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• afin de réduire le coût de calcul des simulations à l'échelle de la structure, ce modèle doit être formulé (i) en deux dimensions (2D) ou (ii) trois dimensions (3D) avec une cinématique réduite de type plaque/coque.

• le modèle doit représenter les caractéristiques principales du comportement du béton tels que le comportement adoucissant en traction et l'effet unilatéral (reprise du module élastique en compression après un chargement de traction) dans le cadre de chargements cycliques.

• le modèle doit être capable de représenter explicitement l'ouverture de fissure et la multifissuration anisotrope caractéristique des structures en béton armé.

Ce dernier critère est crucial dans ces travaux. En effet, la fissuration est un phénomène local qui influence non seulement la tenue structurale d'un ouvrage mais constitue l'ingrédient principal dans le contexte de la durabilité des ouvrages à risques (transferts par diffusion ou perméabilité à travers une fissure).

État de l'art

La fissuration des matériaux quasi-fragiles a été largement étudiée et demeure un sujet de recherche très actif car il est lié à diverses applications en ingénierie. De fait, les exigences en matière d'ouverture de fissure font l'objet de critères de dimensionnement afin d'assurer la sûreté des ouvrages de génie civil, en particulier les installations nucléaires.

Classiquement, les modèles d'endommagement [Mazars, 1984, Comi and Perego, 2001, Richard and Ragueneau, 2013, Sellier et al., 2013, Vassaux et al., 2015] ont montré leur efficacité et leur robustesse numérique à décrire la dégradation du béton. Cependant, ils ne permettent pas d'aboutir à une information quantitative sur la fissuration, tels que l'ouverture de fissure ou encore l'espacement entre les fissures. De plus, des limiteurs de localisation [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF], Pijaudier-Cabot and Bažant, 1987, De Borst and De Vree, 1996, Giry et al., 2011] doivent être utilisés afin de diminuer les phénomènes pathologiques de dépendance au maillage. Des méthodes de post-traitement sont nécessaires afin d'accéder aux informations fines mentionnées ci-dessus [START_REF] Matallah | A practical method to estimate crack openings in concrete structures[END_REF],Oliver-Leblond et al., 2013, Dufour et al., 2012]. D'autres approches, comme celle de la fissuration diffuse ou smeared crack approach, consistent à répartir la déformation inélastique sur un volume matériau sous forme d'une déformation de fissuration. Le phénomène de blocage en contraintes ou stress locking est observé pour les modèles à fissuration fixe ou tournante. Une étude complète de ces phénomènes a été réalisée par Jirasek [START_REF] Jirásek | [END_REF]].

Le comportement des matériaux quasi-fragiles comme le béton est caractérisé par une anisotropie induite par le chargement : l'orientation des fissures dépend du trajet de chargement. Ce caractère anisotrope a été classiquement modélisé par une représentation tensorielle d'ordre deux ou quatre de la variable d'endommagement. Les modèles d'endommagement anisotrope décrivent le comportement à la fissuration par le biais d'une formulation basée sur la décomposition spectrale [Ladeveze, 1983, Dragon andHalm, 1996]. Cependant, cette formulation présente des anomalies en terme d'unicité de l'énergie libre [Chaboche, 1992,Welemane and Cormery, 2002,Carol and Willam, 1996]. Afin de pallier ces anomalies, [START_REF] Carol | A thermodynamically consistent approach to microplane theory. part i. free energy and consistent microplane stresses[END_REF], Cormery and Welemane, 2010, Bargellini et al., 2008] proposent une formulation de l'endommagement dans la base directionnelle des fissures et non des déformations. D'autres approches comme les modèles microplans sont attractifs car sont basés sur des relations scalaires. Cependant, leur coût numérique les rend inadaptés aux simulations à grande échelle.

Récemment, les modèles introduisant une discontinuité forte au sein du champ de déplacement ont montré leur efficacité à quantifier la fissuration dans le béton. Deux grandes familles peuvent être distinguées : X-FEM [START_REF] Belytschko | A finite element with embedded localization zones[END_REF], Duarte and Oden, 1996, Moes et al., 1999, Duarte et al., 2000, Elguedj et al., 2006, Ferté et al., 2016] fondée sur un enrichissement nodal et E-FEM [START_REF] Armero | An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids[END_REF], Oliver, 1996, Larsson et al., 1996, Wells and Sluys, 2000, Benkemoun et al., 2010, Roubin et al., 2015] qui est fondée sur un enrichissement au niveau de l'élément (figure 1). Les deux approches permettent de décrire la fissuration de manière naturelle et plus particulièrement l'ouverture de fissure ou l'espacement entre fissures. Une étude récente [START_REF] Oliver | A comparative study on finite elements for capturing strong discontinuities: E-fem vs x-fem[END_REF] a montré une meilleure précision de la méthode E-FEM dans le cas de maillages grossiers. Le caractère local de cette méthode permet de condenser la discontinuité et ainsi réduire le coût de calcul par rapport à la méthode X-FEM. De plus, le coût de calcul lors de la représentation de la multi-fissuration reste contant pour la E-FEM et augmente pour la X-FEM. La méthode E-FEM nécessite une loi de comportement permettant de décrire le comportement au sein de la discontinuité. Comme l'enrichissement se fait au niveau local, la continuité du trajet de fissure n'est pas assurée.

Approche proposée

La simulation des éléments de structures tels que voiles ou dalles dans une configuration 2D est pertinente du fait de leur géométrie et de la réduction du coût de calcul. Dans le contexte de la simulation des structures en béton armé, une approche locale est choisie. Le béton et les armatures sont modélisés séparément. Une approche 2D est utilisée et une modélisation macroscopique du comportement du béton est considérée. Un modèle d'endommagement est enrichi avec la méthode E-FEM afin de représenter explicitement la fissuration. Ainsi, le modèle numérique développé est composé de deux entités:

• un modèle d'endommagement qui permet de décrire la dégradation du béton à l'échelle macroscopique,

• la technique E-FEM qui enrichi le champ de déplacement afin de décrire explicitement l'ouverture de fissure.

Le modèle d'endommagement doit être capable de reproduire les caractéristiques suivantes du béton : le comportement adoucissant en traction, la fissuration anisotrope et l'effet unilatéral. Le processus de dégradation du béton et du béton armé est caractérisé par l'apparition de différentes familles de fissures conférant le caractère anisotrope à la fissuration. Afin de décrire et représenter cette dégradation, un modèle d'endommagement anisotrope basé sur des fissures orientées est choisi [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF].

Dans le but de modéliser la multi-fissuration des structures en béton armé, la technique E-FEM est choisie pour : la facilité d'implémentation, son caractère peu intrusif dans un code de calcul aux éléments finis existant, son caractère local qui assure une réduction du coût de calcul dans le cas de simulation de structures. Cette technique doit comporter une loi de comportement afin de décrire le mécanisme dissipatif au sein de la discontinuité introduite. Ainsi, l'enrichissement du modèle de [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] avec la E-FEM permet de décrire la dégradation du béton et de représenter la fissuration explicitement. De plus, ce modèle d'endommagement a l'avantage d'être formulé de manière simple (pas de représentation tensorielle) facilitant l'enrichissement.

Dans le cadre d'une approche dite discrète (Discrete Strong Discontinuity Approach [Oliver, 2000]), le modèle d'endommagement est couplé avec la cinématique d'une discontinuité forte afin de construire une loi de comportement discrète. Cette loi est la projection du modèle continu dans la discontinuité. Elle est exprimée en termes de vecteur traction -saut de déplacement. La construction de cette loi nécessite de lever deux verrous scientifiques : d'une part assurer le caractère borné du champ de contraintes issu d'une loi élasto-endommageable anisotrope et d'autre part, décrire de manière pertinente l'évolution des composantes normale et tangentielle du vecteur représentant la discontinuité de déplacement. En dehors de la discontinuité, le matériau présente un comportement élastique.

Formulation du modèle enrichi

Le modèle d'endommagement anisotrope choisi est fondé sur une approche micro-mécanique [Bargellini, 2006]. L'endommagement est décrit par un système de familles de fissures orientées de normale n i et de densité de fissuration ρ i comme illustré sur la figure 2. Pour une configuration en trois dimensions, neuf familles peuvent être identifiées. Ce nombre est choisi tel que l'endommagement isotrope soit représenté par la même densité de fissuration dans toutes les directions. En configuration 2D, quatre familles sont considérées. Une des hypothèses importantes du modèle est l'indépendance des familles de fissures. Ceci permet de donner une loi d'évolution différente à chacune des familles.

n i n j n k ρ i ρ k ρ j
Le modèle anisotrope est ensuite modifié pour l'adapter au matériau béton. En effet, initialement, le modèle a été développé pour décrire l'endommagement dans les roches. Une borne en énergie est introduite afin de limiter l'évolution des densités de fissure. La condition de fermeture de fissure proposé initialement par [Bargellini, 2006] n'est pas retenue car elle ne tient pas compte de l'effet Poisson [Pensée and Kondo, 2001]. Une condition simple et physique basée sur le principe du contact simple est utilisée.

Ensuite, une procédure d'identification des paramètres du modèle est proposée. Ce modèle étant riche, cette procédure vise à donner des informations sur le rôle des familles de fissures. La méthodologie d'identification se base sur une campagne d'essais virtuels. Un modèle basé à une échelle plus fine est utilisé afin d'effectuer des trajets de chargement difficilement envisageable en laboratoire.

La machine virtuelle est un modèle discret construit à partir de particules indéformables reliées par des poutres [Oliver-Leblond et al., 2013, Delaplace, 2008, Vassaux et al., 2014]. Ce modèle est un outil qui permet de représenter parfaitement le comportement du béton à l'échelle macroscopique. L'identification est effectuée sur un test de traction-cisaillement et la comparaison est faite sur les quantités macroscopiques contraintes-déformations. Les paramètres non-linéaires du modèle d'endommagement sont identifiés sur la base d'un algorithme de minimisation basé sur les moindres carrés. Le critère d'arrêt de cet algorithme est l'oscillation du résidu.

La méthode E-FEM est ensuite introduite dans le modèle d'endommagement anisotrope. Une première étape consiste en l'écriture analytique du passage du modèle continu vers le modèle enrichi. La cinématique d'une discontinuité forte est caractérisée par l'équation suivante :

u(x,t) = u(x,t) + H Γ S (x) u (x,t) , (1) 
où u(x,t)1 est le champ de déplacement continu, u (x,t) est le saut de déplacement et H Γ S (x) est la fonction Heaviside centrée en Γ S .

Le champ de déformation est obtenu en prenant le gradient symétrique du champ de déplacement :

ε = ∇ s u = ∇ s u + H Γ S (x) ∇ s u borné + δ Γ S (x) ( u ⊗ n) s non-borné = ε + δ Γ S (x) ( u ⊗ n) s , (2) 
où (•) s est la partie symétrique de (•) et δ Γ S (x) est la distribution de Dirac centrée en Γ S . Le champ de déformation dans le cas d'une discontinuité forte est singulier et non-borné à cause de la présence de la distribution de Dirac. Dans le but de traiter cette singularité, l'approche DSDA est utilisée. Cette dernière fournit le cadre mathématique rigoureux permettant d'obtenir la compatibilité entre le modèle continu et la singularité du champ de déformation. Les ingrédients de cette approche sont :

• la régularisation de la distribution de Dirac,

• l'analyse de la discontinuité forte qui comporte les conditions de continuité des contraintes.

La distribution de Dirac est régularisée à l'aide d'une fonction dépendant d'un paramètre de régularisation k très petit. Cette régularisation consiste à considérer la discontinuité forte comme le cas limite d'une discontinuité faible de largeur k très petite. La distribution régularisée est introduite dans les équations du modèle continu.

En prenant en compte les conditions de continuité des contraintes, des variables discrètes sont définies. La définition de variables dites discrètes comme les densités de fissuration et le module d'écrouissage, bornées sur la discontinuité Γ S , permettent de construire le modèle discret qui découle directement du modèle continu. Une correspondance terme à terme est obtenue. Le modèle discret dépend du saut de déplacement et exprime la projection du modèle continu à l'interface de la discontinuité. Ce dernier est introduit une fois la phase élastique dépassée c'est-à-dire lorsque la contrainte principale maximale dépasse la limite d'élasticité. Il permet ainsi de contrôler le comportement non-linéaire au niveau de la discontinuité.

Implémentation numérique

La mise en oeuvre numérique du modèle se base sur la formulation à trois champs [Washizu, 1982] et la méthode SKON. La résolution du problème s'effectue en deux temps : l'incrément de saut de déplacement est calculé à partir de la condition de continuité des contraintes pour un déplacement fixe ; ensuite l'incrément de déplacement est calculé. Dans le but de formuler la loi discrète tractionouverture, le saut de déplacement est décrit par une composante normale et une tangentielle (figure 3). Ceci permet d'obtenir une répartition du terme ( u ⊗ n) s en mode d'ouverture et de glissement. La forme explicite de la loi vecteur traction -saut de déplacement est ensuite obtenue. Cette dernière s'écrit :

Ω + Ω - Ω Γ S n t M Ω + Ω -
t Γ S = t 0 - (3α + 4β)ρ 1 + 2(α + β)(ρ 4 + ρ 7 ) (0.5α + β)(ρ 4 -ρ 7 ) (0.5α + β)(ρ 4 -ρ 7 ) (α + β)(ρ 1 + ρ 4 + ρ 7 ) u n u t (3) 
Cette loi décrit le comportement non-linéaire au sein de la discontinuité. Elle est introduite une fois la phase élastique dépassée. Elle permet de rendre compte de mécanismes de type mode I et aussi mode I+II. De plus, la partie t 0 rend compte de la phase élastique de manière immédiate. Ceci est un avantage majeur du modèle car les problèmes de continuité lors de l'activation du régime non-linaire ne sont pas rencontrés.

L'introduction du régime non-linéaire est basé sur les contraintes principales maximales (critère de Rankine). La normale à la fissure est celle qui correspond à la contrainte principale maximale. Une fois calculé, cette dernière est fixe pendant le calcul.

La loi de comportement développée est implémentée dans le code de calcul aux éléments finis Cast3M. Une séparation entre la composante tangentielle et normale est faite dans l'algorithme local. De plus, une relaxation numérique avec un paramètre constant est proposée afin d'améliorer la convergence du schéma itératif.

La loi de comportement est testée à l'échelle du matériau pour illustrer les propriétés du modèle telles que la correspondance entre le modèle continu et discret et l'anisotropie.

Résultats

L'application numérique du modèle enrichi développé se base sur des exemples de structures en béton et béton armé. D'abord le modèle est validé sur cas simples de poutres en béton.

L'indépendance au maillage est corroborée via un test de traction. Ensuite une étude de la continuité du trajet de fissure est menée sur une poutre entaillée en flexion trois points. Cet exemple met en évidence le blocage en contrainte dû à une mauvaise prédiction de l'orientation de la normale à la fissure. L'étude montre que l'utilisation d'une technique numérique de tracking permet de pallier ce blocage. Dans cette étude, un algorithme global [START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF] est utilisé dans le but d'être le moins intrusif possible dans la méthode E-FEM, qui a un caractère local fort. L'idée de cet algorithme est de tracer en une fois les fissures susceptibles de s'ouvrir dans un milieu. Ensuite, la capacité du modèle à reproduire le comportement du béton en mode I et mixte est validée par le biais d'un test de traction sur une poutre doublement entaillée et d'un test de cisaillement quatre-points sur une poutre simplement entaillée.

Finalement, le modèle est appliqué à des structures en béton armé. Il est testé par rapport à sa capacité à décrire la fissuration anisotrope et multiple ainsi que l'effet unilatéral.

Le premier cas test est un tirant en béton armé en traction. Une comparaison avec ou sans prise en compte d'une loi d'interface est effectuée. Même si le modèle développé permet de décrire la dégradation en cisaillement du béton, le processus d'endommagement de l'interface n'est pas bien reproduit. Une loi d'interface est nécessaire afin de rendre compte des mécanismes locaux à l'interface. Cependant, ce modèle permet de reproduire l'apparition progressive de fissures qui caractérise ce test.

Enfin, un voile en cisaillement soumis à un chargement cyclique est simulé. Le voile a été testé dans le cadre du benchmark ConCrack. Le rapport de ce benchmark met en évidence la difficulté des équipes à reproduire le comportement expérimental. En effet, seulement une des équipes participante a réussi à s'approcher fidèlement de l'expérience. Le modèle numérique est testé par rapport à sa capacité à simuler le test sous chargement cyclique, à reproduire l'effet unilatéral et le comportement global et local.

La simulation du voile sous un chargement monotone est d'abord effectuée. Cette étape a permis de calibrer les paramètres matériaux. Le comportement global est bien reproduit comparé à l'expérience. Le faciès de fissuration montre l'apparition de fissures inclinées qui correspondent au cisaillement du voile. Ensuite, le voile est soumis à un chargement cyclique non-alterné. Un effet rigidifiant est observé lors des décharges. Ceci peut être dû à plusieurs phénomènes qui ne sont pas pris en compte dans le calcul tels que : le frottement de fissures, l'interface acier-béton, le pincement des armatures.

La simulation du voile sous chargement cyclique alterné termine ce travail. Étant donné que le modèle ne prend pas en compte le frottement des fissures, seule la réponse enveloppe est étudiée. Une bonne prédiction du comportement global est obtenue et l'effet unilatéral est récupéré totalement. L'anisotropie de la fissuration due au chargement cyclique est corroborée. Cependant, le croisement de fissures n'est pas reproduit car le modèle permet de décrire une discontinuité par élément fini.

Contributions de cette thèse

L'objectif de cette thèse était le développement d'un modèle numérique afin de décrire explicitement la fissuration des structures en béton armé. Les originalités et apports principaux de cette thèse résident dans la construction de la loi de comportement :

• le modèle continu basé sur des fissures orientées permet une description physique des mécanismes de dégradation.

• l'approche discrète DSDA est appliquée à un modèle d'endommagement anisotrope. En effet, dans la littérature cette approche est menée pour des modèles d'endommagement isotropes ou de plasticité.

Introduction

Reinforced and prestressed concrete are the most widely employed materials in the construction field from a simple building to a complex structure as the containment of a Nuclear Power Plant (NPP).

The widespread use of concrete stands at its low cost, workability and easiness to cast.

As simple as it may seem, concrete is a complex material. Its chemical, thermal and mechanical behaviour have been studied for a long time and is still a relevant research field. Understanding its behaviour provides improvements in the construction methods which are governed by several criteria such as the structural performance, sustainability and safety. Sustainability issues are of prime importance especially for the structures and systems of the Nuclear Power Plants.

During their service life, buildings interact with their environment. Chemical and physical interactions can cause delayed evolutions of the structures: cracking of concrete by drying shrinkage for example, or corrosion of passive reinforcement by the diffusion of chlorides. Mechanical interactions are also of specific significance for the analysis of concrete damage at the structural scale. Static and dynamic loadings such as soil-structure interactions, wind loadings, impacts, explosions, earthquakes are one of the mechanical phenomena that can cause irreversible damages to the concrete structures.

Predicting the mechanical behaviour of the structures subjected to these numerous loadings is crucial in order to guarantee their integrity and sustainability during their service life.

Recent events in the nuclear community have emphasised the necessity of developing further studies to improve NPP's safety in the context of severe situations, particularly seismic risks. In this framework, this thesis is enrolled in a research program called SINAPS@ (Earthquake and Nuclear Installations: Ensuring and Sustaining Safety). The aim of this research program is to propose a seismic risk assessment method by identifying, quantifying and integrating all uncertainties. These assessments are partly ensured by the accurate description and modelling of the mechanical behaviour of the construction materials.

The present study mainly focuses on the behaviour of reinforced concrete components. It contributes in the development of a numerical model allowing for (i) a good reproduction of the experimental observations at material scale and (ii) fine description of the mechanical behaviour of reinforced concrete structures. The developed model must be particularly based on the following criteria:

• In order to reduce the computational cost of the numerical simulations at the structural scale, the model must be used in two dimensions (2D) or in three dimensions (3D) with a reduced kinematics like plate/shell finite elements.

• The model must take into account the softening behaviour of concrete in tension and the unilateral effect (recovery of the elastic stiffness in compression once concrete is loaded in tension) in the context of cyclic loadings.

• The model must explicitly represent the local crack openings and the multiple cracking of reinforced concrete (RC) components.

This last criterion is of significant importance in the proposed study. Indeed, cracking is a warning sign of the progressive loss of the bearing capacity of structures (risk assessment under seismic loadings) and is also the main feature for durability issues (diffusive and permeation flow related to the crack opening or to the cubic crack opening, respectively).

Philosophy of the developments

During the last decades, several numerical models have been proposed to tackle the complex behaviour of quasi-brittle materials under complex loading. As detailed in the chapter 1, the main interest in each model is the modelling of concrete damage and concrete cracking. In some of them, cracking is implicitly considered by a diffuse degradation of the structure, using damage and plastic theory [Mazars, 1984, Reynouard, 1974]. They provide accurate description of the concrete failure process. However, cracking is described in a diffuse way and post-treatment methods are needed to access to fine information as crack openings and spacings. But novel techniques have also been developed to explicitly account for cracking features, based on the same framework of the continuous mechanics. They consist in kinematic enrichment techniques, introducing discontinuities in the displacement field [START_REF] Belytschko | A finite element with embedded localization zones[END_REF], Simo et al., 1993].

Concrete and reinforced concrete degradation process is characterised by the appearance of several crack families implying the anisotropic character of cracking. Within the scope of representing multiple cracking, an anisotropic damage model accounting for oriented crack families is first chosen [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF]. This model is kinematically enriched in order to reproduce the development of cracks in the material during loading. Using a discrete approach [Oliver, 2000], the damage model and the kinematic enrichment technique are coupled in order to build an enhanced damage model accounting for oriented crack families and explicit cracking. This latter is the projection of the continuous model onto the discontinuity and is expressed in terms of traction vector-displacement jump law.

When dealing with NPP's structural components as slabs or shear walls, a two dimensional description is relevant because: (i) the computational cost is reduced compared to three dimensional modelling and (ii) their geometry implies the use of reduced kinematics like plate/shell elements. In this work, a 2D approach is used to model reinforced concrete specimens as beams and shear walls.

With the aim of predicting the mechanical behaviour of massive RC structures, concrete is considered in this study at the macroscopic scale. Concrete is consequently modelled as homogeneous.

The developed model is validated on plain concrete structures exhibiting mode I (three-point bending, double notched tension beam) as well as mixed-mode failure (SEN beam). Some RC components are also simulated. A reinforced concrete tie is first studied because of its simple stress state. Then, the complex behaviour of a shear wall under cyclic loading is treated. The several steps of the developed approach are exposed in figure 4.

Organisation of the report

The first chapter of this work reviews experimental considerations of plain and reinforced concrete and gives an overview of numerical approaches for simulating strain localisation. It deals with (i) the experimental aspects where the main characteristics considered in this work are emphasised, (ii) the numerical modelling of reinforced concrete components, (iii) numerical approaches which are able to reproduce strain localisation in concrete. The chapter ends with a summary of the exposed approaches and justifies the choices made in this work.

Chapter 2 aims at presenting the formulation of the enhanced damage model. First, the damage model which is used to describe the softening behaviour is exposed. The constitutive equations are presented and some tests performed at the integration point level are conducted. Some modifications are added in order to adapt the model to concrete. Second, an identification procedure of the material parameters is proposed. Finally, based on the Discrete Strong Discontinuity Approach (DSDA), the enhanced discrete model is established using the strong discontinuity kinematics. The mathematical steps accounting for the compatibility between a continuous damage model and the strong discontinuity kinematics are detailed.

The developed model is associated to a finite element framework (chapter 3). The three-field variational principle is used to incorporate displacement discontinuities in classic finite elements. The discretised system of equations is therefore obtained. The localisation criterion as well as a mixed-mode opening are exposed next. This formulation allows for the definition of a simple traction-separation law. The chapter ends with some numerical tests pointing out the robustness and the anisotropic character of the enhanced model.

A critical assessment with respect to spatial considerations (mesh dependency, crack propagation, crack path) is performed in chapter 4. Only plain concrete specimens are studied. The necessity to ensure crack path continuity in this case is highlighted. The performances of the model are illustrated by the simulations of a three-point bending test on a notched beam, a double notched tension test and a Single Edge Notched (SEN) beam under four point shear.

The last chapter proposes a numerical study on reinforced concrete specimens starting from a simple test as a reinforced concrete tie in tension. The ability of the model in reproducing accurate results under cyclic loading is illustrated by the simulation of a shear wall. The numerical simulations are compared to the experiments.
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Introduction

The last decades have seen an increased interest of the mechanics scientific community in expanding and developing numerical models and techniques capable to reproduce experimental observations of material failure. Cracking of quasi-brittle materials is one of the most widespread topics. In the context of civil engineering and nuclear industry, the scientific community deals with regulatory requirements in terms of sustainable development and safety. These requirements need elaboration of numerical models ensuring fine cracking information with a reasonable computational cost.

Concrete and more generally reinforced concrete modelling constitutes a major research field. Indeed, cracking of reinforced concrete structures generally induces a loss of the structural capacity. But, durability issues are also related to concrete cracking, since the transport of external chemical species through the cracks leads to several pathologies (steel corrosion or sulphate and chlorides attacks). In the context of NPP, cracking also call into question for the residual tightness of the nuclear containment during its service life, introducing a risk of leakage of radioactive products. A variety of constitutive laws has been established and has proven their efficiency to model the concrete behaviour.

But the prediction of fine cracking information (openings, spacings) still remains a challenging issue, especially when dealing with the durability and tightness of nuclear buildings. Furthermore, in a seismic context, relevance is given to the crack formation and crack closure effects.

This chapter exposes a state of the art of the cracking phenomenon and modelling in plain and reinforced concrete specimens. First, the main characteristics of plain and reinforced concrete behaviour are emphasised. Therefore, the experimental evidences of interest for this work are defined. Second, a general overview of the numerical modelling techniques is given: constitutive laws reproducing the concrete non-linear behaviour and numerical techniques allowing for an explicit crack description. Models based on kinematic enrichment by means of displacement jumps are expounded as they constitute the framework of this work.

2 Experimental evidences

Concrete

Quasi-brittle materials as concrete exhibit complex behaviour under several loadings. The complex features of this behaviour can be emphasised under monotonic or cyclic loading.

At the macroscopic level, plain concrete is characterised by different responses in tension and compression. In tension, the behaviour, given in figure 1.1a, is qualified as quasi-brittle. A progressive loss of stiffness is observed upon further loading and the post-peak behaviour exhibits strain softening. At first, the material degradation is due to a diffuse micro cracking process taking place all over the specimen. Micro cracks will initiate in localised zones where a high amount of stress is encountered (inclusions, voids etc.). This diffuse micro cracking process does not affect the macroscopic response; a linear branch is observed before peak. Once the peak reached, progressive degradation is observed due to the coalescence of existing micro cracks into a macroscopic crack. The strength Figure 1.1: Uniaxial behaviour of concrete in tension (a) [Terrien, 1980] and compression (b) [Ramtani, 1990]. capacity of the material and its stiffness are reduced progressively. Crack propagation direction is perpendicular to the loading one.

On the contrary, the compressive behaviour is rather ductile (Fig. 1.1b). That is the consequence of a different cracking mechanism compared to tension. In compression, cracking propagation direction is parallel to the loading direction due to the lateral expansion (Poisson's effect). In addition, the compressive strength exceeds by far the tensile one. Concrete can be considered as an isotropic material before cracking. But, due to the crack develop-ment perpendicular to the largest positive principal strains, an anisotropy is induced depending on the loading direction (Figure 1.2).

Uniaxial cyclic behaviour of concrete is reported in figure 1.3a. Again, a strain softening behaviour is obtained. While unloading, hysteresis loops and residual strains are observed [Nouailletas, 2013]. These features are explained by the friction phenomenon between crack lips and the topology of the crack lips. Under cyclic loading, the unilateral effect corresponding to the stiffness recovery in compression after a damaged tension loading is observed [START_REF] Mazars | The unilateral behaviour of damaged concrete[END_REF], La Borderie, 1991].

The damaged stiffness tends to its undamaged initial value (Fig. 1.3b). Figure 1.3: Cyclic uniaxial behaviour of concrete in (a) [Nouailletas, 2013] and illustration of the unilateral effect (b) [START_REF] Mazars | The unilateral behaviour of damaged concrete[END_REF] .

We can also note that under biaxial loading, this asymmetric behaviour was pointed out by the experimental campaigns of [Kupfer andGerstle, 1973, Lee et al., 2004]. The strength envelops of the tests performed by [START_REF] Lee | Biaxial behavior of plain concrete of nuclear containment building[END_REF] on two types of concrete are reported in figure 1.4. The response is independent on the compressive strength f c .

Other features as dilatancy and loading rate effect develop. Concrete exhibits volumetric dilatancy in compression. This dilatancy affects the Poisson's ratio and characterises the lateral expansion of the specimen loaded in compression [Ramtani, 1990]. A loading rate effect is also observed. The higher the loading rate is, the higher the dissipation energy and the strength are [START_REF] Reinhardt | Joint investigation of concrete at high rates of loading[END_REF].

The aforementioned characteristics of the concrete behaviour are observed at the material scale. However, concrete is composed of several entities conferring it a heterogeneous character. Three observation scales are distinguished, as shown in figure 1.5:
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Figure 1.4: Normalised biaxial strength envelopes for concrete under biaxial stress [START_REF] Lee | Biaxial behavior of plain concrete of nuclear containment building[END_REF].

• microscopic scale: at this scale the cement paste and its constituents are studied.

• mesoscopic scale: this scale describes concrete as the assembly of two entities: the cement paste and the aggregates. These two components are treated as homogeneous.

• macroscopic scale: this scale does not account for the different concrete constituents and considers a homogeneous material. With the scope of modelling massive structures under cyclic loadings, the features of interest for this work are:

• the progressive loss of stiffness and the softening behaviour in tension,

• the unilateral effect during cyclic loadings,

• cracking anisotropy.

Due to high computational cost, concrete modelling at the structure scale must be considered as homogeneous. The relevant scale for this work is the macroscopic scale. Other characteristics such as hysteresis loops, permanent strains, dilatancy and loading rate effects are not considered.

Reinforced concrete

Overall behaviour of RC structures

The quasi-brittle failure of concrete under tension loadings gave birth to the introduction of steel rebars in concrete structures. Steel reinforcement compensates the weakness of concrete in tension leading to a more ductile composite material.

As for concrete, the behaviour of a reinforced concrete structure needs the introduction of an observation scale. At the macroscopic scale (member scale), relevance is made at the capacity to reproduce the overall global behaviour. On the contrary, at the mesoscopic scale (rebar scale) fine description of non-linear mechanisms (cracking, steel-concrete bond behaviour) is sought. [START_REF] Favre | Dimensionnement des structures en béton: dalles, murs, colonnes et fondations[END_REF].

In this section, the behaviour of RC structures at the member scale is presented. A focus is made on the structural behaviour under simple loadings. The response of a reinforced concrete tie in tension is given in figure 1.6. Four main stages are distinguished:

• elastic: the Representative Volume Element (RVE) behaves as a homogeneous material.

• cracking formation: concrete exhibits progressive cracking upon further loading. Steel rebars remain in the elastic domain and limit crack openings.

• cracking stabilisation: crack openings progress as loading increases but no additional cracks appear.

• rebars plastic yielding: steel rebars yield in their plastic domain and the element is transformed in a plastic hinge.

In opposition to concrete behaviour, a hardening branch characterises the behaviour of reinforced concrete structures in tension (Figure 1.6).

Reinforced concrete behaviour under cyclic loading is illustrated in figure 1.7. The curve shows the response of a short reinforced concrete column subjected to cyclic loading in tension and compression. Permanent strains, hysteresis loops, the dissymmetric behaviour characterising plain concrete are also observed for reinforced concrete structures. Again, the main difference with the concrete behaviour is the hardening post-elastic branch. 

Cracking assessment of RC structures

Cracking pattern of reinforced concrete structures is characterised by multiple crack families. This features is illustrated by the three structural cases exposed below. Figure 1.8 represents the cracking zone of a reinforced bending beam under cyclic loading [START_REF] Crambuer | Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading[END_REF]. Two cracks have developed where stirrups are located.

Figure 1.8: Cracking pattern of a reinforced bending beam under cyclic loading [START_REF] Crambuer | Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading[END_REF] Figure 1.9: Cracking distribution of a slab under bending and in plane loading in the two directions [Pascu, 1995].

Several crack families are observed in the reinforced concrete slab depicted in figure 1.9 [Pascu, 1995]. A slab under monotonic in plane and bending in the two directions will develop a cracking distribution that follows the placement and spacings of the reinforcement.

The last example shows the cracking pattern of a shear wall under monotonic and cyclic loading. A system of inclined cracks are observed under monotonic loading. Under a reverse cyclic loading the wall exhibits two families of oriented cracks. These cracking patterns develop in the structure due to physical (localisation) and geometrical (reinforcement) considerations. Damage zones due to compressive stress states are rare for RC structures.

Several features characterising plain concrete as tension-compression dissymmetry, permanent strains, hysteresis loops are also encountered in reinforced concrete. But, some differences are observed:

• a hardening behaviour in tension due to steel reinforcement,

• cracking pattern and anisotropy are not only due to the loading directions but also to the reinforcement configuration.

It is important to highlight that cracking pattern of reinforced concrete structures is marked by the presence of several crack families.

It is worth noting that steel-concrete interface plays an important role in cracking distribution. However, this phenomenon is not developed in this work.

Modelling scales of reinforced concrete structures

This section deals with an overall review of numerical models representing strain localisation in reinforced concrete structures. Once the modelling scale is defined, models used to assess cracking are classified in two categories:

• models describing cracking implicitly in a diffuse way,

• models describing cracking explicitly in a localised way.

The main ingredients of each model as well as their advantages and drawbacks are presented.

Modelling reinforced concrete structures requires the definition of a modelling scale. Mechanical degradation mechanisms differ upon the chosen scale. Three modelling scales, represented in figure 1.11, are defined according to Ulm [START_REF] Ulm | Modélisation élastoplastique avec endommagement du béton de structures[END_REF]. 

Global scale

At the global scale, the reinforced concrete component is considered as homogeneous. Global models describe the physical degradation of the composite material by simple laws linking global structural quantities as moment-curvature or force-displacements. A well known global model is the one introduced by Takeda [START_REF] Takeda | Reinforced concrete response to simulated earthquakes[END_REF], a moment-curvature law, which accounts for three phases: an elastic one, the cracking phase and the plastic one (see figure 1.12).
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Figure 1.12: Takeda's global model expressing moment-curvature evolution [START_REF] Takeda | Reinforced concrete response to simulated earthquakes[END_REF].

The concept of macro elements belong to this approach. The macroscopic model is constructed upon the Standard Generalised Material hypothesis [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF]. Each local contributing phenomena -concrete, reinforcement, steel-bond behaviour -is studied and their non-linearities are considered. Homogenisation techniques are then used to build the response of the macro element in terms of generalised variables.

Models based on an implicit description of cracking Several macro models available in the literature are used to model reinforced components as beams, slabs, walls or connections [START_REF] Brun | A simple shear wall model taking into account stiffness degradation[END_REF],Nguyen, 2012,Combescure et al., 2013]. In the context of reduced kinematics, Koechlin [Koechlin, 2007] has developed a global model for plate/shell elements which was established for impact loading configuration. The GLRC (GLobal Reinforced Concrete) model describes the membrane and bending behaviour of reinforced concrete structures using damage and plasticity theory. The main hypothesis relies on the flexural cracking mechanism. This model was improved in terms of dissipation mechanisms by [START_REF] Combescure | Homogenised constitutive model coupling damage and debonding for reinforced concrete structures under cyclic solicitations[END_REF]. Then, [Huguet-Aguilera, 2016] added to this model steel-concrete slip and steel yielding behaviour. The homogenisation technique was used to built the composite macro model.

Models based on an explicit description of cracking

Global models based on a localised cracking description have also been developed recently. Oliver and co-workers [START_REF] Oliver | Twodimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach[END_REF] have extended the concept of strong discontinuities to the modelling of the composite material in two dimensions. The numerical modelling of the composite material considers the plain concrete matrix failure and non-linear behaviour of rebars and their effects such as the bond-slip and dowel action.

The mixture theory is used to build the continuum composite stress-strain relation. A strong discontinuity is introduced to provide explicit cracking information. Using the same approach, [Jukić et al., 2013, Bui et al., 2014] have elaborated moment-curvature and force-displacement laws by means of kinematically enriched beam elements.

The global approach has the advantage to reduce calculation time as a structure may be modelled by a set of elemental representations as beams, walls, columns. However, this approach is defined for a precise type of structure, material and loading case. Its robustness must be proven for each configuration of the studied structure.

Semi-global scale

Models developed in the framework of a semi-global scale are based on a two scale description. Multi fibres and multi layers hypothesis are used to simulate reinforced concrete beams or slabs [START_REF] Anthoine | Non-linear behaviour of reinforced concrete beams: from 3d continuum to 1d member modelling[END_REF], Spacone et al., 1996, Mazars et al., 2006, David, 2012, Bitar et al., 2016].

Models based on an implicit description of cracking

The multi fibre approach is often used to model reinforced concrete beams or columns. It consists in dividing the section of a beam into several fibres [START_REF] Owen | Finite elements in plasticity[END_REF]. Each fibre has a constitutive law which describes the non-linear phenomena. The multi fibre section is a composite material of concrete and steel fibres. [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete structural elements[END_REF] have developed a 3D multi fibre Timoshenko beam element accounting for shear and torsion. A damage model was employed to describe the softening behaviour of concrete and a hardening plastic model for steel fibres.

Models based on an explicit description of cracking A novel approach based on the embedded discontinuities was developed by [START_REF] Bitar | A novel multi-fiber timoshenko beam finite element formulation with embedded discontinuities to describe reinforced concrete failure under static loadings[END_REF]. In the multi fibre framework, the fibres are enhanced by a discontinuity jump. This enrichment accounts for explicit concrete crack openings and also the development of steel plastic hinges. The multi fibre section is divided into concrete and steel fibres. A continuous model is used to describe the bulk and a cohesive one reproduces the strain localisation for each material.

The semi-global approach has the advantage to describe local phenomena with a reduced computational effort. Thus, it is appropriate for large scale structures. It is also a prominent research field in the development of localised cracking description-based models.

Local scale

At the local scale, material non-linearities are represented by means of stress-strain constitutive laws for each component, steel and concrete. Concrete behaviour is represented by a wide range of models, some of them exposed in section 4. Steel behaviour is described by simple or complex laws accounting for plasticity or buckling. Steel-concrete bond behaviour may or not be taken into account.

Modelling of the composite structure relies on the decomposition of the total stress into elementary contributions of plain concrete, reinforcement and steel-concrete interaction [Bažant and Gambarova, 1980, Vecchio and Collins, 1982, Feenstra and de Borst, 1995]. This approach provides fine local information such as crack openings, interface degradation. Nevertheless, its computational cost is more important than the two preceding approaches.

In the developed approach, concrete and reinforcement are modelled separately. This choice enables a flexible modelling in function of the configuration of the structure. Thus, it is in accordance with the local scale. Consequently, interest must be laid on concrete modelling.

4 Concrete modelling

Models based on a diffused cracking description

Cracking is modelled implicitly by means of a continuous field describing the progressive degradation of the material. The main characteristics of several models are exposed below.

Crack band theory

The crack band theory of [Bažant and Oh, 1983] describes cracking as a concentration of nonlinearities in a crack band of width w c (Fig. 1.13). The crack band is associated to a continuous strain field. The non-linear behaviour is expressed in terms of stress-strain relationship in the band.

Outside the crack band, the material is considered elastic. This theory reproduces quite well the softening behaviour of the quasi-brittle materials. The major drawback is the bandwidth dependency of the crack path.

Figure 1.13: Principle of the crack band approach [Bažant and Oh, 1983].

Smeared crack theory

The smeared crack theory, proposed by [Rashid, 1968, De Borst andNauta, 1984], considers the decomposition of the strain tensor into elastic strains and crack strains. This decomposition corresponds to a simple rheological model in which the elastic spring is coupled in series with a unit representing the crack contribution as illustrated in figure 1.14.
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Figure 1.14: Principle of the smeared crack approach [Jirásek, 2011].

Crack strains are related to the stresses transmitted across the crack by a decreasing function. This relation represents the kinetics of the gradual cracking process-initiation, growth and coalescence.

A simple one-dimensional form of this relation is given in equation 1.1 [Jirásek, 2011]:

σ = f (ε c ) = f t exp - ε c ε f , (1.1) 
with ε f a material parameter controlling the steepness of the softening curve.

At first, a fixed crack approach is developed. Crack direction determined at the crack initiation moment is fixed. This approach suffers from a spurious stress transfer across an open crack, namely stress locking. In addition, shear stresses are not reproduced in a realistic manner. This leads to an overestimation of the energy dissipation and the residual strength.

A rotating crack theory was then proposed by [START_REF] Jirásek | [END_REF]]. Crack plane orientation is allowed to rotate. This latter succeeds in improving shear stresses issues but stress locking still occurs due to a misalignment between the macro crack direction and the finite element side. A fully fledged study on locking in smeared crack theory has been carried out by [START_REF] Jirásek | [END_REF]].

Theory of plasticity

The theory of plasticity was first introduced to model plastic yielding of metals. This theory was then adapted to concrete-like materials [Reynouard, 1974, Menetrey and Willam, 1995[START_REF] Feenstra | A composite plasticity model for concrete[END_REF], Ile and Reynouard, 2000, Imran and Pantazopoulou, 2001, Grassl et al., 2002]. The idea is the strain decomposition into an elastic part ε e linked to the sound material and the plastic part ε p associated to the cracked material. Stresses are then obtained by applying the Hooke's law given in equation 1.2.

σ = C : ε e = C : (ε -ε p ) , (1.2)
with C the elastic stiffness tensor. A schematic stress-strain response is depicted in figure 1.15. [Jirásek, 2011].

From figure 1.15, two features of plastic models can be outlined. First, the plastic strain is irreversible. Hence, when unloading is performed, permanent strains are exhibited. Second, the degraded stiffness is the same as in the initial virgin state. Due to this inherent formulation, plasticity models are convenient for modelling concrete under compression loading. However, for cyclic tension/compression loadings this theory is no longer adapted.

Damage theory

The notion of damage was used for the first time in the pioneering work of Kachanov [Kachanov, 1958], related to the creep failure of metals. Then, the first damage model for describing concrete failure was introduced by [Mazars, 1984]. The main idea is to identify the progressive degradation of the material by an internal scalar variable: damage D. This variable is introduced in the stress-strain relationship and varies from 0 (virgin state) to 1 (fully cracked state). The stress-strain relationship is given in equation 1.3. It reads:

σ = (1 -D)C : ε . (1.3)
Damage evolution is governed by a yielding criterion. [Mazars, 1984] propose a criterion based on the extension strains. Concrete dissymmetry is obtained by defining two different damage variables.

In the same trend, [START_REF] Comi | Fracture energy based bi-dissipative damage model for concrete[END_REF] propose a damage model where each damage variable is associated to its own loading function. [START_REF] De | Comparison of nonlocal approaches in continuum damage mechanics[END_REF] avoid definition of two damage variables to tackle dissymmetry by introducing a criterion built upon strain invariants.

Mazars's damage model remains the simplest and the most widely used in non-linear analysis for industrial applications. However, some features related to the cyclic behaviour -permanent strains, unilateral effect -are not taken into account. [La Borderie, 1991] improved Mazars's model by introducing the unilateral effect and recent models are capable to represent permanent strains, unilateral effect, hysteresis loops and frictional cracking behaviour [START_REF] Richard | Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings: Formulation, numerical implementation and applications[END_REF],Sellier et al., 2013, Vassaux et al., 2015].

The aforementioned models describe damage by means of an isotropic scalar variable D. Nevertheless, several authors [Mazars, 1984, Shah andOuyang, 1991] have shown the induced anisotropy of concrete. Stiffness degradation is faster in the directions experiencing larger extensions leading to anisotropic material properties. A tensorial representation of this induced anisotropy is therefore necessary. Damage should be characterised by a fourth order tensor [Krajcinovic, 1985, Chaboche, 1982, Lemaitre et al., 2009]. However, this representation is not suitable for numerical applications because of the high number of material parameters that are introduced. Thus, many authors have made the choice to work with a second order tensorial representation of damage [START_REF] Cordebois | Endommagement anisotrope en élasticité et plasticité[END_REF], Murakami, 1988, Desmorat et al., 2007, Desmorat et al., 2015]. This formulation is a good compromise between the accurate description of the material behaviour and the practical (numerical) point of view.

Anisotropic damage-based models describe quite accurately global cracking and crack closure effects by means of spectral decomposition [Ladeveze, 1983,Dragon andHalm, 1996]. However, [Chaboche, 1992, Welemane and Cormery, 2002, Carol and Willam, 1996] have pointed out some inconsistencies when dealing with a spectral decomposition of damage and strain tensors. A thermodynamic consistent model must consider the conservation of major and minor symmetries of the stiffness tensor and uniqueness of the free energy. In addition, at least continuity of the stress-strain response must be ensured in the transition of opened-closed cracks and this transition must not yield artificial dissipation [Carol and Willam, 1996]. Several authors [START_REF] Carol | A thermodynamically consistent approach to microplane theory. part i. free energy and consistent microplane stresses[END_REF], Cormery and Welemane, 2010, Bargellini et al., 2008] have overcome the spectral decomposition inconsistencies by considering the directional basis of the cracks instead of strains.

Bargellini's model [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] has the advantage to describe damage by means of oriented crack families. This representation accounts for an accurate and physical description of the induced anisotropy.

As mentioned in the former paragraph, the compressive behaviour of concrete may be modelled by means of the theory of plasticity. Damage-based models are adequate to describe the tensile behaviour. These two theories were combined and gave birth to the plastic-damage models. The stress-strain diagram is given in figure 1.16. The behaviour is characterised by permanent strains and reduction of stiffness. Models of this type can be found in [Ortiz, 1985, Lubliner et al., 1989, Yazdani and Schreyer, 1990, Lee and Fenves, 1998[START_REF] Gatuingt | Coupled damage and plasticity modelling in transient dynamic analysis of concrete[END_REF], Grassl and Jirásek, 2006, Jason et al., 2006].

Microplane models

Continuum models presented above are tensorial based models; a direct stress-strain tensor is postulated satisfying the independence on the choice of a spatial coordinate system. Microplane models, on the contrary, postulate a uni-dimensional non-linear stress-strain relationship in a certain number of planes called microplanes. Following the kinematic constraint, microstrains are computed by pro- [Jirásek, 2011].

jecting the macroscopic strain tensor. A constitutive law in each microplane links microstrains to microstresses [Bažant andOh, 1985, Bažant et al., 2000]. Upon the energy equivalence principle, macroscopic stresses are calculated by integration. This scheme is reported in figure 1.17. .17: Structure of microplane models at the integration point level.

In the same trend as the microplane models, [START_REF] Fichant | Continuum damage modelling: approximation of crack induced anisotropy[END_REF]] developed a simplified model where the damage tensor is discretised in finite plans allowing for the description of isotropic and anisotropic states. A relationship between the effective stress and the strains is defined in each finite direction.

The authors define two damage surfaces which are interpolated between them in each direction. The initial isotropic elastic state is recovered without integrating. If the number of finite directions tends to infinity, the microplane model is recovered. The computational cost of these models is important due to the numerical integration.

Regularisation techniques for the softening behaviour

Quasi-brittle materials exhibit a localisation phenomenon which consists in the development of nonlinearities in a zone smaller than the structure's size. Mathematically, this phenomenon results in the non-uniqueness of the problem. In a finite element context, mesh dependency is observed. The response of a numerical test depends on the finite element size and induces a non physical phenomenon. Indeed, the dissipation energy tends to zero with mesh refinement. In order to avoid mesh dependency, regularisation techniques were introduced.

The energetic regularisation approach, introduced by [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF], consists in making the softening constitutive law dependent on the finite element size. In this way, the dissipation energy is mesh-size independent. Nevertheless, the response is dependent on mesh orientation (straight or inclined mesh) [Giry, 2011].

Another technique is the non-local regularisation of internal variables. This approach translates interaction phenomena taking place at a local scale into macroscopic internal variables. The interaction phenomena occur in a small bandwidth l c , called the characteristic length, identified as three times the maximum aggregate size for a bar under tension [Bažant and Pijaudier-Cabot, 1989]. Numerically, localisation no longer occurs in a finite element, but more so in a band containing several finite elements. The non-local quantity is built as the product of the local quantity with a weight function.

Several functions can be chosen for the weight function such as a bell-shaped distribution or a Gaussian distribution. In [Pijaudier-Cabot and Bažant, 1987] strains are used to calculate micro cracking interactions whereas [START_REF] Giry | Stress-based nonlocal damage model[END_REF] use stresses.

Recently [START_REF] Desmorat | Nonlocal models with damage-dependent interactions motivated by internal time[END_REF] have proposed a non-local regularisation method motivated by internal time. The non-local framework of [Pijaudier-Cabot and Bažant, 1987] is kept but the weight function is considered as function of the internal time (wave propagation time). The stress-based and the internal time non-local approaches lead to localisation with a non-spreading damage zone compared to the original non-local technique.

The approach introduced by [De Borst and[START_REF] Borst | [END_REF]De Vree, 1996] considers the neighbouring influence in each point by introducing the gradient of internal variables. The regularised variable obeys a second order differential equation. This technique is equivalent to the non-local approach of [Pijaudier-Cabot and Bažant, 1987] if the weight function is a Green function.

Models based on a localised cracking description

Unlike an implicit description, cracking can be reproduced by means of explicit discontinuities in a finite element model. Discontinuities are introduced explicitly in the finite element mesh (inter-element interfaces) or in a kinematic way in the model (adapted shape functions).

In the first case, a displacement jump is modelled by placing zero-width elements between the finite elements. The crack path (discontinuity path) is mesh dependent. For concrete-like materials, mesh dependency is not alleviated; however, for masonry this might not be a problem.

In the second case, discontinuities are modelled in a mathematical sense by means of a kinematic enrichment. Incorporating displacement discontinuities results in the advantage of using coarse finite element meshes compared to continuous models. If a displacement jump is captured, there is no necessity to capture high strain gradients. Nevertheless, the mesh discretisation needs to be fine enough to represent correctly the continuum response.

Models based on the LEFM

Linear Elastic Fracture Mechanics (LEFM) offers the first framework to explicitly introduce discontinuities. The activation criterion is based on the stress intensity factor. When this later exceeds a critical value, a single crack develops and propagates [Griffith, 1921]. Three failure modes, reported in figure 1.18, can be distinguished:

• Mode I or pure opening mode;

• Mode II or in-plane shear mode ;

• Mode III or out-of-plane shear mode.

Mode III Mode II Mode I

Figure 1.18: Failure modes given by LEFM [START_REF] Anderson | Fracture mechanics: fundamentals and applications[END_REF]. This approach is suitable for problems provided with existing flaws and a negligible micro cracking zone ahead of the crack tip. However, it does not describe crack initiation neither growth and coalescence of micro cracks in the fracture process zone.

Extension of the LEFM gave birth to the cohesive crack models. The pioneering work of cohesive crack models for concrete applications is the fictitious crack model developed by [Hillerborg, 1991]. The fictitious crack model distinguishes three zones (Figure 1.19): a stress-free opened crack zone ; a fictitious crack zone governed by a softening law expressed in terms of stress-crack opening; an elastic one where a stress-strain relationship is considered upon an activation criterion. For mode I opening, this criterion depends on the tensile strength f t . The fictitious crack zone describes cracks forming; energy is dissipated in this zone and thus cracks propagate. In the finite element context, the cohesive crack models consist in introducing interface elements between finite elements to model the crack. If the crack path is known a priori, from experimental considerations or because of the structure of the material (laminates), the mesh can be constructed such that the crack path coincides with the element boundaries [Rots, 1991,Allix andLadevèze, 1992].

σ = f(ω) σ = f t σ = f(ε) ω crack fictitious crack
Figure 1.19: Fictitious crack model [Hillerborg, 1991].

For an unknown crack path, one could insert interface elements between all finite elements [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF] or use remeshing techniques [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF]. These models introduce mesh bias [START_REF] Tijssens | Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces[END_REF] and are not suitable for large-scale simulations due to an important computational cost. However, recent models based on the partition of unity shape functions to introduce cohesive elements point out the ability of cohesive crack zones in describing cracking of quasi-brittle materials or delamination [START_REF] Remmers | A cohesive segments method for the simulation of crack growth[END_REF], Wells, 2001].

In the context of cohesive-like finite element technique, the probabilistic approach developed by [START_REF] Rossi | Numerical modelling of concrete cracking based on a stochastic approach[END_REF] represents concrete heterogeneity by means of random distributions of the Young modulus and the tensile strength. Thus, cracking kinetics -initiation and propagation -are random. Cracks are introduced explicitly in the finite element interfaces and a non-cohesive law is considered in the interface elements. Friction between crack lips during unloading is modelled by a Coulomb's law. This model performs very well in tension [START_REF] Rossi | Scale effect on concrete in tension[END_REF], compression [START_REF] Rossi | Compressive behavior of concrete: physical mechanisms and modeling[END_REF] and under biaxial loading [START_REF] Rossi | Size effects in the biaxial tensile-compressive behaviour of concrete: physical mechanisms and modelling[END_REF]. Nevertheless, the computation cost is prohibitive for large scale simulations due to the mesh refinement. However, this approach is relevant when fine local information is sought in a certain zone.

Enriched kinematic based models

Within the scope of capturing strain localisation, recent models based on a kinematic enrichment have been developed. Localisation is no more considered as a continuous process but as a discontinuous one. The continuum kinematics is enhanced in order to provide discontinuous fields. Two families can be distinguished in function of this latter:

• weak discontinuities introducing a discontinuous strain field,

• strong discontinuities introducing a discontinuous displacement field.

The weak discontinuity concept was first introduced by [START_REF] Ortiz | A finite element method for localized failure analysis[END_REF]. A single discontinuity per finite element was postulated (Figure 1.20). The weak discontinuity approach was applied to concrete in the framework of material heterogeneities modelling [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite-element method[END_REF], Roubin et al., 2015]. Indeed, concrete cracking is observed in the matrix but also at the aggregate/matrix interface.

Material heterogeneities, provided by the different properties of the aggregate on one hand and the matrix on the other hand, reflect a singularity on the strain field.

Figure 1.20: Elements with a weak discontinuity (left), two weak discontinuities (middle) and a strong discontinuity (right) [Jirásek, 2000].

Belytschko [START_REF] Belytschko | A finite element with embedded localization zones[END_REF] improved this approach by embedding two weak discontinuities inside an element in order to represent a localisation band (Figure 1.20).

The strong discontinuity approach, introduced by [START_REF] Dvorkin | 2d finite elements with displacement interpolated embedded localization lines: the analysis of fracture in frictional materials[END_REF] and [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF], models localisation lines by embedding a discontinuity in the displacement field (Figure 1.20). This approach reflects quite well the physics of a crack by means of a displacement jump contrary to a jump in the strain field (weak discontinuity approach).

In this work, the strong discontinuity approach is used to model macroscopic cracking of concrete.

The enrichment techniques to introduce the strong discontinuity are exposed next. 

Kinematics of an embedded discontinuity

u(x,t) = u(x,t) + H Γ S (x) ũ(x,t) ∀ x ∈ Ω \ Γ S , (1.4) 
where H Γ S (x) is the Heaviside function centred at the discontinuity Γ S , u and ũ are continuous functions on the domain Ω. The Heaviside function is used to introduce the discontinuity jump u whose value is given by ũ. Equation 1.4 constitutes the kinematic enrichment of an embedded strong discontinuity. In a finite element context, this kinematic enrichment is taken into account by adding additional degrees of freedom. Depending on the support of additional displacement modes, embedded discontinuities can be tackled using two main methods: nodal enrichment [START_REF] Belytschko | A finite element with embedded localization zones[END_REF], Duarte and Oden, 1996, Moes et al., 1999, Duarte et al., 2000, Elguedj et al., 2006, Ferté et al., 2016] and element-based enrichment [START_REF] Armero | An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids[END_REF], Oliver, 1996, Larsson et al., 1996, Wells and Sluys, 2000, Benkemoun et al., 2010, Roubin et al., 2015] as illustrated in figure 1.22. Nodal enrichment approach is based on the Partition of Unity Method (PUM) [Melenk and Babuška, 1996]. In the literature, two different nominations exist: Generalised Finite Element Method (G-FEM) [START_REF] Duarte | An h-p adaptive method using clouds[END_REF], Duarte et al., 2007, Kim et al., 2011] and eXtended Finite Element Method (X-FEM) [START_REF] Belytschko | A finite element with embedded localization zones[END_REF], Moes et al., 1999, Ferté et al., 2016]. The differences between them rely on the definition of the enrichment functions. The following paragraphs expose the main characteristics of these two methods.
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Partition of unity-based finite elements

The partition of unity paradigm defines a set of functions N i (x) which sums up to one at each point x of the domain Ω:

n ∑ i=1 N i (x) = 1 ∀ x ∈ Ω , (1.5)
where n is the number of nodes of the discretisation problem. For classical shape functions, equation 1.5 is verified. The kinematic enrichment of an embedded strong discontinuity (equation 1.4) is approximated by equation 1.6:

u PU = n ∑ i=1 N i d i + n ∑ i=1 N i m ∑ j=1 E j d s i j , (1.6)
where d i are the standard degrees of freedom related to the functions N i , d s i j are the additional degrees of freedom related to the enrichment basis, m is the number of enrichment nodes and E j are the enrichment functions. Enrichment shape functions based on the partition of unity method, termed G-FEM shape functions φ i j , are constructed as the product of a partition of unity and enrichment functions.

φ i j = N i × {1, E j } (1.7)
This approximation allows to introduce into the shape functions a priori knowledge about the behaviour of the solution of the problem. Several functions such as polynomial, non-polynomial or discontinuous functions can be used as enrichments. In figure 1.23 is represented the construction of a G-FEM shape function when the enrichment is a complex non-polynomial function.

Figure 1.23: Construction of the G-FEM shape function: at the top, the N i function, in the middle the E j function and in the bottom the G-FEM φ i j function [START_REF] Kim | Parallel simulations of threedimensional cracks using the generalized finite element method[END_REF].

The X-FEM is a particular case of the partition of unity-based method where the enrichment function is discontinuous. Hence, the X-FEM shape functions are constructed as the product of a partition of unity and the Heaviside function [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF]. The X-FEM approximation of the kinematic enrichment, given in equation 1.8, reads:

u X-FEM = n ∑ i=1 N i d i + m ∑ j=1 N j d s j H H (x) . (1.8)
With the scope to describe the singularities at the crack tip [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF] propose to introduce asymptotic functions derived from LEFM. An example of these functions for isotropic materials is given in equation 1.9.

{F l } 4 l=1 = √ r{cos(θ/2), sin(θ/2), cos(θ/2)sin(θ), sin(θ/2)sin(θ)} (1.9)
Thus, the enrichment is performed in two levels: at the crack tip and far from the crack tip. This distinction is illustrated in figure 1.24.

Figure 1.24: X-FEM enrichment; red squares are crack tip nodes and blue circles are Heaviside enriched nodes [START_REF] Belytschko | A review of extended/generalized finite element methods for material modeling[END_REF].

One can select one element, as shown at crack tip B, or several ones as shown at crack tip A. Selecting several elements near the crack tip improves accuracy of the method. Heaviside functions are used far from the crack tip [Moës and Belytschko, 2002].

For the G-FEM/X-FEM, the finite element mesh can be completely independent from the morphology of a crack. Thus, there is no need for remeshing. Interpolation of additional degrees of freedom provides a jump in the displacement field which is continuous across the elements. These two methods give also accurate results when dealing with crack branching [START_REF] Duarte | A high-order generalized fem for through-the-thickness branched cracks[END_REF], 3D crack propagation [Ferté et al., 2016,Duarte et al., 2000] or crack propagation in porous media [START_REF] Faivre | 2d coupled hm-xfem modeling with cohesive zone model and applications to fluid-driven fracture network[END_REF]. Application of the X-FEM is also found for dynamic crack propagation [Réthoré et al., 2005, Prabel et al., 2007] or fatigue crack propagation [Ferrié et al., 2006]. Nevertheless, multi cracking description for quasi-brittle materials is still an ongoing work.

Embedded Finite Element Method (E-FEM) On the contrary, the element-based enrichment consists in adding degrees of freedom locally in the elements that are crossed by the crack. Thus, the additional displacement modes can be condensed at the element level. The displacement jump in this case is not continuous across the elements but element-wise constant. The corresponding displacement field is given below:

u E-FEM = n ∑ i=1 N i d i + n elem ∑ j=1 M j d s j , (1.10)
where d i is the displacement at node i, N i are the classical shape functions at node i, M j is the enrichment function corresponding to the element j and d s j is the displacement jump at element j. The function M j is built from the Heaviside function and the shape functions of nodes belonging to Ω + . This shape function is equal to 1 at the discontinuity and 0 otherwise.

In order to show some of the differences between the global and the local enrichment, a one dimensional example is considered. In this example, X-FEM is treated for the global enrichment.
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Classical shape functions

Enriched shape functions Figure 1.25: Enrichment function 1D : X-FEM (left), E-FEM (right) , according to [START_REF] Jirásek | [END_REF].

A bar composed of four nodes is shown in figure 1.25. The crack is located between nodes 2 and 3. Enrichment functions to capture the discontinuity jump are plotted. The E-FEM enrichment function is constructed easily such that it equals 1 at the discontinuity and zero otherwise. It can be noticed that the X-FEM needs the introduction of two enrichment functions to describe the crack while the E-FEM only needs one. Moreover, for 2D or 3D examples with a high number of degrees of freedom, X-FEM is more computational time-demanding.

In terms of kinematic considerations, some differences are exhibited by the two methods. This is illustrated by the example in figure 1.26. A rectangular body is divided into two parts by a stress-free vertical crack (in red in the figure). The right part of the body is submitted to compression loadings in the direction parallel to the crack. Using the E-FEM, a kinematic coupling is established between the separated parts. Deformation of the right part induces also deformation of the left part. This is due to the continuous interpolation of the strain field. On the contrary, the X-FEM ensures a complete kinematic decoupling. The approximation with the X-FEM can be seen as two overlapping meshes: solid circles are physical nodes and empty ones are "virtual" nodes that correspond to a continuous extension of the displacement field beyond the vertical discontinuity. In this way, deformation of both parts of the body are reproduced correctly. A comparison of the two methods with respect to several features is summarised in table 1.1.

Figure 1.26: Kinematic coupling illustration: a body split into two independent parts (left), E-FEM (middle) and X-FEM (right), according to [START_REF] Jirásek | [END_REF] Table 1.1: Comparison between E-FEM and X-FEM/G-FEM. A study performed by [START_REF] Oliver | A comparative study on finite elements for capturing strong discontinuities: E-fem vs x-fem[END_REF] points out a higher accuracy of E-FEM for coarse meshes.

E-FEM X-FEM/G-FEM

In addition, the computational cost for multiple cracks keeps constant for E-FEM and increases for X-FEM.

Variational approach

The idea of the variational approach to fracture, proposed by Francfort and Marigo [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], is that the crack propagates along a path of least energy. It is based on the minimisation of the total energy of a body (bulk energy plus crack energy) with respect to a crack geometry.

The weaknesses of the classical Griffith theory, namely crack initiation, direction of crack path and crack jumps are present. In order to locate the crack, a second field was introduced in the energy functional [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF]. This auxiliary field can be seen as a regularised parameter of the displacement field. It is referred as the phase field which equals 0 on the crack and 1 away from it. This field does not represent the crack as a geometric entity but as a smoothed continuum approximation with a gradient providing a transition between the intact and fractured states, taking place within a characteristic length. Miehe and co-workers [START_REF] Miehe | Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations[END_REF] have developed a phase field model which is thermodynamically consistent and accounts for anisotropic damage by using an additive decomposition of the stored energy. In the literature, several studies have been achieved using the phase field approach such as complex dynamic brittle fracture [START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF], Hofacker and Miehe, 2012, Li et al., 2016] or thermo-mechanical problems [Kuhn and Müller, 2009]. Even if this approach is attractive, its major drawback is the computational expense related to mesh size requirements. Indeed, this approach requires a mesh having a characteristic length which tends to zero, faster than the crack regularisation parameter.

Discrete models

The previous models are based on the continuum representation of the media. In the discrete models, the media is composed of finite entities as bars, beams, belonging to the class of lattice models [Schlangen and Van Mier, 1992, Herrmann et al., 1989, Ince et al., 2003, Delaplace and Desmorat, 2007] or particles belonging to the class of particle models [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF], Zubelewicz and Bažant, 1987, Donzé et al., 2009]. Illustration of the two types of description is shown in figure 1.27. A relationship is built between the internal forces acting at the sections of these entities and the relative displacements and/or rotations of the sections. Discrete models can represent cracking naturally and in a fine way. However, when dealing with large-scale structures they are not suited due to the high computational time they require.

Mixed approaches

Mixed approaches combining the different models presented above have been developed to provide a fine representation of strain localisation.

[ Jirásek and Zimmermann, 2001] has combined the smeared crack theory and the enriched kinematic models. A smeared crack model is used until a critical crack opening is reached and then an embedded crack model (E-FEM) is activated as illustrated in figure 1.28. From a physical point of view, a diffused description of cracking at early stages of material degradation is adequate. Macro cracking or localised fracture is better modelled by a displacement discontinuity. Optimal results in terms of mesh-dependency are obtained if the embedded crack orientation is determined from principal nonlocal strains. A continuous crack path is also necessary. Computation cost thus increases compared to other methods. In the same trend, [Brancherie, 2003] couples an elastic-plastic/ elastic-damage model to the E-FEM technique.

Figure 1.28: Combination of smeared and embedded crack model [Jirásek and Zimmermann, 2001].

[ [START_REF] Simone | From continuous to discontinuous failure in a gradient-enhanced continuum damage model[END_REF] propose a continuous-discontinuous model which couples the damage theory and the partition of unity paradigm. The continuum is modelled using a gradient-enhanced damage model [START_REF] Peerlings | Gradient-enhanced damage modelling of concrete fracture[END_REF]. When a fully damage state is attained, the continuous fields are enriched with a discontinuity. These discontinuities are introduced using the partition of unity shape functions. The failure process, from diffuse micro cracking to the macroscopic traction-free crack, is achieved in a realistic way. Nevertheless, the authors have shown that regularised damage model produces incorrect failure pattern in shear band problems and incorrect damage initiation away from the crack tip in mode I problems.

Recently, the thick level set approach bridges damage based models and the X-FEM approach [Moës et al., 2011]. Damage evolution is described by a level set function depending on the damage bandwidth (Figure 1.29). When a full damage is reached, a discontinuity jump is introduced in a natural way using the X-FEM. This approach is able to recover complex crack paths. However, numerical implementation and the management of the level sets is still cumbersome, particularly in 3D.

Figure 1.29: Thick level set approach [Moës et al., 2011].

The mixed approaches exposed offer an interesting framework for capturing strain localisation. Although the computational cost increases, these approaches take advantage of each model when needed: micro cracking with a continuous approach and macro cracking with an enriched one.

Summary of concrete modelling

According to the experimental observations highlighted in section , models based on an implicit cracking description are suitable to represent some of the features of interest for our work. Models based on the damage theory are the most adapted to reproduce the required characteristics of concrete: softening behaviour in tension, progressive loss of stiffness, unilateral effect, crack anisotropy. The model developed by [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] is convenient for modelling the aforementioned characteristics, especially the crack anisotropy, by means of oriented crack families accounting for directional damage mechanisms.

However, the simple use of these models requires the employment of post-processing methods in order to quantify the crack openings [START_REF] Matallah | A practical method to estimate crack openings in concrete structures[END_REF], Oliver-Leblond et al., 2013, Dufour et al., 2012]. The choice is made here to explicitly taken into account the crack openings in the model. A relevant way is the use of enrichment techniques. Within the scope of modelling explicit multiple cracking of reinforced concrete components, the E-FEM is chosen in this work due to its easy implementation, less-intrusive character in an existing finite element code and its inherent local character which reduces the calculation cost for large scale simulations. This technique needs the definition of a constitutive law which governs the dissipative mechanisms at the discontinuity. Henceforth, the enrichment of Bargellini's model with the E-FEM ensures on the one hand, a good description of concrete behaviour and accounts, on the other hand, for an explicit crack opening. Furthermore, this model has the advantage to be cast in a simple analytical way which facilitates the introduction of the strong discontinuity kinematics compared to other tensorial-based damage models.

Conclusion

Numerical modelling of concrete aims at representing the physical behaviour of the material. With that aim, this chapter deals with an overview of the mechanical behaviour of plain and reinforced concrete in two aspects: the experimental evidences and the associated numerical techniques which reproduce these features.

In the context of RC structures subjected to cyclic loadings, the main experimental features are exposed next: a softening behaviour of concrete in tension, a hardening behaviour of reinforced concrete in tension, a progressive loss of stiffness during loading, a dissymmetry in tension/compression, an anisotropic cracking due to the loading directions and the reinforcement geometry.

Modelling of the aforementioned characteristics needs the definition of a scale of interest. In this work, the local scale is chosen: concrete and reinforcement are modelled separately. This choice allows for a flexible modelling configuration.

Within the scope of representing multiple cracking and cracking anisotropy, an anisotropic damage model accounting for oriented crack families is chosen [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF]. This choice is based on the advantage of the model in describing damage by means of several crack families. This model is then kinematically enriched in order to reproduce explicitly the development of cracks in the material during loading. Again, this step is facilitated by the chosen damage model as one deals with scalar relationships. As exposed in the previous paragraph, the element-based method (E-FEM) is employed.

Compared to the other enriched methods, the element-based one is less-intrusive. In addition, the computational cost is reduced due to its local character, as the enrichment takes place at the element level. Moreover, this method is adapted to the description of multiple cracking in reinforced concrete structures. Using a discrete approach, the damage model and the kinematic enrichment technique are coupled in order to build an enhanced damage model accounting for oriented crack families and explicit cracking.

In the next parts of the document, the enhanced model is formulated (Chapter 2) and implemented in the a finite element framework (Chapter 3). The model is then validated on plain concrete specimens and on RC structures (Chapter 4 and Chapter 5).

Introduction

This chapter deals with the formulation of the enhanced damage model. For this purpose, a damage model and the embedded strong discontinuity approach (E-FEM) are coupled.

The damage model must be able to reproduce the features of interest of concrete behaviour when dealing with cyclic loadings:

• progressive loss of stiffness and softening behaviour in tension,

• crack anisotropy,

• unilateral effect.

Furthermore, the state of the art conducted in the first chapter emphasised the multiple cracking which characterises concrete and reinforced concrete structures. Among the several damage models in the literature, the one developed by [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] accounts for different oriented crack families and reproduces the aforementioned features. In addition, this model has the advantage to be cast in a simple analytical way which facilitates the introduction of the strong discontinuity kinematics compared to other tensorial-based damage models. In the first part of this chapter, the constitutive equations are presented. The model is tested at the integration point level and some modifications are performed in order to adapt it to concrete.

Second, an identification procedure is proposed to identify the material parameters. A 2D beamparticle discrete model is used as reference. In addition, used as a virtual testing machine, it alleviates the drawbacks or impossibilities of experimental laboratory tests. The main characteristics of the discrete model and the identification procedure are detailed.

Finally, the strong discontinuity approach is described. This latter is incorporated in the damage model upon the Discrete Strong Discontinuity Approach (DSDA). In order to ensure the compatibility between the strong discontinuity and the continuum damage model, the so-called strong discontinuity analysis in performed. The obtained enhanced damage model is exposed.

Bargellini's model 2.1 Damage definition

The present damage model, based on the fixed damage directions concept [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF], is anisotropic. The induced anisotropy is taken into account by means of oriented micro cracking families. Damage state (see figure 2.1) is constructed as the contribution of p parallel crack families defined by a normal n i and micro cracking density ρ i . Damage is written as the couple ∑ p i=1 ρ i N i , where N i are directional tensors calculated as tensor products of normals to the crack N i = n i ⊗ n i . This additional representation of the damage state is possible within the assumption that the different micro cracking families do not interact with each other. The scalar variables ρ i associated to the corresponding damage directions N i evolve according to the applied loading. The directional tensors are fixed in the physical space and a sufficient number must be defined. The set of tensors N i must represent any damage configuration expressed by a tensorial variable. In addition, for quasi-brittle materials exhibiting an induced anisotropy, an initial isotropic damage state must be described. These conditions read:

n i n j n k ρ i ρ k ρ j
• any tensor n i ⊗ n i is an additive combination of N i ,

• an isotropic damage state must be described by a constant crack density ρ 0 in each direction

N i ; ∑ i ρ i N i ∝ ρ 0 1
where 1 is the second-order identity tensor.

It is important to emphasise that the conditions necessary to define a sufficient number of fixed damage directions depend on the anisotropic damage state of the material, e.g. for composite materials each fixed directional tensor might be associated to a direction of material anisotropy.

Nine directional tensors are sufficient to fulfil the previous two conditions. Their orientation depends on the damage directions. In the orthonormal basis (e 1 , e 2 , e 3 ), they are given by equation 2.1 which reads:

N 1 = e 1 ⊗ e 1 N 4 = 1 2 (e 1 + e 2 ) ⊗ (e 1 + e 2 ) N 7 = 1 2 (e 1 -e 2 ) ⊗ (e 1 -e 2 ) N 2 = e 2 ⊗ e 2 N 5 = 1 2 (e 1 + e 3 ) ⊗ (e 1 + e 3 ) N 8 = 1 2 (e 1 -e 3 ) ⊗ (e 1 -e 3 ) N 3 = e 3 ⊗ e 3 N 6 = 1 2 (e 2 + e 3 ) ⊗ (e 2 + e 3 ) N 9 = 1 2 (e 2 -e 3 ) ⊗ (e 2 -e 3 ) (2.1)

Constitutive equations

This model is developed within the thermodynamics framework. Each associated micro cracking density ρ i is considered as an internal variable. The thermodynamic potential, the Helmholtz free energy, is constructed upon the tensor functions representation [Boehler, 1978] and considers the following hypothesis :

• the undamaged material is isotropic,

• the nine crack families do not interact,

• micro crack lips slide without friction,

• a partial unilateral effect is taken into account.

The thermodynamic potential is given by equation 2.2:

ψ(ρ, N, ε) = ψ 0 (ε) -α 9 ∑ i=1 ρ i tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i -2β 9 ∑ i=1 ρ i tr ε • ε • N i + 3 2 α + 2β 9 ∑ i=1 ρ i tr 2 (ε • N i )H 0 -tr ε • N i = ψ 0 (ε) - 9 ∑ i=1 ρ i g i N, ε , (2.2) 
where

ψ 0 = λ 2 tr 2 (ε) + µ tr ε • ε is the elastic free energy, tr (•) is the trace operator, H a (•) is the
Heaviside function centered in a, and α, β are material parameters. To simplify the reading, we note the non-linear part of the free energy as:

g i = α tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i + 2β tr ε • ε • N i - 3 2 α + 2β tr 2 (ε • N i )H 0 -tr ε • N i . (2.
3)

It can be noticed that the state potential is constructed upon quadratic strain-based terms in order to ensure the convexity and the continuity of the second order derivative of this latter [START_REF] Lemaitre | Mécanique des matériaux solides-3eme édition[END_REF]. The strain-based terms are invariant with respect to any simultaneous rotation of the loading.

In addition, the Helmholtz free energy is composed of an elastic part and an inelastic one. The free energy is progressively decreased by means of the micro cracking densities flow. When the expression tr ε • N i becomes negative, cracks close. This condition accounts for the unilateral effect.

The state laws derive from this potential. The first state law, giving the stress-strain relationship, is expressed in equation 2.4:

σ(ρ, N, ε) = ∂ψ(ρ, N, ε, z) ∂ε = σ 0 (ε) -α 9 ∑ i=1 ρ i 2ε -tr ε 1 + tr ε N i + tr ε • N i 1 -2β 9 ∑ i=1 ρ i ε • N i + N i • ε + (3α + 4β) 9 ∑ i=1 ρ i tr ε • N i N i H 0 -tr ε • N i = σ 0 (ε) - 9 ∑ i=1 ρ i ∂g i N, ε ∂ε , (2.4) 
where σ 0 is the elastic stress. Stresses are composed of an elastic part and an inelastic one which increases with internal variable flow. Thermodynamic forces related to the micro cracking density variables, given in equation 2.5, read:

F ρ i (ρ, N, ε) = - ∂ψ(ρ, N, ε, z) ∂ρ i = α tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i + 2β tr ε • ε • N i - 3 2 α + 2β tr 2 (ε • N i )H 0 -tr ε • N i (2.5)
Attention is drawn on the definition of the reversibility domain. Thermodynamic forces responsible for the reversibility domain are constructed from equation 2.5 by taking into account the part depending on the normal strain tr 2 (ε • N i ). Thermodynamic forces are decomposed as follows:

F ρ i (ρ, N, ε) = α tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i + 2β tr ε • ε • N i - 3 2 α + 2β tr 2 (ε • N i ) F ρ i 1 + 3 2 α + 2β tr 2 (ε • N i ) - 3 2 α + 2β tr 2 (ε • N i )H 0 -tr ε • N i F ρ i 2 (2.6)
This choice is made under the assumption that cracks evolve only when they are open. The threshold surface is then constructed as:

φ i = F ρ i 2 -Z 0 e ρ i /C ρ i , (2.7) 
where Z 0 is an initial threshold value (function of the elastic limit f t and the Young's modulus E and C ρ i is a material parameter.

The flow rule for the micro cracking densities is obtained in a non-associated framework. A pseudodissipation potential ψ * i is postulated. This potential determines how the micro cracking densities evolve. The pseudo-potential is equal to the total thermodynamic forces Thermodynamic state potential

ψ * i = F ρ i (ρ, N, ε). Micro cracking densities evolution law is given below: ρi = λi ∂ψ * i ∂F ρ i , ( 2 
ψ(ρ, N, ε) = ψ 0 (ε) -α 4 ∑ i=1 ρ i tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i -2β 4 ∑ i=1 ρ i tr ε • ε • N i + 3 2 α + 2β 4 ∑ i=1 ρ i tr 2 (ε • N i )H 0 -tr ε • N i (2.9) Constitutive law σ(ρ, N, ε) = σ 0 (ε) -α 4 ∑ i=1 ρ i [2ε -tr ε 1 + tr ε N i + tr ε • N i 1] -2β 4 ∑ i=1 ρ i (ε • N i + N i • ε) + (3α + 4β) 4 ∑ i=1 ρ i tr ε • N i N i H 0 -tr ε • N i (2.10)
Thermodynamic forces

F ρ i (ρ, N, ε) = α tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i + 2β tr ε • ε • N i - 3 2 α + 2β tr 2 (ε • N i )H 0 -tr ε • N i = F ρ i 1 + F ρ i 2 (2.11)
Reversibility domain thermodynamic forces

F ρ i 2 (N, ε) = 3 2 α + 2β tr 2 (ε • N i ) 1 -H 0 -tr ε • N i (2.12) Threshold surface φ i = F ρ i 2 -Z i (ρ i ) (2.13) Hardening function Z i (ρ i ) = Z 0 e ρ i /C ρ i (2.14) Flow rules ρi = λi ∂ψ * ∂F ρ i = λi (2.15)

Uniaxial tension response

In his work, [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] applied the developed approach to rock materials. Following his approach, a simple uniaxial tension test is performed. First, the directional tensors are chosen following the recommendations of [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF]. Second, the integration scheme of the model is exposed. Finally, the response of the test is analysed.

Choice of the directional tensors

The directional tensors are determined from an orthonormal basis (e 1 , e 2 , e 3 ). As the directional tensors reflect crack orientation, this choice is affected by the loading configuration. The first step is the definition of the first damage activation direction n 0 . This corresponds to the instant when the elastic limit is reached. Once n 0 determined, one imposes e 1 = n 0 . Knowing the first direction e 1 , the other directions are arbitrarily chosen to form an orthonormal basis.

The threshold surface expression (equation 2.7) shows that the direction n 0 is the one that maximises the reversibility domain thermodynamic forces F

ρ i 2 .
[ [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] show that the direction maximising this force corresponds to the maximal positive eigenvalue of the strain tensor. Once determined, the orthonormal basis is fixed. As this choice is dependent on the first loading path which reaches the elastic limit, it will influence the material behaviour if a different loading path is applied afterwards.

For a 2D configuration, once the orthonormal basis (e 1 , e 2 , e 3 ) is determined, the choice is made to account the crack families that intervene in the 2D basis (e 1 , e 2 ).

Integration scheme

Bargellini's model is implemented in Matlab. An explicit integration scheme, reported in algorithm 1, is used. The index n refers to the current pseudo-time and Π is the material parameters vector. The explicit character is also attributed to its strain-based formulation. The algorithm is implemented in 2D.

Uniaxial tension test

A uniaxial tension test in 2D is performed. Loading is applied in the e 1 direction. Hence, this direction is the one that maximises the reversibility domain thermodynamic forces. The 2D basis is (e 1 , e 2 ). Upon this basis, the fixed directional tensors used for the simulation are constructed and their expression is given in equation 2.16.

N 1 = e 1 ⊗ e 1 N 4 = 1 2 (e 1 + e 2 ) ⊗ (e 1 + e 2 ) N 2 = e 2 ⊗ e 2 N 7 = 1 2 (e 1 -e 2 ) ⊗ (e 1 -e 2 ) (2.16) Data: ε n , σ n , ∆ε n , Z n i , ρ n i , i = 1, . . . , 4, Π Result: σ n+1 , ε n+1 , Z n+1 i , ρ n+1 i , i = 1, . . . , 4 // Update strains ε n+1 = ε n + ∆ε n
// Check criterion on micro cracking densities evolution if φ n i > 0 then // Update micro cracking variables

ρ n+1 i = C ρ i ln F n+1 2 Z 0 end else // No updating of internal variables ρ n+1 i = ρ n i end // Update hardening function Z n+1 i // Update stresses σ n+1
Algorithm 1: Flowchart of the Bargellini's local integration scheme. with f t = 3 MPa. The material parameter characterising the micro cracking densities evolution C ρ i is the same for all the crack families. This choice is done by [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF] and is kept in this test. The stress-strain response of the tension test is given in figure 2.3a.

The response presents an elastic phase A, a hardening branch B and then a softening branch C. Furthermore, it exhibits negative stresses for high deformation levels. Damage continues evolving even if the material is ruined which leads to a negative free energy and therefore negative stresses. This characteristic of the model must be tackled. Indeed, a negative free energy when the material is ruined is not physical.

Evolution of the micro cracking densities is depicted in figure 2.3b. Three crack families evolve. Crack family ρ 1 , activated first, illustrates evolution of cracks oriented perpendicular to the loading direction. Two other families, oriented at 45 • , exhibit a slower evolution compared to the preponderant crack family. Evolution of crack family ρ 1 corresponds to the hardening branch is observed in the stress-strain response before the peak-load is reached (phase B). Once cracks oriented at 45 • are activated, the softening regime begins. Crack family ρ 2 , responsible for evolution of cracks parallel to the loading direction, does not evolve. The presence of cracks oriented at 45 • in a tension configuration is justified experimentally. [Torrenti, 1987] has shown that other oriented micro cracks develop at early stages before coalescence into a macro crack. This macro crack is preponderant, perpendicular to the loading direction and thus characterises the mode I failure of a tension test.

For further insight, thermodynamic forces responsible for the reversibility domain are analysed. These forces depend on the crack opening/closure condition which gives an information on opened or closed cracks. The strain tensor for a uniaxial test in the e 1 direction reads:

ε i j = ε 11 0 0 -ν ε 11 , ∀ i, j = 1, 2 ε 33 = - ν E (σ 11 + σ 22 ) (2.17)
with ε 11 > 0. Crack opening/closure condition for the four crack families is reported in equation 2.18.

tr(ε • N 1 ) = ε 11 > 0 tr(ε • N 4 ) = 1 2 (1 -ν)ε 11 > 0 tr(ε • N 2 ) = -νε 11 < 0 tr(ε • N 7 ) = 1 2 (1 -ν)ε 11 > 0 (2.18)
Given equation 2.18, the reversibility domain thermodynamic forces are calculated and are expressed in equation 2.19.

F ρ 1 2 = 3 2 α + 2β tr 2 (ε • N 1 ) 1 -H 0 -tr ε • N 1 = 3 2 α + 2β ε 2 11 F ρ 2 2 = 3 2 α + 2β tr 2 (ε • N 2 ) 1 -H 0 -tr ε • N 2 = 0 F ρ 4 2 = 3 2 α + 2β tr 2 (ε • N 4 ) 1 -H 0 -tr ε • N 4 = 3 2 α + 2β 1 4 (1 -ν 2 )ε 2 11 F ρ 7 2 = 3 2 α + 2β tr 2 (ε • N 7 ) 1 -H 0 -tr ε • N 7 = 3 2 α + 2β 1 4 (1 -ν 2 )ε 2 11 (2.19)
The following conclusions are drawn:

• crack family ρ 2 parallel to the loading tensile direction is not activated. Its corresponding thermodynamic force is zero F

ρ 2 2 (ε 11 ) = 0 , ∀ ε 11 ≥ 0.
• crack families ρ 4 , ρ 7 evolve similarly, for the same material parameters. Their corresponding thermodynamic forces are equal F

ρ 4 2 (ε 11 ) = F ρ 7 2 (ε 11 ) , ∀ ε 11 ≥ 0. • crack family ρ 1 activates first and evolves faster because F ρ 1 2 (ε 11 ) > F ρ 4 2 (ε 11 ) = F ρ 7 2 (ε 11 ) ∀ ε 11 ≥ 0.
Schematically, cracking configuration of a tension test in the e 1 direction and for the fixed directional tensors (equation 2.16) is illustrated in figure 2.4. 
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Summary

The anisotropic damage model describes the damage state by means of oriented crack families characterised by directional tensors and micro cracking densities. These tensors reflect crack orientation and remain fixed. Micro cracking densities evolution account for the damage evolution. The uniaxial tension behaviour is described by: • a hardening phase before the peak load,

• a softening post-peak behaviour,

• activation of three crack families; the preponderant crack family is perpendicular to the loading direction and evolves faster,

• negative stresses and unbounded micro cracking densities when the material is ruined.

With these characteristics, the model needs to be adapted to concrete. The negative stresses must be tackled in order to provide physical results and also to simulate other loading paths. In compression, the choice is made to consider a linear behaviour. Indeed, when modelling reinforced concrete structures, damage zones due to compressive stress state are rare. These zones are often found at the vicinity of the applied loads. Adaptation of the model to concrete and simulation of a tension/compression and a shear test are exposed next.

3 Specificities of the model to concrete

Bargellini's model was initially developed for rocks. This section deals with the modifications made to the original Bargellini's model in order to represent correctly concrete behaviour.

Energy-based criterion

The first modification of the original model consists in defining a criterion which avoids the negative part of the stress-strain response. It is necessary to limit damage after failure of the material. Indeed, the micro cracking densities must not evolve further when the material is ruined.

For this purpose, we define an energy-based criterion which imposes the free energy to be positive.

To dissipate an amount of energy greater than the energy storable by the material is non sensical. The energy-based criterion is exposed in equation 2.20:

ψ = ψ 0 -ψ inelastic > 0 ⇐⇒ ψ 0 > ψ inelastic ⇐⇒ ψ 0 ψ inelastic > 1 , ∀ ε, σ,V r (internal variables) (2.20)
Hence, the local integration scheme was modified following the algorithm 2.

The response of the uniaxial tension test, performed in the previous section, considering the modified model is depicted in figure 2.5.

It can be noticed in figure 2.5 that the negative stresses are cancelled. Micro cracking densities experience a constant evolution (phase D) once the material is ruined. Defining a global energy-based criterion ensures bounded evolutions for the micro cracking densities when the material is ruined.

Data: ε n , σ n , ∆ε n , Z n i , ρ n i , i = 1, . . . , 4, Π Result: σ n+1 , ε n+1 , Z n+1 i , ρ n+1 i , i = 1, . . . , 4 // Update strains ε n+1 = ε n + ∆ε n // Check criterion on micro cracking densities evolution if (φ n i > 0) & ψ n 0 ψ n inelastic < 1 then // Update micro cracking variables ρ n+1 i = C ρ i ln F n+1 2 Z 0 end else // No updating of internal variables ρ n+1 i = ρ n i end // Update hardening function Z n+1 i // Update stresses σ n+1
Algorithm 2: Flowchart of the modified local integration scheme. 

Tests

Uniaxial tension/compression test

A tension/compression test is now performed. The test consists in a tension loading/unloading cycle, a compressive loading and then reloading in tension is applied. Material parameters used are the same as the tension test.

In order to ensure a linear behaviour in compression, the configuration of a compression test in the e 1 direction (ε 11 < 0) is considered. Analysis of the crack opening/closure condition reads:

tr(ε • N 1 ) = ε 11 < 0 tr(ε • N 4 ) = 1 2 (1 -ν)ε 11 < 0 tr(ε • N 2 ) = -νε 11 > 0 tr(ε • N 7 ) = 1 2 (1 -ν)ε 11 < 0 (2.21)
For a compression test, only crack family ρ 2 evolves. Cracking distribution is parallel to the loading direction. The other three families do not evolve. Consequently, the linear behaviour in compression is achieved by imposing no evolution of crack family ρ 2 (N 2 = 0).

The stress-strain response and micro cracking densities evolution for this test are given in figure 2.6.

-0.4 -0.2 0 0.2 0.4 -8 -6 -4 -2 0 2 4 Strain (x 10 -3 ) Stress (MPa) (a) 0 100 200 300 0 0.1 0.2 ρ 1 ρ 2 ρ 4 , ρ 7
Loading steps (-) Micro cracking density (-) Bounded stresses are observed for high deformation levels. During the unloading and reloading phase, micro cracking densities do not evolve.

ρ 1 ρ 2 ρ 4 ρ 7 (b)
In compression, the elastic stiffness is recovered partially. This is illustrated in figure 2.7 where the evolution of the secant modulus is plotted. This modulus is calculated as the ratio between stresses σ 11 and strains ε 11 . For a damage level of 90%, 80% of the elastic stiffness is recovered. This is due to the contribution of families 4 and 7. Indeed, a new test is conducted with the unloading phase applied only when crack family 1 is evolving. Results are depicted in figure 2.8. The elastic stiffness is completely recovered in this case. A modification of the crack closure condition is given in section 3. 

Shear test

The last material point test is a shear test. Again, the fixed directional tensors are the same. A loading (ε 12 > 0)/unloading (ε 12 < 0) phase is performed. Material parameters are the same as the tension test. The response of the model is depicted in figure 2.9. Contribution of families 4 and 7 ensure the softening behaviour. Bounded stresses are recovered. Family ρ 4 evolves for ε 12 > 0 and ρ 7 for the case ε 12 < 0. Several observations can be emphasised. First, during the phase ε 12 > 0 a high value of the peak stress of 9 MPa is noticed. Second, the response is antisymmetric. For the case ε 12 < 0 the peak stress equals 5 MPa.

The explanation for the first observation is given by the choice of the directional tensors. Indeed, these are imposed to represent the activation of the first damage in the e 1 direction. This choice do not correspond to a shear test where the damage direction is oriented at 45 • . Therefore, the material experiences high stresses before the softening is produced and the elastic limit of 3 MPa is exceeded. Nevertheless, if a shear test is performed without imposing the first damage in the e 1 direction, it is equivalent to a tension test rotated by 45 • . In this case, the direction of the first damage will correspond to its physical orientation. This example illustrates the influence of the choice of the orthonormal basis. However, even if the damage direction is fixed, micro cracking densities evolution account for the loading evolution.

The antisymmetric behaviour is due to the contribution of crack families. Indeed, during the phase ε 12 < 0, crack families ρ 4 and ρ 7 contribute in the stress calculation. Thus, the response is brittler and the peak stress is lower.

Unilateral effect

The unilateral effect is taken into account by the condition tr(ε • N i ) > 0. However, with this condition the Poisson's effect is not provided, which means that this condition is true only for a null Poisson's ratio. [Pensée and Kondo, 2001] have shown that this condition must be expressed in terms of stresses. This is equivalent to the physical contact condition [Signorini, 1959]:

u n ≥ 0, if σ nn ≤ 0 ⇒ u n • σ nn = 0 , (2.22)
where σ nn = n • σ • n is the normal stress acting at the crack lips.

Furthermore, when the crack is open, the term containing the Heaviside function H 0 -tr ε • N i in the free energy expression (equation 2.9) vanishes. The explicit crack closure condition in equation 2.22 is relevant as our purpose is to build an enhanced discrete model depending on the discontinuity jump. This is the choice made here.

Therefore, the formulation of the enhanced model that follows considers the configuration of the model for an open crack. The equations that are used in the development of the enhanced model are given below.

Thermodynamic state potential

ψ(ρ, N, ε) = ψ 0 (ε) -α 4 ∑ i=1 ρ i tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i -2β 4 ∑ i=1 ρ i tr ε • ε • N i (2.23) Constitutive law σ(ρ, N, ε) = σ 0 (ε) -α 4 ∑ i=1 ρ i [2ε -tr ε 1 + tr ε N i + tr ε • N i 1] -2β 4 ∑ i=1 ρ i (ε • N i + N i • ε) (2.24)
Thermodynamic forces

F ρ i (ρ, N, ε) = α tr ε • ε - 1 2 tr 2 (ε) + tr ε tr ε • N i + 2β tr ε • ε • N i (2.25)
Reversibility domain thermodynamic forces

F ρ i 2 (N, ε) = 3 2 α + 2β tr 2 (ε • N i ) (2.26) Threshold surface φ i = F ρ i 2 -Z i (ρ i ) (2.27) Hardening function Z i (ρ i ) = Z 0 e ρ i /C ρ i (2.28) Flow rules ρi = λi ∂ψ * ∂F ρ i = λi (2.29)

Summary

The original damage model is adapted to reproduce features of concrete behaviour. The previous section has shown that in tension the material exhibits negative stresses when failure is attained. To tackle this, an energy criterion is defined. This latter enables a bounded evolution of the micro cracking densities when the material is ruined.

The simulation of a tension/compression test has shown the partial unilateral effect due to the combination of normal and oblique cracks in tension. As the scope of this work is the formulation of an enhanced model expressed in terms of displacement jump, an explicit crack closure condition is chosen.

It is worth highlighting that a linear behaviour in compression is considered thereafter. This is achieved by deleting from the sum of micro cracks the contribution of the crack family responsible for the compressive behaviour.

Henceforth, the modifications performed in order to adapt the model to concrete are:

• definition of an energy criterion to bound micro cracking densities when the material is ruined,

• linear compressive behaviour,

• explicit unilateral effect. Following Bargellini's approach, the material level tests were conducted using random values. Furthermore, no distinction is made between the crack families (C

ρ 1 = C ρ 2 = C ρ 4 = C ρ 7 ).
For a better insight of the role of the material parameters, an identification procedure is proposed next.

Material parameters identification

In this section a procedure to identify the material parameters is addressed. This procedure aims at providing information about the role of the different crack families. In table 2.2 are summarised the different non-linear parameters and their role in the material response. The elastic parameters as E and ν are identified manually. In the local tests performed previously, the parameters responsible for micro cracking evolution were the same for all families (C

ρ 1 = C ρ 2 = C ρ 4 = C ρ 7
) . The local tension test has shown the activation of cracks oriented at 45 • . The aim of the identification procedure is to give a methodology for the identification of this type of models. The idea is to identify the role of the oriented cracks ρ 4 and ρ 7 in the tension degradation process. It is assumed in this procedure that these two families play the same role for an uniaxial loading. Indeed, no information is available to distinguish them.

According to the author's knowledge, in the literature, there were found no experimental tests or results which tackle the identification of micro mechanical based models. Furthermore, material parameters are often adjusted with respect to the experimental results. This brings into light the necessity to conduct a high number of experimental tests. In addition, it is difficult to conduct specific tests showing the anisotropy or experimental tests dealing with complex loadings. In order to provide a framework for the identification of material parameters, virtual testing is used. This latter alleviates some flaws of experimentation as complex loading paths and ensures the repeatability of the numerical test. A discrete model is used as the virtual testing machine. The main characteristics of this model are described below. Then, the adopted approach to identify the material parameters is discussed. The section ends with the results of this identification procedure.

Discrete model as a virtual testing machine

A 2D beam-particle model is used as a virtual testing machine [Oliver-Leblond et al., 2013,Delaplace, 2008, Vassaux et al., 2014]. The discrete media is described by the assembly of polygonal particles.

Figure 2.10: Mesh generation steps of the discrete beam-particle model [Delaplace, 2008].

Mesh generation steps are presented in figure 2.10. The first step consists in placing a grid over the specimen. The spacings of this grid correspond to the mean size of the particles l p . Then, random points are generated in each cell of the grid; these points are the centroids of the particles. This second step accounts for the heterogeneity of the mesh. Delaunay's triangulation of the set of points is the third step. The edges of the Delaunay triangles represent the cohesive beams linking particles. Finally, the polygonal particles are computed from Voronoi's tessellation.

Euler-Bernoulli beams link the centroid of particles and ensure the cohesion and the failure mechanism as illustrated in figure 2.11. The kinematic quantities characterising each beam are displacements and rotations. The geometric entities as the length and area are specific for each beam whereas the Young's modulus and the Poisson's ratio are the same. [START_REF] Vassaux | Compressive behavior of a lattice discrete element model for quasi-brittle materials[END_REF].

Each beam has a brittle behaviour according to the threshold criterion given in equation 2.30:

ε i j ε cr i j 2 + |θ i -θ j | θ cr i j > 1 , (2.30) 
where ε i j is the elongation of the beam linking particle i and j, θ i, j is the rotation of particle i, j and ε cr i j , θ cr i j are respectively the critical elongation and rotation. When this criterion is violated, the beam is removed from the model. Consequently, a crack appears between the two particles. The local crack opening is calculated from the displacement of the two particles. The critical kinematic quantities ε cr i j , θ cr i j are constructed as a statistical distribution by a means of a Weibull law [Van Mier et al., 2002]. The form of this law is given in equation 2.31:

f (x) = k λ x λ k-1 e -(x/λ) k , (2.31)
where k is the shape factor and λ is the scale factor of the Weibull's distribution. This statistical representation ensures a good prediction of the dissipative mechanism. Furthermore, in order to represent a more accurate behaviour in compression and the tension-compression dissymmetry, the threshold criterion is simplified [START_REF] Vassaux | Compressive behavior of a lattice discrete element model for quasi-brittle materials[END_REF]. The new criterion is given in equation 2.32. .32) Frictional contact between particles is also taken into account by a Coulomb frictional sliding threshold [START_REF] Vassaux | Compressive behavior of a lattice discrete element model for quasi-brittle materials[END_REF]. An example of two particles in contact is shown in figure 2.12. The several entities depicted in the figure contribute in the definition of the contact and friction efforts. The identification of the different parameters of the discrete model follows the recommendations of [Vassaux, 2015]. Elastic parameters, the Young's modulus of the beam E and the inertia coefficient α are calibrated on an elastic compression test. Then, the two scale factors, λ ε cr and λ θ cr , and the common shape factor k of the statistical distributions are identified using a three-point bending test and a splitting test. A compression test under confinement allows for the calibration of the friction coefficient µ. It is important to highlight that the identified parameters correspond to a particle size l p . If this size is changed, the elastic parameters and the non-linear ones need to be identified again. Thus, the discrete model is size-dependent.

ε i j ε cr i j + |θ i -θ j | θ cr i j > 1 . ( 2 
Reference concrete characteristics are taken form the experimental campaign undergone by [Grégoire et al., 2013] where the scale effect issue was treated. Parameters of the beam-particle model are identified on this reference. This is an arbitrary choice and one could choose any other concrete type. According to the campaign of [Grégoire et al., 2013], concrete is characterised by a Young's modulus of 37 GPa and a Poisson's ratio of 0.21. The identified parameters of the discrete model are reported in table 2.3. 

Multiple path identification procedure

The adopted approach for the identification procedure of the anisotropic damage model parameters must answer two major questions:

• which tests are relevant to identify the parameters,

• which are the quantities to compare.

Which simple test is relevant to identify the parameters ? [Bargellini, 2006] has shown that the stiffness-like parameters α and β influence the anisotropy of the model. Conducting experimental tests which highlight the anisotropy of quasi-brittle materials is not trivial. Non destructive methods such as ultrasound measurements have been used to study the symmetries of anisotropic materials [Franc ¸ois, 1995]. The influence of the parameters α, β can be shown by the evolution of the damage modulus in a given direction for a fixed damage state. The expression of the damage modulus in a given direction m is:

E(m) = 1 m ⊗ m : C -1 : m ⊗ m (2.33)
The influence of the parameter α for a given damage state (ρ 1 = 0.18, ρ 4,7 = 0.06 ), a given parameter β = 14.5 × 10 9 is depicted in figure 2.13a. The same conditions are applied for the influence of the parameter β with α = 12.5 × 10 9 . The response is depicted in figure 2.13b.

It can be observed from figure 2.13 that the parameter β influences more the anisotropic behaviour than the parameter α. But the same trend is noticed for both parameters: the smaller the values are, the more isotropic the behaviour is.

-1 -0. The influence of the material parameters α, β,C ρ i in the tension behaviour is depicted in figure 2.14. The threshold hardening parameter Z 0 is kept constant for all the tests.

It can be noticed that the material parameters influence the non-linear behaviour of the material. The smaller the values of α, β are, the higher the peak load is. The post-peak behaviour is influenced by the parameter C ρ i . The smaller this parameter is, the more ductile the behaviour is.

This study highlights the need of an identification procedure by means of virtual testing. Indeed, the anisotropic damage model is rich in information such as anisotropy, oriented crack families. It depends on several parameters which govern different mechanisms characterising the wealth of the model. However, their identification stands in performing several non-classical loading configurations which are difficult to conduct. The use of the discrete model as a reference provides fine information and an accurate description of quasi-brittle materials.

For simplicity reasons, the influence of the parameters is analysed on the non-linear tension behaviour. Figure 2.14 shows that the three parameters play a role on the tension behaviour. Hence, it is difficult to separate these parameters. Given these facts, the choice is made to consider a loading configuration composed of two entities: a tension loading/unloading is applied for a certain level of damage; then, a loading/ unloading shear loop is performed. The amplitude of the shear loading is smaller than the tension one. This implies no further evolution of crack families 4 and 7 with shear loading. Which are the quantities to compare ? The beam-particle model provides global and local information such as loads, displacements, crack openings. The anisotropic damage model is described by continuum stress-strain relations. Thus, the comparison between the reference model (beam-particle) and the continuum one, is made upon stress-strain curves.

Construction of the virtual testing database

The virtual test consists in a coupled tension-shear test. The tests are conducted on a 100x100 mm square specimen which corresponds to the Representative Volume Element (RVE) for concrete. The mesh is composed of 2500 particles (size of a particle equals 2 mm). The obtained results are average results of twenty realisations of the test. The number of realisations depends on the mesh density [Oliver-Leblond et al., 2013]. The finer the mesh is, the least number of realisations is needed to converge towards the accurate mean results. Twenty realisations with a particle size of 2 mm are sufficient to provide accurate results and to limit the computational cost. Parameters of the discrete model are the ones defined in table 2.3.

The loading program of the virtual test is performed under displacement control. The test consists in two phases:

• a first loading/ unloading phase in tension,

• a loading/unloading phase in shear.

These two phases are repeated three times for an increasing tension displacement. The prescribed displacement evolution is depicted in figure 2.15. The tension loading is applied in the vertical direction (direction y) and the shear load is applied in the horizontal one (direction x). The deformation configuration in tension (amplified 150 times) and shear of the sample are given in figure 2.16.

As it was mentioned in the adopted approach, the stress-strain curves are studied. The tension and shear stress-strain curves of the virtual test are depicted in figure 2.17. The softening behaviour is well reproduced. A negligible dissipation is observed during the unloading/reloading phases. The shear behaviour is described by three different slopes. This difference is These results constitute the database which is used for the identification procedure. This latter is detailed in the next section. The identification is applied only to the non-linear parameters. An iterative procedure based on the Levenberg-Marquardt algorithm is employed. The steps of this procedure are shown in algorithm 3.

Data: Set of inital parameters Π 0 Result: Set of optimised parameters Π opt while Π k = Π j , ∀ 0 < k < j do // Perform the calculation using the continuous damage model (numerical curve) // Calculate the residual between the numerical curve and the reference one given by the Virtual Testing

r(Π j ) = ∑ n i=1 y i num (Π j ) -y i ref ∑ n i=1 y i ref 2
// Update the set of parameters Π j+1 end Algorithm 3: Steps of the identification procedure.

An initial vector parameter Π 0 is furnished at the beginning of the procedure. These parameters ensure a numerical response which is close to the reference. Indeed, it is well-known that gradient-based algorithms such as Levenberg-Marquardt algorithm depend on the initial input. Then, the reference results are compared to the numerical ones by means of the residual:

r(Π) = n ∑ i=1 y i num (Π) -y i ref ∑ n i=1 y i ref 2 (2.34)
with n the number of time steps, y i num (Π) the point of the numerical curve at the time-step i for the given set of parameters Π and y i ref the point of the reference curve at the time-step i. The residual is defined for each point of the two curves. Different criteria can be used to stop the identification procedure. In this work, the stop criterion is the oscillation of the residual. If the residual difference between the identification iteration j and j -1 is less than a tolerance, the iterative process stops.

The loading program depicted in figure 2.15 is applied for the continuous model. The directional tensors are fixed upon the first damage direction which corresponds to the tension test's direction e 1 = [0; 1]. The first tensor N 1 is calculated from the vector e 1 = [0; 1]. Then, the second tensor N 2 is constructed as the tensor product of the vector e 2 = [-1; 0]. Finally, the two remaining orientations are obtained. These tensors are given in equation 2.35. The four cracking families are illustrated in figure 2.18. The elastic parameters E, ν are those of the reference concrete: E = 37 GPa and ν = 0.21. The hardening threshold equals Z 0 = f t E , with f t = 2.8 MPa the peak load of the reference tension curve (Figure 2.17a). The initial parameter set, which is the input for the iterative process, was identified manually so as to give a good approximation of the numerical curve compared to the reference one.

N 1 = e 1 ⊗ e 1 N 4 = 1 2 (e 1 + e 2 ) ⊗ (e 1 + e 2 ) N 2 = e 2 ⊗ e 2 N 7 = 1 2 (e 1 -e 2 ) ⊗ (e 1 -e 2 ) (2.35) ρ 1 ρ 2 ρ 4 ρ 7
In the text, we refer as the experimental results to the Virtual Testing results or the reference model.

Identification steps

Two identification configurations are chosen: a first configuration where the micro cracking parameters are the same for the four crack families, named Config.1 and a second configuration with different parameters for crack family 1 and the others, named Config.2.

The initial values of parameters α, β,C ρ 1 ,C ρ 2,4,7 are x 0 = [18 × 10 9 ; 18 × 10 9 ; 0.05; 0.05] for the two configurations. The steps of the identification procedure are exposed below.

Step 1: identification on the stress-strain envelope curve in tension Using the initial parameters, a numerical simulation of the envelope tension loading test is conducted. Afterwards, the iterative process is performed using the stress-strain envelope curve in tension. The identified parameters for the two configurations are given in table 2.5. The results of this first step are depicted in figure 2.19: the stress-strain curve and the evolution of the residual with respect to the iterations. The identified parameters give a good agreement between the numerical and the experimental curve. The post-peak behaviour is almost identical for the two configurations. There is a difference only in the pre-peak behaviour. This difference is due to the contribution of the crack family ρ 1 . For the first configuration, the parameter C ρ 1 is greater compared to the second configuration (Table 2.5). This induces a less hardening behaviour in the pre-peak phase.

At the end of the iterative process, the residual oscillates. The first configuration needs 43 iterations to attain the defined tolerance whereas the second configuration needs 34. In addition, the residual for the second configuration is lower. Figure 2.19b shows that the initial parameters give already a good prediction of the behaviour. This first identification step is then validated in step 2 with respect to the experimental data: the secant modulus.

Step 2: validation on the secant modulus in tension and shear The set of identified parameters in the first step are used to perform the complete numerical test following the loading program in figure 2.15. The results in terms of stress-strain response are given in figure 2.20. For each unloading phase in tension and loading one in shear, the numerical modulus are determined from the slopes of the curves. These values are compared to the experimental ones in tables 2.6 and 2.7 for the two configurations respectively. The error between the numerical and the experimental values is also given. Analysing the two tables, the two configurations give similar results. A good representation of the tension behaviour is obtained. On the contrary, the shear behaviour is not well reproduced. So far, the identification procedure provides good results in tension. Thus, when dealing with simulation of structures submitted to tension, the two steps are sufficient. Nevertheless, for structures submitted to tension and shear loadings, the identification must be performed on the tension and shear behaviour. Step 3: identification on the stress-strain curves in tension and shear This identification step consists in identifying the material parameters with respect to the two curves: the complete stressstrain curves in tension and shear. In this way, the identified parameters will provide a good approximation for the two curves. The residual of the iterative process considers the two curves as expressed in equation 2.36. The index T corresponds to tension and S to shear.

r(Π) = n ∑ i=1 y i num, T (Π) -y i ref, T ∑ n i=1 y i ref, T 2 + n ∑ i=1 y i num, S (Π) -y i ref, S ∑ n i=1 y i ref, S 2 
(2.36)

The set of parameters for this identification step is given in table 2.8. There is a slight difference in the parameters C ρ i for the two configurations. This difference is smaller compared to the first identification step (step 1).

Table 2.8: Identified material parameters for step 3: tension and shear identification Parameter α (Pa) β (Pa) C ρ 1 (-) C ρ 4,7 (-) Config.1 30.9 10 9 9 10 9 0.053 0.053 Config.2 34.3 10 9 9 10 9 0.042 0.063

The stress-strain curves are depicted in figure 2.21. As the previous results, the same tendency is noticed for the two configurations: a difference in the pre-peak behaviour. A better estimation of the shear curve is obtained. This feature is corroborated by the validation step.

Step 4: validation on the secant modulus in tension and shear The secant modulus based on the step's 3 results are given in tables 2.9 and 2.10.

It is observed, for the two configurations, a better estimation of the shear modulus. The error diminishes compared to the values in tables 2.6 and 2.7. As expected, the error is reduced for the shear curve compared to the results of the step 1. At the end of the iterative procedure, the residual function equals 2.3% for the two configurations from 2.85% for the initial set of parameters. The influence of the two configurations is now illustrated by studying the micro cracking densities. Evolution of micro cracking families, corresponding to the stress-strain curves in figure 2.21, is shown in figure 2.22. The three crack families ρ 1 , ρ 4 , ρ 7 ensure the softening behaviour. Cracks parallel to the y direction (ρ 2 ) are not activated. The preponderant crack family ρ 1 evolves faster compared to the others. An identical evolution for crack families 4 and 7 is observed. During the shear loading, no further evolution of these crack families is observed.

The ratio between the crack families ρ 1 ρ 4 = ρ 1 ρ 7 , for the two configurations, is depicted in figure 2.22c.

This evolution begins at the first unloading step in tension. The difference between the cracking families is related to their evolution which depends on the loading but also to the identified parameters C ρ i . For Config.1, ρ 1 exhibits higher values compared to Config2. This explains the difference in the ratio evolution in the beginning. Afterwards, this evolution has the same tendency for the two configuration. With the scope to provide information about the role of the crack families, the tension-shear test with the identified parameters of step 3 is performed considering only the preponderant crack family ρ 1 . The stress-strain behaviour is depicted in figure 2.23. Figure 2.23a clearly illustrates that the contribution of the three crack families ensures the softening behaviour. Indeed, the response do not exhibit a softening behaviour.

The tension behaviour influences also the shear one depicted in figure 2.23b. As the degradation process in tension is not ensured correctly, the influence is least in the shear behaviour. Hence, crack families 4 and 7 contribute in the degradation process in tension and shear. Nevertheless, there is no physical explanation that would lead one to choose different parameters for their evolution. But, the anisotropic character of the model does not change. Indeed, the thermodynamic forces responsible for the micro cracking evolution are different for each crack family. This feature will be illustrated in the next chapter. 

Additional validation step

The proposed identification procedure accounts for identification but also validation. Indeed, the constrains on the unloading phases constitute a validation step. Nevertheless, another test was conducted with the scope to validate the identified parameters of step 3. The test is composed of the same tension loading/unloading phases as the previous one. Instead of a shear loading (x direction), a loading in the 45 • direction is applied. The loading configuration is given in figure 2.24.

The results obtained with the identified parameters are depicted in figure 2.25. The tension behaviour has not changed. The two configurations reproduce the same post-peak behaviour. A slight difference is observed for the pre-peak behaviour. A satisfactory approximation of the 45 • direction loading test is obtained. The identified parameters on a tension-shear test are capable to reproduce satisfactory results for this test.

Summary

In this section, a procedure to identify the parameters of the anisotropic damage model is proposed. It is based on the use of a virtual testing machine. A 2D beam-particle model is retained and is consid-ered as the experiment reference. This discrete model accounts for the brittle behaviour of concrete and takes into account frictional contact.

A Levenberg-Marquardt iterative algorithm allows for the identification of the parameters. The numerical curves obtained by the anisotropic damage model are compared to the experimental results provided by the discrete beam-particle model.

The identification procedure, composed of several steps, is conducted on a tension-shear test. Its steps can be grouped into :

• identification steps (tension, shear curve),

• validation steps (secant modulus).

This way, this procedure is restrictive as it accounts also for validation. However, a final validation step is conducted on a tension-45 • direction loading test. Two parameter configurations are studied: equal parameters (C

ρ 1 = C ρ 2 = C ρ 4 = C ρ 7 ) and different ones ((C ρ 1 = C ρ 2 = C ρ 4 = C ρ 7 )
). So far, the two parameter configurations gave similar results. In addition, in the final identification step, the error at the end of the iterative process obtained by these two cases is the same. In the following developments of this work, equal parameters are considered.

This procedure highlights the different evolutions of the crack families and provides a method to identify parameters of micro mechanical based models.

In order to represent cracking explicitly, the kinematics of the anisotropic damage model adapted to concrete is enriched using the embedded strong discontinuity approach. Consequently, the main ingredient describing the failure mechanism is the displacement jump representing the crack opening. The non-linear behaviour is governed by the so-called traction-separation law. The formulation of this law is the object of the next section.

Strong discontinuity approach

The SDA addresses the mechanical and mathematical framework of a discontinuity jump in the displacement field. This approach is composed of three important steps:

• the use of a softening constitutive law. Depending on the adopted approach, one can use: (i) a continuum constitutive model expressed in terms of stress-strain variables; (ii) a softening constitutive law explicitly depending on the discontinuity jump.

• the definition of a strong discontinuity kinematics, i.e. introduction of a jump in the displacement field.

• the strong discontinuity analysis. This analysis consists in providing the mathematical framework which ensures compatibility between the classical continuum models and the strong discontinuity kinematics.

This section deals with the second and the third steps of the SDA. The first part exposes the strong discontinuity kinematics. The form of the displacement and strain field are addressed. The unbounded character of the strain field is tackled in the second part. A regularisation of the strain field is performed. Two main approaches deal with the regularised version of the strong discontinuity kinematics: the Continuum Strong Discontinuity Approach (CSDA) and the Discrete Strong Discontinuity Approach (DSDA). Their differences are exposed. The analysis which enables the definition of a traction-separation law in a consistent manner ends this section.

Kinematics

A crack is represented mathematically by a displacement jump. Let Ω be a solid and Γ S the discontinuity surface which splits the body into two parts Ω -and Ω + . Let n be the normal to the discontinuity at point M(x) pointing to Ω + (Figure 2.26). The strong discontinuity kinematics gives the displacement field u(x,t) of a solid Ω undergoing a displacement jump on the discontinuity Γ S . It is expressed by equation 2.37:

Ω + Ω - Ω Γ S n t M Ω + Ω -
u(x,t) = u(x,t) + H Γ S (x) u (x,t) , (2.37) 
where u(x,t)1 stands for the regular continuous displacement field and u (x,t) is the discontinuity jump through Γ S . The classical Heaviside function is H Γ S (x) = 1 if x ∈ Ω + and 0 otherwise.

The strain field, given in equation 2.38, is obtained by taking the symmetric gradient of the displacement field in equation 2.37:

ε = ∇ s u = ∇ s u + H Γ S (x) ∇ s u bounded + δ Γ S (x) ( u ⊗ n) s unbounded = ε + δ Γ S (x) ( u ⊗ n) s , (2.38) 
where (•) s is the symmetric part of (•) and δ Γ S (x) is the Dirac distribution centered on Γ S . It can be noticed that the strain field is composed of a bounded part and a singular unbounded one. For this reason, the presence of a strong discontinuity brings inconsistencies in standard constitutive models.

In the next section, an analysis to overcome these inconsistencies is exposed.

Strong discontinuity analysis

The mathematical framework devoted to keeping compatibility between the strong discontinuity kinematics and the continuum constitutive equations is called the strong discontinuity analysis [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF]. The main requirements of this analysis are:

• the bounded character of the stress field over the domain Ω,

• the continuity of the traction vector on the discontinuity Γ S .

This analysis is performed next.

Regularisation of the Dirac distribution

Following this analysis, the Dirac distribution is approximated by a regularisation function δ Γ S k (x) defined as follows:

δ Γ S k (x) = 1 k µ Γ S k (x) , (2.39) 
with µ Γ S k (x) = 1 if x ∈ Γ S k and 0 otherwise, where Γ S k is a discontinuity band of bandwidth k as small as possible such that, lim

k→0 δ Γ S k (x) = δ Γ S (x).
The regularisation form of the Dirac distribution depends on a regularisation parameter k which can be taken as small as allowed by the machine precision. This parameter is purely mathematical without any physical meaning.

In the strong discontinuity regime, the regularised version of the strain field is:

ε = ε + δ Γ S k (x) ( u ⊗ n) s ≈ ε + 1 k ( u ⊗ n) s .
(2.40)

The regularised sequence is identified as the transition of a weak discontinuity to a strong one (see figure 2.27). A weak discontinuity presents a jump in the strain field. This jump is localised in a band S k . When this bandwidth tends to zero, the strong discontinuity regime is obtained. 

Continuum Strong Discontinuity Approach (CSDA)

The main idea of this approach is to keep the continuum framework of a constitutive model. A bifurcation analysis is performed to introduce the strong discontinuity. The regularisation parameter k is kept in the implementation of the constitutive model in a finite element code. This formulation leads to a discrete constitutive equation relating tractions to the displacement jump across the discontinuity interface. Developments of this approach can be found in [Oliver, 1996, Oliver et al., 1999].

Discrete Strong Discontinuity Approach (DSDA) In this approach, a continuum stress-strain relationship is kept in Ω \ Γ S and a discrete constitutive law links tractions to displacement jumps on Γ S . One can introduce a constitutive law explicitly depending on the discontinuity jump or use a continuum constitutive model. In the second case, [Oliver, 2000, Brancherie, 2003] have shown that this approach provides not only a discrete constitutive equation but also a complete discrete constitutive model consistent with the continuum one. The strong discontinuity is introduced by a stress-based or energy-based localisation criterion and not by a bifurcation analysis. It was shown by other authors [Oliver, 2000] that regularisation of the softening parameter in a distributional sense and the traction continuity are the only requirements to derive a complete discrete constitutive model compatible with the continuum one.

These two approaches are equivalent when considering that the material has a zero dissipation before localisation [Brancherie, 2003]. Nevertheless, it is in the introduction of the regularisation parameter that the two approaches differ. Indeed, in the DSDA this parameter is not used in the implementation of the discrete constitutive law. This approach is employed within the framework of this study and is exposed next.

Stress analysis on the discontinuity

The departure point of the strong discontinuity analysis is the bounded character of stresses and strains of the continuum constitutive law. Since in Ω \ Γ S , strains are bounded according to the strong discontinuity kinematics, equation 2.38, stresses are also bounded:

σ Ω\Γ S = C : ε Ω\Γ S = C : ε bounded =⇒ σ Ω\Γ S bounded.
(2.41) Furthermore, because the equilibrium equations should be fulfilled in both Γ S and Ω \ Γ S , stresses are bounded at the discontinuity Γ S [Oliver et al., 2002a]:

σ Γ S = σ Ω\Γ S bounded =⇒ σ Γ S bounded.
(2.42)

The bounded character of the traction vector is ensured as well, as shown below:

t = σ Ω\Γ S bounded •n = σ Γ S bounded •n =⇒ t bounded. (2.43)
The second requirement of this analysis is the continuity of the traction vector at the discontinuity surface; the following condition must be fulfilled:

t = σ Ω\Γ S • n = σ Γ S • n . (2.44)
Stresses, expressed in equation 2.45, read:

σ(ρ, N, ε) = C : ε -α 4 ∑ i=1 ρ i 2ε -tr ε 1 + tr ε N i + tr ε • N i 1 -2β 4 ∑ i=1 ρ i (ε • N i + N i • ε) (2.45)
The regularised strain field is inserted in equation 2.45. Stresses at the discontinuity surface are then expressed as follows:

σ(ρ, N, ε) k = C : ε + 1 k ( u ⊗ n) s -α 4 ∑ i=1 ρ i 2 ε + 1 k ( u ⊗ n) s -tr ε + 1 k ( u ⊗ n) s 1 + tr ε + 1 k ( u ⊗ n) s N i -α 4 ∑ i=1 ρ i tr ε + 1 k ( u ⊗ n) s • N i 1 -2β 4 ∑ i=1 ρ i ε + 1 k ( u ⊗ n) s • N i + N i • ε + 1 k ( u ⊗ n) s . ( 2 

.46)

The terms that compose the stress expression are linear with respect to the strains. Taking the limit of the expression 2.46 when the bandwidth tends to zero, gives:

σ = lim k→0 σ k = lim k→0 1 k C : ( u ⊗ n) s - 4 ∑ i=1 lim k→0 ρ i k α 2( u ⊗ n) s -tr (( u ⊗ n) s ) 1 + tr (( u ⊗ n) s ) N i + tr ( u ⊗ n) s • N i 1 - 4 ∑ i=1 lim k→0 ρ i k 2β ( u ⊗ n) s • N i + N i • ( u ⊗ n) s .
(2.47)

The traction vector is deduced from stresses and is expressed in equation 2.48.

t = σ • n = lim k→0 1 k C : ( u ⊗ n) s • n - 4 ∑ i=1 lim k→0 ρ i k α 2( u ⊗ n) s -tr (( u ⊗ n) s ) 1 + tr (( u ⊗ n) s ) N i + tr ( u ⊗ n) s • N i 1 • n - 4 ∑ i=1 lim k→0 ρ i k 2β ( u ⊗ n) s • N i + N i • ( u ⊗ n) s • n . (2.48)
The first term of the traction vector can be rewritten as lim From the flow rules given in equation 2.29, micro cracking density expression is:

k→0 1 k C : ( u ⊗ n) s • n = lim k→0 1 k Q • u where Q = n •C • n.
ρ i = t f t i ρi dt = t f t i λi dt = t f t i k λi dt . (2.50)
Let us analyse the term lim

k→0 ρ i k . lim k→0 ρ i k = lim k→0 t f t i λi dt = lim k→0 (λ i ) = λ i < ∞ .
(2.51) Equation 2.51 shows the bounded character of the term lim k→0 ρ i k . Indeed, the flow rule relates the micro cracking density rate to the rate of the Lagrangian multiplier. This latter is by definition bounded. Consequences of the introduction of a bounded discrete variable on the tangent modulus in the strong discontinuity regime are studied. The hardening modulus can be expressed as follows:

H i = dZ i (ρ i ) dρ i ρi = dZ i (ρ i ) dρ i λi = dZ i (ρ i ) dρ i k λi = H i λi . ( 2 

.52)

H i is defined as the bounded discrete hardening modulus at the discontinuity surface. We recover the bounded character of the inelastic term of the traction vector.

Let us now consider the elastic part of the traction vector. The term lim k→0 1 k Q is the initial stiffness. At the strong discontinuity regime, pseudo-time t i , the elastic part of the traction vector is an undetermined form. Indeed, on the one hand lim k→0 1 k Q = +∞ and on the other hand, u = 0. The mathematic condition to guarantee the bounded character of this term is the traction continuity condition [Oliver, 2000]. This latter is fulfilled at any pseudo-time and as well for initiation time when the discontinuity regime is activated. The bound value is determined by the stress state and depends on the localisation criterion to introduce the discontinuity. For instance, traction continuity implies

lim k→0 1 k Q • u = t 0 .
Equation 2.48 reads:

t = t 0 - 4 ∑ i=1 ρ i α 2( u ⊗ n) s -tr (( u ⊗ n) s ) 1 + tr (( u ⊗ n) s ) N i + tr ( u ⊗ n) s • N i 1 • n - 4 ∑ i=1 ρ i 2β ( u ⊗ n) s • N i + N i • ( u ⊗ n) s • n . (2.53)
6 Discrete enhanced model

The strong discontinuity analysis provided the ingredients to ensure compatibility between the continuum constitutive model and the strong discontinuity regime. The discrete enhanced model derived from the strong discontinuity analysis is exposed next.

Discrete free energy

Considering the regularised kinematics, the discrete free energy at the discontinuity surface is expressed by equation 2.54:

ψ k = ψ k 0 ε + 1 k ( u ⊗ n) s - 4 ∑ i=1 ρ i f k i ε + 1 k ( u ⊗ n) s , N i ψ k inelastic , (2.54) 
where

f k i ε + 1 k ( u ⊗ n) s , N i = α tr ε + 1 k ( u ⊗ n) s • ε + 1 k ( u ⊗ n) s - 1 2 tr 2 ε + 1 k ( u ⊗ n) s + α tr ε + 1 k ( u ⊗ n) s tr ε + 1 k ( u ⊗ n) s • N i + 2β tr ε + 1 k ( u ⊗ n) s • ε + 1 k ( u ⊗ n) s • N i . (2.55)
Let us begin the analysis with the elastic term. After factorising the term 1 2k 2 , the elastic energy reads:

ψ k 0 ε + 1 k ( u ⊗ n) s = 1 2k 2 kε + ( u ⊗ n) s : C : kε + ( u ⊗ n) s .
(2.56)

Considering the limit when k tends to 0, one ends up with:

lim k→0 ψ k 0 ε + 1 k ( u ⊗ n) s = lim k→0 1 2k 2 ( u ⊗ n) s : C : ( u ⊗ n) s = lim k→0 1 2k u • 1 k Q • u . (2.57)
The elastic contribution of the discrete free energy is: 

ψ 0 = lim k→0 kψ k 0 = 1 2 u • lim k→0 1 k Q • u t 0 . ( 2 
ψ k inelastic = 1 k 2 4 ∑ i=1 ρ i f k i kε + ( u ⊗ n) s , N i = 1 k 4 ∑ i=1 ρ i k f k i kε + ( u ⊗ n) s , N i .
(2.59)

Finally, considering the limit of equation 2.59, the inelastic contribution of the discrete state potential takes the following form:

ψ inelastic = lim k→0 kψ k inelastic = 4 ∑ i=1 ρ i f i ( u ⊗ n) s , N i . (2.60)
The discrete free energy reads:

ψ = ψ 0 -ψ inelastic = 1 2 t 0 • u - 4 ∑ i=1 ρ i f i ( u ⊗ n) s , N i . ( 2 

.61)

Remark At the vicinity of the strong discontinuity regime, for infinitely small values of k, the constant t 0 depends linearly on the discontinuity jump ψ 0 = 1 2 t 0 ( u ) • u .

Discrete state laws

The discrete state laws are obtained straightforwardly by differentiating the discrete free energy with respect to the discrete state variables.

Considering the linear dependency on u of t 0 at the vicinity of pseudo-time t i , the constitutive law at the discontinuity reads:

t = ∂ψ ∂ u = t 0 - 4 ∑ i=1 ρ i ∂ f i ( u ⊗ n) s , N i ∂ u . (2.62)
Thermodynamic forces are expressed in equation 2.63.

F = - ∂ψ ∂ρ i = f i ( u ⊗ n) s , N i .
(2.63)

Discrete flow rules

In the previous sections, the bounded character of state variables and internal ones was established. Consequently, it is assumed that a discrete threshold surface drives the flow of micro cracking densities and hardening variables. For each micro cracking variable, the threshold surface which is active at the strong discontinuity regime, reads:

φ i = F ρ i 2 -Z i (ρ i ) + Z 0 . (2.64)
It is assumed that the reversibility thermodynamic forces are expressed in terms of the discontinuity jump:

F ρ i 2 = 3 2 α + 2β tr 2 ( u ⊗ n) s • N i . (2.65)
The non-associated flow framework is kept in the discrete model too. Evolution of the discrete micro cracking densities is obtained by the discrete threshold surface.

ρ i = C ρ i ln 1 + F ρ i 2 Z 0 (2.66)
Finally, the constitutive equations of the developed discrete model are summarised in the box hereafter.

Helmholtz free energy

ψ = 1 2 t 0 • u -α 4 ∑ i=1 ρ i tr(( u ⊗ n) s • ( u ⊗ n) s ) - 1 2 tr 2 (( u ⊗ n) s ) + tr(( u ⊗ n) s )tr(( u ⊗ n) s • N i ) -2β 4 ∑ i=1 ρ i tr ( u ⊗ n) s • ( u ⊗ n) s • N i (2.67)
Thermodynamic forces

F ρ i = α 4 ∑ i=1 ρ i tr(( u ⊗ n) s • ( u ⊗ n) s ) - 1 2 tr 2 (( u ⊗ n) s ) + tr(( u ⊗ n) s )tr(( u ⊗ n) s • N i ) + 2β 4 ∑ i=1 ρ i tr ( u ⊗ n) s • ( u ⊗ n) s • N i (2.68)
Reversibility domain thermodynamic forces

F ρ i 2 = 3 2 α + 2β tr 2 ( u ⊗ n) s • N i (2.69)
Traction-separation law

t Γ S = t 0 -α 4 ∑ i=1 ρ i 2( u ⊗ n) s -tr(( u ⊗ n) s )1 + tr(( u ⊗ n) s )N i + tr(( u ⊗ n) s • N i )1 • n -2β 4 ∑ i=1 ρ i ( u ⊗ n) s • N i + N i • ( u ⊗ n) s ) • n (2.70)
Hardening function

Z i (ρ i ) = Z 0 e ρ i /C ρ i (2.71) Threshold surface φ i (F ρ i 2 , ρ i ) = F ρ i 2 -Z i (ρ i ) + Z 0 (2.72) Flow rules ρi = λi ∂ψ * ∂F ρ i = λi (2.73)

Summary

Formulation steps of the discrete enhanced anisotropic damage model are exposed in this chapter.

The enrichment of a continuum model consists in replacing the continuous strains with the enhanced ones. In the strong discontinuity regime, enhanced strains are singular.

In order to ensure compatibility of this singularity with the continuum model, the strong discontinuity analysis is performed. This latter requires:

• bounded stress field over the domain Ω,

• continuity of the traction vector on the discontinuity Γ S , This analysis is performed in two steps. First, the regularisation of the Dirac distribution is performed.

The regularised strain field can be treated by a continuum approach or by a discrete one. In this work, the discrete approach is chosen. Second, the analysis in the strong discontinuity regime is performed. Introduction of a bounded discrete variable (Lagrange multiplier) ensures bounded stresses and also provides a discrete hardening modulus. It it worth highlighting the crucial traction continuity condition which ensures bounded stresses at the discontinuity.

Finally, the complete discrete enhanced model is obtained. A term-by-term correspondence with the continuum damage model is established. The discrete enhanced model is expressed in terms of the displacement jump.

Conclusion

In this chapter, the formulation of an enhanced anisotropic damage model is exposed. It consists in the coupling of a continuum anisotropic damage model and the embedded strong discontinuity approach.

The continuum damage model is based on the fixed damage description. Damage is described by several oriented crack families. They are characterised by directional tensors depending on the normal to the crack and by micro cracking densities which evolve during loading.

The model is able to reproduce the softening behaviour in tension, the progressive loss of stiffness and ensures a partial unilateral effect. The uniaxial tensile response originally exhibited negative stresses where failure is attained. This drawback is treated by the definition of an energy-based criterion which ensures bounded evolution of the micro cracking densities when the material is ruined. With the scope of building an enhanced model expressed in terms of displacement jump, an explicit unilateral criterion is chosen.

An identification procedure of the material parameters is proposed. A beam-particle model is used as the reference model and is compared to the results given by the anisotropic damage model. The identification procedure is performed by means of an iterative procedure based on the Levenberg-Marquardt algorithm.

The discrete enhanced damage model is established using the discrete approach. Strong discontinuity analysis provides a consistent model which is compatible with the strong discontinuity regime. The discrete enhanced model is expressed in terms of the displacement jump.

This model is cast in a finite element framework in the next chapter. In this context, the activation of the strong discontinuity regime is exposed.

Introduction

Introduction of a strong discontinuity in the displacement field modifies the classical continuum medium. In a finite element context this is not natural. Therefore, non-standard formulations are necessary to tackle resolution of jump discontinuities. The scope of this chapter is to provide the unified discretised equations of the developed model and the integration scheme.

Several approaches have been employed in the context of embedded strong discontinuities. The assumed enhanced strain approach was developed by [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF]. This latter is based on the multiple variational principle framework. The three-field variational principle [Washizu, 1982] is an adequate framework for incorporating discontinuity jumps. Standard finite element approximations are enriched in order to include displacement jumps in an element domain. Three enrichment formulations are distinguished:

• Statically Optimal Symmetric (SOS),

• Kinematically Optimal Symmetric (KOS),

• Statically and Kinematically Optimal Non-symmetric (SKON).

The main difference between these formulations consists in the approximation of the embedded discontinuity jumps. Furthermore, the orientation of the discontinuity interface plays a crucial role.

The CSDA (Continuous Strong Discontinuity Approach) determines this orientation by performing a bifurcation analysis. This analysis enables definition of an acoustic tensor depending on the discontinuity orientation. The singularity condition of this tensor, his determinant is zero, allows for the definition of the discontinuity orientation vector. This method was used by [Oliver, 1998,Oliver et al., 1999]. On the contrary, a localisation criterion is necessary for the DSDA (Discrete Strong Discontinuity Approach). Classical criteria for concrete cracking as the Rankine or Von Mises criterion are often employed.

The finite element framework of the enhanced anisotropic damage model is detailed in this chapter. First, the finite element approximation is built upon the three-field variational principle. The enrichment techniques and their differences are exposed. The finite element formulation is independent on the applied constitutive model. This ensures the transparency of the method. In this chapter, only the developments related to this work are emphasised. Second, the localisation criterion and the tractionseparation law are detailed. This criterion defines the activation of the strong discontinuity regime. Using a mixed-mode opening, a simple traction-separation law is obtained. Finally the predictive capacities of the enhanced model are tested by means of some material point tests after the presentation of the time integration scheme.

Finite element approximation

The three-field variational formulation [Washizu, 1982] is built within a unified mathematical framework accounting for the strong discontinuity kinematics. It is based on the independency of the three fields (u, ε, σ), respectively the standard displacement field, the standard strain field and the standard stress field. The corresponding virtual fields are (w, γ, τ). The weak form of the equilibrium HW u , kinematic HW σ and constitutive equations HW ε read:

Find (u, ε, σ) ∈ (V ,E,S ), such that ∀ (w, γ,τ) ∈ (V 0 ,E,S )

HW u (u, ε, σ; w) = Ω ∇ s w : σ dV - Ω w b dV - Γ t w t dΓ = 0, (3.1) HW σ (u, ε, σ; τ) = Ω τ : (∇ s u -ε) dV = 0, (3.2) HW ε (u, ε, σ; γ) = Ω γ : ( σ(ε) -σ) dV = 0. (3.3) with V = {u|u ∈ H 1 (Ω), u = g in Γ u } , V 0 = {u|u ∈ H 1 (Ω), u = 0 in Γ u } , E = {ε|ε ∈ L 2 (Ω)} and S = {σ|σ ∈ L 2 (Ω)}
where σ is the stress field that verifies the constitutive law in the domain Ω, Ω w b dV and Γ t w t dΓ are the virtual work of volumic and surfacic loadings respectively. In standard finite element procedures only the displacement field is the unknown variable and only the virtual work, equation 3.1, is needed.

Discretisation

Considering the independency of the fields, the variational formulation is discretised following the approach of [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF]. The unknown fields are interpolated as follows:

u ≈ N d + M d s , (3.4) ε ≈ B d + G α , (3.5) γ ≈ B d + G α , (3.6) σ ≈ S s , (3.7)
where N is the standard displacement interpolation matrix, M is the displacement interpolation matrix corresponding to the enriched displacement, B is the standard strain interpolation matrix, G is the interpolation matrix corresponding to enriched strain modes and G is the interpolation matrix corresponding to enriched virtual strain modes; S is the standard stress interpolation matrix; d, d s , α and s are respectively the nodal displacements, the enriched displacement modes, the enriched strain modes and the stress parameter.

Given the interpolated fields, equations 3.1-3.3 become:

d T Ω B T σdV -f ext + (d s ) T Ω (B s ) T σdV -f ext u = 0 , (3.8) s T Ω S T : (B s d s -G α) dV = 0 , (3.9) d T Ω B T : ( σ(ε) -σ) dV + α T Ω GT : ( σ(ε) -σ) dV = 0 , (3.10)
where B s is the strain interpolation matrix corresponding to the enriched displacement modes; f ext = Ω N T b dV+ Γ t N T t dΓ is the vector of external forces acting on the domain Ω and f ext u = Ω M T b dV+ Γ t M T t dΓ is the vector of external forces acting on the discontinuity. For the sake of simplicity, f ext u are assumed to be equal to zero. Considering the fact that the displacement, strain and stress fields are independent, the discretised problem is given in equations 3.11-3.14.

Ω B T C : (B d + G α) dV = f ext , (3.11) Ω GT C : (B d + G α) dV - Ω GT S s dV = 0 , (3.12) Ω S T B s d s dV - Ω S T G α dV = 0 , (3.13) Ω (B s ) T S s dV = 0 . (3.14)
Different possibilities to solve out the problem given by equations 3.11-3.14 exist in the literature.

Two categories are distinguished: on the one hand formulations based on static considerations and on the other hand formulations based on kinematic considerations. These methods are exposed here. Full description of them can be found in [Jirásek, 2000].

Statically Optimal Symmetric This formulation was developed by many authors [START_REF] Larsson | Embedded localization band in undrained soil based on regularized strong discontinuity: theory and fe-analysis[END_REF],Armero and Garikipati, 1996,Sluys and Berends, 1998]. The main assumption of this method is that the displacement field is not enhanced. Thus, all the terms related to the enhanced displacement modes disappear. Equation 3.14 disappears and equation 3.13 is reduced in:

Ω S T G α dV = 0 . (3.15)
In order to pass the patch test [START_REF] Zienkiewicz | Adaptivity and mesh generation[END_REF], the interpolation matrix corresponding to the enhanced strain modes is chosen to satisfy the zero mean condition: Ω G dV = 0. Hence, the stress field vanishes from the formulation. The matrix of the system is symmetric due to the fact that strains and its variations are interpolated in the same way, G = G. The system to be solved out is: (3.16)

Ω B T C : (Bd + Gα) dV = f ext ,
Ω G T C : (Bd + Gα) dV = 0 . (3.17)
A possible choice of the interpolation matrix is G = ln where n is the normal to the crack and l is a scalar quantity which depends on the geometric properties of the fine element [START_REF] Zhang | Strong discontinuity embedded approach with standard sos formulation: Element formulation, energy-based crack-tracking strategy, and validations[END_REF].

The SOS method ensures stress field continuity but the kinematic of a displacement discontinuity is not represented.

Kinematically Optimal Symmetric Unlike the SOS enhancement, the KOS formulation considers enhancement of the displacement field [START_REF] Lotfi | Embedded representation of fracture in concrete with mixed finite elements[END_REF]. The enhanced strain interpolation G is built on kinematic motivations. A displacement jump at a discontinuity induces the same displacement at the nodes on one side of a discontinuity. Hence, a function ϕ e that equals one at nodes on one side of the discontinuity Ω + and zero at nodes on the other side Ω -, can be defined. This latter can be constructed using the shape functions of nodes in Ω + :

ϕ e = n∈Ω + ∑ i=1 N i . (3.18)
Thus, based on this fact, the enhanced strain interpolation matrix is constructed taking the gradient of equation 3.18.

G = -∇ϕ e . ( 3 

.19)

The minus sign in the definition of matrix G ensures that strains in the continuum are opposite to the strains induced by the discontinuity jump at nodes in Ω + . The virtual strain interpolation matrix is taken equal to G. The resulting system is the same as the previous one (equations 3.16 and 3.17). The kinematics of a strong discontinuity is well captured. However, the traction continuity condition is not properly represented.

Statically and Kinematically Non Symmetric This method takes advantage of the two previous ones and constructs a formulation satisfying both static and kinematic conditions. It was first developed by [START_REF] Dvorkin | 2d finite elements with displacement interpolated embedded localization lines: the analysis of fracture in frictional materials[END_REF], Simo and Rifai, 1990, Oliver, 1996]. The actual strain field is interpolated considering KOS assumption and the virtual strain field interpolation matrix satisfies the zero mean condition of SOS formulation. The system to solve is:

Ω B T C : (Bd + Gα) dV = f ext , (3.20) Ω GT C : (Bd + Gα) dV = 0 . (3.21)
The virtual strain field interpolation matrix for a fine element is build on the enhanced assumed strain method developed by [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF]. The following form of the matrix is considered: .22) where n 1 , n 2 , n 3 are the components of the normal vector n and A e , Ω e are respectively the area and volume of a finite element . Equation 3.21, considering the Dirac properties, can be written as: .23) and simplified in:

G = δ Γ S (x) - A e Ω e N with N =         n 1 0 0 0 n 2 0 0 0 n 3 n 2 n 1 0 0 n 3 n 2 n 3 0 n 1         , ( 3 
Ω δ Γ S (x) - A e Ω e N T C : (Bd + Gα) dV = Γ S N T C : (Bd + Gα) t Γ S dΓ - Ω A e Ω e N T C : (Bd + Gα) dV = 0 . ( 3 
A e t Γ S -A e Ω 1 Ωe N T σ dV = 0 ⇐⇒ t Γ S = N T σ . (3.24)
It can be noticed (equation 3.24) that the SKON formulation is independent on the area of the discontinuity. Equation 3.24 expresses the traction continuity. Given these interpolation matrices, the solution is only dependent on the normal to the discontinuity and the position of this latter with respect to the element nodes. Jirasek [Jirásek, 2000] has conducted a comparative study on these three enrichments and has shown that the SKON formulation provides more accurate results at the finite element level compared to the symmetric formulations. In this work, the SKON enrichment is also used. The next section deals with the linearised equations of the SKON method.

Linear system of equations

In the framework of the SKON method, the system to linearise is given below:

Ω B T C : (Bd + Gα) dV = f ext , (3.25) t Γ S - Ω N T C : (Bd + Gα) dV = 0 . (3.26)
The global system to be solved at the element level, after linearisation of equations 3.25 and 3.26, is: .27) where:

K bb K bs K s * b K α -K s * s ∆d ∆α = f ext 0 - f int d f int α , ( 3 
K bb = Ω B T C B dV K bs = Ω B T C G dV K s * b = Ω N T C B dV K s * s = Ω N T C G dV K α = ∂t Γ S ∂α f int d = Ω B T σ dV f int α = Ω N T σ dV -t Γ S (3.28)
and ∆d, ∆α are the displacement increments. The resolution of the system 3.27 is performed at two levels. The increment ∆α is determined at the element level for a fixed displacement increment ∆d by solving the traction continuity condition:

∆α = -[K α -K s * s ] -1 f int α + K s * b ∆d (3.29)
Once ∆α is known, the displacement increment ∆d is calculated by solving the global equilibrium equation. This expression is given in equation 3.30.

∆d = K bb -(K α -K s * s ) -1 -1 f ext -f int d + K bs (K α -K s * s ) -1 f int α (3.30)
Remark The displacement α is simply the additional unknown of the strong discontinuity kinematics, the displacement jump u . The developed enhanced model is implemented in the finite element code Cast3M. In terms of resolution methodology, the user intervene only at the local stress computation level. In our case, the implementation deals with the resolution of the traction-continuity condition (equation 3.26). The resolution of the global system is tackled by the software where the secant operator is used. Therefore, numerical problems encountered when dealing with softening laws using the tangent operator are not exhibited.

Summary

In this section the finite element interpolation and the resolution strategy were discussed. The threefield variational principle accounts for non-standard formulations able to tackle strong discontinuities. Three enrichment techniques can be used to solve the discretised equations of the variational principle.

The SKON formulation is used in this work because it has proven to give more accurate results at the element level compared to the other two formulations. The integration scheme of the constitutive law will be discussed later. The next section exposes the enhanced discrete model at the discontinuity.

3 Localisation and traction-separation law

Localisation criterion

The discrete enhanced constitutive law which accounts for the non-linear behaviour at the discontinuity was exposed in chapter 2. As it was highlighted previously, the discrete approach (DSDA) defines two mechanical behaviours: an elastic one for the continuum parts Ω + and Ω -, and a non-linear behaviour at the discontinuity Γ S . Complex behaviours as plasticity or damage can also be implemented for the continuum parts [Oliver, 1996, Brancherie, 2003].

For the DSDA, in order to introduce the strong discontinuity regime and to define the crack orientation, a localisation criterion is needed. The choice is made here to introduce the strong discontinuity regime upon stress state consideration. Thus, the behaviour is elastic until this criterion is reached.

The localisation criterion corresponds to the Rankine criterion, a classical choice for quasi-brittle materials as concrete [Wells, 2001, Alfaiate et al., 2002, Dias-da Costa et al., 2009, Benkemoun et al., 2010, Roubin et al., 2015]. As it was mentioned previously, compression is considered linear thus it is not taken into account. Let us consider the yield stress f t triggering the inelastic behaviour. The localisation criterion is reported in equation 3.31:

φ loc. = max I∈{1,2} (σ I ) -f t , (3.31) 
where σ I is the principal stress. The corresponding eigenvector n I gives its direction. Furthermore, this vector is chosen to represent the crack orientation at the onset of localisation. Once this vector is calculated, it is kept fixed. This choice fits in the so-called fixed crack approach. It is worth highlighting that even if the crack orientation is fixed, the oriented crack families that compose the model palliate the problems encountered in the fixed crack models.

Thus, crack orientation is based only upon stress state consideration. One can also define crack orientation based on displacement considerations, stress independent. [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] have made this choice to represent material discontinuity such as debonding between the cement paste and the aggregates.

Traction-separation law

Given crack orientation n I , a mixed-mode opening is defined in equation 3.32. (3.32) where u n = u • n, u t = u • t are respectively the normal and tangential components of the crack opening, n = n I the normal vector representing crack opening orientation and t the tangential vector representing crack sliding orientation. A pure mode I opening can be considered simply by posing u t = 0.

u = u n n + u t t ,
With equation 3.32 in hand, the traction-separation law is studied. Within a 2D configuration, let us consider the local crack basis (n, t). At localisation time, crack orientation is obtained by the stress state. The directional tensors can then be constructed. The first damage direction is given by the normal n. Thus, the first tensor N 1 is calculated upon the crack orientation n. Then, the second tensor N 2 is constructed as the tensor product of the crack sliding orientation t. Finally, the two remaining orientations are obtained. These tensors are given by equation 3.33.

N 1 = n ⊗ n N 4 = 1 2 (n + t) ⊗ (n + t) N 2 = t ⊗ t N 7 = 1 2 (n -t) ⊗ (n -t) . (3.33)
Taking advantage of this representation, the strain-like term ( u ⊗ n) s characterising the strong discontinuity kinematics 2.38 can be simplified as follows:

( u ⊗ n) s = (( u n n + u t t) ⊗ n) s = u n N 1 + 1 2 u t (N 4 -N 7 ) (3.34)
In equation 3.34, the first term, depending on the normal component of the crack opening, accounts for opening/closing of the crack and the second term accounts for shear or crack sliding. The decomposition in equation 3.34, translates the active crack families for a tension test. It is worth highlighting that this decomposition is not unique. In our case, this choice has a physical meaning based upon the micro cracking densities activation.

The traction-separation law is now detailed considering expression 3.34. The discrete traction vectordisplacement jump law established in chapter 2 is recalled in equation 3.35.

t Γ S = t 0 -α 4 ∑ i=1 ρ i 2( u ⊗ n) s -tr(( u ⊗ n) s )1 + tr(( u ⊗ n) s )N i + tr(( u ⊗ n) s • N i )1 • n -2β 4 ∑ i=1 ρ i ( u ⊗ n) s • N i + N i • ( u ⊗ n) s ) • n (3.35)
To simplify the reading the contribution of each crack family is detailed considering the normal and tangential components of this law.

Contribution of ρ 1 The normal component is expressed in equation 3.36.

t n (ρ 1 ) = n T t 0 -α ρ 1 n T 2( u ⊗ n) s -tr(( u ⊗ n) s )1 + tr(( u ⊗ n) s )N 1 + tr(( u ⊗ n) s • N 1 )1 • n -2β ρ 1 n T ( u ⊗ n) s • N 1 + N 1 • ( u ⊗ n) s ) • n (3.36)
Taking into account equation 3.34 and that tr((

u ⊗ n) s ) = tr u n N 1 + 1 2 u t (N 4 -N 7 ) = u n ,
the normal component is written as:

t n (ρ 1 ) = n T t 0 -α ρ 1 n T 2 u n N 1 + 1 2 u t (N 4 -N 7 ) -u n 1 + u n N 1 • n -α ρ 1 n T tr u n N 1 • N 1 + 1 2 u t (N 4 -N 7 ) • N 1 1 • n -2β ρ 1 n T u n N 1 • N 1 + 1 2 u t (N 4 -N 7 ) • N 1 + u n N 1 • N 1 + 1 2 u t N 1 • (N 4 -N 7 ) • n.
(3.37)

After the mathematical calculations which are not given here for the sake of the reading, the normal component t n is expressed in equation 3.38.

t n (ρ 1 ) = n T t 0 -(3α + 4β) ρ 1 u n . (3.38)
Following the same reasoning, the tangential component is expressed in equation 3.39.

t t (ρ 1 ) = t T t 0 -(α + β) ρ 1 u t . (3.39)
Contribution of ρ 4 The normal and tangential components due to the contribution of crack family ρ 4 are given in equation 3.40.

t n (ρ 4 ) = n T t 0 -2(α + β) ρ 4 u n -(0.5α + β) ρ 4 u t . t t (ρ 4 ) = t T t 0 -(0.5α + β) ρ 4 u n -(α + β) ρ 4 u t . (3.40)
Contribution of ρ 7 The normal and tangential components due to the contribution of crack family ρ 7 are given in equation 3.41.

t n (ρ 7 ) = n T t 0 -2(α + β) ρ 7 u n + (0.5α + β) ρ 7 u t . t t (ρ 7 ) = t T t 0 + (0.5α + β) ρ 7 u n -(α + β) ρ 7 u t . (3.41)
There is no contribution of the crack family ρ 2 . All the terms of the traction vector-displacement jump law vanish. The traction-separation relationship reads:

t Γ S = t 0 - (3α + 4β)ρ 1 + 2(α + β)(ρ 4 + ρ 7 ) (0.5α + β)(ρ 4 -ρ 7 ) (0.5α + β)(ρ 4 -ρ 7 ) (α + β)(ρ 1 + ρ 4 + ρ 7 )
u n u t (3.42) This form of the traction-separation law couples mode I and mixed-mode failure. The out of diagonal terms are only dependent on the inclined crack families. Diagonal terms account for coupling between opening and shear. The initial value t 0 is determined by the traction continuity condition (equation 3.24). It is noticed that this traction separation law does not exhibit time-continuity problems encountered when dealing with the DSDA [Oliver, 2000]. This is due to the formulation of the continuous model in a elastic part and an inelastic one. Indeed, the initial value t 0 accounts for the elastic behaviour of the material before triggering the strong discontinuity regime. This point is a crucial advantage of the model.

Remark Considering a pure mode I opening ( u t = 0) and the same material parameters related to the flow rules driving the crack families, the traction-separation law is expressed by the following expression.

t n = f t -(3α + 4β)ρ 1 -2(α + β)(ρ 4 + ρ 7 ) u n (3.43)

Placement of the crack

In this work, the developed enhanced damage model is investigated using linear triangular elements. Hence, this type of element is characterised by constant strain and stress field. The traction-separation law governs the non-linear behaviour at the discontinuity interface. Two configurations are possible for the placement of the discontinuity interface in a triangular element as shown in figure 3.1. In the first case the discontinuity is oriented by the normal n and passes through the point x p which is the centroid of the triangle. This is the simplest choice. The discontinuity Γ S divides the element into domains Ω + and Ω -. This decomposition conditions the form of the enhanced strains (matrix G). It is recalled that:

1 2 3 x p Γ S n Ω + Ω - 1 2 3 Γ S n x p Ω + Ω -
G = -∇ϕ e = -∇ n∈Ω + ∑ i=1 N i . (3.44)
For the first case, nodes 2 and 3 belong to the domain Ω + . The matrix G equals:

G = -∇(N 2 + N 3 ) . (3.45)
For the second case, an arbitrary point x p is chosen. From the decomposition, only node 3 belongs to the domain Ω + . Thus, matrix G is:

G = -∇N 3 . (3.46)
Therefore, the position of the crack influences the form of matrix G and consequently the constitutive response in a finite element computation. In this work, the choice is made to place the discontinuity interface at the centroid of the element.

Summary

A simple criterion based on stress state consideration is chosen to activate the strong discontinuity regime. It is the Rankine criterion, physically motivated to describe concrete failure in tension. The normal to the crack is calculated as the eigenvector corresponding to the maximal principal stresses.

Then, once the normal to the crack is defined, it remains fixed.

The discrete law at the discontinuity is built using a mixed-mode opening. The discrete anisotropic model allows for a physical decomposition of the strains related to the discontinuity jump. Henceforth, the traction-separation law is simplified and accounts for mode I and mixed-mode terms. A summary of the main equations of this section is given below.

Choice of the normal to the crack

φ loc. = max I∈{1,2} (σ I ) -f t ⇒ n loc. (3.47)
Threshold surface

φ i (F ρ i 2 , ρ i ) = F ρ i 2 -Z 0 e ρ i /C ρ i + Z 0 (3.48)
Reversibility domain thermodynamic forces

F ρ i 2 = 3 2 α + 2β tr 2 ( u ⊗ n) s • N i . (3.49)
Evolution law

ρ i = C ρ i ln 1 + F ρ i 2 Z 0 (3.50)
Traction-separation law

t Γ S = t 0 - (3α + 4β)ρ 1 + 2(α + β)(ρ 4 + ρ 7 ) (0.5α + β)(ρ 4 -ρ 7 ) (0.5α + β)(ρ 4 -ρ 7 ) (α + β)(ρ 1 + ρ 4 + ρ 7 ) u n u t (3.51)
The next section provides the time integration scheme which follows the resolution methodology presented in section 1. 

Data: ε n , σ n , ∆ε n , u n ,t n , Z n i , ρ n i , i = 1, . . . , 4, Π Result: σ n+1 , ε n+1 , u n+1 ,t n , Z n+1 i , ρ n+1 i , i = 1, . . . , 4 // Updating strains ε n+1 = ε n + ∆ε n ; while σ n 33 > ε crit do if t σ n n ≥ f s then for k = 1, . . . ,
ρ i 2 ) n,k+1 > Z(ρ i ))

Predictive capacities of the model

In this section, the enhanced model is used to simulate simple tests. The tests are conducted on a mesh composed of two triangular finite elements. First, a cyclic tension test is performed. Then, a tension-shear test is conducted. A discussion on the anisotropy of the model is carried out. Finally, the Willam's test simulation is realised to assess the robustness of the model and also its capacity to predict rotation of principal stress and strain direction.

Cyclic tension test

A cyclic loading/unloading tension test in the x direction is conducted on a unit square element composed of two triangles. Material parameters used for the test are reported in table 3.1.

Table 3.1: Material parameter for the cyclic tension test Several loading/unloading cycles were conducted passing from tension to compression. The stressstrain response is given in figure 3.2a. An elastic phase and a non-linear one are distinguished. The behaviour in compression is linear. The softening behaviour characterising concrete is well reproduced and elastic properties are totally recovered in compression.

Parameter E (GPa) ν (-) α (GPa) β (GPa) Z 0 (Pa) C ρ i (-) f t (
The corresponding traction-separation law evolution is given in figure 3.2b. Only the normal component of the traction-separation law evolves. Only mode I failure is exhibited as it can be observed in the crack opening evolution in figure 3.2d. Evolution of the micro cracking densities with time is given in figure 3.2c. The main difference between the enhanced model and the continuum one is illustrated by this evolution. In the continuum, the preponderant crack family in tension was activated first. In the discrete model, it is not the case. Crack families are activated at the same time, when the strong discontinuity regime is activated. It can be observed that crack family 1 evolves faster than the two others. Crack families 4 and 7 evolution is identical.

Tension-shear test

In order to assess the developed model, a tension-shear test is performed. A loading/unloading cycle in tension is conducted up to a maximum displacement of d load. = 200 µm. Then, a shear load is applied as shown in figure 3 The tangential component of the traction vector exhibits three phases. A first linear evolution is observed for branch (DE). This phase corresponds to the no additional evolution of the micro cracking densities. Afterwards, the second phase (EF) describes shear softening. An evolution of crack families 4 and 7 is observed. It can be noticed that this evolution begins once the tangential crack opening exceeds the normal one (Figure 3.5b). No further evolution for the ρ 1 family is noticed for the (EF) The obtained results are related to the crack families evolution and consequently to the reversibility domain thermodynamic forces. The following paragraph gives an insight on these latter. Discussion on the induced anisotropy Reversibility domain thermodynamic forces expression is given by equations 3.55a-3.55d.

(u x ) (u y ) (a 
F ρ 1 2 = (1.5α + 2β) tr 2 (( u ⊗ n) s • N 1 ) = (1.5α + 2β)( u n ) 2 (3.55a) F ρ 2 2 = (1.5α + 2β) tr 2 (( u ⊗ n) s • N 2 ) = 0 (3.55b) F ρ 4 2 = (1.5α + 2β) tr 2 (( u ⊗ n) s • N 4 ) = (1.5α + 2β) 1 4 ( u n + u t ) 2 (3.55c) F ρ 7 2 = (1.5α + 2β) tr 2 (( u ⊗ n) s • N 7 ) = (1.5α + 2β) 1 4 ( u n -u t ) 2 (3.55d)
During the tension loading phase (AB), the normal crack opening u n evolves. Thus, thermodynamic forces will evolve as they depend on u n . These forces equal:

F ρ 1 2 = (1.5α + 2β)( u n ) 2 F ρ 2 2 = 0 F ρ 4 2 = (1.5α + 2β) 1 4 ( u n ) 2 F ρ 7 2 = (1.5α + 2β) 1 4 ( u n ) 2 (3.56)
At the end of the unloading phase (point C), these forces equal zero.

When the shear loading takes place, only the tangential component of the displacement jump experiences a non null evolution whereas the normal component is zero. Therefore, thermodynamic forces during the shear loading phase equal:

F ρ 1 2 = 0 F ρ 2 2 = 0 F ρ 4 2 = (1.5α + 2β) 1 4 ( u t ) 2 F ρ 7 2 = (1.5α + 2β) 1 4 ( u t ) 2 (3.57)
The enhanced developed model which is built under a mixed-mode opening reproduces the induced anisotropy of the continuum model. Material degradation is not the same in the four directions. Indeed, the expression of the thermodynamic forces (equations 3.55a-3.55d) illustrates the anisotropy of the micro cracking densities evolution.

Willam's test

To pursue the investigation of the developed model a purely theoretical test is considered. Willam's test [START_REF] Willam | Fundamental issues of smeared crack models[END_REF] is performed in order to assess the robustness of the model and also its capacity to reproduce rotation of principal stresses and strains directions. The test is composed of two loading steps. In the first step, a uniaxial tensile stress is applied in the x direction till the peak of the stress-strain response (onset of cracking). In the second step, increments of strain components ε xx , ε yy and ε xy are prescribed in the proportions 1, 1.5, 1 as illustrated in figure 3.6. This loading phase represents a biaxial tension and shear configuration leading to a rotation of principal axes. Material parameters used for this test are given in table 3.2. The response of this test in terms of stress-strain behaviour is given in figure 3.7a. A softening behaviour is observed for tension and shear stresses. The σ yy component remains elastic. At the onset of cracking, the normal to the crack is fixed and is oriented in the x direction. This fact does not allow softening of the σ yy component. The rotation of the principal axis for stress θ σ and strain θ ε tensor is illustrated in figure 3.7b. There is a difference between stress and strain rotation angle. This difference is a signature of the induced anisotropy. The stress principal directions rotate until the shear Table 3.2: Material parameters for the tension and shear local test stresses vanish. After this point, strain of 0.04%, the direction remains unchanged.

Parameter E (GPa) ν (-) α (GPa) β (GPa) Z 0 (Pa) C ρ i (-) f t (
So as to investigate the role of each crack family, the angle of principal stresses direction due to the contribution of each micro cracking density θ

ρ 1 σ , θ ρ 4 σ , θ ρ 7
σ is reported in figure 3.8a. The analytical expression of each contribution is given below:

σ ρ 1 = (3α + 4β)ρ 1 u n (α + β)ρ 1 u t (α + β)ρ 1 u t 0 (3.58a) σ ρ 4 =   2(α + 4β)ρ 4 u n + ( α 2 + β)ρ 4 u t ( α 2 + β)ρ 4 u n + (α + β)ρ 4 u t ( α 2 + β)ρ 4 u n + (α + β)ρ 4 u t 0   (3.58b) σ ρ 7 =   2(α + 4β)ρ 4 u n -( α 2 + β)ρ 4 u t -( α 2 + β)ρ 4 u n + (α + β)ρ 4 u t -( α 2 + β)ρ 4 u n + (α + β)ρ 4 u t 0   (3.58c)
From figure 3.8a one can easily notice the induced anisotropy by the three different evolutions. The evolution due to contribution of crack family 1 and 4 follows the same trend. On the contrary, crack family 7 does not evolve similarly. This result is explained by scrutinising micro cracking densities evolution reported in figure 3.8b. A sharp difference is noticed for micro cracking density ρ 7 which explains the results in figure 3.8a. This test points out the robustness of the model and also the induced anisotropy. This latter is corroborated, on the one hand by the difference of angles for the principal stresses and strains and on the other hand by the difference of angles for each micro cracking density. The originality of this approach stands at the benefits of the anisotropic crack oriented model, formulated in a mixed-mode opening failure, to tackle numerical simulations exhibiting complex loading. The fixed crack orientation limits the capacities of the model to reproduce correctly softening behaviour in the y direction.
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Conclusion

This chapter was composed of four parts. The first part exposed the finite element formulation accounting for discontinuity jumps introduction. The three-field variational approach was used together with the non-symmetric formulation. The three formulations were discussed and compared with respect to the strain interpolation matrix.

The second part of this chapter gave the main hypothesis in the construction of the discrete law at the discontinuity. A Rankine criterion was adopted to activate the non-linear behaviour at the discontinuity. In the framework of the DSDA, the continuum parts behave elastically. Crack orientation was calculated upon stress state consideration. Once determined, the normal to the crack remains fixed.

Postulating a mixed-mode opening, the discrete law was obtained. It is expressed by the normal and the tangential component and accounts for mode I and mixed-mode failure. This is a major contribution of this work as the traction-separation law does not exhibit time-continuity issues.

The third part dealt with the integration scheme. A plastic-damage like integration scheme is used by separating the normal and the tangential component of the constitutive law. Furthermore, a modulating term, equivalent to a line-search method with a constant value, is used to update the displacement jump increment. This feature ensures robustness and a better convergence of the iterative process.

The last part of the chapter illustrated the predictive capacities of the enhanced model. The softening behaviour as well as the unilateral effect are well reproduced. The complex Willam's test simulation has shown the robustness and the anisotropy of the model. Nevertheless, it also shows the limits of the model. Indeed, the fixed crack approach does not account for the rotation of the principal stress/strains directions at the local scale. Yet, this point can not be generalised on the b asis of a singular test composed of two finite elements.

In the next chapter numerical simulations of plain concrete structures are treated. Attention is drawn to the necessity of ensuring a continuous crack path. The performance of the symmetric and the non-symmetric approach are compared by means of a three-point bending test.

Chapter 4

Numerical assessment of the embedded approach 

Introduction

The enhanced discrete model and the finite element framework were exposed in the previous chapters. This chapter deals with the capacities of the model in providing fine information in case of plain concrete specimens.

Objectivity of the model with respect to the spatial discretisation is examined. Mesh dependency and crack path resolution are covered. These features are discussed in this chapter by means of a threepoint bending test. A short description of some tracking strategies is also given. The global tracking strategy is detailed because it is the approach used for the simulations in this chapter.

The capacities of the model are shown by means of mode I and mixed-mode failure applications. First, mesh objectivity is assessed on a tension test. Then, a three-point bending test on a single edge notched beam is simulated. A numerical assessment and comparison between the SOS and SKON formulation is conducted. Finally, a double notched tension test and a Single Edge Notched beam (SEN) submitted to four point shear loading are simulated. The global and the local behaviour of these tests is compared to experimental results.

All the problems are treated with the developed enhanced model and the integration scheme presented previously. Computations are performed in 2D under plane stress conditions and constant strain finite element triangles are employed. Unless it is specified, the non-symmetric approach is used.

Mesh objectivity

Mesh objectivity is studied on a simple tension test. The geometry and the boundary conditions of the test are given in figure 4.1. Three mesh densities are simulated: a coarse mesh of 74 elements, a medium mesh of 172 elements and a fine mesh of 698 elements. The three meshes are depicted in figure 4.2. With the aim of triggering localisation in the bar, a random distribution of the tensile strength may be employed. If this strategy is applied in three different meshes, the random distributions will not be the same. A numerical bias is introduced. With the scope to overcome this bias, the tensile strength of the elements in red is weakened of 10%, whereas the other elements have a tensile strength of 3 MPa. Material parameters for this test are given in table 4.1. The analysis is performed using mode I failure ( u t = 0 ). The results of the simulation are depicted in figure 4.3a. The stress-strain response is identical for the three different meshes. It can be observed that no mesh-size dependency is exhibited. The crack opening pattern at the end of the computation is depicted in figure 4.3b. The weekend band experiences the same crack opening for the three meshes.
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Description of the crack path

This section deals with a study on locking effects due to a miss-prediction of the crack orientation. Crack path continuity is also covered as it may alleviate locking issues. Accuracy and objectivity of crack paths is established by tracking strategies which ensure a continuous crack path. A distinction
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tested. A single notch of depth D/2 and thickness 3 mm was sawed at the center of the specimen before the test. The geometry and the boundary conditions are given in figure 4.4. The material parameters used for this test are given in table 4.2. Equal parameters for the micro cracking densities evolution are considered. These latter have been adjusted in order to fit the experimental curves.

Table 4.2: Material parameters for the three-point bending test The comparison between the SKON and SOS formulations is performed. First a mode I failure is considered. Thus, in the traction-separation law the tangential opening is imposed to be zero ( u t = 0). Results in terms of load-displacement and energy-displacement evolution are compared to the experimental ones and are depicted in figure 4.5.
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The softening behaviour is not reproduced numerically. On the contrary, the behaviour is hardening. The energy is also overestimated. This energy is calculated as the area under the load-displacement curve. The two formulations perform the same way and give similar results.

In order to further investigate these results, elements exhibiting a discontinuity and the orientation of the discontinuity are examined. In figure 4.6 is depicted the central zone of the beam for three non-linear time steps and for the two formulations. For instance, time step t = 1 stands for the first non-linear time step, time when the tensile strength is exceeded. The arrows stand for the direction perpendicular to the direction of maximal principal stresses and shaded in grey are the elements exhibiting a discontinuity, i.e, their elastic limit exceeds f t and u n > 0 . For the first time step, two elements exhibit a discontinuity. But, time step t = 5 shows that the cracking expands to the elements next to the notch. The crack does not propagate vertically. Thus, spurious cracking occurs. In order to explain this phenomenon, time step t = 3 is analysed. A zoom of the center zone at this time step is given in figure 4.6c. For the element shaded in red, the crack is not strictly vertical. This cracking prediction does not separate correctly the nodes. Indeed, for the shaded red element, the circled node belongs to the domain Ω + . This same node belongs to the domain Ω -for the white element situated above the red one. The elements are known to be badly decomposed [Feist andHofstetter, 2006, Jirasek andZimmermann, 2001]. This is observed for the two formulations. Furthermore, as the crack for the red element is not vertical, tangential stress component is encountered. But, with a mode I formulation, this component is not transmitted across the crack.
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These facts do not allow the crack to propagate properly and cause locking. Stress locking is also corroborated when analysing the stress state components σ x and σ y (SKON approach) at the center of the beam as illustrated in figure 4.7. This pattern is taken at the end of the computation. It illustrates the fact that stress locking is met also later in the computation. Two reasons may cause this locking: the normal to the crack is miss-predicted and the crack path is not continuous. The first argument is analysed next.

Non-local activation criteria

As it was mentioned in chapter 3, crack orientation is obtained by a Rankine criterion, based on the principal stresses. In our model, since the constitutive response prior to cracking is considered linear elastic, the principal axis of the stress tensor coincide with those of the strain tensor. An alternative to determine crack direction, is to use a non-local quantity [Jirasek andZimmermann, 2001, Feist andHofstetter, 2006]. Instead of using the direction of maximum principal local stress tensor, one might use the direction of maximum principal non-local stress/strain tensor. In this work , the strain tensor is used. The non-local averaging of the strain field is: Several functions can be chosen for the weight function such as a bell-shaped distribution or a Gaussian distribution. In the present context, the Gaussian distribution, based on the work of [Pijaudier-Cabot and Bažant, 1987], is used:

(ε)(x) = Ω φ(x, s)[(ε)(s)]dΩ , ( 4 
φ 0 (x, s) = exp 4 x -s 2 l c , (4.3) 
where l c is a characteristic length often equal to three times the dimension of the biggest aggregate.

The non-local averaging is performed on the strain tensor. This approach diminishes the local strain variations and provides an averaged crack direction on several elements. For the three-point bending test, the characteristic length is taken equal to three times the finite element side. The results in terms of load and energy-displacement evolution are given in figure 4.8. The behaviour is slightly improved compared to the local results. Nevertheless, softening behaviour is not captured. Elements exhibiting a discontinuity are illustrated for non-linear time steps 1, 3 and 5 in figure 4.9. The non-local approach improves the prediction of the crack direction for the elements near the notch. Nevertheless, stress locking still occurs and some elements are again badly decomposed. It seems that the improvement of the crack orientation prediction is not sufficient to avoid stress locking. The crack path continuity is studied next.

Tracking strategies for crack path continuity

So as to study crack path continuity, at first the normal to the crack is prescribed to be horizontal. Thus, the crack is parallel to the element's side. Load-displacement and energy-displacement curves are depicted in figure 4.10. Material parameters have not changed to better fit the curve because it is not the scope of this section. A softening behaviour is obtained. The dissipated mechanism is also well reproduced. This configuration is particular because the crack is parallel to the element side leading to a self-propagating crack [Alvarado, 2003]. Due to this fact, elements are correctly separated and no locking occurs. The self-propagation phenomenon is corroborated with an inclined mesh. The normal to the crack is prescribed and the mesh above the notch is inclined. Crack opening pattern is illustrated in figure 4.11.

This example shows that the continuity of the crack path is necessary to define the accurate decomposition of the nodes in each element. Indeed, cracks propagate from one element boundary to another one. Thus, the position of the crack tip is not available contrary to the X-FEM. Crack-tracking strategies are used to overcome this issue. Several tracking strategies exist in the literature. An overview of them is given below. The global tracking algorithm used in this work is detailed.

Crack adaptation principle Crack adaptation is the simplest way to avoid stress locking and ensure crack path continuity. The strategy consists in calculating the crack direction till the displacement jump reaches a critical value u crit . Then, no adaptability is allowed and the crack direction is fixed [START_REF] Sancho | An embedded crack model for finite element analysis of concrete fracture[END_REF]. Thus, the crack direction is adapted on variations of principal stress direction. Furthermore, this adaptation allows for the monitoring of the loading direction rotations. The critical value u crit is function of the softening properties and can be chosen as: [ [START_REF] Sancho | An embedded crack model for finite element analysis of concrete fracture[END_REF] has shown the good performances of this tracking strategy for mode I and mixed-mode failure within the framework of a symmetric formulation. As this technique is easy to implement, it was used for the three-point bending test with an irregular mesh. The critical value chosen is u crit = 5 × 10 -6 . A softening behaviour is obtained for the SOS approach but no softening is obtained for the SKON formulation. The self-propagation phenomenon is again observed when

u crit = α G f f t , with α = 0.1 -0.
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Figure 4.9: Zoom of the elements exhibiting discontinuity jumps for the initial time steps t = 1, 3, 5, after onset of cracking (SKON approach (a) and SOS approach (b) ).

analysing the crack pattern shown in figure 4.12. If the angle between the element side and the predicted crack direction is close to zero, the SOS approach and crack adaptation give accurate results.

Energy-based crack-tracking strategy The energy-based crack-tracking algorithm is inspired by LEFM and was applied initially to X-FEM methods [START_REF] Dumstorff | Crack propagation criteria in the framework of X-FEM-based structural analyses[END_REF] and extended later to models using the SDA [START_REF] Zhang | Strong discontinuity embedded approach with standard sos formulation: Element formulation, energy-based crack-tracking strategy, and validations[END_REF]. This strategy is based on the minimisation of the energy of a body exhibiting a crack. The crack propagation angle θ cr (Figure 4.13) is introduced as an additional degree of freedom and is determined by the minimisation problem.

The surface energy of the crack is considered in the total energy of the cracked body together with the internal energy and the work of external forces. A smoothing technique is also needed for the SDA which is characterised by a mesh bias as illustrated in the reference [START_REF] Zhang | Strong discontinuity embedded approach with standard sos formulation: Element formulation, energy-based crack-tracking strategy, and validations[END_REF]. This technique has not been implemented and thus no comparison results are available. The local procedure needs information of the previous cracked element. Given an input discontinuity point I Γ i and the crack propagation direction, the output point is obtained. This later is the input point for the next element. Using this tracking strategy enables the definition of a continuous crack path. However, the local character of the E-FEM loses its originality as information of the neighbouring elements is necessary. Furthermore, when dealing with multiple cracking phenomena, local tracking is not appropriate. This technique has not been implemented and thus no comparison results are available.
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Global tracking Global tracking strategies have shown their efficiency in ensuring crack path continuity when dealing with embedded discontinuities. Initially developed by Oliver and Huespe [START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF] to evaluate the direction of crack propagation, the method was used also for branching within the X-FEM framework [START_REF] Dumstorff | Crack propagation criteria in the framework of X-FEM-based structural analyses[END_REF]. Global tracking can also be used as a post-treatment method to locate an idealized crack that is a line of maximum strain [START_REF] Dufour | Estimation of crack opening from a two-dimensional continuum-based finite element computation[END_REF].

The main idea of this algorithm is to trace all possible cracks at once. To this end, a scalar function ϑ, whose isolines (or isosurfaces in 3D) are perpendicular to the direction of maximal principal stresses, is constructed. For a Rankine criterion, this direction corresponds to the normal of the crack. Hence, the isolines of the scalar variable ϑ represent the envelopes of the discontinuity tangents T . A discontinuity is defined by the isoline Θ i of the scalar function ϑ such that:

Θ i = {x ∈ Ω|ϑ(x) = ϑ i = constant} . (4.5)
Tracking discontinuities at once for every material point of the domain is established by the construction of the scalar field ϑ. This latter being the envelopes of the discontinuity tangents, the gradient of ϑ, equivalent to the discontinuity normal, must be orthogonal to the tangent vector field. Thus, ϑ is the solution of equation 4.6:

T • ∇ϑ = dϑ dT = 0 , (4.6) 
where d(•) is the directional derivative of (•). After multiplying the left hand side of equation 4.6 by the tangent vector field, we obtain:

T dϑ dT = (T ⊗ T ) • ∇ϑ = K • ∇ϑ . (4.7)
By defining q = -K • ∇ϑ, the heat-conduction like boundary value problem is constructed:

Find ϑ(x), satisfying ∇ • q = 0 with q = -K∇ϑ in Ω , (4.8) [START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF]).

q • ν = (ν • T ) dϑ dT = 0 in ∂ q Ω , ( 4 
To avoid ill-posedness of the problem (K is of rank 1), a perturbation term is used. (4.11) where ξ is a small perturbation factor (10 -6 -10 -7 ). In this tracking strategy only isolines are relevant.

K = T ⊗ T + ξ1 ,
The prescribed values on the Dirichlet boundary conditions may be arbitrary as long as they are not imposed on the same isoline. This is done to preclude trivial solution of the heat-conduction problem of the form ϑ = const. This tracking strategy has the advantage to be global. Contrary to the local algorithm, no information on mesh topology is required. Nevertheless, adding this boundary value problem increases the number of total degrees of freedom. Furthermore, the solution is dependent on the perturbation term ξ. [START_REF] Riccardi | A step-by-step global crack-tracking approach in e-fem simulations of quasi-brittle materials[END_REF] propose an improvement of this latter by formulating the problem in the context of Navier-Stokes equations. Therefore, the initially ill-posed problem gains stability and robustness. The beam is now analysed using the mixed-mode formulation. This description allows for the transmission of normal and tangential stress components across the crack. Load and energy-displacement evolution are depicted in figure 4.16.

An important difference is observed between the non-symmetric approach (SKON) and the symmetric one (SOS). A softening behaviour is obtained for the first one whereas the SOS approach fails in capturing the accurate tendency (Figure 4.16a). The calculated energy provides a good estimation for the non-symmetric approach. This example shows the better performance of the SKON approach. However, the softening behaviour is due to a diffuse cracking zone. This is illustrated in figure 4.17.

Elements exhibiting a discontinuity (shaded elements) are depicted for a displacement of 80 µm.

Figure 4.17: Mixed-mode formulation: elements exhibiting a discontinuity for the SKON approach.

The last attempt of this study is the employment of the global tracking strategy and the mixed-mode failure. The perturbation term is taken equal to ξ = 10 -6 . The results in terms of load and energydisplacement evolution are given in figure 4.18. The dissipated mechanism is well reproduced for the two formulations. A slight difference is observed for the SKON and SOS formulation. The tracking algorithm ensures continuity of the crack path but also an accurate node decomposition. The position of the crack is therefore known from the tracking strategy. Cracking prediction for three time steps for the SKON approach is depicted in figure 4.19. The last case shows that the tracking strategy is necessary for the symmetric approach to reproduce softening. The SKON approach succeeds in capturing a softening behaviour without a tracking strategy but a diffuse damage zone is experienced. This observation is true for this test configuration. Its generalisation to other tests is not established.

Other methods such as the strain injection technique [START_REF] Dias | Strain injection techniques in numerical modeling of propagating material failure[END_REF] have been developed recently to ensure crack path continuity. This latter has not been investigated in this work.

This section has shown the different issues of the embedded approach. The DSDA does not exhibit mesh dependency. Indeed, the discontinuity surface has a zero measure and though it is independent on the mesh size [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF]. The symmetric and non-symmetric formulations are evaluated upon a three-point bending test. The symmetric approach exhibit stress locking if no tracking strategy is used. The global strategy is a good compromise to ensure crack path continuity because it does not affect the local character of the embedded approach. Calculation time is slightly increased. The next section deals with cracking description of a double notched tension beam.

Double notched tension test

A double notched beam submitted to tension loading is analysed. The experimental campaign led by [START_REF] Shi | Crack interaction in concrete[END_REF], consisted in testing several beam configurations. The vertical distance between the two notches was 0, 5, 10, or 15 mm. The aim of this test was to observe cracking pattern and more precisely cracking coalescence and branching. The configuration of the beam, geometry and boundary conditions, is given in the figure 4.20. The dimensions are in millimetres. Experimentally, two cracks initiate from the notches and propagate. Depending on the distance between the notches, these two cracks may be attracted or repelled as illustrated in figure 4.21. In the numerical simulation a distance of 10 mm is adopted. The simulation is performed in plane stress conditions and the global tracking algorithm is employed to ensure the crack path continuity. The load-Crack Mouth Opening Displacement (CMOD) evolution is depicted in figure 4.23. The numerical result is compared to the experiment. The overall softening behaviour is well captured. Slight differences are observed for the elastic stiffness and the tail of the curve.

The cracking pattern obtained numerically for different loading steps is compared to the experimental results in figure 4.24. The two computed cracks initiate from the notch and are completely distanced. Instead, the experimental result shows that the two cracks initiate from each node, propagate and then join together. This means that the stress state is modified upon loading. Thus, principal stress directions will rotate and the isolines will evolve too. Therefore, the global tracking strategy must be performed for each time step when rotation of principal stress directions is encountered. It is important to highlight that the results of this test are valid for this mesh topology and for the given perturbation term.

Modified approaches of the global tracking strategy, which tackle cases when rotation of principal stresses is met, have been proposed [Riccardi et al., 2016,Feist andHofstetter, 2006]. Locking effects due to a sharp change of the stress state is covered. Nevertheless, calculation time is slightly increased compared to the original global tracking [START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF]. 5 Mixed-mode failure

The Single Edge Notched beam (SEN) tested by Schlangen in 1993 [Schlangen, 1993] is considered. The beam is submitted to four point shear loading. The geometry and boundary conditions of the test are illustrated in figure 4.25. Dimensions of the specimen are given in millimetres. Experimentally, the load is controlled by enforcing a monotonic increasing evolution of the Crack Mouth Sliding Displacement (CMSD) of the notch. 

Introduction

This chapter addresses an analysis of reinforced concrete cracking by means of the enhanced damage model. As it was emphasised in the first chapter, modelling reinforced concrete specimens using the embedded strong discontinuity approach is recent [START_REF] Oliver | Twodimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach[END_REF], Bui et al., 2014[START_REF] Juárez-Luna | Computational modelling of rc slabs cracking with an embedded discontinuity formulation[END_REF], Bitar et al., 2016].

The performances of the developed enhanced model are tested by means of two structural tests:

• a reinforced concrete tie,

• a shear wall.

The first structural case is a tension test on a reinforced concrete tie. This configuration presents a simple stress state and principally a mode I failure. The developed model is examined with respect to its capacity in capturing multiple cracking.

The second structural case consists in a shear wall submitted to different loading configurations: monotone loading, non-reverse cyclic loading, reverse cyclic loading. The capacities of the enhanced model in reproducing the characteristic cracking patterns as well as the unilateral effect are corroborated.

Modelling specificities

The main specificity in the modelling of RC structures is devoted to the modelling of steel reinforcement and the load transfer between steel and concrete. The numerical inclusion of steel reinforcement into a concrete sample is often done by simple one dimensional elements as a bar or a beam. The first element takes into account the tension strain energy whereas the second one adds also the flexural energy. Very often, one dimensional steel elements are used along with a 2D or 3D modelling for the surrounded concrete [START_REF] Rabczuk | A numerical model for reinforced concrete structures[END_REF], Jason et al., 2010].

For a 2D modelling, the one dimensional elements are adequate and provide satisfactory results. Some issues are encountered when a 3D modelling is chosen. One dimensional elements drown in 3D ones are not suitable as they generate high concentrated stresses at the surrounding concrete elements [START_REF] Jason | Truss vs solid modeling of tendons in prestressed concrete structures: Consequences on mechanical capacity of a representative structural volume[END_REF]. Furthermore, [Lorentz, 2005] has shown that this modelling is ill-posed mathematically and a mesh-size dependency is observed numerically.

Another approach consists in modelling steel reinforcement by a homogenised layer. The mechanical behaviour is defined in a membrane-type layer and does not account for a flexion stiffness. Application of this type can be found in [Jendele andČervenka, 2009, David, 2012].

In this work, the reinforced concrete tie and the shear wall are modelled in a 2D configuration under plane stress conditions. Thus, one dimensional elements are employed for steel reinforcement. For the reinforced concrete tie, bar elements are used whereas for the shear wall, beam elements are relevant due to the stress state. Steel-concrete interface modelling is specifically discussed for each test.

In chapter 4 it was shown that tracking strategies are necessary for plain concrete specimens exhibiting softening. Reinforced concrete specimens do not suffer from softening behaviour at the macroscopic scale. Consequently, the macroscopic cracking behaviour is obtained by the contribution of several cracks taking place at the finite element level. With these considerations, a tracking strategy is not used for reinforced concrete applications. The SKON approach is adopted. Indeed, the study performed in chapter 4 highlighted a better performance compared to the SOS approach.

Reinforced concrete tie

This numerical case study aims at investigating the capacity of the developed model to reproduce multiple cracking. This test is relevant because on the one hand the stress state is simple and on the other hand the degradation mechanisms are complex due to the steel-concrete interface. Indeed, the damage process is conditioned by a good prediction of the steel-concrete interface. In order to analyse specifically the load transfer at the steel-concrete interface, this study is composed of two parts:

• perfect bond numerical modelling using the mixed-mode formulation ( u n = 0, u t = 0),

• explicit non-linear bond slip modelling using the mode I formulation ( u n = 0, u t = 0).

Description of the test

The test consists in the tension of a long reinforced concrete tie of 1.15 m [START_REF] Michou | Reinforcement-concrete bond behavior: Experimentation in drying conditions and meso-scale modeling[END_REF]. The geometry of the tie is depicted in figure 5.1. A steel rebar of d = 12 mm diameter is embedded on 1 m. The experimental campaign consisted in three tests which were performed up to yielding of reinforcement. Digital Image Correlation (DIC) [START_REF] Besnard | Finite-element displacement fields analysis from digital images: application to portevin-le châtelier bands[END_REF] and optical fibres were used to provide fine information about cracking and steel-bond behaviour. The geometry of the test allows for the multiple appearance of cracks along the tie. 

Numerical modelling

Only the half upper part of the tie is modelled using a structured mesh where the length of a triangle equals 1 cm. The steel rebar is modelled by a one-dimensional bar element and its behaviour is perfect elastic-plastic. A perfect steel-bond behaviour is considered by imposing kinematic compatibility between concrete and steel rebar nodes. The specimen is loaded under displacement control until a maximum prescribed displacement of 5 mm.

In order to localise cracks in the specimen, a random concrete tension strength field is used. This latter is achieved by means of the Turning Band Method [Matheron, 1973]. An exponential covariance of the correlation field is generated. The mean value is taken equal to the tension strength f t , a standard deviation of 20% and a correlation length equal to three times the maximum aggregate size as recommended by [START_REF] Matallah | A practical method to estimate crack openings in concrete structures[END_REF].

Michou and co-workers [START_REF] Michou | Reinforcement-concrete bond behavior: Experimentation in drying conditions and meso-scale modeling[END_REF] 

Case 1: perfect bond

For this modelling case, the mixed-mode ensures not only mode I failure but also shear degradation of concrete. With the scope of analysing the behaviour of the tie, global and local results are compared to the experiment. A perfect bond is adopted in this test.

In figure 5.3 are compared the numerical results with the experimental ones with respect to global quantities, namely load-displacement curve. The overall behaviour of the tie is well captured. The elastic phase takes place between 0 and 20 kN. Then, several load drops, which coincide with the appearance of multiple cracks, are observed. Yielding of the reinforcement is reached at a load of 60 kN. A zoom of the first cracking stage, up to a displacement of 1 mm, is reported in figure 5.3b. The first crack load of approximatively 20 kN is well reproduced. Nevertheless, it can be noticed that the numerical model exhibits a stiffer slope than the experiment. This difference can be explained by the fact that drying shrinkage is not taken into account explicitly. Only its influence in the macroscopic behaviour is considered.

Local quantities are then analysed. Evolution of the sum of crack openings with respect to the applied force is given in figure 5. Even if vertical cracks appear along the tie, it was observed that this degradation is major with respect to the vertical cracks. This is illustrated in figure 5.7 where the crack opening pattern corresponding to the second load drop is depicted. Figure 5.7 shows that the degradation mechanism after a load of 28 kN is due to the localisation at the interface. This interface is highly damaged before the appearance of vertical cracks. Thus, the overall non-linear degradation of the tie is due principally to the shear degradation of the interface and not the vertical cracks.

Furthermore, the interface degradation does not represent the influence of the steel reinforcement at the steel-concrete interface (geometry, ribs). In the next section, the case of an explicit bond slip behaviour is modelled.

Case 2: non-linear bond slip constitutive law

Based on the previous analysis, the load transfer between steel reinforcement and concrete plays an important role on the overall and cracking behaviour of the RC tie. Above all, the bond behaviour cannot be simply modelled by a shear degradation of concrete, but must deal with the evolving complex degradation at the steel-concrete interface.

Calibration phase

An explicit description of a 2D plastic interface area is taken into account in this case (Figure 5.8). Only one layer of finite elements with a height of 6 mm (radius of the steel rebar in the experiments) is considered (in red). The plastic behaviour aims at representing the non-linear bond behaviour and the relative displacement between the steel rebar and concrete [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing: Part ii: Applications[END_REF], Michou et al., 2015]. Let us note that other techniques can be used to model the steel-concrete interface: non-linear kinematics relations between nodes of each component [START_REF] Casanova | Bond slip model for the simulation of reinforced concrete structures[END_REF] or zero-width joint elements [START_REF] Richard | A three-dimensional steel/concrete interface model including corrosion effects[END_REF].

The interface area accounts for the non-linear bond behaviour. Therefore, concrete experiences principally mode I failure. This is why, concrete is modelled using only the mode I formulation of the enhanced damage model. Consequently, only mode I cracks can appear in the specimen.

A multi-linear plastic bond model is used in the present case [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing: Part ii: Applications[END_REF]. The threshold surface is defined as:

σ eq = H(p) p (5.1)
where σ eq is the Von Mises stress, p is the cumulative plastic strain and H is a parameter of the model.

H is a function of p and can be positive, negative or equal to zero in order to provide a hardening, softening or perfectly plastic behaviour. In order to give further insight on the bond model, the local behaviour of the model is illustrated by means of a local shear test on one finite element. The configuration of the local shear test is given in figure 5.9. The local bond behaviour is depicted in figure 5.10. The behaviour is composed of four branches:

• an elastic one where the Young's modulus of the interface is taken equal to the concrete one,

• a hardening branch,

• a softening one,

• a residual bond stress branch which translates the steel-concrete friction. It is important to emphasise that the calibration process is only valid for one size of finite element, since the bond model suffers from mesh dependency due to the softening branch.

The model is calibrated on the pull-out tests performed by [START_REF] Michou | Reinforcement-concrete bond behavior: Experimentation in drying conditions and meso-scale modeling[END_REF]. A steel rebar of diameter d = 12 mm is embedded in concrete on a length of l = 5d as shown in figure 5.11. This test is numerically carried out in 2D, considering one half of the specimen. Concrete is considered as elastic, since only the interface area accounts for the non-linear bond behaviour. The dimension of the finite elements at the interface area is considered as the one presented in figure 5.9. The results of the numerical calibration are depicted in figure 5.12, using the local model presented in figure 5.10. The bond stress is calculated according to equation 5.2. The hypothesis of homogeneous stress state along the bar is made.

τ = F πdl , (5.2) 
where F is the applied load, d is the diameter of the steel rebar and l = 5d is the embedded length. Num.

Figure 5.12: Calibration results of the pull-out tests.

RC tie test

After the calibration step, the bond model is directly used for the tension test on the RC tie. Local and global quantities are analysed. First, the load-displacement behaviour obtained using the non-linear bond model is compared to the experiment in figure 5.13. A satisfactory agreement between the experiment and the numerical simulation is obtained. Five distinctive load drops are experienced by the numerical simulation. The first crack phase is well captured as illustrated by the zoom in figure 5.13b. The plastic plateau is developed for a load of 55 kN which is in accordance with the experiment and the mixed-mode numerical case.

Evolution of the sum of crack openings with respect to the applied load is also well reproduced. The comparison with the experiment is exposed in figure 5.14. Crack formation process is analysed by means of the crack opening pattern for different stages which correspond to the first three load drops of the global curve and at the beginning of reinforcement yielding. In figure 5.15 are depicted the crack opening patterns.

The first crack appears at the first load drop and exhibits a width of 100 µm. Afterwards, three other cracks are formed at the second load drop stage. During this stage, the first crack continues evolving (width of 150 µm). The third stage exhibits formation of several cracks. Once the reinforcement yields, cracking stabilisation is encountered and no more cracks appear. Cracking appearance is also corroborated by the evolution of the crack opening along the tie for the three last stages shown in figure 5.16. Finally, the evolution of the steel strains along the tie's length after the first crack appearance is depicted in figure 5.17. This evolution exhibits a peak strain corresponding to the first crack. Furthermore, a length of transference of 20 cm is clearly observed. This value is in agreement with the experimental results measured by optical fibres for the tie Test 2 [START_REF] Michou | Reinforcement-concrete bond behavior: Experimentation in drying conditions and meso-scale modeling[END_REF]. Exp.

Figure 5.17: Non-linear bond slip case: steel strain evolution along the tie after the first crack appearance.

cracking is corroborated.

Shear wall

The other structural case study is a reinforced concrete shear wall tested during the ConCrack benchmark [START_REF] Rivillon | Projet national de recherche ceos. fr, axe 2-expérimentations[END_REF]. The wall is submitted to a horizontal monotone and cyclic loading inducing shear stresses in it. Simulations of this type of tests using a kinematic enrichment is novel in the literature. Hence, the developed model is tested with respect to its robustness and its capacity in describing the multiple failure mechanism.

The study is performed for three loading configurations:

• monotone loading: for this loading case attention is given to the calibration of the parameters to fit the experiment. Furthermore, the ability of the model in describing the inclined cracks is tested.

• non-reverse cyclic loading: for this case, interest is carried on the capacity of the model in reproducing crack closure.

• reverse cyclic loading: the anisotropic character of cracking pattern and the unilateral effect are emphasised in this case.

Description of the test

The shear wall was studied in the framework of the ConCrack benchmark [START_REF] Rivillon | Projet national de recherche ceos. fr, axe 2-expérimentations[END_REF] Horizontal loading, controlled in force, is applied at the loading surfaces shown in figure 5.18. The reverse cyclic loading is applied once on the left loading surface and then on the right whereas the non-reverse cyclic loading is applied only on the left loading surface. During the experimental test, three sensors were placed at points 8, 9 and 10 as shown in figure 5.18. The relative displacement is measured by sensors 9 and 10 (u 9u 10 ) while sensor 8 measures the total displacement of the wall.

Numerical modelling

The non-structured mesh and the boundary conditions of the shear wall are depicted in figure 5.20. A mesh density with an element side length of h = 0.1 m is considered. This size corresponds to the dimension associated to a concrete RVE. Linear triangle finite elements are used. The upper and lower beams' (in green in figure 5.20) behaviour is considered elastic. Only the wall (the center part in figure 5.20) exhibits a non-linear behaviour. The horizontal loading is applied as shown in figure 5.20. Steel rebars are modelled by Euler-Bernoulli beam elements and they exhibit a perfect elastic-plastic behaviour. Hence, the bending stiffness is taken into account by these elements. The Young's modulus for the steel reinforcement is equal to 169.7 GPa and the elastic limit strength is 550 MPa.

The damage mechanism for this test is driven by the shear degradation of concrete. The steel-concrete bond does not play the same role as for the RC tie. Thus, the mixed-mode formulation of the enhanced damage model is adapted.

Monotone loading

The shear wall is investigated under monotone loading first. Material parameters such as the Young's modulus, the Poisson's ratio and the tensile strength correspond to the experimental measured values. The tensile stress value is calculated by taking into account the scale effect proposed by [CEOS.fr, 2015]. The other material parameters are calibrated in order to fit the experimental load-displacement curve. Parameters are given in table 5.2. A prescribed load up to 4 MN is applied. The numerical load-displacement curve is compared to the experimental one in figure 5.21. The overall numerical curve is in good agreement with the experimental one. In all the results that are exposed in this section, the term displacement refers to the relative displacement of the shear wall. Experimentally, this is the displacement measured by sensors Cracking pattern is analysed next. Evolution of crack openings and crack sliding are given in figures 5.22a, 5.22b. The first elements to localise are situated in the extreme left corner of the interface between the shear wall and the inferior beam. Then, diagonal cracks begin to propagate from the vicinity of the loading surface. Near the center of the beam cracks propagate horizontally. These degradation is observed for the normal and sliding components. The inclined pattern characteristic of a shear loading is obtained by the set of finite elements exhibiting a discontinuity.

The local results are compared to the experiment. In figure 5.23 is shown the experimental cracking pattern at the end of the test. Horizontal cracks are observed along the interface between the shear wall and the upper beam. The numerical results present a narrow localised zone in the left compared to the experiment. This biais is due to the localisation of the crack at the beam-wall interface where crack opening is maximal. In figure 5.24 are shown elements which exhibit a crack opening superior to 30 µm. It can be noticed that a distributed zone exhibits cracking.

The experimental longitudinal strains obtained by DIC are given in figure 5.25 and are compared to the numerical strains depicted in figure 5.26. The longitudinal strain distribution confirms the damage process taking place in the shear wall. The last local quantity which is studied for this loading case is the mean crack width evolution with respect to the applied load. Experimentally, this data is obtained from the DIC analysis [START_REF] Ruocci | Cracks distance and width in reinforced concrete membranes: experimental results from cyclic loading histories[END_REF]. Numerically, the explicit character of the model allows to access to crack openings for each finite element. The comparison is illustrated in figure 5.27.

The trend of the curves is not the same at the beginning of the cracking process but a good agreement with the experiment is obtained. At the end of the calculation, the mean crack openings is slightly This first simulation allowed for the calibration of the numerical parameters. The results show the capacity of the model to capture the degradation process characterised by the inclined cracks. The cyclic loading cases are examined next.

Non-reverse cyclic loading

The non-reverse cyclic loading consists in applying several loading/unloading to zero loops (case 1).

Loading is applied at the left loading surface till a maximum value of 4 MN. Again, global and local quantities are compared to the experiment. The material parameters calibrated on the monotone loading test are used. The load-displacement curve is depicted in figure 5.28. The experimental curve shows high dissipative loops and permanent strains. As the model does not account for frictional effects, no hysteresis loops are observed. The numerical response is stiffer than the experimental one and is not correlated with the numerical stiffness from the monotone loading test. Indeed, this response is compared to a loading going from 0 MN to 4 MN and then unloading to 0 MN in one cycle (case 2). The difference between the curves is obviously due to the unloading phases. For the time being, no explanation of this observation is advanced. It will be treated in future works.

Cracking pattern is analysed next. In figure 5.29 are exposed the crack opening and sliding for three different stages: an applied load of 2 MN, unloading to 0 MN and the maximal applied load of 4 MN. The inclined cracks and the horizontal crack in the middle of the wall are observed for the first stage (Figure 5.29a top). Then, during the unloading phase, crack openings close progressively till a complete crack closure for a zero load (Figure 5.29a middle). The pattern for the maximal load is given in figure 5.29a. The magnitude of the crack openings is smaller compared to the monotone loading case. The same observations are encountered for the tangential crack components. The degradation mechanism in shear is well illustrated by the strain distribution in figure 5.30. Even if the response if stiffer, the robustness of the model for cyclic loading is corroborated. Furthermore, crack closure when loading decreases to zero is well reproduced. 

Cyclic loading

The reverse cyclic loading configuration is finally considered. The developed model is tested with respect to its capacity in reproducing the anisotropic cracking pattern under complex loading and also crack closure effects. Material parameters are the same as for the monotone loading case.

For this case, only the envelope response is analysed. This curve is obtained by performing one cycle loading for positive (0 MN -4MN -0 MN) and negative prescribed loads (0 MN --4MN -0 MN). Indeed, the real cyclic behaviour can not be properly reproduced as the model do not account for hysteresis loops (non-reverse cyclic loading). Therefore, the unilateral effect is the property of interest here. The load-displacement behaviour is depicted in figure 5.31. The overall behaviour is satisfactory for both positive and negative displacements. When unloading is performed, the curve passes through zero and the slope for negative displacements is the same as the initial one (for positive displacements). Hence, a complete unilateral effect is reproduced. Fine cracking information is available for the maximal load of 4 MN. Crack openings and longitudinal strains are depicted in figure 5.32. The inclined macroscopic cracks are well captured. Two macroscopic oriented crack families are distinguished for the left and right actuator. Cracking pattern for the left actuator experiences horizontal cracks as it was observed for the monotone loading. This fact is not pronounced for the right actuator. The anisotropic cracking pattern is well captured. Cracks that have opened during the positive loading close and new cracks appear when the loading is applied by the right actuator. As only one discontinuity is activated per element, no overlapping cracks exist.

An almost symmetric pattern is recovered for the two loading directions. The inclined strain field is well reproduced. 

Summary

Extension of the enhanced discrete model in case of reinforced concrete specimens is illustrated in this chapter. The aim of this chapter is to analyse the capacities of the enhanced damage model to reproduce the following features:

• multiple cracking,

• shear degradation at the steel-concrete interface,

• robustness when a cyclic loading is performed,

• anisotropic crack pattern,

• unilateral effect.

The reinforced concrete tie simulation has shown the ability of the model to capture multiple cracking. Furthermore, shear degradation of concrete is obtained by the mixed mode formulation. However, this degradation does not account for the evolving degradation process at the steel-concrete interface. The study emphasises the need of a proper steel-concrete bond model in order to capture the damage mechanism at the interface.

The mixed-mode formulation of the enhanced damage model is adapted to the shear wall case. Indeed, the structural effect for this test is due to the shear degradation of concrete. The steel-concrete bond do not play the same role as for the RC tie. The shear wall behaviour is analysed under monotone and cyclic loading. It was shown that the model is capable to represent the inclined cracks and also the anisotropic cracking patters for the cyclic loading case. Furthermore, the unilateral effect is well reproduced and crack are completely closed. Under non-reverse cyclic loading, the robustness of the model in reproducing a cyclic behaviour is shown. Nevertheless, this loading case test revealed a stiffness effect which is due to the cyclic loading/unloading phases. For the time being, this observation is not explained and is the object of further investigations.

Conclusions and Outlooks

Conclusions

This thesis deals with the numerical modelling of reinforced concrete structures under complex loadings. The aim of this work is the development of a numerical model which provides fine cracking information of RC structures. Cracking is of prime importance because it is a warning sign of the progressive loss of the bearing capacity of structures and is also the main feature for durability issues. Therefore, the developed model must describe cracking explicitly but also it must be adapted to simulation of massive reinforced concrete structures.

In the framework of this thesis, a numerical model for the simulation of fracture processes in plain and reinforced concrete structures was developed. The main characteristics of concrete behaviour which are taken into account are: the progressive loss of stiffness, softening behaviour in tension, cracking anisotropy and the unilateral effect. The developed model is built upon two entities: a damage model and a kinematic enrichment technique.

The first entity is an anisotropic damage model. This latter is constructed upon micro mechanical assumptions in the framework of the thermodynamics of irreversible processes. Damage is described by means of a system of oriented crack families. The initial isotropy and the induced anisotropy characterising concrete are well described. This model accounts for the unilateral effect and friction phenomena. In the framework of this work, the frictional behaviour is not considered. Material parameters are adapted to simulate concrete failure.

The second entity is the strong discontinuity approach. So as to describe discrete cracks, these latter are simulated as discontinuities within the displacement field. The mathematical representation of cracks is more efficient than the geometrical approach. The concept of elements with embedded discontinuities was employed. Finite elements are enriched locally by a displacement jump. The discrete cracks are not represented as a geometric entity but their effect is added in the finite elements. The strong discontinuity kinematics is characterised by singular strains. Regularisation of the enriched strains results in the equivalence between a weak discontinuity and a strong one.

The strong discontinuity kinematics is incorporated in the damage model. The aim is to provide a non-linear behaviour expressed in terms of vector traction-displacement jump. The enhanced model is developed within the discrete strong discontinuity approach. An elastic behaviour characterises the bulk and all the non-linearities are concentrated in the discontinuity interface. Along with the regularisation of the singular strain field, a strong discontinuity analysis is performed. This latter allows for the definition of a discrete enhanced traction-separation law compatible with the strong discontinuity kinematics. In addition, a discrete hardening modulus is defined. This approach accounts for a discrete constitutive model where each thermodynamical variable depends on the discontinuity jump.

The embedded model is formulated assuming time-independent displacement discontinuities, i.e. a fixed crack concept. Crack orientation is predicted upon stress state consideration using a Rankine criterion. A mixed-mode formulation is adopted; the discontinuity jump accounts for a normal and a tangential component. Then, the traction)-separation law is obtained in a simple manner. It accounts for tension and shear behaviour. Furthermore, this law has the advantage to not exhibit time-continuity problems as it is composed of an elastic part and an inelastic one. The model was implemented in the finite element software Cast3M under 2D plane stress conditions. This numerical model was analysed with respect to mesh objectivity and stress locking effects.

As other authors have shown, the embedded approach is independent on mesh-size. Nevertheless, it is dependent on mesh-layout as the support of the enrichment is the element. A numerical study conducted on a three-point bending beam have shown the necessity to ensure a continuous crack path and thus avoid stress locking effects. The global tracking strategy used in this work provides accurate results and does not affect too much the local character of the enrichment. The validation of the enhanced model and the global tracking was performed by the simulation of two well-known tests: double notched tension test and single edge notched test under four-point shear. The ability of the model to capture the global and local behaviour is corroborated. The use of a tracking strategy, for plain concrete solely, slightly increases the computational time.

Finally, applicability of the enhanced model to represent multiple cracking was illustrated by the simulation of reinforced concrete structures. For reinforced specimens, the macroscopic cracking pattern is obtained by several micro cracks. The simulation of a reinforced concrete tie have shown the ability of the model to accurately represent multiple cracking. Furthermore, shear degradation of concrete is obtained by the mixed-mode formulation. Nevertheless, this degradation does not account for the evolving degradation process at the steel-concrete interface. The need of a proper steel-concrete bond model in order to capture the damage mechanism is highlighted. A shear wall submitted to cyclic loading was also investigated. In this case, the mixed-mode formulation of the enhanced damage model is adapted to describe the shear degradation state. Analysis of the shear wall behaviour under monotone and cyclic loading has shown the capacity of the developed model to reproduce the anisotropic cracking patterns and the unilateral effect.

To conclude, the enhanced anisotropic damage model is able to meet the scientific requirements that where proposed at the beginning of this work. Accessing crack openings in a numerical simulation of massive structures remains a major topic for the scientific community. One needs to conciliate fine cracking informations and large scale structure's modelling with computational time and the possibility to perform parametric analysis.

Outlooks

The developed model could be enhanced and improved in order to describe other features of concrete behaviour such as the cyclic behaviour. Furthermore, it could be extended to simulation of reinforced concrete structures in a reduced kinematic framework like slabs. It is upon these two axis that the following suggestions are developed.

Constitutive model

• The localisation criterion of the model was based on the assumption of Rankine mode I failure.

The model accounts for tangential crack components which enable the description of complex stress state in concrete. Nevertheless, fracture processes triggered by mixed-mode failure is not reproduced satisfactorily. In addition, the localisation criterion on the tangential component translates an immediate shear degradation without elastic phase. Hence, the model could be improved by considering a more sophisticated criterion which accounts for mixed-mode failure activation or more complex stress states as hydrostatic pressure or biaxial loading. [START_REF] Wu | A thermodynamically consistent plastic-damage framework for localized failure in quasi-brittle solids: Material model and strain localization analysis[END_REF] propose an analytical study using Mohr-Coulomb and Von Mises criteria.

• The discrete enhanced constitutive law accounts for stiffness degradation and unilateral effect. Nevertheless, for cyclic loading scenarios, cracking frictional phenomenon is not represented. This could be improved by considering the complete formulation of the continuous anisotropic damage model [START_REF] Bargellini | Modelling of quasibrittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding[END_REF]. In this latter, a second-order sliding variable is added for each micro cracking family. Each sliding variable represents the inelastic strains corresponding to the closed cracks. An enhanced damage model accounting for frictional sliding can be obtained by incorporating the strong discontinuity kinematics.

• In the same trend as the previous point, an improvement of the tangential component of the traction-separation law is desirable. For reinforced concrete applications, this law can be enhanced in order to represent correctly a steel-concrete bond behaviour. Currently, the law does not account for a progressive degradation of the interface. Adding a plastic or damage behaviour before softening could ensure a better representation. It would be interesting to compare the numerical results to experimental ones but also to other steel-concrete bond laws which account for the geometrical influence of the reinforcement [START_REF] Michou | Reinforcement-concrete bond behavior: Experimentation in drying conditions and meso-scale modeling[END_REF].

• Finally, introduction of early age phenomenon such as drying shrinkage will provide a more accurate representation of the physics of a structure before loading. Keeping in mind the will of a macroscopic approach, drying shrinkage strains can be considered in a macroscopic way without invoking thinner scales.

Enrichment method

• In this work, a 2D configuration was analysed. Within the framework of plate/shell kinematics, this approach is relevant to model the non-linearities at the membrane part. Thus, the developed model is implemented in a membrane framework in the Cast3M finite element code. Several tests have been performed to validate this implementation considering a plate of a unit thickness. For instance, the cyclic tension test performed in chapter 3 is exposed. Results in terms of stressstrain evolution, traction-separation law, micro cracking densities and normal crack opening evolution are depicted in figure 5.33. The computation in a membrane framework reproduces exactly the results in a 2D plane stress configuration. When dealing with the behaviour in flexion, two possibilities can be considered: a multilayer format or a monolayer one.

The multilayer format consists in discretising the plate element into several layers. In this case, the developed model describes the non-linear behaviour of concrete in the membrane part. A non-linear bending profile may be covered with a sufficient number of layers. For RC modelling, steel reinforcement is modelled as an equivalent plate layer element. A first attempt to the extension of this work in this sense was conducted. In a finite element context, a DKT (Discrete Kirchhoff Triangle) isoparametric plate element was available in Cast3M. This element has three integration points in the membrane part and also three integration points in the plate thickness. This configuration is an obstacle to perform simulations with the actual version of the developed code. Indeed, in this work linear triangular elements were used to host the discontinuity. Therefore, a reduced integration scheme may be adopted for DKT like elements. Hence, most of the developments of this work may be used.

If the former approach is abandoned, the development of a macroelement in a monolayer plate framework may be considered. In order to provide an accurate behaviour of the bending part, the kinematic enhancement of this latter is desirable. In this sense, some others have already proposed the kinematic enrichment of rotations in a plate framework [Armero andEhrlich, 2006, Juárez-Luna et al., 2015]. For reinforced concrete structures simulations such as slabs, the construction of a macroelement could be adopted. Compared to the multilayer approach, the development of a macroelement with a double enhanced kinematic needs further studies.

• Implementation of the embedded discontinuities in the finite element framework was realised by using a Newton-Raphson integration scheme. Efficient algorithm adapted to the E-FEM such as IMPLEX [Oliver et al., 2008a] can increase the computational performance. With the scope of performing simulations on large-scale structures, this technique could be adopted. Anisotropic cracking model for reinforced concrete structures with enhanced kinematics Keywords: damage, anisotropic crack, E-FEM, crack openings, reinforced concrete, cyclic loading Abstract: Civil engineering buildings, massive and unique, are mostly made of reinforced or prestressed concrete. Sustainability, tightness and safety are the major pillars of a building's performance. Cracking is a major phenomenon which impacts the buildings' behaviour under different loadings in terms of sustainability and structural capacity. Development of numerical models which describe accurately the response of quasi-brittle materials under complex loading remains an important research topic for the scientific community. The objective of this work is the development of a numerical model which represents explicitly cracking of reinforced concrete structures. Concrete and reinforced concrete degradation process, characterised by the appearance of several anisotropic crack families, is described by means of an anisotropic damage model accounting for oriented crack families. The kinematics of this model is enriched with a displacement jump in order to reproduce the development of cracks in the material during loading. This displacement jump is identified as the crack opening. The developed model is validated on simulations of plain concrete structures exhibiting mode I as well as mixed-mode failure. The performances of the enriched model are shown by the simulation of reinforced concrete structures such as a shear wall submitted to cyclic loading.
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Figure 2 . 6 :
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 2 Figure 2.9: Response of a shear test: stress-strain response (a) and micro cracking density evolution (b).
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 22 Figure 2.16: Tension-shear test: deformed configuration in tension (a) and shear (b).
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 2 Figure 2.19: Identification results: stress-strain response (a) and evolution of the residual (b).
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 2 Figure 2.20: Step 2 validation results: stress-strain response in tension (a) and shear (b).
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 3 Figure 3.1: Configuration of the crack placement in a triangular element.
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 332 Figure 3.2: Cyclic loading/unloading tension test: stress-strain response (a), traction-displacement jump evolution (b), micro cracking densities evolution (c) and displacement jump evolution (d).
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 33 Figure 3.3: Loading configuration in tension and shear (a) and imposed loading displacement evolution (b).
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 34 Figure 3.4: Traction-separation components evolution for the tension and shear local test.
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 35 Figure 3.5: Micro cracking density evolution (a) and crack openings evolution (b) for the tension and shear local test.
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 36 Figure 3.6: Imposed strains for Willam's test.

Figure 3

 3 Figure 3.7: Willam's test: stress evolution with respect to strain ε xx (a); evolution of the angle of principal stress and strain direction with respect to strain ε xx (b).
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 3 Figure 3.8: Willam's test: evolution of the angle of principal stress direction due to the contribution of each cracking family (a) and evolution of micro cracking densities with respect to strain ε xx (b).
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 41 Figure 4.1: Geometry and boundary conditions of a tension test on a bar.
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 42 Figure 4.2: Mesh configuration of the bar: coarse mesh (a), medium mesh (b) and fine mesh (c).
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 44 Figure 4.4: Geometry and boundary conditions of the three-point bending test.
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 45 Figure 4.5: Numerical model compared to experiment: load-displacement response (a), energydisplacement evolution (b).
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 46 Figure 4.6: Zoom of the elements exhibiting discontinuity jumps for the initial time steps t = 1, 3, 5, after onset of cracking (SKON approach (a) and SOS approach (b)).
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 47 Figure 4.7: Stress distribution at the center of the beam for the SKON approach.
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 48 Figure 4.8: Numerical model compared to experiment: load-displacement response (a), energydisplacement evolution (b).
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 44 Figure 4.10: Numerical model compared to experiment: load-displacement response (a), energydisplacement evolution (b).
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 4 Figure 4.12: Crack pattern for the SOS approach + adaptation principle.
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 4 Figure 4.13: Energy-based crack propagation scheme [Dumstorff and Meschke, 2007].
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 4 Figure 4.14: Local tracking of a discontinuity [Oliver et al., 2002b].
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 4 Figure 4.15: Global tracking: stationary heat-conduction boundary value problem (adapted from[START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF]).
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 4 Figure 4.16: Numerical model compared to experiment: load-displacement response (a), energydisplacement evolution (b).
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 4 Figure 4.18: Numerical model compared to experiment: load-displacement response (a), energydisplacement evolution (b).
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 4 Figure 4.19: Zoom of the elements exhibiting discontinuity jumps for the initial time steps t = 1, 3, 5, after onset of cracking.
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 4 Figure 4.20: Geometry and boundary conditions of a double notched tension test.
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 4 Figure 4.21: Cracking pattern of the double notched tension test function of the notch distance.
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 4 Figure 4.22: Isolines defined by the global tracking algorithm.

Figure 4 .

 4 Figure 4.23: Double notched test: load-displacement curve.
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 44 Figure 4.24: Double notched test: experimental crack pattern (a) and numerical one (b).

Figure 4 .

 4 Figure 4.26: Mesh and crack path of the beam.
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 4 Figure 4.27: Load-CMOD (a) and load-CMSD (b) curves given by the mixed-mode formulation and compared to the experimental results.
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 51 Figure 5.1: Reinforced concrete tie configuration [Michou et al., 2015].
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 52 Figure 5.2: Experimental cracking pattern of RC ties [Michou et al., 2015].
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 53 Figure 5.3: Load-displacement curve (a) and a zoom of the first cracking stage (b) given by the numerical model and compared to the experimental results.
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 4 The crack openings at the upper concrete edge are summed up. This procedure corresponds to the used experimental technique. A difference between the numerical and the experimental results can be noticed. The multiple cracking phase lasts till a load of 45-50 kN. Then, no new cracks appear. The existing ones open further till the steel yielding. Distribution of the crack opening and sliding along the tie obtained numerically at the upper concrete edge are reported in figures 5.5 and 5.6. The ability of the model to reproduce multiple cracking is corroborated. Four cracks develop along the tie(Figures 5.5a and 5.6a). A degradation of the steel-concrete interface is observed in figure 5.6b.

Figure 5 . 4 :Figure 5 . 5 :

 5455 Figure 5.4: Sum of crack openings evolution versus applied force given by the numerical model and compared to the experimental results.
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 5657 Figure 5.6: Crack opening pattern (a) and crack sliding pattern (b) along the tie before yielding reinforcement.
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 258 Figure 5.8: Explicit 2D interface in the RC tie.

Figure 5 . 9 :

 59 Figure 5.9: Shear test of the bond-slip constitutive law.
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 5 Figure 5.10: Bond-slip behaviour on a shear test: overall behaviour (a) and a zoom up to 1.5 mm (b).
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 5 Figure 5.11: Configuration of the pull-out test (a) and experimental device (b) [Michou et al., 2015].
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 5 Figure 5.13: Non-linear bond slip case: load-displacement curve (a) and a zoom of the first cracking stage (b) given by the numerical model and compared to the experimental results.

Figure 5 .

 5 Figure 5.14: Non-linear bond slip case: sum of crack openings evolution versus applied force given by the numerical model and compared to the experimental results.
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 55 Figure 5.15: Non-linear bond slip case: crack opening pattern at different stages; (a) first load drop, (b) second load drop, (c) third load drop and (d) at the beginning of yielding reinforcement.
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 55 Figure 5.18: CEOS.fr shearwall [Rivillon and Gabs, 2011].
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 5 Figure 5.20: Mesh and boundary conditions of the wall.
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 5 Figure 5.21: Load-displacement response of the shear wall compared to the experimental results.
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 5 Figure 5.22: Cracking pattern for the monotone loading: crack opening (a) and crack sliding (b).
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 515 Figure 5.23: Experimental crack opening under monotone loading [Rivillon and Gabs, 2011].
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 5 Figure 5.25: Experimental longitudinal strains [Rivillon and Gabs, 2011].
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 5 Figure 5.27: Evolution of the mean crack openings.
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 5 Figure 5.28: Load-displacement curve for the non-reverse cyclic loading: comparison between the numerical results and the experiment.

Figure 5 .Figure 5 .

 55 Figure 5.29: Cracking pattern for the non-reverse cyclic loading : crack opening (a) and crack sliding (b) ; applied load of 2 MN in the top, 0 MN in the middle and maximal load of 4 MN in the bottom.

Figure 5 .

 5 Figure 5.31: Load-displacement response of the shear wall under cyclic loading: experimental response (in black) and numerical envelope curve (in red).

Figure 5 .

 5 Figure 5.32: Cracking pattern of the reverse cyclic loading: crack opening (a) and longitudinal strains (b); maximal load of 4 MN in the top and -4 MN in the bottom.

Figure 5 .

 5 Figure 5.33: Cyclic loading/unloading tension test: stress-strain response (a), traction-displacement jump evolution (b), micro cracking densities evolution (c) and displacement jump evolution (d).

  Modélisation par cinématique enrichie de la fissuration anisotrope des structures en béton armé Mots clés : endommagement, fissuration anisotrope, E-FEM, ouverture de fissure, béton armé, chargement cyclique Résumé : Les ouvrages de génie civil, imposants et uniques, sont majoritairement construits en béton armé ou précontraint. La durabilité, l'étanchéité et la sûreté sont primordiales lorsqu'il s'agit d'évaluer la performance d'un ouvrage. La fissuration est un phénomène majeur qui influence le comportement des ouvrages sous diverses sollicitations en terme de durabilité et de tenue structurale. Le développement de lois de comportement capables de décrire de manière robuste et efficace la réponse des matériaux quasi-fragiles sous sollicitations complexes représente encore aujourd'hui un paradigme qui suscite de nombreux travaux au sein de la communauté scientifique. L'objectif principal de ces travaux est le développement d'un modèle numérique capable de représenter explicitement la fissuration des éléments de structure en béton armé. La dégradation des structures en béton armé, caractérisée par un réseau de fissures anisotrope, est décrite par un modèle d'endommagement anisotrope fondé sur des fissures orientées. La cinématique du modèle est enrichie par un saut de déplacement de manière à représenter explicitement le développement de fissures dans le matériau. Ce saut de déplacement est identifié comme l'ouverture de fissure. Le modèle développé est validé sur des structures en béton présentant des mécanismes de ruine en mode I et mode mixte. Les performances du modèle sont illustrées via la simulation de structures en béton armé comme un voile en cisaillement soumis a un chargement cyclique.

  

  

  A body Ω defined by its boundary ∂Ω = ∂Ω p ∪ ∂Ω d is crossed by a discontinuity Γ S (see figure 1.21).

		Ω			
	p	∂Ω p	n	Ω +	∂Ω u
		Ω -	Γ S	d u
	Figure 1.21: Body Ω crossed by a discontinuity Γ S .
	Distributed forces p are prescribed on ∂Ω p and displacements d u are prescribed on ∂Ω u . The dis-continuity separates the body into two sub-domains Ω + and Ω -. The displacement field is written in
	equation 1.4 and reads:				

  With this configuration, an uniaxial tension test is conducted at the material point level. The response of this test is exposed in the next section. The continuum damage model is summarised below in a 2D configuration.

	ρ 1	ρ 2	ρ 4	ρ 7
	Figure 2.2: Crack families in a 2D configuration.

.8) where λi are Lagrange multipliers which are determined by the consistency conditions. With the scope of modelling plane shape specimens, the following developments are undergone in a 2D configuration. In the (e 1 , e 2 ,) basis, four crack families, namely ρ 1 , ρ 2 , ρ 4 , ρ 7 , intervene as illustrated in figure 2.2.

Table 2 .

 2 

	Value	28.8	0.2	12.5	14.5	156	0.055
	Material parameters for this test are reported in table 2.1. Parameter Z 0 is related to the elastic strain f 2 t energy and is taken equal to 2E

1: Material parameters for the uniaxial tension test Parameter E (GPa) ν (-) α (GPa) β (GPa) Z 0 (Pa) C ρ i (-)

Table 2 .

 2 

		2: Material parameters' role
	Parameter	Role
	α, β	anisotropy
	C ρ i	micro cracking densities evolution
	Z 0	threshold hardening

Table 2 .

 2 3: Material parameters of the discrete model

	Parameter l p (m) α (-) E (GPa) Value 0.002 0.83 46	λ ε cr (-) 4.34 10 -4 1.85 10 -3 1.8 0.7 k (-) µ (-) λ θ cr (-)

Table 2 .

 2 4: Experimental results: secant modulus in tension and shear

	K	exp T (GPa) K exp S (GPa)
		23.55	8.75
		15.35	8.24
		8.41	7.92

Table 2 .

 2 5: Identified material parameters of step 1

	Parameter α (Pa)	β (Pa) C ρ 1 (-) C ρ 4,7 (-)
	Config.1 17.3 10 9 9.15 10 9 0.096	0.096
	Config.2 26.7 10 9	9 10 9	0.052	0.1

Table 2 .

 2 

			6: Tension identification: secant modulus comparison for Config.1
	K num T	(GPa) K exp T (GPa) Error (%) K num S	(GPa) K exp S (GPa) Error (%)
	21.62	23.55	8.2	10.73	8.75	22.7
	14.86	15.35	3.2	8.8	8.24	6.8
	8.65	8.41	2.85	7.	7.92	11.6

Table 2 .

 2 7: Tension identification: secant modulus comparison for Config.2

	K num T	(GPa) K	exp T (GPa) Error (%) K num S	(GPa) K exp S (GPa) Error (%)
	22.41	23.55	4.8	10.9	8.75	24.6
	14.7	15.35	4.2	8.68	8.24	5.3
	8.75	8.41	4		7	7.92	11.6

Table 2

 2 

	K num T	(GPa) K	exp T (GPa) Error (%) K num S	(GPa) K exp S (GPa) Error (%)
	20.	23.55	15.1	10.12	8.75	15.6
	13.6	15.35	11.4	8.26	8.24	0.2
	8.5	8.41	1.1	6.78	7.92	14.4

.9: Tension and shear identification: secant modulus comparison for Config.1

Table 2 .

 2 10: Tension and shear identification: secant modulus comparison for Config.2

	K num T	(GPa) K exp T (GPa) Error (%) K num S	(GPa) K exp S (GPa) Error (%)
	20.36	23.55	13.5	10.24	8.75	17
	13.7	15.35	10.7	8.31	8.24	0.8
	8.48	8.41	0.8	6.82	7.92	13.9

  This latter must be bounded. The second term, lim

	k→0 order to guarantee the bounded character of the traction vector. The second term is studied. Let λi be ρ i must also be bounded in k
	a discrete bounded variable expressed as follows:			
	λi =	λi k	.	(2.49)

  Flowchart of the discrete constitutive law.

	n,k+1 -Z 0 then // Update micro cracking densities(equation 3.50)
	// Compute traction vector according to the discrete law
	(equation 3.51)
	end			
	else			
	// No updating of micro cracking densities
	ρ n,k+1 i	= ρ n,k i	
	// Compute traction vector according to the secant modulus
	t n,k+1 t	=	t n,k t max u k+1 t	u k+1 t
	end			
	// Check convergence criterion
	if r k+1 t Perform the integration time loop for the normal component considering < ε tol then
	converged internal variables given by the tangential component
	end			
	else			
	k = k+1		
	end			
	end			
	end			
	else			
	Perform the integration time loop for the normal component
	end			
	Compute σ n+1 33			
	end			
	Algorithm 5:	

Table 4 .

 4 

1: Material parameters for the mesh-objectivity test Parameter

  have pointed out the crucial influence of drying shrinkage. The authors observed that the specimens undergo an initial stress state of 0.75 MPa prior to testing. This phenomenon is taken into account in this work implicitly. Instead of considering the measured tensile strength of 2.9 MPa, a drying impacted tensile strength of 2.15 MPa is used. Material parameters used for the test are given in table5.1. Reinforcement is characterised by a Young's modulus of 200 GPa, a Poisson's ratio of 0.3 and a yielding strength of 500 MPa.

Table 5

 5 

		.1: Concrete material parameters for the RC tie test	
	Parameter E (GPa) ν (-) α (GPa) β (GPa) Z 0 (Pa) C ρ i (-) f t (MPa)
	Value	35	0.21	18.5	24.5	66	0.25	2.15

Table 5 .

 5 2: Concrete material parameters for the shear wall test ParameterE (GPa) ν (-) α (GPa) β (GPa) Z 0 (Pa) C ρ i (-) f t (MPa)

	Value	22	0.19	2	2	96	0.0005	2.06
	9 and 10 (u 9 -u 10 ).							

La notation (x,t) est omise pour faciliter la lecture.

• la loi de comportement obtenue est riche et décrit physiquement des mécanismes de mode I et mode I+II. De plus, la formulation du modèle original en une partie élastique et une autre anélastique permet de s'affranchir des problèmes de continuité lors de la formulation de la loi discrète.• l'application de ce modèle enrichi dans le cas de structures en béton armé et sous chargements complexes constitue un apport important.

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The notation (x,t) will be omitted for the sake of clarity.
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Flowchart

The time integration scheme is presented in algorithm 4. The structure of the scheme is composed of two parts: the first part consists in the elastic loop which is performed till the localisation criterion is reached and the second part deals with the non-linear behaviour. In a same framework as a plastic-damage time integration scheme [Ouglova, 2004], calculation of the normal and tangential components of the traction separation law are split up into two parts. 

Perform the integration time loop for the tangential component end else Perform the integration time loop for the normal component end end else

Go to the next time step end Algorithm 4: Flowchart of the discrete constitutive law.

First, the tangential component loop is computed. An iterative scheme is used [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF]. The tangential behaviour is activated if t • σ • n > f s , where f s is the shear strength. This criterion enables the evolution of the tangential component of the crack (crack sliding) once the crack is open (normal component is non null). Then, the residual for the tangential component is calculated as:

Linearisation of the traction continuity condition 3.26, for fixed displacements, allows for the calculation of the tangential component of the displacement jump increment δ u t .

where

• t is the tangential component of the secant modulus obtained from the linearisation.

Once the tangential component discontinuity jump is calculated, evolution of micro cracking densities is performed considering equations 3.48-3.50. The constitutive law governing the unloading phase is obtained using the secant modulus operator as expressed in equation 3.54.

The converged state variables obtained from the tangential loop are inserted in the normal component loop. The same time integration scheme is applied for the normal component loop. The scheme is built under plane stress condition. Thus, a higher order plane stress loop is defined in the non-linear scheme. The flowchart exposing the time integration scheme for the discrete constitutive law is given in algorithm 5.

It is assumed that the discontinuity is activated. The index n refers to the current pseudo-time whereas the index k is locally defined within the traction continuity loop and Π is the material parameters vector.

The updated displacement jump components are affected by a factor h. Indeed, it may occur that the normal or tangential increment δ u exhibits high values which induce a poor convergence rate. Adding the modulating term h diminishes this increment and avoids robustness issues. A constant value of 0.01 is considered in this work. Other techniques such as the line-search method can be used to modulate the displacement jump increments [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF].

Time integration scheme of the developed model follows the framework of a plastic-damage time integration scheme. The normal and tangential components of the traction separation law are split up into two parts. The procedure is developed within a plane stress loop. A simple numerical relaxation is used. The activation of the discontinuity and also the tangential behaviour is done in a simple way. Other criteria may be used to predict complex failure behaviour such as biaxial traction or hydrostatic pressure. Crack opening pattern given by the simulation is compared to the experimental pattern in figure 4.28. The model is capable to represent the observed curved crack. Thus, local behaviour is well reproduced.

Summary

The capacities of the developed model to capture explicitly crack openings were illustrated by two dimensional plain concrete specimens.

First, the numerical model was analysed with respect to spatial discretisation objectivity. A tension test on a bar with three different meshes showed the mesh-size independence. Special attention was paid to the numerical assessment of the crack path. The symmetric and non-symmetric approach were compared by means of a three-point bending test. Even if the embedded approach is mesh-size independent, it strongly depends on the finite element layout. Stress locking was observed and two possible remedies were studied: crack direction prediction and crack path continuity.

A non-local approach was used to predict the normal to the crack. For the example taken in this work, i.e. a bending beam with regular mesh, the non-local prediction improves crack direction without alleviating completely stress locking.

Several authors have shown the necessity to enforce crack path continuity for plain concrete simulations. The global tracking algorithm ensures accurate results and is a less-intrusive approach to the local character of the embedded discontinuities. It is worth adding that when crack path continuity is enforced, the appropriate normals are obtained. The mixed-mode failure is necessary to account for the complex stress state exhibited by the specimen.

Then, the developed enhanced model and the global tracking strategy were used to reproduce crack-ing mechanisms of a double notched beam under tension and the SEN beam. These examples have proven the ability of the model to capture mode I and mixed-mode failure.

It is worth highlighting that the developed model needs the definition of the crack orientation but its anisotropic character allows for describing degradation mechanisms in different directions in a fixed crack direction. It would be interesting to study other complex experimental tests such as the Double Edge Notched (DEN) [Schlangen, 1993] and the Nooru-Mohamed test [Nooru-Mohamed, 1992].