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Abstract 
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his  thesis summaries the work  we have done in optimization  of re- 
silient communication networks.  More specifically, the main goal is 

to propose appropriated recovery mechanisms for managing the demand 
traffic  in a network  under partial  failures, i.e.  when some part of the 
network  (one or some links and/or nodes) is operational with  reduced 
capacity.  The main criterion  in deciding the efficiency of the proposed 
recovery scheme is the dimensioning cost of the network while keeping 
the management cost at reasonable levels. Our main contribution  is the 
design of two restoration strategies named Flow Thinning and Elastic Flow 
Rerouting. 

This document is organized in three main parts. In the first part, we 
present the problematic of the thesis. It includes an introduction  on the 
protection and rerouting state-of-art strategies, together with  their math- 
ematical models and resolution methods.  The second part presents in 
depth the first protection strategy named Flow Thinning.  This strategy 
manages partial failures by decreasing appropriately  the bandwidth  on 
some flows routed through one of perturbed links.  This implies overdi- 
mensionning of the network in the nominal state to ensure demand traffic 
in all failure states. The third and last part deals with  the second rerout- 
ing strategy called Elastic Flow Rerouting. This strategy is a bit more com- 
plex than the first one because, in a failure state, we need to distinguish 
demands which are disturbed and the one which are not.  If a demand 
is disturbed, it can increase the traffic on some of its paths.  If it is not 
disturbed, it can release bandwidth  on paths at the condition it remains 
non-disturbed. All this allows for further reducing the dimensioning cost 
but at a higher cost in terms of recovery process management. Note that 
the dimensioning problems for each strategy are shown to be N P -hard in 
their general form. 

The work  of the thesis has been published in:  three journal articles 
(Fouquet et al. (2015b), Pióro et al. (2015), Shinko et al. (2015)), two invited 
articles (Fouquet and Nace (2015), Fouquet et al. (2014c)) and height arti- 
cles in international conferences (Fouquet et al. (2015a; 2014d;a;b;e), Pióro 
et al. (2013b;a), Shinko et al. (2013)). Note that Pióro et al. (2013b) has been 
rewarded by a "Best Paper Award" from the RNDM conference. 

To conclude, note that this thesis was realized in the Heudiasyc labo- 
ratory, from the Université de Technologie de Compiègne (UTC). It was 
financed by the French Ministry  of Higher Education and Research1 with 
the support of the Labex MS2T2 of the UTC. 

 
 

1 http://www.enseignementsup-recherche.gouv.fr/ 
2 https://www.hds.utc.fr/labex-ms2t-484/ 
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Résumé

 

C

 
 
 
 
 
 
 
 

 
 

ette  thèse porte sur l’optimisation  des stratégies de reroutage dans 
les réseaux de télécommunications.  Plus précisement, l’objectif est 

de proposer ou d’adapter des méchanismes permettant de router le trafic 
du réseau après une panne partielle, c’est-à-dire, après une baisse de la 
bande passante d’un  ou plusieurs liens du réseau, tout  en minimisant 
le coût de dimensionnement du réseau.  Nos contributions  principales 
sont la proposition de deux stratégies de protection/routage nommée Flow 
Thinning et Elastic Flow Rerouting. 

La thèse est organisée en trois parties. Dans la première partie, nous 
présentons la problématique  de la thèse avant de passer en revue les 
stratégies de protection et reroutage de la littérature,  leur modélisation 
et méthode de résolution.  La deuxième partie présente en détails la pre- 
mière stratégie de protection appelée Flow-Thinning. Cette stratégie gère 
les pannes partielles en diminuant  la bande passante de certain flots qui 
passent par le ou les arc(s) perturbés.  Cela implique  un surdimension- 
nement du routage nominal permettant d’assurer le traffic en cas de per- 
turbations. La troisième et dernière partie concerne la deuxième stratégie 
de routage dénommée Elastic Flow Rerouting. Cette stratégie est un peu 
plus complexe que la première dans le sens où, en cas de panne, une dis- 
tinction est faite entre les demandes perturbées ou non. Si une demande 
est perturbée, elle peu augmenter le traffic sur ces chemins. Si elle ne l’est 
pas, elle peut libérer de la bande passante sous la condition  qu’elle ne 
devienne pas perturbée à son tour.  Notons que ces deux stratégies sont 
assez difficiles du point de vue de leur complexité. 

Cette thèse a fait l’objet de divers travaux écrits: trois articles (acceptés 
ou en révision) dans des journaux (Fouquet et al. (2015b), Pióro et al. 
(2015), Shinko et al. (2015)), deux articles invités (Fouquet and Nace (2015), 
Fouquet et al. (2014c)) et huit articles dans des conférences internationales 
(Fouquet et al. (2015a; 2014d;a;b;e),  Pióro et al. (2013b;a), Shinko et al. 
(2013)). Notons que Pióro et al. (2013b) a reçu le "Best Paper Award" de la 
conférence RNDM 2013. 

Pour finir, notons que cette thèse a été réalisé au laboratoire Heudiasyc 
de l’Université  de Technologie de Compiègne (UTC). Elle a été financée 
par le Ministère de l’enseignement et de la recherche français3 avec le 
soutien du labex MS2T4 de l’UTC. 

 
 
 
 
 
 

3 http://www.enseignementsup-recherche.gouv.fr/ 
4 https://www.hds.utc.fr/labex-ms2t-484/ 
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Part I 
 
 

Optimization methods  for 
resilient networks 

 

 
 
 
 
 
 
 
 
 
 
 

The first part includes an introduction  chapter, together with  a liter- 
ature review of state-of-the-art recovery mechanisms. In Chapter 1, we 
present the context of our work, our contribution, and the outlines of the 
thesis. Chapter 2 is dedicated to a presentation of existing recovery mech- 
anisms such as Global Rerouting, Local Rerouting, Path Diversity, etc. Note 
that a focus will  be put on the mechanisms used in MPLS networks. This 
review of the literature is followed by an introduction  to the network di- 
mensioning problem in Chapter 3. The mathematical formulation  of the 
dimensioning problem under these strategies is done using continuous 
linear programming  (LP) or mixed integer linear programming  (MILP). 
Some of these strategies lead to N P -hard network  dimensioning prob- 
lems (end-to-end rerouting with  stub release for instance). Furthermore, 
compact arc-node formulations are not always possible or not convenient 
to handle realistic instances and the preferred models are those based on 
path-flow variables. Hence, we use Path Generation (PG) to avoid the use 
of the full set of paths and to reduce the size of the problems. This chapter 
is concluded by a numerical study of the efficiency of the strategies. 
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he work done in this thesis has taken place in the Heudiasyc laboratory, 
in the Université de Technologie de Compiègne. It was financed by the 
French Ministry  of Higher Education and Research with  the support of 
the Labex MS2T of the UTC. This thesis focuses on network dimensioning 
problems, and more specifically on the design of recovery mechanisms to 
manage the traffic in case of failures. 

 
 

1.1 Context and  Motivation 
 

The thesis addresses resilience of communication networks in both wired 
and wireless context. These networks are subject to total failures when link 
capacities are totally lost, and partial failures when the capacities are only 
partially reduced. In the following,  we introduce the failure management 
aspect in both networks, starting with wireless networks. 

 

 

1.1.1 Wireless communications 
 

Fixed broadband wireless communications sector holds great promise for 
providing  private  high-speed data connections by means of microwave 
radio (Anderson 2003, Lehpamer 2010) or free space optical (FSO) trans- 
mission (Willebrand  and Ghuman 2002, Son and Mao 2010). Both mi- 
crowave and optical transmission refer to terrestrial point-to-point  digital 
communications, usually  employing  highly  directional  antennas within 
the line-of-sight (LOS). What is important, the two technologies operate at 
unlicensed frequency bands, contrary to radio communications based on 
the Wi-Fi IEEE 802.11-family standards. Moreover, both microwave and 

 

 
 

3 
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FSO are sensitive to interference—the feature we utilize in our optimiza- 
tion model.  Despite recent advances in optimization  of fixed broadband 
wireless networks, a variety of questions remain unaddressed in this area. 
Particularly, capacity planning in fixed wireless networks is quite different 
from that in wired networks.  In fact, environment conditions, especially 
weather, play an important  role since they can introduce instantaneous 
variations into the communication channel, likely leading to outage events 
which can be modeled as multiple partial link failures. As a common prac- 
tice, operators tend to highly  over-provision  bandwidth  during  network 
planning to avoid traffic bottlenecks under adverse scenarios (when the 
performance of some links deteriorates). This approach, however, incurs 
additional costs that do not result in resource- and cost-efficient networks, 
leading to an inefficient use of the radio spectrum. 

Even though FSO and microwave radio have a lot in common, this 
introduction  will  focus on microwave radio communications.  Radio fre- 
quency spectrum is a limited  resource regulated worldwide by the Inter- 
national Telecommunications Union (ITU). In conjunction with  the ITU 
regulations, national legislation instruments establish the availability  of 
frequency bands for specific applications and the procedures to use li- 
censes. A license (assignment) is an authorization given by administration 
for a radio station to use a radio frequency under specified conditions. In 
most cases, the price of frequency spectrum for a single microwave link 
is a function of the amount of spectrum (bandwidth)  in MHz with which 
the license is associated. 

Commonly, to support broadband applications, modern microwave 
systems use quadrature amplitude modulation (QAM). Note that QAM 

An m-QAM scheme presents m combinations of amplitude and phase, 
each one representing an n-bit pattern called a symbol (with  n = log2 m 
and integer). Given the channel bandwidth  B and the m-QAM scheme in 
use, we can approximate the channel capacity C by: 

C [ Mb/s] = nB [ MHz].  (1.1) 

The m-QAM schemes with high values of m assure bandwidth  efficiency, 
but are more susceptible to errors due to channel impairments.  As the 
modulation scheme changes to accommodate higher data rates, the signal- 
to-noise ratio (SNR) requirement increases to preserve the bit error rate 
(BER). Moreover,  the transmitted  signal suffers deep fades and hence 
microwave links are susceptible to outage events.  To overcome this is- 
sue, modern microwave systems employ adaptive modulation and coding 
which has been proven to considerably enhance link performance (Gold- 
smith and Chua 1997). To keep the BER performance, this technique en- 
tails the variability of the link capacity. 

In the thesis, we will  exploit the capability of the above considered 
networks to adapt the capacity of links to meet the current SNR require- 
ment. We assume that a list of states, typically corresponding to degraded 
weather condition in a particular area, is given. Each state is represented 
by a vector of link capacities where a set of links (corresponding to the de- 
graded area) have their capacity decreased due to the modulation scheme 
applied to cope with  the weather condition in the area, while the others 
remain unchanged. Note that adverse weather conditions most affect low- 
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Table 1.1 – Bandwidth efficiency, SNR requirement and capacity. 
 
 

Modulation
scheme 

Bandwidth
efficiency 

SNR require-
ment 

Capacity for
7MHz 

Capacity for 
28 MHz 

QPSK 2 bps/Hz 14.21 dB 14 Mbps 56 Mbps 
16-QAM 4 bps/Hz 21.02 dB 28 Mbps 112 Mbps 
32-QAM 5 bps/Hz 25.24 dB 35 Mbps 140 Mbps 
64-QAM 6 bps/Hz 27.45 dB 42 Mbps 168 Mbps 
128-QAM 7 bps/Hz 31.10 dB 49 Mbps 196 Mbps 
256-QAM 8 bps/Hz 33.78 dB 56 Mbps 224 Mbps 

 
 
 

class and mid-class services. However, extreme environmental conditions 
can lead to total failures as the lowest SNR requirements cannot be met, 
and high-class services will  be affected. 

 
Channel 
Capacity 

 
 

256 QAM 256 QAM 
128 QAM 

 

 
High-class 
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Low-/Mid-class 

services 

64 QAM 
32 QAM  

QPSK 

 
Time 

 

Figure 1.1 – Adverse weather conditions decrease wireless channel capacity. 
 

Note that the above considerations hold also for FSO networks.  Fac- 
tors such as beam dispersion, atmospheric absorption, rain, fog, snow, and 
scintillation, among other factors, can lead to capacity limitations (Xiaom- 
ing and Kahn 2002, Puryear 2011). Furthermore, QAM modulation can be 
applied (Harjeevan and Rajan 2013). 

 

 

1.1.2 Wired networks 
 

Broadband cable communications are in place for decades. Nowadays, 
these transmissions are done through  cable modem  or  optical  fibers 
(Berthold et al. 2008). Failures in high-speed networks have always been 
a concern of high importance. The specificity of these networks is the fact 
that a link failure corresponds to the total failure of a link (i.e. no capacity 
remains on the link). These failures, typically link cuts or router damages, 
can lead to heavy losses of traffic.  The management of failures in wired 
networks has led to a large set of mechanisms, ensuring traffic require- 
ments after a failure if possible. A brief listing of existing mechanisms is 
presented in Chapter 2. 

Note that contrary to wireless networks, capacities in wired networks 
are fixed in advance. Indeed, installing  new fiber, with  the right-of-way 
and installation costs, is very expensive and there is no way to increase 
capacities by increasing transmission power. 
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Figure 1.2 – Partial failures in logical layers of wired networks. 
 

 
Survivability can be addressed in many layers in a network.   Even 

though partial failures seem impossible in the physical layer of wired net- 
works, partial link  failures can appear in the upper layer of these wired 
networks.  Figure 1.2 illustrates this phenomenon.  First note that a net- 
work can be represented by a graph where routers are seen as nodes, and 
links as edges. In this network, link ( A, B) in the logical layer is physically 
routed through paths A ­ B and A ­ C ­ B. Similarly, link ( A, D) in the 
upper layer is routed through path A ­ B ­ D in the physical layer. Hence, 
when the physical link ( A, B) is cut, link ( A, D) in the upper layer totally 

 

fails but link  ( A, B) suffers a degradation of only 50% of its capacity as 
physical path A ­ C ­ B is not affected by the failure. 

 
 

1.2 Our contribution 
 

In this thesis, we investigate network optimization problems related to the 
design and configuration  of networks which can suffer partial link  fail- 
ures. The study is pursued also for total failures. We are concerned with a 
general class of problems expressed in terms of minimum  cost multicom- 
modity  flow (MCMCF) problems, which are largely used for optimal de- 
sign and dimensioning of telecommunication networks (Kennington 1978, 
Minoux  2006). These problems basically consist of transporting different 
commodities, from their respective sources to their destinations, which si- 
multaneously use the network and are coupled through either by links’ 
capacities or the cost function to be minimized.  Obviously, there should 
be enough capacity in the network to simultaneously carry all traffic re- 
quirements. Various special cases of the MCMCF problem are reported in 
(Minoux 2006, Fortz et al. 2013, Botton et al. 2011), each of them associated 
with an appropriate choice of link cost function. Generally, the optimiza- 
tion criterion refers to the total cost of the equipment to be installed on 
various links of the network. When the cost function is considered linear, 
then the MCMCF problem can be formulated as a large scale continuous 
linear program (LP), and many efficient algorithms are available to tackle 
it. These mathematical models are the basis of the mathematical formula- 
tion in our work. 

In telecommunication networks, the idea of failure is largely limited 
to scenarios in which every link can fail but one at a time. A failure sce- 
nario consists on the total failure of one link, i.e., the temporary lost of a 
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link.  This assumption may be considered valid for large scale wired net- 
works using for instance optical fiber. In this thesis, we consider a link as 
perturbed if its modulation  scheme has changed and so its capacity de- 
creased. Despite a large amount of strategies available to recover from to- 
tal failures (global rerouting, N:M protection (Mannie and Papadimitriou 
2006), path diversity  (Pióro and Medhi 2004a), . . . ), only a few of them 
seem to be able to manage partial failures. 

Our contribution  can be summarized as follows.  First, we have stud- 
ied state-of-the-art recovery mechanisms. These mechanisms have been 
studied in deep, their mathematical model presented, solved and com- 
pared.  Our objective is to take the advantages of the existing strategies 
while limiting their drawbacks. 

Hence, we have designed a protection strategies denoted Flow Thinning 
(FT), which handles partial link failures.  We formulated the mathemati- 
cal LP model for network design problem under such recovery strategy. 
FT is shown to be N P -hard. We chose tu use decomposition algorithms 
to solve this problem. The column generation (CG) algorithm differs from 
usual CG algorithm in the sense that it requires solving Mixed Integer Lin- 
ear Program (MILP) using binaries. In addition,  a complexity study has 
been made and special cases were presented and solved using arc-node 
formulations. This work has been done in collaboration with my supervi- 
sor Prof. Dritan Nace with Prof. Michal Pióro from Warsaw University of 
Technology (Poland) and Lund University (Sweden) and Dr. Michael Poss 
from the Université de Montpellier  (France). 

Moreover, the work  on FT was done in parallel with  the design of a 
second strategy named Elastic Flow Rerouting (EFR). We studied the math- 
ematical modelisation of this strategy, still  using CG algorithms.   Con- 
trary to FT, EFR required branch-and-bound algorithm coupled with CG. 
Hence, we had to develop a heuristic to obtain near-optimal solutions in 
a limited  period of time.  This work  was done in collaboration with  Dr. 
Mateusz Ż otkiewicz from Warsaw University  of Technology and Dr.  Ilir 
Shinko from Polytechnic University of Tirana (Albania) in addition to the 
group working on FT. 

Finally, we have addressed the practicability of the two strategies and 
the implementation issues. 

 
 

1.3 Outline of this thesis 
 

This thesis is composed of three main parts. 
The first part is divided into three chapters and includes this introduc- 

tion chapter, together with  a literature review of state-of-the-art recovery 
mechanisms. Recovery mechanisms can be categorized in protection or 
restoration mechanisms. We present three protection strategies, denoted 
1+1 Protection Mannie and Papadimitriou (2006), N:M Protection Mannie 
and Papadimitriou (2006) and Path Diversity (Pióro and Medhi 2004a). We 
also present several restoration strategies. In those strategies, the rerout- 
ing can be local, i.e. around the failure (Local Rerouting), or end-to-end 
from the source to the destination of the demand (Global Rerouting, end- 
to-end rerouting with and without stub release). We also introduce Shared 
Robust Rerouting (Fundo et al. 2013), a hybrid mechanism in which some 
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non-affected demands can release capacities in a failure state. We analyze 
though brief explanations and examples the idea of each strategy. All these 
strategies, but Global Rerouting, can only manage total link failures. Thus, 
we present some mechanisms handling partial link failures as Elastic Traf- 
fic Flows (Tomaszewski 2014) or Probabilistic Routing (Claßen et al. 2011). 
A focus will  be put on the mechanisms used in MPLS networks.  Hence, 
we introduce some MPLS specific mechanisms such as MPLS Fast Reroute 
(Pan et al. 2005) and MPLS-TE Auto-bandwidth adjustment (Dhody et al. 
2015). This review of the literature is followed  by an introduction  to the 
network dimensioning problem.  The mathematical formulation  of most 
strategies is presented using continuous linear program (LP) or mixed in- 
teger linear program (MILP). Some of these strategies lead to N P -hard 
network dimensioning problems (end-to-end rerouting for instance with 
stub release). Furthermore, compact arc-node formulations are not always 
possible or not convenient to handle realistic instances and the preferred 
models are those based on path-flow variables. Hence, we use Path Gen- 
eration (PG) to avoid the use of the full  set of paths and to reduce the 
size of the problems. This part is concluded by a numerical study of the 
efficiency of the strategies. 

The second part, composed of Chapters 4, 5 and 6 is dedicated to the 
Flow-Thinning strategy (FTS) (Pióro et al. 2013b). The main idea behind 
FTS is as follows.  Following  the idea of path diversity,  we assume that 
each demand is in general routed over several paths, not necessarily dis- 
joint,  with  over-dimensioned path-flows  to ensure an assumed level of 
survivability.  Unlike conventional end-to-end restoration strategies, FTS 
guarantees survivability solely by releasing a fraction of flow  on the af- 
fected routing  paths. Consequently, no flow is rerouted or increased. It 
is important  that this thinning  of path-flows is done in an appropriate 
failure-state dependent way.   Chapter 4 introduce the strategy through 
examples. Then, we present the basic FT optimization  problem (FTOP) 
followed by a discussion on its complexity. FTOP is N P -hard at least for 
two-links  failure scenarios. Thus, we study the separation problem and 
propose an original  Path Generation algorithm  using a binary LP. Next, 
in Chapter 5, we study the efficiency of FTS. We first compare the dimen- 
sioning cost of the network using FTS with  other strategies presented in 
Chapter 2. This study is followed  by a comparison with  a lower bound 
formulation  of the problem. In the last chapter (Chapter 6), we present an 
affine version of FTS that reduces the number of failure states for which 
the strategy needs to be optimized (propose in (Pióro et al. 2015)). Next, 
we deal with implementation issues of FTS and its affine variant. Finally, 
we present an extension of FTS that allows for thickening and we explain 
the reasons why this was not considered in the final version of FTS. 

The third and last part is composed of Chapters 7, 8 and 9. This part is 
dedicated to the Elastic Flow Rerouting (EFR) strategy (Fouquet et al. 2014e) 
which works as follows.  In the nominal state (when all links are opera- 
tional), traffic is routed over a given set of paths for each traffic demand. 
In each failure state, EFR uses the same set of (nominal) routing paths but 
with possibly modified path-flow values. The main idea behind EFR is to 
restore traffic of the affected demands by means of increasing the flow on 
their routing paths, possibly together with  decreasing flows of the unaf- 
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fected demands. Notice that no new paths are allowed to be established. 
Summarizing, flows (on existing paths) can be increases due to capacity 
released on affected paths, capacity possibly released on some paths of un- 
affected demands or protection capacity present on links due to network 
over-dimensioning.  In Chapter 7, we introduce the mathematical formu- 
lation for total failure scenarios (EFR-P) together with a complexity study. 
EFR-P is N P -hard and requires branch-and-price to be solved to optimal- 
ity due to the distinction between affected and unaffected demands. Thus, 
we propose a greedy heuristic method to solve EFR. Note that once again, 
EFR-P is solved using Path Generation with  a pricing problem requiring 
a binary problem. As this thesis deals with both total and partial failures, 
in chapter 8, we study practical applications of EFR to partial  failures. 
Following the idea of microwave communications (presented in 1.1.1), we 
introduce channels and modulation schemes in our formulation and show 
how EFR can be combined with  FTS to give a strategy capable to handle 
both type of failures.  Finally, we study a distributed  variant of EFR. In 
the last chapter of this part, Chapter 9, we study the efficiency of EFR and 
its formulations  followed  by an analysis of the heuristic method perfor- 
mance. We conclude this part with  a study of restoration time in case of 
failure of both centralized and distributed versions of EFR. 

In the conclusion, we summarize the work  done in the thesis.  We 
analyze our contribution  to the literature about rerouting strategies and 
network design. Finally, we present possible future works on these strate- 
gies. 
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his chapter is dedicated to a general presentation of recovery mechanisms 
for communication networks.  We have chosen MPLS networks (see ap- 
pendix A.  ) to illustrate the mechanisms. Obviously, these methods can 
be applied to other transport protocols, especially to tunneling protocols. 
The first section will  briefly introduce the strategies. In the next section, 
we consider total link  failures and study the most well-known  recovery 
mechanisms divided  in protection and rerouting strategies. In the third 
section, we analyze strategies of the literature for partial link failures. Fi- 
nally, the last section will  sum up the advantages and drawbacks of each 
strategies. 

 
 

2.1 Introduction to Recovery  Mechanisms 
 

Resiliency in telecommunication networks is currently an important issue 
and a hot research topic in network optimization.  The main problem re- 
mains the design of efficient recovery techniques in terms of management 
effort and cost-effectiveness. Generally speaking, in a network we distin- 
guish between the nominal state (where all elements are operational) and 
failure states (where one or more elements have ceased to function). Each 

 
11 



12 Chapter 2. Background and Literature Review  
 
 
 

failure state is identified by the subset of the failed elements. The restora- 
tion procedure then works as follows: given a fixed routing in the nominal 
state, in cases of failure backup Label Switch Paths (LSPs) are used to re- 
store the disrupted  traffic  following  a precise recovery process. Before 
discussing in details the mechanisms that are the focus of this chapter let 
us recall briefly  the main existing recovery techniques. Roughly speak- 
ing, recovery techniques can be separated into protection strategies and 
restoration strategies. Figure 2.1 presents a classification of the recovery 
mechanisms presented in this chapter.  In this figure, strategies able to 
manage total link  failures are represented with  a T while strategies that 
can handle partial failures are indicated with a P. Note that GR can man- 
age both type of failure scenarios. 
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T PD 

 

 
P  Elastic Traffic Flow 
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Figure 2.1 – Classification of recovery mechanisms from the literature. 
 

Let us recall some basic notions. A traffic demand is represented by a 
pair of nodes and a flow metric that needs to be satisfied between these 
nodes.  The traffic demands are summarized in a demand matrix.   The 
routing in the network is the flow which satisfies a given traffic demand, 
i.e. a set of LSPs between the two extremities of all demands with a non- 
negative flow  value.  These LSPs are called nominal  routing  paths.  As 
stated above, we distinguish  between the nominal state (NS) where the 
entire network is operational and the failure state (FS) where at least one 
link is not operational. In this chapter, we will  focus on cases where only 
one link  can fail at any given time.  We consider here total link  failures, 
where the failed element is assumed to have totally ceased to function, and 
partial link failures, where only a part of the link capacity is lost. Rerout- 
ing in cases of link failure involves reorganizing the routing of some de- 
mands, which may or may not have been disrupted by the failure, in order 
to restore the lost traffic.  The lost traffic is thus (re)routed through some 
backup LSPs or restoration paths. Protection schemes use preplanned re- 
covery paths that are fully  defined before the failure occurs. Protection 
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schemes can be divided into three main groups: Protection 1 + 1, Protection 
N : M, and Path Diversity (PD). Rerouting is a way of restoring traffic that 
is an alternative to protection schemes. It ensures restoration using the ca- 
pacity available in the network to route the disrupted traffic. The recovery 
level can be very high (up to 100%). At the same time, the residual ca- 
pacities can be shared between different backup paths, which makes this 
strategy more cost-effective than protection strategies. The main drawback 
of rerouting is that when failures occur the recovery time and the number 
of paths used are significantly  higher compared to protection strategies. 
The best-known rerouting  strategies are local rerouting (LR) and end-to- 
end rerouting, depending on whether the traffic is rerouted between the 
extremities of the failed link or the extremities of the disrupted demand. 
Hence, end-to-end rerouting handles failures by rerouting the traffic from 
the source to the destination nodes on alternative LSPs. When a failure 
occurs in a network and a set of demands is disrupted, the following  end- 
to-end rerouting strategies may be used: 

• Global Rerouting (GR) if nominal paths are removed after the failure 

and a set of paths is created to route the traffic, 

• End-to-end Rerouting without stub release (RR­) if only disturbed traffic 

is rerouted and restoration is done using available capacities in the 
network, 

• End-to-end Rerouting with stub release, or Restricted Restoration (RR+ ) 

when restoration is done using available capacities in the network 
and capacities released by disturbed paths. 

 

Some other strategies will  be presented as they are an extension of 
the previously described strategy (ShRR extends RR+ ), or specific MPLS 
mechanisms (MPLS Fast Reroute and Auto-Bandwidth Adjustment). 

 
 

Example 2.1 In this section, every strategy will be illustrated using the same example. Let 
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Figure 2.2 – The network. 
 

consider a network  with 5 nodes A, B, C, D and E and 7 links (A,B), (A,C), 
(B,C), (B,D), (B,E), (C,D), (D,E). All links have the same unit cost ce  = 1 and a 
capacity of 1 to 2 unit(s). We also consider two demands (A,E) and (A,D), both 
requiring 1 unit of traffic. 
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Figure  2.3- The demands. 

 

 
2.2  STRATEGIES FOR  TOTAL LINK FAILURES 

 
ln this  section, we present mechanisms that are  designed to manage total 
link failures. First, protection strategies are presented, followed by restora- 
tion  strategies. Finally, MPLS Fast  Reroute, a dedicated MPLS mechanism 
will  be presented. 

 

 

2.2.:1 Protection Strategies 
 

2.2.:1.:1  Protection :1+:1 
 

1+1 Protection  (Mannie and   Papadimitriou 2006)   is  composed of  one 
working LSP,. one  protection LSP, and  a permanent bridge. At  the ingress 
node, the  normal traffic  is permanently bridged to both the  working and 
protection LSP. At  the egress node, the normal traffic  is selected from  the 
better of the two  LSPs. Due to the permanent bridging, the  1+1 protection 
does not  allow  an  unprotected extra traffic  signal to be provided. 

Figure 2-4  illustrates the  behavior of  1+1 Protection.  In  the  nominal 
state, two  LSPs are  set from  node A to node E with the  same capacity of 
1unit of  traffic.   However, only  path  {A-B-E} carry out  the  traffic  of the 
demand. Once  link  (B,E) fails, the  traffic is switched to path {A-C-D-E}. 

 
 

 
 

Figure  2.4-  1+1 Protection be fore (lejt) and after (right) failure of link (B,E). 
 

 
2.2.:1.2 Protection N:M 

 

N:M  protection (Mannie and   Papadimitriou 2006) has  N  working  LSPs 
carrying normal traffic  and  M protection LSP that  may  carry extra-traffic. 
At  the ingress, the normal traffic is permanently connected toits N work- 
ing  LSPs and   to one  of  its  M protection LSPs.   At  the  egress node, the 
normal traffic  is selected from  either its  working or one  of the protection 
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LSP. Unprotected extra traffic can be transported over the M protection 
LSP whenever the protection LSPs is not used to carry a normal traffic. 
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Figure 2.5 – N:M Protection before (left) and after (right) failure of link (B,E). 
 

Figure 2.5 illustrates the behavior of N:M Protection with  N = 2 and 
M = 1. In the nominal state, three LSPs are set from node A to node E 
with  the same capacity of 1 unit of traffic.  Paths drawn in black {A-B-E} 
and {A-C-D-E} are working  LSPs, while the path drawn in dark gray {A- 
B-C-D-E} is a protection LSP and the egress node E selects the traffic from 
one of these two working  paths.  Once link  (B,E) fails, if the traffic was 
taken from path {A-B-E} then E must change its selected path to {A-C-D- 
E} or {A-B-C-D-E}.  However, if the traffic was taken from another path, 
nothing is changed. 

 

 
2.2.1.3 Path Diversity - PD 

 

Path Diversity (Pióro and Medhi 2004a), or Demand-wise Shared Protec- 
tion  (Koster et al. 2005), is a protection scheme in which  the traffic  of 
a demand is routed in several paths not necessarily vertex-disjoint.  They 
are "dedicated" to this demand and a part of the reserved bandwidth is in- 
tended for backup. The only requirement is that, whatever the failure link, 
the remaining capacity on the non-disrupted paths has to be sufficient to 
route all the traffic  corresponding to the demand.  Note that the com- 
plete establishment of the restoration LSP (i.e., activation) occurs only af- 
ter failure detection and/or notification of the working LSPs and requires 
some additional restoration signaling. Therefore, this mechanism protects 
against working  LSPs failure(s) but requires activation of the restoration 
LSPs after failure  occurrence. After  the ingress node has activated the 
restoration LSPs, the latter can carry the normal traffic. Notice that when 
each working LSP is recoverable by exactly one restoration LSP, one refers 
also to 1+1 Protection. 

In Figure 2.6, the demand is routed from node A to node E.  Paths 
{A-B-E} and {A-B-D-E} are working  LSPs, while paths {A-C-D-E} and {A- 
C-B-E} are protection LSPs. When link (B,E) fails, 0.5 unit of bandwidth is 
missing to fully  route the traffic of demand (A,E). Hence, protection path 
{A-C-D-E} is activated and the two paths can route all the traffic. 

 

 

2.2.2 Restoration Strategies 
 

Rerouting is another way to restore the traffic. It ensures restoration using 
the unused capacity available in the network to route the disturbed traffic. 
The recovery level can be very high (until  100%). In the same time, the 
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Figure  2.6- PD before (left) and after (right) failure of link (B 1E). 
 

 
residual capacities can  be shared between different backup paths, which 
makes this  strategy more cost  efficient   than protection strategies.   The 
main drawback of this  rerouting strategy is that  the  recovery time  in case 
of failure and  the number of paths used  for every  demand is really higher 
than ones obtained by  protections strategies. 

 

 
2.2.2.1. Local  Rerouting- LR 

 

When a link  failure occurs, the  rerouting is clone between the  extremities 
of the broken link.  ln other words, a new  demand is created between the 
extremities of the broken link  with a value equal to the  nominal flow  on 
this link.  Concerning non-disturbed paths, no modification will  be clone. 

ln Figure 2.7, we observe that  when link (B,E) fails, the primary LSP of 
demand (A,E)  remains the  same from  node A to node B. The  perturbed 
traffic  is  rerouted on  path {B-D-E}, from  the  upstream node of the  failed 
link  to its downstream node, which in our  example is the  egress node of 
the demand. 

 
 

 
 

Figure  2.7- Local Rerouting  before (left) and after (right) failure of link (B 1E). 
 

 
 

2.2.2.2 Global Rerouting - GR 
 

This  strategy allows us  to reroute all  the  demands, even  those which are 
not  perturbed by the  failure. This  strategy is highly complex to  manage 
and  almost not conceivable for  large networks. However, this  strategy is 
the most cost efficient  and  is used  as a lower  bound for the other strategies. 

 
Figure 2.8 illustrates the  GR strategy. In  the nominal state, a LSP {A- 

B-E} is set for  demand (A,E) and  another LSP {A-C-D} is set  for  demand 
(A,D). When link  (B,E) fails,  all LSPs are removed. New  LSPs are created 
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Figure  2.8- Global Rerouting  before (lejt) and after (right) failure oflink (B,E). 
 

 
to  route the  traffic  using path {A-C-D-E}  for  demand (A,E) and  {A-B-D} 
for demand  (A,D). 

 

 
2.2.2.3 End-to-end rerouting with stub release- RR+ 

 

This strategy can  reroute the disturbed paths using the capacities released 
by the other disturbed paths. When a link fails, the traffic  of the  demands 
using this link  in the nominal state is broken and  rerouted on  other  paths. 
The capacities used by disturbed routing paths over remaining operational 
links, are  released and  can be used  for  rerouting. 

ln the  following example, Figure 2.9, demand (A,E) is routed though 
path {A-B-E}. When link  (B,E) fails,  this  path  is  perturbed and  the  traf- 
fic can  be  rerouted to another LSP, here path  {A-B-D-E} using capacities 
available on  links  ( B, D) and  ( D,E) and  those released by disturbed path 
{A-B-E} and  link  (AB). Note that, contrary to GR (Figure 2.8), path {A- 
C-D}  cannot be  rerouted as  it  is  not   perturbed .  One  drawback of  the 
method is in  obtaining long  routing paths and  in  sorne cases  including 
cycles  (Nace et  al.  2013).    This  happens because the  strategy releases all 
disturbed flows and  rerou te them so longer they  are, more often  they  will 
be affected, released and  rerouted (Nace et al.  2011). To the  extreme end, 
it could  be possible to release all paths (all are  disturbed) and  reroute all 
from scratch, which cornes  to be GR. 
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Figure  2.9- RR+ before (lejt) and after ( right) failure of link ( B,E). 
 

 
2.2.2.4 End-to-end rerouting without  stub release- RR- 

 

This  strategy reroutes the lost  traffic  without using capacities released by 
the  disturbed paths i.e.  the  capacities are  dedicated to the  routing or  to 
the rerouting but  not to both of them. 
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Figure  2.10- RR-  before (lejt) and after (right) Jailure oflink (B,E). 
 

 
This  strategy is easier to implement than the  RR+  strategy but  it is 

more costly   due to  the  split between nominal and   restoration available 
capacities. In Figure 2.10, we consider that  2 units of bandwidth are avait- 
able  on  link  (A,C) and  only  1unit on  the other links. After  failure of link 
(B,E), the  traffic  cannot be  rerouted using link  (A,B) as  their  is no  room 
left  to  route the  traffic  (remind that  rerouting is clone without using ca- 
pacities released by the  disturbed paths). Hence, demand (A,E) can  only 
be rerouted on  path  {A-C-B-D-E}. 

 

 
2.2.2.5 Shared Robust Rerouting- ShRR 

 

Shared Robust Rerouting (ShRR)  (Fundo et  al. 2013) is a hybrid end-to- 
end   rerouting method based on  the  following ideas.   First,  like  for  the 
PD strategy, routing paths allow  routing a traffic  demand beyond the  re- 
quired demand, i.e. higher than 100% of the  demand.  This  guarantees a 
high level  of robustness when traffic  varies. Furthermore the  amount  of 
traffic  to be  rerouted is generally less  than for  the  other rerouting strate- 
gies:   for  instance, it may be  that  for  a  given  affected demand, the  non- 
disrupted routing paths allow  full  routing of the  demand and  no  rerout- 
ing  is  needed.  The  second feature is  concerned with the  fact  that   the 
non-disrupted demands are  allowed to release a part of their  bandwidth 
in  order to accommodate the  rerouting of the  disrupted demands.  Last, 
as for  the  other end-to-end restoration strategies, the  rerouting linked to 
a demand can  use  paths out  of  the  set  of nominal paths.   Given  all  the 
above, the  ShRR strategy combines features from  the  following recovery 
techniques: PD, RR+ and  GR. In terms of cost-effectiveness this strategy is 
somewhere between GR and  RR+ . Note  that ShRR is the base of our  work 
on  Elastic Flow Rerouting. 

 
 

 
 

Figure 2.11 - ShRR  before (lejt ) and  after ( right ) Jailure o f link (B,E). 
 

ShRR  is  illustrated by  Figure 2.11.  Demand (A,E)  is  routed through 
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a two  LSPs {A-B-E} and {A-C-D-E}, and demand (A,D) is routed using 
two  paths {A-B-D} and {A-C-D}.   When link  (B,E) fails, the bandwidth 
associated to path {A-B-D} is reduced by 0.5 units to make room for new 
(rerouting) paths on links (A,B) and (B,D). Hence, demand (A,E) can be 
rerouted using path {A-B-D-E}. 

 

 

2.2.3 MPLS feature - MPLS Fast Rerouting 
 

MPLS Fast Reroute (Pan et al. 2005) (also called MPLS local restoration) is 
a hybrid strategy between local rerouting and end-to-end rerouting. MPLS 
Fast Reroute works as follows.  A LSP is set for a demand. When a link 
of this LSP fails, the upstream node of the failed link informs the source 
node of the demand and reroute the traffic directly to the destination. This 
is a temporary action which enable fast recovery of the traffic.  Once the 
ingress node is aware of the failure, it switches the traffic to a protection 
LSP from the source to the destination nodes of the demand. 
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Figure 2.12 – MPLS Fast Reroute  before (left) and after (right) failure of link (B,E). 
 

Figure 2.12 shows how MPLS Fast Reroute works.  A path is estab- 
lished to route the traffic from node A to node E. When link (B,E) fails, 
the traffic is temporary rerouted from node B to the demand destination 
E. A few milliseconds later, the ingress node A reroutes all the traffic on 
path {A-C-D-E}. 

 
 

2.3 Strategies for partial link failures 
 

In this section, we present mechanisms that are designed to manage partial 
link failures or that can be adapted to manage them. 

 

 

2.3.1 Probabilistic Routing - PR 
 

Claßen et al. (2011) propose a method that we call Probabilistic Routing 
which has been designed for wireless microwave networks and could be 
seen as an extension of Path Diversity  to manage partial link failures.  It 
ensures that the flows can carry the required traffic with high probability. 
Indeed, when designing the network to be used with  PR, the capacity of 
each link is computed so that, in case of failure i.e. change of modulation, 
the link can carry out the traffic. If we consider that a probability  is given 
to each link and each possible modulation scheme. Hence, as the available 
capacity on the link depends on the modulation  scheme, a probability  is 
given to each failure scenarios. Taking into account these probabilities, 
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a nominal capacity (corresponding to the best modulation  scheme) is as- 
signed to each link while capacities in case of failure only depend on the 
change of modulation.  Contrary to PD, the traffic routed for a demand in 
the nominal case is not higher than the requirements but the capacity of 
the links is highly over-dimensioned, as it can be observed in Figure 2.13. 
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Figure 2.13 – PR before (left) and after (right) failure of link (B,E). 
 

 
2.3.2 Elastic Traffic Flows - ETF 

 

Elastic Traffic Flows (Tomaszewski 2014) has been designed for wireless 
optical networks that carry elastic packet flows.  A bandwidth  is associ- 
ated to each demand, and a set of paths carry out the required traffic in 
the nominal state. In case of failure, path flows can be decreased by a per- 
centage (up to a certain threshold) with  respect to the max-min fairness 
sharing. 
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Figure 2.14 – ETF  before (left) and after (right) failure of link (B,E). 
 

In Figure 2.14, two LSPs are established for each demand: paths {A-B- 
E} and {A-B-D-E} for demand (A,E), and paths {A-B-D} and {A-C-D} for 
demand (A,D). When the capacity of link (B,D) is reduced by 50%, there is 
not enough room for paths {A-B-D-E} and {A-B-D}. Hence, each of flows 
going through (B,D) share the capacity according to max-min fairness and 
get 50% each. Note that Elastic Traffic Flows has been presented after FT 
and EFR strategies. 

 

 

2.3.3 Global Rerouting - GR 
 

Global Rerouting has not been designed for partial link failures. However, 
as all nominal paths are released after a failure, partial failure can be easily 
managed. Note that this strategy remains the most cost efficient for the 
management of partial link failures. Figure 2.15 illustrates the behavior of 
Global Rerouting when suffering from a partial link failure. In the nominal 
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Figure 2.15- GR before (lejt) and after (right) Jailure  of link (B1E). 
 

 
state,  demand (A,E) is routed on  path  {A-B-D-E} and  demand (A,D)  is 
routed on path {A-B-D}. When  link (B,D) suffers  a degradation of so% of 
its nominal capacity (equals  to 2 Mbps), there  is not  enough capacity  for 
the two paths.  Hence, the two paths are release and  the traffic is rerouted 
through paths {A-B-D-E} and {A-C-D} respectively for demands (A,E) and 
(A,D). The bandwidth of the paths routed on link (B,D) is now equal  toits 
reduced capacity  of 1 Mbps. 

 

 

2.3-4 MPLS feature - MPLS TE Auto-bandwidth Adjustment 
 

MPLS TE Auto-Bandwidth Adjustment (Dhody  et al. 2015) allows an LSP 
to automatically and  dynamically ad just its reserved bandwidth over time, 
i.e.  without network operator intervention. The  bandwidth adjustment 
uses the make-before-break adaptive signaling method  so that there  is no 
interruption to traffic flow. 

The  new  bandwidth  reservation is determined by  sampling the  ac- 
tuai  traffic flowing through the LSP. If the traffic flowing  through the LSP 
is lower  than  the  configured or current bandwidth of the  LSP, the extra 
bandwid th is being reserved needlessly and  being wasted. Conversely, if 
the  actual  traffic flowing  through the  LSP is higher  than  the  configured 
or  current bandwidth of the  LSP, it can  potentially cause  congestion or 
packet  loss.  Contrary to the presented strategies, Auto-bandwidth is not 
computed off-line, the LSP bandwidth can be set to sorne arbitrary value 
(even zero)  during initial  setup time,  and  it will be periodically adjusted 
over time based  on the actual  bandwidth requirement. 

The traffic rate is repeatedly sampled at each interval  and  the sampled 
traffic rates  are  accumulated over  the  interval period.  The  ingress  node 
reports the traffic information. Auto-Bandwidth will ajust the bandwidth 
of the LSP to the highest sampled traffic rate amongst the set of samples 
taken  over  the adjustment-interval. Note that  the highest sampled traffic 
rate could be higher or lower than the current LSP bandwidth. 

Auto-Bandwidth Adjustment is a mechanism that  deals  with  capac- 
ity  changes (i.e.  partial  failures).   RSVP tunnels (used  by MPLS TE) are 
periodically refreshed to recover  from  network capacity  changes. If the 
capacity of a link has been  reduced, the refresh  process will fail, the LSP 
will be broken and  the traffic will be rerouted to other  LSPs. Instead of 
removing the  LSP, Auto-Bandwidth feature will decrease the bandwidth 
of the  LSP. As the  traffic is too high, it will  then  try  to enlarge the LSP. 
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Because of the  failure, this  action will  fail and  the  traffic  will  be rerouted 
through other  LSPs. 
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n this chapter, we present the dimensioning problem of some recovery 
mechanisms of the literature. We first introduce some notations. Then, we 
study the modelisation of the nominal state, and continue with dimension- 
ing problem for networks resilient to total link failures using restoration 
presented in Chapter 2. 

 
 

3.1 Notation 
 

The considered network is modeled with a graph G = (V , E ), undirected 
or directed, composed of the set of nodes V and the set of links E . In the 
sequel, we will  always assume directed graphs, unless explicitly  stated 
otherwise. Thus, each link e ∈ E represents a directed pair (v, w) of nodes 
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v, w ∈ V , and is assigned a non-negative unit capacity cost ξe  which is a 
parameter, and the maximum capacity y0 which is an optimization  vari- 
able. The cost of the network is given by the quantity C = ∑e      ξe y0. 

The traffic demands are represented by the set D. Each demand d ∈ D 
is characterized by a directed pair (o(d), t(d)), composed of the originat- 
ing node o(d) and the terminating node t(d), and a reference value h0 (a 
parameter) of the traffic volume that has to be carried from o(d) to t(d). 
Here δ+ (v)  = {(v, w)  ∈ V } and δ­ (v)  = {(u, v)  ∈ V } are the outgo- 
ing arcs and ingoing arcs of v, respectively.  Demand volumes and link 
capacities are expressed in the same units. 

Each demand d has a specified set of admissible paths Pd  (called the 
path-list)  composed of selected elementary paths from  o(d)  to t(d)  in 
graph G. Recall that an elementary path does not traverse any node more 
than once. Paths in Pd , used to realize the demand (traffic) volumes, are 
assigned flows x0 , p ∈ Pd , which are optimization  variables. Each value 

d p  specifies the reference capacity (expressed in the same units as link 
capacity and demand volume) reserved on the tunnel realized by path 
p ∈ Pd  .  The set of all admissible paths is denoted by P :=  

U
d∈D Pd . 

The maximum path-lists, i.e., path-lists Pd containing all elementary paths 
from o(d) to t(d), will  be denoted by  ˆ , d ∈ D, with   ˆ := 

U
d∈D  ˆ . Pd  P  Pd 

Since we assume only elementary paths, we will  sometimes identify 
the paths with the sets of links they traverse: p ⊆ E , p ∈ P . The given sets 
of admissible paths define the link-path  incidence coefficients δed p ,  e  ∈ 
E , d ∈ D, p ∈ Pd , where δed p = 1 if path p ∈ Pd  traverses link e ∈ E , i.e., 
if e  ∈ p, and δed p  = 0 otherwise.  It is important  to note that the sets of 
admissible paths Pd , d ∈ D, are parameters in the problem formulations 
considered in the sequel, although in general we assume that all possible 
elementary paths can potentially be used if this is required to achieve the 
optimum. 

Note that we can represent flows, not as an end-to-end path-flow, but 
as a flow routed through an edge. These flows are defined, for each de- 
mand, by the vector f d = ( f d , e ∈ E , d ∈ D). 

The basic feature of the considered network  model is that the links 
are subject to failures. In the nominal state S0 (failure-less situation), link 
capacities are defined by the vector y0 = (y0, e ∈ E ). In a failure scenario, 
a subset of links have no capacity (failed links), and the remaining links are 
totally operational. We thus distinguish a set of failure scenarios S . Each 
state s  ∈ S is characterized by the two following  fixed vectors: the link 
availability  coefficient vector αs   :=  (αs ,  e  ∈ E ), and the traffic demand 
satisfaction coefficient vector β 
αs

 
:=  (βs ,  d ∈ D).   Basically, we assume 

s
 

e   = 0 for all edges e  which failed in failure state S and αe   = 1 for all 
other links.   The capacity of link  e  ∈ E available in state s  is equal to 
ys  s   0

 

e  := αe ye  while the volume of demand d ∈ D to be carried in s is given 
by hs :=  βs h0 (the fixed parameter βs is called the demand coefficient). d d  d d 

Recall that h0 := (h0 , d ∈ D) is a given demand volume reference vector. 
The set of links that are not available in state s ∈ S will  be denoted by 

Es  := {e ∈ E :  αs  < 1}, and, symmetrically, the set of states in which link 
e  ∈ E is not available, by Se  := {s ∈ S :  αs

 < 1}. Note that Es  = ∅ for 
each s ∈ S0. 
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3.2 Study of the  nominal state 
 

Now we introduce the basic problem related to the nominal routing.  The 
network dimensioning problem is to find a feasible flow minimizing the 
overall cost of the network  i.e.  the sum of the cost of the links of the 
network.   The problem can be represented by the following  edge-node 
linear programming (LP) formulation  involving  variables f d (d ∈ D, e  ∈ 
E ), and y0 (e ∈ E ): 

 
 

min  C = ∑ ξe y
0

 (3.1a) 
e∈E 

∑ f d 0
 

 

d∈D 
e   ≤ ye ,  e ∈ E (3.1b) 

∑ f d
 

f d 0
 

 

e∈δ+ (o(d)) 
e   + ∑ 

e∈δ­ (o(d)) 

e   ≥ hd ,  d ∈ D  (3.1c) 

∑ 
e∈δ+ (v) 

e   ­ ∑ 
e∈δ­ (v) 

e   = 0,  d ∈ D, v ∈ V \ {o(d), t(d)}  (3.1d) 

f , y continuous and nonnegative (3.1e) 
 

Objective (3.1a) minimizes  the total cost of links.   The first capacity 
constraint (3.1b) makes sure that the reference link loads do not exceed the 
maximum link capacities. Next, the demand constraint (3.1c) assures that 
the net out-flow of the demand sources are sufficient to realize the volume 
of each demand d ∈ D.  Equations (3.1d) are called flow  conservation 
constraints (or Kirchoff  constraint), since they guarantee that the in-flow 
equals the out-flow  for all nodes except o(d) and t(d).  Note that this LP 
can be solved polynomially. 

 

We now give a path formulation for the nominal routing problem. The 
problem assumes that the required demand volume h0 (d ∈ D) is realized 
within  the bandwidth  reserved by the reference flows x0 , p ∈ Pd , so that 
the links capacities y0, e ∈ E , available in state s are not exceeded. For 
given admissible path-lists Pd , d ∈ D, the considered problem is denoted 

by P(P ) (where P = 
U

d∈D Pd ) and represented by the following  link-path 
linear programming (LP) formulation  involving  variables x0 (d ∈ D, p ∈ 
Pd ), and y0 (e ∈ E ): 

min  C = ∑ ξe y0
 

 

(3.2a) 

[π0 ≥ 0] y0 ­
 e∈E  

δ x0
 

≥ 0,  e ∈ E (3.2b)
 

e e ∑ ∑ ed p  d p 
d∈D p∈Pd 

[λ0  ≥ 0] 0 
d p 

p∈Pd 
≥ h0 ,  d ∈ D, s ∈ S (3.2c) 

x0, y0 continuous and nonnegative (3.2d) 
 

Objective (3.2a) minimizes  the total cost of links.   The first capacity 
constraint (3.2b) makes sure that the reference link  loads do not exceed 
the maximum link capacities. Next, the demand constraint (3.2c) assures 
that the flows are sufficient to realize the volume of each demand d ∈ D. 
The optimal value of the cost (3.2a) of P(P ) will  be denoted by C(P ). 
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In (3.2), the quantities in the square brackets on the left-hand side 
are dual variables.  Dual variable π0  corresponds to the increase of the 
objective function (3.2a) for one unit of bandwidth reserved on edge  e ∈ E 
without  being used by any paths.  In the same way, λ0 represents the 
increase of the objective function for one unit of traffic increase for demand 
d ∈ D. Let us introduce reduced costs. While dual variables are associated 
to constraints in the LP, reduced costs are associated to the variables. The 
reduced cost associated to an edge e  ∈ E takes 0 if the edge is used, i.e. 

 

at least one path is routed through this edge, ce  otherwise. The reduced 
cost corresponding to a path p ∈ Pd represent the increase of the objective 
function if the path is used, and takes value 0 if it is already used. These 
dual variables and reduced costs will  be of high interest when studying 
dual separation in subsection 3.2.1. 

Observe, that our assumption of admitting  only elementary paths on 
the path-lists made in 3.1 is not limiting. If we admitted non-elementary 
paths in the overall path-list  P , then eliminating  loops in any feasible 
solution of P(P ) would never increase C(P ). For the full sets of admissible 
paths, the corresponding instance of problem (3.2) is referred to as P( ˆ ). 
Contrary to (3.1), this formulation  would  require adding all paths to the 
problem and the number of variables would become very large. 

In order to avoid an exponentially high number of variables, we will 
use Path Generation (PG). In this context, P(P ) with  P ⊂  ˆ a subset of 
all admissible paths, represents the restricted master problem. Note that a 
feasible solution x0 , d ∈ D, p ∈ Pd for P(P ) can be expanded to a feasible 

ˆ ˆ ˆ
 

solution x0 , d ∈ D, p ∈ Pd for P(P ) (setting x0
 = 0 for p ∈ Pd \ Pd . 

 

 

3.2.1 Dual problem and dual separation 
 

Let us consider the problem dual to problem P(P ) formulated in (3.2) for a 
given set of admissible paths P . The dual, denoted by D(P ), is as follows: 

 
 

max W = ∑ h0 λ0 (3.3a) d   d 
d∈D 

π0
 

e   ≤ ξe ,  e ∈ E (3.3b) 

d p ≤ ∑ 
e∈E 

δed p π
0,  d ∈ D, p ∈ Pd  (3.3c) 

all variables λ, π continuous and nonnegative. (3.3d) 
 

Let Π(P ) denote the dual polyhedron  of all feasible solutions (π, λ) 
of D(P ), where π = (π0,  e  ∈ E ), λ = (λ0 ,  d ∈ D).  We treat the dual e d 

solutions (π, λ) as vectors in the RN  space of dimension N = |E | + |D|), 
and observe that Π(P ) is a fully dimensional subset of RN . 

Let W (P ) denote the optimal  value of the objective function  (3.3a) 
of D(P ).  Clearly, W (P ) is also equal to the optimal  value of objective 
(3.3a) maximized over (π, λ) ∈ T(P ). Due to the strong duality  property 
(Lasdon 1970, Minoux  1986), W (P ) = C(P ).  Moreover, P ⊆  ˆ implies 
that polyhedron Π(P ) contains polyhedron Π( ˆ ), so that W (P ) ≥ W ( ˆ )

 P  P 
and hence W (P ) is actually an upper bound of the optimal objective C( ˆ ) 
of P( ˆ ). 
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Suppose π, λ form an optimal solution of the dual problem D(P) de- 
fined by (3.3). Checking whether the above inequalities are satisfied for 
all paths q ∈ ˆ is called pricing subproblem. This can be done efficiently 
by computing paths w.r.t. the weight vector π0, e ∈ E for each commodity 
d ∈ D. If a path is at least λd , then we must have: 

∑ δed p π
0 0 

d

 
 

e∈E 
e   ≥ λd p ,  d ∈ D, p ∈ P (3.4) 

 
Otherwise, we find a new path q that has the positive reduced cost and 

we can add this path (column) to the new master problem P(P U 
q). 

 

 

3.2.2 Path generation 
 

In fact, in path generation it  is advantageous (to speed up the PG al- 
gorithm)  to find,  for each d ∈ D, not only  a path (if  any) in   ˆ that 
just separates the current dual solution π, λ, but rather a path q  ∈  ˆ 
for which the dual constraints (4.2c) are maximally  violated by the con- 
sidered dual solution  π, λ.   This is especially true when finding  such 
a path is not substantially more complex than finding  an arbitrary  path 
that violates the dual constraints. In our setting, the (negative) measure 
of violation  of the dual constraints corresponding to path q is equal to 

0 0
 

lql = ∑e∈E δed p πe  ­ λd  provided it is negative. Maximizing  the measure 
of violation is equivalent to minimizing ∑e δ π0. This can be done ef- 
ficiently by computing the shortest path w.r.t. the weight vector π0, e ∈ E 

.  Note that finding  a shortest path in graph 
G (V , E ) with  nonnegative weights π0

 ≥ 0, e ∈ E is polynomial  (e.g., by 
Dijkstra’s algorithm). 

The PG algorithm is then described in Algorithm 1. 
 

Algorithm 1: PG algorithm for the nominal routing 
Input: Graph G = (V , E ), a set of demands D, a vector of traffic 
requirements h0 and an admissible paths-list P . 
Output: Subset of paths P ⊆ ˆ leading to optimal cost C P ). 

1: Repeat 
2: Solve P(P ) 
3: Let π, λ be the dual variables for D(P ) 
4: For each demand d ∈ D 
5: Find a shortest path w.r.t. weights π0 

6: If length of shortest path q is less that λ0 , add q to P 
7: End If 
8: End for 
9: Until no path has been added 

 
 
 
 

3.3 Study of Global Rerouting 
 

As we did in the previous section, let us introduce the edge-node LP for- 
mulation  of GR involving  variables f 0 (d ∈ D, e  ∈ E ),  f s (d ∈ D, s  ∈ 
S , e ∈ E \ s) and y0 (e ∈ E ): 
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min C = ∑ ξe y
0

 (3.5a) 
e∈E 

∑ f 0 0
 

 

d∈D 
d,e  ≤ ye ,  e ∈ E (3.5b) 

∑ f 0
 

f 0 0
 

 

e∈δ+ (o(d)) 
d,e + ∑ 

e∈δ­ (o(d)) 
d,e  ≥ hd ,  d ∈ D  (3.5c) 

∑ 
e∈δ+ (v) 

d,e ­ ∑ 
e∈δ­ (v) 

d,e  = 0,  d ∈ D, v ∈ V \ {o(d), t(d)}  (3.5d) 

∑ f s 0
 

 

d∈D 
d,e  ≤ ye ,  s ∈ S , e ∈ E (3.5e) 

∑ f s
 

f s 0
 

 

e∈δ+ (o(d)) 
d,e + ∑ 

e∈δ­ (o(d)) 
d,e  ≥ hd ,  s ∈ S , d ∈ D  (3.5f) 

∑ 
e∈δ+ (v) 

d,e ­ ∑ 
e∈δ­ (v) 

d,e  = 0, 

s ∈ S , d ∈ D, v ∈ V \ {o(d), t(d)}  (3.5g) 

f 0, f s , y continuous and nonnegative (3.5h) 
 

Objective (3.5a) minimizes the total cost of links. Capacity constraints 
(3.5b) and (3.5e) make sure that the reference link  loads do not exceed 
the maximum link capacities in the nominal and failure states. Next, the 
demand constraints (3.5c) (resp.  (3.5f)) assure that the out-flow  of the 
demand sources are sufficient to realize the volume of each demand d ∈ D 
in the nominal (resp. failure) state. Equations (3.5d) and (3.5g) are called 
flow conservation constraints, since they guarantee that the in-flow equals 
the out-flow  for all nodes except o(d) and t(d).  Note that this LP can be 
solved polynomially. 

We now give a path formulation  for the problem.  For given admis- 
sible path-lists Pd , d ∈ D, the considered problem is denoted by P(P ) 
(where P = 

U
d∈D Pd ) and represented by the following  link-path  linear 

programming  (LP) formulation  involving  variables x0 (d ∈ D, p ∈ Pd ), 
and y0 (e ∈ E ):  

min  C = ∑ ξe y0
 

 

 
(3.6a) 

[π0 ≥ 0] y0 ­
 e∈E  

δ x0
 

≥ 0,  e ∈ E (3.6b)
 

e e ∑ ∑ ed p  d p 
d∈D p∈Pd 

[λ0  ≥ 0] 0 
d p 

p∈Pd 
≥ h0 ,  d ∈ D  (3.6c) 

[π0 ≥ 0] y0 ­
 

δ xs
 

≥ 0,  s ∈ S , e ∈ E (3.6d)
 

e e ∑ ∑ ed p  d p 
d∈D p∈Pd 

[λs  ≥ 0] s 
d p 

p∈Pd 
≥ hs ,  d ∈ D, s ∈ S (3.6e) 

x0, y0 continuous and nonnegative (3.6f) 
 

(where the quantities in the square brackets on the left-hand side are dual 
variables). 

Objective (3.6a) minimizes  the total cost of links.   The first capacity 
constraint (3.6b) makes sure that the reference link  loads do not exceed 
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π e

∈D d +

Pd

∈E e

0
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the maximum link capacities. Next, the demand constraint (3.6c) assures 
that the flows are sufficient to realize the volume of each demand d ∈ D. 
Capacity constraint (3.6d) makes sure that the link  loads do not exceed 
the maximum link capacities in any failure scenario s.  Finally, constraint 
(3.6e) assures that the flows are sufficient to realize the possibly reduce 
volume of each demand. The optimal value of the cost (3.6a) of P(P ) will 
be denoted by C(P ). 

 
3.3.1 Dual problem and dual separation 

 

Let us consider the problem dual to problem P(P ) formulated in (3.6) for a 
given set of admissible paths P . The dual, denoted by D(P ), is as follows: 

 
 

max W = ∑ h0 λ0 +
 

hs λs
 

(3.7a)
 

d   d ∑ ∑ d   d 
d∈D 

π0 πs
 

s∈S d∈D 

e  + ∑ 
s∈S 

λ0
 

e  ≤ ξe ,  e ∈ E (3.7b) 
 
0

 

d p ≤ |p| ,  d ∈ D, p ∈ Pd  (3.7c) 

λs s s
 

d p ≤ |p| ,  s ∈ S , d ∈ D, p ∈ Pd  (3.7d) 

all variables λ, π0, πs continuous and nonnegative. (3.7e) 
 

Above |p|0   = ∑e δed p   
0

 and |p|s   = ∑ e∈E δed p πs , s  ∈ S denote the 
state-dependent (dual) lengths of path p. 

Below, D(P ) will  denote the problem defined by (3.7) for a given set 

of admissible paths P = 
U

d       P , Π(P )—the polyhedron  (in Rn   of an 
appropriate dimension n) defined by constraints (4.2b)-(4.2e), and W (P )— 
the optimal value of the objective function of D(P ).  Certainly, W (P ) is 
equal to the optimal value C(P ) considered for the admissible path-set P , 
and W ( ˆ ) (recall that  ˆ is the maximum set of admissible paths) is the P  P 
solution of GR we are looking for. Certainly, W (P ) ≥ W ( ˆ ) for P ⊆ ˆ .

 P  P 
Suppose π, λ form an optimal solution of the dual problem D(P ) de- 

fined by (3.7). We consider the following  two cases that fully  characterize 
the set of all paths q  ∈  ¯ \ Pd that separate the current optimal  dual 
solution. 

Case 1 There exists a path q such that |q| 
 

< λ0 which, by equation (3.7c), 
makes the inequalities in (3.7) infeasible. 

 

Case 2 Suppose that |q| 
 

≥ λ0 for a path q, and for some s ∈ S , |q|s 

 

< λs . 
Equation (3.7d) does not allow any |q|s ­ λs  to be negative. Hence, 
(3.7) is infeasible. 

 

 

3.3.2 Path generation 
 

Because of the specific form of the LP, we can use Benders decomposition 
(Benders 1962). Hence, the path generation process requires a subproblem 
for each demand d ∈ D, for the nominal state and for each failure state 
s ∈ S . Subproblems related to the nominal state are the same than in 3.2.1. 
Failure state related subproblems can efficiently be solved by computing 
the shortest path w.r.t. the weight vector πs , e ∈ E , s ∈ S and πs , s ∈ S , e ∈ 

e e 
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E \ s for each commodity d ∈ D. Note that finding a shortest path in graph 
G (V , E ) with nonnegative weights π0 ≥ 0, e ∈ E or πs ≥ 0, s ∈ S , e ∈ E \ s e e 
is polynomial  (e.g., by Dijkstra’s algorithm).   The PG algorithm  is then 
described in Algorithm 2. 

 
Algorithm 2: PG algorithm for Global Rerouting 

Input: Graph G = (V , E ), a set of demands D, a vector of traffic 

requirements hs , s ∈ S U S0 and an admissible paths-list P . 
Output: Subset of paths P ⊆ ˆ leading to optimal cost C P ). 

1: Repeat 
2: Solve P(P ) 
3: Let π, λ be the dual variables for D(P ) 
4: For each demand d ∈ D 
5: Find a shortest path w.r.t. weights π0 

6: If length of shortest path q is less that λ0 , add q to (GR) 
7: End If 
8: For each failure state s ∈ S 
9: For each demand d ∈ D 

10: Find a shortest path w.r.t. weights πs 

11: If length of shortest path q is less than λs , add q to P 
12: End If 
13: End for 
14: End for 
15: End for 
16: Until no path has been added 

 
 
 
 

3.4 Mathematical formulation  of  the  restoration 
methods 

 

In this section, we study the dimensioning problem for five other recovery 
methods of the literature:  end-to-end rerouting with  stub release (RR+ ), 
end-to-end rerouting  without  stub release (RR­), local rerouting  (LR), 
path diversity (PD) and shared robust rerouting (ShRR). 

 

 

3.4.1 End-to-end rerouting with stub release - RR+ 
 

The arc-path formulation  of the problem dimensioning problem for RR+ , 
denoted PRR+ (P ), is as follows: 
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min  C = ∑ ξe y
0

 (3.8a) 

[π0 ≥ 0] y0 ­
 e∈E  

δ x0
 

≥ 0,  e ∈ E (3.8b)
 

e e ∑ ∑ ed p  d p 
d∈D p∈Pd 

[λ0  ≥ 0] 0 
d p 

p∈Pd 
≥ h0 ,  d ∈ D  (3.8c) 

[πs  ≥ 0] y0 ­ 
e e ∑ ∑ δed p x

0 
d p 

d∈D p∈Pd ,s∈/ p 

­ ∑ ∑ d p ≥ 0,  s ∈ S , e ∈ E \ s (3.8d) 
d∈D p∈P s 

[λs  ≥ 0] 0 
d p 

p∈Pd ,s∈/ p 

s 
d p 

p∈P s 
≥ hs ,  d ∈ D, s ∈ S (3.8e) 

x0, xs , y0 continuous and nonnegative (3.8f) 
 

Constraints  (3.8b) (respectively (3.8d)) express capacity constraints 
in the nominal (respectively failure) state. Constraints (3.8c) ensure the 
satisfaction of traffic  in the nominal  state and constraints (3.8e) ensure 
the lowest traffic satisfaction rate for the failure scenario s.   Finally, the 
non-negativity  of variables is expressed by constraints (3.8f) and dual 
variables (π0, πs , λ0 , λs ) are given in the left-hand terms. e e d d 

 

Let us consider the problem dual to problem PRR+ (P ) formulated in 
(3.8) for a given set of admissible paths P . The dual is as follows: 

max W = ∑ h0 λ0 
 

(3.9a) d   d 
d∈D 

π0 πs
 

e  + ∑ 
s∈S 

e  ≤ ξe ,  e ∈ E (3.9b) 

d + ∑ λs  ≤ δed p e  + ∑ ∑ δed p π
s ,  d ∈ D, p ∈ Pd  (3.9c) 

s∈S ,s∈/ p 

λs
 

e∈E 
s
 

s∈S ,s∈/ p e∈E 
s
 

d ≤ ∑ δed p πe ,  s ∈ S , d ∈ D, p ∈ Pd  (3.9d) 
e∈E 

all variables λ0, λs , π0, πs continuous and nonnegative. (3.9e) 
 

Using notations introduce in section 3.3 (i.e.  |q|0   and |q|s ), we can 
extract from 3.9 that a path q ∈ ˆ \ Pd will  be added to 3.8 if it meets one 
of the following  cases. 

Case 1 |q|s   < λs . This can be computed using Dijkstra’s algorithm with 
with nonnegative weights e  ≥ 0, s ∈ S , e ∈ E \ s. 

Case 2 |q|0 + ∑s
 

,s /q |q|s  < λ0 + ∑  

λs . This inequality can easily be 
∈S ∈ d s∈S ,s∈/q    d 

transformed to |q|0 + ∑s
 

,s /q |q|s + ∑ λs  < λ0 + ∑ λs . Note 
∈S ∈ s∈S ,s∈q     d d s∈S d 

s
 

that the second term of the above equation (∑s∈S ,s∈/q |q| ) makes the 
shortest reduced cost problem difficult.  It is similar to the quadratic 
shortest path problem, a N P -hard problem.  Notice, for instance, 
that the property  of the optimality of any sub-path of an optimal 
path does not apply to this case. 
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3.4.2 End-to-end rerouting without stub release - RR­ 

RR­ reroutes the disturbed demands from the source to the destination 
without  using the capacities of the disturbed paths. In this strategy, ca- 
pacities are used for the nominal  state or for the failure  state, but not 
both. The arc-path formulation  of the dimensioning problem for end-to- 
end rerouting without  stub release, denoted PRR­ (P ), is a follows: 

 
 

min C = ∑ ξe y
0

 (3.10a) 
e∈E 

y0 0
 

e  ­ ∑ ∑ δed p xd p ≥ 0,  e ∈ E (3.10b) 
d∈D p∈Pd 

∑ x0 0
 

 

p∈Pd 
d p ≥ hd ,  d ∈ D  (3.10c) 

e  ­ ∑ ∑ δed p x
0   ­ ∑ δed p x

s    ≥ 0,  s ∈ S , e ∈ E \ s   (3.10d) 
d∈D p∈Pd d∈D p∈P s 

∑ x0
 

xs  s
 

 

p∈Pd ,s∈/ p 
d p + ∑ 

p∈P s 
d p ≥ hd ,  d ∈ D, s ∈ S (3.10e) 

x0, xs , y0 continuous and nonnegative (3.10f) 
 

Constraints (3.10b) (respectively (3.10d)) express capacity constraints 
in the nominal (respectively failure) state. Constraints (3.10c) ensure the 
satisfaction of traffic in the nominal state and constraints (3.10e) ensure 
the lowest traffic satisfaction rate for the failure scenario s.   Finally, the 
non-negativity of variables is expressed by constraints (3.10f). Note than 
in constraints (3.10d) all paths are considered, while in constraints (3.10e) 
only non-disturbed paths are taken into account. Note that path genera- 
tion for RR­ is polynomial (Lutton et al. 2000). 

 

 

3.4.3 Local Rerouting - LR 
 

The rerouting process is local if, in case of a link failure, we do not reroute 
the disturbed demands from  the source to the destination but we only 
reroute the traffic between the extremities of the failure link. Let us intro- 
duce some more notations: 

 

• Let P l be the set of paths of graph G (V , E \ l) between the extremities 
of link l ∈ E . 

• Let xl be the proportion  of cumulated traffic routed on path p ∈ P l 
between the extremities of failed link l ∈ E . 

 

The formulation of the dimensioning problem for local rerouting, denoted 
PLR (L), is a follows: 
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e

y0
d p ∑ p

e

 
 
 
 
 

min C = ∑ ξe y
0

 (3.11a) 
e∈E 

y0 0
 

e  ­ ∑ ∑ δed p xd p ≥ 0,  e ∈ E (3.11b) 
d∈D p∈Pd 

∑ x0 0
 

 

p∈Pd 
d p ≥ hd ,  d ∈ D  (3.11c) 

e  ­ ∑ ∑ δed p x
0   ­ δe p xl  ≥ 0,  l ∈ E , e ∈ E \ {l} (3.11d) 

d∈D p∈Pd 

∑ xl
 

p∈P l 

x0
 

 
p∈P l 

p ≥ ∑ 
p∈Pd ,l∈p 

d p ,  d ∈ D, l ∈ E (3.11e) 

x0, xs , y0 continuous and nonnegative (3.11f) 
 

Constraints (3.11b) (respectively (3.11d)) express capacity constraints 
in the nominal (respectively failure) state. Constraints (3.11c) ensure the 
satisfaction of traffic in the nominal state and constraints (3.11e) ensure 
that all the lost traffic from the extremities of the failed link l is rerouted. 
Finally, the non-negativity of variables is expressed by constraints (3.11f). 
Note that, as RR­, path generation for LR is polynomial. 

 

 

3.4.4 Path Diversity - PD 
 

Contrary to the above strategies, PD is a protection strategy.  The only 
requirement is that in case of failure, enough bandwidth  is remaining to 
route the traffic of every demand. The formulation  of the dimensioning 
problem for path diversity, denoted PPD (P ), is as follows: 

 

 

min C = ∑ ξe y
0

 (3.12a) 
e∈E 

y0 0
 

e  ­ ∑ ∑ δed p xd p ≥ 0,  e ∈ E (3.12b) 
d∈D p∈Pd 

∑ x0 0
 

 

p∈Pd 

y0
 

d p ≥ hd ,  d ∈ D  (3.12c) 
 

0
 

e  ­ ∑ ∑ δed p xd p ≥ 0,  s ∈ S , e ∈ E \ s (3.12d) 
d∈D p∈Pd ,s∈/ p 

∑ x0 s
 

 

p∈Pd ,s∈/ p 
d p ≥ hd ,  d ∈ D, s ∈ S (3.12e) 

x0, xs , y0 continuous and nonnegative (3.12f) 
 

Constraints (3.12b) (respectively (3.12d)) express capacity constraints 
in the nominal (respectively failure) state. Constraints (3.12c) ensure the 
satisfaction of traffic in the nominal state and constraints (3.12e) ensure the 
lowest traffic satisfaction rate for the failure scenario  s (recall that we only 
consider single total link failures). Finally, the non-negativity of variables 
is expressed by constraints (3.12f). 

Notice that PD is polynomial in case of single link failure scenarios, i.e. 
when every link can fail but one at a time. However, it becomes N P -hard 
in the general case of failure scenarios that admit simultaneous failures of 
multiple  links (Tomaszewski et al. 2010). 
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3.4.5 Shared Robust Rerouting - ShRR 
 

Contrary to the other mechanisms, ShRR makes a distinction between af- 
fected and unaffected demands after a failure. A traffic demand d is said to 
be affected by a failure state  s if its surviving nominal path-flows (thinned 
or not) are not sufficient to carry the traffic volume assumed for this state, 
i.e., when ∑p∈ ¯ s  xd p + ∑p∈P s  xd p < hs .  Otherwise, the demand is unaf- 
fected. The status (affected/unaffected) of demand d ∈ D in failure state 
s ∈ S is represented, by a binary variable Ts , d ∈ D, s ∈ S : Ts  = 1 if d is 

d d 
an affected demand in s and Ts = 0 if d is not affected in s. In failure state 
s  ∈ S , unaffected demands d ∈ Ds  can only thin their unaffected path- 
flows (concerning only paths in P s ) and affected demands d ∈  ¯ s   can 

d D 
reroute the perturbed path-flows.  The formulation  of the dimensioning 
problem for path diversity, denoted PShRR (P ), is a follows: 

 
 

min  C = ∑ ξe y
0

 (3.13a) 
e∈E 

y0 0
 

e  ­ ∑ ∑ δed p xd p ≥ 0,  e ∈ E (3.13b) 
d∈D p∈Pd 

∑ x0 0
 

 

p∈Pd 
d p ≥ hd ,  d ∈ D, s ∈ S (3.13c) 

e  ­ ∑ ∑ δed p x
0   ­ ∑ δed p u

s
 

d∈D p∈P s d∈Ds p∈P s 

+ ∑ 
d∈ ¯ 

∑ 
p∈P s 

d p ≥ 0,  s ∈ S , e ∈ E \ s (3.13d) 

∑ (x0
 

p∈P s 

s s 
d p  d p 

p∈P s 
≥ hs ,  d ∈ D, s ∈ S (3.13e) 

∑ x0 s s
 

 

p∈P s 
d p + M(Td ­ 1) < hd , s ∈ S (3.13f) 

∑ x0
 

s     s s
 

 

p∈P s 
d p + hd Td ≥ hd , s ∈ S (3.13g) 

x0 s s
 

d p ­ ud p ≥ 0,  d ∈ D, s ∈ S , p ∈ Pd  (3.13h) 

us  s s
 

d p + M(Td ­ 1) ≤ 0,  d ∈ D, s ∈ S , p ∈ Pd  (3.13i) 

x0, xs , us , y0 continuous and nonnegative (3.13j) 
 

Constraints (3.13b) (respectively (3.13d)) express capacity constraints 
in the nominal (respectively failure) state. Constraints (3.13f) and (3.13g) 
classify demands in affected and unaffected. Constraints (3.13c) ensure the 
satisfaction of traffic in the nominal state and constraints (3.13e) ensure the 
lowest traffic satisfaction rate in any link  failure state. Then, constraints 
(3.13h) guarantee that decreasing the traffic volume over non-disrupted 
demand paths by more than the corresponding nominal traffic is not per- 
mitted  and constraints (3.13i) ensure that only unaffected demands can 
release bandwidth.  Finally, the non-negativity of variables is expressed by 
constraints (3.13j) . Note that ShRR has not been solved to optimality us- 
ing classic path generation algorithms because of the distinction between 
affected and unaffected demands. 
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3.5 Numerical results for all mechanisms 
 

In this section, we present results of computational study illustrating  the 
performances of the mechanisms presented in 3.4 and Global Rerouting. 
We also study the efficiency of the path generation algorithm compare to 
the other formulation  of the same problems. 

The undirected network instances used in our tests and listed in table 
3.1 are taken from SNDlib (Orlowski et al. 2010). 

 

Table 3.1 – Network description 
 
 

Network Nodes Links Demands
pdh 11 34 24

polska 12 18 66
nobel-us 14 21 91

nobel-germany 17 26 121
 
 
 
 

3.5.1 Dimensioning cost 
 

In the following,  we compare the Global Rerouting strategy (GR) and the 
presented strategies (Local Rerouting (LR), Restricted Rerouting with stub 
release (RR+ ), Restricted Rerouting without  stub release (RR­) and Path 
Diversity (PD)) applied to the total single link failure case in terms of cost 
effectiveness. 

For the experiments reported in this section we assume a uniform  de- 
mand satisfaction ratio  β, i.e.  hs = βh0 for all d ∈ D, s  ∈ S .  In the 
comparisons, let CGR denote the optimal value of the objective function 
(i.e., minimum  cost of the link capacity) for GR, and CLR , CRR+ , CRR­ , CPD 

the respective values for the remaining strategies. Certainly, the computed 
link  capacities (and thus the link  capacity cost) ensure the routing  of all 
traffic demands in the nominal state and the guaranteed traffic restoration 
(specified by β) in all failure states. 

As we already mentioned, the cost CGR indicated by GR is not greater 
than any of the remaining cost, as GR assumes the least restricted flow 
restoration mechanisms. Hence, we can define the relative cost increase 
(in percent) for each strategy S (where S stands for LR, RR, WoR or PD) 
with respect to GR as GS  =  CS ­CG R  ∗ 100%.  In the following,  this quantity 
will  be called relative gap. Note that, by definition, GGR = 0. 

Figures 3.1-3.3 show that Path Diversity is by far the less cost-efficient 
 

strategy with  up to 87% gap. Note that PD seems not to be sensitive to 
variations of β, regarding to the gap with  GR. LR and RR­ have slightly 
the same cost with  a gap varying between 1% and 35% for all networks 
and all values of β. Finally, RR seems to be the most cost-efficient strategy 
for single total link  failures (after GR) with  a gap less than 2% for total 
traffic restoration, i.e. β = 1. 

 

 

3.5.2 Efficiency of Path Generation 
 

In sections 3.2, 3.3 and 3.4, a Path Generation algorithm intended to accel- 
erate the CPU time was presented. From the LP presented above, we can 
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Figure 3.1 – Relative gap (in %) for all strategies for network polska. 
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Figure 3.2 – Relative gap (in %) for all strategies for network nobel-us. 
 

 
establish that the number of variables is the same for GR, RR+  and RR­ 

with |E| + (1 + |S|) ∗ ∑d∈D  |Pd | variables. The number of variables for LR 
is equal to |E| + ∑d      |P | + ∑    ∑     |Pl | while for PD it is limited  to 
|E| + ∑d∈D |Pd |.  To have a clear sight of these numbers, let us take a look 
at them for the 4 networks. 

 

Table 3.2 – Number of optimization  variables for all networks, for all strategies. 
 
 

Network GR, RR+, RR­ LR PD 
pdh 65 885 819 1 882 485 1 882 485 

polska 46 701 37 455 2 475 
nobel-us 156 507 128 437 7 134 

nobel-germany 324 215 224 875 12 033 
 

 
Hence, the need for PG becomes clear as the number of variables might 

by very high depending on the network instance. We can see from above 
that the total number of paths for a highly  dense network  such as pdh 
(with only 11 nodes) is up to 2 million while this number is highly reduced 
for a sparse network  with  more nodes such as polska.   Notice that the 
network used in this section are small networks. Let us study the efficiency 
of the arc-path formulation  with and without  path generation for the GR 
and RR+  strategies. As the compact formulation  of GR is presented, it is 
added to the following  results. 

Tables 3.3 and 3.4 clearly shows that Path Generation is very interest- 
ing to solve multicommodity flow  problems when possible. Both tables 
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Figure 3.3 – Relative gap (in %) for all strategies for network nobel-germany. 
 

 
shows that using PG improves the computation time for these networks. 
It is especially clear for GR. More importantly,  the number of paths used, 
and so the number of variables, is drastically reduced (more than 90% less 
paths) with up to 99.95% of reduction for network pdh for GR. Path Gen- 
eration will  be used for the strategies presented in the following  chapters. 
Note that the pricing problem for RR+  is N P -hard and this can be seen 
for network pdh, where the computation time using PG is up to 23 hours 
while the computation of the compact formulation  is 17 times faster. 

 

Table 3.3 – Study of Path Generation for GR. 
 
 

Network 
arc-node arc-path arc-path + PG 
time (s) time (s) nb paths time (s) nb paths 

pdh 9 442 1 882 451 7 98 
polska 4 1 2 457 1 184 

nobel-us 38 6 7 113 5 245 
nobel-germany 18 16 12 007 19 439 

 

 
 

Table 3.4 – Study of Path Generation for RR+ . 
 
 

Network 
arc-path arc-path + PG

time (s) nb paths time (s) nb paths 
pdh 4 874 1 882 451 83 607 721 

polska 10 2 457 2 403 
nobel-us 74 7 113 6 706 

nobel-germany 140 12 007 43 837 



 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part II 
 
 

Flow Thinning 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

This part is dedicated to the Flow-Thinning strategy (FTS). Chapter 4 
introduces the principle of the strategy and gives illustration  through ex- 
amples. Then, we present the basic FT optimization  problem (FTOP) fol- 
lowed by a discussion on its computational complexity. FTOP is NP-hard 
at least for two-links failure scenarios. Thus, we study the separation prob- 
lem and propose an original Path Generation algorithm using a binary LP. 
Next, in Chapter 5, we study the efficiency of FTS. We first compare the 
dimensioning cost of the network using FTS with other strategies such as 
GR. This study is followed by a study of a lower bound formulation of the 
problem. In the last chapter (Chapter 6), we briefly present an affine ver- 
sion of FTS that reduces the number of failure states for which the strategy 
needs to be optimized.  Next, we deal with implementation issues of FTS 
and its affine variant. Finally, we present an extension of FTS that allows 
for thickening and argue why this method cannot be implemented in the 
current form. 
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low thinning (FTS) is a protection strategy 1, designed to manage mul- 
tiple partial link failures.  In this chapter, we first introduce this strategy 
with some illustrations. Then, we present the mathematical formulation of 
the dimensioning problem using FTS, denoted FTOP. Before studying the 
path generation algorithm, we present the dual separation problem. Next, 
we analyze the complexity of the pricing problem. Finally, we study two 
special cases: single partial link failures and single partial node failures. 

 

1 We categorize FTS in the group of protection strategies because the main feature of 
FTS is not creating new paths which is proper to restoration methods 

 
41 
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4.1 Introduction to Flow Thinning 
 

The flow-thinning protection strategy (FTS, Pióro et al. (2013b)), designed 
for Multiple Partial Link Failures (MPLF), is inspired by the idea of flow 
adjustment proposed in ShRR (Fundo et al. 2013) and path diversity (Or- 
lowski and Pióro 2012). The main idea behind FTS is as follows: 

 

 

• Following the idea of path diversity, we assume that each demand is 

in general routed over several paths, not necessarily disjoint, with 
over-dimensioned path-flows to ensure an assumed level of surviv- 
ability. 

• Unlike conventional end-to-end restoration strategies, FTS guaran- 

tees survivability solely by releasing a fraction of flow  on the af- 
fected routing paths as ShRR. Consequently, no flow is rerouted or 
increased. It is important that this thinning of path-flows is done in 
an appropriate failure-state dependent way. 

 

To give a more clear idea of how FTS works, we wish to emphasize 
a few points.   First, note that no distinction  is made between capacity 
devoted to flow routing in the normal state and those devoted to protec- 
tion, and all available link  capacity is used jointly  as a common pool of 
resources to realize demand flows in failure states. Hence, the selected 
routing paths carry the flows dimensioned so that the total flow realized 
on the demand’s paths can in general be greater than the nominal traf- 
fic. The most important feature of FTS is handling partial failures without 
any flow rerouting/restoration at all. In other words, no nominal paths in- 
crease their flows in failure states and no paths besides the nominal paths 
are used for handling failure states. Therefore, the proposed approach re- 
sults in using a sort of limited dynamic routing, adapting to the network 
states. To summarize, for each demand there is a fixed set of nominal 
routing  paths carrying nominal flows.  In a failure state in general only 
a part of the total nominal demand flow will  be realized on these paths, 
depending on the available capacity and a given demand restoration ra- 
tio.  Consequently, each affected nominal routing path can only release a 
fraction of its flow according to the failure that has occurred, and no new 
(re)routing paths are allowed. Note that FTS becomes equivalent to PD for 
total link failure situations. 

 

Example 4.1    Consider a network  with 4 nodes A, B, C and D and 5 undirected links ( A, B), 
( A, C), (B, C), (B, D) and (C, D). The unit capacity cost of all five links is equal 
to 1. We consider two demands d1 and d2 (each with demand volume equal to 1) 
between nodes A and B for d1, and A and D for d2. We consider partial single-link 
failure scenarios in which  each link can fail, but once at a time. A failure consists 
in a reduction of 50% of the reference capacity. We show below what is the result 
of the minimum  link cost network when FTS is used to recover from partial single 

3 
link failures.  The obtained solution  gives a capacity equal to 

2 
5 

for link ( A, B), 
4 

 

for link ( A, C), 1 for link (C, D), 

9 

1 1 
for link (B, D) and 

2 4 

 

for link (B, C), which 

gives a global cost equal to .  In the nominal  state, as depicted in Figure 4.1, 
2 
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Demand d1 is realized on 2 paths: p1 = {( A, B)}, p2 = {( A, C), (C, B)}} and 
demand d2 is routed on 2 paths: p3 = {( A, B), (B, D)}, p4 = {( A, C), (C, D)}. 

 
 

 
A 
���1��1		ൌ	1

	

B 

���2��3		ൌ	1/2	
 

 
 

���2��4		ൌ	1	 ���1��2		ൌ	1/4	
 

C D 
 

Figure 4.1 – FTS - Nominal State. 
 

Figure 4.2 represents the failure of link (C, D). In this scenario, the capacity 
1 

of link (C, D) decreases down  to . Hence, the basic solution  is to decrease the 
2 

bandwidth of path p4 (the only path routed through (C, D)) by 50%. Hence, 
capacity constraints are respected and all traffic requirements are met. 

 

 
A 
���1��1		ൌ	1

	

B 

���2��3		ൌ	1/2	
 

 
 

���2��4		↘	1/2	 ���1��2		ൌ	1/4	
 

C D 
 

Figure 4.2 – FTS - Failure of link (C, D). 
 

Another failure scenario is presented on Figure 4.3, concerning the failure of 
link ( A, B). This failure scenario is slightly more complex as two paths p1 and p3 

are routed through this link and due to the failure, the capacity of ( A, B) is now 
3 

equal to 
4 
6 

and the sum of the bandwidth of the paths routed through ( A, B) is 

3 
equal to > 

4 
1 

. FTS will manage this failure by releasing all bandwidth of path 
4 

p3, and 
4 

of bandwidth of path p1. Thus, the sum of the bandwidth of the paths 
3 

routed through ( A, B) is equal to the bandwidth of path p1 i.e. which is equal 
4 

to the capacity of link ( A, B). Futhermore, all traffic requirements are met. 
Note that,  as FTS is a protection strategy, the total bandwidth associated to the 

demands is always sufficient  to route the traffic. However,  before FTS manages the 
failure, strong congestion may appear on the paths routed through the disturbed 
link. 

This example considered failures of 50% of the reference capacities. Figure 4.4 
represents the evolution of the optimal dimensioning cost of the network varying 
the failure coefficient from 0% (nominal state) to 100% (total link failures). 

We notice that the optimal cost of CFT  = 7 obtained for total link failures 
(failure coefficient of 100%) corresponds to path diversity. 
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Figure 4·3- FTS- Failure of link (A, B). 
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Figure 4-4 - Evolution  of the optimal cast of the network  using FTS depending on the 
failure coefficient. 

 

 
4·2 FTOP-THE  BASIC  FT  OPTIMIZATION PROBLEM 

 
The basic  problem considered in this section is referred to as flow-thinning 
optimization  problem (FTOP)  and  is as  follows.   We  minimize the  cost  of 
link  capacity assuming that  in  the  normal state of network operation  all 
demand volumes are  realized by means of (normal) path-flows. When the 
network is subject to a failure from  a given  set of failure states (we assume 
that  a failure state consists of multiple partial failures of links)  then the 
demand volumes, possibly reduced, are  realized for  the  duration of the 
failure state by  appropriate thinning of the  normal flows.   The  detailed 
formulation of FTOP will be given  in Subsection (4.2.2). 

 
4.2.:1 Notations 

 

FTOP requires the use  of the  following notations: 
V  set of rou ters 

set of links, directed or  undirected, represented by a pair  {v,w} 
of sorne nodes v,w EV 
set of demands associated with  an  unordered pair  of nodes 
{o(d), t (d) }. For the  sake  of simplicity we call  o(d) a source 
node and  t(d) a termination node. 
set of failure scenario equal to all possible link  failure. So 
represents the nominal state. 
set of links incoming to node v E V 
set of links ou tgoing from node v E V 
non-negative unit  capacity cost  of link e E E, seen as a 
parameter 
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Figure 4.5 – A simple network  example 

 
0 volume that has to be sent between o(d) and t(d) for demand 
d d ∈ D, seen as a parameter 

βs  demand reduction coefficient vector in state s ∈ S , 
βs := (βs , d ∈ D) 

d 
traffic volume of demand d to be carried in state s 

ye capacity reservation for edge e ∈ E , which is an optimization 
variable 

αs  link availability  coefficient vector in state s ∈ S , 
αs  := (αs , e ∈ E ) with αs  between 0 and 1. e e 

y0
 

e capacity available in the nominal state for edge e ∈ E . 
s capacity (possibly decreased) available in failure state s ∈ S for 
e edge e ∈ E . This capacity is equal to ys := αs y0 

e e    e 
set of nominal paths (called the path-list), parameters in the Pd  EFR-P formulation 
set of admissible paths, P := 

U
d∈D Pd . Remind that we P  consider only elementary paths. 

s
 

Pd  
set of paths that are unaffected in failure state s ∈ S 

ˆ maximum path-lists containing all the elementary paths from Pd  o(d) to t(d),  ˆ := 
U

d ˆ ∈D Pd 

 
δed p 

 
x0

 

link-path incidence coefficients (δed p , e ∈ E , d ∈ D, p ∈ Pd ). It 
takes value δed p = 1 if path p ∈ Pd traverses link e ∈ E , and 
δed p = 0 otherwise. 

d p 
nominal path-flow associated to path p ∈ Pd for demand d ∈ D 
nominal path-flows thinned associated to path p ∈ Pd for 

s demand d ∈ D for state s ∈ S As only thinned nominal flows 
are allowed, xs 0  , s ∈ S , d ∈ D, p ∈ P d . 
set of links that are not fully available in state s ∈ S , Es  Es  := {e ∈ E : αs  < 1} 
set of states in which link e ∈ E is not fully available Se Se  := {s ∈ S : αs  < 1} 

An illustration  of the above notations is given in Example 4.2. 
 

Example 4.2    Consider the network depicted in Figure 4.5. It is a 3-node, 4-link directed network 
with V = {v, w, t} and E = {1, 2, 3, 4}. The unit link costs are all equal to 1: 
ξe  = 1, e ∈ E . There are two demands (D = {1, 2}), demand d = 1 from node 
v to node t, and demand d = 2 from node w to node t, with the nominal traffic 
volumes h0 = h0 = 1. Each demand has two admissible paths: P1  = {p11, p12 } 

1 2 
where p11 = {1}, p12 = {3, 2}, and P2  = {p21, p22 } where p21 = {2}, p12 = 
{4, 1}. We assume that links 3 and 4 are always  fully available while links 1 and 
2 can fail, but only one at a time. When link e = 1 or e = 2 fails, it losses half of 
its capacity. Thus, there are three availability states S = {1, 2, 3} and we assume 
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d
α3

e

e x e

[σ d p ≤ x

dp

d p dp

 
 
 
 

that in each state the nominal traffic volumes  are to be realized so that the demand 
coefficients  are all equal to 1 (βs  = 1, d ∈ D, s ∈ S ). State s = 3 is a maximum 
state (S0 = {3}) with all links fully available: e   = 1, e  ∈ E . In state  s = 1, 
link e = 1 fails: α1 = 1 , α1 = 1, e = 2, 3, 4. Symmetrically, in state s = 2, link 

1 2 e 

e = 2 fails: α2 = 1/2, α2 = 1, e = 1, 3, 4. 2 e 
A feasible solution  is as follows.  The nominal  capacity of the four tunnels is 

defined as 
x0 0 0 0

 

11 = 1, x12 = 1/3, x21 = 1, x22 = 1/3 

and hence the (minimal) nominal capacity of the links that realizes the nominal 
flows is equal to y0 = y0 = 4/3, y0 = y0 = 1/3. The cost of the network is then 1 2 3 4 
equal to C = 10/3. The path flows (i.e., the capacity of the tunnels) in the three 
considered availability states is as follows: 

 

x1 1 1 1
 

11 = 2/3, x12 = 1/3, x21 = 1, x22 = 0 
 

x2 2 2 2
 

11 = 1, x12 = 0, x21 = 2/3, x22 = 1/3 

x3 3 3 3
 

11 = 1, x12 = 0, x21 = 1, x22 = 0. 

Note that the nominal capacity of the tunnels could carry the traffic volume h = 
4/3 simultaneously for both demands, i.e., the volume greater than the nominal 
volume h0 = 1. 

 

 

4.2.2 Formulation of FTOP 
 

In essence, FTOP consists in minimizing the cost of nominal link  capac- 
ity that supports a set of nominal tunnel capacities (path-flows) that are 
subject to thinning  in each of the considered network states. The FTOP 
instance corresponding to a given set of admissible path-lists Pd , d ∈ D is 
denoted by PFT (P ) (where P = 

U
d∈D Pd ) and represented by the follow- 

ing link-path  linear programming  (LP) formulation  involving  variables 
x0 s 0

 

d p (d ∈ D, p ∈ Pd ), xd p (d ∈ D, p ∈ Pd , s ∈ S ) and ye  (e ∈ E ): 

PFT (P ): C(P ) = min  ∑ ξe y0
 

 

 
 
(4.1a) 

[π0 ≥ 0] 
e∈E 

∑ ∑ δed p  
0

 
≤ y0,  e ∈ E (4.1b) 

 

[λs  ≥ 0]
 d∈D p∈Pd 

xs
 

 

≥ hs ,  d ∈ D, s ∈ S (4.1c)
 

 

d 
 

[πs  ≥ 0]
 

∑ d p 
p∈Pd 

δ
 

 

d 
 

xs    ≤ αs y0,  e ∈ E , s ∈ Se (4.1d)
 

e ∑ ∑ ed p  d p e    e 
d∈D p∈Pd 

s    ≥ 0] xs
 

0  ,  d ∈ D, p ∈ Pd , s ∈ S (4.1e) 

x0, xs , y0 ≥ 0 and continuous  (4.1f) 
 

(where the quantities in the square brackets on the left-hand side are dual 
variables to be used later). 

 
Objective (4.1a) minimizes the overall cost of links.  The first capacity 

constraint (4.1b) makes sure that the nominal link loads do not exceed the 
nominal link  capacities. Next, the demand constraint (4.1c) assures that 
in each state s  ∈ S , the thinned nominal flows are sufficient to realize 



4.2. FTOP—the basic FT optimization problem 47 

e

d pt d p dpt dp d p
xs

11 12 21 22

P

 
 
 

the volume  of each demand d ∈ D assumed for this state.  Then, the 
second capacity constraint (4.1d) assures that in each state s  ∈ S , the 
available capacity of each link e  ∈ Es  is not exceeded. Finally, constraint 
(4.1e) assures thinning.  Note that constraint (4.1d) is, for each link e ∈ E , 
written  down only for s ∈ Se , and not for all s ∈ S because for any state 
s ∈ S \ Se  (in which the considered link e is fully  available, αs  = 1) such 
a constraint would be redundant—it is implied by (4.1b), as the link load 

s 0
 

∑d∈D ∑p∈Pd 
δed p xd p  does not exceed its nominal load ∑d∈D ∑p∈Pd 

δed p xd p 

due to constraint (4.1e). The optimal value of the cost (4.1a) of PFT (P ) is 
denoted by C(P ). Note also that formulation  of FTOP does not explicitly 
involve dependence of βs  on αs  (s ∈ S )—this is done while preprocessing 
hs . 

Observe that our assumption of admitting  only elementary paths on 
the path-lists made in Section 4.2.1 is not limiting.  If we admitted non- 
elementary paths in the overall path-list P , then eliminating loops in any 
feasible solution of PFT (P ) would  never increase C(P ).  This is true be- 
cause if path pt is an elementary version of path p ∈ Pd , then adding pt to 
Pd , putting  x0

 := x0 and xs := xs , s ∈ S , and finally  setting x0
 and 

d p , s ∈ S , to 0 would  lead to a feasible solution of (4.1) which does not 
require the capacity reserved on the links in p \ pt. The last statement also 
implies that non-elementary paths will  not appear in optimal solutions of 
(4.1) when ξe  > 0, e ∈ E .  An illustration  of the above considerations is 
given in Example 4.3. 

 

Example 4.3    For the network  depicted in Figure  4.5, the solution given in Example 4.2 is 
feasible and optimal for 4.1. Note that the flows x0, x1, x2 of Example 4.2 are 
unique at optimality while x3 are not. For example, the flows x3 = x0 are also 
optimal. If we change the unit costs of links 3 and 4 to M, where M is a large 
number (M » 1), then the optimal solution of FTOP will change. The optimal 
cost will increase to C = 4 and the optimal tunnel capacities will be as follows: 

 

x0 0 0 0
 

11 = 2, x12 = 0, x21 = 2, x22 = 0 
 

y0 0 0 0
 

1 = 2, y2 = 2, y3 = 0, y4 = 0 

x1 1 1 1
 

11 = 1, x12 = 0, x21 = 1, x22 = 0 

x2 2 2 2
 

11 = 1, x12 = 0, x21 = 1, x22 = 1 

1 ≤ x3
 ≤ 2, x3

 = 0, 1 ≤ x3
 ≤ 2, x3

 = 0. 

 
4.2.3 Complexity of FTOP and global rerouting 

 

In the sequel, by FTOP we will always mean the instances of problem (4.1) 
with the full sets of admissible paths  ˆ , i.e., P( ˆ ). (Instances of P(P ) with

 P 
restricted sets of admissible paths P  Ç  ˆ 

P 
will  be denoted by FTOP< .) 

We note that problem FTOP is N P -hard (already for a polynomial  num- 
ber of states) since it contains, as a special case, the corresponding PD 
optimization  problem whose N P -hardness was proven by (Tomaszewski 
et al. 2010) for multiple total link failure scenarios. More precisely, the PD 
optimization problem (and thus FTOP) is N P -hard already for undirected 
graphs with |V | = L + 1 nodes, |E | = 2L links, one demand (|D| = 1), and 

|S | = L failure states (each such state consists of simultaneous failures of 
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e

P

∑ σs
e

 
 
 

a certain subset of links).  Consequently, FTOP cannot be formulated as 
a compact linear program (unless P = N P ).  Yet, whenever admissible 
paths in P are predefined and |P | is polynomial with the size of the net- 
work, then problem P(P ) becomes polynomial  as (4.1) becomes compact 
(provided |S | is polynomial). 

Difficulty of FTOP stems from the thinning constraint (4.1e) which in- 
troduces dependence between the nominal flows and the state-dependent 
flows. In fact, when constraints (4.1e), together with the associated nomi- 
nal path-flow variables x0 and constraints (4.1b), are deleted from formu- 
lation (4.1), then the resulting optimization  problem becomes polynomial 
and corresponds to the so called global rerouting  (GR) flow  restoration 
strategy, also referred to as unrestricted flow reconfiguration or dynamic 
routing, see (Pióro and Medhi 2004b), (Orlowski and Pióro 2012). In GR, 
the flows xs  realizing the demands in different states are independent of 
each other and are only coupled by the capacity constraints (4.1d). This 
can be interpreted as if for each state s ∈ S the flows xs  were established 
from scratch in the currently available capacity αs ye , e ∈ E . We note that 
the resulting GR optimization  problem (4.1a), (4.1c), (4.1d) is polynomial 
also for the full set of admissible paths ˆ , as, because of the independence 
of flow variables xs , s ∈ S , it can be easily formulated as a compact linear 
program using the node-link notation. GR is the most flexible protection 
mechanism we can think of and therefore it provides a lower bound for 
the network cost (4.1a). Yet, for the network considered in Example 4.2, 
the optimal FTOP solution happens to be optimal for GR as well. 

A natural extension of FTOP that allows for limited tunnel thickening 
is discussed in Chapter 6. 

 
 

4.3 Dual problem and  dual separation 
 

In this section we will  formulate the problem dual to the primal problem 
PFT (P ) defined by (4.1) and discuss the separation problem corresponding 
to the dual polyhedron. 

 

 

4.3.1 Dual problem formulation 

Problem DFT (P ) dual to PFT (P ) for a given set of admissible paths P is 

as follows (for derivation see Pióro and Medhi (2004b)): 
 

DFT (P ): W (P ) = max  ∑ ∑ hs λs (4.2a) d   d 
d∈D s∈S 

π0 αs     s
 

e  + ∑ 
s∈Se 

e πe  ≤ ξe ,  e ∈ E (4.2b) 

d p ≤ ∑ δed p π
0,  d ∈ D, p ∈ Pd  (4.2c) 

s∈S 
λs

 
e∈E 

s δ  πs
 

d ≤ σd p + ∑ 
e∈Es 

ed p e ,  s ∈ S , d ∈ D, p ∈ Pd  (4.2d) 

π, λ, σ ≥ 0 and continuous. (4.2e) 

Let Π(P ) denote the dual polyhedron of all feasible solutions (π, λ, σ) 
of DFT (P ), where π = (π0, πs , e  ∈ E , s ∈ Se ), λ = (λs , d ∈ D, s ∈ S ), e e d 
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d p

P

P

P
P

P
P

R

+

+

Pd dq

Pd e

e

Pd

∈E

+

∈E

 

 
 

σ = (σs ,  d ∈ D, p ∈ Pd , s ∈ S ).  We treat the dual solutions (π, λ, σ) 
as vectors in the RN  space of dimension N = |E | + ∑e |Se | + |D| · |S | + 
(∑d∈D |Pd |) · |S |, and observe that Π(P ) is a fully  dimensional subset of 
RN . The projection of polyhedron Π(P ) onto the (π, λ) space Rn , where 

n
 

n = |E | + ∑e∈E |Se | + |D| · |S |, is defined as Ω(P ) := {(π, λ) ∈ R : ∃ σ ∈ 
RN­n , (π, λ, σ) ∈ Π(P )}. Polyhedron Ω(P ) is also fully dimensional. 

Assume that the linear program PFT (P ), where P ⊆ ˆ , formulated in 
(4.1) is feasible. Then, due to the strong duality property (Lasdon 1970, Mi- 
noux 1986), the optimal objective W (P ) of the corresponding dual prob- 
lem D(P ) formulated in (4.2) is equal to the optimal primal objective C(P ) 
of PFT (P ), i.e., W (P ) = C(P ). Moreover, P ⊆ ˆ implies that polyhedron 
Π(P ) contains polyhedron Π( ˆ ), Π(P ) ⊇ Π( ˆ ), so that W (P ) ≥ W ( ˆ )

 P  P  P 
and hence W (P ) is actually an upper bound on the optimal objective C( ˆ ) 
of PFT ( ˆ ), i.e., of FTOP. 

Certainly, problem DDP ( ˆ ) represented by formulation  (4.2) is N P - 
hard since it is an LP dual of an N P -hard LP problem PPD ( ˆ ) represented 
by formulation  (4.1). 

 

 

4.3.2 Dual separation 

In the sequel, the dual polyhedrons of FTOP, i.e., Π( ˆ ) and Ω( ˆ ), will  be
 P  P 

simply denoted by Π and Ω, respectively. The dual separation problem for 
FTOP is the separation problem for polyhedron Ω formulated as follows 
(see Grotschel et al. (1988), Nemhauser and Wolsey (1988)): 

 
Dual separation problem (DSP): Given an arbitrary  vector (π, λ)  ∈ Rn , 
determine whether (π, λ)  ∈ Ω, and if not, find a hyperplane in Rn  that 
separates (π, λ) from the polyhedron Ω. 

Let us first  notice that if  (π, λ)  ∈/ n   then it  is separated from  Ω 
trivially, by one of the nonnegativity inequalities in (4.2e). Hence, we can 
assume that (π, λ)  ∈ Rn . Then, it is easy to check whether π fulfills  all 
constraints in (4.2b). If it does not, then (π, λ)  is separated from Ω by 
one of the unfulfilled inequalities in (4.2b), i.e., by one of the hyperplanes 
π0 s     s

 

e  + ∑s∈Se  
αe πe  = ξe . 

So now we can assume that (π, λ) ∈ Rn
 

 
and π is feasible with respect 

to (4.2b). Under this assumption (π, λ) ∈/ Ω if, and only if, there exists a 
demand d ∈ D and a path q ∈ ˆ such that for any σs ≥ 0, s ∈ S , (π, λ) 
does not fulfill constraints (4.2c) or (4.2d) for path q. Before formulating  a 
condition for such a path q (in Proposition 1), we introduce the following 
useful definitions. 

For a given path q ∈ ˆ , the quantity |q|0  := ∑e δedq π0 is called the 
nominal dual length of q, while the quantities |q|s  := ∑e ∈Es 

δedq πs , s ∈ S , 
are called the state-dependent dual lengths of path q, where as before, 
δedq , e ∈ E , are the link-path  incidence coefficients characterizing path q. 
Note that, by definition,  Es ∩ q  = ∅ implies |q|s   = 0, and in particular 

|q|s  = 0 for all q ∈ ˆ and s ∈ S0. With these two notions we can rewrite 
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∑ (λs ­ | q|s ) ≤ σs    ≤dq σs    ≤ |q|0  < (λ s ­ |q|s ). d 
s∈Sq (π,λ) s∈Sq (π,λ) s∈S s∈Sq (π,λ)  

∑ σs

σs

Pd

+

d

d

+
Pd

∈E  edq     e 

+
Pd

d

σs
 

d

 
 
 

constraints (4.2c) and (4.2d) in a more concise way: 
 

dq  ≤ |q|0
 (4.3a) 

s∈S 
λs s s

 

d ≤ σdq + |q| ,  s ∈ S (4.3b) 

dq  ≥ 0,  s ∈ S . (4.3c) 
 

Now we can define the total dual length of path q ∈ ˆ , a crucial quantity 
specified for a given vector (π, λ) ∈ Rn : 

 q) := |q|0 + ∑ 
s∈Sq (π,λ) 

 
 

(|q|s ­ λs ),  (4.4) 

 

where  

Sq (π, λ) := {s ∈ S : |q|s  < λs }. (4.5) 

Proposition 1 Consider a given vector (π, λ) ∈ Rn 
 

with π fulfilling constraints (4.2b). Then 
(π, λ) ∈/ Ω if, and only if, there exists a demand d ∈ D and a path q ∈ ˆ such 
that  

 q) < 0. (4.6) 

If this is the case, the inequality reverse to (4.6), that is, 
 

∑ δedq π
0
 

∑ ∑ edq     e d

 
 

e∈E 
e  + 

s∈Sq (π,λ) 

(  δ 
e∈Es 

πs ­ λs ) ≥ 0, (4.7) 

 

is not fulfilled by (π, λ)  and thus the hyperplane ∑e δ π0  + 
s s

 
∑s∈Sq (π,λ) (∑e∈Es  

δedq πe ­ λd ) = 0 separates (π, λ) from Ω. 

Proof 4.1 The proof of Proposition 1 is as follows. Consider vector (π, λ)  ∈ Rn 

 
 
with 

π fulfilling  constraints (4.2b) and a given path q  ∈  ˆ .  We  will  show that 
system of inequalities (4.3) is infeasible if, and only if, inequality (4.6) holds. 
Clearly, this implies that (4.7) separates (π, λ) from Ω. Suppose  q) ≥ 0, that 
is, |q|0  ≥ ∑s ∈Sq (π,λ) (λ

s  ­ |q|s ). Then, obviously, 

( 
λs s

 
 

dq  := d ­ |q| , if s ∈ Sq (π, λ)  
(4.8) 

0, if s ∈ S \ Sq (π, λ) 
 

(σs  , λs ) is a feasible solution  of the system of inequalities (4.3). Now suppose 
dq  d 

 q) < 0, that is, 
∑ 

s∈Sq (π,λ) 

 

(λs  ­ |q|s ) > |q|0.  (4.9) 

 

Then, assuming feasibility of (4.3), due to (4.5), (4.3b), (4.3c), (4.3a), and (4.9), 
respectively, the following sequence of inequalities must hold: 

0 ≤
 

d ∑ ∑ dq ∑ 
 

(4.10) 
This is a contradiction  since in (4.10) the second term is strictly less that the last 
term but they are identical.  Thus, system (4.3) is infeasible. 
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+
Pd

q ∈
+

+

P

ˆ

P

Pd

 

 
 

Proposition 1 states that (π, λ) ∈ Ω if, and only if, (i) (π, λ) ∈ Rn , (ii) 
π fulfills  (4.2b), and (iii) for each d ∈ D, q ∈ ˆ , the total dual length of 
q with  respect to (π, λ) is nonnegative, i.e.,  q) ≥ 0. The last condition, 
however, cannot be used as an inequality  characterizing polyhedron  Ω 
since its form (4.7) depends on a particular vector (π, λ) through Sq (π, λ). 
Still, it directly implies such inequalities. 

The explicit characterization of the projected polyhedron  Ω is as fol- 
lows: 

 

π0 αs     s
 

e  + ∑ 
s∈Se 

e πe  ≤ ξe ,  e ∈ E (4.11a) 

e   ≥ (λs  ­
 

δ πs ),  d ∈ D, p ∈ ˆ
 

, S t ⊆ S (4.11b)
 

∑ δed p π
0

 
e∈E 

∑ d 
s∈S t 

∑ 
e∈Es 

ed p   e Pd 

π ≥ 0, λ ≥ 0. (4.11c) 
 

The above characterization follows  from  the fact that for  a fixed path 
ˆ , the quantity  on the right hand side of (4.11b) computed for any 

given (π, λ) ∈ Rn
 attains its maximum for S t = Sq (π, λ). This means that 

4.7), dominates
 

for the given path, the proper inequality, i.e., inequality  ( 
the remaining inequalities in (4.11b) for each (π, λ) ∈ Rn . Clearly, charac- 
terization (4.11) can be easily obtained with  Fourier-Motzkin  elimination 
(see (Motzkin 1951)). 

Finally, we observe that by equivalence of optimization and separation 
in linear programming, see (Grotschel et al. 1988, Nemhauser and Wolsey 
1988), DSP is N P -hard since problem D( ˆ ) specified in (4.2) is N P -hard 
as a problem dual to FTOP which is N P -hard (already for polynomially 
bounded number of states |S |, see  Section 4.2.3). This fact is reflected by 
the difficulty of finding  a path q violating  inequality (4.7). We will  come 
back to the complexity issues related to FTOP and DSP in Section 4.5. 

 
 

4.4 Path generation 
 

The link-path  LP formulation  (4.1) of FTOP is non-compact because of 
the presence of exponentially many path-flow variables x (and, as a mat- 
ter of fact, of exponentially many constraints (4.1e)) corresponding to all 
possible elementary paths included in the maximum admissible path-list 
P .  The formulation  is potentially  non-compact also because of possibly 
exponential number of states in the set S (since the number of all link 
availability coefficient vectors is in general exponential, equal to K|E | when 

 

each link has K levels of availability).  To avoid such an additional intrinsic 
hardness of the problem, we assume that |S | is polynomially  bounded by 
the number of links. 

Thus, in practice, formulation  (4.1) of FTOP cannot be solved directly, 
as we are virtually not able to include all elementary routing paths in the 
path-lists. In order to consider all paths in  ˆ , we need to apply path gener- 
ation (PG), see (Ahuja et al. 1993))—a classical technique in multicommod- 
ity flow networks related to column generation in linear programming, cf. 
(Lasdon 1970, Minoux 1986). With PG, starting from some initial path-lists 
Pd , d ∈ D, we iteratively generate new paths, one per demand, and add 
those paths that may improve the solution to the path-lists—in effect, we 
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+

ˆ

Pd

Pd

Pd

+

d e d e

Pd

 
 
 

are adding the corresponding path-flow variables to the problem formu- 
lation. As discussed below, this is done by solving an appropriate pricing 
problem using, as parameters,  optimal dual variables, i.e., an optimal so- 
lution (λ∗, π∗ ) of the current problem DFT (P ) dual to PFT (P ). 

The application of PG to FTOP is explained below. 
 

 

4.4.1 Pricing problem 
 

PG is based on the so called pricing problem (PP). In essence, PP is sim- 
ilar to DSP (in the sequel, by DSP we will  mean its version implied  by 
Proposition 1), but with two main differences: 

• the point to be separated from polyhedron Ω is not just any vector 
(π, λ) ∈ Rn

 with π fulfilling (4.2b), but one of the optimal solutions 
) for some P ⊆ ˆ DFT P 

• in PP we need to find, for each d ∈ D, not just a path (if any) in 

Pd which separates the current optimal dual solution (π, λ) of D(P ), 
but rather a path q  ∈  ˆ \ Pd for which  the constraints of Ω cor- 
responding to the given d and q are most violated by (π, λ).  In the 

 

sequel, the problem of finding  such a path, i.e., PP for this setting, 
will  be denoted by PP(P , π, λ, d). 

 

In fact, the second property does not necessarily have to be obeyed in 
PG since any path q ∈ ˆ that violates at least one of the constraints (4.7) 
provides a cut that decreases, in a valid way, the current polyhedron Ω(P ). 
Still, the use of the most violated cuts implied  by the second property 
can substantially speed up the path generation process, especially when 
finding  the most violated cut is not substantially more time consuming 
than finding an arbitrary cut. 

Consider a given dual optimal solution (π, λ) of DFT (P ) and a given 
path q ∈ ˆ for some d ∈ D. Let D(q) denote the degree of violation  of 
constraints (4.7) (for the considered d and q) by vector (π, λ). 

Proposition 2 DFT (q) = max{­ q), 0}. 

Proof 4.2 The proof of Proposition 2 is as follows. Since (π, λ)  is a solution of D(P ), 
(π, λ)  ∈ Rn

 and hence, as already  noticed  when introducing characterization 
(4.11) of the projected dual polyhedron Ω, the equality 

∑ 
s∈Sq (π,λ) 

(λs  ­ ∑ 
e∈Es 

 

δedq π
s ) = max { ∑ 

s∈S t 

(λs  ­ ∑ 
e∈Es 

 

δedq π
s ) : S t ⊆ S }  (4.12) 

 

holds. Assume that for some S t  ⊆ S , the corresponding constraint  (4.11b) is 
0 s s

 
broken, i.e., ∑e∈E δedq πe  < ∑s∈S t (λd ­ ∑e∈Es  

δedq πe ). Then, due to (4.12), also 
0 s s

 
the constraint  ∑e∈E δedq πe  < ∑s∈Sq (π,λ) (λd ­ ∑e∈Es  

δedq πe ) is broken, and, for 
the same reason,  the degree of violation of the latter constraint, i.e., D(q)  = 

s s 0
 

∑s∈Sq (π,λ) (λd  ­ ∑e∈Es  
δedq πe ) ­ ∑e∈E δedq πe   = ­ q) is the largest among all 

the constraints (4.11b) corresponding to path q. 
 

Certainly,  Proposition 2 is not surprising  as it  implies that the pricing 
problem PP(P , π, λ, d) is equivalent to 

minimize  q) over  q ∈ ˆ 
 

, (4.13) 
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i.e., to finding the most violated separating inequality (4.7). Clearly, when 
the solution   q) of (4.13) is negative, then for a given d ∈ D q ∈/ Pd  and 
DFT (q)  = ­ q) is the largest degree of violation  of constraints (4.7) by 
(π, λ) corresponding to a given d ∈ D. 

Finally, let us note that the dual separation problem and the pricing 
problem are similar in that in both DSP and PP we need to find a path 
with a negative total dual length  q). 

 
4.4.2 Binary formulation of PP 
 

The pricing problem formulated in (4.13) is difficult because of the partic- 
ular form of the total dual length   q).  Nevertheless, the problem can be 
stated as a binary programming problem by means of formulation  (4.14) 
given below.  In the formulation,  binary variables ue , e ∈ E , specify the 
path q ∈ ˆ we are looking for: q = {e ∈ E :  ue  = 1}. Binary variables 
zs , s ∈ S , in turn, identify the set Sq (π, λ) corresponding to the so defined 
path q:  Sq (π, λ)  = {s ∈ S :  zs  = 1}. Besides, δ+ (v) and δ­ (v) denote 
the sets of all links outgoing from, and all links incoming to node v ∈ V , 
respectively. Also, o(d) is the originating node of the considered demand 
d ∈ D and t(d) is its terminating node. 

min  L = ∑ (π0 + 
e∈E 

∑ 
s∈Se 

πs zs )ue ­ ∑ 
s∈S 

 

λs zs  (4.14a) 

∑ 
e∈δ+ (o(d)) 

ue ­ ∑ 
e∈δ­ (o(d)) 

ue  = 1 (4.14b) 

∑ 
e∈δ+ (v) 

ue ­ ∑ 
e∈δ­ (v) 

ue  = 0,  v ∈ V \ {o(d), t(d)}  (4.14c) 

λs   s s s
 

d z  ≥ λd ­ ∑ πe ue ,  s ∈ S (4.14d) 
e∈Es 

ue  ∈ {0, 1}, e ∈ E ; zs ∈ {0, 1}, s ∈ S . (4.14e) 
 

Constraints (4.14b) and (4.14c) assure that those variables ue  that are equal 
to 1 form  a path from  o  to t.  Constraints (4.14d) force each variable 
zs , s  ∈ S , to be equal to 1 when the length, with  respect to πs , of the 
path q defined by variables u is sharply smaller than λs . Assume (for a 
while) that zs  = 0 when the length, with respect to πs , of path q is greater 
than or equal to λs . Then it is clear that the objective function computes 
the total dual length of path q, i.e.,  q) = |q|0 + ∑s ∈Sq (π,λ) (|q|s ­ λs ) (see 
definition (4.4)). But this assumption will  be fulfilled by any optimal solu- 
tion of (4.14)—this is easily seen from the equivalent form of the objective 
function 

L = ∑ π0 ue +  (
 

πs ue ­ λs )zs , (4.15)
 

 
e 

e∈E ∑ 
s∈S 

∑ e d 
e∈Es 

which, when minimized, will  set zs  to 0 whenever |q|s  = ∑e
 πs ue  > λs . ∈Es e d 

 
Hence, an optimal  solution  u, z, L of (4.14) defines an optimal  path 

q := {e ∈ E :  ue  = 1}, with  L = |q|0 + ∑s 

total dual length  q). 

∈Sq (π,λ) (|qs | ­ λs ) equal to its 
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To get rid of bi-linearities zs · ue  in the objective function, we can intro- 
duce binary variables Zs , e ∈ E , s ∈ S , rewrite objective as 

L = ∑ π0 ue +
 

πs Zs ­
  

λs zs , (4.16)
 

 
e 

e∈E 
 

and add the constraints 

∑ ∑ e     e 
e∈E s∈S 

∑ d 
s∈S 

 

Zs s s s s s
 

e  ≤ ue , Ze  ≤ z , Ze  ≥ 0, Ze  ≥ ue + z ­ 1,  e ∈ E , s ∈ S . (4.17) 

These constraints force the equalities Zs 

Zs
 = zs ue ,  e  ∈ E , s  ∈ S , so that 

s
 

e   = 1 if, and only if, e ∈ Se  and s ∈ Sq (π, λ); otherwise Ze  = 0. Hence, 
variables Z can be assumed continuous. 

 

 

4.4.3 PG algorithm 
 

The algorithm for solving FTOP by path generation is as follows. 
 

Algorithm 3: PG algorithm for Global Rerouting 
Input: Graph G = (V , E ), a set of demands D, a vector of traffic 

requirements hs , s ∈ S U S0. 

Output: Subset of paths P ⊆ ˆ leading to optimal cost C P ). 
1: Define initial admissible path-lists Pd , d ∈ D, and P := 

U
d∈D Pd 

2: Repeat 
3: Solve the dual problem D(P ) given by (4.2) 
4: Extract optimal dual variables π, λ 
5: For each demand d ∈ D 
6: Solve PP(P , π, λ, d) formulated in (4.14) 
7: If optimal L is negative Then 
8: Add the resulting path q to the path-list Pd 

9: End If 
10: End for 
11: Until no path has been added 

 
 
 

When the algorithm  stops, after M iterations, say, it results in a se- 
quence of dual polyhedrons Π(P 0 )  ⊃ Π(P 1 )  ⊃ . . . ⊃ Π(P M ), where 
the inclusions are proper.  The corresponding optimal dual objective val- 
ues are decreasing, W (P 0 ) ≥ W (P 1 ) ≥ . . . ≥ W (P M ), and W (P M ) = 
W ( ˆ ) = C( ˆ ). P  P 

Assume that the set S0 of maximum  availability  states is not empty. 
If  there exists a path q  ∈  ˆ with  |q|0   < ∑s ∈S0 λs , then   q) ≤ |q|0  ­ 

∈S0 
λd  < 0 (because |q| = 0 for all s ∈ S0). Hence, for any such path q 

the degree of violation D(q) is greater than or equal to ∑s  λs  ­ |q|0
 > 0. 

Thus, while the pricing problem (finding  a path q with  minimum   q)) is 
in general N P -hard (see Section 4.5), finding a path q with minimum  |q|0

 

is obviously  polynomial.   Hence, we may speed up the PG process: in 
Step 2 for each d ∈ D we find  a path q  ∈ ˆ with  minimum  |q|0,  and 
if |q|0   < ∑s ∈S0 λ

s , then we add path q to the problem and skip solving 
PP(P , π, λ, d) for the current d. Certainly, the overall time efficiency of this 
modification is in general hard to assess since there is a tradeoff between 
the value of D(q) (the larger the better) and the time spent in Step 2. An 
illustration  of the above considerations is given in Example 4.4). 
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Example 4.4    Consider for the network  described in Example 4.2 and depicted in Figure 4.5 
with the two sets of admissible paths reduced to P = P1 ∪ P2 where P1 = {p11 } 
and P2  = {p21 }. One of the optimal solutions of the resulting instance P(P ) is 
as follows: 

 

x0 0 s s
 

0 0 0 0
 

11 = x21 = 2, x11 = x12 = 1, s ∈ S , y1 = y2 = 2, y3 = y4 = 0, C = 4. 

The corresponding  optimal solution of the dual problem D(P ) (see (4.2)) is in 

turn given by: 
 

π1 2 0 0 1 2
 

1 = π2 = 2, π3 = π4 = 1, λ1 = λ2 = 2, W = 4, 

and all other dual variables π0, π0, λ2, λ1, λ3, λ3, σs , s ∈ S , d ∈ D, equal to 0. 1 2 1 2 1 1 d 
Hence, applying PG, we find out that paths p12 and p22 have their total dual 
lengths (defined by (4.4)) equal to  p12 ) =  p22 ) = ­1. Since these values are 
negative,  both paths are added to the problem so that the set of admissible paths P 
becomes set equal to ˆ , i.e., the set of all (loop-less) paths in the network graph for 
the considered two demands. An optimal solution of the resulting instance P( ˆ ) 
of FTOP is given in Example 4.2. 

 
 

4.5 Computational complexity of PP, DSP, and  special 
cases 

 
Although  not shown guaranteed, the iterative PG process described in 
Section 4.4.3 will  typically  terminate in a polynomial number of steps, as 
it is closely related to the revised simplex method (Lasdon 1970, Minoux 
1986), an exponential algorithm which exhibits this desirable property in 
practical applications.  Indeed, consider a path q  ∈  ˆ \ Pd that solves 
PP(P , π, λ, d) for d ∈ D. The variables x0

 and xs , s ∈ S , are by assump- 
tion non-basic as they are not seen in formulation  (4.1) of P(P ), and the 
maximum degree of constraint violation  D(q) is equal to the sum of the 
reduced cost of variable x0 and of the reduced costs of those variables 
among xs , s ∈ S , that have the negative reduced cost. Thus, the compu- 
tational complexity of the PG algorithm is in practice determined by the 
complexity of the pricing problem PP. 

 

Let us consider the special case of state scenarios containing only par- 
tial  failures of single links.   Hence, S = S0 ∪ S1, where S0  is a set of 
maximum  states (recall that in a maximum  state, all links maintain full 
availability),  and S1 := 

U
e∈E S (e) is a set of single-link partial availability 

states. Each set S (e) represents a set of states in which only link e has  the 
reduced capacity, i.e., s ∈ S (e) implies αs

 < 1 and αs = 1, et  ∈ E \ {e}. 
Note that if link  e  is assumed to be perfectly reliable then the set S (e) 
is empty.  It turns out that in the considered case the pricing problem is 
polynomial. 

Lemma 3 Consider a given single-link  failure scenario S and a fixed demand d ∈ D. The total 
dual length of any path q ∈ ˆ is given by the formula 

q) = ∑ ω(e) ­ ∑ λs , (4.18) 
e∈q s∈S 
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where the (non-negative) link weights ω(e), e ∈ E are defined by 
 

ω(e) := π0 +
 

min{πs , λs }. (4.19)
 

e ∑ e d 
s∈S (e) 

 

The proof of this lemma is presented in 4.6.2 
 

Since the term ∑s∈S λd in (4.18) is constant, solving PP is equivalent to 
finding  a shortest path with  respect to the link weights ω(e), e  ∈ E , e.g., 
by the Dijkstra  algorithm.   Hence, PP is polynomial  (provided  that the 
number of states in S is polynomial—note that this is the case for a finite 
number K of link availability  levels). 

The same argument shows that DSP (the dual separation problem), 
and hence the dual to FTOP, and thus FTOP, are polynomial as well. More- 
over, the way dual is solved by the ellipsoidal method of Khachian (1979) 
(implied  by Proposition 1, i.e., by finding  successive paths that separate 
the current dual solution) gives a polynomial set of paths required to solve 
FTOP. Besides, since FTOP is polynomial,  we may expect that it can be 
solved with a compact node-link linear program—such an LP formulation 
is given in the following  section (Section 4.6.1). 

The above weight construction applies to undirected networks as well. 
Also, the compact FTOP formulation  (4.37) can be easily modified for the 
undirected links case. Besides, as shown in Section 4.7, the single-node 
failure scenarios can be treated by polynomial algorithms in a way analo- 
gous to the single-link case. 

As already mentioned at the end of Section 4.3.2, the dual separation 
problem is N P -hard for the general case of a state scenario with  poly- 
nomially  bounded size.  Moreover, DSP is N P -hard already for partial 
double-link failures, i.e., when any two links can fail simultaneously. This 
was demonstrated by Coudert et al. (2007) (see also Orlowski  and Pióro 
(2012)) for a PD problem formulation  analogous to (4.1). Thus the pricing 
problem (4.13) is most likely N P -hard in those cases as well, as it is very 
similar to DSP. 
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4.6 Single-link failures 
 
4.6.1 Single-link failures – compact FTOP formulation 
 

A compact node-link FTOP formulation for a given single-link failure sce- 
nario S = S0 ∪ S1, where S1 = 

U
e∈E S (e), is as follows. 

 

min  C = ∑ ξe y
0

 (4.20a) 
e∈E 

∑ x0
  

x0 0
 

 

e∈δ+ (o(d)) 
ed ­ ∑ 

e∈δ­ (o(d)) 
ed  = Xd , d ∈ D  (4.20b) 

∑ 
e∈δ+ (v) 

∑ x0
 

ed ­ ∑ 
e∈δ­ (v) 

0
 

ed  = 0, d ∈ D, v ∈ V \ {o(d), t(d)}  (4.20c) 

 

d∈D 

X0
 

ed  ≤ ye ,  e ∈ E (4.20d) 
 

s
 

d ≥ hd ,  d ∈ D, s ∈ S0 (4.20e) 

X0  s s
 

d ­ zed  ≥ hd ,  d ∈ D, e ∈ E , s ∈ S (e) (4.20f) 

∑ (x0 ­ zs  ) ≤ αs y0,  e ∈ E , s ∈ S (e) (4.20g) ed  ed  e   e 
d∈D 

zs  0
 

ed  ≤ xed ,  d ∈ D, e ∈ E , s ∈ S (e) (4.20h) 
all variables x0, X0, z, y0 continuous and nonegative. (4.20i) 

 

In the formulation, variables x0 , e ∈ E , are the link-flows of demand d ∈ D 
(realizing its nominal path-flows), while variable X0 expresses the overall 
flow of demand d from o(d) to t(d) (realized by its nominal path-flows). 
Variables zs  , e ∈ E , d ∈ D, s ∈ S (e), in turn, specify the amount of link- 
flow  by which  the nominal  link-flow x0 is reduced in state s  ∈ S (e). 
Constraints (4.20b) and (4.20c) are conservation equations for the nominal 
link-flows.  Capacity constraint (4.20d) assures that the nominal link loads 
do not exceed the maximum link capacities, and constraint (4.20g) assures 
that the capacity available on link e ∈ E is not exceeded by its loads in its 
failure states. Demand constraints (4.20e) and (4.20f) take care about sat- 
isfaction of the assumed demand volumes in the maximum states and the 
single-link  failure states, respectively.  Finally, constraint (4.20h) bounds 
the possible link-flow reductions. 

In the case of a failure of a single link, say of link et  ∈ E in one of its 
failure states  s ∈ S (et ), any given pattern of nominal path-flows realizing 
the nominal link-flows  x0 , e ∈ E , for a given demand d ∈ D, can be prop- 
erly thinned according to the values of zs , d ∈ D. Let Pd  and Ld  be the 
sets of elementary o(d) ­ t(d) paths and loops, respectively, assigned non- 
zero path/loop-flows x0 when realizing the nominal link-flows  x0 , e ∈ E , 
of a given demand d ∈ D (such sets of paths and loops exist, see Theo- 

0 0
 

rem 8.8 in Korte and Vygen (2012)).  Because ∑p∈Pd 
xd p  = Xd , due to 

constraints (4.20f) and (4.20g), we can apply thinning for any given failure 
state s ∈ S (et ) only to the nominal path-flows in Pd  (and not to the loops 
in Ld ) containing the failing link et.  Let then Qet d ⊆ Pd  denote the set of 

0 0
 

paths that contain the considered link  et, so that ∑p∈Qet d 
xd p  = xet d .  We 

can consistently thin down the nominal path-flows through link et  in the 
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x

dp

d

ed ed ed

d

1

4

(

M

+α 1+α 

 
 
 

considered state s ∈ S (et ) according to the formula 
 

s
 

xs 0
 zet d 0

 

d p := xd p ­  
0 
et d 

· xd p ,  p ∈ Qet d . (4.21) 

 

Note that possible loops in the optimal solutions can be eliminated as their 
capacity is not used by the state-dependent path-flows xs , p ∈ Pd , s ∈ S , 
realizing the demand volume  hs defined by (4.21). Since, as discussed 
Section 4.2.2, FTOP (4.1) does not require non-elementary paths (and thus 
loops in the link-flows), formulation (4.20) is correct. In fact, when all link 
unit capacity costs ξe , e ∈ E , are strictly positive, the loops will  not appear 
in the optimal solutions of (4.20). 

It is interesting to note that for the single-link  failure  scenarios the 
 

LBP formulation  (5.1) remains to be only  a lower  bound for the exact 
formulation  (4.20). In fact, when an optimal solution x0, xs , s ∈ S , y0 of 
(5.1) does not contain loops in the flow x0 then the optimal values of (5.1) 
determine the corresponding feasible solution  x0, zs , s  ∈ S , y0  of (4.20) 
with  the same x0, y0 and zs := x0 ­ xs  , d ∈ D, e ∈ E , s ∈ S (e).  In this 
case, as LBP is a lower bound for FTOP, its optimum  is at the same time 
the optimum  for FTOP. However, if the link-flow x0 contains loops, then 
the solution Ct of LBP can be strictly smaller than the optimal solution C of 
FTOP, as illustrated in Example 4.5 below. This is because no counterpart 
of constraint (4.20f) is present in (5.1) and hence we may thin the loops 
without  thinning the realized overall demand volume X0. 

 

Example 4.5    Consider the network depicted in Figure 4.6. There is one demand (from o to t) 
and two states, s = 1 and s = 2, with link 1 and link 2 failing, respectively.  In 
both states the failing link has the same availability  coefficient α, and the demand 
volume to be realized is equal to h. The unit link costs are as follows:  ξ1 = ξ2 = 
ξ3 = 1, ξ4 = M, where M » 1. 

In the considered cost setting  with ξ4 » 1, optimal solutions of (4.20) (and 
hence of FTOP) are induced  by the nominal path/loop-flows of the form: x0 = f 
(on the upper path (o, v, t)), x0 = f (on the lower path (o, v, t)), x0 = 0 (on the 

2 3 
upper loop (o, v, o)), x0 = 0 (on the lower loop (o, v, o)).  There are two cases to 
consider. 
Case 1:  0  ≤ α  <   1  .  The optimal solutions is given by  f  =     h   

 
and y0  = 

 
   h    h 
1 

M 
2 Mh

 
 

2h(M+1) 
1+ 

1+α 

+α , 1+α , 0, 1+α ). Hence, C = α . 0 
Case 2:   1   ≤ α ≤ 1. One of the optimal  solutions, a symmetric  one, is given by 
f =  h and y0 = (  h  ,  h  , 0, h). Hence, C = h + Mh. 0 

2 2α  2α α 
The optimal solution of LBP (5.1), in turn, is induced by the two nomi- 

nal path-flows  equal to h , and by the two nominal loop-flows equal to (  1   ­ 
2 

1 (1­α)h 1+α 
0
 

2 )h = 2(1+α) 
.  Then the corresponding nominal link-flows are equal  to x = 

( 1 
h
 

h (1­α)h t (3­α)h 
1+ 

+α , 1+α , 1+α   , h), and the resulting cost is equal to C  = α    + Mh.  In 

the availability  state s = 1, the link-flows become equal to x1 = (  αh  ,   h   , 0, h), 1+α 1+α 

and in s = 2, the link-flows are symmetric and equal to x2 = ( 1 
h

 ,  αh  , 0, h). 
Certainly, for M » 1, the LBP cost Ct will be strictly smaller that the FTOP 

cost C. 
 

Example EC.4 shows that loops can be necessary in the LBP optimum 
so in general they cannot be removed without  an impact on the optimal 
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Figure 4.6 – A network example with a loop in the optimum link-flow 
 

 
solution.  Intuitively,  the inclusion of loops in LBP allows for (implicit) 
“forced thinning” of the flows from origin to destination that otherwise 
would  not traverse the failed links.   We observe that in the considered 
example the loops (o, v, o)  could be eliminated by putting  x0 = 0, d ∈ 
D, e  ∈ δ­ (o(d)) ∪ δ+

 (t(d)),  and xs = 0, s  ∈ S , d ∈ D, e  ∈ δ­ (o(d)) ∪ 
δ+ (t(d)), in (5.1). Yet, this does not help much as in the general case loops 
will  appear anyhow, only they will  not involve the demands’ origins and 
destinations. 

In the case of undirected links the situation ia analogous to the directed 
case. The standard counterpart of formulation  (4.20) for the undirected 
links (with two oppositely directed link-flows corresponding to each undi- 
rected link) remains correct, and the LBP formulation  modified for undi- 
rected links is still not equivalent to the modified formulation  (4.20). 

 
4.6.2 Single-link failures - proof of Lemma 3 

First, we observe that the total dual length of path q ∈ ˆ 

 
 
defined by (4.4) 

can be (in fact also in the general case of S ) equivalently expressed as 

q) = (|q|0 + ∑ \qls ) ­ ∑ λs , (4.22) 
s∈S s∈S 

where the modified dual length \qls  of path q in state s ∈ S is defined as 
( 

|q|s , if |q|s  ≤ λs 

\qls  := d (4.23) 
d , otherwise. 

Since for the considered states  s ∈ S , the state-dependent dual length of a 

path q can take only two values: 
( 

0, if s ∈ S0, or s ∈ S (e) and e ∈/ q
 

|q|s  = 
e , if s ∈ S (e) and e ∈ q (4.24) 

 

the modified dual path lengths are equal to: 
� 

\qls  = 
� 

0, if s ∈ S0, or s ∈ S (e) and e ∈/ q 
πs , if s ∈ S (e) and e ∈ q and πs ≤ λs 

 
 
(4.25) e e d � 

λs s s
 

d , if s ∈ S (e) and e ∈ q and πe  > λd . 

Now we make use of the link weights ω(e), e  ∈ E , specified by (4.19) in 

the formulation  of Lemma 3: 
 

ω(e) = π0 +
 

max{πs , λs }. (4.26)
 

e 
 

 
By (4.26) and (4.25) we have 

∑ ω(e) = |q|0 + ∑ 

∑ e d 
s∈S (e) 
 
 

∑ \qls  = |q|0 + ∑ \qls , (4.27) 
e∈q e∈q s∈S (e) s∈S 
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d
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G

G

Pd G

Pd

d

 
 
 

where the quantity on the left-hand side is equal the length of path q with 
respect to the link weights defined by (4.26) (and (4.19)). Hence, by (4.22) 
we finally obtain the equality 

∑ ω(e) = q) + ∑ λs , (4.28) 
e∈q 

 

which is equivalent to (4.18). 
 
 

4.7 Single-node failures 

s∈S 

 

A single-node failures scenario consists of the states with  limited  avail- 
ability of the links incident to one single node. Thus, a single-node failure 
scenario S is composed of a set of maximum states and a set of single- 
node failure states: S = S0 ∪ S2, where S0 is a set of maximum  states, 
and S2 := 

U
v∈V S (v) is a set of single-node failure states. Each set S (v), 

if not empty, represents a set of states in which only node v fails. That is, 

s ∈ S (v) implies that αs  ≤ 1, e ∈ δ(v), αs  = 1, e ∈ E \ δ(v), and αs(v)  < 1 
e e e 

for at least one e ∈ δ(v) (where δ(v) := δ­ (v) ∪ δ+ (v)). If node v does not 
fail at all, then the set S (v) is empty. 

 
4.7.1 Single-node failures – the pricing problem 

 

In the single-node failure scenario the pricing problem (4.13) is also poly- 
nomial. To apply shortest path computation to solve PP, we consider, for 
each d ∈ D, a transformed graph  ˆ (d) = ( ˆ (d), ˆ(d)), constructed from G V E 
the original network graph G = (V , E ) by exchanging, in a way, the roles 
of nodes and links. The transformation is illustrated in Figures 4.7 and 4.8 
for a demand d from node o to node t. The original graph G is depicted 
on the left-hand side while the transformed graph  ˆ (d) is shown on the 
right-hand side. 

Graph  ˆ (d) is defined by the following  conditions: 
 

ˆ ˆ
 

V (d) := {v̂(e) : e ∈ E } ∪ {o(d), t(d)};  (v̂(e), v̂( f )) ∈ E (d) 

⇔ ∃v ∈ V \ {o(d), t(d)}, e ∈ δ­ (v) ∧ f ∈ δ+ (v); 

(o(d), v̂( f )) ∈ ˆ(d),  f ∈ δ+ (o(d));   (v̂(e), t(d)) ∈ ˆ(d), e ∈ δ­ (t(d)).
 E E 

In graph  ˆ (d), all links of the form  (v̂(e), v̂( f )),  where e  ∈ δ­ (v), f  ∈ 
δ+ (v) for a given (original)  node v ∈ V \ {o(d), t(d)}, represent all pos- 
sible two-link  passages through this node in the (original)  graph G.  On 

top of that, all links of the form  (o(d), v̂( f ))  reproduce δ+ (o(d))  in the 
transformed graph, while all links (v̂(e), t(d)) reproduce δ­ (t(d)).  Finally, 
paths q  ∈ ˆ in G are transformed to their counterparts q̂ in  ˆ (d), and 
vice versa, in a natural way. 

Lemma 4 Consider a given single-node failure scenario S and a fixed demand d ∈ D. The total 
dual length of any path q ∈ ˆ is given by the formula 

q) = ∑ ω(ê) ­ ∑ λs , (4.29) 
ê∈q̂ s∈S 
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Figure 4.7 – Original graph G 
 
 

v̂(e4 ) v̂(e5 ) 
 
 
 

 
v̂(e2 ) v̂(e3 ) 

 
 
 

o v̂(e1 )  t 
 

Figure 4.8 – Transformed graph ˆ (d) 

 
where the (non-negative) link weights ω(ê) are defined for each link ê in  ˆ(d) as 
follows: 

 

ω(v̂(e), v̂( f )) := π0 + 
f ∑ 

s∈S (v) 

 
 

min{πs + πs , λs }, e f d 

v ∈ V \ {o(d), t(d)}, e ∈ δ­ (v), f ∈ δ+ (v)  (4.30a) 

ω(o(d), v̂( f )) := π0 +
 

min{πs , λs }, f ∈ δ+ (o(d)) (4.30b)
 

f ∑ f d 
s∈S (o(d)) 

ω(v̂(e), t(d)) := ∑ min{πs , λs }, e ∈ δ­ (t(d)).  (4.30c) e d 
s∈S (t(d)) 

 

As in the proof of Lemma 3 (see (4.22)), the total dual length of path 
ˆ  defined by (4.4) can be expressed as: 

q) = (|q|0 + ∑ \qls ) ­ ∑ λs . (4.31) 
s∈S s∈S 

In the considered case, for a given path q  ∈ ˆ 
 

, its dual lengths in the 
considered states  s ∈ S can take one of the three values: 

� 

|q|s  = 
�

 
0, if s ∈ S0, or s ∈ S (v) and q ∩ δ(v) = ∅ 
πs , if s ∈ S (v) and q ∩ δ(v) = {e} 

 
 
(4.32) 

� 
πs  s

 t    tt 
et  + πett , if s ∈ S (v) and q ∩ δ(v) = {e , e  }. 
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and π + π λ 

G
V

ˆ

G
E

d

G

f

 
 
 

Thus, the modified dual lengths, defined in (4.23), are as follows: 
 

� 
0, if s ∈ S0, or s ∈ S (v) and q ∩ δ(v) = ∅ � � s s(v) s(v) �� 

\qls  = 
πe , if s ∈ S (v) and q ∩ δ(v) = {e} and πe ≤ λd 

λs , if s ∈ S (v) and q ∩ δ(v) = {e} and πs(v)  > λs(v) 
d e d 

� πs + πs ,   if s ∈ S (v) and q ∩ δ(v) = {et, ett s(v) s(v) s(v) } ≤ � et ett et  ett  d �� λs
 t    tt s(v) s(v) s(v) 

 

 
Let 

d , if s ∈ S (v) and q ∩ δ(v) = {e , e 
 

q̂  be a path from  o(d)  to t(d)  in  graph   ˆ 

} and πet + πett > λd  . 
(4.33) 

represented by the 
sequence of nodes in   ˆ ,  q̂ = (o(d), v̂(e1 ), v̂(e2 ), . . . , v̂(en ), t(d)).  Then 
the corresponding sequence of links  from  E , q  :=  (e1, e2, . . . , en ),  is a 
path  from  o(d)  to  t(d)  in  graph  G,  i.e., q   ∈ Pd .   Conversely, if  we 
specify path  q   = (e1, e2, . . . , en )  from  o(d)  to  t(d)  in  graph  G,  then 
q̂(o(d), v̂(e1 ), v̂(e2 ), . . . , v̂(en ), t(d)) will be a path from o(d) to t(d) in graph 
G. This establishes a one-to-one correspondence of o(d) ­ t(d) paths q̂ and 
q in graphs  ˆ and G, respectively. 

Now we make use of the link weights ω(ê), ê ∈ ˆ, specified by (4.30) 
in the formulation  of Lemma 4: 

 

ω(v̂(e), v̂( f )) := π0 +
 

min{πs + πs , λs }, v ∈ V \ {o(d), t(d)}, e ∈ δ­ (v), f ∈ δ+ (v)
 

f ∑ 
s∈S (v) 

e f d 
 

 
 
(4.34a) 

ω(o(d), v̂( f )) := π0 +
 

min{πs , λs }, f ∈ δ+ (o(d)) (4.34b)
 

f ∑ f d 
s∈S (o(d)) 

ω(v̂(e), t(d)) := ∑ min{πs , λs }, e ∈ δ­ (t(d))  (4.34c) e d 
s∈S (t(d)) 

 

and consider a path q̂ = (o(d), v̂(e1 ), v̂(e2 ), . . . , v̂(en ), t(d)).   We observe 
that the length ∑ê∈q̂ ω(ê) of path q̂ with respect to the link weights (4.34) 
obeys the equality 

∑ ω(ê) = |q|0 + ∑ \qls (4.35) 
ê∈q̂ s∈S 

where q = (e1, e2, . . . , en ) is the path in graph G corresponding to q̂. Hence, 

∑ ω(ê) = q) + ∑ λs , (4.36) 
ê∈q̂ 

 

which is equivalent to (4.29). 

s∈S 

In consequence, and due to the one-to-one correspondence of the paths 
in the original graph and the transformed graph, the pricing problem in 
the considered case of single-node failures can be solved by a shortest path 
algorithm applied to graph  ˆ. 

The above construction can be applied, after a slight modification, to 
undirected graphs. In the undirected case we first define the transformed 
graph as an undirect graph, similarly  as in the directed case. Then we 
transform it to a bi-directed graph, with two oppositely directed arcs cor- 
responding to each undirected link.  The two arcs in each such pair are 
assigned non-symmetric arc weights, differing  in the π0 value that is de- 
termined by the direction of the arc (see definition (4.30a)). 



4.7. Single-node failures 63 

ˆ

E
E
E

E

∈S d 

e­e+ d

e­e+d

d

d

d

ed 

ed

e­e+d
Pd

e­e+d etd

dp
ˆ

ed

Pd

­

e  d, w , w
, x

+

 
 
 

In this case we just skip the directions of links in the definition  of the 
new graph and adopt the following  definition: 

V := {v̂(e) : e ∈ E } ∪ {o(d), t(d)} 

∃v ∈ V , e, f ∈ δ(v) ⇒ {v̂(e), v̂( f )} ∈ ˆ(d) 

{o(d), v̂( f )} ∈ ˆ(d),  f ∈ δ(o(d)) 

{v̂(e), t(d)} ∈ ˆ(d), e ∈ δ(t(d)). 

Since the term ∑s  λs  in (4.18) is constant, solving PP is equivalent to 

finding  a shortest path in the transformed graph with  respect to the link 
weights ω(ê), ê ∈ ˆ. Hence, PP is polynomial, and so is FTOP. A compact 
LP formulation  for the considered case of FTOP is given in Section 4.7.2. 

 

 

4.7.2 Single-node failures – compact FTOP formulation 
 

A compact node-link  FTOP formulation  for a given single-node failure 
scenario S = S0 ∪ S2, where S2  = 

U
v∈V S (v), is given in 4.37. Below, 

D(v)  :=  {d ∈ D :  v ∈/  {o(d), t(d)}} denotes the set of all demands for 
which node v is a transit node. Similarly  D­ (v) := {d ∈ D :  v = t(d)} 
and D+ (v) := {d ∈ D : v = o(d)} denote the sets of demands with  v as 
the destination node and the originating  node, respectively. Transit flow 
variables wv , v ∈ V \ {o(d), t(d)}, e­  ∈ δ­ (v), e+  ∈ δ+ (v), specify the 
amount of nominal  flow  realizing demand d traversing its transit node 
v via links e­  and e+ .  Next, variables zs , v ∈ V \ {o(d), t(d)}, e­  ∈ 
δ­ (v), e+ ∈ δ  (v),  s  ∈ S (v), specify the amount of flow  by which  the 
portion  of the nominal flow  X0  of demand d traversing its transit node 
v via links  e­  and e+  is reduced when node v fails in state s  ∈ S (v). 
Further, variables Zs  , d ∈ D, e ∈ δ­ (t(d)), s ∈ S (t(d)), specify the amount 
of flow by which the portion of the nominal flow X0 of demand d entering 

 

its destination node t(d)  via link  e  is reduced when node t(d)  fails in 
state s ∈ S (t(d)).  Finally, variables Zs  , d ∈ D, e ∈ δ+ (o(d)), s ∈ S (o(d)), 
specify the amount of flow by which the portion of the nominal flow X0 

 

of demand d leaving its originating node o(d) via link e is reduced when 
node o(d) fails in state s ∈ S (o(d)). 

The values of transit variables wv can be used to define the overall 
flow on the paths p ∈ ˆ traversing a transit node v of a demand d ∈ D 
containing two particular  links e­  and e+ , where e­  ∈ δ­ (v) and e+   ∈ 
δ+ (v).  When node v fails, the flows on these paths can be consistently 
thinned using the value of zs instead of zs in a formula analogous to 
(4.21). A similar observation applies to variables Z. 

For a fixed d ∈ D, an elementary path-flow  pattern x0
 

 

> 0, p ∈ 
Pd   (for  some Pd  ⊆ Pd ),  that  realizes the  link-flows   x0 , e ∈ E , 
and is consistent with  the values of variables w can be found  recur- 
sively  as follows.  Initially,   we  set Pd   equal  to  ∅,  and  find  a (el- 
ementary)  path  q   =  (v0, e1, v1, e2, . . . , en­1, vn­1, en , vn )  in  ˆ ,  where 
v0 =  o(d)  and  vn =  t(d),   such  that  the  values  of  all  variables 
x0 v1 v2

 vn­1 0
 

e1 d , we1 e2 d , we2 e3 d , . . . , wen
 

1 e  d , xe  d are strictly greater than 0. Then we de- 

fine x0 := min{x0 , wv1 
n n 

, wv2 , . . . , wvn­1 , x0 }, subtract the flow  x0 
dq  e1 d e1 e2 d e2 e3 d en­1 en d en d dq 

from variables x0 
1 

v1 
e1 e2 d 

v2 
e2 e3 d 

, . . . , wvn­1 
en­1 en d 

0 
en d , add the so found path q 
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e

x0 x0

e­e+ d

e­ e+ d

 
 
 

to Pd , and repeat the procedure until  no such path q for d can be found. 
This observation justifies the correctness of formulation  (4.37). 

min C = ∑ ξe y0
 

 

(4.37a) 
e∈E 

∑ x0
  

x0 0
 

 

e∈δ+ (o(d)) 
ed ­ ∑ 

e∈δ­ (o(d)) 
ed  = Xd ,  d ∈ D  (4.37b) 

∑ 
e∈δ+ (v) 

∑ x0
 

ed ­ ∑ 
e∈δ­ (v) 

0
 

ed  = 0,  d ∈ D, v ∈ V \ {o(d), t(d)}  (4.37c) 

 

d∈D 

X0
 

ed  ≤ ye ,  e ∈ E (4.37d) 
 

s
 

d ≥ hd ,  d ∈ D, s ∈ So  (4.37e) 

∑ wv 0 +
 

 

e­ ∈δ­ (v) 
e­ ed  = xed ,  d ∈ D, v ∈ V \ {o(d), t(d)}, e ∈ δ (v)  (4.37f) 

∑ wv 0 ­ 
 

e+ ∈δ+ (v) 

zs
 

ee+ d = xed ,  d ∈ D, v ∈ V \ {o(d), t(d)}, e ∈ δ 
 
v
 

(v)   (4.37g) 

e­ e+ d ≤ we­ e+ d ,  d ∈ D, v ∈ V \ {o(d), t(d)}, 
e­ ∈ δ­ (v), e+  ∈ δ+ (v), s ∈ S (v)  (4.37h) 

X0  s s
 

d ­ ∑ ∑ ze­ e+ d ≥ hd ,  d ∈ D, 
e­ ∈δ­ (v) e+ ∈δ+ (v) 

v ∈ V \ {o(d), t(d)}, s ∈ S (v)  (4.37i) 

Zs 0 +
 

ed  ≤ xed ,  d ∈ D, e ∈ δ (o(d)),  s ∈ S (o(d)) (4.37j) 

X0  Zs s
 

d ­ ∑ 
e∈δ+ (o(d)) 

ed  ≥ hd ,  d ∈ D, s ∈ S (o(d)) (4.37k) 

Zs 0 ­ 
ed  ≤ xed ,  d ∈ D, e ∈ δ (t(d)),  s ∈ S (t(d))  (4.37l) 

X0  Zs s
 

d ­ ∑ 
e∈δ­ (t(d)) 

ed  ≥ hd ,  d ∈ D, s ∈ S (t(d))  (4.37m) 

∑ x0
 

zs  Zs s   0
 

ed ­ ∑ ∑ e­ ed ­ ∑ ed  ≤ αe ye , 
d∈D d∈D(v) e­ ∈δ­ (v) d∈D+ (v) 

v ∈ V , e ∈ δ+ (v), s ∈ S (v)  (4.37n) 

∑ x0
 

zs  Zs s   0
 

ed ­ ∑ ∑ ee+ d ­ ∑ ed  ≤ αe ye , 
d∈D d∈D(v) e+ ∈δ+ (v) d∈D­ (v) 

v ∈ V , e ∈ δ­ (v), s ∈ S (v)  (4.37o) 
all variables x0, X0, w, z, Z, y0 continuous and nonnegative. (4.37p) 

 
It turns out that the LBP formulation  becomes exact when it has loop- 

less optimal solutions and each node can fail at most once (i.e., |S (v)| ≤ 
1, v ∈ V ). This is because only then any feasible loop-less solution of (5.1) 
determines a feasible solution of (4.37) with the same cost. (Note that this 

 

is true for an arbitrary single-link failure scenario.) For single-node failure 
scenarios admitting  |S (v)| > 1 for some v ∈ V , the above observation is 
not true anymore because of constraint (4.37h) which implies that for each 
value of wv (for v, e­, e+ , d fixed) must be in this case an upper bound 
for the set of values zs , s ∈ S (v) with more than one element. This is 
illustrated by the following  example. 

 

Example 4.6 Consider the network depicted in Figure 4.9 with 4 links e = 1, 2, 3, 4. The unit 
capacity cost of all four links is equal to 1.  The single demand (with demand 
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Figure 4.9 – A network  example 
 

volume h) between nodes o and t can be realized on 4 paths:  p1 = {1, 3}, p2 = 

{1, 4}, p3 = {2, 3}, p4 = {2, 4}. We consider a single-node  failure scenario with 
4 states s = 1, 2, 3, 4 characterized by the sets of failing links E1 = {2, 4}, E2 = 
{2, 3}, E3 = {1, 4}, E4 = {1, 3}. (Note that the four availability states can be 
considered  as four different failures of node v.) The availability coefficients of all 
the failing links in all the states are equal  to α.  The demand has the nominal 
volume and the volumes in the states all equal to h.  Note that in each state 
s = 1, 2, 3, 4 only path ps remains unaffected. 

It is clear that in terms of link capacity the optimal solution of the lower 
bound formulation  (5.1) is unique and symmetric. Hence, a simple  cut-based 
argumentation implies that the common optimal value y0  of the link capacity 
must fulfil the equality y0 + αy0 = h, that is, y0  = h 

1+α .  The common value 
x0 for the optimal nominal link-flows is equal to y0. In each state,  the optimal 
link-flows on the links with reduced capacity  are equal to  hα  , while on the fully 

available links—to 1 
h

 . Hence, the optimal LBP objective function  value is equal 
to Ct =  4h  . 

The optimal solution for FTOP is obtained by considering the two following 
cases. 
Case 1: 0 ≤ α < 1 . The optimal FTOP solution is as follows: f =    h   , y0 = 

 

   2h  
 2 

   8h  
 1+4α 

1+4α , C = 1+4α . All four nominal path-flows are equal to f . In each state s, the 
nominal flow f on the unaffected path ps is maintained, the flow on the path with 
both links affected is deleted (thinned  to 0), and the flows on the two remaining 
paths are thinned from f to  2hα  . 0 

Case 2: 1 ≤ α ≤ 1. The optimal FTOP solution is as follows: f =     h     , y0 = 
 

   h  
 2 

  4h  
 2(1+α) 

1+α , C = 1+α . In state s, the nominal  flow f on the unaffected path pk is main- 
tained, the flows on the two paths with only one link affected are also maintained, 
and the flow on the path with both links affected is thinned to h(2α­1) . 0 

Note that in Case 2 the optimal solutions of LBP and of FTOP have the same 
cost, i.e., Ct = C. In Case 1, however, Ct < C and C­Ct

 =   1­2α  . For α = 0, 

the difference of the FTOP cost and the LBP cost constitutes 50% of the FTOP 
cost. For α = 1 , this value  decreases to 20%. 

 

We note that for the single-node failures, the relation between the exact 
formulation (4.37) and the lower bound formulation (5.1) in the undirected 
case is the same as for the directed case. 
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his chapter is devoted to numerical part.  The purpose of our computa- 
tional experiments is threefold.  The first objective is to demonstrate the 
traffic efficiency of flow thinning.  Our results from section 5.1 illustrate 
the efficiency of FTS by comparing the corresponding minimum  capacity 
allocation costs for several strategies.  Second,  we assess the computa- 
tional difficulty of FTOP. Hence, in section 5.2 we present the results of 
two sets of experiments which  evaluate the computational efficiency of 
the path generation algorithm.   Finally, since FTOP is N P -hard, we in- 
troduce a polynomial  problem that provides a lower bound for its cost 
C( ˆ ) referred to as LBP. The results of LBP will  be compared with FTOP, 
formulated in 4.1. 

In this chapter, we present the results of our numerical study carried 
out for four realistic undirected network examples taken from the library 
of network instances SNDlib (Orlowski  et al. 2010): pdh, polska, nobel-us, 
and nobel-germany.   Figure 5.1 represents the number of vertices, edges 
and demands of each networks, as well as the maximum and minimum 
degree of the corresponding graphs (∆(G), δ(G)).  The demand matrices 
for those networks specified are taken as the nominal demand volumes in 
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CGR

 
 
 

our models. The study was carried out on a computer equipped with an 
Intel(R) Xeon(R) CPU E5-2670  @ 2.60GHz processor, and 132 GB of RAM, 
using CPLEX 12.5 (CPLEX 2013). 

 

network |V | |E | |D| ∆(G)  δ(G) 

pdh  11  34  24  9  7 
polska  12  18  66  5  2 
nobel-us  14  21  91  6  2 
nobel-germany  17  26 121  4  2 

 

 

Table 5.1 – Network description. 
 
 
 

5.1 Cost efficiency of flow thinning 
 

In this section, we compare the cost effectiveness of flow thinning and global 
rerouting.  We first start by a short note on the typology  of failures oc- 
curring frequently.  Let us consider the example presented in Figure 5.1 
representing rainfall in north-west of Poland a day of July 20151. 
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Figure 5.1 – Rainfall radar over Poland for network  polska. 
 

We can notice the following  type of failure scenarios illustrated in the 
figure: 

• single link failures 

• single node failures 

• double link failures (in close proximity) . . . 
 

In the sequel, these three failure scenarios will be studied and we will also 
present results for double link failures where the two links are randomly 
located (realistic for large scale network). 

Let the quantity CGR denote the optimal cost for reliable networks un- 
der GR (recall that GR implies the cheapest networks and is thus taken as 
the reference value).  The cost increases with  respect to GR (in percents) 
for FTS is given by Ga pFTS  :=  CFTS ­CG R  × 100, where CFTS  is the cost for 
the flow  thinning  strategy.  Certainly, the computed link  capacities (and 
thus the link  capacity cost) ensure routing  of all traffic demands in the 

 
1 Data from WeatherOnline Limited - July 2015 (http://www.weatheronline.co.uk/) 
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nominal state and the guaranteed traffic restoration (specified by β) in all 
failure states. In the reported experiments, we always use the same traffic 
reduction ratio β = 1 for all demands in all failure states, i.e., hs = h0 for 
all d ∈ D and s ∈ S . 

 
5.1.1 Single partial link failure scenarios 

 

In Figures 5.2-5.5, for all four network  instances, we present Ga pFTS  as 
a function of the availability  coefficient α assumed for the failure states. 
We here consider only single partial link  failures, i.e.  in a failure state 
one link  can loose a percentage of its nominal capacity (1 ­ α%) and all 
remaining links reach their nominal capacities. We consider 21 scenarios, 
varying  α from 0% (nominal state) to 100% (total failure) with  a step of 
5%. Note that the dotted lines represents availability  coefficient for which 
the relative gaps meet levels of 10%, 20%, 30%, 40% and 50%. These levels 
are used to compare the network instances. 
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Figure 5.2 – Relative gap between GR and FTS depending on the availability coefficient 
α for network pdh (link failures). 
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Figure 5.3 – Relative gap between GR and FTS depending on the availability coefficient 
α for network polska (link failures). 

 

First, we note that for α = 0% FTS comes to be as path diversity.  Consid- 
ering single total link failure scenarios, PD can be considered as an upper 
bound of the cost of the network for all single partial link failure scenarios 
that can occur. 

Second, let us analyze the performance of FTS. As shown in Figures 
3.1-3.3 (see Chapter 3), the gap between the dimensioning cost of global 
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Figure 5.4 – Relative gap between GR and FTS depending on the availability coefficient 
α for network nobel-us (link failures). 
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Figure 5.5 – Relative gap between GR and FTS depending on the availability coefficient 
α for network nobel-germany (link failures). 

 

 
rerouting and local rerouting is up to 30% for total failures. Hence, as local 
rerouting is used in MPLS Fast Reroute (described in section 2.2.3), let us 
consider a relative gap of 30% as acceptable for a recovery mechanism. 
Let us track now when this value is achieved for two types of networks, 
meshed and sparse, respectively network pdh versus polska, nobel-us and 
nobel-germany. In one hand, the relative gap of 30% is met for α = 0.45 in 
pdh. Hence, FTS is of reasonable cost for light to moderate perturbations. 
On the other hand, considering sparse network, the relative gap of 30% is 
met for α = 0.25 up to α = 0.1. Thus, FTS can be considered cost-efficient 
even for strong perturbations in sparse networks. However, in both cases, 
strong perturbations (including  total failure) cannot be managed by FTS 
with reasonable cost. 

 

 

5.1.2 Single partial node failure scenarios 
 

In Figures 5.6-5.8, for all four network instances, we present Ga pFTS  as a 
function of the availability  coefficient α assumed for the failure states. We 
here consider only single partial node failures, i.e. in a failure state every 
link outcoming from or incoming to the failed node suffers a degradation 
of their capacities of 1 ­ α% and all remaining links reach their nominal 
capacities. We consider 20 scenarios, varying  α from 0% (nominal state) 
to 95%. Note that in this context, we cannot present results on total node 
failures as we require the traffic to be fully rerouted in case of failure. Note 
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that even  though the  failure scenarios may  appear stronger than single 
link  failures due to  the  fact  that   many links fail  in  the  same time,  the 
computation time of FTOP is significantly decreased due to the  reduction 
of  the  number of  failure scenarios  ISI and   of  the  number of  variables 
(lVI « lEI for all network instances). 
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Figure  5.6- Relative gap between GR and FTS depending on the availability coefficient 
IX for network  polska (node failures). 
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Figure  5·7 - Relative gap between GR and FTS depending on the availability coefficient 
IX for network  nobel-us (node  failures). 
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Figure  5.8 - Relative gap between GR and FTS depending on the availability coefficient 
IX for network nobel-germany (node failures). 

 
Considering single node failure scenarios, flow  thinning is clearly a 

cast-efficient strategy with a relative gap to GR  inferior to 20% for  all a. 
Note that  the relative gap  for network pdh is equal to 0 for all values of œ. 
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Contrary to single link failure scenarios, this kind of scenarios can be man- 
aged by FTS with  limited  cost (Ga pFTS  < 5%) for light perturbations but 
higher cost for relatively major perturbations.  Note that the cost of FTS 
for moderate perturbations remains reasonable (< 17% for all networks). 
This is mostly due to the fact that we require to recover all demand traffic 
after a failure. In case of major perturbations, GR and FTS have the same 
behavior i.e.  they use the shortest path to route the traffic and overdi- 
mension the network. However, for moderate perturbations, GR becomes 
more cost-efficient. 

 

 

5.1.3 Double partial failure scenarios 
 

In Figure 5.9, we present Ga pFTS  as a function of the availability  coeffi- 
cient α assumed for failure scenarios corresponding to the failure of two 
simultaneous links close to each other. This proximity was determined as 
follows.  Considering a planar graph (here polska), two link can fail in the 
same scenario only if an arc joining the two links can be drawn without 
cutting any other link.  Hence, for network polska we will  get 26 failure 
scenarios. Once again, note that in this context, we cannot present results 
on total node failures as we require the traffic to be fully  rerouted in case 
of failure. 
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Figure 5.9 – Relative gap between GR and FTS depending on the availability coefficient 
α for network polska (failures of two links in close proximity). 

 
Next, Figure 5.10 represents the Ga pFTS as a function of the availability 

coefficient α for double links failures i.e. the set of all pair of links (includ- 
ing single link failures). Table 5.2 gives for polska the size of scenarios set 
with respect to four types of failure scenarios. 

Notice that, considering network polska, the four failure scenarios pre- 
sented are related to a growing number of failures illustrated in Table 5.2. 

 
|S | 

single node failures         12 
single link failures           18 
two near-links failures    26 
double links failures       324 

Table 5.2 – Number of failures |S | depending on the failure scenarios. 
 

The results show that assuming FT instead of GR increases the cost 
by up to 17 % maximum for the two failing links scenarios. Furthermore, 



5.2. Computational efficiency of flow thinning optimization 73 

e

e

e

R
e
la
ti
ve

 g
ap

 

 
 
 

20% 
 

 
15% 

 

 
10% 

 

 
5% 

 

 
0%  α 

100%   90%    80%    70%    60%    50%    40%    30%    20%    10% 
 

Figure 5.10 – Relative gap between GR and FTS depending on the availability 
coefficient α for network polska (double links failures). 

 

 
considering failures of close links presented in Figure 5.9, FTS manages the 
failures with the same relative gap from α = 0.45 (moderate perturbation) 
to α = 0 (total failure). Summing up on the performance of flow thinning, 
FTS can be considered cost-efficient except for major single link failures as 
it always give a relative gap inferior to 30% for all network instances and 
all α. In the following  section, we deal with the efficiency of the resolution 
algorithm for FTOP. 

 
 

5.2 Computational efficiency of flow  thinning  opti- 
mization 

 
5.2.1 Path generation 

 

Recall that PG is the path generation algorithm  for FTOP (i.e., problem 
(4.1) assuming the full set of admissible paths), based on the binary pric- 
ing problem (PP) formulation  (4.14) (see Section 4.4.3), and that FTOP< 

denotes instances of (4.1) with limited sets of admissible paths. 
Below we report results illustrating  the computational efficiency of 

solving FTOP through  PG, and of solving FTOP<  through  a direct use 
of CPLEX for a predefined set of admissible paths. The PG algorithm was 
initialized  by putting  only one shortest (with  respect to the unit capacity 
costs ξe , e ∈ E ) path on the path-list of each demand. (Note that such min- 
imal path-lists are sufficient for an optimal solution for FTOP involving 
only the nominal state, i.e., for FTOP with  S = {s0 }, and also for a feasi- 
ble solution when links do not fail totally, i.e., when αs  > 0, e ∈ E , s ∈ S .) 
For FTOP< , the predefined sets of admissible paths contain all elementary 
paths having up to 5 links. 

For the reported experiments we assume a uniform  availability  coef- 
ficient α for all the affected links in each failure  state, i.e., αs = α, s  ∈ 
S , e ∈ Es  (recall that Es  denotes the subset of links affected by failure s), 
and αs  = 1, s ∈ S , e ∈ E \ Es . Also, we use a uniform  demand satisfaction 
coefficient β, i.e., hs  = βh0 , d ∈ D, s ∈ S \ {s0 }. d d 

Tables 5.3 and 5.4 present results for three networks (pdh, polska and 
nobel-us) under the single-link  failure scenario (SL) and the double-link 
failure scenario (DL). SL contains the nominal state plus one failure state 
for each link  (with  the assumed α for the failing  link).   DL contains SL 
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plus one failure state for each pair of links (with  the assumed α for both 
failing links). Each type of scenario is considered for the four pairs (α, β) 
specified by all four combinations of α ∈ {0.25, 0.5} and β ∈ {0.75, 1}. 

The following  quantities denote the running  time (in  seconds) ob- 
served in our experiments: 

• tFTOP<   – solving FTOP for the predefined set of admissible paths 

• tGP – generating the predefined set of admissible paths (tFTOP<   in- 

cludes tGP ) 

• tFTOP – solving FTOP through PG 

• tPP  – solving the pricing  problems (4.14) within  the PG algorithm 
(tFTOP includes tPP ). 

In addition, the quantity in brackets in column “network” gives the num- 
ber of predefined paths (generated in time tGP ), column “#iter.”  gives the 
number of iterations of the PG algorithm, and column “#gen.paths” gives 
the number of paths generated by PG. We set the running time limit  to 3 
hours; the cases when the timeout had to be applied (this happened only 
for FTOP< ) are denoted by ∗.   Note that the total number of paths for 
network pdh (resp. polska and nobel-us) is equal to 6 639 paths (resp. 491 
and 609 paths). 

 
network  α β tFTOP< tGP tFTOP tPP #iter. #gen.paths 

0.5 0.75 467 308 28 22 8 298 
 

pdh 
 
 
 
 

polska 
 
 
 
 

nobel-us 

0.5 1 460 299 46 35 11 335 
0.25 0.75 478 311 43 34 11 198 
0.25 1 293 473 52 43 12 316 
0.5 0.75 533 5 16 13 5 412 
0.5 1 560 6 28 22 8 466 
0.25 0.75 383 4 23 19 7 471 
0.25 1 2451 2 27 20 5 506 
0.5 0.75 4 2 29 23 6 530 
0.5 1 4 2 43 35 8 591 
0.25 0.75 4 2 30 24 6 560 
0.25 1 4 2 40 33 7 621 

 

Table 5.3 – Effectiveness of the path generation algorithm  for SL. 
 

Tables 5.3 and 5.4 show that the relative efficiency of FTOP<  and of 
FTOP is instance-dependent.  Still,  FTOP (i.e., the PG algorithm),  de- 
spite the necessity of solving the binary PP subproblems, is faster than 
FTOP<  (predefining  the admissible set of paths plus application  of the 
linear solver) for 18 out of 24 instances tested, including  4 instances (pdh 
for DL) for which FTOP could not solve the problem within  the time limit. 
The results also show that a significant fraction of the PG algorithm exe- 
cution time is spent in the pricing problem. 

 

 

5.2.2 Evolution of the PG iterations 
 

An important  aspect of the PG algorithm  is the number of added paths 
and the evolution of the network cost. Figures 5.11-5.13 illustrate an im- 
portant aspect of the PG algorithm, namely the evolution of the number 
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network  α β tFTOP< tGP tFTOP tPP #iter. #gen.paths 
0.5 0.75 ∗ ∗ 2914 2506 13 354 

 

pdh 
 
 
 
 

polska 
 
 
 
 

nobel-us 

0.5 1 ∗ ∗ 3612 3034 14 391 
0.25 0.75 ∗ ∗ 1882 1524 10 354 
0.25 1 ∗ ∗ 2653 2202 10 354 
0.5 0.75 539 54 345 286 8 466 
0.5 1 667 53 387 317 8 486 
0.25 0.75 425 55 858 746 8 511 
0.25 1 303 61 1193 1038 10 530 
0.5 0.75 1798 162 755 649 8 542 
0.5 1 2804 140 2187 1925 10 572 
0.25 0.75 1999 160 1719 1444 9 615 
0.25 1 2741 137 2494 2020 11 646 

 

Table 5.4 – Effectiveness of the path generation algorithm  for DL. 
 

of added paths |P + | and the network cost CFT for the consecutive itera- 

tions. The two α cases for SL with  β = 1 are illustrated for pdh, polska and 
nobel-us.  Practically, for all these cases the optimal solution is obtained 
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Figure 5.11 – Value of the objective function  and number of paths added at each 

iteration for pdh. 
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Figure 5.12 – Value of the objective function  and number of paths added at each 

iteration for polska. 
 

after only a few (approximatively  7) PG iterations. Furthermore, the gap 
between the current solution and the optimal  solution decreases drasti- 
cally after only 1 or 2 PG iterations.  Remind that the network instances 
are small networks and no conclusions can be drawn in general. 
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Figure 5.13 – Value of the objective function  and number of paths added at each 

iteration for nobel-us. 
 

scenario network  GR FT 
pdh 5 100 

SL polska 0 1 
nobel-us 1 2 

pdh 2262 ∗ 
DL polska 6 269

  nobel-us 12 2367
pdh ∗ ∗ 

TL  polska 389 ∗ 
nobel-us 281 ∗ 

Table 5.5 – Solution times in seconds for different routing variants. 
 

 

5.2.3 Running times 
 

Our second set of experiments compares the running times and the net- 
work costs for the optimization  problems corresponding to the two pro- 
tection strategies considered in this paper, i.e., for FT and GR. The study 
is performed for the three networks pdf, polska and nobel-us with  the pre- 
defined path-lists containing all paths up to 5 links.  Thus, we study the 
following  two variants of protection strategies and their related problems: 

 

• FT (flow thinning):  problem (4.1), i.e., FTOP< 

• GR (global rerouting):  problem (4.1) minus constraints (4.1b) and 

(4.1e) (see Section 4.2.3) 
 

We consider three kinds of state scenarios: single-link (SL), double-link 
(DL), and triple-link(TL). SL consists of the nominal state and failures of 
single links, DL contains SL plus failures of pairs of links, and scenario TL 
consist of DL and failures of triples of links. 

Table 5.5 reports the running times in seconds, taking the averages of 
the times corresponding to the two cases of β = 1 and α = 0.5. We set the 
time limit  to 10 hours—the cases when the timeout occurred are denoted 
by ∗. Table 5.5 reveals that the running times for the general flow thinning 
procedure (FT) are highly impacted by the number of the simultaneously 
failing links. In particular, all instances assuming TL could not be solved 
to optimality within  the time limit. 



5.3. A lower bound formulation 77 

P

e

xs xs

d p, x Pd

p∈ p∈

ed

ed 

d p

 

 
 

5.3 A lower bound  formulation 
 

Since FTOP is N P -hard, it is worthwhile finding  a polynomial  problem 

that provides a lower bound for its cost C( ˆ ). 
 

 

5.3.1 LBP – Lower Bound Problem 
 

A compact linear program, referred to as LBP, whose solutions can be used 
as the lower bound of FTOP without  the necessity of generating paths is 
as follows. 

 
 

LBP: min Ct = ∑ ξe y
0

 (5.1a) 

∑ x0
 e∈E 

x0
 

 

e∈δ+ (v) 

∑ x0
 

ed ­ ∑ 
e∈δ­ (v) 

0
 

ed  = 0, d ∈ D, v ∈ V \ {o(d), t(d)}  (5.1b) 

 

d∈D 
ed  ≤ ye ,  e ∈ E (5.1c) 

∑ xs
 

xs  s
 

 

e∈δ+ (o(d)) 
ed ­ ∑ 

e∈δ­ (o(d)) 
ed  ≥ hd , d ∈ D, s ∈ S (5.1d) 

∑ 
e∈δ+ (v) 

ed ­ ∑ 
e∈δ­ (v) 

ed  = 0 

 
 

xs 0
 
d ∈ D, v ∈ V \ {o(d), t(d)}, s ∈ S (5.1e) 

ed  ≤ xed , e ∈ E , d ∈ D, s ∈ S (5.1f) 

∑ xs  s   0
 

 

d∈D 
ed  ≤ αe ye , e ∈ E , s ∈ Se (5.1g) 

all variables x, y0 continuous and nonnegative. (5.1h) 

Note that for any demand d ∈ D, the value of flow x0 = (x0 , e ∈ E ), i.e., d ed 
0 0

 
∑e∈δ+ (o(d)) xed ­ ∑e∈δ­ (o(d)) xed , does not have to be explicitly  specified in 
the formulation. 

 

 

5.3.2 Comparing LBP and FTOP 
 

The solution of formulation  (5.1) is a lower bound for FTOP because all 
constraints of (5.1) are obviously fulfilled by the link-flows  defined by any 
feasible solution  x0 s , d ∈ D, p ∈  ˆ , s  ∈ S of (4.1), that is, by the 
link-flows 

 

x0 0 s s
 

ed  :=  ∑ 
ˆ Pd 

xd p , xed  :=  ∑ 
ˆ Pd 

xd p , e ∈ E , d ∈ D, s ∈ S . 

Conversely, an optimal solution x0 , xs  , e ∈ E , d ∈ D, s ∈ S , of (5.1) could 
ed  ed 

be translated to an optimal solution of FTOP only if there existed elemen- 
tary path-flows that would  realize the nominal link-flows  x0 , and at the 
same time could be appropriately  thinned to realize the state-dependent 
link-flows  xs for each state s. 

However, this is in general not possible and hence optimal LBP solu- 
tions may in this sense be infeasible for FTOP already for the single-link 
failure scenarios (Section 4.6.1, Example 4.5) and for the single-node fail- 
ure scenarios (Section 4.7.2, Example 4.6). 
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We evaluated the lower bound of FTOP resulting from compact for- 
mulation (5.1) for state scenarios SL, DL and SN (single-node failures) for 
the four cases of (α, β) considered in Section 5.2.1. As the tests were made 
for undirected networks, we implemented a version of formulation  (5.1) 
with undirected links. 

It turned out that for SL and SN, the cost of the LBP solution in all 
the considered network was smaller than the optimal cost of FTOP by 2– 
8 percent. The solution times of both approaches where comparable for 
SL. In the case of SN, however, the running time for LBP was much longer 
than that of the PG algorithm for FTOP—the LBP running time was always 
at least 30 times longer. 

A  comparison of LBP and FTOP in terms of the network  cost and 
the running time assuming DL is presented in Tables 5.6 and 5.7 for pol- 
ska and nobel-us, respectively. The tables show the ratios CFTOP /CLBP  and 
TFTOP /TLBP . The quantities CFTOP and CLBP are the optimal costs for FTOP 
and for LBP, respectively, while  TFTOP and TLBP are the respective run- 
ning times. The results indicate that for the DL case the LBP cost is only 
marginally  smaller than the FTOP cost, and that LBP becomes extremely 
time consuming. The reason for that large difference in running times is 
two-fold.  First, assuming the common case |D| ~ |V |2  and |E | ~ |V |, in 
the node-link formulation  (5.1) the number of variables and constraints is 
of the order of O(|V ||D||S |) = O(|V |3 |S |).  At the same time, for a given 
set of admissible paths P with |Pd | ≤ P, d ∈ D (where P is bounded and 
does not increase with the size of the network), the FTOP formulation (4.1) 
requires O(|P ||S |) variables and O(|P ||S |) = O(|P ||S |) constraints, that 
is a lot less. Second, typically LBP requires much more Simplex iterations 
than FTOP. This is because for a given state s ∈ S the number of thinned 
link-flows  in LBP (for every link with  limited  availability  in s all its non- 
zero demand specific link-flows  are typically  thinned) is in general much 
larger than the number of thinned path-flows in FTOP (only the non-zero 
path-flows through the links with  limited  availability  in s  are thinned). 
For example, for polska limited  to 4 demands LBP stopped after 2053 it- 
erations while FTOP required only 13 to 52 Simplex iterations at each of 
the 7 PG iterations, i.e., less than 365. Perhaps it would  be possible to 
improve the solution time of LBP by applying  a decomposition method 
such as Benders’ decomposition. Nevertheless, this is out of the scope of 
this work. 

 

α β CFTOP /CLBP TFTOP /TLBP 

0.25 0.75 1.04 0.011
0.25 1 1.05 0.013
0.5 0.75 1.08 0.017
0.5 1 1.07 0.029

Table 5.6 – LBP vs. FTOP for polska under DL. 
 

Finally let us address the question raised in Section 5.3: why we con- 
sider FT instead of an LBP-based strategy (i.e., a kind  of link-flow thin- 
ning) despite the fact that in general solutions of FTOP are strictly more 
expensive than solutions of LBP. The reason is three-fold. 

First, as discussed earlier in this section, in general the state-dependent 
link-flows  optimized with LBP do not correspond to any path-flows (tun- 
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α β CFTOP /CLBP TFTOP /TLBP 

0.25 0.75 1.02 0.03
0.25 1 1.02 0.01
0.5 0.75 1.04 0.007
0.5 1 1.03 0.002

Table 5.7 – LBP vs. FTOP for nobel-us under DL. 
 

 
nels) that obey the assumptions of FT. Thus, the simple tunnel thinning 
and traffic control mechanism that with  FT is performed at the traf- 
fic/tunnel originating nodes cannot be directly applied. Certainly, a link- 
flow thinning mechanism could be applied at the link originating nodes— 
this, however, would most likely lead to a substantially more complicated 
traffic control mechanism as compared to FT. 

Second, as shown above, the cost advantage of LBP over FTOP is only 
marginal.  In addition, as discussed above, except for small networks the 
running  time required to solve LBP is significantly  larger than that re- 
quired by the PG algorithm of FTOP. 

Third, as shown in Example 4.5, in general the optimal nominal link- 
flow x0 delivered by LBP must contain loops. This can cause serious prob- 
lems for traffic routing protocols. 
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racticability is of high importance when dealing with routing strategies. 
In this chapter, we deal with implementation issues of flow thinning.  We 
first present, in section 6.1, a version of FTS called affine flow thinning (AFT) 
that reduces the number of failure states for which the strategy needs to 
be optimized. Next, we analyse implementation issues related to FTS and 
AFT. Then, in section 6.2 we present an extension of FTS denoted flow 
adjustment (FAS) that allows for thickening. This evolution leads to a more 
cost-efficient strategy but the management cost and other issues prevent 
us from adding this feature to FTS. Finally, we conclude this chapter in 
section 6.4 with some remarks on possible evolution of FTS. 

 
 

6.1 Affine versions of FTS 
 

As discussed in more detail in Section 6.2, the practical usefulness of the 
FT strategy in its form presented so far is limited for three reasons.  First, 
broadcasting of the current link  capacity information  in real time could 
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be difficult.   Next, it would  be difficult to solve FTOP (and to store the 
resulting solution) for an excessive (exponential) number |S | of states. Fi- 
nally, even if we managed to achieve an optimal solution (and could store 
it) for a given (reasonably large) set of states S , for the valid states out- 
side S the thinning  would  be undefined.  The flow thinning  strategy FT 
and its optimization  model FTOP presented in the previous sections as- 
sume a predefined finite list of states S characterized by αs , s ∈ S , where 
αs  = (αs , e ∈ E ). The considered states consist of multiple  partial link fail- 
ures and this means that the potential number of states is enormous, of the 
order of 2|E |  already for total link failures. To avoid potential intractabil- 

 

ity  of FTOP, we have so far (see the beginning of Section 4.4) assumed 
the number of states in S to be polynomially  bounded by the number 
of nodes and links; as we know, FTOP is N P -hard already for this case. 
Hence, what we can actually do in practice is to solve FTOP for a rea- 
sonable (for sure polynomial, but even then for not too large) number of 
states, and activate proper flow thinning (having the flow thinning factors 
stored in the originating  nodes) when a particular predefined state αs  of 
links is detected and made known, by some signaling protocol, to the orig- 
inating nodes of the demands, and using approximated thinning  factors 
when a state not considered in FTOP occurs. 

Because of that, in this section we will  consider a version of FT called 
affine flow thinning (AFT) that addresses the above issues. In particular, 
we will  study a variant of FTOP (called AFTOP) corresponding to AFT. 
AFTOP relies on using the decision rules largely used in multi-stage ro- 
bust optimization,  and more particularly,  affine decision rules (Ben-Tal 
et al. 2004) (application of affine decision rules to traffic routing were in- 
troduced by Ouorou and Vial (2007) and further investigated by Poss and 
Raack (2013)). In essence, AFTOP turns out to be nothing else but a par- 
ticular example of an adjustable robust linear program, where the uncer- 
tainty  set is S and the adjustable variables are xs

 .  Hence, rather than 
letting the adjustable variables depend on each specific state s, following 

 

Ben-Tal et al. (2004) in AFTOP we let these variables depend affinely on 
the parameters that describe the state: αs , e ∈ E . We adapt these ideas by 
considering two special types of FT described in Section 
6.1.2 below. 

Notice that AFT and its variants were mostly studied by Michael Poss, 
Michal Pioro and Dritan Nace in (Pióro et al. 2015). Hence, we will  only 
briefly introduce AFT. 

 

 

6.1.1 Affine flow thinning and the related version of FTOP 
 

With  AFT, the flows x0 reserved on paths d ∈ D, p ∈ Pd , are thinned 
to xs for the states s  ∈ S not in an arbitrary  way, as with  FT, but by 
assumption each such flow  is thinned according to its individual affine 
function of the availability  coefficients αs . More precisely, 

 

xs  s 0 e s
 

d p = Ad p (α ) = zd p + ∑ zd p αe ,  d ∈ D, p ∈ Pd . (6.1) 
e∈E 

 

Note that parameters z0 e , e ∈ E , of the affine function Ad p specified for 

the given path p ∈ Pd  do not depend on the state s.  The AFT version of 
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FTOP (formulated for FT in (4.1)) is referred to as AFTOP. In AFTOP, the 
parameters z become optimization variables and variables xs play only an 
auxiliary role. Such a formulation is obtained by adding equations (6.1) to 
(4.1). 

Observe also that with appropriately limited cardinality of S , traffic ef- 
ficiency of AFT can be very close to traffic efficiency of FT. In fact, as shown 

 

in Poss and Raack (2013) for a similar problem, AFT becomes equivalent 
to FT if, and only if, S contains at most |E | + 1 states. 

In the implementation aspect, AFT is more practical than FT. Although 
as FT, AFT must be aware of the current link  states αs , it will  use the 
(optimized) affine functions Ad p , d ∈ D, p ∈ Pd , for thinning the nominal 
flows.  Such thinning,  contrary to FT, is applicable to all possible states, 
i.e., also to the states not in the set S assumed for optimization. 

In spite of the above advantages, AFT suffers from two problems. First, 
introduction  of affine coefficients (variables) z0 e , e ∈ E , for each path 
p ∈ Pd , d ∈ D, and each link  e  ∈ E , leads to large linear programs for 
AFTOP, both when included in formulation (4.1). Second, AFT can still be 
hard to implement because the affine function of each path p involves, as 
arguments, the link availability  coefficients of all links. Thus, disseminat- 
ing the link-status information is as difficult as for FT. 

 

 

6.1.2 Restricted affine flow thinning 
 

As AFT, restricted affine flow thinning (RAFT) assumes that the flow on each 
path for each state is an affine function of the availability  coefficients αs , 
but only of the links that belong to path p: 

 

xs  s
 

0 e s
 

d p = Ad p (α ( p)) = zd p + ∑ zd p αe ,  d ∈ D, p ∈ Pd , (6.2) 
e∈p 

where αs ( p) = (αs , e ∈ p).  Clearly, RAFT involves less variables z than 

AFT (an advantage), but it is not necessarily as efficient as FT, in particular 
for sets S with |S | ≤ |E | + 1 (a disadvantage). 

The most important advantage of RAFT over AFT (and for that matter, 
over FT as well) is that with RAFT disseminating link capacity information 
is, not a major issue, as a path-originating  node thins the corresponding 
path-flow  only on the basis of the current capacities of the links along 
the path. In fact, we could easily use even more information  on the link 
availability  states, namely the thinning  function of a path-flow  could be 
made dependent on coefficients αs  of all the links e belonging to the sets 
δ(v) for all nodes v traversed by the considered path, i.e., 

 

xs  s 0 e s
 

d p = Ad p (α ( p)) = zd p + ∑ 
e∈E t ( p) 

zd p αe ,  d ∈ D, p ∈ Pd , (6.3) 

 

where  αs ( p) = (αs , e ∈ E t ( p)), E t ( p) := 
U

 
of all nodes visited by path p ∈ Pd . 

v∈V ( p) δ(v), and V ( p) is the set 
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6.2 Implementation issues 
 

6.2.1 Implementation issues of FT 
 

A major implementation  issue related to FT is to ensure proper online 
tunnel capacity control. Assuming that the nodes can instantaneously de- 
termine and apply appropriate thinning factors (thinning factor is the ratio 
of the tunnel capacity calculated for a given state to its nominal capacity) 
once the link  availability  state is made known to them, we need an on- 
going online signalling process of informing  the network nodes about the 
changes in the current link availability coefficients. For the general version 
of FT this would call for a network protocol, like OSPF-TE (Open Shortest 
Path First – Traffic Engineering) (Katz et al. 2003), enabling the originating 
node of a link  to broadcast a link-status message whenever the capacity 
of the link is changed. A difficulty is to make the message reach all the 
nodes in a reasonable time. 

This issue can be overcome by applying  RAFT (see Section 6.1.2) in- 
stead of FT. With RAFT, the thinning factors of each tunnel are specified by 
means of an affine function depending only on the availability coefficients 
of the links along the tunnel.  Then the link-status message concerning a 
change of the availability  coefficient of a particular link is sent by its orig- 
inating node backwards along all the tunnels that traverse this node and 
use the link in question. In this way, by means of appropriately extended 
path-error messages in Resource Reservation Protocol – Traffic Engineer- 
ing (RSVP-TE, the protocol from the TCP/IP stack that is used to establish, 
maintain, and erase LSPs, see Minei and Lucek (2011) and Awduche et al. 
(2001)), the nodes can be quickly  informed  (at least when the links are 
bidirectional—a typical case in WMN)  about the changes in the links ca- 
pacity they need to be aware of.  (Observe that since a tunnel is thinned 
to 0 already when only one of its links fails totally, it is enough that the 
originating node of a tunnel is informed only about the total failure of its 
closest link.)  Hence, the crucial mechanism for FT could be implemented 
in a network composed of IP routers interconnected by IP links with log- 
ical tunnels (LSP) realized by means of the MPLS mechanism (see Minei 
and Lucek (2011) and Andersson and Swallow (2003)). 

Next, FT requires a low-level  QoS packet admission control mecha- 
nism (including  packet scheduling and policing),  see Evans and Filsfils 
(2007) and Harhira and Pierre (2007) to assure, for each demand, that the 
instantaneous packet flow admitted to enter each of its dedicated tunnels 
does not exceed the current tunnel capacity.  The users that compose a 
demand, in turn, could be notified (using some kind of explicit congestion 
notification  mechanism, see Evans and Filsfils (2007)) about the current 
admitted-to-nominal traffic ratio. Then, the users could decide which ses- 
sions to realize so that the combined demand traffic would be served in an 
efficient way, minimizing the number of packets discarded by the demand 
originating node admission control. 

Another  issue is that with  FT in general only a fraction of all pos- 
sible link  availability  states can be explicitly  considered in optimization, 
simply because the number of states can be exponential. Hence, the thin- 
ning factors for a non-considered state must be somehow calculated at 
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the tunnel originating  nodes, having in mind  that the resulting  tunnel 
capacity cannot overload the links and the reduction of traffic is accept- 
able.  For the general version of FT, finding  a reasonable algorithm  for 
that would  be difficult but this task becomes tractable with  RAFT (and, 
for  that matter, also for  AFT): for  the non-considered states, the thin- 
ning factor for a given tunnel is automatically determined by the affine 
function  once availability  coefficients for  its  links  are known.    More- 
over, the affine functions,  even when optimized  using a limited  num- 
ber of states, would  tend to ensure reasonable thinning  factors also for 
the states not explicitly  considered in optimization.   This is particularly 
sound when thinning is based on the non-negative value of an affine func- 
tion:  xs = max{ 0, x0

 ­ ∑e∈ d p (1 ­ αs ) }, d ∈ D,  p ∈ Pd , where all 

d p ≥ 0, e ∈ E . 
 

 

6.2.2 Practicability of FTOP and its affine version 
 

In our optimization  model each link availability  coefficient α (for a given 
link and a given state) is a fixed parameter while the nominal capacity y 
of the link is an optimization variable. Using the availability coefficients to 
determine the state-dependent link capacity as α · y is a sound assumption 
for the following  reason. In reality, in most cases link capacity is modular, 
i.e., equal to M · y where y is a number (an integer variable) of modules 
of size M installed on the considered link.  Referring to the application 
examples discussed in Section 1.1.1, in the IP/MPLS  over wireless case, 
where the modules correspond to parallel microwave radio links or wire- 
less optical links, coefficient α corresponds to the modulation and coding 
scheme applied in the considered state. In the IP/MPLS over DWDM case, 
α is the percentage of modules (for example,  0%, 33%, 66%, 100%) that are 
not lost in the considered link as a result of the failure in the DWDM layer. 
That is, we assume the equal split of y modules to be realized over a given 
set of k disjoint DWDM paths (k = 3 paths in our example), whatever the 
value of y (provided y is divisible by k, to be precise). Note that capacity 
is linearized and variables y are made continuous to avoid unnecessary 
complication of the optimization model. 

The state description assumed for FTOP is on purpose quite general. 
The implementation  of FT described in  Section  6.2, however, assumes 
that the demand reduction coefficients depend only on the vector αs  (i.e., 
βs  = β(αs ), s ∈ S ), so that the state is in fact determined by the current 
vector αs  of link  availability  coefficients.  This kind  of state description, 
together with  the assumption that the demands will  accept reduction in 
their nominal traffic volumes in the states with significant link capacity re- 
duction, opens a way to specify reasonable demand reduction coefficients 
by the network operator to avoid substantial network over-dimensioning, 
and hence excessive network cost. Clearly, the degree to which the prefer- 
able traffic volume is decreased should reflect the fractions of the nominal 
link capacity available in a given state. 

A simple way for achieving reasonable reductions is to divide the set of 
states into several classes corresponding to several degrees of lost capacity, 
and to assume a certain percentage of the nominal traffic that should be 
carried for each demand in a given state. For example, we may distinguish 
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two classes of states, one of “almost nominal” states with the entire (100%) 
nominal traffic to be carried, and the second class of “degraded states” 
that allow for carrying only 75%, say, of nominal traffic for each demand. 
A more sophisticated way, applicable in the affine version of FTOP, is to 
relate the demand reduction coefficients to the link availability coefficients 
through the so called uncertainty polytope. 

Another important practical issue is how to select a representative set 
of states of reasonable (tractable) size to be assumed for FTOP (or AFTOP). 
These states should,  on one hand, represent a whole  range of typical 
states, and, on the other hand, be sufficient to effectively approximate 
the thinning factors in the remaining feasible states (see Section 6.2). Such 
a selection is network dependent. For the IP/DWDM case the selection is 
basically simple. As it is a common practice to consider only single optical 
cable cuts (simultaneous cuts of more than one cable are very unlikely), 
the resulting multiple partial IP link failures are easy to list and include in 
FTOP. In the case of WMN, the situation is more complicated. For model- 
ing link availability states implied by weather conditions in a metropolitan 
WMN, we could divide the nodes into disjoint groups and assume that the 
bad whether conditions affects either all of them or a subset of them at a 
time.  If we distinguish only several groups then we are able to consider 
all the states corresponding to all subsets of the family  of these groups, 
i.e., the partial failures (with different levels of link availability, depending 
for example on the rain intensity) of all nodes in the affected groups. The 
demand reduction coefficients would then depend on the total number of 
affected nodes and (demand-wise) on the position of the demand’s end 
nodes. This issue, however, requires a separate study. 

For everyday network operation a pure flow allocation version of FTOP 
(or AFTOP) becomes important.  Such a problem (let us call it FTOP/FA) 
arises when nominal link  capacities are fixed, i.e., y0  become given pa- 
rameters.  FTOP/FA  has to be considered whenever the nominal traffic 
matrix (assumed for FTOP) is significantly perturbed causing the nominal 
flows and the thinning factors (tunnel flow-defining affine functions in the 
case of AFT) not fit the new traffic matrix anymore. Hence, the nominal 
flows and thinning  factors have to be re-optimized.  In order to properly 
accommodate the new traffic by the network, some kind of fairness crite- 
ria (link max-min fairness or proportional fairness (see Chapter 8 in Pióro 
and Medhi (2004b)) should be imposed on the values of hs , d ∈ D, s ∈ S 
(these quantities would become optimization  variables on top of the tun- 
nel flows), and reflected by an appropriate objective function used instead 
of (4.1a). 

Observe that optimization  of FTOP does not have to be decentralized 
since it could be done once for all in a central facility before the network is 
set to operation. FTOP/FA, in turn, should be resolved, using an off-line 
optimization algorithm, whenever the nominal traffic matrix (assumed for 
FTOP) is significantly  perturbed.  When perturbations are not frequent, 
such optimization  could be done in a central facility  as well.  Otherwise, 
the computation should be decentralized and distributed among the net- 
work nodes. This would require some information  exchange mechanism, 
for example an extension of the OSPF-TE. Such an algorithm, however, is 
outside the scope of this paper. 
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6.3 Thickening versions of FTS 
 

A natural extension of FTS, and thus of FTOP denoted Flow Adjustment 
 

(FAS) (Fouquet et al. 2014a;c), allows for tunnel thickening limited by ad- 
ditional parameters td ≥ 1, d ∈ D, called the thickening bounds. 

 

 

6.3.1 Flow Adjustment – The flow thickening extension of FTOP 
 

The extension is obtained by modifying  constraint (4.1e): 
 

xs 0
 

d p ≤ td xd p ,  d ∈ D, p ∈ Pd , s ∈ S . (6.4) 
 

Hence, FAS is represented by the following  link-path linear programming 
(LP) formulation  involving  variables x0 (d ∈ D, p ∈ Pd ), xs

 (d ∈ D, p ∈ 
Pd , s ∈ S ) and ye  (e ∈ E ): 

PFAS (P ): C(P ) = min  ∑ ξe y0
 

 

 
 
(6.5a) 

[π0 ≥ 0] 
e∈E 

∑ ∑ δed p  
0

 
≤ y0,  e ∈ E (6.5b) 

 

[λs  ≥ 0]
 d∈D p∈Pd 
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≥ hs ,  d ∈ D, s ∈ S (6.5c)
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[πs  ≥ 0]
 

∑ d p 
p∈Pd 

δ
 

 

d 
 

xs    ≤ αs y0,  e ∈ E , s ∈ Se (6.5d)
 

e ∑ ∑ ed p  d p e    e 
d∈D p∈Pd 

s    ≥ 0] xs
 ≤ td x

0
 ,  d ∈ D, p ∈ Pd , s ∈ S (6.5e) 

x0, xs , y0 ≥ 0 and continuous  (6.5f) 
 

Objective (6.5a) minimizes the overall cost of links.  The first capacity 
constraint (6.5b) makes sure that the nominal link loads do not exceed the 
nominal link  capacities. Next, the demand constraint (6.5c) assures that 
in each state s ∈ S , the thinned nominal flows are sufficient to realize the 
volume of each demand d ∈ D assumed for this state. Then, the second 
capacity constraint (6.5d) assures that in each state s  ∈ S , the available 
capacity of each link  e  ∈ Es  is not exceeded. Finally,  constraint (6.5e) 
assures thinning. 

Clearly, with td > 1 a (limited) path-flow thickening for demand d ∈ D 
is permissible, not only thinning.  In fact, this modification (even when the 
thickening factor is made tunnel-dependent) has virtually the same prop- 
erties as FTOP and can be approached essentially in the way discussed in 
Section 4.4 as done in (Fouquet et al. 2014a). 

When the thickening  bounds td , d  ∈ D, are considered (constraint 
(4.1e) is substituted by (6.4)) then constraint (4.2c) in the related dual prob- 
lem takes the form 

∑ σs
 

 

1 
δ π0,  d ∈ D, p ∈ P

  
(6.6)

 
 

s∈S 
d p ≤ 

t   ∑ 
e∈E 

ed p   e d 

while the rest of the constraints remain unchanged.  When all td  → ∞, 

i.e., when the primal problem becomes the GR optimization  problem, the 
right-hand  side of constraint (6.6) becomes equal to 0 which  forces all 
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dual variables σs , s ∈ S , d ∈ D, p ∈ Pd , to be equal to 0. Hence, constraint 
(4.2d) takes the form 

d ≤ ∑ 
e∈Es 

 
 
δed p 

 

 

πs ,  s ∈ S , d ∈ D, p ∈ Pd 

 
 
(6.7) 

 

and this makes the related dual separation (and path generation) problem 
polynomial.   This could be expected, since the GR problem is, as men- 
tioned in Section 4.2.3, polynomial. 

 

 

6.3.2 Performance of Flow Adjustment 
 

Although  in general FAS is designed to handle multiple  partial link fail- 
ures, below we focus on the single link  failures to illustrate the perfor- 
mance of the strategy compared to FTS. 

 
network |V| |E | |D|
di-yuan 11 42 22
polska 12 18 66
nobel-us 14 21 91
nobel-germany 17 26 121

Table 6.1 – Network description 
 

In Table 6.1 we describe the undirected network instances used in our 
tests taken from (Orlowski et al. 2010). We consider several scenarios with 
different values of the link  availability  coefficients α and the thickening 
coefficientstd . In all cases, we assume 100% traffic restoration. In Figures 
6.1-6.4, we compare the GR, FT and FA strategies with  respect to their 
cost-effectiveness. In the comparisons, Cα α 

FAS and Cα denote the 
optimal value of the network cost for FAS and GR respectively. Remind 
that considering td = 1, Cα

 
α 
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Figure 6.1 – Relative gap between FAS and GR for di-yuan. 
 

relative gain of cost of Cα 

 

and Cα 

 

, respectively, with respect to Cα 

 

for 
a given availability  ratio α. Consider strategy S (S equals to FAS or GR), 
Ga pS = (Cα ­ Cα )/Cα . FTS  S S 

These figures shows that the gain of cost is limited  for low intensity 
perturbation.   However,  the gain of cost becomes significant for strong 
perturbation  with  a gain of at least 15% for a thickening  limit  fixed to 
25% (td  = 1.25) for all networks.  Notice that for sparse networks (pol- 
ska, nobel-us),  allowing  to double the bandwidth  leads to dimensioning 
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Figure 6.2 – Relative gap between FAS and GR for polska. 
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Figure 6.3 – Relative gap between FAS and GR for nobel-us. 
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Figure 6.4 – Relative gap between FAS and GR for nobel-germany. 

 
cost close to Global Rerouting. However, the gap between Cα and Cα 

remains high for meshed networks (di-yuan). Note that more results of 
the cost-efficiency aspect of FAS are presented in (Fouquet et al. 2014a) 
and (Fouquet et al. 2014c).  It is clear that Flow Adjustment is a lot more 
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cost-efficient than Flow Thinning. 
 

 

6.3.3 Why Flow Adjustment should be avoided 
 

Flow thickening leads to cheaper solutions as compared to pure thinning, 
and when all td → ∞ the resulting modification of FTOP becomes equiv- 
alent to the GR optimization problem. As the corresponding modification 
of FT allowing for thickening can be implemented in the same way as the 
original FT (including the affine versions, see 6.1), and thickening can im- 
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prove traffic performance of FT, a natural question arises why we still opt 
for FT. The three main reasons are described in the following. 

 

 
6.3.3.1 Higher number of paths to be adjusted 

 

First, with FT the maximum number of flows that are adjusted when mov- 
ing from state s1  to state s2  is equal to the number of flows that traverse 
links affected in state s1 plus the number flows that traverse links affected 
in state s2.   This number is quite small as compared to the number of 
all (non-zero) nominal flows. However, with thickening this bound is not 
valid and the number of adjusted flows can become significant. In general, 
the larger the thickening bound the more tunnel flows are adjusted, and 
this number is typically  the largest for GR (with  GR frequently virtually 
all flows can be adjusted even for modest changes in link capacity). More- 
over, the scale of the perturbation, i.e., the ratio of the number of nominal 
path-flows changed when a failure occurs is increased in FAS. While for 
FTS the perturbation  observed only for a number of paths ranging from 
30% to 45%, the scale of the perturbation is much larger for FAS. We have 
notice that for all the single link  failure states with  α = 0.5, almost all 
routing paths are subject to thinning or thickening (more than 98% of the 
total number of routing paths). All of this is shown in the following  Table 
6.2 which reports the average percentage of the routing paths required to 
be thinned (   ) or thickened (   ) per failure for FAS (remind that td  = 1 
represents FTS). 

 

network  
td = 1 td = 1.1 td = 1.5 td = 2 

                

di-yuan   0 19 69 30 55 44 38 61 
polska 0 44  56  44  57  43  43  57 

nobel-us   0   41   60  40    58  42    46  54 
nobel-germany 0 48 52 48 49 51 40 60 

 

Table 6.2 – Average percentage per link failure of nominal paths which are thinned or 
thickened in FAS 

 

Even though this number clearly shows the advantage of using FT, the 
values of percentages. Thus, they must be reported to the actual number 
of paths in the optimal solution. In the following  Figures 6.5 and 6.6, we 
represent the number of distinct paths per demand used by FAS for partial 
link failures (α = 0.5) and for total link failure (α = 0). 

We first notice that FTS requires less paths than FAS, and that this 
difference increases with  td . Moreover, except for di-yuan, the number of 
routing paths required by FAS for total single link failures is similar to the 
number of paths required for partial single link failure with α = 0.5. 

 

 
6.3.3.2 Transient behavior of the flow adjustment process 

 

The main interest in the flow-thinning strategy stems from the simplicity 
of the path-flow  handling  process. Indeed, the reaction to a particular 
availability  state basically consists in decreasing the flow on (some of) the 
affected paths. In the following  we assume that a signaling protocol sends 
a message from the end node of the failed link to the source nodes of the 
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Figure 6.5 – Average number of distinct paths per demand used by FAS per single 
partial link failure (α = 0.5). 
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Figure 6.6 – Average number of distinct paths per demand used by FAS per single total 
link failure (α = 0). 

 

 
routing paths traversing this link when its capacity decreases by a certain 
fixed threshold.  Hence, the time required to recover from a failure state 
with  FTS is equal to the time required for the signaling messages to tra- 
verse the path from the end nodes of the perturbed links to the source 
nodes of the affected demands. Then, upon the receipt of such signaling 
messages, the source nodes will  set.apply the appropriate flow  value to 
their originating  routing  paths.  The flow  adjustment process in FAS is 
not as simple as in FTS. This process is composed of two simultaneous 
stages managed by the source and destination nodes of traffic demands. 
The source nodes of the demands will  first need to decrease the flow on 
some affected paths in order to make room for enlarging the flows on 
some other paths. Then, in the next stage, the destination nodes will  be 
able to increase te flow  of the latter paths.  To examine the process, we 
have run appropriate simulations.  Figures 6.7 and 6.8 report the ratio of 
the perturbed demands for a fixed link  failure as a function of time for 
network  polska with,  respectively, α = 0.5 and α = 0.  The considered 
failed link is contained in the routing paths of 20% of demands that are 
in this way affected. Nevertheless, the flow adjustment process perturbs 
more demands, as the nominal path-flows of non-affected demands are in 
general subject to changes as well.  In the process, the flows on a set of 
paths are first decreased to allow the flows on another set of paths to be 
subsequently increased. This makes a lot of demands to be temporarily 
perturbed reaching about 55% (respectively, up to 80%) of the number of 
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demands after  3 units of time for  œ  = 0.5 (resp. œ  = 0). We notice that, 
as  expected, the  flow  adjustment process is faster for  the  partial failure 
than for  the total failure. Nevertheless, the  process converges very  fast  as 
compared with GR. Finally, we notice that  the ratio of perturbed demands 
remains high  as compared with  that observed for  the flow-thinning strat- 
egy FTS (no flow  thickening). 
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Figure 6.7- Evolution  of the ratio ofperturbed  demands for polska  (IX  = 0.5). 
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Figure 6.8 -Evolution of the ratio of perturbed demands  for polska (IX  = 0). 
 

 
6-3-3·3 Link  overloads 

 

The  third reason are  link  overloads caused by erroneous approximation 
of flow  thickening factors. If a certain state is not  considered in optimiza- 
tion,  its tunnel thickening factors must be  approximated, as  it is clone in 
FT for  the  thinning factors. However, since with thickening the  nominal 
tunnel capacities are  allowed to  be  exceeded in  the  states with reduced 
link  capacity, wrong approximation of the thickening factors could easily 
lead  to link  overloads during the whole duration the unforeseen states. To 
summarize, as  far  as  unforeseen traffic  losses are  concerned, FT is safer 
than its variants admitting flow  thickening (including GR). 

 
 

6-4 CONCLUDING  REMARKS 
 

Flow  thinning (FT) is an  original concept of a traffic  routing and  protec- 
tion  strategy for communication networks with variable link  capacity. lts 
affine variant, AFT (more specifically, RAFT), opens a way  for distributed 
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implementations.  To our knowledge, similar  strategies (working  at the 
logical tunnel level and reacting online to link capacity fluctuations) have 
not been proposed and therefore studying optimization models for FT and 
AFT is worthwhile, the more that the related multicommodity flow prob- 
lems contribute to the area of resilient network design and are interesting 
from the OR viewpoint. 

In this chapter, we have studied relations between the investment and 
management cost and the restoration performance for the considered pro- 
tection strategies (FAS, FTS, GR). It turns out that the flow  adjustment 
approach of FAS (and FTS) assures acceptable investment and manage- 
ment cost while  achieving high restoration performance.  Nevertheless, 
an important  issue that needs special care is the volume of information 
required to be maintained at each routing node that could become prob- 
lematic in large networks.  One way of alleviating this would  be to limit 
the number of path-flows that are adjusted per failure situation. This can 
be done by making a distinction  between affected and non-affected de- 
mands. This distinction could help to reduce the number of routing paths 
affected per failure situation but still the volume of information  kept at 
each node remains almost as large. Thus, a variant of the method needs to 
be designed for distributed environments. These important interrogations 
were considered while conceiving a new recovery mechanism named Elas- 
tic Flow Routing, presented in the next part of this thesis, in the three next 
chapters. 



6.4. Concluding remarks 95 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part III 
 
 

Elastic Flow Rerouting 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

This part is dedicated to the Elastic Flow Rerouting (EFR) strategy. In 
 

Chapter 7, we introduce the mathematical formulation  for total link fail- 
ure scenarios (EFR-P) together with  a complexity study.  EFR-P is N P - 
hard and requires branch-and-price to be solved to optimality due to the 
distinction between affected and unaffected demands. Thus, we propose a 
greedy heuristic method to solve EFR. As this thesis deals with both total 
and partial failures, in chapter 8, we study practical applications of EFR 
to partial failures. In accordance with microwave communication context, 
we propose a formulation  of the modulation schemes and show next how 
EFR can be combined with FTS to give a strategy capable to handle both 
type of failures. Finally, we study a distributed variant of EFR. In the last 
chapter of this part, Chapter 9, we study the effiency of EFR and its for- 
mulations followed  by an analysis of the heuristic method performance. 
We conclude this part with a study of restoration time in case of failure of 
both centralized and distributed versions of EFR. 
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n this chapter, we study a method that combines positive features of the 
strategies discussed in Chapter 2.  The method is intended to achieve a 
compromise between the capacity cost, restoration time, and management 
effort, while  covering a large set of applications.  The method is called 
Elastic Flow Rerouting (EFR). Its full  study, including  a mathematical for- 
mulation and a discussion on its complexity, is presented in (Fouquet et al. 
2015b). We show that the problem becomes computationally  intractable 
even for moderate size instances, so that there is a need for heuristic ap- 
proaches. Hence, we propose a heuristic solution method accompanied 
with numerical results. EFR is dedicated to the management of total link 
failures. An adapted version of EFT, able to manage partial failures, will 
be presented in the next chapter. 

 
 

7.1 Introduction to Elastic Flow Rerouting 
 

Elastic Flow Rerouting (EFR, Fouquet et al. (2014e)) is intended to deal 
with  total link  failures.  The approach works as follows.  In the nominal 
state (when all links are operational), traffic is routed over a given set of 
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paths for each traffic demand.  In each failure state (to simplify  the ex- 
planation only total failures of single links are considered), EFR uses the 
same set of (nominal) routing paths but with possibly modified path-flow 
values. In each failure state we distinguish between affected flows and af- 
fected demands. In a given failure state the affected flows are those routed 
on paths going through a failing link, and the affected demands are those 
for which at least one path is affected and the total capacity of unaffected 
paths is not sufficient to carry the demand traffic.  The main idea behind 
EFR is to restore traffic of the affected demands by means of increasing the 
flow on their routing paths, possibly together with decreasing flows of the 
unaffected demands. Thus, an increase of the path-flows is allowed only 
for the affected demands, and a decrease of path-flows is allowed only for 
the unaffected demands (besides the failed flows which are automatically 
removed).  Notice that no new paths are allowed to be established. To 
limit  the number of path-flows and prevent from establishing paths with 
no bandwidth  (that could be adjusted upon failure occurrence), the thin- 
ning and thickening are bounded by a fixed percentage of their nominal 
path-flows.  Summarizing, flows (on existing paths) can be increases due 
to: 

• capacity released on affected paths 

• capacity possibly released on some paths of unaffected demands 

• protection   capacity   present  on   links   due   to   network   over- 

dimensioning. 
 

Clearly, the capacity released on routing paths of unaffected demands is 
limited  because the remaining flows on the routing  paths for the unaf- 
fected demands must be sufficient to carry the requested traffic volume. 

In short, we can say that EFR adds rerouting capabilities to PD but, 
unlike RR and GR, seeks to find the capacity needed for rerouting by de- 
creasing some flows on the nominal routing paths of unaffected demands 
(in addition  to the capacity released by the affected flows).  Contrary to 
ShRR, EFR avoid path creation. 

 

Example 7.1    Consider a network with 5 nodes A, B, C, D and E and 8 undirected links ( A, B), 
( A, C), ( A, E), (B, D), (B, E), (C, D), (C, E) and (D, E). The unit capacity cost 
of all eight links is equal to 1. We consider two demands d1 and d2 (each with 
demand volume equal to 1) between nodes A and E for d1 and A and D for d2. 
We consider single-link  failure scenarios in which  each link can fail, but once at a 
time. We show below what is the result of the minimum link cost network when 
EFR is used to recover from single link failures. 

 

The obtained solution  gives a capacity of 
1 

to link (B, E), 
3 

2 
to link (C, E), 0 

3 
to link (D, E) and 1 for the other five links. In the nominal  state, as depicted in 
Figure 7.1, demand d1 is realized on 3 paths: d1 is routed on 3 paths: p1 = {A ­ 

1 
E} with 1 flow value, p2 = {A ­ B ­ E} and p3 = {A ­ C ­ E} with 

3 
flow 

value; while d2 is routed on 2 paths: p4 = {A ­ B ­ D} and p5 = {A ­ C ­ D} 
2 

both with 
3 

flow value. 

Figure 7.2 represents the failure of link ( A, C). Due to the failure, the traffic 
requirement for d2 is no longer  meet and there is no bandwidth remaining on 
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Figure 7-1- EFR- Nominal State. 
 

 
the link (A,B)  ta increase the traffic of path P4·  Hence,  as demand  dt  is not 
affected by the failure, it releases all the bandwidth  of path  p2 ( enough bandwidth 
is remaining  of  path p1).    Enough bandwidth is now available ta increase the 

bandwidth of P4  by and ta meet traffic requirement  of d2. Then, all demands 
are Jully  operational. 

 
 

                           D 
 

 
Figure 7.2 - EFR - Failure of link ( A,C). 

 

Another failure  scenario is presented on Figure 7.3 , concerning the failure 
of link (A,E).  The traffic requirement for d 1 is no longer meet and there is no 
bandwidth  available ta increase the traffic on paths p2 and p3 . As demand d 2 is 

not affected by the failure, it releases ofbandwidth on path  p    5  ta make room for 
 

path p 3 thickening. Finally, dt  increases the bandwidth  of paths p2 by and  all 
demands recovered the failure. 

 

 
Ps('- 1/3) 

 
 
 
 
 
 
 
 
 
 

Figure 7·3- EFR- Failure of link (A, E). 
 

The other failure scenarios are simple of similar ta the two examples described 
above. Failures oflinks ( B,E) and (C,E) do not cause any problemfor demand 
d1. The other link failures a re close ta the failure of (A,C) . Note the dimensioning 
cast of 5 is also the o ptimal cast for bath GR and RR st rategies. 

We recall that differentl y ta EFR : 
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• GR and RR allow  path creation  (longer  process than bandwidth increase), 

• GR suffers from failure propagations 
 

 

7.2 Mathematical model  of EFR 
 

The optimization problem considered in this section is referred to as Elas- 
tic Flow Rerouting Problem (EFR-P) and is as follows.  We want to mini- 
mize the total cost of link capacity assuming that in the nominal state of 
network operation, all demand volumes are realized by means of nominal 
path-flows.  When the network  is subject to a failure of a link  then the 
demand volumes, possibly reduced, are realized for the duration  of the 
failure state by appropriate thinning  or thickening of the nominal path- 
flows depending on the state of their demand.  A brief reminder of the 
notation used in this section is given in 7.2.1 and the detailed formula- 
tion of EFR-P is given in Subsection 7.2.2. Section 7.3 is devoted to its 
complexity study. 

 

 

7.2.1 Notation 
 

EFR-P requires the use of the following  notations: 
V set of routers 

set of links, directed or undirected, represented by a pair {v, w} E 
of some nodes v, w ∈ V 
non-negative unit capacity cost of link e ∈ E , seen as a 

e parameter 
set of demands associated with an unordered pair of nodes 

D  {o(d), t(d)}. For the sake of simplicity  we call o(d) a source 
node and t(d) a termination node. 

0 volume that has to be sent between o(d) and t(d) for demand 
d d ∈ D, seen as a parameter 

Pd  set of nominal paths, parameters in the EFR-P formulation 
S set of failure scenario equal to all possible link failure 
d p 

nominal path-flow associated to path p ∈ Pd for demand d ∈ D 
ye capacity reservation for edge e ∈ E , which is an optimization 

variable 
Pd  

set of paths that are unaffected in failure state s ∈ S 
¯ s Pd 

 

 
δed p 

 

 
 
 

¯ s D 

set of paths that are affected in failure state s ∈ S , i.e. that 
contain a link in s 
link-path incidence coefficients (δed p , e ∈ E , d ∈ D, p ∈ Pd ). It 
takes value δed p = 1 if path p ∈ Pd traverses link e ∈ E , and 
δed p = 0 otherwise. 
affected demands in failure scenario  s ∈ S , allowed to thick 
their remaining path-flows. A demand is affected if its 
surviving  nominal path-flows are not sufficient to carry the 
traffic volume assumed for this state, i.e., when 
∑p∈ ¯ s  zd p + ∑p∈P s  xd p < hs . 
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u d

v

T

d
D 

d
Ts

d

d

(x ­ u + v d

d

d

d

∑

 

 
 

unaffected demands in failure scenario  s ∈ S , allowed to thin 
Ds their path-flows. A demand is unaffected if, by definition, it is 

not affected. 

s value of thinned path-flow associated to path p ∈ P s  for 
d p demand d ∈ Ds  in falure state s ∈ S 
s value of thickened path-flow associated to path p ∈ P s  for 
d p demand d ∈ ¯ s  in falure state s ∈ S 

binary variable representing the status (affected/unaffected) of 
s demand d ∈ D. Ts = 1 if d is an affected demand in s and 

d = 0 if d is not affected in s. 

Note  that  the thinning/thickening state-dependent path-flows 
us  s s

 

d p , vd p , s ∈ S , d ∈ D, p ∈ Pd , are optimization  variables and are bounded 
by ratio a ≤ 1 (resp. b ≥ 0) of their nominal values, or by 0 depending on 
the status of the demand. 

 

 

7.2.2 EFR-P formulation 
 

Optimization  problem EFR-P is given in the non-linear path-flow formu- 
lation (7.1) for a given list of admissible path sets Pd , d ∈ D. 

 

EFR-P(P ): min C = ∑ ξe ye (7.1a) 
e∈E 

∑ ∑ δed p x
0 

e
 

 

d∈D p∈Pd 
d p ≤ y , e ∈ E (7.1b) 

∑ x0 0
 

 

p∈Pd 
d p ≥ hd , d ∈ D  (7.1c) 

∑ ∑ δed p (x
0  s  s  

e
 

 

d∈D p∈P s 
d p ­ ud p + vd p ) ≤ y , s ∈ S , e ∈ E \ {s}  (7.1d) 

0 
d p 

p∈P s 

∑ x0
 

s s 
d p d p 

 
s
 

) ≥ hs , s ∈ S , d ∈ D  (7.1e) 
 

s
 

 

p∈P s 
d p + M(Td ­ 1) < hd , s ∈ S , d ∈ D  (7.1f) 

∑ x0
 

s     s s
 

 

p∈P s 
d p + hd Td ≥ hd , s ∈ S , d ∈ D  (7.1g) 

x0 ­1  s
 ­1  s s

 

d p ­ a 

us
 

ud p ­ b 
s
 

vd p ≥ 0, s ∈ S , d ∈ D, p ∈ Pd  (7.1h) 
s
 

d p + M(Td ­ 1) ≤ 0, s ∈ S , d ∈ D, p ∈ Pd  (7.1i) 

vs  s s
 

d p ­ MTd  ≤ 0, s ∈ S , d ∈ D, p ∈ Pd  (7.1j) 

x, y, u, v continuous, nonnegative, T binary  (7.1k) 
 

In the formulation,  objective (7.1a) minimizes the total cost of links, 
i.e., the dimensioning cost. Constraints (7.1b) do not allow that nominal 
link  loads exceed nominal link  capacities. Constraints (7.1c) assure that 
for each demand its paths have jointly  sufficient capacity to satisfy the 
demand volume requested for the nominal state. Next, constraints (7.1d) 
make sure that in each state s ∈ S the capacity of each working  link e ∈ 
E \ {s} is not exceeded. Constraints (7.1e) assure that in each failure state 
s  ∈ S , the adjusted flows are sufficient to realize the (possibly reduced 
with  respect to h0 ) volume hs of demand d ∈ D. Then, constraints (7.1h) d d 
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dp

dp

d

d

 
 
 

do not allow releasing by more than the fraction a of the nominal flow 
assigned to a path, or increasing by more than the fraction b of the nominal 
flow. The values of a and b are fixed parameters with 0 ≤ a ≤ 1 and b ≥ 0. 
Constraints (7.1f) assure that the binary variable Ts  takes value Ts  = 1 if d d 
the demand is affected (by more than a given c > 0) in the failure state s 
and constraints (7.1g) deal with  unaffected demands. Finally, constraints 
(7.1h)-(7.1j) forces variables x, u and v to be correctly defined with respect 
to affected/unaffected demands and T binary variables. 

We  discuss next  state-dependent constraints (7.1f),(7.1g),(7.1i) and 
0 s

 
(7.1j). If 0 ≤ ∑p∈P s  xd p  < hd , demand d is affected by the failure state 
s and its path-flows can only be thickened us = 0. Otherwise, demand 
d is not affected and its path-flows  can only be thinned  vs = 0.  For 
this purpose, the constraints use a very large number called big-M  co- 
efficient, as well as a very small value c which, together with  Ts  binary 
variables, emulate I F-like constraints. Using a large value M could lead 
to numerical instability.  To avoid this issue, constraints (7.1f),(7.1g),(7.1i) 
and (7.1j) are modeled in the solver CPLEX as indicator constraints. For 
instance, the “strictly less than”  linear constraints (7.1f) is modeled as 

0 s s s
 

I F (∑p∈P s  xd p ≥ hd ) T HEN Td = 0 ELSE Td = 1. 
 

 

7.3 Complexity discussion 
 

Formulation (7.1) is hard to solve exactly by mixed-integer linear solvers 
for mainly  two reasons. First, the number of variables used in the for- 
mulation  can be very large, since the sets of admissible paths can be of 
exponential sizes with respect to the size of a network. Second, it contains 
binary variables and big-M coefficients, which leads to numerical instabil- 
ity and very poor linear relaxations. All  this gives a hint on the practical 
difficulty and the computational complexity of the EFR problem.  Before 
stating on the complexity let us clarify, in the light  of the above formu- 
lation, the connection of EFR to other restoration strategies mentioned in 
Section 4.1. First, taking a = 0 and b = 0 leads to PD strategy (neither 
thinning  nor thickening are possible). Second, for a = 1 and b → ∞ one 
can see that EFR converges to Global Rerouting while for a = 0 and b → ∞ 
EFR becomes RR strategy. We can easily check that all requirements for 

 

each strategy are satisfied.  For instance, taking a  = 0 implies that flow 
thinning is not allowed, while b → ∞ means that virtually new rerouting 
paths can be created; this is because the flow on some path can be enlarged 
at any finite value starting from practically insignificant flow values. All 
these special cases have different levels of complexity for the single link 
failure case: GR and PD fall into the polynomial  time complexity class 
(Orlowski  and Pióro 2012), while RR is shown to be N P -hard for both 
the directed case (Nace et al. 2013) and the undirected one (Tomaszewski 
2013). The observation suggests that both problems will  exhibit the same 
N P complexity. 

Not  surprisingly,  we will  use similar  arguments to show the NP- 
hardness in question. The proof given for EFR is inspired by the RR N P - 
hardness proof presented in (Nace et al. 2013). The proof is based on a 
specific network constructed to show that finding an RR solution is equiv- 



7.3. Complexity discussion 103 
 
 
 

alent to solving the elementary path problem EL-PATH, which  consists 
in answering the question whether there exists an elementary path going 
through a fixed link in a directed graph. Problem EL-PATH is N P -hard, 
because it can be reduced from 2-DIV-PATH, which itself is N P -hard (For- 
tune et al. 1980). The network instance utilized in the proof is depicted in 
Figure 7.4. It assumes a simplified  failure scenario involving  a single de- 
mand and failures of only two links.  Considering a single demand only 
has a particular impact on using EFR, the method cannot employ thinning 
as there is no interest in considering cases when the demand is unaffected. 
Hence, in the following, we consider the EFR problem with a set to 0 and b 
set to a large but finite value, thus the nominal flows cannot be decreased, 
but they can be increased and multiplied by b + 1. Then, bearing in mind 
that we are looking for solutions involving  only elementary routing paths, 
the following  proposition can be proven. 

Proposition 7.1  EFR problem, represented by (7.1), is N P -hard already for the case with two 

failing links and one demand. 
 

Proof. The proof is deduced from the problem of existence of an elemen- 
tary path in a directed graph traversing a given link.   Let this problem 
be denoted by EL-PATH. As discussed in (Nace et al. 2013), EL-PATH is 
N P -hard. 

The upper left part of Figure 7.4 represents an instance of EL-PATH, 
asking for finding  whether there exists an elementary path from v to w 
traversing a given link (a, b) in a directed graph represented by the oval. 
The main part of the figure shows how this instance of EL-PATH can be 
reduced to an instance of the considered case of EFR with one demand d 
from node o to node t (with  volume hd = 1) and two failing links  f1 and 
f2. 

In the main graph, the links depicted by solid lines have large unit costs 
ξ, while unit costs of the links drawn as dotted lines are negligible with 
respect to ξ. The two ovals in the main graph are the copies of the oval in 
the upper left part. Unit costs of all possible links in these two ovals are 
also negligible as compared to ξ. Note that the nodes in both ovals in the 
main graph have the same names, but this should not lead to a confusion. 
We first show that the objective function value C of any feasible solution 

5 
of EFR must be greater than or equal to 

3 
ξ. To demonstrate this, consider 

the following  cuts involving  the expensive links, i.e., links (o, v1 ), (o, v2 ), 
(o, v3 ), (w31, u31 ), and (w32, u32 ): 

 

• one cut for the normal state: {(o, v1 ), (o, v2 ), (o, v3 )} 

• first cut for failure of f1: {(w31, u31 ), (w32, u32 ), (o, v2 )} 

• second cut for failure of f1: {(w31, u31 ), (o, v2 ), (o, v3 )} 

• first cut for failure of f2: {(o, v1 ), (o, v3 ), (w32, u32 )} 

• second cut for failre of f2: {(w31, u31 ), (w32, u32 ), (o, v1 )} 
 

The capacity of each of these five cuts must be greater than or equal 
to the requested volume hd = 1. Hence, by summing up the inequalities 
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Figure  7-4- Network instance proving NP-hardness of EFR. 
 

 
 

expressing these conditions for  all  five  cuts  we  see  that the  sum of  the 

capacity reservations of  the  five expensive links must be  at  least   
5 . As 
3 

each  of these links  has  the  unit cost  i;, we  conclude that  C  2:: SNow 

we will  establish bounds of optimal solutions of EFR in the case when an 
elementary path from v to w traversing link  (a,b) in the  oval exists (Case 
:1), and  in the  case when it does not  exist  (Case  2). 

Case :1: Suppose that  the  oval  contains an  elementary path   P from  v 
to  w traversing link  (a,b). Then, there exists  a solution that  achieves the 

 

cost
 0 = 5c; + I1JS· ln this  solution, the  flows in the  normal state are  as

 
C  3 

follows: 
 

• 1: path 0 -VI - WI - UI - (b - W part of P) - t, 

 
1 

• (( path  o  -V3- W3I  - U3I  - v- (v- a  part of  P)  - WI- UI - b - 
(b - w part of P) - t, 

 

1 
• (( path  o - v3  - W32 - u32  - v - (v - a  part of  P)  - w2  - u2  - b - 

(b- w part of P) - t, 
 

•13: path o- V2- w2- u2- (b- w part of P)- t, 

 
1 

• 
6

b: path 0 - V3 - W32- u32- V-p-t,
 

 

1 
• b: path o  -VI  - W3I - u3I - v - P - t, 

3 
 

1 
• 

6
b: path o-V3- W3I- u3I- v--P-t,

 
 

1 
• b :  path o - V I - w32  - u32  - v - P - t. 

3 
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d

 
 
 

When link  f1 fails, flow  on o ­ v3 ­ w32 ­ u32 ­ v ­ P ­ t is enlarged to 
 

reach 
1 1 

6 
and flow  on o ­ v1 ­ w31 ­ u31 ­ v ­ P ­ t is thickened to  

3 
. 

When link  f2  fails, the third  and the fourth  normal flows are rerouted 
in a symmetric way by enlarging respectively the flows on path o ­ v3 ­ 
w31 ­ u31 ­ v ­ P ­ t and path o ­ v1 ­ w32 ­ u32 ­ v ­ P ­ t. The resulting 

1 
capacity reservations of the expensive, solid-line links are all equal to 

3 
1 1 

(for links w31 ­ v31 and w32 ­ v32), and ( 
3 

+ 
3b 

) for the three other links 
(respectively o ­ V ­ 1, O ­ v ­ 2, and o ­ v3) as depicted in Figure 7.4. 

5 
The resulting capacity is (  + 

3 
1 

)ξ and for b = 36 it gives a cost of 
B 

61 

36 
ξ. 

Case  2:  Now  assume that there is no elementary path from  v to w 
through (a, b) in the oval. We will  show that in this case the cost C0 of an 

7 
optimal solution of EFR must be greater than or equal to 

4 
ξ. Indeed, it has 

been shown in (Nace et al. 2013) that any solution for RR in the considered 
7 

network is necessarily greater than or equal to 

61 4 
ξ, which is greater than 

36 
ξ. This holds also for EFR as for a = 0 all EFR solutions are necessarily 

solutions of RR, so EFR cannot do better than RR. To summarize, solving 
the constructed instance of EFR for the optimal cost C0 yields a solution of 

61 
EL-PATH: an elementary path P in question exists if C0 ≤ 

7 36 
ξ, and does 

not exist when C0 ≥ 4 
ξ.  In this way, EL-PATH is reduced to EFR and 

hence EFR is N P -hard. 
 

 

7.4 Heuristic method 
 

As remarked in the previous section, formulation  (7.1) combines the big- 
M  constraints with  a large number O(|D||S |)  of binary  variables, and 
produces large-scale integer-programming problems which happen to be 
intractable even for moderate size networks. 

Solving the EFR-P requires solving a combinatorial optimization prob- 
lem over the combinations of affected/unaffected  demands sets for each 
failure.   Additionally,  it requires applying  path generation in the solu- 
tion process. In consequence, the exact solution of EFR-P would  require 
branch-and-price algorithms.   Obviously,  solving formulation  (7.1) with 
binary variables Ts  set to fixed values representing a certain choice of af- 
fected/unaffected  demands would  give an upper bound for the optimal 
solution of EFR-P. In fact, as we will  see below, the optimization  problem 
behind such upper bound solutions is much simpler to solve than EFR-P 
itself. 

Hence, a natural heuristic approach to solve EFR-P would  be to solve 
sequentially a set of problems with the unaffected/affected demands grad- 
ually fixed in each iteration. All this leads to a greedy heuristic approach 
described in Section  7.4.1.  Next, the problem solved at each iteration, 
called EFR-PF (EFR-P fixed), is presented in detail in Section 7.4.2. 
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7.4.1 Description of the heuristic 
 

In  this section, we present the greedy heuristic  method used to solve 
the EFR-P optimization  problem.  In each iteration, the heuristic creates 
and solves an instance of EFR-PF (version of EFR-P (7.1), in which  all 

d , d ∈ D, s  ∈ S , are fixed to values 0 or 1), and then adjusts the status 
(affected/unaffected) of the demands. The process is repeated until no im- 
provement is achieved—more precisely, we stop when all demands’ status 
remain unchanged. 

The algorithm starts with an empty set of unaffected demands for each 
failure state, and with  some initial  admissible path-sets. Thus, at the be- 
ginning all demands are considered as potentially affected. After solving 
the corresponding LP, we know exactly which demands are affected and 
non-affected in the current solution x.  This gives a hint how to update 
the unaffected demands for the next iteration—the set of unaffected de- 
mands is extended with the demands that are not affected in the obtained 
solution x. In this way the new unaffected demands can contribute to the 
restoration process by potentially releasing some flow on their paths. For 
the next iteration, the EFR-PF instance is extended with  the constraints 
that characterize the demands just set to the unaffected status. 

In consequence, any feasible solution will  always keep these demands 
unaffected because of these constraints, which are not subject to removal 
in the subsequent steps of the iteration process. Therefore, at each iter- 
ation, the obtained solution x can only extend the set of unaffected de- 
mands and no demands that have been previously  made unaffected can 
become affected. We proceed like this with updating the sets of unaffected 
demands, and stop when the current solution does not change the status 
of the demands assumed for the previous iteration. This is the key idea of 
the method used in Heuristic EFR-H detailed in Algorithm 4 below. 

 
Algorithm 4: Heuristic method for EFR-P 

Step 0: Initialization of path-sets 
Define initial  admissible path-sets Pd ⊆ ¯ 

 

 
, d ∈ D. 

Step 1: Initialization of demands status 
Put Ds  := ∅, s ∈ S . 

Step 2: Solving EFR-PF 
Let x be the resulting solution. Set Ds (x): the set of 
unaffected demands corresponding to solution x. 

Step 3: Update demands states 
If Ds  = Ds (x), s ∈ S , then go to Step 4. Otherwise, 
Ds  := Ds (x), s ∈ S , and go back to Step 2. 

Step 4: Return the solution 
 
 

We can easily deduce that the algorithm will  always stop. According 
to the above, once a demand is considered unaffected it will  remain unaf- 
fected for all consecutive iterations. One the other hand, affected demands 
can change their status and become unaffected. Hence, the process will 
necessarily stop since the set of unaffected demands cannot be extended to 
infinity,  and the algorithm ends when we obtain the same set of unaffected 
demands for two consecutive iterations. 

One of the disadvantages of the presented algorithm  is its fast con- 
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vergence to local minima.  If a large set of demands becomes unaffected 
in a single iteration,  the heuristic may not be able to find  high quality 
solutions.  In order to alleviate this issue, the number of demands that 
can become unaffected in a failure state s in a single iteration is limited 
to M AXd  demands.  If M AXd  takes a very low value, the heuristic will 
slowly  converge, will  explore a lot more scenarios, but the computation 
time will  be much longer.  In contrast, if  M AXd  takes a high value, the 
computations will  be fast, but the algorithm  will  quickly  converge to a 
local minimum  that can be very far from the true optimum.   The most 
reasonable value of M AXd  depends on a network instance. However, we 
notice that M AXd  = 5 represents a good compromise between the com- 
putation  time and the solution quality.  Still, observe that the presented 
method is not exact; thus, obtained solutions are in general suboptimal. 

 

 

7.4.2 Formulation of EFR-PF problem 
 

Let us now look in detail how the EFR-PF problem used in each iteration 
of the above algorithm is formally  defined. We first introduce additional 
notation by defining two sets: E (d) = {s ∈ S : d ∈ Ds } is the set of links 
whose failure does not affect demand d, and  ¯(d) = {s ∈ S : d ∈ ¯ s } is E D 
the set of links that affect demand d. Note that in the EFR-PF problem the 
sets Ds , s ∈ S are predefined. Then, a linear programming formulation for 
EFR-PF, denoted PF (Ds , P ) and given in (7.2), can be obtained from (7.1) 
by fixing the variables accordingly. 

 

 

EFR-PF(P ): min C = ∑ ξe ye (7.2a) 
e∈E 

[π0 ]  ∑ ∑ δed p  
0

 ≤ ye , e ∈ E (7.2b) 
 

[λ0 ]
 
d∈D p∈Pd 

x0
 

 

≥ h0 , d ∈ D  (7.2c)
 

 

d 

 

[πs ] 

∑ d p 
p∈Pd 

∑ ∑ 

 

d 

δed p  
0   ­ ∑ 

 
 

∑ δed p  
s    + ∑ 

 
 

∑ δed p  
s 

d∈D p∈P s d∈Ds p∈P s d∈  ¯ p∈P s 

≤ ye , s ∈ S , e ∈ E \ {s}  (7.2d) 

[λs ] 
 

 

[λs ]
 

∑ 
p∈P s 

0 
d p 

 
(x0

 

s 
d p 

 
+ vs

 

) ≥ hs , d ∈ D, s ∈ E (d)  (7.2e) 
 

) ≥ hs , d ∈ D, s ∈ ¯(d) (7.2f)
 

d ∑ d p d p d E 
p∈P s 

s 
d p 

[σs 

s 
d p 

] vs 

≤ ax0
 

≤ bx0 

, s ∈ E (d), p ∈ P s 
, s ∈ ¯(d),  p ∈ P s 

(7.2g) 
 

(7.2h) d p d p d p E d 

x, u, z, y continuous, nonnegative (7.2i) 
 

In formulation  (7.2), objective (7.2a) minimizes the total cost of links, 
and (7.2b)-(7.2f) are similar  to (7.1b)-(7.1e). Constraint (7.1e) is split  in 
two  constraints (7.2e) and (7.2f).  Then, constraints (7.2g) do not allow 
releasing more than a fraction a of the normal flow  assigned to a path, 
and constraints (7.2h) ensure that flow  increase on a disrupted  path by 
more than the fraction b of the normal flow is not permitted.  The values 
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of a and b are fixed parameters with 0 ≤ a ≤ 1, b ≥ 0. In the formulation, 
the quantities in brackets to the left are dual variables associated with 
constraints. All these variables are, by assumption, non-negative. 

The condition stipulating that surviving flows of the affected demands 
are not sufficient to satisfy the required demand volume can be expressed 
as: 

d p ≤ hd ­ c, s ∈ S , d ∈ ¯ , (7.3) ∑ x0 s Ds
 

p∈P s 
for a very small c > 0. Nevertheless we have deliberately chosen to not 
introduce this constraint into the EFR-PF formulation  (7.2)1. In practice, 
the EPRF-PF formulation (7.2) solved in the first iteration of the algorithm 
does not contain constraints (7.2e).  Having  a solution,  we check each 
demand d ∈ D if it satisfies (7.3). If constraint (7.3) is not satisfied for 
a particular demand, the demand is added to set Ds .  At this stage, the 
obtained solution x remains feasible for the new LP problem.  Thus, the 
heuristic generates a sequence of improving  approximate solutions. 

Although EFR-PF is an LP, the problem is still not easy to solve because 
of the possibly exponential numbers of path-flow variables x, u, and v. To 
avoid the non-compact nature of the formulation,  we are forced to gen- 
erate path on the fly using Path Generation (PG) applied to formulation 
(7.2). Unfortunately, PG turns out to be a difficult problem as we show in 
the next subsections. 

 

 

7.4.3 Dual problem 
 

Let us consider the problem dual to problem (7.2) for a given set of ad- 
missible paths P . The dual, denoted by EFR ­ DF(P ), is as follows (for 
the derivation see for example Pióro and Medhi (2004b)): 

EFR-DF(P ): max W = ∑ (h0 λ0 +
  

hs λs )  (7.4a)
 

 
d   d 

d∈D 

π0 πs
 

∑ d   d 
s∈S 

e  + ∑ 
s∈S \{e} 

e  = ξe , e ∈ E (7.4b) 

λ0  (λs  + aσs  ) +
 

(λs  + bσs  )
 

d + ∑ d 
s∈E (d)\p 

d p ∑ d d p 
s∈ ¯(d)\p 

≤  ∑ 
s∈S \p 

λs s
 

|p|  + |p| , d ∈ D, p ∈ Pd  (7.4c) 
 

s 

d + σd p ≥ |p| , d ∈ D, p ∈ Pd , s ∈ E (d) \ p (7.4d) 

λs s s
 

E (d) \ p (7.4e)
 

d ­ σd p ≤ |p| , d ∈ D, p ∈ Pd , s ∈ ¯ 

λ, π, σ continuous, nonnegative (7.4f) 

where, for a given path p ∈ P , we have used the notation |p| = ∑e   p π
0 

and |p| = ∑e   p π
s . 

We notice that the optimal solution of (7.4) must give for d ∈ D, p ∈ 
Pd , s ∈ E (d) \ p: ( 

0, if |p|s  ≤ λs  

(7.5)
 

d p = |p| ­ λd ,   if |p| > λs 

1 The idea behind this relies on the way the above heuristic works:  we do not need 
to constrain the solution  obtained at each step of the heuristic to the fixed  set of af- 
fected/unaffected demands but only keeping the set of unaffected ones as growing. 
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E

0, if |p| ≥ λs

dp

d

Fd

d p d

Pd

Pd

∆0
dq  ∑

Fd

dq  ∑ dq

dq = |q|  ­ λ0 , d ∈ D.

Pd

dq ∆ ∆
Fd

∆

Pd

d

s
dq .dq

 

 
 

and for d ∈ D, p ∈ Pd , s ∈ ¯(d) \ p: 
( 

|p|s ­ λs ,   if |p|s  < λs 

σs  d d
 

(7.6)
 

d p = s 
d 

 

Observe that if we replace σs 

 

by these values, formulation  (7.4) and 
formulation  (7.9) given below have the same sets of feasible variables π 
and λ. We introduce some additional notation. For d ∈ D, p ∈ Pd : 

Fd ( p) = {s ∈ E (d) \ p : |p|s  > λs } (7.7) 

Symmetrically, for d ∈ D, p ∈ Pd : 

Fd ( p) = {s ∈ E (d) \ p : |p|s  < λs } (7.8)
 

¯ ¯ 
d 

 

Considering (7.5)-(7.8), the transformed formulation  of the dual prob- 
lem is as follows: 

max W = ∑ (h0 λ0 +
  

hs λs )  (7.9a)
 

 
d   d 

d∈D 

π0 πs
 

∑ d   d 
s∈S 

e  + ∑ 
s∈S \{e} 

e  = ξe , e ∈ E (7.9b) 

λ0  s
 

s ∆s  0
 

d + a ∑ 
s∈Fd ( p) 

∆d p + b ∑ 
s∈  ¯  ( p) 

∆d p ­  ∑ 
s∈S \p 

d p ≤ |p| , 

 

 
 
 

with ∆s 

d ∈ D, p ∈ Pd  (7.9c) 
λ, π continuous, nonnegative (7.9d) 

= |p|s ­ λs , d ∈ D, p ∈ Pd , s ∈ S \ p. 

 
7.4.4 Pricing problem 

 

Let  ¯ 
 

denote the set of all paths in the network graph between o(d) and 
t(d). The essence of the pricing problem related to the dual problem (7.9) 
formulated for a given (limited) admissible path-sets Pd , d ∈ D, is to check 
whether for at least one demand d ∈ D there exists a path q ∈ ¯ \ Pd (i.e., 
path q outside the current admissible path-set Pd ), for which (7.9c) cannot 
be satisfied for any set of non-negative dual variables σs  , s ∈ ¯(d) \ q. In 

 

fact, this is the case if and only if: 
dq  E 

dq + ∑ 
s∈S \q 

∆s   ­ a 
s∈Fd (q) 

∆s   ­ b 
s∈  ¯  (q) 

∆s    < 0 (7.10) 

with ∆0 0
 

The Pricing Problem (PP) for a given π, λ and a given demand d ∈ D 
is as follows: 

 
 

where 

minimize lql over q ∈ ˆ (7.11) 

lql = ∆0  + ∑ dq 
q 

­ a ∑ s
 

s∈Fd (q) 

­ b ∑ s
 

s∈  ¯  (q) 

Observe that if lql < 0 for a path q satisfying (7.11), then the current 
optimal dual solution π, λ violates the dual constraints (7.9c) for path q. 
Moreover, the violation is maximal over all paths p ∈ ˆ . 
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d

E

e

d

 
 
 

Finally,   we  note  that  PP  is  difficult.  In  particular,   the  term 
s s

 
∑s∈S \q ∑e∈p πe   included  in  ∑s∈S \q ∆dq    is difficult to  deal with.     This 
problem  is also known  in the literature  as the quadratic shortest path 
problem,  since its cost depends not only  on the arcs included  in  the 
path, but also on the arcs outside.  Furthermore it is encountered in the 
pricing problem of RR known to be N P -hard, see (Maurras and Vanier 
2004, Mereu et al. 2009, Orlowski 2003, Nace et al. 2013) and a survey on 
path generation (Orlowski  and Pióro 2012). In our experiments we have 
incorporated all potential paths in the initial path set. 

 

 

7.4.5 Binary formulation of the pricing problem 
 

The pricing problem formulated in (7.11) is difficult because of the partic- 
ular form of the total dual length lql.  Nevertheless, the problem can be 
stated as a binary programming problem by means of formulation  (7.12) 
given below.  In the formulation,  binary variables ue , e ∈ E , specify the 
path q  we are looking  for:  q  = {e  ∈ E :   ue   = 1}.  Binary variables 
zs , s ∈ S , in turn,  denote if |p|s   > λs .  If that is the case, then zs   = 1; 
otherwise zs  = 0. Besides, δ+ (v) and δ­ (v) denote the sets of all links out- 
going from, and all links incoming to, respectively, node v ∈ V , constant d 
indicates a considered demand, node o is its originating node and t is its 
terminating node. 

 

min L = ∑ ue π0 +
 

(1 ­ us )(
 

ue πs ­ λs )
 

 

e∈E 
e ∑ 

s∈S 
∑ e d 
e∈E 

­ a ∑ zs (1 ­ us )(1 ­ Ts )(
 

ue πs ­ λs )
 

 

s∈S 
d ∑ e d 

e∈E 
­ b ∑ (1 ­ zs )(1 ­ us )Ts (

 
ue πs ­ λs )  (7.12a)

 
 

s∈S 
d  ∑ e d 

e∈ ¯ 

∑ 
e∈δ+ (o) 

∑ 
e∈δ+ (v) 

ue ­ ∑ 
e∈δ­ (o) 

ue ­ ∑ 
e∈δ­ (v) 

ue  = 1 (7.12b) 
 

ue  = 0, v ∈ V \ {o, t} (7.12c) 

λs (1 ­ zs ) ≥ λs ­ ∑ πs ue , s ∈ S (7.12d) 

zs ∑ πs
 e∈E 

πs  s
 

 

e∈E 
e  ≥ ∑ 

e∈E 
e ue ­ λ , s ∈ S (7.12e) 

ue  ∈ {0, 1}, e ∈ E ; zs ∈ {0, 1}, s ∈ S . (7.12f) 
 

Constraints (7.12b) and (7.12c) assure that variables ue  that are equal to 1 
form a path from o to t. Constraints (7.12d) and (7.12e) force each variable 
zs , s ∈ S , to be equal to 1 when the length, with respect to πs , of the path 
q defined by variables u is greater than λs ; and to be equal 0 otherwise. Ts 

are already given from the instance of the problem in hand. 
To  get  rid   of  bi-  and  tri-linearities   involving   variables  zs    and 

ue   in  the  objective function,  we  can introduce  five  binary  variables 
Ws , Vs , Xs , Ys , Zs , e ∈ E , s ∈ S . The objective function should be rewritten 

e e e 
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E

Xs

 
 
 

as 

L = ∑ ue π0 +
 

 

 

(  Xs πs ­ (1 ­ us )λs )
 

 

e∈E 
e ∑ 

s∈S 
∑ e     e d 
e∈E 

 

 
(7.13) 

­ a ∑ (1 ­ Ts )(
 

Ys πs ­ Ws λs ) ­ b
 

Ts (
 

Zs πs ­ Vs λs )
 

 

s∈S 
d ∑ e      e e     d 

e∈E 
∑ 
s∈S 

d  ∑ e     e e      d 
e∈ ¯ 

 

and add the following  set of constraints 
 

e  ≥ ue ­ us , e ∈ E , s ∈ S (7.14a) 

Ys  s s s
 

e   ≤ z , Ye  ≤ (1 ­ us ), Ye  ≤ ue , e ∈ E , s ∈ S (7.14b) 
Zs s s s

 

e  ≤ (1 ­ z ), Ze  ≤ (1 ­ us ), Ze  ≤ ue , e ∈ E , s ∈ S (7.14c) 
Ws  ≥ zs ­ us , s ∈ S (7.14d) 
Vs  ≥ 1 ­ us ­ zs , s ∈ S . (7.14e) 
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hapter 7 focused on total single link failures. In this chapter, our intention 
is to extend the study to multiple  partial link  failures that can arise in 

1,
 

broadband wireless communications networks, presented in Chapter 
(Willebrand and Ghuman 2002, Son and Mao 2010). The extended version 
of EFR, denoted EFRPLF is based on both Flow-Thinning and Elastic Flow 
Rerouting strategies. 

 
 

8.1 Application to Fixed Wireless Networks 
 

In this section we present an extension of EFR, referred to as EFRPLF, in- 
tended to handle partial link failures. It is among the first attempts to ad- 
dress flow protection against multiple partial failures in an implementable 
way. The approach is based on the two (re)routing strategies presented in 
this document: Flow-Thinning and Elastic Flow Rerouting. In short, EFRPLF 

can be seen as an extension of EFR to partial failures using the features 
of FT. The approach works as follows.  When a link partially  fails, the af- 
fected nominal path-flows can only be thinned following  the idea of FT. 
Next, flow  adjustments are made according to EFR. In this section, we 
present the optimization  problem (referred to as EFRPLF-P) associated to 
the EFRPLF approach discussed above. 

 

 
 
 
 

113 
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d p

Pd d d

epr of

�݀ ݌		 			ൌ 2/3

1			 2 2		 2

s 0

 
 
 

8.1.1 Introduction to EFRPLF and Notations 
 

We keep the notations presented in 7.2.1. However, we need to introduce 
a few more notations. 

Network  links are subject to capacity variations that we consider as 
(partial) failures. The set of failure states is still denoted by S . Each failure 
state s ∈ S is identified with  a set of links (s ⊆ E ) that cannot operate at 
full capacity and a set of bandwidth availability  coefficient αs , s ∈ S , e ∈ E 
with value αs  < 1 if s contains e, and αs  = 1 otherwise. First, the nominal e 
path-flow  x0 

e 

affected by s (p ∈ ¯ s ) can only be thinned (remind that in 
d p Pd 

EFR, affected nominal path-flow are lost). They are thinned to zs , which 
are optimization  variables.  A traffic demand d is said to be affected by 
a failure state s if its surviving  nominal path-flows (thinned or not) are 
not sufficient to carry the traffic volume assumed for this state, i.e., when 
∑p∈ ¯ s  zd p + ∑p∈P s  xd p < hs .  Otherwise, the demand is unaffected.  The 
rest of variables are such as in EFR-P formulation  and the process follows 
the same idea as for EFR. 

 

Example 8.1    Consider  the same example than Example 7.1 dedicated to EFR. We show below 
what is the result of the minimum link cost network when EFR is used to recover 
from single partial link failures, where a failing link suffers a degradation  of 50% 
of its capacity due to a change in the modulation scheme. As the aim is to describe 
the behavior of EFRPLF, the presented solutions is only near-optimal.  The obtained 

solution  gives a capacity of 1 to link ( A, E), 

18 

1 3 
to link (B, E), and 

2 4 
to each other 

link, which  gives a global cost equal to 
4 

< 5. Several nominal routing gives 

the same dimensioning  cost. In the nominal state,  as depicted  in Figure  8.1, 
Demand d1 is realized on 2 paths: p1 = {A ­ E} , p2 = {A ­ B ­ D ­ E} 

1 
with respectively 1 and 

4 
1 

flow value; and demand d2 is routed on 2 paths: p3 = 

3 
{A ­ B ­ D} with 

2 
flow value, p4 = {A ­ C ­ D}, with 

4 
flow value . 

 
��4	

(3/4)
	

A C 
 

��1	

(1)
	

E 
 

��2	

(1/4)
	

B D 
��3	
(1/2)	

 

F�i݀g
rൌe18/.31 – EFR - N�o݀m	u1݌1

2��1inൌal2/S3tate. 

Figure 8.2 r C esents the failure 
1 

Blink ( A, E). In 
���1��1		ൌ	1/3	

D 
this scenario, 

 

capacity of 

link ( A, C) is decreased down  to . 
2 
1 

Hence, bandwidth 
2			 2

	

of path p1 has to meet the 

capacity limit of l�in݀k
			݌

(ൌA2,/E3	), i.e. 2 
. Now that pat�h݀s

��
roൌu2t/e3d through  a failed link 

has been thinned  (or not), we can deteArmine the status of each demand.  Clearly, 
due to the failure, the traffic requirement for d1 is no longer met and d1 is consid- 
ered affected, while d2 remains unaffected.  There is no bandwidth remaining on 
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links ( A, B) and (B, D) to increase the traffic  of d1 on path p2. Hence, as demand 
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1			 1

e

d

 

 
 
 

d2 is not affected by the failure, it releases 

1 

1 
of bandwidth on path p3 (enough 

4 
bandwidth is remaining of path p4). unit of bandwidth is now available on 

4 
1 

links ( A, B) and (B, D) and the bandwidth of p2 is increased to 
2 

to meet traffic 

requirement of d1. Then,  both demands are fully operational. 
 

 
��4	

(3/4)
	

A C 
 

��1	(↘	

1/2)
	

E 
 

��2	(↗	1/2)	
B D 

��3	(↘	1/4)	
 

2 – EFR - Partial Failure of link ( A, E).
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The other failuCre scenarios can be mBanaged in a similar mDanner. 
A

 
���1��1		↗	2/3	 ��1	(↘	1/2)	

8.1.2 Mathematical formulation of 
���2��2			↘	

1/3	EFRPLF-P 

E 
��2	(↗	1/2)	

The
 �݀p1݌r2		↘	1/3

	
considered in this

 ���2��2		ൌ	2/3		eferred to as Elas-
 

optimization oblem section is r 
tic Flow Rerouting Problem for PartAial Link Failures (EFRPLF-P)B 

��i3s(↘a1s/3)
	

and 
follows.   We want to minimize  the total cost of link  capacity assuming 
that in the nominal state of network operation, all demand volumes are 
realized by means of nominal path-flows.  When the network  is subject 
to a failure of a set of links then the demand volumes, possibly reduced, 
are realized for the duration of the failure state by appropriate thinning 
or thickening of the nominal path-flows depending on the state of their 
demand and the fact that they are perturbed. 

The mathematical formulation of EFRPLF-P, inspired from EFR, is given 
below.  In 8.1, the objective function of EFRPLF-P is to minimize the total 
cost of the network.   Constraints (8.1b) do not allow  the nominal  link 
loads to exceed the nominal link capacities. Constraints (8.1c) ensure that 
the nominal  flows are sufficient to realize the volume of each demand 
d ∈ D.  In a failure state s  ∈ S , the best modulation  scheme cannot be 
used for the affected links as they no longer meet the SNR requirement, 
see (8.1d). When yw = 1 for w ∈ We , the link capacity available in state s 
is assumed to be equal to a given value bws , e ∈ E , s ∈ S with  bws  ≤ bw0 

e e e 
for all s ∈ S . In general, in a failure state more than one link can have its 
availability  ratio decreased by the modulation  scheme. Constraints (8.1e) 
assure that in each failure state s  ∈ S , the adjusted flows are sufficient 
to realize the volume of each demand d ∈ D and constraints (8.1d) check 
that the surviving capacity of each link e ∈ E is not exceeded. Constraints 
(8.1f) - (8.1g) are related to the status of demands. They restrict Ts values 
to be equal to 1 for an affected demand and 0 otherwise. Note that (8.1f) 
is handled by CPLEX MIP solver n the same way as (7.1f) in Section 7.2. 
Constraints (8.1h) - (8.1l) express bound constraints for variables u, v, and 
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d p∈

d p∈

p∈ d

p∈ d

d p

d p

d p

d p

d

d

d p ≤ x Pd

Pd 

Pd 

d p

 
 
 

z. 

min C = ∑ ξe ye (8.1a) 
e∈E 

∑ ∑ δed p x
0 

e
 

 

d∈D p∈Pd 
d p ≤ y , e ∈ E (8.1b) 

∑ x0 0
 

 

p∈Pd 
d p ≥ hd , d ∈ D  (8.1c) 

∑ ( ∑
 
δed p (x

0  s s
 

∑ ed p  d p e    e

 
 

d∈D 
 
p∈P s 

d p ­ ud p + vd p ) + δ 
¯ s Pd 

zs   ) ≤ αs y , s ∈ S , e ∈ E  (8.1d) 

∑ δed p (x
0  s s

 

∑ ed p  d p d

 
 

p∈P s 
d p ­ ud p + vd p ) + δ 

¯ s Pd 

zs     ≥ hs , s ∈ S , d ∈ D  (8.1e) 

∑ zs  x0 s s
 

d p + ∑ 
¯ s p∈P s 

d p + M(Td ­ 1) ≤ hd ­ c, s ∈ S , d ∈ D  (8.1f) 

∑ zs
 

x0 s     s s
 

d p + ∑ 
¯ s p∈P s 

d p + hd Td ≥ hd , s ∈ S , d ∈ D  (8.1g) 

0 ≤ us
 

0 ≤ vs
 

≤ ax0
 

≤ bx0
 

, s ∈ S , d ∈ D, p ∈ P s 
, s ∈ S , d ∈ D, p ∈ P s 

 

(8.1h) 
 

(8.1i) 

0 ≤ zs
 

us
 

0  , d ∈ D, s ∈ S , p ∈ ¯ s 
s s

 
(8.1j) 

d p + M(Td ­ 1) ≤ 0, s ∈ S , d ∈ D, p ∈ Pd  (8.1k) 

vs  s s
 

d p ­ MTd  ≤ 0, s ∈ S , d ∈ D, p ∈ Pd  (8.1l) 

x, y, z, u, v continuous, nonnegative, T binary  (8.1m) 
 

Note that EFRPLF-P is obviously as difficult as EFR as for total failures it 
reduces to EFR. This statement holds since Flow Thinning can be applied 
only for partial failures—it completely disappears when the link  failure 
cuts the traffic entirely (total failure). Therefore the already demonstrated 
N P -hardness of EFR immediately implies the following  corrolary. 

Corollary 8.1 The EFRPLF  problem represented by (8.1) is N P -hard. 
 

In practice, EFRPLF-P is intrinsically  harder than EFR as it includes 
two  consecutive optimization  procedures, namely Flow Thinning  of af- 
fected flows and Elastic Flow Rerouting for the rest of flows.  In the line 
of the heuristic proposed above for EFR, a similar process can be built for 
EFRPLF-P. 

The source of difficulty is three-fold: first, the combinatorial aspect re- 
lated to the distinction between the affected and the unaffected demands; 
second, potentially  exponential number of multiple  partial  link  failure 
states to be considered; third, the difficulty of the associated pricing prob- 
lem. 

 

 

8.1.3 Modulation Schemes management 
 

In this section, we adjust the EFRPLF-P problem presented in 8.1 to manage 
channels modulation. 

Each link  e  ∈ E is assigned a set of usable frequencies We  (7MHz, 
17MHz, 28MHz . . . see Table 1.1) and a non-negative cost associated which 
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e

yw

yw

d

Pd 

dp

 

 
 

now depends of the frequency, ξ w , w ∈ We .  The capacity of link  e, de- 
noted by ye , is determined by the combination of the modulation and the 

w0  w w0
 

frequency (ye  = ∑w∈We  
be    ye ), where be  gives the bandwidth  efficiency 

coefficient used in optimal conditions while in degraded conditions (par- 
tial failure s) this is given by bws < bw0 which leads to a decreased capacity 

e e 
of the link.  The objective of EFRPLF-P is to minimize the total cost of the 
network. Hence, 8.1a is modified as follows: 

 

C = ∑ ∑ ξ w yw . (8.2) e      e 
e∈E w∈We 

 

Clearly, a link can only use one frequency: 
 

∑ 
w∈We 

e    = 1, e ∈ E . (8.3) 

 

In the nominal  state, constraint 8.1b do not allow  the nominal  link 
loads to exceed the nominal link capacities. The nominal capacity of link 
e is now equal to bw0, where w ∈ We  and yw = 1 

e 

∑ ∑ δed p x
0
 

e 

∑ e    ye , e ∈ E (8.4)
 

 
d∈D p∈Pd 

d p ≤  
w∈We 

bw0   w 

 

In a failure state s  ∈ S , the best modulation  scheme cannot be used 
for the affected links as they no longer meet the SNR requirement. When 

e    = 1 for w ∈ We , the link capacity available in state s is assumed to be 
equal to a given value bws , e ∈ E , s ∈ S with  bws  ≤ bw0  for all s ∈ S . In 

e e e 
general, in a failure state more than one link can have its availability  ratio 

 

decreased by the modulation  scheme. The following  constraints assure 
that in each failure state  s ∈ S , the surviving capacity of each link e ∈ E is 
not exceeded. 

 

∑ ∑ δed p (x
0  s s

 
 

d∈D p∈P s 
d p ­ ud p + vd p )  (8.5a) 

+ ∑ ∑
 
δed p z

s
 

∑ e    ye , s ∈ S , e ∈ E
 

 
d∈D p∈ ¯ s 

d p ≤  
w∈We 

bws   w
 

 

Hence, for given sets of admissible paths Pd , d ∈ D, problem EFRPLF-P 
can be represented by the path-flow  mixed-integer programming  (MIP) 
formulation  involving  nonnegative continuous variables x0 (d ∈ D, p ∈ 
Pd ), xd p (s ∈ S , d ∈ D, p ∈ Pd ), zd p (s ∈ S , d ∈ D, p ∈ ¯ 

d ), ud p (s ∈ S , d ∈
 

s s s s P 
D, p ∈ P s ), vs (s ∈ S , d ∈ D, p ∈ P s ), and binary yw (e ∈ E , w ∈ We ) and 

d d p d e 
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Ts

d Pd

d p∈

p∈ d

p∈ d

yw

Pd 

Pd 

 

 
 

d (s ∈ S , d ∈ D). This MIP formulation  is as follows: 

min C = ∑ ∑ ξ w yw 
 

(8.6a) e      e 
e∈E w∈We 

∑ ∑ δed p x
0
 ∑ e    ye , e ∈ E (8.6b) 

d∈D p∈Pd w∈We 

∑ x0 0
 

 

p∈Pd 
d p ≥ hd , d ∈ D  (8.6c) 

∑ ∑ δed p (x
0  s s

 

∑ ∑ ed p  d p

 
 

d∈D p∈P s 
d p ­ ud p + vd p ) + δ zs 

d∈D p∈ ¯ s 

≤  ∑ bws   w
 

 

w∈We 
e    ye , s ∈ S , e ∈ E (8.6d) 

∑ δed p (x
0  s s

 

∑ ed p  d p d

 
 

p∈P s 
d p ­ ud p + vd p ) + δ 

¯ s Pd 

zs     ≥ hs , s ∈ S , d ∈ D  (8.6e) 

∑ zs  x0 s s
 

d p + ∑ 
¯ s p∈P s 

d p + M(Td ­ 1) ≤ hd ­ c, s ∈ S , d ∈ D  (8.6f) 

∑ zs
 

x0 s     s s
 

d p + ∑ 
¯ s p∈P s 

us  0
 

d p + hd Td ≥ hd , s ∈ S , d ∈ D  (8.6g) 
 

s
 

d p ≤ axd p , s ∈ S , d ∈ D, p ∈ Pd  (8.6h) 

vs 0 s
 

d p ≤ bxd p , s ∈ S , d ∈ D, p ∈ Pd  (8.6i) 

d p ≤ xd p , d ∈ D, s ∈ S , p ∈ ¯ 
d (8.6j)

 
zs  0 P s 
us  s s

 

d p + M(Td ­ 1) ≤ 0, s ∈ S , d ∈ D, p ∈ Pd  (8.6k) 

vs  s s
 

d p ­ MTd  ≤ 0, s ∈ S , d ∈ D, p ∈ Pd  (8.6l) 

∑ 
w∈We 

e    = 1, e ∈ E (8.6m) 

x, y, z, u, v continuous, nonnegative, T binary  (8.6n) 
 

The main drawback of EFR remains the fact that it is a centralized 
strategy.  In case of failure,  it consider that all nodes are aware of the 
failures and that all paths can be modified.  The following  section present 
a distributed version of EFR. 

 
 

8.2 Towards a distributed version of EFR 
 

The EFR strategies is not directly usable in a network restoration process. 
The main difficulty is storing a large amount of information in each router 
node. Indeed, EFR can require significant management efforts, since ex- 
tensive state information  (for instance, release/increase of bandwidth  ac- 
cording to the failure state) is needed at each routing node to maintain all 
the nominal routing paths. This may, however, prevent the strategy from 
scaling in large networks. Applying this method in a restoration process 
involves releasing the bandwidth  of some non-affected nominal paths of 
non-affected demands.  This implies that the respective source nodes of 
these demands need to know about the failure and the amount of band- 
width to be released (or added) for each nominal path. All this means that 
a lot of information has to be stored at each node, while each source node 
has to be informed about the occurrence of failures.  One way to handle 





8.2. Towards a distributed version of EFR 119 
 
 
 

this problem is to restrict the amount of information  stored at each node 
while omitting  to communicate information  about the state failure to all 
routing  nodes. Consequently, we propose a modification  of the method 
such that each node acts according to the local information,  thus making 
this method more suitable for distributed environments. 

The distributed  versions of EFR is described below.   The principle 
of DEFR (Distributed  Elastic Flow Rerouting) consists in restricting the 
restoration to the extremity  nodes of affected demands only.   This is a 
natural solution, as these nodes will  be aware of the failure and they will 
quickly be able to react to restore the lost traffic. These nodes may also be 
source and/or destination nodes for other traffic demands that have not 
necessarily been disrupted, and thus they can act directly to modify  the 
bandwidth  of some paths. The benefit of this method is twofold:  first, the 
state information  will  concern only a subset of (failure) links; secondly, 
the nodes concerned with  the traffic restoration are informed  about the 
failure without  any additional action as they are placed at the extremities 
of the affected path.  In terms of cost-effectiveness, we would  expect the 
DEFR strategy to perform slightly less well than EFR. 

Let us illustrate how the DEFR strategy operates using the example 
8.2, given below. 

 

Example 8.2    Consider the same example  than Example 8.1 dedicated to EFRPLF. However, 
we change the source node of demand d1 to node B. Demand d2 now routes the 
same volume of traffic (1 unit) from node B to node E. We keep on considerating 
single partial link failures where a failing link suffers a degradation  of 50% of 
its capacity due to a change in the modulation  scheme. We show below what is 
the result of the minimum link cost network  when EFR Considering EFR, the 

 

solution  gives a capacity of 1 to link (B, E), 

18 

1 
to link ( A, E), and 
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links, which gives a global cost equal to . 
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Figure 8.3 – EFR - Nominal  State. 
 

Figure 8.4 represents the failure of link (B, E). Clearly, this example is very 
similar the management of the failure of link ( A, E) in Example 8.1. 

However, when considering DEFR, the two examples are very different. When 
link (B, E) fails, node B and E are aware of the failure as they are extremity  nodes 
of demand d1, which has disturbed  paths. In example 8.1, demands d1 and d2 

shares the same source node.  Hence, paths of d2 can be thinned  if required.  The 
18 

solution cost remains the same, with a global cost of . 
4 

In this new example, demand d2 can be modified only by node A and D, which 
are not aware of the failure. Solution  of EFR depicted in Figure 8.4 is not feasible 
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Figure 8-4- EFR- Partial Failure oflink (B, E). 
 

 
as traffic requirement for d1 is no longer met and capacities used by d2  on link 
(A,B) cannat be released. DEFR must overdimension link (A,B) with a capacity 

1 
of 1instead of. The global cast has increase ta :. 

Thus, DEFR is on general slightly more expensive than EFR but in sorne case, 
it does not require any additional cast, especially when the set of demands is large. 

 

Notice that  implementation issues related to DEFR are  present in ap- 
pendix A.2. 
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n this chapter, we present results of a computational study illustrating  the 
performance of EFR-P and the heuristic on the total single link failure case 

problem.
 

followed by some preliminary  results for the EFRPLF 
 

 

9.1 Dimensioning cost 
 

We consider undirected networks;  thus, the optimization  problems are 
treated in their versions for undirected network graphs.  Network  in- 
stances used in our tests, listed in Table 9.1, are taken from SNDlib (Or- 
lowski et al. 2010). In the table depicted are the number of vertices, edges 
and demands of each networks, as well as the maximum and minimum 
degree of the corresponding graphs (∆(G), δ(G)). When solving the prob- 
lems, we consider sets of all paths for polska, nobel-us, and nobel-germany 
(as these are low meshed network instances), and all paths with  up to 7 
links for di-yuan (a highly  meshed network  with  11 nodes).  The study 
was carried out on a computer equipped with an Intel Xeon CPU E5-2670 
2.60GHz processor and 132 GB of RAM, using CPLEX 12.5 (CPLEX 2013). 

We recall that although in theory EFR-P gives the exact formulation 
and solving it should provide the optimal solution of the problem, using 
big-M coefficients in the formulation  yields numerical issues. To handle 
this, constraints with  the big-M coefficients are replaced by appropriate 
CPLEX indicator constraints. 

Below we compare the cost effectiveness of the following  traffic pro- 
tection strategies: Elastic Flow Rerouting (EFR), Path Diversity (PD), Re- 
stricted Restoration (RR), i.e., end-to-end rerouting with stub release, and 
Global Rerouting (GR). 

 
121 
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d d

EFR

EFR

CGR

Ga

EFR

EFR

EFR

 

 
 

network              |V |     |E |     |D|    ∆(G)    δ(G) 
di-yuan               11     42     22        9          7 
polska                 12     18     66        5          2 
nobel-us             14     21     91        6          2 
nobel-germany  17     26    121      4          2 

 

 

Table 9.1 – Network description. 
 

 
In the reported experiments, we always use the same traffic reduction 

ratio β for all demands in all failure states, i.e., hs = βh0 for all d ∈ D 
and s ∈ S .  We also assume that the decreasing factor a is always equal 
to 1.0, while the increasing factor b takes values 0.1, 0.5, 1.0, or 3.0, which 
means that the nominal flows can be increased by up to 10% (resp. to 50%, 
multiplied by 2, or multiplied by 4). The decreasing and increasing factors 
are maximum limits applied to each path-flows in case of failures. In our 
experiments, we have incorporated all potential paths in the initial  path 
set. 

Let CGR denote the optimal value of the objective function (i.e., mini- 
mum cost of the link capacity) for GR, and Cb , CPD , and CRR the respec- 
tive values for the remaining strategies. Note that Ca is computed by 
solving EFR-P for the assumed thickening factor b. The rest of the costs are 
computed through solving appropriate optimization problems that can be 
found for example in (Pióro and Medhi 2004b). Certainly, the computed 
link capacities (and thus the link capacity cost) ensure routing of all traf- 
fic demands in the nominal state and the guaranteed traffic restoration 
(specified by β) in all failure states. As we already mentioned, the cost 
CGR , indicated by GR, is not greater than any of the remaining costs, as 
GR assumes the least restricted flow  restoration mechanism. Hence, we 
can define the relative cost increase for each strategy S (where S stands 
for EFR, PD, RR, or GR) with  respect to GR as GS  = CS ­CG R  × 100%. In 
the following,  this quantity  will  be called the relative gap. Note that, by 
definition, GGR = 0. 

In Table 9.2, for all four network instances, we present GRR , GPD , and 

EFR , as a function of the traffic reduction ratio β assumed for the failure 
states. We consider 5 scenarios with  different values of β varying  from 
60% to 100%. In the table, numbers in bold correspond to the scenarios, 
in which EFR performs better than RR and PD in terms of the cost. Ex- 
periments for values of β less than 60% show that for EFR and GR the 
cost does not increase comparing to the cost of routing  the demands in 
the nominal state. 

In Table 9.2, interesting results in terms of the cost-effectiveness are 
indicated.  As expected, the cost of the network  for EFR is often lower 
than CRR for b = 1 for most of β. In fact, CRR can be seen as C+∞ with 
a = 0. Hence, because increasing b decreases  Cb , the gain of cost using 
EFR instead of RR comes from the ability  to decrease the bandwidth  of 
paths of unaffected demands.  We also notice that the gap between the 
lower bound—(the cost of CGR ) and C3.0

 remains low, with  a maximum 
of 12.6%. 
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β GRR GPD G0.1
 

G0.5
 

1.0
 

3.0
 

EFR EFR GEFR GEFR 

0.6 16.5 41.0 37.2 27.3 20.5 10.2
0.7 19.4 47.8 43.4 31.9 23.9 11.9
0.8 21.0 53.1 48.0 34.9 25.9 12.6
0.9 17.5 60.1 46.9 31.6 22.0 11.4
1.0 9.4 60.2 46.0 30.9 19.7 11.0
0.6 14.4 47.2 35.5 20.6 15.5 7.7
0.7 17.6 66.3 52.1 21.8 15.9 7.6
0.8 10.5 69.0 53.6 17.3 8.1 1.8
0.9 4.1 69.0 53.6 15.5 4.9 1.3
1.0 0.2 69.0 53.6 14.5 4.1 1.2
0.6 14.8 59.6 48.1 31.0 23.3 11.9
0.7 15.9 77.9 62.8 33.3 24.2 11.4
0.8 12.5 88.3 70.6 31.9 19.7 7.4
0.9 5.8 88.3 71.7 34.1 20.5 11.2
1.0 1.9 88.3 71.7 33.6 16.9 8.1
0.6 14.1 44.0 31.4 17.0 12.1 6.0
0.7 10.7 51.8 38.3 19.1 15.2 12.5
0.8 5.0 51.9 39.7 15.5 10.2 6.6
0.9 1.6 51.9 39.7 14.8 8.0 4.1
1.0 0.0 51.9 39.7 14.6 5.9 3.0

 
Table 9.2 – Relative gap (in %) for all strategies. 

 
9.2 Heuristic performance 
 

We now study the efficiency of the heuristic method expressed as a relative 
gap between the objective function of the EFR-P problem using formula- 
tion (7.1) (denoted Cb ) and the cost achieved by the heuristic algorithm 

b b
 

Cb  b
 CEFR­H ­CEFR

 

EFR­H . Table 9.3 shows the values of HEFR = 
 

b 
EFR 

× 100%—the 

relative gap between b 
EFR­H and Cb —as a function of the traffic reduc- 

tion ratio.  The results are given for the settings used in Table 9.2. We 
notice that the heuristic method performs well for all networks indicating 
the maximum relative gap of less than 2%. However, as this method con- 
tains some randomness, the gap with the exact solution can be different if 
we compute the solution of the heuristic a second time. Still, the heuris- 
tic seems to be able to find a solution close to the optimal solution, with 
a gap not exceeding 2% in most cases. In the table, we present the best 
obtained gap after running the heuristic for three times. Thus, we notice 
that the heuristic is usually able to find the optimal solution after just a 
few repetitions, as indicated by the 0.0 value of the gap (in bold). 

 
 

9.3 Effiency of EFR applied to partial failures 
 

Finally, we study the performance of EFRPLF, i.e., EFR applied to partial 
failures.  Let CGR denote the optimal value of the objective function (i.e., 
minimum  cost of the link capacity) for GR, and Cb 

PLF 
, CFT the respective 

values for the remaining strategies. We define the relative cost increase 
for each strategy S (where S stands for EFRPLF  or FT) with respect to GR 
as KS  = CS ­CG R  × 100%. To make a comparison with  results for FT and 
GR possible, some vital changes are needed in the way the capacities are 
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β H0.1
 

0.5
 

1.0
 

3.0
 

EFR HEFR HEFR HEFR 

0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.9 0.4 0.2
0.8 0.0 0.6 0.7 0.0
0.9 0.0 1.1 0.7 0.0
1.0 0.0 1.2 0.1 0.0
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.1
0.9 0.0 0.0 0.1 0.1
1.0 0.0 0.1 0.1 0.1
0.6 0.0 0.0 0.0 0.0
0.7 1.1 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.1 0.3 0.0

 
Table 9.3 – Relative gap (in %) between the exact solution and the heuristic solution. 

 

affected by the perturbation for EFRPLF. Instead of variables yw , e ∈ E , w ∈ 
we use y , e ∈ E . By extension, instead of bws yw , e ∈ E , w ∈ W , s ∈ S We e e e e 

we use γye , e  ∈ E , s  ∈ S , where γ express the perturbation  ratio.  The 
results are given for several levels of perturbation γ: 50%, 75%, and 95%. 
As no network instance could be solved within a limited period of time (10 
hours), we present results of network polska with a limited set of demands: 
20 demands instead of 66. 

 

γ KFT K0.1
 

 
0.5

 
 
1.0

 
 
3.0

 

  EF RP LF       
KEF RP LF       

KEF RP LF       
KEF RP LF   

50%  14.3 11.3 6.6 5.0 3.3 
75%  26.0 20.9 10.9 7.8 3.9 
95%  43.9 35.8 18.3 11.6 7.0 

 

 

Table 9.4 – Relative gap (in %) of EFRPLF  and FT compared to GR. 
 

We notice that EFRPLF performs generally better than FT. For lower per- 
turbation ratios, for instance γ = 50%, differences of costs of the network 
for FT and EFRPLF remains insignificant—the gap between FT and EFRPLF 

for all values of b  is less than 10%.  However,  if  we consider stronger 
perturbation  ratios, for instance γ = 95%, EFRPLF becomes clearly more 
cost-efficient than FT. When the thickening ratio is very low, for instance 
10%, the gap between FT and EFRPLF is equal to 5.7% 1. If we increase the 
thickening ratio, the gap between FT and EFRPLF reaches 25.7% (b = 3). 

 
1 This gap value is computed using results for each strategy as done for the gap with 

GR. 
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9.4 Restoration time 
 

We here analyze the solutions given by the EFR, GR and RR strategies 
in terms of average number of paths, length of the paths and restoration 
time.  Table 9.5 shows the average number of paths in the nominal state, 
the total number of distinct  paths and the number of paths to thick or 
create. Moreover, the Table shows the average length of the paths, in the 
nominal state and in the failure states. We notice that even though GR 
and RR use less paths in the nominal state; nevertheless, the average total 
number of paths used by these strategies is significantly higher. Note that, 
for EFR, increasing b seems to decrease the average number of paths and 
length of paths. 

 

EFR0.5 EFR1.0 GR RR 
 

Avg number of paths per demand in NS 4.12 3.02 1.27 1.51 
Avg number of distinct paths per demand 4.12 3.02 7.26 7.36 
Avg number of paths to thick/create  per demand 0.94 0.61 1.24 0.41 
Avg length of the paths in NS 3.41 3.14 3.13 2.46 
Avg length of all paths 3.41 3.14 4.44 5.57 

 
Table 9.5 – Paths analyzis on the solutions obtained by EFR, GR and RR for network 

polska 
 
 

In the following,  we study the restoration time of EFR, compared to 
GR and RR. In the experiment, we use a simplified restoration model that 
returns a fraction of satisfied demands in a function of time elapsed after 
the failure.  The results are presented in Figures 9.1 and 9.2, where the 
former represents the ratio of satisfied demands in time in the network 
polska for a total failure of a link at the border of the network, while the 
latter presents the same result for a total failure of a link in the center of 
the network. 
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Figure 9.1 – Demand satisfaction ratio of the network  polska after failure of 
Kolobrzeg-Szczecin (at the border of the network). 

 
As expected, EFR leads to a substantial gain in terms of restoration 

time, roughly  two times faster than GR and three times faster than RR. 
This is mainly due to two factors: EFR do not create new paths and the 
total number of paths it uses is smaller.  Therefore, the time when EFR 
practically ends the whole restoration process is also the time when GR 
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Figure 9.2 – Demand satisfaction ratio of the network  polska after failure of 
Lodz-Warsaw (in the center of the network). 

 

 
strategy ends disconnecting flows that are to be rerouted. The reason GR 
outperforms RR in terms of total restoration time is the average length of 
restoration paths used by the strategies. The longer restoration paths of 
RR strategy induce longer restoration times.  Another important  aspect, 
mentioned earlier, is the capability  of EFR to maintain  a high level of 
satisfaction ratio of demands during  the restoration process. From the 
figures we notice that GR encumbers the process as a lot of routing paths 
should first be released and others have to be settled from  the scratch, 
while EFR benefits from optimized flow paths at a large part available in 
most of failure situations.  The issue can be perfectly seen in the figures 
around time 5-7, when the demand satisfaction ratio for GR plunges to 
merely 50%, while  at the same time reaching 100% for EFR and about 
85% for RR. This feature is expected to be even more important for partial 
failure situations. 

 
 

9.5 Conclusion on the  efficiency of EFR 
 

When it comes to the relation of link  capacity cost, management effort, 
and traffic restoration time, the EFR and EFRPLF strategies appear to be 
encouraging, especially when traffic is supposed to be partially  restored. 
The heuristic seems to perform well, leading to optimal or near-optimal 
solutions for most network instances used in our tests. 
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The work done on this thesis led to the design of two recovery mecha- 
nisms: Flow Thinning (FT) and Elastic Flow Rerouting (EFR). 

FT is an original  concept of a traffic routing  and protection strategy 
for communication networks with variable link capacity. Its affine variant, 
AFT, opens a way for distributed  implementations.  To our knowledge, 
similar strategies (working  at the logical tunnel level and reacting online 
to link capacity fluctuations) have not been proposed and therefore study- 
ing optimization models for FT and AFT is worthwhile, the more that the 
related multicommodity flow problems contribute to the area of resilient 
network design. We have studied in-depth a basic FT optimization  prob- 
lem (FTOP, see Section 4.2), and its affine version (AFTOP, see Section 6.1). 
FTOP turns out to be N P -hard and its non-compact link-path LP formu- 
lation requires path generation for which we have found a quite effectively 
solvable (though N P -hard) pricing problem. We have also exhibited some 
special cases when path generation is polynomial and formulated a poly- 
nomially solvable algorithm for finding  accurate lower bounds for FTOP. 
The numerical study shows that in terms of cost/traffic  efficiency, FT ex- 
hibits cost not significantly superior to that of GR—the theoretically most 
cost efficient strategy, at least when (reasonable) demand reduction coeffi- 
cients are acceptable. 

EFR is based on the concept of elastic (failure state-dependent) path- 
flows.  EFR is designed to handle total link  failures, while its extension, 
called EFRPLF, deals with  multiple  partial link  failures related to broad- 
band wireless (FSO, microwave) networks. When it comes to the relation 
of link capacity cost, management effort, and traffic restoration time, the 
EFR strategy appears to be encouraging, especially when traffic is sup- 
posed to be partially  restored. From the theoretical viewpoint,  optimiza- 
tion of EFR gives rise to a challenging multi-commodity flow  problem 
EFR-P, combining two difficult issues: a combinatorial subproblem deal- 
ing with  the choice of the demand states, and a likely  N P -hard pricing 
subproblem for path generation.  To the best of our knowledge, such a 
problem has not been considered in the literature  on traffic  protection 
strategies before. We have introduced an exact MIP formulation  of EFR-P 
that works for a given set of admissible paths, and proposed a fast subop- 
timal heuristic approach for EFR-P. Looking for an exact approach with a 
reasonable efficiency will  be the subject of our future work.  We have also 
considered the case with partial failures. The corresponding problem, de- 
noted by EFRPLF-P, is even more difficult,  since it combines two levels of 
decisions: at the first level it choses flows that have to be thinned and 
at the second level it optimizes the way the affected demands can enlarge 
their flows using resources released from the unaffected demands. All this 
makes the problem highly combinatorial. Additionally, the corresponding 
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pricing problem is very complicated, as it embraces features coming from 
two other N P -hard pricing problems: one for FT and the other for EFR. 

The above strategies are designed under the consideration of manage- 
ment cost hypotheses. A further study on implementation issues is needed 
to assess the relevance of such considerations. At this very moment, (July 
2015), members of IETF are currently working  on a way to manage par- 
tial link  failures on MPLS networks (Long et al. 2015) and an extension 
of RSVP-TE signaling is proposed. This extension can be used to set up 
a label switching  path (LSP) that contains links with  discretely variable 
bandwidth.  Each link has a set of <capacity, availability>  information and 
paths will  have a set of <capacity, availability>  requirements.  In accor- 
dance with  above, we are currently looking how the proposed strategies 
can be implemented. 

Finally, from an optimization  point of view, the heuristic method for 
EFR may be improved to obtain solutions of lower cost and an affine ver- 
sion could lead to a problem easier to solve and to a solution resilient to 
more failure scenarios. Next, the principle  of EFRPLF can be applied to 
other reroute get strategies, namely RR. Then, it is possible to apply FT 
as proposed and handle the remaining lost traffic with  RR. Finally, one 
of difficulties  that one will  encounter when dealing with  partial failures 
in fixed wireless networks is the extremely large number of failure states 
withe respect to weather conditions to be considered.  Hence, this calls 
for robust optimization  methods covering a very large part of these states 
while  providing  high restoration ratio for the remaining states. We are 
now looking for an appropriated way of failure state generation through 
a constraint generation process in an iterative algorithm. 
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InPort @IPdst Label OutPort 

P1 193.48.0.0/16 L5 P3
P2 193.48.0.0/16 L7 P4

  (2) LIB  

InPort InLabel OutPort OutLabel 

P1 
P2 

L5 
L7 

P3 
P4 

L21 
L15 

 

 
 

A.1  MPLS Networks 
 

MPLS (Multi-Protocol  Label Switching) (Rosen et al. 2001) is a mechanism 
in telecommunications networks which  combines IP routing  concept of 
level 3, and level 2 switching  mechanisms as implemented  in ATM  or 
Frame Relay. The aim of this section is to explain how data are routed 
and rerouted in such a network.  We will  not explain MPLS in deep but 
only the main features as label switching principle, routing protocol and 
its "standard" rerouting algorithm. 

 

 

A.1.1 Label Switching 
 

When a packet enters a MPLS network  (1), depending of its FEC (For- 
warding equivalence class), the ingress node reads its switching table (2), 
assigns a label to this packet (3), and forwards it to the following  LSR (4). 

 
 

MPLS Network 
 

 

(1) ingress node 
 
 
 
 
 

(2) switching table 

(4) packet transmission 
 
 
 
 
(3) label add 

 
 

Label 

IP packet 
 

Figure A.1 – Ingress Node in MPLS network. 
 

When the packet arrives in a LSR inside the MPLS network  (1), the 
routing  protocol running  on this node finds, in its label database (Label 
Base Information), the next label to assign to this packet in order to send 
it to its destination (2). The LSR updates the MPLS header of the packet 

 

 

MPLS Network 
 

 

(1) LSR (4) packet transmission 
 

 
 
 
 

(3) packet update 
 
 

Label 

IP packet 
 

Figure A.2 – Label Switch Router (LSR) in MPLS network. 
 

(switch the label, update the TTL field ...) (3) and sends it to the following 
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node (LSR or egœss node) (4). We can notice that in an internai  LSR, 1he 
routing protocol of the network  layer is never used. 

Finally, once the MPLS packet arrives in the egress node (1), the router 
removes ali MPLS prints (2) and transmits the packet to 1he network layer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(El Label 
 

- !Ppacket 
 

Figure A.3- Egress Node in MPLS network. 
 

Thus, we notice 1hat 1he routing  of a demand  is made between  its 
extœmity nodes.  We now need  to find  a routing  algorithm  to find ali 
needed  LSPs to route the traffic. 

 

 

A.1.2. Routing Principle 
 

As described  above, the routing strategy  is based  on label switching.  A 
LSR in the MPLS network switches labels by studying the incoming label 
and port, reads 1he switching  table and then sends 1he packet to the next 
node. Labels are assigned to a packet only once in the border of the MPLS 
network  by an ingress node  E-LSR (Edge Label Switch  Router) where  a 
cakulation is done on 1he datagram  to find 1he specifie label. This caku- 
lation is done only once by the ingress node, depending of its destination. 
Thus, 1he ingress node chooses the end-to-end routing of the demands. 

The routing of a demand  is done  using RSVP-TE (Resource Reserva- 
tion Protocol- Traffic Engineering) (Awduche et al. 2001). We will not go 
further into this routing protocol but we will point  out the main charac- 
teristics of this routing.  Each demand  may be routed by one or severa! 
LSP(s), and every LSP assodaœd to a flow may be configured in order to 
ensure QoS. 
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A.2  EFR - Implementation issues 
 

The numerical results clearly show that both "centralized" and distributed 
ShRR strategies are cost-effective, with  results close to  that  of  global 
rerouting (GR), which is a lower bound of the cost of a network for all rout- 
ing strategies. In several cases EFR strategies  are also more cost-effective 
than end-to-end rerouting  with  stub release (RR). Nevertheless, the gap 
between these strategies and ShRR remains significant.  Hence, a natural 
question here would be: what is the interest of EFR/DEFR strategies? The 
answer is directly linked to the management cost these strategies will have 
in practice, as discussed below. Let us focus first on the distributed variant 
of ShRR, that is to say DShRR. This strategy uses only extremity nodes of 
affected demands to initiate the recovery process after a failure. We notice 
that when a failure occurs new paths may have to be created. This action 
can only be performed by the source node of the demand. This creation 
of a new path is preceded by decreasing the bandwidth  of some paths, 
which can be performed by both source and destination nodes. Unlike 
the DShRR strategy, DERR does not need to create new paths to recover 
the traffic  after a failure.   This strategy only increases or decreases the 
bandwidth  of some (possibly) affected paths to recover the traffic.  It is a 
feature of great interest, since the restoration delay is significantly reduced 
in comparison to DShRR. To show this, let us describe in detail the process 
of creation of a new path. 

Depending on the transport protocol, establishing a new path from the 
node source to its destination will  have a cost which greatly depends on 
the number of links.  Let us look how this is accomplished using the Re- 
source Reservation Protocol (RSVP) (see (Braden et al. 1997, Braden and 
Zhang 1997)). First, the source node sends a PATH message, which con- 
tains the required flow parameters (TSPEC), to the destination node using 
the routing protocol. Then, every visited router has two operations to per- 
form:  storing the PATH-STATE, i.e.  the message received from the last 
node to have transmitted the message, and modifying  the ADSPEC field, 
i.e. the flow  parameters, when the required bandwidth  is not available. 
When the destination node receives the PATH message it uses both the 
TSPEC and the ADSPEC fields to determine the parameters of the flow, 
and sends the flow descriptor, using a RESV message, to the source node 
using the same path as the PATH message. Finally, the source node sends 
a RESV-CONF message to the destination node validating the opening of 
the flow.  This means that the time needed to create a new path is almost 
3 times as long as the time needed to transfer data from the source to the 
destination node (c denotes the end-to-end transfer time). In contrast, the 
time required for decreasing or increasing the bandwidth  is significantly 
lower. In order to maintain the flow, periodically, the source node sends a 
PATH message to the destination node, and the destination node sends a 
RESV message to the source node. The flow parameters included in these 
messages can be modified  to increase or decrease the bandwidth  of the 
path.  We will  use this property  to perform bandwidth  modification  for 
DShRR and DERR. Hence, if the destination node of some affected de- 
mands initiates the decreasing (resp. decreasing/increasing) process for 
DShRR (resp. DEFR), the time needed will  be equal to c. This is possible, 
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since the source can use the updated path immediately after receiving the 
PATH message from the destination node (Figure A.4.a). If it is the source 
node that initiates the process, the time needed to modify the bandwidth 
is equal to 2c, because the source node has to wait for the confirmation 
before using the updated path (Figure A.4.b). It will be remarked that this 
procedure cannot be employed to create a new path. 

 
(3) Data 

 

(1) Path 
S  D 

 

(2) Resv 
 

(2) Data 
(a) 

 

S  D 
 

(b) 

 

(1) Resv 

 

Figure A.4 – Bandwidth  increase procedure, managed by source node (a) and 
destination node (b) for DEFR. 

 

In both strategies it is important to begin by decreasing the bandwidth 
of paths of non-affected demands, before increasing the bandwidth of non- 
affected paths of the affected demands. Indeed, before the bandwidth  of 
any path is increased it must be certain that there is sufficient available 
bandwidth,  otherwise the process will  fail and must be restarted.  This 
situation is depicted in Figure A.5. 

 
Path 

{TSPEC, ADSPEC} 
Path 

{TSPEC, ADSPEC2} 
Path 

{TSPEC, ADSPEC2} 
 

S  D 
 

Resv (Re = ADSPEC2, Resv_Te = TSPEC) 
 

Resv 

S    D 

ResvErr 
 

Figure A.5 – Failed attempt to increase the bandwidth  of a path managed by source 
node (up) and destination node (down). 

 

The DEFR strategy would  thus appear to be faster than other end- 
to-end rerouting  strategies that employ new rerouting  paths, including 
DShRR. 
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A.3  SNDlib - Graph details 
 

SNDlib (Orlowski  et al. 2010) is a library  of test instances for Survivable 
fixed telecommunication Network  Design.  Its purpose is to make real- 
istic network  design test instances available to the research community 
and to serve as a standardized benchmark for testing, evaluating, and 
comparing network design models and algorithms.  In the document, we 
use undirected networks pdh, di-yuan, polska, nobel-us and nobel-germany. 
TableA.1 represents the number of vertices, edges and demands of each 
networks, as well  as the maximum  and minimum  degree of the corre- 
sponding graphs (∆(G), δ(G)). 

network              |V |     |E |     |D|    ∆(G)    δ(G) 

pdh                      11     34     24        9          7 
di-yuan               11     42     22        9          7 
polska                 12     18     66        5          2 
nobel-us             14     21     91        6          2 
nobel-germany  17     26    121      4          2 

 

 

Table A.1 – Description of SNDLib Network  instances 
 

In the sequel of this section, we present the topology of all five net- 
works. 

 

 
Figure A.6 – Topology of networks pdh (left) and di-yuan (right). 

 
 

 
Figure A.7 – Topology of networks polska (left) and nobel-germany (right). 

 
 

 
Figure A.8 – Topology of network nobel-us. 
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tion model for communication networks resilient to multiple partial link 
failures.   In Proceedings  of the 12th INFORMS Telecommunications Con- 
ference (INFORMS Telecom 2014), Lisbon, Portugal, March 2014b. (Cité 
pages vii and ix.) 

 

Y. Fouquet, D. Nace, M. Pióro, M. Poss, and M. Ż otkiewicz.  Flow adjust- 
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