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ABSTRACT v

Abstract

Self-optimization of Infrastructure and Platform Resources
in Cloud Computing

Bo Zhang

Elasticity is considered as an important solution to handle the performance

issues in scalable distributed system. Particularly in Cloud computing, it has

been regarded as an important property. Meanwhile, according to the rise of Big

Data, many Cloud providers as well as open-source project (i.e., OpenStack)

begin to focus on Hadoop. They have proposed many approaches to simplify the

deployment and management of Hadoop cluster for benefiting from Cloud elastic-

ity. However, most of the researches of elasticity only concerned the provisioning

and de-provisioning resources in automatic ways, but always ignore the resource

utilization of provisioned resources. This might lead to resource leaks (i.e., the

resources are occupied but not used for processing) while provisioning redundant

resources, thereby causing unnecessary expenditure. To avoid the resource leaks

and redundant resources, my research therefore focuses on how to maximize re-

source utilization by self resource management.

In this thesis, relevant to diverse problems of resource usage and allocation in

different layers, I propose two resource management approaches corresponding to

infrastructure and platform, respectively.

To overcome infrastructure limitation caused by OpenStack, CloudGC —

i.e., a new garbage collecting system — is proposed as middleware service which

aims to free occupied resources by recycling idle VMs. Moreover, cooperating with

its Recover function, the recycled VMs can also be resumed whenever needed, thus

CloudGC is able to make Cloud infrastructure support more requirements than

before by successfully eliminating resource leaks in Cloud.

On platform-layer, a self-balancing approach is introduced to adjust Hadoop

configuration at runtime, thereby avoiding memory loss and dynamically optimiz-

ing Hadoop performance. Finally, this thesis concerns rapid deployment of service

which is also an issue of elasticity. A new tool, named hadoop-benchmark, applies



vi

docker to accelerate the installation of Hadoop cluster and provides a set of docker

images which contain several well-known Hadoop benchmarks.

The assessments show that these approaches and tool can well achieve resource

management and self-optimization in various layers, and then facilitate the elastic-

ity of infrastructure and platform in scalable platform, such as Cloud computing.
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Chapter 1

Introduction

Recently, software elasticity becomes a popular solution in many domains. To

satisfy SLA (Service-Level Agreement) or QoS (Quality of Service) constraints,

the service provider requires the ability to dynamically scale the system to ensure

reasonable performance. In Cloud computing, elasticity is usually confused with

scalability but, compared to scalability, elasticity is much more intelligent as it

also covers spontaneity, effectiveness, and timeliness issues. These features allow

the elasticity to guarantee the system performance, while not causing excessive

even infinite increase of the induced costs (monetary or physical).

However, even though the elasticity has many advantages and has attracted

lots of attention from research and industrial communities, it cannot solve ev-

ery scalability problems in software systems—i.e., elasticity only focuses on the

relation between system performance and resource consumption, but it does not

consider the Resources Usage Efficiency (RUE). While elasticity might result in

the waste of physical resources in order to meet SLA or QoS constraints, I be-

lieve that elasticity would clearly benefit from the integration of clever resource

management heuristics in order to automatically optimize the RUE prior to the

integration of any further resources. This thesis therefore explores such resource

management mechanisms and heuristics that can be applied to the Infrastructure-

as-a-Service (IaaS) and Platform-as-a-Service (PaaS) layers of a Cloud computing

infrastructure. By focusing on these two layers, I intend to deliver reusable solu-

tions that can be exploited by a wide diversity of applications made available as

Software-as-a-Service (SaaS).

The contributions reported in this thesis have been conducted in the context

1



2 CHAPTER 1. INTRODUCTION

of the Datalyse collaborative project.1 Datalyse is a French research project

which addresses, but is not limited to, the Big Data domain. Datalyse is inter-

ested by almost all works related to Big Data, from application development to

infrastructure maintenance, from industrial requirements to academic researches.

In this domain, there are several well-known data processing platform, such as

Hadoop, Storm, Spark. Hadoop, as the best-known platform, provides a com-

plete ecosystem from data storage to a set of high-level applications. It is regarded

as de facto standard in Big Data domain. Storm and Spark focus on stream

computing and in-memory computing, respectively. Compared to Hadoop, they

have different designs and performances depending on case studies. Datalyse

rather focuses on Hadoop within the PaaS layer. Additionally, with the rise of

Cloud computing, big data platform are more and more deployed as virtual ap-

pliances on top of Cloud platforms, like OpenStack. In this configuration, in

order to fully benefit from physical resources, the optimizations can not only be

considered within the PaaS layer, but it also requires to consider the implications

on the IaaS layer.

In this thesis, I therefore focus on the resource management issues in both

layers: PaaS and IaaS. More specifically, I decided to investigate resource manage-

ment optimizations that can be applied in Hadoop and OpenStack. Hadoop

is a famous distributed data processing environment in Big Data domain. It is an

open-source project, promoted by the Apache consortium, which allows end-users

to process large data sets across a cluster of compute nodes. Hadoop contains

several modules providing a wide range of services from data storage to parallel

computation. Meanwhile, Infrastructure-as-a-Service (IaaS) appears as an appro-

priate infrastructure provider for an Hadoop cluster, especially when an Hadoop

cluster requires to scale on-demand. Cloud computing aims to help users flexibly

obtain virtual resource upon their requirements. However, Cloud providers may

tend to over-provision the physical resources to meet the expected QoS and SLA

guarantees. Due to the disregard of resource usage, the scalability (even elastic-

ity) of Cloud computing will become inefficient while causing resource waste and

expenditure overruns.

1http://www.datalyse.fr
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1.1 Big Picture

The big picture of this thesis is depicted in Figure 1.1. One can observe

that this thesis focuses on a multi-layer processing system. Except the high-level

applications, the other two layers compose our target system. In this case, the

system performance is obviously affected by either infrastructure layer, platform

layer, or even both layers.

Openstack
(private Cloud)

Hosts

EC2
(public Cloud)

Hosts

Hadoop Cluster
(Big Data)

High-level Applications

Figure 1.1: The big picture of research environment.

In this system, the infrastructure can be supported by diverse resources, such

as virtual resources provided by Cloud computing or physical resources of hosts.

According to the variety of resource requirements from high-level applications,

Cloud computing is considered as an economical and practical choice. At the

moment, there are many Cloud providers providing various possibilities for us to

construct the infrastructure. To simplify the construction of our research testbed,

easily reproduce the problems, and ensure the generality of our research solutions,

we select the private Cloud supported by OpenStack as the achievement of the

system infrastructure.

Within the platform layer, we focus on the Big Data domain. Because of the

rapid growth of diverse business and the developments of terminal sensors, more

and more data have to be quickly gathered and need to be processed as fast as

possible. This raises many arduous challenges on relative domains of Big Data,

such as data storage, analysis, processing etc. Furthermore, Hadoop—i.e., a
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de facto standard processing solution in Big Data domain—has attracted lots of

attentions from several Cloud providers, such as AWS. Even OpenStack begins

to support the Hadoop deployment and management by its sub project Sahara.

We therefore choose Hadoop as the service platform to keep the pace of research

and industrial communities.

Based on the big picture, we organize the contributions of this thesis along

these two layers: infrastructure and platform.

1.2 Infrastructure - Cloud computing

Cloud Computing is a network-based computing that provides shared resources

on demand. The main purpose of Cloud computing is to migrate the job process-

ing and data storage from local machine to remote servers. The implementation of

Cloud computing is a framework that (1) enables on-demand access to a shared

pool of configurable computing resources (e.g., CPU, RAM, storage, and network),

(2) supports multi-tenant with high security, high availability as well as high reli-

ability, and (3) efforts to minimize the management of virtualization technologies

to leverage the provisioning and release of VMs.

Cloud providers advocate “everything as a service” and they structure their

services in three standard models according to different layers : Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

• Software as a Service (SaaS) : This model aims to provide the applications

installed on Cloud for the end-users. SaaS is similar to the typical service-oriented

architecture. The users can access the application via website or program in-

terface, and do not need to take care of the maintenance of applications and

infrastructure. But the service providers is released from the infrastructure and

platform matters —i.e., the Cloud providers are responsible to maintain infras-

tructure and platform—and can focus on the improvement of QoS. Furthermore,

the Cloud infrastructure and platform is more scalable and adjustable than the

hardware. This feature is attractive to the service providers that needs to fre-

quently scale up and down the system to satisfy fluctuating workloads.

• Platform as a Service (PaaS) : PaaS allows platform providers to deliver a
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computing platform to application developers. The platform consists typically

of operating system, specific execution environment, database, user-interfaces,

etc. The application developers can develop, test, and execute their software

systems on the platform without considering the underlying hardware. Some

PaaS systems (e.g., Microsoft Azure, Google App Engine) can automatically

scale underlying computers and storage resources according to the application

demand. The administrators of PaaS systems also do not need to think about

the matters of infrastructure, but can control the deployed applications and the

application-hosting environment.

• Infrastructure as a Service (IaaS) : IaaS model permits users to control

diverse resources, such as network, operating system, database, VM type, VM

number, etc. The users must customize and maintain the VMs to support their

platform as well as software like administrators of actual infrastructure. How-

ever, IaaS model prevents Cloud users from dealing with numerous details of in-

frastructure like machine maintenance, location, data partitioning, security etc.

Benefiting from “pay as you go” billing model, Cloud-users can also more easily

tune the infrastructure than before.

Cloud computing can help the end-users to avoid upfront infrastructure costs,

and to focus on their jobs instead of on infrastructure. Furthermore, Cloud com-

puting also permits end-users to rapidly and easily adjust their “infrastructure”

to meet varying workloads. And compared to the real materials, the maintenance

of the “infrastructure” (i.e., VMs) is much less and easier. Besides these signifi-

cant advantages, thanks to wide-bandwidth network, low-cost VMs, huge storage

volumes, concise user interfaces as well as the rapid increase of computing needs,

Cloud computing has become a reasonable choice for many service providers.

As Cloud computing become more and more popular, the relative researches

of Cloud computing also attracts lots of attention from research and industrial

communities, such as elasticity. Even though many Cloud providers want their

users to consider the Cloud as an infinite resource pool, the limitation of infras-

tructure still exists, particularly in the case of private Cloud (i.e., OpenStack

Cloud). The primary idea of researchers and developers is to improve the elas-
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ticity of Cloud computing for dynamically provisioning resources to meet users’

requirements. However, due to stiff resource allocation mechanism and infras-

tructure limitations of OpenStack, the elasticity in Cloud infrastructure may

cause redundancy of physical resources (over-provisioning), increase the operating

cost of Cloud as well as other expenses, such as energy consumption and carbon

emissions. To avoid this problem, I propose an approach in Chapter 4, named

CloudGC, to recycle the idle resources in Cloud to serve more users when the

total requirement reaches the limitation of Cloud infrastructure.

1.3 Service Platform - Hadoop

Hadoop is an open-source project which aims at providing reliable, scalable,

and distributed computing to deal with large datasets. This project is designed in

a master-slave architecture, which can be easily extended from a single machine

to thousands of compute nodes. Hadoop includes 4 core modules:

• Hadoop Common is the base library supporting all the other modules.

• Hadoop Distributed File System (HDFS) is a distributed file system

providing storage service for Hadoop applications across clusters. HDFS is also

designed as a master-slave architecture. It consists of 1 NameNode and a set of

per-node components DataNode. NameNode manages the file-system metadata,

which keeps track of the location of actual data in HDFS. DataNode is responsible

to store the actual data in the disk of compute nodes. This architecture helps

users to quickly locate the desired data without browsing the entire file-system,

resulting in high-throughput access to application data.

• Hadoop YARN is a scheduling framework included in Hadoop since an

overhaul of Hadoop architecture in 2012. YARN focuses on job scheduling and

cluster resource management. The MapReduce or another high-level framework

therefore can build on YARN to ensure the job processing. However, due to

the static configuration and the defects of architecture, YARN may degrade the

Hadoop performance instead of optimizing it. This problem and my proposition

will be further explained in Chapter 5.1.
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• Hadoop MapReduce is a famous parallel processing framework. This mod-

ule has been updated to a YARN-based system in Hadoop2 since 2012. But its

processing paradigm remains the same as before—i.e., MapReduce processing

paradigm contains Map and Reduce phases, and the intermediate results is still

organized by a shuffle phase. As a famous and popular processing framework, I

used this module as the application (service) of Hadoop cluster in this thesis.

Next to the core modules, Hadoop has a complete ecosystem. The other Hadoop-

related projects include Ambari, Avro, Cassandra, Chukwa, HBase, Hive, Mahout,

Pig, Spark, Tez, ZooKeeper, etc. The ecosystem of Hadoop is shown in Fig-

ure 1.2.
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Figure 1.2: Ecosystem of Hadoop.

Because of the scalability of Hadoop cluster, many service provider begin to

transfer Hadoop service to Cloud for benefiting from IaaS, such as Hadoop on

Google Cloud Platform 2. However, due to the static configuration and the defect

of architecture, Hadoop cluster may waste resource when processing concurrent

workloads, resulting in loss of performance. To solve this problem, we focus on the

resource management of Hadoop cluster and propose an approach to dynamically

adjust Hadoop configuration at runtime in Section 5.1.

2https://cloud.google.com/hadoop
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1.4 Resource Optimization

In Cloud computing, elasticity is considered as an ability which permits the

system to automatically adjust to the workloads. It is an important criteria to

distinguish Cloud computing from the other computing paradigms, such as grid

computing. Elasticity aims to quantify the resource allocation for avoiding the

resource over- and under-provisioning in an autonomous manner.

• Over-provisioning means excessive resources allocated compared to the re-

quirements. This can help the system to guarantee the performance, but also

induces an high expenditure which may degrade the user experience, resulting

in low QoS. Meanwhile, for the service providers, over-provisioning leads to the

cost increase (e.g., physical machines, energy consumption)—i.e., to satisfy their

users, they must pay a higher cost than the expected one.

• Under-provisioning is contrary to over-provisioning. It can save the cost to

both end-users and service providers. However, under-provisioning is the typical

cause resulting in the loss of performance and has grabbed lots of attention.

In details, the elasticity of Cloud computing has several properties : spontane-

ity, effectiveness, timeliness, and scalability.

Spontaneity decides autonomously when the system needs to be scaled up

or down. The moment determined by spontaneity must conform 2 conditions:

(1) the current system performance cannot satisfy user requirements, (2) the per-

formance degradation is certainly caused by the lack of resource. To be considered

as “elastic”, a system must satisfy the premise that it can autonomously adapt to

the workloads only at the necessary moment. This premise is an important prob-

lem to elasticity researches, but also the most forgotten part. My thesis aims at

focusing on this problem and complementing the current elasticity researches.

However, only supporting spontaneity is far from becoming an elastic system.

The main purpose of elasticity is to avoid either over- or under-provisioning of

resources. In this case, the precise amount of resources to be provisioned or de-

provisioned becomes a key problem in elasticity. Effectiveness therefore is one

of the core properties in elasticity. Furthermore, timeliness is also important.
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Both end-users and service providers all expect the elasticity can help systems to

optimize the performance. But a long period of provisioning or de-provisioning

will certainly degrade the impact of elasticity. Finally, scalability is a classical

topic in many domains.

These properties are corresponding to several classical problems in elasticity.

• Resource Allocation Delay impacts directly the effect of elasticity. In Cloud,

the resource is provided in the form of VM (virtual machines). Even though end-

users can require VM at any time, the acquirement of VM is not instantaneous.

The VM is not available until its operating system becomes ready. The deploy-

ment time of VM depends on many factors, such as its flavor (VM size), image

size, network connection, infrastructure congestion, number of provisioned VMs,

etc.

• Precise Scalability requires deep analysis of the applications deployed on the

Cloud. For various applications, the trade-off between system performance and

resource consumption will be widely different. Moreover, this trade-off is also

difficult to be quantified in real world.

• Application Monitoring is also a concern of elasticity. Due to the elasticity,

the resources allocated to the applications become volatile—i.e., in Cloud, the

VMs occupied by applications can be dynamically added or removed. The tra-

ditional monitoring tools based on fixed clusters are no longer suitable to elastic

systems, such as Ganglia or Nagios. Furthermore, the variable cluster size (i.e.,

number of VMs) of applications proposes new challenges to the aggregation of

the metrics (e.g., the mean of CPU utilization).

• Multi-Level Control reveals a new challenge of elasticity in Cloud computing.

Besides the impact on application-level, the provisioning and de-provisioning be-

haviors also affect the performance of Cloud computing which will be exposed

in Chapter 4. Any control in low-layer (e.g., infrastructure) may cause unpre-

dictable impact upon high-layer, and vice versa.

The researches about elasticity in Cloud computing realize wide coverage across

layers (from infrastructure to application) and across domains (from monitoring
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to scalability). However, as I enumerated above, the core problems of elasticity do

not concern the resource utilization—i.e., most of these researches only focus on

the performance optimization, but ignore the usage improvement of provisioned

resources. This is prone to cause over-provisioning and degrade the benefits of

elasticity. As I explained before, this thesis therefore focuses on the resource

optimization of provisioned resources to achieve the optimal performance that the

current infrastructure can. This can also be regarded as a part of spontaneity

researches in elasticity, or an complementation of elasticity.

The resource optimization aims at improving the system performance by elim-

inating limitations (e.g., misconfiguration) based on provisioned resources. Even

though the QoS cannot satisfy the user demand, the resource optimization can

reveal the necessity of additional resources to guarantee the performance, and im-

prove the effect of elasticity. In this case, the resource optimization is therefore

an important complement of elasticity, especially to improve the spontaneity of

elasticity.

1.5 Thesis Contribution

In this thesis, I first focus on the resource management to improve the re-

source usage at runtime. The service performance and infrastructure efficiency

will therefore be improved. And then, based on the definition of elasticity, my

research concerns the rapid deployment of service, which is an important part of

service elasticity. The contribution of this thesis can be divided into 3 parts —i.e.,

1 focusing on OpenStack (infrastructure) and the other 2 concerning Hadoop

(platform):

(1) an OpenStack garbage collecting system, named CloudGC, is realized to

recycle the idle VMs in Cloud. This new middleware service achieved by

CloudGC lets the Cloud providers to serve more end-users within the same

Cloud infrastructure.

(2) a self-balancing approach is proposed to improve job parallelism and through-

put at runtime to elevate the memory utilization of Hadoop cluster, resulting

in the performance optimization.
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(3) a rapid deployment tool to accelerate the installation and expansion of pro-

visioned Hadoop clusters. This tool also aims at facilitating the related

researches of elasticity of Hadoop cluster.

CloudGC is an OpenStack garbage collecting system. As previously in-

troduced, OpenStack is a large open-source project to build Cloud platforms.

The Cloud supported by OpenStack contains lots of tools which provide a wide

range of services, such as resource allocation, resource monitoring, VM schedul-

ing etc. In the course of processing multi-tenant requires, the resource allocation

mechanism of OpenStack expose a serious problem that the resource allocation

ignores the actual resource utilization—i.e., when the resource occupation reaches

the infrastructure limitation (or quotas limitation), any new requirement cannot

get the resource even though the Cloud is actually idle. To address this problem,

I propose a new system, named CloudGC. It aims at recycling the idle VMs to

eliminate the idle resource occupation, thereby allocating resources to those who

really need them. The Cloud can therefore satisfy more requirements than before,

without scaling up the infrastructure. CloudGC also contains several strate-

gies to handle explicit and implicit idle VMs together. From the evaluations, one

can recognize that CloudGC can help Cloud surpass its infrastructure limitation

when idle VMs appear. The proof of motivation and the detail of CloudGCwill

be illustrated in Chapter 4.

Chapter 5 introduces a new self-balancing algorithm which aims to improve

memory utilization of Hadoop cluster. Hadoop is a famous distributed data-

processing environment in Big Data domain. It has a complete ecosystem and a

large set of high-level applications concerning many research and industrial fields,

such as data mining, machine learning, distributed storage etc. However, af-

ter lots of experiments, we observed that (1) the static Hadoop configuration

cannot guarantee the optimal system performance for different workloads, and

(2) the Hadoop performance will expose a non-monotone behavior according to

the change of configurations. Based on the understanding of Hadoop architec-

ture and the analysis of memory consumption, I propose a self-balancing algorithm

to adjust Hadoop configurations at runtime, thereby improving memory utiliza-

tion of Hadoop cluster when processing concurrent workloads. The approach
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containing this algorithm is implemented in a feedback control loop. The eval-

uations reveals that this approach can significantly optimize the memory usage

when Hadoop cluster handles concurrent workloads, thereby improving system

performance. The details will be further explained in Chapter 5.

Finally, a new tool, named hadoop-benchmark, is proposed to accelerate the

deployment of Hadoop cluster. This tool benefits from Docker container tech-

nologies, which aims to achieve lightweight application deployments. Using the

Docker image service, Docker container technologies can quickly provision an

operating environment for applications, where all the dependencies execute. In

my case, I package a complete Hadoop cluster into several images (e.g., images

for control-node, for compute-node, and for several well-known Hadoop bench-

marks) I evaluate this tool with virtualbox in a single node, Microsoft Azure, and

Grid5000. THe evaluation show that Hadoop-benchmark can simplify and accel-

erate the deployment of complete Hadoop cluster on different infrastructures.

This is important to prove that Hadoop-benchmark can facilitate the researches of

elasticity in various scalable environment, such as Cloud computing.

1.6 Thesis Organization

The rest of this thesis is organized as follow. The part 2 (State of the Art)

consists of two chapters. Chapter 2 exposes the related work of infrastructure-

level optimizations in Cloud computing. And the state of the art for platform-

level optimizations, related to Hadoop, is introduced in Chapter 3. Then, in the

next part (Contribution), Chapter 4 illustrates a resource loss problem in Open-

Stack Cloud and introduces a new middleware system, named CloudGC (cf.

This research has been accepted as full paper by IC2E 2017 3), to improve the

resource utilization. Next to the resource optimization of infrastructure, Chap-

ter 5 presents 2 Hadoop-related works: (1) a self-balancing approach [63, 64] of

Hadoop cluster, based on YARN, to improve the memory utilization at runtime,

thereby optimizing the QoS of Hadoop cluster when processing concurrent work-

loads; (2) Hadoop-benchmark, a rapid deployment tool of Hadoop cluster with

3http://conferences.computer.org/IC2E/2017/
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a set of well-known Hadoop benchmarks, is proposed in this chapter. Finally, I

conclude in Chapter 6 and finish this thesis with my perspectives in Chapter 7.





Part : State of the Art





Chapter 2

Infrastructure-level Optimizations

As a kind of network-based computing, Cloud computing can be regarded

as a general term for the on-demand delivery of remote computing resources.

It enables Cloud users to consume computing resources as a utility rather than

having to build and maintain local infrastructure. Within this shared resource

pool, Cloud users can flexibly allocate compute resources from the Cloud and freely

release them on demand. Compared to local infrastructures, Cloud computing can

significantly reduce the expenditure and liberate resource users from the tedious

maintenance. This makes Cloud computing a preferable choice for those needing

the resources only for a short term or having no ability to build local infrastructure.

The beneficiaries are distributed along a wide range, from large companies to

new entrepreneurs. In this case, Cloud computing becomes an attractive topic

in industrial and research communities. Many companies and research institutes

have provided various implementations, such as public cloud (e.g., Amazon EC2)

and private cloud platform (e.g., OpenStack).

OpenStack is an open source project, which is released under the terms of the

Apache License1. It began in 2010 as a joint project of Rackspace Hosting2 and

NASA3. OpenStack does not only help users to easily and quickly create private

cloud, but it also permits users to customize the cloud on demand. This also

allows many researchers to go deeper into the architecture of the Cloud to identify

problems, explore new solutions, integrate and experiment them on private Cloud

testbed. As an open source project, OpenStack is therefore important for the

1http://www.apache.org/licenses/LICENSE-2.0
2http://www.rackspace.co.uk
3https://www.nasa.gov

17
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development of Cloud computing.

The researches of Cloud computing focus on several characteristics:

− Cost is an important factor for stakeholders, both Cloud providers and users.

Many researchers try to help users minimizing the cost of their consumptions,

while maximizing the performance in a complex computing environment, such

as hybrid or heterogeneous Cloud. They provides diverse methods to compare

the possible performance and unit expenditure, with various combinations to

determine the optimal strategies of resource allocation. In contrary, Cloud

providers also want to serve more users with fewer resources, which take lower

costs (e.g., monetary expenditure, energy consumption).

− Scalability or Elasticity is a popular topic in Cloud computing, which indi-

cates the ability of Cloud computing to autonomously and dynamically manage

resources. These researches involve lots of areas, such as self-adaptation, cyber-

netic, etc. This characteristic is an important indicator to differentiate Cloud

computing from the other cluster or grid computing.

− Security does not only protect the user privacies, but also concerns the normal

operation and maintenance of Cloud computing. Beyond the algorithm devel-

opment and architecture optimization, the multi-tenancy and resource sharing

also highly affects these researches.

− Reliability improves Cloud computing by strengthening its ability to resist

risks. This is important to Cloud computing, particularly when there are con-

gestion or over-loads which easily result in the failure of user requests.

− Agility allows Cloud users can quickly provision or de-provision resources,

which obviously affects the user experience.

− and etc.

2.1 OpenStack

The Cloud can be regarded as a resource pool which provides computing ser-

vices for end-users in a remote environment. The Cloud computing supports
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different items “as a service” (e.g., software, platform, infrastructure)—i.e., SaaS

(Software-as-a-Service), PaaS (Platform-as-a-Service), and IaaS (Infrastructure-

as-a-Service) are the three typical services of Cloud computing. OpenStack

belongs to the latter category and is considered as a reference implementation of

a IaaS. OpenStack is an open-source Cloud operating system that contains a

set of software tools for Cloud computing services of public and private Clouds.

It aims to help Cloud providers to dynamically manage the resources and to sim-

plify the procedure of resource allocation for end-users. OpenStack can manage

various computing resources (e.g., compute, storage, networking) and can regroup

them by the form of VM. It allows end-users to customize the VM with their

favorite “flavor”—i.e., a template of VM which has defined CPU, RAM, and disk

informations—and Operating System (OS).

OpenStack contains several different moving components. Because of its

open-source nature, the Cloud providers can enable, disable, modify, and even

add new components into the architecture to meet their needs. However, there

are 9 core components identified by the OpenStack developers. The architecture

of OpenStack is shown in Figure 2.1.

I) Nova is the principal component in OpenStack. It can be considered as

Cloud computing fabric controller, which supports variety of virtualization

technologies (e.g., KVM), as well as bare metal and High-Performance Com-

puting (HPC) configurations. The IaaS is mainly achieved by Nova. Nova

is also designed as a computing engine, which serves to provision and to

manage large sets of VMs on demand.

II) Glance is responsible for image services in OpenStack. For virtualiza-

tion technologies, images refer to virtual copies of physical machines, which

can be regarded as a template when deploying new VM. The services sup-

ported by Glance include discovering, registering, and retrieving images in

OpenStack. Furthermore, end-users can also use Glance to backup a live

VM.

III) Swift is a highly available, distributed, and consistent storage system for

objects and files. It is designed to store and retrieve lots of unstructured
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Figure 2.1: Architecture of OpenStack

data with a sample API. Swift primarily serves to store the volumes created

by Cinder or the images registered by Glance. Swift let the system —i.e.,

OpenStack in this case, rather than users, decide where to store the data.

End-users therefore also needn’t to worry about how best to back up the

data in case of the failure of compute nodes or network connection.

IV) Ceilometer is a monitor component in OpenStack. It regularly reports

various metrics of the other components and the resource usage in Open-

Stack. Moreover, Ceilometer can also expose the resource utilization (e.g.,

CPU utilization) of each VM in Cloud. The CPU utilization of VM, collected

by Ceilometer, is an important metric for CloudGC to detect the idle VM.

Besides these 4 core components , OpenStack still contains Keystone which
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provides authentication service to each other component and data center of Open-

Stack, Neutron ensuring the network connection among all the other compo-

nents and VMs, Cinder which arranges volume services, Horizon dashboard of

OpenStack, and Heat that orchestrates OpenStack.

Furthermore, OpenStack also contains lots of additional components, like

Mistral which is used to manage workflows, Trove being a database-as-a-service

engine, Ironic supporting bare metal provisioning service, Manila which is an

OpenStack shared file system, Designate managing DNS for multi-tenant,

Searchlight providing advanced and consistent search capabilities across various

OpenStack cloud services, Zaqar supporting messaging service for multi-tenant,

and Barbican for secure storage etc. In particular, Sahara is a component for

managing Hadoop cluster to achieve Elastic MapReduce service. This component

shows the ambition of OpenStack communities and their willing to build the

connection between Cloud computing and Hadoop-based services. In this case,

Sahara also exposes the increasing importance of Hadoop system in Big Data

domain.

2.2 Infrastructure-level Optimizations

To the best of our knowledge, no approaches have been proposed so far on

developing an optimization inspired from garbage collectors and applied to the

Cloud, which is the infrastructure-level optimization we target. The most similar

approach is Heroku4, which operates at the Platform-as-a-Service (PaaS) level. In

Heroku, Cloud services deployed with the free offer automatically fall asleep after

30 minutes of inactivity, and are resumed on-demand, inducing a similar delay

to CloudGC for accessing the service again. At the IaaS level, several elasticity

solutions have been developed by public providers and academia. In the remainder

of this section, we will therefore present and discuss some of the closest related

works for IaaS that are relevant to our approach.

4https://www.heroku.com
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2.2.1 Resource Management

Recycling resources is the process of collecting, processing, and reusing Vir-

tual Machines (VMs). Current state-of-art Cloud infrastructures, such as Open-

Stack [46], do not support recycling inactive or ghost VMs to maximize the

amount of allocable resources for a given user. As a result, inactive nodes tend

to stay around longer and unnecessarily consume more resources than when an

efficient reclamation process is in place.

There are many proposed systems using resource management for various com-

puting areas [12, 24, 49, 51], but none of these systems focuses on the problem of

recycling VMs in addition to maximizing resource utilization. Then, these systems

are unable to identify inactive nodes and initiate the process to recycle the nodes’

resources.

Suraj et al. [49] introduce a PSO-based (Particle Swarm Optimization) sched-

uler to assign applications to Cloud computing. This scheduler does not only

consider the cost of VMs allocated in a cloud, but it also takes data transmission

into account, which concerns the network exchanges among VMs and external

users. Thanks to this scheduler based on a PSO algorithm, users can deploy their

applications in the cloud computing with the lowest expenditure, the most effi-

cient energy consumption, or both of them. From the comparison between this

scheduler and other approaches based on Best Resource Selection (BRS) algo-

rithms, the total cost of application in a cloud has been saved by at least 1/3.

However, rather than continuous monitoring and resource utilization optimization

of a cloud, this scheduler only affects the distribution or the resource allocation

for the user applications.

Rajkumar et al. [12] do not only present vision, challenges, and architectural el-

ements for energy-efficient management of data centers, but also propose resource

allocation policies, scheduling algorithms as well as a novel software technology to

achieve Green Computing in Cloud computing environments. Dang et al. [51] also

focus on the resource allocation strategy of data centers deployed on Cloud com-

puting. This research aims at minimizing the energy consumption of data centers

on Cloud computing while meeting the demands for highly-responsive computing

and massive storage. Compared to elevating resource utilization and cleaning un-
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necessary resource occupancy, the authors are more interested on how to make

sure the data center can allocate the suitable VMs which have enough capacity to

satisfy user requirements while consuming the least energy.

Compared to the three above resource management researches on Cloud com-

puting, Sijin et al. [24] also concentrate on the resource utilization of VMs. How-

ever, this research is only attracted by the limitations of resource utilization, which

are caused by misconfiguration of VMs and physical hosts in Cloud infrastructure.

The proposed solution cannot address the resource leaks caused by idle VMs.

Therefore, this research is able to improve the resource utilization in VMs but

cannot elevate the resource utilization of Cloud infrastructure.

Furthermore, existing energy-efficient resource allocation solutions proposed

for various computing systems [5, 13, 62] also cannot be using for recycling VMs.

This is because they only focus on minimizing the energy consumption or their

costs, and do not consider dynamic service requirements of consumers that can be

changed on demand in Cloud computing environments.

2.2.2 Cloud Elasticity

As one of the most important features of Cloud computing, elasticity has

grabbed lots of attention from industrial and academic communities. Many re-

searchers and Cloud providers have proposed various approaches and services to

realize Cloud elasticity at runtime to improve the QoS of Cloud computing.

These propositions can be separated into two categories: Horizontal elastic-

ity and Vertical elasticity.

• Horizontal elasticity is the typical elasticity which focus on tuning the amount of

VM instances to control the performance of applications deployed in the Cloud.

It is similar to the scalability but in a more intelligent manner, as it does not

only contain the scalability, but also concerns the spontaneity and timeliness of

scaling actions.

• Vertical elasticity can be regarded as a more fine-grained elasticity. These re-

searches concentrate on the adjustments inside VM instances. According to the

dynamics of workloads, the provisioned resources will be extracted (or added)



24 CHAPTER 2. INFRASTRUCTURE-LEVEL OPTIMIZATIONS

from (or to) the existing VM instances, such as modifying the type of VM

instances (e.g., transforming small instances to tiny ones).

2.2.2.1 Horizontal elasticity

Horizontal elasticity consists in adding/removing instances from the user

virtual environment to ensure the application performance while controlling the

user cost.

Beernaert et al. [6] proposed an adaptation and monitoring component for

IaaS atop of Cloud infrastructures: Elastack. Elastack is an example of horizontal

elasticity solution. It permits to add or remove VM instances according to the

dynamics of workloads. It continuously monitors all the VM instances on compute

nodes and then, based on the total CPU usage, the VM instances are added

or removed from the Cloud infrastructure to minimize the user cost while the

provisioned VM instances are able to support the QoS of user applications. One

can find that Elastack does not take into consideration the problems occurring

when user requirements reach infrastructure limitations: what will happen and

how to resolve or avoid this situation?

Kaleidoscope [11] is a similar work, but instead of launching a new instance

from scratch to satisfy a workload demand, the new VM instances are cloned

with a copy of complete or partial state of the existing VM instances. This can

simplify the configuration of new VM instances to degrade the negative impact

of misconfiguration, but the creation period will be prolonged. Furthermore, the

copy period might also affects the existing VM instances, thereby decreasing the

system performance of the VM instances.

Amazon WS [3] also allows users to dynamically add or remove VM instances

according to the needs. In addition, it provides a load balancer to distribute load

between different instances.

2.2.2.2 Vertical elasticity

Vertical elasticity consists in adding or removing resources of individual VMs

supporting the applications. Several works have been done on vertical elasticity.

Some works focus on CPU resizing, and others concentrate on memory resizing as

well as combinations of both.
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CloudScale [54] is an automatic elastic resource scaling system for multi-tenant

infrastructures. It provides an online resource demand prediction and an efficient

prediction error handling mechanism. It allows instances vertical scaling with

Dynamic Voltage Frequency Scaling (DVFS) to save energy. In addition, it permits

to solve the problem of conflicts when the available resources are insufficient to

accommodate instances scaling up requirements on a host.

In [55], a model-based approach to vertical scaling of vCPUs is proposed. This

approach allows resource allocation to the associated VMs in accordance with the

application Service Level Objectives (SLO).

Farokhi et al. [20] designed controllers that dynamically adjust the amount of

CPU and memory required to meet the performance objective of an application for

a given instance. This work did not only propose CPU and memory controllers to

adjust vertical elasticity for each, but also proposed fuzzy controller that acts as a

coordinator between the two controllers to adjust elastic actions of one controller

to the other.

However, for the current version, OpenStack does not support vertical elas-

ticity yet and, to the best of our knowledge, there is no literature which examines

whether OpenStack supports vertical scaling [56].

2.2.3 VM Consolidation

VM consolidation is an approach towards a more efficient usage of resources

in order to optimize the number of servers that an organization requires. Open-

Stack controls instance placements on compute nodes via the component nova-

scheduler. In particular, the Filter scheduler supports filtering and weighting to

make informed decisions on where a new instance should be created. OpenStack

can be configured to allow host-level control of VM placement. This can be done

by defining an availability zone in the configuration of each host. The identifier of

the availability zone can be passed to OpenStack as a parameter in a compute

create request; the OpenStack internal scheduler will then place the resource

appropriately. The VMs placement on physical servers has to take in account

several considerations, such as power consumption and performance metrics.

For example, Corradi et al. [17] proposed a Cloud management platform for
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OpenStack to optimize instances consolidation along three dimensions: power

consumption, host resources, and networking. This work runs experiments to eval-

uate the runtime side-effects introduced by consolidating VMs on OpenStack.

It showed that VM consolidation is convenient to reduce power consumption, but

could leads to performance degradation.

OpenStack Neat [7] is a framework for dynamic consolidation of VMs in

OpenStack clouds. The objective of this system is to reduce power consumption

and to avoid performance degradation. The system decides whether a compute

host is underloaded, so that all the VMs should be migrated from it, and it will

be switched to sleep mode to save energy. If a compute host is overloaded, some

VMs will be selected to be migrated and placed on other hosts in order to avoid

performance degradation. Efficient algorithms decide VMs migration and place-

ment. The system uses Wake-on-LAN [58] technology in order to reactivate hosts

in sleep mode if it decides to migrate new VMs to them. The framework migrates

VMs from on compute host to another but it does not not take in account the

limitation of the infrastructure.

Hong et al. [29] studied also the problem of efficiently consolidating many VMs

on a physical server with keeping the best trade-off between the Cloud provider

profits and client quality of experience. Quality-driven heuristic algorithms are

proposed to choose on which physical servers to deploy VMs based on the network

latency to the client.

More recently, Oasis [67] scales the cluster size by making the idle hosts fall in

sleep to save energy. During low resource utilization periods, Oasis migrates and

centralizes the VMs to low-power servers. This therefore 1) guarantees the running

of VMs and 2) allows the idle hosts to rest in sleep mode. Oasis is an asynchronous

migration approach. It partially migrates the idle VMs to consolidation host

firstly, and then making the idle host to fall asleep. When the VM requires all

its resources, the left part of the VMs will be migrated to the consolidation host

from the awakened home host. The main idea of Oasis is therefore to reduce the

power consumption, but not to improve the resource utilization—i.e., the number

of VM cannot exceed the limitation of infrastructure. Thanks to Oasis, the dense

server (host) consolidation can be used to save energy, thereby reducing the cost



2.3. SYNTHESIS 27

of whole cluster.

PowerNap [41] can rapidly tune system between high-performance state and

near-zero-power state in response to instantaneous workloads, particularly in the

case of frequent and brief burst of activities. When a server exhausts all the

pending jobs, the host will become nap state (i.e., near-zero-power state). In this

state, the power consumption become very low and no processing can occur. Until

NIC detects the arrival of new requests, the host will be woken up and return to

active state (high-performance state).

2.3 Synthesis

From the above related works, we can find that most of the recent researches

of Cloud computing focus on resource allocation, elasticity or VM consolidation

to optimize the system performance while minimizing the cost, such as power

consumption. Even though these researches are able to guarantee the QoS of

Cloud computing, their effectiveness is limited due to the disregard of resource

utilization of Cloud infrastructure. This therefore might cause resource waste

and result in unnecessary expenditure. To avoid the resource waste in Cloud

infrastructure (i.e., the idle resource occupation of idle VM instances), a new

middleware service is proposed to recycle idle VM instances to re-allocate the

Cloud resources for the other urgent requirements, thereby improving resource

utilization. This middleware service is implemented as a dedicated component

integrated in OpenStack, which will be introduced in Chapter 4.





Chapter 3

Platform-level Optimizations

Big Data is not only a term talking about the size of datasets (both structured

and unstructured data), but also a broad domain consisting of diverse issues, re-

searches, and applications in academia and industry. Due to the large volume of

datasets collected by numerous sensors (e.g., mobile), the processing and manage-

ment of these data become more and more difficult to guarantee the performance

and QoS. In this case, the integration of new techniques and technologies is re-

quired to overcome various challenges in Big Data domain, such as data analysis,

data storage, distributed processing, etc. Hadoop is therefore proposed as a soft-

ware solution to facilitate the development of Big Data applications. Thanks to

its evolution along years and the complete ecosystem, Hadoop has become the de

facto distributed data processing platform in Big Data domain.

According to the rise of Hadoop, industrial and research communities pay more

attention to this distributed data processing environment. Many large companies

begin to provide MapReduce services, such as Amazon Elastic MapReduce (Ama-

zon EMR) using Amazon EC2 as underlying cloud infrastructure. OpenStack

also propose a subproject, named Sahara, to provide a simple means to provi-

sion Hadoop cluster on top of OpenStack Cloud. These services and projects

obviously enrich the application environment and testbed of Hadoop-related re-

searches, that in turn lowers the barriers to entry of Big Data domain.

Benefiting from IaaS of Cloud computing, many researches are able to scale

Hadoop cluster to keep the pace of dynamics of workloads, thus protecting the

system performance. In this case, scalability and elasticity of Hadoop cluster

become attractive topics in Big Data domain. Moreover, due to the complexity

29
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of Hadoop projects and hundreds of configuration parameters, many researchers

also advocate various optimization approaches in different domains, such as self-

adaptation, data storage, etc. In this chapter, I enumerate several Hadoop-based

approaches, which can be considered as mainstream researches.

3.1 Hadoop

Hadoop is an open-source project for distributed storage and distributed pro-

cessing of large datasets. The data storage service is organized by HDFS (Hadoop

Distributed File System), which is a distributed system across multiple machines.

It adopts the strategies to (1) separately store the actual data and its corre-

sponding metadata in different components, and to (2) replicate the actual data

across multiple machines. This provides high-throughput access to the datasets

and guarantees the reliability of the database. Since 2012, Hadoop has introduced

a new component, named YARN, which is specifically responsible for scheduling

applications. The scheduling of high-level applications in Hadoop cluster is not

anymore an exclusive service packaged in MapReduce paradigm, but a Hadoop

core service for all Hadoop-based applications. The two components (i.e., HDFS

and YARN) of Hadoop basis will be further described in next section.

3.1.1 Hadoop Basis

Hadoop Basis is composed of the two main subsystems: HDFS (Hadoop Dis-

tributed File System) and YARN (Yet Another Resource Negotiator). The high-

level architecture is depicted in Figure 3.1. HDFS is an implementation of a dis-

tributed file-system that stores data across all compute nodes in Hadoop cluster. It

applies the master-slave architecture to achieve the unified database management

in the distributed system, while ensuring high throughput access to the stored

datasets. Typically, HDFS uses 11 NameNode server that hosts the file-system

metadata and a variable number of DataNode servers that store the actual data

blocks. This architecture provides an overview of database storage for the users

and obviously reduces the access time of all data sets. Benefiting from the meta-

data provided by NameNode, users can quickly locate and access to the target
1coupled with a secondary instance for high availability.
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data, rather than browsing the whole database. For the Big Data requests which

probably process a large set of data, HDFS can significantly accelerate the pro-

cess of these jobs. YARN is a cluster-level computing resource manager, which is

responsible for resource allocations and jobs orchestration. It consists of 1 per-

cluster ResourceManager that acts as a global computing resource arbiter and a

per-node NodeManager which corresponds to manage node-level resources.
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Figure 3.1: High-level Hadoop architecture.

Usual Hadoop cluster contains one Controller node dedicated to the Re-

sourceManager and NodeManager and a number of Compute nodes for the workers

running NodeManager and DataNode.

3.1.2 YARN

YARN is a cluster-level computing resource manager responsible for resource

allocations and overall jobs orchestration. It provides a generic framework for de-

veloping distributed applications that goes beyond the MapReduce programming

model. It consists of two main components (cf. Fig. 3.2): (1) a per-cluster Re-

sourceManager acting as a global computing resource arbiter and (2) a per-node

NodeManager responsible for managing node-level resources and reporting their

usage to the ResourceManager.
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The main difference from the previous Hadoop versions (up to 0.23) is that

YARN separates the resource management tasks from the application management

tasks and therefore allows to run heterogeneous jobs within the same cluster. The

ResourceManager contains a scheduler, named capacity scheduler, that allocates

resources for the running applications. However, it does not do any application

monitoring or status tracking. This responsibility is left to the per-job instance of

Application Master (AM). AM is an application-specific process that negotiates

resources from the ResourceManager and collaborates with the NodeManager(s) to

execute and monitor its individual tasks. The scheduling is based on the applica-

tion resource requirements and it is realized using an abstract notion of containers.

Essentially, each computing node is partitioned into a number of containers which

are fixed-size resource blocks (currently only the memory is supported) running

AMs and their corresponding tasks.

For example (cf. Fig. 3.2), for a MapReduce application, ResourceManager de-

ploys two type of containers: MRAppMaster and YarnChild. When a job arrives (1),

the ResourceManager negotiates the first container for executing its specific AM

process—i.e., MRAppMaster. The MRAppMaster is then responsible for negotiat-

ing additional containers from ResourceManager for running its map and reduce

tasks (2). Finally, the AM contacts NodeManager to request the negotiated con-

tainers (3) and the NodeManager allocates them and spawns the corresponding

YarnChild processes (4).

To avoid cross-applications deadlocks—i.e., when a large number of cluster

resources is occupied entirely by containers running MRAppMaster—YARN has

introduced the MARP configuration parameter2. Concretely, it sets the maxi-

mum percentage of cluster resources allocated specifically to MRAppMaster. Since

currently only memory is supported, it constrains the amount of memory avail-

able to MRAppMaster. MARP also indirectly controls the number of concurrently

running jobs and therefore affects the job parallelism and throughput in Hadoop

clusters. In summary, YARN has two primary tasks: Cluster Management and

Job Scheduling.

• Cluster Management is responsible to monitor the whole Hadoop cluster and to
2yarn.scheduler.capacity.maximum-am-resource-percent
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allocate resources for running jobs. It contains ResourceManager and NodeMan-

ager two components, which are depicted in red in Figure 3.2.

• Job Scheduling consists of two abstract notions of containers : MRAppMaster

and YarnChild. They are represented in blue. MRAppMaster is a per-job private

controller to request resources for its YarnChild, and to monitor the job process.

It is the first container of the job, which is launched by ResourceManager and it

remains alive until the job has been processed. The latter is a resource block to

process map and reduce tasks. Its lifecycle depends only on its assigned task. The

different lifecycles of MRAppMaster and YarnChild might cause Large Drops of

Memory Utilization, which disturbs Hadoop performance. This will be proved

in section 5.1.2.

3.2 Platform-level Optimizations

Recently, the performance optimization for MapReduce systems and Hadoop

cluster has become a main concern in the domain of Big Data. This has resulted

in a number of different approaches that aim to improve Hadoop performance. Be-

cause of the complexity of Hadoop, these approaches cover a wide range of research

domains. Similar to the self-balancing approach which will be introduced in Chap-
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ter 5, many researchers focus on the large number of configuration parameters in

Hadoop. They have proposed lots of configuration-related approaches, either to

adjust the parameter at runtime, or to filter the optimal configurations for ad-hoc

requirements, or belonging to a complex hybrid platform (e.g., Starfish [28]). Scal-

ability is also a popular idea to address the performance issue of Hadoop clusters.

Some frameworks, such as FAWKES [22], have been realized and have achieved

progress. Moreover, there are also many other researches concentrating on job

scheduling, network transmission, data geo-location, etc. The rest of this section

will present and discuss these works relevant to the self-balancing approach.

3.2.1 Hadoop Configuration Optimization

AROMA [36] is an automatic system that can allocate resources from a hetero-

geneous cloud and configure Hadoop parameters for the new nodes to achieve the

service-quality goals while minimizing incurred cost. The main idea of AROMA is

the parallel pre-analysis of submitted job, which is based on machine learning tech-

nologies. This approach can be divided into 2 parts: offline resource allocator and

online job profiler. Before the job is forwarded to the Hadoop cluster, AROMA an-

alyzes the resource needs (e.g., RAM, CPU, or disks) of this job. Benefiting from

this analysis, the offline resource allocator can start up the appropriate amount and

types of VMs for the job from heterogeneous Cloud. Meanwhile, with the training

phase based on the experience of previous jobs, AROMA begin to analyze the

optimal configurations of Hadoop for the jobs by machine learning technologies.

Once the VMs are running, it can quickly deploy and configure an Hadoop clus-

ter, and forward the job to the configured cluster. Thanks to the parallel analysis

architecture, AROMA is able to expeditiously decide on the infrastructure of the

Hadoop cluster, while benefiting from the start period of VMs to achieve the job

profiling, which is a time-consuming work. Thanks to the pre-analysis mechanism,

AROMA is able to reconfigure and tune the current Hadoop cluster to adapt to

the new requests. But, it also has 2 limitations. (1) The VMs in the Cloud

require to be provisioned and be pre-installed with the required Hadoop system.

That means, these VMs have been created and are always waiting for provisioning.

The resources in Cloud are always under occupation. (2) AROMA is similar to
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Chen’s proposition [14], which works well when considering ad-hoc jobs. However,

for concurrent workloads, its overhead will increase significantly.

Changlong et al. [37] also propose a self-configuration tool, named AACT, to

maintain the performance of an Hadoop cluster by adjusting Hadoop configura-

tions at runtime. AACT is also based on machine learning. It extracts various

informations from JobTracker logs, such as job completion time, input data size,

and settings of Hadoop parameters, etc. With these collected data and a few

configuration parameters, which are extremely associated to the job processing,

AACT can quickly analyze the current Hadoop performance, figure out the miscon-

figuration, and adjust the specific Hadoop parameters to optimal values. However,

the adjustment of Hadoop configurations always requires to restart the Hadoop

cluster and to reload the new parameter values. For a multi-tenant cluster, it is

impossible to frequently restart the Hadoop system when processing concurrent

workloads. The restart will lead to the interruptions of the processing jobs, even

the crash of services. Moreover, AACT can optimize the Hadoop performance for

a specific job but is difficult to ensure the performance satisfying the user require-

ments. Finally, for parallel requests (or concurrent workloads), the pre-analysis of

AACT may add a heavy overhead to the job processing, and the adjustments for

diverse jobs are also possible to conflict each others.

The purpose of Starfish [28] is to enable Hadoop users and applications to

automatically get good performance throughout the data lifecycle in analytics.

Starfish is a multi-level performance-optimizing system based on Hadoop. Its

self-tuning mechanism can be separated into three levels: job-level, workflow-level

and workload-level. (1) Job-Level: based on machine learning techniques, it

figures out the optimal configurations for the workloads. (2) Workflow-Level: to

avoid the performance issues caused by unbalanced data layout, starfish proposes

a new workflow scheduler to guarantee the datasets will be evenly stored in HDFS.

(3) Workload-Level: besides the job- and data-level optimizations, starfish can also

tune the infrastructure of Hadoop cluster to improve system performance, such as

scalability. Benefited from the multi-level monitoring and adjustments, Starfish

is able to collect various kinds of metrics from an Hadoop cluster, and tune the

cluster in various aspects (e.g.,, Hadoop parameters, job scheduling, and HDFS) to
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accelerate the processing of running jobs. It measures the resource consumption

of MapReduce jobs, like CPU cycles of different phases and I/O throughput of

reading files from HDFS, to estimate the average map execution time. However,

starfish also has several inadequacies. The prediction of workloads to tune Hadoop

cluster may extremely differ from the actual situation. Reconfiguring Hadoop

parameters may require the restart of the whole system, thereby resulting in the

crash of Hadoop services. In concurrent case, due to its complex analytic steps,

the overhead of job processing will also increase significantly.

Gunther [38] is a search-based approach for Hadoop performance optimization.

In Big Data domain, the cost-based models and machine learning are the two most

popular methods to handle performance issues. However, the two methods have

various shortages. Cost-based model focuses on researching the presentational

relationship between cost metrics (e.g., resource consumption) and performance,

but ignores the other causes of performance degradation, such as misconfigura-

tion. Machine learning provides wide studies concerning the performance, but

its training phase for application-specific environments degrades the compatibility

of the proposed solution. Therefore, Gunther—i.e., a search-based approach—is

proposed to overcome the inadequacies of the two methods. Through various anal-

ysis and experiments of diverse algorithms, it introduces an evolutionary genetic

algorithm to identify the impact of parameter settings, achieving near-optimal job

performance. But, due to the complexity of the genetic algorithm, identifying

an optimal configuration requires Gunther to repeat computing, thus causing the

performance to degrade.

Many other researches focusing on dynamic configurations like [47, 48, 59] also

exist. Authors design self-adaptive models to optimize system performance, but

their compatibility needs to be reconsidered for YARN.

3.2.2 Scalability at Runtime

Ghit et al. [22] have investigated a multi-allocation policies design, FAWKES,

which can balance the distribution of hosts among several private clusters. The

main idea of this research is to share the infrastructure among multi-tenants. For

each tenant, it creates a private Hadoop cluster to process its requests. In this
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case, FAWKES is focused on the dynamic redistribution of compute nodes between

several clusters while the sum of compute nodes is fixed. The core of this mech-

anism combines three weighting policies: demand-based weighting, usage-based

weighting and performance-based weighting. (1) Demand-based weighting policy

depends on the workloads submitted by clients. In accordance with the number

of concurrent running jobs in each cluster, this policy balances the distribution of

compute nodes. (2) Usage-based weighting policy focus on the resource utiliza-

tion of each cluster. And (3) the last one (Performance-based weighting policy)

is based on 3 statistics collected by MapReduce framework: Job Slowdown, Job

Throughput and Task Throughput. Thanks to the cooperation of three weighting

policies, FAWKES is able to achieve a good dynamic balance among the clus-

ters, which depends on various statistics. Benefiting from this framework, each

MapReduce cluster can have a relatively reasonable performance. However, due

to the strict isolation between users, the clusters need to frequently grow or shrink

to balance the scales, thereby penalizing each cluster, especially in the case that

the workloads are frequent and violent. Furthermore, when the number of tenant

become large, FAWKES needs to simultaneously manage lots of private clusters.

Therefore, the efficiency of this framework also may become questionable.

Chen et al. [14] propose a resource-time-cost model, which can display the

relationship among execution time, input data, available system resource and the

complexity of Reduce function for an ad-hoc MapReduce job. This model is a

combination of the white-box [27] and machine-learning approaches. Its main

purpose is to identify the relationship between the amount of resources and the

job characteristics. Hadoop clusters can therefore benefit from this research to

determine the optimal resource provision strategy, thereby optimizing resource

provisioning, while minimizing the monetary cost. However, the limitation of this

research is also significant: this model can only work for ad-hoc Hadoop jobs.

Typically, to create an on-demand private Hadoop cluster for a specific long-term

Hadoop job, this model is an appropriate choice. However, it is not suitable for

the concurrent workloads, due to its complex pre-analysis.

Finally, Berekmeri et al. [8] introduce a Proportional-Integral (PI) controller

to dynamically enlist and discharge existing compute nodes from live Hadoop
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cluster in order to meet a given target service-level objectives. The core of this

approach is a dynamic performance model based on number of nodes and clients.

Benefiting from the prediction of the average job completion time, the approach

can resize the Hadoop cluster to maintain the system performance. Therefore,

how to improve the accuracy of performance prediction becomes the most impor-

tant issue for this PI controller. To improve the prediction result, this controller

combines Feedback and Feedforward Control Loops together. The feedback loop

has two responsibilities: (1) capture the job completion time (discrete or indi-

vidual performance) of each compute node in Hadoop cluster, (2) counteract the

unmeasured and unmodeled disturbances affecting MapReduce system. The feed-

forward loop measures the disturbance of clients and predict the completion time

of each request in various compute nodes. Thanks to the discrete performance

(i.e., the job completion time of each compute node) generated by two control

loops, the dynamic performance model is able to correctly predict the average job

completion time of the whole Hadoop cluster, thereby tuning the infrastructure of

Hadoop cluster to improve performance. Nevertheless, this PI controller also has

several obvious limitations: (1) its performance model does not take care of the

actual resource utilization in Hadoop cluster, but is just based on the number of

nodes and clients. When the degradation of performance is caused by other issues

(e.g., misconfiguration), provisioning resources will increase unnecessary expen-

diture rather than efficiently solve the problem. (2) because of the diversity of

requests, even though in idle case, the completion time of various jobs may have a

big difference. The average job completion time is not able to present the discrete

performance in various compute nodes. (3) the PI controller only considers the

delay to commit (or decommit) compute nodes into (or from) the Hadoop Cluster.

That means, during the whole process, all compute nodes (committed or uncom-

mitted) are always on running and waiting for commission. This results in many

extra problems, such as resource waste, energy drains, etc.

3.2.3 Other Optimization Approaches

Some other studies look beyond Hadoop configuration optimization and scal-

ability to library extensions and runtime improvements.
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FMEM [60] is a Fine-grained Memory Estimator for MapReduce jobs to help

both users and the framework to analyze, predict and optimize memory usage.

iShuffle [23] decouples shuffle-phase from reduce tasks and converts it into a plat-

form service. It can proactively push map output data to nodes via a novel

shuffle-on-write operation and flexibly schedule reduce tasks considering work-

load balance to reduce MapReduce job completion time. Seokyong et al. [30]

propose an approach to eliminate fruitless data items, as early as possible, to save

I/O throughput and network bandwidth, thus accelerating the MapReduce data

processing. Benjamin et al. [25] deal with a geo-distributed MapReduce system

by a two-pronged approach, which provide high-level insights and corresponding

cross-phase optimization techniques, to minimize the impact of data geo-location.

Manimal [33] performs static analysis of Hadoop programs and deploys optimiza-

tions, including B-tree indexing, to avoid reads of unneeded data. Panacea [40] is a

domain-specific compiler, which performs source-to-source transformations for jobs

to reduce the synchronization overhead of iterative jobs. Twister [19] introduces a

new in-memory MapReduce library to improve the performance of iterative jobs.

Some researches like [50, 65] propose new MapReduce task schedulers to improve

resource utilization while observing job completion time goals.

Discussion. The contribution of the self-balancing approach, which will be pre-

sented in Chapter 5, complements all these approaches in order to optimize the

resource consumption of compute nodes in Hadoop cluster and reduce the com-

pletion time of Hadoop jobs.

3.3 Rapid Deployment of Hadoop Cluster

Hadoop is a well-establish data processing framework that is being used exten-

sively in both academia and industry. As such, there exists many commercial and

open-source approaches for its provisioning. Nearly each cloud provider provides

some support for assembling an Hadoop cluster within its infrastructure, ranging

from detailed step-by-step tutorial to fully-featured web applications. The major

deployment tools, such as Ansible3, Puppet4 or Chef5, also contain a set of provi-
3http://ansible.com
4http://puppetlabs.com
5http://chef.io
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sioning scripts for creating Hadoop deployment. Finally, Cloudera Manager6 and

Ambari7 are the two most popular tools dedicated for provisioning, managing, and

monitoring Hadoop clusters.

Despite that there exists a number of tools that automate Hadoop deploy-

ment, they all focus on provisioning long-term production-ready operating clus-

ters. Instead, our approach aims at deployment of experimental environments

that are used to rapidly evaluate different Hadoop configurations and adaptation

approaches. Furthermore, the existing approaches are usual tight to a particular

Hadoop version or configuration, or they bring a large stack of other dependencies.

While this is useful for production-ready clusters, it slows down the deployment

and complicates experimentations. Finally, a reproduction of an experiment from

a cluster provisioned by one of these tools in another environment is again hin-

dered. It requires an access to the particular tools and some levels of knowledge

on how to reconfigure it to fit the needs of the target environment.

3.4 Synthesis

Based on the related work enumerated in this chapter, we can easily observe

that Hadoop-related researches cover a wide range of research domains. However,

the majority of these researches do not concern the issue of job parallelism and

throughput of concurrent workloads in Hadoop clusters, particularly in the case of

heterogeneous and time-varying workloads. Therefore, I believe that our research

can be regarded as a complement to most of above researches. Although some

of them also focus on the job scheduling, their proposed solutions are only based

on the previous version of Hadoop, but not on YARN. The compatibility of these

researches are questionable. For the rapid deployment tool of Hadoop cluster, the

idea of our research is to provide a rapid and easy method to deploy a reproducible

short-term Hadoop cluster. This leads to that the tool might be interesting to the

academic researches of Hadoop, rather than the production. But we believe that

the rapid deployment idea based on Docker container technology should be also

useful for the industry.

6http://cloudera.com/products/cloudera-manager.html
7https://ambari.apache.org
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Chapter 4

Resource Management in
OpenStack

Since several years, Cloud computing keeps conveying the image of a pool

of unlimited virtual resources that can be flexibly provisioned to accommodate

the user requirements [42]. It provides diverse services across multiple layers—

i.e., Software-, Platform-, Infrastructure-as-a-Service—and therefore attracts at-

tention from various business and domains, such as infrastructure maintenance

and application development. In this case, more and more Cloud users (and po-

tential users) tend to transfer their business to Cloud computing. Due to the rapid

growth in the number of Cloud users, the total resource needs are prone to reach

the Cloud infrastructure limitation, thereby threatening the flexibility of resource

allocation in Cloud computing. When the Cloud infrastructure has to face such

large requirements and falls into congestion degrading Cloud QoS, most of Cloud

providers usually think about provisioning physical resources at the infrastructure

level to keep the pace of user requests, such physical resources refer to compute

nodes which are used to host virtual machines. In this context, many Cloud

providers require an automatic manner to dynamically scale Cloud infrastructure

according to the dynamics of user requirements, both to ensure the QoS of Cloud

computing while avoiding unnecessary expenditure. In this specific case, Cloud

elasticity [1, 2, 9, 10, 16, 18, 26, 43, 44, 53, 61, 66] is broadly considered as the

de facto solution to cope with this problem. However, these elasticity researches

usually do not consider the budget limitation of Cloud providers. Even though

one of the objectives of these elasticity researches is to minimize the cost of Cloud

computing, their premise is that QoS has to reach a reasonable level. Therefore,

43
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such approaches will not stop provisioning resources until the targets have been

achieved. However, these elastic approaches can be easily broken by budget re-

quirements and physical limitations (e.g., the lack of servers), particularly in the

case of a private Cloud.

A Cloud platform is generally a huge project to deploy (e.g., OpenStack),

which consists of diverse components combined in a complex architecture. In the

case of OpenStack, each component can be regarded as an individual system

to realize a specific service, such as Keystone for providing authentication service

and Glance for managing images. The architecture of Cloud platform is generally

based on simple master-slave mode, but the coordination among the components

to achieve a common goal (i.e., Cloud computing) makes the architecture complex

and is prone to produce various problems causing diverse impacts. Therefore, in-

side the Cloud platform, there are plenty of problems that can affect the resource

allocation, thus influencing flexibility, such as misconfiguration, idle resource occu-

pation, network loss, and quotas overflow, etc. These problems can be addressed

in simple manners (e.g., dynamic configuration) and without any additional cost.

In this case, we believe that Cloud elasticity should not be systematically adopted

as the primary solution to handle the loss of flexibility—especially if the problem

is caused by Cloud infrastructure limitations. Furthermore, the elastic approaches

in Cloud computing might lead to a waste of resources that cannot only induce

economic losses for the end-users, but also unnecessary carbon emissions for the

Cloud providers by over-provisioning the underlying infrastructure.

In Cloud computing domain, OpenStack is an important and well-known

open-source project, which consists of a set of sub-systems to constitute a private

Cloud across multiple machines. The OpenStack Cloud is designed in a master-

slave architecture. This leads to the Cloud providers can easily and quickly provi-

sion a new physical host into the Cloud by installing the per-node slave components

of the sub-systems. That means, when the Cloud computing cannot support the

end-user requirements, that Cloud providers are able to elevate the capacity of the

Cloud by scaling the underlying infrastructure. Meanwhile, Cloud providers must

pay more for a larger infrastructure, such as energy consumption, carbon emission,

and material cost. The growth of Cloud cost will either bothers Cloud providers
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by increasing budget, or finally reflects to Cloud user expenditure. However, the

insufficient capacity of Cloud computing is not necessarily caused by the lack of

Cloud infrastructure. Thanks to IaaS, Cloud users can flexibly allocate resources

from the Cloud infrastructure on demand, but this service does not automatically

release these resources until the VMs are manually deleted by their owners— i.e.,

the suspended and inactive VMs in the Cloud will continuously and aimlessly oc-

cupy the idle resources which are not available to the other users. This leads to

the resource occupation in the Cloud may easily reaches the Cloud infrastructure

limitations, and results in the insufficient capacity of Cloud computing. In this

case, scaling the Cloud infrastructure is not a preferable choice, compared to the

potential of recycling the idle resource occupation. Referring to previous discus-

sions, the resource utilization of Cloud infrastructure becomes a central issue in

this thesis.

The main purpose of this research therefore consists in (1) studying the causes

of resource leaks, which reduce the actual utilization of Cloud infrastructure—i.e.,

degrade Cloud flexibility; (2) striving to identify a better solution than elasticity,

which does not require any or only needs a little of additional work and cost within

an acceptable range; and (3) defining new middleware services in order to support

the Cloud infrastructure utilization by implementing smart resource management

heuristics atop of existing services. The new middleware aims at improving both

i) the quality of experience for end-users and ii) the QoS of Cloud computing.

This chapter therefore explores an alternative, yet complementary, solution

to the resource leaks by adopting the principles of garbage collection [34, 39] in

the context of Cloud computing. The primary idea of the approach is to accu-

rately detect idle VMs and to dynamically recycle their resources when the Cloud

infrastructure reaches its limitation, while ensuring the accessibility and repro-

ducibility of the recycled VMs. At the moment, based on the Python Client APIs

provided by OpenStack, this approach (named CloudGC) is implemented as a

dedicated solution integrated within OpenStack Cloud. The assessments demon-

strate its capacity to timely reduce the waste of resources in an OpenStack Cloud

when the user requirements reach the Cloud infrastructure limitation. In addition

to periodically and automatically recycle idle VMs according to the user needs,
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Figure 4.1: Observation of the IaaS limitations on the number of VM instances
that can be provisioned.

CloudGC is also able to recover them whenever needed. This ability benefits

from a new type of VM instance (i.e., ghost instances) proposed by CloudGC,

which can make the Cloud system continuously monitor and store the incoming

message requiring the recycled VMs despite that they have been deleted from

Cloud instance manager. Moreover, CloudGC also provides the other various

services, such as pinned VMs. Thanks to CloudGC, Cloud infrastructures can

even switch between operational configurations depending on periods of activities.

4.1 Resource Allocation Analysis

Cloud computing provides a model for enabling on-demand access to a shared

pool of computational resources, which can be quickly and easily provisioned and

released upon requirements. In the case of Infrastructure-as-a-Service (IaaS),

these resources take the form of Virtual Machines (VMs), which can be created,

suspended and deleted by the end-user at any time. Beyond the control of a VM

lifecycle, some IaaS solutions, like OpenStack1, can also control the CPU and

memory consumption of VMs though the definition of VM profiles, also known

as flavors2 (e.g., tiny, small). Furthermore, the number of VM instances can

be constrained by the definition of quotas3, which limits the amount of allocable

1https://www.openstack.org
2http://docs.openstack.org/openstack-ops/content/flavors.html
3http://docs.openstack.org/openstack-ops/content/projects_users.html
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resources for a given user. While quotas can be used to guarantee that an end-user

will not allocate more VMs than allowed, the rest of this section will demonstrate

that an IaaS may also suffer from internal constraints that limits its scalability.
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Figure 4.2: Impact of resource overcommitment on VM performance.

To better understand such constraints, a first experiment is run on a vanilla

installation of an OpenStack IaaS infrastructure (version 2015.1.4Kilo). The

hardware setup of testbed is composed of 8 compute nodes, federating 22 CPU

cores and 42.2 GB of memory. Each compute node runs Ubuntu (version 15.04) as

the operating system, with QEMU (version 2.0.0) as the default hypervisor. The

motivation scenario consists in incrementally provisioning new VMs for a single

user whose quotas is not fixed—i.e., its quotas are much larger than the Cloud

infrastructure limitation. The greedy scenario therefore starts by provisioning new

tiny VM instances as long as OpenStack allows it (Phase 1). Once the maximum

number of deployed VM instances is reached, the script switches half of the running

instances to pause state, before trying to provision some additional VM instances

(Phase 2). Once this step is completed, the experiment continues to interrupt the

other half of running VM instances and tries to provision some more VM instances,

again (Phase 3). Finally, the scenario concludes by deleting half of the suspended

VM instances—i.e., half of pause VMs as well as half of interrupted VMs—and

allocates new VMs from there until it reaches the infrastructure limitation (Phase

4).
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Figure 4.1 reports on the results of executing this experiment for three configu-

rations of OpenStack (straight, standard, and over-commit, detailed in Table 4.1).

The standard configuration is the default configuration of OpenStack and maps

1 CPU core to 16 vCPUs and 1 GB of RAM to 1.5 GB of vRAM. In theory, using

the standard configuration, the end-user could therefore expect to provision to up

to 352 tiny VM instances according to the amount of vCPUs (as each tiny VM

requires 1 vCPU and 0.5 GB of vRAM). But, in practice, we note that no more

than 115 tiny VM instances can effectively be created by OpenStack, due to the

limited resources available. Indeed, in the case of the standard configuration host-

ing exclusively tiny VMs, 352 (352
1
) vCPUs can be allocated. However, based on

vRAM, the standard configuration only admits 63.3 GB vRAM available in total.

That means, for the standard configuration of OpenStack, the vRAM can only

support 118 instances (63.3−8×0.5
0.5

as illustrated in Figure 4.1b). The maximum

number of tiny VMs is therefore limited to 118 (min(352
1
, 63.3−8×0.5

0.5
) = 118). The

subtraction of 8×0.5 in vRAM is due to the virtual memory reserved by the Open-

Stack components deployed in all compute nodes—i.e., the testbed contains 8

compute nodes and each node requires 0.5 GB vRAM for running OpenStack.

This rule can be proven in straight and over-commit configuration. Using straight

configuration as example, the amount of vCPUs is 22 and OpenStack supports

42.2 GB vRAM. The maximum number of tiny VMs for straight configuration

should be min(22
1
, 42.2−8×0.5

0.5
) = 22 which can be observed in Figure 4.1a.

Table 4.1: Overcommit ratios used as configurations.
configuration mapping vCPUs (total) vRAM (total in GB)
straight 1:1 22× 1 = 22 42.2× 1 = 42.2
standard 16:1.5 22× 16 = 352 42.2× 1.5 = 63.3
over-commit 24:2 22× 24 = 528 42.2× 2 = 84.4

By increasing the ratio of vCPUs and vRAM (cf. Figure 4.1c), one can observe

that the number of deployed VM instances can be raised, but over-committing

CPU and RAM resources to increase the capacity is not a free lunch—i.e., it

has a cost for the Cloud. In order to demonstrate the impact of resource over-

commitment, we compare the system performances of each provisioned VM in

different moments. We log the completion time of a benchmark running contin-

uously in each of the VM instances we provisioned in the Cloud. In particular,
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we use CPU test provided by the SysBench benchmark4. Figure 4.2 reports on

the evolution of this completion time per VM when provisioning from 1 to 10

new VM instances on a single compute node, using the standard configuration of

OpenStack. One can observe that, once the number of allocated physical core

is reached on a compute node (P(CPU)), the benchmark performance becomes

linearly impacted by the provisioning of new VMs: the more VM instances are

provisioned, the longer time each VM takes to complete the benchmark.

P(CPU)

10

20

30

40

50

5 10
VM instances − conf(1:1)

D
ep

lo
ym

en
t t

im
e 

(s
)

P(CPU)
P(Mem)

V(Mem)

10

20

30

40

50

5 10
VM instances − conf(16:1.5)

D
ep

lo
ym

en
t t

im
e 

(s
)

P(CPU)
P(Mem)

V(Mem)

10

20

30

40

50

5 10
VM instances − conf(24:2)

D
ep

lo
ym

en
t t

im
e 

(s
)

Idle Workload
Memory−intensive Workload
CPU−intensive Workload
CPU− and Memory−intensive Workload

Figure 4.3: Impact of overcommitment on VM deployment.

Figure 4.3 compares the deployment time of one tiny VM and exposes the

impact of over-commitment—i.e., standard configuration also has a weak over-

commitment compared to straight configuration—on the VM deployment delay in

different environments. This experiment deploys the VMs one by one until Open-

Stack prohibits a new deployment. Along the execution of this scenario, each

provisioned (deployed) VM continuously processes a given workload to consume

the specified resources in order to simulate different deployment environments

(idle, CPU intensive, RAM intensive, and CPU-RAM intensive). Meanwhile, the

deployment time per new VM is recorded while the other provisioned ones process

different workloads (e.g., CPU-RAM intensive). To observe the universality of the

phenomenon appearing on deployment time, this experiment is repeated in the

3 configurations on the same single compute node. With different configurations

(e.g., straight, standard, and over-commit) and deployment environments, the de-

ployment time of new VM instance exposes a similar behavior like the completion

time of SysBench reported in Figure 4.2. The more VMs are deployed in Cloud,

the longer time the deployment of one new VM takes. Therefore, although it raises
4http://manpages.ubuntu.com/manpages/xenial/man1/sysbench.1.html
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the limits of the Cloud infrastructure capacity, resource over-commitment has to

be wisely tuned by the Cloud provider in order to limit the performance impact

for the end-user. Furthermore, changing the OpenStack parameter for adjusting

the resource over-commitment requires the nova sub-component (named nova-

scheduler) to be restarted. This inevitably leads to the interruption of resource

allocations in the whole OpenStack Cloud. Given that the two sets of exper-

iments all shows the negative impact of resource over-commitment on diverse

performances (Cloud resource allocation performance and VM processing perfor-

mance) and the limitation of reloading OpenStack parameters, most of Cloud

providers investigate alternative solutions to increase their resource availability

atop of their current Cloud infrastructure.

As initially observed in Figure 4.1, no matter its level of activities, the only

solution to release the resources occupied by the VM instances is to delete these

instances. The first experiment reveals this solution before provisioning new VMs

(Phase 4). Therefore, by recycling the resources provisioned—but not actually

used—by VM instances, one can expect to obtain available resources from a Cloud

infrastructure without systematically falling back on Cloud elasticity techniques,

thereby raising the capacity of this Cloud.

The challenge to be tackled in this context therefore consists in automatically

recycling the provisioned but not used resources—i.e., idle VM instances [35]. To

recycle the VM instances in order to raise the capacity of Cloud infrastructure,

this research must overcome 2 obstacles:

− The first obstacle is to automatically and accurately detect idle VM instances—

i.e., the VM instances which are provisioned, but not actively used—in order to

recycle them. In OpenStack Cloud, provisioned VM instances have different

states. Some of them can be easily defined as idle, but some others are prone

to be confused with actively used instances because they have the same state

in OpenStack instance manager. We distinguish between two categories of

idle VMs: (1) instances which are explicitly inactive (e.g., manually paused

or interrupted) and (2) instances which are implicitly inactive (e.g., having

running state but no CPU activity for the last 10 hours).
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− The second obstacle is to automatically recover the recycled VMs, once end-

users require them again. As the idle VMs will be recycled by a third-party

component (e.g., the contribution of this research) and not the VM owners,

these recycled VMs should be kept alive in a different form, so that end-users

may request them again. However, in an OpenStack Cloud, when a VM

instance is deleted, it is completely removed from the Cloud instance manager.

At the moment, any new external request requiring the recycled VMs cannot

succeed even only ping to them. And then, in this case, how to automatically

recover the recycled VM instances whenever needed become an issue in this

research.

Based on this assumption, the remainder of this chapter introduces a new

middleware solution to recycle the idle VM instances. Given that a Cloud provider

or a Cloud administrator cannot manually manage a potentially large population

of VM instances, she requires a middleware service that can take care of resource

management duties in order to ensure that resources are always made available to

the end-users. Our approach can therefore be symbiotically integrated upstream

of an elasticity service, thus ensuring that these services are only activated when

all the Cloud resources are allocated and actively used.

4.2 CloudGC Middleware Service

To seamlessly integrate the VM recycling mechanism with a Cloud infrastruc-

ture, this solution is designed as a middleware service that can interact with the

existing services made available by an OpenStack IaaS. Our middleware solu-

tion, named CloudGC, is therefore inspired by the garbage collection mechanism

that is embedded in virtual machines like Java and used to reclaim the memory

occupied by objects that are no longer in use by the applications. During the last

three decades, garbage collection has focused a lot of research activities, moving

from “stop-the-world” algorithms to generational approaches [4, 34]. This form of

automatic memory management approach periodically scans the memory of the

virtual machines (e.g., JVM) and collects garbage objects to free the associated

memory in order to facilitate the allocation of new objects.
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CloudGC therefore builds on the results achieved in garbage-collected lan-

guages in order to apply the principles of garbage collection technologies on VM

management and at the scale of the OpenStack Cloud. However, unlike the aban-

doned objects in applications of Java, idle VM instances in OpenStackCloud are

software artifacts that might still be used in the future. Therefore, managing the

occupation of idle resources in a Cloud infrastructure does not only focus on re-

cycling the idle VM instances, but it also needs to handle the recovery of the

recycled VM instances. In this context, the challenges of developing a garbage

collector for the Cloud are threefold, including i) to automatically and accurately

detect idle VM instances, ii) to efficiently recycle the VM resources, and iii) to

support the automatic recovery of recycled VM instances.

The following sections address each of these challenges more specifically, as

well as their impact on the lifecycle of a VM in an OpenStack Cloud.

4.2.1 Lifecycle of VM Instances

Running Suspended

Recycled

[suspend]

[IP requested]
[resume]

[recycle]
[recycle]

Deleted
[delete]

[delete]

[delete]

[resume]

Figure 4.4: Lifecycle of a VM instance in CloudGC.

Figure 4.4 depicts the lifecycle of a VM instance in OpenStack IaaS. There

are three types of standard states for the lifecycle: running, suspended (e.g., paused

and interrupted), and deleted. The transitions among the standard states is manual.

In this case, end-users have to manage the VM instances, manually. With a large

population of VM instances, this is prone to leave some instances become idle,

that may occupy resources but not use them, due to oblivion or negligence of VM

owners.
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Beyond the standard lifecycle of VM instances proposed by OpenStack,

CloudGC adds a new state recycled, which corresponds to the transitory state

that a VM takes when it is recycled by the middleware service. Thanks to

CloudGC, a VM instance can automatically become recycled from running and

suspended states when (1) Cloud infrastructure cannot support any more new

user requirements and (2) this VM instance has been determined as idle one by

CloudGC. A VM instance can also leaves this state by diverse methods—i.e.,

either by being manually resumed (in the case of a suspended VM), accessed on-

demand (in the case of a running VM), or deleted manually as shown in Figure 4.4.

Whether a VM instance is in the running or suspended stage, CloudGC can ac-

curately determine the idle one, and therefore decide to recycle the enough idle

VM instances for the new requirements, as further explained below.

The following 3 sections introduce the steps implemented by CloudGC to

move a VM from a running or suspended state to the recycled state, back and

forth.

4.2.2 Detecting Idle VM Instances

CloudGC builds on the assumption that not all the VM instances are contin-

uously used in a Cloud infrastructure, which cannot be considered as unlimited—

i.e., the Cloud infrastructure limitation can be easily reached, e.g., in a private

Cloud. Therefore, a critical part of the VM recycling process implemented by

CloudGC consists in detecting VM instances that are considered as idle, which

aims at (1) providing candidates for the following steps of recycling process and

(2) avoiding CloudGC recycling active VM instances thus degrading the QoS of

Cloud but should originally improve it. Idle VM instances have two categories:

either VM instances that have been explicitly suspended by the end-users (e.g., a

VM in the paused or interrupted state) or VM instances that have not been active

(e.g., no CPU activity) for a long period of time in running state. CloudGC

distinguishes between explicit and implicit idle VM instances: the former is not

intended to be used by the end-user on a short-term basis, while the latter might

be triggered at any time. Therefore, to avoid the frequently repeated snapshots

(which will be used by recovering step) of idle VM instances, CloudGC only
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backs up the explicit idle ones. This does not only reduce the network load of

snapshots, but also significantly shortens the time of the detection step. Never-

theless, inspired by generational garbage collectors [57], we assume that the longer

time a VM has been flagged as inactive in the past, the longer time it will still

be idle in the future. In this case, all the determined idle VM instances will be

ordered by their inactivity durations to make sure that the idle VM instances will

be recycled firstly.

Due to the diverse types of idle VM instances, CloudGC therefore maintains

two queues to record the determined idle instances: the explicit queue and the

implicit queue. To detect and track idle VM instances, CloudGC periodically

synchronizes the list of deployed VM instances from the IaaS instance manager

(i.e., a Nova service). The list of suspended VM instances, ordered by interrup-

tion dates (oldest first), is used to generate the explicit queue. For the elements

in explicit queue, when they do not exist in the suspended list anymore, their

metadata as well as snapshots will be removed from the explicit queue and the

IaaS storage service (i.e., a Glance service). Then, for the VM instances that

are in the suspended list but not in explicit queue, CloudGC records them in

the explicit queue and immediately back up them. From the list of active VM

instances, CloudGC queries the IaaS monitoring service to filter out the VM in-

stances whose CPU activity has not exceeded a given threshold for a given duration

(the CPU activity threshold and the duration are two configuration parameters

of CloudGC to control the level of garbage collection). And then, CloudGC

compares the selected VMs from the active list and the items from the implicit

queue. The implicit queue updates in 2 steps. (1) The items from the implicit

queue that are not in the selected VMs are firstly removed, before (2) inserting

the selected VMs that are not in the implicit queue. The output of this first phase

therefore delivers two lists of idle VM instances (explicit and implicit), ordered by

inactivity durations.

4.2.3 Recycling Idle VM Instances

As previously mentioned, unlike objects in garbage collected languages, the

recycled VMs instances can be recovered upon user requests. Therefore, recycling
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the idle VM instances does not only consist in releasing the Cloud resources that

are associated to each of the instances, but it also requires to save the current

state of the VM instances in order to be able to recover them in a similar state,

if necessary. In CloudGC, the state of idle VM instances is saved as a snapshot

in the IaaS storage service. For the snapshots of idle VM instances that are

already stored in the IaaS, they are automatically overridden by CloudGC if some

activity has been detected since the last version. CloudGC only automatically

builds a snapshot of explicit idle instances when they are inserted into the explicit

queue in detecting step. Given that the activity of implicit idle instances is not

frozen, this may lead to frequently overriding the snapshots, thus increasing the

network load and delaying the detection step, as above explained. CloudGC can

only build a snapshot of an implicit idle instance on-demand—i.e., when the VM

instances requires to be recycled. Recycling explicit idle VM instances is therefore

much faster than recycling of implicit ones.

CloudGC defines the idle VM queues with different priorities. Given that

the items in the explicit queue have been snapshotted, recycling them only spends

a short time to delete the VM from IaaS instance manager and does not need

to wait for snapshotting the state of the VM instances. This saves a lot of time

to free the resources associated to the recycled VMs and thereby guarantees the

QoS of CloudGC. Then, upon the exhaustion of the explicit queue, the items in

the implicit queue are elected for recycling in order to satisfy user requirements,

if needed. Benefiting from the priorities, CloudGC can ensure that the explicit

idle VMs are recycled in priority compared to implicit ones.

Corresponding to recycled state, CloudGC introduces a new mechanism,

which maintains the IP address of recycled VMs available to expose them as

alive from the perspective of users. Thanks to this mechanism, a recycled VM

can be still available to third parties, even though they have been removed from

the Cloud. In this case, the recycled VM can be regarded as a ghost instance. In

both cases of recycling explicit or implicit idle VM instances, CloudGC uses the

IaaS instance manager to rebind the IP address of the idle VM instance to a ghost

instance, which acts as a proxy to recover the VM upon user requests from a third

party. Upon completion of the VM snapshot, the instance is deleted from the IaaS
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instance manager, thus effectively releasing the associated resources. While this

process can be applied to recycle all the detected idle instances, CloudGC takes

the amount of resources to be released as an input, based on the number and the

flavors of the new VM instances to be provisioned. Thus, CloudGC only recycles

the necessary idle instances to allow the IaaS to provision the new requested VM

instances. This avoids unnecessary recycling process, also shortens the time of

recycling step, and leaves other idle VM instance alive (which may be required at

any time), thereby improving the QoS of CloudGC. If the recycling process fails

to release the requested resources, the Cloud infrastructure can either reject the

incoming provisioning request, or trigger an elasticity service to provision some

additional compute nodes, thus increasing the capacity of the IaaS and improving

the effect of elasticity service by avoiding over-provisioning resources.

4.2.4 Recovering Recycled VMs

CloudGC recycles idle VM instances to ease the deployment of new VM

instances in order to elevate the resource utilization of Cloud infrastructure. Nev-

ertheless, the recycled VM instances may also be triggered at any time, e.g., by

requesting a resource or a service supported by a ghost instance. In such a case,

CloudGC should be able to recover the recycled VM associated to the ghost

instance in the same state and configuration where it was before being recycled,

before forwarding the incoming requests to the VM instance. As part of this re-

covery process, one can note that provisioning a recycled VM instance may require

CloudGC to recycle other idle VM instances for available resources, like an it-

erative process. Therefore, the recovery process of CloudGC follows the same

workflow as for provisioning a new VM instance in OpenStack Cloud, but load-

ing automatically the snapshot as VM image also from OpenStack Image Service

(Glance) and restoring the initial VM configuration (e.g., getting the floating IP

address from the ghost instance and rebinding it to the associated recovered VM

instance).
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4.2.5 Other services

Both recycling idle instances and recovering recycled instances are not instan-

taneous processes, taking from seconds to minutes depending on network band-

width, the number of snapshots to be stored as well as the amount of resources

to be recycled and recovered. Meanwhile, for some VM instances whose services

are too important to be interrupted or response time are extremely critical, these

VMs cannot be recycled in any cases. To prevent CloudGC from recycling VM

instances that are considered as critical (e.g., expected to react as quickly as pos-

sible to incoming requests), a VM can also be pinned on the Cloud. Pinned VM

instances are therefore made invisible from the detection and recycling processes,

no matter their activity or their current state.

For many services which are highly time-constrained, their response time are

critical only in a specific period, and their resource consumption become idle in

the other durations. In this case, the service providers will pay over-high cost for

the service infrastructure, while the Cloud also suffers from low periodic resource

utilization. Thanks to the recycling and recovering services as well as a time table,

CloudGC can also switch the periodic services which focus on different periods

and allows them to share the same Cloud infrastructure.

The following section dives into the implementation details of CloudGC as a

middleware service integrated in OpenStack.

4.3 Implementation Details

This section dives into the details of the integration of CloudGC within

OpenStack Cloud. Thanks to the client libraries provided by OpenStack,

CloudGC is able to cooperate with the services supported by other OpenStack

components OpenStack is widely considered as the de facto OSS standard for

deploying a private Cloud which provides an IaaS solution on the top of sets of

physical machines, which is the representative of the environments supporting

CloudGC in this research.
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Figure 4.5: Integration of CloudGC in OpenStack.

4.3.1 Middleware Overview

Figure 4.5 depicts the integration of CloudGC in the OpenStack IaaS. This

implementation is a Python-based project to seamlessly integrate with Open-

Stack, which is also implemented in Python. Even though CloudGC is a

VM-related middleware, its recycling services rely on various services provided by

other different components of OpenStack5. Among all the components of Open-

Stack, CloudGC interacts more specifically with Nova, Ceilometer, Glance, and

Swift. CloudGC builds on the standard APIs provided by each of these services

to support the VM recycling process. In particular, CloudGC uses Nova (a core

component of OpenStack) to recycle idle VM instances and to recover the re-

cycled VM instances (with their configuration), while its Cloud instance manager

service does not only help the detection step of the recycling process to update the

idle VM queues in CloudGC, but it also keeps the floating IP addresses for the

ghost instances, which are extremely important for the recovery step. Glance and

Swift provide the necessary support to automatically manage, save and restore

the snapshots as well as configurations of recycled VMs, respectively. Finally, the

monitoring capability of Ceilometer is used by CloudGC to analyze the activity

of deployed VM instances. Ceilometer keeps continuously to monitor the CPU ac-

tivity of each provisioned VM at every moment. Based on the metrics provided by

this service, CloudGC can accurately determine and record the implicit idle VM

instances. Moreover, the standard APIs also provide the possibility and space for

5https://www.openstack.org/software
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future development of CloudGC to adapt to the development of OpenStack.

OpenStack is an open-source project achieved in Python. In this case, this

implementation of CloudGC is also implemented in Python, thus benefiting from

the client libraries made available for each of these services. By adopting this

service-oriented architecture, CloudGC therefore integrates seamlessly within

the OpenStack Cloud and the implementation of the recycling process does not

affect neither the API of existing services nor the GUI provided by Horizon as well

as the administration console of OpenStack.

The architecture of CloudGC is structured in 3 components—Monitoring,

Recycling and Recovery—within 2 types (i.e., active and passive), whose details

is shown in the following sections.

4.3.2 Monitoring Component

The monitoring component is an active component defined by CloudGC to

periodically query Nova for the list of deployed VM instances and to update two

shared priority queues, which are used to record the idle VM instances—i.e., the

idle VMs with longest idle duration are enqueued firstly. Algorithm 1 summarizes

the behavior that is periodically executed by this monitoring component (the

period can be configured by CloudGC). The monitoring component is launched

in an individual thread, which runs in background, to guarantee the maintenance

interval of two idle VM queues is strictly in compliance with the period defined in

CloudGC configuration. It is a periodically active component guarding 3 global

lists: explicit idle queue, implicit idle queue, and one specific list (pinned list) to

record the pinned VM instances which cannot be recycled in any cases.

As mentioned in Section 4.2.2, CloudGC distinguishes between explicit and

implicit idle VM instances in order to recycle explicit VM instances in priority

to minimize the negative impact caused by recycling process. The second level

of priority in CloudGC indicates that this middleware service will recycle the

running VM instances that have been idle for a while, if needed. Given that the

implicit queue is sorted by idleness of each item, the item which is idle for the

longest period will be recycled firstly.

Beyond the two idle queues, the monitoring component also contains a passive
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Algorithm 1 Monitoring behavior of CloudGC
1: global ExplicitQueue
2: global ImplicitQueue
3: global PinnedList
4: procedure Monitoring(duration)
5: Clear(vms)
6: Clear(backup)
7: vms← list(Nova, ¬ PinnedList)
8: idles← Filter(vms, PAUSED|INTERRUPTED)
9: for vm ∈ ExplicitQueue do
10: if not Contains(idles, vm) then
11: Remove(ExplicitQueue, vm)
12: Delete(Glance, vm)
13: for vm ∈ idles do
14: if not Contains(ExplicitQueue, vm) then
15: Insert(ExplicitQueue, vm)
16: Add(backup, vm)
17: Sort(ExplicitQueue)
18: Snapshot(Glance, backup) . snapshot in parallel
19: actives← Filter(vms, RUNNING)
20: for vm ∈ ImplicitQueue do
21: if not Contains(actives, vm) then
22: Remove(ImplicitQueue, vm)
23: for vm ∈ actives do
24: if Idle(Ceilometer, vm) > duration then
25: if not Contains(ImplicitQueue, vm) then
26: Insert(ImplicitQueue, vm)
27: Sort(ImplicitQueue)

interface (shown in Algorithm 2) to maintain and update another list for pinned

VM instances. Regardless the actual state of the pinned VMs, all the items in this

list are ignored by detection function in the monitoring component and therefore

never considered as the targets of the recycling process.

4.3.3 Recycling Component

The recycling component is a passive component introduced by CloudGC and

triggered by Nova when it fails to allocate resources for an incoming provisioning

request. In that case, Nova requests the recycling component of CloudGC to

recycle a number of idle VM instances which have been already recorded in the

two idle VM queues, in order to free a sufficient volume of resources to satisfy

the provisioning request. Algorithm 3 reports on the implementation of this com-



4.3. IMPLEMENTATION DETAILS 61

Algorithm 2 Pin specific VMs in CloudGC
1: global ExplicitQueue
2: global ImplicitQueue
3: global PinnedList
4: function Pin(vms)
5: for vm ∈ vms do
6: if not Contains(PinnedList, vm) then
7: Insert(PinnedList, vm)
8: if vm ∈ ExplicitQueue then
9: Remove(ExplicitQueue, vm)
10: Delete(Glance, vm)
11: if vm ∈ ImplicitQueue then
12: Remove(ImplicitQueue, vm)

ponent within an OpenStackCloud, and also illustrates the recycling priorities

of the two idle VM queues, which are introduced in CloudGC. The recycling

component always recycles the explicit idle VM instances firstly until the explicit

queue becomes empty. Otherwise, any running instance (i.e., implicit idle VM

instances) will not be recycled. Unless the explicit queue is empty and the freed

resources are still not enough to meet the new requirement, implicit idle VM in-

stances will begin to be considered as candidates to be recycled. but this will

delay the completion of recycling process due to the snapshots of implicit idle VM

instances. If CloudGC succeeds to recycle a sufficient amount of resources, Nova

can retry to provision the new VM instances. In case of failure, Nova can reject

the request or trigger some horizontal elasticity support for OpenStack, which

is out of the scope of this research.

To achieve the recycling process, recycling component contains sets of passive

functions. The Store, Rebind, and Delete operations of recycling process save

the instance configurations, rebind the VM instances on the ghost instance, and

delete all the selected idle VMs at once, respectively. Although the operation

Snapshot appears in Algorithm 1 for snapshotting all items in explicit queue,

this operation is automatically called by the operation Pause as it is the case for

snapshotting implicit idle VM instances on-demand. Furthermore, to reduce the

recycling delay, all the selected idle VMs are recycled in parallel.
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Algorithm 3 Recycling behavior of CloudGC
1: global ExplicitQueue
2: global ImplicitQueue
3: function Recycle(volume)
4: recycled← ∅
5: backup← ∅
6: while Available(Nova, recycled) < volume do
7: if not Empty(ExplicitQueue) then
8: vm← Get(ExplicitQueue)
9: Add(recycled, vm)
10: else if not Empty(ImplicitQueue) then
11: vm← Get(ImplicitQueue)
12: Add(recycled, vm)
13: Add(backup, vm)
14: else
15: return FAILURE . lack of idle VMs
16: Pause(Nova, backup)
17: Snapshot(Glance, backup) . called by Pause
18: Store(Swift, recycled)
19: Rebind(Recovery, recycled)
20: Delete(Nova, recycled)
21: return SUCCESS . idle VMs recycled

4.3.4 Recovery Component

The recovery component is in charge of handling incoming requests that re-

quire some recycled VM instances. To do so, CloudGC binds the floating IP of

the recycled VM instance to a ghost instance as part of the recycling process (cf.

Algorithm 3), so that the recycled VM instances are still perceived as available

from outside the OpenStack Cloud, but they have been removed in fact to free

resources. Therefore, upon receiving an incoming request requiring an recycled

VM, the corresponding ghost instance triggers the recovery function described in

Algorithm 4 and then forwards the incoming request to the recovered VM—if the

provisioning process succeeds—or returns an error to the end-user. Additionally,

for the VM instances that need to run periodically, CloudGC proposes a timer,

which acts as crontab, to recycle and recover these VMs periodically. This so-

lution ensures that the periodic VM instances are always being scheduled in the

Cloud in order to complete their periodic jobs. Thanks to this periodic switch

service supported by CloudGC, these VM instances running in different periods

can share a same OpenStack Cloud, thus decreasing the VM service cost for ser-
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vice providers (i.e., Cloud end-users) as well as improving the resource utilization

of Cloud infrastructure.

As already mentioned, the recovering process can be regarded as a provisioning

process, except that the VM will be created from a ghost instance. The provi-

sioning process may in turn trigger the recycling process in prior to free enough

resources for provisioning the requested VM instance, thus introducing an unpre-

dictable delay for processing the incoming request. The recovering process may

also suffer from a such delay. In the case of a saturated Cloud, to recover a re-

cycled VM instance, the recovering process must invoke firstly the recycling step

to recycle some idle VM instances, then restores the recycled VM instance from

the ghost instance. Therefore, the response time of services supported by the re-

cycled VMs will add an extra delay. However, the cost of recovering a recycled

VM instance is only paid upon the first incoming request. Moreover, this weak-

ness of CloudGC is further mitigated by the support for pinned VM instances,

which can be kept alive in OpenStack instance manager—i.e., they will never

be recycled even though become idle—to deliver a better response time when a

VM instance is considered as critical for the end-user.

Algorithm 4 Recovering behavior of CloudGC
1: function Recover(ip)
2: image← Retrieve(Glance, ip)
3: config ← Retrieve(Swift, ip)
4: vm← Provision(Nova, image, config)
5: if vm = NULL then
6: return FAILURE . No more resource available
7: else
8: Rebind(Nova, vm, ip) . Disabling the ghost
9: Delete(Glance, ip) . Freeing the storage
10: Delete(Swift, ip)
11: return SUCCESS

In the next section, our experiments demonstrate how the combination of these

three components in CloudGC performs for different scenarios and evaluate the

overhead introduced by this new middleware service of OpenStack. The evalua-

tions show that CloudGC does not only help user requirements exceed the Cloud

infrastructure limitation, but it can also support various services which are useful

in different cases.
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4.4 Validation in Private Cloud

The resource leaks caused by a stiff mechanism of resource allocation in Open-

Stack decrease the resource utilization of Cloud infrastructure. In a saturated

Cloud, they also may elasticity solutions to keep provisioning new compute nodes

whenever new VM instances needs to be deployed. In this specific case, CloudGC

is proposed to cope with the resource leaks, by using the components introduced in

previous section. This section assesses CloudGC with regards to the objectives

defined in Section 4.1—i.e., elevating the limits of a Cloud infrastructure to stop

wasting resources. The assessments therefore report on various scenarios, which

are considered to demonstrate the capability of CloudGC. Our results reveal

that CloudGC can better manage the resources of OpenStack Cloud than a

bare OpenStack IaaS. In this section, the testbed we use is the same hardware

infrastructure as in Section 4.1 and OpenStack is configured to run with the

standard configuration.

4.4.1 The Sky Is The Limit

In this first experiment, we run a similar scenario to the one described in

Section 4.1—i.e., we firstly saturate the Cloud infrastructure, then suspend some

VM instances before trying to provision some additional instances. Figure 4.6

depicts the results that CloudGC achieves on such a scenario. In particular, while

the number of VM instances that can be provisioned in a standard OpenStack

is limited, as emphasized in Figure 4.1b, CloudGC demonstrates its capacity

to recycle the idle VM instances to accept the provisioning of new VM instances

beyond the limits we previously observed (black dashed line). CloudGC recycles

in priority the VM instances that are explicitly paused or interrupted in order to

accommodate the incoming provisioning requests.

In details of Figure 4.6, after half of running VM instances becoming paused,

the end-users are able to deploy new VM instances—i.e., recycled VM instances

begin to appear when new VM instances are deployed (the dark blue part exceeds

the limit of Cloud infrastructure). Then, the scenario continues to interrupt the

other half of running VM instances and tries to deploy more VM instances. In

this case, one can find that, because of the ordered idle VM queues, CloudGC
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recycled all paused VMs before interrupted ones. As shown in Figure 4.6, the total

number of VM instances, which contains the ghost instances (i.e., the recycled

VM instances), can exceed the Cloud infrastructure limitation. This experiment

therefore prove that CloudGC can elevate the Cloud capacity to serve more

end-users in parallel.
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Figure 4.6: Provisioning VM instances with CloudGC.

For the sake of readability, Figure 4.7 zooms in a single compute node of

OpenStack Cloud and shows how VM instances are recycled and scheduled by

CloudGC along time. In particular, Figure 4.7a demonstrates that once the

paused or interrupted VM instances are all recycled (cf. Phase 1), CloudGC

then focuses on the running instances (cf. Phase 2). As explained in previous

section, CloudGC maintains two idle VM queues: explicit and implicit. Beside

the suspended VM instances, the monitoring component also needs to identify

those running instances, which are considered as idle. Given that the two queues

have different priorities, CloudGC always recycles explicit idle VMs (cf. Phase

1) before implicit idle VMs (cf. Phase 2). Figure 4.7a depicts also in Phase 3

that the recycled VM instances can still be requested at any time, and one can
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(b) Scheduling of VMs along time.

Figure 4.7: Node-scale scheduling of VM instances using CloudGC.

observe that CloudGC succeeds in recovering these requested VMs (light blue

part shrinks). This recycling process keeps working as long as there are enough

idle VM instances that can be recycled to satisfy a new provisioning request.

Beyond the results already reported, Figure 4.7b demonstrates more specifi-

cally the capacity of CloudGC to deal with different VM flavors, for example by

recycling 4 tiny instances (1 vCPU / 512 MB) to provision a small one (1 vCPU

/ 2 GB). In Figure 4.7, one can also observe that the provisioning delay of the

two small instances defer from each other. The first small instance is quickly provi-

sioned because CloudGC recycles explicitly idle VM instances and does not have

to snapshot their state (as the snapshot is operated upon the interruption of the

VM instance and takes a long time). However, the provisioning of second small in-

stance requires CloudGC to recycle implicitly idle VM instances, which induces

an additional overhead for snapshotting the state of 4 tiny instances. Therefore,

one can find that provisioning the second small instance takes much longer time

than the first one. Furthermore, at the end of this experiment, the recovery pro-

cess is also demonstrated in different cases. For some recycled VMs (e.g., vm1,

vm7, vm8, vm9), one can also find that they are able to be recovered when the

Cloud infrastructure has enough resources (cf. vm7, vm8, vm9) or has to launch

iterative process to recycle idle VM instances firstly (cf. vm1).

Figure 4.8 focuses on another OpenStack compute node and shows how
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CloudGC behaves when pinning a VM instance. At the beginning, this sce-

nario deploys 10 VMs as the OpenStack configuration allows them, and directly

suspends them. Then, the first deployed VM (i.e., vm1) is pinned by end-users.

In the rest of this scenario, when end-users begin to deploy new VM instances,

CloudGC starts to recycle the explicit idle VMs from vm2 and leaves vm1 alone.

This situation only can be changed after vm1 becoming unpinned (released). As

expected, when scenario requires to deploy a new VM (i.e., vm14), vm1 is selected

and quickly recycled. In summary, one can assess that the pinned VM instance

is not affected by the recycling process of CloudGC, no matter its current state

(running or suspended). CloudGC only recycles the VM instances that are con-

sidered as recyclable (i.e., unpinned).
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Figure 4.8: Pinning VM instances with CloudGC.

Among improvements, we are considering the integration of a VM consoli-

dation phase in the recycling process of CloudGC. Given the overhead of VM

consolidation, we plan to trigger such a phase only when CloudGC requires to

compact the resources to ease the provisioning of larger VM instances. In such

a case, the VM consolidation phase will aim at grouping i) pinned VM instances
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on a subset of compute nodes and ii) the resources made available by CloudGC

on a single node. Among the possible solutions to implement this phase, we are

considering the integration of CloudGC with the Watcher service6, which has

been recently released by OpenStack.

4.4.2 CloudGC Performance Analysis

Regarding the delay introduced by the recycling process of CloudGC, the

previous sections profiled the phases of CloudGC to identify how it performs

depending on the different situations considered in the scenario (detailed in Sec-

tion 4.1). Figure 4.9 therefore reports on the completion times achieved by

CloudGC to provision new or recycled VM instances in the Cloud infrastruc-

ture.
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Figure 4.9: Recycling delays introduced by CloudGC.

As long as enough resources are available in the Cloud infrastructure, one can

observe that the recycling process of CloudGC does not include any processing

overhead for the system, thus performing equally to a standard configuration of

6https://wiki.openstack.org/wiki/Watcher
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OpenStack. When CloudGC recycles explicitly idle VM instances, one can

assess that the processing overhead of CloudGC is rather low limited compared

to a standard provisioning process, adding only 5 seconds to recycle an idle VM

that has been explicitly suspended (cf. Table 4.2).

The biggest processing penalty introduced by CloudGC correspond to the

recycling of implicitly idle VM instances that are in a running state. In this

specific case, CloudGC requires to take a snapshot of the VM instance right

before releasing the associated resources, which impose to wait for the image to be

safely persisted on the storage device before completing the provisioning process,

and thus explaining the 215 seconds taken by Glance to complete this phase.

Table 4.2: Processing overhead per phase.

operation available explicit implicit
browse list - 2 sec 2 sec
create snapshot - - 215 sec
delete instance - 3 sec 3 sec
create instance 6 sec 6 sec 6 sec
deploy OS 9 sec 9 sec 9 sec
total 15 sec 20 sec 235 sec

Regarding memory consumption, Figure 4.10 compares the memory consump-

tion of OpenStack with and without CloudGC in Cloud controller node. On

average, the difference between the two curves represents an overhead of 50 MB for

the Cloud controller node, on which CloudGC is deployed with the other infras-

tructure services. During the provisioning phases, which are reflected as peaks in

Figure 4.10, one can observe that the memory overhead of CloudGC may reach

up to 100 MB due to the additional activities performed as part of the recycling

process.

Regarding the storage consumption, the storage capacity of Glance is impacted

by CloudGC as it uses this service to store the snapshots of recycled VMs. The

storage overhead of CloudGC therefore corresponds to the number of currently

recycled VMs times the size of a VM, which highly depends on the activity of

the Cloud. For example, Figure 4.6 provides an estimation of the volume of

VMs recycled by CloudGC and thus subsequent snapshot images it has to store.

CloudGC therefore trades CPU and memory resources against storage resources,
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Figure 4.10: Memory overhead introduced by CloudGC.

but we assume that the resource limitations of a Cloud are stronger when it comes

to CPU and memory resources.

With regards to current limitations, we are therefore exploring solutions to

reduce the impact of on-demand snapshotting, which is the major bottleneck of

CloudGC when recycling implicit idle VM instances. In particular, we are con-

sidering the support for incremental snapshots of idle VM instances to reduce both

the processing and the network overhead imposed by the snapshot operations. By

integrating such an incremental snapshot mechanism, CloudGC aims at com-

pleting the snapshot associated to an idle VM instance whenever the monitoring

component detects that its internal state has changed.

4.4.3 Orchestrating Periodic Usages

Thanks to CloudGC, a single physical infrastructure can be shared by several

groups of VM instances that do not operate continuously. OpenStack can there-

fore periodically and automatically switch between VM instances along periods

of variable durations in order to keep delivering the requested services, according

to user requirements. For example, a Cloud infrastructure can host a group of

services during office hours, then switch to another group of VMs during night

before moving to a third profile along week-ends. While supporting this kind of

scenario requires carefully handcrafted scripts to orchestrate the groups of VMs in



4.4. VALIDATION IN PRIVATE CLOUD 71

0.0

2.5

5.0

7.5

10.0

May 06 12:00 May 07 00:00 May 07 12:00 May 08 00:00 May 08 12:00 May 09 00:00 May 09 12:00
Time (s)

Q
uo

ta
s 

(m
em

)

G1:VM1 G1:VM2 G2:VM3 G2:VM4 G3:VM5 Other VMs

Figure 4.11: Supporting periodic VM instances in OpenStack with CloudGC.

OpenStack, CloudGC delivers this support natively, by exploiting the features

we detailed in this chapter.

For example, Figure 4.11 reveals a 4-day experiment we run in the OpenStack

infrastructure running CloudGC. In this experiment, we provision 5 VMs, which

are operating in 3 groups, next to other standard VM instances, which can be pro-

visioned and used more randomly. The group 1 includes two small VM instances,

which are used from noon every day. The group 2 contains two other small VM

instances, which need to be available twice a day at 4:00 and 16:00, respectively.

Finally, the group 3 has a single medium VM instance, which is usually active from

22:00 to 10:00.

From Figure 4.11, one can observe that, beyond the traditional usage of a

Cloud infrastructure, CloudGC succeeds to schedule periodic VM instances ac-

cording to their respective requirements. In order to guarantee the availability of

periodic VM instances on time, we also benefit from the timer of CloudGC (cf.

Section 4.3.4) to ensure that the VM instances are provisioned 5 minutes before

the expected time. Furthermore, the use of the timer turns out to be also useful

for autonomous VM instances, which do not need to be requested by an external

user and control their own activity.

The perspectives regarding this support for periodic VM instances refers to

the automatic mining of VM activity patterns in order to configure the timer of

CloudGC automatically. By adding such a capability, we believe that CloudGC

can evolve to provide a new building block of a Cloud infrastructure saving energy

by turning off the compute nodes hosting idle VM instances during periods of
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inactivity (e.g., nights, week-ends, holidays). Furthermore, the combination of

CloudGC with an elasticity service would enable compute nodes to be waken up

automatically by the timer or by requesting one of the recycled service.

4.5 Summary of CloudGC

While Cloud computing conveys the image of unlimited virtual resources that

can be allocated on-demand, the state-of-practice shows that the Cloud infras-

tructure may limit the flexibility. Recently, beyond major Cloud providers (e.g.,

Google) who manage large data centers, private Clouds are also being widely de-

ployed. The OSS solutions like OpenStack are providing the necessary services

to deploy an IaaS atop of clusters with a small size. Compared to public Cloud,

the private Clouds may quickly reach its limits. Due to the ossified resource alloca-

tion mechanism, the OpenStack Cloud may suffer from infrastructure limitations

when satisfying the user requests. While Cloud elasticity is now considered as the

de facto solution to scale the Cloud, we advocate that Cloud elasticity should be

carefully triggered as it may induce some non-negligible operational costs with

budget and carbon emission implications.

In this chapter, we therefore propose to identify potential resource leaks in a

Cloud infrastructure to develop a non-elasticity approach. Based on the experi-

ments, one can find that Idle VMs—i.e., instances that are either suspended or

inactive for a while—occupy lots of idle resources which cannot be re-allocated for

others, thus causing resource leaks. To address the problem, our new approach

automatically recycles idle VM instances in order to provision new VMs upon re-

quests. The middleware service, named CloudGC, detects periodically such idle

VMs and recycles them to free the resources, which are necessary to satisfy new

VM provisioning request. At the moment, CloudGC is integrated as an Open-

Stack service, thus not only providing a seamless support for typical services

(such as recycling idle VMs and recovering them), but also offering the periodic

deployment of VMs depending on user requirements. The evaluations demon-

strate that CloudGC can push the limits of the Cloud infrastructure beyond the

standards to mitigate the impact of resource leaks on Cloud flexibility, and the

recycling overhead introduced by CloudGC also remains in an acceptable range.
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Short-term perspectives on this work include the integration of additional ser-

vices of OpenStack, such as Neutron and Cinder, in order to provide a full support

for more complex VM configurations. In order to further improve the performance

of the solution, the extensions of CloudGC—that should include (i) the auto-

matic consolidation of VM in order to optimize the utilization of Cloud resources,

(ii) the support for incremental VM snapshots in order to reduce the latency of

the recycling process, and (iii) the mining of VM activities in order to identify and

anticipate recurring activities of VMs in a Cloud—also begin to be considered.

4.6 Synthesis

Thanks to the resource optimization (CloudGC) in OpenStackCloud, Cloud

infrastructure limitation often will not disturb users by insufficient capacities,

thus guaranteeing and improving the flexibility of Cloud computing. CloudGC

aims to avoid the resource waste in the provisioned environments, while ensur-

ing a reasonable resource utilization for the Cloud infrastructure. This therefore

complements the other researches concerning elasticity to make sure they will be

invoked at necessary moment, thereby avoiding the over-provisioning problem—

i.e., CloudGC is able to improve their effect. In particular, the resource opti-

mization strengthens the spontaneity of elasticity—i.e., in the case without any

of resource waste—when the provisioned resources (current Cloud infrastructure)

still cannot fit the user requirements, the elasticity is proven to become necessary

at that moment.

However, focusing only on the resource waste at the infrastructure-level is

far from enough to guarantee the QoS in Cloud computing. As introduced in

Chapter 1, many Public Cloud providers recently begin to provide Hadoop-related

services (e.g., Amazon EMR) to facilitate the business and developments in Big

Data domain. OpenStack also has the same plan to launch a sub-project Sahara,

which helps Cloud users to quickly deploy and easily manage an Hadoop cluster

atop of OpenStack. In this case, the Hadoop-related researches become more

and more interesting and important to Cloud computing. Therefore, my thesis

covers also the optimizations applicable on Hadoop clusters. By experimenting

with some well-known Hadoop benchmarks, we reveal several problems in memory
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utilization, which are associated to YARN the new component introduced into

Hadoop since an overhaul in 2012. We find that these problems are caused by the

static configurations and YARN itself. To solve them, a self-balancing approach

is proposed to adjust the YARN configurations at runtime. The problems and the

approach will be further illustrated and evaluated in next chapter.



Chapter 5

Resource Optimization in Hadoop

According to the rise of business and development in Big Data domain, many

Cloud providers begin to support Hadoop-related services, such as Amazon EMR,

etc. Even OpenStack, an open-source project which aims to accelerate and

facilitate the development and management of a private Cloud, has launched a

sub project, named Sahara, to help end-users to easily deploy and manage Hadoop

cluster atop of an OpenStack Cloud. In this case, the Hadoop performance also

affects the QoS in Cloud computing.

As a well-known distributed data-processing environment, Hadoop is widely

used in various Big Data business to process ad-hoc request or concurrent work-

loads. For the ad-hoc request, especially the one processing a huge data set,

users are able to prepare a customized Hadoop cluster to maximize the service

performance. In particular, many researchers introduced machine learning tech-

nologies to automatically achieve the customization of Hadoop cluster for ad-hoc

requests. Beyond ad-hoc requests, Hadoop cluster also processes concurrent work-

loads. However, the dynamics of concurrent workloads often cause distress for the

performance of Hadoop cluster, particularly in the case of time-varying workloads.

The distribution of concurrent jobs, even the changes of job sizes, are prone to

result in the resource leaks of Hadoop cluster, due to its unchangeable configu-

rations which cannot be adapted to the dynamics at runtime, thus causing the

degradation of service performance. Furthermore, Hadoop cluster also adopts a

master-slave architecture, which allows the cluster administrators to easily scale

an Hadoop infrastructure (VMs in Cloud computing). This attracts lots of atten-

tion from elasticity researches for Hadoop resource management to adapt a cluster

75
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according to the dynamics of concurrent workloads. My research therefore focuses

on the resource optimization of Hadoop cluster.

As introduced above, the resource optimization in Hadoop cluster can be di-

vided into two parts:

− Resource Management : Hadoop is a complex distributed data-processing

environment, which contains hundreds of configuration parameters. Due to the

complexity of configurations, configuring Hadoop cluster requires lots of expe-

rience as the service performance is often affected by misconfiguration (which

is prone to cause resource leaks, thus degrading system performance). For the

time-varying concurrent workloads, this problem become more serious. Beyond

the issue in Hadoop configurations, the dynamics of concurrent workloads also

raise several challenges to Hadoop cluster : i) the Hadoop static configura-

tions should be able to be dynamically tuned at runtime; i) the modifications

on configuration should adapt the Hadoop cluster to the dynamics of work-

loads; i) the solution should be able to detect the performance degradations

of an Hadoop cluster to avoid unnecessary actions, which do not improve the

performance but in turn degrade it. In this case, I therefore focus on the dy-

namic configuration of Hadoop cluster to eliminate the resource leaks caused

by misconfiguration, thereby providing the optimal Hadoop performance for

concurrent workloads based on the current infrastructure.

− Rapid deployment : As a distributed data-processing environment, Hadoop

performance highly depends on the infrastructure where it deploys. This both-

ers many researchers when evaluating their works. In particular, to compare

the performance of Hadoop-related approaches, researchers must reproduce

the same Hadoop cluster for all approaches. As introduced before, deploy-

ing Hadoop cluster is a time-consuming and complex work. In this case, I

advocate a new tool to simply and accelerate the deployment of a complete

Hadoop cluster, which is based on Docker technologies. Furthermore, the elas-

ticity can differentiate from scalability because it does not only consider how

to scale the infrastructure but also consists of many other issues, such as spon-

taneity and timeliness (i.e., rapid deployment). Therefore, this tool should be



5.1. RESOURCE MANAGEMENT IN HADOOP 77

also interesting for those focusing on other Hadoop research, such as elasticity

and self-adaptation etc.

The two Hadoop-based researches will be illustrated in the following sections,

respectively.

5.1 Resource Management in Hadoop

As introduced in Chapter 3, an Hadoop cluster is a typical distributed system

with a master-slave architecture, thus its performance can be improved by classical

scalability and elasticity approaches. However, these approaches have a common

loss—i.e., they all selectively disregard the effort of improving resource usage

in performance optimization. Even though these approaches can guarantee the

Hadoop performance, but also introduces a growth cost. In this chapter, we will

propose a new approach to improve Hadoop performance, based on related works,

which do not only contain the classical approaches, but also consists of many

others. And, we believe that it will become an important complement to elasticity

and many other approaches.

Along the years, Hadoop has emerged as the de facto standard for Big Data

processing. One of Hadoop popular processing framework, named the MapReduce

paradigm, has been applied to a large diversity of applications and workloads,

including distributed sorting, log analysis, document clustering, machine learning,

etc. In this context, the performance issues of Hadoop has attracted more and

more attention in research and industrial communities.

The performance and the resource consumption of Hadoop jobs do not only

depend on the characteristics of applications and workloads, but also on an appro-

priately configured Hadoop environment. The Hadoop environment is controlled

by two parts: infrastructure configuration (e.g., the number of nodes in a cluster)

and Hadoop platform parameters. Hadoop contains hundreds of parameters, which

can be generally divided into two categories: job-oriented and system-oriented.

• job-oriented parameters are responsible to regularize the submitted jobs. These

parameters ensure that the executing jobs comply with the standard of Hadoop,

thus avoiding the failures of job processing.
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• system-oriented parameters support the execution of an Hadoop cluster. They

control system-level configurations, such as Hadoop component connections, re-

source allocation settings, job parallelism, etc.

Next to the infrastructure-level configuration, the Hadoop performance is sig-

nificantly affected by Hadoop parameter (both job- and system-level parame-

ters) settings. Optimizing the job-level parameters to accelerate the execution

of Hadoop jobs has been a subject to lots of research work [14, 28, 33, 36, 37, 38].

These approaches tend to either optimize specific job categories and workload

patterns, or use machine learning techniques to increase their application. Never-

theless, because of the diversity of Hadoop jobs and the large number of job-level

parameters, machine learning requires a large training set for building an accurate

internal model. This obviously reduces the effectiveness of machine learning.

Beyond job-level configuration, Hadoop also includes a large set of system-

level parameters. In particular, YARN (Yet Another Resource Negotiator), the

resource manager introduced in the new generation of Hadoop (version 2.0) de-

fines a number of parameters that control how the applications (e.g., MapReduce

jobs) are scheduled in a cluster, which influence jobs performance. YARN is a gen-

eral scheduler allowing to run various distributed application beyond MapReduce

(e.g., Spark, Flink, Tez, GraphLab), but the focus in this research is primarily on

MapReduce jobs.

Without considering the performance issues of job-level configurations, due to

the diversity of high-level applications, the static configuration of Hadoop system

and its corresponding researches are still not enough to guarantee the optimal

Hadoop performance. On the one hand, in the case of this research, the diversity

of MapReduce applications and workloads suggests that a simple, one-size-fits-all

application-oblivious configuration will not be broadly effective—i.e., one Hadoop

configuration that works well for one MapReduce application/workflow combina-

tion might not work for another [52]. On the other hand, YARN configuration is

static and as such, it cannot reflect any changes in workloads dynamics. The only

possibility is to do a best-effort based on either experience or a static profiling in

the case the jobs and workloads are known a priori . However, (1) this might not

be always possible to adjust system-level parameters at runtime, (2) it requires
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additional work to analyze the submitted jobs and workloads, and (3) any un-

predictable workload changes (e.g., a load peak due to node failures) will cause

performance degradation.

Among YARN parameters, the MARP (Maximum Application master Re-

source in Percent : yarn.scheduler.capacity.maximum-am-resource-percent) prop-

erty directly affects the level of MapReduce job parallelism and associated through-

put. This property balances the number of concurrently executing MapReduce

jobs versus the number of the corresponding map/reduce tasks. An inappropriate

MARP configuration will therefore either reduce the number of jobs running in

parallel resulting in idle jobs, or reduce the number of map/reduce tasks and thus

delay the completion of jobs. However, finding an appropriate MARP value is

far from trivial. The balance between job parallelism and throughput can sig-

nificantly impact Hadoop performance. Meanwhile, according to the increase

of MARP value, Hadoop performance actually expose a non-monotone behav-

ior which will be shown in Section 5.1.1. Moreover, thanks to YARN privilege

commands, Hadoop cluster can reload the MARP parameter at runtime. This

provides the possibility to tune MARP towards a best-effort value for the running

jobs and workloads without bothering the whole Hadoop cluster.

In this research, we therefore focus on dynamic MARP configuration. First,

we identify the relationship between the MARP parameter and the performance of

variety of MapReduce applications and workloads using established benchmarks.

Second, based on the analysis, we implement a self-configuration heuristics as a

feedback control loop that continuously adjusts the MARP parameter at runtime.

The evaluation demonstrates that the approach systematically achieves better

performance than static configuration approaches. Concretely, one can outperform

the default Hadoop configuration by up to 40% and up to 13% for the best-effort

statically profiled configurations, yet without any need for prior knowledge of the

application or the workload shape, nor any need for any learning phase. The main

contributions of the research are:

(1) an analysis of the effects of the MARP parameter on the MapReduce job

parallelism and throughput, and
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Figure 5.1: Relationship between the job size, the percentage of RAM for
MRAppMasters, and the average job response time.

(2) a feedback control loop that self-balances the MapReduce job parallelism and

throughput.

In the next section, we will introduce the architecture of YARN where this

research relies on.

5.1.1 Limitations of Static Configurations

To understand the limitation of static configuration, we first study how the

MapReduce job size (i.e., the number of tasks to be processed) and the MARP

parameter affect the overall completion time of Hadoop jobs. All experiments

were performed using an Hadoop cluster made of 11 physical hosts1 (1 control

node and 10 compute nodes) deployed on the Grid5000 infrastructure 2. The

Hadoop version is 2.6.1.

PI estimation is a default MapReduce performance benchmark packaged in

Hadoop. It allows users to specify the input workloads by adjusting MapReduce

job size. We repeat the experiment to cover all the combinations between MARP

value and MapReduce job size. Figure 5.1 exposes the mean completion time of
12 Intel Xeon L5420 CPUs with 4 cores, 15GB RAM, 298GB HDD
2https://www.grid5000.fr
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Figure 5.2: Effects of different MARP configurations, job type and job size on
mean completion time of 100 jobs.

two PI estimation load peaks—i.e., 50 jobs/peak and 100 jobs/peak. One can

observe that (1) the default MARP value cannot provide the optimal performance,

and (2) the Hadoop performance shows non-monotone behavior according to the

increase of MARP value. To ensure the figure visibility, all the completion times

are normalized according to the absolute completion time of the vanilla Hadoop

configuration—i.e., MARP = 0.1.

Figure 5.2 reports on the completion time of the three applications provided

by the HiBench benchmark suite [31]: Wordcount, Terasort, and Sort. For each

of the input workloads—i.e., 30MB and 3GB—one can observe the impact of the

MARP parameter on the mean completion time of 100 jobs.

As expected, the vanilla configuration does not provide the best performance

for any of the workloads. Furthermore, one can observe that the best performance

is not achieved by a single value of MARP, but rather tends to depend on the size

of the job. In particular, increasing the value of MARP—thus allocating more

resources to the MRAppMaster containers—tends to benefit the smaller Hadoop

jobs, while large jobs complete faster when more resources is dedicated to the

YarnChild containers.

Next, we stress the Hadoop cluster by running a different number of jobs in
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Figure 5.3: Effects of different MARP configurations and load peak stress on mean
completion time.

parallel in order to observe the impact of a load peak on the job mean completion

time. Figure 5.3 shows the performance when running Terasort with 3GB workload

under various stress conditions. Compared to Figure 5.2, one can observe that by

increasing the number of concurrently running jobs, the optimal value of MARP

differs from the previous experiment. In this case, we can find that, the size of

job is not the only characteristic which affects the optimal MARP value, but the

size of workloads also does. Therefore, while a MapReduce job can be profiled for

a best-effort MARP configuration in a specific Hadoop cluster, any unpredictable

changes in the workload dynamics will lead to a performance degradation.

Finally, we consider heterogeneous workloads. Concretely, we use SWIM (Sta-

tistical Workload Injector for Mapreduce) [15] to generate 4 realistic MapReduce

workload. SWIM containing several large workloads (thousands of jobs), with

complex data, arrival, and computation patterns that were synthesized from his-

torical traces from Facebook 600-nodes Hadoop cluster. The proportion of job

sizes in each input workloads has been scaled down to fit the cluster size using a

Zipfian distribution 3. For example, Figure 5.4 shows the job distribution synthe-

sized from SWIM that was used in the experiment as the first workload (W1).

As previously observed for homogeneous workloads, Figure 5.5 demonstrates
3http://xlinux.nist.gov/dads/HTML/zipfian.html
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that a single MARP value cannot fit all the workloads and the best configuration

can only be set by having a deep understanding of the Hadoop jobs and their

dynamics.

Synthesis. These preliminary experiments illustrate that the MARP configura-

tion has a clear influence on Hadoop performance. They show that the default

value is not optimal for almost all the considered cases. While one can profile

the different applications to identify the best-effort configuration we have shown

that any unforeseen change in the workload dynamics can degrade the overall

performance. To leverage the required expertise, we therefore advocate for a self-

adaptive approach that continuously adjusts the MARP configuration based on

the current state of the Hadoop cluster.

5.1.2 Memory Consumption of Hadoop

As shown in the previous section, the static configuration of MARP can cause

several types of performance issues. Since containers currently consider only mem-

ory, in this section we focus on memory consumption and analyze the causes of

the performance bottlenecks.

In an Hadoop cluster, the memory can be divided into 3 parts: Msystem, MJobs,

and Midle. Msystem is the memory consumed by the system components—i.e., Re-
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ated workloads on overall completion time.

sourceManager and NodeManager in YARN and NameNode, DataNode in HDFS.

The memory consumption of this part is almost constant. The other three parts

represents the memory held by NodeManager(s) as a result of processing MapRe-

duce jobs. MJobs contains two parts: MAM and MY C , they are all the memory

occupied by MapReduce jobs, but consumed by MRAppMaster and YarnChild, re-

spectively. The relationship between Msystem, MJobs, MAM , MY C , and Midle with

the overall memory of a Hadoop cluster, Mcompute can be expressed as follows:

Mcompute =Msystem +
n∑

1

Mn
AppMaster

︸ ︷︷ ︸
MAM

+
n∑

1

m∑

1

Mnm
Y arnChild

︸ ︷︷ ︸
MY C︸ ︷︷ ︸

MJobs

+MIdle (5.1)

Upon starting an Hadoop cluster, Mcompute is fixed (unless new computing nodes

are enlisted or existing discharged from the cluster).

MAM =
∑n

1 M
n
AppMaster is the memory allocated to all the MRAppMaster contain-

ers across all compute nodes. This is controlled by the MARP configuration—

i.e., M∗
AM = Mcompute × MARP. During the processing of jobs, MAM 6

M∗
AM .

MY C =
∑n

1

∑m
1 M

nm
Y arnChild is the memory used by all the YarnChilds to process

map and reduce tasks across all the concurrently running jobs on all the

computing nodes. This part directly impacts the job processing rate. A
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larger MY C means that the more map or reduce tasks can be launched in

parallel and the faster ongoing jobs are completed.

Midle is the unused memory across all the computing nodes. High Midle value

together with pending jobs is a symptom of a waste of resources. It typically

means that the system performance have a room for improvement.

5.1.2.1 Loss of Jobs Parallelism

The maximum number of concurrently running jobs, Nmax, in an Hadoop clus-

ter is

Nmax =
M∗

AM

Mcontainer

(5.2)

where Mcontainer is the NodeManager container size (by default it is 1GB). The

smaller the MARP value is, the smaller Nmax will be and the less jobs will be able

to run in parallel.

In the case that the number of running jobs equals to Nmax, all available appli-

cation master containers are exhausted and ResourceManager cannot schedule any

more jobs into Hadoop cluster for processing. The new submitted jobs therefore

become idle, and wait for the permissions in a queue. In this case, Equation (5.1)

can be rewritten as follows:

Mcompute =M∗
AM +MY C +Midle (5.3)

Where Midle will emerge with a low Nmax (i.e., low MARP value). When the

number of running jobs reaches Nmax, MAM = M∗
AM and no more pending jobs

can be run even though Hadoop cluster has Midle (i.e., M∗
AM +MY C < Mcompute).

Therefore, according to Equation (5.3), one can observe that the lower M∗
AM +

MY C is, the higher Midle is, indicating a memory / container waste that in turn

degrades performance. One call this situation the Loss of Jobs Parallelism (LoJP).

Figure 5.6 illustrates such a situation. An Hadoop cluster with 8 containers has

the MARP value set too low allowing only one job to be executed concurrently.

Any pending jobs will have to wait until the current job has finished despite that

there are unused containers. In this case, the waiting time of each pending job

increases significantly.
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Figure 5.6: LoJP and LoJT in Hadoop.

5.1.2.2 Loss of Job Throughput

As shown in the previous section, small Nmax limits the jobs parallelism within

an Hadoop cluster. However, large Nmax may also impact the job performance.

By increasing Nmax (or M∗
AM) in order to absorb Midle, Equation (5.1) can be

rewritten to:

Mcompute =MAM +MY C (5.4)

In this case, the memory utilization is not probably limited by MARP. Once a

new job is submitted, it will be directly scheduled into Hadoop cluster until Midle

is exhausted. Compared to LoJP, Midle is eliminated as far as possible. The

waiting time of pending jobs theoretically should be reduced, indicating a short

completion time that in turn improve performance.

However, when the Hadoop cluster processes a large number of concurrent jobs,

MAM becomes a major part ofMcompute and thus it limitsMY C . MRAppMaster is a

job-level controller and it does not participate in any map or reduce task process-

ing. Therefore, a limited MY C decreases significantly the processing throughput

of an Hadoop cluster. This symptom is identified as a Loss of Job Throughput

(LoJT) and is also illustrated in Figure 5.6. In this case, we have set the MARP

too high, which allows many jobs to run in parallel, yet the actual processing ca-

pacity is limited by the low number of available container for running YarnChild.

In this case, the waiting time of each pending job will decrease slightly, but the

processing time of each running job will increase significantly. Furthermore, for
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the new submitted jobs, they might endure a long processing time as well as a

long waiting time caused by previous jobs. In a saturated Hadoop cluster, LoJT

will not improve performance, but conversely degrade it.

5.1.2.3 Large Drops of Memory Utilization

Depending on the size of the jobs and the memory used in YarnChild containers,

the dynamic allocation of resources can result in large drops of memory utilization

(cf. Fig. 5.7). This is especially true when the tasks are rather fast to complete.
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Figure 5.7: Amplitude of memory drops depending on the MARP value.

In this scenario, the deployed Hadoop job consists of 20 map and 1 reduce

tasks deployed in a cluster provisioned with 50GB of memory that we stress with

a continuous flow of requests to ensure that the number of running jobs is close

to Nmax (cf. Equation 5.2). By increasing the MARP value every 10 minutes, one

can follow the impact of jobs parallelism on the memory utilization of the cluster.

In particular, one can observe in Figure 5.7 that the lower MARP value, the

larger and more frequent memory drops—even for large jobs, which are expected

to benefit from low MARP value (cf. Section 5.1.2.1).

These memory drops are caused by the different lifecycle of containers, and

basically appear at the end of concurrently running jobs. When a job comes to

the end, all its corresponding MY C will be quickly released. However, its MRApp-

Master is still running to organize data, and to report results to users. Due to

the running MRAppMaster, idle jobs cannot get the permission to access mem-
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ory for processing. In this case, if other concurrently running jobs do not have

enough unscheduled map or reduce tasks to consume these Midle (released MY C),

the memory utilization will drop. A higher MARP value means more concurrently

running jobs, which probably have more unscheduled map or reduce tasks to avoid

the memory drops, and vice versa.

To clearly display the process of Large Drops of Memory Utilization,

Figure 5.8 reveals the changes of memory utilization during this process. In this

scenario, MARP permits only 1 MapReduce job processing in parallel.

1) At time T0, Job1 is processing in Hadoop cluster. It has 1 MRAppMaster

and m YarnChild which make memory utilization high.

2) All m YarnChild have finished at T1. However, MRAppMaster of Job1 is

still active for collecting results, recording status and reporting to users.

Because of the MARP limitation and active MRAppMaster of Job1, another

pending jobs cannot be scheduled into Hadoop cluster even though memory

utilization becomes low.

3) As introduced before, MRAppMaster is the first container of application

launched by ResourceManager. In this context, after the end of Job1, Job2

gets its MRAppMaster to begin the preparation of processing at T2, such as

splitting datasets, negotiating resources, and launching YarnChild. During

this period, only MRAppMaster of Job2 is running in Hadoop cluster, thus

the memory utilization is still low.

4) When MRAppMaster has finished the preparation, the launched YarnChild

also began to process its corresponding tasks. At the moment T3, Job2 is

processing in the Hadoop cluster. The memory utilization therefore becomes

high again.

In this scenario, one can obviously find that, between T1 and T2, the memory

utilization of Hadoop cluster remains in a low level. Therefore, a Large Drop of

Memory Utilization appears.

The memory drops cause temporarily high Midle, and therefore reduce the av-

erage memory utilization—i.e., this phenomenon also contributes to performance
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Figure 5.8: The process of 1 Large Drop.

degradations. Moreover, the frequent and large memory drops can also lead the

users to misjudge the state of the Hadoop cluster.

5.1.3 Self-balancing Proposition

Based on the previous section, we propose a self-adaptive approach for dy-

namically adjusting the MARP configuration based on the current state of the

cluster.

5.1.3.1 Maximizing Jobs Parallelism

The symptom of LoJP—i.e., small Nmax, large Midle leading to decrease the

memory utilization— can be detected from the ResourceManager component and

fixed by increasing the MARP parameter. However, it should not consequently

cause LoJT (cf. Section 5.1.2.2). We therefore propose a greedy algorithm to

gradually increase the MARP parameter (cf. Algorithm 5). It is a simple heuristics

that periodically increments MARP by a floating step (inc) until a given threshold

(TLoJP ) is reached—i.e., the overall memory consumption MU = MAM + MY C

falls below the threshold MU < TLoJP . Both, the current MU and MARP values

can be observed from ResourceManager. Once the increment becomes effective,

ResourceManager will continue to schedule any pending jobs until the Nmax limit

is reached. A short delay between the increment steps (delay) is therefore required

to let the cluster settle and observe the effects of the increment.

5.1.3.2 Maximizing the Job Throughput

The LoJT symptom is more difficult to detect since, at the first glance, the

Hadoop cluster appears to fully utilize its resource. However, as shown in (5.4),

this situation can be also a result of the cluster saturation with too many jobs run-
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Algorithm 5 Fixing LoJP by incrementing MARP.
1: procedure LoJP(TLoJP , inc, delay)
2: MU ← current memory utilization
3: if MU < TLoJP then
4: MARP ← current MARP value
5: MARP ←MARP + inc
6: reload(MARP )
7: sleep(delay)

ning in parallel. It therefore requires to better balance the resources allocated to

MAM andMY C . Algorithm 6 applies another greedy heuristics to gradually reduce

the amount of memory allocated to MRAppMaster by a floating step (dec) until

one detects that the overall memory utilization (MU) falls below the maximum

memory utilization threshold TLoJT .

Algorithm 6 Fixing LoJT by decrementing MARP.
1: procedure LoJT(TLoJT , dec, delay)
2: MU ← current memory utilization
3: if MU > TLoJT then
4: MARP ← current MARP value
5: MARP ←MARP − dec
6: reload(MARP )
7: sleep(delay)

To avoid an oscillation between the two strategies, we combine them in a

double-threshold (TLoJP , TLoJT , where TLoJP < TLoJT ) heuristic algorithm that

ensures that they work in synergy (cf. Algorithm 7). In the experiments, based

on the experience, we set 0.9 and 0.95 as TLoJP and TLoJT .

The increment and decrement steps are not fixed. Instead, they are computed

in each loop iteration based on the difference between the memory utilization and

the target threshold. This allows the system to automatically achieve the trans-

lation between rapid and fine-gained tuning—i.e., if the MU is near a threshold,

the square root will be small while shall the memory utilization be far from a

threshold the increment or decrement will be large.

5.1.3.3 Handling Drops of Memory Utilization

Drops of memory utilization are caused by the completion map and reduce

tasks that release large blocks of memory. Such memory fluctuation can result in
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Algorithm 7 Balancing LoJP and LoJT.
1: procedure Balance(delay)
2: Mcompute ← overall maximum memory
3: TLoJP ← 0.9×Mcompute

4: TLoJT ← 0.95×Mcompute

5: loop
6: MU ← current memory utilization
7: if MU < TLoJP then
8:
9: LoJP(TLoJP ,

√
TLoJP−MU

Mcompute
, delay)

10:
11: else if MU > TLoJT then
12:
13: LoJT(TLoJT ,

√
MU−TLoJT

Mcompute
, delay)

MARP oscillation when the algorithms above will be constantly scaling up and

down the MARP value. To prevent this, we use a Kalman filter to smooth the

input—i.e., the memory utilization. It helps to stabilize the value and eliminate

the noise induced by the memory fluctuation [45]. Concretely, we apply a 1D filter

defined as:

M(t+ δt) = A · M(t) +N(t) (5.5)

where M refers to the state variable—i.e., the memory usage—A is a transition

matrix and N the noise introduced by the monitoring process.

5.1.4 Evaluation in Hadoop Cluster

In this section, we evaluate the capability of the self-balancing approach to

address the problem MapReduce job parallelism and throughput. We start with

an quick overview of the implementation of the self-balancing algorithm followed

by a series of experiments. The evaluation has been done using a cluster of 11

physical hosts deployed on the Grid5000 infrastructure, the same as we used in

Section 5.1.1. The Hadoop version is 2.6.1. Additional configuration details and

experiment raw values are available in Appendix A.

5.1.4.1 Implementation Details

Figure 5.9 depicts the architecture of the feedback control loop that implements

the balancing algorithm introduced in the previous section. It follows the classical
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Figure 5.9: Architecture of the feedback control loop.

MAPE (Monitor-Analyze-Plan-Execute) decomposition [32].

This approach has 4 steps: Monitor, Analyze, Plan, and Execute.

(1) The Monitor step is responsible for reflecting the actual status of memory

consumption across the whole Hadoop cluster. The memory information are

collected using the ResourceManager services. Using ResourceManager services

is much better than per-node monitoring method. Each NodeManager regu-

larly reports on the state of corresponding compute node to ResourceManager

by heartbeat (i.e., the system message in Hadoop), such that ResourceManager

can detect the total available resource in Hadoop cluster. Furthermore, each

new container of applications should be directly launched (MRAppMaster) by,

or negotiate (YarnChild) with ResourceManager. In such case, ResourceMan-

ager can record both of the latest memory usage of applications and the total

available resource in Hadoop cluster, thus logs the total memory utilization

into the system log file. To obtain the memory information of Hadoop clus-

ter, the only cost is a reasonable delay (e.g., seconds). In contrary, per-node

monitoring method requires per-node sensor which might increase the burden

of each compute node. Moreover, this method also will occupy the network

bandwidth that in turn affects the Hadoop performance.

(2) The Analyze step contains a Kalman filter. As exposed in Section 5.1.2, the

Large Drops is a set of fluctuations of memory utilization, which are caused
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by the application self-managing mechanism introduced by YARN. These fluc-

tuations are changeable, random, and violent in some cases. They disturb

the balancing algorithms by misjudging the actual state of Hadoop cluster,

thereby reducing the benefit of this approach, even making self-balancing ap-

proach launch unnecessary adjustments and degrading Hadoop performance.

In this case, a Kalman filter is introduced into this approach to smooth the

fluctuations, thus guaranteeing the effect of self-balancing algorithms.

(3) The self-balancing algorithms is the core of this approach, which are imple-

mented in Plan step. Based on the smoothed input from Kalman filter, the

algorithms will figure out the optimal MARP value, and require Execute step

to refresh the parameter in Hadoop cluster.

(4) The Execute step is to update the MARP value and to reload it at runtime.

The MARP value is accessed via YARN configuration and changes to it are

applied using YARN resource manager admin client4.

The control loop was implemented in Java and runs on the control node along-

side with YARN. For the Kalman filter, we used the jkalman library5. We set the

delay to 10 seconds before continuing next control loop iteration. We find that

this is a reasonable delay allowing the system to apply the new configuration.

5.1.4.2 Job Completion Time

We start the evaluation by running the same set of MapReduce benchmark

as we did at the beginning in Section 5.1.1—i.e., Wordcount, Terasort and

Sort from the HiBench benchmark suite, each with two datasets (30MB and

3GB). Figure 5.10 shows the mean job completion time of 100 jobs using (1) the

vanilla Hadoop 2.6.0 configuration (MARP = 10%), (2) the best-effort statically

profiled configuration where the values were obtained from the initial experiments

(cf. Fig. 5.2), and (3) finally the self-balancing approach (dyn). The values were

normalized to the vanilla configuration.

For each of the considered applications and workloads, the self-balancing ap-

proach outperforms both of the other configurations. Often, the difference between
4yarn rmadmin command
5http://sourceforge.net/projects/jkalman
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Figure 5.10: Performance comparisons of 3 HiBench applications and 2 datasets.

the statically profiled configuration and the dynamic one is small. This is because

the best-effort MARP value already converges towards an optimal configuration

so the applications cannot execute much faster. The important thing to realize

is that the approach adapts to any application and does not require any profiling

effort. It continuously finds a MARP configuration under which the application

executes at least as fast as under the best-effort configuration.

Next, we evaluate how the approach performs under different workload sizes.

Figure 5.11 shows the completion time of the Terasort with 3GB input data size

benchmark under varying number of concurrently running jobs—i.e., 10, 50, 100

and 150. In this case, the self-balancing algorithm outperforms the other config-

urations in all but the first case of a small number of jobs. The reason is that

the solution always starts with the default MARP configuration which is 10% and

converges towards the optimal value (20% in this case) along the execution. How-

ever, the overall completion time of the 10 jobs is too short and so the jobs finish

before the algorithm converges.

Finally, we evaluate the approach with 4 time-varying workloads generated by

SWIM. We use the same workloads as we presented in Section 5.1.1. The job size

distribution varies across the different workloads. Each job has only one reduce

task and a varying number of map tasks chosen randomly from a given map size

set. The overview of the workload configurations is given in Table 5.1. Each

map task manipulates (reads or writes) one HDFS block; in this case 64MB. The

complete input size of the workload is shown in the last column.

Figure 5.12 compares the job absolute completion time for static and dynamic
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Figure 5.11: Performance comparisons of Terasort configured with 3GB under 4
workloads. The best-effort MARP for the case of 150 jobs is the same as the
vanilla MARP—i.e., 10%.

#Jobs #Maps Map size set Input size
W1 500 10460 {5, 10, 40, 400} 335GB
W2 500 25605 {5, 10, 50, 100, 300, 400} 819GB
W3 1000 5331 {1, 2, . . . , 35} 342GB
W4 500 15651 {26, 27, . . . , 50} 500GB

Table 5.1: Configuration of SWIM workloads.

configuration parameters. For each workloads, one can observe that, compared

to the vanilla configuration, the approach can significantly reduce the completion

time of jobs (e.g., up to 40% in W1). It also systematically delivers a better per-

formance than the best-effort configurations. Figure 5.13 reveals the detail of job

completion time captured from W1. Compared to LoJP (Figure 5.13a) and LoJT

(Figure 5.13b and 5.13c) cases, the dynamic configuration can maintain balance

between the job parallelism and job throughput, resulting in the shortest job com-

pletion time for most of jobs (i.e., the optimal performance). The approach can

substantially reduce the waiting time, meanwhile, without increasing processing

time significantly. The job completion time therefore is shortened, resulting in

performance optimization. The overall completion times of the four SWIM work-

loads is further shown in Figure 5.14. Similarly to what has been shown in the

previous figure, the approach outperforms all the other configurations.

Finally, for illustration in Figure 5.15, we show the different MARP values
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computed over the processing of the workload W1 by the self-balancing algorithm.

We can observe a weak correlation between this plot and the W1 job distribution

shown in Figure 5.4. The reason why the correlation is weak is that the size of the

individual jobs varies as we have shown in Table 5.1. The MARP value follows the

dynamics of the jobs executions, therefore, it is also shifted in time as any load

peak (in the number of job submissions) will be propagated in the system with

delay.

5.1.4.3 Job Resource Consumption

The approach focuses on balancing the memory allocation between MRApp-

Master and YarnChild containers. In this section, we therefore evaluate if the

memory is ideally used while running MapReduce jobs by computing the evolu-

tion of Scoret,w = MUt,w

CTw
, where Scoret,w is the ratio at time t for the workload

w that we compute as the memory utilization (MUt,w) divided by the overall

completion time (CTw). Figure 5.16 shows the value of Score for the 4 SWIM

generated workloads introduced in the previously introduced. We can observe

that for each of the workloads, the approach gets a higher score than the best

static configuration.

5.1.4.4 Discussion

Typically, the identification of an optimal static configuration can be either

based on an experience or requires profiling techniques and several executions [38].

The approach instead automatically adjusts this value based on the current state

of the Hadoop cluster.

The evaluation shows that the self-balancing of job throughput and parallelism

performs better than static configurations under various conditions of execution,

without any prior application knowledge nor domain expertise. This solution

works with standard Hadoop distributions as it only requires to access YARN for

getting information about the current memory utilization and adjust the MARP

configuration value.
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Figure 5.12: The comparison of job absolute completion time observed for static
and dynamic configuration parameters.
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5.1.5 Summary of Self-balancing Optimization

Optimizing the performance of Hadoop clusters has become a key concern

for Big Data processing. In YARN, inappropriate memory usage may lead to

significant performance degradations. In this chapter, we propose a self-adaptation

approach based on a closed feedback control loop that automatically balances the

memory utilization between YARN MapReduce processes. We have shown that it

outperforms the default Hadoop configuration as well as the best-effort, statically

profiled, ones. Thanks to this self-balancing approach, Hadoop cluster can process

majority of concurrent workloads with the optimal performance. Furthermore,
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Figure 5.16: Score comparison of the 4 SWIM workloads.
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while in this research we focus on MapReduce paradigm, the approach in fact works

on YARN level. In this case, it can be used for all YARN-based applications and

therefore we also plan to look for other applications based on YARN to evaluate

this approach.

5.1.6 Synthesis

In platform level, this approach can ensure the optimal system performance

for Hadoop by optimizing memory consumptions. However, when the Hadoop

cluster has processed the congestion, most of the compute nodes will probably

become idle. This is especially true when the input workloads are time-varying.

The idle compute nodes would not cause any problem for an ad-hoc infrastructure.

However, for a multi-tenant infrastructure, the occupation of idle resource (i.e.,

compute nodes) will degrade the resource utilization, particularly in the case of

Cloud computing.

Thanks to IaaS service, users can flexibly allocate resource from the Cloud.

The Cloud provides its resource in the form of VM with high security and strict

access—i.e., the Cloud infrastructure is shared by multi-tenant but the provisioned

VM is only available to its corresponding users. In the Hadoop case, the other

Cloud-users cannot re-allocate the provisioned resource even though the Hadoop

Cluster becomes idle—i.e., the VMs of idle compute nodes in Hadoop cluster

cannot be reused by another urgent requirements. This therefore degrades the

resource utilization of the Cloud, resulting in high Cloud cost which might affects

the lease price of IaaS.

Besides the performance improvement on platform level, we also focus on the

resource management in infrastructure and propose a new middleware service

(i.e., CloudGC) to optimize the ossified mechanism of resource allocation in

Cloud. Based on the experiments and analysis in an OpenStack Cloud, we can

find that CloudGC is an interesting and feasible choice to avoid the resource

leaks caused by resource allocation mechanism. The infrastructure we use is a

private OpenStack Cloud which consists of 8 compute nodes. The optimization

of resource management (i.e., CloudGC) in this Cloud is explained and be proved

in Chapter 4.
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We believe that, thanks to the resource self-optimization approaches in both

platform- and infrastructure-level, Cloud providers can easily guarantee the per-

formance of its high-level platform (i.e., Hadoop cluster), while (i) degrading the

impact of idle compute nodes in the Hadoop cluster and (ii) improving the re-

source utilization of Cloud—i.e., releasing the resource when the Hadoop cluster

becomes idle—to avoid unnecessary growth of Cloud expenditure. Therefore, we

can also consider that these solutions are important complement to the elasticity

researches in their respective level.

After the researches on resource optimization of the provisioned infrastructure,

we also focus on the deployment and resource provisioning at the platform level

(i.e., Hadoop cluster). For the elasticity researches on Hadoop, the timeliness of

provisioning resources as well as rapid deployment of platform is an important

issue. Moreover, the reproducibility is also a problem bothering many Hadoop

researchers for a long time when evaluating their works (e.g.,, self-adaptation

approaches), due to the diverse Hadoop performance on different infrastructure.

Therefore, with regards to the various problems (i.e., timeliness and reproducibil-

ity) about (rapid) deployment of Hadoop cluster, we develop a new tool to help

users to quickly deploy a complete Hadoop cluster on their infrastructure, with

the same default configuration each time. In next section, we will introduce this

rapid deployment tool of Hadoop cluster, which is based on docker.

5.2 Rapid Deployment of Hadoop Cluster

In the typical researches of distributed systems, elasticity plays an important

role. It is certainly an important and effective solution for Hadoop cluster to op-

timize its performance. In this research, we focus on the rapid deployment of a

complete Hadoop cluster, which is an indispensable part of Hadoop elasticity. One

of the characteristics of many Hadoop workloads is that their dynamics changes

over time. Considering the scale of these workloads (thousands to hundreds of

thousand jobs), this can quickly lead to a waste of resources since the static con-

figuration does not adapt to the current runtime condition.

Optimizing Hadoop execution has therefore attracted a lot of research atten-

tion, resulting in a number of different approaches in particular in the domain
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of self-adaptive software systems [8, 14, 22, 28, 36, 38, 47, 48]. However, the re-

search effort is often hindered by the accidental complexity of (1) setting Hadoop

deployment in different distributed environments and (2) comparing the effect of

different approaches.

Hadoop is a highly distributed systems which contains hundreds of configura-

tion parameters. Correctly setting an operational Hadoop cluster requires a sig-

nificant amount of system administration knowledge and effort. Currently, there

is no easy way to share and reproduce experimental evaluation of Hadoop-related

researches, such as the existing self-adaptive approaches of Hadoop (e.g., the self-

balancing approach introduced in Chapter 5.1). Furthermore, the Hadoop perfor-

mance also highly depends on the infrastructure where the cluster deploys. It is

therefore rather complex to compare the effect of approaches from one to another

since the experiments are hard to reproduce (e.g., re-creating a testbed similar

to the one used in their experiments, availability of the implementations). This

makes the Hadoop researchers to have to find out an tool which can help them to

easily and quickly reproduce an operational Hadoop cluster on their infrastructure.

In this chapter, we address these limitations by proposing hadoop-benchmark,

an open-source research acceleration tool for rapid prototyping and evaluation of

self-adaptive behaviors in Hadoop clusters. The main objectives are

(1) rapid prototyping, allowing researchers to quickly begin to experiment with

self-adaptation approaches in Hadoop, without the needs to cope with low-level

system as well as infrastructure details, and (2) reproducibility, allowing researchers

to share complete experiments for others to experiment with and to compare them

with their work. This tool achieves this by providing the following features: (1) a

declarative mechanism to provision complete (configured and running) Hadoop

cluster on either a local machine, local cluster or in a number of cloud providers

(e.g., Google Cloud Engine, Microsoft Azure, Amazon AWS), and (2) a num-

ber of pre-configured, well-known Hadoop benchmarks to easily assess the cluster

performance. The cluster deployment and benchmark execution are done in an

automated way based on simple configuration files, which can be easily shared.

The provisioned nodes in the Hadoop cluster further includes monitoring service

that can be used for developing touchpoints for system identification and the mon-
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itoring part of feedback control loops which governs the self-adaptation.

To demonstrate the usage of hadoop-benchmark, we include a complete imple-

mentation of a Hadoop self-adaptation case study. Concretely, a feedback control

loop that balances Hadoop job parallelism and throughput through Hadoop capac-

ity scheduler adjustment—i.e., one implementation of the self-balancing approach

(based on classical feedback control loop), which is introduced in Chapter 5.1 is

also packaged in this tool.

It is important to note that, while Hadoop has been mostly connected with

implementation of MapReduce paradigm, it has grown and, since version 2, it has

become a general framework for distributed large-scale applications. The focus

on Hadoop goes therefore beyond MapReduce and has wide applications to other

technologies that are based the core enabling technologies—i.e., distributed files-

systems (e.g., HDFS) and application scheduler (e.g., YARN).

This artifact is therefore available from:

https://github.com/Spirals-Team/hadoop-benchmark

5.2.1 Motivation

Hadoop has become a famous data-processing distributed systems for couple of

years. Many researchers have proposed various approaches to optimize its perfor-

mance as well as many well-known benchmark suites. This provides lots of choices

for later researchers to evaluate their work. However, due to the complexity of

Hadoop and the mutable performance which highly depends on its infrastructure,

researchers have to face a new problem. That is, while experimenting with self-

adaptation in Hadoop cluster, a researcher must perform a number of recurring

tasks which include setting up a testbed, running experiments, extracting data

from computing nodes. All of these tasks are both time consuming and requiring

significant amount of domain-specific knowledge, to operate all the software stacks

involved.

Due to the repetitive nature, researchers often develop numerous ad hoc scripts

to automatize various tasks, but these are usually prone to error. Therefore,

keeping the experiment infrastructure in a desired state requires a lot of manual

effort. Furthermore, it complicates reproducibility of the experiments and limits
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the possibility to share and compare results.

In this case, many researchers therefore need a tool that will automatize these

tasks and share the experiments so that they can be easily reproduced by others.

Concretely, it should support:

1. Automated and rapid deployment of complete Hadoop cluster. Based on a

single configuration that can be stored in version control, this tool should

be possible to deploy a complete Hadoop environment in a number of cloud

providers as well as on a local machine. The deployment should be fast to

reduce the time required for evaluating new approaches.

2. Automated benchmark execution. It should be possible to execute the com-

mon acknowledged Hadoop benchmarks (i.e., hadoop-mapreduce-examples6,

HiBench7, Swim8) to evaluate the performance of a given Hadoop-based

approach in different research area, such as self-adaptive domain.

Beyond the above features, the tool should be designed with the flexibility—

i.e., the tool should have a good adaptability in different environments and the

interface for future development. It should allow one to experiment with the

various aspects of Hadoop systems, to provide hooks for the different life-cycle

phases on the Hadoop components and the possibility to develop required sensors

and effectors.

5.2.2 Docker Container Technology

This section provides a brief overview of the core enabling technology of hadoop-

benchmark—i.e., Docker.

Docker is an open-source project that aims at automating application deploy-

ment. It achieves that through a concept of software containers, a layer of ab-

straction built on the top of system-level virtualization offered by Linux operating

system. Essentially, a container offers a process-level resource isolation where each

container has its own address space, file system and networking. Containers do

6https://github.com/apache/hadoop/tree/trunk/hadoop-mapreduce-project/
hadoop-mapreduce-examples

7https://github.com/intel-hadoop/HiBench
8https://github.com/SWIMProjectUCB/SWIM
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not need any hypervisor (like in the case of classical virtualization), they are sim-

ply operating-system-level processes, yet completely separated from one another.

A host machine can therefore run a number of them concurrently.

A container is based on an image, a template that contains all the resources a

container needs. They are created from base images using a simple domain-specific

language describing a sequence of simple instructions (e.g., execute a command,

add a file) that allows one to tailor the image to one’s needs. For example, in this

case, these steps include downloading Hadoop distribution and its basic configu-

ration. From an image, a container is created by a docker daemon (cf. Fig. 5.17).

It instantiates the image, allocates a file-system and network interface, sets up an

IP address and performs other tasks to bootstrap the container.

Client Host

docker build

FROM ubuntu:
14.04

RUN apt-get 
install git

Dockerfile

docker run

Docker Host

Docker Daemon

Images

Containers

…

…

Figure 5.17: High-level Docker architecture.

The main advantage of docker versus classical virtualization is in the repro-

ducibility and ability to deploy across a range of systems. A container definition is

composed of a set of configuration files that can all be stored in a version system.

It is also possible to create a binary build of an image share it via the DockerHub9

infrastructure to save on building time. A docker image is also technologically

agnostic and can be run on any Docker host. This is not the case with virtual

machines technologies (e.g., it is not possible to run Virtualbox image in Amazon

EC2). Finally, spawning a container is an order of magnitude faster than spawning

a virtual machine (since there is no need to boot a new operating system) [21].

9https://hub.docker.com
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This contributes to automation instead of doing changes manually in an ad hoc

manner.

5.2.3 Overview of hadoop-benchmark

The Hadoop research acceleration tool, named hadoop-benchmark, is based on

the Docker container technology. Essentially, it is a set of Docker images and a

script that drives the deployment and the execution of Docker hosts and contain-

ers, which are deployed on these hosts. To improve the adaptability, this tool is

designed to only contain a small code base with minimal dependencies. Besides

the enabling technology—i.e., Docker and Docker Machine—the tool therefore

only requires bash and git.

There are three types of images: (1) base images that provide a vanilla

Hadoop installation, (2) extensions to the base images with custom configuration

coupled with implementation of some self-adaptive behavior, and (3) benchmark

images that each executes a particular benchmark suite. Currently, we provide

one base image (which is split in two to shorten the download time, furthermore

users can also customize the base image from the intermediate image to save build

time), one extension image implementing the case study (cf. Section 5.2.4) and

three benchmarks: hadoop-mapreduce-examples, HiBench and Swim. Since

the project is publicly available on GitHub, any contribution in forms of pull

requests is welcomed. We hope that this will help to gradually extend the number

of scenarios and benchmarks provided in order to foster the evaluation of self-

adaptive Hadoop solutions. All the images are presented in two forms, a source

form in the GitHub repository and a binary form in the DockerHub repository.

The latter can be used to bypass manual image build and reuse the binary version

that can be automatically downloaded by Docker daemon.

The base image consists of a minimal Ubuntu operating system with Java

and a vanilla Hadoop distribution. The only Hadoop settings we provide cover

networking making sure all the Hadoop components can communicate with each

other.

Before any of Docker containers can be launched with these images, it is nec-

essary to form a cluster of Docker hosts to host these Docker containers. The tool
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Figure 5.18: High-level overview of the hadoop-benchmark-platform provisioned
cluster

facilitates this process with a set of commands that manage cluster life-cycle—i.e.,

start, stop, restart, destroy. Based on a simple configuration (a number of nodes

and details about the environment where the nodes shall be created), it can pro-

vision virtual machines with Docker Machine support. All the virtual machines

will be also connected in a virtual network (i.e., Docker Swarm Network) so the

containers that are hosted in different Docker hosts can still communicate with

each other. All these works rely on Docker Machine10, an official Docker service

that is used to create Docker hosts. It currently support local deployment using

VirtualBox or VMWare as well as a number11 of cloud providers including all the

major vendors. It also allows one to connect existing hosts in local clusters through

a generic SSH connection. The main advantage of using Docker Machine is that,

in the layer of abstraction, it can always form the same infrastructure for Hadoop

cluster, regardless the actual virtualization or clustering environment. From future

perspectives, the hadoop-benchmark further supports deploying multiple clusters

where multiple experiments can therefore run in parallel.

Figure 5.18 delivers a high-level architecture overview of a provisioned Hadoop

cluster by hadoop-benchmark. Each cluster contains the following nodes:

10https://docs.docker.com/machine
11A list of supported environments: https://docs.docker.com/machine/drivers
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− One hadoop-consul runs a single Docker container with the Consul service12,

a distributed key-value store used for service discovery. Concretely, it is used as

a background mechanism of the virtual network (i.e., Docker Swarm network),

which is formed when the Docker hosts are created. This node is the core of

Docker Swarm network which guarantees the communication among the Docker

containers hosted in different Docker hosts.

− One hadoop-controller acts as the controller node for the Hadoop cluster.

It runs two containers: controller and graphite. The former provides the

ResourceManager and NameNode services. The latter contains the Graphite

service13 for real-time visualization of monitoring data (e.g., CPU, memory,

I/O) coming from the other containers.

− A variable number of hadoop-compute nodes represent the Hadoop compute

nodes. They run a single container with NodeManager and DataNode services.

The hadoop-contoller and hadoop-compute-* nodes are connected intoDocker

Swarm, a native clustering mechanism for Docker. Docker Swarm allows all the

connected nodes to become a part of the same virtual network and to communicate

with each other. Each node in the cluster is further equipped with a monitoring

service, collectd14. It collects a common set of performance-related metrics and

make them available in CSV and RRD15 format. They can be easily fed into any

monitoring part of a feedback control loop.

A such deployed Hadoop cluster has no difference with a complete Hadoop

cluster, which is directly installed on physical infrastructure. All the acknowl-

edged Hadoop benchmarks can be used to assess the performance of a Hadoop

cluster deployed by hadoop-benchmark. In the tool, each Hadoop benchmark is

implemented as a Docker image and runs in a standalone container alongside the

controller container. The tool also allows to quickly access logs of any of the

services from the client machine as well as to access to a shell inside any of the

running containers. Moreover, all the data from the containers are available to be

12https://www.consul.io
13http://graphite.wikidot.com
14https://collectd.org
15https://en.wikipedia.org/wiki/RRDtool
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mounted on a client machine or to any additional containers created within the

same network.

5.2.4 Case Study

As a use case to show the capabilities of hadoop-benchmark, we choose a self-

adaptive behavior that automatically balances the job parallelism and throughput

in a Hadoop cluster introduced in Chapter 5.1. Concretely, it adjusts a YARN

capacity scheduler parameter, MARP16, which controls the ratio between the num-

ber of concurrently executing MapReduce jobs versus the number of running map

and reduce tasks. This is one of the crucial parameter whose inappropriate con-

figuration can have a serious impact on Hadoop performance (up to 40%).

The proposed tool accelerates the implementation in the following ways. First,

it helps us to validate the hypothesis—i.e., the impact of MARP on the cluster

performance. The tool quickly deploys a Hadoop cluster and allows us to run a

series of experiments using the standard Hadoop benchmarks (PI Estimation).

For each experiment, we change the MARP value and observer its effect. The

results are shown in Figure 5.1b.

Once the hypothesis is validated, we can start prototyping the actual imple-

mentation. To make this easily reproducible, we create a new docker image that

extends from the base image and include the implementation code together with a

start-up hook. Concretely, we create a feedback control loop in Java that period-

ically observes the cluster memory usage and based on its value, it proportionally

adjusts the MARP value. It uses a proportional controller coupled with a Kalman

filter to control the MARP value. The start-up hook is a shell script that launches

the Java application after the ResourceManager is started. The cluster memory

usage is extracted from the ResourceManager log file to which all NodeManager

reports periodically their memory statistics.

To tune the controller, the same series of benchmarks and rerun while experi-

ment with different controller settings. We can leverage from the ability to execute

experiments in multiple clusters in parallel to saves time in cases of long running

experiments.

16Maximum Application Master Resource in Percent
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The performance gain can be compared by simply running the experiment twice

each time with different docker image—i.e., either the base image with vanilla

Hadoop installation or Hadoop with our self-balancing controller. Shall there be

any other approach we would like to compare with, we could have run it in the very

same manner. A sample result from Hadoop cluster made of 11 physical hosts17 (1

control node and 10 compute nodes) deployed on the Grid5000 infrastructure 18

is shown in Figure 5.19.
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Figure 5.19: Performance comparisons of 3 HiBench. The first bar corresponds to
the vanilla configuration—i.e., 10%—the second to the best statistically profiled value,
and the last to our self-balancing approach.

Finally, since the cluster configuration is saved in the version control together

with the description of the docker image, anyone can reproduce these experiments

in their infrastructure. To do that, one only needs to clone the repository, possibly

adjust the cluster configuration to fits one deployment and rerun the benchmarks.

5.2.5 Assessment

This work has been driven by the need of a tool that can be used to rapidly

deploy Hadoop cluster in various infrastructure, to prototype diverse Hadoop-

related approaches (e.g., self-adaptation approach) in Hadoop clusters and allows

172 Intel Xeon L5420 CPUs, 4 cores, 15GB RAM, 298GB HDD
18http://grid5000.fr
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one to easily share or reproduce the experiments and results. The two main ob-

jectives were to provide (1) an automated way to rapidly deploy Hadoop clusters,

and (2) an automated way to execute Hadoop benchmarks. Both with a focus on

reproducibility, hadoop-benchmark not only helps users to quickly tune Hadoop

cluster but also reproduces a same environment. We do believe this is interesting

and important for the Hadoop researchers who want to share their approaches or

compare them with others.

The automated deployment of Hadoop cluster is facilitated by the orchestra-

tion of Docker Machine and Docker containers. This allows us to deploy Hadoop

transparently in a number of environments ranging from local machine, local ex-

isting cluster to major cloud providers. All deployments are based on the same

simple configuration which is stored in a version control. Despite that there is

some overhead induced by creating virtual machines in the case of local deploy-

ment or deployment in cloud, this only needs to happen once in the first time

when docker-machine must install docker services on the infrastructure. The ac-

tual deployment of Hadoop cluster is based on docker containers with prepared

docker images. Furthermore, spawning a container is close to spawning a regular

operating system process—i.e., the overhead is minimal. This allows us to deploy

a complete new Hadoop cluster in just a few seconds. This is considerably faster

than the other solutions that require full redeployment of virtual machine (in order

to make sure there are no stalled data from previous deployment) which may take

from dozens of minutes to hours.

The automated benchmark execution is similarly based on docker containers.

Currently, we provide three well-known Hadoop benchmarks:

hadoop-mapreduce-examples, HiBench and Swim.

All steps from assembling the cluster to executing a benchmark is driven by

configuration files and few bash scripts with no other dependencies. Any changes

can therefore be kept in plain text files that are be stored in version control. The

project is open-source and the complete source code is hosted on GitHub:

https://github.com/Spirals-Team/hadoop-benchmark.
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5.2.6 Summary of hadoop-benchmark

This chapter reported on the implementation of an open and reproducible

tool, named hadoop-benchmark, which can rapidly deploy a complete Hadoop

cluster for the prototyping, several well-known benchmarks and the evaluation

of self-adaptive behaviors in Hadoop clusters. While Hadoop is acknowledged as

a de facto standard for the processing of large-scale dataset, the performances of

Hadoop clusters tend to be affected by the underlying infrastructure as well as

the considered workloads and algorithms. Optimizing Hadoop performance has

therefore attracted a lot of research attention, in particular in the domain of self-

adaptive software systems [8, 14, 22, 36, 47, 48]. Yet, reproducing and assessing

the proposed contributions might quickly be hindered by the accidental complexity

of Hadoop deployments.

This tool therefore leverages the state-of-practice in lightweight virtualization

techniques to deliver a flexible approach to facilitate the researches in the software

engineering of self-adaptive Hadoop systems. In particular, this chapter demon-

strate this approach on the design and the implementation of a feedback control

loop that autonomously adjusts the YARN capacity scheduler to appropriately

balance the MapReduce jobs throughput and parallelism. Beyond this demon-

stration, we believe that this research asset can benefit the research community

by providing a common environment to empirically compare the research contribu-

tions of Hadoop, particularly in the area of self-adaptive MapReduce applications.

The design and implementation choices we made leverage the reuse and the ex-

tension of this environment in order to fit a large diversity of scenarios.
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Chapter 6

Conclusion

In this thesis, we focus on the platform- and infrastructure-level resource man-

agement in Cloud computing. Based on the diverse resource leaks caused by mis-

configuration and stiff system mechanisms, two different solutions are proposed to

improve the resource utilization in both layers—i.e., platform and infrastructure.

Most of current researches adopt elasticity as the primary manner to dynam-

ically tune system resources to guarantee the system performance keeping in a

reasonable level. However, beyond scaling the infrastructure, our propositions in

this thesis prefer to figure out the optimal performance based on provisioned re-

sources, or maximize the resource utilization to serve more users as far as possible.

Therefore, we believe that the results of researches in this thesis can be regarded

as complements to the elasticity researches, both in infrastructure- and platform-

level. The contributions of all researches described in this thesis will be further

summarized in below sections, respectively.

6.1 Cloud Computing

Cloud computing gives its users an impression that it can be regarded as an

unlimited pool of virtual compute resources, that shares the resources in multi-

tenant. As a resource provider, it provides different models “as a Service” for users.

The three basic models are Infrastructure-, Platform-, and Software-as-a-Service

corresponding to hardware, environment, and application layers. IaaS does not

only reduce the upfront expenses for hardware, but it also leverages the users

from the maintenance of infrastructure. It allows the users to easily manage their

infrastructure—i.e., they can flexibly allocate resources to dynamically accommo-

115
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date their requirements thus avoiding over-provisioning and under-provisioning

problems—and also liberates them from complicated maintenance of infrastruc-

ture thereby enables the users to focus on their work. PaaS constructs a complete

processing environment for its users. In this environment, the users do not need

to take care of any issue on the platform, but just handle and develop their ap-

plications using the offered APIs. Similar to PaaS, SaaS supplies the running

applications to the users, which have been well configured. Users do not have

to take care of the operation and maintenance of the applications and, therefore,

supporting such applications does not require any specific experience. Thanks to

these benefits, Cloud computing has become a popular concept both in academia

and in industry communities. In this case, more and more developers and en-

trepreneurs transfer their business to Cloud computing. This leads to prosperity

of Cloud computing business, but also presents many new challenges to Cloud

computing technologies, particularly in the case of private Cloud.

As a popular open-source framework for deploying Cloud computing on local

machines, most of private Cloud are supported by OpenStack. OpenStack is

a complex project consisting of diverse components where each of them focuses on

one specific services, such as Keystone (Authentication service), Glance (Image

Management), and Neutron (Network connections) etc. Among these compo-

nents, Nova is the most important one which concerns the resource allocation

and management in OpenStack Cloud—i.e., All the VM instances in the Cloud

are provisioned and managed by this component. The experiments in Section 4.1

report on a problem about resource utilization of Cloud infrastructure. That is,

OpenStack (i.e., Nova) ignores the actual resource utilization in Cloud when

allocating resources to VM instances required by users. In other words, when the

total user requirements reach the Cloud infrastructure limitation, the users cannot

deploy any more VM instances no matter how the actual resource consumption is

in the Cloud infrastructure. To optimize the resource consumption and provide

the available resources for the other urgent requirements, the only solution is to

delete the idle VM instances from OpenStack instance manager, manually. In

this case, the Cloud administrators must continuously monitor each VM instance

and recycle them when needed. This cannot obviously improve the QoS of Cloud
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when its infrastructure become overcrowded, but significantly increases the work-

load of Cloud providers. Moreover, for the deleted VM instances, neither Cloud

providers nor OpenStack have prepared an effective mechanism to recover them

when they are required again.

To prevent these issues continuing bothering Cloud administrators and end-

users, we propose a new middleware service, named CloudGC, in Chapter 4 to

address these limitations of OpenStack.

• The first contribution of CloudGC is to solve how to accurately detect and

determine the idle VM instances for recycling. OpenStack defines a set of

states to distinguish various lifestyles of VM instances, which can be divided

into two categories : active and suspended.

The suspended VM instances remain in a dormant state, such as paused and

interrupted. Users cannot do any actions in these VM instances unless wake

them up. However, even though these VM instances cannot be used, they still

occupy the resource quotas and prevent other requirements re-allocating the

resources. The suspended VM instances can be considered as explicit idle VM

instances. They can be directly indicated as recyclable by CloudGC and are

snapshotted for recovery process, due to its inaccessible property.

The active VM instances are always running in Cloud. That means, these VM

instances are processing workloads or ready to process. In this case, the resource

consumption of these VM instances is not stable and can be affected by end-

users at any time. But among them, there are some VM instances which have

waited for processing workloads in a long time. Therefore, these running VMs

can be regarded as implicit idle VM instances with low CPU activity in a long

enough idle duration. Even though these implicit idle VM instances have been

inserted into the queues, users can still freely access to them and change their

situation. In this case, the snapshots may need to be updated frequently, thus

making network and system suffer from extra burdens, so CloudGC gives up

snapshots for implicit idle VM instances and backs them up when needed.

Furthermore, the two categories (i.e., explicit and implicit) of idle VM instances

are ordered by their duration of idleness. Therefore, we can ensure that the most
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idle VM instance (i.e., the one with longest idle duration) will be recycled firstly.

• The second contribution is to automatically decide on how to recycle the iden-

tified VM instances while guaranteeing they can be recovered. As reported

before, the only way to free the occupied resources is to delete their correspond-

ing VM instances. In this case, the recycling process has to face 2 problems:

(1) how many VM instances should be recycled in heterogeneous Cloud, such as

OpenStack Cloud, (2) how to recover these recycled VM instances when they

are required again (this is truly possible because these VMs are not officially

removed by users themselves).

For the first problem, we developed an incremental approach within the recy-

cling algorithm. When CloudGC receive a new request to provision VMs, it

will first check the available resources in Cloud infrastructure. If the resources

are not enough to support the new request, recycling process is invoked to

recycle idle VM instances for collecting needed resources. Recycling process

calculates the total resource requirements of new request firstly, based on the

flavor (i.e., the template of VM type defined in OpenStack) of new VMs and

other informations. Then, following the explicit first, most idle first rule—i.e.,

the recycling rule of CloudGC, the identified idle VM instances will be ex-

tracted from two idle queues one by one and be added into a temporary list.

Meanwhile, during each extraction, the total amount of resource occupancy of

the whole list will be accumulated, and be compared to the total resource re-

quirements until Cloud has enough resources to support new request. Finally,

the selected idle VM instances are removed from the idle queues, are snapshot-

ted (if needed), and are recycled. If the two idle queues are exhausted while

the recycling is insufficient, CloudGC will require OpenStack to reject the

request or to apply other elasticity services to obtain additional resources.

For the second problem, we propose a hook (named ghost instance) to bind

floating IP of recycled VM instances on Cloud instance manager. When a VM

instance is removed from Cloud instance manager, its occupied resources are

released as available. However, in this case, the recycled VM also becomes

unavailable. To guarantee that the recycled VMs are still alive for outside users
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and free their resources at same moment, we extract their floating IPs and bind

to the Cloud instance manager while recycling them. In this case, even though

the idle VM instances have been removed from the Cloud infrastructure, the

Cloud instance manager will replace the VM to continue receiving the requests,

thus making the recycled VMs look like alive for external while they do not exist

anymore in Cloud. Thanks to the ghost instance, CloudGC is able to recover

the recycled VMs before forwarding the incoming requests to them.

• The last contribution allows CloudGC to recover the recycled VM instances.

When the Cloud instance manager find some requests, which are sent to ghost

instances, it should re-provision the recycled VMs to serve these new requests.

The recovery process is similar to a new VM provisioning process, but the

only difference is that, for the recovery process, the VM image is replaced with

the snapshots of recycled VMs. Moreover, in an overcrowded Cloud, recovery

process may also trigger another recycling process to collect available resources.

This requires the CloudGC to support the iterative process.

Even though the recovery process can ensure the reproducibility and availability

of recycled VM instances, it is not an instantaneous process, but requires seconds

to minutes for re-provisioning the VMs. Therefore, for some critical VMs, they

cannot be recycled in any case. To support such exceptions, we propose a special

list—i.e., pinned VMs list—to mark these instances. Those VM instances that

appear in this list will be ignored by recycling process and never be considered

as recyclable targets. Furthermore, thanks to the coordination between recovery

process and a time table service, CloudGC can realize “switch service” to make

different groups of diverse-periodic VMs share the same Cloud infrastructure.

Based on the above challenges, we propose CloudGC—i.e., a new middleware

service aiming to eliminate resource leaks in Cloud computing, especially in the

case of private Cloud. The current implementation is achieved by Python within

OpenStack. The evaluations in Section 4.4 shows that CloudGC is able to help

user requirements to exceed the Cloud infrastructure limitation. This guarantees

that the Cloud resources will be allocated to real usage when needed, rather than

be occupied for idleness.
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6.2 Big Data

Big Data is a term for various operations and researches on large and complex

data sets. Its topics consist of analysis, capture, search, sharing, storage, transfer,

parallel processing, and information privacy etc. Due to the rapid growth of data

sets gathered by numerous sensors within various environments, like large scale

distributed systems or wireless networks, the data processing and management in

Big Data require a set of techniques and technologies with new forms of integration

to ensure and improve the performance and QoS. Moreover, these integrations

can be described by 4V: (1) Volume presents the large amount of data sets,

(2) Velocity reveals the fast speed of data processing, (3) Variety shows the

wide range of data types, and (4) Veracity exposes both the quality of data

and the accuracy for finding target data. In this case, to accommodate these

requirements and to facilitate the business and development of Big Data domain,

a distributed data-processing platform (i.e., Hadoop) is proposed under Apache

License 2.0. At the moment, Hadoop has become the de facto data processing

platform in Big Data domain. Since 2012, Hadoop has undergone an overhaul and

introduces a new component YARN.

6.2.1 Self-balancing Algorithm

Hadoop is a well-known distributed data-processing environment and can be

regarded as the de facto standard for Big Data processing. It is a general designa-

tion of a complete ecosystem in the Big Data domain. Hadoop supports various

high-level paradigms and applications for diverse data-processing services, such as

Hadoop MapReduce for batch processing, Pig for script, Hive for SQL services,

etc. Besides the high-level services, Hadoop also contains two components to

achieve cluster management and distributed data storage across sets of compute

nodes. YARN is the component in charge of cluster management, which can be

separated into two parts: cluster monitoring and job scheduling. For cluster mon-

itoring, YARN proposes a master-slave distributed architecture consisting of two

system-level subcomponents to gather machine informations from each compute

node—i.e., this architecture contains one ResourceManager to gather and record

cluster informations from set of per-node NodeManager by Hadoop heartbeats (i.e.,
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Hadoop system messages). The job scheduling relies on another subcomponent

called container. Container has two types: AppMaster and YarnChild. AppMaster

is the first container of its corresponding job, which is launched by ResourceMan-

ager. After the AppMaster is launched, ResourceManager transfers the job to this

container for processing preparation. Then, many YarnChilds will be launched and

managed by AppMaster to process the tasks of their corresponding job. In this

case, the AppMaster and YarnChilds constitute a new job-level master-slave archi-

tecture. HDFS is responsible for the distributed data storage in a Hadoop cluster.

It contains two subcomponents: NameNode and per-node DataNode. NameNode

only stores the metadata of all data sets in the cluster. This can accelerate the

data access by avoiding browsing the whole Hadoop cluster to locate the target

data. And all the actual data is placed in compute nodes and is managed by cor-

responding DataNode. Even though YARN is able to achieve its objectives, it still

may suffer from diverse problems, thereby degrading the Hadoop performance. In

YARN, there is a subcomponent called CapacityScheduler containing a parameter

MARP. This parameter manages the amount of memory in Hadoop cluster, which

can be used for running AppMasters, thus controlling the number of jobs running

in parallel.

I evaluate the various MARP value with diverse Hadoop benchmarks. The

experiments reports different optimal MARP value for diverse sizes of the job and

of the workloads, but exposes a similar non-monotone behavior—i.e., the MARP

value, either higher or lower than the optimal value, all will degrade Hadoop

performance. Based on the analysis of memory consumption in Hadoop cluster,

we find that the static value of MARP may limit the Hadoop performance by

disturbing the memory utilization. This can be divided into 3 related problems

and we handle all of them in our self-balancing proposition:

• Loss of Jobs Parallelism (LoJP) is the problem caused by low MARP value.

When Hadoop configuration defines a low value to MARP, that means only a

few jobs can be scheduled into Hadoop cluster and are processed in parallel.

At the moment, if the running jobs are all small jobs—i.e., each running job

only has a few tasks to process—the YarnChilds cannot consume all the available

memory in Hadoop cluster, resulting in idle memory. In this case, even though
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Hadoop cluster has additional free memory, no more jobs can be processed in

parallel due to the low parallel number of running jobs, which is controlled by

MARP. Therefore, the Hadoop performance certainly be degraded.

To address this problem, we propose an algorithm, in Section 5.1.3.1, to adjust

MARP according to the free memory in Hadoop cluster. When there are free

memory appearing, the MARP value will be elevated to permit more jobs can

get into the cluster to process in parallel, thus improving Hadoop performance.

This adjustment stops once all the free memory has been consumed.

• Loss of Job Throughput (LoJT) is the opposite problem of LoJP. This prob-

lem is caused by high MARP value. When MARP is set a high value, the

parallel number of running jobs will also become larger and more jobs can pro-

cess in parallel. Therefore, all the memory in Hadoop cluster is consumed by

the jobs, and free memory does not exist anymore. However, the Hadoop per-

formance is not necessarily good. Due to the high MARP value, when there are

enough idle jobs waiting for processing, most of memory in Hadoop clsuter will

be occupied by AppMasters, which are the first containers launched for these jobs

by ResourceManager. As explained in Section 3.1, AppMaster is only a private

controller for its corresponding job, but does not concern any task processing,

which is responsible by YarnChild. If most of memory is allocated to AppMasters,

that means only a few memory can be used by YarnChild for processing the jobs.

The Hadoop performance therefore is also degraded but with a high memory

utilization.

To cope with this problem, the MARP value should be tuned down to limit

the number of AppMasters, thus pushing more memory to YarnChilds for job

processing. When the memory utilization in Hadoop cluster is higher than a

given threshold, we can believe that LoJT problem has probably emerged. In

this case, we can begin to decrease the MARP value to try to handle this prob-

lem. Decreasing MARP value will not stop until the memory utilization become

lower than the given threshold. This algorithm is introduced in Section 5.1.3.2.

Based on the analysis of the two problems, we can find that the optimal MARP

value will differ from each other according to the various characteristics of work-
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loads (e.g., the size of jobs or of workloads). In this case, Hadoop users require an

new approach to dynamically tune MARP at runtime according to the dynamics

of workloads. However, due to the different principles of the two problems, their

solutions are against each other, thus maybe leading to oscillation between the

two solutions. To prevent the two solutions from mutual interference, we combine

them in a double-threshold algorithm to coordinate their different adjustments.

• The last problem is named Large Drops of Memory Utilization. This

problem is caused by the job self-managing mechanism which is introduced by

YARN itself. At the beginning or the end of job processing, only AppMaster run

in Hadoop cluster, which consumes just a few of memory. Although this period

is short, it still cause temporary free memory in Hadoop cluster, resulting in low

transitory memory utilization. Based on our experiments, we find this problem

make the memory utilization full of fluctuations (cf. Fig. 5.7) which seriously

affects the detection of the accurate state of Hadoop memory consumption.

Therefore, to handle this problem, we introduce a Kalman filter to smooth the

memory utilization.

Thanks to the analysis of these three problems, we propose a self-balancing

algorithms in Section 5.1 to dynamically balance job parallelism and throughput

in Hadoop cluster to optimize the system performance when processing concurrent

workloads.

6.2.2 Rapid Deployment Prototype

Beyond the self-balancing algorithm, we also develop a new tool (named hadoop-

benchmark in Section 5.2) to accelerate the deployment of a complete Hadoop

cluster as well as a set of well-known Hadoop benchmarks. Hadoop performance

highly depends on the infrastructure of Hadoop cluster. Researchers therefore

have to deploy their ad hoc cluster to reproduce the other approaches to compare

with their works. However, deploying and maintaining a complete Hadoop cluster

is a time-consuming task and requires lots of experience to handle various issues

of Hadoop running on diverse infrastructure. Hadoop researchers must spend

lots of time and energy on irrelevant works, but not on studies. Meanwhile, for

the same reason, the rapid deployment of Hadoop cluster also attracts attention
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from elasticity researches when concerning timeliness (how to quickly provision or

un-provision Hadoop compute nodes). In this case, we propose a prototype tool

(i.e., hadoop-benchmark) to quickly construct an ad hoc infrastructure and then

to deploy a complete Hadoop cluster on this infrastructure.

hadoop-benchmark is developed on Docker container technologies. Docker is

an open-source project for automating the deployment of applications as software

containers. The primary idea of Docker is resource isolation rather than virtual-

ization. In this case, compared to standard virtual machines, Docker containers

avoid the overhead of starting and maintaining a complete operating system, but

only simulates and supports the necessary dependencies required by the deployed

applications. Therefore, it can be considered as a lightweight deployment method

to provision applications on diverse infrastructure.

To package a complete Hadoop cluster and the benchmarks, we provide three

Docker images: (1) Base image that installs Hadoop with vanilla configuration

and contains all the dependencies required by each Hadoop component, (2) Exten-

sion images are extensions of base images with customized Hadoop configurations

to guarantee that all the Hadoop components in various nodes (Docker containers

in this case) can compose a complete cluster, (3) Benchmark images are based on

Extension image, which consists of set of well-known Hadoop benchmarks. Thanks

to these Docker images, the Docker containers launched with them have been well

configured, either in Hadoop platform or in benchmarks. However, deploying

a well-configured Hadoop platform in Docker containers is far from reproducing

a complete Hadoop cluster, because the Docker containers situating in different

machines cannot connect to each other. To address this problem, we introduce

Docker Swarm in hadoop-benchmark. Docker Swarm can create an overlay network

across diverse machines to achieve the connection between Docker containers in

these machines. Finally, the prototype of the complete Hadoop cluster deployed

by hadoop-benchmark is shown in Figure 5.18. It probably contains three types

of Docker containers: (1) hadoop-consul serving the key-value store to support

the overlay network of Docker Swarm, (2) hadoop-controller acting as the master

node of Hadoop cluster, and (3) a set of hadoop-compute that represents the com-

pute nodes of Hadoop cluster. Furthermore, users can also launch another extra
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Docker containers with Benchmark images to evaluate the Hadoop cluster and the

approaches deployed on it.

6.3 Benefits

This thesis mainly focus on the platform- (Hadoop) and infrastructure- (OpenStack)

level resource optimization, and reports three main benefits.

1. The first one is named CloudGC, a new middleware service integrated

within the services supported by the various components of OpenStack.

CloudGC can periodically browse the OpenStack instance manager to

detect the idle instances, either explicit or implicit and stores them into

two queues with different priorities. When the OpenStack Cloud becomes

overcrowded and the user requirements research the Cloud infrastructure

limitation, CloudGC can recycle the identified idle VM instances to free the

occupied resources for the extra requirements, thereby improving the QoS

as well as the resource utilization of Cloud infrastructure. When CloudGC

cannot recycle enough resources for the new requirements, Cloud providers

can fall back on Cloud elasticity to obtain additional resources. This does

not only avoid unnecessary Cloud expenditure, but also elevate the effect of

Cloud elasticity. Therefore, CloudGC can be considered as an important

complementation to the Cloud elasticity.

2. The second benefit is a self-balancing approach for Hadoop cluster to op-

timize its performance when processing time-varying concurrent workloads.

When Hadoop cluster process concurrent workloads, especially time-varying

workloads, the static configuration of Hadoop may limit its performance.

In this case, to eliminate the worthless memory consumption and idleness

as well as to optimize the system performance, the self-balancing approach

will dynamically balance the job parallelism and throughput, according to

the dynamics of workloads. The primary idea of this approach is to provide

the optimal Hadoop performance based on the provisioned resources. From

this point of view, it is similar to CloudGC. This self-balancing approach

can avoid unnecessary Hadoop expenditure and be able to improve the ef-
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fect of Hadoop elasticity. It is certainly a complementation for the elasticity

researches also focusing on Hadoop cluster.

3. The last one is a rapid deployment tool to quickly constitute a prototype of

complete Hadoop cluster using Docker Container Technologies. This created

prototype consists of two layers: (1) an ad hoc infrastructure composed by

one overlay network (Docker Swarm) and several Docker containers (2) a

well-configured Hadoop cluster and other Hadoop benchmarks as well as an

implementation of the self-balancing approach which are all installed in the

Docker containers. This tool can ensure the reproducibility of a complete

Hadoop cluster and obviously accelerates the construction of its prototype.

Furthermore, thanks to the lightweight deployment method (i.e., Docker),

users can easily achieve the rapid deployment of Hadoop components by

modifying the Docker images. This is important to the timeliness of Hadoop

elasticity, and therefore, this research can also be regarded as a complemen-

tation to Hadoop elasticity researches.

The two first benefits can effort to improve the resource utilization, thereby

saving the cost or making the system provide the optimal performance based on

the provisioned resources. Meanwhile, they can also optimize the effect of elas-

ticity. The last prototype tool does not only benefit the acceleration of Hadoop

deployment, but it also be possible to be directly used by elasticity. In sum-

mary, all these benefits achieve the self-optimization of resources in platform-

and infrastructure-level, and can be considered as the complements to elasticity

researches.
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Perspectives

This thesis concerns the self-optimization of platform- and infrastructure-level

resources in Cloud computing. This self-optimization aims at achieving auto-

matic resource monitoring, analyzing, planning, and executing in multi-layers.

Therefore, the optimization solution mentioned in this thesis is separated into two

different researches in platform and infrastructure, respectively. The main pur-

pose of these researches is to automatically optimize the resource utilization of the

platform or infrastructure, thereby improving the system performance or resource

utilization as well as avoiding unnecessary additional expenditure.

The approaches introduced in this thesis can be considered as early efforts at

resource management for Big Data platform in Cloud computing. Although the

evaluations have proven their initial efforts of resource optimization for platform

performance and infrastructure utilization, the follow-up works should continue to

improve the approaches, thereby adapting them to generalized and complex cases.

The plans for the future works are presented in the following sections.

7.1 Short Term

Derived from this thesis, the short term perspectives to improve these re-

searches in multi-layers will remain within the 2 primary research lines: Infras-

tructure- and Platform- level resource optimizations. The central idea for im-

proving and developing the two researches is common: Generality—i.e., these

researches should be improved and developed to be widely adapted to various re-

alistic situations, with high QoS. The generality for the resource optimizations in

different layers are also diverse. For infrastructure-level, the principal works are to
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improve the recycling service, thus makes CloudGC not only achieve the services

but also operates with high reliability and QoS in complex usage environments.

In Hadoop platform, the resource optimization with self-balancing algorithm fo-

cuses only on the memory consumption. The consequence is that it cannot figure

out and solve the performance issues caused by other resources, such as CPU or

I/O throughput. In this case, the future researches about Hadoop cluster should

focus on the various type of resources, while integrating these diverse resource

optimizations together. The details of these future works at short term will be

further explained in the next two sections.

7.1.1 CloudGC for OpenStack

At the moment, CloudGC is only integrated in OpenStack and provides

an initial recycling service to free the occupied resources in idle VM instances

for supporting new user requirements, when the previous user requirements has

reached Cloud infrastructure limitation. Benefiting from this CloudGC, the

user requirements submitted to an OpenStack Cloud are able to exceed the

infrastructure limitation, thereby making the resources able to serve other urgent

requirements, improving the resource utilization in Cloud infrastructure. However,

this is far from enough to be regarded as a complete middleware service which can

be supplied to either Cloud providers or end-users. In this case, these future works

at short term aim to improve CloudGC by achieving the additional services

which will be introduced below, thereby adapting CloudGC to various Cloud

computing, such as EC2.

• As introduced before, OpenStack is a complex project consisting of a set

of components. Beyond managing the resources and VMs in Cloud comput-

ing, it also provides various services for their Cloud users, such as volume ser-

vice (Cinder), network service (Neutron), and various object storage service

(Swift), etc. This makes end-users able to customize their VM instances in

diverse aspects like provisioning additional volume to VM disk, specific network

setting of VM, etc. However, the current CloudGC only supports an initial re-

covery service supported by OpenStack—i.e., the snapshots for recycled VM

instances are just the images created by Glance, which only contain the in-
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formation inside the VM instances, such as the operating system configuration,

installed softwares, and all the data stored in initial disk, etc. The additional

customizations (such as additional volume) will not be backed up and certainly

are not able to be resumed, when CloudGC is required to recover the asso-

ciated recycled VM, because these information has lost when the VM instance

is removed from the Cloud. Therefore, based on the current implementation,

CloudGC requires further developments to achieve comprehensive snapshot

for supporting flawless recovery service. The new snapshot should be able to

back up all the associated customizations of the VM instance which is identified

to be recycled—i.e., not only the information inside VM, but also the settings

surrounding the instance.

• When CloudGC finds a new idle VM instance, it only snapshots the explicit

idle VM instance but leaves the implicit ones to be backed up on-demand. This

is due to the active state of implicit idle VM instance, which allows users to

freely access to the VM for any activities or modifications. In this case, the

snapshots of these VM instances are prone to become “ancient”. The current

snapshot service of OpenStack only supports creating a new image to once

back up everything inside the VM instance. In this case, this will lead to 2

issues: (1) the new image will take lots of time and network bandwidth to back

up the information, which have been snapshotted in “ancient” image, (2) the

“ancient” image become useless and may occupy the volume in Cloud infras-

tructure, (3) the frequent backup process may disturb the network to affect the

normal operation of Cloud and VM instances. Furthermore, as shown in Fig-

ure 4.9, even though the on-demand snapshots can avoid these negative impacts

of CloudGC caused by implicit idle VM instances, it also obviously delays the

recycling process and thus degrades the performance of CloudGC. Therefore,

incremental snapshot service becomes an interesting solution in future works. It

should be able to reuse the “ancient” snapshots to prevent the backup of snap-

shotted information. It cannot only solve the problem of reduntant backup of

implicit idle VM instances, but also permits CloudGC to give up on-demand

snapshots, thereby improving the performance and QoS of CloudGC.
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• The last future work of CloudGC is also associated to implicit idle VM in-

stances. To detect the implicit idle VM instances, CloudGC requires the

CPU activities of the VM instances from Ceilometer and compares them with

a given threshold. When the CPU activities of target VM instance is lower

than the threshold for a long-enough period, it will be considered as implicit

idle. However, the detection only depending on the CPU activities is not reliable

to determine whether a VM instance is idle. For memory or I/O throughput

intensive workloads, their CPU activities may keep in a low level. Further-

more, if these workloads can continue for a long-enough period while keeping

low CPU activities, the VM instance is possible to be determined as idle one by

CloudGC, thereby causing CloudGC to recycle non-idle VM instances and

degrading the QoS of Cloud computing. Therefore, a new metrics for detecting

implicit idle VM instances should be proposed to avoid these mistakes.

7.1.2 Self-balancing algorithm for Hadoop

The self-balancing algorithm proposed in Section 5.1 aims at adjusting Hadoop

configuration (i.e., MARP) according to the dynamics of workloads, to optimize

the memory utilization, thereby improving Hadoop performance when processing

concurrent workloads. This approach succeeds to treat the potential memory leaks

caused by stiff memory allocation for AppMasters. However, the memory is not the

only available and controllable resource affecting system performance in Hadoop

cluster. In this case, the future works about Hadoop cluster should focus on the

consumption optimization of other resources, and then joins these new researches

to the self-balancing algorithm.

• Besides the memory, the amount of vCPU cores in Hadoop cluster, which is

assigned for processing workloads, also affects the system performance. Since

Hadoop 2.2, YARN has proposed 3 new parameters to control the amount of

vCPUs for each map task, reduce task or AppMaster. At the moment, while pro-

cessing MapReduce jobs, the number of vCPU cores for MapReduce tasks also

become controllable in Hadoop cluster. The management of Hadoop cluster is

thus not strictly limited to the memory, but may depend on another choice—

i.e., the approach for improving Hadoop performance is able to simultaneously
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adjust the memory and CPU utilization to achieve a better performance im-

provement than memory-only optimization for MapReduce paradigm.

However, the defect for the CPU optimization can also be predicted. The three

new parameters are only available to MapReduce paradigm. Therefore, this

makes the future work cannot be widely adopted by YARN-based applications,

except MapReduce framework.

• The I/O throughput of HDFS is another element which can significantly affect

the Hadoop performance. For I/O intensive jobs, the majority of job completion

time is occupied by accessing the data in disk—i.e., when a task has been

scheduled into Hadoop cluster for data processing, it must firstly wait for the

target data to be uploaded from disk to memory. In this case, how to shorten the

upload time (i.e., the time to take the data from disk to memory) has become

an issue for performance optimization of Hadoop cluster.

In the current version of Hadoop, many scheduling strategies are proposed

to developers to shorten the upload time by reducing the data transmission

among compute nodes in distributed system (i.e., Hadoop cluster), such as

data localization—i.e., Hadoop prefers to transmit the tasks to the compute

nodes for processing, where HDFS stores the target data, rather than transmits

data. These solutions significantly shorten the data upload time by reducing

the data transmission in network, because the time for transmission tasks is

much shorter than that for data. However, it cannot solve another bottleneck

of upload time caused by I/O throughput—i.e., uploading large amount of data

from disk to memory will also take a long time.

However, when the I/O intensive jobs process a set of related data, if Hadoop

can upload the follow-up data to memory while processing the current task,

the subsequent tasks probably can directly begin the processing without any

waiting. This may obviously reduce the job completion time, thus improving

the system performance.

These researches at short term aims at enriching the current works described

in this thesis, and achieve good resource optimizations in respective layers. I

believe that, thanks to the cooperation between these future researches and the
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proposed approaches, the whole system (both platform and infrastructure) can

automatically eliminate the resource leaks to maximize the resource utilization

for the optimal performance which can be provided by the provisioned resources.

Meanwhile the beneficiaries can also become more general rather than specific

ones.

7.2 Long Term

In addition, I also propose 2 long term perspectives for the self-optimizations of

platform- and infrastructure-level resources in Cloud computing. From the short

term objectives proposed in above section, we can find that the researches still

focus on the improvement of resource optimization in various layers, respectively.

The combination of the self-optimization approaches in two layers (platform and

infrastructure) should be an important issue for the performance optimization of

Big Data platform in Cloud computing. Furthermore, even though the proposed

approaches and the short term researches can provide the optimal performance for

the users, they cannot ensure that the performance can fit the user requirements.

In the case that all efforts have been done (i.e., no resource leaks emerge in system,

the configuration has been optimized according to the dynamics of workloads etc),

provisioning new resources should be considered and be introduced to guarantee

or improve the system performance for satisfying the QoS required by users, such

as elasticity.

1. At the moment, the resource optimizations on platform and infrastructure

are independent. This may lead to conflicts between the two optimization

approaches. That means, if the two optimization approaches are applied

together in one system, it is difficult to determine whether they can coordi-

nate each other to improve performance. When CloudGC recycles several

idle VM instances which are used as compute nodes in a Hadoop cluster,

this may make the self-balancing approach get wrong memory records from

ResourceManager—i.e., the cluster information in ResourceManager is not in-

stantaneously updated if these compute nodes are not removed from Hadoop

cluster by ResourceManager, thereby resulting in erroneous adjustments to
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cause negative impact in Hadoop cluster. In the cooperation of the two

approaches in one system, there might be lots of such issues which require

frequent coordination and specific developments. Moreover, the different op-

timization approaches also have their own resource monitoring and adjusting

components. This may cause redundant work and thus degrade the respec-

tive robustness of the approaches, even resulting in negative impact on the

target system. In this case, the integration of the resource optimizations

in different layers becomes an important issue for the Big Data platform in

Cloud computing. In particular, avoiding conflicts and unified management

of resources in different layers are 2 core concerns in this future research.

2. The proposed approaches of resource optimizations can only ensure the op-

timal performance or maximize the resource utilization, based on the provi-

sioned resources. Although these approaches succeed to guarantee and even

improve the system performance without additional expenditure, it is possi-

ble that they are still not able to ensure that the optimal performance (based

on provisioned resources) can satisfy the Service-Level Agreement (SLA) or

QoS required by users. Therefore, to ensure that the system performance

can truly satisfy user requirements, enough new resources should be provi-

sioned into the system to guarantee and improve the performance, especially

in the case that all the resource leaks have been eliminated. In this case,

when the new resources are necessary and how much resources are needed

are 2 issues for the system, which are also the core problems of elasticity re-

searches. As I mentioned before, the proposed approaches can be considered

as complements to elasticity researches both in platform- and infrastructure-

level. Next to the resource optimization of provisioned resources, how to fall

back on the elasticity to guarantee the performance in a reasonable level

should be therefore a core concern in Cloud computing. This is obvious

that, beyond the integration of diverse resource optimizations in various lay-

ers, the integration between these self-optimization approaches and elasticity

researches are also an important issue affecting the Hadoop performance in

Cloud computing.
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From my point of view, besides the improvements of two approaches (i.e., self-

balancing approach and CloudGC) of resource optimization in different layers,

the two long term perspectives do not only need the profound understanding on

both Hadoop platform and OpenStack, but also requires lots of experience on

elasticity researches.
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Appendix A

The Absolute Completion Time of
Hadoop Benchmarks

Wordcount-30MB Terasort-30MB Sort-30MB
10% (default) 1343.082s 178.125s 236.740s
Best-Static MARP Value 1020.742s 170.112s 195.311s
Dynamic MARP Value 980.39s 147.843s 183.610s

Table A.1: Mean Job Completion Time of 100 jobs in HiBench (s) - 1.

Wordcount-3GB Terasort-3GB Sort-3GB
10% (default) 2941.693s 1845.816s 2719.682s
Best-Static MARP Value 2538.681s 1607.705s 2665.288s
Dynamic MARP Value 2435.7218s 1478.498s 2461.311s

Table A.2: Mean Job Completion Time of 100 jobs in HiBench (s) - 2.

10 Jobs 50 Jobs 100 Jobs 150 Jobs
10% (default) 473.259s 1159.537s 1798.396s 2697.594s
Best-Static MARP Value 444.863s 982.128s 1712.072s 2697.594s
Dynamic MARP Value 463.320s 962.416s 1561.007s 2594.27s

Table A.3: Mean Job Completion Time of Terasort-3GB under different stress
conditions (s).

141



142
APPENDIX A. THE ABSOLUTE COMPLETION TIME OF HADOOP

BENCHMARKS

10% 15% 20% 25% 30% 35% 40% dyn
W1 3593s 3241s 3019s 3054s 3061s 3052s 3095s 2944s
W2 6991s 6733s 6650s 6732s 6783s 7024s 7055s 6286s
W3 4056s 3933s 3708s 3704s 3701s 3687s 3753s 3650s
W4 4726s 4379s 4202s 4249s 4244s 4300s 4497s 4053s

Table A.4: The Completion Time of SWIM Workloads (s).
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Figure A.1: The distribution of Job Completion Time from 4 SWIM Workloads.
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BENCHMARKS

0

250

500

750

1000

0 1000 2000 3000 4000
Time (s)

Jo
b 

id

waiting time

processing time

(a) MARP (10% default)

0

250

500

750

1000

0 1000 2000 3000
Time (s)

Jo
b 

id

waiting time

processing time

(b) MARP (20%)

0

250

500

750

1000

0 1000 2000 3000
Time (s)

Jo
b 

id

waiting time

processing time

(c) MARP (35%)

0

250

500

750

1000

0 1000 2000 3000
Time (s)

Jo
b 

id

waiting time
processing time

(d) MARP (dynamic)
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BENCHMARKS
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Figure A.5: The Memory Consumption of SWIM Workloads in each second.


