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École doctorale 548: Mer et Sciences, Université de Toulon (UTLN)
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Résumé
Face à la limitation de la modélisation paramétrique, nous avons proposé dans

cette thèse une procédure standard pour combiner les données reçues a partir de Ré-
seaux de capteurs sans fils (WSN) pour modéliser a l’aide de Réseaux de Neurones
Artificiels (ANN). Des expériences sur la modélisation thermique ont permis de dé-
montrer que la combinaison de WSN et d’ANN est capable de produire des modèles
thermiques précis. Une nouvelle méthode de formation "Multi-Pattern Cross Trai-
ning" (MPCT) a également été introduite dans ce travail. Cette méthode permet
de fusionner les informations provenant de différentes sources de données d’entraî-
nements indépendants (patterns) en un seul modèle ANN. D’autres expériences ont
montré que les modèles formés par la méthode MPCT fournissent une meilleure
performance de généralisation et que les erreurs de prévision sont réduites. De plus,
le modèle de réseau neuronal basé sur la méthode MPCT a montré des avantages
importants dans le multi-variable Model Prédictive Control (MPC). Les simula-
tions numériques indiquent que le MPC basé sur le MPCT a surpassé le MPC
multi-modèles au niveau de l’efficacité du contrôle.

Mots-clés: Réseaux de Capteurs sans fil (WSN), Réseaux de neurones artificiels
(ANN), Modélisation, Formation croisée de Multiple source (MPCT) méthode, Les
économies d’énergie, les performances de généralisation, Control Prédictif.



Abstract
A Wireless Sensor Network (WSN) consisting of autonomous sensor nodes

can provide a rich stream of sensor data representing physical measurements. A
well built Artificial Neural Network (ANN) model needs sufficient training data
sources. Facing the limitation of traditional parametric modeling, this paper pro-
poses a standard procedure of combining ANN and WSN sensor data in modeling.
Experiments on indoor thermal modeling demonstrated that WSN together with
ANN can lead to accurate fine grained indoor thermal models. A new training
method"Multi-Pattern Cross Training" (MPCT) is also introduced in this work.
This training method makes it possible to merge knowledge from different indepen-
dent training data sources (patterns) into a single ANN model. Further experiments
demonstrated that models trained by MPCT method shew better generalization
performance and lower prediction errors in tests using different data sets. Also
the MPCT based Neural Network Model has shown advantages in multi-variable
Neural Network based Model Predictive Control (NNMPC). Software simulation
and application results indicate that MPCT implemented NNMPC outperformed
Multiple models based NNMPC in online control efficiency.

Keywords: Wireless Sensors Networks(WSN), Artificial Neural Networks (ANN),
Modeling, Multi-Pattern Cross Training(MPCT) method, Energy efficiency, Gen-
eralization performance, Model Predictive Control.
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General introduction

Since the year of 1960, discussions have been made on the subject of non-
parametric techniques against parametric techniques [1]. As a matter of fact, the
discussions have motivated researcher and scientists from different domains inclu-
ding finance, economics, pattern recognition, modeling, signal and image processing
etc.
These preliminary discussions revealed their methodological differences : in para-
metric techniques, a mathematical model (or statistical model) was developed for
the problem from a statistical, geometrical, physical, or phenomenological perspec-
tive. Although a relatively small number of unknown model parameters exist, they
can be estimated from the data. These models are based on predefined rules as ma-
thematical equations which can give a clear definition of the problem. It explicitly
defines step-by-step tasks to achieve the desired results. This can be an ideal way
to model a phenomenon when the rules relating to this problem is well known.
In some practical cases, where the rules are either unknown or they are extremely
difficult to be mathematically presented. Parametric modeling techniques do not
meet these requirements and are not suitable as an appropriate solution [2, 3].
Artificial Neural Networks (ANN) is a typical nonparametric modeling technique.
It is extremely useful in situations where the rules of the phenomena are either
unknown or are too difficult to discover. Moreover, it is considered as an appro-
priate solution for applications where the precision of traditional techniques cannot
meet the requirements when a phenomena is too complex to be modeled with the
well-defined rules [4].

1 Wireless Sensor Networks(WSN)

Wireless Sensor Networks (WSN) is considered as a significant technology ever
since its birth, A wireless sensor network (WSN) consisting of autonomous sensor
nodes can provide a rich stream of sensor data representing physical measurements.
It can be described as a network of distributed self-powered nodes that could sense
or exchange with environment. The main advantage of WSN is that it could be
easily and rapidly installed and gather information for a long period of time, pro-
viding an enormous quantity of sensor data. WSN based applications have shown
a rapid growth in a variety of fields, including target tracking and surveillance,
natural disaster relief, health monitoring, environment exploration and geological
sensing, etc [5].

13



General introduction

So far, most of the sensor networks deployed involve a relatively limited number
of sensor nodes. They are usually connected to a central processing unit where all
signal processing is performed [6]. On the contrary, the WSN is a wireless distribu-
ted network, in which the signal processing is often done with acquisitions.
To better understand the necessity of deploying WSN in real applications, some
description and statement should be made :

– Wireless
Cabled sensors networks work perfectly when nodes can be wired to stable
energy sources and reliable infrastructure of communications. However, in
many practical applications, the monitored target-area does not equipped
any of these, for example, when the monitoring target is a group of wild ani-
mals in the nature. Therefore sensor nodes should rely on local, finite, and
relatively small energy sources as well as wireless communication channels,
this would open a new door for wider applications with mobility and Auto-
nomy.

– Distrubuted sensing
When a precise location of the interest-area is unknown in a surveillance zone,
WSN allows a distribution of more autonomous sensors in the place closer
to the wanted monitoring area. Instead of using only one or few sensors, this
gives more signal to noise ratio (SNR) and better opportunities for the line
of sight. SNR can be addressed in some cases by the deployment of a high
sensitivity sensor, however, the line of sight of and more generally disturbance
of noise cannot be processed by the deployment of a sensor with high sen-
sitivity. Thus, distributed sensing provides more robustness under different
environmental conditions.

– Distributed processing
It may be considered reasonable that in the cabled sensor networks, data can
be communicated back to a central processing unit. However, for the sensor
nodes of WSN, there are two main barriers : first, the finite energy budget
is the first primary constraint. RF (Radio Frequency) Communication makes
the main energy consumer. Secondly, most wireless sensor network defined
limited data transmission rate. Thus, we need to process data as much as
possible inside the network to reduce the energy consumption as well as the
number of bits transmitted, particularly over longer distances.

14



2. Artificial Neural Network(ANN)

2 Artificial Neural Network(ANN)

Computer has become an necessary tool in engineering. Engineers have used
various computer applications to improve their efficiency and performance. Ever
since early 70s, Artificial Intelligence (AI) have been implemented by engineers to
perform specialized tasks design.

Although computers are involved in a variety of engineering activities, currently,
the main software applicable areas are with well-defined rules, such as the sophis-
ticated analysis, graphic and CAD applications, etc. However, where there are no
defined rules or heuristics, the use of computer is very limited.

Artificial Neural Networks (ANN) are another AI application that has recently
been widely used to model nonlinear system, or system with unknown dynamics
in many different domains of science and engineering [7]. ANN has been found to
be extremely useful in situations where the rules are either unknown or are very
difficult to explicit. Some of the main attributes of ANN can be listed as follows :

– ANN can learn and generalize from examples to produce practical solutions
to problems.

– They can perfectly cope with situations where the input data of the network
is unclear or incomplete.

– ANN are able to adapt solutions in time and to compensate from changing
circumstances

– The data for training an ANN can be theoretical data, experimental data or
empirical evidence based on reliable experiences.

ANN can be considered as a good generalized approximator based on the experience
of a set of training data, it contains no explicit rules. Although it may not have
the exact formality as the traditional parametric approaches, it is still A powerful
tool that can produce perfect approximations when formal traditional solutions has
difficulties with insufficient knowledge of the problem. It is chosen for applications
where precision of traditional techniques can not meet the requirement that the
problem is too complex to model with rules [4].

3 Combination of WSN and ANN in modeling

So far, WSN and ANN together have hardly been used in modeling. However,
we think there are two main advantages of applying WSN and ANN in modeling
and system identifications. First, the nature of WSN and ANN make them a combi-
nation : WSN could be easily and rapidly implemented, providing a huge quantity
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General introduction

of sensor data. These data sources can be essential for the ANN to identify a fine
grained model. Second, they have high practical values : traditional mathematical
modeling, Take the thermal modeling of building rooms as an example, approaches
like [8] are usually established with well defined equations, they are usually used
in general simulations instead of practical applications. It is mainly because these
models are based on elements such as room thermal capacitances/resistance, air-
flow rate, heat transfer coefficient, heat gain coefficient, etc. These parameters are
difficult to measure precisely in buildings. Also, the dynamic behavior of some
phenomenon is very complex 1, It is nearly impossible to obtain an accurate ma-
thematical model with limited number of system parameters. The WSN system,
on the contrary, is highly transplantable as it could be quickly equipped under any
environmental surroundings to gather real-time thermal data. Additionally, with
its self-adaptive learning and mapping ability, ANN can directly simulate the rela-
tions between the modeling object’s inputs and outputs. Based on the two reasons,
it seems that the combination of WSN and ANN can be a valuable and reasonable
solution for modeling.

1. Here, the word "complex" refers to the complexity of the physical phenomenon, it differs
from the definition of complexity in mathematics. The mathematical conception on complexity
can be found in the following works [9, 10, 11].
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4. Outline of this Thesis

4 Outline of this Thesis
This thesis is structured in four parts. In the first part of this thesis, we highligh-

ted the limitations of traditional modeling methods by establishing and analyzing
a mathematical thermal model of a building room. Instead ,we proposed to use
WSN and ANN combined solution in building thermal modeling. The second part
mainly introduces the concept and development of ANN as modeling tools and
the WSN as our platform data acquisition. The wireless protocol and the design
of embedded systems of our WSN system is systematically presented in this part.
Also, we conducted experiments to show that our developed WSN system is re-
liable for applications outside or inside the building. we introduced the software
we developed for combining ANN and WSN in modeling, the main functions and
features of this software has been highlighted.
In Part 3 of this thesis, we have shown the design of all our experiences in mode-
ling the thermal response of a real building room with ANN and WSN. To improve
the ANN thermal models’ generalization performance, we proposed a new training
method called "Multi-Pattern Cross Training". It is able to merge knowledge from
different training data patterns into a single ANN model. Thus, by exploring the
general behavior of the phenomenon, it can be properly used to build a more com-
plete model. We then presented the concept of Model Predictive Control (MPC)
in which we focused on the neural network based MPC in the control of non- li-
near processes. The necessity to use the MPCT method in MPC for optimizing the
control efficiency is outlined in Part 3.
The results of WSN based ANN Modeling and the modeling performance with
MPCT method are presented and discussed in Part 4, It is marked that MPCT
method can be used to build models with better generalization performance, it
also shows that MPCT method can improve the efficiency in Neural network based
MPC. Some of our major embedded codes of the WSN system and is presented in
the appendix of this thesis.
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1

The phenomenon involved in
building

1.1 Building Science : Thermal Phenomena

Buildings of residential and commercial facilities take about 40% of total energy
consumption in Europe and USA. In China, residential urban energy consumption
has tripled between 1996 and 2008 [12]. As a matter of fact, the energy consumption
varies between different types of buildings. For example, buildings more than 30
years old consume from 300 to 400kWh/m2/year, while modern buildings consume
approximately from 150 to 200kWh/m2/year [13]. The improvement of energy
efficiency in these old buildings can bring considerable environmental and financial
benefits.
In order to find the best strategy to achieve energy efficiency, a basic understanding
on the thermal behavior of buildings is necessary.

Figure 1.1 – Energy use of buildings in the United States (architecture2030.org)
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Chapitre 1. The phenomenon involved in building

1.2 Physical phenomenon involved in buildings
The three main physical phenomena involved in the thermal response of buil-

dings are :
– Radiation : transferring heat from one object to another by electromagnetic

waves (without contact).
– Conduction : the heat spreads within the material (solid, liquid, gas).
– Transport : The heat transfer between the air and the solid material resulting

from the displacement of the particles (from the air) on the interface.
For a homogeneous material, we have the following equations to describe the be-
havior of heat transfer through it. If the thickness of the material is T , the thermal
resistance R considering the conductivity of the material λ is expressed by :

R =
T

λ
(1.1)

The heat transfer coefficient U 2 is an indicator of energy efficiency. The value of U
is expressed as the inverse of R :

U =
1

R
=

λ

T
(1.2)

For example, for a concrete wall (λ = 1.75W/mK) with a thickness of 0.3m, its
thermal resistance has the value :

R =
0, 3

1, 75
= 0, 171m2K/W (1.3)

For a wall built of different materials, the overall thermal resistance is the sum of
the resistances, and if we take into account the internal and external convection,
we have here the overall thermal resistance :

R =
n∑

i=1

Ti

λi

+
1

hin

+
1

hout

(1.4)

The coefficients hin and hout are due to the internal and external convection
respectively.

Another important concept is the thermal inertia also known as thermal mass,
it is a term used to describe the ability of materials to store heat (thermal storage
capacity). The fundamental characteristic of any thermal mass materials is its abi-
lity to absorb, store or release heat.

2. It refers as the U-value in U.S.
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1.2. Physical phenomenon involved in buildings

Figure 1.2 – Thermal resistance of a wall

Adding thermal mass in building’s insulated envelope can effectively reduce the
extreme temperatures inside the building, making the most moderate average in-
ternal temperature and comfort for habitants. Normally, building materials which
can hold a heavy store of heat contain high thermal mass. On the contrary, the
materials which is not capable of storing heat has lower thermal mass. In warm
weather, the thermal mass at an initial temperature lower than the ambient air
acts as a heat sink. By absorbing heat from the atmosphere, the temperature of
the internal air reduce during the daytime. By releasing heat from the materials,
the temperature of internal air drops slower. Thermal mass is particularly effective
in areas where there is a large difference between the daytime maximum tempera-
ture and minimum night temperature.
The other important element is the solar radiation see Fig. 1.4, the heat inputs are
generally two ways :

Figure 1.3 – Temperature variations in the use of thermal mass

– Absorbed on the surfaces of wall, solar radiation is converted to heat stored
in the walls.
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Chapitre 1. The phenomenon involved in building

Figure 1.4 – Solar radiation and indoor temperature

– The absorbed solar radiation through the transparent window is converted
into heat in the ambient air.

24



2

Mathematical model of a room

2.1 Thermal modeling of building

Based on the description made in the previous chapter, the thermal response
of building is related to many nonlinear and time varying effects such as the heat
transport, convection, solar radiation, the interior charges, lighting equipment, cir-
culation inside and outside air etc. The building room is a very complex thermal
system, it is almost impossible to build a precise mathematical model with a limi-
ted well characterized parameters.
Fig. 2.1is presented as a mathematical model of the room E106 in the campus of
Université de Toulon (UTLN), this room is equipped with a simple air conditioning
as internal heating system and a vent pipe.

Figure 2.1 – Thermal model of room E106 in University of Toulon
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Chapitre 2. Mathematical model of a room

2.1.1 Effective Indoor Thermal Time Constant(EITTC)

The thermal time constant (TTC) can be used to quantify the thermal iner-
tia of a building. In simpler words, it describes how the temperature varies under
different thermal excitations. In previous works, the building TTC are calculated
mostly with the thermal resistance and thermal capacitance of the building fabrics
[14][15], Thus, these thermal constants are usually used to simulate the thermal
response of buildings under environmental excitations. They can be very difficult
to be used directly to characterize the indoor temperature changes in response
to existing indoor heating/cooling system. Some of the thermal time constant are
calculated based on major simplifications that all heat transport phenomena in
building are linear [16] which can be limited facing the complex dynamic behavior
of buildings. Thus, we proposed in this thesis a new concept : the Effective Indoor
Thermal Time Constant (EITTC). By taking into consideration of both existing
heating/cooling system’s performance and the building room’s thermal property.
The EITTC can be used directly to characterize the indoor thermal response under
existing indoor heating/cooling excitation and different outdoor conditions.

2.1.2 Mathematical model of room E106 in UTLN

In the mathematical model proposed by J. Florez and G.C. Barney [16], the
thermal time constant Tr is described as :

dTr

dt
+

Tr

τr
=

Qh

Cr

+
To

CrRo

+
Tf

CrRf

(2.1)

where Tr is the room temperature, τr is the room thermal time constant. Qh is heat
source in the room, To is the out door temperature, Cr is the thermal flow store of
the room, R0 is the linear thermal dissipator from the room to exteriors, Tf is the
fabric (wall, roof) temperature, and the linear thermal dissipator from room to the
fabric is Rf . The thermal time constant of the room can be written as :

τr =
CrRfRo

Rf +Ro

(2.2)

where τr is the room thermal time constant, Cr is the thermal flow store of the
room, R0 is the linear thermal dissipator from the room to exteriors, and the linear
thermal dissipator from room to the building fabrics is Rf . This equation (Eq.(2.2))
is derived from a simplified linearized mathematical model of a room, it is much a
general expression of room thermal constant. It can not be used directly to describe
the indoor thermal response.

So, in order to characterize precisely the thermal response of the building room,
in this thesis, a more detailed mathematical thermal model of building room is es-
tablished :
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2.1. Thermal modeling of building

According to the law of conservation of energy, the mathematical expression of
this room model reads :

mncn
dtn
dt

= ρsCsGs(ts − tn) +
t0 − tn
R1

+
t0 − tn
R2

+
t0 − tn
R3

+
th − tn
R4

+Qd (2.3)

where mncn is the heat capacity of indoor air (kJ/◦C), ts is the output air tem-
perature (◦C) from the air-conditioner, Gs is the volume of heated output air per
second(m3/s) ; tn, th, t0 are the indoor temperature, the adjoining room tempera-
ture and outdoor temperature (◦C). ρs is the density of heated output air(kg/m3) ;
Cs is the specific heat capacity of heated output air (KJ/(kg◦C)) ; R1, R2,R3,R4

are the thermal resistance of walls, windows, roof and the partition wall to the next
door(k/kW ). Respectively, t0−tn

R1
, t0−tn

R2
, t0−tn

R3
and th−tn

R4
are the thermal conduction

(kW ) on every part of the room. Qd is the sum of heat (kW ) emitted by the indoor
equipments and human bodies.
The incremental equation derived from Eq. (2.3) can be expressed as follows :

τ
d∆tn
dt

+∆tn = K1∆Gs +K2∆Q (2.4)

where τ is the EITTC (s), K1 is the amplification factor of the indoor temperature
caused by heated air (◦C/(m3/s)) ; K2 is the amplification factor of indoor thermal
perturbation (◦C/kW ) ; ∆Q is the total change of the indoor heat (kW ). If the
temperature of heated air is defined as ts, we have :

K2 =
1

ρsCsGs +
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

, (2.5)

τ =
mncn

ρsCsGs +
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

= K2mncn, (2.6)

K1 =
ρsCs(ts − tn)

ρsCsGs +
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

= K2ρsCs(ts − tn), (2.7)

∆Q = ∆Qd +
∆t0
R1

+
∆t0
R2

+
∆t0
R3

+
∆th
R4

(2.8)

After performing a Laplace transformation of equation (2.4), we have the follo-
wing equation :

τS∆tn(S) + ∆tn(S) = K1∆Gs(S) = K1∆Gs(S) +K2∆qf (S) (2.9)
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If we define the delay between the thermal influences and indoor temperature
variations as TR, the transfer function is obtained between the amount of heated
air and the changes of indoor temperatures read :

∆tn(S)

∆Gs(S)
=

K1e
−Trs

T1S + 1
(2.10)

In the same way, the transfer function between the thermal interference and
indoor temperature reads.

∆tn(S)

∆qf (S)
=

K2e
−Trs

T1S + 1
(2.11)

If we consider that the volume of heated air GS is constant, we can find the
differential equations on the thermal response of the building room :

τ ′
dtn
dt

+ tn = K ′
1ts +K ′

2qf (2.12)

In this equation, T ′
1,K ′

1,K ′
2 are the same parameters as in Eq. (2.4).

τ ′ =
Mc

ρscsGs +
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

= K ′
2Mc, (2.13)

K ′
1 =

ρscsGs

ρscsGs +
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

= K ′
2ρscsGs, (2.14)

K ′
2 =

1

ρscsGs +
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

, (2.15)

qf = qn +
t0
R1

+
t0
R2

+
t0
R3

+
t′n
R4

(2.16)

And if we add the delay T ′
r, we have the transfer function between the tempe-

rature of the heated air and the temperature of the room :

tn(S)

ts(S)
=

K ′
1e

−T ′
rs

T ′
1S + 1

(2.17)
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and the transfer function between the thermal interference and indoor tempe-
rature :

tn(S)

qf (S)
=

K ′
2e

−T ′
rs

T ′
1S + 1

(2.18)

If the volume of heated air is considered as constant, we have

Gs = Gs0 (2.19)

where Gs0 is the volume of heated air at the start time.
If we compare from Eq. (2.4) to Eq. (2.12), we have :

T1 = T ′
1; Tr = T ′

r; K1 =
ts0 − tn0
Gs0

K ′
1; K2 = k′

2 =
1

ρscsGs0

K ′
1 (2.20)
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2.1.3 Limitation of the established mathematical model

Two common problems with this type of models are : 1. the model is based on
simplifications and it does not have the ability to provide accurate predictions in
real time and it is hard to precisely measure all the parameters used in this model.
2. these models is only applicable for the specific modeled room, when the room
changes, all the parameters and equations should be redefined. Thus, they are not
practical.

For the first problem, as we explained in the introduction : for this type of
mathematical modeling, the basic problem is that the number of parameters in-
creases with the increase of problem’s complexity [3]. If we want to build a precise
mathematical thermal model of the room, we have to take all the physical pheno-
menon involved into the models, which means all the heat transferring, conduction,
radiation. Furthermore, The thermal response of the room is related to the outside
temperature, solar radiation, the interior equipment, lighting, human activity and
the opening and closing of the door, etc. It is almost impossible to establish a precise
mathematical model with a limited number of parameters. The complexity of this
dynamic thermal response in the room will finally lead to a explosion of parameters
in the correspondent mathematical model. This is the main reason that most of
the mathematical room thermal models used in simulations are based on simplifi-
cations [16] below regardless of the fact that these simplification has weakened the
accuracy of models :

– All the phenomena of heat transfer are considered linear.

– Consider the room is a unique capability and neglect the content inside the
room.

– neglecting the air flow inside the room.

– Suppose that the internal temperature is homogeneous.

The accuracy of the model can not be guaranteed due to the parameters : for
example, parameters such as t0, t′n and Qn are time varying elements which is very
difficult to be measured in real time. Furthermore, the most basic parameters like
thermal resistance, thermal capacity thermal mass are also difficult to be measured
precisely. In addition to the difficulty of measuring these parameters.
The second simple and practical problem is that these models are not reusable, if
the room changed, all the parameters have to be measured again due to different
building fabrics and geometries.
Facing these limitations, new modeling methods should to be explored.
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2.2 Proposed new modeling method
In this thesis, the modeling solution combining WSN data and ANN is propo-

sed to overcome the limitations of the traditional mathematical models introduced.
ANN has been applied to improve the performance of WSNs [17]. However, We find
that there is almost no previous research combined WSN data and ANN in mode-
ling.
The two main advantages of applying WSN and ANN in building room thermal
modeling. First, the nature of WSN and ANN make them a perfect combination :
on one hand, WSN could be easily and rapidly implemented, providing a huge
quantity of sensor data. These data sources in return could be essential for the
ANN to identify a fine grained thermal model. Second, they have high practical
values : as it is discussed, mathematical thermal modeling approaches are usually
used in general simulations. They are hard to be applied in some practical appli-
cations. The WSN system, on the contrary, is highly transplantable as it could be
quickly equipped in any buildings to gather real-time thermal data. Additionally,
with its self-adaptive learning and mapping ability, ANN can directly simulate the
relations between building thermal affecting factors (heating source, solar radiation,
outdoor temperature) and indoor temperatures. Based on the two reasons above,
we believe that the combination of WSN and ANN can be a valuable solution for
indoor thermal modeling.

Admittedly, some existing thermal modeling techniques exist, however, previous
studies outlined that ANN model outperformed Auto-Regressive(ARX) models in
predicting the indoor temperature because the ANN models are more sensible to
the nonlinearities of the thermal effects in buildings [18][19]. Further more, J.W.
Moon has pointed out in his previous work [20] that ANN’s adaptability makes it
a more advantageous method in thermal control compare to Fuzzy method.
Different techniques have their own advantages and shortcomings, here, it is ne-
cessary to point out that the WSN and ANN combined modeling solution has a
great advantage over the other modeling techniques : it is highly transportable and
applicable under.
WSN as a very cheap, low-power, easy-to-use, miniature electronic devices can be
installed quickly in most buildings while ANN’s universal approximating ability
makes it possible in generating adaptive thermal models under different environ-
mental and indoor conditions. This means the same system can be easily deployed
anywhere without modifications in the hardware or software. We think the prac-
ticality and wide-applicability of the proposed solution make it distinctive from
other techniques.
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3

Neural Network Basics

3.1 Neural network basics

To understand the methodology that we present in this thesis, a systematic
understanding of the neural network is necessary. In this section, we will focus on
the conceptions and the development of artificial neural networks (ANN).
Neural networks is a kind of computing architectures inspired by biological brain
[21] [22]. This kind of architectures are commonly called "connectionist systems",
they consist of interconnected and interacting components named nodes or neurons.
Neural networks are not characterized by explicit representation of knowledge or
well defined rules of the problem, no symbol or values that correspond directly
to classes of interest. Knowledge is implicitly represented in the diagrams of in-
teractions between network’s components. Individual neuron in ANN emulate the
biological neuron, it takes input data and make simple processing of it, selecti-
vely passing on the processed data to other neurons (Fig. 3.1) Before sending out

Figure 3.1 – Comparison between a biological neuron and an artificial neuron
model

the processed data, each neuron use its "activation" function to format the data.
Every neuron has its own weight values associated in the network, and these values
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determine at what level the input data are related to output data. Originally, a
raw neural network only has a determined structure, and the weight values are
usually random. The training of the network is a procedure that the network gets
the knowledge from the data of experiences. The iterative repeat of training allows
the network to determine its best fitted weight values (i.e., in image processing, a
neural network can be trained to classify different images. Weight values are defi-
ned during the training phase in which the network is taught to identify a image
by the typical input image’s characteristics.).

Once the neural network is trained, it can be used to process new data. Useful
summaries of fundamental neural network principles can be found in the relative
works of Rumelhart etal. [23], McClelland and Rumelhart [24], Rich and Knight
[25], Winston [26], Luger et Stubblefield [22], Gallant[27] and Richards and Jia [28].

3.2 Model of McCulloch-Pitts

In the 1940’s, McCulloch-Pitts network presented the beginning of Neural com-
puting [29]. These connectionist networks are called "decision machines", as exem-
plified in Fig. 3.2. A set of inputs is multiplied by the weights, and the outputs
are then determined by simple logical or mathematical operations. In this way the
input values are related to output values. McCulloch-Pitts networks are binary ;
only 0 or 1 is the acceptable input form, also it is the standard format of output.
The mechanism of McCulloch-Pitts network is simple : if the sum of the products
of the inputs associated with weights is greater than or equal to 0, the output
returns 1, otherwise, 0. A threshold 3 should be exceeded or equalled in order to
have an output of the system 1. The rules used in mapping the input values to the
output values, is the activation function which means that this function is used to
determine the rules for the output node. McCulloch-Pitts networks can be used in
logical computations (see Fig. 3.2) and they contributed to inspire further research
into connectionist models during the 1950’s.

3.3 Perceptron

In the late 1950’s, a connectionist system with limited learning ability is develo-
ped [30]. Rosenblatt created a new framework of neurons known as the perceptron
(see Fig. 3.3). Like the network of McCulloch-Pitts, perceptron consists of binary
activation functions and its binary output is determined by summing the products
of its inputs and the weight values. Unlike the network of McCulloch-Pitts, a va-
riable threshold value is used : if the linear sum of the input/weight products is
greater than a threshold value (θ), the output of the system is 1, otherwise 0.

3. In McCulloch-Pitts network, the threshold is fixed at 0
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Figure 3.2 – McCulloch-Pitts’ neuron model

Figure 3.3 – A perceptron
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3.4 The Delta Rule
Perceptron is a landmark on the road of Neural Networks. It is the beginning

of making connectionist networks which is capable of mapping complex relations
between inputs and outputs. By the end of 1950’s, the connectionist community
reached the conclusion that connectionist models need more flexible learning rules.
Thus, mathematical derivation has been introduced to the activations of the net-
work. The Delta Rule 4 was then invented in the early 1960’s [31]. Although one
may find this training rule is similar to the perceptron learning rule above [24].
The difference is that instead of using a threshold as the activation function, the
delta rule uses a linear activation function for the output neuron. Further more, the
differences of activations (network output) in every training iteration can be used
to drive the learning. This is revolutionary comparing to all the connectionist’s
networks before. The delta rule makes it possible to create self-adaptive neural
networks. The network itself can now begin to update its weights by reducing the
difference between target and actual output activations.
The data’s propagation through the network is presented below. Firstly, it will be
normalized by the input layer neurons and multiplied by the associated weight.
Then, the data are summed and reach to the output neurons where they are sent
through an activation function, Finally, after the activation function, they become
the output of the network.

yj = f(
n∑
i

wijai) (3.1)

where n is the total number of input layer neurons, wij represent the weight
updating from the input layer neuron i to the output layer neuron j, ai is the the
activations function of the neurons in layer i, yj is the network’s output and f is
the activation function of the output layer.
Given a training data pattern, the errors of the network is measured with the cost
function (also called error function) (Fig. 3.4) [32]. The cost function is usually
defined as the sum of the squares of the differences between all target outputs and
actual network outputs (see Eq. (3.2)) The Delta Rule uses the gradient descent
learning method to minimize the errors : the weights modified themselves along
the direct path in weight-space, changes are applied to the weights proportionally
to the negative direction of the derivation of the errors.

E =
1

2

p∑
j=1

m∑
n=1

(rjn − yjn)
2 (3.2)

4. Also called the Widrow and Hoff learning rule or the least mean square (LMS) rule.
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Figure 3.4 – The Delta rule in minimizing the error

where E is the total error, j is the number of all training patterns and n is the
number of output neurons. A normalized form of E is given in the mean squared
error (MSE) equation below :

MSE = Em =
1

2pm

p∑
j=1

m∑
n=1

(rjn − yjn)
2 (3.3)

where P is the total number of training data patterns and m is the total number
of neurons in the output layer, the minimization of errors can be made in this way,
for a given weight c :

δEm

δwijc

=
δEm

δyjz

δyjz
δwijc

(3.4)

where yj sub z is the activation function for the node from the wij sub c, it can
be further expressed as :

δEm

δyjz
= yjz − rjz (3.5)
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and
δyjz
δwijn

=
δ

δwijc

m∑
n=1

(wijnyin) = yic (3.6)

we have then :

δEm

δwijx

= (yjz − rjz)(yic) (3.7)

With the gradient descent learning method, the changes of weights must be
proportional to the negative of Eq. (3.7), If a learning rate ϵ is introduced in Eq.
(3.7), it can be re-written as :

∆wijx = −ϵ
δE

δwij

= ϵδaix (3.8)

Here, we take a simple example of using the Delta Rule to update weights of a
neural network. The training data patterns which contain both inputs and outputs
are presented in Table 3.1. The aim of training the network is to make it capable of
labeling each of the four input cases in this table. This problem requires basically a
network with four input nodes and one output node. If we define all the 4 weights
associated with each input node are initially 0, and the learning rate ϵ is 0.25 During

Table 3.1 – Training data : Inputs and outputs samples

Training data

Inputs Outputs

+1 -1 +1 -1 1
+1 +1 +1 +1 1
+1 -1 -1 +1 -1
-1 -1 -1 +1 -1

the training, each training data pattern flows through the network individually, and
weights update according to the Delta Rule : when the first training data pattern is
given to the network, the sum equals 0. Because the target output for this training
data set is 1, thus, the error is 1− 0 = 1. By applying Delta Rule, (see Eq. (3.8)),
the changes of all the four weights in the network are calculated, the results is
0,25 ; -0,25 ; 0,25 ; -0,25. As the initial value of weights are 0 ; 0 ; 0 ; 0. Thus, the
weights become 0,25 ; -0,25 ; 0,25 ; -0,25. When the second training data pattern is
presented, the update of the weights are calculated as 0,25 ; 0,25 ; 0,25 ; 0,25. So
the weights are 0,5 ; 0 ; 0,5 ; 0 after the second round of training, respectively, after
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the third and the fourth pattern presented, the weight changes from 0.25 ; 0.25 ;
0.75 ; -0,25 to -0,375 ; 0,375 ; 0,875 ; -0,375, At the end of the irrelative training
procedure, the total mean square error is :

Eq = (1)2 + (1)2 + (−1)2 + (−0, 5)2 = 3.25 (3.9)

At the end of this first iteration, it may be hard to realize that the error mini-
mized alone with the changes of weights. However, with iterative flow of training,
the error reduces. In this example, at the tenth iteration of training, the network
successes in classifying all data patterns. At this moment, we can say that the net-
work is well trained and it can be used to classify the data pattern with similar rules.

For The Delta Rule, a basic requirement is the following : The rules consisted
in the training data set should be linear [30]. This has greatly limited the use of
Delta Rule, Minsky and Papert proposed multi-layer network to solve this pro-
blem. However, they quickly realized that the use of linear activation function in
Multi-layer neural networks is unable to solve the given problem. Functionally, a
multi-layer neural network with linear activation functions is the same as a simple
input-output network using linear activation functions. Two main questions are
left for the connectionist community : "what kind of activation function should be
used ?" and "how to train a multi-layer neural network ?" Blocked by these two
questions, research of connectionist’s network has been freezed during the 70’s.

3.5 Multilayered Neural Network and Back-propagation
After almost ten years of depression in the connectionist’s community, a multi-

layer neural network training algorithm has been proposed independently by Ru-
melhart [23] and Yann Lecun [33]. The algorithm is known as the Back-propagation
(BP). It uses error function of the Delta Rule and make these errors propagates
backward through the network to update the weights matrix of the network. As
BP is the most essential algorithm used in this thesis, a whole chapter is dedicated
to it in order to give a detailed presentation of this algorithm.
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3.6 Learning mode
There are two main weights updating mode for neural networks : batch trai-

ning, and on-line training. For batch training, the weight updates is carried out
only when all the individual training data cases are presented to the network and
the total error derivative is calculated [34]. On-line mode is also known as sequen-
tial learning. It updates the weight value after each training data case submitted
to the network.On-line learning is not a true gradient descent, because weights
update slightly after each training data case presented to the network instead of
updating with total derivative[34]. Normally, Batch learning need more memory
capacity while on-line learning requires more weight updates. One advantage of
online learning is that for online training, it is more likely to jump out of local
minima during the training. Also, when high data redundancy exists training data
patterns, the online training mode can be more efficient than batch mode [35]. In
this thesis, we have chosen the online model for the network training because of
these two advantages.

3.6.1 Activation functions

The most commonly used activations functions for connectionist’s network are
presented below. They are respectively linear function, step function, sigmoid func-
tion and bi-sigmoidal function (see Fig. 3.5- 3.6). The mathematical expression of

Figure 3.5 – Activation function

these activation functions and their derivative are summarized below.
The linear activation functions reads :

f(x) = x, ∀x. (3.10)
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Figure 3.6 – Nonlinear activation function

The Binary Step Function with a threshold of θ reads :

f(x) =

{
1 if x ≥ θ
0 if x < θ

(3.11)

Binary sigmoid function and its derivative can be written as :

f(x) =
1

1 + exp(−σx)
(3.12)

f ′(x) = σf(x)[1− f(x)] (3.13)

While the bipolar sigmoid function and its derivation is expressed by :

g(x) = 2f(x)− 1 =
1− exp(−σx)

1 + exp(−σx)
(3.14)

g′(x) =
σ

2
[1 + g(x)][1− g(x)] (3.15)

Bipolar sigmoid is also closely related to another activation function which is
the hyperbolic tangent function :

h(x) = tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
=

1− exp(−2x)

1 + exp(−2x)
(3.16)
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A derivable non-linear activation function is required for a multi-layer neural
network ; the purpose of this is to enable the use of gradient-descent method to trai-
ning the network. The activation function most commonly used in BP networks is
the sigmoid function which is the activation function used in this thesis.

3.7 Initializing the network’s weights
It is acknowledged that there is no determined rules to define initial values of

weights in a neural network. In practice, it is normally random values that serve as
the initial weight values. The random distribution can be used to avoid the local
minima [27] during the network training. Usually, small values are recommended
for the initial weights, Because high values can cause saturation of the activation
function even at the beginning of the network [34]. Thus, in this thesis, we chose
to use random small value for initial weights.

3.8 Momentum
Although by increasing the learning rate, the convergence speeds during the

network training can be improved. Increasing learning rate can also lead to the in-
stability of the network training based on gradient-descent. The weight values may
oscillate erratically on the space of errors. For the back propagation algorithms,
the employment of a momentum term is used to speed up the convergence and
avoiding instability during the training. The momentum is defined as the product
of α 5 by the previous weight update. With momentum, the network training can
be accelerated and it also avoided the oscillations of the weight[27]. Further intro-
duction of momentum can be found in the next chapter where a Back-propagation
Neural Network (BPNN) is used to show the effects of momentum during the net-
work learning. In this thesis, we used the momentum term in our neural network
model, the value of α by default is 0.9.

5. The value of α is defined between0to 1.
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4.1 Back-propagation (BP) algorithm

In this chapter, we will focus on the principle of back propagation algorithm
(BP).

In 1974, Paul Werbos firstly presented in his work [36] how to make learning
algorithm for a network (ANN can be considered as a special network). Unfortu-
nately, the neural network community haven’t payed enough attention to his work
at that epoch. In the mid 80’s, Back-propagation (BP) algorithm was invented by
David Rumelhart[23] and Yann LeCun [33] independently. It rapidly gained a wide
attention by the whole AI community and finally led the ANN research into a se-
cond booming. BP algorithm can be considered as un improvement of Delta rules.
It requires that each artificial neurons in the network uses the activation function
which must be derivative. BP algorithm has been proved to be very powerful in
training of Feed Forward Neural Networks (FFNN).
A FFNN using BP training algorithm is usually called as "Back Propagation Neu-
ral Network (BPNN)." In the following, the term "BPNN" will be used for this
type of neural network.
Here, we take a three-layered BPNN as an example, a typical network structure is
presented here in Fig.4.1 below.
For a given neuron j in the output layer, we have its output error equals to :

ej(n) = dj(n)− yj(n) (4.1)

where dj(n) represents the target value of the network output from neuron j while
yj(n) is the real network output on neurone j. So, we have the global error for the
whole output layer :

E(n) =
1

2

∑
j∈C

ej
2(n) (4.2)

where C is the collection of all the neurons in the output layer, the average error
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Figure 4.1 – Three layered Back-propagation Neural Network (BPNN)

is :

Ej(n) =
1

N

N∑
n=1

E(n) (4.3)

the input of neuron j can be expressed as :

vj(n) =
∑
n

wji(n)yi(n) (4.4)

now, we have the output value from neuron j is :

yj(n) = σ(vj(n)) (4.5)

σ here is the activation function.
As the Delta Rules, BP algorithm tries to minimizer the error function E during
the training of the network by updating the value in the weights matrix, the partial
derivation of E by the weight wij is :

∂E(n)

∂wij(n)
=

∂E(n)

∂ej(n)
· ∂ej(n)
∂yj(n)

· ∂ej(n)
∂yj(n)

· ∂vj(n)

∂wji(n)
(4.6)

In this equation above, we have :

∂E(n)

∂ej(n)
= ej(n) (4.7)
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∂ej(n)

∂yj(n)
= −1 (4.8)

∂yi(n)

∂vj(n)
= σ′(vj(n)) (4.9)

∂vj(n)

∂wji(n)
= yi(n) (4.10)

Thus, we can rewrite the Eq. (4.6) uder the following form :

∂E(n)

∂wij(n)
= −ej(n)σ

′(vj(n))yi(n) (4.11)

by consequence, the weights are updated by :

∆wji(n) = −η
∂E(n)

∂wij(n)
= ηej(n)σ

′(vj(n))yi(n) (4.12)

where η is the learning rate and the local gradient is defined as :

δj(n) =
∂E(n)

∂vj(n)
=

∂E(n)

∂ej(n)
· ∂ej(n)
∂yj(n)

· ∂yj(n)
∂vj(n)

= ej(n)σ
′(vj(n)). (4.13)

Thus, we have the final form of weights’ update (Eq. (4.12)) :

∆wji(n) = ηδj(n)yi(n) (4.14)

As neuron j belongs to the output layer of the network, the local gradient δj(n)
can be easily calculated according to Eq. (4.13). However, if neuron j belongs to
one of the hidden layer, it can be difficult to obtain its local gradient, because there
is no error value e(n) for the hidden layer neurons. A simple model is established
in Fig. 4.2, the neuron j is now in the hidden layer while le neurone k is in the
output layer. In this case, the local gradient can be put as :

δj(n) = −∂E(n)

∂vj(n)
=

∂E(n)

∂yj(n)
· σ′(vj(n)). (4.15)
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Figure 4.2 – Signal path when neuron j is in the hidden layer

The error function now becomes :

E(n) =
1

2

∑
k∈C

ek
2(n) (4.16)

where C the collections of all output neurons in the network.

∂E(n)

∂yj(n)
=

∑
k

ek(n)
∂ek(n)

∂yj(n)
=

∑
k

ek(n)
∂ek(n)

∂vk(n)
· ∂vk(n)
∂yj(n)

(4.17)

Here, ek(n) equals to :

ek(n) = dk(n)− yk(n) = dk(n)− σ(vk(n)) (4.18)

So, we have :

ek(n) = dk(n)− yk(n) = dk(n)− σ(vk(n)) (4.19)

∂ek(n)

∂vk(n)
= −σ′(vk(n)) (4.20)

For the neuron K, we have :
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vk(n) =
m∑
j=0

wkj(n)yj(n) (4.21)

Where m is the number of neuron in the hidden layer. So the derivation of vk(n)
by yj(n) is :

∂vk(n)

∂yj(n)
= wkj(n) (4.22)

Thus, Eq. (4.17) can be rewritten as :

∂E(n)

∂yj(n)
= −

∑
k

ek(n)σ
′(vk(n))wkj(n) = −

∑
k

δk(n)wkj(n) (4.23)

and we have :

δk(n) = ek(n)σ
′(vk(n)) (4.24)

Applying the above equations to Eq. (4.15), we have :

δj(n) = σ′(vj(n))
∑
k

δk(n)wkj(n) (4.25)

Now we have the local gradient of neuron j in the hidden layer. The mathema-
tical procedure for calculating δj is represented by a graphical model in Fig. 4.3
below.
Now, as we already have the local gradient of neuron j in the hidden layer, we can
calculate all the updated weight for all the neurons in the hidden layer by reapplying
Eq. (4.14). the algorithm presented above is what we called Back Propagation.
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Figure 4.3 – Calculation of the local gradient of a neuron in the hidden layer

4.2 Practical aspects of the Back-propagation al-
gorithm and Momentum

The back- propagation algorithm presented in this chapter only requires the
weights’ updates proportional to the derivation of the error functions (The gradient
algorithm). The learning rate simply defines how much the weight changes on each
training epoch. Therefore, swing weight is often caused by big learning rate. In
practice, the best way is to use a reasonable value of learning rate without causing
oscillation. As we explained in Chapter 3, a slight modification of BP algorithm is
made that the previous weight update should influence the current weight update
by using the Momentum.
With the momentum, once the weight starts to move in a particular direction, they
tend to keep going in this direction. If there is a local minima presents, with enough
momentum, the weights update can drive through the minima and stay in the right
direction. Also, it helps to improve the speed of convergence during the training.
The mathematical expression of momentum is :

∆wji(n) = αwji(n− 1) + ηδj(n)yi(n) (4.26)

where α is a positive value from 0 to 1, et η is the learning rate. Thus, we can
rewrite Eq. (4.26) as follows :

∆wji(n)− αwji(n− 1) = ηδj(n)yi(n) (4.27)

∆wji(n− 1)− αwji(n− 2) = ηδj(n− 1)yi(n− 1) (4.28)
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Finally we have :

∆wji(n) = η
n∑

t=0

αn−tδj(t)yi(t) (4.29)

∆wji(n) = −η

n∑
t=0

αn−t ∂E(t)

∂wji(t)
(4.30)
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So, The function of momentum can be well explained by Eq. (4.30) :
– if ∂E(t)

∂wij(t)
has the same sign for all t, |∆wji| grows, and it leads to a faster

convergence.

– if ∂E(t)
∂wij(t)

alternates its sign in every iteration of training, |∆wji| changes in
small scale, which can lead to better stability.

The detailed description given in this chapter is necessary and essential to the fur-
ther application of ANN in modeling with WSN data. In Chapter 5, a new training
method for building a more comprehensive ANN model is proposed which is based
on the Back-propagation.

4.2.1 Procedure of network learning with Back-propagation

While applying the BP algorithm in Neural Network training, there are basi-
cally four phases : first, a case of training data is submitted through the network
in a forward direction and finally become the output of the network. Secondly,
errors are calculated based on the difference between of network output value and
the target value, the weight updates of the output layer neurons are made at this
point. Thirdly, the weights update propagate backwards to the preceding layer neu-
rons. In this way, layer by layer, all the weight changes are calculated for the whole
network. Finally, these calculated weight updates are implemented throughout the
network. The next training iteration begins, and the entire training procedure is
repeated.
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5

Overview of the WSN technology

5.1 Wireless Sensor Networks (WSN)

December 18,2011, the "New York Times" published an article in which they
presented the development of data monitoring and improvements in sensor tech-
nology. The conclusion of this article is that the Internet will gradually departing
from the scope of the consumer market and transfering to the physical world, which
inevitably leads to the new era of "Internet of things".
The Wireless Sensor Networks (WSN) has been marked as one of the most revo-
lutionary technologies ever since it was born. With great long-term economic and
scientific potential, ability to transform our lives and bring new challenges in the
future. A WSN consisting of autonomous sensor nodes which can provide a rich
stream of sensor data representing physical measurements. They are deployed in
many applications which rely on sensors to get the necessary information. In this
thesis, an overview of wireless sensor networks as well as a systematic introduction
of our developed WSN platform is presented.

5.2 A short history

The development of Network and its communication protocols can be traced
back to the mid-1970s, since then, network communications has radically changed
our lives [37].

– Ethernet
The Ethernet was developed in the mid 1970s by Xerox, DEC, and Intel, and
was standardized in 1979. the official Ethernet standard IEEE 802.3 is re-
leased by "Institute of Electrical and Electronics Engineers" (IEEE) in 1983.
Data frames using the standard IEEE 802.3 have a variable length between
64 and 1514-byte per packet.

– Client-Server Network
in the late 1980’s C-S networks growth with the popularization of Personal
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computers. Software designed for this kind of distributed computing network
is separated into two different functionalities : Client-Server or we can call
"front end to back end".

– P2P network and computing
P2P refers to Peer to Peer, it is a kind of architecture that all the units in the
network share the same functionality. It uses simply bus topology to transfer
files and change data. The mechanism of P2P computing is that it splits the
computing tasks into pieces and spreads through the network. The results are
then gathered for further processing. P2P computing has enlightened many
internet applications since the 90’s.

– 802.11 Wireless Local Area Network. As known as the WLAN, IEEE released
its standard ( 802.11 specification) in 1997, The current version is 802.11b
which support a transmission rate up to 11Mbit/s, The WiFi that we use in
our daily lives for the PC, laptop, smart-phones is just based on this standard.

– Bluetooth
Bluetooth is standardized by the specification IEEE 802.15 ; it is defined
as Wireless Personal Area Network (WPAN). It is a short range RF techno-
logy which provide wireless communication for electronic devices in a nominal
range of 10m to 100m. It allows new devices to be hooked up easily to the net-
work. Bluetooth uses 2.4GHz band with a transmission rate up to 1Mbit/s.

With the investments made in the 1970’s Defense Advanced Research Projects
Agency-USA (DARPA) began the Distributed sensor Network (DSN) program in
1980. Since birth of DSN, Universities like Carnegie Mellon and Lincoln Labs of
the Massachusetts Institute of Technology (MIT) have accelerated the research in
this field.

Sensor networks have been deployed for monitoring applications such as forest
fires detection, air quality qualification, weather stations and structural monitoring.
Later, IBM and Bell Labs began to implement sensor networks in heavy industrial
applications such as the distribution of energy, waste water processing and factory
automation. However, at that time, the sensors were bulky and yet very expensive.
They were difficult to meet the requirement of large-scale usage. The high cost of
materials had prevented the sensor networks in wider applications.
Although sensor network for industrial and high-volume consumer applications was
not possible during that period, both academic and industry have long recognized
the potential of these networks

– UCLA, Wireless Integrated Network Sensors (1993)

– University of California, Berkeley, Program of PicoRadio (1999)
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– MIT, Multi-field Sensor Adaptive Power Aware program (2000)

– NASA, Sensor Webs(2001)

– ZigBee Alliance (2002)

The aim of these initiatives and trials is to allow wide-range deployment of sensor
networks in industrial applications by reducing the fabrication cost, minimizing the
energy consumption of sensors, etc.

5.3 Applications of sensor network

The core of any WSN is sensors. Rapid improvements have been made on sensors
in the last decade :

– The micro-electromechanical systems (MEMS) - gyroscopes, accelerometers,
magnetometers, pressure sensors, sensors pyroelectric effect, acoustic sensors.

– CMOS-based sensors - temperature, humidity, capacitive proximity, the che-
mical composition.

– LED and photovoltaic sensors - detect ambient light, proximity detection,
chemical composition

These sensors with the wireless networks can be used in a wide variety of monitoring
applications [38], including the following :

– The environmental condition

– Geographic detection and analyze

– Noise detection

– The presence or absence of certain types of objects

– Levels of mechanical constraint on connected devices

– Speed, direction, acceleration,etc.

The concept of combining micro-sensing devices and wireless communications lead
to many new application areas. In this thesis, some existing applications in mili-
tary, environment, health will be introduced below
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5.3.1 Military applications

The wireless sensor networks can be an integral part of the military com-
mand, control systems, communications, computers, intelligence, surveillance, re-
connaissance and targeting (C4ISRT). Since WSN are usually constructed with
self-recovery and auto-routing communication protocols, the destruction of some
nodes does not affect a military operation, making sensor networks a better ap-
proach for battlefields. Some other the military applications of WSN are monitoring
friendly force ; battle field monitoring, recognition of opposing forces ; targeting and
detection of nuclear biological and chemical (NBC) attack, etc.

5.3.2 Environmental applications

Some environmental applications of sensor networks include tracking the mo-
vements of small animals and insects, and monitoring of environmental conditions,
large-scale terrain monitoring and planetary exploration, precision agriculture, bio-
logical, and environmental monitoring in the marine environment, soil and atmos-
pheric monitoring, detection of forest fire, meteorological research, geophysical de-
tection and the study of the pollution [39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

5.3.3 Health applications

Some health applications for sensor networks are : interfaces for people with
disabilities, integrated patient monitoring, diagnostics, drug delivery in hospitals,
monitoring of human physiological data, tracking and monitoring doctors and pa-
tients inside the hospital [41, 47, 49, 48, 50].
The physiological data collected by WSN physiological data can be stored for a
long period of time [51] and can be used for medical exploration [52]. Sensor net-
works installed can also monitor and detect the behavior of the elders, for example,
a fall or a heart attack [53, 54]. These small sensor nodes can be easily equipped on
the patients, giving physicians the possibility to identifier symptoms remotely[55].
For example, A WSN based "Health Smart Home" is designed at the Faculty of
Medicine of Grenoble France. [49].

5.3.4 Home applications

Nodes and actuators containing intelligent sensors can be deployed in appliances
such as vacuum cleaners, microwave ovens, refrigerators, etc. [56]. These sensor
nodes within the domestic devices may interact with each other and with the
external network through the Internet. They enable end-users to manage devices
locally or remotely.
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Figure 5.1 – "Smart House" a energy efficient solution proposed by MicroChip.

5.3.5 Other commercialized applications

Some other commercial applications of WSN are monitoring fatigue material ;
intelligent environment for home and office, inventory management, product quality
monitoring, thermal or humidity control in office buildings, automatic production
line, interactive toys, smart structures with sensor nodes embedded, the trans-
portation, detection and monitoring of car theft, vehicle tracking and detection,
machinery, etc. [39, 41, 43, 57, 58]

5.4 WSN topologies
The most commonly used topologies for WSN will be discussed in this section.

They are Peer to Peer (also called point to point), star, tree and mesh.
Peer-to-Peer network enables each node to communicate directly with another node
without having to go through a central communication center. Each peer device is
capable of operating both as a "client" and "server". They hold the same respon-
sibility in the WSN.
Star networks are connected to a central communication center for information ex-
changes. For each node in the WSN, all communications have to be routed through
the center. This is a basic Client-Server network structure.
Tree networks has a communication center called root node which holds the highest
level of the network. The information from the lowest level nodes have to get trough
all the higher level nodes to reach its destination. The hierarchy of the network tree
can be understood as a hybrid of star and Peer to Peer network topologies.
Mesh network allows data to "hop" from node to node through what we call the
routing mechanism. Thus the network can be self-healing and self adaptive. Each
node can communicate with the other as data is passed from node to node until it
reaches the desired destination. Mesh network is the most used network topology
for WSN with a large-scale coverage of geographic area.
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An example of these four different topologies is shown in Fig.5.2

Figure 5.2 – Four different topologies of WSN

5.5 The Low power wireless technologies : A com-
parison

As presented above, Wireless technology can bring great benefits for a vast
domains of applications. However, due to the variety of different technologies and
specifications, the choice of technology for a specific usage should be carefully dis-
cussed. In this section, the advantages and disadvantages of different technologies
are presented.

The three most competitive wireless technologies are : Bluetooth, Wi-Fi and
ZigBee.

– Bluetooth low energy (BLE) is created by a project in the Nokia Research
Center with the name Wibree. In 2007, the technology was taken by the
Bluetooth Special Interest Group (SIG) with a new name of "Ultra Low Po-
wer Bluetooth or Bluetooth low energy". This technology establishes network
with star topology. It is primarily for the usage in mobile phones. Similar to
Bluetooth, it is often used betweens the phone and other smart devices.

– ZigBee is a low power wireless technology based on the specification of IEEE
802.15.4. The Zigbee alliance was created in 2002 by a group of 16 companies.
It uses mesh networks with low power devices. The aimed applications are
monitoring, automation and remote controls.
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– "Wi-Fi" stands for "Wireless Fidelity" is a registered trademark of the Wi-Fi
Alliance and the brand name for wireless technologies using the IEEE 802.11
specification family. The 802.11g wireless network now supports a transmis-
sion rate up to 54Mbps.

Let’s compare the three technologies in Fig.5.3 below.
Thus, we can summarize the functionality and advantages of ZigBee :

Figure 5.3 – Une comparaison entre Zigbee, Bluetooth et WIFI.

– Huge network capacity with large scale network coverage

– Low cost

– High reliability and security in data transmission

– Small and energy efficient terminal devices

Except for Bluetooth, WiFi, there has been some recent wireless technologies
like radio frequency for Consumer Electronics (RF4CE), Nike+, IrDA, ANT etc.
Before further discussion on these different technologies, a basic concept should
be clarified here : all these low-power wireless networks can be divided in to two
categories according to their different functionality and features : Local Area Net-
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works (LAN) and Personal Area Networks (PAN). ZigBee can cover a large scale
of space, thus it is more like a low-power LAN technology, while BLE can cover
a shorter distance, so it is proper as a PAN. For example, ZigBee will be used to
cover your home and monitor the environmental condition outside the house while
BLE will be used to connect your electronic devices inside your house. As in this
thesis research, the WSN is used to monitor the whole building space, it is a typical
LAN application. Thus, most of the previously mentioned PAN technologies are
excluded from our choice.
Fortunately, just before this thesis, the RF4CE Alliance (Panasonic, Philips, Sam-
sung, Sony) has gathered their best RnD engineers in a meeting to build a new
wireless standard for Remote Control. They evaluated all possible wireless techno-
logies (including low power Wi-Fi and BLE, Wibree) and came to the conclusion
that IEEE 802.15.4 best matches the requirements and they agree on the construc-
tion of an application profile on top of it. Later, RF4CE Alliance itself is adopted
by ZigBee standard (Because they are both constructed on the same IEEE 802.15.4
specification) for reasons of maintenance.

Based on the discussions above, we find the ZigBee adapts the best with our
aimed applications. So to summarize, ZigBee and other low-energy technologies
are complementary. In general, ZigBee is a LAN technology, it has the ability to
essentially support an huge number of nodes in a mesh network structure.
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6

Specification and Protocol

6.1 IEEE 802.15.4 and ZigBee

As shown in the previous chapter, ZigBee is considered as the most appropriate
technical standard in the development of our WSN. In this chapter, we will give a
detailed introduction on the ZigBee technology.
ZigBee is a combination of two parts : the IEEE 802.15.4 specification defines its
physical and MAC layers as low rate wireless networks and the standard. ZigBee
Alliance has developed general standards for the network layer (NWK) to the
application layer (APL) (see Fig. 6.1).

Figure 6.1 – The stratification of the ZigBee
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6.2 IEEE 802.15.4 specification

IEEE 802.15.4 is a low-power wireless specification for the applications with
low data rate [59]. It has a maximum data rate of 250, 000 bits/s and a maximum
output power of 1mW . It enables low cost transmitters low complexity and it spe-
cifies two layers :

– Physic layer : specifies how messages are transmitted and received on the
support of the physical wireless signals.

– Media Access Control (MAC) : Specifies how messages from the physical layer
are handled.

The maximum packet size in IEEE 802.15.4 is 133bytes. The packets are small be-
cause IEEE802.15.4 is intended for devices with low data rate. Because the MAC
layer adds a header of each packet, the amount of data available for an application
protocol in the upper application layer is between 86 and 116 bytes. Protocols of
the upper layer.
For the IEEE 802.15.4 compatible devices, the physical layer and part of the low-
level MAC processing is implemented in hardware while the high-level logic parts
of the MAC layer is integrated in the software.
Although the IEEE 802.15.4 specification defines three types of topologies (star,
mesh, and cluster tree), most protocols that run on top of it does not use its topo-
logies. Instead, they build their own network topologies on top of the MAC layer.
For this reason, the topology of network will be presented in the part of ZigBee.

6.2.1 Network addresses of IEEE 802.15.4

Each node in an IEEE 802.15.4 network has a 64-bit address which is normally
unique and can be used to identify the device. Due to the limited size of the IEEE
802.15.4 packet, the length of the 64-bit address is prohibitive. Therefore, 802.15.4
allows nodes to use a shorter address which is 16 bits long. Short addresses are
assigned by the PAN coordinator (highest hierarchy in the network) and are valid
only when the network is activated. Nevertheless, it is possible for a device with a
short address to communicate with other devices.

6.2.2 The physical layer of IEEE 802.15.4

The physical layer determines the radio frequency and the radio band to ope-
rates, the modulation of the radio, and coding of the RF signal. IEEE802.15.4
operates on three frequency bands. Due to local regulations, the exact frequency
is different in different parts of the world. In the United States, IEEE 802.15.4
uses the 902-928 MHz band. In Europe, 802.15.4 uses the 868 to 868.8 MHz band,
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2400-2483.5MHz band is globally available.
IEEE 802.15.4 defines 26 different operating channels. Within each operating radio
band, there are several defined channels, as shown in Fig.6.2. Channel 0 in Europe
is located on the 868 MHz band. Channels 1 to 10 are defined in the United States
on the 902-982 MHz band and the spacing between channels is 2MHz. Channels

Figure 6.2 – Channel assignment of IEEE802.15.4 (provided by IEEE)

11 to 26 are defined on the 2.4 GHz band, and they are available globally. These
channels are defined with a channel spacing of 5 MHz (see Fig.6.2).

IEEE 802.15.4 uses two types of modulations depending on different channels.
Channels 0-10 use binary phase shift keying (BPSK), while the channels 11-26 use
quadrature phase shift keying (QPSK). For all channels, the direct sequence spread
modulation Spectrum (DSSS) is applied (see Tab. 6.1).
The physical layer also provides functions to measure the RF energy for a given

Table 6.1 – Different bands of IEEE 802.15.4 IEEE 802.15.4
2450MHz 915MHz 868MHz

Data rate 250kbps 40kbps 20kbps
No. of channels 16 10 1
Modulation O-QPSK BPSK BPSK
Pseudo noise sequences 32 15 15
Bit per symbol 4 1 1

radio channel. It is used by the MAC layer to determine whether another node is
transmitting in this channel or not.
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6.2.3 The MAC layer of IEEE 802.15.4

The purpose of the MAC layer is to control access through the radio. Since
the medium of the radio is shared by all the node in the network, the MAC layer
provides method for nodes to find out when the medium is available and when it
is ready to send RF signals.
The IEEE 802.15.4 MAC protocol supports both Carrier Sense Multiple Access with
Collision Avoidance (CSMA-CA) and Time division Multiple Access (TDMA) si-
multaneously. It is depending on the requirements of applications, Therefore, IEEE
802.15.4 leaves the flexibility to the applications layers to decide which of these two
technologies should be used.
The MAC layer performs the validation of incoming frames by making a Cyclic
Redundancy Check of 16 bits (CRC) of the entire frame. The CRC is used to check
for transmission errors in the frame and is calculated by the receiver, if it does not
match the CRC in the footer, the receiver removes the frame.

6.2.4 The frame format of IEEE 802.15.4

IEEE 802.15.4 specify a universal packet format so that all nodes know how to
build and analyze packets from other nodes. The formats consists of three parts
(see Fig. 6.3) : a header, data, and a footer. The header contains control data, such
as addresses, sequence numbers and flags. Data contains a part protocols from the
physical layer and from the MAC layer. The footer usually contains checksums or
cryptographic signatures. Such data can often be calculated while the packet is
transmitted so, the footer is sent only after the rest of the package has been sent.

Figure 6.3 – Frame format of IEEE802.15.4 (source : IEEE)
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6.2.5 Functionality of units in IEEE 802.15.4

The IEEE 802.15.4 MAC layer defines two types of nodes, the first is Reduced
Function Devices (RFD), the second is the Full Function Devices (FFD), FFD is
equipped with all the functions of the MAC layer, it can be used as coordinator of
the network. The coordinator can broadcast tag signals to synchronize and process
all the joint request from terminal devices. RFD usually act as terminal devices
and they are usually integrated with sensors/actuators.

6.3 ZigBee
There are five versions of the ZigBee specificatin : ZigBee, ZigBee 2004, ZigBee

2006 Pro, ZigBee 2007 and ZigBee 2007 pro. As ZigBee ZigBee 2004 and 2006 are
considered obsolete and are not used in new products. ZigBee 2007 is currently the
most widely used version, and is often called simply "ZigBee." ZigBee 2007 adds
a number of features that were not present in Zigbee 2006 as support packet frag-
mentation and the ability to dynamically switch channels. ZigBee Pro increased
the number of devices in each network from 31,101 to a maximum 65,540 and adds
a number of network functions such as multi-cast and source routing.

6.3.1 Types of devices and the network topology of ZigBee

ZigBee specifies three different type of device : coordinator, router and the ter-
minal. The three devices have different roles in a ZigBee network. A ZigBee network
can only have one Coordinator. It coordinates the actions of the network as a is
responsible for starting the network. Data packets can be freely exchanged through
routers to any units in the network. Correspondingly, the router and coordinator
are defined as FFD in the IEEE 802.15.4 while the end devices are defined as RFD.
They can only be connected to a router or coordinator and can not communicate
directly with each other.
In the ZigBee protocol, define three types of topologies : a star network, a network
tree and mesh(see Fig.6.4).

6.3.2 The stack ZigBee

ZigBee specification can be divided into five layers, as shown in Fig.6.5 : The
physical layer and the MAC layer, as explained in the previous section, are the
two bottom layers specified by IEEE 802.15.4. The upper layers are : the network
layer (NWK) of the layer application support layer (APS), and the application
layer frame (AF). In addition to five layers, There is a cross-layer entity called
the ZigBee device object (ZDO) presented in the architecture. Of these layers, the
NWK, APS, ZDO and AF four layers belong to the ZigBee specification, Normally,
all costumer applications are designed and integrated in these four layers.
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Figure 6.4 – Three different topologies ZigBee
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The stratification of the ZigBee stack is very similar to IP(Ethernet) structure :

Figure 6.5 – Layers in ZigBee stack

each layer in the ZigBee has a specific purpose. The one major difference between
the stratification in IP and in ZigBee is that the layer in ZigBee can not be changed.
IP architecture is designed to allow multiple types of MAC and PHY layers. The
same protocol can be used even if the operating radio band changes. However,
the ZigBee specification is based on IEEE 802.15.4 MAC and PHY standard. The
upper layer protocols will not be compatible if lower layers are changed.

Network layer (NWK) of ZigBee

The NWK layer is responsible for addressing and routing in the network. It
is the equivalent of the IP layer in the IP architecture. The ZigBee network layer
provides two ways of communication : broadcast and unicast, multicast is suppor-
ted in ZigBee 2007 specification. Broadcast send the packet to each node in the
network as an expensive operation. Unicast ,on the other hand, only sent packets
to the target node.
The ZigBee stack has two possibilities of making the unicast routing : network rou-
ting and source routing. In network routing mode, the best routing for the packet
to get through the network is handled by the network. By analyzing the link qua-
lity indications (LQI) in the network, it can determine the routing with the best
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RF signal quality. In source routing, the sender must explicitly state the routing
of the message to reach its destination. Source routing is useful for large networks.
However, source routing is only available in the ZigBee Pro and it is limited to only
five hops to reach the destination.

APS layer de ZigBee

The layer APS is equivalent to the transport layer in the IP architecture. It
is a thin layer that acts as an intermediary between the NWK layer and the AF
layer and it provides data transfer services between these two layers. APS layer also
provides services for the establishment, and maintenance of security of the network.

AF layer de ZigBee

The AF layer of ZigBee runs on top of the APS layer. AF supports multiple
tasks and applications. Some of these applications are defined by the ZigBee speci-
fication, while others are implemented independently by customers. In ZigBee, an
application is called a profile.

The profiles of ZigBee are identified by an integer between 0 and 240. When the
AF layer processes a packet, the assigned profile number of the packet is identified.
If a packet arrives with a unregistered profile number, the packet is dropped. If
the application has been registered, the packet is passed to the application layer.
Profile identifiers are allocated and managed by the ZigBee Alliance (see Fig. 6.5).

6.3.3 Configuration of a network ZigBee

The installation process of ZigBee network involves all layers of the ZigBee
stack. This process establishes a physical communication link between the nodes
of the network, distributes address, discovers and gathers information of the nodes
in the network, provides binding service.
The network installation process begins at the PHY layer. The coordinator starts
by scanning the 16 IEEE 802.15.4 defined physical radio channel to find an avai-
lable one.
Since IEEE 802.15.4 operates on the unlicensed 2.4 GHz band, there are several
sources of interference such as Wi-Fi and microwave ovens etc. The channel scan
samples per channel for 0.5s. Thus, the process takes only eight seconds and gives
an overview of the channel activity. When the scan is complete, the coordinator
selects the channel with the least network activity. This channel is retained by the
lifetime of the network.
After selecting the channel to the PHY layer, the MAC layer creates a new PAN
ID for the network. The PAN ID is a 16-bit integer randomly selected by the coor-
dinator. When the physical channel and PAN ID were selected, network formation
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is considered complete.
Once the coordinator has formed the network, routers and end devices begin to
join. The node will request the join to the network by sending a beacon messages.
If a router or coordinator hears a beacon from a node that is not part of a network
, it responds by sending a beacon message back. The node collects all the responses
it receives and decides which network and router, it should try to associate. If
network security is enabled, after node selected a network node and a parent, it
authenticates with the parent and the join in of the network is done.
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7

Development of a practical WSN
system

7.1 WSN system development

In the previous chapter, we gave a basic introduction to WSN and ZigBee. In
this chapter, we will focus on the design and implementation of a practical WSN
system. To design a hardware system of Zigbee based WSN, we have two main
technical choices :

– Transceiver-only : Transceiver Modules only include the RF transceiver, They
has no microprocessor and independent memory associated. The protocol
stack is provided by an external integrated circuit. There are two main ad-
vantages : most transceiver Modules are low cost and it may allow the designer
to choose any microprocessor they want. The disadvantages are : potentially,
more work is needed to integrate the micro-controller unit (MCU) and sys-
tem reliability is relatively lower than that of a ready-to-use integrated MCU
solutions.

– Transceivers integrated MCU : It is a ready to use module with both MCU
and transceiver plus antenna on a single printed circuit board. The ZigBee
stack are stored in the flash memory of the MCU, Users and program the
stack to add their own applications

In this thesis research, we developed three different WSN platforms. We made
a detailed comparison between the three platforms which leads to our final choice.
The first platform that we have developed is Transceiver only solution. The system
is based on MRF24J40MA transceiver modules with Microchip PIC18LF4520 mi-
crocontroller, the other two platforms are Transceivers integrated MCU solutions.
One is cored with MC13224 Freescale wireless microcontroller and the other is co-
red with Texas Instruments CC2530 microcontroller.
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7.1.1 MRF24J40MA with PIC18LF4520 microcontroller

MRF24J40MA according to Micochip is an IEEE 802.15.4 compliable radio
transceiver module. The MRF24J40MA has an integrated PCB antenna, matching
circuitry, and supports ZigBee, MiWi and MiWi P2P protocols (MiWi and MiWi
P2P are two simplified protocols based on IEEE 802.15.4 with light upper layer
stack). The module MRF24J40MA connects to the PIC microcontroller via a SPI
interface Fig. 7.1.
The reason for choosing MRF24J40MA at an early stage, is that this is a product
with Microchip software support in Europe, the Microchip microcontroller is most
commonly used by students specializing in EE, and we hope that it might be
easier for students to be able to participate in this work later, after the thesis.
MRF24J40MA is a single transceiver module, Wireless communication protocols
are stacked in the flash memory of the PIC microcontroller. Our system design is
shown in Fig. 7.2.

Figure 7.1 – Hardware diagram MRF24J40MA

In our developed WSN system, the MRF24J40MA module was assembled with a
PIC18LF4520 microcontroller on a PICDEM Z board. These two products are both
developed by Microchip. The PICDEM Z board provide a platform which is easier
to connect the MRF24J40MA module to the microcontroller. It also provides tools
to facilitate the development of the project like push buttons and sensors (thermo-
meter, two knobs and a light sensor). Although PIC18LF4620 is the microcontroller
that advised by Microchip to combine the MRF24J40MA Module. Based on the
conception of low cost design, we had used the PIC18LF4520 microcontroller. The
main difference between the PIC "4520" and "4620" is in the storage capacity of
the flash memory. The PIC18LF4620 is more expensive for its bigger memory. In
our case, they make no difference as the memory on both PIC is enough for the
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Figure 7.2 – WSN system design with MRF24J40MA
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light wireless protocols.

The MiWi protocol

The MiWi protocol is a protocol used for the WSN system based on MRF24J40MA
Transceiver module. MiWi is a simplified Zigbee protocol : the size of the protocol
established in memory is smaller, thus, it is not a complete ZigBee specification.
Since we have already presented the WSN configuration in the previous chapter on
the IEEE 802.15.4 standard.
Indeed, the MiWi protocol provides three complementary ways to transfer informa-
tion. A first possible delivery using a connection called " Socket". It is possible in a
MiWi network to create a virtual connection between two nodes without the need
to know the information for the other node. One node sends a connection request
Socket to the Coordinator. If the coordinator receives another request in a lapse
of time of about two seconds, then it establishes a connection between two nodes,
which can then send messages even if initially they do not know the addresses of
each other. The data transfers use the Short Address. This connection can be used
to exchange the Long Address, for example. A node can establish a single socket
connection at a time. It can also stop the connection by resetting the variables, or
attempting to create a new connection.
It is theoretically possible to send messages using Network Address (Short Ad-
dress). But we do not use it mainly because that the Short Address is changeable
and it can not be used to identify different modules. The third method is based on
the Long Address.
Each node knows its neighbors. If the message is not for one of his neighbors, the
message is then sent to a parent node, which also verifies if the message is addressed
to one of his neighbors. If this is not the case, the same operation continues until it
reaches to the PAN Coordinator where all the nodes in the network will be checked
for addresses.

The packets are composed of at least three bytes. Indeed, before the data pay-
load, we place a header with additional information which allows users to specify
what is sent(see Tab. 7.1) :

Table 7.1 – The data format defined in Wimi
Octet1 Octet2 Octet3 Octet4 to the end

Type control additional data

During the networking experiments, we added three end-devices in the network.
It turns out that our system is not stable enough. This problem was very recurrent
and started upon connection : the node could not always find a network, even they
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are very close to the coordinator. We calculated the success rate which is about
60%. Presumably, there is a conflict on the 2.4G channels with WiFi, but even
without WiFi, it is not 100% certain to join the network, compared to the full size
Zigbee protocol The size of the MiWi stack occupies 70% less space of memories.
The stability problem can be related to the incomplete of the given wireless proto-
col. So this solution is finally dropped.

7.1.2 Platform based on Freescale MC13224

MC13224 is the third generation of Freescale ZigBee microcontroller. It in-
corporates a full range, low power, 2.4 GHz radio frequency transceiver, 32-bit
ARM7-based MCU, hardware acceleration for both the IEEE 802.15.4 MAC and
AES security and a full set of peripherals[60]. The diagram of MC13224 is shown
below in Fig. 7.3 :
The features of MC13224 are :

Figure 7.3 – Diagram of MC13224 (Source : Freescale)

– Low power : 21mA typical current consumption in RX mode with actif MCU
and 29mA typical power consumption in TX mode with active MCU.

– Memory : 128 KB serial flash, 96 KB RAM (device operates from RAM) 80K
ROM containing boot code, all device drivers and IEEE 802.15.4 compliant
protocols.
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– MAC accelerator (sequencer and a DMA interface).

– 128-bit AES hardware encryption/decryption with the random number ge-
nerator.

– No external RF components required.

In our WSN system, the coordinator is powered by independent power sources.
It can communicate with a PC or server via a USB interface. With integrated
ZigBee (MC13224) module, wireless communication can be achieved through out
the network. The coordinator has played a role of a manager and an expert, not
only gathers data from nodes, but also is responsible for the management and
maintenance of the system. The MC13224 ZigBee module core is presented in Fig.
7.4 et the node is presented in Fig. 7.5

Figure 7.4 – The MC13224 core

Figure 7.5 – The node with MC13224

76



7.1. WSN system development

BeeStack of Freescale

BeeStack is the embedded software provided by Freescale to its ZigBee micro-
controller. It is based on the ZigBee stratification presented in the previous chapter.
The BeeStack includes the following components :

– ZigBee Device Objects (ZDO) and ZigBee Device Profile (ZDP).

– Application Support sub-layer (APS).

– Application Framework (AF) layer.

– Network layer (NWK).

– Security Services Provider(SSP).

– IEEE 802.15.4-compliant PHY and MAC layers

The structure of the BeeStack is shown in Fig.7.6 The MC13224 cored WSN system

Figure 7.6 – La structure de BeeStack

boots itself as shown in Fig. 7.7. Application starts in BeeAppInit(). The functions
of all application tasks are called during initialization. These commands include,
for example, the hardware initialization and set up , initialize the table, and up-
date notification function in power. The BeeStackInit() can be found in the file
BeeStackInit.c, its initialization is done by : BeeAppInitempty(void) ; Our appli-
cations are programmed in BeeApp.c, where the acquisition is done by operating
the sensor with its analog digital converter (ADC) function. When the application
tasks are assigned, the system will enter a closed loop. Tasks are then processed
according to their order in the task scheduler. An example of application code can
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MAC and PHY layer Initialization 

Timer Initialization 

Serial port Initialization 

APS layer Initialization

AF layer Initialization 

ZigBee Hardware Initialization 

NWK layer Initialization 

NVM modul Initialization 

Figure 7.7 – initialization of a user-application in BeeStack
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be found in the appendix of this thesis.
The MC13224 WSN solution was tested be experiments. Its stability is much bet-
ter than MRF24J40MA based PIC system. However, there are two reasons that
we gave up this solution : First, the MC13224 has only 80kb Read Only Memory
(ROM) which will limit the future implementation of large application libraries.
Secondly, the supports from manufacturers (Freescale) is very limited, when we run
into problems of development, it is very difficult to get support.

7.1.3 WSN solution with cc2530 microcontroller from TI

Except the two main drawback MC13224 as we discussed in the previous sec-
tion, a comparison between the MC13224 and CC2530 two most powerful ZigBee
microcontroller is presented in Fig. 7.8.

Figure 7.8 – La comparaison entre MC13224 et CC2530

We find that though CC2530 is an 8-bit microcontroller with a improved 8051
core, it has a 256K flash memory and its price is lower. Moreover, what is not shown
in this figure is that CC2530 has be vastly used by researchers and industries. This
gives us the opportunity to get better support from the developer community, com-
munication between the developers are very easy and direct on the forum of Texas
Instruments.

The CC2530 from TI (Texas Instruments) is a true SoC (System on Chip)
solution designed for IEEE 802.15.4 and ZigBee Smart Energy applications. Thanks
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to its large capacity flash memory up to 256K, the CC2530 is ideal for WSN systems.
In addition the CC2530 includes a transmitter fully integrated high performance
RF receiver, a 8051 microcontroller, 8K RAM etc. The main features of the CC2530
are therefore :

– Excellent RF signal link quality (102 dBm).

– 49 dB adjacent channel rejection (Best in the same class).

– Four flexible power modes for reduced power consumption

– Powerful five-channel (Direct Memory Access)DMA

The diagram microcontroller CC2530 is shown in Fig. 7.9while the its PCB
design is shown in Fig. 7.10.

Figure 7.9 – Diagram of CC2530 (Source : Texas Instrument)
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Figure 7.10 – PCB module of CC2530

Design a sensor node with CC2530

A traditional design of an node of WSN is presented in Fig. 7.11 wherein the
sensors and other components are mounted on a printed circuit board.
We propose to design in this thesis, a miniature node with multi-purpose. Instead

Figure 7.11 – Traditional design of a WSN sensor node

of placing all the elements in a printed circuit board, the basic CC2530 circuit and
other control circuits in two different PCB are welding together vertically, in this
way the area of node can be greatly reduced. Also, instead of designing different
nodes with different sensors, the sensors are placed on a separate printed circuit
board. The board of the sensor can be connected to the main PCB node through
an connector interface. our design of sensor node is presented in Fig. 7.12
The enforcement of the RF coverage and improvement of the network robustness
can be realized by adding RF emission power amplification module CC2590 or
CC2591 : the default transmit power with CC2530 RF is 1dbm, which can be
found in the Z-stack parameters presented below.
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Figure 7.12 – New design of a sensor node used in this thesis

#define MAC_RADIO_TX_POWER_DEFAULT 0xD5

#define MAC_RADIO_TX_POWER_MAX_MINUS_DBM 25

In this configuration, the power of RF emission can be reinforced up to 4.5 dBm,
which is still insufficient in some cases. The CC2591 and cc2590 modules can be
added to provide up to 14 dBm and 22 dBm RF transmitting power respectively.
The design with CC2591 RF module is shown in Fig. 7.13

This enhanced module is used on our Coordinator (see Fig. 7.14). In the next
chapter, we will compare the different quality of the wireless signal using two dif-
ferent transmission modules.
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Figure 7.13 – The reinforced RF module with CC2530 and CC2591
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Figure 7.14 – Coordinator of WSN

Figure 7.15 – le fileset de Z-stack
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7.1.4 Z-stack of Texas Instrument

Z-Stack is the ZigBee protocol stack based on IEEE 802.15.4. Z-Stack is com-
pliant with the ZigBee 2007 (ZigBee and ZigBee PRO) specification, supporting
both ZigBee and ZigBee PRO feature sets on the SOC such as CC2530, CC2520
CC2520 MSP430 and Stellaris LM3S9B96. As Z-stack is a complete SOC and is
highly integrated. A detailed explanation with demonstration of this stack can take
over a minimum of 500 pages that will be too long to be presented in this thesis.
Here we give a brief introduction of its mechanisms, some of the embedded code
can be found in the appendix of this thesis code. Among the files in Z-stack, the
most important is the "Component" file, this file can have multiple subfolders, as
shown in Fig. 7.15

– File HAL contains the embedded code of the the HAL (Hardware Abstract
Layer) layer, its provides the majority of the HAL drivers to control LED,
LCD, ADC, keys, clock and UART etc. These services are summarized by a
simple API that allows users to use these services without worrying about
implementation of these services in terms of hardware configurations.

– File Mac contains the implementation of the IEEE 802.15.4 physical layer,
this part is given in the form of library files. That means we do not have
access to code in this file, and all changes are impossible in the MAC layer.

– File TM contains the debugging tools and its source files.

– File OSAL (Operating System Abstract Layer) provides the abstraction layer
of the operating system and necessary associated files.

– File STACK contains the core components of ZigBee protocol stack, inclu-
ding of AF controls(Application Framework), NWK (network) SAPI (Simple
Application Interface), sec (security) ZDO (ZigBee Device Object etc.)

Z-stack can be viewed as a query based event management operating system (see
Fig. 7.16).
When the system enters the level of OSAL, it will continue to work in this level
with an event handler. The user request will be defined and managed in this layer
by the events handler. For example, a button is pushed on the coordinator, this
will create an event in the HAL layer that will finally move to the OSAL level,
handling mechanism is presented in Fig.7.17. The embedded code and detailed
setting concerning the user applications design on the OSAL level are presented in
the appendix of this thesis.

7.1.5 The embedded system on CC2530

Since the embedded system is written with the C language, the entry of the
whole system is in the function main(). The structure of the embedded system is
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System Start

Interruption Off

HAL Init

Mac Init

Address Defined

Read NV Items

OSAL Init

Interruption On

Timer Configuration

OSAL Main Loop

Event?
N

Y

Priority

Event Processing

High

  Low

End?

Y

N

Figure 7.16 – The structure of Z-stack
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Figure 7.17 – The mechanism of the OSAL layer in Z-stack

shown in Fig. 7.16.

i n t main ( void )
{
// Éte ignez interrompt
osa l_int_di sab l e ( INTS_ALL ) ;

// I n i t i a l i s a t i o n de HAL

HAL_BOARD_INIT( ) ;

// v é r i f i e z que l a t en s i on d ’ a l imenta t i on
// e s t suf f i samment é l e v é e pour exécute r
zmain_vdd_check ( ) ;

// I n i t i a l i s a t i o n de l a mémoire de l a p i l e
zmain_ram_init ( ) ;

// I n i t i a l i s a t i o n de l a ca r t e d ’E/S
InitBoard ( OB_COLD ) ;

// I n i t i a l i s e r l e s p i l o t e s HAL
Ha lDr iv e r In i t ( ) ;

// I n i t i a l i s a t i o n NV système
osal_nv_init ( NULL ) ;

// Déterminer l ’ ad r e s s e étendue

87



Chapitre 7. Development of a practical WSN system

zmain_ext_addr ( ) ;

// I n i t i a l i s a t i o n des a r t i c l e s de base NV
zg I n i t ( ) ;

// I n i t i a l i s a t i o n de l a MAC
ZMacInit ( ) ;

//Comme l ’AF n ’ e s t pas une tâche ,
// appe l e r sa rou t in e d ’ i n i t i a l i s a t i o n
#i f n d e f NONWK

a f I n i t ( ) ;
#end i f

// I n i t i a l i s a t i o n du système d ’ e xp l o i t a t i o n
osal_init_system ( ) ;

// Autor i s e r l e s i n t e r r up t i o n s
osal_int_enable ( INTS_ALL ) ;

// I n i t i a l i s a t i o n f i n a l e de l a ca r t e
In i tBoard ( OB_READY) ;

// Af f i chage d ’ in f o rmat i ons sur ce d i s p o s i t i f
zmain_dev_info ( ) ;

// démarrer l e système OSAL et aucun re tour d ’ i c i
osal_start_system ( ) ;

The main() function initialize the entire hardware board of sensor node, coordi-
nator and router. The two most important sub-functions are osal_init_system()
and osal_start_system(). These two functions define initialization and boot of
the embedded operating system.

osal_init_system ( )
byte osal_init_system ( void )
{

osal_mem_init ( ) ;
osal_qHead = NULL;

#i f de f ined ( OSAL_TOTAL_MEM )
osal_msg_cnt = 0 ;

#end i f
o sa lT imer In i t ( ) ;
osal_pwrmgr_init ( ) ;

// I n i t i a l i z e the system tasks .
o s a l I n i tTa sk s ( ) ;
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osal_mem_kick ( ) ;
r e turn ( ZSUCCESS ) ;

}

This function initializes the main modules used by the operating system, such
as memory, battery, etc. The most important sub functions of it is osalInitTasks().
osalInitTasks() initializes the different layers Zigbee and all the tasks defined by
the user.
void o s a l I n i tTa sk s ( void )
{

u int8 taskID = 0 ;
tasksEvents =
( uint16 ∗) osal_mem_alloc ( s i z e o f ( u int16 ) ∗ tasksCnt ) ;
osal_memset ( tasksEvents , 0 , ( s i z e o f ( u int16 ) ∗ tasksCnt ) ) ;
macTaskInit ( taskID++ ) ; //mac_ID = 0
nwk_init ( taskID++ ) ; //nwk_ID = 1
Hal_Init ( taskID++ ) ; //Hal_ID = 2

#i f de f ined ( MT_TASK )
MT_TaskInit ( taskID++ ) ; //mt_ID = 3

#end i f
APS_Init ( taskID++ ) ; //APS_ID =4
ZDApp_Init ( taskID++ ) ; //ZDO_ID =5
WSNApp_Init( taskID ) ; //WSN_ID = 6

}
const pTaskEventHandlerFn tasksArr [ ] = {

macEventLoop ,
nwk_event_loop ,
Hal_ProcessEvent ,

#i f de f i ned ( MT_TASK )
MT_ProcessEvent ,

#end i f
APS_event_loop ,
ZDApp_event_loop ,
WSNApp_ProcessEvent

} ;

The sub function Osal_mem_alloc() is a function of memory management. Af-
ter allocating memory, it will return a pointer that corresponds to a cache space
allocated. The return parameter is the cache size. The function tasksEvents[] is
addressed to the head of the assigned memory.

The initialization of the task : the system begins with allocation of storage
space for each task. Of course, this space by default is all set to 0 (NULL), and
then assignments are made for all tasks with different taskID ; here the order of
the functions in the main loop tasksEvents[IDX] system and tasksArr[IDX] de
taskID is unified. In WSN_App.c, we defined a file from a table. Each member
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of the array is a function whose order of these functions and the initialization se-
quence is the same like for the task order in the memory. The difference between
tasksEvents[] and tasksArr[] is the array of pointers tasksEvents[] points to the
storage space of each task and tasksArr[] finally points to the handling manage-
ment of different events in each task.
Our own defined event is WSNApp_init(), which is the last in the priority list.
Thus, it is on the last position of all events.
The launch of the embedded operation system is presented here : our WSN appli-
cation WSN_APP will be called periodically by OSAL_Timer in the main loop
of OSAL. Thus, sensor data acquisition is made each time when the WSN_APP
is activated. The sensor data will then be processed and sent to the coordinator.
The detailed code is presented in the Annexe.
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Feasibility of our WSN system :
Link quality test

8.1 WSN in buildings : signal quality analysis
Wireless sensor networks have enormous potential for energy savings and other

building and environmental applications. A major obstacle to their adoption, ho-
wever, is the uncertainty and the reliability of wireless links. While the rate of
packet delivery is difficult to measure in the present applications, the experiments
on the wireless signal quality are conducted. The results are verified by analyzing
the RSSI and LQI values under different environmental conditions.
Before any application of WSN, its reliability must be be verified. In qualitative
terms, reliability means that the desired data is sent to the receiver at the desired
time, with little delay, and with a minimum measurement error. Defining reliability
itself is a difficult task, because it involves a number of issues and can be affected
by many factors. Data transmission success depends on a high (RF) link quality
between the transmitter and receiver. Accuracy of the data stream depends on the
sensor itself. RF connection can hardly affects the accuracy of data as the data is
transmitted in digital format and the corruption of the data stream usually causes
problems with data delivery versus modified data values.
Successful data delivery, therefore, becomes the main concern of users of wireless
sensor networks in buildings. Ensure that data can be delivered in a particular
situation that the signal strength at the receiver is highly related to the ambient
noise. Equation (8.1) provides the model of signal receiving by the antenna without
interference in the RF medium [61] :

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(8.1)

where Pr(d) : the receiving power ; Pt : the transmitting power ; Gt : trans-
mitter antenna ; Gr : gain of the receiver antenna ; l : RF signal wave length, d :
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distance between the transmitter and receiver ; L : oss factor of the system (asso-
ciated with the radio equipment). It is indicated in the equation that the received
power decreases with the square of the distance between the transmitter and the
receiver is directly proportional to the transmitted power. In addition, the recei-
ved signal strength depends on the wavelength, but this relationship is less critical
applications of sensor networks in buildings for more equipment uses the 2.4 GHz
band.
This equation is technically valid in free space. However, in reality, the equation has
missed some very important factors which is the presence of obstacles and interfe-
rence from different 2.4GHz wireless signals. Thus, real tests on the WSN system’s
reliability has to be evaluated by examining the wireless signal link quality and
signal strength before its deployment in any real applications.

8.1.1 Packet Error Rate (PER) test

Firstly, we carried out 100 acquisition experiments to evaluate the WSN’s Pa-
cket Error Rate (PER) 6. The results are shown in the figures (Fig. 8.1 and Fig.
8.2) below : for short term acquisitions(acquisition for 1 day ), the PER of WSN is
around 1.41x10−4 and the maximum PER reached during the long term acquisition
tests(acquisition for 20 days ) is 0.016. So, considering the limited PER values, the
WSN system is reliable at this level.

Figure 8.1 – PER :Short term acquisition

8.1.2 Signal strength indication and link quality indication

Signal strength indication (RSSI) is a term used to describe the strength of a
wireless signal. The units are either those of energy (eg, mW) or, more commonly

6. PER is the number of packet errors divided by the total number of transferred packets
during a certain time interval.
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Figure 8.2 – PER :Long term acquisition

by dBm = 10log(Pr/1mW ).
The IEEE 802.15.4 standard, as introduced in the previous chapters is used in the
building industry communications, specifies the use of an indication of link quality
(LQI) to evaluate the quality of the communication link between a transmitter and
a receiver.

Many current WSN platforms like MicaZ, Telos, and Intel Mote2-use the same
radio chip, the CC2420 of TI, in addition to RSSI, CC2420 provides an additional
indicator LQI [62].

8.1.3 Experiments and analysis

Our WSN system is based on CC2530 Zigbee microcontroller from TI, which is
an upgraded version of CC2420. Thus, In all the CC2530 cored ZigBee networks, a
built in received signal strength indication (RSSI) is stored. The RSSI value is an 8-
bit 2s-complement signed number on a logarithmic scale with the step of 1dB. It can
be read from a register, it is actually found in the RSSIL.RSSI_registre V AL,
the status bit RSSI_V ALID should be checked, it indicates that the RSSI value
in the resigster is in fact valid, which means that the receiver has been enabled
for at least eight symbol periods. to find the actual signal power P at the RF pins
with reasonable accuracy, an offset must be added to the RSSI value :

P = (RSSI_V AL+RSSI_OFFSET )dBm

For example, with an offset of -50dB, the RSSI value -10 from the RSSI register
means that the RF power is approximately -60dBm. Here, the offset value even-
tually is a experienced value during the experiment of CC2530, it is around -45dB.
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In Zstack the description of the RSSI value is presented below :

define MAC_RADIO_RSSI_OFFSET
define HAL_MAC_RSSI_OFFSET − 45
RssiDbm = PROPRIETARY _FCS_RSSI rxBuf+MAC_RADIO_RSSI_OFFSET

The Link quality indication LQI is a measurement of the quality of the received
frame as defined by IEEE802.15.4 standard. The LQI value is required by IEEE
802.15.4, limited from 255 to 0, in the case of CC2530, the RF signal does not
provide LQI directly. However, it could be calculated by the microcontroller. In
Z-stack, the LQI value is presented as below :

define MAC_RADIO_RECEIV ER_SENSITIV ITY _DBM − 91
define MAC_RADIO_RECEIV ER_SATURATION_DBM 10
define MAC_RADIO_RECEIV ER_SENSITIV ITY _DBM − 91
define MAC_RADIO_RECEIV ER_SATURATION_DBM 10
define MAC_SPEC_ED_MIN_DBM_ABOV E_RECEIV ER_SENSITIV ITY 10

define ED_RF_POWER_MIN_DBM(MAC_RADIO_RECEIV ER
_SENSITIV ITY _DBM
+MAC_SPEC_ED_MIN_DBM
_ABOV E_RECEIV ER_SENSITIV ITY )

ED = (MAC_SPEC_ED_MAX ∗
(rssiDbm− ED_RF_POWER_MIN_DBM))
/(ED_RF_POWER_MAX_DBM − ED_RF_POWER_MIN_DBM);
pRxBuf− > mac.mpduLinkQuality = macRadioComputeLQI(rssiDbm, corr);

Thus, the relationship between RSSI and LQI can be expressed by the equation
below :

LQI =
255(RSSI + 81)

91
(8.2)

There are two methods to get the LQI value from Zstack. The first is to use
one of the Mac level function :
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pRxBuf− > mac.mpduLinkQuality = macRadioComputeLQI(rssiDbm, corr);

otherwise, the LQI value could be found directly from the application level :

afIncomingMSGPacket_t ∗ pkt; pkt− > LinkQuality

In order to qualify the performance of ZigBee network used in our project, ex-
periments were carried out under different conditions. Since the LQI value is more
direct, it is used as an indication of the signal quality of the network. Therefore,
software is designed for retrieving the LQI in the network. The first test is perfor-
med in the field of sports named Imp. Guy Mocquet in the city of La Garde, 83130,
France. The aim is to test the signal quality in the open area without obstacles,
unfortunately, there is still some WiFi signal even in this area, because the LQI
value is very sensitive, the test result may be somehow affected by the presence of
these interference. The result of the test is shown below in Fig. 8.3.
Then, the same test was performed with a 30-degree angle twisted between the
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Figure 8.3 – LQI : test results in a outdoors sports field

Enddevice and Coordinator. The result is shown in Fig. 8.4 The results shows that
the signal quality of Zigbee networks is nearly not affected by small angle presence
between the end device and coordinator. Then, experiments have been conducted
in the building E of uiversité de Toulon (UTLN). The results are presented below :
The Zigbee network is able to penetrate wood, metal or concrete barriers with the
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Figure 8.4 – LQI : test result with an angle of 30◦between the coordinator and
Enddevice

LQI value of 65, 31 and 26 respectively. This means that the Zigbee network is ap-
plicable in the environment of normal construction. The available coverage range
of Zigbee network in the building is tested. The results are presented in Fig. 8.5.
The above tests are made with the standard configuration CC2530 RF. To find
the limit of our wireless modules, we also conducted experiments with ampli-
fied CC2591 RF modules (solution presented in the previous section : CC2530
+ CC2591). The test results are shown in Fig. 8.6 below.
As presented in Fig. 8.6 and Fig. 8.7 amplified modules greatly expanded the

effective coverage of wireless signal : it can cover up to 250 meters in outdoor en-
vironment without signal attenuation. The indoor test shows that the network can
cover the whole building with a LQI value from 160 to 48.

The testing result positively marks that although the signal quality decreases
when penetrating the wall, it decreases very slowly after with distance. This means
the reliability of our WSN system enabled its applications in buildings.
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Figure 8.5 – LQI through the wall in the building

0 25 50 75 100 125 150 175 200 225 250 275 300 325
0

10

20

30

40

50

60

70

80

90

100

110

LQ
I v

al
ue

 w
ith

 C
C

25
30

+C
C

25
91

 o
ut

do
or

Distance (m)

 LavaleurLQI

Figure 8.6 – LQI : Outdoor test with amplified RF power modules
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Figure 8.7 – LQI : Indoor test with amplified RF power modules

98



9

Hardware and Software solutions

9.1 Features of the developed Modeling software

In previous sections, we systematically introduced the WSN system. Thus, in
this section, we’ll just present the technical parameters and features of our WSN
developed.
The WSN is based on (TI) CC2530 microcontroller. It fully supports ZigBee 2007
specification and ZigBee and ZigBee PRO feature sets. As discussed in Part 3 of
this thesis, the WSN system is a typical mesh network that contains three types
of modules : Coordinator, Router, and Enddevice. Different types of sensors are
integrated on Enddevices sizes of EndDevice and Coordinator (shown Fig. 9.1) are
respectively 5x3 cm and 6x2.5 cm.
The performance of our new hardware platform WSN is verified. Its technical pa-

Figure 9.1 – Enddevice and Coordinator of the WSN system

rameters are summarized in Tab.9.1. The main features of the WSN system are
low cost, low power consumption, high reliability and high network capacity.

The digital thermal sensor we used is Microchip TC1046. According to its pro-
ducer, it can accurately measure temperature from −40◦C to +125◦C with a reso-
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Table 9.1 – Parameters and features of the WSN system

Feature of the WSN system Values

Cost per unit 8 euros
Network Coverage 20m/110m
Consumption in operational mode 40mA
Consumption in Power saving mode 126µA
Battery Life >200h
Reliability High
Packet loss ratio <0.02
Installation Easy
Network capacity(Nodes per Network) 25920

lution of 0.0625◦C. Also, during every experiment, sensor calibrations are made :
sensors were placed together under an ideal condition which means solar radiation
and temperature disturbance have been avoided. The bias for each sensor was ob-
tained by comparing their measurements to a high precision thermometer.

This WSN system was later used in the experiment of thermal modeling of the
room. The sensors on the end-devices send the data to the central processing unit
(PC or Server) through the coordinator. The central processing unit then calculates
the temperature at different points of the building room and records information
about the sensor. The temperature and its acquisition time are saved in the SQL
database. All these data will be used as a source of training to build the ANN ther-
mal model. All data processing and modeling is done in our developed software
called "inferface sensor" which will be presented in the next section.

9.1.1 Graphical user interface Software design under C#

The software is developed under C#. An object oriented programming language
created by Microsoft. Because of its efficiency, it has gained a great reputation ever
after its birth.
The main purpose of the software is to acquire data from the sensor nodes in the
WSN platform, display them either in real time or using the static storage in a
database. A dynamic graphing is designed in this software to show the evolution of
the measurement for each sensor. An overview of the software "Interface Capteur"
is given in Fig. 9.2
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Figure 9.2 – The software "Inerface Capteur"

The software is divided into several parts, as shown in Fig. 9.2 : Key commands,
experiment-setup, model identification, simulation, signal processing etc. Here we
will begin with introduction of the basic functions in this software

Sensor Identification

In this thesis, each sensor node has an unique ID and its measurements are
shaped in a standard form, which is a 8-byte string. The 4 first characters are
the sensor’s identification number and the 4 last ones are the temperature sensor’s
measurement (in hexadecimal) after an analog-to-digital conversion (ADC) made
by the microcontroller CC2530 on the end-device. There are two basic "states" re-
garding data acquisition : a Boolean variable is used to choose which set of actions
(that define the state) will be executed every 5 seconds. This is achieved by using
a virtual timer. The WSN works constantly by sending the data to the software.
When the software starts, the recording function is not activated. Thus, these data
from WSN are used to identify all the sensors present in the experiments. The sen-
sor’s measurements are ignored but the sensors’ID are identified and saved into a
"Sensor Pool". The Sensor Pool is a list structure inside the code that contains all
the sensors available in the experiment. This list contains "Sensor" objects, that in
turn contains for example the sensor’s actual measurement. Its identification num-
ber and some useful functions. The aim of this first step is to know which sensors
is working and where it is located inside the room. The second phase begins with
the activation of the button "Record Session" (Save Session) and it is the moment
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when the software begin to record the measured sensor data.

Acquisition environment

The first thing to do in order to record a session of measurements is to define
the abstracted building room environment. In this thesis, the rooms are considered
rectangular and one should know the length and width of the room in advance
before recording a session. As explained in the previous section, the sensors are now
well identified and registered into a structure so called Sensor Pool in the software.
This pool is always analyzed in order to fill the drop list of available sensors.
Before creating the building room, the software should have already identified the
sensors with their ID and the associated information concerning their positions and
functions, etc. Thus, these information can be deployed in the dynamic graphing
of the room environment.
To create a graphic room, we need to define its width and length in the software,
after which the room plan is plotted with the correct dimensions in pixels. Once
the room is created, the position of available sensors from the sensor pool can be
validated on the room plan.

Figure 9.3 – Building a dynamic 2D display function for the acquisition

Save a session of acquisition

At this stage, we have all the information needed to start a recording session :
the size of the room and all of the sensors’ information (its positions, roles as in-
put/output and temperature offsets for calibration).
So, as soon as the Save Session button is clicked, data storage actions begins. The
current date and the acquisition time click of the session is registered alongside
with the room’s length, width and the description of experiment in a data table of
session in the database. Every session is identified with a unique number : they are
simply chronological. The first session ever recorded is assigned as session number
1. At the same time, each sensor present in the recording session has its identifi-
cation number stored in the sensors table of the database alone with its ID and
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information. Finally, after the recording actions are realized, the actual measure-
ments is stored in the data base in real time. The Boolean variable mentioned in
the Sensor Identification session is changed and the state of the program changes to
recording mode. Generally, during the first state is responsible of the identification
of each sensor used in the acquisition and it is during the saving mode (second
state) that the program stores the measurements sent by the sensors into a data
table of measurements in the database.

C# programming is based in events that can be triggered by user or hardware
actions. In this case, the reception of a sensor data string from the Wireless Sensor
Network through the computer’s serial port, triggers the concatenation of the re-
ceived string at the end of a longer buffer string. This way we have a buffer string
that grows according to every reception of sensor data.
A virtual clock, already mentioned, is responsible for breaking this long buffer
string into processable information at each tick of 200 milliseconds (which is also
done during the sensor identification state). This is useful to make the processing
and storage synchronous.
The breaking of the buffer is realized using a Regex pattern recognition function,
which is able to break any string and find patterns defined by the programmer
inside it. The Regex is used to break every 8-character pattern from the buffer
string so we can identify the sensor responsible for the reading and the reading
itself. The sensor data (the last 4 characters of the 8-character pattern) is in hexa-
decimal form, this was chosen to increase the precision of the measured sensor
data. The program then uses a specific formula provided by the sensor’s provider

Figure 9.4 – Save a session of acquisition

to transform the measured value to real temperature. This can be refereed by the
sensors’ characteristic voltage/temperature curve. The main reason that we make
the software responsible for these calculations instead of the microcontroller is to
take the burden from the sensors associated microcontroller and thus reducing the
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energy consumption and increasing the battery autonomy of end-devices of WSN.

Finally, after every 8 bytes string is broken and processed, they (already in
degrees Celsius) are stored in the Measurement table. Also, for the data table of
measurements, each of the table entries has a unique measurement identifier which
is the current session number and the time offset at the beginning of this session.
Strictly speaking, this time does not correspond exactly to the time at which the
measurement was taken by the sensor (because it is rather the time that the data
is being processed).
By clicking again in the Record Session button (which is now displaying Stop Re-
cording), all the sensor data is already stored in data tables of the database. These
data is thus ready for further processing or neural network model training.

Visualization

There are two modes of displaying data, that are strictly related to the "state"
in which the program is running (Recording mode/ Free mode). In either mode,
data will be displayed always on three visualization panels on our screen : the graph
plotting each sensor’s temperature versus time, the "thermal map" of the room (
the room vision with every sensor in it and colors representing the temperature of
each place) and the temperature of the outdoor sensors.

The graphic presentation in the program was drawn with the help of a C#
library called ZedGraph which can be used to draw static or real time plots. As an
object oriented library, it is used to the define curve objects like the colors, iden-
tifiers, points in the graph and so on. Each curve on the graph represents then a
sensor, and plotted on the graph is its temperature evolution regarding time. When
display is in real-time, the graph window adjusts itself to fit data accordingly and
the curves are updated quickly, at the same clock tick when data was stored in the
database.
This graph is located on the left side of the software user interface in Fig. 9.5. The
thermal map of the room, though, cannot be updated at the same time when the
clock tick used to save data in the database because it would disrupt data pro-
cessing (mainly the accuracy of the time offsets which are stored along with every
measurement). The reason is that the drawing of the room image takes just too
long to be completed (more than 200 milliseconds). This thermal map is drawn
with C#’s own drawing library, which is very efficient but cannot tackle with the
problem that the image contains too many pixels to draw upon. Considering that
every pixel will have a different color, we cannot do it in a simpler way, every pixel
needs to be redrawn when updating the image.
As mention earlier, besides real-time display, it is useful to observe and analysis
the recorded sensor data. This visualization can be realized by selecting the session
number of interest in the Visualize Session drop list, seen in Fig.9.5.
When visualizing statically a session, the graph on the left side of the screen plays a
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Figure 9.5 – Visualization

key role as all measurements will be condensed in curves representing each sensor’s
measurements.
Initially information will be highly packed, spanning along the recording time of
the selected session, but one can quickly zoom in an area of interest by simply
dragging the point over it with the left button pressed. When we press the right
mouse button on the graph, several options will be displayed, like zooming out or
displaying the graph’s initial state. Finally and perhaps the most important of all,
when we click twice with the left mouse button on a certain spot of the graph,
the measurements of that specific time will be represented on the right side of the
screen, both on the room thermal map and on the part dedicated to the outdoor
sensors. A red line will be drawn on top of the graph at the exact spot the double
click was given, so we can identify easily at which time the drawn representation
on the right relates to.
In the next section, we present all the higher functions by combining sensor data
with WSN ANN modeling.

9.1.2 The library "Aforge" and the implementation of ANN

The reason we chose the ANN modeling approach was already introduced. Also,
the great practical value of using ANN as a modeling tool will be summarized in
Chapter 10. Here I will just show the implementation of ANN modeling in our
software.
An open source library "Aforge" [63] is used in this software to make the modeling
function of ANN. The main advantage of using this library is its flexibility, reusa-
bility, easy to use and understand. In aforge library, it does not provide a single
entity types of neural network to avoid losing the flexibility and clarity. All entities
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are defined in different categories for the purpose of reusability. Some libraries have
mixed neural networks and learning algorithms together causing a loss of flexibility
of algorithms. In the case of Aforge library, the entity is divided into different ca-
tegories. In this way, it is not only easy to understand but also make it possible of
reusing the components and the implementation of small-scale structure of public
functions.
The library contains six entities(see Fig. 9.6) :

– Neuron : An abstract base class for all neurons, which encapsulates the com-
mon entities such as the weight of a neuron, the output value and the input
value. Other classes of neurons inherit the base class to extend with additio-
nal properties and specialize transferring functions .

– Layer : represents a set of neurons. It is an abstract based class that encap-
sulates common functionality to all layers of neurons.

– Network :represents a neural network, which is a collection of layers of neu-
rons. This is an abstract base class that provides common functionality of a
generic neural network. In order to implement a specific neural network ar-
chitecture, it is necessary to inherit the class and extending it to the specific
features of a neural network architecture.

– Activation function : interface of the activation function.

Figure 9.6 – Different classes in Aforge

Now, we will give a detailed construction of a thermal model of a room with
Aforge example. The problem of black box of a room can be described in the
following terms : given a set of "inputs" known controlled (the heating system, for
example) and temperature measured "disturbances" (outdoor temperature, solar
radiation, etc.). We want to predict from an initial state evolution of the internal
temperature. These indoor temperatures are now called the "output" of the system.
As a result, the input and output of ANN model can then be defined (see Fig. 9.7).
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After the structure of the ANN model is defined, we can begin to train the network
with sensor data WSN (see Fig.9.7 ).

Figure 9.7 – Structuring an ANN thermal model out of the building room

Extraction and segmentation of the sensor data

After the structure of our ANN model is well defined, the next task will be
forming the source of training using the raw sensor data WSN. However, if we use
directly the raw sensor data as training source, it will lead to a very low training
efficiency. Because in the raw sensor data, many repeated measurements can be
found, which makes a great data redundancy. Thus, to retrieve the most important
section of the raw data from the whole sensor data session can be very important. In
our software, we provide direct method to retrieve sensor data needed from the raw
data. By operating directly on the SQL database, we can make the segmentations
of each session of the sensor data. The results can be found in the Fig. 9.8.

Step-time

The aims of these modeling experiments is to characterize the thermal behavior
of building in response to environmental conditions by a model whose function is
to recognize the thermal dynamics associated with different parts of the room and
be able to reproduce this behavior through the analysis of temperature inside and
outside the measured in part and in a discrete time interval. To enable a smooth
modeling, two parameters become crucial for the production of input-output pairs.
One contribution we introduced in this work is "Step-Time" which defines a time
interval, in other words, it defines a sampling period (see Fig . 9.9 ). Since the
frequency of WSN acquisition is high, a single session of acquisitions contains a
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Figure 9.8 – Retrieve the useful sensor data segments from raw sensor data
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huge amount of sensor raw data in the software database. In order to train ANN
model more efficiently, instead of taking all the sensor data from database, the
training data matrix for the ANN model is selected sequentially from the raw
sensor data according to the Step-Time.

Figure 9.9 – The function of StepTime

This parameter could simply affects the ANN modeling results in a way that if
the thermodynamics response of the building room is slow, a relatively long Step-
Time could be sufficient. Otherwise, if its response is fast, a shorter Step-Time will
be necessary to obtain an accurate model.

The order of an ANN model

The other parameter required for the model to represent the dynamics of the
temperature distribution is the order of the model. For example, if a model has
StepTime 1 minute and order 2 to predict the temperature distribution in the next
minute , it uses the distribution of the current temperature and the information
on the distribution of the temperature measured one minute before. In the earlier
version, the tool for creating input-output pairs was limited to pairs to order 1 and
2 , which may not be sufficient to adequately represent the thermodynamic beha-
vior of the building room. To solve this problem, the implementation of the tool
of creating the input-output data pairs was modified to support multiple orders.
Even with the possibility of increasing the order of the system indefinitely, it is
necessary to understand the implications of this tool. An excessive increase control
may include irrelevant information to model the phenomenon, moreover, increased
order proportionally increases the number of entries in the neural network which
requires a lot of time for training model which in turn may show no improvement
in their ability to predict.
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Method to determine the best parameter combinations

So far, there is no universally applicable rules to define the best network training
parameters. The reasonable solution is to try different combinations of training
parameters and evaluate them according to their prediction errors. Thus, to find
the best training parameters for our MPCT models, we give two possibilities in this
software : 1. Manual Definition, the parameters can be defined by users, 2. Auto
evaluation (see Fig. 9.10), the parameters can be selected by a cyclic algorithm.
A different range of training parameters are used to train network models. The
trained models’ prediction errors regarding its training data are then automatically
calculated. In the end, the software will select the parameter combination which
leads to minimum prediction errors. We present the training errors with a different
range of Step-time and network orders. In this training evaluation test, we find the
best parameter combination of the Step-time and network order is 13.6 minutes
with a second network order.

Figure 9.10 – Function to determine the best training parameter combination

Model validation

Once the model is complete and the learning procedure has theoretically succee-
ded in teaching it the dynamics of the room in which we made our measurements,
we should validate our model using our software’s validation feature in order to
confirm that it is consistent. We start by picking a session from the Visualization
drop list (after our model was created). Preferably, it should be a different session
from the one used to extract the learning set, but we should be sure that the chosen
session was also realized inside the same room with the same sensor disposition. It
is important to validate the model with another session of measurements because
the ANN will be too well adapted to its learning session (Over-fitting problem) and
thus we cannot be sure that the general dynamics of the room were absorbed by
the network.

The validation process consists, first of all, in setting initial conditions for the
output temperatures which equal to the each of the indoor sensors’ closest mea-
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surement to the first time step on the chosen session period. Next, we gather a
"control" data set in a similar way we obtained the learning data set (previous
section), with the exception that only the temperature inputs and temperature
disturbances are included in this data set.
Next, for each time step, we calculate the network object’s output layer values (that
is the predicted next-step state of the output temperatures) by calling its compu-
ting method. The computing method receives as argument a vector with all the
temperatures defined in the network’s input layer and returns a vector containing
all the temperatures defined in the network’s output layer. Thus, in the first call of
this function we will give it a vector containing all initial condition of temperatures.
In the second call, considering we are dealing with a first-order model (only the
current output temperatures are used in the prediction) the output temperatures
will receive the values from the output layer obtained in the first call. The input
and disturbance temperatures, on the other hand, will always have the real value
measured in the current time step.
The algorithm used to validate a model of second order (previous indoor tempe-
ratures are included in the input layer of the neural network with current indoor
temperatures, disturbances and temperature control) is shown below. Tempera-
tures and disturbance input, located at the end of the input Layer [i][k] vector
are not changed in the iterations because they were already pre-defined as actual
measured data for each time step. The duration of the step is the same as that
specified when creating the model.

f o r ( i = 0 ; i < Sess ionDurat ion / StepTime ; i++)
{

i f ( i == 0) // i n i t i a l i t e r a t i o n
outputLayer = NeuralNetwork . Compute ( inputLayer [ i ] ) ;
e l s e

{
f o r ( i n t k = 0 ; k < NumberOfIndoorSensors ; k++)

{
i f ( order == 2)

// Sets prev ious indoor temperatures
inputLayer [ i ] [ k + NumberOfIndoorSensors ]= inputLayer [ i ] [ k ] ;
// Sets cur r ent indoor temperatures
inputLayer [ i ] [ k ] = outputLayer [ k ] ;

}
outputLayer = NeuralNetwork . Compute ( inputLayer [ i ] ) ;

}
}
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9.1.3 Advanced functions

With the experiments, more features and enhancements to the software, in this
section, we present improvements we have implemented in this software.

Signal processing of the WSN sensor data

After the data acquisition achieved, it was possible to perceive that the sensor
readings are sensitive to a significant amount of noise, causing small fluctuations
in temperature curves at high frequency measured by each sensor. In the earlier
version, the noisy data were used directly to construct the input-output pairs,
resulting in a spread of noise in the model.
As an attempt to make the data for the most representative in relation to the
phenomenon measured learning, it was introduced in a software that the user to
can choose the type and cutoff frequency and adjust the relevant parameters of
the filter used. For example, we have filtered the acquisition of a WSN with a
Butterworth filter of order 3 and cutoff frequency at 20Hz. The result is shown in
Fig.9.11.

Evaluation of model prediction errors

This function is capable of providing a digital display of the model prediction
error regarding a set of measured data. Knowing that the output from the neural
network model is discredited, a method was established wherein the dividing of
the time discretion by an arbitrary number and by using the linear interpolation
methods of least squares, the tool computes the mean squared error between the
original model’s prediction and real measurements. It can therefore numerically
evaluate the performance of the trained models and makes it possible to select the
most representative model among all the models trained with different training
parameter combinations (see Fig. 9.12).
The main functions of this software was introduced in this chapter. The training
method detailed model will be presented in the following chapters.
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Figure 9.11 – The filtered sensor data
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Figure 9.12 – Error curves of each sensor in one session (MSE = 0,27̊ C).

114



Troisième partie
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10

Combination of WSN and ANN

10.1 Combining WSN and ANN

WSN offers a practical solution of distributed sensing, processing, communica-
tion and control while ANN’s self-adaptivity and nonlinear mapping ability make
it more advantageous in modeling nonlinear system or system with unknown dy-
namics.
We think that the combination of WSN and ANN can be a powerful modeling
solution. First, a trainable ANN model built itself from experimental data, thus,
sufficient data sources are necessary to obtain an accurate ANN model. The rich
sensor data from WSN in return can be used in training the ANN. Also, WSN
data based ANN modeling has high practical values : the behavior of certain sys-
tem is very complex and difficult to analyze, especially when many nonlinear and
time-varying effects are present. For example, the dynamic behavior of building in
response to environmental factors. In such case, it is nearly impossible to obtain
an accurate mathematical model with limited system parameters. Thus, an adap-
tive ANN thermal model using WSN sensor data can be a reasonable choice. Our
proposed modeling solution is presented below in Fig. 10.1

10.2 WSN based ANN thermal modeling

In this section, a concrete example is presented to show the necessity and fea-
sibility of combining WSN and ANN.
As mentioned in the introduction and the first part of this thesis, energy saving
in old buildings can provide significant benefits. A common fact of old buildings
is this : most of the old buildings are badly isolated. Thus, the building’s dyna-
mic thermal behavior in response to environment factors is very complex due to
many existing nonlinear and time-varying heat transfer effects. Thus, it is difficult
to characterize the indoor heating/cooling effects under different environmental
conditions. The lack of understanding on the thermal effects inevitably leads to a
squandered usage of energy.
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Figure 10.1 – Standard procedure of modeling using WSN and ANN

The traditional way to optimize the old building’s energy efficiency is to re-
novate the building with new construction material, which is often expensive and
time-consuming. One aim of this thesis is to demonstrate that WSN based ANN
model can be used in solving practical problem. In this case, by establishing an
accurate adaptive ANN thermal model, the indoor thermal response can be cha-
racterized. Thus, the existing heating/cooling system’s efficiency can be optimized.

Previous works have been made on the performance of the WSN signal through
building constructions [64]. It shows WSN is a suitable solution for a more wides-
pread sensing in buildings. Sensors alone with WSN are usually served as acquisi-
tion and monitoring tool. They have been increasingly applied in recent research
including building monitoring [65], building occupation detections [66], evaluation
of thermal performance on insulation materials [67] and energy consumptions [68].
With the growing interests in modeling and predictions, Artificial Neural Network
(ANN) appears frequently in building related research [69]. Previous studies also
outlined that ANN model outperformed Auto-Regressive models with eXternal in-
put (ARX models) in predicting the indoor temperature because the ANN models
are more sensible to the nonlinearities of the thermal effects in the buildings rooms
[18, 19].
Indeed, among most previous works on building thermal modeling, a limited num-
ber of sensors have been used, mainly due to the fact that the data acquisition by
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cabled sensors is usually expensive and time-consuming. These researches focused
on macroscopic modeling of buildings. It considers large rooms as big thermal ca-
pacitors with homogeneous temperature. With these models, indoor temperature
prediction is hard to realize in certain specific zone of a room, especially in rooms
with partitions. ANN used for thermal mapping of a cold storage is presented in
[70]. However, this model does not involve outdoor conditions, and it can not pro-
vide in-time predictions of indoor temperatures.

So far, WSN and ANN together have hardly been used in indoor building ther-
mal modeling. However, we think there are two main advantages of applying WSN
and ANN in building room thermal modeling. First, the nature of WSN and ANN
make them a practical combination : on one hand, WSN could be easily and ra-
pidly implemented, providing a huge quantity of sensor data. These data sources in
return could be essential for the ANN to identify a fine grained thermal model. Se-
cond, they have high practical values : mathematical thermal modeling approaches
[8] are usually used in general simulations. They are hard to be applied in some
practical applications. It is mainly because these models are based on elements
such as room thermal capacitances/resistance, airflow rate, heat transfer coeffi-
cient, heat gain coefficient, etc. These parameters are difficult to measure precisely
in old buildings. Also, as we mentioned above, the dynamic behavior of building
room is very complex, it is nearly impossible to obtain an accurate mathemati-
cal model with limited number of system parameters. The WSN system, on the
contrary, is highly transplantable as it could be quickly equipped in any buildings
to gather real-time thermal data. Additionally, with its self-adaptive learning and
mapping ability, ANN can directly simulate the relations between building thermal
affecting factors (heating source, solar radiation, outdoor temperature) and indoor
temperatures. Based on the two reasons above, we believe that the combination of
WSN and ANN can be a valuable solution for indoor thermal modeling.
Admittedly, some existing techniques can be found for the same purpose of energy
efficiency. Instead of using WSN and ANN combined solution, some may interest
in the usage of smart meters or other simpler modeling techniques. Smart meters
can measure real time or near real time energy consumptions. However, it can not
provide detailed indoor climate prediction for users. Uncertain and nonlinear ther-
mal effects have long been recognized in buildings. Furthermore, previous studies
outlined that ANN model outperformed Auto-Regressive models (ARX models)
in predicting the indoor temperature because the ANN models are more sensible
to the nonlinearities of the thermal effects in buildings [18, 19]. Different tech-
niques have their own advantages and shortcomings, here, we have to point out
again that the WSN and ANN based modeling solution is totally proposed from
a consumer perspective : WSN as a very cheap, low-power, easy-to-use, miniature
electronic devices which can be installed quickly in most old buildings while ANN’s
universal approximating ability makes it possible in generating adaptive thermal
models under different environmental and indoor conditions. This means that the
same system can be easily deployed anywhere without modifications of hardware
or software. With very low expenses, users can conveniently characterize the ther-
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mal response of their living space, maximize the comfort and optimize the energy
consumptions. We think the practicality and wide-applicability of the proposed so-
lution make it distinctive from other techniques.

The room thermal model established in this work is a typical Multi-Inputs
Multi-Outputs (MIMO) system : we consider the indoor activated heating or co-
oling system as a main control input, the measured outdoor temperature and solar
radiations as perturbation inputs. The temperatures on each point of the building
room are henceforth defined as the outputs.
To fit this MIMO system, a three-layered Back-Propagation Neural Network (BPNN)
is chosen as the ANN model structure. The BPNN proposed by Rumelhart et al.
[23] is one of the most commonly used neural networks for its simplicity and effi-
ciency [71]. Hecht-Nielsen demonstrated that a three-layered BPNN is capable of
approximating any continuous mapping [72]. Previous research has also confirmed
its performance in engineering applications [2]. Correspondent to the MIMO sys-
tem, the BPNN contains three layers : an input layer, a hidden layer and an output
layer. This determines a first order BPNN structure. In order to increase the mo-
del’s accuracy, we also proposed higher order models : if we define the standard
interval time between every acquisition as Ti, we can form a second order model by
involving the previous output temperature t− Ti in the input layer (see Fig. 10.2),
or even a third order model by including both t-Ti and t− 2Ti in the input layer,
etc.

Figure 10.2 – A second order ANN model.

The inputs of the model affect the outputs with different weights. During the trai-
ning phase, the neurons will regularly correct their weights by calculating the error
between current ANN model’s output and the expected output. After sufficient
learning iterations, the error can be considered negligible. At this point, we consi-
der the model is ready and well taught. In this work, we build our network model
with a default training iterations of 500000 times and the default error threshold is
set to 0.00003. Detailed training parameter configuration can be found in Fig. 10.4
This training algorithm is presented below. As the mathematical representation of
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the complete model has been already presented in Part 2 of this thesis, we take
a simplified single neuron model (Fig. 10.3) as an example to explain the model’s
training procedure. If we consider that the two main inputs are Indoor heating/-
cooling control sources Cs, the ambient temperature Ta, the only output is the
indoor temperature Tout. Then, the activation function of the neuron is f(x) and
it is responsible for normalizing the incoming values from the previous layer.

Figure 10.3 – A single neuron ANN model

A sigmoid function is chosen as activation function f(x) (see Eq. (3.12)) in the soft.
A three-layered BPNN using sigmoid activation function is a universal approxima-
tor [73, 74].
Furthermore, its nonlinearity and the computational simplicity of its derivative
make it the reasonable choice in modeling non-linear indoor temperatures varia-
tions.
If we define :

u = Csw1 + Taw2 (10.1)

then, we have the output of the single neuron equals to :

Tout = f(Csw1 + Taw2) = f(u) (10.2)

After the inputs have reached the output layer through all the neurons in the
network, these outputs will be compared with the measured output values. The
difference is defined as the error signal e of the output layer neurons in Fig. 10.3.
The error signal propagates backwards to the input layers. After the error signal e
of every neuron in the model is computed, the weight of each neuron adjusts itself
through an optimization gradient descent method, where η is the learning rate. In
this way, the error decreases :

w
′

1 = w1 + ηe
df(u)

du
Cs (10.3)

w
′

2 = w2 + ηe
df(u)

du
Ta (10.4)
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As for the number of neurons in the hidden layers, we estimated it with the
equation below :

Num. of Hidden Neurons =
1

2
(Ni +No) +

√
N(tp) (10.5)

where Ni is the total number of network inputs, No is the number of outputs,
N(tp) is the total number of training data patterns. This formula has been used in
several engineering problems for modeling and prediction with good results [75].
So far, there is no determined rules to define the best network training parameters,
the reasonable method is still "trial and error". Thus, we give two possibilities in
this software : 1. Manual Definition, the parameters can be defined by users, their
default values are presented on the software in Fig. 10.4.
2. Auto Evaluation, the parameters can be selected by a cyclic trial algorithm : dif-

Figure 10.4 – The training parameters by default

ferent sets of training parameters are used to train network models. The software
will select the parameter combination which leads to the minimum prediction er-
rors regarding the training sets. Detailed training method can be found in author’s
published work on WSN based ANN model network training[76]

10.2.1 Modeling experiments

Experiments were divided into two phases : First, to evaluate ANN the mode-
ling performance with WSN, experiments have been done on a prototype. Latter,
we carried out experiments in real building rooms.

Thermal modeling experiments on prototype

The prototype is a cubical corrugated box. To simulate a room inside a building,
we have covered our prototype with same boxes above and four around, leaving
only one side towards thermal source. The prototype is placed in a room where the
indoor temperature is considered stationary and no circulating air flow presented
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during experiments. It simulates several separated thermal resistance zones just like
a building. Admittedly, the thermal characteristic of cubical corrugated box differs
from the construction materials. The heat transfer coefficient, also known as the
U-value, 7 of the cubical corrugated box (board thickness 4.23mm) is 2.21W/Km2

while the U-value of the building wall (Aggregate Concrete, wall thickness 0.3m),
according to our calculation, is about 5.83W/Km2. However, they share similar
heat transfer principle [77, 78]. The experiment is described below : Three sensors
(in blue in Fig. 10.5.) are located outside the prototype as input disturbance, mea-
suring ambient temperatures. One sensor (in red in Fig. 10.5.) facing the thermal
source is considered as control input. Six thermal sensors (in pink in Fig.10.5.) are
put horizontally inside the prototype to collect inner temperature variations, giving
the output value of the system (see Fig. 10.5).

Figure 10.5 – A 3D model of the prototype

7. The U value is an energy efficiency indicator. It refers to the heat transfer coefficient (thermal
transmittance) of a structure.
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Modeling experiments in building room

Later, experiments have then been carried out in real building rooms E106
(Width 5.5m, Length 7.2m, Height 3.15m) located in the building E of IUT in
the campus of Université de Toulon (LAT 43◦123′ N, LONG 6◦11′ E), city of La
Garde, south France. The building was built in the year of 1968 and has not yet
been renovated. It matches the definition of old buildings : no modern HAVC sys-
tem equipped inside and it is badly isolated. One infrared sensor is installed outside
the building room to measure solar radiations. One thermal sensor is placed outside
the building while the other is placed in the corridor. These two sensors collect the
ambient temperatures outside the room. The operation status of heating/cooling
source (Toshiba RAS-167SKV-E3) is considered as the main input. Six thermal
sensors are placed horizontally at the height of 1.10m in the room where the most
human activities take place 8. Since our WSN acquisition system is easily movable
and adaptable, the experiments are mainly carried out in this room (See Fig. 10.6).
The ANN models are automatically trained by every acquisition carried out and
stored in the database.
The results of the modeling in prototype and building room both positively sup-
ported our previous assumptions that the combination of WSN and ANN can be an
effective and workable solution modeling. These modeling results will be presented
in Chapter of Results and Discussion.

8. According to air-conditioning industries in France, the room temperature is usually evalua-
ted at the height of 1.10m.
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Figure 10.6 – Experiments in the room of E106 in University of Toulon
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11

Multi-Pattern Cross Training

11.1 Principle and application of Multi-Pattern Cross-
Training

As described in the previous chapter, we have conducted experiments with WSN
based ANN thermal modeling and the results are very positive. However, during the
phase of further testing established models, we found a practical problem : on one
hand, long term WSN data acquisition causes high data redundancy which leads to
low training efficiency and high computational cost in modeling. On the other hand,
short acquisition with limited duration is usually obtained under certain specific
conditions. Because environmental conditions change greatly, short acquisition as
a training source only contains limited information. The result is that the trained
ANN model has poor generalization performance. The model shows low prediction
error against its training data, but relatively higher predictions error against other
test data measured under different conditions. So, the question we raised here is
"Is it possible to use a single ANN model to obtain a more complete understanding
on the system’s behavior ?"
Indeed, there are existing well-known methods developed for training neural net-
works [79, 80]. however, they are not aimed to build a more comprehensive ANN
model. Perturbation method and sensitivity analyzing [81] can be used to improve
the training efficiency by reducing the redundancy as well as the input layer di-
mension. This method is very useful when the some of the network’s inputs are
correlated, which is not the case for us here.

The term "Cross Training" was originally defined as a training method for ath-
letes to improve their competitive performance in a certain sport by systematically
training in a variety of different sports [82]. Later, Gökhan H.Bakır has introduced
this concept into his research on SVMs training [83].
Here, we plant this concept into a new ANN model training method "Multi-Pattern
Cross Training"(MPCT) [76]. Using the internal properties of neural networks, this
training method is capable of merging knowledge from different training data pat-
terns into a single network model. Thus, by exploring the generality in the system
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behaviors, it can adequately be used to describe a more complete phenomena. Our
ANN modeling methodology is presented in Fig. 11.1 while the MPCT method is
highlighted in the bold black frame in the right part of Fig. 11.1

Figure 11.1 – Multi-Pattern Cross Training Method.
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The mechanism of MPCT method is presented below : The training source
consists of WSN sensor data which is called a session of acquisition (pattern) S(1)

9.
Acquisitions under different initial conditions have been made, so we have different
sessions of acquisitions "S(p)". The error function E is defined as the sum of squares
on the differences between the WSN sensor measured data (measured output) and
the network output yj. If we use on-line learning mode, the error obtained from
the data set n of pattern S(1) is :

ES(1)
(n) =

1

2

j=NL∑
j=1

(S(1)(j)− yj)
2 (11.1)

j is one output layer neuron, NL is the number of neurons in the output layer and
n is the sequence number of data set in a session of acquisition. Then,the weight
update value ∆ωij(n) as :

∆ωij(S(1))(n) = −η
∂ES(1)

(n)

∂ωij(n)
(11.2)

η is the learning rate which represents the step size on this gradient direction. At
the end of this training epoch, instead of recycling the weight update with pattern
S(1), we lead the training procedure to the training data sequence 1 in pattern S(2).
Here, we define the last data pattern sequence of session 1 is N1. We also introduce
the momentum term to incorporate the past weight updates into the present weight
update. Thus, the new weight update at the beginning of the second training epoch
can be put as :

∆ωij(S(2))(n) = −(1− α)η
∂ES(2)

(1)

∂ωij(n)
+ α∆ωij(S(1))(N1) (11.3)

where α is the momentum parameter which determines the amount of influence
from the previous weight update. n refers to the last data pattern sequence in
session 1.
So, if we define the two main variable in the equation below (Eq. (11.4) and Eq.
(11.5)) as the session number p, and the sequence number n while the total session
number is P and the last sequence count for session p is Np, we can thus translate
the MPCT method into computational language below :
If we define a nested loop with one outer loop and one inner loop :
The Outer loop is : for(p=1 ; p<=P ; p++).
The Inner loop is : for(n=1 ; n<=Np ; n++).
The general expression of MPCT method can be put as :

Outer loop (Inner loop (∆ωij(S(p))(n) =

−(1− α)η
∂ES(p)

(n)

∂ωij(n)
+ α∆ωij(S(p))(n− 1)))

(11.4)

9. A session of acquisition consists of sets of time-series sensor data collected during a certain
period
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Specially, when one training epoch is completed and the next epoch begins with
the next data session, the weight update is equal to :

∆ωij(S(p))(n) = −(1− α)η
∂ES(p)

(n)

∂ωij(n)
+ α∆ωij(S(p−1))(N(p−1)) (11.5)

The training procedure continues until the network error is less than the target
error which is considered sufficiently small.
To achieve expected modeling results with MPCT method, some preparations are
required. Initially, each training data session should be verified so that they contains
well-defined information of system behaviors. At the same time, the neural network
should be capable of recognizing these patterns’ behaviors. Secondly, it is essential
to ensure that the neural network could discern between different sessions of acqui-
sition. Therefore, it is necessary to have at least one input containing a particular
value for each session. This value allows the network to distinguish between the
difference in patterns. Thereby preventing the system from converge into one inter-
mediary solution. One special point that has to be made here : in order to make the
ANN model more practical, the selecting of data session should respect the phe-
nomena’s basic statistical distribution. For example, in our work of indoor thermal
modeling, two inputs are based on the outdoor condition. As our experiments are
carried out in the south of France, the presence of measured environmental data
session should obey with local Mediterranean climate statistical characteristics. For
example, data sessions obtained under extreme weather conditions should be avoi-
ded in the training data source.

11.1.1 Optimum network training parameters with MPCT

As shown in Fig. 11.1, the training of ANN model with MPCT requires different
sessions of acquisitions as a source of training. To find the best training parameters,
we provide a solution called automatic evaluation : the parameters can be selected
by a cyclic algorithm which is also presented in Fig. 11.1 : different sets of training
parameters are used to form network models, the model’s prediction errors on its
training data is then automatically calculated by the software. The combination
of parameters which leads to a minimum prediction error will be chosen by the
software.

The results of the MPCT training is shown in Chapter 12 of this thesis.
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Figure 11.2 – Auto-evaluation of ANN training parameters
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12

Model predictive control

12.1 Model Predictive Control (MPC)
While the linear model predictive control (LMPC) has been popular since the

70’s of last century, a growing attention constantly motivated the control practi-
tioners in the field of nonlinear model predictive control.
A major shortcoming of linear MPC is that linear dynamic models are used in
the description of the the control object’s (plant) behavior. The Linear MPC can
be inadequate in front of plants with high nonlinear dynamics or large operating
region with limited nonlinearities. Increasing demands from industries and produc-
tions have triggered the development of nonlinear MPC in which a more accurate
nonlinear dynamic model is used for the control process.

12.1.1 Principal theory of MPC

The basic idea of Model Predictive Control (MPC) can be understand as a
discrete-time state control method. It is based on choosing the best control strategy
over the whole control horizon. The selected actual control is applied to the plant
and then repeated until new state information is available. We can define a MPC
system here : the control at a consecutive sampling instant k is uk, the system’s
outputs (or states) are xk. Then, the output at sampling instant k + 1 is :

xk+1 = f(xk, uk, wk). (12.1)

where, x ∈ Rn is the system’s output (or state), the control input is u ∈ Rm(for
multivariable control system, m > 1) and the disturbance is w ∈ Rr. Especially, a
system without disturbance can be expressed as below :

xk+1 = f(xk, uk, 0) , f(xk, uk). (12.2)
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The control law can be described here : For every sampling instant, The diffe-
rence between the model predicted value of outputs (or states) over the prediction
horizon N and the referenced states’ trajectory over the control horizon Nu are
calculated for minimization. Only the first step of chosen control is applied to the
process :

uk = u(k|k) (12.3)

if we define the change of control value as ∆u, we have :

uk = ∆u(k|k) + u(k − 1). (12.4)

The procedure is repeated at the next sampling instant k + 1 with the update of
the process output (or states). The MPC’s optimization problem can be considered
as a finite horizon optimal control problem, if we define the Control Performance
Function is J(x), we have its expression :

J(k) =
N∑
i

∥x(k + i|k)− x̂(x+ i|k)∥2Ai
+

Nu−1∑
i=0

∥∆u(k + i|k)∥2Bi
. (12.5)

The first part of Eq. (12.5) represents the cost of prediction errors. The second
part represents the changes of control values. So the optimal performance index
function reads :

Vk = min
u(k;N)

J(k).

s.t.

xi+1|k = f(xi|k, ui|k), x0|k = xk,

xi|k ∈ X, ui|k ∈ U,

∀i = 0, 1, · · ·, N − 1.

(12.6)

Based on the principle of MPC, a basic neural network based MPC (NNMPC)
structure is presented in Fig.12.1. It mainly consists of a neural network plant
model and an optimizer, The model will predict the process’s outputs (or states)
over the prediction horizon N and enable the optimizer to find a best combination
of controls for the process.

Neural network based MPC (NNMPC)

One of the main drawbacks of nonlinear MPC is the computational cost of
nonlinear optimization process. The model of neural network can be made offline,
which can effectively reduce the computational cost online. In addition, the forma-
tion of a neural network model is unrelated to the length of the control horizon.
As a universal approximation, neural networks are widely used in both control and
modeling for its non-linear approximating ability.
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Optimizer

R(t)/Sp

+
Process

x(k)u(k)

Neural Network
Model

-

Model predicted x(k)

Figure 12.1 – Control schema of Neural Network based MPC

The basic idea of NNMPC is : one or more models of neural networks models are
used as the predictor. The multi-step prediction horizon control can be achieved,
and then the optimizer will choose the optimal control (See Fig.12.1).
If we define the Neural network model used for NNMPC is a three-layer back-
propagation(BP) network, then, Eq. (12.5) can be rewritten to the following form :

J(k) =
N∑
i

∥x(k)− xnn(k)∥2Ai
+

Nu−1∑
i=0

∥∆u(k + i|k)∥2Bi
. (12.7)
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We can consider that the output of the neural network model is :

xnn(k) = fnn(U(k − 1), Y (k − 1)), (12.8)

where fnn is the transfer function of the neural network model replacing the
model in Eq. (12.5). The relationship of the correspondent input/output can then
be put as :

xnn(k) =
N∑
i=1

W o
i σi(W

u
i U(k − 1) +W y

i x(k − 1) + bi) + b, (12.9)

where σi is the activation function of the neuron i in the hidden layer ; W u
i

represents the weight vector (row vector) for the neuron i from the input stored
in U(k − 1) ; W y

i represents the weight vector (row vector) for the neuron i from
the input stored in x(k − 1) ; bi represents the bias for the neuron i in the hidden
layer ; W o

i represents the weight of the output layer corresponding to neuron i in
the hidden layer ; b represents the bias for the output layer.
The principle of NNMPC is introduced in this section, while in the following part
of the thesis, we will give a detailed analysis of some shortcomings of NNMPC and
we will demonstrate how to use the MPCT method to improve the efficiency of
NNMPC.
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Model predictive control using
MPTC trained ANN models

13.1 ANN based model predictive control

One main objective of this thesis is to realize the optimal control using WSN
based ANN models. Since the ANN models we have developed are thermal models
of building rooms, the goal is to find the best strategy for control of the internal
heating/cooling source of buildings that the optimized heating/cooling control can
lead to a significant energy saving of buildings.

When a control system is designed, some initial steps must be taken to clarify
the operation of the system after a selection of the best control strategy to work
correctly. The first step is to define the control variables, i.e., parameters that
can modify the process in order to obtain the desired results. Knowing that the
aim is to control the temperature inside a room using information on the current
temperature and the control variables of the air conditioner. It is obvious that the
only modifiable factors are the parameters of the air conditioner, because there
is no way to produce an immediate control of the temperature at a specific point
of the room. Thus, the control parameters were determined by the types of the
parameters most often found in air conditioning systems which are the desired
temperature, air flow and the vertical angle of the heated air (see Fig. 13.1).

The control using neural networks is a research topic that has been developing
for many years [84, 85].So there is a wide range of methods and applications with
different characteristics. Among those that one that seemed most appropriate for
inclusion were the opposite Adaptive Control Model and Model Predictive Control,
these two methods have their characteristics, benefits and short-comings.
The control structure and the training of a neural network method of Adaptive
Inverse Control is presented in Fig. 13.2 below. The principle of this method is
to use a neural network to inversely predict the neural network’s inputs using the
given outputs. Thus, the opposite behavior of the system can be characterized. In
this way, it could determine the optimized the control parameters to achieve the
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Figure 13.1 – Different air emissions under different control parameters

desired control result. To use this method, the implemented model must be rever-
sible, also, the range of revised input-output must be small, so that the system
can stay around the point of stability. The advantage of this strategy is that the
control strategy is chosen entirely by the neural networks. For cons, the inverse
model must be trained online during the ordering process which can lead to high
computational cost. In addition, the strategy shows stability problems when used
in an area outside the driven area.
The method we have finally chosen is the neural network based model predictive
control (NNMPC) (presented in Chapter 9 of this thesis). The great advantage of
this method is that the control stability is ensured.

13.2 MPCT method based Model predictive control

Model Predictive Control (MPC) is one of few advanced control techniques
which has achieved great success in a variety of industrial applications[86, 87].
The advantages of MPC are dead time compensation, system constraints handling
and efficiency in multi-variable process control. Usually, when the control process
is nonlinear, a nonlinear dynamic model is applied to handle a larger operating
range. Neural Network as a universal approximator is widely used in Model Pre-
dictive Control for its nonlinear mapping ability [88, 89, 90, 91].
Multiple models have been combined in adaptive control system for a main pur-
pose of obtaining a more precise control, They use different models to characterize
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Figure 13.2 – Schema of Adaptive Inverse Control
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different operating status under variable conditions on the whole control horizon
[92, 93].Z. Ahmad, H.Jazayeri-Rad and A. Rabiee suggest that single NN model
is not able to extract all relevant information from data set, thus, by deploying
multiple neural network models in nonlinear MPC, better control performance can
be achieved [94, 95].
However, there are no detailed computational methodologies or software implemen-
tation introduced in these previous works. Thus, the control efficiency can not be
determined.
As a matter of fact, a main drawback of MPC is that it is usually used in process
with slow dynamics where the sample time is in seconds or minutes. The integration
of multi models will inevitably increases the MPC control system’s computation
load. Even the models are trained off-line, the MPC’s online computation time will
be longer than those with single model. This can limit the application of MPC
in fast process. We consider that if a single neural network model can adequately
understand and describe a system’s general behavior, it will be a more efficient
solution for MPC.
In order to compare the different control results of a multi-model based MPC, we
also implemented a multiple neural network model based MPC structure in our
control software interface (see Fig. 13.3.It uses a model selector to chose the best
fitted ANN model to make the prediction. However, to chose the best fitted model,
all existing models must be tested on every control step. This is the main extra
computational load compared to MPCT trained single model based control scheme
(see Fig. 13.4).
The test results will be presented in the next chapter of Results and discussion.
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14

Results and Perspectives

14.1 Modeling results on prototype and buildings
In the first section, the general ANN thermal modeling results is presented.

The test data pattern we used is obtained under similar conditions. The modeling
results on prototype are presented in Fig. 14.1 We compare the model response
regarding its training data in Fig. 14.1a , and regarding another measured test
data in Fig. 14.1b. The originally measured outputs (multiple sensors) are colored,
the model responses are in black.

In order to evaluate the modeling results, an Average Mean Squared Error
(AMSE) of the ANN model are presented in Tab. 14.1.
This value is calculated as below (see Eq. (14.1)-(14.2)). If we consider the model

Table 14.1 – Evaluation of modeling performance on prototype :
Performance Criteria AMSE

Par rapport à données d’entraînement 0.11◦C
Par rapport à données d’essais 0.17◦C

predictions output is T ′ and the measured temperature is T , the number of mea-
sures is n ; we have the Mean Squared Error (MSE) for one model output (one
sensor) is :

MSE =
1

n

n+1∑
i=2

(
T

′
(i)− T (i)

)2

(14.1)

the AMSE is the average MSE value of all the k outputs (k sensors) :

AMSE =
1

k

k∑
i=1

MSE(k) (14.2)

145



Chapitre 14. Results and Perspectives

a. Model response regarding training data

b. Model response regarding test data

Figure 14.1 – Modeling Results on prototype
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14.1. Modeling results on prototype and buildings

The results of real indoor thermal modeling results is presented in Fig. 14.2 ,
the model predictions are in black while measured data are lightly colored. The
model prediction errors are presented in Tab. 14.2

Model response regarding test data

Figure 14.2 – Modeling results in buildings

Table 14.2 – AMSE of ANN thermal model based on real building experiments
Performance Criteria AMSE

Par rapport à données d’entraînement 0.20 ◦C
Par rapport à données d’essais 0.27 ◦C

It is noticed that the AMSE of the building room thermal model is greater than
the AMSE on prototype modeling which is due to the so called similarity theory 10.

In order to verify all models’ performance, we calculated the AMSE of all the
models created individually from 20 different sessions of daily acquisitions, the
average prediction errors regarding its own training session is around 0.17 ◦C . Re-
garding the test data 11, the model’s prediction error is also considered appropriate
with a limited range from 0.20 ◦C to 0.29◦C.

10. Similarity theory is the theoretical basis of model experiments. It is usually used in Fluid
Mechanics to determine the requirement for experiments on prototype. In our case, the different
model prediction errors is due to the discrimination of both initial conditions and boundary
conditions on prototype and real buildings.

11. The test data is obtained under similar indoor/outdoor conditions
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The modeling results on prototype and building room both positively suppor-
ted our previous assumption. Based on the WSN thermal sensor data, ANN’s self-
adaptive learning and mapping ability makes it possible to provide accurate frame-
work for thermal modeling of a building room. The raw thermal data and model
predictions match the previous research on zonal model of buildings. It shows that
the temperature distribution inside the building room is not homogeneous. Dif-
ferent parts of room react differently to the heating source which is mainly due to
the thermal dynamics and air flow convention. This result indicates that the WSN
and ANN are capable of capturing the thermal characteristics of each part of the
room.
In order to characterize the thermal response of the room, a linear model derived
from the previously established ANN thermal model is considered valuable. By
simulating the step response of the trained ANN thermal models, the first order
model approximation on each part of the room can be realized. Based on these
simulations, the EITTC (Effective indoor thermal time constant, see Eq. (2.6)) can
then be evaluated.

Two examples of the ANN thermal model’s step responses are presented in
Fig. 14.3. We find that the models’ predictions on EITTC vary under different
indoor/outdoor conditions

To verify these ANN model’s predictions on indoor thermal time constant, we
compared the ANN models’ predicted time constants with real measured indoor
temperature’s characteristic time 12. This comparison indicates the consistency bet-
ween model’s prediction and real indoor thermal response. The results are presented
below in Tab. 14.3. Statistic computation has been made. The correlation rate bet-
ween the model predicted EITTC and the measured room characteristic time is
about 0.9526 (with a p-value p <0.041) and the average error is 0.85min with a
standard deviation of "0.1978".

In Tab. 14.3, Measured CT refers to the measured room Characteristic Time.
We noticed that the predicted time constants are shorter than the measured room
characteristic time. The main reason is that these time constants are simulated
from the step response of the ANN model. In reality, indoor temperature changes
resulting from air-conditioning always present certain delay. We traced the average
time constant of every ANN thermal models that created by daily acquisitions and
we compared them with the outdoor temperature during the spring and winter of
year 2012. The results are presented in Fig. 14.4

The models’ predictions show that the EITTC of this building room varies from
8.5 minutes to 13.4 minutes. This result can be discussed from different perspec-
tives.

12. We define the 63 percent of the time needed to heat the room from its initial indoor
temperature to a final stable level, in other words, it is the measured indoor time constant
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14.1. Modeling results on prototype and buildings

a. Model response the Feb.23, 2012

Model response the April.06, 2012

Figure 14.3 – The predicted thermal time constant on different date of the year
2012
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a. Spring 2012
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b. Winter 2012

Figure 14.4 – Compare the predicted indoor thermal time constant and the out-
door temperatures
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14.1. Modeling results on prototype and buildings

Table 14.3 – Model predicted room thermal time constants and measured room
characteristic time (minute)

Date Predicted TTC Measured CT Date Predicted TTC Measured CT

23/2/2012 12.3 12.9 13/10/2012 8.6 9
21/2/2012 12.2 12.7 17/10/2012 8.9 9.5
2/3/2012 12.7 11.5 25/10/2012 9 10
6/3/2012 13.1 14 28/10/2012 12.5 13.4
9/3/2012 12.1 14 30/10/2012 11.2 12
14/3/2012 10.9 11.2 3/11/2012 10.8 11.5
19/3/2012 10.6 11.4 9/11/2012 11 11.8
23/3/2012 9.1 10.9 12/11/2012 12.5 13.4
27/3/2012 8.7 9.6 16/11/2012 12.8 13.6
30/3/2012 8.9 9.8 20/11/2012 10.8 11.8
2/4/2012 8.8 9.5 26/11/2012 8.9 10
6/4/2012 8.9 9.9 28/11/2012 11.2 12.2
9/4/2012 8.5 9.7 30/11/2012 12.9 13.8
10/4/2012 9 10.4 5/12/2012 13.2 14.1
11/4/2012 8.9 10.5 14/12/2012 13.4 14.5
12/4/2012 9 10.7 20/12/2012 13 14

Firstly, we noticed that time constant changes in response of different envi-
ronmental factors, for example, the outdoor temperature. This fact highlights the
well-known existence of nonlinearity in the heat transfer phenomena in buildings.
Again, we take previous work [16] as a reference. In their mathematical model of
a building room, J. Florez and G.C. Barney made a main simplification that all
heat transport phenomena in building are linear. Thus, they calculated the room
thermal time constant in Eq. (2.2) According to Florez’s mathematical model, the
room thermal time constant does not change. On the contrary, our sensor data
based model predictions have shown that room time constant slightly varies under
different environmental conditions. This difference in return points out the fact
that the nonlinearity in heat transport phenomena in buildings are non-negligible
and it can be one main cause of the variable indoor thermal time constant. This
fact can be also stated in a more detailed mathematical thermal model (see Eq.
(2.6)).

Except for the existing non-linearity, other possible causes of variable EITTC
is related to the indoor air-conditioning system’s output. The heating/cooling sys-
tem’s efficiency can be the second reason for the variation of indoor thermal time
constant. In this work, the indoor heating/cooling source, as mentioned in the sec-
tion of experiment, is Toshiba RAS-167SKV-E3/Toshiba RAS-167SAV-E3. It is a
inverter air-conditioning system. As a result, its output heated air contains nonli-
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nearities, this can be considered as the second cause of the variable EITTC.
For building habitants, it is difficult to obtain the exact inner control mechanism of
their indoor air-conditioning system to make a quantitative analysis. This points
out again the advantage of our WSN and ANN combined solution : benefitting
from the universal approximating ability of ANN models, habitants can characte-
rize their indoor thermal effects without further computation or parameter estima-
tion on their existing heating/cooling system.
Based on the discussions above, the ANN thermal model is able to describe buil-
ding room’s thermal response adaptively. Further more, it could characterize the
existing control source’s heating effects in the building room under different out-
door conditions.

14.2 Energy efficient approaches

Energy consumption of residential and commercial facilities takes about 40% in
Europe and USA. In China, residential urban energy consumption tripled between
1996 and 2008 [12]. As a matter of fact, the energy consumption varies between
different types of buildings. For example, low energy efficient buildings (especially
old buildings more than 30 years) consume from 300 to 400kWh/m2/year, while
modern buildings consume approximately from 150 to 200kWh/m2/year [13]. The
improvement of energy efficiency in low energy efficient buildings can bring consi-
derable environmental and financial benefits.

The traditional way to optimize the building’s energy efficiency is to renovate
the building with new construction material, which is often expensive and time-
consuming. One important purpose of this thesis is to demonstrate that by esta-
blishing un accurate adaptive indoor thermal model, the indoor thermal response
can be characterized. Thus, the existing heating/cooling system’s efficiency can be
optimized.

As the most energy consuming periods for building room E106 located at this
latitude are the early spring and winter, in order to keep the room warm with stable
temperature, the air-conditioning system is activated all day long, sometimes even
during the night which generate great energy wastes.

To ameliorate this situation, we designed in this work a new indoor heating
control strategy called "Adaptive Start/Shut Control" which is based on the ANN
thermal model’s prediction. The necessity of adaptive Start/Shut control can be
illustrated in Fig. 14.5. The accurate Start/Shut control of indoor heating equip-
ment can lead to both indoor comfort and a minimum energy consumptions. Ho-
wever, the control performance depends on the accuracy of the the preheat time
estimations. As the WSN based ANN thermal model can provide precise predictions
on indoor temperature variations under different environmental conditions, we then
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14.2. Energy efficient approaches

designed an adaptive Start/Shut heating control strategy : firstly, the computer re-
cords the actual initial outdoor/indoor conditions from real measured WSN sensor
acquisitions. Secondly, the software uses the correspondent trained ANN thermal
model to make the calculation of the preheat time (tp) needed. Thirdly, calculation
will be made to find the optimum start time of indoor heating equipment based on
the occupancy start time and the model prediction (tin − tp). Finally, the software
generates control command and sends it to activate the heating system though the
controller. The same processus can be applied for an earlier shut-off of the heating
system(see Fig. 14.5) which brings direct energy savings.
This control method has been proved effective by experiments carried out during

Figure 14.5 – Heating Start/Shut operation in buildings

the spring 2013 in the room E1106. Normally, the heating system in this room is
activated from 8 :00 am to 6 :00 pm while the occupancy period is from 8 :45 am
(tin) to 5 :45 pm (tout). By deploying the proposed control method, the adaptive
start and shut off of heating system in controlled precisely based on model’s pre-
dictions under different indoor/outdoor conditions. Thus, the operating period of
the heating system is shortened. The control results are presented in Fig. 14.6.

Comparing to the previous Start/Shut operation of heating system (08 :00 am
to 6 :00 pm), the new control method has shortened the whole period up to an
average of 56 minutes (33 minutes saved for start control and 23 minutes saved for
shut-off control). If we consider the power of the heating system is constant, this
control method leads to an average energy saving of 9.3%.
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Figure 14.6 – Adaptive Start/Shut heating control results
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14.3 Modeling results by applying MPCT method

As presented in the previous section, the ANN model characterized the thermal
response on different points of a building room ; predicted temperature drops is
consistent with the real measurement. The model’s prediction error was very small
compared to the total indoor temperature variation. The results also suggest that
the ASME of the single pattern trained model is acceptable when it is applied to
similar test data. However, following experiments found that its performance is not
so convincing when facing test data which is measured under different indoor and
outdoor conditions.
We compared the model response regarding its training data session 84 in Fig.
14.7a, with that regarding test data session 86 in Fig. 14.7b. The originally mea-
sured outputs (multiple sensors) are colored, the model responses are in black.
It is apparent in Fig. 14.7 that a higher model prediction error is presented when
applying the model to testing data measured under different conditions. The main
reason, as explained in introduction, is that the single session of WSN acquisition
as training data contains limited information. So the trained network model cannot
cover the whole phenomena.
The modeling results using MPCT method are presented below in Fig. 14.8 Session
84 is one of the three training sessions used for this MPCT model while session
86 is a test data session which is not used in training the model. The originally
measured outputs (multiple sensors) are colored, the model responses are in black.
We found that models using Pattern Cross training Method have much lower pre-
diction errors regarding test data. The reason is that with MPCT method, the
trained model can merge knowledge from different training sources, understand
and cover a wider system behaviors. Thus, its generalization performance outper-
formed the model trained with single session.
Another particular argument for using the MPCT method should also be discussed
here. Based on the back-propagation algorithm, the MPCT method was used in
successive training epochs while alternating between the separated data sessions.
For each epoch, the neural network tends to adapt the model for the present data
session. Thus, by changing the input data session, the convergence direction changes
too. In this way, the presence of local minima can probably be avoided.
More experiments allowed us to further compare their different modeling results in
Tab.14.4. Trn pattern refers to the training data pattern while Tst Pattern refers to
Test data pattern. These experiments confirm again that models trained with the
MPCT method have lower prediction error on different test data. However, it indi-
cates that the increase of data sessions used in MPCT training does not guarantee
lower prediction errors. As we have mentioned in the introduction of this thesis,
the MPCT modeling quality is directly related to the capacity of the network and
the structuring of training data sessions. Limited differences or data redundancy
in the selected data sessions may cause low efficiency of MPCT training.

More experiments allowed us to further compare their different modeling re-
sults in Tab. 14.4. Trn pattern refers to the training data pattern while Tst Pattern
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a. model response regarding training data

b. model response regarding the test data which measured under different conditions

Figure 14.7 – Modeling performance of single pattern trained ANN model

156



14.3. Modeling results by applying MPCT method

a. Model response regarding one of the three training data

b. model response regarding the test data which measured under different conditions.

Figure 14.8 – Modeling performance of ANN model trained with MPCT training
method
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refers to Test data pattern. These experiments confirm again that models trained
with the MPCT method have lower prediction error on different test data. Howe-
ver, it indicates that the increase of data sessions used in MPCT training does
not guarantee lower prediction errors. As we have mentioned in the introduction
of this paper, the MPCT modeling quality is directly related to the capacity of
the network and the structuring of training data sessions. Limited differences or
data redundancy in the selected data sessions may cause low efficiency of MPCT
training.

Table 14.4 – Comparing the performance between single pattern trained model
and MPCT trained model

Data AMSE (Seule session) AMSE (Multi sessions(MPCT))
Data Session Single session 2 sessions 3 sessions 4 sessions

Trn sessions 1 0.1179 0.1292 0.131 0.1194
Trn sessions 2 - 0.1479 0.131 0.1394
Trn sessions 3 - 0.1214 0.1105 0.1240
Trn sessions 4 - 0.1501 0.1571 0.1724

Tst sessions 1 0.2142 0.212 0.1982 0.2038
Tst sessions 2 0.9571 0.2720 0.2589 0.2990
Tst sessions 3 1.4172 0.2435 0.2724 0.2865
Tst sessions 4 2.2414 0.3675 0.2959 0.3745
Tst sessions 5 2.5720 0.2514 0.3720 0.2984

14.4 Model prediction control based on MPCT
method

The shortcoming of single pattern trained neural model is that the information
it gets from the training data is limited which is the main reason that multi-models
are used in MPC. However, the MPCT trained model shows the ability to absorb
and distinguish different behavior from multiple training patterns. We present here
in Fig. 14.9 the model’s first step prediction on the prediction horizon with different
emission airflow angle. We can find that the MPCT trained single network model
characterized the different system response with different input combinations.
The optimizer will repeat this operation until all the feasible control parameter
combinations have been tried. By comparing their performances, the optimizer
give the plant the best parameters for the second step control. Fig. 14.10 presents
the different model prediction errors. When the air-conditioner’s compressor works
at its maximum level, we can find that the best parameter combination is emission
power max with the airflow angle equals to 45◦.
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a. Model prediction with airflow max

b. Model prediction with airflow min

Figure 14.9 – Different step predictions made from the MPCT trained model on
the control horizon
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Another advantage of using MPCT trained model in MPC control is its efficiency.

Figure 14.10 – The first step prediction comparison.

The online calculation speed is much faster than Multiple model based MPC
control : we tested the same control process (The indoor thermal MPC control
action composite of 420 controls combinations and a horizon of 48 time steps) with
both different control methods on two different computers, With the multiple mo-
del structure, the time consumed for a complete iteration is relatively long : On
a computer with Duo core 2.1 GHz and a OS of 32bits, it costs a average of 860
millisecond while on a computer with Duo core 2.8 GHz, it costs 750 milliseconds,
while the results for a MPCT trained single model on the same control process
cost 30 milliseconds and 21 milliseconds separately on these two computers. This
means our MPCT model based MPC can be operated at 50Hz for such a compli-
cated control process, about 35 times faster than multiple model based MPC.
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Conclusion

15.1 Conclusion

This thesis established that the combination of WSN (real-time acquisition)
and ANN (system Identification tool) leads to accurate modeling results. The fine
grained thermal models of both prototype and faculty building room positively
highlighted consistent results. By tracing the characteristics time constant of the
linear approximation of the ANN thermal model, we can characterize the existing
control source’s heating/cooling effects under different outdoor conditions. These
results have been confirmed by statistical computations since a strong correlation
have been found between the model predicted room time constant and real measu-
red characteristic time of the building room. Optimal control methods have been
tested.
We also presented a training method "Multi-Pattern Cross Training"(MPCT). This
training method makes it possible to train a single ANN model with multiple trai-
ning data sessions. Experiments of WSN sensor data based building ANN thermal
modeling show that the Cross Training ANN model outperformed model trained
with single training data pattern on the model’s generalization performance. Model
trained with MPCT method shows lower prediction errors. We also demonstrated
in this work that MPCT method can be used to optimize the control efficiency of
multivariable-MPC by 20 times
Further research and explorations will be made mainly in two aspects : firstly, ta-
king advantage of the high energy efficiency of our WSN system (battery life over
30 days), long term measurement on the purpose of enriching the thermal Model
will be necessary. Secondly, based on the indoor ANN thermal models, real-time
control with optimize energy consumption could be realized. Yet, the ultimate goal
of MPCT is to use minimum training data sessions to obtain a model with the best
generalization performance. To realize this, further exploration can be done in the
following aspect : to find the optimum combination of neural network capacity and
the structuring of training data sessions.
It seems that not only WSN and ANN have a great potential in modeling appli-
cations on a variety of domains, but also it appears that WSN and ANN together
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can bring huge changement : after 30 years of the ice age in the classical neural
network and modern artificial intelligence communities, they have both glowed tre-
mendously in recent years. The research results of machine learning, deep learning,
big data have been successfully employed in voice and image processing (Iphone
serri) and many internet services. For the first time, we planted intelligence in "ma-
chines", Imaging the picture that intelligent machines connected each other with
WSN. That is the inevitable future.

Conclusion in French
Cette thèse a établi que la combinaison de WSN (acquisition en temps réel )

et ANN (outil d’identification du système) conduit à des résultats de modélisation
précis. Les modèles thermiques à grains fins établies de prototypes et une salle du
bâtiment de la faculté exposées positive des résultats cohérents. En traçant des
caractéristiques constantes de l’approximation linéaire du modèle thermique ANN
temps, nous pouvons caractériser chauffage/refroidissement des effets de la source
de contrôle existant dans différentes conditions extérieures. Ces résultats ont été
confirmés par des calculs statistiques depuis une forte corrélation a été trouvée
entre le modèle a prédit constante et en temps réel chambre temps caractéristique
mesurée de la salle de musculation . Méthodes de contrôle optimal ont été propo-
sées.
Nous avons également proposé une méthode de formation "Formation de la Croix-
Multi- Pattern" ( MPCT ) . Cette méthode de formation permet de former un seul
modèle ANN avec plusieurs sessions de données d’entraînement . Expériences de
données de capteurs WSN basées bâtiment ANN spectacle de modélisation ther-
mique que le modèle ANN de formation Croix surperformé modèle formé avec le
modèle de données unique de formation sur la performance de généralisation du
modèle. Formé avec la méthode MPCT modèle montre les erreurs de prévision in-
férieurs. Nous avons également démontré dans ce travail que la méthode MPCT
peut être utilisé pour optimiser l’efficacité du contrôle des variables multiples MPC
de 20 fois
Des recherches et des explorations seront effectués principalement dans deux as-
pects : d’une part , profitant de la grande efficacité énergétique de notre système
de WSN (autonomie de plus de 30 jours), la mesure à long terme sur le but d’en-
richir le modèle thermique sera nécessaire. Deuxièmement, sur la base des modèles
thermiques ANN intérieures , le contrôle en temps réel la consommation d’énergie
d’optimiser pourrait être réalisé. Pourtant, le but ultime de MPCT est d’utiliser
des sessions de données minimales de formation pour obtenir un modèle avec la
meilleure performance de généralisation. Pour réaliser cela, une exploration plus
poussée peut être fait dans l’aspect suivant : Pour trouver la combinaison optimale
de la capacité de réseau neuronal et la structuration des sessions de données d’en-
traînement.
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More detailed code is available by requesting to yzhao@univ-tln.fr

1cm
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.1 Embedded code for MRF24J40MA and PIC18LF4520
Voici la fonction utilisée générale pour envoyer les messages :

void Send_Message_by_long_address
(BYTE report_type , BYTE commande ,
BYTE complement , char ∗ data , char Address [ 8 ] )
{
char ∗ ptr =data ;
// v ide l e bu f f e r
TxPayLoad ( ) ;
WriteData ( report_type ) ;

WriteData (commande ) ;
WriteData ( complement ) ;
whi l e (∗ ptr != NULL)
{
WriteData (∗ ptr++);
}
SendReportByLongAddress ( Address ) ;
}

Message reception

i f ( RxPacket ( ) )
{
switch (∗pRxData++)
{
case MIWI_USER_REPORT:
switch (∗pRxData++)
{
case SET_DIGITAL_OUTPUT:
switch (∗pRxData++)
{
case 0x01 : // LED n1
switch (∗pRxData++)
{
case 0x01 :
LED_1=0;
ConsolePutROMString ( (ROM char ∗) "LED1␣ : ␣OFF␣\ r \n" ) ;
break ;

case 0x02 :
LED_1=1;
ConsolePutROMString ( (ROM char ∗) "LED1␣ : ␣ON␣\ r \n" ) ;
break ;
}
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break ;

case 0x02 :
switch (∗pRxData++) // l a donnée : on al lume ou on é t e i n t ?
{
case 0x01 :
LED_2=0;
ConsolePutROMString ( (ROM char ∗) "LED2␣ : ␣OFF␣\ r \n" ) ;
break ;
case 0x02 :
ConsolePutROMString ( (ROM char ∗) "LED2␣ : ␣ON␣\ r \n" ) ;
break ;
}
break ;
}
break ;
}

.2 Main functions of Embedded code on MC13224
BeeApp.c :

// Pr ivate type d e f i n i t i o n s

#de f i n e RFDSensorReportTime_c 5000//
#de f i n e RouterSensorReportTime_c 2000//
#de f i n e RunReportTime_c 300//
#de f i n e mAppRxFromUart_c (1 << 2) /∗ 0x0004 ∗/

void BeeAppTask ( event_t events ) ;
void BeeAppDataIndication ( void ) ;
void BeeAppDataConfirm ( void ) ;
u int8 RfSendData ( u int16 addr , u int8 ∗buf , u int8 Leng ) ;
u int8 RfSendData ( u int16 addr , u int8 ∗buf , u int8 Leng ) ;
u int8 CheckUartData ( u int8 ∗ arr , u int8 n ) ;
s t a t i c void UartRxCallBack ( void ) ;
void UartRxComCallBack ( void ) ;
s t a t i c void UartTxCallBack ( unsigned char const ∗pBuf ) ;
void SensorTimerCallBack ( tmrTimerID_t t imerId ) ;
void NetworStartSucc ( void ) ;
void RunTimerCallBack ( tmrTimerID_t t imerId ) ;

∗ Publ ic memory d e c l a r a t i o n s
/
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tmrTimerID_t appTimerId ; /∗ f o r use in r epo r t i ng ∗/
tmrTimerID_t RunTimerId ; /∗ f o r use in r epo r t i ng ∗/
zbClusterId_t appDataCluster ;
zbEndPoint_t appEndPoint ;
u int8 Runflag = 0 ;
u int8 NewNodeDispTime = 0 ;
uint8_t NetState = mStateIdle_c ; //
u int8 HaveFlag ; //

NvDataItemDescription_t const gaNvAppDataSet [ ] = {
gAPS_DATA_SET_FOR_NVM,
{&gZclCommonAttr ,
s i z e o f ( zclCommonAttr_t )} ,
{&gAslData , s i z e o f (ASL_Data_t)} ,
{NULL, 0}

} ;

union f1 {
u int8 RxBuf [ 3 2 ] ;
s t r u c t UARTCOMBUF
{

uint8 Head ;
u int8 HeadCom [ 3 ] ;
u int8 Laddr [ 8 ] ;
u int8 Saddr [ 2 ] ;
u int8 DataBuf [ 1 6 ] ;
u int8 CRC;

uint8 LastByte ;
}RXDATA;

}UartRxBuf ;

union e{
uint8 TxBuf [ 3 2 ] ;
s t r u c t UARTBUF
{

uint8 Head ;
u int8 HeadCom [ 3 ] ;
u int8 Laddr [ 8 ] ;
u int8 Saddr [ 2 ] ;
u int8 DataBuf [ 1 6 ] ;
u int8 CRC;

uint8 LastByte ;
}TXDATA;

}UartTxBuf ;
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s t r u c t j o i n
{
u int8 RfdCount ;
u int8 RouterCount ;
u int8 RfdAddr [ 2 0 ] [ 1 0 ] ;
u int8 RouterAddr [ 2 0 ] [ 1 0 ] ;

}JoinNode ;

union h{
uint8 RxBuf [ 2 9 ] ;
s t r u c t RFRXBUF
{

uint8 HeadCom [ 3 ] ;
u int8 Laddr [ 8 ] ;
u int8 Saddr [ 2 ] ;
u int8 DataBuf [ 1 6 ] ;
}RXDATA;

}RfRx ;

union j {
u int8 TxBuf [ 2 9 ] ;
s t r u c t RFTXBUF
{

uint8 HeadCom [ 3 ] ;
u int8 Laddr [ 8 ] ;
u int8 Saddr [ 2 ] ;
u int8 DataBuf [ 1 6 ] ;
}TXDATA;

}RfTx ; //
// I n i t i a l i z e the app l i c a t i o n .

void BeeAppInit
(
void
)

{
uint8_t i ;

In i tLcd ( ) ;

TurnOnDisp ( ) ; //

f o r ( i =0; i<gNum_EndPoints_c ; ++i )
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{
( void ) AF_RegisterEndPoint ( endPointLis t [ i ] . pEndpointDesc ) ;

}
appEndPoint = endPointLis t [ 0 ] . pEndpointDesc
−>pSimpleDesc−>endPoint ;

Copy2Bytes ( appDataCluster , endPointLis t [ 0 ] . pEndpointDesc
−>pSimpleDesc−>pAppInClusterList ) ;

UartX_SetRxCallBack ( UartRxCallBack ) ;
appTimerId = TMR_AllocateTimer ( ) ;
RunTimerId = TMR_AllocateTimer ( ) ;
ASL_InitUserInter face ( "HaGenericApp" ) ;

}

u int8 RfSendData ( u int16 addr , u int8 ∗buf , u int8 Leng )
{
afAddrInfo_t addrIn fo ;
zbStatus_t s t a t e ;

addrIn fo . dstAddrMode = gZbAddrMode16Bit_c ;
addrIn fo . dstAddr . aNwkAddr [ 0 ] = ( u int8 ) addr ;

addrIn fo . dstAddr . aNwkAddr [ 1 ] = addr>>8;
addrIn fo . dstEndPoint = 8 ;

addrIn fo . srcEndPoint = appEndPoint ;
addrIn fo . txOptions = gApsTxOptionNone_c ;
addrIn fo . radiusCounter = afDefaultRadius_c ;

/∗ s e t up c l u s t e r ∗/
Copy2Bytes ( addrIn fo . aCluster Id , appDataCluster ) ;

/∗ send the data r eque s t ∗/
s t a t e = AF_DataRequest(&addrInfo , Leng , buf , NULL) ;
i f ( s t a t e == gZbSuccess_c )
{
re turn 1 ;

}
e l s e
{
re turn 0 ;

}
}

u int8 CheckUartData ( u int8 ∗ arr , u int8 n)
u int8 CheckUartData ( u int8 ∗ arr , u int8 n)
{
u int8 sum=0;
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uint8 i ;
f o r ( i =0; i<n ; i++)
{
sum += ∗ ar r ;
a r r++;

}
re turn sum ;

}
s t a t i c void UartRxCallBack ( void )
{

unsigned char byte ;
s t a t i c char count = 35 ;

i f (UartX_GetByteFromRxBuffer(&byte ) )
{
i f ( ( byte == ’&’ ) && ( count > 31))
{
UartRxBuf . RxBuf [ 0 ] = ’&’ ;
count = 1 ;

}
e l s e i f ( ( byte == ’ ∗ ’ ) && ( count == 31))
{
UartRxBuf . RxBuf [ count ] = byte ;
count++;
TS_SendEvent (gAppTaskID , mAppRxFromUart_c ) ;
}
e l s e i f ( count < 31)
{
UartRxBuf . RxBuf [ count ] = byte ;
count++;
}
e l s e

{
count++;
}
}

}

void SensorTimerCallBack (
tmrTimerID_t t imerId
)

{
( void ) t imerId ;

TMR_StopTimer( appTimerId ) ;
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memset (UartTxBuf . TxBuf , ’ x ’ , 3 2 ) ;

UartTxBuf .TXDATA. Head = ’&’ ;
memcpy(UartTxBuf .TXDATA.HeadCom, UartRxBuf .RXDATA.HeadCom , 3 ) ; //
memcpy(UartTxBuf .TXDATA. Laddr , UartRxBuf .RXDATA. Laddr , 8 ) ; //
UartTxBuf .TXDATA. DataBuf [ 0 ] = ’E ’ ;
UartTxBuf .TXDATA. DataBuf [ 1 ] = ’ 2 ’ ; //
UartTxBuf .TXDATA.CRC = CheckUartData(&UartTxBuf . TxBuf [ 1 ] , 2 9 ) ;
UartTxBuf .TXDATA. LastByte = ’ ∗ ’ ;
Uart1_Transmit (UartTxBuf . TxBuf , 32 , UartTxCallBack ) ; //
}

//The app l i c a t i o n task .
void BeeAppTask

(
event_t events /∗IN : events f o r the app l i c a t i on task ∗/
)

{
/∗ r e c e i v ed one or more data conf i rms ∗/
i f ( events & gAppEvtDataConfirm_c )
BeeAppDataConfirm ( ) ;

/∗ r e c e i v ed one or more data i n d i c a t i o n s ∗/
i f ( events & gAppEvtDataIndication_c )
BeeAppDataIndication ( ) ;

/∗ ZCL s p e c i f i c ∗/
i f ( events & gAppEvtAddGroup_c)
ASL_ZclAddGroupHandler ( ) ;

i f ( events & gAppEvtStoreScene_c )
ASL_ZclStoreSceneHandler ( ) ;

i f ( events & gAppEvtSyncReq_c )
ASL_Nlme_Sync_req(FALSE) ;

i f ( events & mAppRxFromUart_c) //
UartRxComCallBack ( ) ;

i f ( events & gNetworkOver ) //
NetworStartSucc ( ) ;

}

// Process incoming ZigBee over−the−a i r messages
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void BeeAppDataIndication ( void )
{
u int8 i , j ;
char a r r [ 2 0 ] ;
s t a t i c char s t a t e = 0 ;
apsdeToAfMessage_t ∗pMsg ;
zbApsdeDataIndication_t ∗ pInd i ca t i on ;

i f ( s t a t e )
{
LED_SetLed(LED2, gLedOn_c ) ;
s t a t e = 0 ;

}
e l s e
{
LED_SetLed(LED2, gLedOff_c ) ;
s t a t e = 1 ;

}
whi l e (MSG_Pending(&gAppDataIndicationQueue ) )
{

pMsg =
MSG_DeQueue( &gAppDataIndicationQueue ) ;

p Ind i ca t i on =
&(pMsg−>msgData . da ta Ind i ca t i on ) ;
FLib_MemCpy(RfRx . RxBuf , p Ind icat ion−>pAsdu , 2 9 ) ;

i f ( (RfRx .RXDATA.HeadCom [ 0 ] == ’ J ’ )
&& (RfRx .RXDATA.HeadCom [ 1 ] == ’O’ )
&& (RfRx .RXDATA.HeadCom [ 2 ] == ’N ’ ) ) //
{
i f ( (RfRx .RXDATA. DataBuf [ 0 ] == ’R ’ )
&& (RfRx .RXDATA. DataBuf [ 1 ] == ’F ’ )
&& (RfRx .RXDATA. DataBuf [ 2 ] == ’D’ ) ) //
{

NewNodeDispTime = 8 ;
Pr int (2 , 5 , "New␣RFD␣Jion . . . " , 1 ) ;

f o r ( i =0; i <8; i++)
{
JoinNode . RfdAddr [ JoinNode . RfdCount ] [ i ] =

RfRx .RXDATA. Laddr [ i ] ;
}
f o r ( i =0; i <2; i++)

{
JoinNode . RfdAddr [ JoinNode . RfdCount ] [8+ i ] =

RfRx .RXDATA. Saddr [1− i ] ;
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}

f o r ( j =0; j<JoinNode . RfdCount ; j++)//
{
HaveFlag = 1 ;
f o r ( i =0; i <8; i++)
{
i f ( JoinNode . RfdAddr [ JoinNode . RfdCount ] [ i ] !=
JoinNode . RfdAddr [ j ] [ i ] )

{
HaveFlag = 0 ;
break ; //
}
}
i f ( HaveFlag == 0) cont inue ;
JoinNode . RfdCount−−;//ÊÇ
JoinNode . RfdAddr [ j ] [ 8 ] = RfRx .RXDATA. Saddr [ 1 ] ;
JoinNode . RfdAddr [ j ] [ 9 ] = RfRx .RXDATA. Saddr [ 0 ] ; //
break ;

}
JoinNode . RfdCount++;

}
e l s e i f ( (RfRx .RXDATA. DataBuf [ 0 ] == ’R ’ )
&& (RfRx .RXDATA. DataBuf [ 1 ] == ’O’ )
&& (RfRx .RXDATA. DataBuf [ 2 ] == ’U ’ ) ) //
{

NewNodeDispTime = 8 ;
Pr int (2 , 5 , "New␣ROU␣Jion . . . " , 1 ) ;
f o r ( i =0; i <8; i++)

{
JoinNode . RouterAddr [ JoinNode . RouterCount ] [ i ] =
RfRx .RXDATA. Laddr [ i ] ;
}
f o r ( i =0; i <2; i++)
{
JoinNode . RouterAddr [ JoinNode . RouterCount ] [8+ i ] =
RfRx .RXDATA. Saddr [1− i ] ;
}

f o r ( j =0; j<JoinNode . RouterCount ; j++)//
{
HaveFlag = 1 ;
f o r ( i =0; i <8; i++)
{
i f ( JoinNode . RouterAddr [ JoinNode . RouterCount ] [ i ] !=
JoinNode . RouterAddr [ j ] [ i ] )

{
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HaveFlag = 0 ;
break ; //

}
}
i f ( HaveFlag == 0) cont inue ;
JoinNode . RouterCount−−;//ÊÇ
JoinNode . RouterAddr [ j ] [ 8 ] = RfRx .RXDATA. Saddr [ 1 ] ;
JoinNode . RouterAddr [ j ] [ 9 ] = RfRx .RXDATA. Saddr [ 0 ] ;
break ;

}
JoinNode . RouterCount++;

}
}
e l s e i f ( (RfRx .RXDATA.HeadCom [ 0 ] == ’P ’ )

&& (RfRx .RXDATA.HeadCom [ 1 ] == ’R ’ )
&& (RfRx .RXDATA.HeadCom [ 2 ] == ’E ’ ) ) //
{
memcpy( arr , &RfRx .RXDATA. Laddr [ 0 ] , 8 ) ;
a r r [ 8 ] = ’ : ’ ;
a r r [ 9 ] = RfRx .RXDATA. DataBuf [ 0 ] ;
a r r [ 1 0 ] = RfRx .RXDATA. DataBuf [ 1 ] ;

a r r [ 1 1 ] = ’ ␣ ’ ;
a r r [ 1 2 ] = ’ ␣ ’ ;
a r r [ 1 3 ] = ’ ␣ ’ ;
a r r [ 1 4 ] = ’ \0 ’ ;
NewNodeDispTime = 4 ;
Pr int (2 , 5 , ( u int8 ∗) arr , 1 ) ;

}
e l s e
{
TMR_StopTimer( appTimerId ) ;

UartTxBuf .TXDATA. Head = ’&’ ;
memcpy(&UartTxBuf . TxBuf [1 ] ,&RfRx . RxBuf [ 0 ] , 2 9 ) ;
f o r ( i =0; i <8; i++)
{
UartTxBuf .TXDATA. Laddr [ i ] =

RfRx .RXDATA. Laddr [ i ] ;
}
f o r ( i =0; i <2; i++)
{
UartTxBuf .TXDATA. Saddr [ i ] =

RfRx .RXDATA. Saddr [1− i ] ;
}
UartTxBuf .TXDATA.CRC =

CheckUartData(&UartTxBuf . TxBuf [ 1 ] , 2 9 ) ;
UartTxBuf .TXDATA. LastByte = ’ ∗ ’ ;
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Uart1_Transmit (UartTxBuf . TxBuf , 32 , UartTxCallBack ) ;
}

AF_FreeDataIndicationMsg (pMsg ) ;
}

}

.3 Embedded code on CC2530

void ProcessReceivedUartMessage ( u int8 ∗ rcvBuf fe r , s i ze_t l ength )
{

// Syntaxe des messages r eçus de l ’UART
s t a t i c afIncomingMSGUart_t∗ msg ;
s t a t i c u int8 msgRxUARTEnCours = 0 ;
s t a t i c i n t i nd i c e ;

f o r ( i n t i = 0 ; i < length ; ++i )
{
u int8 rcvChar = rcvBu f f e r [ i ] ;
i f ( !msgRxUARTEnCours && rcvChar == 0x02 )
{

// On a un début de cha ine
i nd i c e =0;
msgRxUARTEnCours=1;
msg =
( afIncomingMSGUart_t ∗) osal_msg_allocate
( s i z e o f ( afIncomingMSGUart_t ) ) ;

msg−>hdr . event = UART_MSG_RECEIVED_EVT;
msg−>command = 0 ;
msg−>destShortAddress = 0 ;
msg−>payloadLength = 0 ;
}
e l s e i f (msgRxUARTEnCours)
{

switch ( i nd i c e )
{
case 0 :
//Récupère l a shor t address de d e s t i n a t i on
msg−>destShortAddress = ( uint16 ) ( rcvChar)<<8;
++ind i c e ;
break ;
case 1 :
//On t r a i t e l e b i t de po ids f a i b l e de l a shor t address
msg−>destShortAddress += ( uint16 ) ( rcvChar ) ;
++ind i c e ;
break ;
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case 2 :
//On t r a i t e l e b i t de po ids f o r t de l a commande
msg−>command = ( uint16 ) ( rcvChar)<<8;
++ind i c e ;
break ;
case 3 :
//On t r a i t e l e b i t de po ids f a i b l e de l a commande
msg−>command += ( uint16 ) ( rcvChar ) ;
++ind i c e ;
break ;
case 4 :
//On t r a i t e l e b i t de po ids f o r t de l a longueur
msg−>payloadLength = ( uint16 ) ( rcvChar)<<8;
++ind i c e ;
break ;
case 5 :
//On t r a i t e l e b i t de po ids f a i b l e de l a longueur
msg−>payloadLength += ( uint16 ) ( rcvChar ) ;
i f (msg−>payloadLength > 256)
goto e r r o r ;
++ind i c e ;
break ;
d e f au l t :
msg−>payload [ ind i c e −6] = rcvChar ;
++ind i c e ;
i f ( i n d i c e > msg−>payloadLength+6)
{
msgRxUARTEnCours=0;
i f ( rcvChar == 0x03 )
{
//La t a i l l e e s t bonne on t r a i t e l e message
osal_msg_send (GenericApp_TaskID , ( u int8 ∗)msg ) ;

}
e l s e
{
// e r r o r

e r r o r :
msgRxUARTEnCours=0;
osal_msg_deal locate ( ( u int8 ∗)msg ) ;

}
}
}
}

}
}

void ProcessRece ivedZigbeeMessage ( afIncomingMSGPacket_t ∗MSGpkt)
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{
uint8 ∗ rxPacket = MSGpkt−>cmd . Data ;
u int16 msgRxZigbeeTotalLength = MSGpkt−>cmd . DataLength ;
u int16 msgRxZigbeeOriginAddress = MSGpkt−>srcAddr . addr .

shortAddr ;

//Analyse et check du message

//Récupère l a commande
uint16 msgRxZigbeeCommand ;
msgRxZigbeeCommand = ( uint16 ) ( rxPacket [2] <<8);
msgRxZigbeeCommand += ( uint16 ) ( rxPacket [ 3 ] ) ;

//Récupère l a t a i l l e
s i ze_t msgRxZigbeePayloadLength ;
msgRxZigbeePayloadLength = ( uint16 ) ( rxPacket [4] <<8);
msgRxZigbeePayloadLength += ( uint16 ) ( rxPacket [ 5 ] ) ;

i f ( msgRxZigbeePayloadLength==
msgRxZigbeeTotalLength−6)

{
//Les t a i l l e s sont i d en t i qu e s − a p r i o r i ok

i f (msgRxZigbeeCommand==POWER_MODE_SAVE_ENERGY)
{

osal_pwrmgr_device (PWRMGR_BATTERY) ;
osal_pwrmgr_task_state ( GenericApp_TaskID , PWRMGR_CONSERVE) ;
}
e l s e i f (msgRxZigbeeCommand==POWER_MODE_ALWAYS_ON)
{

osal_pwrmgr_device (PWRMGR_ALWAYS_ON) ;
osal_pwrmgr_task_state ( GenericApp_TaskID , PWRMGR_HOLD) ;
}

#i f n d e f RTR_NWK
e l s e i f (msgRxZigbeeCommand == 0x30 )
{

SendZigBeeAddress (NWK_PAN_COORD_ADDR, NLME_GetExtAddr ( ) ) ;
}
e l s e i f (msgRxZigbeeCommand == 0x31 )
{

SendPingResponse ( ) ;
}

#end i f
e l s e i f (msgRxZigbeeCommand == THERMO_REPORT)
{
P1_0=!P1_0 ;
SendUartMsg ( msgRxZigbeeOriginAddress , msgRxZigbeeCommand ,
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msgRxZigbeePayloadLength , rxPacket+6 ) ;
}
e l s e
{ // No c l a s s i c envoi i s needed here .
//Sinon , envoi c l a s s i q u e : forward du z i gbee ve r s l e UART
//SendUartMsg ( msgRxZigbeeOriginAddress , msgRxZigbeeCommand ,
msgRxZigbeePayloadLength , rxPacket+6 ) ;

//P1_0=!P1_0 ;
}
}
e l s e
{
// Inva l i d message

}
}

@fn SendZigbeeMsg
∗
∗ @br ie f Envoie un message formaté sur l e Zigbee
∗
∗ @param none
∗
∗ @return none
∗/
void SendZigbeeMsg ( u int16 address , u int16 command ,

s i ze_t length , u int8 ∗ payload )
{

uint16 msgTxZigbeeOriginShortAddress = NLME_GetShortAddr ( ) ;
g_msgTxZigbee [ 0 ] = ( u int8 ) ( msgTxZigbeeOriginShortAddress >> 8 ) ;
g_msgTxZigbee [ 1 ] = ( u int8 ) ( msgTxZigbeeOriginShortAddress ) ;
g_msgTxZigbee [ 2 ] = ( u int8 ) ( command >> 8 ) ;
g_msgTxZigbee [ 3 ] = ( u int8 ) ( command) ;
g_msgTxZigbee [ 4 ] = ( u int8 ) ( l ength >> 8 ) ;
g_msgTxZigbee [ 5 ] = ( u int8 ) ( l ength ) ;
osal_memcpy ( g_msgTxZigbee+6, payload , l ength ) ;

// Preparat ion du message
// Envoi du message AF
GenericApp_DstAddr . addr . shortAddr = address ;
AF_DataRequest ( &GenericApp_DstAddr , &GenericApp_epDesc ,
GENERICAPP_CLUSTERID,
l ength+6,
g_msgTxZigbee ,
&GenericApp_TransID ,
AF_DISCV_ROUTE, AF_DEFAULT_RADIUS ) ;
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}
void ZigbeeTempReport ( )
{

// my_short_addr= _NIB. nwkDevAddress ;
fValue=0;
//ADC Conf igurat ion
// f o r ( i =0; i <10; i++)
ADCIF = 0 ;
// Clear s the ADC in t e r r up t f l a g
ADCCON3 = 0xB5 ;
//0xB5 uses VDD;
ADCCON1 &= 0x70 ;
//Waits f o r conve r s t i on to f i n i s h
whi l e ( ! (ADCCON1 & 0x80 ) ) ;

Send_T_MSG[0]= ADCH;
Send_T_MSG[1]= ADCL;
P1_0=!P1_0 ;

SendZigbeeMsg (NWK_PAN_COORD_ADDR, THERMO_REPORT,2 ,Send_T_MSG) ;
}
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