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Abstract

As part of the LHC Injectors Upgrade Project, the CERN PS Booster (PSB) will be upgraded

with a H- charge exchange injection system and its injection energy will be raised from 50 MeV

to 160 MeV to obtain the beam brightness required for the LHC High-Luminosity Upgrade.

Space charge effects like beam losses and transverse emittance blow-up at injection are expec-

ted to be the main limitations towards the achievement of the required high brightness.

Studies of beam dynamics in presence of space charge in order to evaluate the performances of

the PSB after the Upgrade have been performed. The first part of the work consists of meas-

urements in the present machine, to study the effects of space charge and its interplay with

resonances and to have a good set of data for code benchmarking. The code chosen for the

beam tracking in presence of space charge is PTC-Orbit (and PyOrbit). Necessary numerical

convergence studies are presented together with a benchmark with the PSB measurements.

Once assessed the code and its limitations, predictions for the 160 MeV injection with high-

brightness beams are delivered in terms of beam losses and emittance blow-up. These studies

include the optimization of the working-point, resonance compensation and/or chromaticity

correction taking into account the expected magnetic errors in the machine.

Keywords

CERN, LHC injectors, HL-LHC, LIU, PSB, Space charge, Linac4, PTC-Orbit, PyOrbit, Tune

spread, Tune shift, Chromaticity, Magnetic resonances, Fixed lines, high brightness, Simula-

tions, Measurements.
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Résumé

Dans le cadre du projet LIU, vise à augmenter la puissance des injecteurs du LHC, le CERN

PS Booster (PSB) sera mis à jour avec un système d’injection d’échange de charge H- et son

énergie d’injection sera portée de 50 MeV à 160 MeV pour obtenir la luminosité du faisceau

nécessaire pour le LHC High-Luminosity Upgrade.

Effets de charge d’espace comme pertes de faisceau et incrément d’émittance transversale à

l’injection vont être les principales limites vers la réalisation de la haute brillance souhaitée.

Des études sur la dynamique du faisceau en présence de charge d’espace afin d’évaluer les

performances du PSB après la mise à niveau ont été effectuées. La première partie du travail

consiste de mesures dans la présente machine, pour étudier les effets de charge d’espace et son

interaction avec les résonances et d’avoir un ensemble de données pour le code benchmarking.

Le code choisi pour le suivi du faisceau en présence de charge d’espace est PTC-Orbit (et Py-

Orbit). Les études de convergence numériques nécessaires sont présentées conjointement avec

les études de la comparaison des simulations avec les mesures dans la machine.

Une fois évalué le code et ses limites, les prévisions pour l’injection dans le PSB à 160 MeV

avec des poutres de luminosité élevé sont livrés en termes de pertes de faisceau et incrément

d’émittance. Ces études comprennent l’optimisation du point de fonctionnement, la com-

pensation des résonances et/ou la correction de chromaticité en tenant compte des erreurs

magnétiques attendus dans la machine.

Mots clés

CERN, Injecteurs LHC, HL-LHC, LIU, PSB, Charge d’espace, Linac4, PTC-Orbit, PyOrbit,

Tune spread, Tune shift, Chromaticité, Résonances magnétiques, Lignes fixes, Haute brillance,

Simulations, Mesures.
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Résumé ii

Introduction vii

1 Beam dynamics in synchrotron accelerators 1
1.1 Transverse single particle motion . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Courant-Snyder invariant and Twiss parameters . . . . . . . . . . . . . 3

1.1.2 Emittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Intensity and beam brightness . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Phase advance and tune . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.6 Chromaticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Longitudinal single particle motion . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The double RF systems . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The magnetic field resonances . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Space charge theory and issues in the PSB . . . . . . . . . . . . . . . . . . . . 13

1.4.1 The transverse direct space charge . . . . . . . . . . . . . . . . . . . . 14

1.4.1.1 Uniform charge density distribution in a coasting beam . . . 17

1.4.1.2 Bi-Gaussian transverse distribution in a coasting beam . . . . 19

1.4.1.3 The role of the bunched motion in the space charge tune spread 20

2 The PS Booster (PSB) after the LIU Upgrade 22

3 PTC-Orbit 28
3.1 The PTC-Orbit software program . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 The “Particle-In-Cell” (PIC) method . . . . . . . . . . . . . . . . . . . 29

3.2 Convergence studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Simulation speed and code scalability with the number of cores . . . . . . . . 33

iii



4 The particles tune spread in a space charge dominated regime 35
4.1 Particles positions in the (single-turn) tune footprint . . . . . . . . . . . . . . . 36

4.2 The tune modulation of a single particle . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Effect of large transverse amplitude . . . . . . . . . . . . . . . . . . . 40

4.3 The role of the chromaticity in the space charge tune spread . . . . . . . . . . . 41

4.4 Average tune spread computation . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Effect of the longitudinal amplitude . . . . . . . . . . . . . . . . . . . 45

4.4.2 Effect of the transverse amplitude . . . . . . . . . . . . . . . . . . . . 45

4.4.2.1 Similar amplitudes . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2.2 Mixed transverse amplitudes . . . . . . . . . . . . . . . . . 46

4.4.3 Chromaticity in the averaged tune spread computation . . . . . . . . . 49

5 PSB measurements and simulations at 160 MeV 50
5.1 Observables and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Beam intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Longitudinal profile and bunch length . . . . . . . . . . . . . . . . . . 51

5.1.2.1 Longitudinal phase space and tomography . . . . . . . . . . 51

5.1.3 Transverse beam size and emittance . . . . . . . . . . . . . . . . . . . 52

5.1.4 Transverse position and closed orbit . . . . . . . . . . . . . . . . . . . 53

5.1.5 Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.6 Chromaticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Machine settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Beam intensity and transverse settings . . . . . . . . . . . . . . . . . . 54

5.2.2 Longitudinal settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.3 Chromaticity settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Tune scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Studies on the vertical half-integer resonance 2Qy = 9 . . . . . . . . . . . . . 61

5.4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2.1 Long bunch . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2.2 Short bunch . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2.3 Effect of errors and working point . . . . . . . . . . . . . . 68

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 The horizontal integer resonance Qx = 4 (static tunes) . . . . . . . . . . . . . 74

5.5.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.2.1 Effect of quadrupolar field errors . . . . . . . . . . . . . . . 80

5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Dynamic working point variation close to Qy = 4 . . . . . . . . . . . . . . . . 83

5.6.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



5.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.2.1 Without COD correction . . . . . . . . . . . . . . . . . . . 87

5.6.2.2 With COD correction . . . . . . . . . . . . . . . . . . . . . 88

5.6.2.3 Calibration of the boundary conditions . . . . . . . . . . . . 91

5.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 The coupling resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Longitudinal studies for the Linac4 injection 99
6.1 Longitudinal space charge benchmark between PyOrbit and Blond . . . . . . . 100

6.2 Longitudinal optimization for the future LHC beams . . . . . . . . . . . . . . 105

7 Machine and beam optimization for the Linac4 injection 114
7.1 The multi-turn injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 “On-axis” injection: simulation results . . . . . . . . . . . . . . . . . . 117

7.1.2 “Transverse painting” injection: simulation results . . . . . . . . . . . 118

7.2 Working point optimization: chromaticity correction . . . . . . . . . . . . . . 121

7.3 Parametric analysis of the injection process . . . . . . . . . . . . . . . . . . . 122

7.3.1 Without space charge . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2 With space charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Single particle analysis and fixed lines with space charge and coupling . . . . . 129

7.4.1 Single particle analysis and coupling . . . . . . . . . . . . . . . . . . . 129

7.4.2 Fixed lines with space charge . . . . . . . . . . . . . . . . . . . . . . 130

8 Conclusions 138

9 Acknowledgements 142

A The Hamiltonian formalism 143
A.1 The unperturbed motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 The perturbed motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Additional measurements without comparison with simulations 147
B.1 Static working point close to Qy = 4 . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 The effect of the chromaticity on the 3Qy=13 resonance . . . . . . . . . . . . . 149

B.3 Longitudinal space charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C The machine errors model 153

D Design and implementation of “radial” tune scans 156

v



E Vertical COD correctors currents 158
List of Figures159 Bibliography180

vi



Introduction

The discovery of the Higgs boson announced on 4th July 2012 by the ATLAS (A Toroidal

LHC ApparatuS) [1] and CMS (Compact Muon Solenoid) [2] collaborations opened the doors

to completely new scenarios in the High Energy Physics field. The possibility of future find-

ings through the LHC (Large Hadron Collider) [3] is strictly connected to the extension of its

potential: an increase of the integrated luminosity, delivering 10 times more collisions in the

same period of time, is being chased through an extensive renovation campaign which will last

beyond 2020, in the frame of the High Luminosity LHC (HL-LHC) project [4]. The collisions

rate dR
dt can be expressed as:

dR

dt
= L × σp (1)

where σp is the interaction cross-section. L, defined as instantaneous luminosity, can be ex-

pressed for dimensionally equal beams as [5]:

L = kb
frevN1N2

4πσ∗xσ
∗
y

F = kb
frevN1N2βγ

4π
√
β∗xεx

√
β∗yεy

F [cm-2s-1] (2)

being N1 and N2 the number of particles of the two colliding bunches, kb the number of

bunches per beam, frev the revolution frequency, σ∗x and σ∗y the transverse beam sizes at the

collision point, β∗x and β∗y the betatron amplitude functions at the collision point, F a geomet-

rical reduction factor depending on the bunches crossing angle at the interaction point, εx and

εy the normalized tranverse beam emittances, β the ratio between the velocity of the particles

and the speed of light c, γ the proton beam energy in unit of rest mass. β and γ are the relativ-

istic (Lorentz) factors.

The ratio between the number of particles and the normalized emittance is proportional to

the beam “brightness” and is an important figure of merit for the beam quality. The beam

brightness at the entrance of the LHC is determined by the injectors chain. Thus, the future

performances of the LHC rely on the renovation of its injectors chain as well.

The LHC Injectors Upgrade (LIU) project [6] aims to renovate the LHC injectors chain, presently

composed by Linac2, Proton Synchrotron Booster (PSB), Proton Synchrotron (PS) and Super

Proton Synchrotron (SPS). The Linac2, which injects protons into the PSB at an energy of 50

MeV, will be substituted by the new Linac4 which will accelerate H- ions, then stripped into

protons at 160 MeV at the entrance into the PSB. This renewal goes in the direction of produ-

cing brighter beams for the LHC experiments and increase, by this way, the luminosity.
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The beam brightness is defined in the PSB, which is the first circular accelerator in the LHC

protons chain.

The chief drawback of high brightness machines is the presence of unwanted “collective ef-

fects”, related to the fact that charged particles inside the beams are interacting with each other

and with the environment through electro-magnetic fields.

Space charge (space charge) is one of these effects: it consists in the repulsive Coulomb interac-

tion between charged particles being partially compensated by magnetic fields at high energies.

The space charge is a main concern if high brightness wants to be achieved in low energy ma-

chines like the PSB. Therefore, it represents the strongest physical bottleneck for the LIU beam

performances requirements [7].

Without considering space charge, in a linear machine, the particles transversely oscillate

around a closed orbit with the same frequency, called “tune”. In presence of space charge

forces the horizontal and vertical tunes feel a spread, occupying a larger frequency span, called

“tune spread”. This makes the single particles composing a beam to be scattered or trapped

by magnetic resonance lines in the tune diagram and, eventually, getting lost. The fact that

the particles are differently affected, according on their 6D time-varying location in the bunch,

makes the evaluation of space charge related phenomena not trivial.

Given the objective of increasing the ratio intensity/emittance by a factor 2 [8], the space charge

particles tune spread at 50 MeV would cause huge deterioration of the beam in terms of un-

wanted losses and emittance blow-up due to the interaction with many strong magnetic reson-

ances.

Since the space charge tune spread scales down with the increase of the relativistic factor βγ2,

it has been proposed to increase the PSB injection energy by a factor 2 in βγ2, corresponding

160 MeV with the new Linac4, in order to keep the tune spread similar to the present one.

The future LHC high brightness challenges impose a deep knowledge and understanding of the

performance limitations carried by this phenomenon which can seriously undermine the beam

quality in terms of intensity loss and emittance blow-up. The understanding of these phenom-

ena strongly relies on numerical approaches.

The space charge in the CERN accelerators is object of dedicated study for the worldwide

scientific community and, in particular, is the core activity of a working group in the CERN

Beams Department. Yearly, a Space Charge workshop is organized and hosts more than 50

experts from all over the world.

This thesis is related to the analysis of the new PSB beam dynamics including space charge

effects at the future injection energy of the Linac4. It goes into the details exploring different

possibilities in terms of achievable brightness of the future LHC beams.

The work that has been done goes from theoretical aspects related to the particles de-tuning

in a space charge dominated regime to the benchmarking between present measurements and

numerical tools, necessary to simulate the effects of space charge on bunched beams. The res-

ults obtained from the benchmarking process have given confidence in the codes, permitting to
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deliver reliable predictions for the future beam performances after LIU.

In the following, a more detailed summary of the thesis work is discussed.

In order to start guiding the reader, Chapter 1 gives an overview on beam dynamics concepts

in synchrotron accelerators, focusing on the magnetic resonances effects and transverse direct

space charge mathematical modelling, which are related to the electromagnetic self-fields gen-

erated by the beam itself.

Chapter 2 describes the new injection system. To host it, the PSB has to change its injection

layout, while the periodic structure of the 4 rings constituting the accelerator will stay basically

unaltered.

Simulation tools are the key to understand the complicated interaction of space charge and res-

onances. The PTC-Orbit simulation software program has been introduced in Chapter 3. The

code has been widely tested for the purpose of this thesis: numerical convergence studies of its

“Particle-In-Cell” (PIC) algorithms for the space charge fields calculations and velocity tests

on different clusters have been performed to understand the computational limits for the PSB.

In Chapter 4, the space charge incoherent tune spread is analyzed as a function of the particles

positions and chromaticities inside the bunch, with the help of the numerical simulations. Here,

one of the original contributions of this thesis is the introduction of a method that looks at av-

eraged tunes in order to better understand the relation resonances - space charge tune spread

and identify the dangerous resonances which influence the beam behaviour.

Chapter 5 gives an overview on the benchmarking between measurements and numerical sim-

ulations. Different examples are examined for the dangerous integer linesQx = 4 andQy = 4,

coupling (linear Qx − Qy = 0 or Montague 2Qx − 2Qy = 0) and half-integer 2Qy = 9 res-

onances. A good machine linear model up to the linear errors is fundamental to achieve good

simulation results with the half-integer resonance and the dynamic integer scan. Simulations

of space charge effects in presence of chromaticity correction are proposed to evaluate the ef-

fectiveness of the correction for the brightness improvement.

The longitudinal dynamics affects the space charge tune spread: an analysis of the optimal

longitudinal schemes for the realistic double RF injection is presented in Chapter 6 and two

solutions with different bunch length are retained for the machine optimization in the follow-

ing. This work is preceded by a benchmark of the longitudinal space charge effect between

PyOrbit (a new version of PTC-Orbit based on Python), BlonD (a code developed at CERN by

the RF Group) and analytical formula.

Finally, Chapter 7 summarizes the expected conditions for the PSB after the 160 MeV injection

energy upgrade and the expected performances in presence of direct space charge on the future

LHC beams. Using the optimal longitudinal schemes from the previous Chapter and different

transverse injection schemes, the new multi-turn injection is simulated to predict the future

brightness curves and see whether they respect the requirements imposed by the LIU project

objectives.
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Chapter 1

Beam dynamics in synchrotron
accelerators

Beam dynamics is a wide topic in particle accelerators physics literature. There are many ref-

erences available, see for example [9], from which some definitions are taken and the lectures

at the CERN Accelerator Schools [10, 11].

The intent of the Chapter is to give to the reader a handbook of the main quantities and theoret-

ical concepts on which the remaining part of the thesis relies. The transverse and longitudinal

motions are introduced together with the definitions of phase advance, tunes, emittance, Twiss

parameters, intensity and brightness.

The magnetic resonance lines and the derivation of the theory for the transverse direct space

charge are, finally, presented.

1.1 Transverse single particle motion

The motion of the particles is described using the system of coordinates defined in Fig. 1.1:

q

x

y

s

(-R,0,0)

(-r,0,0)

Machine centre

Centre of curvature

Figure 1.1: Coordinate system for transverse motions in a synchrotron [12]. The dashed line is the
closed orbit (see the text).

where:
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• R is the average machine radius, machine circumference/(2π);

• ρ is the dipoles bending radius;

• x, y are the transverse coordinates (with respect to the closed orbit), horizontal and

vertical, respectively;

• s is the longitudinal position in the ring;

• θ= s
R is the angle at the accelerator centre.

The single particle with charge e, longitudinal synchronous momentum p0 and zero transverse

offset x, y, follows an ideal orbit, called “closed orbit”, under the influence of magnetic fields:

dipoles and quadrupoles up to first order.

The dipolar magnetic guide field defines the closed orbit. To bend the particles on the closed

orbit, a dipolar magnetic field B, proportional to the synchronous momentum, is needed:

B =
1

ρ

p0

e
(1.1)

It is useful to define the quantityBρ, defined as the “beam magnetic rigidity”, i.e. the magnetic

bending strength for given energy, directly proportional to the synchronous momentum:

Bρ =
p0

e
(1.2)

where e is the electron charge (1.602×10−19 C).

The quadrupoles provide focusing (and de-focusing) forces to keep the particle trajectories in

a stable motion around ideal orbit through a linear increasing magnetic field:

Bx = −g(s)y

By = −g(s)x
(1.3)

where g is the gradient of the magnetic field. Particles perform transverse oscillations around

the closed orbit according to the Hill’s equations:

x′′ −
(
k(s)− 1

ρ(s)2

)
x = 0

y′′ + k(s)y = 0

(1.4)

where the derivatives with respect to the longitudinal coordinate are used:

• x′ = dx
ds = 1

βc
dx
dt and x′′ = d2x

ds2
= 1

β2c2
d2x
dt2

;

• y′ = dy
ds = 1

βc
dy
dt and y′′ = d2y

ds2
= 1

β2c2
d2y
dt2

.

k(s) is the quadrupolar strength, which depends on the momentum:

k(s) =
g(s)
p0
e

=
g(s)

Bρ
(1.5)
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Equation (1.4) can be generalized as:

x′′ +K(s)x = 0 (1.6)

where

K(s) =

Kx(s) =
(

1
ρ(s)2

− k(s)
)

Ky(s) = k(s)
(1.7)

For each of the two transverse planes, the general solution of the Hill’s equation is a pseudo-

harmonic oscillation:
x(s) =

√
Jxβx(s) cos(µx(s) + χx)

y(s) =
√
Jyβy(s) cos(µy(s) + χy)

(1.8)

where Jx,y and χx,y are constants determined by the initial conditions and βx(s), βy(s),

called betatron functions, are periodic functions depending on the focusing structure βx,y(s) =

βx,y(s+ 2πR). Finally, µx,y is the phase advance.

1.1.1 Courant-Snyder invariant and Twiss parameters

Combining the general solution (1.8) and its derivative with respect to s (here for the y direc-

tion)

y′(s) =

√
Jy

βy(s)

[
αy(s) cos(µy(s) + χy) + sin(µy(s) + χy)

]
(1.9)

one obtains an important quantity, the Courant-Snyder invariant, i.e. a constant of motion, also

called particle action, or single particle emittance J . For the vertical direction:

Jy =
1

βy(s)
[y(s)2+(αy(s)y(s)+βy(s)y(s)′)2] = γy(s)y(s)2+2αy(s)y(s)y(s)′+βy(s)y(s)2

(1.10)

where:

• αx,y(s) = −1
2β
′
x,y(s);

• γx,y(s) =
1+αx,y(s)2

βx,y(s) .

Equation (1.10) shows that particles, at any position s in the ring, during their motion, describe

an ellipse in the phase space (x(s), x’(s)) and (y(s), y’(s)), as shown in Fig. 1.2. The ellipse,

according to Liouville’s theorem, is a constant of motion as long as only conservative forces

are considered (i.e. no interaction between particles).
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Figure 1.2: The ellipsoidal motion of a particle with action Jx,y in the phase space [9] for a certain
position s. The red dots are the turn-by-turn locations of the particles in the phase space.

The β(s), γ(s), α(s) functions are better known as Twiss parameters. Each point defining the

ellipse in Fig. 1.2 represents the coordinate of a particle of the beam at a certain s coordinate

along the ring.

1.1.2 Emittance

The cumulative area in phase space in which the particles perform their motion inside the bunch

is called geometrical emittance, εg.

Considering for simplicity only the vertical plane (the approach for the horizontal is similar),

from a statistical point of view, the root mean square (rms) value geometrical emittance can be

computed as follows:

εgy,rms =
√
σ2
yσ

2
y′ − σ2

yy′ (1.11)

where σy =
√
〈yy〉 is the rms transverse beam size, σy′ =

√
〈y′y′〉 and σyy′ =

√
〈yy′〉.

The generic expression 〈yy′〉 indicates the second order momenta of the distributions y, y′,

composed by I particles, with respect to their first order momenta:

〈yy′〉 =
1

I

I∑
i=1

[y(i)− ȳ][y′(i)− ȳ′] (1.12)

where ȳ = 1
I

∑I
i=1 y(i) and ȳ′ = 1

I

∑I
i=1 y

′(i).

The beam emittance is expressed in the unit of mm·mrad, or mm·mrad, or µm.

Sometimes it is useful, in order to study particles at large transverse amplitude, to use the 95%

(or the 99%) emittances, defined as the phase space ellipse areas into which the 95% (or the
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99%) of the particles are located.

The normalized emittances, defined as

εx,y = βγεgx,y (1.13)

where β and γ are the relativistic factors, is an important parameter for the beam quality

throughout the entire acceleration chain, as it is invariant with acceleration, i.e. it stays constant

with the increase of energy. The geometrical emittance of the beam, instead, shrinks during the

particles acceleration. Again here one can define rms, 95% or 99% normalized emittances.

The normalized transverse emittances in the PSB are in the range of εx=1 to 15 mm·mrad and

εy=1 to 9 mm·mrad. Typical emittances for the LHC beams are ∼ 2 mm·mrad.

1.1.3 Intensity and beam brightness

A beam is made by particles: the number of particles I which constitutes the beam is called

intensity or beam population. The PSB delivers to the users intensities in the order of 5×109 -

1×1013 p (protons). Presently, for the LHC standard beam productions, the intensity delivered

by the PSB is I ∼ 1.65 × 1012 p. The intensity over emittance ratio defines the brightness,

which is a fundamental parameter that must be maximized to have a large number of collisions

at LHC. In this thesis the beam brightness B is defined as the ratio between the intensity I and

the half-sum of the horizontal and vertical normalized emittances, εx and εy:

B =
I

0.5(εx + εy)
(1.14)

1.1.4 Phase advance and tune

Plugging (1.8) in (1.6), the phase advance between the points 0 and s in the lattice is:

µx,y(s) =

∫ s

0

ds

βx,y(s)
(1.15)

The number of oscillations per turn (phase advance per turn) is called tune:

Qx,y =
1

2π

∮
ds

βx,y(s)
(1.16)

In the PSB the typical transverse betatron tunes at injection are (Qx, Qy) ∼ (4.3, 4.5).

1.1.5 Dispersion

A beam is made of particles with longitudinal momenta distributed around the synchronous

momentum p0. A particle will have in general a momentum offset:

δ =
p− p0

p0
=

∆p

p0
(1.17)
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in the order of few per mil in the PSB.

The bending angle resulting from a dipole field is different for particles with different momenta,

i.e. nonzero δ. This results into the equation:

x′′ +K(s)x =
δ

ρ
(1.18)

The solution of an nonhomogeneous linear equation is a linear superposition of the particular

solution D(s) and the solution of the homogeneous Eq. (1.6) xβ:

x = xβ +Dδ x′ = x′β +D′δ (1.19)

being

D′′ +Kx(s)D =
1

ρ
(1.20)

The solution of Eq. (1.6) is the betatron oscillation, while the solution of Eq. (1.20) is the

so-called dispersion function D(s), which represents the off-momentum closed orbit.

1.1.6 Chromaticity

Since the quadrupole strength is also dependent on the momentum, the tune, defined as in

Eq. (1.16), has a bandwidth:

Q′x,y =
∂Qx,y
∂δ

(1.21)

Q′ is called chromaticity and expresses the change of betatron tune for a given change of

momentum. Sometimes the chromaticity is expressed in a relative way, with respect to the

nominal tune, as

ξx,y = Q′x,y/Qx,y (1.22)

The natural chromaticity is the one due only to the elements of the linear lattice, i.e. quad-

rupoles and dipoles [13]. The chromaticity can be controlled through sextupole magnets. To

date, the PSB is always operated with the natural (or uncorrected) chromaticities of (ξx = -0.8,

ξy = -1.6).
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1.2 Longitudinal single particle motion

The acceleration in synchrotrons is performed through Radio-Frequency (RF) cavities. A

voltage is applied in the cavity gap in the form of:

V = V̂ sin(φ(t)) = V̂ sin(ωRF t) (1.23)

with the RF frequency

ωRF = hω0, (1.24)

being ω0 the revolution frequency of the synchronous particle and h the harmonic number. The

synchronous particle is defined as the “virtual” particle which has the nominal momentum p0,

trajectory and frequency and experiences always the same voltage phase φ(t) = φs when it

passes through the cavity. φs is called the synchronous phase.

The other particles are asynchronous and will generally arrive sooner or later in the cavity,

experiencing at each turn a different voltage and performing oscillations around φs.

The change in revolution frequency ∆frev of a single particle is related to its momentum offset

through the slippage factor η:

η ≡
∆frev
frev
∆p
p0

=
1

γ2
− αc (1.25)

where αc is the momentum compaction factor, a machine property.

The energy at which η = 0 is called transition energy γtr = 1√
α

. Above transition energy

(η < 0), particles with lower momentum have higher revolution frequency than that of the

synchronous particle. On the other hand, below transition energy (η > 0), particles with higher

momentum have higher revolution frequency. In the PSB γtr ∼ 4.1 and the machine operates

always below transition energy.

The longitudinal particles motion is called synchrotron motion (see Fig. 1.3): below transition

energy the particle B, arriving slightly after the synchronous one, experiences a positive kick

(i.e. force), thus feeling an increase in momentum. Due to this acceleration, at the next turn

the particle arrives a bit before than previously with respect to the synchronous particle, feeling

this time a smaller accelerating positive kick by the RF voltage. When the phase offset with

respect to the synchrotron phase ∆φ = φ − φs changes sign, the particle gets a negative kick

and is decelerated. This creates a stable oscillating motion around the synchronous particle,

which is the “virtual” particle with constant revolution frequency ω0 and energy offset ∆E =

E − E0 = 0.
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Figure 1.3: Top, the RF voltage waveform. Bottom: The iso-Hamiltonian trajectories in the (φ, ∆E
ω0

)
phase space that define the bucket, in light green, and the separatrix, the dashed red contour. The particle
B performs a synchrotron oscillation inside the bucket, in this case without acceleration (φs = 0) and
below transition energy (η > 0).

The equations of motion, in the state variables φ and ∆E
ω0

are:
dφ

dt
= −hηω

2
0

β2E

∆E

ω0

d

dt

∆E

ω0
=

1

2π
eV̂ (sin(φ)− sin(φs))

(1.26)

The energy offset variable ∆E
ω0

is proportional to the momentum offset:

∆E

ω0
=
β2E

ω0
δ (1.27)

From this system of first order equations, a second order equation can be derived for the RF

phase φ. Under the approximation of small phase oscillations ∆φ� 1 around the synchrotron

frequency, one obtains:
d2

dt2
(φ− φs) + ωs

2(φ− φs) = 0 (1.28)

with ωs being the angular synchrotron frequency.

As for the transverse plane, a synchrotron tune Qs, i.e. the number of synchrotron oscillations

per turn, can be defined as:

Qs =
ωs
ω0

=

√
h
eV̂ |η cosφs|

2πβ2E
(1.29)

for particles with speed /betac, momentum p = E
c and revolution frequency ω0 = βc/R. In

the PSB the synchrotron tune Qs is ∼ 0.001, much smaller than the transverse betatron tunes.

The Eq. (1.26) defines a stable region, called bucket, in the φ, ∆E/ω0 phase space. This region,

marked in light green in Fig. 1.3, defines the area in which particle can group together to form
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a bunch.

The contour surrounding the bucket is called separatrix and divides the stable from the unstable

part of the motion.

The maximum number of bunches circulating in one revolution period in the machine is given

by the harmonic number h.

The longitudinal position is often expressed through the variable z, i.e. the distance with respect

to the synchrotron particle. One has:

dz =
βc

ωRF
dφ [m] (1.30)

or, in the time variable τ

dτ =
1

ωRF
dφ [s] (1.31)

The area that the particles distribution occupies in the longitudinal phase space is called longit-

udinal emittance and is expressed in electron-Volt-second [eVs]. In the PSB typical values go

from 0.8 to 1.7 eVs.

The area of the bucket is called acceptance.

1.2.1 The double RF systems

In the PSB, a second cavity oscillating at a frequency which is twice the one of the main cavity,

is used. This leads to an extension of Eq. (1.26).

Through this system, it is possible to obtain flatter bunches with reduction of the particles line

density λ [C/m], an important parameter for the space charge studies (see Section 1.4). In the

case without acceleration Eq. (1.26) is modified as:

d

dt

∆E

ω0
=

e

2π
[V̂h=1 sin(φ) + V̂h=2 sin(2φ+ ∆φ)] (1.32)

where V̂h=1 and V̂h=2 are the peak voltages of the two cavities and ∆φ is the phase difference

between them. An exhaustive treatment of double harmonic RF systems can be found in [9].

Figure 1.4 shows two examples of buckets, that can be generated in the PSB (for h=1 and 2),

setting the harmonics in phase (∆φ = 0, top) and in antiphase (∆φ = π, bottom), without

acceleration. This last case presents the peculiarity of having two separatrices, an “inner” one,

surrounding the basins of attraction of the inner fixed points at ±1 rad, and an “outer” one,

separating the stable trajectories from the unstable ones. The results were obtained using the

PTC-Orbit simulation code, discussed in Chapter 3.
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Figure 1.4: Top - longitudinal phase spaces of the double harmonic RF bucket from two cavities in phase
(∆φ = 0), with V(h=1)=V(h=2)=8 kV. Bottom - the double harmonic RF bucket from two cavities in
anti-phase (∆φ = π), with V(h=1)=8 kV and V(h=2)=6 kV. The magenta dots are the starting conditions
for the profiles simulations. PTC-Orbit (see Chapter 3) simulations.
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1.3 The magnetic field resonances

As derived in Appendix A, it is possible to describe the transverse motion using the Hamilto-

nian formalism [12]. From this treatment one can derive a resonance condition expressed by

the following expression:

nxQx + nyQy = p, where nx, ny, p are integers (1.33)

which defines the magnetic resonance lines in the (Qx, Qy) diagram (see Fig. 1.5). The sum

N∗ = |nx|+ |ny| is called order of the resonance and can directly be related to the order of the

field (N∗ = 1 dipolar, N∗ = 2 quadrupolar, N∗ = 3 sextupolar,...) generating it.

If nx and ny have the same sign, they are called sum resonances. If, instead, they have opposite

sign, they are difference resonances. Moreover, if ny is even, the resonance is called to be

“normal”. Otherwise, it is “skew”.

The relation between magnetic resonances and particle motion in presence of space charge is of

primary importance in this thesis. Particles hitting these lines, depending on the strength of the

resonance, are perturbed in terms of amplitude and phase and will cause a degradation of the

beam with emittance blow-up and, eventually, losses. The Eq. (A.17) represents the frequency

condition that particles should avoid in presence of driving terms exciting a certain resonance

line.

The resonance driving terms can appear from lattice periodicity and machine imperfections,

such as magnets misalignments, magnetic field errors, power supply ripples. These lines cannot

realistically be avoided, but, depending on their strengths and order, the deteriorating effect on

the beam can be corrected (or minimized) using dedicated multipole correctors. The theoretical

resonances, up to 4th order, are shown in Fig. 1.5 for the working points (tunes) of interest for

the PSB. Fortunately, not all the resonances are “important” or evident in the machine (see

Section 5.3).

As shown in the next paragraphs, the particles suffer of a tune spread with respect to the bare

working point. This tune spread is caused mainly by space charge in the PSB and can generate

the crossing of dangerous magnetic resonance lines.
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Figure 1.5: Magnetic resonance lines, defined by (nx,ny ,p), in the present PSB working point area. In
solid are the normal resonance lines. In dashed are the skew resonance lines. The colour code represents
the maximum order of the resonance up to harmonic 17: light blue, quadrupolar (2nd order) - purple,
sextupolar (3rd order) - magenta, octupolar (4th order).
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1.4 Space charge theory and issues in the PSB

Space charge effects are important at injection of the beam in the PSB, because of the low

energy (160 MeV) and the high brightness required for the future LHC beams.

Charged particles circulating inside an accelerator produce electromagnetic fields ( ~E and ~B)

acting back on the beam itself. The so-called space charge “self-fields” produce “self-forces”

F s.f. which affect the motion of particles. Taken as example the vertical plane, the Hill’s

Eq. (1.6) is modified as:

y′′ +Ky(s)y =
F s.f.y

β2c2m0γ
(1.34)

The self-fields (and forces) depend on:

• the beam current (intensity) and the 6D (transverse-longitudinal) particle distribution;

• beam velocity and charge;

• the vacuum chamber and machine elements geometry and optics.

The space charge effects can be divided in two, as sketched in Fig. 1.6:

• Direct space charge, regarding the interaction of the particles in free space;

• Indirect space charge. regarding the interaction of the particles with image currents and

charges that are induced in perfect conducting walls and ferrogmagnetic materials close

to the beam pipe.

Figure 1.6: The direct (left) and indirect (right) electric field lines from a particle.

Here, only direct space charge effects are discussed, following the approach in [14], Fer-

rario:2014, Schindl:941316. Since the PSB beams for the LHC are supposed to have small

sizes with respect to the chamber of the machine, the indirect contribution is small (1 order

of magnitude less than the direct one). In any case, considering that the indirect space charge

model is sometimes used in the thesis, for a deeper look about its treatment the reader is invited

to refer to [14–16].
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1.4.1 The transverse direct space charge

The particles in a beam interact with each other continuously. Figure 1.7 shows that, if one

consider a single charge q moving along the longitudinal z direction with velocity v, it is pos-

sible to make a transformation from the fixed frame (O, x, y, z) to the moving frame (O’, x’,

y’, z’), following the Equations: 
x′ = x

y′ = y

z′ = γ(z − vt)

(1.35)

x

z, z’

y'

x'

q

v

O’

Figure 1.7: The frame (O’, x’, y’, z’) is moving with respect to the fixed frame (O, x, y, z) [16].

Using Eq. (1.35), it is possible to transform the electro-magnetic fields between the frames.

The fields in the moving frame are:

~E′ =
q

4πε0

1(
x′2 + y′2 + z′2

)3/2

x′y′
z′


~B′ = 0

(1.36)

where ε0 = 8.85 × 10−12 F/m is the vacuum permittivity. One can go back to the rest frame

(t = 0):

~E =
q

4πε0

γ(
x2 + y2 + γ2z2

)3/2

xy
z


Bx = −vEy/c2

By = +vEx/c
2

Bz = 0

(1.37)
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where the components of the fields in the rest frame are:

Ex = γ
(
E′x + vB′y

)
Ey = γ

(
E′y − vB′x

)
Ez = E′z

Bx = γ
(
B′x − vE′y/c2

)
By = γ

(
B′y + vE′x/c

2
)

Bz = B′z

(1.38)

From Eq. (1.37) one can see that, in the rest frame, the electric field generated by a source

charge q loses spherical symmetry if γ >> 1, but stays symmetric with respect to the z-axis

(see Fig. 1.8). In fact:

Ex(z= t=0) =
q

4πε0

γx(
x2 + y2

)3/2

Ey(z= t=0) =
q

4πε0

γy(
x2 + y2

)3/2

Ez(x=y= t=0) =
q

4πε0

1

γ2z2

(1.39)

z z z

γ=1 γ>1 γ>>1

~1/γ

Figure 1.8: The electric field created by a particle moving along z. For ultra-relativistic traveling
particles, the electric field loses the spherical symmetry but stays symmetric with respect to the z-
axis [16].

From (1.39), the electric field has radial symmetry in the transverse plane:

Er =
q

4πε0

γ

r2 (1.40)

And, from (1.37), the magnetic field has component:

Bφ =
βEr
c

(1.41)

Equations (1.40) and (1.41) represent the fields generated by a moving particles in polar co-

ordinates (r, φ).

Now, if two particles traveling in parallel with the same velocity v are considered, knowing the
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fields generated by the “source” particle (in red in Fig. 1.9), it is possible to calculate the force

acting on the “test” particle (in blue in Fig. 1.9) .

x

q

v

v

q

z

Figure 1.9: Two particles traveling with the same velocity: the “source” particle is in red and the “test”
particle in blue [16].

In fact, given the general Eq. of the Lorentz force, which governs the motion of a single charge

q in an electromagnetic field:

d(m0γ~v)

dt
= ~F ext = q( ~E + ~v × ~B) (1.42)

where:

• m0 is the particle rest mass;

• γ is the Lorentz factor;

• ~v = βc ~v|~v| is the particle velocity.

Using (1.40) and (1.41) one can compute the radial component of the force on the “test”

particle:

F extr = q
(
Er − vBφ

)
= q

(
Er − β2Er

)
=
qEr
γ2

=
qq

4πε0γr2
(1.43)

Equation (1.43) shows that particles at rest (β = 0) feel only the repulsive Coulomb force

(Eq. (1.40)). In the case of β 6= 0, the attractive magnetic force generated by the particle tries

to compensate the repulsive Coulomb force. This compensation is maximum when γ → ∞
(see Fig. 1.10). This result shows that the space charge forces are more important at low

energies.
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Figure 1.10: The repulsive (Coulomb) and attractive (magnetic) forces exercised between two moving
particles at the same speed as a function of β. [16].

1.4.1.1 Uniform charge density distribution in a coasting beam

l

Figure 1.11: A cylindrical beam (left) of length l and radius a with uniform circular cross-section
(right) [16].

In the case of cylindrical beam of radius a with uniform longitudinal distribution and trans-

versely circular and uniform charge density η [C/m3] (see Fig. 1.11), the space charge forces

can be calculated through the electric and magnetic fields, derived from Maxwell’s equations.

In particular the electric field is derived from the Gauss’ law, considering a cylinder of radius

r:
~∇ · ~E =

η

ε0
(1.44)

From the differential form (1.44) one can go to the integral form:∫∫∫
~∇ · ~E dV =

∫∫
~E d~S (1.45)

Due to symmetry reasons and, in the hypothesis of r � l, the electric field in a cylindrical

surface of radius r < a has only radial component, satisfying the Eq.:

πlr2 η

ε0
= 2πlrEr (1.46)

Defined the charge line density λ = πa2η [C/m], one obtains:

Er =
λ

2πε0

r

a2
(1.47)
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From the Ampere’s law:
~∇× ~B = µ0

~J (1.48)

where µ0 = 1/ε0c
2 (= 4π × 10−7 H/m) is the permeability of the vacuum and J = βcη =

βcλ/πa2 is the current density [A/m2], it is possible to derive, through the Stokes’ theorem,

the integral form of Eq. (1.48): ∮
~B d~s =

∫∫
~∇× ~B d~S (1.49)

Solving for the proposed geometry, one obtains the azimuthal magnetic field:

2πrBφ = µ0πr
2J (1.50)

Finally, the formula of the azimuthal magnetic field is the following:

Bφ =
λβ

2πε0c

r

a2
, for r< a (1.51)

Using the Lorentz equation (1.42) and substituting the fields components from the Equa-

tions (1.47) and (1.51), one obtains the force acting on a single particle of charge e, localized

at a distance r from the beam axis:

Fr = e
(
Er − vsBφ

)
(1.52)

where vs is the speed of the particles.

Fr =
eλ

2πε0

(
1− β2

) r

a2
=

eλ

2πε0

1

γ2

r

a2
(1.53)

Finally the x and y component of the force in the transverse plane are:

Fx =
eλ

2πε0γ2a2
x (1.54)

Fy =
eλ

2πε0γ2a2
y (1.55)

In this case, the direct space charge force is linear in x and y and is defocusing in both planes.

This force, being proportional to the transverse position, can be treated in the Hill’s equations

as an additive linear component, i.e. a quadrupolar error, thus producing a tune shift. In this

case the right-hand side of Eq. (1.34) is given by:

F s.f.y

β2c2m0γ
=

2r0λ

ea2(s)β2γ3
y = Kspacecharge

y (s)y (1.56)

where the particle classical radius r0 = e2/(4πε0m0c
2) is 1.54·10−18 m in the case of a proton

and 2.82 · 10−15 m in the case of an electron.

This leads to

y′′ + [Ky(s)−Kspacecharge
y (s)]y = 0 (1.57)
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It is possible to compute the tune shift integrating the weighted gradient errors around the

circumference:

∆Qy = − 1

4π

∮
Kspacecharge
y (s)βy(s)ds = − 1

4π

∮
2r0λβy(s)

ea2(s)β2γ3
ds = − r0Rλ

eβ2γ3

〈
βy(s)

a2(s)

〉
(1.58)

One observes that the space charge tune shift a) is always negative because it is a defocusing

effect; b) it scales down with β−1γ−2, so it tends to vanish for ultrarelativistic beams; c) it

is proportional to the line density (important property for bunched beams); d) it is inversely

dependent on the normalized emittance ε̂x,y, since:

a(s) =
√
βx,y(s)ε̂x,y/βγ

This leads to:

∆Qx,y = − r0Rλ

eβγ2ε̂x,y
(1.59)

For a not round beam the linear space charge forces scale differently in the two transverse

planes. Larger is the emittance in one plane (horizontal or vertical), smaller the tune shift in

that plane.

1.4.1.2 Bi-Gaussian transverse distribution in a coasting beam

The treatment can be extended to a more realistic case of a bi-Gaussian transverse charge

distribution, with elliptic cross-section:

η(x, y) =
λ

2πσxσy
e
− x2

2σ2x
− y2

2σ2y (1.60)

where:

σx(s) =
√
βx(s)εx/βγ +D 2

x (s)δ2
rms (1.61)

σy(s) =
√
βy(s)εy/βγ (1.62)

being Dx the horizontal dispersion and δrms the root mean square (rms) of the distribution of

the particles momentum, called momentum spread.

Due to the non-linear charge density distribution, the fields and, thus, the forces are non-linear,

too. Following the reasoning of [17], the following fields approximate the solution of Max-

well’s equations for small amplitudes (x� σx and y � σy):
Ex = λ

2πε0
1

σx(σx+σy)x

Ey = λ
2πε0

1
σy(σx+σy)y

Bx = − λβ
2πε0c

1
σy(σx+σy)y

By = λβ
2πε0c

1
σx(σx+σy)x

(1.63)
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These fields lead to the linearized Lorentz forces (see dashed blue line in Fig. 1.12). Taking as

example the vertical plane:

F s.f.y = e(1− β2)Ey =
2eλ

4πε0γ2

1

σy(σx + σy)
y (1.64)

In this case the right-hand side of Eq. (1.34) is given by:

F s.f.y

β2c2m0γ
=

2r0λ

eβ2γ3

1

σy(σx + σy)
y = Kspacecharge

y (s)y (1.65)

Figure 1.12: The non-linear defocusing force produced in the case of a charge distribution with bi-
Gaussian transverse profile. The dashed blue line represents the linearized term for small particle amp-
litudes.

In this case the expressions of the maximum space charge tune shifts become:

∆Qx = − r0λ

2πeβ2γ3

∮
βx(s)

σx(s)
[
σx(s) + σy(s)

] ds
∆Qy = − r0λ

2πeβ2γ3

∮
βy(s)

σy(s)
[
σx(s) + σy(s)

] ds
(1.66)

The fact that, in general, the force is non-linear makes the tune shift non-linear too. In a generic

way, considering also particles with bigger amplitude, the deviation from the bare tune is not

simply a tune shift but an ensemble of points: a tune spread.

1.4.1.3 The role of the bunched motion in the space charge tune spread

In a bunched beam the line density λ, appearing in Eq. (1.66), is not generally constant, but a

function of the longitudinal position z, therefore also ∆Qx,y is a function of the position inside
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the bunch. In the case of a bi-Gaussian transverse distribution, one has:

∆Qx = � r0λ(z)

2πeβ2γ3

∮
βx(s)

σx(s)
[
σx(s) + σy(s)

] ds
∆Qy = � r0λ(z)

2πeβ2γ3

∮
βy(s)

σy(s)
[
σx(s) + σy(s)

] ds
(1.67)

An important consequence of Eq. (1.67) is that, while the particles perform synchrotron oscil-

lations, they experience a different ∆Q. The line density variation contributes to the creation

of the space charge tune spread. Figure 1.13 shows, as example, the typical tune spread shape

in the working point diagram (Qx, Qy) of the PSB, starting from the bare tune. This shape is

the so-called space charge “necktie” (or “footprint”). Particles with different positions in the

transverse and longitudinal phase spaces suffer a different de-tuning depending on their loc-

ation inside the bunch. The maximum linear tune shift (bottom left extremity of the spread)

occurs at the peak line density.

3.9 4 4.1 4.2 4.3
4

4.1

4.2

4.3

4.4

Q
x

Q
y

Figure 1.13: Typical “necktie” shape of a simulated “footprint”: the particles form a tune spread (grey
dots). The bare tune (black dot) and the maximum tune shift (red dot) are indicated. The coloured
lines represent the resonance lines of Fig. 1.5. The footprint has been simulated through the PTC-Orbit
program (see Chapter 3).
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Chapter 2

The PS Booster (PSB) after the LIU
Upgrade

This Chapter describes the CERN PS Booster, the first synchrotron in the LHC protons injectors

chain (see Fig. 2.1).

Figure 2.1: The CERN injectors complex [18]. The PS Booster is in pink.

A particular focus is given to the new H- charge-exchange injection system in the frame of the

LIU project.

The PSB main global characteristics are summarized in Table 2.1. The machine has a circum-

ference of 157 m and the unique characteristics to have 4 superposed rings. Each of them hosts

1 bunch per cycle. This allows to have 4 times the intensity delivered to the PS for each pulse

of the Linac. Every ring has 16 equal periods (i.e. sequence of components) of 9.8 m each.

For this reason the machine has “super-periodicity” equal to 16. The cycle length is 1.2 s.

The availability of two main cavities, the first one oscillating up to 2 MHz, for harmonic h=1

(h1), and the second one up 4 MHz, for harmonic h=2 (h2), makes the production of differ-
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ent longitudinal beam profiles possible through a double RF system (see Section 1.2.1): this

configuration, with respect to a single harmonic one, is mainly used at low energy to flatten

the profiles and reduce the line density, thus reducing the maximum space charge tune shift of

Eq. (1.67). A cavity in h=16 is also available to blow-up the longitudinal emittance. The span

of intensities and emittances for the different users is very large. As an example, high intensity

beams are produced for the ISOLDE facility [19]. The LIU Upgrade will bring the injection

energy from 50 MeV (from Linac2) to 160 MeV (from Linac4). The beam, today extracted at

1.4 GeV, will be in the future extracted at 2 GeV, in order to mitigate s. c. at injection in the

Proton Synchrotron (PS). Focusing on the LHC beams the present intensity is in the order of

1.65×1012, to be doubled for the future HL-LHC operations. The transverse emittances are

around 2 mm·mrad for each plane, and the longitudinal emittance is ∼1 eVs. The injection

tunes are chosen to be as far as possible from the dangerous integer resonances in order to host

a large tune spread: they are placed at (Qx, Qy)∼(4.3, 4.5).

Table 2.1: The CERN PS Booster main characteristics today and after the upgrade.

Value

Circumference 157 m
Super-periodicity 16
Cycle length 1.2 s
Number of bunches 1 x 4 rings
RF cavities h=1, h=2, h=16
Typical tunes at injection (Qx, Qy, Qs) ∼4.3, ∼4.5, ∼0.001
Natural chromaticity (ξx, ξy) -0.8, -1.6
Horizontal emittance 1 to 15 mm·mrad
Vertical emittance 1 to 9 mm·mrad
Longitudinal emittance 0.8 to 1.7 eVs

With Linac2 With Linac4

Injection p+ with injection septum H- charge-exchange
Injection energy 50 MeV 160 MeV
Extraction energy 1.4 GeV 2 GeV
Relativistic β, γ at injection 0.30, 1.05 0.52, 1.17
Revolution frequency at injection 577 kHz 1 MHz
Intensity 5×109 to 1×1013 p 5×109 to 1.6×1013 p
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The machine structure is going to be changed significantly at injection to host the new and

more modern H- injection system. The future injection scheme will be based on a charge-

exchange process with stripping foil from hydrogen ions H- to p+.

Figure 2.2: The stripping carbon foil [20].

The stripping foil, in carbon, allows a charge-exchange process whose transmission factor

depends on its thickness: in order to limit the amount of H- ions and hydrogen atoms H0,

to be collected in a dedicated dump located inside one of the injection dipoles (BSW4), to less

than 2%, the foil thickness has been set to 200 µg/cm2 (see Fig. 2.3). This should also allow

less than 0.1‰ losses from both inelastic and elastic nuclear scattering processes and up to

12.5% transverse emittance growth through multiple Coulomb scattering [21], with respect to

to an LHC beam target normalized emittances εx/y of 2/2 mm·mrad.
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Figure 2.3: H-, H0 and p+ yield as a function of the stripping foil thickness at 160 MeV [21].

A novelty introduced with the new system is that it is possible to inject turn-by-turn the beam-

lets (i.e. small beams) from the Linac4 at the same location in phase space. This can not

be achieved with the present multi-turn injection of protons, which, at a first approximation,

should obey the Liouville’s theorem. This theorem states that the density in phase space of a

bunch of particles is constant, if dissipative forces are neglected (generally forces depending

on the particles velocity) [22]. The injection system with H- particles hitting the foil is a dis-

sipative system, so the Liouville’s theorem can not be invoked.

As shown in Fig. 2.4, in order to hit the foil, the injected beam is horizontally displaced from

the closed orbit to the external up to 81 mm, being the sum of 46 mm given by four new injec-

tion dipoles (BSW1-4) which define a “chicane” shape with a max deflection angle of 66 mrad,

and 35 mm by a set of 4 fast kicker magnets (KSW), whose time constant is much faster with

respect to the previous ones. The 46 mm chicane bump is needed to intercept the injected

beam, while the 35 mm offset is designed to perform different shapes in phase space.

The total decay of the chicane to zero occurs in around 5 ms. This process is called “transverse

painting”: different emittances can be tailored using the flexibility of the KSWs whose typical

times are tens of µs.
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Figure 2.4: View from top of the future injection “chicane” for the H- injection scheme, defined by the
BSW magnets. The beginning of the process with the foil hits by the injected H- beam (red), which
is stripped into the circulating H+ proton beam (blue). The unstripped H- (light green) and the H0

(magenta) hit a beam dump inside the BSW4 and are lost. [4].

On the vertical plane the baseline foresees an offset of ∼3 mm to increase the vertical emit-

tance of the beam in order to mitigate the transverse space charge effects, respecting the target

emittance requirements for the LIU project [7]. This offset is obtained through a vertical steer-

ing system at the end of the injection line, but it can be also reduced or removed if the space

charge degradation will result to be overestimated. The results obtained will be shown through

simulations in the following.

Finally, the longitudinal plane can be “painted” through different schemes, varying or not the

turn-by-turn central energy modulation of the injected beam around 160 MeV. These have

been studied in detail in the past by C. Carli and R. Garoby [23] and, more recently, by V. F. et

al. [24].

As already discussed, the brightness for the LHC beams is defined in the PSB. Therefore, in

order to evaluate the performance of the PSB in presence of space charge, which is the main

bottleneck for the PSB to reach the brightness and the luminosity required in the LHC in the

future, it is fundamental to perform and optimize the injection process from the Linac4 using

numerical simulations. An example of multi-turn injection in 6D after 20 turns with Linac4,

with and without s. c., is shown in Fig. 2.5. In this example the beam is longitudinally injected

with at different adjacent central energies at every turn (the red beamlet is the last one injec-

ted) [23]. The details of the injection simulations and the obtained results are described in the

next Chapters.
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WITHOUT SPACE CHARGE WITH SPACE CHARGE

Figure 2.5: Simulation. The injected beam 6D evolution without (left) and with (right) space charge
after 20 turns of injection with central energy modulation. Different colours are the particles injected at
every turn. It is clear how the space charge affects transversely the beam.
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Chapter 3

PTC-Orbit

Numerical simulations of the s. c. effects in beam dynamics have been a challenge for accel-

erator physicists in the last 40 years. As a result, more than 30 software programs are actually

used by the scientific community [25]. The technological evolution of computing could make

possible, in principle, to simulate from “start-to-end” a complete accelerators chain [25].

At CERN, reliable space charge codes are needed to perform machines optimizations and study

the limits in terms of brightness [26]. A huge effort has started in 2011 for the LHC injectors

chain, aiming to optimize the brightness from the future PSB injection from Linac4. Since

then, PTC-Orbit has been the baseline software program for tracking simulations including

space charge in the CERN synchrotrons constituting the LHC injectors chain [27].

3.1 The PTC-Orbit software program

The PTC-Orbit software program [28] has been extensively used in the last four years for the

PSB simulations. It constitutes the baseline for the recent development of PyOrbit [29], which

includes a modern and user-friendly Python interface and has been used in this thesis for the

longitudinal optimization of the future LHC beams (see Section 6.2).

PTC-Orbit is the fusion of two well-established codes: PTC [30] and Orbit [31]. The first is an

optics code, which has been successfully used in the past in non-linear regimes for machines,

such as the LHC, but does not include space charge routines. Orbit adds the required exten-

sions for the space charge calculations and other collective effects. Orbit routines for space

charge have been developed at SNS, Los Alamos (USA), and successfully bench-marked with

measurements for the injection process in the Proton Storage Ring (PSR) [32].

Important PTC-Orbit characteristics for the PSB simulations are:

• Possibility to introduce time-dependent elements (magnetic field components, RF cavit-

ies) to simulate precisely the injection process.

• The full non-linear machine model can be implemented through the MADX-PTC code [33],

used to build the CERN machine models.
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• Possibility to simulate stripping foil, realistic apertures (i.e. physical limits of the ma-

chine), double-harmonic RF.

• Several beam diagnostics can follow the evolution of the beam (to compute emittances,

intensity, losses).

3.1.1 The “Particle-In-Cell” (PIC) method

The Orbit space charge routines use the “Particle-In-Cell” (PIC) method, which consists in fol-

lowing the trajectories of charged particles in self-consistent electromagnetic fields computed

on a mesh (i.e. a grid) [34].

Differently from other methods (e.g. the “frozen” approach [26]), “self-consistent” simulations

do not require any imposition for the approximation of the fields. In a “self-consistent” simula-

tion, the electro-magnetic fields are computed at every iteration, from the particles distribution,

and the derived forces are applied to the particles themselves.

The PIC method is based on “macro-particles”: each macro-particle can be seen as a “big”

computational particle of charge I/Nmp, where I is the intensity and Nmp the number of mac-

roparticles, usually in a range of 105 to 106. This is done to lighten the computational cost of

the simulations.

The space charge fields and relative “kicks” (i.e. forces) are calculated over a certain number of

space charge “nodes” Nsc, which are located all around the machine circumference. Usually,

in the PSB simulations,∼200 nodes per turn (in average one every 0.78 m) are used to perform

the calculations.

The PTC-Orbit PIC method adopted in the thesis for the computation of the transverse space

charge potential is explained in the following.

The bunch, which is composed by macro-particles, is represented for simplicity by the ellips-

oid of Fig. 3.1 left. At every space charge node location in the ring, during the tracking, the

computation of the space charge field is performed, through the following steps:

1. A grid is defined in the 3 spatial dimensions (x, y, z) on a mesh of dimensions (Nx ×Ny

× Nz). The macro-particles are given as input with certain state-space distributions and

total number of charges (see Fig. 3.1 left);

2. the macro-particles are projected on a 2D transverse grid (Nx ×Ny), as shown in Fig. 3.1

right;
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Figure 3.1: On the left, a 3D view of the bunch, with line density colour code. On the right, the
longitudinal projection of all the particles in a single slice.

3. the electric and magnetic fields are computed on the (x, y) grid locations;

4. the space charge forces, derived by the fields computation, are scaled by the line density

function λ(z), calculated over the Nz longitudinal bins, and are applied to the macro-

particles depending on their 3D position;

5. the macro-particles coordinates are updated;

6. the beam is transported to the next node;

7. the steps from 1 to 6 are repeated at the successive node until the end of the tracking.

PTC-Orbit computes the “direct” space charge, in “free space”, through a PIC technique [35].

This method adopts a “dynamic” (or “adaptive”) grid, changing accordingly to the beam size.

As sometimes used in this thesis work, it is possible to add boundaries of various shapes (cir-

cular, elliptical, rectangular), whose dimensions are usually defined only once in accordance

with the machine vacuum chamber. This second method uses a “fixed” grid [36] and allows to

simulate also the image charges effect, thus the “indirect” space charge component [16].

Depending on the number of macro-particles used to calculate the intensity-dependent effects

and the number of machine turns to be performed, from 100 to 1×106, PTC-Orbit simula-

tions can take from minutes to weeks. This is the reason why they are performed on dedicated

clusters in multi-processor, through the Message Passing Interface (MPI) protocol [37].

30



3.2 Convergence studies

As for all the numerical methods based on grid discretization, it is important, in a PIC model, to

perform a convergence analysis to set up correctly the simulation parameters. The parameters

which have been optimized during the convergence study, were:

• Nmp - the total amount of macro-particles;

• Nsc - the number of space charge nodes;

• Nx,y,z - the number of mesh points in the 3 spatial dimensions (x, y, z).

A convergence study based on the behaviour of rms emittances has been performed [38] to

correctly setup the simulations in terms of mesh size and number of macro-particles that have

to be tracked. This study has been done in a resonances ”free” condition, where the beam is

supposed to be stationary, so without any blow-up of the emittance nor losses.

Figure 3.2 shows, as an example, the effect on the rms emittance evolution of different com-

binations of Nmp and mesh points. The intensity (1.65×1012 p) and rms emittances have been

chosen similar to the ones of the present LHC beams. One can note the artificial blow-up of the

blue line, induced by an inaccurate transverse mesh choice. To correctly solve the fields equa-

tions, the dimensions of the number of transverse nodes Nx,y should be higher in the method

with fixed grid than in the one with dynamic grid. This because, in general, the beam occu-

pies only a part of the vacuum chamber: if one wants to have a similar resolution with both

methods, it follows that the “fixed grid”, in accordance with the vacuum chamber dimensions,

must have more nodes. The model that has been mostly used in the thesis is the one for direct

space charge computation only through the “adaptive grid”, as the LHC beams are very small

compared to the vacuum chamber sizes.

The optimal parameters that have been found through the convergence study are reported in

Table 3.1. It is stressed that an increase of the parameters could lead to a better resolution

but also to the drawback of an increase of the computing time and, thus, of the length of the

simulations.
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Figure 3.2: Rms emittance determinations as a function of the machine turns. The results were obtained
for different transverse mesh sizes, number of macro-particles and grid type. Legend: A - mesh size
64x64 - number of macro-particles 106 (fixed grid); B - mesh size 256 x 256 - number of macro-
particles 106 (fixed grid); C - 64 x 64 - number of macro-particles 500×103 (adaptive grid); D - 128 x
128 - number of macro-particles 500×103 (adaptive grid).

Table 3.1: The optimal parameters from the convergence study.

Method Nmp N sc Nx × Ny N z

Direct space charge (adaptive grid) 500×103 199 64 × 64 128
With boundaries (fixed grid) 1×106 199 256 × 256 128
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3.3 Simulation speed and code scalability with the number of cores

The simulation speed and the code scalability with the number of cores depends much on the

available computing power: different clusters have different simulation performances depend-

ing on the IT architecture.

At CERN, the simulations are run one the “spacecharge” cluster, an ensemble of 40 machines

with 48 cores each, not interconnected between each other. This means that a single simulation

can be run over a maximum of 48 simultaneous processes.

In collaboration with colleagues from CNAF-INFN in Bologna, Italy, a comparison for the

PSB simulations has been performed with their own cluster, to compare the performances of

two different architectures.

The CNAF cluster is composed of 10 machines with 16 physical cores each, eventually ex-

pandable to 32 cores (16 physical + 16 logical) through Hyper-threading [39], interconnected

through the InfiniBand protocol [40]. The results are summarized in Fig. 3.3. Here, the red

line shows the CERN cluster scalability, which is pretty good in the 48 cores limits, but it is

evident for the CNAF cluster the importance of the nodes interconnection, which leads to a

speed improvement of 20% for 32 cores and 230% for 128. Also, the absence of a Standard

Output (S.O.) to be dumped on disk, is helping the speed (see difference between green and

blue with high number of cores).

Further tests showed that the Hyperthread usage is detrimental with many cores and that the

usage of the only physical cores improves more the efficiency of the cluster. Table 3.2 summar-

izes the best performances results for the CNAF cluster, getting rid of the Standard Output file

and using only physical cores: simulations with 10 machines with a total of 160 interconnected

nodes, lead to 2.1 s per turn (single turn CPU time) and∼2.84 s per turn in Wallclock time. This

permits to run 5000 turns in 3.96 hrs, which is 2.8 times faster than the 48 cores in the CERN

“spacecharge” cluster and the 30% faster in CPU time (comparing the 2 clusters at 48 cores

and at 16 cores). The efficiency, i.e. the ratio speedup over number of cores, is still decreasing

up to 160 physical cores (see the last column in Table 3.2), so an improvement is foreseeable

in speedup by increasing furthermore the number of cores. This choice is clearly bounded by

economical constraints for the cluster expansions (more cores implies higher economical costs)

and by an educated guess on how a tremendous speedup would be always necessary even for

short-term simulations.
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number of cores for a typical PSB simulation. The magenta line is the perfect scalability reference line.

Table 3.2: The CNAF best performances for the PSB with only physical cores and removing the Hyper-
thread and the Standard Output which were slowing down the performances.

# cores # hosts CPU time per turn (s) speedup efficiency (%)

1 1 120 1.00 100.00

16 1 8.5 14.12 88.24

32 2 4.7 25.53 79.79

48 3 5.3 22.64 47.17

64 4 4.1 29.27 45.73

80 5 3.46 34.68 43.35

96 6 3 40.00 41.67

112 7 2.68 44.78 39.98

128 8 2.45 48.98 38.27

144 9 2.27 52.86 36.71

160 10 2.11 56.87 35.55
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Chapter 4

The particles tune spread in a space
charge dominated regime

As discussed in Chapter 1, the effect of the direct space charge is the creation of a tune spread

(see Fig. 1.13). Each particle feels a space charge force, thus a de-tuning, which depends on the

line density and the transverse displacement (see Fig. 1.12). This Chapter starts exploring the

mapping of particles with certain phase space characteristics in the PSB (Qx, Qy) space with the

help of PTC-Orbit simulations, using a simple single-turn tune computation method. Initially,

starting from bi-Gaussian transverse distributions, including dispersion in the horizontal plane,

static phase space cuts are applied and their location in the single turn tune footprint is analyzed

in Section 4.1. Afterward, in Section 4.2, the time-varying de-tuning of a single particle in one

synchrotron period is introduced: particles with different line density variation in time have

different tunes modulation. Section 4.3 shows that, in addition to the space charge tune spread,

the chromaticity (see Eq. 1.22) also induces a de-tuning which is proportional to the particle

momentum offset δ (see Eq. 1.17). This contribution sums up with the space charge and creates

precise tune patterns.

A second method, a tunes averaging technique, is introduced in Section 4.4 for discovering

resonance trapping mechanisms. These mechanisms play a key-role in the rest of the thesis.

This approach represents an original contribution of this thesis for 6D self-consistent space

charge studies. The effects of the longitudinal and the transverse amplitudes are evaluated on

the averaged tune spreads. This method, which “freezes” the longitudinal motion, filters out the

components which correlate the transverse and the longitudinal motion, like the chromaticity

and the dispersion.

The results presented in this Chapter have been shown in two educational talks at the space

charge meetings [41], at the 2014 CERN international space charge collaboration meeting [42]

and through an oral presentation [43] at IPAC15, the yearly International Particle Accelerators

Conference. They are going to be published in [44].
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4.1 Particles positions in the (single-turn) tune footprint

In order to analyze the location of the particles in the space charge tune spread necktie, a

subset of particles with small transverse amplitudes has been selected. Figure 4.1 shows, in

red, the particles that have been considered for the analysis. The two plots at top represent the

particles phase space coordinates, while the two in the bottom show the same particles in the

normalized phase space. The following transformation, using the Twiss parameters αx,y, βx,y
and the dispersion Dx, is applied:

x̃ = (x−Dxδ)/
√
βx

x̃′ = (x′ −D′xδ)
√
βx + x̃αx

ỹ = y/
√
βy

ỹ′ = (y′ + yαy/βy)
√
βy

(4.1)

This transformation into “normal forms” subtracts the dispersive contribution in the horizontal

plane, in order to put in evidence only the pure betatron motion and transforms the phase space

ellipses in circles of radius
√
Jx,y, being Jx,y the particle action of Eq. (1.10).

Figure 4.1 bottom shows the normalized phase spaces normalized by the standard deviations

of the variables x̃ and ỹ: as one can see the particles that have been considered for the analysis,

the red ones, are the ones inside 1σ of the normalized x̃ and ỹ variables.

Figure 4.1: Horizontal (left) and vertical (right) transverse phase space scatter plots for the normalized
(bottom) and un-normalized (top) phase spaces. In red the particles at small transverse amplitude that
have been selected for the following analysis.

Different samples of particles of this subset are then selected applying different cuts in the
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longitudinal plane (φ, ∆E).

Particles sitting at the edges of the bunch, in Figure 4.2 left, are located close to the bare tune

in the necktie, as shown in Figure 4.2 right. In this longitudinal region, in fact, the beam

line density is smaller with respect to the center of the bunch, therefore also the space charge

de-tuning is small.

Figure 4.2: Left: the longitudinal phase-space (φ, ∆E) scatter plot of the bunch (grey). The particles
with small transverse amplitudes, at the longitudinal edges of the bunch, are in ∆E colour-code. Right:
in colour the position of those particles in the global tune footprint (in gray). The black dot is the bare
tune.

Particles that sit longitudinally in the center of the bunch (see Fig. 4.3 left) experience a large

space charge de-tuning and are located far with respect to the bare tune in the necktie (see

Fig. 4.3 right). This because the line density has a peak at φ = 0.

The shape of a coloured “boomerang” is recognizable in Fig. 4.3 right: the dispersion brings

the particles off-center in the horizontal direction, causing a more vertical de-tuning. For this

reason the particles cover mainly the bottom-right part of the necktie. The chromaticity, negat-

ive in both planes in this example, generates a de-tuning which is opposite to the space charge

one for ∆E<0. For ∆E>0, instead, the de-tunings go in the same direction (see Section 4.3).

Figure 4.3: Left: the longitudinal phase-space (φ, ∆E) scatter plot of the bunch (grey). The particles
with small transverse amplitudes, around φ = 0, are in ∆E colour-code. Right: the position of those
particles in the global tune footprint. The black dot is the bare tune.
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Figures 4.4 and 4.5 show how the energy spread affects the thickness of the footprint. The posi-

tion in the necktie (see Fig. 4.4 right) of the particles with small values of |∆E| , corresponding

to Fig. 4.4 left, covers the region between the bare tune and the maximum tune shift (φ = 0).

Figure 4.4: Left: the longitudinal phase-space (φ, ∆E) scatter plot of the bunch (grey). The particles
with small transverse amplitudes, around ∆E=0, are in φ colour-code. Right: the position of those
particles in the global tune footprint. The black dot is the bare tune.

The width of the tune distribution is determined by the ∆E interval. Figure 4.5 left shows that,

for increased energy offset limits, the relative particles tune shifts cover a thicker area of the

tune spread, as shown in Fig. 4.5 right .

Figure 4.5: Left: the longitudinal phase-space (φ, ∆E) scatter plot of the bunch (grey). The particles
with small transverse amplitudes, with bigger offset around ∆E = 0, are in φ colour-code. Right: the
position of those particles in the global tune footprint. The black dot is the bare tune.
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The colour­code is the energy offset. On the right it is shown the

position evolution of such particle in the footprint.

4.2 The tune modulation of a single particle

Particles experience different tune modulation depending on the evolution of their longitudinal

position during the synchrotron motion. Due to the fact that the line density varies with the

longitudinal position, also the space charge de­tuning feels a turn­by­turn variation (Eq. 1.67).

Figure 4.6 right shows the tune modulation of a single particle, performing small synchrotron

oscillations. In the left plot it is represented its path in the longitudinal plane ( φ, ∆E) during

one synchrotron period. The colour­code is the energy offset. On the right it is shown the

position evolution of such particle in the footprint. In this case, being the particle close to the

center of the 6D phase space (x, x� , y, y� , φ, ∆E), it oscillates in tunes around the maximum

tune shift.

position during the synchrotron motion.

oscillations. In the left plot it is represented its path in the longitudinal plane (

one synchrotron period.

In this case, being the particle close to the

Figure 4.6: Left: the longitudinal phase­space (φ, ∆E) scatter plot of the bunch (grey). The particle
small synchrotron oscillation is in ∆E colour­code. Right: the modulation of the particle tunes (in
colour­code) in the global tune footprint (grey scatter­plot). The black dot is the bare tune.

A particle performing larger synchrotron oscillation, as shown in Fig. 4.7 left, is moving from

locations with maximum line density to ones with smaller line density. This modulates the

transverse space charge forces during the synchrotron motion, inducing a different de­tuning

at each turn, as shown in Fig. 4.7 right. The modulation, in one synchrotron motion, is divided

into two branches, one for positive energy offsets and one for negative ones, due to the effect

of the chromaticity, as explained in Section 4.3.
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Figure 4.7: Left: the longitudinal phase­space (φ, ∆E) scatter plot of the bunch (grey). The particle
synchrotron oscillation is in ∆E colour­code, covering larger positions in phase­space and, thus, line
density. Right: the modulation of the particle tunes (in colour­code) in the global tune footprint (grey
scatter­plot). The black dot is the bare tune.

4.2.1 Effect of large transverse amplitude

Particles with large transverse amplitude feel a lower space charge kick and a tune modulation

much closer to the bare tune. As an example, Figure 4.8 shows the tune modulation of a particle

at 3σx and 3σy in the normalized phase space. Again, one can see the two branches due to the

chromaticity Q� .

Figure 4.8: Left: the longitudinal phase­space ( φ, ∆E) scatter plot of the bunch (grey): the particle
synchrotron oscillation is in ∆E colour­code. Right: the modulation of the particle tune (in colour­
code) in the global tune footprint (grey scatter­plot) is very close to the bare tune in this case. The black
dot is the bare tune.
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4.3 The role of the chromaticity in the space charge tune spread

The chromaticity (see Section 1.1.6) has an effect on the tune spread in combination with space

charge [43].

Figure 4.9 shows the path of a particle with large transverse and synchrotron amplitudes, which

goes from regions in which both the line density (space charge component) and the momentum

offset (chromatic component) are large, to the head or the tail of the bunch, in which the space

charge tune shift is almost zero while the momentum offset δ can have a large excursion. As

shown in the Figure, one can consider three “branches” in its motion:

• Branch AB - the space charge and chromatic de-tunings are large. For positive δ (and

negative chromaticity, such as in the PSB) both effects are defocusing and they sum up;

• Branch BC - in the vicinity of the bare tune, when the particle is sitting in the head or

the tail of the bunch, the space charge component is almost zero and the tune is moving

on a line which slope depends on the ratio between horizontal and vertical chromaticity.

• Branch CD - the space charge component is large again. However, for negative δ and

negative Q’, the chromatic de-tuning is positive, i.e. goes in the opposite direction with

respect to the space charge one.

The orientation and the length of these three “branches” depend on the chromaticity value, on

the synchrotron amplitude and on the particle actions in the horizontal and vertical planes.

Figure 4.10 shows in red the different tune paths of particles performing large synchrotron

oscillations, for two values of chromaticities (ξx, ξy). The results can be compared with the

ones of Fig. 4.9, obtained for the PSB natural chromaticities component values.

According to the chromatic working point, indeed, the entire tune footprint changes, as is

shown in Fig. 4.11. As shown in the figure, for the same bare tune it may or may not touch a

given resonance line. These phenomena will be explored in the measurements and simulations

of Sections 5.2.3 and 5.5.3.

Figure 4.9: Zoom of the tune footprint close to the bare tune (dot marker). In red the path of a particle
performing large synchrotron oscillation. In blue the bare tune. The results were obtained using the
PSB natural chromaticity values (ξx, xiy)=(-0.8, -1.6).
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Figure 4.10: Path of a particle performing large synchrotron oscillations for varying chromaticities. The
plots were obtained using different values pairs of the chromaticity components.
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Figure 4.11: The tune spread (grey scatter plot) for different chromaticities: (a) (ξx, ξy)=(-0.05, -3.17);
(b) (ξx, ξy)=(-0.8, -1.6); (c) (ξx, ξy)=(-1.55, -0.12). The black dot is the bare tune at (Qx,Qy)=(4.2,
4.31). The footprints are overlapped to the magnetic resonance lines, discussed in Chapter 1.

42



4.4 Average tune spread computation

An original contribution of this thesis is the adoption of averaged tunes for space charge studies.

The method is based on the Average Phase Advance (APA) technique [45], which can be used

in alternative to Fast Fourier Transform (FFT) analysis of trajectories. The usage of the method

is, according to our knowledge, a novelty for resonances identification in 6D self-consistent

space charge studies.

PTC-Orbit performs the particles tune computation in one turn, tracking the particles phase

advances along the machine elements, in order to obtain the integer part of the tunes too. The

single turn tune computation process can be iterated for many turnsN , at least one synchrotron

period Tsynch, and then averaged, using the formula:

Q̄x,y =
1

N

N∑
i=1

Qx,y(i) (4.2)

As an example of the method, the large modulation of a particle performing a very large syn-

chrotron oscillation and small transverse amplitudes is shown in Fig. 4.12. The black cross is

the averaged value over one synchrotron oscillation.

Figure 4.12: The large turn-by-turn modulation of a particle tune during one synchrotron period
(magenta scatter-plot) in the global tune footprint (grey scatter-plot) and its averaged tune (black cross).
The black dot is the bare tune.

The averaging process “freezes” the longitudinal motion for every single particle. Figure 4.13

right shows a comparison between the tune spread obtained using the single turn tunes compu-

tation and the average tune computation: in gray the space charge footprint computed turn by

turn, in colour the averaged one. The averaged spread is shrinked with respect to the single-turn

one.
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Figure 4.13: Left: the longitudinal phase-space of the bunch with synchrotron period colour-code.
Right: the single turn tunes computation in grey scatter-plot and the averaged tune spread computation
in one particle synchrotron period (in synchrotron period colour-code). The black dot is the bare tune.

A big advantage of this approach is that it brings in evidence particles which get trapped by

magnetic resonances during the tracking, as shown later in Figs. 5.25 and 5.26. In fact, the

resonance trapping mechanism, which is strictly related to the tune modulation induced by the

line density variation [46], is normally developing in time constants of the order of a synchro-

tron period.

Through this method, it is possible to better discern dangerous resonances that may undermine

the beam quality. For example, Fig. 4.14 right, described in detail in Section 5.4.3, shows

a clear narrow peak in correspondence of the 2Qy = 9 resonance line. On the other hand,

Fig. 4.14 left shows the single turn tunes computation, which does not evidence any peak close

to the resonance.
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Figure 4.14: An example of tune spread (particle density colour code - blue, low density - red, high
density), without (left) and with (right) the averaging over many turns, in which particles are trapped on
the 2Qy = 9 resonance line. The projections of the tunes distributions along the x andy axes are shown.
One can appreciate the presence of a narrow peak in correspondence of the 2Qy = 9 resonance on the
Qy projection (right) and its absence for the single turn tunes computation. See Section 5.4.3.
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4.4.1 Effect of the longitudinal amplitude

The single particle dynamics in a bunch is very sensitive to the particle synchrotron amp-

litude [46]. Figure 4.15 shows that particles with large synchrotron amplitudes are the ones

with a major risk of interaction with resonance lines close to the bare tune. These resonances

are the most difficult to treat, as sometimes it is not possible to vary the bare tune of an amount

which is large enough to avoid them with the complete tune spread. Therefore, in order to cure

these resonances, proper correction schemes through corrector magnets have to be applied.

Figure 4.15 shows that particles with small synchrotron amplitude cover almost all the necktie

extension, while going towards larger synchrotron amplitude layers, the particles are mapped

along necktie regions which are closer and closer to the bare tune: this is due to the fact that,

in general, the averaged line density decreases.

Figure 4.15: Left: the longitudinal phase-space with 3 different layers of synchrotron amplitude Asynch

(in colour-code): 0 < Asynch ≤ 0.7 rad, in blue, 0.7 < Asynch ≤ 1.4 rad, in cyan, 1.4 < Asynch ≤ 2.1
rad, in yellow. Right: the corresponding averaged tune spread computation. The black dot in (b) is the
bare tune.

4.4.2 Effect of the transverse amplitude

4.4.2.1 Similar amplitudes

The transverse amplitudes determine the length and the direction of the particles averaged de-

tunings. Figure 4.16 shows the effects of the intersections between particles with similar levels

of amplitudes in the normalized horizontal and vertical planes. As one can see, small amplitude

particles in the horizontal and vertical planes sit on a long line going from the bare tune to

the maximum tune shift (far from the bare tune). Particles with larger transverse amplitude

map into lines that end far from the maximum tune shift. The lowest part of these de-tunings

corresponds to particles with bigger average line density, thus close to φ = 0.
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Figure 4.16: (a) normalized horizontal phase-space with 3 different amplitude layers in colour-code:
orange - 0 < Jx̃ < σx̃, green - σx̃ < Jx̃ < 2σx̃, magenta - 2σx̃ < Jx̃ < 3σx̃; (b) the normalized vertical
phase-space with the same layers in colour-code; (c) the global averaged tune spread computation (grey
scatter plot) and the averaged tunes computation of the particles with the previous colour-code in the
horizontal and vertical plane.

4.4.2.2 Mixed transverse amplitudes

In the following the results of the analysis of particles with mixed transverse amplitudes are

discussed. Figure 4.17 (4.18) shows the case of small horizontal (vertical) amplitudes and dif-

ferent vertical (horizontal) amplitudes values: the average tune spread of the selected particles

paints the lower (upper) side of the global averaged tune spread.
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Figure 4.17: (a) small normalized horizontal phase space with 0 < Jx̃ < σx̃; (b) normalized vertical
phase-space with 4 different amplitude layers in colour-code: orange - 0 < Jỹ < σỹ , green - σỹ <
Jỹ < 2σỹ , magenta - 2σỹ < Jỹ < 3σỹ , purple - 3σỹ < Jỹ < 4σỹ; (c) the global averaged tune spread
computation (grey scatter plot) and the averaged tunes computation of the particles (vertical amplitudes
colour-code). The black dot is the bare tune.
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Figure 4.18: (a) the normalized horizontal phase-space with 4 different amplitude layers in colour-
code: orange - 0 < Jx̃ < σx̃, green - σx̃ < Jx̃ < 2σx̃, magenta - 2σx̃ < Jx̃ < 3σx̃, purple -
3σx̃ < Jx̃ < 4σx̃; (b) small normalized horizontal phase space with 0 < Jỹ < σỹ; (c) the global
averaged tune spread computation (grey scatter plot) and the averaged tunes computation of the particles
(horizontal amplitudes colour-code). The black dot is the bare tune.
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4.4.3 Chromaticity in the averaged tune spread computation

The tunes, averaged over multiples of the synchrotron period are not sensitive to the chromatic

change. A synchrotron period scatter-plot over a longitudinal distribution is shown in Fig. 4.19.

Due to the fact that the chromatic de-tuning is symmetric with respect to the momentum offset,

the averaged tune spreads are the same, even if the single turn tunes computation are not, as

shown in Fig. 4.20 (to be also compared with Fig. 4.11).
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Figure 4.19: The longitudinal distribution of the particles for a double RF bucket in short bunch mode
(see Figure 1.4 bottom in Chapter 1). The colour-code is the synchrotron period in number of turns.
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Figure 4.20: The (simulated) averaged tune spreads are not affected by the chromaticity change, while
the single turn computations (grey) are much changing. a - (ξx, ξy)=(-0.05,-3.17); b - (ξx, ξy)=(-0.8,-
1.6); c - (ξx, ξy)=(-1.55,-0.12). The black dot is the bare tune and the colour code is the synchrotron
period in number of turns.
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Chapter 5

PSB measurements and simulations at
160 MeV

Several Machine Development (MD) studies have been performed in the PSB, on a special

cycle at the future injection energy of 160 MeV. The campaign [47] was aimed at collecting a

good set of space-charge related measurements for understanding the beam behaviour and for

the PTC-Orbit benchmarking in order to check the validity of the software for the prediction of

future beams, as discussed in Chapter 7.

The instrumentation and the observables, together with the machine settings, are presented in

Sections 5.1 and 5.2. Main quantities are intensity evolution, beam profiles, emittances, closed

orbit, tune and chromaticity.

The measurements and, thus, the simulations have been performed to explore the effect of some

special resonances. First of all, tune scans have been performed to identify important reson-

ances, excited by machine errors, lattice periodicity and the beam itself. The scans, presented

in Section 5.3, have been also useful to propose the most effective set of correctors to be used

in machine operation.

Measurements and benchmark with PTC-Orbit simulations have been performed on:

• the vertical half integer resonance 2Qy = 9 (Section 5.4);

• the integer resonances Qx = 4 and Qy = 4 (Sections 5.5 and 5.6);

• the coupling resonance Qx −Qy = 0 (Section 5.7).

Other space charge-related measurements are presented in Appendix B.
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5.1 Observables and instrumentation

Space charge effects have been evaluated in terms of transverse and longitudinal bunch profiles,

rms emittances and intensity loss.

5.1.1 Beam intensity

Beam Current Transformers (BCTs) [48] are used in the PSB to measure the intensity.

5.1.2 Longitudinal profile and bunch length

Longitudinal pick-ups are used to derive the longitudinal bunch shape [49]. From this signal

it is also possible to compute the total bunch length, through a foot-tangent algorithm [50],

similar to the one presented later in Section 6.2.

5.1.2.1 Longitudinal phase space and tomography

Tomography is used to reconstruct the longitudinal phase space of the bunch. The underlying

principle of tomography is to combine the information from a large number of beam current 1D

projections to be able to reconstruct unambiguously the fuller picture with the extra dimension

reinstated [51]. On each turn around the machine, a pick-up provides a “snapshot” of the bunch

projected at a slightly different angle. Combining such profiles with a tomography, it is possible

to obtain a two-dimensional picture of phase space density, with the help of a longitudinal

tracking algorithm, as shown by the measurement reconstruction in Fig. 5.1 for the case of

double harmonic RF settings. From a tomography it is possible to derive the longitudinal

emittance and the momentum spread δrms of the bunch.

In simulations the reconstruction of the phase space profile measurements [52] is an important

input, as it directly provides the 2D longitudinal distribution of the macroparticles.
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Figure 5.1: Longitudinal phase space (tomography) for “long bunches” with voltages values Vh1 = 8
kV and Vh2 = 4 kV, in anti-phase. The colour-code indicates the particles density (yellow - low density,
black - high density). The projections along the phase φ, , i.e. the line density, and the energy offset ∆E
are shown.

5.1.3 Transverse beam size and emittance

The beam emittance is measured through the wirescanner. This instrument measures the quant-

ity of secondary particles generated by the scattering of the beam with a tiny wire, which passes

through the beam at a speed of 10 or 15 m/s [53]. From this measurement it is possible to re-

construct the beam profile (at the wirescanner position sws), in one transverse plane, and the

beam size through a Gaussian fit. Finally, knowing the value of the momentum spread δrms, ob-

tained with the longitudinal tomography, and the optics functions βx,y andDx at the instrument

position, one can estimate the transverse normalized rms emittances through the formulas:

εx = βγ
σ2
x(sws)−D2

x(sws)δ
2
rms

βx(sws)

εy = βγ
σ2
y(sws)

βy(sws)

(5.1)

In simulations the emittances can be calculated either through the statistical definition (see

Eq. 1.11) or from a Gaussian fit of the particles distribution profiles, thus with the same ap-

proach of the wirescanner. Both methods are used in the following.

The starting 6D distributions in (x, x’, y, y’, φ, ∆E) for the simulations have been generated

as bi-Gaussian for the horizontal and vertical phase spaces, matching them to the initial beam

transverse emittances and Twiss parameters.
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5.1.4 Transverse position and closed orbit

Beam Position Monitors (BPMs) [54] are used in the PSB to measure the transverse position

of the beam centroid. Actually there are 16 BPMs per ring installed in the machine which can

measure the position with an accuracy of 0.1 mm. The BPMs are needed to evaluate the closed

orbit excursions and, if needed, as input to introduce an orbit correction with dedicated steering

magnets ( see Appendix C).

5.1.5 Tune

The tune measurement is performed by kicking the beam in the transverse plane. As a result,

the beam start oscillating around its closed orbit at a frequency f = 2πQx,y. This oscillation

is recorded turn-by-turn through a dedicated BPM. A Fast Fourier Transformation (FFT) al-

gorithm, applied to the transverse position signal over many turns, gives the noninteger part of

the tune.

5.1.6 Chromaticity

Since Q′x,y =
∂Qx,y
∂δ (see Eq. 1.21), by measuring the tune at different energy offsets, it is

possible to derive the first order chromaticity as the slope of the linear regression in the plane

(δ, Qx,y). The different energy offsets are generated through the variation of the beam radial

position.
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5.2 Machine settings

A special machine cycle, shown in Fig. 5.2, has been prepared to accelerate the beam from the

present 50 MeV injection energy to 160 MeV (Linac4 injection energy), where it is kept on the

measurement plateau, which lasts between 425 ms and 655 ms. The beam is injected at 275 ms

from the start of the cycle. At 805 ms the beam is extracted from the ring. Measurements have

been done on the 160 MeV plateau on Ring 2.
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Figure 5.2: The PSB cycle prepared for the measurements on the 160 MeV plateau: cycle time vs.
kinetic energy.

5.2.1 Beam intensity and transverse settings

The bunch population for the measurements was usually around 1.65 × 1012 p, the same of

the present LHC 25 ns beam, if not otherwise specified. This intensity was obtained through a

multi-turn injection of 2-3 turns. The corresponding average transverse normalized emittances

was ε ∼ 2 mm·mrad or higher, varying for the different measurements.

5.2.2 Longitudinal settings

Long bunches are produced setting the cavities voltages in anti-phase. The shape depends on

the ratio of the two RF peak voltages. Figure 5.3 shows the typical longitudinal phase spaces

for Vh1 = 8 kV and Vh2 = 8 kV.

For the MD purposes, the cavities, with voltages in-phase have been used to produce shorter

bunches, thus enhancing the betatron tune spread. Figure 5.4 shows the typical longitudinal

phase space for Vh1 = 8 kV and Vh2=8 kV in phase.
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Figure 5.3: Longitudinal phase space (tomography reconstruction, see Section 5.1.2.1) for “long
bunches”, with voltages values Vh1 = 8 kV and Vh2 = 8 kV, in anti-phase.
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Figure 5.4: Longitudinal phase space (tomography reconstruction, see Section 5.1.2.1) for “short
bunches”, with voltages values Vh1 = 8 kV and Vh2 = 8 kV, in phase.
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5.2.3 Chromaticity settings

In the PSB the chromaticity is controlled via one family of 16 normal sextupoles, distributed

one per period along the machine. This setting leads to a coupled control of the horizontal and

vertical chromaticities, as shown in Fig. 5.5. By increasing the current, ξx increases and ξy
decreases. On the other hand, changing polarity, ξx decreases and ξy increases.

The interaction between chromaticity and space charge has been studied for negative chromati-

cities, to avoid the development of coherent instabilities [55].
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Figure 5.5: Measured vertical (red) and horizontal (blue) chromaticities vs. current in the chromatic
sextupoles.

Table 5.1 reports the horizontal and vertical chromatic tune spread for three different sextupole

settings, assuming a maximum momentum spread of δrms=5×10−3. The maximum de-tuning

due to chromaticity is of the order of 0.03 to 0.07. This should be compared with a space charge

tune spread of more than 0.3 measured in the present PSB at 160 MeV.

Table 5.1: The maximum chromatic de-tuning for tunes (4.2, 4.31), max ∆p/p=5×10−3 and for 3
sextupole current settings

[A] ξx ξy ∆Qx ∆Qy

85 -0.0026 -3.26 0 ±0.071

0 -0.82 -1.6 ±0.017 ±0.035

-80 -1.6 -0.02 ±0.034 0
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5.3 Tune scans

In order to know the effective resonance lines in the machine, a series of tune scans has been

performed at 160 MeV. The method has been derived from the one used in other CERN syn-

chrotrons like the PS [56].

The measurements are performed ramping down the programmed vertical tune, with a change

rate of 2.2×10−3 [1/ms], at fixed horizontal tune steps and by recording the intensity. The

intensities and the programmed tunes, imposed changing the current in the main quadrupoles,

are used to build the plots. The loss rate is calculated through the smoothed time derivative of

the intensity, that, in percentage with respect to the initial intensity, is used as an indicator of

the presence of a resonance. The plots show the beam loss as function of the programmed tune.

A strong loss rate (red colour-code) indicates a destroying effect of the resonance on the beam,

while the blue colour-code represents a stable region.

In order to obtain a map with best resolution, it is necessary to have large starting beam size

and long bunches (for lower space charge tune spread). Unfortunately, for the PSB, it is not

possible to have a nice probe beam with low intensity and high emittance as in the PS. The

initial average emittance for the scans is around ∼ 5 mm·mrad and the starting intensity is

∼ 1.8× 1012 p. The double RF cavities in anti-phase guarantee the maximum possible bunch

length, leading to tune spreads of the order of 0.1.

The measurements have been initially performed with the multipolar correctors OFF (bare ma-

chine condition). The description of the multipolar magnets can be found in [57].

Figure 5.6 shows the map of the bare machine resonances. The most dangerous resonances are

the integers Qx,y = 4 (the stop-band of the vertical one is partially visible in the lower part of

the scans), the vertical half-integer 2Qy = 9 and the sextupolar: 3Qy = 13, 2Qx + Qy = 13

(skew) and Qx + 2Qy = 13 (normal). The coupling line Qx −Qy = 0 is also very strong.

The resonance lines are often shifted above the resonance because the moment in time when

the losses occur, during the scan, depends on the tune footprint extension. Particles in the lower

part of the tune spread get indeed lost before the programmed tune crosses the line [16].
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Figure 5.6: Bare machine resonances. A small correction of the half-integer resonance has to be applied
to be able to cross it during the scan.

A first attempt to correct the resonance lines at 160 MeV has been performed. The result is

shown in Fig. 5.7.

Figure 5.7: The resonances correction and the instability at Qx = 4.3.

Table 5.2 shows the list of the correctors which have been used to reach the situation in Fig. 5.7.
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Table 5.2: PSB ring 2 correctors (with nominal current settings at 160 MeV). The magnets are named
as in the control room application.

Magnet name Magnet type Resonance lines Current [A]

QNO412L3, QNO816L3 Normal quadrupole 2Qy=9 -0.5, 2.09

XNO4L1, XNO12L1 Normal sextupole Qx+2Qy=13, 3Qx=13 6.94, -20

XSK6L4, XSK2L4, XSK11L4 Skew sextupole 2Qx+Qy=13, 3Qy=13 -4, 4, 12

On the plot in Fig. 5.7, a vertical line is still visible at Qx = 4.3 and we discovered that it is

caused by an horizontal instability. These frequencies look compatible with a large quadrupolar

power supply ripple that was observed [58], but it has yet to be verified. Figure 5.8 shows the

exponential growth of the horizontal beam centroid. The instability has been cured increasing

the strength of the transverse feedback [59]. The final result is shown in Fig. 5.9.

The resonances correction procedure, presently followed in operation, has a more complex

approach, because it requires a careful time-varying optimization of the correctors strengths

at the different values of the magnetic ramp, taking into account that the programmed tune

varies during the cycle. Usually, in the PSB, the correction is performed “empirically” through

a fine tuning of a small set of effective correctors. One must say also that, in a strong space

charge regime, as in the PSB, the presence of one or few local correctors might not be enough

to correct completely the resonance, as the tune spread extends up to ∆Qy = �0.6 at injection

energy. In order to facilitate the choice of these correctors, the tune scan analysis has proven

to be an useful tool to give a first indication of the most effective correctors to be powered in

operation.

Figure 5.8: The horizontal centroid exponential growth caused by the “coherent” instability atQx = 4.3.
The amplitude of the motion (in arbitrary units) vs turns is represented for the horizontal (blue) and
vertical (red) oscillations. Screenshot from the control room application.
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Figure 5.9: The resonances correction with the instability cured at Qx = 4.3.

A methodological novelty that has been introduced in the tune scans technique, during the

work for this thesis, is the “radial” tune scan, explained in Appendix D, and implemented in

collaboration with E. Matli (CERN Operations team) [47].
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5.4 Studies on the vertical half-integer resonance 2Qy = 9

The vertical half-integer line is, together with the integer lines, the most dangerous in the PSB

operations (see Fig. 5.6). In order to gain space for the large tune spread at injection, the

nominal working point is, in operation, placed above this line (at Qy=4.55-4.6). Thus, the

upper part of the tune spread is concerned about this resonance, which is driven by quadrupolar

field errors. These terms, constituting the linear errors of the machine, have been measured

in the PSB by M. McAteer (see Appendix C) [60] and their proper modelling in simulation is

fundamental to understand how the beam is affected by space charge. In operation, a normal

quadrupolar corrector is used to partially compensate the resonance effects.

5.4.1 Measurements

Measurements of beam intensity, transverse and longitudinal profiles evolution have been per-

formed on the 160 MeV plateau (see Section 5.2) at a programmed (or bare) static working

point of (4.28, 4.53), during the measurement window from 450 ms to 620 ms. The pro-

grammed tune is defined as the one that is set in the control room through the nominal current

of the main quadrupoles in the machine, excluding possible error contributions. To reach the

initial conditions, the beam has been injected at 50 MeV with a vertical tune below the half

integer, then accelerated to 160 MeV. The working point has been raised above the Qy = 4.5

line by keeping a single normal quadrupolar corrector ON in order to be able to cross the res-

onance minimizing losses and beam deformation; measurements start at 450 ms, as soon as the

normal corrector is switched off. Two different longitudinal bunch settings with a double RF

harmonics are considered for long bunch and short bunch, as described in Section 5.2.2. Table

5.3 shows the initial beam parameters.

Figure 5.10 shows the measured intensity evolution during the cycle time for both cases. For

this specific working point, at 620 ms, the beam survival for the short (long) bunch is of 65%

(15%). The losses are evident in the longitudinal plane and concern, at the beginning, mainly

the large synchrotron amplitude particles, as shown in Fig. 5.11. The beam size - both ho-

rizontal and vertical, remains similar over the 170 ms. Figures 5.12 and 5.13 show the trans-

verse profiles measurements, referred as Particle Density Function (PDF) for the long and short

bunch cases, respectively. The distributions are normalized with respect to the maximum val-

ues, where one can note that the 1σ beam size and the Gaussian shapes are preserved. The

asymmetric behaviour of some of the profiles can be due to artifacts in the wire-scanner meas-

urements due to large losses occurring during the measurements.
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Table 5.3: Half-integer case - measured initial beam parameters.

Initial beam parameters long bunch short bunch

Intensity [1012 p] 1.39 1.32

εx, εy [mm·mrad] 2.64, 2.05 3.24, 2.13

RF voltage (h=1, h=2) [kV] 8, 8 8, 8

RF cavities relative phase π 0

Total bunch length [ns] 634 400

Momentum spread (1σ) 1.35×10−3 2×10−3

Tune Qx, Qy 4.28, 4.53 4.28, 4.53

Max space charge tune shift - Eq. (1.67) ∆Qx,∆Qy -0.17, -0.2 -0.26, -0.36
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Figure 5.10: Half-integer measurements: intensities vs. time for the long (red) and the short (grey)
bunch with their errorbars (standard deviation over multiple measurements).
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Figure 5.11: Half-integer (measurements): waterfall of the longitudinal profile colourplot in the time
window [450-620] ms for long (left) and short (right) bunches. The colour-code is the particle line
density (blue - low density; red - high density), scaled by the peak line density of the first profile. The
comparison of the colourplot with the vertical dashed black lines puts in evidence the bunch shortening
in the short bunch case.
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Figure 5.12: Half-integer (measurements): horizontal (left) and vertical (right) profiles in [450-620] ms
for the long bunch case, normalized with respect to the max value.
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Figure 5.13: Half-integer measurements: horizontal (left) and vertical (right) profiles in [450-600] ms
for the short bunch case, normalized with respect to the max value.
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5.4.2 Simulations

Simulations have been set up including both the dipolar and quadrupolar misalignments and

the quadrupolar (gradient) errors, described in Appendix C, which are necessary to excite the

2Qy=9 resonance. The gradient errors are applied to the lattice and, in addition to exciting the

resonance, they shift the original working point (4.28, 4.53) toward the half-integer line (4.285,

4.517). The misalignment errors have also a contribution in the vertical de-tuning (4.284,

4.513), due to the introduction of slight skew component and longitudinal lattice changes, and

in the losses distribution along the machine.

Table 5.4 shows the simulations settings that have been used in PTC-Orbit. To compare the

losses profiles for the same starting conditions, the simulated initial intensity and emittance for

the short bunch have been put equal to the one of the long bunch (see Table 5.3), even if they

slightly differ in the measurements: this should only marginally affect the quality of the effects

confirmed by the simulations in terms of profile shapes and quantities.

Table 5.4: Simulation settings for the half-integer case.

Long. space charge ON (128 bins)
Transv. space charge PIC w/o boundaries
N. of bins [x, y] 128, 128
N. of macrop. 500×103

N. of space charge nodes 201

5.4.2.1 Long bunch

Figure 5.14 shows the simulated intensity evolution compared with the measurements, in case

of the long bunch. The simulations are terminated when an apparent steady state situation

occur. One should note that all the ingredients need to be included in the simulations. Here,

if no errors are included, space charge alone does not drive losses (blue line). If errors are

included-but no space charge, the losses are due only to chromaticity and saturate (green line).

Considering space charge, if only quadrupolar errors - but no misalignments - are included,

a qualitative agreement is achieved (solid magenta line). Then, if also the misalignment er-

rors are considered, there is a significant improvement with also better quantitative agreement

(black line). The last improvement is given by the results of simulation with realistic quadru-

polar errors only and a slightly lower programmed vertical tune of Qy=4.525 (dashed magenta

line), which brings the effective tune down to Qy=4.512. This result shows that the distance of

the tune to the resonance line is a critical parameter of the benchmarking. The effective tune is

equal to the programmed tune plus the fields errors components.

The simulated black curve agrees dramatically with the measured intensity evolution, including

the time values at which the intensity slopes change.

As shown in Fig. 5.15, the 1σ Gaussian beam size remains the same during the simulation

window and reflects the measurements of Fig. 5.12. Simulations, moreover, revealed the form-
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ation of tails starting from 600 ms, visible in Fig. 5.15 right. This effect was not seen in the

measurements, most likely due to the noisy baseline in the wire-scanners profiles.
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Figure 5.14: Half-integer (long bunch simulations): PTC-Orbit simulations vs. measurements. Legend:
(A) Simulation without errors but with space charge; (B) Simulation with errors but no space charge; (C)
Simulation with only quadrupolar field errors (matching to Qy=4.53) and space charge; (D) Simulation
with space charge and quadrupolar field and misalignment errors; (E) Simulation with only quadrupolar
field errors (matching to Qy=4.525) and space charge.
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Figure 5.15: Half-integer (long bunch). Simulated horizontal (left) and vertical (right) transverse profiles
in [450-620] ms, normalized with respect to the max value.
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Figure 5.16: Half-integer (long bunch simulations). Simulated beam current waterfall plot with bunch
shortening, to be compared with the measurements in Fig. 5.11. The colour-code is the particle line
density (blue - low density; red - high density), scaled by the peak line density of the first profile. The
vertical dashed black lines represent the initial bunch tails.

In the longitudinal plane as well, simulations agree with measurements (see Fig. 5.16 to be

compared with Fig. 5.11): at early times, larger longitudinal amplitude particles are mainly

lost, then the ones closer to the ±1 rad longitudinal fixed points. This phenomenon is the

equivalent of ”bunch shortening” [61] for a double-harmonic longitudinal bucket, and will be

discussed in Section 5.4.3.

5.4.2.2 Short bunch

Very good qualitative and quantitative (<10%) agreement is found also for the short-bunch

case: Figure 5.17 shows the nice matching in the measured and simulated intensity evolutions

when all measured quadrupolar and misalignment errors are taken into account, starting from a

programmed tune of (4.28, 4.53) as in the previous case. The beam core (1σ) remains constant

as in the measurements (see Fig. 5.18), similarly to the long bunch case. Figure 5.19 illustrates

the bunch shortening effect taking place in the longitudinal plane.
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Figure 5.17: Half-integer (short bunch). PTC-Orbit simulations vs. measurements. Grey error bands are
measurements, the red solid line represents simulations with misalignment and quadrupolar field errors.
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Figure 5.18: Half-integer (short bunch). Simulated horizontal (left) and vertical (right) transverse pro-
files in [450-600] ms, normalized with respect to the max value.
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Figure 5.19: Half-integer (short bunch simulations). Simulated beam current waterfall plot with bunch
shortening, to be compared with measurements in Fig. 5.11. The colour-code is the particle density
(blue - low density; red - high density). The vertical dashed black lines represent the initial bunch tails.

5.4.2.3 Effect of errors and working point

Additional simulations studies were performed for the long bunch case to further explore the

effect of errors and to identify what are the key parameters to take into account, e.g. to make

prediction if the real set of machine errors is not known.

Figure 5.20 shows, in addition to the lines in Fig. 5.14, the one matching at Qy=4.535 (blue

dashed line) with only the realistic quadrupolar error applied and space charge. A change of

tune in the order of 10−2 causes a very different final value in the intensity profile. Figure 5.20

shows also simulations with space charge and including random quadrupolar field errors, with

the same standard deviation of the realistic ones, matched at the same final Twiss tune as in

Fig. 5.14 E (4.2857, 4.512). The average effective tunes of these random-seed simulations are

Qx = 4.2856 ± (5 × 10−4) and Qy = 4.5115 ± (1.1 × 10−3). From the losses profiles one

can observe that, being the tunes so close, the behaviour in time, including the intensity level

at which the slopes change, and the final values are very similar.

The loss rates are different and depend on the beta-beating, i.e. the beta function perturbation

induced by the quadrupolar field errors. Figure 5.21 shows, for 10 sets of random quadrupolar

errors, the correlation between the vertical beta beating values and the initial loss rate, calcu-

lated as the (opposite) intensity derivatives when the curves are at I=130×1010 p, normalized

with respect to the value of the smallest loss rate one, where the beta beating is minimum. For

similar tunes, as in this case (standard deviation 1.1 × 10−3), the higher the beta beating, the

faster the losses. This confirms in the simulations that beta beating correction, possible in the

machine through dedicated normal quadrupoles, is effective for loss minimization.
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0 5 10 15 20
0

5

10

15

20

25

30

35

Db
y
/b

y
 [% rms]

L
os

s 
ra

te
 [

ar
b.

 u
ni

ts
] 

 

 

Figure 5.21: Loss rate vs. vertical beta beating at 130×1010 p for the different loss profiles. The curves
are normalised with respect to the slowest loss rate (green dot). Coloured points are the values of the
loss rate for two different beta beating seeds as shown in Fig. 5.20. The gray points are all the other
simulated seeds.
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5.4.3 Discussion

Simulations reproduce and explain losses, up to the detail of the change of slope for the long-

bunch case, by correlating them to the specificity of the longitudinal motion in a double har-

monic bucket in the presence of space-charge and in interaction with the 2Qy = 9 lattice

resonance.

The bunch shortening process described e.g. in [61] implies that particles at large synchrotron

amplitude feel a large tune modulation induced by space-charge while they sample different

bunch line densities during their synchrotron motion. Since the tune footprint overlaps the

half-integer line, these particles, which are periodically crossing the resonance line, are the

candidates to be trapped or scattered and eventually to be lost. The phenomenon is evident

in the longitudinal plane as a shortening of the bunch. Moreover, the loss of particles at large

synchrotron amplitude has the consequence of reducing the space-charge tune spread, therefore

repopulating the regions affected by the interaction with the resonance and subjected to losses.

In a double-harmonics system, i.e. in the long-bunch case, the effect is similar, with the com-

plication of having three fixed points at φ=0 and φ≈±1 rad. Figure 5.22, from simulations,

puts in evidence the non-linearity of the double harmonics RF bucket: different synchrotron

periods of particles belong to different iso-Hamiltonian trajectories in the longitudinal phase

space.

Particles around the unstable point φ=0 have a larger synchrotron period and cover bigger areas

with respect to the ones that rotates in the limit cycles around ±1rad.

The variation of the synchrotron period has an effect on the loss rate, as soon as the particles

outside the inner separatrix are lost and the remaining ones which oscillate around the ±1 rad

equilibrium points start to be affected. As one can see in Fig. 5.16 this happens at around

560 ms, where there is a change of slope in the intensity evolution.

At this regard, one can see in Fig. 5.23 that losses are faster when the synchrotron period of the

interested particles becomes smaller. Here, in red, one can see the loss rate, computed as the

derivative of the intensity along the cycle, and, in blue, the average synchrotron period of the

lost particles, sampled every 5 ms. There are two main regimes: before 558 ms particles are

lost slower and in the interval [480-540] ms with an almost constant loss rate. These particles

are the ones external to the inner separatix. When, after 558 ms, as consequence of the bunch

shortening, the remaining particles are only the ones inside the basins of attraction around

±1 rad (see Fig. 5.16 right), the loss rate increases as the synchrotron period is faster.
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Figure 5.22: The synchrotron period variation in a double harmonics RF bucket.
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Figure 5.23: Half-integer (long bunch simulations). The loss rate (red) vs. the synchrotron period of the
lost particles (blue). One can observe the different regimes before and after 558 ms, where the bunch
shortening starts to interest only the particles inside the inner separatrix (with faster synchrotron period).

From now on, the simulations will be done assuming quadrupolar field errors only, i.e. no

misalignmet errors (magenta curve of Fig. 5.14). The behaviour is qualitatively similar to the

full simulation (black), but it has the advantage to have the possibility to compute the tunes, as

the algorithm is failing in presence of misalignments.

Figure 5.24 shows the tune footprint at 485 ms (a) and at 565 ms (b), computed averaging the

phase advance per turn over 1500 turns. Thanks to this method to compute the tune footprint

(see Section 4.4), in both plots, one can note the depletion along the half integer line.

A closer look at the Poincaré Section in the (y, y’) plane of a particle before it gets lost at around

485 ms (see Fig. 5.25 left), puts in evidence the “trapping-scattering” phenomenon [46], which
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leads the particles to eventually hit the vertical aperture. Figure 5.25 right shows the turn by

turn phase advance of the particle, and its averaged tune, which is sitting exactly on the vertical

half integer.

A stable and steady-state condition occurs at 565 ms, as soon as the intensity is reduced to

almost 20%, where the space charge forces are significantly small. The averaged tune footprint

of the remaining particles (see Fig. 5.24 right) shows a clear peak on the 2Qy=9 half-integer

resonance line: here, the particles are trapped into resonance islands performing trajectories in

phase space similar to the one in Fig. 5.26 left, while the tune modulation of the particle, is

very narrow around the half-integer line, as shown in Fig. 5.26 right.
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Figure 5.24: The PTC-Orbit simulated tune footprint (averaged over 1500 turns) at 485 ms (left) and
565 ms (right), with particle density colour-code (blue, low density - red, high density). The projections
of the tunes along the x and y axes are shown: at right, note the narrow peak on the 2Qy=9 line.
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Figure 5.25: Left: a particle tracked at 485 ms (on the solid magenta line in Fig. 5.14) before getting lost
by scattering. The trajectory in the vertical phase space indicates that the particle overcomes the vertical
acceptance (at y=±30 mm) of the machine and gets lost. Right: the turn-by-turn tune modulation of the
particle around the resonance. The black dot is the bare tune, while the red cross is the averaged tune,
sitting on the line.
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Figure 5.26: Left: a particle trapped into quadrupolar islands in the vertical phase space at 565 ms (on
the solid magenta line in Fig. 5.14). Right: the turn-by-turn tune modulation of the particle around the
resonance. The black dot is the bare tune, while the red cross is the averaged tune, sitting on the line.
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5.5 The horizontal integer resonance Qx = 4 (static tunes)

The strongest and most dangerous resonances in any accelerator are the integer ones: in the case

of the PSB, at the present working point, they are the lines Qx = 4 and Qy = 4. In particular,

the horizontal integer resonance Qx=4 is a big limitation for the future LHC beams brightness

and quality [62]. By adjusting the working point close to one of these two resonances, it is

possible to observe a sensible rms emittance growth in the plane of the resonance, occusrring

in a time-scale of up to 20 ms.

5.5.1 Measurements

To put in evidence the effect of the integer resonance, a first set of measurements has been done

varying the horizontal tune and keeping fixed the vertical one. Table 5.5 reports the starting

parameters.

Table 5.5: Horizontal integer case - measured initial beam parameters at (Qx, Qy) = (4.11, 4.21).

Initial beam parameters Horizontal integer

Bunch population [1012 p] 1.6

εx, εy [mm·mrad] 4.36, 2.34

RF voltage (h=1, h=2) [kV] 8, 4

RF cavities relative phase π

Total bunch length [ns] 600

Momentum spread (1σ) 1.4×10−3

Tunes Qx, Qy 4.11, 4.21

Max space charge tune shift - Eq. (1.67) ∆Qx,∆Qy -0.13, -0.19

As the working point is brought closer to the resonance line, the horizontal rms emittance

blows up more and more. Figure 5.27 shows the wirescanner measurements for three different

static working points for a starting intensity of 1.6×1012 p until losses occur: the horizontal

deformation of the beam is evident especially in the core in this case. The rms beam size (thus

the emittance) increases and the beam loses the Gaussian shape going closer to the resonance:

from Qy = 4.06 it starts to become parabolic. Also the closed orbit shifts, as a dipolar effect

induced by the resonance, in absence of correctors. Asymmetries in the measured profiles are

due to non-stationary conditions of the beam during the passage of the wire, which takes∼5 ms

to scan the ∼50 mm profile.
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Figure 5.27: Wirescanner measurements of the horizontal beam profiles and their Gaussian fit for Qx =
4.11 (a), Qx = 4.065 (b) and Qx = 4.044 (c).

Figure 5.28 shows the behaviour of horizontal rms emittance vs. horizontal tune, keeping

constant the vertical tune at Qy = 4.21. The emittance is increasing by going toward lower

tunes, until for Qx < 4.04 losses occur.
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Figure 5.28: The measured horizontal rms emittance vs horizontal tune for constant Qy = 4.21 at
475 ms. From Qy = 4.03 (red marker) losses occur. The relative error is in the order of ±5% (1σ).

A second set of measurements with a lower beam intensity has been done and reported with

simulations. In a regime of zero losses, the transverse profiles have been measured over 75 ms

for two different values of the horizontal chromaticity, ξx=-0.15 and ξx=-0.73. The horizontal

tune is brought down to the constant value of (Qx, Qy)=(4.06, 4.29) at 575 ms in the cycle,

which is the first point of the measurements. Table 5.6 shows the parameters of the two sets of

measurements. The maximum space charge tune shift is about ∆Qx ∼-0.11 and ∆Qy ∼-0.13.

Figure 5.29 shows the evolution of the horizontal measured emittance. The vertical emittance

is constant, as expected, while the horizontal is increasing and reaching a different value for

the two different chromaticities.
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Table 5.6: The Qx=4 resonance (lower intensity): initial parameters

Initial beam parameters Horizontal integer

Bunch population [1012 p] 0.695

εx, εy [mm·mrad] 1.67, 1.6

RF voltage (h=1, h=2) [kV] 8, 8

RF cavities relative phase π

Total bunch length [ns] 630

Momentum spread (1σ) 1.445×10−3

Tune Qx, Qy 4.06, 4.29

Max space charge tune shift - Eq. (1.67) ∆Qx,∆Qy -0.11, -0.13

Chromaticity ξx, ξy -0.73, -1.7 -0.15, -2.8
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Figure 5.29: Measured normalized horizontal (empty diamond marker) and vertical (empty circle
marker) emittances evolution vs time for different chromaticities: ξx=-0.73 - blue; ξx=-0.15 - red.

The horizontal profiles and their Gaussian fits at 575 ms and 580 ms are reported in Fig. 5.30,

together with the residuals (i.e. difference between the two). In addition to the blow-up, one

can note also an increase of the residuals between the measured profile and its Gaussian fit, as

in the previous set of measurements.
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Figure 5.30: Wirescanner measured horizontal profiles at 575 ms - left - and 580 ms - right with ξx=-
0.73. The blue line is the measurement, the dashed red line is the Gaussian fit and, in gray, the residuals
between the two, in arbitrary units.

5.5.2 Simulations

Table 5.7 reports the simulation settings. Figure 5.31 shows, for the case with horizontal chro-

maticity ξx = −0.73, the simulated horizontal emittance blow-up and the vertical emittance,

which remains constant, in an error-less lattice. The results reproduce qualitatively the meas-

urements. The profiles, together with their Gaussian fits and the residuals, are shown in Fig-

ure 5.32 at the beginning of the simulations and after 5 ms: here the increase of the residuals is

evident.

The simulated emittance evolutions for a different value of chromaticity, ξx = −0.15, are plot-

ted in Figure 5.33. Even for this case, a qualitative agreement is obtained. Moreover, with

respect to the previous one, a reduced horizontal emittance blow-up occurs in measurements

and simulations.

Figure 5.34 shows the different tune spreads shape due to the difference in chromaticity. In

both cases they overlap the horizontal integer.

Table 5.7: The Qx=4 resonance - Simulation parameters.

Simulation parameters

Long. space charge ON (128 bins)

Transv. space charge PIC w/o boundaries

N. of bins [x, y] 128, 128

N. of macrop. 500×103

N. of space charge nodes 201
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Figure 5.31: Normalized horizontal (measurements - empty diamonds; simulations - full diamonds) and
vertical (measurements - empty circles; simulations - full circles) emittances evolution for the case with
ξx = −0.73 (Gaussian fit).
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Figure 5.32: The simulated horizontal profile (blue) for ξx=-0.73 at 575 ms - left - and at 580 ms - right.
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Figure 5.33: Normalized horizontal (measurements - empty diamonds; simulations - full diamonds) and
vertical (measurements - empty circles; simulations - full circles) emittances evolution for the case with
ξx = −0.15 (Gaussian fit).
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Figure 5.34: The simulated single-turn tune spreads for the different chromaticities: ξx=-0.73 - left;
ξx=-0.15 - right. On top the space charge tune spreads at the beginning of the tracking (575 ms) and,
at bottom, at the end of the tracking (650 ms). The colour code is the same in all the histograms and
represents the particle density (red - high density, blue - low density).
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5.5.2.1 Effect of quadrupolar field errors

Simulations with realistic quadrupolar errors (see Appendix C) have been done. The errors

move the horizontal tune farther from the resonance, to Qx=4.066. This difference, in the

order of 10−3, is sufficient to reduce the blow-up. The agreement of the simulations with

the measurements results improved. Figures 5.35 and 5.36 show the comparison between the

measurements and the simulations in this case.
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Figure 5.35: Normalized horizontal (measurements - empty diamonds; simulations - full diamonds) and
vertical (measurements - empty circles; simulations - full circles) emittances evolution for the case with
ξx = −0.73 (Gaussian fit) Qx = 4.066.
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Figure 5.36: Normalized horizontal (measurements - empty diamonds; simulations - full diamonds) and
vertical (measurements - empty circles; simulations - full circles) emittances evolution for the case with
ξx = −0.15 (Gaussian fit) and Qx = 4.066.

Another test has been done re-matching the initial tune, including the quadrupolar field errors,

to the original tune of Qx = 4.06, in order to get the feeling about how much the field errors
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themselves affect the results, having the tune fixed. The results are shown in Figs. 5.37 and 5.38

for the two chromaticities in exam. They result very similar to the ones of Figs. 5.31 and 5.33.
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Figure 5.37: Normalized horizontal (measurements - empty diamonds; simulations - full diamonds)
and vertical (measurements - empty circles; simulations - full circles) emittances evolution for the case
with ξx = −0.73 (Gaussian fit) and rematching the lattice including the quadrupolar field errors to
Qx = 4.06.
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Figure 5.38: Normalized horizontal (measurements - empty diamonds; simulations - full diamonds)
and vertical (measurements - empty circles; simulations - full circles) emittances evolution for the case
with ξx = −0.15 (Gaussian fit) and rematching the lattice including the quadrupolar field errors to
Qx = 4.06.

5.5.3 Discussion

Both measurements and simulations show that, for a working point close to the Qx = 4 line,

the horizontal profile blows up and loses its Gaussian shape. Moreover, different values of ho-

rizontal chromaticity, by modifying the footprint, lead to a different final emittance. In general,
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a reduction of the chromatic spread helps in reducing the beam degradation due to the interac-

tion with a specific resonance (see also Appendix B.2 showing the influence of the chromatic

spread close to a sextupolar line).

The initial simulations are done with an optics lattice without errors, which does not fully

represent the PSB machine, and afterwards by adding a realist set of quadrupolar field errors.

In the first case, the simulations show a similar trend with respect to the measurements, but

with quantitative discrepancies. In the second case, the error set moves the tune horizontally

slightly farther from the line of 6×10−3. In this case the simulated emittance blow-up has bet-

ter agreement with the measurements, for both the chromatic values. A third set of simulations

has demonstrated that, re-matching the lattice with errors to the original tune Qx = 4.06, the

results are very similar to the case without errors.

The sensitivity of the observables close to an integer resonance is very high. The tune in par-

ticular, more than the errors themselves, seems to be a very sensitive parameter. Moreover this

line is excited at various orders. In particular, the 4Qx = 16 octupolar resonance, which can

be also excited by the non-linear octupolar space charge fields, is “structural” in the machine,

as p = 16 is the number of periods composing the PSB super-period.
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5.6 Dynamic working point variation close to Qy = 4

5.6.1 Measurements

In the following experiment, the vertical tune has been moved towards and then far from the

vertical integer resonance, while the horizontal has been kept constant as shown in Fig. 5.39.

The function of the programmed tune has been set up to have losses only for few milliseconds:

a triangular modulation in time has been imposed to the vertical tune starting from 500 ms,

going down until 535 ms and then back again to the initial working point at 570 ms. The

programmed tunes differ from the measured ones due to machine errors and the intensity-

dependent coherent tune shift. This dynamic variation had the intent to obtain, in the same

experiment, a contemporary evaluation of losses and emittance blow-up.
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Figure 5.39: The dynamic approach to Qy=4: horizontal (top) and vertical (bottom) tunes vs. time. The
relative error for the measured tunes is less than ±2% (1σ).

Two sets of measurements have been taken with and without the correction of the closed orbit

distortion (COD) in the machine. The COD is the deviation of the particles trajectory from the

design orbit and is generally excited by dipoles errors and quadrupoles misalignments. The

vertical orbit, if not corrected through vertical steerers (see Appendix E), blows up due to a

dipolar effect caused by the integer resonance approach, as shown in Fig. 5.40. Table B.1

shows the initial beam parameters:
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Table 5.8: Dynamic vertical integer resonance: measured initial parameters.

Initial beam parameters Dynamic Qy = 4

Bunch population [1012 p] 1.7

εx, εy [mm·mrad] 2.68, 5.05

RF voltage (h=1, h=2) [kV] 8, 8

RF cavities relative phase 0

Total bunch length [ns] 400

Momentum spread (1σ) 1.95×10−3

Initial tune Qx, Qy 4.24, 4.19

Max space charge tune shift - Eq. (1.67) ∆Qx,∆Qy -0.28, -0.24

1 2 3 4 5 6 8 9 10 11 12 13 14 15 161 2 3 4 5 6 8 9 10 11 12 13 14 15 16
-20

-15

-10

-5

0

5

10

15

20

Pick-up [PSB period]

y
av

g[m
m

]

Vertical COD without correction

Vertical COD with correction

4.
14

13
.9

6
23

.7
8

33
.5

9
43

.4
1

53
.2

3
72

.8
6

82
.6

8
92

.5
10

2.
32

11
2.

13

12
1.

95

13
1.

77

14
1.

59

15
1.

40

s [m]

Figure 5.40: The closed orbit without and with correction for the lowest (Qy = 4.09) vertical working
point.

The closed orbit correction has been performed in order to disentangle vertical beam emittance

blow-up from losses.

The measured intensity profiles, in the time window of the losses, with and without COD

correction, are shown in Fig. 5.41. Without COD correction the losses started before and were

more drastic with respect to the case with COD correction. This suggested that, in addition to

space charge induced emittance blow-up provoking losses, part of these were the result of the

closed orbit distortion, which was pushing the beam centroid toward the vertical aperture of

the machine.

84



time [ms]

With COD correction

500 510 520 530 540

40
60
80

100
120
140
160
180
200

In
te

ns
it

y 
[1

e1
0 

p.
]

Without COD correction

Figure 5.41: The losses with and without the COD correction. The relative error for the measured
intensities is less than ±5% (1σ).

Without COD correction, it was impossible to obtain good vertical profile measurements due

to the huge losses. Once corrected the COD, instead, it has been possible to retrieve emittance

measurements. These showed, as expected, a clear increasing trend in the vertical plane (see

Fig. 5.42).
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Figure 5.42: The horizontal (pink) and vertical (blue) normalized emittances in the case with COD
correction. The errorbar is the standard deviation of many measurements. During the losses (from
525 ms to 540 ms) profile measurements could not be taken.

Figure 5.43 shows the vertical profiles before and after the blow-up provoked by the interaction

with the resonance.
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Figure 5.43: The measured vertical beam profiles before and after the blow-up induced by the resonance.
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5.6.2 Simulations

Simulations are performed including measured quadrupolar and misalignment errors and by

applying additional kicks through 13 available vertical orbit correctors (DVTs), as explained

in Appendix C, to get the same COD as in the measurements. To reproduce the measurements

with COD correction, on top of this “matching”, some of these DVTs have been powered with

the current used for the measurement (see Appendix E). Simulations have been performed

including or not this last COD correction.

Table 5.9 shows the initial simulation settings.

Table 5.9: Simulation settings for the dynamic integer case (with and without boundaries).

N. of macrop. 500×103

N. of space charge nodes 201

Long. space charge ON (128 bins)

Transv. space charge model PIC without boundaries

N. of bins [x, y] 128, 128

Transv. space charge model PIC with boundaries

Chamber type Rectangular

Chamber size ±61 mm × ±29.5 mm (±40 mm)

N. of bins [x, y] 256, 256

5.6.2.1 Without COD correction

Figure 5.44 reports the measured intensity evolution in case the closed orbit distortion correc-

tion is not applied (blue solid line).

The tracking without space charge (purple dashed curve) shows no losses, while the simulation

including the direct space charge and measured errors shows an exceptional overlap with the

measurements. Moreover, to confirm that the correct quadrupolar field errors are important for

these simulations, a set of normally distributed random errors has been generated for the quad-

rupolar fields (focusing and defocusing), with the same standard deviation of the real errors

σ(δK)=0.7×10−3. In this case simulations do not show such a good agreement (pink errorbar)

and neither if no field errors are considered, i.e. only misalignments and dipole errors in the

steerers are present (green continuous line). A big contribution to the losses is due to the COD,

which increases as the beam approaches the integer resonance. It was not possible to measure

the transverse profiles through the wire-scanners in this situation, due to large losses, so the

quantities for the corrected-COD analysis have been chosen as starting beam parameters.

Figure 5.45 shows that, in case the complete error set is applied and the space charge calcula-

87



tion is OFF, the beam only shifts due to the COD blow-up (a), while when space charge is ON,

there is also an emittance blow-up (b), as expected in proximity of the integer resonance.
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Figure 5.44: The dynamic approach to Qy=4: intensities vs. time without COD correction. Legend:
(A) Measurements; (B) Simulation without space charge; (C) Simulation with direct space charge and
no quadrupolar errors; (D) Simulations errorbar with direct space charge and random quadrupolar field
errors distributions (see Appendix C); (E) Simulation with measured quadrupolar field errors and direct
space charge.
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Figure 5.45: The simulated vertical profiles with un-corrected COD, without (a) and with space charge
(b). The dashed lines are the Gaussian fits.

5.6.2.2 With COD correction

Simulations have been performed also for the case with the COD correction (measurements are

the blue solid line in Fig. 5.46), in order to disentangle the space charge-related effects from the

COD ones. As before, if space charge is not included in the calculations, the behaviour of the

intensity is pretty flat (black dashed line), while in case space-charge is added to the tracking,

losses occur: the simulation with direct space charge (red dashed curve) underestimates the

losses, while the one using the PTC-Orbit module including the boundaries with the smallest

vertical aperture (rectangular with dimensions ±61 mm × ±29.5 mm), slightly overestimates

them (dashed green line).

As seen in Section 3.1.1, the space charge model with the boundaries takes into account also

the indirect space charge contribution, which induces a small increase of the tune spread and a
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coherent tune shift [16]. The indirect space charge contribution strongly depends on the beam

size (compared to the fixed chamber size): for small PSB beams, like the ones for the LHC,

the indirect space charge contributions are negligible, while for larger beams, these should be

taken into account in the analysis. In this particular case, the vertical beam profile suffers a

huge blows up since the beginning due to the interaction with the integer resonance. Therefore

it has been chosen to study the case also through the space charge model with boundaries. Dif-

ferent error distributions generate different intensity results: the green errorbar represents the

simulations behaviour in case a random error-set is chosen, while the simple dashed green line

is a similar simulation, but using the errors as they have been calculated on the real machine.

The dashed orange line represents the intensity profile obtained in case no field errors are con-

sidered.

The rms emittance evolution is shown in Fig. 5.47: the vertical measurements, with error-bar,

are the pink band, while the simulations are dashed in case of statistical computation, or rep-

resented with markers in case of Gaussian fit, as it is commonly performed in the PSB control

room. The discrepance between the statistical and the Gaussian fits is an indication that the lost

of Gaussian shape is caused by the lower part of the tune spread approaching the integer res-

onance. One must say that the initial measured distribution is not completely Gaussian, while

in the simulations a Gaussian starting profile has been used in every case. This leads to small

errors in the computation of the initial space charge tune spreads. Figure 5.48 b shows the

simulated profiles including direct and indirect space charge, to be compared with the meas-

urements in Fig. 5.48 a. As in the previous case, without COD correction, the beam blow-up is

clear and fast and the beam becomes non-Gaussian already after 1 ms (∼1 synchrotron period),

as shown in Fig. 5.49.

10
In

te
ns

it
y 

[×
 1

0 
  
p]

A
B
C

E
F

D

500 510 520 530 540

40
60
80

100
120
140
160
180
200

time [ms]

Figure 5.46: The dynamic approach to Qy=4 in case of corrected COD: intensities vs. time with ver-
tical boundaries at ±29.5 mm. Legend: (A) Measurement; (B) Simulation without space charge; (C)
Simulation with direct space charge; (D) Simulation with space charge (with boundaries) without field
errors; (E) Simulation with space charge (with boundaries) and measured quadrupolar field errors; (F)
Simulation with space charge (with boundaries) and random quadrupolar field errors distributions.
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Figure 5.47: The dynamic approach to Qy=4: the normalized horizontal (a) and vertical (b) rms
emittances evolution in time for the space charge simulations including and excluding the boundar-
ies (±61 mm×±29.5 mm). The simulations represent the case with the vertical steerers ON. Legend
- top: (A) Measurements (Gaussian fit); (B) Simulated statistical emittance (with space charge with
boundaries); (C) Simulated statistical emittance (direct space charge). Legend - bottom: (A) Measure-
ments; (B) Simulated statistical emittance (with space charge with boundaries); (C) Simulated emittance
from Gaussian fit (with space charge with boundaries); (D) Simulated emittance from Gaussian fit (with
direct space charge); (E) Simulated statistical emittance (with direct space charge).
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Figure 5.49: The vertical beam profile, its Gaussian fit and residuals after 1000 turns (1 ms).

5.6.2.3 Calibration of the boundary conditions

The PTC-Orbit code permits the definition of only one single set of boundary conditions of

a defined shape (circular, rectangular, elliptical), considering it equal all around the machine.

An accelerator has usually different vacuum chamber sizes and shapes along the machine, so

an “equivalent” one has to be defined for the tracking with transverse indirect space charge.

The method here used intends to find the conditions for which the simulations overlap the

measurements in the case with COD correction, in which the beam deformation is dominated

by direct and indirect space charge. For this reason different simulations have been launched

with different heights for a rectangular shape, having fixed the horizontal one to ±61 mm,

scanning between 29.5 and 80 mm.

Figure 5.50 shows the simulation (with COD corrected) with 3 different heights of the vacuum

pipe. The ±40 mm solution is the most suitable in comparison with the measurements and

reflects the average vertical aperture size of the machine, while the ±29.5 mm corresponds to

the minimum distributed vertical aperture, which is defined by the beam scrapers before and

after each bending magnet.
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Figure 5.50: Dynamic integer with COD correction: simulations with different chamber heights.
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Figure 5.51 shows the effect of the different shape boundaries on the coherent tunes. In these

plots the coherent tunes are computed through FFT of the first order momenta along the sim-

ulation window. In case of small boundaries (±29.5 mm) the FFT is more broadband and the

vertical tune is closer to the integer. When the boundaries become larger the vertical coherent

tunes are slightly farther from the resonance and more narrow-band, with higher amplitudes as

one moves toward the direct space charge condition (and also for very large chambers).

Figure 5.51: Vertical coherent tunes waterfall simulations with COD correction. From bottom to top
the following space charge modules have been used: vertical boundaries ±40 mm; vertical boundaries
±29.5 mm; direct space charge. The magenta dots represent the peaks in the FFT of the first order
momenta.

The tune shift effect can be also correlated to what happens in the case without COD correction:

Figure 5.52 shows different simulation results for different chamber sizes. Here, as previously

shown, the orbit blow-up influences considerably the losses pattern: a different coherent tune

shift toward the vertical integer causes a deviation of the COD from the beginning, anticipating
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or delaying the losses.

Figure 5.52: Dynamic integer without COD correction: simulations with different chamber heights.
On top it is represented the intensity comparison between measurement and simulations for different
chamber heights. The statistical rms emittances from the simulations are compared in the central plot
and the vertical beam centroid (i.e. the first order vertical beam momentum) is represented in the plot at
the bottom.

5.6.3 Discussion

The vertical integer resonance Qy = 4 has been approached dynamically: the coupled effect

of space charge and closed orbit distortion (COD) on beam losses has been observed and re-

produced with simulations. This case has exhibited both rms and COD blow-up during the

procedure. Without the COD correction the simulation results have been excellent, showing

high sensitivity to the COD induced by the realistic machine errors.

On the other hand, with the COD correction, the direct space charge simulation model did not

fully describe the measurements. The PTC-Orbit model including the boundaries for the indir-

93



ect space charge computation has been also adopted, as the beam became very large during the

blow-up induced by the integer resonance. Moreover, an improvement of the model has been

reached by a simulated equivalent chamber calibration, that has been performed to retrieve an

optimal equivalent distance in the vertical plane. The calibration has shown good results for

the case with COD correction. However, in the case without COD correction, the presence of

a coherent tune shift, caused by the indirect space charge component, induced a deviation of

the closed orbit from the beginning, with respect to the measured one. This had the effect of

anticipating the losses for smaller chamber sizes, causing a disagreement. A re-matching of

the COD, compensating the indirect space charge induced variation, may improve the results.
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5.7 The coupling resonance

5.7.1 Measurements

A transverse emittances sharing has been observed in operation approaching the Qx −Qy = 0

line. This phenomenon could be generated by linear coupling between the transverse planes,

excited by tilts of the magnets (mainly the main quadrupoles), tilted space charge fields when

the Twiss parameters αx 6= 0 and/or αy 6= 0 in the ring ( [63], [64]), and/or by the 4th order

Montague space charge resonance 2Qx − 2Qy = 0 [65].

In order to evaluate the single particle linear coupling strength, the “closest tune” approach [66]

has been followed: programming a tunes crossing at low intensity, the method evaluates the

minimum distance for which the transverse planes are not coupled; the larger is the distance,

the bigger is the coupling effect. Figure 5.53 shows the measured tunes evolution where the

tunes were programmed to cross each other: close to the crossing the tunes and modes cannot

be associated any more with the horizontal and vertical planes [67]. In this case the measured

point at 520 ms showed the same vertical and horizontal tune. The minimum distance between

the two tunes is then evaluated from the non-linear fits of the remaining measurement points

(grey dashed lines) and it is ∆Qmin ≤ 0.008. This value is an indication of the resonance

stop-band extension.
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Figure 5.53: The “minimum tune” approach (intensity 60 × 1010 p): measured vertical (blue circles)
and horizontal (red circles) tunes vs. cycle time. The programmed horizontal and vertical tunes are
represented by dashed red and blue lines, respectively. The measurement at 520 ms showed the same
vertical and horizontal tune (blue and red circle).

To study the coupling resonance at 160 MeV a set of measurements has been performed setting

the working point to (4.18, 4.23), above the resonance line. Again, the choice to be far enough

from the resonance stop-band has been done to explore the resonance effects in correlation

with the space charge tune spread. The longitudinal settings are the ones for long bunches with
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Vh1=8 kV and Vh2 = 4 kV.

The wirescanner measurements, in Fig. 5.54 showed the horizontal/vertical rms emittance shar-

ing, typical of the interaction of the footpirnt with the diagonal line. The skew quadrupolar

correctors that are generally used to compensate the linear coupling were ON, but putting them

OFF did not show important effects. Table B.1 shows the initial beam parameters:

Table 5.10: The coupling resonance: measured initial parameters.

Initial beam parameters Coupling resonance

Bunch population [1012 p] 1.65

εx, εy [mm·mrad] 3.15, 2.65

RF voltage (h=1, h=2) [kV] 8, 4

RF cavities relative phase π

Total bunch length [ns] 550

Momentum spread (1σ) 1.3×10−3

Tune Qx, Qy 4.18, 4.23

Max space charge tune shift - Eq. (1.67) ∆Qx,∆Qy -0.19, -0.23

5.7.2 Simulations

The effects of the coupling, caused mainly by the space charge itself for the LHC 25ns type

beam, have been reproduced by the simulations, performed for the corresponding lattice tunes

(Qx, Qy) = (4.18, 4.23). The measured and simulated rms emittance evolution for this case is

presented in Fig. 5.54 assuming an optics lattice without errors. Different sets of the random

tilts of the PSB quadrupole magnets (up to 1 σtilt = 4.28 × 10−5 rad) have been also used but

did not change significantly the simulation results. The emittance exchange in the transverse

planes has been observed during the time period. Figure 5.55 shows the tune (magenta dot)

with the relative spread (from PTC-Orbit simulation) caused by the space charge.

96



440 460 480 500 520 540 560
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

ε
 [

m
m

 m
ra

d
]

time [ms]

 

 

Figure 5.54: Measurements (empty markers with error-bars) and simulations (full markers) for the
normalized horizontal (blue), vertical (red) and average (orange) emittances evolution in time (Gaussian
fit).
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Figure 5.55: The simulated single-turn tune footprint at the beginning of the tracking (the colour bar
represents the particles density - highest density in red). The black solid lines are the integer and the
coupling resonances. The magenta dot is the bare tune.

5.7.3 Discussion

The coupling line represents a difference resonance which is always present in the machine

(see the tune scans in Fig. 5.3). The line can be excited by tilts of the magnets, which are

always present in a real machine (even if small), and also by space charge itself.
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The emittance sharing is caused by an energy exchange between the two planes when they are

correlated, i.e. coupled.

The emittance exchange has been simulated in an error-less lattice and also with random tilts

of the main quadrupoles. In all the cases, an exchange has been observed in the range of the

measurements. The random tilts did not give a significant contribution for the emittance sharing

in the simulation.

Therefore space charge appeared to excite the resonance, as it is connected to it through the

linear space charge “self-skew” fields that arise when the beam tilts during its tracking and/or

through the higher order non-linear interaction with the Montague resonance. Further studies

are required to understand which resonance order is the main responsible of the emittance

exchange.

The coupling line is a very important source of balancing for the emittances and it will be

discussed again during the predictions for the new Linac4 injection, in Chapter 7.
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Chapter 6

Longitudinal studies for the Linac4
injection

The future train of Linac4 bunches, injected at every turn in the PSB, will have a rather uniform

profile in phase. This may lead to important longitudinal space charge effects at the edges of

the bunch, as they depend on the derivative of the line density [68].

Below transition, as in the PSB, the effect of the longitudinal space charge force is defocus-

ing, i.e. the bunch length increases: this effect gets very important, for example, for very long

bunches which approach the unstable region close to the outer separatrix, with consequent risk

of longitudinal losses for “bunch leakage” over the effective bucket, i.e. the one including the

space charge effect. This Chapter aims at fixing the longitudinal beam characteristics for the

future injection scenarios.

Section 6.1 shows an introduction to the longitudinal space charge issue, focusing on a simpli-

fied case of a short parabolic bunch injected in a single harmonic bucket without acceleration.

Afterwards, a benchmark between PyOrbit and Blond on the longitudinal space charge calcu-

lations is proposed, together with a comparison with analytical formulas.

Relying on the benchmark results, PyOrbit has then been used to optimize the longitudinal

settings of the realistic future multi-turn injection for the LHC beams in double RF, including

longitudinal space charge effects (see Section 6.2). The optimization work has required differ-

ent iterations in order to optimize the energy spread and the chopping factor, i.e. the percentage

of the beam which is injected at each turn, which determines the number of injection turns for a

given intensity. A large longitudinal emittance and bunch length together with a longitudinally

“matched” profile after 10 ms of tracking have been pursued. This is done in order to relax

the peak line density (and the transverse space charge), while staying fairly far from the outer

separatrix of the RF bucket.
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6.1 Longitudinal space charge benchmark between PyOrbit and
Blond

To evaluate longitudinal space charge contributions, a benchmarking has been performed between

the PyOrbit and BlonD [69] simulation programs. The choice of using PyOrbit for pure lon-

gitudinal studies, instead of PTC-Orbit, goes in the direction of using the first as baseline for

future full 6D tracking including space charge effects.

For a beam current I = eMNf0 (M = number of bunches,N = number of particles per bunch,

f0 = revolution frequency), the voltage induced by the longitudinal space charge is equal to:

Vs. c. =
dI
dφ
|Zs. c.| (6.1)

The longitudinal space charge field modifies the RF voltage in Eq. (1.26), adding the Vs. c.
component (6.1). The longitudinal imaginary space charge impedance Zs. c., by definition, is

equal to the voltage drop per revolution in a unit beam current [9] due to the longitudinal space

charge effect. For round uniform beams in circular chambers, this longitudinal impedance is

defined as [68]:
Zs. c.
n

= −j Z0g

2βγ2
= −j Z0

2βγ2

(
1 + 2 log

b

a

)
(6.2)

where n is the harmonics number, j is the imaginary unit, Z0 = µ0c = 4π × 10−7c = 377 Ω

is the impedance in free space, a is the beam radius and b is the machine chamber radius.

Considering the PSB at 160 MeV, assuming a = 2σ = 11 mm (σ ≈ 5.5 mm for the LHC

beams) and b = 30 mm (approximately the lowest half-height of all the chambers), Zs. c. is -

j795.8 Ω. This value has been used in the following simulations. Successive and more accurate

analysis, through numerical codes, taking into account the real geometrical variation of the

vacuum chambers (the PSB has not round chambers all along the machine), have shown that

this value can be better approximated with -j633 Ω [70].

The simple case of a single harmonic bucket with no acceleration and a parabolic bunch has

been analyzed. This kind of bunch, being quadratic, has linear derivative of the line density,

thus linear space charge forces along the bunch. In this case, the shift in synchrotron frequency

fs, induced by the longitudinal space charge, can be modeled with the following analytical

expression [71]:

f2
s = f2

s0

[
1− 3I

π2hMV̂ cosφs

(
2πR

l

)3 ∣∣∣∣Zs. c.n

∣∣∣∣
]

(6.3)

where fs0 is the synchrotron frequency in absence of self-forces, φs is the synchrotron phase

angle, l is the total bunch length, 2πR is the ring circumference. Below transition, cosφs > 0,

thus the longitudinal space charge induces a synchrotron frequency reduction.

Figure 6.1 shows the relation between the synchrotron frequency and the intensity for some

chosen initial conditions, considering l = l0, where l0 is the initial bunch length. Over a

certain intensity limit (from ∼1012 p) there is not analytical solution of Eq. (6.3) any longer.

Thus, the detuning must be solved through numerical simulations.
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Figure 6.1: The synchrotron frequency decrease vs. intensity [72], following the formula (6.3) [71].
Image courtesy of D. Quartullo [72].

Moreover, the bunch suffers a lengthening due to the self-forces, which is related to the phase

oscillation frequency through the relation [71]:

l

l0
=

√
fs0
fs

(6.4)

For the simulations, a short parabolic bunch of 150 ns (0.93 rad) has been chosen to stay in

the small amplitudes approximation. Figure 6.2 shows the simulated space charge kick with

different binnings of the ring current: this produces a dephasing already from the first turn

of tracking, thus a synchrotron frequency reduction. The trajectories along the full machine

length are represented (in black) by test particles, i.e. special macro-particles which feel the

s. c. field but do not actively contribute to it. 256 longitudinal bins along the machine length

have been generally sufficient for the longitudinal space charge studies in this Chapter, both

for the parabolic and the realistic injection train case (see Section 6.2). A very small number

of longitudinal bins may cause an underestimation of the space charge effects, as it would

smooth the derivative of the line density, filtering out high frequency components. On the other

side, a very large number of bins could allow to resolve high frequency components, but, as

usual, would also enhance numerical noise problems if the number of macro-particles is not

contemporary increased [72].
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Figure 6.2: Top - the bunch shape histogram for different longitudinal binningsBottom - The tracking of
the first turn for particles starting with no energy offset in a longitudinal space charge field. The black
trajectory is the case without space charge, while the coloured ones reflect the longitudinal space charge
kick applied with different binnings (i.e. frequency resolution). PyOrbit simulations.

The bunch and bucket distortion effect, induced by the longitudinal space charge, is visible in

Fig. 6.3. PyOrbit simulations are on the left, while the correspondent BlonD simulations on the

right. The trackings start from a short 150 ns (0.93 rad) parabolic bunch, matched without space

charge and recognizable from the zero intensity trajectories in synchrotron amplitude colour

code at top-left. By increasing the intensity, the bunch and the bucket trajectories are affected

by the longitudinal space charge field which distorts their shape. Test particles, placed along

the machine length, have been used to put in evidence the bucket trajectories inside and outside

the bunch. The simulations, performed for three different intensities, show that, at 2.95×1012 p

(bottom), the particle trajectories are completely distorted but they are qualitatively similar for

both codes.
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Figure 6.3: Longitudinal phase spaces after ∼ 2 ms with PyOrbit (left) and BlonD (right). Simulations
without longitudinal space charge (top), with a bunch population of 2.95×1011 p (centre) and with
2.95×1012 p (bottom). BlonD simulations courtesy of D. Quartullo [72].

Figure 6.4 shows the PyOrbit and BlonD benchmarking results. The plots, indicating the syn-

chrotron frequency, derived through an FFT of the test particles phases vs their max phase,

show similar results in de-tuning and bunch lengthening even at high intensity, when the solu-

tion is purely numerical. The results show good agreement with the analytical estimates of

Eq. 6.3 in its range of validity (horizontal black lines), i. e. until the bunch is not significantly

distorted (up to 2.95×1010 p).
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Figure 6.4: The synchrotron frequency vs. max particle phase between PyOrbit (blue marker) and
BlonD (red marker) at different intensities: A - 0 p; B - 2.95×109 p; C - 2.95×1010 p; D - 2.95×1011

p; E - 2.95×1012 p. The initial bunch length is indicated by a vertical grey line and the synchrotron
frequency by the horizontal black line (obtained by the analytical formula of Eq. 6.3). BlonD simulations
courtesy of D. Quartullo [72].
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6.2 Longitudinal optimization for the future LHC beams

After the benchmark, PyOrbit has been used to predict the longitudinal space charge effects

on the future Linac4 beams. The Linac4 will give the opportunity to tailor the longitudinal

beam profiles in order to minimize the space charge effects in terms of losses and longitud-

inal/transverse emittances. The PSB has to produce large variety of beams. For the future

standard HL-LHC beams, which will be produced injecting few tens of turns [7], it is import-

ant to minimize the number of foil hits and blow-up due to the scattering at the screen. The

main concern of the longitudinal injection scheme, keeping constant the central injection en-

ergy, is the inhomogeneities and beating of the bunch shape, leading to a dense core and less

populated tails [23].

The future magnetic cycle will start at 160 MeV, with the same acceleration rate as of today,

Ḃρ=10 Tm
s in the first 10 ms. The simulations which include the acceleration, from now, are

performed in this time window, where the highest part of the total emittance blow-up induced

by space charge is supposed to happen.

Several simulations without space charge have been run through the ESME [73] and PyOr-

bit [29], assuming Linac4 realistic bunches to optimize the bunch length and the energy spread

∆E of the injected beams. In operation, these variations will be performed by changing the

chopping factor and by modifying the Linac4 debuncher settings, respectively [74].

Figure 6.5 shows the three initial Linac4 microbunches trains, represented in different colours

and characterized by a different energy spread: 113 keV, 336 keV and 592 keV rms, which are

used as input of the PyOrbit and ESME simulations. Simulations have been performed max-

imizing the bunch length for the three cases. Figure 6.6 shows the results of the trackings for

the 113 keV and 336 keV options. From this analysis, at a first approach, the solution at 336

keV (616 ns initial bunch length) is preferable, as it minimizes the peak line density due to the

rotation in the longitudinal phase space of the mismatched beam, with respect to the 113 keV

(680 ns initial bunch length) case. The bunch rotation after 143 turns, where the line density

has a peak, is shown in Figs. 6.7 and 6.8.
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Figure 6.5: Linac4 bunches at injection in the PSB spaced by 2.84 ns. Red - 113 keV rms. Blue - 336
keV rms. Green - 592 keV rms. Data courtesy of A. Lombardi [72].

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

# turns

l
m

ax

 

 

113 keV rms - no space charge
336 keV rms - no space charge
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simulations.
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Figure 6.7: The initial (left) phase space and after 143 turns (right) for the initial 336 keV rms cases -
ESME simulations.
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Figure 6.8: The initial (left) phase space and after 143 turns (right) for the initial 113 keV rms case -
ESME simulations.

On the other extreme, the 592 keV rms case, the energy spread is too large and would exceed

the acceptance for a realistic bunch length of ∼600 ns. In this case, to avoid beam leaking out

of the bucket, the bunch length should be much smaller, but this leads to a reduction of the

chopping factor and an increase of the number of turns in the multi-turn injection. For these

reasons, this solution has been discarded.

As a second step of the optimization, Table 6.1 shows the results of the tracking at 336 keV

rms energy spread for different chopping factors. As proposed already by C. Carli and R.

Garoby ( [23], [75]), it is desirable to stay below 80% of the total acceptance, which in the

PSB is ∼ 1.7 eVs for the proposed RF settings. This is wanted in order to be distant from the

separatrix, which can be deformed by the longitudinal space charge.

Two bunch length evaluation methods have been considered: one is called “min-max”, being

the difference between the particles position at the extrema of the bunch. The second is a

“foot-tangent” method: this approach aims to emulate the method that is used by S. Hancock

for the tomoscope in control room ( [50], [76]), but following a slightly different algorithm.

In control room a linear interpolation of few points around the 15% of the maximum current

level is calculated to approximate the tangent lines and then intersect them with the 0 current

level, in order to obtain the total bunch length. Instead, the foot-tangent algorithm, which is

here presented, chooses as total bunch length the intersections with the zero current axis of the

maximum and minimum derivatives of the filtered current profile, which is obtained from the

raw profile through a low-pass moving average filter, as shown in Fig. 6.9.
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Figure 6.9: The foot-tangent principle: the raw (blue) and the filtered (green) current profiles together
with the maximum and minimum derivatives (dashed red lines), which intersect on the zero-current axis
and define the minimum and maximum extensions (black asterisks) of the bunch profile, i.e. the total
bunch length. PyOrbit simulations for the 47% chopping factor case (403 keV rms).

The “matched area” is defined as the area of the iso-Hamiltonian contour which passes through

the minimum and the maximum of the bunch length: it changes between the two bunch length

evaluations.

A solution between 47% and 63% chopping factor could be suitable. The first, leading to an

initial bunch length of 474 ns, implies that 29 turns of injection are needed to accumulate the

required intensity for a standard HL-LHC beam, starting from 40 mA un-chopped from the

Linac4.

The phase spaces after 10 ms for the 47% and 63% bunch chopping factors at 336 keV rms are

plotted in Fig. 6.10: it is clear that, in the first case, the bunch is well matched to the longitudinal

phase space but the longitudinal emittance (and the bunch length) is rather small. In the other

case, at 63%, the longitudinal emittance is much larger but the bunch is not perfectly matched

to the phase space yet: this is understandable from the large (30%) difference in matched area

between the min-max and the foot-tangent methods for this case (see Tab. 6.1).

Table 6.1: The 336 keV rms case with different chopping factors (without longitudinal space charge).

Chopping factor
Min-max

total b. length [ns]
after 10 ms

Min-max
matched area [eVs]

Foot-tangent
total b. length [ns]

after 10 ms

Foot-tangent
matched area [eVs]

39% 540 0.7 510 0.6
44% 546 0.7 514 0.63
47% 547 0.8 520 0.65
63% 672 1.3 583 1

108



Figure 6.10: The longitudinal phase spaces of the bunches (red) injected at 336 keV rms with 47% (left)
and 63% (right) chopping factor, after 10 ms of tracking. The bucket iso-Hamiltonian contours (for a
bucket without space charge) are in the background (grey). The black line is the iso-Hamiltonian which
encloses the foot-tangent matched area. Py-Orbit simulations.

Fixed the initial bunch length, e.g. 47%, aiming to increase the longitudinal emittance and

the final bunch length, and to obtain a better matching already in the first 10 ms of tracking, a

second iteration in the energy spread tuning can be done without overcoming the limits of 700

ns and 1.3 eVs for max 80% bucket filling.

As shown in Fig. 6.11, going from 403 keV rms up, the peak line density saturates toward lower

values (left), while the “min-max” total bunch length increases (right). On the other hand,

decreasing the initial energy spread, a big overshoot in the peak line density quickly arises,

similar to the one in Fig. 6.6, and the bunch length decreases. Looking at the peak line density,

going above 403 keV, the sensitivity to a higher energy spread is smaller, while the risk of

getting too close to the outer separatrix increases. Due to the closeness to the outer separatrix,

increasing too much the energy spread is detrimental because it generates automatically longer

bunches, even for short trains injected (see Fig. 6.11 right). A higher margin for the chopping

factor is, instead, desired. For this reason, 403 keV rms has been chosen as a reasonable

baseline solution. After this analysis, an initial tuning at 47% chopping factor and 403 keV

rms, would generate a peak of ∼620 ns “min-max” bunch length and ∼1.2 eVs matched area,

after 10 ms.
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Figure 6.11: The fine tuning of the peak line density, normalized by its initial value (left) and the “min-
max” bunch length (right) with 47% chopping factor. The colour code is the starting rms energy spread
value (in keV). PyOrbit simulations.

The “min-max” bunch length computation is characterized by large variations especially during

the initial filamentation time, as one can see in Fig. 6.11 right. In order to smooth these oscil-

lations, which are artificial, the “foot-tangent” algorithm has been used. Figure 6.12 shows the

beating reduction for the 47% chopping factor case through the “foot-tangent” method, with

respect to the “min-max” method. The filtering process helps to eliminate the large beating in

the “min-max” computation of the total bunch length. Moreover, since it filters out particles

sitting at the longitudinal edges of the bunch, whose amount is usually negligible compared

with the rest of the bunch, the total bunch length is also reduced by a ∼10% with respect to the

“min-max” one.
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Figure 6.12: Total bunch length computations with the “min-max” method and the foot-tangent al-
gorithm. PyOrbit simulations for the 47% chopping factor case (without s. c.) and 403 keV rms.

In order to profit of a longer bunch, thus less turns of injection for a given intensity, a solution at

61% chopping factor and 403 keV rms has been analyzed. Figure 6.13 shows the normalized

line density evolution during the tracking with PyOrbit, with and without s. c.. The intensity

(I=3.42×1012 p) has been taken all in a single shot, even if, in reality, it will be injected over

23 turns. This approach is justified by the fact that the synchrotron period is much larger than

the number of injection turns, thus the bunch is not evolving significantly in this time frame. A

peak in line density is always foreseen during the initial filamentation time, which lasts ~3 ms,

but the value along the tracking is in the order of 10% below the correspondent one with 47%

chopping factor of Fig. 6.11 left.

110



0 500 1000 1500 2000 2500 3000 3500 4000
0.7

0.8

0.9

1

1.1

# turns

N
o
rm

al
iz

ed
 p

ea
k
 l

in
e 

d
en

si
ty

Figure 6.13: The normalized peak line density with (green) and without (blue) longitudinal space charge
(I=3.42×1012 p), for 403 keV rms and 61% chopping factor settings. PyOrbit simulations.

Figure 6.14 shows the tracking results after 10000 turns (~10 ms) of two beams captured with

and without longitudinal space charge: on the top plots, the solution at 47% shows an evident

bunch lengthening due to space charge, that brings the bunch length from 550 ns to 570 ns,

with matched area going from 0.8 to 1 eVs. The final choice of an injected train of 609 ns

(61% chopping factor) at 403 keV rms produces a total bunch length of 602 ns after the first

10 ms of acceleration, leading to a computed matched area of 1.1 eVs, δrms=1.35×10−3 and

no losses during the tracking.

The 61% chopping factor solution produces higher initial longitudinal emittance. This mit-

igates the effects of bunch lengthening and noise due to the longitudinal space charge (see

Fig. 6.14, bottom right), because concentrates less particles inside the inner separatrix and at

the edges of the bunch, thus reducing the derivative of the line density. However, simulations

including s. c. show already a dangerous approach of particles to the outer separatrix.
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Figure 6.14: The bunch without space charge (left) and with I=3.42×1012 p (right) for the 474 ns (top)
and 609 ns (bottom) injection after 10 ms. The bucket iso-Hamiltonian contours (for a bucket without
space charge) are in the background (grey). The black line is the iso-Hamiltonian which encloses the
matched area. PTC-Orbit simulations.

Table 6.2 shows the final (foot-tangent) bunch lengths and matched areas to be expected without

and with the longitudinal space charge. One could note that for the highest chopping factor

case, the computed total bunch length is slightly lower in the case with space charge: this is

understandable from Fig. 6.14 bottom-right and is due to the particular turn that has been con-

sidered in the analysis. The rms bunch length column has been added to put in evidence the

statistical bunch lengthening caused by space charge.

For the purpose of the optimization, the 61% chopping factor has been considered as a reason-

able upper limit to avoid further expansion of particles towards the outer separatrix. However,

during the commissioning phase with Linac4, a fine tuning of the energy spread and chopping

factor will be performed, reasonably in a range of 5-10%, in order to obtain as large as possible

longitudinal emittance (i.e. matched area) and mitigate transverse space charge, while avoiding

longitudinal losses. In addition, the future introduction of a new Finemet® based RF system in

the 4 rings of the PSB may allow more power in the RF cavities so possibly larger acceptances

from injection, thus extra margin to reduce the transverse space charge tune spread both in the

PSB and in the PS. In the next Chapter, both chopping factor solutions (47% and 61%) will
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be used as a knob for the machine optimization to evaluate the influence of bunch length and

longitudinal emittance on the beam brightness.

Table 6.2: The final (foot-tangent) bunch lengths and matched areas for the 47% and 61% chopping
factors (403 keV rms) after 10 ms.

Chopping factor Total bunch length [ns] rms bunch length [ns] Matched area [eVs]

47% Without space charge 552 138 0.8
I=3.42×1012 p 572 143 1

61% Without space charge 609 149 1.1
I=3.42×1012 p 602 152 1.1
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Chapter 7

Machine and beam optimization for
the Linac4 injection

In this last chapter, after the benchmark of PTC-Orbit, the code has been used to make a full

6D (transverse and longitudinal) tracking to predict performances for the upgrade scenario with

the Linac4 multi-turn injection at 160 MeV. Simulations have been performed starting from an

emittance value of 0.4 mm·mrad in both planes, as expected from the Linac4.

An important figure of merit is the brightness: this parameter is the ratio intensity over the

half-sum of the transverse emittances (Eq. 1.14). The dependence of the emittance with the

intensity has been measured in the past at extraction and is reasonably linear for the PSB [77].

The dashed grey line in Fig. 7.1 is the measured LHC brightness curve scaled by a factor 2

with respect to the achieved grey dots, in order to indicate a future double brightness, thanks

to the increase of injection energy. The brightness upper limits are determined by the LIU

project specifications [7] and are shown in star markers. The green star marker represents

the expected limit for the LHC 25 ns beam, which is supposed to be the brightest one in the

future for the collider. This limit is lower than the grey line because it takes into account a 5%

budget in emittance blow-up and losses, which may occur from injection to extraction during

the machine cycle, as a margin foreseen by LIU.
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Figure 7.1: Upper limits for LHC beams: achieved (grey dots), future (50 ns spacing - blue stars, 25 ns
spacing - green stars). The dashed grey line is the measured LHC brightness curve scaled by a factor 2.

In Section 7.1, the simulated brightness curves are presented in comparison with the LIU re-

quirements up to the HL-LHC intensity, 3.42×1012 p. By using two transverse emittance

painting options, a parametrization has been performed for two different working points and

the two possible chopping factors from the previous Chapter (47% and 61%), at the optimal

energy spread of 403 keV rms from the Linac4.

The influence of the chromatic correction has been explored in Section 7.2.

In Section 7.3, an injection offset matrix has been implemented to show the possible trans-

verse emittance combinations which can be reached in presence of space charge for the future

standard HL-LHC intensity. From this analysis, the role of the coupling, in combination with

the integer resonances, has been discovered as fundamental for the final emittance values. The

averaged tunes methodology, introduced in Chapter 4, has been essential to study the phe-

nomenon.

Moreover “fixed lines”, i.e. multidimensional attractors in the 4D Poincaré maps, whose theory

has been recently developed for single particle motion, are shown in Section 7.4 for the first

time also in presence of space charge around the coupling line.
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7.1 The multi-turn injection

The PSB intensity, which is required for the different users, is obtained through an injection

which lasts several turns (multi-turn). Depending on the current injected from the Linac4, fore-

seen at 40 mA unchopped, it is possible to inject and tailor emittances and intensities with

higher flexibility with respect to the present “betatron-stacking” technique [78].

An initial simulation approach of the future brightness curves has already been proposed by

E. Benedetto et al. [62] in simplified hypothesis, i.e. without multi-turn injection. The simu-

lations presented here are based on the same lattice model, which includes the compensation

of the beta beating pertubation induced by the chicane magnets and also of the feed-down (i.e.

quadrupolar) effect of the sextupolar fields induced by the Inconel® coating of the vacuum

chamber [79]. In addition to the work done in the past [62], the realistic multi-turn injection is

here modeled and the initial longitudinal distribution is the outcome of the optimization presen-

ted in Chapter 6.

Considered as final baseline a chopping factor of 61% (and ∆E=403 keV rms), the standard

HL-LHC intensity (3.42×1012 p [7]) can be achieved through 23 turns. In this process, which

lasts about 23 µs at 160 MeV, the fast KSW magnets will “paint” the beam on the foil, as ex-

plained in Chapter 2.

Two transverse injection schemes, called, respectively, “on-axis” and “transverse painting” can

be implemented (see Fig. 7.2). The first option considers injecting the beam exactly on the ma-

chine orbit, while the second one envisages a fixed offset in the vertical plane and a modulation

of the KSWs in the horizontal plane [80]. The beam is horizontally injected always in the same

point of the foil, thus with a constant offset of -35 mm in addition to the -45.9 mm already im-

posed by the BSWs, which decay much slower, in 5 ms (see Chapter 2). In the vertical plane,

instead, an injection offset of 3 mm from the closed orbit is applied on the incoming beam in

case of transverse painting, while no offset is foreseen for the “on-axis” option. After the 23

turns have taken place, the currents in the KSW magnets decay rapidly to make the beam leave

the foil as soon as possible and avoid further transverse blow-up due to the interaction with

it. The modulation of the KSW waveforms allows a controlled mismatch for initial emittance

tailoring during the initial 23 turns [81].

Another possibility to obtain an initial emittance control is keeping constant the KSW strengths,

like in the “on-axis” option, while injecting the beam with an horizontal and vertical offsets

with respect to the closed orbit. This option will be treated more in detail in the further para-

graphs with a final parametrization.
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Figure 7.2: The KSW offsets decay for the “on-axis” (solid blue line) and “transverse painting” (dashed
red line) options. The beam is injected at -35 mm, with respect to the -46 mm imposed by the BSWs,
over the first 23 turns to gather I=3.42×1012 p at 61% chopping factor.

7.1.1 “On-axis” injection: simulation results

Simulations over the first 10 000 turns (~10 ms) have been performed for two different tunes

(Qx,Qy)=(4.28, 4.55), nominal, and (Qx,Qy)=(4.43, 4.60). On top of this, a second parametriz-

ation has been performed through the chopping factor. An injection of 29 turns (47% chopping

factor) has been simulated together with the 23 turns baseline (61% chopping factor).

Figure 7.3 shows the results of the simulations in terms of emittance reached after 10 ms, as a

function of the initial intensity, for the “on-axis” scheme. Such scheme implies an emittance

blow-up which is completely space charge dominated.

A larger longitudinal emittance, i.e. the one generated from 61% chopping factor (black curve),

improves the beam brightness with respect to the lower longitudinal emittance case of the 47%

chopping factor (in red). The increase of the working point to (4.43, 4.60) guarantees better

results, as expected getting farther from the integer lines.
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Figure 7.3: The “on-axis” injection simulation results (black for the 61% chopping factor, red for the
47% chopping factor) for the working point (4.28, 4.55). The results for the working point (4.43, 4.60)
are in dashed lines. The green stars and the dashed grey line are the LHC 25 ns beam limits, as shown
in Figure 7.1.

7.1.2 “Transverse painting” injection: simulation results

Since the beam will naturally blow-up due to space charge for the “on-axis” solution, it is pos-

sible to tailor the starting emittance by applying a “transverse painting”, in order to obtain the

less beam deformation possible due to space charge itself. This scheme provides the tailoring

of the emittances through an offset mismatch between the beam, injected always at the same

location, and the closed orbit as it is defined by the KSW waveforms. Using the modulation

proposed in Figure 7.2 (dashed red curve) and a vertical offset of 3 mm, one obtains a final

emittance which is ∼1.5 mm·mrad, 25% higher than the on-axis case. In particular, for the

lower working point (4.28, 4.55), the simulation results give no margin with respect to the

LHC 25 ns limit, as shown in Fig. 7.4.

As one can see in Fig. 7.5, the transverse painting solution does not modify much the transverse

profiles with respect to the ones without space charge.
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Figure 7.5: The resulting transverse profiles after 10 ms for the “on-axis” injection (top) and the trans-
verse painting solution (bottom) for the case without space charge (blue) and with I=3.42×1012 p
(green).

The particles tune spread at injection is very large. The on-axis situation gives, after 10 ms, a

maximum space charge tune shift of (-0.59, -0.73) due to a final emittance of ∼1.2 mm·mrad,
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as shown in Fig. 7.6. The transverse painting solution proposed, instead, shows a reduced

maximum tune shift of (-0.50, -0.59), related to a larger final emittance of ∼1.5 mm·mrad. A

decrease of the vertical offset could lead to lower average emittances for the transverse painting

scheme. However, in order to establish a trade-off between these two schemes, which are in

the project baseline, a new injection offset scheme including a parametric study is going to be

discussed in the next paragraphs, from Section 7.3.
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Figure 7.6: The largest tune spread (single-turn computation) after 10 ms for the on-axis injection with
programmed tune at (Qx, Qy)=(4.43, 4.6) and I=3.42×1012 p. The tune spread is represented in colour-
code in the (Qx, Qy) working plane, together with its projections along the Qx and Qy axes. The
colour-code is the particle density (blue - small density; red - high density). The magenta dot is the
injection tune and the lines are the important resonances in the machine.
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7.2 Working point optimization: chromaticity correction

The chromaticity correction, proven to be effective to change blow-up conditions, as discussed

in the previous Chapters and in [43], has not shown a dramatic improvement of the simulated

blow-up at injection with Linac4 induced by the interaction between the tune spread and the

integer resonance lines. Figure 7.7 shows the results of the simplified simulations, as discussed

by E. B. in [43].

Simulations at the injection working point of (4.28, 4.55), I=1.755×1012 p have been per-

formed. Two settings of chromaticities, (ξx, ξy)=(-0.8, -1.6) - natural - and (ξx, ξy)=(-0.15,

-2.8) have been chosen. The blow-up in the horizontal plane is reduced by a few %, as ex-

pected, due to the correction of the horizontal chromaticity. However, the vertical emittance

is increasing by a similar amount, due to the fact that chromaticity, at present, is controlled

by only one family of sextupoles, which causes the vertical chromatic spread to become lar-

ger (see Section 4.3). An intermediate chromatic working point might be more effective. It is

stressed that the chromatic spread is quite smaller than the space charge tune spread, as shown

in Tab. 5.1, thus the related gain in brightness is not expected to be dramatic. Moreover, the

presence of only one family of sextupoles for chromaticity correction allows to lower the chro-

maticity in one plane, while increasing it in the other plane. A change in injection tunes, as

previously shown, allows a better improvement in the expected brightness.
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Figure 7.7: Emittance evolution with different chromaticities. Simulations courtesy of E. Bene-
detto [43].
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7.3 Parametric analysis of the injection process

A simulation scan, consisting of simulations with 23 turns of injection (to achieve an intensity

of 3.42×1012 p. with 61% chopping factor) and bare tunes at (Qx,Qy)=(4.43, 4.6), has been

performed, without and with space charge. For all these cases the KSW function has been kept

constant during the first 23 turns of the injection process, as shown by the blue line of Fig. 7.2,

before decaying to remove the beam from the foil. This process defined an initial fixed closed

orbit position at (x,y)=(-80.9, 0) mm. Positive offsets in the horizontal and vertical directions,

in steps of 0.5 mm up to 5 mm with respect to the closed orbit position, have been considered

in the analysis.

7.3.1 Without space charge

The results in terms of final emittances after 10 000 turns without space charge are shown in

Fig. 7.8. These plots show how, increasing the mismatch amplitude, very large emittances can

be achieved in both planes in a decoupled way, and also that round beams (i.e. εx = εy) can be

obtained, moving along the green path (right).
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Figure 7.8: The simulated final emittances after the injection process without space charge: left - half-
sum emittance colour code; right - emittances ratio colour code. The black cross marker at (x, y) =
(-80.9, 0) is the closed orbit value. Empty spots reflect unfinished simulations.

The profiles after injection (at 100 turns), without space charge, reflect the mismatch, especially

in the vertical plane, where “double-horn” shapes arise from large vertical offset conditions.

Figure 7.9 shows the profiles for three different transverse mismatches in (x, y). In blue the

simulated profiles, in red the Gaussian fit curve, in gray the residuals between the two. Injecting

at (x, y)=(-80.4, 5), two peaks are evident in the vertical plane because of the large vertical

offset and the programmed tunes close to the vertical half-integer tune (top). Inverting to a big

horizontal offset, i.e. injecting at (x, y)=(-75.9, 0), centre, the horizontal profile is flattened

with respect to the Gaussian fit, while in the vertical plane the shape is Gaussian. At bottom,

injecting at (x, y)=(-80.4, 0), with almost no offset, the shapes are Gaussian in both planes.
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Figure 7.9: The transverse beam profiles after 100 turns with 3 different offsets without space charge:
(x, y)=(-80.4,5), top - (x, y)=(-75.9,0), centre - (x, y)=(-80.4,0), bottom. In blue the simulated profiles,
in red the Gaussian fit curve, in gray the residuals between the two.

Figure 7.10 shows the standard deviation of the residuals along the profiles with respect to the

Gaussian fits. One can see that the blue range is an optimal condition and the blue dots are

wider in the horizontal than in the vertical plane, due to different tunes and the presence of

horizontal dispersion.
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Figure 7.10: Parametric study of the standard deviation of the residuals between the transverse profiles
and their Gaussian fits. The black cross marker at (x, y)=(-80.9, 0) is the closed orbit value.

7.3.2 With space charge

The scenario changes in presence of space charge. The results of the scan in terms of emittances

half-sum and ratio, considering an intensity I=3.421×1012 p, present a different pattern, as

shown in Fig. 7.11. As one can see on the left, for a wide range of initial mismatches in both

directions (up to 3.5 mm in horizontal and 3 mm in vertical), the beam blows up and reaches a

final emittance (half-sum) around 1.2 mm·mrad (yellow colour code). Only for higher offsets,

the half-sum starts to increase until it exceeds the limit the HL-LHC standard production of

1.7 mm·mrad (from the orange to the red colour codes).

Again, Fig. 7.11 right, shows that round beams are obtainable in this area for a wider offsets

region with respect to the case without space charge.
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Figure 7.11: The simulated final emittances after the injection process with space charge (with intensity
I=3.42×1012 p): left - half-sum emittance colour code; right - emittances ratio colour code. Empty
spots reflect unfinished simulations. The black cross marker at (x, y)=(-80.9,0) is the closed orbit value.

Moreover, the presence of space charge prevents the formation of the double horn and keeps

the beams more Gaussian-like, with respect to the situation without space charge, as shown in

Fig. 7.12 and 7.13.
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Figure 7.12: The transverse beam profiles after 10 000 turns with 3 different offsets, with space charge:
(x, y)=(-80.4, 5), top - (x, y)=(-75.9, 0), centre - (x, y)=(-80.4, 0), bottom. In blue the simulated profiles,
in red the Gaussian fit curve, in gray the residuals between the two.
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Figure 7.13: Parametric study of the standard deviation of the residuals between the transverse profiles
and their Gaussian fits for most of the considered mismatched profiles with space charge (intensity
I=3.42×1012 p).

The evolution of the half-sum of the rms emittances is shown in Fig. 7.14, starting from dif-

ferent initial values corresponding to the different offsets. In red, the line at 1.7 mm·mrad

corresponds to the upper limit for the HL-LHC Standard beam emittances [7]. This plot, again,

confirms that a large variety of initial emittances and initial mismatches allows to reach the

final desired performances: the minimum (half-sum) emittance value of 1.2 mm·mrad gives a

30% of margin below the design limits.

Due to the persistent interaction with the integer resonances, a perfect steady state condition of

the normalized transverse emittances is not yet obtained in this time window. However the ac-

celeration rate, so the β2γ3 factor in the space charge tune shift formula (Eq. 1.67), is foreseen

to be increased in the next 10 ms of at least 30% [82], accelerating also the space charge tune

spread reduction process. This means that the slow persistent blow-up is going to be quickly

suppressed.
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Figure 7.14: Half-sum of the normalized transverse emittances vs. time for different mismatches
with space charge (intensity I=3.42×1012 p). The dashed red line is the HL-LHC limit emittance at
1.7 mm·mrad [7].

The corresponding maximum tune shifts, computed through PTC-Orbit (see Fig. 1.13 in Chapter 1)

after 10 ms, are shown in Fig. 7.15 - right. One can see that, injecting with very small offsets

in horizontal and vertical, the maximum tune shift is in the order of (∆Qx, ∆Qy) = (-0.6,-0.7),

reflecting the one of “on-axis” injection, which has been previously discussed. Larger mis-

matches generate smaller tune shifts, clearly depending on the emittances and their ratio.

Figure 7.15 also shows the interesting feature that the maximum tune shifts never overcome the

coupling line. For this reason, a deeper investigation has been performed to better understand

how the coupling influences the tune spread and, therefore, the emittances.

An extreme case, i.e. a simulation with very large horizontal 7 mm offset (and, thus, large

emittance) and no vertical offset, thus the smallest possible initial vertical emittance, has also

been performed. In this case, if there was no coupling, one would expect the vertical spread to

be much larger than the horizontal one, thus the maximum tune shift to be below the diagonal.

This simulation has been performed with initial conditions (x, y)=(-73.9, 0) and is represented

with a square marker in the plots of Fig. 7.15. The results of the simulations show that also this

point lays on the coupling.
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Figure 7.15: Half-sum emittances (left) and the correspondent simulated maximum tune shifts after 10
ms tracking (right): the maximum tune shifts never overcome the coupling line. The magenta cross
(right) is the injection bare tune, while, on the left, the black cross marker at (x, y)=(-80.9,0) is the
closed orbit value.

Figure 7.16 shows the evolution of the transverse emittances and the typical emittance sharing

behaviour associated with coupling. This phenomenon starts occurring before the end of the

23 turns injection.
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Figure 7.16: Normalized emittances evolution vs time for the entire capture process (10ms) - right. A
zoom of the first 100 turns - right. The coupling effect starts before the end of the accumulation process
(23 turns).
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7.4 Single particle analysis and fixed lines with space charge and
coupling

7.4.1 Single particle analysis and coupling

The method of the averaged tune spread, discussed in Chapter 4, has been very useful to study

this extreme case with injection at (x, y)=(-73.9, 0). As shown in Fig. 7.17, one can see that

the right part of the averaged tune spread lays on the coupling line and never overcomes the

coupling itself. The 45° projection clearly shows the accumulation of particles on the diagonal.

The same analysis has been performed for the case of injection at (x, y)=(-80.4, 0), very close to

the closed orbit, thus with the largest footprint. As shown in Fig. 7.18 for this case as well, the

space charge necktie leans on the coupling line, but it also interacts with the integer resonances.
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Figure 7.17: The space charge averaged tune spread in the case with injection very far to the closed
orbit at (x, y)=(-73.9, 0) in the (Qx, Qy) working plane. The colour-code is the particle density (blue -
small density; red - high density). The magenta dot is the injection tune and the lines are the important
resonances in the machine. Top: the projection of the particles tune spread along the Qx axis. Right:
the projection of the particles tune spread along the Qy axis. Top-right: the 45° projection, along the
orthogonal direction with respect to the coupling line.
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Figure 7.18: The space charge averaged tune spread in the case with injection very far to the closed
orbit at (x, y)=(-80.4, 0) in the (Qx, Qy) working plane. The colour-code is the particle density (blue -
small density; red - high density). The magenta dot is the injection tune and the lines are the important
resonances in the machine. Top: the projection of the particles tune spread along the Qx axis. Right:
the projection of the particles tune spread along the Qy axis. Top-right: the 45° projection, along the
orthogonal direction with respect to the coupling line.

The lattice that has been used for the simulations has no evident sources of coupling (no skew

quadrupoles nor tilt of the magnets), nevertheless the beam through the space charge itself can

generate a driving term for the linear coupling resonance when the beam tilts in the machine,

i.e. when αx 6= 0 and αy 6= 0 [63], or via the Montague resonance, which is driven by high

order (octupolar) components of space charge too (see also Section 5.7).

In real machines there are always sources of coupling. Tiny tilts of the magnets generate skew

components, so it has to be expected that coupling driving terms will always play a role in the

beam dynamics.

7.4.2 Fixed lines with space charge

A further analysis can be performed by isolating the particles sitting on the diagonal for the

two previous injections at (-73.9, 0) - small tune spread - and at (-80.4, 0) - large tune spread.

130



Figure 7.19) shows, in light green, the particles at an orthogonal distance of ±0.005 from the

resonance line. The large spread case (right) has more particles whose average tunes sit close

to the resonance, due to the fact that a bigger spread means a larger number of particles which

are interacting with the resonance. Another difference is that, in the large tune spread case

(right), these particles are longitudinally distributed all around the bunch, while in the small

spread case (left) they are mainly concentrated inside the inner islands of the longitudinal phase

space, where the space charge modulation is almost constantly stronger because of the higher

line density.
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Figure 7.19: The particles selected on the average tunes around the coupling resonance for the case with
smaller tune spread injecting at (x, y)=(-73.9, 0), left, and for the larger tune spread at (x,y)=(-80.4, 0),
right. In both the plots, there are no particles around the inner separatrix because, in this region, the
algorithm for the computation of the synchrotron period Tsynch fails.

In the case of coupled resonance an analysis of the motion of a given particle in the 6D phase

space, as described in Chapter 4, has to be performed in higher order hyperplanes.

The theory about fixed lines, recently developed by G. Franchetti and F. Schmidt [83], shows

that particles on coupled resonances perform specific geometrical shapes in 4D Poincaré maps

of the state variables (x, x’, y, y’) trackings.

In this thesis, this concept has been extended for the first time including space charge, and the

presence of time-varying forces due to the space charge kick modulation during the synchrotron

motion.

The periodic resonance crossing of the coupling line over one synchrotron period, imposed by

the time-varying space charge kicks, puts the particles around the resonance, performing exotic

trajectories. Four cases are presented:

Case 1: Figures 7.20 and 7.21 show the classical behaviour of a particle which covers tunes that,

along one synchrotron motion, are far from the coupling and the integer resonance, for

which no colour-code polarization nor exotic geometrical shape is recognizable in the 4D

maps (3D scatter plot representation plus colour code for the 4th state variable). One can

observe that the motion does not present special trajectories and there is no polarization

in the colour code, which looks noisy.
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Case 2: For a particle performing its tune modulation around the coupling resonance (see Fig. 7.22),

a scattering-trapping mechanism from the resonance makes the particle paint a proper

geometrical shape in the 4D Poincaré Section (see Fig. 7.23) and also colour code po-

larization is visible. The trapping in this case is not optimal (a sort of double circular

shape is recognizable) because the space charge de-tuning brings the particle, during

some parts of its synchrotron period, quite far from the resonance.

Case 3: For a particle whose tune modulation induced by space charge is very narrow around the

coupling line (see Fig. 7.24), the Poincaré maps (see Fig. 7.25) show that the previous

double circular shape converges to a circle and also the phase space evolution in time

(see Fig. 7.25) presents a very distinguishable geometrical behaviour in both planes.

This condition represents a full trapping from the coupling.

Case 4: The last particle presented is selected from the large tune spread case (see Fig. 7.18).

This shows the double effect of the vertical integer Qy = 4 and the coupling line, as one

can see from the tunes modulation along one synchrotron period (see Fig. 7.26). The

particle initially feels a vertical amplitude blow-up induced by the interaction with the

vertical integer and, later in the synchrotron period, it starts having amplitude exchange

between the two planes: the projection in time of the horizontal trajectories in (x,x’)

shows an enlargement (see Figure 7.27, bottom-left), while the vertical trajectories in (y,

y’) initially blow-up and then shrink in time due to the coupling effect (see Figure 7.27,

bottom-right).

To put in evidence this effect, Fig. 7.28 shows the (x, x’) and (y, y’) views of the particle

motion in the time variable colour-code. Here one can observe that, at the beginning

(blue dots), the particle interacts with the vertical integer resonance (right), feeling an

increase of its action. In this phase there is no effect on the horizontal beam size (center).

Later in the cycle (red), due to the tune modulation induced by the space charge forces,

the particle is scattered around the coupling line and an exchange process takes place:

the horizontal action increases while the vertical one decreases.

Through this analysis it has been confirmed that coupling plays a role in the multi-turn injec-

tion. The linear coupling resonance is not a concern in terms of losses and brightness reduction

for low emittance beams, like the ones for the LHC, considering that the average emittance

is preserved. Nevertheless, it could be a concern for the high intensity (and large emittance)

beams, like the ones for the ISOLDE facility.
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Figure 7.20: Case 1. The phase advance per turn of a particle which moves in the tune diagram far from
the coupling resonance. The magenta dot is the average phase advance over the particle synchrotron
period (in colour-code).

-20

0

20

-10

0

10
-2

-1

0

1

2

 

x [mm]y [mm]
 

x'
 [

m
ra

d]

y'
 [

m
ra

d]

-1.5

-1

-0.5

0

0.5

1

1.5

-2

0

2

-2

0

2
-20

-10

0

10

 

x' [mrad]y' [mrad]
 

x 
[m

m
]

y 
[m

m
]

-6

-4

-2

0

2

4

6

-2

0

2

0

500

1000
-20

-10

0

10

 

x' [mrad]t [turn]
 

x
 [

m
m

]

y 
[m

m
]

-6

-4

-2

0

2

4

6

-2

0

2

0

500

1000
-10

-5

0

5

10

 

y' [mrad]t [turn]
 

y
 [

m
m

]

x 
[m

m
]

-10

-5

0

5

Figure 7.21: Case 1. 4D Poincaré maps in different planes (top). Horizontal and vertical phase space
versus time over one synchrotron period (bottom).
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Figure 7.22: Case 2. The phase advance per turn of a particle being very close to the coupling resonance.
The magenta dot is the average of the phase advance over the particle synchrotron period (in colour-
code), almost on the coupling line.
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Figure 7.23: Case 2. 4D Poincaré maps in different planes (top). Horizontal and vertical phase space
over one synchrotron period (bottom). A sort of double circular shape is recognizable on top. This is
due to the fact that the particle is not narrowly bounded around the coupling line.
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Figure 7.24: Case 3. The phase advance per turn of a particle which performs a motion around the
coupling resonance. The magenta dot is the average of the phase advance over the particle synchrotron
period (in colour-code), sitting on the coupling line.
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Figure 7.25: Case 3. 4D Poincaré maps in different planes (top). Horizontal and vertical phase space
over one synchrotron period (bottom).
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Figure 7.26: Case 4. The phase advance per turn of a particle interacting with the integer resonance
and the coupling resonance. The magenta dot is the average of the phase advance over the particle
synchrotron period (in colour-code).
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Figure 7.27: Case 4. 4D Poincaré maps in different planes (top). Horizontal and vertical phase space
over one synchrotron period (bottom).
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Figure 7.28: Case 4. The particle evolution in one synchrotron period under the influence of the vertical
integer and the coupling resonances. The colour bar represents one synchrotron period of the particle.
Left - phase advance per turn ( colour code dots), injection tune (magenta cross), average tune close to
the coupling (grey cross), and the integer and coupling lines (solid black lines). Center - the horizontal
phase space. Right - the vertical phase space.
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Chapter 8

Conclusions

The CERN LHC Injectors Upgrade (LIU) project aims to improve the performances of the LHC

injectors chain, to provide the LHC with beams of unreached brightness (a factor 2 higher

than the present one). Main purpose is to reach higher luminosity in the frame of the High

Luminosity-LHC (HL-LHC) project. This in order to make the experiments gather 10 times

more events at the LHC in the same amount of machine running time.

The PSB is the first synchrotron of the LHC protons injectors chain and has the role to define

the highest beam brightness.

Main concern for the PSB is constituted by space charge effects at injection, due to the low

energy and high brightness desired. This can lead to beam degradation in terms of unwanted

emittance blow-up and losses. The increase of the injection energy to 160 MeV through the

new Linac4 and the new H- injection system is wanted to mitigate space charge effects.

This thesis had the objective to evaluate the future performances of the PSB with the new H-

injection. As space charge is an important bottle neck, this effect had to be carefully evalu-

ated through a benchmarking between simulations and measurements of the present machine

at 160 MeV.

The PTC-Orbit simulation program has been most extensively used in the thesis work for 6D

tracking simulations including space charge: it combines the features of the PTC tracking and

the calculation of collective effects (space charge in particular) from Orbit.

The numerical code convergence has been set up for beams like the ones for the LHC to fix the

3D grid parameters, number of space charge nodes and macro-particles to minimize numerical

artifacts not related to the physics of the phenomenon.

The space charge tune spread and the time-dependent de-tuning of single and subsets of particles

have been analyzed in detail. In particular, the possibility to compute the tune spread as the

average phase advance over many turns, at least one synchrotron period, has been introduced:

this novel approach for space charge has been useful to characterize resonance trapping phe-

nomena.

Moreover, the contribution of the de-tuning due to the chromaticity has been analyzed, as an

additive component to the space charge one.
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A series of machine development studies, measurements and simulations have been performed

on a special cycle on a 160 MeV energy plateau. An extended campaign of tune scans has been

performed to identify the most dangerous resonances and to perform a first correction scheme.

An instability, already seen in the past, has been cured through the transverse feedback avail-

able in the machine. The nature of this instability is still unclear and has to be studied in the

future.

The blow-up and losses induced by the integer resonances Qx = 4 and Qy = 4, the losses

with bunch shortening of the vertical half-integer 2Qy = 9, the linear coupling resonance

Qx −Qy = 0 (or Montague 2Qx − 2Qy = 0) have been observed. In general, both static and

time-varying working points have been used. In this last case, regarding the vertical integer

resonance Qy = 4, a clear correlation with the dipolar closed orbit enhancement effect has

been observed. The Qx = 4 line has been excited with different chromaticities, leading to

different blow-up, as expected.

For most of the previous cases, simulations have been performed in order to benchmark PTC-

Orbit. An important input to the simulations has been given by the optics measurements, which

have provided a realistic misalignment and quadrupolar field error model.

The machine model, including the realistic errors, has been fundamental to simulate the long

term losses (over ~200 ms) induced by the vertical half-integer line 2Qy = 9. The trapping-

scattering mechanism [46] has been identified as responsible for the beam degradation and very

good qualitative and quantitative agreement has been achieved in simulations with two differ-

ent longitudinal profiles.

Additional simulations with random errors have shown that the loss rate scales with the beta-

beating. This is a confirmation that the beta-beating correction through the normal quadrupoles

available in the machine is effective.

The simulations close to the horizontal integer resonances showed an emittance blow-up com-

parable to the measurements, including the chromaticity effect close to the resonance. Different

transverse blow-ups occur in case the chromaticity is changed, similarly to the ones shown by

the measurements. The chromaticities variation, coupled in the machine because related to a

single sextupoles family, could be helpful as a knob for the future injection process. In this case

a second sextupoles family should be installed in the future to have independent corrections in

the two planes.

The vertical integer, approached dynamically, has given very good agreement in a case without

closed orbit distortion (COD) correction, where the closed orbit and vertical beam size blow-

ups generate losses when approaching the line. Promising results have been obtained in case

of corrected COD changing the space charge model to the one including boundaries. A calib-

ration of the simulated chamber size has been performed through the measurements.

A good agreement between measurements and simulations has been obtained also for the coup-

ling line with its typical effect of emittance exchange. Additional investigations are needed to

clarify whether this resonance is due to space charge-induced linear coupling or by the 4th order
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Montague resonance, also driven by space charge.

The longitudinal space charge effect has been benchmarked through the comparison between

PyOrbit, a brand new simulation program derived by PTC-Orbit, BlonD, a purely longitud-

inal simulation program developed at CERN, and analytical formula. Comparisons in single

harmonic and constant energy for a parabolic bunch, where the analytical expression of the

synchrotron frequency reduction is well known, have shown good agreement between the two

codes in a wide span of intensities and also for pure numerical solutions, where the analytical

synchrotron frequency reduction is not defined by the analytical formula.

A longitudinal injection scheme without energy modulation has been chosen for the LHC

beams, in order to minimize the interaction with the foil and create an easier scheme to be

implemented in operation for the beam commissioning. After an optimization of the chopping

factor and the energy spread of the beam coming from the Linac4 to minimize the peak line

density, a solution with 609 ns beam injected (61% chopping factor from 40 mA unchopped

current from the Linac4) and 403 keV rms bunch trains from the Linac4 has been chosen as

optimal one, being clear that a fine tuning up to 10% will be eventually performed around this

solution during the commissioning phase. In fact, a small increment of the longitudinal emit-

tance can be a very useful knob to reduce the transverse space charge effect, but exceeding it

can be detrimental for possible longitudinal losses induced by longitudinal space charge.

The satisfactory results of the benchmarks have generated confidence in PTC-Orbit, which has

then been used for the prediction of the future injections from the Linac4.

Multi-turn injections and beam dynamics during the fall of the orbit chicane imposed by the

bump magnets (BSW) have been simulated for two different working points, the nominal one

(Qx, Qy)=(4.28, 4.55) and (Qx, Qy)= (4.43, 4.60), farther from the integer resonances. Two

chopping factors (47% and 61%) have been compared as well. Moreover, two different solu-

tions for the transverse injection, “on-axis” and with transverse painting, make possible a large

tailoring of the initial (and final) transverse emittances.

The results of the simulations showed that the desired double brightness is feasible up to the

Standard HL-LHC intensity (I=3.42×1012 p). The nominal tune has been demonstrated to be

at the limit with the LIU requirements. The higher tune, instead, gave better results, because

farther from the integer lines that drive the transverse emittances blow-ups. This provided more

brightness margin with respect to model uncertainties, in particular in terms of unknown error

sources in the machine.

The on-axis injection gave smaller final emittance after the first 10 ms, but this time window

was not sufficient to reach a completely steady-state condition of the rms emittances, especially

at the HL-LHC intensity. The transverse painting option allowed to tailor a larger emittance

since the beginning and obtain more stationary conditions. However the tracking studies of

this last option showed a reduced margin with respect to the HL-LHC brightness objectives. A

further optimization of the vertical offset may improve this aspect.

A parametric study over a transverse offset matrix and constant KSWs during the injection has
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been performed without and with space charge at the HL-LHC intensity. Simulations including

space charge gave average normalized emittances in the order of 1.2 mm·mrad injecting within

a few millimetres margin from the closed orbit. This result provided a final maximum 30%

margin in emittance with respect to the HL-LHC target of 1.7 mm·mrad.

Moreover, the particles dilution process, induced by the space charge fields, helped the trans-

verse profiles to stay Gaussian-like for a wide range of initial transverse mismatches.

The maximum space charge tune shifts after 10 ms for the different horizontal and vertical

offsets showed that these tunes never overcome the coupling resonance. The maximum tune

shift was in the order of (-0.6, -0.7). By injecting with very large horizontal emittances and

very small ones in the vertical plane, we obtained that the final average tune spread leaned on

the coupling line, even if the model that has been used for the injection studies did not con-

tain sources of coupling between the horizontal and vertical planes, like tilts of the magnets.

This suggested that space charge itself can cause coupling conditions (exciting linear and/or

Montague resonances) which induce emittance sharing/exchange.

An analysis of particles sitting around the coupling has shown the presence of fixed lines,

i.e. 4D attractors in the transverse Poincaré Sections. The theory of fixed lines has been very

recently developed for single particle studies [83]. As a novelty in this thesis work, simula-

tions demonstrated the presence of fixed lines also in a space charge dominated regime with

bunched non-linear motion and self-consistent 6D space charge simulations. The trapping of

the particles on the resonance coupling line has been shown through the averaged tune spread

method. This effect is not a problem for the final brightness of the LHC beams, because it

preserves the average emittance, but could eventually be an issue for large emittance beams.

Next steps for the machine simulations include the re-definition of the resonance driving terms

in the machine to higher order (at least sextupolar). This analysis will improve the machine

model toward a non-linear one and make possible the understanding of higher order non-linear

phenomena in relation with space charge.

The results for the upgrade scenario will be then verified during the commissioning of the PSB

with the Linac4.
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Appendix A

The Hamiltonian formalism

The advantages of using the Hamiltonian formalism are many:

• the approach is fully generic, treating linear and non-linear forces;

• it solves non-linear problems without restrictions to small perturbations;

• when using a complete set of canonical variables, aiming to phase space transformations,

the approach is symplectic;

• It gives both explicit solutions and invariants of motion.

The general perturbation problem can be stated as follows: given the general solution for the

canonical Equations in case of unperturbed motion,

q̇i =
∂H0

∂pi

ṗi = −∂H0

∂qi

(A.1)

it is required to obtain the motion for the total Hamiltonian

H = H0(qi, pi, t) +H1(qi, pi, t) (A.2)

where H0 is the unperturbed and H1 is the perturbed component of the motion.

In the following the procedure is applied to describe the motion of charged particles in a circular

machine.

Since the bending radius ρ is large, the effect of curvature can be neglected and the Hamiltonian

in the variables x, y and θ can be written as follows:

H =
R2

c|Bρ|

(
Φ

β
Aθ

)
+

1

2

[(
RΦ

c|Bρ|

)2

+

(
px
RAx
c|Bρ|

)2

+

(
py
RAy
c|Bρ|

)2
]

(A.3)

where:

• Φ is the electric potential;
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• Ax,y,θ are magnetic potential vector components;

• px,y,θ are the momentum vector components.

The Hamiltonian is here associated with two-dimensional motions in the presence of an electro-

magnetic field, so in this case the Hamiltonian theory can be applied with n=2 and the positions

q and momenta p can be chosen as follows:

q1 = x

q2 = y

p1 = px = x′ +
RAx
|Bρ|c

p2 = py = y′ +
RAy
|Bρ|c

(A.4)

A.1 The unperturbed motion

Using the Eq. (A.3) it is possible to derive the Hamiltonian for the unperturbed motion H0. In

presence of dipolar and quadrupolar components to stabilize the transverse motion of particles,

the fields are considered up to the linear term, which requires a quadratic potential vector ~A.

Since these fields have to be transverse, the only component of the potential which is different

from zero is the longitudinal one:

Ax = Ay = 0

Aθ = − c
2

(G1x
2 +G2y

2)
(A.5)

where G1 and G2 are gradients which are functions of θ. Due to the fact that the electric field

is supposed to be null, the Eq. (A.3) for the unperturbed motions gets simplified:

H0 =
1

2
(K1x

2 +K2y
2 + p2

x + p2
y) (A.6)

being K1
2

=
R2G1

2
|Bρ| .

Applying the general solution of the canonical Equations (A.1) one obtains the Hill’s Equa-

tions, similar to (1.6), in the form of a first order differential equation system:
x′ = px

px
′ +K1x = 0

y′ = py

py
′ +K2y = 0

(A.7)

with

K1
2

= K1
2
(θ) = K1

2
(θ + 2π).
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The integrals of Eq. (A.7) can be written in the form:

x(θ) =
a1√
2R

√
βx(θ)exp

[
+i

∫ θ

0

R

βx(ζ)
dζ

]
x(θ) = complex conjugate

y(θ) =
a2√
2R

√
βy(θ)exp

[
+i

∫ θ

0

R

βy(ζ)
dζ

]
y(θ) = complex conjugate

(A.8)

being a1,2 the complex constants of the transverse motion, βx,y(θ) the betatron functions and

the integral the phase advance (see Eq. 1.15).

A.2 The perturbed motion

The Hamiltonian H1 of Eq. (A.2) can be obtained by subtraction from the total Hamilto-

nian (A.3)

H1 =
1

2

[
− 2R2

|Bρ|c
Aθ −

2R

|Bρ|c
(pxAx + pyAy) +

2R2Φ

|Bρ|c
+

(
RAx
|Bρ|c

)2

+

(
RAy
|Bρ|c

)2

+

(
RΦ

|Bρ|c

)2]
(A.9)

whereAθ is now the longitudinal component of the potential vector ~Aminus its stabilizing part

due to focusing fields in Eq. (A.5).

If now one makes the assumption that the perturbing fields are small enough to neglect the

square terms Φ2, A2
x and A2

y with respect to the linear ones, this simplifies into:

H1 =
1

c|Bρ|

[
R2

(
Φ

β
Aθ

)
−R(pxAx + pyAy)

]
(A.10)

At this point it is possible to develop the Eq. (A.10) as a series of terms which are homogeneous

polynomials of degree N in the four canonical variables:

H1 =
∑
N

H
(N)
1 (x, px, y, py, θ) =

∑
N

N∑
J,K,L,M=0

J+K+L+M=N

b
(N)
JKLM (θ)xJpKx y

LpMy (A.11)

Changing now the name of the Hamiltonian H1 into U, the terms H(N)
1 can be expressed in

terms of exponentials like follows:

U(a1, a2, θ) =
∑
N

N∑
j,k,l,m=0

j+k+l+m=N

h
(N)
jklma

j
1ā
k
1a
l
2ā
m
2 exp

{
i[(j − k)Qx + (l −m)Qy]θ

}
(A.12)
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Due to the fact that the electromagnetic fields have the ring periodicity in a circular accelerator,

a development in Fourier series of the function U is possible:

h
(N)
jklm(θ) =

∞∑
q=−∞

h
(N)
jklmqe

iqθ (A.13)

where

h
(N)
jklmq =

1

2π

∫ 2π

0
h

(N)
jklm(θ)e−iqθdθ

Plugging Eq. (A.13) into Eq. (A.12), one has:

U(a1, a2, θ) =
∑
N

N∑
j,k,l,m=0

j+k+l+m=N

∞∑
q=−∞

h
(N)
jklmqa

j
1ā
k
1a
l
2ā
m
2 exp

{
i[(j − k)Qx + (l −m)Qy + q]θ

}

(A.14)

The expansion of the Hamiltonian presents frequency terms:

[(j − k)Qx + (l −m)Qy + q] (A.15)

In the assumption that the amplitudes of a1 and a2 change little in an oscillation or turn, these

changes occur at low frequencies. At zero frequency, for example:

j = k, l = m, q = 0 (A.16)

and for the terms in which the wave numbers Qx and Qy satisfy:

nxQx + nyQy = p, where nx, ny, p are integers (A.17)

being j− k = ±nx, l−m = ±ny and q = ∓p. This equation represents dangerous resonance

lines in the tune diagram.

For further details and a more complete treatment, the reader is referred to [12, 84].

146



Appendix B

Additional measurements without
comparison with simulations

Measurements concerning the effects of the vertical integer resonance, the losses induced by

the skew sextupolar resonance 3Qy = 13 with different chromaticities and the longitudinal

space charge are presented in Sections B.1, B.2 and B.3.

B.1 Static working point close to Qy = 4

The same kind of measurements of the horizontal integer (see Section 5.5), has been performed

for the vertical integer resonance Qy = 4 to analyze vertical rms emittance growth. As before,

these measurements have been done looking at a working point, which is reasonably close to

the resonance, in order to emphasize the emittance growth, but leading, at the same time, to a

very limited amount of losses.

The static working point, selected for the analysis, is (Qx,Qy)=(4.21, 4.08). A small amount of

losses has been observed, as a function of time. The horizontal emittance stays pretty constant

and the vertical one grows by 27% over 60 ms, with a rise time of 10-15 ms (see Fig. B.1).

The longitudinal profiles are for long bunches. The results presented here were obtained using

the long beam setting Vh1 = 8 kV and Vh2 = 8 kV in anti-phase. The initial emittance is much

higher in the vertical plane than in the horizontal, approaching the final working point starting

from the coupling line. The beam size is comparable to the minimum physical vertical aperture

(∼ ±30 mm in the PSB). Table B.1 summarizes the beam parameters.
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Figure B.1: Static vertical integer measurements: rms emittance (top) and intensity (bottom) evolutions
in time. The coloured error-bands represent the standard deviation of the measurements.

Table B.1: Static vertical integer resonance: initial beam parameters.

Initial beam parameters Close to Qy = 4

Bunch population [1012 p] 1.66

εx (rms), εy (rms) [mm·mrad] 3.7, 7.13

RF settings (h=1, h=2) [kV] 8, 8

RF cavities relative phase π

Total bunch length [ns] 634

Momentum spread (1σ) 1.40×10−3

Tune Qx, Qy 4.21, 4.08

Max space charge tune shift - Eq. (1.67) ∆Qx,∆Qy -0.11, -0.09
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B.2 The effect of the chromaticity on the 3Qy=13 resonance

To investigate the effect of a larger order resonance on the upper part of the tune footprint,

the 3Qy=13 resonance has been excited through a single skew sextupole powered at 30 A. A

systematic tune scan has been performed: the horizontal tune was kept at Qx=4.2 while Qy
was varied from 4.31 to 4.34 in steps of 0.01. The starting beam intensity was 3.2×1012 p. For

each of these points the measured losses in the machine are taken for different chromaticity

values. The measured chromaticity change is from ξy=-1.8 to ξy=-2.8 and is performed as in

Fig. B.2.

Figure B.2: The chromaticity change in the measurements window.

Figure B.3 shows the losses for different fixed vertical tunesQy, from 4.31 to 4.34. The change

of chromaticity modifies the footprint and, in particular, a larger |ξx| increases the chromatic

spread which is extended above the vertical bare tune (see the overshoot in Section 4.3). This

leads to a wider upper part of the tune spread interacting directly with the resonance line and

more losses are being found:
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Figure B.3: The measured 3Qy=13 induced losses at Qx=4.2 and Qy=4.31..4.34 for different vertical
chromaticities. The orange arrows indicate the variation of the vertical chromaticity, which influences
the losses.
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B.3 Longitudinal space charge

The longitudinal space charge has the effect of inducing bunch lengthening. Beam current pro-

file measurements have been taken at 50 MeV for the first 10 ms from the present injection

process: the RF capture at the present injection process and s.c. induced bunch lengthening,

varying the number of injected turns, has been analyzed.

Figure B.4 shows the profiles waterfall in time (in grey colour code). The magenta and blue

markers define the extrema for total bunch extension calculation through a foot-tangent al-

gorithm (see Section 6.2).

Figure B.4: Bunch length measurements from beam profile waterfall plots varying the intensity: A -
67×1010 p; B - 233×1010 p; C - 496×1010 p; D - 813×1010 p; E - 1057×1010 p.

A summary of the resulting bunch lengths is shown in Fig. B.5. The initial noisy part of the plot

is due to the failure of the foot-tangent algorithm. This is completely understandable during
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the bunch formation in the capture process, which lasts less than 2.5 ms (filamentation time).

2

Figure B.5: Bunch length measurements varying the intensity. The legend is the total injected intensity:
A - 67×1010 p; B - 233×1010 p; C - 496×1010 p; D - 813×1010 p; E - 1057×1010 p.

A 9% increment of the bunch length has been appreciated injecting from 67×1010 p (944.5 ns)

to 1057×1010 p (1061 ns). The increase is shown in Fig. B.6.
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Figure B.6: Bunch length vs. intensity injected: the blue errorbar is due to the data diffusion in the last,
steady-state, 3.8 ms of Fig. B.5. The red error bar represents the losses after the 10 ms of analysis.
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Appendix C

The machine errors model

The distribution of focusing errors in the machine lattice has been estimated by M. McAt-

eer [60, 85, 86] before LS1.

Figure C.1 left shows the quadrupolar errors, as result of the analysis performed for the PSB

ring 2 for the working point of (Qx, Qy) = (4.20, 4.26). The focusing errors in Fig. C.1, found

from a Linear Optics from Closed Orbits (LOCO) fitting technique [87], were on the order of

one per mil of the nominal integrated gradients of the main magnets [88]. These errors have

been evaluated together with an extimation of the misalignments from May 2013 tunnel survey,

as shown in Fig. C.2.
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Figure C.1: Relative errors (percent) of quadrupole magnet strengths in ring 2. Images courtesy of M.
McAteer [85, 86].
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Figure C.2: Transverse and longitudinal alignment errors and tilts of triplet quadrupoles and bending
magnets in Ring 2, from May 2013 tunnel survey. Images courtesy of M. McAteer [85, 86].

A set of steering errors which minimized the difference between the measured and model

closed orbit was added to the thirteen orbit corrector dipoles in the lattice. Figure C.3 shows the

measured and simulated vertical closed orbit distortion forQy = 4.09 (bottom). Without steer-

ing corrections, the model predicts a much larger closed orbit distortion than what is observed.

However, with steering corrections, the model reproduces the measured orbit fairly well at all

working points, both without (see Fig. C.3 a) and with (see Fig. C.3 b) orbit correctors active

in the real machine.
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Figure C.3: The vertical COD (yavg) without (a) and with (b) measured COD matching for the lowest
(Qy = 4.09) vertical working point. Images courtesy of M. McAteer [86].
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Appendix D

Design and implementation of “radial”
tune scans

A novelty that has been introduced in the tune scans technique, during the work for this

thesis, is the “radial” tune scan, implemented in collaboration with E. Matli (CERN Opera-

tions team) [47].

It is known that resonance lines interact with the beam in different ways depending on the

direction they are crossed. The Cartesian method allows only two directions of crossing, i.e.

along vertical or horizontal paths.

The radial scan, instead, makes every directional approach possible, because it is based on tune

paths moving radially from the center C, along a certain radius P, covering an arbitrary angle

span ζ inside [0,360]°, at fixed steps of ∆ζ. Figure D.1 shows the principle of the scan.

Figure D.2 shows that the stop-bands for the vertical integer resonance (Qy = 4) is clearly

visible (in red). Then, again, the instability at Qx = 4.3 is evident along almost all the line and

the upper limit of the vertical integer resonance bandwidth is visible.

The radial scan could also facilitate, in the future, the tune paths optimization during the oper-

ations in control room.
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Figure D.1: The schematics of the “radial” tune scan principle.

Figure D.2: A “radial” tune scan example around the programmed tunes origin (Qx0,Qy0)=(4.25,4.25)
over a 0.2 radius P . The black dots are the measured tune patterns performed at intervals ∆ζ=10°.
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Appendix E

Vertical COD correctors currents

The DVT correctors currents in the 160 MeV plateau are summarized in the following table.

These correctors have been used in the dynamic vertical integer benchmarking of Section 5.6.

Table E.1: PSB ring 2 vertical COD correctors settings. The magnets are named as in the control room
application.

Magnet name Current [A]

DVT2L4 6.05

DVT3L4 0.23

DVT4L1 Not available

DVT5L4 -0.21

DVT6L4 0

DVT8L1 0.62

DVT9L1 0.82

DVT10L4 -0.65

DVT11L4 0

DVT12L4 0

DVT13L4 -0.46

DVT14L1 0.9

DVT15L1 -0.43

DVT16L1 0.34
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