theory are given [15, 25].

Then, stability in the sense of Lyapunov is stated and some useful theorem for showing

stability are revisited [30, 60]. Finally, some concepts and lemmas of the switching

systems are presented [33].

First, we introduce the definition of a norm.

A norm ‖x‖ of an n-dimensional vector vector x = (x1, . . . , xn)ᵀ is a real valued function

with the following properties

• ‖x‖ ≥ 0 for all x ∈ Rn with ‖x‖ = 0 if and only if x = 0;

• ‖αx‖ = |α| ‖x‖ for all α ∈ R and x ∈ Rn;

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

The p-norm and infinity norm are

‖x‖p := (|x1|p + . . .+ |xn|p)1/p 1 ≤ p <∞

and

‖x‖∞ := max
i=1,...,n

|xi|.

7
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2.1 Graph Theory

A graph is characterised by a set of edges, E and a set of nodes, N = {1, . . . , n}. Edges

are also call arcs and nodes are better known as vertexes. Thus, edges connect two

end-vertexes or endpoints. Edges denoted by i, j with i, j ∈ N are represented by lines

or arrows depending on whether the direction in which the interconnection of two nodes

is relevant. If it is so, the arc is directed, otherwise it is undirected. Hence, a graph

constituted of directed vertexes and nodes is called a directed graph and undirected if

the sense of interconnections is irrelevant. The edge (i, j) in the edge set of a directed

graph denotes that agent j can obtain information from agent i, but not necessarily vice

versa. Figure 2.1 shown 3 different examples of directed graphs.

An alternating sequence of arcs and nodes constitutes a walk. Its length equals the

number of edges that it contains. It may be directed or undirected. It may be closed

or open. It may contain repeated nodes and edges or not. It is open if its first and

last vertexes are different and it is closed if they are equal. An open walk is usually

called a path and its length equals the number of nodes minus 1. If the starting and

ending vertexes are the same, the walk is commonly called circuit and its length equals

the number of nodes it contains. A walk that starts and ends at the same vertex but

otherwise has no repeated vertexes or edges, is called a cycle. If no vertex is visited

more than once during the walk then, it is simple.

Graphs may be represented mathematically by matrices with specific properties and

they are defined as follows.

2.1.1 Adjacency Matrix

The adjacency matrix A = [aij ] ∈ Rn×n collects all information regarding the incidences

of the edges in a graph. Its entries aij determine the adjacency of the parent node j to

the child node node i. The index i relates to the ith row and respectively j refers to the

jth column of A.

• Directed Graph. {
aij > 0 if (j, i) ∈ E

aij = 0 if (j, i) /∈ E

• Indirected Graph.

aij = aji ∀i 6= j

(j, i) ∈ E ⇒ (i, j) ∈ E

that is
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{
aij > 0 if (j, i) ∈ E

aij = 0 if (j, i) /∈ E

1
α��
��

� 2��
��

��
��

�β ��
��

3

(1)

(3, 2)(2, 1)

*
γ

1
α��
��

� 2��
��

��
��

�β ��
��

3

(2)

(2, 1) (3, 2)

(2, 3)

1
α��
��

� 2��
��

��
��

�β ��
��

3

j

γ

(3)

(2, 1) (3, 2)

(1, 3)

Figure 2.1: Three examples of directed graph with rooted spanning trees. Only the
graph (3) is strongly connected and has a cyclic path.

For the three graphs shown in figure 2.1 their Adjacency matrices are:

A1 =


0 α 0

0 0 β

0 0 0

 , A2 =


0 α 0

0 0 β

0 γ 0

 , A3 =


0 α 0

0 0 β

γ 0 0

 (2.1)

2.1.2 Laplacian Matrix

The Laplacian matrix L = [lij ] ∈ Rn×n is defined by


lij = −aij , if i 6= j

lii =
p∑

j=1,i 6=j
aij

Note that if (j, i) /∈ E then lij = −aij = 0. The Laplacian matrix satisfies

lij ≤ 0, i 6= j
n∑
j=1

lij = 0 i = 1, . . . , p.

For an undirected graph, L is symmetric and is called the Laplacian matrix. However,

for a directed graph, L is not necessarily symmetric and is sometimes called the

nonsymmetric Laplacian matrix or directed Laplacian matrix.

For the three graphs shown in the figure 2.1 their Laplacian matrices are:
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L1 =


α −α 0

0 β −β
0 0 0

 , L2 =


α −α 0

0 β −β
0 −γ γ

 , L3 =


α −α 0

0 β −β
−γ 0 γ

 (2.2)

Remark 1. Note that L can be equivalent defined as

L := D −A

where D = [dij ] ∈ Rp×p is the in-degree matrix given as dij = 0, i 6= j and dii =
∑p

j=1 aij ,

i = 1, . . . , p. {
dij = 0, i 6= j

dii =
∑p

j=1 aij i = 1, . . . , p

2.2 Stability theory

Consider the non autonomous system

ẋ = f(t, x) (2.3)

where f : [0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x on

[0,∞) × D and D ⊂ Rn is a domain that contains the origin x = 0. The origin is an

equilibrium point for (2.3) at t = 0 if

f(t, 0) = 0, ∀t ≥ 0.

Uniform stability and asymptotic stability of the system (2.3) can be characterized in

terms of special scalar functions, known as class K and class KL functions.

Definition 1. A continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is

strictly increasing and α(0) = 0. It is said to belong to class K, if α =∞ and α(r)→∞
as r →∞.

Definition 2. A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class

KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and,

for each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → as

s→∞.

Definition 3. The equilibrium point x = 0 of (2.3) is
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Uniformly stable if there exist a class K function α(.) an a positive constant c

independent of t0 such that

‖x(t)‖ ≤ (‖x(t0)‖), ∀t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c (2.4)

Uniformly asymptotically stable if there exist a class KL function β(·, ·) and a

positive constant c, independent of t0, such that

‖x(t)‖ ≤ β
(
‖x(t0)‖ , t− t0

)
, ∀t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c (2.5)

Globally uniformly asymptotically stable if inequality (2.5) is satisfied for any

initial state x(t0).

Definition 4. The equilibrium point x = 0 of (2.3) is exponentially stable if inequality

(2.5) is satisfied with

β(r, s) = kre−γs, k > 0, γ > 0

and is globally exponentially stable if this condition is satisfied for any initial state.

2.2.1 Linear time-vayring systems

The stability behavior of the origin as an equilibrium point for the linear time-varying

system

ẋ = A(t)x (2.6)

can be completely characterised in terms of the state transition matrix of the system.

From linear system theory, we know that the solution of (2.6) is given by

x(t) = Φ(t, t0)x(t0) (2.7)

where Φ(t, t0) is the state transition matrix. The following theorem characterizes uniform

asymptotic stability in terms of Φ(t, t0).

Theorem 1. The equilibrium point x = 0 of (2.6) is (globally) uniformly asymptotically

stable if and only if the state transition matrix satisfies the inequality

‖Φ(t, t0)‖ ≤ ᾱe−α(t−t0), ∀t ≥ t0 ≥ 0

for some positive constants ᾱ and α.
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2.3 Switching systems

A switched system is a continuos-time system with (isolated) switching events [33]. The

switching systems can be classified into

• State-dependent versus time-dependent;

• Autonomous (uncontrolled) versus controlled.

Remark 2. One can have combinations of several types of switching.

2.3.1 State-dependent switching

Suppose that the continuous state space Rn is partitioned into a finite or infinite number

of operating regions by means of a family of switching surfaces, or guards. In each of these

regions, a continuous-time dynamical system (described by differential equations, with

or without controls) is given. Whenever the system trajectory hits a switching surface,

the continuous state jumps instantaneously to a new value, specified by a reset map. In

the simplest case, this is a map whose domain is the union of the switching surfaces and

whose range is the entire state space, possibly excluding the switching surfaces (more

general reset maps can also considered, as explained below). In summary, the system is

specified by

• The family of switching surfaces and the resulting operating regions;

• The family of continuous-time subsystems, one for each operating regions;

• The reset map.

In figure 2.2, the thick curves denote the switching surfaces, the thin with arrows denote

the continuous portions of the trajectory, and the dashed lines symbolise the jumps.

- continuous portion of the trajectory.

switching surface

jumps

Figure 2.2: State-dependent switching.
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2.3.2 Time dependent switching

Suppose that we have a family {fi : Rn → Rn : i ∈ I}, where I is some index set. 1

This gives rise to a family of systems describe by the state representation.

ẋ = fi(x), i ∈ I (2.8)

The functions fi are assumed to be sufficiently regular (at least locally Lipschitz). The

easiest case to think about is when all these systems are linear

fi = Aix, Ai ∈ Rn×n, i ∈ I (2.9)

and the index set I is finite, e.g. I = {1, 2, . . . , n}.

To define a switched system generated by the above family, we need the notion of a

switched signal. This is a piecewise constant σ : [0,∞) → I. Such a function σ has a

finite number of discontinuities −which we call the switching times− on every bounded

time interval and takes a constant value on every interval between two consecutive

switching times. The role of σ is to specify, at each time instant t, the index σ(t) ∈ I
of the active subsystem, e.g., the system for the family (2.8) that is currently being

followed. We assume more concreteness that σ is continuous from the right everywhere:

σ(t) = limτ→t+σ(t) for each τ ≥ 0. An example of such a switching signal for the case,

I = {1, 2}, is describe in the figure 2.3.

t

 t

2

1

Figure 2.3: Switching signal.

Thus, a switched system with-time dependent switching, can be described by equation:

ẋ(t) = fσ(t)(x(t)). (2.10)

1Tipically, I is a subset of a finite-dimensional linear vector space.
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A particular case is a switched linear system

ẋ(t) = Aσ(t)x(t), (2.11)

which arises when all individual subsystems are linear, as in (2.9). For the sake of

simplicity we omit the time arguments and write

ẋ = fσ(x) (2.12)

and

ẋ = Aσx, (2.13)

respectively.

2.3.3 Autonomous switching

By autonomous switching, we mean a situation where we have no direct control over

the switching mechanism that triggers the discrete events. This category includes

systems with state-dependent switching in which locations of the switching surfaces

are predetermined, as well as systems with time-dependent switching in which the

rule that defines the switching signal is unknown (or was ignored at the modelling

stage). For example abrupt changes in system dynamics may be caused by unpredictable

environmental factors or component failures.

2.3.4 Controlled switching

In many situations the switching is actually imposed by the designer in order to achieve

a desired behaviour of the system. In this case, we have direct control over the switching

mechanism (which can be state-dependent or time-dependent) and may adjust it as the

system evolves.

2.3.5 Dwell time

The simplest way to specify slow switching is to introduce a number τd > 0 and restrict

the class of admissible switching signals to signals with the property that the switching

times t1, t2, . . . satisfy the inequality ti+1 − ti ≥ τd for all i. This number τd is usually

called the dwell time (because σ “dwells” on each of its values for at least τd units of

time).



Chapter 3

Consensus seeking under

Persistent Interconnections

Consider N dynamic agents

Ψi : ẋi = ui, i ∈ {1, 2, . . . , N} (3.1)

where ui represents a protocol of interconnection. The most common continuous

consensus protocol under an all-to-all communication assumption, has been studied in

[44, 61], and is given by

ui = −
N∑
j=1

aij(t)(xi − xj), ∀ i ∈ {1, . . . , N} (3.2)

where aij(t) is the (i, j) entry of the adjacency matrix (-see Chapter 2) and xi is the

information state of the i-th agent.

In this Chapter, we present two new results on consensus seeking by using the consensus

protocol (3.2) where the aij(t) gains are represented by persistent exciting signals. We

summarize our work as follows:

1. In Section, 3.1 We study the consensus problem in a ring topology; we establish

simple checkable conditions on the network interconnections guaranteeing the

achievement of consensus and,

2. In Section, 3.2 we analyse consensus under time-varying topologies; we establish

that consensus is reached provided that there always exists a spanning tree for a

minimal dwell-time.

15
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3.1 Consensus seeking under Persistent Interconnections

in a Ring Topology

We study consensus under the assumption of a ring-communication topology, that is,

for each i, we define

ui =


−aii+1(t)(xi − xi+1), ∀ i ∈ {1, . . . , N − 1}

−ai1(t)(xi − x1), i = N

(3.3)

where aii+1 ≥ 0, it is strictly positive whenever information flows from the (i + 1)th

node to the ith node. Under (3.30), the system (3.1) has the form

ẋ = −L(t)x (3.4)

where L(t) is the following Laplacian matrix

L(t) :=



a12(t) −a12(t) 0 0 0

0 a23(t) −a23(t) 0 0
...

...
. . .

. . .
...

0 0 · · · aN−1N (t) −aN−1N (t)

−aN1(t) 0 · · · · · · aN1(t)


(3.5)

and x := ( x1, . . . , xN )ᵀ is the vector containing the state of each agent. The Laplacian

L(t) has associated a graphic representation which is shown in Figure 3.1.

Ψ1

a12(t)

��
��

� Ψ2��
��

� ��
��

· · ·� ΨN−1
� ��
��

ΨN

aN−1N (t)
j

aN1(t)

Figure 3.1: Ring topology with time dependent communication links.

The system (3.4) reaches consensus if for any initial condition all the states reaches

a common value as t tends to infinity. The consensus problem has been thoroughly

studied both for the case of constant and time-varying interconnections, mostly under

the assumption of an all-to-all communication topology. Typically, graph theory is used

to establish that consensus is reached if there exists a directed spanning tree (any node

may be reached from any node). In the case that the interconnections are time-varying,

a similar result was established in [39].
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3.1.1 Stability analysis

We take a different approach to the analysis of consensus: stability theory. Indeed,

our analysis builds upon the elementary observation that consensus is equivalent to the

asymptotic stability of the origin of

ż = A(t)z (3.6)

where we defined the error states

zi = xi − xi+1 ∀ i ∈ {1, . . . , N − 1}, (3.7)

the vector containing all the errors zi is defined as z = ( z1, . . . , zN−1 )ᵀ and

A(t) :=


−a12(t) a23(t) · · · 0

...
. . .

. . .
...

0 0 −aN−2N−1(t) aN−1N (t)

−aN1(t) · · · −aN1(t) −(aN1 + aN−1N )(t)

 (3.8)

The latter follows from evaluating the time derivative of (3.7) to obtain, substituting

the dynamics of the agents i,

żi =


−aii+1(t)zi + ai+1i+2(t)zi+1 i ∈ {1, . . . , N − 2}

−aN−1N (t)zN−1 + aN1(t)zN i = N − 1.

(3.9)

We establish sufficient and necessary conditions for the origin of (3.6) to be uniformly

globally exponentially stable therefore, for the system (3.4) to reach consensus uniformly

and exponentially fast.

We assume that the functions aii+1 may be equal to zero for intervals of time whose

length is uniformly bounded. That is, we assume that each coefficient aii+1 is persistently

exciting. The latter property, which is well-known in the literature of adaptive control

systems –see [4], is defined as follows.

Definition 5. Persistence of Excitation. A locally integrable function a : R≥0 → R is

said to be persistently exciting (PE) if there exist positive numbers T and µ such that∫ t+T

t
a(τ)dτ ≥ µ, ∀t ≥ 0 (3.10)
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It is an elementary but important fact (see [25]) that if t 7→ a(t) is persistently exciting

then

e
−
∫ t

t1

a(τ)dτ
≤ k̄e−k(t−t1), ∀t ≥ t1 ≥ 0 (3.11)

where k̄ = eµ and k = µ/T .

Example 1. Consider a PE signal a with T = 3 and µ = 1 wich is shown in the Figure

(3.2). The signal a satisfies the property (3.11) with k̄ = 2.78 and k = 0.33, see Figure

(3.3).
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a(t), µ=1, T=3

Figure 3.2: Persistently exciting signal a with T = 3 and µ = 1.
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Figure 3.3: Property of a persistently exciting signal.

Theorem 1. If

|aN1|∞ := sup
t≥0
|aN1(t)|

is sufficiently small, the system (3.4) reaches consensus uniformly in the initial times if

and only if aii is persistently exciting.
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We give a quantification of sufficiently small later in this chapter (Lemma 2).

To prove the theorem we start by observing that the matrix A(t) in 3.6 may be

partitioned as

A(t) = A1(t) +A2(t) (3.12)

with

A1(t) :=



−a12(t) a23(t) 0 · · · 0

0 −a23(t) a34(t) 0
...

...
...

. . .
. . .

...

0 0 0 −aN−2N−1(t) aN−1N (t)

0 0 0 · · · −aN−1N (t)


(3.13)

and

A2(t) :=



0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0

−aN1(t) −aN1(t) −aN1(t) · · · −aN1(t)


(3.14)

Therefore, (3.6) is equivalent to the feedback-interconnected system

Σ :


Σ1 :

{
ż = A1(t)z + y2

y1 = z

Σ2 : y2 = A2(t)y1

(3.15)

–see the illustration in Figure 3.4, below.

Σ1
y1

Σ2
m� +�
r2 = 0

-m+-

y2

r1 = 0

Figure 3.4: Interconnected system

The interest of this observation is that the stability conditions for (3.15), hence for (3.6),

may be derived by computing the norms of the systems Σ1 and Σ2 and invoking the

small gain theorem that gives sufficient conditions under which bounded inputs produce

bounded outputs in the feedback system of Figure 3.5.
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H1
y1

H2
m�
∑
�u2e2

+

+

-m∑-

y2

u1 + e1

−

Figure 3.5: Feedback system.

Theorem 2. [25] Consider the system shown in Figure 3.5. Suppose H1, H2 : Le 7→ Le;
e1, e2 ∈ Le. Suppose that for some constants γ1, γ2 ≥ 0 and β1, β2, the operators H1,

H2 satisfy

1) ‖(H1e1)t‖ ≤ γ1 ‖e1t‖+ β1

2) ‖(H2e2)t‖ ≤ γ2 ‖e2t‖+ β2 (3.16)

∀t ∈ R+. If

γ1γ2 < 1

then

(i)

‖e1t‖ ≤ (1− γ1γ2)−1
(
‖u1t‖+ γ2 ‖u2t‖+ β2 + γ2β1

)
‖e2t‖ ≤ (1− γ1γ2)−1

(
‖u2t‖+ γ1 ‖u1t‖+ β1 + γ1β2

)
(3.17)

for any t ≥ 0

(ii) If in addition, ‖u1‖ , ‖u2‖ <∞, then e1, e2, y1, y2 have finite norms, and the norms

of e1, e2 are bounded by the right-hand sides of (3.17) with all subscripts t dropped.

Indeed, the system Σ is a particular case of that covered by the small gain theorem with

the inputs r1(t) = 0 and r2(t) = 0 for every nonnegative t –see Figure 3.4.

In other words, in view of (4.23), the system (3.6) may be studied as a perturbed system

with nominal dynamics

Σ1 : ż = A1(t)z (3.18)

and perturbation (output injection) A2(t)y1. Moreover, note that the perturbation only

depends on the interconnection function aN1(t) hence, we shall establish exponential
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stability under the condition that the | · |∞ norm of aN1(t) is sufficiently small and the

origin of (3.18) is exponentially stable. The stability of system (3.18) is given by the

following result.

Lemma 1. Let

Φ̇(t, t◦) = A1(t)Φ(t, t◦), Φ(t◦, t◦) = IN−1 ∀t ≥ t◦ > 0 (3.19)

where

A1(t) :=



−a12(t) a23(t) 0 · · · 0

0 −a23(t) a34(t) 0
...

...
...

. . .
. . .

...

0 0 0 −aN−2N−1(t) aN−1N (t)

0 0 0 · · · −aN−1N (t)


(3.20)

Assume that, for every i = 1, ..., N−1, aii+1(t) is a bounded persistently exciting signal.

Then, there exist ᾱ > 0, α > 0 such that

||Φ(t, t◦)|| ≤ ᾱe−α(t−t◦) ∀ t ≥ t◦ ≥ 0. (3.21)

Proof. Note that the solution of the differential equation (3.19) is given by Φ(t, t◦) =

[φij(t, t◦)] where

φij(t, t◦) =



0 i > j

e
−
∫ t

t◦
aii+1(s)ds

i = j∫ t

t◦

φii(t, s)ai+1,i+2(s)φi+1,j(s, t◦)ds i < j

(3.22)

We show that every element of Φ(t, t◦) is bounded by an exponential function. Taking

the absolute value of (3.22) and using the property (3.11) for its diagonal entries, we

have
|φij(t, t◦)| = 0 i > j

|φii(t, t◦)| ≤ k̄ie
−ki(t−s) i = j

|φij(t, t◦)| ≤
∫ t

t◦

|φii(t; s)||ai+1,i+2(s)||φi+1,j(s; t◦)|ds

i < j

(3.23)
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For each j = i + 1 such that i < N − 1 the integral (3.22) depends on φii and φi+1i+1

which are bounded by k̄ie
−ki(t−σ) and k̄i+1e

−ki+1(t−σ), respectively. Consequently,

|φij(t, t◦)| ≤ k̄ik̄j |ai+1,i+2|∞
[

1

|ki − kj |
e−min{kj ,ki}(t−t◦)

]
where by assumption, |ai+1,i+2|∞ is bounded. Thus, all elements of Φ(t, t◦) are bounded

in norm by a decaying exponential.

Now, we can compute the input-output gain of the system Σ1 as follows. The norm of

the output of Σ1 is given by

||y1(t)|| ≤ ||Φ(t, t◦)||||z(t◦)||+
∫ t

t◦

||Φ(t, τ)||||y2(τ)||dτ.

By Lemma 1 we have ||Φ (t, t◦) || ≤ ᾱe−α(t−t◦), then

||y1(t)|| ≤ ᾱe−α(t−t◦)||z(t◦)||+
∫ t

t◦

ᾱe−α(t−t◦) ||y2(τ)||dτ.

Solving the integral and taking the initial condition for z equals to zero, we obtain

||y1(t)|| ≤ ᾱ

α
(1− e−α(t−t0))||y2||∞.

Thus,

||Σ1||∞ ≤ ᾱ
α . (3.24)

On the other hand, the norm of the output of Σ2 is

||y2||∞ ≤ ||A2(t)||∞||y1||∞.

Hence,

||Σ2||∞ ≤ ||A2(t)||∞ ≤ (N − 1)|aN1|∞. (3.25)

Finally, the proof of the theorem is completed by the following lemma, which establishes

the stability of the feedback interconnected system (3.4) based on the computed

input/output gains.

Lemma 2. Consider the interconnected system

Σ :


Σ1 :

{
ż = A1(t)z + y2

y1 = z

Σ2 : y2 = A2(t)y1

(3.26)
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Under the assumptions of Lemma 1 the interconnected system (3.26) is stable if

|aN1|∞ ≤ α
(N−1)ᾱ . In particular, all components of x(t) converge to a common value

as t→∞.

Proof. We apply the small gain theorem to the interconnected system (3.26) using the

upper bounds (3.24) and (3.25) of ||Σ1|| and ||Σ2||, respectively, this is

||Σ1||||Σ2|| ≤ (N − 1)|aN1|∞
ᾱ

α
< 1. (3.27)

It follows that

|aN1|∞ <
α

ᾱ

( 1

N − 1

)
(3.28)

is a sufficient condition for the asymptotically stability of (3.26).

3.1.2 Illustrative example and Simulation Results

For the sake of illustration, let us study a system with four interconnected agents (see.

Figure 3.6).

Ψ1

a12(t)

��
��

� Ψ2��
��

a23(t)
� ��
��

Ψ3
� ��
��

Ψ4

a34(t)
j

a41(t)

Figure 3.6: Ring topology with four interconnected agents

The information exchange among agents is represented by the persistently exciting

signals a12, a23 and a34 shown in Figure 3.7 with parameters in Table 1.

Table 3.1: Parameters Ti and µi corresponding to the signal aii+1, i = 1, 2, 3.

Ti µi
a12(t) 2 1

a23(t) 3 0.3

a34(t) 2.5 1.25
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Figure 3.7: Persistently exciting signals a12(t) (top), a23(t) (middle) and a34(t)
(bottom).

For this example, the system ż = A(t)z(t) is partitioned into two matrices A1 and A2

defined as

A1(t) =

 −a12(t) a23(t) 0

0 −a23(t) a34(t)

0 0 −a34(t)


and

A2(t) =

 0 0 0

0 0 0

−a41(t) −a41(t) −a41(t)


To apply Theorem 1, is necessary to compute ᾱ and α. By Lemma 1 we have

ᾱ = k̄1 + |a34|∞ k̄2k̄3
|k2−k3|

+|a23|∞|a34|∞ k̄1k̄2k̄3
|k2−k3||k1−min(k2,k3)| ,

α = min(k1, k2, k3)

where the values of k̄i and ki are shown in Table 3.2.

Table 3.2: Parameters k̄i and ki corresponding to the signal aii+1, i = 1, 2, 3.

k̄i ki
a12(t) 2.71 0.5

a23(t) 1.34 0.1

a34(t) 3.49 0.5

Therefore, we have

α = 13.1285 and ᾱ = 47.1147.
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By applying Theorem 1, we know that the origin of ż(t) = A(t)z(t) is exponentially

stable if

|a41(t)| ≤ 0.092. (3.29)

To illustrate the feasibility of the results obtained we performed simulations using

SIMULINK of MATLAB. The initial conditions of the agents are x1(0) = −1, x2(0) = 3,

x3(0) = −2 and x4(0) = −0.5. The persistently exciting signal a41, satisfying (3.29), is

shown in Figure 3.8.
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Figure 3.8: Persistently exciting signals a41(t).

Figure 3.9 depicts that all trajectories converge to a common value.
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Figure 3.9: Trajectories of states x1(t), x2(t), x3(t) and x4(t).
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In [52], it is shown that having a spanning tree topology is a sufficient condition to achieve

consensus under the assumption of piecewise constant communication links among the

agents. Therefore, by using this result we can also conclude that the foregoing example

reaches consensus due to the persistently exciting signals a12, a23, a34 and a41 satisfy this

condition. However, we want to stress that our result is based on the assumptions that

the time-varying communication links among the agents are represented by persistently

exciting signals and consequently our result is different with respect to the one presented

in [10].

3.2 Consensus for multi-agent systems under persistent

interconnections over a time-varying topology.

We analyze consensus under time-varying topologies; as opposed to the more traditional

graph-theory based analysis [53], we adopt a stability theory approach.

3.2.1 The network model

With little loss of generality, let us consider the following consensus protocol

uλ =


−aλλ+1(t)

[
xλ(t)− xλ+1(t)

]
∀λ ∈ [1, N − 1]

0 λ = N

(3.30)

where aλλ+1 ≥ 0 and it is strictly positive whenever information flows from the (λ+1)th

node to the λth node. This protocol leads to a spanning-tree configuration topology;

the closed-loop equations are

ẋ1 = −a12(t)
[
x1 − x2

]
...

ẋλ = −aλ,κ(t)
[
xλ − xλ+1

]
...

ẋN−1 = −aN−1N (t)
[
xN−1 − xN

]
ẋN = 0

(3.31)

In a leader-follower configuration, the Nth node may be considered as a “swarm master”

with its own dynamics. For simplicity, here we consider it to be static.

It is clear that there are many other possible spanning-tree configurations; the one

showed above is considered conventionally. Actually, there exist a total number of N !
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spanning-tree configurations; for instance, for a group of three agents there exist six

possible spaning-tree configuration topologies which determine six different sequences

{Ψ3,Ψ2,Ψ1}, {Ψ2,Ψ1,Ψ3}, etc. –see Figure 3.10.
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��

Ψ1

i = 5

Ψ3
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Figure 3.10: Example of 3 agents, where by changing their positions, we obtained
six possible topologies.

Thus, to determine the N ! possible spanning-tree communication topologies, among

N agents, we introduce the following notation. For each k ≤ N we define a function

πk which takes integer values in {1, . . . N}. We also introduce the sequence of agents

{Ψπk}Nk=1 with the following properties: 1) every agent Ψλ is in the sequence; 2) no

repetitions of agents in the sequence is allowed 3) the root agent is labeled ΨπN and it

communicates with the agent ΨπN−1 , the latter is parent of ΨπN−2 and so on down to the

leaf agent Ψπ1 . That is, the information flows with interconnection gain aπkπk+1
(t) ≥ 0,

from the agent Ψπk+1
to the agent Ψπk . The subindex k represents the position of the

agent Ψπk in the sequence. Note that any sequence {Ψπ1 ,Ψπ2 , ...,ΨπN−1 ,ΨπN } of the

agents may be represented as a spanning-tree topology which is depicted in Figure 3.11.

Thus, in general, each possible fixed topology labeled i ∈ 1, . . . , N ! is generated by a

protocol of the form (3.30) which we write as

uiπk =

−a
i
πkπk+1

(t)
[
xπk − xπk+1

]
, k ∈ {1, . . . , N − 1}

0, k = N
(3.32)

where k denotes the position of the agent Ψλ in the sequence {Ψπk}Nk=1 and πk represents

Ψπ1

aπ1π2 (t)

��
��

� Ψπ2��
��

� ��
��

· · ·� ΨπN−1
� ��
��
ΨπN

aπN−1πN (t)

Figure 3.11: A spanning-tree topology with time dependent communication links
between Ψπk

and Ψπk+1
.
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which agent Ψλ is in the position k, this is, πk = λ. Under (3.32), the system (3.1) takes

the form

ẋdi = −Li(t)xdi, i ∈ {1, . . . , N !} (3.33)

where to each topology i ≤ N ! corresponds a state vector

xdi =
[
xπ1 , xπ2 , . . . , xπN

]>
which contains the states of all interconnected agents in a distinct order, depending on

the topology. For instance, referring to Figure 3.10, for i = 1 we have xd1 =
[
x1, x2, x3

]>
while xd4 =

[
x1, x3, x2

]>
while for i = 4.

Accordingly, to each topology we associate a distinct Laplacian matrix Li(t) which is

given by

Li(t) :=



aiπ1π2(t) −aiπ1π2(t) 0 0 0

0 aiπ2π3(t) −aiπ2π3(t) 0 0
...

...
. . .

. . .
...

0 0 · · · aiπk−1πk
(t) −aiπk−1πk

(t)

0 0 · · · · · · 0


(3.34)

Since any of the N ! configurations is a spanning tree, which is a necessary and sufficient

condition for consensus, all configurations may be considered equivalent in some sense,

to the first topology, i.e., with i = 1. As a convention, for the purpose of analysis we

denote the state of the latter by x =
[
x1, x2, . . . , xN

]>
and refer to it as an ordered

topology. See Figure 3.12.

Ψ1

a12(t)

��
��

� Ψ2��
��

� ��
��

· · ·� ΨN−1
� ��
��
ΨN

aN−1N (t)

Figure 3.12: A spanning-tree topology with time dependent communication links
between Ψλ and Ψλ+1.
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It is clear (at least intuitively) that consensus of all systems (3.33) is equivalent to that

of ẋ = L1(t)x where

L1(t) :=



a12(t) −a12(t) 0 0 0

0 a23(t) −a23(t) 0 0
...

...
. . .

. . .
...

0 0 · · · aN−1N (t) −aN−1N (t)

0 0 · · · 0 0


. (3.35)

More precisely, the linear transformation from a “disordered” vector xdi to the ordered

vector x is defined via a permutation matrix Pi that is,

xdi = Pix (3.36)

where Pi ∈ Rn×n is defined as

Pi =


Eπ1

Eπ2
...

EπN

 , i ∈ {1, . . . , N !}

and the rows
Eπk =

[
0, 0, . . . , 1︸︷︷︸ . . . , 0

]
.

λth position

The permutation matrix Pi is a nonsingular matrix with P−1
i = P>i (see [23]). For

instance, relative to Figure 3.10 we have xd2 = [x2, x1, x3]> and

P2 =


0 1 0

1 0 0

0 0 1

 .
In order to study the consensus problem for (3.33) for any i it is both sufficient and

necessary to study that of any configuration topology. Moreover, we may do so by

studying the error dynamics corresponding to the differences between any pair of states.

3.2.2 Fixed topology with time-varying interconnections

For clarity of exposition we start with the case of a fixed but arbitrary topology. In view

of the previous discussion, without loss of generality, we focus on the study of the ordered

topology depicted in Figure 3.12. Consensus may be established using an argument on
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stability of cascaded systems. To see this, let z1 denote the vector of ordered errors

corresponding to this first topology that is,

z1λ := xλ − xλ+1 ∀λ ∈ {1, . . . , N − 1}

Then, the systems in (3.33) with i = 1 reach consensus if and only if the origin of

ż11 = −a12(t)z11 + a23(t)z12 (3.37)

ż12 = −a23(t)z12 + a34(t)z13 (3.38)

... (3.39)

ż1N = −aN−1N (t)z1N (3.40)

is (globally) uniformly exponentially stable.

In a fixed topology we have aλ,λ+1(t) > 0 for all t ≥ 0 that is, the λth node in the sequence

always receives information from its parent labeled λ+ 1, albeit with varying intensity.

The origin of the decoupled bottom equation, which corresponds to the dynamics of

the root node, is uniformly exponentially stable if aN−1N (t) > 0 for all t. Each of

the subsystems in (4.57) from the bottom to the top is input to state stable. Uniform

exponential stability of the origin {z = 0} follows provided that aλλ+1 is bounded (-see

lemma 3.12).

In compact form, the consensus dynamics becomes

ż1 = A1(t)z1, z1 = [z11 · · · z1N−1]> (3.41)

where the matrix A1(t) ∈ RN−1×N−1 is defined as

A1(t) :=



−a12(t) a23(t) 0 · · · 0

0 −a23(t) a34(t) 0
...

...
...

. . .
. . .

...

0 0 0 −aN−2N−1(t) aN−1N (t)

0 0 0 · · · −aN−1N (t)


(3.42)

3.2.3 Time-varying topology

In a changing topology we have aλ,κ(t) ≥ 0 for all t however, we assume that there always

exist an interval of time of non-negligible length (this will be made precise later) during
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which a spanning tree communication is established. The topology may be randomly

chosen as long as there always is a spanning tree which lasts for at least a dwell-time.

For the purpose of analysis we aim at identifying, with each possible topology, a linear

time-varying system of the form (4.1) with a stable origin and to establish stability

of the switched system. To that end, let i determine one among the N ! topologies

schematically represented by a graph as showed in Figure 3.11. Let xλ denote the state

of system Ψλ then, for the ith topology, we define the error

zi = [zi1 · · · ziN−1]> (3.43)

zik = xπk − xπk+1
k ∈ {1, · · · , N − 1} (3.44)

where k denotes the graphical position of the agent Ψλ in the sequence {Ψπk}Nk=1 and

πk represents which agent Ψλ is in the position j, this is, πk = λ.

Example 2. Consider two possible topologies among those showed in Figure 3.10

represented in more detail in Figure 3.13 (for i = 1) and Figure 3.14 (for i = 4).

Then, we have

z11 = xπ1 − xπ2 = x1 − x2

z12 = xπ2 − xπ3 = x2 − x3

Ψ1��
��
k = 1

� Ψ2��
��
k = 2

� ��
��

Ψ3

k = 3

Figure 3.13: A topology with 3 agents where π1 = 1, π2 = 2 and π3 = 3.

whereas in the second case, when i = 4,

z21 = xπ1 − xπ2 = x1 − x3

z22 = xπ2 − xπ3 = x3 − x2

Ψ1��
��
k = 1

� Ψ3��
��
k = 2

� ��
��

Ψ2

k = 3

Figure 3.14: The second topology with 3 agents where π1 = 1, π2 = 3 and π3 = 2.
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That is, for each topology i the dynamics of the interconnected agents is governed by

the equation

żi = Ai(t)zi (3.45)

where

Ai(t) :=


−aiπ1π2(t) aiπ2π3(t) 0 0

...
. . .

. . .
...

0 0 −aiπN−2πN−1
(t) aiπN−1πN

(t)

0 0 · · · −aiπN−1πN
(t)


(3.46)

According to Lemma 1 the origin {zi = 0} is uniformly globally exponentially stable

provided that aπkπk+1
(t) is strictly positive for all t. It is clear that consensus follows

if the origin {zi = 0} for any of the systems (3.45) (with i fixed for all t) is uniformly

exponentially stable. Actually, there exist αi and ᾱi such that

‖zi(t)‖ ≤ ᾱie−αit ∀ t ≥ 0 (3.47)

Observing that all the systems (3.45) are equivalent up to a linear transformation, we

establish consensus under the assumption that topology changes, provided that there

exists a minimal a dwell-time. Indeed, the coordinates zi are related to z1 by the

transformation

zi = Wiz1 (3.48)

where Wi := TPiT
−1, Pi is defined in (3.37), T ∈ RN−1×N is given by

T =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

. . .
. . .

...

0 0 0 1 −1 0

0 0 0 · · · 1 −1


(3.49)
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and T−1 ∈ RN×N−1 denotes a right inverse of T , given by

T−1 =



1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...

...
. . .

. . .
...

0 0 0 0 1

0 0 0 · · · 0


. (3.50)

Note that the matrix Wi ∈ RN−1×N−1 is invertible for each i ≤ N ! since each of its

rows consists in a linear combination of two different rosws of T−1, which contains N−1

linearly-independent rows. Actually, using (3.48) in (3.45) we obtain

ż1 = Āi(t)z1 (3.51)

where

Āi(t) := W−1
i Ai(t)Wi. (3.52)

We conclude that

‖z1(t)‖ ≤ α̃ie−αit, α̃i :=
∥∥W−1

i

∥∥ ᾱi, ∀ t ≥ 0. (3.53)

Based on this fact we may now state the following result for the switched error systems

which model the network of systems with switching topology.

Lemma 3.1. Consider the switched system

ż1 = Āσ(t)(t)z1 (3.54)

where σ : R≥0 → {1, . . . , N !} and for each i ∈ {1, . . . , N !}, Āi is defined in (3.52). Let

the dwell time

τd >

ln
( N !∏
i=1

α̃i

)
N !∑
i=1

αi

. (3.55)

Then, the equilibrium {z1 = 0} of (3.51) is uniformly globally exponentially stable for

any switching sequence {tp} such that tp+1 − tp > τd for every switching time tp.

Proof. Let tp be an arbitrary switching instant. For all t ≥ tp such that σ(t) = i we

have

||z1(t)|| ≤ α̃ie−αi(t−tp)||z1(tp)|| ∀tp ≤ t < tp+1 (3.56)
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Since by hypothesis τd ∈ [tp, tp+1), from (3.56) we have

||z1(tp + τd)|| ≤ α̃ie−αiτd ||z1(tp)|| (3.57)

Using the property of continuity of both the norm function and the state z(t), we have

||z1(tp+1)|| ≤ ||z1(tp + τd)|| (3.58)

and therefore

||z1(tp+1)|| ≤ α̃ie−αiτd ||z1(tp)|| (3.59)

Note that to guarantee asymptotic stability of (3.54) it is sufficient that for every pair

of switching times tp and tq

||z1(tq)|| − ||z1(tp)|| < 0 (3.60)

whenever p < q and σ(tp) = σ(tq).

Now consider the sequence of switching times tp, tp+1, ..., tp+N !−1, tp+N ! satisfying

σ(tp) 6= σ(tp+1) 6= . . . 6= σ(tp+N !−1) and σ(tp) = σ(tp+N !) which corresponds to a

switching signal in which all the N ! switched are chosen.

From (3.59) it follows that

||z1(tp+N !)|| ≤

(
N !∏
i=1

α̃ie
−(

∑N !
i=1 αi)τd

)
||z1(tp)|| (3.61)

To ensure that

||z1(tp+N !)|| − ||z1(tp)|| < 0 (3.62)

it is sufficient that (
N !∏
i=1

α̃ie
−(

∑N !
i=1 αi)τd − 1

)
||z1(tp)|| < 0 (3.63)

Therefore, since the norm is a non-negative function we obtain

N !∏
i=1

α̃ie
−(

∑N !
i=1 αi)τd < 1 (3.64)

and the proof follows.

Finally, in view of Lemma 3.1 we can make the following statement.
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Theorem 3. Let {tp} denote a sequence of switching instants p ∈ Z≥0 and let σ : R≥0 →
{1, . . . , N !} be a piecewise constant function satisfying σ(t) ≡ i for all t ∈ [tp, tp+1) with

tp − tp+1 ≥ τd and τd satisfying (3.55).

Consider the system (3.1) in closed loop with

uσ(t)
πk

=

−a
σ(t)
πkπk+1(t)

[
xπk − xπk+1

]
, k ∈ {1, . . . , N − 1}

0, k = N
(3.65)

Let the interconnection gains aiλκ, for all i ∈ {1, . . . , N !} and all λ, κ ∈ {1, . . . , N − 1},
be persistently exciting. Then, the system reaches consensus with uniform exponential

convergence.

3.2.4 Illustrative example and simulation results

For illustration, we consider a network of three agents hence, with six possible

topologies, as showed in Figure 3.10. The information exchange among agents in each

topology is ensured via channels with persistently-exciting communication intensity; the

corresponding parameters are shown in Table I.

i=1 T µ i=2 T µ i=3 T µ

a12(t) 0.25 0.5 a21(t) 2.0 1.6 a31(t) 0.3 0.1

a23(t) 0.2 1 a13(t) 0.8 0.2 a12(t) 0.7 0.6

i=4 T µ i=5 T µ i=6 T µ

a13(t) 2 1 a23(t) 0.4 0.1 a32(t) 0.5 0.3

a32(t) 4 0.4 a31(t) 0.5 0.4 a21(t) 4.2 1.8

Table I. Parameters of the nterconnection gains
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Figure 3.15: Persistently exciting interconnection gains for the topologies
{Ψ1,Ψ2,Ψ3}, {Ψ2,Ψ1,Ψ3} and {Ψ3,Ψ1,Ψ2}

The graphs corresponding to the interconnection gains are showed in Figures 3.15 and

3.16. By applying Lemma 1, we can compute α̃i and αi for each topology i, see Table

II. Substituting the values of α̃i and αi into (3.55), we find that the dwell time must

satisfy τd > 7.92.

i 1 2 3 4 5 6

α̃i 6.51 10.26 6.11 12.85 4.71 3.98

α 0.2 0.3 0.4 0.1 0.35 0.1

Table II. Parameters corresponding to the exponential bounds

We performed some numerical simulations using Simulink of Matlab. In a first test,

the initial conditions are set to x1(0) = −2, x2(0) = 1.5 and x3(0) = −0.5; the switching

signal σ(t) is illustrated in Figure 3.17.
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Figure 3.16: Persistently exciting interconnection gains for the topologies
{Ψ1,Ψ3,Ψ2}, {Ψ2,Ψ3,Ψ1} and {Ψ3,Ψ2,Ψ1}
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Figure 3.17: A switching signal σ(t) satisfying the dwell-time condition

The systems’ trajectories, converging to a consensus equilibrium, are showed in Figure

3.18.
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Figure 3.18: Trajectories of x1(t), x2(t) and x3(t)

3.3 Discussion

At first, we discuss the consensus problem for a network of dynamic agents with a ring

topology under the assumption that each interconnection between any pair of agents is

represented by bounded persistently exciting signals. By using the small-gain theorem we

obtain that the system reached consensus if the intensity of one of the interconnections

is relatively small.

The second result deals with the consensus problem for networks with changing

communication topology and with time-dependent communication links. That is, the

network changes in two dimensions: geographical and temporal. We establish that

consensus is reached provided that there always exists a spanning tree topology for

a minimal dwell-time. The interconnection gains are persistently exciting signals. The

originality of our work lies in the method of proof, based on stability theory of time-

varying and switched systems.



Chapter 4

Leader-follower formation and

tracking control of mobile robots

along the straight paths

4.1 Introduction

In this Chapter, we discuss the problem of leader-follower formation and tracking control

of mobile robots along the straight paths. The model of a mobile robot of the unicycle

type is shown in Figure 4.1.

y1

y

x1 x

θ1

Figure 4.1: A two-wheel mobile robot.

We assume that the masses and inertias of the wheels are negligible and that both the

forward velocity v1 and the angular velocity w1 are controlled independently by motors.

Let (x, y) denote the co-ordinates of the centre of mass, and θ1 the angle between the

39
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heading direction and the x-axis. We assume that the wheels do not slide, which results

in the following equations

ẋ1 = v1 cos (θ1) (4.1a)

ẏ1 = v1 sin (θ1) (4.1b)

θ̇1 = w1. (4.1c)

where v1 and w1 are considered as inputs.

We wish to examine the problem of formation control of multiple mobile robots, using

a leader-follower approach. In Section 4.2, for clarity of exposition, we firstly present

a result on leader-follower tracking control (two robots only) and describe the control

approach. Then, in Section 4.3 we present a result for a cascade-like configuration of

leader-follower mobile robots. In the communication graphs, each robot becomes leader

to one robot and follower of another. There is a unique swarm leader robot which receives

the information of the reference trajectory and there is a unique tail robot which is leader

to one. The performance of the derived controllers is illustrated by means of simulations

in Section 4.4. The Chapter ends with concluding remarks in Section 4.5.

4.2 Leader-follower tracking controller

A. Kinematic formulation

After the seminal paper [29], the tracking control problem for mobile robots may be

reformulated as that of controlling a robot in a leader-follower configuration as shown

in Figure 4.2. Hence, the tracking control problem consists, for a mobile robot with

kinematic model (4.1), in following a fictitious vehicle

ẋ0 = v0 cos (θ0) (4.2a)

ẏ0 = v0 sin (θ0) (4.2b)

θ̇0 = w0. (4.2c)
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θi−1

θi

dxi−1,i

θi

Γ i−1,i

dyi−1,i

xixi−1

yi−1

yi

Figure 4.2: Generic representation of a leader-follower configuration. For a swarm of
n vehicles, any geometric topology may be easily defined by determining the position

of each vehicle relative to its leader. This does not affect the kinematic model.

That is, v0 and w0 are, respectively, forward and angular velocity references. From

a control viewpoint, the goal is to steer to zero the differences between the Cartesian

coordinates of the two robots, as well as orientation angles; in other words, to steer the

following quantities to zero:

p1x = x0 − x1 + dx(i−1),i

p1y = y0 − y1 − dy(i−1),i

p1θ = θ0 − θ1.

where dx and dy denoted design parameters imposed by the topology and path planner.

Using geometry in Fig. 4.2 we can write the relationship between the turning radius

Γi−1,i, the angle of turn θi and the translation (dx(i−1),i, dy(i−1),i) as the following

equations:

dx(i−1),i = Γi−1,i sin θi

dy(i−1),i = Γi−1,i cos θi

In this case, we have

dx(0),1 = Γ0,1 sin θ1

dy(0),1 = Γ0,1 cos θ1
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Then, for the purpose of analysis we transform the error coordinates [p1x, p1y, p1θ] of

the leader robot from the global coordinate frame to local coordinates fixed on the robot

that is, 
e1x

e1y

e1θ

 =


cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1



p1x

p1y

p1θ

 . (4.3)

In the new coordinates, the error dynamics between the virtual reference vehicle and

the follower becomes

ė1x = w1e1y − v1 + v0 cos e1θ + Γ0,1w1 (4.4a)

ė1y = −w1e1x + v0 sin e1θ (4.4b)

ė1θ = w0 − w1. (4.4c)

The tracking control problem is transformed into that of stabilising the origin for the

error dynamics (4.4). It is commonly assumed that the reference angular velocity w0

is different from zero. Indeed, otherwise the system looses controllability in the y

coordinate –see Eq. (4.4b). For instance, the results in [46], and consequently those

of [32] which rely on the former, are based on the assumption that the angular reference

velocity satisfies a persistency of excitation condition that is, w0(s) := ψ(s)2 where∫ t+T

t
ψ(s)2ds ≥ µ, ∀ t ≥ 0 (4.5)

for some positive constants µ and T . In [6, 31] where complex nonlinear time varying

controls are designed to allow for reference velocity trajectories that converge to zero.

Furthremore, in [31] the authors cover the case when also the forward velocity v0 may

converge to zero that is, tracking control towards a fixed point. In [6] the controller is

designed so as to make the robot converge to the straight-line trajectory resulting in a

path that makes it go back and forth on the path.

Our control approach is inspired by the casacades-based controlers originally presented

in [46], in which persistency of excitation is used to guarantee exponential stabilisation

of the origin for the error dynamics. We extend this approach to the case in which the

reference angular velocity fails to satisfy the persistency of excitation condition. As a

matter of fact, we allow for the case in which w0 ≡ 0. Although structurally similar, the

control laws are given by

v1 = v0(t) + c2e1x + Γ0,1w1, c2 > 0 (4.6a)

w1 = h(t, e1y) + c1e1θ, c1 > 0 (4.6b)
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where h is bounded, locally of linear order in e1y, and continuously differentiable. It is

the term h above which replaces the zero angular velocity in the controller introduced

in [46] which relies on the assumption that w0 is persistently exciting. In the present

context, we impose as condition that h(t, 0) ≡ 0 and ḣ is persistently exciting for any

e1y 6= 0; a precise definition is given farther below.

We show that the controller (4.6) stabilizes globally and uniformly the error dynamics.

In order to understand the stabilisation mechanism of the controller (4.6) it is convenient

to examine the closed-loop equations, which result from using (4.6) in (4.4) to obtain

ė1x = w1e1y − c2e1x + v0 [cos e1θ − 1] (4.7a)

ė1y = −w1e1x + v0 sin e1θ (4.7b)

ė1θ = −c1e1θ − h(t, e1y). (4.7c)

This system may be rewritten in compact form as[
ė1x

ė1y

]
=

[
−c2 w1

−w1 0

][
e1x

e1y

]
+ d(t, e1θ) (4.8a)

ė1θ = −c1e1θ − h(t, e1y) (4.8b)

where we purposefully dropped the arguments of w1 and defined the interconnection

term

d(t, eθ) :=

[
v0(t)(cos e1θ − 1)

v0(t) sin e1θ

]
. (4.9)

We are interested in establishing uniform global asymptotic stability of the origin of

(e1x, e1y, e1θ) = (0, 0, 0). To that end, we observe that the system (4.8) consists in the

feedback interconnection of two systems as illustrated in Figure 4.3.

-

6

�

?

Σ1 :[
ė1x

ė1y

]
=

[
−c2 w1

−w1 0

][
e1x

e1y

]

Σ2 : ė1θ = −c1e1θ

d(t, e1θ) h(t, e1y)

Figure 4.3: Small gain feedback representation of the closed-loop system with a
persistently exciting controller.



Chapter 4. Leader-follower formation and tracking control of mobile robots. 44

Roughly speaking, after adaptive control systems theory, the system in the centre upper

block is uniformly asymptotically stable at the origin, provided that c2 > 0 and w1 is

persistently exciting, globally Lipschitz and bounded. On the other hand, the origin

of the system in the lower-centre block is, clearly, exponentially stable if c1 > 0. As a

matter of fact, it may also be established that each of these subsystems is input to state

stable. Moreover, the interconnection terms h and d are both uniformly bounded and

satisfy d(t, 0) ≡ 0, h(t, 0) ≡ 0. Thus, the interconnected system (4.8) may be regarded as

the feedback interconnection of two input to state stable (ISS) systems. Consequently,

stability of the origin of (4.8) may be concluded invoking the small-gain theorem for ISS

systems.

Although intuitive, the previous arguments hide certain difficulties in the analysis that

we intend to clarify next. Firstly, the function w1 depends on the states and time hence,

persistency of excitation must be appropriately defined. We use a relaxed notion of

persistency of excitation, originally introduced in [38]; the following is a refined definition

reported in [47].

Definition 6 (uδ-Persistency of excitation). Let f(·, ·) be such that the system ẋ =

f(t, x), with state x = [x>1 x>2 ]> and solution x(t) = x(t, t◦, x◦) starting at (t◦, x◦) ∈
R≥0 × Rn is forward complete.

The pair (φ, f) is called uniformly δ-persistently exciting (uδ-PE) with respect to x1

if, for each r and δ > 0, there exist constants T (r, δ) and µ(r, δ) > 0 such that, for all

(t◦, x◦) ∈ R≥0 ×Br, all corresponding solutions satisfy1

{
min

s∈[t, t+T ]
‖x1(s)‖ ≥ δ

}
⇒

{∫ t+T

t
φ(τ, x(τ, t◦, x◦))φ(τ, x(τ, t◦, x◦))

>dτ ≥ µI
}
(4.10)

for all t ≥ t◦.

In words, the pair (φ, f) is uδ-PE if the function φ(·, x(·)) is PE in the usual sense

of adaptive control, uniformly in initial conditions (t◦, x◦) ∈ R≥0 × Br, whenever the

trajectory x(·) is away from a δ-neighbourhood of the origin. For simplicity we may also

say, with an abuse of terminology, that the function φ is uδ-PE in the understanding that

the pair satisfies Definition 6. For instance, the function φ(t, x) := ψ(t) ‖x‖ is uδ-PE if

ψ satisfies (4.5). In particular, the function φ(t) = sin(t)α(x) with α continuous, zero

at zero, is uδ-PE.

There are several properties of uδ-PE functions which are useful in control design for

nonholonomic systems; these are reported in [37]. One of them is that if w1 is uδ-PE

then there exists a function w̃1 which depends only on time and which is persistently

1Notice that, in what the definition concerns, unicity of solutions is not required.
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exciting in the usual sense that is,∫ t+T ′

t
‖w̃1(τ)‖2 dτ ≥ µ′ ∀ t ≥ 0 (4.11)

for some T ′ and µ′ > 0. Moreover, w̃1 may be purposefully constructed to satisfy

w̃1(t) := h(t, e1y(t)) + c1e1θ(t) ∀ t : ‖e1y(t)‖ ≥ δ. (4.12)

Even though the function w̃1 is parameterized by δ it is garanteed that for any δ > 0

there exists w̃1 satisfying all of the above.

This property is useful because, for any δ and for all t such that ‖e1y(t)‖ ≥ δ, the

trajectories of Σ1 in Figure 4.3 coincide with those of[
ė1x

ė1y

]
=

[
−c2 w̃1(t)

−w̃1(t) 0

]
︸ ︷︷ ︸

Ã1(t)

[
e1x

e1y

]
︸ ︷︷ ︸
z1

(4.13)

which is linear. The clear advantage is that the behaviour of the trajectories of

(4.8a) with d ≡ 0 may be analysed as those of a linear system, at least while the

trajectories are away from the origin (strictly speaking away of any δ-neighbouhood).

In particular, global exponential stability of the origin of (4.13) is easily concluded

invoking classical results on adaptive control systems –see [24]. Consequently, one may

use an intuitive contradiction argument to establish uniform global asymptotic stability

of (4.8a) with d ≡ 0: assume that the origin is not attractive then, the trajectories (tend

to) remain away of an arbitrary δ-neighbourhood of the origin2. In that case, since they

coincide with those generated by (4.13) which is exponentially stable, it follows that the

trajectories of (4.8a) must converge to zero. The argument may be repeated for any

arbitrarily small δ hence, the “exponential” rate of convergence diminishes but remains

uniform in the initial conditions.

Precise general statements for nonlinear time-varying systems are reported in [47]. For

the purpose of the system (4.8) we proceed by showing that

• the origin is uniformly stable;

• the solutions are uniformly globally bounded;

• the origin is uniformly globally attractive.

2An “oscillating” behaviour which would consist in the trajectories entering and exiting the δ-
neighbourhood is excluded since the origin is stable.
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The first bullet comes from the fact that the system corresponds to the feedback

interconnection of two locally input to state stable systems. For the first block, Σ1,

the origin is uniformly globally asymptotically stable provided that w1 is uniformly δ-

PE with respect to e1y, bounded and with bounded derivatives –see Theorem 4 in the

appendix. On the other hand, local input to state stability (also known as total stability)

with respect to the additive input d is a direct consequence of uniform global asymptotic

stability –see [22]. For Σ2 it is evident that the origin is globally exponentially stable and

that Σ2 is input-to-state stable with respect to h. Actually, the interconnected system

showed in Figure 4.3 is (locally) uniformly asymptotically stable.

The boundedness property follows from the fact that the trajectories of (4.13) coincide

with those of Σ1 in Figure 4.3 (which are globally uniformly bounded) for all t such that

‖e1y(t)‖ ≥ δ; in particular, if the trajectories tend to grow unboundedly. To see more

clearly we remark that in view of (4.11) the origin of (4.13) is globally exponentially

stable, this implies that, for any δ, there exist positive definite symmetric matrices Pδ

and Qδ such that Qδ(t) = Ã1δ(t)
>Pδ(t) +Pδ(t)Ã1δ(t) + Ṗδ(t) and the total derivative of

V1δ(t, z1) = z>1 Pδ(t)z1

along the trajectories of (4.8a) satisfies

V̇1δ(t, z1) ≤ −z>1 Qδ(t)z1 + z>1 Pδ(t)d(t, e1θ)

for all t such that ‖e1y(t)‖ ≥ δ. In turn, we have

V̇1δ(t, z1) ≤ −qm ‖z1‖2 + pM ‖z1‖ ‖d(t, e1θ)‖

≤ −qm
2
‖z1‖2 +

p2M
2qm
‖d(t, e1θ)‖2 (4.14)

where we used pMI ≥ Pδ(t) and Qδ(t) ≥ qmI. Since d(t, e1θ(t)) is bounded –see (4.9),

it is clear that if ‖z1(t)‖ → ∞ then V̇1δ(t, z1(t)) ≤ 0 for sufficiently large t. We argue in

a similar way for the trajectories of (4.8b); the total derivative of V2δ(e1θ) := 0.5 ‖e1θ‖2

yields

V̇2δ(e1θ) ≤ −c1 ‖e1θ‖2 + ‖e1θ‖ ‖h(t, e1y)‖

≤ −λc1
2
‖e1θ‖2 +

‖h(t, e1y)‖2

2c1λ
(4.15)

for any λ > 0. Recall that, by assumption, h is bounded.
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Next, we show that the origin of (4.8) is uniformly globally attractive; that is, we must

show that for any r and σ > 0, there exists T such that

‖e1(t◦)‖ ≤ r =⇒ ‖e1(t)‖ ≤ σ ∀ t ≥ t◦ + T. (4.16)

So let r and σ be arbitrary given positive constants and define δ := σ. To establish the

convergence property (4.16) we study the behaviour of the solutions of[
ė1x

ė1y

]
=

[
−c2 w̃1(t)

−w̃1(t) 0

][
e1x

e1y

]
+ d(t, e1θ) (4.17a)

ė1θ = −c1e1θ − h(t, e1y) (4.17b)

whose trajectories, as we have emphasised, coincide with those of (4.8) for all t such

that ‖e1y(t)‖ ≥ δ. Therefore, it suffices to establish global exponential stability of the

origin of (4.17). To that end, let

λ :=

√
5vM0

2

pM
qmc1

ε :=
λc1
4

η :=
2qm
p2M

ε (4.18)

and consider the Lyapunov function Vδ := ηV1δ + V2δ. Its total derivative satisfies

V̇δ(t, z1, e1θ) ≤ −
(
q2m
p2M

ε− vM0
2c1λ

)
‖z1‖2 −

(
c1λ

2
− ε
)
‖e1θ‖2

where we introduced the bound vM0 ≥ ‖v0(t)‖ and we used the fact that ‖h(t, e1y)‖ ≤
vM0 ‖z1‖ and ‖d(t, e1θ)‖ ≤ ‖e1θ‖. In view of the expressions in (4.18), V̇δ is negative

definite, actually,

V̇δ(t, z1, e1θ) ≤ −α ‖z1‖2 − ε ‖e1θ‖2 , α > 0

We conclude that the trajectories of (4.8), which coincide with those of (4.17) for all t

such that ‖e1y(t)‖ ≥ δ, tend to zero exponentially fast as long as the latter inequality

holds. In view of this there exists a finite time T such that for any δ′ ∈ (0, δ], we have

‖e1(t◦ + T )‖ ≤ δ′. From uniform stability, we have ‖e1(t)‖ ≤ δ for all t ≥ t◦ + T . Since

δ = σ by definition, the statement follows.

Remark 3. It is worth noticing that this reasoning is reminiscent of ultimate

boundedness: namely, the solutions tend to a ball of radius δ. However, in this case,

opposite to arguments leading to ultimate boundedness, the number δ is arbitrarily given

and the previous arguments continue to hold for any δ and fixed values of the control

gains.

In the following lemma we obtain the uniformly globally asymptotically stability for the

case leader-follower tracking.
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Lemma 4.1. The origin of the system (4.8) is uniformly globally asymptotically stable

if c1 > 0, c2 > 0, v0 is bounded and w1 is uδ-PE, bounded and locally Lipschitz in e1y

uniformly in t. Moreover, uδ-PE of w1 is also a necessary condition.

The previous lemma establishes a strong, yet intermediary, convergence result in the

pursuit of our main objective: tracking control of nonholonomic robots. It is left to

state under which conditions w1 is uδ-PE. As a matter of fact, this has been established

in the context of set-point stabilization, in [37]. The control input w1 satisfies the

differential equation

ẇ1 = −c1w1 + ḣ(t, e1y)

which corresponds to the equation of a low-pass filter. That is, a stable strictly proper

linear system with input ḣ. It is well-known from adaptive control textbooks that

the output of a low-pass filter driven by an input that is persistently exciting, is also

persistently exciting –see [24, 41]. Now, for nonlinear functions we have the analogous

Property 1 from [37], which is recalled in the Appendix. Therefore, w1 which corresponds

to a “filtered version” of ḣ, is uδ-PE if so is ḣ.

We conclude that the following statement holds.

Proposition 1. Consider the system (4.4) in closed-loop with the controller (4.6). Let

h be bounded, once continuously differentiable, such that h(t, e1y) has a unique zero at

e1y = 0 for each fixed t,

sup
t,e1y

{
‖h(t, e1y)‖ ,

∥∥∥∥∂h(t, e1y)

∂e1y

∥∥∥∥ ,∥∥∥∥∂h(t, e1y)

∂t

∥∥∥∥} ≤ c (4.19)

for some positive constant c and assume that for any δ > 0 there exist positive numbers

µ and T such that

‖e1y‖ ≥ δ =⇒
∫ t+T

t

∥∥∥ḣ(τ, e1y)
∥∥∥ dτ ≥ µ, ∀t ≥ 0. (4.20)

Then, the origin of the closed-loop system is uniformly globally asymptotically stable.

Remark 4. The function h may be defined as a monotonic locally linear function of e1y

and smooth, persistently exciting in t; for instance, h(t, e1y) = ψ(t)sat(e1y) where sat(·)
is a saturation function and ψ is persistently exciting.

Proof. . The closed-loop system is given by Eqs. (4.8) and it may be easily showed,

using V1 and V2 above, that the system is forward complete. Now, since ḣ is a scalar

function (4.20) holds if and only if the following condition, along complete trajectories,

min
τ∈[t,t+T ]

‖e1y(τ)‖ ≥ δ =⇒
∫ t+T

t

∥∥∥ḣ(τ, e1y(τ))
∥∥∥ dτ ≥ µ, t ≥ 0
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holds. Therefore, ḣ satisfies the properties in Definition 6 and, in view of Property 1, it

follows that w1 is uδ-PE. The result follows from Lemma 4.1

4.3 Leader-follower formation control

We extend the previous result to the case of formation-tracking control. Consider a

group of n mobile robots with kinematic models,

ẋi = vi cos (θi) (4.21a)

ẏi = vi sin (θi) (4.21b)

θ̇i = wi, i ∈ [1, n] (4.21c)

where, for the i-th robot, xi and yi determine the position with respect to a globally-

fixed frame, θi defines the heading angle –see Figure 4.2, and the linear and angular

velocities are denoted by vi and wi respectively.

The control objective is to make the n robots take specific postures determined by

the topology designer, and to make the swarm follow a path determined by a virtual

reference vehicle labelled R0. Any physically feasible geometrical configuration may

be achieved and one can choose any point in the Cartesian plane to follow the virtual

reference vehicle.

We solve the problem using a spanning-tree communication topology and a recursive

implementation of the tracking leader-follower controller (4.6). That is, the swarm has

only one ‘leader’ robot tagged R1 whose local controller uses knowledge of the reference

trajectory generated by the virtual leader R0. Therefore, in the communications graph,

R1 is the child of the root-node robot R0 and the other robots are intermediate nodes

labeled R2 to Rn−1 that is, Ri acts as leader for Ri+1 and follows Ri−1. The last robot

in the communication topology is denoted Rn and has no followers that is, it constitutes

the tail node of the spanning tree –see Figure 4.4. We remark that the notation Ri−1

refers to the graph communication topology and not to the formation topology.

R0

R1R1 R2 Rn

Figure 4.4: Communication topology: a spanning directed tree with permanent
communication between Ri and Ri+1 for all i ∈ [0, n− 1] .
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The fictitious vehicle, which serves as reference to the swarm, describes the reference

trajectory defined by (4.2); the desired linear and angular velocities v0 and w0 are

communicated to the leader robot, R1, only. According to this communication topology,

and following the setting for tracking control, the formation control problem reduces to

that of stabilisation of the error dynamics between any pair of leader-follower robots.

For each i ≤ N , this is

ėix = wieiy − vi + vi−1 cos eiθ + Γi−1,iwi (4.22a)

ėiy = −wieix + vi−1 sin eiθ (4.22b)

ėiθ = wi−1 − wi (4.22c)

and for each i ≥ 1 we define the control inputs vi and wi as

vi = vi−1 + c2ieix + Γi−1,iwi (4.23a)

wi = wi−1 + c1ieiθ + hi(t, eiy) (4.23b)

where hi is once continuously differentiable, bounded and with bounded derivative.

Then, the closed-loop equations yield[
ėix

ėiy

]
=

[
−c2i wi

−wi 0

][
eix

eiy

]
+

[
vi−1[1− cos eiθ]

vi−1 sin eiθ

]
(4.24a)

ėiθ = −c1ieiθ + hi(t, eiy) (4.24b)

which has the form of (4.8) and inherits similar properties; actually, similarly to Lemma

4.1 we have the following.

Lemma 4.2. The origin of the system (4.24) is uniformly globally asymptotically stable,

for any i ≤ N , if c1i > 0, c2i > 0, v0 is bounded and wi is uδ-PE, bounded and locally

Lipschitz in eiy uniformly in t. Moreover, uδ-PE of wi is also a necessary condition.

The proof of this statement follows mutatis mutandis along the proof-lines of Lemma

4.1 observing that: 1) the function hi is, by assumption, continuous and bounded; 2)

for (4.24a) with eiθ = 0, the origin is uniformly globally asymptotically stable provided

that wi is uδ-PE and 3) the interconnection term

di :=

[
vi−1[1− cos eiθ]

v1−1 sin eiθ

]
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is also bounded, along trajectories. To see the latter, consider first i = 2 then,

d2 :=

[
v1[1− cos e2θ]

v1 sin e2θ

]

where v1 = v0(t)+ c21e1x is a function of t and e1x. Hence, the function d̃2 defined along

trajectories as

d̃2(t, eiθ) =

[
v1(t, e1x(t))[1− cos e2θ]

v1(t, e1x(t)) sin e2θ

]
,

is also continuous and bounded if so is v1(t, e1x(t)). On the other hand, e1x(t) is part of

the solution of (4.8) whose origin, after Lemma 4.1, is uniformly globally asymptotically

stable. Therefore, e1x(t) is uniformly globally bounded and so is v1(t, e1x(t)). The

statement of Lemma 4.2 for the case i = 2 follows hence, v2(t, ē2x(t)) where ē2x :=

[e1x e2x]>, is uniformly bounded for any t. Using this and proceeding by induction, we

conclude that the result of the lemma holds for any i ≥ 2.

Proposition 2. Consider the system (4.22) in closed loop with the controllers (4.8) and

(4.23). Assume that, for each i ≤ N , hi(t, eiy) has an isolated zero at eiy = 0,

sup
t,eiy

{
‖hi(t, eiy)‖ ,

∥∥∥∥∂hi(t, eiy)∂eiy

∥∥∥∥ ,∥∥∥∥∂hi(t, eiy)∂t

∥∥∥∥} ≤ c, (4.25)

∑i
j=1 ḣj is uδ-persistently exciting and the control gains c1i, c2i are positive. Then, the

origin of the closed-loop system is uniformly globally asymptotically stable.

Remark 5. In most cases, the condition that
∑i

j=1 ḣj is uδ-persistently exciting for any

i ≤ N holds if each ḣj is uδ-persistently exciting. For instance, it suffices to introduce

N different harmonics:

hj(t, eey) = ψj($jt)α(eiy)

where, for simplicity only, ψj is a periodic function of period 2π$j .

Proof. We must establish that under the conditions of the proposition, the control input

wi defined in (4.23a) is uδ-PE with respect to eiy. We proceed by induction. Let i = 2

then

w2 = w1 + c12e2θ + h2(t, e2y)
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which satisfies

ẇ2 = ẇ1 + c12ė2θ + ḣ2(t, e2y)

= −c11w1 + ḣ1(t, e1y) + c12w1 − c12w2 + ḣ2(t, e2y)

= −c12w2 − [c11 − c12]w1 + ḣ1(t, e1y) + ḣ2(t, e2y)

=: −c12w2 + Φ2(t, ē2y)

where ē2y := [e1y e2y]
>. Under the conditions of Proposition 2 and since w1 is uδ-PE

with respect to e1y, the function Φ2 is uδ-PE with respect to ē2y. Hence, by the filtering

property –see the Appendix, so is w2. It follows that

Φi(t, ēiy) =
i−1∑
j=1

[c1j+1 − c1j ]wj + ḣj(t, ejy) + ḣi(t, eiy)

ēi−1x := [e1x · · · ei−1x]>,

with i = 3 is uδ-PE with respect to ē3y and, consequently, by the filtering Property 1,

so is w3. By induction, it follows that Φi(t, ēiy) is uδ-PE with respect to ēiy and so is

wi, which satisfies

ẇi = −c1iwi + Φi(t, ēiy),

for any i ≥ 2.

B. Dynamic formulation

A. Leader-follower tracking controller

This problem has been studied thoroughly by [6] and [21], however, we focus in the

dynamic extension of (4.1) as studied in [32], the error dynamics between the virtual

reference vehicle and the follower are the following

ė1x = w1e1y − v1 + v0 cos e1θ,

ė1y = −w1e1x + v0 sin e1θ,

ė1θ = −w1,

v̇1 =
u11

m1
,

ẇ1 =
u21

j1
, (4.26)

where the control inputs u11 and u21 are regarded as force and torque respectively and

m1 denotes the mass of the first robot, while j1 is the moment of inertia.
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Our aim is to find a control law u1 = [u11, u21]T of the form

u11 = u11(t, e1x, e1y, e1θ, v, w),

u21 = u21(t, e1x, e1y, e1θ, v, w), (4.27)

such that the closed loop trajectories of (4.26,4.27) are uniformly globally asymptotically

stable.

To solve this problem, we first define the velocity error variables for the local control

inputs

e1v = v1 − v0,

e1w = w1, (4.28)

where the error dynamics between the virtual reference vehicle and the follower becomes

ė1x = w1e1y − e1v + v0(cos e1θ − 1),

ė1y = −w1e1x + v0 sin e1θ,

ė1θ = −e1w,

ė1v =
u11

m1
− v̇0,

ė1w =
u21

j1
, (4.29)

We solve the formation and tracking control problems on straight lines with fairly simple

time-variant control laws. The control inputs are

u11 = m1(v̇0 + c31e1x − c41e1v), c31 > 0, c41 > 0 (4.30)

u21 = j1(c51e1θ + ḣ1(t, e1y)− c61e1w), c51 > 0, c61 > 0

where ḣ is bounded, locally of linear order in e1y and continuously differentiable. We

set that ḣ(t, 0) ≡ 0 and ḣ is persistently exciting for any e1y 6= 0.

We show that the controller (4.30) stabilizes globally and uniformly the error dynamics.

Replacing the controller (4.30) in (4.29), leads to a set of equations corresponding to the
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error dynamics between the leader and the follower robot:

ė1x = w1e1y − e1v + v0(cos e1θ − 1),

ė1y = −w1e1x + v0 sin e1θ,

ė1θ = −e1w,

ė1v = c31e1x − c41e1v,

ė1w = c51e1θ + ḣ1(t, e1y)− c61e1w. (4.31)

We can write the equations (4.31) in compact form. The system Σ3 and Σ4 are defined

as

Σ3 :
ė1x

ė1v

ė1y

 =


0 −1 w1

c31 −c41 0

−w1 0 0



e1x

e1v

e1y

+ d(t, e1θ)
(4.32a)

Σ4 :[
ė1θ

ė1w

]
=

[
0 −1

c51 −c61

][
e1θ

e1w

]
+ h(t, e1y)

(4.32b)

where the interconnection terms are

d(t, e1θ) :=


v0(cos e1θ − 1)

0

v0 sin e1θ

 (4.33)

and

h(t, e1y) :=

[
0

ḣ1(t, e1y)

]
. (4.34)

We are interested in stablising uniform global asymptotic stability of the origin of

(e1x, e1y, e1θ, e1v, e1w) = (0, 0, 0, 0, 0). The system (4.32) consists of the feedback

interconnection of two systems. as is illustrated in the Figure 4.5.
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Σ3 :
ė1x

ė1v

ė1y

 =


0 −1 w1

c31 −c41 0

−w1 0 0



e1x

e1v

e1y



Σ4 :[
ė1θ

ė1w

]
=

[
0 −1

c51 −c61

][
e1θ

e1w

]
d(t, e1θ) h(t, e1y)

Figure 4.5: Feedback representation of the closed-loop system (4.31).

There are several properties of uδ-PE functions which are useful in control design for

nonholonomic systems; these are reported in [37]. One of the properties of uδ-PE

functions is that if w1 is uδ-PE then there exists a function w̃1 which depends only

on time and which is persistently exciting signals in the usual sense that is,

∫ t+T ′

t
‖w̃1(τ)‖2 dτ ≥ µ′ ∀ t ≥ 0 (4.35)

for some T ′ and µ′ > 0. Moreover, w̃1 may be purposefully constructed to satisfy

w̃1(t) := h1(t, e1y(t)) +
∫

(c51e1θ − c61e1w)dτ

∀ t : ‖e1y(t)‖ ≥ δ.
(4.36)

Even though the function w̃1 is parameterized by δ it is garanteed that for any δ > 0

there exists w̃1 satisfying all of the above. This property is useful because, for any δ and

for all t such that |e1y(t)| ≥ δ, the trajectories of Σ3 coincide with those of


ė1x

ė1v

ė1y


︸ ︷︷ ︸

ż1

=


0 −1 w̃1(t)

c31 −c41 0

−w̃1(t) 0 0


︸ ︷︷ ︸

Ã1(t)


e1x

e1v

e1y


︸ ︷︷ ︸

z1

(4.37)

which is linear. The clear advantage is that the behaviour of the trajectories of

(4.32a) with d ≡ 0 may be analysed as those of a linear system, at least while the

trajectories are away from the origin (strictly speaking away of any δ-neighbouhood).

In particular, global exponential stability of the origin of (4.37) is easily concluded

invoking classical results on adaptive control systems –see [24]. Consequently, one may

use an intuitive contradiction argument to establish uniform global asymptotic stability
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of (4.32a) with d ≡ 0: assume that the origin is not attractive then, the trajectories (tend

to) remain away of an arbitrary δ-neighbourhood of the origin3. In that case, since they

coincide with those generated by (4.37) which is exponentially stable, it follows that the

trajectories of (4.32a) must converge to zero. The argument may be repeated for any

arbitrarily small δ hence, the “exponential” rate of convergence diminishes but remains

uniform in the initial conditions.

Precise general statements for nonlinear time-varying systems are reported in [47]. For

the purpose of the system (4.32) we proceed by showing that

1. the origin is uniformly stable;

2. the solutions are uniformly globally bounded;

3. the origin is uniformly globally attractive.

The system (4.32) corresponds to the feedback interconnection of two locally input

to state stable systems. For the first block, Σ3, the origin is uniformly globally

asymptotically stable provided that w1 is uniformly δ-PE with respect to e1y, bounded

and with bounded derivatives –see Theorem 4 in the appendix. In this particular case,

x1 =
[
e1x e1v

]>
, x2 =

[
e1y

]
, H>(t, x2) =

[
w̃1(t) 0

]
and the matrix A(t, x1) is

defined by

A(t, x1) :=

[
0 −1

c31 −c41

]
(4.38)

where c31 > 0 and c41 > 0. For the matrix P to be definite positive P> > 0

P =

[
p11 p12

p12 p2

]
=

[
c23+c24+c3

2c3c4
− c3

2

− c3
2

c3+1
2c3c4

]
(4.39)

must satisfy

p11 > 0 p11p12 − p2
12 > 0

On the other hand, local input to state stability (also known as total stability) with

respect to the additive input d is a direct consequence of uniform global asymptotic

stability –see [22]. For Σ4 it is evident that the origin is globally exponentially stable

and that Σ4 is input-to-state stable with respect to h. Actually, the interconnected

system showed in Figure 4.5 is (locally) uniformly asymptotically stable.

3An “oscillating” behaviour which would consist in the trajectories entering and exiting the δ-
neighbourhood is excluded since the origin is stable.
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The boundedness property follows from the fact that the trajectories of (4.37) coincide

with those of Σ3 in Figure 4.5 (which are globally uniformly bounded) for all t such that

‖e1y(t)‖ ≥ δ; in particular, if the trajectories tend to grow unboundedly. To see more

clearly we remark that in view of (4.35) the origin of (4.37) is globally exponentially

stable, this implies that, for any δ, there exist positive definite symmetric matrices P1δ

and Q1δ such that Q1δ(t) = Ã1δ(t)
>P1δ(t)+P1δ(t)Ã1δ(t)+Ṗ1δ(t) and the total derivative

of

V1δ(t, z1) = z>1 P1δ(t)z1

is

V̇1δ(t, z1) = ż>1 P1δ(t)z1 + z>1 P1δ(t)ż1 + z>1 Ṗ1δ(t)z1

along the trajectories of (4.32a) satisfies

V̇1δ(t, z1) ≤ −z>1 Q1δ(t)z1 + 2z>1 P1δ(t)d(t, e1θ)

for all t such that ‖e1y(t)‖ ≥ δ. In turn, we have

V̇1δ(t, z1) ≤ −q1m ‖z1‖2 + 2p1Mz
>
1 d(t, e1θ)

where we used p1MI ≥ P1δ(t) and Q1δ(t) ≥ q1mI. By using the lambda inequality

2x>y ≤ x>λx+ y>λ−1y with x = z1, y = p1Md(t, e1θ) and λ = q1m we have

V̇1δ(t, z1) ≤ −q1m ‖z1‖2 +
q1m

2
‖z1‖2 +

p21M
2q1m

‖d(t, e1θ)‖2

≤ −q1m
2
‖z1‖2 +

p21M
2q1m

‖d(t, e1θ)‖2 (4.40)

Since d(t, e1θ(t)) is bounded –see (4.33), it is clear that if ‖z1(t)‖ → ∞ then

V̇1δ(t, z1(t)) ≤ 0 for sufficiently large t.

We argue in a similar way for the trajectories of (4.32b); the total derivative of

V2δ(t, z2) = z>2 P2δ(t)z2

is

V̇2δ(t, z2) = ż>2 P2δ(t)z2 + z>2 P2δ(t)ż2 + z>2 Ṗ2δ(t)z2

along the trajectories of (4.32b) satisfies

V̇2δ(t, z2) ≤ −q2m ‖z2‖2 +
q2m

2
‖z2‖2 +

p2
2M

2q2m
‖h(t, e1y)‖2

≤ −q2m

2
‖z2‖2 +

p2
2M

2q2m
‖h(t, e1y)‖2 (4.41)
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Recall that, by assumption, h is bounded.

Then, we show that the origin of (4.32) is uniformly globally attractive; that is, we must

show that for any r and σ > 0, there exists T such that

‖e1(t◦)‖ ≤ r =⇒ ‖e1(t)‖ ≤ σ ∀ t ≥ t◦ + T. (4.42)

Let r and σ be arbitrary given positive constants and define δ = σ. To establish the

convergence property of (4.42), we study the behaviour of the solutions of


ė1x

ė1v

ė1y

 =


0 −1 w̃1

c31 −c41 0

−w̃1 0 0



e1x

e1v

e1y

+ d(t, e1θ)

[
ė1θ

ė1w

]
=

[
0 −1

c51 −c61

][
e1θ

e1w

]
+ h(t, e1y) (4.43)

whose trajectories, as we have emphasised, coincide with those of (4.32) for all t such

that ‖e1y(t)‖ ≥ δ. Therefore, it suffices to establish global exponential stability of the

origin of (4.43). To that end, let

ε :=
q2m
4

η :=
2q1m
p1M2

ε (4.44)

and consider the Lyapunov function Vδ := ηV1δ + V2δ. Its total derivative satisfies

V̇δ(t, z1, z2) ≤ −
(
q21m
p21M

ε− p2Mv
M
0

2q2m

)
‖z1‖2 −

(
q2m
2
− ε
)
‖z2‖2

where we introduced the bound vM0 ≥ ‖v0(t)‖ and we used the fact that ‖h(t, e1y)‖ ≤
vM0 ‖z1‖ and ‖d(t, e1θ)‖ ≤ ‖z2‖. In view of the expressions in (4.44) , V̇δ is negative

definite, actually,

V̇δ(t, z1, e1θ) ≤ −α ‖z1‖2 − ε ‖z2‖2 , α > 0

We conclude that the trajectories of (4.32), which coincide with those of (4.43) for all t

such that ‖e1y(t)‖ ≥ δ, tend to zero exponentially fast as long as the latter inequality

holds. In view of this there exists a finite time T such that for any δ′ ∈ (0, δ], we have

‖e1(t◦ + T )‖ ≤ δ′. From uniform stability, we have ‖e1(t)‖ ≤ δ for all t ≥ t◦ + T . Since

δ = σ by definition, the statement follows.

Remark 4.3. It is worth noticing that this reasoning is reminiscent of ultimate

boundedness: namely, the solutions tend to a ball of radius δ. However, in this case,

opposite to arguments leading to ultimate boundedness, the number δ is arbitrarily given
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and the previous arguments continue to hold for any δ and fixed values of the control

gains.

Lemma 4.4. The origin of the system (4.32) is uniformly globally asymptotically stable

if c31 > 0, c41 > 0, c51 > 0, c61 > 0, v0 is bounded and w1 is uδ-PE, bounded and locally

Lipschitz in e1y uniformly in t. Moreover, uδ-PE of w1 is also a necessary condition.

The previous lemma establishes a strong, yet intermediary, convergence result in the

pursuit of our main objective: tracking control of nonholonomic robots. It is left to

state under which conditions w1 is uδ-PE. As a matter of fact, this has been established

in the context of set-point stabilization, in [37]. The control input w1 satisfies the

differential equation

ẇ1 = −c61w1 + ḣ(t, e1y) + c51e1θ

which corresponds to the equation of a low-pass filter. That is, a stable strictly proper

linear system with input ḣ + c51e1θ. It is well-known from adaptive control textbooks

that the output of a low-pass filter driven by an input that is persistently exciting, is also

persistently exciting –see [24, 41]. Now, for nonlinear functions we have the analogous

Property 1 from [37], which is recalled in the Appendix. Therefore, w1 which corresponds

to a “filtered version” of ḣ, is uδ-PE if so is ḣ.

Proposition 4.5. Consider the system (4.26) in closed-loop with the controller (4.30).

Let h be bounded, once continuously differentiable, such that h(t, e1y) has a unique zero

at e1y = 0 for each fixed t,

sup
t,e1y

{
‖h(t, e1y)‖ ,

∥∥∥∥∂h(t, e1y)

∂e1y

∥∥∥∥ ,∥∥∥∥∂h(t, e1y)

∂t

∥∥∥∥} ≤ c (4.45)

for some positive constant c and assume that for any δ > 0 there exist positive numbers

µ and T such that

‖e1y‖ ≥ δ =⇒
∫ t+T

t

∥∥∥ḣ(τ, e1y)
∥∥∥ dτ ≥ µ, ∀t ≥ 0. (4.46)

Then, the origin of the closed-loop system is uniformly globally asymptotically stable.

Remark 4.6. The function h may be defined as a monotonic locally linear function of

e1y and smooth, persistently exciting in t; for instance, h(t, e1y) = ψ(t)sat(e1y) where

sat(·) is a saturation function and ψ is persistently exciting.

Proof. . The closed-loop system is given by Eqs. (4.32) and it may be easily showed,

using V1 and V2 above, that the system is forward complete. Now, since ḣ is a scalar
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function (4.20) holds if and only if the following condition, along complete trajectories,

min
τ∈[t,t+T ]

‖e1y(τ)‖ ≥ δ =⇒
∫ t+T

t

∥∥∥ḣ(τ, e1y(τ))
∥∥∥ dτ ≥ µ, t ≥ 0

holds. Therefore, ḣ satisfies the properties in Definition 6 and, in view of Property 1, it

follows that w1 is uδ-PE. The result follows from Lemma 4.4

B. Leader-follower formation control

We address the dynamic extension of the proposed method based on a simple dynamic

model of a mobile robot presented in [27, 32]:

ẋi = vi cos(θi) (4.47a)

ẏi = vi sin(θi) (4.47b)

θ̇i = wi (4.47c)

v̇i =
u1i

mi
(4.47d)

ẇi =
u2i

ji
. (4.47e)

where the control inputs u1i and u2i are regarded as force and torque respectively and

mi denotes the mass of the ith robot, while ji is the moment of inertia.

The control objective is to find a control law u1i = [u1i, u2i]
T of the form

u1i = u1i(t, eix, eiy, eiθ, v, w)

u2i = u2i(t, eix, eiy, eiθ, v, w)
(4.48)

such that the closed loop error dynamics is uniformly globally asymptotically stable.

To solve this problem, we first define the velocity error variables for the local control

inputs as in the previous section:

eiv = vi − vi−1

eiw = wi − wi−1

(4.49)



Chapter 4. Leader-follower formation and tracking control of mobile robots. 61

which leads to the following error dynamics,

ėix = wieiy − eiv + vi−1 cos eiθ − vi−1

ėiy = −wieix + vi−1 sin eiθ

ėiθ = −eiw

ėiv =
u1i

mi
− v̇i−1

ėiw =
u2i

ji
− ẇi−1. (4.50)

and for each i ≥ 1 we define the control inputs u1i and u2i as

u1i = mi(v̇i−1 + c3ieix − c4ieiv) (4.51a)

u2i = ji(ẇi−1 + ḣi(t, eiy) + c5ieiθ − c6ieiw) (4.51b)

where ḣi(t, eiy) is bounded.

The equation (4.51) is replaced in (4.50), leading to a set of equations correspond to the

error dynamics between a leader and a follower robot,

ėix = wieiy − eiv + vi−1(cos eiθ − 1) (4.52a)

ėiy = −wieix + vi−1 sin eiθ (4.52b)

ėiθ = −eiw (4.52c)

ėiv = c3ieix − c4ieiv (4.52d)

ėiw = c5ieiθ + ḣi(t, eiy)− c6ieiw. (4.52e)

These system of equations can be rewritten in compact form. The system Σ3 is defined

as 
ėix

ėiv

ėiy

 =


0 −1 wi

c3i −c4i 0

−wi 0 0



eix

eiv

eiy

+ d(t, eiθ) (4.53)

and

Σ4 :

[
ėiθ

ėiw

]
=

[
0 −1

c5i −c6i

][
eiθ

eiw

]
+ h(t, eiy) (4.54)

where

di(t, eiθ) :=


vi−1(cos eiθ − 1)

0

vi−1 sin enθ

 (4.55)
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and

hi(t, eiy) :=

[
0

ḣi(t, eiy)

]
(4.56)

In the following lemma, we show that the control law (4.51) ensures GUAS of the

formation-tracking error dynamics (4.52).

Lemma 4.7. The origin of the system (4.52) is uniformly globally asymptotically stable,

for any i ≤ N , c3i > 0, c4i > 0, c5i > 0, c6i > 0, v0 is bounded and wi is uδ-PE, bounded

and locally Lipschitz in eiy uniformly in t. Moreover, uδ-PE of wi is also a necessary

condition.

The proof of this statement follows mutatis mutandis along the proof-lines of Lemma

4.1 observing that: 1) the function hi is, by assumption, continuous and bounded; 2)

for (4.32a) with eiθ = 0, the origin is uniformly globally asymptotically stable provided

that wi is uδ-PE and 3) the interconnection term

di :=


vi−1(cos eiθ − 1)

0

vi−1 sin eiθ


is also bounded, along trajectories. To see the latter, consider first i = 2 then,

d2 :=


v1[cos e2θ − 1]

0

v1 sin e2θ


where v1 = v0(t) +

∫
(c31e1x − c41e1v)dτ is a function of t, e1x and e1v. Hence, the

function d̃2 defined along trajectories as

d̃2(t, eiθ) =


v1(t, e1x(t), e1v(t))[cos e2θ − 1]

0

v1(t, e1x(t), e1v(t)) sin e2θ

 ,
is also continuous and bounded if so is v1(t, e1x(t), e1v(t)). On the other hand, e1x(t)

and e1v(t) are part of the solution for two robots whose origin, is uniformly globally

asymptotically stable. Therefore, e1x(t) and e1v(t) are uniformly globally bounded and

so is v1(t, e1x(t), e1v(t)). The statement of Lemma 4.4 for the case i = 2 follows hence,

v2(t, ē2x(t), ē2v(t)) where ē2x := [e1x e2x]> and ē2v := [e1v e2v]
>, is uniformly bounded

for any t. Using this and proceeding by induction, we conclude that the result of the

lemma holds for any i ≥ 2.
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Proposition 3. Consider the system (4.50) in closed loop with the controller (4.30) and

(4.51). Assume that, for each i ≤ N , hi(t, eiy) has an isolated zero at eiy = 0,

sup
t,eiy

{
‖hi(t, eiy)‖ ,

∥∥∥∥∂hi(t, eiy)∂eiy

∥∥∥∥ ,∥∥∥∥∂hi(t, eiy)∂t

∥∥∥∥} ≤ c, (4.57)

∑i
j=1 ḣj is uδ-persistently exciting and the control gains c3i, c4i, c5i and c6i are positive.

Then, the origin of the closed-loop system is uniformly globally asymptotically stable.

Remark 6. In most cases, the condition that
∑i

j=1 ḣj is uδ-persistently exciting for any

i ≤ N holds if each ḣj is uδ-persistently exciting. For instance, it suffices to introduce

N different harmonics:

ḣj(t, eey) = ψj($jt)α(eiy)

where, for simplicity only, ψj is a periodic function of period 2π$j .

Proof. . We must establish that under the conditions of the proposition, the control

input wi defined in (4.51b) is uδ-PE with respect to eiy. We proceed by induction. Let

i = 2 then

w2 = w1 + h2(t, e2y) +

∫
(c52e2θ − c62e2w)dτ

which satisfies

ẇ2 = ẇ1 + ḣ2(t, e2y) + c52e2θ + c62e2w

=
i∑

k=1

ḣk(t, eky) +
i∑

k=1

c5kekθ − c61e1w − c62e2w

=
i∑

k=1

ḣk(t, eky) +
i∑

k=1

c5kekθ − c61w1 − c62(w2 − w1)

= −c62w2 + [c62 − c61]w1 +
i∑

k=1

ḣk(t, eky) +
i∑

k=1

c5kekθ

=: −c62w2 + Φ2(t, ē2y)

where ē2y := [e1y e2y]
>. Under the conditions of Proposition 2 and since w1 is uδ-PE

with respect to e1y, the function Φ2 is uδ-PE with respect to ē2y. Hence, by the filtering

property –see the Appendix, so is w2. It follows that

Φi(t, ēiy) =

i−1∑
k=1

[c6k+1 − c6k]wk +

i∑
k=1

hk(t, eky) +

i∑
k=1

c5kekθ

ēi−1x := [e1x · · · ei−1x]>,

with i = 3 is uδ-PE with respect to ē3y and, consequently, by the filtering Property 1,

so is w3. By induction, it follows that Φi(t, ēiy) is uδ-PE with respect to ēiy and so is
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wi, which satisfies

ẇi = −c6iwi + Φi(t, ēiy),

for any i ≥ 2.

4.4 Numerical example and simulation results

We illustrate our theoretical findings via some simulation results obtained using

SimulinkTM of MatlabTM. We consider a group of five mobile robots. In a first stage of

the simulation, the desired formation shape of the mobile robots is linear and they follow

a straight line trajectory with initial conditions: [x1 (0) , y1 (0) , θ1 (0)]> = [0,−1, π/15],

[x2 (0) , y2 (0) , θ2 (0)]> = [20,−4, π/12] and [x3 (0) , y3 (0) , θ3 (0)]> = [20, 4, π/10] and

[x4 (0) , y4 (0) , θ4 (0)]> = [30,−5, π/8] and [x5 (0) , y5 (0) , θ5 (0)]> = [30, 8, π/6].

The linear formation shape with a certain desired distance between the robots is obtained

by defining [dx1,2, dy1,2] = [0, 1] and [dx2,3, dy2,3] = [0,−2] and [dx3,4, dy3,4] = [0, 3] and

[dx4,5, dy4,5] = [0,−4] . In order to obtain the reference trajectory of the leader robot, we

set the reference linear velocity to v0(t) = 10m/s, while the angular reference velocity

is set to zero.

4.4.1 Kinematic formation control

To show the flexibility of the formation and effectiveness of the proposed controller,

we allow the formation shape to be linear and the desired path changes from linear

to circular and circular to linear every 10s. The reference circular trajectory if the

leader robot is obtained by setting the linear and angular velocities to [v0 (t) , ω0 (t)] =

[10 m/s, 0.3 rad/s]; the latter and the resulting paths are showed in Figure 4.7. The

total simulation time is set to 40s.
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Figure 4.6: Angular reference velocity.
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Figure 4.7: Generated paths described by the mobile robots.

The control laws are given by

vi = v(i−1) + c2ieix

ωi = ω(i−1) + c1ieiθ + ϕ(t) tanh(eiy)

with control gains c1i = 2 and c2i = 5. The function ϕ is generated as a square-pulse

train signal of amplitude 0.5, period of four seconds and pulse width of 3.2 s. Note that

this function is not smooth but it is persistently exciting hence, the term ϕ(t) tanh(eiy)
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induces enough excitation to stabilize the system in the y direction, as long as there is

an error in this coordinate.

The rapid response and excellent performance may be appreciated from the plots of the

formation-tracking errors, depicted in Figures 4.8-4.10.
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Figure 4.8: Position errors in x coordinates with kinematic control algorithm.
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Figure 4.9: Position errors in y coordinates with kinematic control algorithm.
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Figure 4.10: Heading errors with kinematic control algorithm.

4.4.2 Dynamic formation control

We consider a group of four mobile robots, where one of them is the leader which

knows the reference trajectory and the other three as followers. The desired forma-

tion shape of the mobile robots is linear and they follow a straight line trajectory

with initial conditions: [x1 (0) , y1 (0) , θ1 (0) , v1 (0) , w1 (0)]> = [25, 1.2, π/7, 1.5, 0.2]>,

[x2 (0) , y2 (0) , θ2 (0) , v2 (0) , w2 (0)]> = [23,−1.5, π/3, 2.4, 4]>, [x3 (0) , y3 (0) , θ3 (0) , v3 (0) , w3 (0)]>

= [15,−2.5, π/4, 1, 2]> and [x4 (0) , y4 (0) , θ4 (0) , v4 (0) , w4 (0)]> = [10, 1, π/6, 0.5, 1.3]>.

In order to obtain the reference trajectory of the leader robot, we set the linear and an-

gular velocities as [v0 (t) , w0 (t)]> = [12[m/s], 0[rad/s]]. The desired distance between

the robots are [dx1,2, dy1,2] = [0, 1], [dx2,3, dy2,3] = [0, 1] and [dx3,4, dy3,4] = [0,−3].

In Figures 4.11-4.13 the trajectory errors of the robots are depicted. It is clear that with

the proposed control method the desired formation tracking is successfully ensured.
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Figure 4.11: Position errors in x coordinates.
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Figure 4.13: Heading errors.

In Fig 4.14 we show the motion and relative positioning of the robots. It is easy to see

that after a few seconds the formation shape is established and each robot tracks its

neighbour with its desired off-set, while the leader R1 tracking the reference trajectory

with a satisfactory performance.
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Figure 4.14: Motion and positioning of the robots in alined formation on the plane.

4.5 Discussion

We presented a very simple decentralized controller for the problem of formation-tracking

control of mobile robots in order to follow straight paths. Our approach relies on a
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simple idea which consists in maintaining the reference angular velocity different from

zero by an amount proportional to the translation error. In future works, we intend

to vary this approach to more complex models and under relaxed assumptions such as

time-varying topologies, state dependent interconnection gains, and the case of force-

controlled robots.



Chapter 5

Conclusions

5.1 Conclusions

In this Thesis, we study two important issue related to cooperative control:

• consensus seeking, and

• trajectory tracking.

In Chapter 3 we investigate the consensus problem for a network of dynamic agents with

a ring topology. The assumption that each interconnection between any pair of agents

is represented by bounded persistently exciting signals models the presence of failures

or an obstacle among them. The team of agents reach consensus if the intensity of one

of the interconnections is relatively small.

The consensus problem for networks with changing communication topology and with

time-dependent communication links is studied in Chapter 3. That is, the network

changes in two dimensions: geographical and temporal. Our result states that having

a spanning tree topology for a minimal dwell-time is a sufficient condition to reach

consensus.

A new approach to design nonlinear controllers that help to mobile robots to follow

straight lines is studied in Chapter 4. We present a decentralized controller for the

problem of formation-tracking control of mobile robots. Our approach relies on a simple

idea which consists in maintaining the reference angular velocity different from zero by

an amount proportional to the translation error.

71
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5.2 Perspectives

1. For the problem of consensus seeking, we assumed single integrator dynamics in our

previous study. It is possible to extend the results to double integrator dynamics.

Our results also suggest that the same framework could be applied to different

network topologies.

2. For the problem of tracking control, future work consist in: analyzing more com-

plex models and studying time-varying topologies, state dependent interconnection

gains, and the case of force-controlled robots.



Appendix A

Appendix

For the sake of self-containedness in this appendix we recall some of the technical tools

that we use to establish our main results. The reader is invited to see the cited references

for further detail.

The following property roughly states that the output of a stable filter is uδ-PE if so is

its input.

Property 1. [37] (Filtering) Let φu : R≥0 × Rn → R, the pair (φu, f) is uδ-PE with

respect to x and consider the system[
ẋ

φ̇f

]
=

[
f(t, x)

−aφf + φu(t, x)

]
=: F (t, xφ) (A.1)

with state xφ := [x>, φ>f ]>. If φu(·, ·) is locally Lipschitz and there exist continuous

non-decreasing functions κi : R≥0 → R≥0 , (i = 1, 2, 3) such that for almost all

(t, x) ∈ R≥0 × Rn,

max

{
|φu(t, x)| ,

∣∣∣∣ ∂φu(t, x)

∂t

∣∣∣∣ , ∣∣∣∣ ∂φu(t, x)

∂(x)i

∣∣∣∣} ≤ κ1(‖x‖) (A.2)

‖f(t, x)‖ ≤ κ2(‖xφ‖) (A.3)

and all solutions xφ(·, t◦, xφ◦) are defined on [t◦,∞) and satisfy

‖xφ(t, t◦, xφ◦)‖ ≤ κ3(‖xφ◦‖) ∀t ≥ t◦ (A.4)

then, the pair (φf , f) is uδ-PE, with respect to x.
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A stability theorems for time-varying systems

The following theorem is a consequence of Theorem 1 in [47].

Theorem 4 (Theorem under uδ-Persistency of excitation). Consider the system[
ẋ1

ẋ2

]
=

[
A(t, x1) H(t, x)

−H(t, x)> 0

][
x1

x2

]
. (A.5)

Let A be such that there exist a matrix P (t, x1) positive definite symmetric and functions

α1, α2 ∈ K such that∥∥∥x>1 [A(t, x1)>P (t, x1) + P (t, x1)A(t, x1)
]
x1

∥∥∥ ≥ α1

(
‖x1‖

)
(A.6)∫ ∞

t◦

α1

(
‖x1(t)‖

)
dt ≤ α2

(
‖x(t◦)‖

)
∀ t ≥ t◦, t◦ ≥ 0. (A.7)

Then, the origin is uniformly globally asymptotically stable if H is uδ-PE with respect

to x2, H is at least once continuously differentiable and both H and Ḣ are uniformly

bounded in t.

Remark 7. The conditions (A.6), (A.7) hold, for instance, if A is constant and Hurwitz.

Indeed, in this case, for any Q > 0 there exists P = P> > 0 such that

A>P + PA = −Q

therefore, by choosing Q = I we obtain, using

V =
1

2

[
x>1 Px1 + ‖x2‖2

]
,

V̇ = −‖x1‖2 ≤ 0. That is,∫ ∞
t◦

‖x1(t)‖2 dt ≤ pM ‖x1(t◦)‖2 , ∀t ≥ t◦ ≥ 0

where pMI ≥ P . That is, the conditions of the theorm hold with α1(‖x1‖) = ‖x1‖2 and

α2(‖x(t◦)‖) = pM ‖x(t◦)‖2.
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