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Abstract: 

 
The more electrical airplane concept led industrial companies to focus a part of their efforts on risks 
linked to the use of high voltage in a severe environment (Low pressure, wide range of temperature 
and humidity …). Associated risks are the existence and the growing of partial discharges ultimately 
leading to the breakdown of the system in which they occur. Considering this problematic, the 
Liebherr Elektronik GmbH group, in collaboration with the Laplace laboratory, launched the study 
of a method allowing partial discharges detection in converters intended to be used in aeronautical 
applications. The results of this work are the subject of this thesis. The first part brings the status of 
the current knowledge about partial discharges from their physical nature to the detection methods 
which are used. In the second part, three measurement phases assessing the efficiency of the 
studied method are introduced and their results discussed. Finally, in the third part, the conclusions 
of our works and their perspectives are presented. 
 
Keywords: Partial discharges, On-line, Aeronautics, PWM voltage, Non-intrusive sensor 
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Abstract (French): 

 
Le concept de l’avion plus électrique a conduit les industriels à focaliser une partie de leurs efforts 
sur les risques liés à l'utilisation de la haute tension dans un environnement sévère (Basse pression, 
large plage de température et d’humidité …). Les risques associés sont l'existence et le 
développement de décharges partielles conduisant à terme à la défaillance du système dans lequel, 
elles se produisent. Considérant cette problématique, le groupe Liebherr Elektronik GmbH, en 
collaboration avec le laboratoire Laplace, a lancé l’étude d’une méthode permettant de détecter les 
décharges partielles dans des convertisseurs destinés à des applications aéronautiques. Ce sont les 
résultats de ce travail qui font l'objet de cette thèse. La première partie fait état des connaissances 
actuelles sur les décharges partielles, de leur nature physique aux méthodes de détection utilisées. 
Dans la seconde partie, trois phases de mesures validant l’efficacité de la méthode étudiée sont 
présentées et leurs résultats sont discutés. Enfin, dans une troisième partie, les conclusions de nos 
travaux et leurs perspectives sont présentées. 
 
Keywords: Décharges partielles, On-line, Aéronautique, Tension MLI, Capteur non-intrusif 
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« Le doute est l’école de la vérité »  
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1 INTRODUCTION 

This chapter provides the background required to understand the context and purpose of this thesis. 
In the first section, we start by focusing on the evolution of electrical power embedded in airplanes. 
Then, we describe the concept of the “more electric aircraft.” The last section describes the purpose 
of the work done for this thesis. 

1.1 ENERGY EMBEDDED IN AIRPLANES 

The most common architecture used in civil aircrafts is a combination of several kinds of energies, 
namely: pneumatic, mechanical, hydraulic and electrical. All of these secondary energies are created 
by the primary energy source based on the kerosene combustion in the main engines. Here is some 
example of the uses of these energies [Rosero] 

� Pneumatic: This energy is mainly used to supply the Environmental Control System (ECS) and 
bring hot air for Wing-Anti-Icing (WAI) systems. The main drawbacks of pneumatic energy 
are its low efficiency and the difficulty to detect leaks.  

� Mechanical: This energy is the link between the engines and hydraulic pumps, electrical 
generator, and other mechanically driven subsystems. 

� Hydraulic: This energy is transferred from the central hydraulic pumps to the actuation 
systems for primary and secondary flight control, and to numerous other auxiliary systems. 
Hydraulic systems are very robust, but they are heavy and inflexible. Moreover, in the case 
of leakage, hydraulic fluid can degrade surrounding components due to its corrosive nature. 

� Electrical: This energy is obtained through an electrical generator, supplying all electrical 
devices in an airplane (flight control actuation systems, lighting, entertainment systems, 
etc.). Electrical power require lighter infrastructure than hydraulic power and is more 
flexible. However, it has a lower power density than hydraulic power and the risk of fire is 
increased in the event of unexpected electrical discharges. 

 

 
Figure 1: Example of conventional power distribution in airplanes 

 
  



15 
 

The electrical power embedded in airplanes has undergone constant evolution over recent decades. 
The main reasons for this include the general increase of electrical equipment on-board, and a 
desire to move towards a more electric aircraft overall. 
 

 
Figure 2: Evolution of the electrical power embedded in airplanes over recent decades [Roboam] 
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1.2 THE CONCEPT OF A “MORE ELECTRIC AIRCRAFT” 

Considering the complexity of maintenance in conventional power distribution systems, it became 
clear that it would be advantageous to switch from a multi-power-source system to a system with 
mainly electrical power. As shown in Figure 3 the more electric concept simplifies the overall 
architecture. This explains why some airplane manufacturers are currently focusing on solutions 
which are more electric. 

 
Figure 3: Schematic of distribution in a more electrical aircraft 

 
As shown in Figure 3, most of the systems are supplied with electric power. Therefore the power 
demand is increased. Following this, increasing power means either increasing the voltage supplied 
by the power source, or increasing the maximum current that can be drawn from the power source. 
Increasing the latter element forces power cables to withstand greater amperage. This is achieved 
by increasing the diameter of cables. This change in dimension necessarily leads to an increase of 
the aircraft’s weight. However, this is not an acceptable solution for industries who are trying, in 
parallel, to reduce the weight of the airplanes in order to minimize fuel consumption. Consequently 
the only acceptable way to increase available power in aircrafts is to increase the voltage of the 
power sources. 
 
As an example, flight controls can be found on the wing of the airplane as shown in Figure 4. These 
systems drive, among other things, the FLAP and SLAT surfaces. 
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1.3 ISSUES AND PURPOSE OF THIS THESIS 

Increasing the voltage to avoid burdening the aircraft, supresses one drawback and creates another 
one: increasing voltage may lead to the phenomenon of partial discharges. Consequently, many 
studies need to be performed in order to find out whether partial discharges exist in current power 
electronics systems.  
 
In collaboration with the Laplace laboratory, the company Liebherr Elektronik GmbH has been 
focusing on this topic for several years. Their main objective was to develop a method capable of 
detecting partial discharges on-line in an aeronautic system. 

1.3.1 LIEBHERR ELEKTRONIK GMBH 

This division of the Liebherr group works on the electronic components in Liebherr systems, which 
includes the fields of construction machines and aircraft power electronics devices. The company 
developed, among other things, a power converter for the A350 airplane. This converter aims to 
control the flap assembly at the rear of the wings, as shown in Figure 4 and Figure 5. 
 

 
Figure 4: Slat and flap position on a wing 

 

 
Figure 5: Controller for flight actuation in an A350 airplane 

 
The controller in Figure 5 is part of the ADGB (Active Differential Gear Box) system. Two ADGBs are 
installed in each aircraft and are used to drive the FLAP on the wings. This system is comprised of a 
gear, power-off brake, various sensors, and a MCE (Motor Control Electronic). The MCE (Figure 5) 
operates a permanent magnet synchronous machine which drives the transmission for the outboard 
flap panel. Here is a description of the different elements of the MCE: 



18 
 

• PCE: The Power Control Electronic is an AC-to-PWM converter. It supplies the motor that 
controls the flap assembly at the rear of the wings. 

• EPOB: The Electrical Power-Off Brake is a brake used to stabilize the flap. 
• SEPOB: The Standby Electrical Power-Off Brake is a secondary EPOB. 
• CU: The Controller Unit drives the MCE system. 
 

This system is the platform which has been investigated for partial discharges detection in the frame 
of this PhD. 

1.3.2 PURPOSE OF THE THESIS 

The objective of this thesis, is to highlight whether or not partial discharges can occur in the PCE. 
 
This target is reached by analyzing the electrical structure of the PCE and by applying a test 
methodology (Figure 6). The difficulty is to perform on-line partial discharges measurements in an 
aeronautical converter, since no efficient method has been developed at this time. 
 
We therefore decided to focus on a relatively recent partial discharge detection method that has 
shown interesting results in the automotive field [Billard]. This new detection method was 
compared with the standard electrical method using a coupling capacitor and RLC filter. The 
objective of this collaboration work is two-fold, to: 

• Validate the robustness of this new detection method in the aeronautical field. 
• Determine whether PD can occur or be detected in a running PCE (on-line detection). 

 

 
Figure 6: Test methodology applied during the complete study 

 

M 
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The methodology used to reach these objectives is based on Figure 6. The first step consists of 
testing samples made with constituents or materials used in aerospace applications. Three types of 
defects are created and tested. A vented sample simulates an internal defect, a twisted pair of 
enamelled wire has external defects and a needle to plane sample has corona defects. 
The second step is to test the individual components used in the PCE (IGBTs, diodes, connectors, 
PCBs, cabling etc.). The last step is to test the complete operating system (PCE + Cable + Motor). 
Each of these steps is described in the following chapters. 

1.3.3 MAIN CONTRIBUTIONS 

a) Scientific contributions 

 

The most important contribution of this work is the on-line detection of partial discharges in an 
aeronautics converter. A partial discharge sensing method, using a non-intrusive sensor, has been 
used for this purpose. The studied method allows to make the distinction between partial discharges 
and the switching noise from the converter. Each tests have been done at low pressure to take into 
account altitude effects. 
 
As a second contribution, this work allowed to draw a limitation of the sensing method. During the 
investigation of some samples submitted to low pressure, the nature of some discharges has 
changed from pulsed to pseudo-glow (c.f. 4.1.2.4) and no partial discharges were measurable 
although we proved that partial discharges were still occurring. 
 

b) Industrial contributions 

 

Thanks to this work, the company Liebherr Elektronik GmbH has now significant knowledges to lead 
deeper investigations around the partial discharges topic. With the development of the sensing 
method they have a tool allowing to assess their converters regarding partial discharges. 
 
Another contribution is the development of a partial discharge free pulses generator which 
generates a voltage shape representative of the voltage used in aeronautical systems, namely an 
actual pulse width modulation. The maximum voltage can go up to 2kV. This laboratory tool will 
allow Liebherr to meet demand concerning the design of partial discharges free converters. 
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1.3.4 CONTENT 

This document is organized into the following chapters: 
 
Chapter 2: State of the art 

This chapter brings the basics regarding the partial discharges topic. The different types of defects 
in which discharges may occur are described and the different natures of discharges that may exist 
are detailed. The influence of the environment on partial discharges is depicted and finally some 
detection and analysis methods are listed. 
 
Chapter 3: An original method for detecting partial discharges in the aeronautical field 

This chapter describes the method used to sense the partial discharges throughout this work. 
Physical aspects of the method are discussed and advantages and drawbacks are given. 
 

Chapter 4: Experimental study 

This chapter gathers the main results of the measurements. It is divided in three steps, first the 
measurements of some basic samples, second the measurements of some components from an 
aeronautics converter and third the measurement of a complete running converter. A detailed 
analysis of the results is made and interpretations are given.  
 

Chapter 5: Conclusion 

This chapter brings the conclusions of the overall works. The results of the previous chapters are 
gathered and analyzed. Futures potential works on the topic are detailed. 
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2 STATE OF THE ART 

This chapter introduces the partial discharge phenomenon. To start, some basic definitions are 
provided, then the description of the discharge behaviour under different types of voltage (AC, 
PWM, DC) is investigated. Lastly, the effect of environmental conditions is studied. 

2.1 SOME BASICS ABOUT PARTIAL DISCHARGES 

2.1.1 DEFINITION 

An electrical discharge that partially bridges the gap between two electrodes supplied by high 
voltage is called partial discharge. The occurrence of the phenomenon depends on factors such as 
temperature, pressure, humidity, insulation type and thickness, and of course, voltage magnitude 
and waveform applied between the electrodes.  
 
Partial discharges are characterized by various parameters that are described below [IEC60270]: 
 
The partial discharge pulse is the current or voltage pulse that results from a partial discharge that 
occurs within the object under test. The pulse is measured using suitable detector circuits, which 
are introduced into the test circuit for test purposes. 
 
The apparent charge (q) is the charge (in Coulomb) that can be read by a measuring instrument at 
the terminals of the test sample. This value is different from the actual charge present in the 
discharge since not all the charges created in the defect reach the terminal of the sample where the 
measurement is performed. 
 
The pulse repetition frequency (N) is the number of discharges measured in a second. 
 
The average discharge current (I) is the sum of the absolute value of the charges in a period, divided 
by the period. ���� is a chosen reference time interval. 

� = 1
���� ∗ 	 
�

�

��
 

The discharge power (P) is the sum of the products of the value of the charges by voltage applied 
in a period, divided by the period. ���� is a chosen reference time interval. 

� = 1
���� ∗ 	(q�

�

��
∗ ��) 

The background noise is the signal that can be measured when the test sample is not supplied by 
power. This characteristic must be measured before partial discharges measurements for 
calibration issue. 
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The partial discharge inception voltage (PDIV) is the applied voltage at which repetitive partial 
discharges are first observed in the test object, when the voltage applied to the object is gradually 
increased from a lower value at which no partial discharges are observed. 
 
The partial discharge extinction voltage (PDEV) is the applied voltage at which repetitive partial 
discharges cease to occur in the test object, when the voltage applied to the object is decreased 
gradually from a higher value at which partial discharges pulse quantities are observed. 
 
The mean free path is the average distance travelled by a moving particle between successive 
impacts, which modify its direction or energy. 
 

2.1.2 TYPE OF DEFECTS 

PD can be characterized by an extrinsic parameter: the type of defect allowing discharges to be 
ignited. Three types of defects can be specified: internal, external and corona.  

a) Internal defect 

 

The internal defect (Figure 7) is a void or cavity present in an insulating material. This can be the 
sheath of wires, the coating on PCBs, the enamelling part around transformers’ wires, etc… This 
type of defect is generally created during the manufacturing process. When the insulating material 
is applied, some gas bubbles may be created until the material is completely dry. This type of defect 
allows discharges to occur inside the unwanted cavity. They are relatively difficult to obtain in the 
laboratory because of the small size of the defect which is hard to obtain. The vented sample is often 
used to simulate such a defect. 
 

 
Figure 7: Representation of internal defects 
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b) External defect 

 
The external defect, or surface defect, depends mostly on the physical shape of the component. An 
external space can be the location of intense discharges if it is situated between two electrodes 
(even if they are coated) supplied with high voltage. Recurring examples of external defects are the 
surrounding air close to the windings of high voltage motors or a twisted pair of enamelled wires 
(Figure 8). 
 

 
Figure 8: Example of external discharges in an electric stator [Billard] and a twisted pair of enamelled wire 

[Cella] 

 
Discharges occurring in an external defect, and under particular conditions (such as low pressure), 
are characterized by a glowing light that make the phenomenon relatively easy to detect. 

c) Corona defect 

 
The corona defect (Figure 9) is created by the presence of a sharp needle or edge in the vicinity of a 
high voltage source. This sharp shape induces a phenomenon called the “needle effect,” which 
increases the electric field around the sharp element. This creates an area in which electrons are 
accelerated and may ionize atoms. It leads to an electronic avalanche and thus an electrical 
discharge. 
 

 
Figure 9: Representation of corona defects  
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2.1.3 NATURE OF DISCHARGES 

Partial discharges are also characterized by the nature of the discharges. The nature of the 
discharges can vary, depending on voltage and current as shown in the voltage/current 
characteristic of discharges (Figure 10). [Povey] 
 

 
Figure 10: The different natures of the discharges in gas 

 
At low voltage (Figure 10: Phase I), weak ionizations occur and low current is pulled. In the second 
phase, the voltage is high enough to allow the discharge to be self-sustained and the Townsend 

mechanism predominates. Under particular conditions (Voltage, pressure etc.), the discharge can 
switch to other characteristics and become glowing. According to [Bartnikas1], glowing discharges 
can be classified mainly into two types: glow and pseudo-glow discharges. The different states of 
these discharges is described below. 
 
The Townsend discharge is an electrical breakdown process that takes place in uniform field, 
parallel-plane metallic electrode gaps. It undergoes the electron-avalanche concept, which is 
described as follows: when a single electron is accelerated by an electric field, it may collide with a 
neutral gas or atom or molecule and ionize it. This creates a second electron, both accelerated in 
the electric field direction and having a probability to ionize other atoms or molecules. The 
probability for an electron to ionize a neutral gas molecule over a travelled distance � is given by 
���. � being known as the first ionization coefficient, is equal to the number of ionizing impact per 
electron per unit distance. 
This first step of the Townsend discharge is represented in Figure 11. 

 

 
Figure 11: Representation of the avalanche mechanism. MFP being the Mean Free Path 
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As shown in Figure 11, this process creates a negative swarm of electrons at the front of the 
avalanche. This is explained by the fact that the electrons are faster than the positive ions (~100 
times more). These electrons reach the anode quickly, while the slower moving ions drift towards 
the cathode. Upon impact, they may liberate additional electrons with a probability �, which is the 
second ionization coefficient. 

� = 1
exp(∝ �) − 1 

 

Equation 1: Townsend second coefficient 

 
∝ is the first Townsend ionization coefficient and � is the inter-electrode distance. Lastly, when the 
height of the positive ion avalanche becomes large enough, secondary electron emissions may lead 
to a self-sustained discharge.  
 
The second step of the Townsend discharge is shown in Figure 12. 
 

 
Figure 12: Secondary ion emission at the cathode 

 
In the case of a non-uniform field, as it is often the case, there is a significant probability that the 
streamer discharge will predominate. The streamer theory, which was proposed independently by 
Meek and Raether [Meek], starts in the same way as in the Townsend mechanism, with a single 
electron being accelerated and igniting an electron avalanche. After the electrons have disappeared 
into the anode, a large positive space charge, comprised of positive ions, remains in the inter-
electrode space and enhances the global electric field. At that point, any single electron in the 
vicinity will be accelerated in the direction of the positive ion swarm and will reinforce it. Afterwards, 
the number of auxiliary avalanches is increased and the streamer starts at the anode and grows up. 
When it reaches the cathode, the streamer becomes a highly conductive plasma channel. Figure 13 
describes the complete streamer mechanism. 
 

 
Figure 13: Representation of the streamer mechanism [Meek] 

Cathode 
Neutral gas 
molecule 

Electron Photon Positive ion 



26 
 

[Bartnikas2] offered a description of the discharge sequence. He explained that when a void is 
subject to AC voltage above its breakdown value, discharges will occur periodically at each half cycle 
of the sinusoid. The number of discharges is determined by an integer amount multiple of the void’s 
breakdown voltage. For example, when the maximum voltage of the sinusoid (Ea) just reached the 
breakdown voltage (Eb), four discharges per half cycle occur, as shown in Figure 14. 
 

 
 

Figure 14: Voltage waveform across an idealized cavity subject to AC voltage (Ea=Eb) 

 
The apparent voltage across the void may be considered as a fraction of the voltage applied to tested 
object since the object and its defect can be represented as a capacitive divider (Figure 21). It has 
consequently the same shape. However this voltage is theoretical since it is actually distorted by the 
discharges occurring inside the defect. Actually, the voltage across the void has a different shape 
than the voltage applied to the tested object. For this reason, both voltages are represented in 
Figure 14, Figure 15, Figure 16 and Figure 17. 
 
If the maximum voltage of the sinusoid reaches twice the breakdown voltage (Ea=2*Eb), eight 
discharges per half cycle will occur, as shown in Figure 15. 
 

 
Figure 15: Voltage waveform across an idealized cavity submitted to AC voltage (Ea=2*Eb) 
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In particular cases, such as low pressure, the discharge can switch from a pulse-type, as Townsend 
or streamer, to another nature of discharge called glow and pseudo-glow, which were defined by 
[Bartnikas1] as following: 
 
A test object that is undergoing a glow discharge emits light in the purple and ultraviolet spectrum. 
When this occurs, only two discharges per cycle (At θ1 and θ2) can be measured. The glow portion 
of the discharge is confined between π and θ1, and 2π and θ2. The Figure 16 represents the electrical 
behavior for an ideal glow discharge. 
 

 
Figure 16: Voltage waveform across an idealized cavity which is undergoing a glow discharge 

 
In contrast to the true glow discharge, the pseudo-glow discharge which was defined by [Bartnikas1] 
as being a voltage waveform discharge pattern containing numerous pulses with a magnitude too 
weak to be detected by conventional pulse detectors. Actually, when a discharge occurs, the voltage 
in the defect falls from the breakdown voltage (Eb) to the residual voltage (Er). Eb-Er defines the 
magnitude of the discharge. In the case of pseudo-glow discharge, Eb-Er tends to zero. Figure 17 
shows a voltage waveform representing this concept from [Bartnikas1], typifying the pseudo-glow 
discharge. 
 

 
Figure 17: Voltage waveform typifying the pseudo-glow discharge  
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2.1.4 PASCHEN’S LAW 

In 1889 the German physicist Louis Karl Heinrich Friedrich Paschen laid the foundations of gas 
breakdown voltage. Paschen’s law is an empirical equation that gives the breakdown voltage of a 
gas as a function of the pressure times the distance (��) between two electrodes. It is applicable in 
a homogeneous electric field. 
The Paschen curve is obtained from the following equation: 
 

� = ���
ln(��) + # 

Equation 2: Paschen equation 

�: pressure (Torr) 
�: distance (cm) 
� & #: values depending on the gas nature (e.g for air: � =365 V.Torr-1.cm-1 # =1,18) 
 
Once plotted, the equation gives the curve presented in Figure 18. 
 

 
Figure 18: Paschen curve in air 

 
Three different parts can be observed in the above figure: 

I. The left side shows a very small pressure times distance product. This means that there are 
not enough molecules or atoms between the electrodes or that there is a small distance 
between the electrodes. Consequently, the probability for an electron to collide with 
molecules or atoms is very low. Therefore, the voltage required for breakdown tends 
towards infinity. 

II. The right side shows a very high pressure times distance product. This means that there are 
a lot of molecules or atoms between the electrodes. Consequently, the mean free path is 
reduced so that electrons do not gain enough velocity to ionize other atoms or molecules. 
Here, the voltage required for breakdown tends towards infinity. 

III. The Paschen minimum is the pressure times distance product at which the breakdown 
voltage is minimum. This particular value for a given gas indicates that a specific voltage exits 
under which no breakdown can occur. 

 
In a homogeneous electric field, no electrical discharges can occur at a voltage below the Paschen 
minimum. Consequently, a safety zone where no partial discharges (PD) occur can be defined. 
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2.1.5 CONSEQUENCES OF PARTIAL DISCHARGES 

Repetitive partial discharges in a system can lead to severe degradations of insulation. The flow of 
electrons in the cavity may induce extreme chemical transformations, such as the splitting of 
molecular bindings under the effect of electrons and ions bombardments. These transformations 
may create a highly conductive path which allows high current to flow and thus temperature to rise. 
Finally the insulation is seriously damaged and a complete breakdown or an arc may occur between 
two electrodes which are not anymore protected by the insulation. Figure 19 shows the degradation 
of insulation due to high voltage stress 
 

 
Figure 19: Damage on a stator after dielectric breakdown 

 

2.2 PHYSICAL DESCRIPTION OF THE PARTIAL DISCHARGES PHENOMENON 

Partial discharges occur only in a gaseous medium that, due to lower permittivity than the 
surrounding material, creates a reinforcement of the electric field. Figure 20  shows a physical 
description of the partial discharge process in a gas-filled cavity. 
 

 
Figure 20: Electric field distribution around a gas field cavity 

 

The voltage difference between the high voltage electrode and the ground generates an electric 
field EG through the dielectric. Since this dielectric is not ideal, due to the presence of the cavity, and 
since the permittivity of the gas inside the cavity is lower than the permittivity of the dielectric, an 
electric field reinforcement is observed in the cavity.  
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The cavity is filled with gas which, as it is the case for all gas, has a permittivity ε) close to that of 
the void ε*. 

ε) = ε* = 8.854187	x	102�3	F. 52� 
 
However the permittivity of the dielectric, which is a solid, is higher than that for gas or void. 

 
ε6 < ε8 

 
 
It is known that the permittivity of a medium can influence the electric field in which it is located, 
as shown the following formula: 

9
ε = E 

E: Electric field 
9: Electric displacement field 
ε: Permittivity 
 
This equation means that the larger the permittivity, the lower the electric field. 
Considering the previous conditions, it can be concluded that: 

 

εc < εD																							 =
>8 < =

>6               $%&D < $%&C        With: $%&D = $%&D0 + $%&D1 

 
Consequently, since a voltage larger than the breakdown voltage is applied to the electrodes, an 
electrical discharge will first occur in the cavity. When electrons arrive at the edge of the cavity, they 
create a secondary electron generation, as described in the Townsend theory, which maintains the 
discharge in the cavity. The discharge occurs in the cavity first as a combined result of field 
enhancement and lower breakdown stress. 
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2.3 PARTIAL DISCHARGES UNDER AC VOLTAGE 

In 1944, Austen and Hackett [Austen] proposed an equivalent circuit for the discharge process in 
voids. This was later used to explain the discharge sequence by Mason. Figure 21 is the schematic 
of this equivalent circuit. 

 
Figure 21: abc model 

 
CC: Capacitance representing a gas-filled cavity in a solid dielectric 
CB: Capacitance representing the solid dielectric in series with Cc 
CA: Capacitance representing the remaining dielectric 
 

If a sinusoidal voltage of an amplitude Va is applied to this circuit, and assuming that Vb is the 
breakdown voltage of the gas-filled cavity, when the apparent voltage across Cc reaches Vb, this 
leads to a breakdown in the cavity and Cc can be considered as a short circuit. The actual voltage 
across Cc then follows the apparent voltage until it again reaches the breakdown voltage of the gas 
in the cavity. The higher the magnitude of the AC source, the higher the number of occurring partial 
discharges. Figure 15 shows this process. 
 
A simulation of this concept value shows a higher number of discharges (Figure 22). A sinusoidal 
voltage is applied to the abc model (Figure 21) and switches (SW1 and SW2) simulates a discharge 
each time the voltage reach the inception voltage. 
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Figure 22: Simulation of the abc mode. Left: Simulation. Right: Measurements of a twisted pair of enamelled 

wire submitted to sinusoidal voltage. 

 

The position of the discharges in the simulation is coherent with the theoretical (Figure 15) and 
empirical (Figure 22-right) data when studying partial discharges. 
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2.4 PARTIAL DISCHARGES UNDER PULSE-LIKE VOLTAGE 

Although the behavior of electrical insulation subject to AC voltage stress is well documented, there 
have been relatively few studies on impulse voltage conditions. [Densley1] summarized the main 
foundations of this topic. As for AC voltage, partial discharges can occur in a gas-filled cavity 
surrounded by a solid or liquid dielectric material fed by impulse voltage. Therefore, the equivalent 
electric model with capacitors is also used to explain the discharge phenomenon under such voltage 
waveform. 
 
Partial discharges occur when the electric field in the defect is high enough that an initial free 
electron can gain enough velocity to ionize atoms or molecules and end up creating an avalanche. 
However, initial free electron is not always available. The initiatory electron can be generated by 
natural irradiation. For alternating voltage below the MHz and direct voltage, there is sufficient time 
for natural irradiation to produce favorably positioned electrons. However for short-duration 
impulse voltages, an initiatory electron might not be produced during the time in which the voltage 
across the cavity is above the ionization potential. Consequently, no discharge occurs. The time 
measured from the moment the voltage across the cavity exceeds the ionization potential, up to 
the appearance of the initiatory electron, is known as the statistical time lag (STL). If the duration of 
an impulse is below the STL, no electrical discharges occur. And, if this duration slightly exceeds the 
STL, very high voltage is needed to create discharges. The longer the pulse duration, the smaller the 
voltage needed to create discharges. As shown in Figure 23. 
 

 
Figure 23: Discharge inception voltage as a function of impulse duration 

 

This particularity explains why the partial discharge inception voltage (PDIV) is higher with impulse 
voltage conditions than for AC or DC voltage conditions. 
The factor between PDIV under pulse voltage and PDIV under AC or DC voltage depends on the 
stress at the cathode surface, the type of cathode material, the temperature, and whether the 
surface is rough or smooth. 
The discharge sequence during impulse voltage conditions may be divided in two groups: unipolar 
pulses and bipolar pulses. 
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2.4.1 UNIPOLAR PULSES 

The voltage shape has a significant impact on the occurrence of the discharges. When performing 
measurements using unipolar pulses, it seems that the discharge inception voltage is higher than 
when tests are performed under AC voltage. This can be illustrated by applying a series of unipolar 
pulses to the theoretical abc model (Figure 21). The results are shown in Figure 24. 

 
Figure 24: Unipolar pulses applied to the theoretical abc model at PDIV 

 
Figure 24 shows that, at PDIV, one partial discharge occurs at the beginning of the test but afterward 
no more discharge occurs. It is therefore difficult to detect them. 
 

 
Figure 25: Unipolar pulses applied to the theoretical abc model at a voltage above PDIV 

 
By increasing the voltage well above the inception level, partial discharges occur periodically, and 
are therefore easier to detect. 
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2.4.2 BIPOLAR PULSES 

When performing measurements under bipolar pulses, it may be supposed that partial discharges 
occur at the same repetition than the tests done under AC voltage. This is illustrated by applying a 
series of bipolar pulses to the theoretical abc model (Figure 21). The results are shown in Figure 26. 
 

 
Figure 26: Bipolar pulses applied to the theoretical abc model at PDIV 

 
Figure 26 shows that, when using bipolar voltage, partial discharges occur periodically at the 
inception. It is not needed, as under unipolar pulses, to increase the voltage above the inception 
level to get this result. This explains why, under bipolar pulses, partial discharges are detected at a 
voltage (Vpeak) lower than when test are performed under unipolar voltage. 

2.5 PARTIAL DISCHARGES UNDER DC VOLTAGE 

In their work to gather data on the topic of partial discharges, Bartnikas and Mc Mahon highlighted 
some conclusions drawn by [Densley2] about partial discharges under direct voltage conditions. The 
following general points were outlined: 

• The discharge inception voltage under direct voltage conditions is difficult to specify because 
the discharge repetition rate is zero at the theoretical inception value. In practice, inception 
voltage is taken as either: (1) a certain number of discharges exceeding a particular 
magnitude per time unit, for example one discharge per minute, as in [ASTM1]; or (2) when 
the sum of the product of the number of discharges counted in each channel per time unit, 
and the minimum discharge magnitude that can be counted in that time, exceeds a certain 
limit; or (3) The direct current flowing through the insulation exceeds a specified limit. 

• It is not possible to define a discharge extinction voltage, as discharges can occur a relatively 
long time after the applied voltage across the insulation has dropped to zero. 

• The direct voltage discharge repetition rate is usually several orders of magnitude less than 
for alternating voltage. 

• If the direct voltage is below the discharge inception value, superimposing direct voltage on 
alternating voltage does not change the AC discharge inception voltage. However, the 
number of AC discharges is sometimes reduced by the presence of direct voltage. If the 
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direct voltage is above the discharge inception value, a small alternating voltage will increase 
discharge frequency significantly. 

 
Because of the low repetition rate, partial discharges under DC voltage conditions are very difficult 
to detect, and since a low repetition rate means a less risks for the system, this work mainly focuses 
on AC and pulsed voltage. 

2.6 DISCHARGES ANALYSIS THROUGH ENVIRONMENTAL MODIFICATIONS 

Information on the nature of partial discharges can be found by modifying the environmental 
conditions around the sample being tested. These modifications include: 

• Changing the medium – immerging a sample into insulating liquid helps to distinguish 
surface from internal discharges. 

• Varying the pressure – allows making the distinction between external and internal 
discharges. The inception level is modified by the pressure in which the discharges occur. 

• Increasing the temperature – may close fissures, and temperature cycles may cause 
interstices. Increasing temperature may also increase a material’s permittivity and thus 
decrease PDIV. 

• Increasing humidity – can modify the partial discharge inception and extinction voltage. 
 
Each of these environmental modifications only give an indication. More results have to be obtained 
and analyzed to get a better picture of the discharges. 

2.7 DETECTION METHODS 

Quantitative partial discharge detection requires accurate measurements because of the magnitude 
of the discharges, which extend from a few pico-coulombs to a few hundred pico-coulombs. 
Different methods exist to detect partial discharges. They are listed below: 

• PD can be detected using the electric charges movement or consequences resulting from 
this movement. This method is called electrical detection.  

• Electric charges movement produces electromagnetic waves that can be detected by an 
antenna. This is called RF detection. 

• During their existence, PDs produce some new chemical elements (Ozone, NOX) that 
cause damage to the material. This phenomenon may be used for chemical detection. 

• PD also emits sounds which allow acoustic detection. 

• One last method for detection uses the light emitted by the discharges, which extends 
from infrared to UV light. This method is called optical detection.  

Chemical and acoustic detections are not used frequently because of the complicated test 
elaboration. However chemical detection has been sometimes used by means of ozone sensors. 
These are paper tabs which color changes when ozone is detected. Since partial discharges emit 
ozone, it is a good indicator to know if discharges occur in an object or not. Therefore, this thesis 
focus only on electrical, chemical, and optical detection. Each method described below requires a 
calibration stage before any test. 
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2.7.1 STANDARD ELECTRICAL DETECTION 

To detect PD, this method uses the charge displacement (measurement of the current flowing into 
a conductor). The partial discharges current detector scheme is shown in Figure 27. 

 
Figure 27: Setup for electrical PD detection 

 
U is the voltage source. L is an inductance avoiding that high frequencies from the DUT reach the 
voltage source. Cc is a coupling capacitor. Z is an impedance through which the discharges current 
flows. The resulting voltage is used for partial discharges detection. 
Since partial discharges are high frequency events, and since L is an inductance, the current created 
by the partial discharges (in AC) flows in the loop CC, DUT, and Z. The small current variation is 
detected by Z (which is, most of the time, a RLC circuit), then amplified, digitalized and sent through 
an optical fiber (for galvanic insulation) to a computer with the appropriate software. This detection 
method leads to the example (Figure 28). In some applications Z, is in series with CC. It has no 
influence on the result except the sign of the current measured by Z. 
 

 
Figure 28: Example of results after electrical PD detection 

 
The main advantage of this detection is the accuracy of the measurements. With such a method, it 
is possible to determine the quantity of apparent charges generated by each electrical discharge. 
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2.7.2 RADIO-FREQUENCY (RF) DETECTION 

Partial discharges may also be detected by detecting electromagnetic wave emission. This method 
obviously uses an antenna, and is mainly based on wave shape recognition and analysis. The easiest 
method is to connect an oscilloscope or a spectrum analyzer to the antenna and to analyze curves. 
More elaborate devices use complex algorithms to recognize partial discharges. Figure 29 shows an 
example of such a detection system. 
 

 
Figure 29: Setup for PD RF detection 

2.7.3 OPTICAL DETECTION 

Optical detection is the most useful method to localize PD with precision, at least when the 
discharges are external and located in an area reachable by an optical sensor. The discharge process 
is well described by the Townsend theory. During the ionic bombardment process, photons are 
emitted in a certain frequency band. This photon emission allows to localize partial discharges 
accurately. An example is shown Figure 30. 
 

 
Figure 30: PD light emission on a twisted pair of enamelled wire sample 

 
A very faint light and a luminous point can clearly been seen on the left side of the right picture in 
Figure 30. 
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2.8 ANALYSIS METHODS 

Simply looking at some characteristics separately does not necessarily lead to the correct 
interpretation. Some characteristics must be considered together. Two main tools are used for 
analyzing partial discharges: 

2.8.1 OSCILLOGRAM 

Analyzing partial discharges occurrence as a function of phase position with respect to the voltage 
source is an effective way to obtain data regarding discharge type and origin. There are two ways 
to display this: classical depiction (on the right in Figure 31) and the Lissajous depiction (on the left 
in Figure 31). 

 
Figure 31: Lissajous and phase resolved pattern 

 
The classical depiction enables highlighting a relevant pattern and comparing it with known 
patterns. Figure 32 shows oscillograms which depict different type of discharge (Surface, void, 
corona) according to the company Omicron. The following pictures are merely examples and are 
not intended to constitute any sort of “absolute” truth. 
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Figure 32: Different types of partial discharges after an electrical detection 

 

The second method, the lissajous method, makes it possible to bring out the symmetry between 
positive and negative alternance. Figure 33 shows some measured shape of discharges displayed 
with the lissajous method. 

 

 
Figure 33: Several discharges measured with lissajous method [Kreuger1] 

 

(1) Cavity completely surrounded by a dielectric: The discharges at both polarities are equal or 
do not differ more than a factor 3. 

(2) Cavity or surface discharge, at one side bounded by an electrode: the discharges at both 
polarities differ more than a factor 3. 

(3) Negative corona in gas: discharges are of equal magnitude and occur at one polarity only. At 
higher voltage, positive corona may appear at the other side of the ellipse. 

(4) Corona in oil: Typical corona pattern at one side, indistinct corona pattern at the other side 
of the ellipse. 

(5) Contact noise: indistinct noise pattern at the zero point where the capacitive current is 
maximal. 

(6) Floating part: imperfect contact of an electrode floating in the electric field causes regularly 
repeating discharge groups, sometimes rotating along the ellipse.  
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2.8.2 X-Y DIAGRAM 

This analysis method shows the discharge magnitude (logarithmic scale) as a function of test voltage 
(linear scale). Kreuger [Kreuger] pursued some investigations using this diagram. He outlined 
particular shapes for different types of discharge as shown in Figure 34. 
 

 

 
Figure 34: XY analysis method [Kreuger] 

 
Internal discharges show a squarely-shaped diagram, while surface discharges show an ever-
increasing diagram. Thanks to such diagrams, it is possible to determine what kind of partial 
discharges are measured. 
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2.8.3 TIME EFFECT 

A sample subject to partial discharges during a certain duration of time can provide data on the type 
of discharges and what is happening to the insulation. The following X-Y diagram, Figure 35 from 
[Kreuger2], shows an extinction voltage that is not the same after waiting 30 minutes or waiting 24 
hours. 

 
Figure 35: XY analysis method with time parameter 

 

This behavior has been found in elastomeric insulation, where fissures occur in the direction of the 
electric field. It can also occur in round cavities in thermoplastics where inhibitors or plasticizers are 
present. 
 

2.9 CONCLUSION 

This second chapter brings the basic knowledge required to understand the partial discharges 
phenomenon. Partial discharges must be studied with several tools, described in the previous 
sections, but the combination of these tools is as much important to conclude on the nature of an 
observed discharge. To get proper results, it is imperative to master these basic knowledges 
before any partial measurements. 
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3 AN ORIGINAL METHOD FOR DETECTING PARTIAL DISCHARGES IN THE 

AERONAUTICAL FIELD 

Complex setup is generally required when deploying most types of partial discharges detecting 
device: 

• The electrical method is an off-line method using a coupling capacitor, impedance, an 
amplifier, and sometimes a few meters of optical cable for galvanic insulation.  

• The radio-frequency method uses a precisely calibrated antenna along with some accurate 
filters and amplifiers. 

• The optical method may refer to accurate measurement using light sensors, a few meters of 
optical cable, and a spectrometer to analyze the data or, it may refer to a simple camera 
sensing any light emission (from IR to UV). 

 
Each method focuses on particular objectives such as measuring the quantity of charge in the 
discharge which requires elaborated setup to be obtained. 
 
The objective of the method presented in this study is actually simpler, since it seeks only to detect 
discharges (no measuring charge, no localization etc…). The method described in this thesis has 
been developed to detect partial discharges on-line at a lower cost in the environment of an 
airplane. 
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3.1 METHOD DESCRIPTION 

Figure 36 describes the basic setup used to detect partial discharges using the proposed method. It 
is based on a coupler sensitive to the dV/dt related to the discharge. When a discharge occurs, its 
current flows in the loop between the device under test and the power source. When it reaches the 
sensor, this one detects the variations of the discharges’ current which are sent to the oscilloscope 
through a high pass filter. The filter removes any “low frequency” generated by the device under 
test or by the power source. 
 
 

 
Figure 36: Setup of the partial discharge detection method 

 

The main advantages of the sensing method are its low cost and the small size of the sensor. It 
allows building an inexpensive setup rapidly, and to reach small places where larger sensors would 
not fit. It allows to make the distinction between partial discharges signals and switching noise. 
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3.2 PHYSICAL CHARACTERISTICS OF THE SENSING SECTION 

Figure 37 shows an electronic representation of the capacitive aspect from the sensing method. 
Each component or parameter which may have an influence on partial discharges measurement is 
represented. 
 

 
Figure 37: Possible electronic representation of the partial discharge sensing method 

 
iPD is the current generated by partial discharges in the DUT. This value depends on the magnitude 
of the discharges. It is generally used to calculate the apparent charge, but not the real charge. Zsystem 
is the impedance created by the studied system, for example, the components in the converter 
through which the discharges’ current flows to reach the sensor. RAC is the internal resistance of the 
power source. Zcontact is an impedance created by imperfect contact between the coaxial core and 
the high voltage cable sheath. This value may depend on environmental parameters. Cinduced is the 
induced capacitor. Its value depends on several factors described below. Zfilter is the filter’s 
impedance. Rosc and Cosc are respectively the oscilloscope’s internal input resistor and capacitor. 
ZHVcable and Zcoax are impedances respectively dependent on the length of the high voltage cable and 
the coaxial cable. 
This representation of the discharges circuit shows that the sensing method uses the common mode 
current to bring the discharges’ current from the DUT to the oscilloscope. 
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3.3 ANTENNA FEATURES 

Considering that every unshielded metallic wire acts as an antenna, the sensor proposed in this 
thesis is thus able to detect electromagnetic waves at a particular frequency (resonance frequency) 
depending on its shape and dimensions. This section determines whether the sensor acts as an 
antenna able to detect frequencies at which partial discharges occur. 
 

 
Figure 38: Representation of different type of antenna and their resonance frequency 

 
Figure 38 represents three types of antenna: dipole, monopole and full wave. Their resonance 
frequencies is calculated as shown at the bottom of the figure. 
 
The sensor presented in this thesis does not have the characteristics of an usual antenna as ① and 
②. Its resonance frequency cannot be simply calculated as the other cases. 
 

	 ?
@/4 

Equation 3: Antenna length calculation 

 
@: Length of the copper core (m) 
? : Speed of light in the vacuum (m/s) 
�: Frequency that can be received (Hz) 
 
Consequently, to prove that our sensor is a poor antenna at low frequencies (<1GHz), 
measurements have been made using a network analyzer. S11 measurement has been performed 
and are described in Figure 39. 
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Figure 39: Representation of the S11 measurement on the coaxial cable 

 
S11 measurement allows to determine the resonance frequency of an antenna. The network 
analyzer send a series of sinusoidal signals to the tested object (in our case, the coaxial cable), and 
measures the magnitude of the reflected signal. The magnitude of the sinusoidal signal being the 
sum of the reflected signal and the radiated signal. A range of several frequencies is sent and the 
result is given as a graph as a function of the frequency. Figure 40 shows an example with an antenna 
which has been built to get a 250MHz resonance frequency. 
 

 
Figure 40: S11 measurement on a 250 MHz antenna 

 
Figure 40 shows that the fundamental harmonic (first harmonic) is at 250MHz. The other harmonics 
are odd harmonics. Figure 41 shows the S11 measurement of the coaxial cable with a copper core 
of 10 mm length. 
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Figure 41: S11 measurement on the sensor 

 
Figure 41 shows that no pulses are visible. This means that the coaxial cable is a very poor antenna, 
at least up to 3 GHz. Consequently the proposed sensor should not be able to detect the 
electromagnetic waves emitted by partial discharges since they are situated below 1 GHz. This is the 
reason why it will be called “sensor” and not “antenna” in the following chapters. 
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3.4 METHODS COMPARISON 

Table 1 shows a comparison of the existing partial discharges sensing methods with the method 
proposed in this thesis. 
 

 

Standard 

electrical 

method 

Optical Acoustical Chemical 
Proposed 

method 

PDs 

localization 

No (Require analysis 

afterward) 

If the discharges are 

external 

Using triangulation 

PDs can be localized 

Depending on the 

setup 

Not (Require 

analysis 

afterward) 

PDs 

Quantification 
Yes Yes Yes No No 

Setup 

This method requires 

a complex and bulky 

setup to be 

assembled 

When using just a 

camera, the setup is 

simple but an 

elaborated setup 

using light sensors 

and optical fibers 

could be complex 

and bulky 

Elaborated setup 

(Microphone, 

amplifier etc.) are 

required 

When using ozone 

sensing paper the 

setup is simple but 

more complex 

chemical 

investigations require 

knowledges in 

chemistry and 

appropriate chemical 

products 

Simple (Stripped 

coaxial cable, 

filtering, 

oscilloscope) 

PDs 

distinction 

under pulse-

like voltage 

No 

If the discharges are 

external and are 

emitting enough light 

to be detected.  

If the discharges emits 

enough noise 

If the discharges 

induce chemical 

transformations that 

can be detected 

Yes 

Cost 

Expensive (Coupling 

capacitor, amplifiers, 

calibrated impedance, 

calibrator, software 

etc.) 

An inexpensive 

camera may be 

enough to perform 

optical detection but 

an elaborated setup 

using light sensors 

and optical fibers is 

expensive 

Relatively expensive 

depending on the 

quality of the 

detection 

(Microphone, audio 

amplifier, analyzing 

software) 

Relatively expensive 

depending on the 

setup 

Inexpensive 

(Stripped coaxial 

cable, filtering, 

oscilloscope) 

Table 1: Comparison of the existing methods with the proposed method 

 
Considering that the objective of the study presented in this thesis is to develop a sensing method 
to detect partial discharges on-line in an aeronautical converter, the preponderant characteristic of 
the method must be the ability to distinguish partial discharges over the switching noise of the 
converter. The proposed method has this characteristic. Moreover the setup is simple and 
inexpensive. Partial discharges cannot be directly localized or quantified but this is not necessary to 
fulfill the requirements. Consequently the proposed method is the most appropriate one. 
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4 EXPERIMENTAL STUDY 

4.1 CONSTITUENTS INVESTIGATION: USING SAMPLES TO VALIDATE THE SENSING 

METHOD 

Investigating constituents is the very first step on the road to ensure the design of partial discharges-
free converters by taking into account the specificity of the different stresses applied on the electric 
components (and of course on their insulating constituents) and of the process for realizing them. 
This part describes the tests realized on samples made with insulating constituents used in 
aerospace power electronics converters. Partial discharges measurements are performed using the 
new detection while comparing results (when possible) to those obtained using the standard 
electrical method. Materials used as insulation in these systems are first listed and then tested in 
different conditions. 

4.1.1 CONSTITUENTS SUMMARY 

Samples have been created following the description in chapter 2.1.2. The goal is to get samples 
representative of all types of defects that can exist in power electronics systems. Several types of 
dielectric materials are used as insulation, and are described below. 
A non-exhaustive list of materials used in aeronautical power electronics systems is established. The 
materials are applied carefully on each sample to create the appropriate defects. Some of the 
insulating materials, such as enameled wire, were already applied. For these materials, the defects 
were created by modifying their geometry (e.g. twisting them together to create external defects). 
Coils and transformers use copper wires insulated with a thin layer of polyurethane (PU). This 
material is tested, using the standard [ASTM2], by twisting two enameled wires around each other 
as shown in Figure 42. It creates external or surface discharges. 
 

 
Figure 42: Twisted pair of enameled wire 

 
The insulation of some cables used in aerospace are made with Fluorinated Ethylene Propylene 
(FEP). This material is subject to high voltage and laid down on a ground plane. This configuration 
may ignite partial discharges between the insulation and the plane (external defect). This cable is 
thus attached to a copper plate, as shown in Figure 43, and the high voltage is applied between 
them. 
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Figure 43: High voltage cable on a copper plane 

 
A type of material, called Humiseal®1B31, is used to protect PCBs against harsh environmental 
variations. This coating is applied on a bare copper plane, with a sharp needle hanging above it. 
When the high voltage is applied to the needle, a corona defect is created (Figure 44). 
 

 
Figure 44: Sharp needle on a coated copper plane to create corona defect 

 
In aircrafts environment, heavy HV components (such as transformers) must be insulated and fixed 
correctly so that they can withstand vibrations and avoid any electrical damages. This is often 
achieved by potting the component using the material applied in Figure 44. 
 
Lastly, to study internal defects, polyetheretherketone (PEEK) is used to form a vented sample, 
thanks to the staking of different layers, (Figure 45) and electrodes are brought on each side.  
 

 
Figure 45: Vented sample for the simulation of an internal defect 

 
The object is immersed into Fluorinert liquid [FC72] to be sure that discharges occur only internally. 
PEEK is used in aerospace to reinforce structures based on carbon fiber. In that case, the material is 
not subject to high voltage. Nevertheless we chose to include it in order to cover all possible types 
of defects that can exist, since it is not the degradation of the material which has to be studied but 
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the ability of our methods to detect PD. Table 2 summarizes the materials used. 
 

 Short name Location on PE system Type of defect 

Polyuerthane PU Coil - transformers External 

Fluorinated ethylene propylene  FEP HV cable External 

Coating 1B31 1B31 On PCB Corona 

Potting (Harz + Härter) POT Transformers Corona 

Polyetheretherketone PEEK 
Carbon fiber based 

structures Internal 

Table 2: List of materials used to investigate constituents 
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4.1.2 MEASUREMENT RESULTS 

The first part of this chapter details the results obtained under AC and pulse-like voltage. DC voltage 
is a peculiar case that will be treated afterwards. Relative humidity and ambient room temperature 
are recorded before and after each test. 

4.1.2.1 Measurement setup 

Measurements in this chapter are based on the setup shown in Figure 46. Three partial discharges 
sensing method are compared. First of all, the stripped coaxial sensor which is the core of this 
investigation. Secondly, a Rogowski coil (Bandwidth: 0 - 80MHz) which gives a voltage 
representative of the alternating current flowing into a circuit. And finally, the standard electrical 
sensing method (ICM Systems from Power Diagnostics). 
 

 
Figure 46: Measurement setup for constituent investigation 

4.1.2.2 Check-up of the defect types 

Before providing any results, checking the nature of each defect is important. For example, the 
twisted pair of enameled wire is supposed to present external discharges. This must be checked. 
The same reasoning applies to internal and corona discharges. It is essential that our samples 
represent all potential types of defects to ensure that our detection method can detect every type 
of partial discharges. Starting with the external type of defect, PU and FEP materials (Table 2) are 
first investigated. 
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a) External defect 

 
The easiest way to check that partial discharges occur on the outside of the object is to insert it into 
an insulating liquid (FC72). When the twisted pair of enameled wire (Figure 42) or the cable-to-plane 
(Figure 43) are immerged into this liquid no discharges are measurable, whereas they are in ambient 
air. This implies that the discharges for this sample occur externally. 
 
External discharges can also be investigated using optical detection since photons from ionization 
are not trapped into the material. Analyzing the video composite signal from a camera that is 
immersed in a black chamber with a sample emitting partial discharges can help for localization. A 
composite video signal is comprised of a series of signals that represent one line of the current 
image displayed. These signals are separated by a low level that is used as synchronization (Figure 
47). 
 

 
Figure 47: Typical shape of a composite video signal 

 
The setup shown in Figure 48 is used and the video signal is recorded with and without partial 
discharges. 

 
Figure 48: Setup for optical detection on a twisted pair of enameled wire 

 
Figure 47 shows the signal when no PDs occur. It can be seen that the video signal is constant, and 
at a relatively low level, due to the darkness of the vacuum chamber. 
Figure 49 shows the video signal when partial discharges occur. The visual persistency of the scope 
is used in order to display the complete image in one display. The line sychronisation seems 
imperfect due to another sychronisation called “image synchronisation”. This does not change the 
line display, it simply means that several images are superimposed. 
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We can observe an increase of the signal level in the middle of the image. This means that photons 
are emmited by the samples and, consequently, that partial discharges are occuring. 
 

 
Figure 49: Composite video signal measurements by the camera when external partial discharges occur 

 
We can point out the particular shape of the signal at the highest level, fork like. Knowing the type 
of defect of our sample, this can be easily explained. The defect being extern, we know that PD have 
to occur at the periphery of the twisted sample as shown in Figure 50. 
 

 
Figure 50: Representation of external partial discharges observed from the side of the sample 

 
The camera automatically receives more photons from the sides of the sample than from its center. 
That is indeed what is measured. This is further evidence that partial discharges on this sample occur 
externally. Moreover, at a low level of intensity, the camera is still able to detect the discharges, 
whereas the human eye cannot. This method is used in components investigation in order to help 
localizing external or corona discharges. 
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b) Internal defect 

 
The second type of defect that must be checked is the internal one. It is quite hard to obtain, as it 
requires very thin material to ignite partial discharges. The only way to check that partial discharges 
occur internally is, to immerge the sample into insulating liquid. Using this method on the vented 
sample (Figure 45) with PEEK material, we measure an inception level (PDIV) of about 2kV with and 
without insulating liquid. This means that partial discharges are necessarily occurring inside the 
sample. 
 

c) Corona defect 

 
Lastly, corona defects must be checked. The simplest way to confirm that PD occur in a corona 
defect is to analyze the symmetry of the discharges signal. “Corona discharges” are known to 
provoke dissymmetry on partial discharges occurrences. 
 

 
Figure 51: Corona discharges in a sample subject to pulse-like voltage. Power source (black curve), Coaxial 

sensor + 100MHz filter (Green curve), Coaxial sensor + 200MHz filter (red curve), Coaxial sensor + 400MHz 

filter (blue curve) 
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Figure 52: Corona discharges in a sample subject to AC voltage. Power source (black curve), Power 

diagnostic detection device (Green curve), Coaxial sensor + 200MHz filter (red curve), Coaxial sensor + 

400MHz filter (blue curve) 

 
Figure 51 and Figure 52 show partial discharges measurements performed on a point to plane 
sample (Figure 44). It can be observed that pulses occur mainly on one polarity of the pulse-like 
signal and the AC signal. This dissymmetry is characteristic of the corona defect.  
 
All samples were tested successfully as described previously to be sure that all types of defects are 
represented in the study. 
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4.1.2.3 Filter influence 

As described earlier, this work investigates a new method using filters. This section describes the 
influence of filtering on partial discharges detection for samples subjected to AC and pulse-like 
voltage.  

a) AC voltage 

 
Table 3 shows the results of the tests on a twisted pair of enameled wire submitted to AC voltage. 
The upper line shows results at atmospheric pressure, and the lower line at 100 mbar. 
 

Sample PU 

under AC 

voltage 

Voltage at which partial discharges are observed 

ICM Rogowski 

Sensor 

without 

filter 

50MHz 100MHz 200MHz 400MHz 

1000 mbar 900 900 900 900 900 900 - 

100 mbar 620 620 620 620 820 820 - 
Table 3: PDIV comparison of a twisted pair of enameled wire subject to AC voltage with different high pass 

filters (None - 50MHz - 100MHz - 200MHz - 400MHz). ICM is the partial discharge sensing device using the 

standard electrical method to detect partial discharges. 

 
The ICM is the standard partial discharges detection method (c.f. 2.7.1). 
 
At atmospheric pressure, only the 400MHz filter did not detect any discharges. This outlines a 
degradation of the detection when using a high pass filter with a higher cutoff frequency. At low 
pressure (100 mbar), this degradation occur at a lower voltage. The voltage, at which partial 
discharges are observed, is increased by using a filter above 50MHz. It can be noticed that, without 
filtering, the proposed sensing method is able to detected partial discharges at the same inception 
voltage as the ICM. Tests performed on all samples gave equivalent results. 
 
Figure 53 shows the measurement of corona defect sample submitted to AC voltage. Having a look 
on the magnitude of the pulses, the ICM appears to have the biggest one (1.72V), followed by the 
Rogowski coil (190mV) and by the coaxial sensor (20mV). 
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Figure 53: PDs magnitude comparison on a corona defect sample 

 
The standard electrical method (ICM system) appears to be the most suitable method for detecting 
partial discharges under AC voltage, and actually it is since it uses a direct sensing of the current 
whearas the two other methods use indirect method to detect the current. However, considering 
the proposed method, since only the sinusoidal voltage has to be filtered, it is better to use the 
sensor without filter to detect partial discharges off-line under AC voltage. 
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b) Pulse-like voltage 

 
Table 4 shows the results from the measurements performed on a twisted pair of enameled wire 
submitted to pulse-like voltage. 

 

Sample PU 

under 

pulse-like 

voltage 

Voltage at which partial discharges are observed 

Rogowski 

Sensor 

without 

filter 

50MHz 100MHz 200MHz 400MHz 

1000 mbar 

PD drowned 
in switching 

noise 

PD drowned 
in switching 

noise 

PD drowned 
in switching 

noise 

PD drowned 
in switching 

noise 
850 850 

100 mbar 

PD drowned 
in switching 

noise 

PD drowned 
in switching 

noise 

PD drowned 
in switching 

noise 

PD drowned 
in switching 

noise 
450 450 

Table 4: PDIV comparison of a twisted pair of enameled wire subject to pulse-like voltage with different high 

pass filters (None - 50MHz - 100MHz - 200MHz - 400MHz) 

 
Table 4 shows the main issue when trying to detect partial discharges under pulse-like voltage: 
switching noise. The noise created by the sharp edges (dV/dt) of the signal make any partial 
discharges detection difficult. 
That is where the coaxial sensing method and its filter are the most useful. As it can be seen in Table 
4, the 200MHz and 400 MHz high pass filters are able to bring the partial discharges signal out of 
the switching noise, making it possible to define a PDIV. 
In this case, filtering is necessary. For that reason, four different high pass filters are compared. Their 
cut-off frequencies are 50MHz, 100MHz, 200MHz and 400MHz. The most efficient filter for noise 
suppression must be determined. Figure 54, Figure 55, and Figure 56 represent the results of 
measuring a twisted pair of enameled wire and show many pulses. Among these results, it is worth 
distinguishing those related to the switching from those related to partial discharges. Since 
switching noise has a linear behavior with increasing voltage, the concept of linear behavior is used 
assuming that the magnitude of the switching pulses follows proportionally the magnitude of the 
voltage source, contrary to partial discharges signals. Hence, for voltage values varying from zero to 
PDIV, only the pulses associated with switching are detected. For voltages equal to or greater than 
PDIV, partial discharges pulses are added to switching noise. These pulses present a non-linear 
behavior with the voltage and can therefore be considered as partial discharges. 
 
Moreover, Figure 54 and Figure 56 show that when PDs occur, the Rogowski coil, the coaxial cable 
without filtering, and the coaxial cable with the 50MHz filter and the 100MHz filter detect three or 
four pulses. These pulses are a combination of partial discharges signal and switching noise. For 
voltage below PDIV (Figure 55), no pulses are measured with the 200MHz filter and the 400MHz. 
When partial discharges occur, only two pulses are measured during each rising front of the power 
signal with the 200MHz filter (Figure 56). Furthermore, it is important to note that whatever the 
voltage magnitude is (above or below PDIV), no pulses are measured with the 400MHz filter. 
Applying this detection methodology on the various samples yields the same results.  
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From these measurements, the 200MHz filter appears to offer the best trade-off for partial 
discharges detection and noise reduction under pulse-like voltage. The Rogowski coil, the 50MHz 
and 100MHz filter do not suppress switching noise, whereas the 400MHz filter suppresses 
everything, including PD signals for the samples under study. 
 
Finally it is worth saying that since the 400MHz filter can detect PD under pulse voltage but not 
under AC, it seems that the characteristic of the PD is changing. 
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Figure 54: Partial discharges and switchings noise occurring simultaneously 

 

 
Figure 55: Before PDs occur, only switching noise is visible 
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Figure 56: PDs and switching noises occurring simultaneously 

 
During his investigation of this method on converters from the company Renault, Thibaut Billard 
[Billard] found out that the most appropriate filter for PD detection was the 400MHz. The results 
presented in this work indicates that the 200MHz is the most suitable. It means that it is not possible 
to define a unique filter which could cover all type of discharges. By changing the nature of the 
discharges, its frequency components may also vary and thus may require a different filter for partial 
discharges detection. 
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4.1.2.4 Particular phenomenon 

While performing measurements on the twisted pair of enameled wire under pulse-like voltage, a 
peculiar behavior regarding discharges has been observed. 
At ambient pressure, the voltage magnitude is increased, partial discharges are observed at about 
750Vpeak, and a slight glow appears on the sample (Figure 57). 
 

 
Figure 57: Twisted pair of enameled wire glowing under pulse-like voltage. The glow intensity increases with 

increasing voltage 

 
At low pressure, as expected, partial discharges start at a lower voltage, about 440Vpeak. As the 
voltage is still increased, the magnitude of the partial discharges pulses decreases until they 
disappear. A glowing is still apparent on the sample, and even when the discharges were no longer 
electrically measurable on the scope the brightness of this glow remained strong. 
It means that ionization is still occurring on the sample, but none of the electrical detection method 
used in this study is able to measure the discharges. Figure 58 gives a graphical summary of our 
observations. 
 

 
Figure 58: partial discharges measurement on a twisted pair of enameled wire subject to pulse-like voltage 

 
The yellow area of the graph shows pulses and glowing (detectable by the human eye). The 
discharges occurring here could be of Townsend type (Pulse type) or Glow type, both showing pulses 
according to [Bartnikas1]. The orange area of the graph has a strong glow, but no discharges are 
electrically detected. This is referred as Pseudo-Glow discharges by [Bartnikas1]. A description of 
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Pulse type, Glow, and Pseudo Glow discharges has already been made respectively in Figure 15, 
Figure 16 and Figure 17. 
 
Bartnikas explained that the discharge may emit light but only two pulses per period (Glow 
discharge) or no pulses at all (Pseudo-Glow) can be measured. 
In the case of Pseudo-Glow discharges, the conditions are met so that the inception voltage and the 
résidual voltage are very close: Eb – Er tends to zero (Figure 17). 
 

q = C ∗ V	DEFG	V = Eb − Er	JKL	(Eb − Er) → 0 
 

NGOP	q → 0 
 

QEKRS	i = q
t 	NGOP	i → 0 

 
q: Quantity of charge in the discharge 
C: Capacity of the defect 
V: Voltage drop across the defect during the discharge 
Eb: Breakdown voltage 
Er: Residual voltage 
i: Discharge current 
t: Time 
 
According to the above equations, since Eb-Er tends to zero, the discharges current tends also to 
zero. Therefore, the discharges magnitudes are weaker during pseudo-glow discharges. This is the 
reason why it is not possible to measure them. 
 
Consequently we can assume that under pulse-like voltage, and in external defects at low pressure 
(100mbar), Pseudo-Glow discharges can be ignited. Furthermore, the samples subjected to this type 
of discharge breakdown after ten minutes. Pseudo-Glow discharges are very harmful for insulation. 
 
This type of discharge was not detected in internal and corona defects. If they mainly (or only) 
appear in external defects, then optical detection with the camera (Fig. 13) might be the one way 
to detect pseudo-glow discharges. However, considering a complex system as a converter, it would 
not be possible to monitor every side of the system with one or some cameras. Consequently, this 
reveals a limitation of the PD sensing method which is not able to detect pseudo-glow discharges 
because of their pulseless nature. 
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4.1.2.5 DC voltage 

Partial discharges measurements under DC voltage is a special case, since the time between two 
discharges can be very long (from a few minutes to several weeks, depending mainly on the type of 
insulating material). 
Under alternative voltage (AC or pulsed), the discharge mechanism depends strongly on the 
permittivity of the dielectric material, as explained in section 2.5 In the case of DC voltage, the 
resistivity plays a more significant role. 
 
This means that the defect, represented by a capacity, charges slowly through the “resistance” of 
the dielectric, which can reach the giga-ohm level. After a sufficient period of time, the voltage at 
the terminal of the defect reaches inception voltage and one discharge occurs. Then the process 
repeats. 
 
Concretely, it means that pulses are measured randomly over time, and with a very low repetition 
rate. That is why partial discharges measurements under DC voltage is quite complex. 
 
Nevertheless some tests have been performed on our samples using the same setup as in Figure 46. 
 
In the first test the sample is supplied with a voltage that is 10% above PDIV under AC, and then let 
it sit during 15 minutes while the oscilloscope is observed. This test is repeated several times on all 
the samples. The oscilloscope showed a noise level, and very rarely one pulse (one peak every 3 
tests). But it is very hard to determine the difference between partial discharges and external noise. 
 
Therefore we decided to slowly change the value of the DC voltage over a 100 second period in the 
following protocole: 
800V � Decrease to zero � Decrease to -800V � Increase to zero � Increase to 800V (Figure 59). 
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Figure 59: PD measurement under DC voltage on a twisted pair of enameled wire. Power diagnostic (green), 

Rogowski coil (red), coaxial cable without filtering (blue) 
 
Figure 59 shows the results of these measurements. First of all, the pulses occurring near 30 and 80 
seconds are not partial discharges. They are due to the discharge of the coupling capacitor before 
each polarity reversal. Then two groups of pulses can be seen around 45 and 90 seconds. These are 
probably partial discharges due to the change in polarity.  
During the first 35 seconds, charges were accumulated into the sample defect. These charges 
created an electric field that reinforced the global electric field when polarity changes. This allowed 
discharges to be ignited. But, of course, the measured pulses are not partial discharges due to the 
DC voltage, since they need a polarity reversal to be created. 
 
In conclusion, it is reasonable to say that, since the partial discharges repetition rate under DC 
voltage is very low, and since the only way to detect partial discharges is to reverse polarity (which 
does not currently happened in aeronautics converters), it is safe to assume that partial discharges 
under DC voltage are not harmful for PE systems. It is more important to focus our efforts on AC 
and pulse voltages where recurrent discharges with high magnitudes can occur. 
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4.1.3 CONCLUSION ON CONSTITUENT INVESTIGATION 

The main conclusion of this chapter concerns the method’s efficiency. A simple and stripped coaxial 
cable is able to detect partial discharges under AC conditions and, by adding filtering, discharges 
events can be dissociated from switching noise under pulse-like voltage. Among the different 
possibilities, the 200MHz filter proved to be the most efficient in our situations. The different types 
of defects (external, internal, and corona) that can exist in a real environment were tested, each of 
them showing that partial discharges can be detected using this method. 
 
The efficiency of partial discharges detection under DC was not demonstrated, since electrical 
discharges are difficult to trigger. However, it was demonstrated that the dangerousness and the 
probability for these DC discharges to occur are very low. 
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4.2 COMPONENTS INVESTIGATION: INDIVIDUAL COMPONENTS 

This chapter describes the measurements performed on components presents in a converter: 

• High voltage connectors (AC input, PWM output) 
• Input EMC filter 
• ATRU (Auto Transformer Rectifier Unit) 
• Power board (IGBT drivers) 
• High-voltage cable 

 
In this part of the study a large number of components have been tested. This section describes only 
the most significant results. 

4.2.1 TEST VOLTAGES 

The overall tests use voltages described in standards [ABD] and a second standard for DC voltage in 
aeronautics. The first being considered for tests under AC voltage, and the second for tests under 
PWM voltage (since the DC bus supplies the IGBTs that generate the pulsed voltage). Standards 
define two voltage levels during operation: rated and transient as shown in Table 5 and Table 6 for 
AC and DC voltages defined by the converter manufacturers. 
 

AC voltage 

Single phase 
Phase to phase (Single 

phase x √3) 

Normal 

condition 

Transient 

condition 

Nominal 

condition 

Transient 

condition 

Nominal rms 

voltage 
230 - 398 - 

Maximum rms 

voltage 
260 360 450 623 

Maximum peak 

voltage (Maximum 
RMS voltage x √2) 

367 509 636 881 

Maximum peak 

voltage + 10% 
403 560 700 970 

Table 5: Definition of the AC voltage according to manufacturer standard 
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DC Voltage 

DC voltage – differential mode DC Voltage – common mode 

Normal 

condition 
Transient 

condition 
Normal 

condition 

Transient 

condition 

Nominal DC value 540 - ??? - 

Maximum DC value 650 900 600 900 

Maximum DC value 

+ 10 % 
715 990 660 990 

Table 6: Definition of the DC voltage according to manufacturer standard 

 
The tests described in this chapter use the worst case for each standard, namely,  the maximum 
transient level + 10% (see blue and green cells in Table 5 and Table 6). A 10% safety factor has been 
added as a safety factor in order to prevent any inaccuracies from the voltage sources or voltage 
probes. Table 7 summarizes the voltages used in the tests. 

 

Voltage type 
Phase to ground 

(Vpeak) 

Phase to phase 

(Vpeak) 

AC 560 970 

Pulse 990 990 
Table 7: Test voltage description  

 
Our investigations consider the following test protocol: The voltage is increased until detecting 
partial discharges or reaching the maximal specified level. If partial discharges are detected, the test 
is stopped and the results are noted (PDIV, test conditions, partial discharges magnitude, etc.). If no 
partial discharges are observed, the voltage is increased up to 2kVpeak, which is nearly twice the 
maximum voltage in the table. This voltage increase is intended to determine a safety margin 
regarding the maximum voltage that can occur in a real system. 
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4.2.2 COMPONENT INVESTIGATION 

4.2.2.1 Results analysis 

The values in the results tables are the ratio between the inception voltage measured during the 
test and either the maximum nominal voltage under AC condition (636Vpeak) or the maximum 
transient voltage (881Vpeak) as defined in Table 5.  
 
These values intends to be easier to read since a value lower than 1 means that the discharges 
inception voltage is lower than, either, the maximum nominal voltage or the maximum transient 
voltage, depending on the column which is looked. Each time a value is lower than one the cell is 
colored in red and each time a breakdown occurred and no partial discharges were measurable, 
the cell is colored in orange.  
 
When partial discharges occur at a voltage higher than the maximum nominal voltage or the 
maximum transient voltage, it is possible to directly read the additional voltage percentage 
required to ignite partial discharges. i.e. In Table 8 on Phase A to Phase B test, at 100mbar, partial 
discharges occured at a voltage 72% higher than the maximum nominal volatge which supplies 
these phases during normal operation and at a voltage 24% higher than the maximum transient 
voltage which may occur between these phases. 
 
Each table of this document is written using this method. It allows a rapid analysis of the weakest 
point in this components investigation. 

4.2.2.2 Setups and power sources 

Figure 60 describes the main functions of the studied converter.  
 

 
Figure 60: Voltage distribution in the ADGB 

 
The chain is supplied by an AC power source 230Vrms 400Hz. At the input of the chain, a filter 
suppresses the electromagnetic interferences and protects against lightning. Then, an Auto 
Transformer Rectifier Unit (ATRU), which is an AC/DC converter, rectifies the voltage and filter high 
frequency harmonics. DC voltage is sent to the DC link capacitor through the inrush resistors. Finally 
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the IGBTs mounted in a three-phase bridge topology, controlled by the drivers, generates the PWM 
voltage which drives the motor. 
 
Measurements are based on the setup described in Figure 61. The coaxial cable method and the 
Rogowski coil are used with filtering. The 200MHz filter is mainly used, considering its performance 
in our preliminary investigations (c.f. 4.1). 
 

 
Figure 61: Components test setup 

 
Two types of power sources are used: an AC source and a PWM-like source (Figure 62 and Figure 
63).  Only two phases are connected to the tested object. 
 

 
Figure 62: Electrical representation of the AC source 

 
Using the configuration described in Figure 62, the DUT can received a voltage up to 4kV. 
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Figure 63: Electrical representation of the pulse-like source 

 
The pulse-like source uses a three-phase topology to generate periodic bipolar pulses. The output 
voltage can reach 2kVpeak with a maximum current of 1A. The output frequency is about 12kHz. 

4.2.2.3 High voltage connectors and cables 

The first test is to determine if partial discharges can occur in the high-voltage connectors of the 
studied system. It is important to note that the connectors are already assembled to their cable 
when they are tested. Therefore, tests on connectors are divided into three steps: 

• Female alone 
• Male alone 
• Male and female connected 

 
The test setup is shown in Figure 64. 
 

 
Figure 64: Connector test setups 
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Input connector: 

 

In actual operations, the input connectors are subject to AC voltage. Therefore, as described in 
Table 7, they are tested with 560Vpeak phase-to-case and 970Vpeak phase-to-phase. Table 8 
summarizes the results on the female connector. 
 

Female 

connector 

Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100 mbar 1000 mbar 100 mbar 

Ph A to ph B no PD 1.72 no PD 1.24 

Ph B  to ph C no PD 2.04 no PD 1.47 

Ph A to ph C no PD 2.04 no PD 1.47 

Ph A to case  no PD 3.26 no PD 2.35 

Ph B to case no PD 3.53 no PD 2.55 

Ph C to case no PD 3.53 no PD 2.55 

Table 8: Measurement results on the female input connector 

 
 

 
Figure 65: Partial discharges measured on the female part of the connector subject to AC voltage (phase-to-

phase test). Channel 1: Power source (kV). Channel 2: Rogowski coil without filter. Channel 4: Coaxial cable 

without filter. 
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Table 9 shows the results of the male part of the connector. 
 

Male 

connector 

Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100 mbar 1000 mbar 100 mbar 

Ph A to ph B no PD 2.04 no PD 1.47 

Ph B  to ph C no PD 2.19 no PD 1.58 

Ph A to ph C 2.82 2.35 2.04 1.7 

Ph A to case  no PD 4.07 no PD 2.94 

Ph B to case no PD 4.61 no PD 3.33 

Ph C to case no PD - no PD - 

Table 9: Measurement results on the male input connector 

 
Remark: During the phase A to phase C test, and at low pressure (orange cells), the voltage source 
is distorted. This means that a strong current is flowing at the maximum of the voltage. The only 
plausible conclusion is that a electrical breakdown occurs before any partial discharges. 
 

 
Figure 66: Voltage waveform during a breakdown event on the male part of the connector subject 

to AC voltage (phase-to-phase test). Channel 1: Power source (kV). Channel 2: Rogowski coil 

without filter. Channel 4: Coaxial cable without filter 

 

  

Breakdown 
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The Table 10 shows the results of the male and the female connectors connected together. 
 

Male + Female 

connectors 

Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100 mbar 1000 mbar 100 mbar 

Ph A to ph B no PD 2.04 no PD 1.47 

Ph B  to ph C no PD 1.88 no PD 1.36 

Ph A to ph C no PD 1.88 no PD 1.36 

Ph A to case  no PD 2.98 no PD 2.16 

Ph B to case no PD 3.53 no PD 2.55 

Ph C to case no PD 3.53 no PD 2.55 

Table 10: Measurement results on the male and female connectors connected together 

 

 
Figure 67: Partial discharges on the male and female part of the connector, connected together 

and subject to AC voltage (phase-to-phase test). Channel 1: Power source (kV). Channel 2: 

Rogowski coil without filter. Channel 4: Coaxial cable without filter 

 

Measurements on the high-voltage input connectors did not show any partial discharge under 
nominal voltage or under transient voltage. To ignite partial discharges, the voltage must be 
increased to at least 24% higher than the transient voltage (Table 8). We can assume that this will 
never happen in the system in operation, neither at atmospheric nor at low pressure. 
  

PDs 
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Output connector: 

 
The output connectors are subject to PWM voltage. Therefore, following Table 7, they are tested 
under 990Vpeak phase-to-phase and phase-to-case. Table 11 sumarizes the results of the female 
part of the high voltage output connector. 
 

Female 

connector 

Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100mbar 1000 mbar 100mbar 

Ph A to ph B no PD 3,16 no PD 2,11 

Ph B  to ph C no PD no PD no PD no PD 

Ph A to ph C no PD no PD no PD no PD 

Ph A to case  no PD no PD no PD no PD 

Ph B to case no PD no PD no PD no PD 

Ph C to case no PD no PD no PD no PD 

Table 11: Measurement results on the female connector 

 

 

Figure 68: Voltage waveform during PD on the female part of the connector subject to pulse-like 

voltage (Phase-to-phase test). Channel 1: Power source (kV). Channel 2: Rogowski coil + 200MHz 

filter. Channel 4: Coaxial cable + 200MHz filter. 
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Table 12 shows the results of the male part of the high voltage output connector. 
 

Male 

connector 

Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100 mbar 1000 mbar 100 mbar 

Ph A to ph B no PD 1.36 no PD 0.91 

Ph B  to ph C no PD 1.36 no PD 0.91 

Ph A to ph C no PD 1.46 no PD 0.97 

Ph A to case  no PD 1.26 no PD 0.91 

Ph B to case no PD 1.26 no PD 0.91 

Ph C to case no PD 1.33 no PD 0.96 

Table 12: Measurement results on the male connector 

 
Partial discharges occur at voltages that may be reached during the life of the connector, though 
only in abnormal transient conditions with a very low repetition rate (according to manufacturer 
standard, less than 100 times in the system life-time). 
 

 
Figure 69: Voltage waveform during PD on the male part of the connector subject to pulse-like 

voltage (phase-to-case test). Channel 1: Power source (kV). Channel 2: Rogowski coil + 200MHz 

filter. Channel 4: Coaxial cable + 200MHz filter 

 

The pattern is asymmetric (partial discharges during negative polarity’s reversal but none on 
positive polarity’s reversal) which lets assume that a corona effect occur. 
 
  

PDs 
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Table 13 shows the results of the male and female connectors connected together. 
 

Male + 

Female 

connectors 

Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100 mbar 1000 mbar 100 mbar 

Ph A to ph B no PD 1.38 no PD 0.92 

Ph B  to ph C no PD 1.53 no PD 1.02 

Ph A to ph C no PD 1.53 no PD 1.02 

Ph A to case  no PD 1.26 no PD 0.91 

Ph B to case no PD 1.27 no PD 0.92 

Ph C to case no PD 1.26 no PD 0.91 

Table 13: Measurement results on the male and female connectors connected together 

 

Partial discharges occur at voltages that can be reached during the life of the connector (mainly 
between phase-to-case tests), though only in abnormal transient conditions with a very low 
repetition rate over service life. 
 

 
Figure 70: Voltage waveform during PD on the male and female part of the connectors connected 

together and subject to PWM voltage (phase-to-phase test). Channel 1: Power source (kV). Channel 

2: Rogowski coil + 200MHz filter. Channel 4: Coaxial cable + 200MHz filter 

 

There again, and not surprisingly, the pattern is still asymmetric (Partial discharge is observed during 
the negative polarity’s change but not during the positive polarity’s one) which let assume that a 
corona effect is occurring. 
As a conclusion on the output connectors, we highlighted a defect either in the connector or in the 
cable connected to it. Since only male tests and male/female tests showed partial discharges, we 
can conclude that partial discharges occur in the male connector. Partial discharges are able to occur 
at transient voltages as defined in HVDC standard (8% below 900Vpeak). See Table 7. It means that 
partial discharges may occur in a system in operation, however, since transient does not occur very 
often, we can assume that the impact of these discharges will be negligible. 

PDs 
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4.2.2.4 Input filter 

In a system in operation, the input filter is directly connected to the AC source through the high 
voltage input connector. It is a passive filter as shown in Figure 71. 
 

 
Figure 71: Electrical representation of the input filter 

 
Figure 72 shows the setups used to test the input filter. 
 

 
Figure 72: Input filter test setups 

 
Following Table 7, the input filter is tested with 560Vpeak phase-to-case and 970Vpeak phase-to-
phase.  
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Table 14 summarized the results of the input filter. 
 

Input filter 
Ratio PDIV / Maximum nominal voltage Ratio PDIV / Maximum transient voltage 

1000 mbar 100mbar 1000 mbar 100mbar 

Ph A to ph B no PD 0,86 no PD 0,62 

Ph B  to ph C no PD 0,89 no PD 0,64 

Ph A to ph C no PD 0,92 no PD 0,66 

Ph A to case  no PD 1,6 no PD 1,15 

Ph B to case no PD 1,63 no PD 1,17 

Ph C to case no PD no DP no PD no DP 

Table 14: Measurement results on the input filter 

 
Partial discharges occur at voltages which are able to be reached in the life of the filter (only 
between two phases) even in nominal voltage conditions. 
 

 
Figure 73: Voltage waveform during PD on the input filter subject to AC voltage (Phase-to-phase 

test). Channel 1: Power source (kV). Channel 2: Rogowski coil without filter. Channel 4: Coaxial 

cable without filter 

 

Measurements were made to characterize these discharges. The results show a symmetry between 
positive and negative half-periods. It means that the discharges are not of corona type. Moreover 
the discharges are external, since the pressure has an influence on the inception voltage. 
 

Considering the mechanical aspect of the component, our first assumption is that partial discharges 
occur between the two PCBs. Therefore, we decided to unfold the filter module, as shown in Figure 
74, and to test it again. After testing, partial discharges still occur at the same level, which means 
that partial discharges actually occur on the other side of the PCB between the case and the PCB 
(probably between the potted coils). 
 

PDs 
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In order to confirm this, we decided to examine the video signal coming from a video camera, 
watching inside the input filter (Between the PCB and the case, in the coils area), while it was 
inserted into a dark vacuum chamber. 
 

 
Figure 74: Optical PD detection inside the input filter (picture and results) 

 
An emission of blinking light was measured at the inception level. This shows that ionization occurs 
in the filter module when partial discharges are detected.  
 
The main conclusion on the input filter is that external discharges can occur between two phases 
over the potted region, at low pressure (100mbar) and at nominal voltage. During the final tests on 
a complete converter chain, it will be interesting to check whether these discharges are still present 
once the filter is mounted into the system (c.f. 7). 

4.2.2.5 Auto-Transformer Rectifier Unit (ATRU) 

The ATRU transformer is tested in two steps: First, all pins were connected together and tested with 
AC voltage against the case. Second, each individual phase is tested with pulse-like voltage against 
another phase.  
This component is not actually supplied by pulse-like voltage during operation. However, it was not 
possible to test it phase-to-phase with AC voltage. The coils having a low impedance at 50Hz, the 
current is too large. Therefore, and although it is not representative of the system in operation, the 
three input phases are tested with pulse-like voltage. Under those conditions, the ATRU transformer 
is tested with 990Vpeak phase-to-case and phase-to-phase. After analyzing the results, we can 
conclude that partial discharge cannot occur in the ATRU transformer, even under transient voltage 
conditions. 
 
The ATRU components possess two potted inductances which are subject to DC voltage in 
operation. However, for test convenience, we supply them with AC voltage (560Vpeak phase-to-
case) in order to test the potting material. Moreover, for reasons similar to the ATRU transformer 
tests, it was not possible to test the coils themselves with AC voltage. Therefore, and although it is 
not representative of the system in operation, we decided to test this component with pulse-like 
voltage (990Vpeak phase-to-phase) in order to test inter-turn insulation. After analyzing the results, 
it has been concluded that partial discharges cannot occur in the ATRU inductances. 
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4.2.2.6 Insulated-Gate Bipolar Transistors power module (IGBT) 

IGBT testing requires particular care because, in operation, they are supplied by DC voltage and their 
switching transients generate the pulsed waveform. A method to test IGBTs has been developed by 
[Lebey], superimposing DC and AC voltage. By this way, the voltage Vtest received by the power 
module between the collector and the emitter verifies at all times the condition Vtest > 0 so that the 
diode never conducts. The power component is maintained in a turned off state during the test by 
the control gate which is connected to the ground. This method requires the IGBTs to be removed 
from the PCB and tested separately.  
 

 
Figure 75: IGBT test setup 

 
The voltages used for this test are: 500VDC for the DC signal, and 1000V peak-to-peak for the 
sinusoidal signal. This represents a minimum of 0V and a maximum of 1000V. 
The first measurements did not show any partial discharges at either low or ambient pressure. After 
some time, the sensor detected some weak magnitude pulses synchronized with the AC source. 
These pulses actually occurred in the falling phase of the sinus, which is unconventional. 
The pulses have very low magnitude (<1mV) and are not influenced by pressure.  
To confirm the influence of voltage, DC voltage is increased and RMS voltage is reduced so that the 
maximum voltage still stayed at 1000Vpeak. Then DC voltage is decreased down to 500V and RMS 
voltage is increased up to 1000V peak-to-peak. As a conclusion, increasing DC voltage reduces the 
magnitude and repetition rate of the pulses. The dependency on the DC voltage type tends to prove 
that these pulses are partial discharges. 
After some time, the pulses disappeared and never reappeared again. In this current case, we 
cannot establish the nature of the measured pulses. It is, however, important to highlight that a 
minimum voltage of 940V peak is required to ignite them. Consequently these pulses are not 
hazardous once used in an operating system. 
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4.2.2.7 High-voltage cable 

The tested high-voltage cable is used in the converter to link the ATRU and the power board (DC 
voltage). It may also be found at the output of the system (pulse like voltage side). Therefore, the 
high-voltage cable is tested under pulse-like votage (990Vpeak phase-to-phase). 
 
Partial discharges were measured during the tests. First remark concerns the influence of pressure: 
decreasing pressure ignites either partial discharges or electrical breakdown. This means that the 
discharges or breakdowns occur externally. 
 
In operation, an insulating band between the cables and the grounded case is used to insulate the 
high voltage part from the ground of the PCB on which they lie. After measurements,this band has 
the expected effect, which is to increase PD inception voltage. Figure 76 is a picture of the test using 
the insulating band. 
 

 
Figure 76: Picture of the HV cable test on the isolating band 

 
The discharges pattern look like corona discharges, which implies that discharges occur at sharp 
edges or needles. The important thing to remember from these measurements is the very high 
voltage (1100Vpk) at which PDs or breakdown occur, which is well above the system’s maximum 
transient voltage. PDs are highly unlikely to occur in a system operating with this component. 
  

Ground plane HV cable Insulating band 
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4.2.2.8 Power board 

The output part of the power board is tested. In real operation, this part of the converter is subject 
to PWM voltage. Therefore, based on Table 7, the power board is tested with 990Vpeak phase-to-
case and phase-to-phase as shown in Figure 77. 
 

 
Figure 77: Test setup of the output PCB’s lines of the power board 

 
No partial discharges are measured on this component. Only electrical breakdown occurred 
between 1.2kV and 1.8kV on almost every test at low pressure. It means that some electrical 
discharges are ignited, which induce a strong current. Measurements are performed in two steps, 
first by connecting the ground to the PCB, and then without connecting it. The results show that the 
ratios (breakdown voltage / Maximum nominal voltage and breakdown voltage / Maximum 
transient voltage) are lower when the ground is connected. The only logical conclusion is that the 
electrical breakdown occurs between the phases and the ground. It is also important to notice that 
the ratios are very high in each test, which means that there is no chance that an electrical 
breakdown occur in real operation, even at low pressure and even if transients occur. 

4.2.3 CONCLUSION ON COMPONENT INVESTIGATION 

This investigation outlines the behavior of some components regarding partial discharges. Two weak 
points must be pointed out regarding the given components:  
The first point concerns the output connectors, which show partial discharges at a voltage 9% lower 
than the maximum transient voltage described in the manufacturer standard.  
This one shows that transients in normal conditions may occur less than 100 times in the device’s 
lifetime. This clearly cannot be harmful for the system, as discharge degradation is a long-term 
matter. 
The second weak point concerns the input filter, which shows that external partial discharges may 
occur between the potted coils and the PCBs. These discharges may be critical, as they appear at a 
voltage that is 14% lower than the standard rated voltage. This means that, at low pressure, partial 
discharges may occur very frequently (400Hz � Several occurrences every 2.5ms). This will be 
discussed by measuring the complete system under low pressure. 
Other components in this investigation showed sometimes partial discharges or electrical 
breakdown, but at a voltage that cannot be reached by the converter. It is safe to say that the 
components from the converter in a pressurized area are partial discharge free, but if the system is 
faced with low pressure, care must be taken for specific components, such as the input filter and 
output connectors. 
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4.3 SYSTEM INVESTIGATION: CONVERTER UNDER OPERATION 

This chapter describes partial discharge measurements performed on an entire aeronautics power 
chain (converter + cables + motor). 

4.3.1 EXPERIMENTAL PROTOCOL 

The investigation is divided in five steps: 
• In a first step, the influence of filtering on the converter noise suppression is studied 

• Second, the power chain (converter + motor + cables) is investigated “on-line” at 
atmospheric pressure. 

• Third, the power chain, still under operation, is tested at low pressure (~115mbar). 

• Then, some more specific tests are then detailed.  

• Finally, the time effects of the duration of the voltage application and of the temperature 
are investigated. 

 
In a general way, the converter is started at rated voltage (230Vrms / 325Vpeak). The sensors 
outputs are observed on the oscilloscope. Afterwards, the voltage is increased up to (312Vrms / 
441Vpeak) which is the maximum voltage of the AC power source. This voltage is well above the 
rated voltage. During the voltage rise, if any pulse is detected, the voltage is not increased anymore 
and the data are recorded and analyzed. If nothing is measured up to the maximum voltage, the 
voltage is reduced to rated voltage and the protocol is repeated. 

 
Figure 78: Picture of the test setup 

 
Figure 78 shows the test setup mounted in the laboratory. 
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4.3.2 INFLUENCE OF FILTERING 

a) PWM side 

 
In order to study the influence of the filter cutoff frequency on partial discharges sensing, some tests 
have been done using four filters (50MHz, 100MHz, 200 MHz and 400 MHz) and without any filter. 
The first tests are achieved at the output of the converter (PWM voltage) and the seconds at the 
input of the converter (AC voltage). The setup Figure 79 is used. These measurements are achieved 
at atmospheric pressure. 
 

 
Figure 79: Setup for assessing the influence of filtering on PD detection at the output of the converter 
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Figure 80: On-line measurement using various high pass filter at the output of the converter. Channel 1: 

Phase to phase voltage (A and C). Channel 2: Phase to phase voltage (B and C). Channel 3: Phase to phase 

voltage (A and B). Channel 4: Partial discharges detection on phase B using different filters 

 
Considering the results in Figure 80, two remarks have to be made: first of all, the effect of the 
different filters (50MHz, 100MHz, 200MHz, 400MHz) on the switching noises from the PWM pulses 
is substantially the same, namely, the maximum magnitude of the noise level is below 3mV 
regardless of the used filter. In other words, any filter (among these four) would be efficient enough 
to make the distinction between partial discharges and switching noise from this converter. It is 
important to precise “this converter” because another converter with different pulses rise time 
(dv/dt) would require the use of filters with higher cut-off frequencies.  
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The common mode frequency spectra from a converter using equivalent IGBTs as we are using, and 
from the same converter using SiC MOSFET are given in Figure 81. SiC MOSFET having a shorter rise 
time than the IGBT, Figure 81 shows that, in the case of IGBT (our case), the signal generated by the 
converter is located in the 0-10 MHz frequency range. Beyond 10MHz the signal may be considered 
as “noise”. It is therefore not surprising that the 50MHz filter is able to remove the switching noise 
(Figure 80). It can also be remarked that the SiC MOSFET shows a higher level around 50MHz. 
Consequently a filter with a cut-off frequency higher than 50MHz will be necessary when using SiC 
MOSFET with a lower rise time. 
 

 
Figure 81: Common mode frequency spectrum of one converters with different IGBTs. [Liebig] 

 
On the other hand, when looking at the maximum magnitude of the switching noise without filter 
(~60mV), it appears that it is higher than any of the partial discharges pulses measured during the 
constituents and components investigation phases (except the ATRU investigation).It means that if 
any discharge is measured with a magnitude lower than 60mV, this one could be drowned in the 
switching noise from the converter. Consequently, a filter is required to detect partial discharge on 
the output side of the converter. 
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b) AC side 

 
The impact of the filtering at the input of the converter is studied. The test setup is given in Figure 
82 and the results are presented in Figure 83. 
 

 
Figure 82: Setup for assessing the influence of filtering on PD detection at the input of the converter 

 

 
Figure 83: On-line measurement using the 200MHz high pass filter at the input of the converter. Channel 2: 

Phase to phase voltage (A and B). Channel 4: Partial discharges detection on phase B using a 200MHz filter 

 
The results in Figure 83 outlines the impact of the 200MHz high pass filter on the suppression of the 
converter noise. We first note that, without filtering, the noise generated by the converter is low 
(~7mV) compared to the noise at the output of the converter (~60mV). It means that any discharges, 
occurring on the AC side, displaying a magnitude higher than 7mV could be detected by the sensor 
without filters. Once the filter is used, it reduces the noise level down to 3mV. 
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As a conclusion on the filtering influence at the input of the converter (AC voltage), the results show 
that it is better to use a filter in order to ensure that any partial discharge showing a magnitude 
higher than 3mV can be detected.  
Concerning the filtering influence at the output of the converter, the use of a filter is mandatory to 
remove the noise from the switching. The question of the cut-off frequency of the filter depends on 
the IGBTs’ speed of the converter. Faster IGBTs will require filters with higher cut-off frequency and 
vice versa. Trying several filter at the beginning of the investigation is a good methodology to follow. 
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4.3.3 TESTS ON THE ENTIRE POWER CHAIN AT 1000 MBAR 

This section describes the tests performed on the complete power chain (converter + motor + 
cables) at ambient pressure.  
 
Foremost the setup described in Figure 84 is used. Two differential probes are used to measure the 
voltage between phase A and B, and between phase B and C. Two sensors, placed on phase B and C 
with respectively a 200MHz and 400MHz high pass filter, appear as the best compromises for PD 
detection as demonstrated in the previous chapters. 
 

 
Figure 84: Initial test setup for PD detection on the power chain at 1000 mbar 

 
The AC power source is a three-phase power source. Each phase can deliver a 400Hz and 312Vrms 
maximum sinusoidal voltage. The converter is a 3-phase 230Vrms AC/PWM converter with a 
maximum power of 20kVA. It has been deeply detailed in the previous section (components 
investigation). Finally, the motor is a 3-phase, brushless DC motor. 
 
The results obtained during the measurements are shown in Figure 85. The experimental protocol 
previously described in chapter 4.3.1 has been applied. The oscilloscope has been set with a wide 
time base (50s/div) in order to easily observe and record any partial discharge event which would 
be dependent on the PWM voltage. Since the magnitude of the possible discharges is in the mV 
range a 5mV/div magnitude is displayed on the oscilloscope. 
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Figure 85: Measurements of ”partial discharges ?”  with a long time resolution (50s/div). Channel 1: Phase 

to phase voltage (A and B). Channel 2: Phase to phase voltage (B and C). Channel 4: Partial discharges 

detection on phase C using a 400MHz filter 

 
At the beginning of the measurements, one pulse is measured. This one has a huge magnitude (at 
least > 25mV). This kind of pulse has been measured two times more in the next 150 seconds. It 
appears first to be a very rare phenomenon with a random aspect. At about 330s, the voltage is 
increased until the limit of the AC power source. During the rise of the voltage, a large number of 
pulses appear. Due to the time scale chosen, their number is unquantifiable. After 20 seconds, the 
voltage is decreased down to the nominal voltage and the pulses stopped. This operation is repeated 
two times.  
 
Except the five pulses which occurred at rated voltage in the overall frame (500s), the measured 
pulses appear to be dependent on the voltage magnitude. We may thus conclude that it should be 
possible to define an inception voltage. During the investigation, these pulses appear to have a 
complex behaviour which is detailed in the chapter 4.3.6.  
 
At that stage of the investigation, it is important to remember that some pulses have been measured 
on the power chain and that they are dependent on the voltage. To our knowledge, this is the very 
first time that such events are measured “on-line” in a real system. 
 
The same measurements are performed using another time base (200ns/div) and voltage base 
(200mV/div). The interests of this measurement are first to get the maximum magnitude of the 
pulses and to find their position regarding the PWM voltage (Channel 1 and 2). Figure 86 presents 
an example of results. 
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Figure 86: Measurements of partial discharges with a low time resolution (200ns/div). Channel 1: Phase to 

phase voltage (A and B). Channel 2: Phase to phase voltage (B and C). Channel 3: Partial discharges 

detection on phase B using a 200MHz filter.  Channel 4: Partial discharges detection on phase C using a 

400MHz filter 

 
First of all, the magnitude of the pulse is very large. Most of the pulses measured are in the 200mV, 
300mV range. The only measurement which showed such a magnitude has been observed on the 
ATRU (~600mV) during the components measurement phase (c.f. 4.2.2.5). 
Then, looking at the position of the pulses regarding the PWM voltage, it can be observed that the 
pulses occur at its maximum value. This behaviour outlines, once more, the dependency of the 
pulses to the voltage magnitude. 
 
During our measurements, another type of pulse has been measured. Figure 87 shows the results 
with a slightly different test setup, namely, channel 1 is the phase to phase (A-B) voltage, and 
channel 2, 3 and 4 are the sensors with respectively the 100MHz, 200MHz and 400MHz high pass 
filter. 
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Figure 87: Measurement of pulses with different filters. Channel 1: Phase to phase voltage (A and B). 

Channel 2: Partial discharges detection on phase B using a 100MHz filter. Channel 3: Partial discharges 

detection on phase B using a 200MHz filter.  Channel 4: Partial discharges detection on phase B using a 

400MHz filter 

 
The first remark concerns the magnitude of the pulses which are very low (< 3 mV). Second, the 
position of these pulses regarding the voltage is random. On the left picture of Figure 87 the pulses 
seems to occur around the maximum value of the voltage, whereas on the right picture, the pulses 
occur although the voltage is null. Moreover these pulses have not been observed anymore 
afterward. 
The most obvious explanation is that they are not partial discharge. Probably they are due to any 
external disturbances. Indeed, it may happen that during partial discharges measurements, the 
sensors detect pulses which are not partial discharges. This may occur when an electrical machine 
is turned on in the same room. To avoid confounding these pulses with actual partial discharges, it 
is important to work in a “clean” area, electro-magnetically speaking, and to look after the 
repeatability of the pulses since partial discharges are supposed to be repeatable.  
 
As a first conclusion, the pulses measured are dependent on voltage and they occur when the 
voltage is maximum. These behaviors let us assume that these pulses are partial discharges. 
Although it is not possible to define the inception voltage because of a complex behavior (c.f. 4.3.6), 
these pulses are probably partial discharges. 
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4.3.4 TESTS ON THE ENTIRE POWER CHAIN AT 115MBAR 

The previous tests are repeated but this time the pressure is 115mbar. The test setup in Figure 84 
is used with a vacuum chamber. At first, only the motor in placed inside the vacuum chamber, then 
the complete setup (motor + cables + converter), and finally only the converter. The objective is to 
measure the effect of the pressure on the different part of the power chain. Regarding the voltage 
increase and peak detection the same protocol is applied as before (c.f. 4.3.1). 
 

a) Motor in the low pressure environment (115mbar) 

 
Figure 88: Measurement of partial discharges when motor is at low pressure (115mbar). Channel 1: Phase 

to phase voltage (A and B). Channel 2: Phase to phase voltage (B and C). Channel 4: Partial discharges 

detection on phase C using a 400MHz filter 

 
The measurements when the motor is in a low pressure environment show the same large pulses 
as the ones observed during the tests at ambient pressure. They occur at the maximum value of the 
PWM voltage (Channel 1 and 2). Only one pulse occurs, in a total period of 100s, when the voltage 
is below the maximum. No more pulses with low magnitude have been observed. The same 
behavior as the one observed at atmospheric pressure occurs, namely, the detected pulses are 
dependent on the voltage magnitude and their magnitudes are still very large (< 200mV). The 
discharges do not seem to be influenced by the pressure. 
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b) Converter + Motor in the low pressure environment (115mbar) 

 

 
Figure 89: Measurement of partial discharges when converter and motor are at low pressure (115mbar). 

Channel 1: Phase to phase voltage (A and B). Channel 2: Phase to phase voltage (B and C). Channel 4: Partial 

discharges detection on phase C using a 400MHz filter 

 
The converter and the motor are both placed into the vacuum chamber, the converter is switched 
on and the measurements are shown in Figure 89. Partial discharges like pulses only appear when 
the PWM voltage magnitude (channel 1 and 2) is maximum. When the voltage is decreased, no more 
discharges are observed. No differences are observed compared to the tests at atmospheric 
pressure. The behaviour of the discharges being the same, it may be noticed that the occurrence of 
the pulses is not constant. It happens sometimes that, even at the maximum voltage, no discharge 
occur during some ten of seconds. This phenomenon is related to the complex behaviour previously 
mentioned. It’s getting worst with time and temperature. This point will be discussed in chapter 
4.3.6. 
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c) Converter in the low pressure environment (115mbar) 

 
As it could have been expected after the first tests, the measurements when the converter in a low 
pressure environment do not show results different to the ones obtained at atmospheric pressure. 
High magnitude pulses are measured at the maximum voltage and no discharge occur when the 
converter is running at its rated voltage. 
 
The previous results outline that if partial discharges occur in the power chain they do not depend 
on the pressure. This could have been a good indicator to estimate the location of the discharge. In 
order to try to locate the discharges area, the setup Figure 90 has been used. 
 

d) Pulses localization 

 
Two coaxial sensors, separated by 2m of cabling, are used to identify pulse locations: one situated 
near the motor, the other near the converter (Figure 90). 
 

 
Figure 90: Test setup to locate the most likelihood source of the pulses 
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Figure 91: Pulse location measurement. Channel 1: Phase to phase voltage (A and B). Channel 2: Phase to 

phase voltage (B and C). Channel 3: Partial discharges detection on phase B using a 400MHz filter. Channel 

4: Partial discharges detection on phase B using a 200MHz filter. 

 

Figure 91 shows that the pulse observed on channel 4 is detected before the pulse observed on 
channel 3 if the assumption is made that these two pulses have the same origin. Since channel 4 
being on the motor side, this means that the pulse source is in the motor. 
 
If these measurements are correct, the delay between the two pulses should correspond to the time 
required by the signal to travel the distance between the two sensors at the speed of light divided 
by √Ɛ. Since X²=Ɛ. With Ɛ being the permittivity of the cable (~2.2). 

Y = �
?

√Ɛ
 

With Y being the time needed by the signal to travel the inter-sensor distance, � the inter-sensor 
distance, ? the speed of light. It means that the speed of an electrical signal is: 

Z
[ = 2.02 ∗ 10]	m/s. 

Consequently, the time required by the signal to travel a distance of 2m is: 

Y = 2
2.02 ∗ 10] = 9.9	Xa 

The graph shows a time difference around 10ns which is relatively close to 9.9ns. In order to assert 
that the time difference which is measured is not due to same problems related to the use of two 
different filters (200MHz and 400MHz), the same test has been repeated by reversing the filters. 
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The results were exactly the same, namely pulses are first detected on the motor side. We can 
therefore consider that our measurements are correct and conclude by saying that the partial 
discharges are located in the motor. 
 
As a conclusion of this section, partial discharges have been detected in the power chain during on-
line testing. These discharges are most likely located in the motor and show a complex behavior 
(This point will be detailed in chapter 4.3.6). We can therefore assume that the converter, in the 
conditions of test, is partial discharge-free. The next section describes more tests achieved on the 
power chain in order to make some comparisons to the results obtained in the previous sections 
devoted to constituents and components. 
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4.3.5 SPECIFIC TESTS 

This section describes complementary tests. Some of them bring support to the conclusions made 
in the previous sections, some others bring additional information.  

4.3.5.1 Investigations using a twisted pair of enamelled wire 

Since no partial discharge has been detected in the converter, a twisted pair of enameled wire is 
used to validate the sensing method and to confirm that it is able to make the distinction between 
partial discharges and switching noise. A twisted pair of enameled wire is connected between two 
phases (as shown in the test setup in Figure 96) and the voltage is increased until partial discharges 
are observed.  The twisted pair is placed first at the output of the converter, and is enduring a PWM 
voltage. Then, the twisted pair is connected at the input of the converter and support an AC voltage. 
The tests are performed in the vacuum chamber and the pressure is set to 115mbar. 
 

a) Twisted pair on the PWM side 

 

 
Figure 92: Setup with twisted pair of enameled wire connected at the output of the converter. Channel 2: 

Phase to phase voltage (A and B). Channel 4: Partial discharges detection on phase B using a 200MHz filter. 

 
Figure 93 shows PDs occurring at low pressure (~115mbar). A persistency effect is applied on the 
oscilloscope display. 
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Figure 93: PD on a twisted pair of enameled wire at low pressure (~115mbar). Channel 2: Phase to phase 

voltage (A and B). Channel 4: Partial discharges detection on phase B using a 200MHz filter. 

 
First of all, partial discharges occurring in the twisted pair of enameled wire are clearly observed. 
Thanks to the sensor and the filter, the switching noise are removed whereas the partial discharges 
are still detected. 
 
Some questions arise from the previous observations. The first one concerns the position of the 
discharges with respect to the power source: Why do PDs mainly occur after the polarity reversal? 
 
[Densley1] explained that the voltage across a defect has a pronounced effect if the polarity of the 
pulses are reversed. Let us consider the following voltage waveform (Figure 94), reaching inception 
voltage of a device under test. This graph uses the abc model (Figure 21). 
 

 
Figure 94: Discharge sequence for bipolar pulses at the inception voltage level 

 

When the voltage at the terminal of the cavity reaches the inception level, a first discharge occurs 
and the voltage falls to Vr, which is the residual voltage. Afterwards, no more discharges can occur 
until there is a polarity change. At that moment, two discharges occur.  
If the voltage is increased above the inception level, below two times its value, the position of the 
discharges stays the same, namely at the polarity’s reversal. It means that, at PD inception voltage 
and up to two times the inception voltage, discharges can only occur when there is a voltage 
reversal, thus explaining our previous observations at 1000mbar since this sample at 1000mbar has 
an inception voltage around 850Vpeak. 
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By increasing the voltage by a factor of 2, the voltage across the defect behaves as described in 
Figure 95. 
 

 
Figure 95: Discharge sequence for bipolar pulses at twice the inception voltage level 

 

When increasing voltage at twice the inception voltage, partial discharges occur during every rising 
or falling edge of the power signal. This may explain why discharges also occur after polarity changes 
in Figure 93 at 115mbar since the inception voltage of this sample at 115mbar is between 350Vpeak 
and 400Vpeak. 
 

Another key issue is related to the magnitude of the discharges. The results show that their 
magnitude at 115mbar is lower than at 1000mbar. 
The magnitude of the discharges, measured on the oscilloscope, is a voltage that depends on the 
discharge current. This current depends on the quantity of charge flowing during avalanche. When 
the pressure is low (115mbar), the density of gas molecules is low, and consequently the number of 
gas molecules available for ionization is reduced. Therefore, a lower number of charges (electrons 
and ions), coming from the ionization and leading to the avalanche, is created. Therefore, the 
magnitude of the discharges at low pressure should be lower than at high pressure. 
 
Tests with the twisted pair of enameled wire confirm that the proposed sensing method is able to 
detect partial discharges above the switching noise of the converter. In the next test, the twisted 
pair of enameled wire is connected at the input of the converter. 
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b) Twisted pair on the AC side 

 
To determine if partial discharges can be measured on the AC side and over the noise of the 
converter, tests have been done using setup in Figure 96. A twisted pair of enameled wire is placed 
between two phases at the input of the converter and the sensor is placed on the same side. 
 

 
Figure 96: Setup with twisted pair of enamelled wire connected at the input of the converter 

 

 
Figure 97: Partial discharges measurement on a twisted pair of enameled wire at the converter input. 

Channel 2: Phase to phase voltage (A and B). Channel 4: Partial discharges detection on phase B using a 

200MHz filter. 

 

Figure 97 shows that many discharges with significant magnitudes are detected despite converter 
noise.  
The main conclusion on the measurements using the twisted pair of enameled wire is the ability of 
the sensing method to distinguish partial discharges from the noise of the converter. 
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4.3.5.2 Detection of partial discharges through the converter 

In order find out whether the discharge current is able to flow from the converter input to the 
converter output, and vice versa, we decided to perform measurements as described in the 
following setup (Figure 98). 
 

a) Sensor on the AC side 

 
Figure 98: Setup to detect at the input of the converter partial discharges occurring at its output 
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Figure 99: Measurements at the input of the converter when partial discharges occur at its output. Channel 

2: Phase to phase voltage (A and B). Channel 4: Partial discharges detection on phase B using a 200MHz 

filter. 

 

The measurements in Figure 99 shows that partial discharges are detected even if the sensor is 
placed at the input of the converter. 
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b) Sensor on the PWM side 

 

The twisted pair of enameled wire is now connected to the converter input (AC voltage), while 
partial discharges sensing is performed at the converter output as shown in Figure 100. Voltage is 
increased above the PDIV level of the twisted pair (>700Vpeak), and the results are shown Figure 
101. 
 

 
Figure 100: Setup to detect at the output of the converter partial discharges occurring at the input 
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Figure 101: Measurements at the output of the converter when partial discharges occur at the input. 

Channel 2: Phase to phase voltage (A and B). Channel 4: Partial discharges detection on phase B using a 

200MHz filter. 

 

Picture A: Twisted pair: Not connected ; Inverter: Off ; Detection: Phase A 
Picture B: Twisted pair: Connected ; Inverter: Off ; Detection: Phase A 
Picture C: Twisted pair: Connected ; Inverter: Off ; Detection: Phase B 
Picture D: Twisted pair: Connected ; Inverter: Off ; Detection: Phase C 
Picture E: Twisted pair: Connected ; Inverter: On ; Detection: Phase C 
 
These pictures shows that the sensor is able to detect partial discharges wherever they occur (at the 
input of the converter by sensing at the output of the converter by example). 
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This investigation demonstrates that, on this converter, no matter where the discharges occur 
inside the converter, they can be detected by the proposed sensing method. The only limitation 
may be the magnitude of the discharges that can be reduced over a certain distance. 

4.3.5.3 Ozone detection 

For purposes of comparison with the previous results, it is interesting to use the chemical detection 
in order to comfort us in one of our main conclusion: the converter is partial discharges-free. Ozone 
sensing paper [Macherey] has been used. This paper shows at its extremity a white square whose 
color varies from white to brown (depending on ozone concentration) when ozone is detected.  
The converter is placed inside the vacuum chamber, and the motor stays outside since, as shown in 
previous sections, it is supposed to produce partial discharges (only ozone coming out from the 
converter is intended to be measured). One of this sensor is placed at the bottom of the chamber, 
below the converter. The ozone being heavier than air, we would expect to find a higher 
concentration of ozone at the bottom of the chamber than at the top. The vacuum is created in the 
chamber and the converter is started. The system ran in this configuration during two hours. Figure 
102 shows the results: the ozone tester A is still white, which means that no ozone has been 
detected. 
 

 
Figure 102: Ozone test in the vacuum chamber, with only the converter running. No PD detected. 

 
Afterwards, we connected the twisted pair of enameled wire to the converter output (PWM 
voltage), then the voltage is increased to the maximum value allowed by the AC power source 
(312Vrms), and the pressure is decreased. A photo is taken in the darkness (Figure 103). 
 

 
Figure 103: Glowing discharges from a twisted pair of enameled wire connected to the convert output, at 

low pressure 
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Glowing discharges can be observed, as was also the case, under PWM voltage, during our 
investigation of the constituents (c.f.4.1.2.4). This highlights intensive partial discharges activity. 
During this test, an ozone paper was also put in the chamber, close to the glowing twisted pair. 
Figure 104 shows the result after waiting only 5 minutes. 
 

 
Figure 104: Ozone test in the vacuum chamber, with converter running and twisted pair of enameled wire 

 
Regarding the datasheet of the ozone paper, the darker is the color, the higher is the ozone 
concentration. A legend allows to give an estimation value. Here, it seems that ozone was detected 
by tester B at a level between 150 and 210 µg/m³. As a comparison, above 180 µg/m³, the ozone 
concentration may cause eyes irritation and respiratory problems.  
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4.3.6 LONG TERM EFFECTS 

The large magnitude of the pulses described in chapter 4.3.3 showed a complex behavior. The firsts 
tests did not reveal any pulse, or sometimes only very briefly. After several minutes of testing, an 
increasing numbers of pulses appeared. After a while, it was no longer possible to count them and 
at the end of the day no more discharges were measurable. We therefore suspected an effect 
related to motor temperature. Fortunately, the motor is equipped with internal temperature 
sensors. We decided to perform a long-term measurement starting at the beginning of the day. We 
also measure the relative humidity surrounding our system. The voltage is set to the rated value of 
the converter during the overall test. Figure 105 shows the results that we obtained from this 
experiment. 
 

 
Figure 105: Long-term measurements of motor pulse measured with coaxial cable and 200 MHz filter (total 

test duration: 90 minutes) on day 1 

 

Two sensors are used, the first using the 200MHz high pass filter (blue curve) and the second using 
the 400MHz high pass filter (pink curve). The pulses being so large, no differences are measurable 
between the two filters. 
 
The first remark is that the temperature increases with no noticeable disruption. Moreover, the 
progression of the curves is logical: over time, the motor heats and the temperature increases. Then, 
looking at the pulse graph, we observe very irregular behavior: at the beginning of the test, almost 
no pulses appear. After half an hour, a group of pulses appears very scattered. After 40 minutes, the 
number of pulses increases drastically. This would seem to indicate that pulses start at a certain 
temperature threshold. We could then assume that temperature has an effect on the occurrence of 
these pulses. However, after one hour, the pulses stopped suddenly. Then, they reappeared for a 
period of 20 minutes before stopping definitively. 
 
The behavior described here above appears to be repeatable from one day to the following one. 
Figure 106 shows the same test the day after. 
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Figure 106: Long-term motor pulse measurements, measured with coaxial cable and 200MHz filter (total 

test duration: 90 minutes) on day 2 

 

We observe that the temperature thresholds at which the pulses start or stop are relatively similar 
during both tests. In the first measurement, pulses start at around 30°C and stop completely at 90°C. 
In the second measurement, pulses start at around 33°C and stop completely at 82°C. 
 

 Pulse start temperature Pulse stop temperature 

Test 1 30°C 90°C 

Test 2 33°C 82°C 
Table 15: Summary of pulse ignition and extinction as a function of temperature 

 

Even if the start and stop thresholds seem to be quite similar, pulses behavior is absolutely not the 
same during the tests. One hypothesis could be that the increase in temperature slightly modifies 
irreversibly the structure of the insulating material in the motor. This would induce defects in the 
material that allow discharges to occur and stop irregularly. Over time, the material would continue 
to be modified randomly. Therefore, from one test to the other, the occurrence of the pulses would 
not be the same. If this explanation is correct, it means that the discharges measured inside the 
motor are internal. Making this assumption, since temperature increases with time (and thus 
pressure increases within the defect), no more discharges can occur at a certain temperature 
threshold. Consequently it is most likelihood that the huge discharges measured in the motor are 
internal discharges. This assumption is supported by the fact that the discharges behavior does not 
change with pressure variations. 
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4.3.7 CONCLUSION ON THE MEASUREMENTS ON THE POWER CHAIN 

Measuring partial discharges on a system in operation is a challenging task, as it involves many 
parameters. We encountered some difficulties, not only regarding detection, but also with respect 
to analyzing our observations. However, by moving forward one step at a time, we reach some 
important conclusions.  
 
First of all, and not the least, the sensing method proposed in this thesis allows for the first time on-
line partial discharges sensing under PWM voltage and low pressure. 
 
Second, the partial discharge sensing method proposed in this thesis proved its efficiency in the 
harsh environment of an aeronautical converter (switching noise, low pressure). Even if no 
discharge has been detected on the system itself, using the twisted pair of enameled wire shows 
that the method is fully able to detect partial discharges if they occur.  
 
Third, we proved the existence of partial discharges in the motor. Even if it was not among our initial 
objectives, we decided to pursue this point. These discharges have very complex behavior. We 
showed that they are probably internal discharges, and that they are not influenced by pressure. 
The effect of temperature on these discharges is not well understood at this time, but proof of their 
existence was made. 
 
Fourth, the investigation in chapter 4.3.5.2 shows that, no matter where the discharges occur, we 
are able to detect them using this method. 
 
Lastly, the results show that partial discharges cannot occur in the converter either at ambient or at 
low pressure. The discharges detected on components, during the component analysis phase, are 
suppressed when the components are mounted into the system. 
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5 CONCLUSIONS AND PERSPECTIVES 

5.1 CONCLUSIONS 

Looking for designing partial discharge-free systems for aerospace applications, Liebherr Elektronik 
Lindau undertook a study to develop a method for on-line partial discharges detection in 
aeronautics power electronics converters.  
For this study, a relationship between Liebherr and the Laplace Laboratory in Toulouse has been 
established. The Laplace laboratory offering expertise in the partial discharges field, and Liebherr 
being an aeronautical manufacturer, this relationship was an ideal opportunity to perform original 
partial discharges measurements on actual aeronautics power systems. 
 
The goal of Liebherr is to make PD free converter per design. The main difficulty when measuring 
partial discharges with such a device is to make the distinction between converter switching noise 
and the discharges’ signal. For many years, experiments have been performed with numerous 
detection methods to overcome this challenge. However, none of the experiments yielded workable 
results until the work of Thibaut Billard and Thierry Lebey [Billard], in partnership with Renault in 
France. Using a stripped coaxial cable, they succeeded to perform partial discharges measurement 
despite the switching noise. Following their works, LEG decided to apply this detection method, on-
line, to their aeronautics products. This thesis describes a study conducted to reach these objectives. 
The study was divided into three steps. 
 

• First, the method was tested on basic samples (twisted pairs of enameled wires, vented 
samples, and needle-to-plane), which were made with materials used in the aerospace 
industry. In order to be representative of the field we are studying, tests were all performed 
at both 1000mbar and 115mbar. The aim of this step was to establish the limits of the 
detection method, and to confirm or invalidate that it is able to detect partial discharges of 
different natures, occurring in different defects. The results of this first investigation showed 
that the method is indeed able to detect discharges occurring internally (vented samples), 
externally (twisted pair), or in the vicinity of a magnified electric field (needle-to-plane). 
During this phase, a particular phenomenon was observed, called a pseudo-glow discharge, 
in which it was no longer possible to detect discharges, but a glowing effect continued to be 
present at the surface of the sample. Though the studied detection method does not detect 
this type of discharge, an analysis of the effects revealed its existence. 

 

• Secondly, we continued deeper into the converter study. We chose to study the converter 
supplying the motor that controls the FLAP parts on the A350 aircraft. A list of components 
used in this converter was provided, and the components were then tested with the new 
detection method. Once again, the components were tested at 1000mbar and 115mbar. By 
testing the components separately, we were able to identify weak points and reach a 
conclusion regarding the influence of system assembly on partial discharges. Indeed, partial 
discharges may not occur on a component and occur inside the system and vice versa. 
Mainly, the investigation showed two weak points: the first is the converter’s male output 
connector, which showed an inception level reachable when transients occur; the second is 
the input filter, which showed an inception level reachable by nominal voltage.  
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• Lastly, the complete converter was tested. The system was also tested at 1000mbar and 
115mbar. Still using the proposed method, we measured some pulses on the PWM side and 
none on the AC side. It was quite difficult to reach a conclusion regarding their nature. 
Indeed their random occurrence made it difficult to distinguish between partial discharges 
and external noise. Finally, day after day, we observed that the phenomenon was repeatable 
and depended on voltage magnitude. Therefore, we concluded that these pulses were 
partial discharges. The next step was to establish the origin of these discharges. Furthermore 
investigations taught us that discharges were coming from the motor. It was therefore 
possible to assert that the converter is partial discharges-free. Additional measurements 
showed that it is possible to measure discharges through the converting chain. 

 
Completing the third step of our investigation, we are able to conclude that the detection method, 
can be used to detect on-line partial discharges in an aeronautics environment. The method is 
efficient and enables detecting discharges occurring in various defects (external, internal, corona). 
Most significantly, the method makes it possible to distinguish between partial discharges and 
switching noise. 
 
During this investigation, Liebherr Elektronik GmbH desired to develop a PD-free PWM generator 
for representative PD tests. This system was built and tested using the proposed method, and was 
then proven to be PD free. (c.f. 6) 

5.2 PERSPECTIVES 

From the overall investigation, the striped coaxial cable method appears to be able distinguishing 
between partial discharges signals and switching noise. However, the way the coaxial cable senses 
discharge current is not well understood at this time. Proper understanding of the sensor is required 
to optimize sensing. This means that additional investigations have to be carried out to specify the 
characteristics of the detection method and its application limits. 
 
A particular phenomenon was observed during the first phase of the measurements (constituent 
study). The tests on a twisted pair of enameled wire, subject to pulse-like waveform at low pressure, 
revealed that some discharges may exist with a glowing form, but it is not possible to detect them 
with our method. This phenomenon was already been observed and described a few decades ago 
by [Bartnikas1]. It means the sensing method fails to detect nature of discharge. Further 
investigation must be carried out to better understand this glowing phenomena and to find a way 
to detect them. 
 
Another particular case was been observed on a point-to-plane sample. This sample showed an 
asymmetrical pattern on the oscilloscope at ambient pressure. Some discharges were visible on the 
negative polarity of the sinus curve. Once pressure was decreased to 115mbar, the discharges 
changed position and occurred on the positive polarity of the sinus curve. It is still not well 
understood why this happened. Furthermore, investigations should be undertaken to understand 
the behavior of corona discharges under various conditions (pressure, temperature, humidity), but 
also to modify the shape of the samples and their constitution. For example, this could include 
modifying the distance between electrodes and applying coating at different places (on the plane, 
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on the needle, on both). The objective would be to answer these questions clearly: “Why does a 
point-to-plane sample show an asymmetrical pattern,” and “is that always the case?” 
 
Lastly, it would be very interesting to apply this detection method on various converters using 
different IGBT in order to validate that the method is applicable, regardless of the IGBT switching 
dV/dt, or simply to define its limitations. Additional work needs to be carried out in this direction. 
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6 ANNEXE A: PARTIAL DISCHARGE-FREE CONVERTER DESIGN 

Recently, a commercial partial discharges detection system, made by Omicron, has been purchased 
by Liebherr Elektronik GmbH. This device is designed to detect partial discharges off-line, and under 
AC or DC voltage. The company decided to invest in buying a partial discharge free AC power source 
to use this detecting device. 
The company develops converters using AC voltage and generating pulse width modulation (PWM) 
voltage. This means that investigations, regarding partial discharges, must also be carried out using 
PWM voltage. However, no partial discharge-free PWM power source was available from the 
company. Therefore it was decided to develop such a system. This section describes the system and 
its characteristics. 

6.1 SYSTEM DESCRIPTION AND REQUIREMENTS 

The requirements of the power source were defined as follow: the device shall be partial discharge 
free. It shall generate PWM voltage up to 2kV with a 10kHz switching frequency. The topology used 
is H-bridge. 
 
To answer the first requirement, some precautions are taken:  

• Any distances between high voltages conductors are defined above two times those found 
in Paschen’s law minimum. 

• Sharp edges are avoided on the layout or on the assembly to prevent any corona effects.  
• High voltage components are chosen with a maximum voltage at least 1000V above the 

maximum voltage of the system, namely 3000V.  

• In order to validate the partial discharge-free design, a partial discharge test is performed 
using the partial discharges detection method presented in the work. 

• The AC input voltage must be partial discharge-free. Therefore the purchased partial 
discharges-free AC power source is used as the input source.  

Once the system is assembled, it is inserted into the safety box. To set output voltage, the user must 
set the AC voltage. 
 
Figure 107 shows the architecture of the PD-free PWM power source. 
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Figure 107: Architecture of the PD-free inverter 

 
The partial discharges-free AC power source is first rectified by a diode bridge. Afterwards, voltage 
is smoothed by coupling capacitors. The parallel resistors control the capacitor discharge when 
voltage is off. The calculation of the discharge time, until reaching 50V, is shown below. 
 

Y = R ∗ C ∗ ln Vtarget − Vinit
Vfinal − Vtarget 

Equation 4: Calculation of the capacitor discharging time 

R = 188kΩ  
C = 16.5uF 
Vtarget = 50V 
Vinit = 2000V 
Vfinal = 0V 
 
The time required to discharge the capacitor from 2kV to 50V is: t = 11.36 s. It means that the safety 
box must not be opened until this time is elapsed. A red lamp warns the user. Afterwards, DC voltage 
is monitored by the control board. This board is also used to control the IGBT drivers. It uses a 
microcontroller which generates a pulse width modulation representative of an aeronautics system. 
Lastly, the DC voltage is used by the IGBTs, which generate the PWM voltage to supply the device 
under test. 
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6.2 PERFORMANCE EVALUATION 

Once built, the converter underwent a series of tests to validate its characteristics and efficiency. 
The tests are described in this section. 
 
First of all, the maximum voltage value was reached and the voltage waveform, which is supposed 
to be a PWM, was verified. The voltage is indeed a PWM, reaching 2000Vpeak as shown in Figure 

108. 
 

 
Figure 108: Output voltage of the converter 

 
The most important characteristic of this converter is that it is intended to be partial discharge-free, 
and thus appropriate for use in partial discharges tests. To validate this point, the setup Figure 109 
is used.  
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Figure 109: Setup for partial discharge test on the PD-free converter 

 

a) Without sample 

 

First of all, the twisted pair of enameled wire is not connected, and voltage is increased to 2000V 
(Figure 110). 
 

 
Figure 110: Measurement of signal from the sensor at 2000V 
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Some small pulses can be observed at the voltage polarity change. Their linear behaviors with 
voltage allow us to conclude that these pulses are not partial discharges, but switching noise. Figure 
110 shows that no partial discharge are detected. 
 

b) With the twisted pair of enameled wire 

 

The twisted pair of enameled wire is added, as shown in Figure 109. The voltage is increased until 
partial discharges occur and the inception voltage is measured at about 700Vpeak. 
 

 
Figure 111: Partial discharges measured on a twisted pair of enameled wire slightly above PDIV 

 
Some pulses can be observed at polarity change. These pulses did not exist before 700Vpeak, and 
they suddenly occur at 700Vpeak. This non-linear behavior is typical of partial discharges. Moreover, 
the pulses can be distinguished clearly from background noise. 
 
During the test, the voltage is increased until some changes are perceptible. No changes are visible 
on the pulses up to 1300Vpeak, except their magnitudes, which is increased. Around 1400Vpeak, 
new types of discharges are measurable between the polarity changes (Figure 112). 
 

 
Figure 112: Partial discharges measured on a twisted pair of enameled wire at 2 x PDIV 

 
The measured numerous impulses have a magnitude lower than the ones measured at PDIV. We 
can assume that the nature of the discharges has changed with the increase of the voltage. At twice 

PD 

PDs 
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the inception voltage, a glowing phenomenon started to be visible on the sample, as shown in Figure 
113. 
 

 
Figure 113: Glowing effect on the sample at 2 x PDIV 

 

c) With a point to plane sample 

 
The twisted pair of enameled wire is now replaced by a point-to-plane sample in order to create 
corona discharges (Figure 114). This sample is expected to show an asymmetrical pattern when 
discharges occur. 
 

 
Figure 114: Point-to-plane sample to create corona discharges 

 

 
Figure 115: Partial discharges occurring on a point to plane sample 

 
Some pulses are measurable at 1.7kV when the voltage switches from positive to negative. Some 
pulses are also visible when the voltage switches from negative to positive, but their magnitudes 
are well smaller. This pattern is clearly asymmetrical and is characteristic of corona discharges. 
 
  

PD 
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d) A350 high voltage connector 

 
The next test focuses on the male part of high voltage connector used in the studied converter. 
These components showed partial discharges with a corona shape (asymmetrical shape) at about 
910Vpeak. The test has been repeated with the partial discharges-free PWM generator. The results 
are shown Figure 116. 
 

 
Figure 116: Partial discharges measurements on the male part of the output connector from ADGB 

converter 

 
Partial discharges are detected with an asymmetrical pattern, which implies that corona discharges 
are occurring. However, the inception voltage in this case is about 1.1kVpeak, which is above the 
PDIV measured at the Laplace laboratory (910Vpeak). This difference may be due to environmental 
parameters (humidity and temperature) that may have been different during the tests at the Laplace 
laboratory in February, 2015. Tests at Liebherr were performed in July, 2015. However, the results 
are similar to those obtained at the Laplace laboratory. 

6.3 CONCLUSION 

The series of tests described in this annex outlines the characteristics of the partial discharge-free 
converter. First, no partial discharges were measured when no samples is connected. This means 
that the converter is partial discharge-free. Then, the series of tests demonstrate good consistency 
with previous tests which were performed at the Laplace laboratory. The twisted pair of enameled 
wire has the same inception level (+/- 50V). The point-to-plane sample shows an asymmetrical 
pattern. The A350 connector showed the expected behavior regarding the measurements obtained 
at the Laplace laboratory. Therefore it can be concluded that this PWM power source can be used 
to perform partial discharges investigations. 
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7 ANNEXE B: INVESTIGATION OF THE INPUT FILTER 

During the components’ investigation, one particular component showed partial discharges at a 
level reachable by the converter at rated voltage (230Vrms): the input filter. This result was 
expected to be found in the measurement of the system since, during our tests, this latter reached 
312Vrms. However, as shown in Figure 83, no partial discharges have been measured on the AC 
side. 
This result being surprising, we decided to perform the same measurement as in Figure 83, but 
this time, the component after the filter (ATRU) being disconnected from the input filter. By this 
way, only the input filter is tested. 
 

 
Figure 117: PD measurements at the converter input, ATRU disconnected from input filter (115mbar). 

Channel 2: Phase to phase voltage (A and B). Channel 4: Partial discharges detection on phase B using a 

200MHz filter. 

 

After disconnecting the ATRU from the input filter, partial discharges occur. An inception voltage of 
about 720Vpeak is measured, which is coherent with components’ measurements. 
In summary, when the input filter is tested alone, it shows partial discharges, but when it is 
connected to the converter via the ATRU, no discharges are measurable. 
This behavior may be explained by the voltage distribution inside the input filter once this one is 
connected to the converter. The place where the discharges occur in the input filter, gets a lower 
voltage once the input filter is connected to the system. This is due to the choke (Figure 71) inside 
the filter which creates voltage drops when a current get through them. These voltage drops reduce 
the electric field inside the filter and finally suppress the discharges. Consequently, we can conclude 
that partial discharges cannot occur at the AC side of the converter, either at ambient or at low 
pressure. This, despite the fact that the input filter has been identified has a weak point during the 
components’ investigation. 
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