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Foreword

The first part of this memoir is the dissertation itself: after a chapter of introduction on the FKPP equation
and the BBM, I present three independent sets of results in the three following chapters. I have selected six
of my papers (two per subject) which I have reproduced in the second part of this memoir. When cited, the
papers which have been reproduced are marked with an asterisk, as in [?BD15].

I have tried to write a self-contained document presenting in a consistent way several of the results I have
obtained, and to do this I had to make a selection: not all the subjects I have been working on in the last
years are presented in this memoir. For instance, I do not discuss my work on the accessibility percolation on
the hypercube [BBS16; BBS14] (given the L-hypercube, assign random uniform numbers on [0, 1] on the 2L
corners; is there a path along the edges of the hypercube, from the origin to the highest numbered corner, such
that the numbers on the visited corners follow an increasing sequence? The L→∞ answer is yes if and only if
the origin has a number smaller than 1 − 1

2argsinh 2). I do not discuss either my contribution to estimate the
speed of adaptation of a population under selection [RBW08; BRW08], nor my work [BBHHR15] on a BBM
where the reproduction rate at position x is |x|p (the expected number of particles and the almost sure number
of particles at time t both scale like exp[At(2+p)/(2−p)], but the value of A is not the same for the “expected”
and “almost-sure” cases.)

The literature on the FKPP and the BBM is huge, both in the physics and mathematics communities. I
did not write a full review of this literature, and I simply cited the papers which, I felt, would give some useful
context to my presentation.

I want to thank my collaborators for all the stimulating discussions we had while writing papers, and I give
my love to my family.

Éric Brunet
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Chapter 1

Introduction

1.1 The BBM and the FKPP equation
The main objects of this memoir are introduced: the BBM is a branching
process, the FKPP a front equation. A wonderful relationship links one to the
other.

1.1.1 The BBM
The branching Brownian motion, or BBM, was introduced in [INW68]. It describes a system where particles
diffuse and branch independently from each other. Diffusion is assumed to be Brownian: the infinitesimal
displacement dX of a particle during the infinitesimal time dt is Gaussian with 〈dX〉 = 0 and 〈dX2〉 = 2 dt.
Branching is assumed to be Poisson: during each dt, a particle has a probability dt of being replaced by two
particles at the same position which then move off independently, repeating the behaviour of the parent. One
starts with a single particle at the origin to obtain something looking like Figure 1.1.

Figure 1.1: A BBM. Time increases downwards, and space is horizontal. At time t = 0 there is a single (red)
particle, which branches after some time to create a blue particle. The blue branches to create a green, then
the red branches again and then it becomes hard to keep track as more and more branching events occur.

The BBM can be seen as a model of unlimited growth and diffusion: a new species colonizes a rich environ-
ment with its population diffusing and growing exponentially fast:

A→ 2A. (1.1)

If one calls ρ(x, t) the expected density of particles (meaning that ρ(x, t) dx is the expected number of particles
in dx), then it is easy to see that ρ follows the heat equation with a linear growth term:

∂tρ = ∂2
xρ+ ρ. (1.2)

The initial condition being a delta at 0, one gets

ρ(x, t) = 1√
4πt

et−
x2
4t . (1.3)

For large times, the expected density ρ(x, t) is equal to 1 at positions ±xt with xt = 2t − 1
2 ln t + O(1). This

suggests that the frontiers of the BBM move asymptotically with a velocity 2, which turns out to be true. The
logarithmic correction obtained from (1.3) is however incorrect, as explained in Section 1.2.

6



1.1. THE BBM AND THE FKPP EQUATION 7

1.1.2 The FKPP equation

The Fisher [Fis37] and Kolmogorov, Petrovski, Piscounov [KPP37] equation (FKPP) is the heat equation with
a non-linear growth term:

∂th = ∂2
xh+ h− h2. (1.4)

It can be seen as the deterministic limit of a reaction-diffusion process of type

A+B → 2A. (1.5)

Indeed, consider a medium homogeneously filled with particles that come into two types, A and B. Call
h(x, t) ∈ [0, 1] the local proportion of particles of type A around position x at time t. Then 1 − h(x, t) is the
local proportion of particles of type B. The expected local increase in the number of A particles around x due to
the A+B → 2A reaction is then proportional to h(1− h). Adding diffusion leads to the FKPP equation (1.4).

Both the BBM and the FKPP equation can be interpreted as models of population dynamics in a one-
dimensional environment, but they are very different: in the BBM, there is no saturation, no limit to the
number of A particles which reproduce indefinitely, while in the FKPP equation, the A particles simply replace
the B particles and, therefore, their density remains bounded. Furthermore, the BBM is a stochastic model,
while all fluctuations of the microscopic model (1.5) have been neglected to obtain the FKPP equation.

1.1.3 Duality

Even though the BBM and the FKPP equation look very different, there is a very remarkable relationship
between the two models [McK75]. If one calls Rt the position of the rightmost particle in a BBM started from
a single particle at the origin, and if one considers the solution h(x, t) to the FKPP equation with an initial
condition h0(x) = 1{x<0}, then one has

h(x, t) = P(Rt > x) if h0(x) = 1{x<0}. (1.6)

In particular, the median position of the rightmost particle in the BBM at any given time t is equal to the
position x such that h(x, t) = 1

2 .
McKean [McK75] wrote a more general relationship; assume that one starts the BBM with a single particle

at the origin, let Nt be the set of particles alive at time t and, for each u ∈ Nt, call Xu the position of particle
u. Assume also that one solves the FKPP equation for a given initial condition h0(x). Then

〈 ∏

u∈Nt

(
1− h0(x−Xu)

)〉
= 1− h(x, t). (1.7)

In particular, for h0(x) = 1{x<0}, the random variable being averaged on the left hand side is 1 if no particle is
on the right of x and 0 otherwise. The left hand side is therefore P(Rt ≤ x) and one recovers (1.6).

The incredibly useful relation (1.7) can be seen as a generalization to branching processes of the Feynman-
Kac theorem. It can be understood in a couple of lines: let g(x, t) be the left hand side of (1.7); one computes
g(x, t + dt) by looking at what happens during the first dt of the history of the system. During this first dt,
there is a probability 1−dt that the initial particle does not branch but simply moves by some random amount
dX. The state of the BBM at time t + dt is then the same as the state of another BBM at time t started
from one single particle at dX. On the other hand, the first particle does branch during the initial dt with a
probability dt. (The particles also move a little bit, but that is a negligible correction.) The state of the BBM
at time t + dt is then the same as the juxtaposition of two independent BBM at time t. Ignoring all terms
smaller than dt, one concludes that

g(x, t+ dt) =
no branching during initial dt︷ ︸︸ ︷
(1− dt)

〈
g(x− dX, t)

〉
+

branching during initial dt︷ ︸︸ ︷
dt g(x, t)2,

= g(x, t) + dt
[
∂2
xg(x, t) + g(x, t)2 − g(x, t)

]
,

(1.8)

where we expanded g(x−dX, t) and used 〈dX〉 = 0 and 〈dX2〉 = 2 dt. One can see, then, that h(x, t) = 1−g(x, t)
follows the FKPP equation.
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1.2 Basic properties: travelling waves and velocity selection
For a steep initial condition, the solution to the FKPP converges to a front
moving at velocity 2 with a shape ω, where ω(x) ∼ Axe−x for large x. When
the initial condition decays like e−γx with γ < 1, the solution to the FKPP
converges to another front moving at velocity v = γ + γ−1 > 2.

1.2.1 Bramson’s result
Recall that from the point of view of population dynamics, the solution h(x, t) to the FKPP equation represents
the local proportion of A in a A+B → 2A reaction-diffusion process. h(x, t) = 0 (only B particles) is a solution,
but an unstable one with respect to the introduction of A particles. On the other hand, h(x, t) = 1 (only A
particles) is a stable solution. Generally, we only consider initial conditions such that 0 ≤ h0(x) ≤ 1 because
values outside that range do not make sense from the point of view of population dynamics. Then, at any time
one still has 0 ≤ h(x, t) ≤ 1.

Situations of interest include starting with a sea of B particles with a small number of A particles around
the origin (a new and fitter species is introduced). It is clear that the number of A particles quickly increases
and saturates around the origin, and then the A invade the medium leftwards and rightwards. In a growing
region around the origin, h(x, t) is nearly equal to 1 (only A particles) whereas it is nearly 0 very far away from
the origin. At some time-dependent positions, there are two fronts (one for positive x moving to the right, and
one for negative x moving to the left) where h(x, t) is neither close to 0 nor to 1; see Figure 1.2.

1

0

Figure 1.2: A small number of particles A invade a sea of B particles. The shape of the FKPP front is sketched
at several times.

A simpler setting, which we adopt from now, is to consider only one invasion front by assuming that
h(x, t) ≈ 1 for large negative x and h(x, t) ≈ 0 for large positive x: there are mostly A particles on the left, and
mostly B particles on the right. It is clear that the A particles on the left invade the medium on the right, and
one expects the appearance of an invasion front around some time-dependent position mt, such that h(x, t) is
nearly 1 if x is sufficiently smaller than mt, and h(x, t) is nearly 0 if x is sufficiently larger than mt.

1

0

Figure 1.3: The A particles on the left invade the B particles on the right: starting from a step initial condition
(drawn with dashed lines), the solution to the FKPP equation is drawn at times 1, 3, 5, 10 and 20.

In particular, if one starts the FKPP equation with a step initial condition h0(x) = 1{x<0} (only A on the
left, and only B on the right), one obtains the shapes h(x, t) drawn in Figure 1.3. The solution h(x, t) develops
into a moving front, meaning that there exists a non-trivial final shape ω(x) and a centring term mt such that

h(mt + z, t)→ ω(z) as t→∞. (1.9)

The final shape is uniquely defined up to some translation by (1.9). On the other hand, the centring term mt

is not, and several choices are possible; a usual choice for mt is to impose that h(mt, t) = 1
2 . But whatever the

choice, for any mt verifying (1.9), it is known since Bramson [Bra78; Bra83] (see also [Rob13]) that

mt = 2t− 3
2 ln t+ C + o(1) as t→∞, (1.10)



1.2. BASIC PROPERTIES: TRAVELLING WAVES AND VELOCITY SELECTION 9

and that
ω(z) ∼ Aze−z for large z, (1.11)

where the constants C and A are not known exactly and depend on the (translation) choice of ω(z). The front
h(x, t) moves at velocity 2.

Recall that we called Rt the position of the rightmost particle in the BBM. Using (1.6), the meaning of (1.9)
and (1.10) is that Rt −

(
2t− 3

2 ln t
)
converges in distribution: the rightmost particle is around 2t− 3

2 ln t, with
typical fluctuations of order 1, the amplitude of the typical fluctuations being the width of the travelling wave
ω(z). (Note that, however, rare fluctuations will infinitely often send the rightmost particle close to position
2t− 1

2 ln t, at a distance ln t ahead of the typical position [HS09; Rob13].)
The result (1.9), (1.10) still holds (but with a different constant) for any non-zero initial condition h0(x) ∈

[0, 1] that converges “fast enough” to zero for large x. Here, fast enough means [Bra83] that
∫

dx h0(x)xex <∞. (1.12)

If h0(x) does not decay fast enough for (1.12) to hold, the front moves faster than in (1.10) (intuitively,
there are already A particles far to the right, helping the invasion):

• If h0(x) decays like e−x with some polynomial prefactor, the velocity of the front is still 2 but the logarithm
term might be modified. (Some examples are given at the beginning of Chapter 2.)

• If h0(x) decays like e−γx with some γ < 1, the velocity is v(γ) > 2.

• If h0(x) decays more slowly than any exponential, there is no velocity and the front keeps accelerating.

As long as 0 ≤ h0(x) ≤ 1, one cannot reach a velocity smaller than 2.

1.2.2 Velocity selection
One can understand heuristically this velocity selection for the FKPP front. Recall from (1.9) that ω(z) is the
travelling wave moving at velocity 2. It is clear from (1.9) that ω(x − 2t) must be a solution to the FKPP
equation, which implies that ω′′ + 2ω′ + ω − ω2 = 0. More generally, if one calls ωv the shape of a travelling
wave at velocity v (which means that ωv(x− vt) is solution to the FKPP equation), then one must have

ω′′v + vω′v + ωv − ω2
v = 0, ωv(−∞) = 1, ωv(+∞) = 0. (1.13)

(Of course ω2 = ω.) Far on the right, where ωv is small, (1.13) can be linearised by neglecting the ω2
v term.

One then obtains that, for large z,

ωv(z) ∼




Ave

−γz if v > 2, where γ + 1
γ

= v,

Avze
−z or Ave−z if v = 2.

(1.14)

There is no solution that remains positive for v < 2. Notice that for any v ≥ 2, the linear analysis gives two
possible asymptotic behaviours for ωv. There is however one unique solution up to translation to (1.13), and
the (difficult!) full non-linear analysis leads to

ωv(z) ∼




Ave

−γz if v > 2, where γ < 1 is the smallest solution to γ + 1
γ

= v,

Avze
−z if v = 2,

(1.15)

with Av > 0.
Consider now an initial condition h0(x) which decays for large x as e−γx with γ ≤ 1. Then h0(x) looks

roughly like the travelling wave ωv(x) with v = γ+ γ−1, and h(x, t) eventually evolves into the front ωv moving
at velocity v: there exists a mt such that

h(mt + z, t)→ ωv(z) where mt

t
→ v. (1.16)

The behaviour of mt − vt for large t then depends on the behaviour of h0(x)eγx for large x. For v > 2 (i.e.
γ < 1), it can be understood to leading order simply by looking at the linearised equation. It is more difficult
in the case v = 2.

If the initial condition decays for large x like e−γx for some γ > 1, or if it decays faster than any exponential,
then the initial condition is asymptotically very different from any travelling wave ωv. What happens then is
that the front evolves into the fastest decaying available travelling wave, which is the one for v = 2. The result
is then that h(mt + z, t)→ ω(z) with mt as in (1.10).
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1.3 Universality
The BBM can be generalized in many ways, and for each variant the McKean
duality (1.7) allows to define a front equation which has properties similar to
the FKPP. There are also many equations not obtained from the duality (1.7),
but which describe the invasion front of a stable phase into an unstable phase
and behave like the FKPP.

What makes the BBM so interesting is that its properties are shared by many branching processes. What makes
FKPP so interesting is that many of the equations that describe a front h(x, t) where a stable state invades an
unstable state have the same properties as the FKPP equation.

The properties shared by all the fronts in the class of the FKPP equation include the following:

• There is an unstable constant solution and a stable constant solution; we always write the equation so
that h(x, t) = 0 is unstable and h(x, t) = 1 is stable.

• There exist positive travelling wave solutions h(x, t) = ωv(x − vt) if and only if v ≥ vc for some critical
velocity vc. In the FKPP equation, vc = 2.

• One has, for large z,

ωvc(z) ∼ Avcze−γcz, ωv(z) ∼ Ave−γ(v)z for v > vc, (1.17)

where Av > 0 and where, for each v ≥ vc, the decay rate γ = γ(v) is the smallest positive number such
that e−γz is solution to the equation followed by ωv linearised around 0 (the unstable state). Naturally,
γc = γ(vc).

• For a step initial condition, there exists a centring term mt such that h(mt + z, t) converges as in (1.9) to
the travelling wave ωvc(z). Furthermore,

mt = vct−
3

2γc
ln t+ C + o(1) for large t. (1.18)

We now give several examples.

1.3.1 A branching random walk (BRW)
We consider a model in discrete time where, at each time-step, each particle is removed and replaced by two
new particles with shifted positions:

particle at position Xu at time t is replaced at time t+ 1 by two particles at Xu + εu,1 and Xu + εu,2, (1.19)

where the εu,i are identical independent random numbers drawn from some probability density function ρ(ε).
This can be seen as a model describing the growth of a population where, at discrete intervals, each individual

has two children who wander a little and then settle down. Alternatively, the “position” of the particle could
be in fact a measure of a given trait that changes from generation to generation due to random mutation.

Consider such a BRW started at time t = 0 by a single particle at the origin, choose a function h0(x) and
introduce the function h(x, t) as in (1.7) but only for integer t:

〈 ∏

u∈Nt

(
1− h0(x−Xu)

)〉
= 1− h(x, t), (1.20)

where Nt is the set of the 2t particles present at time t and Xu is the position of particle u. Then

h(x, t+ 1) = 1−
(

1−
∫

dε ρ(ε)h(x− ε, t)
)2

, h(x, 0) = h0(x). (1.21)

Indeed, let u(1) and u(2) be the particles at time 1. Given their positions, the product in (1.20) at time t+ 1 can
be decomposed into two independent products, one for the descendants of u(1) and one for the descendants of
u(2). Each of these two products is the same as the product for a BRW at time t started from respectively Xu(1)

or Xu(2) , and one gets 1− h(x, t+ 1) =
〈
1− h(x−Xu(1) , t)

〉
×
〈
1− h(x−Xu(2) , t)

〉
, which is the same as (1.21).

For a well-behaved choice of the distribution ρ(ε) (for instance if it is uniform on some interval, or if it is
Gaussian), then the equation (1.21) is in the class of the FKPP equation. In particular, the travelling waves ωv
are solution to

ωv(z − v) = 1−
(

1−
∫

dε ρ(ε)ωv(z − ε)
)2

, ωv(−∞) = 1, ωv(+∞) = 0. (1.22)
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(compare to (1.13) for the FKPP.) For large z, when ωv is small, one can linearise the equation

ωv(z − v) = 2
∫

dε ρ(ε)ωv(z − ε) +O
(
ω2
v

)
. (1.23)

Then, e−γz is a solution to the linearised equation if

v = v(γ) := 1
γ

ln
[
2
∫

dε ρ(ε)eγε
]
. (1.24)

The minimum of this function v(γ) is vc = v(γc).
To take an example, if one chooses for the random displacements εu,i a uniform distribution in [0, 1], so

that ρ(ε) = 1{ε∈[0,1]}, one obtains the function v(γ) represented in Figure 1.4 and one finds vc ≈ 0.815172 and
γc ≈ 5.26208. With these values, the rightmost particle in the BRW we have just defined is, for large t, typically
at a distance of order 1 from mt given in (1.18).

16128γc40

1.25

1

vc

0.75

Figure 1.4: The function v(γ) given by (1.24) with ρ(ε) = 1{ε∈[0,1]}. One finds vc ≈ 0.815172 and γc ≈ 5.26208.

1.3.2 Other fronts in the FKPP class
It is not difficult to build variants of the branching processes. Time can be continuous with branching events
occurring at random as in the BBM, or time can be discrete with fixed generations as in the BRW. The
particles might diffuse between two branching events (as in the BBM) or motion might only occur at branching
events (as in the BRW). The number of children does not need to be 2; it might be any number, or even be
random. Different children of a single branching event might have different laws for their displacements, and
their displacements might be correlated. Under some rather not so restrictive conditions on the branching law,
all of these variants lead for the quantity h(x, t) defined as in (1.7) to a front equation in the FKPP class [Aïd13;
BDZ14].

Of course, front equations have an existence outside of branching processes. A usual generalization of the
FKPP equation is

∂th = ∂2
xh+ f(h), (1.25)

for some function f (assumed to be differentiable) which meets certain necessary conditions:

• f(0) = f(1) = 0 so that both h(x, t) = 0 and h(x, t) = 1 are solutions,

• f(h) > 0 for h ∈ (0, 1) so that the population is growing,

• f ′(0) > 0 so that the solution h(x, t) = 0 is unstable,

• f ′(1) < 0 so that the solution h(x, t) = 1 is stable.

(1.26)

With (1.25), one can look for travelling wave solutions h(x, t) = ωv(x − vt) going at velocity v. They must
verify

ω′′v + vω′v + f(ωv) = 0, ωv(−∞) = 1, ωv(+∞) = 0. (1.27)
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The linearised equation for large z, in the unstable state, is

ω′′v + vω′v + f ′(0)ωv = o(ωv) (1.28)

By looking for solutions of the form ωv ∝ e−γz, one obtains the relationship between v and γ, the minimal
velocity vc and the value γc such that vc = v(γc):

v(γ) = γ + f ′(0)
γ

, vc = 2
√
f ′(0), γc =

√
f ′(0). (1.29)

An important question, of course, is to determine whether (1.25) is a front equation in the FKPP universality
class (in which case the front moves at velocity vc if the initial condition decays fast enough) or not (in which
case the velocity is usually different).

In either case, as linear perturbations around the unstable state must move at velocity vc (because they obey
the linearised equation), the velocity of the front (1.25) cannot be smaller than vc. The question is therefore
whether the velocity of the front (for initial conditions that decay fast enough) is equal or larger than vc.

There exists a rigorous proof [Bra83] that a sufficient condition for (1.25) to be in the FKPP class is to have
(1.26) and:

f ′(h) ≤ f ′(0) for all h ∈ [0, 1], f ′(h) = f ′(0) +O(hp) for some p > 0 when h→ 0. (1.30)

This result is difficult to establish but, from (1.30), it is already easy to see that one has f(h) ≤ f ′(0)h for all
h, and therefore the front h(x, t) must lie below the solution to the linearised equation ∂th = ∂2

xh+ f ′(0)h with
the same initial condition. For a step initial condition, the solution to this linearised equation moves at velocity
vc, so the front h must move at a velocity not larger than vc. As the velocity cannot be smaller than vc, it
must be equal to vc. Note that the linearised equation predicts the correct velocity, but fails at predicting the
logarithmic correction −3/(2γc) ln t in (1.18).

Because the velocity is entirely determined by the linearised equation which is valid far on the right of the
front, it is often said that the front in the FKPP class is “pulled” (by what happens on the right side).

When condition (1.30) is not realized, one can have situations where the reaction term f(h) is at some place
larger than the linearised reaction term f ′(0)h. This means that some extra mass is created around the position
of the front and, in certain cases, this extra mass can lead to a velocity larger than vc. The front is sometimes
said to be “pushed” (by what happens in the middle). What happens in the “pushed” scenario is that the front
for a step initial condition moves at some velocity v∗ > vc because none of the travelling waves ωv for v < v∗
are positive; therefore, they cannot be reached by a positive initial condition h0(x). In fact, in the “pushed”
scenario, the coefficient Av in (1.17) is negative for v < v∗, positive for v > v∗ and zero at v = v∗ which means
that the front ωv∗(z) decays much faster as z →∞ as any other front:

[“pushed” case; not in FKPP class]





ωvc(z) ∼ Avcze−γcz with Avc < 0,
ωv(z) ∼ Ave−γz with Av < 0 for v ∈ (vc, v∗),
ωv∗(z) ∼ Be−γ

′z with B > 0,
ωv(z) ∼ Ave−γz with Av > 0 for v > v∗,

(1.31)

where γ ≤ γc is as usual, for each v, the smallest solution of the relation (1.29) between v and γ and where,
only for velocity v∗, the decay rate γ′ > γc is the other solution to (1.29).

When the sufficient condition (1.30) is not met, it can be difficult to determine whether a given function
f(h) which satisfies the basic conditions (1.26) leads or not for equation (1.25) to a front which is “pulled” (in
the universality class of the FKPP equation) or “pushed” (not in the same universality class).

Let us end this paragraph with a final example of a front in the FKPP class. Consider a BBM where, at
each branching event, the number n of children is random and is given by some distribution pn. One finds easily
that (1.7) leads to an equation of the type (1.25) with a reaction term given by

f(h) = 1− h−
∑

n

pn(1− h)n. (1.32)

Then f ′(0) =
∑
n npn− 1 is the expected number of children at each branching event, minus one. If the second

moment
∑
n n

2pn is finite, the condition (1.30) is met and the resulting front equation (1.25) is in the FKPP
class. This means that the front and the rightmost particle in the BBM move at the velocity vc = 2

√
f ′(0)

with the logarithmic correction (1.18).
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1.4 Link with disordered systems
The BRW can be seen as a mean-field description of spin-glasses and of directed
polymers in random medium. Then, the McKean relation and knowledge of
FKPP universal properties allow to compute the free energies for these two
mean-field models.

As an illustration, and to give some examples of models not related to population dynamics, we present an
application of branching processes and front equations in the FKPP universality class to the theory of disordered
systems. The model basically consists of interpreting the positions of the particles in the BRW as minus the
energies of a disordered system. It can either be seen as a kind of mean-field spin glass or as a directed polymer
in random medium on a tree.

1.4.1 Spin glasses
Consider a model of spin glasses; when the system has N spins, there are 2N configurations. A configuration C
has an energy EC which is the sum over all pairs of neighbouring spins of random couplings which depend only
on the state of the pair of spins. Assume that the size of the system is increased by one spin without changing
the random couplings between the N first spins. Each configuration C of the N spin system is “split” into two
configurations of the (N + 1) spin system: the configurations C ⊕ {+} and C ⊕ {−}. To compute their energies,
one needs to take into account all the couplings between the spins in C (this gives the energy EC) and all the
couplings between the new spin and the spins in C. One can write

− EC⊕{±} = −EC + εC,±, (1.33)

where εC,± represents the contribution to the energy of the new couplings. It is some random number depending
on C and on the orientation of the new spin.

The difficulty of course is that all the εC,± are correlated numbers. As a kind of mean-field model, one
could try to ignore these correlations and assume that all the εC,± are identical independent variables. Then,
(1.33) would define a BRW, the same as in (1.19): each particle in the BRW represents a spin configuration,
the position of a particle is minus the energy of the corresponding configuration, and the time in the BRW is
the number of spins. (We use minus the energies rather than the energies themselves because we focus on the
rightmost particles of the BRW and we are interested in the states of lowest energies of the spin glass.)

In the following, we use the notations of the BRW rather than of the spin glasses. The partition function of
the system at time t (i.e. when there are t spins) is given by

Zt(β) =
∑

u∈Nt
eβXu , (1.34)

where β > 0. Introduce the generating function h(x, t):

1− h(x, t) =
〈
e−e

−βxZt(β)
〉

=
〈 ∏

u∈Nt
e−e

−β(x−Xu)
〉
. (1.35)

Using McKean’s relation (1.20), one gets that h(x, t) is the solution to the front equation (1.21) with initial
condition

h0(x) = 1− e−e−βx . (1.36)
For large x, the initial condition (1.36) decays like e−βx. From the usual results for fronts in the FKPP class,
see Section 1.2.2, one knows that for each β there exists a velocity v ≥ vc and a centring term mt = vt + o(t)
such that h(mt + z, t) converges to the travelling wave ωv(z) moving at velocity v. The value of the velocity is
vc if β ≥ γc and v(β) if β ≤ γc, where v(γ) is the function defined in (1.24) and vc = v(γc) is its minimal value.

From the convergence of h(mt + z, t) to ωv(z) and from (1.35), one already sees that Zt(β)e−βmt must
converge in distribution to a non-trivial limit. One finally obtains [DS88; HS09] that

lim
t→∞

−β−1 lnZt(β)
t

=
{
−v(β) if β ≤ γc,
−vc if β ≥ γc,

(1.37)

where the right hand side is the large time limit of −mt/t. The system exhibits a phase transition.
Remark: The quantities Zt(β)e−βv(β)t are, for each β, the so-called additive martingales for the BRW.

As positive martingales, they must converge to some random constant for large times. From the fact that
Zt(β)e−βmt converges in distribution (see discussion above) and the knowledge from Bramson of mt for large t,
one can obtain that the martingale Zt(β)e−βv(β)t converges to a positive constant if β < γc, goes to 0 as 1/

√
t

if β = γc, and goes to 0 exponentially fast if β > γc. Notice also that Zt(β) follows the recursion relation

Zt+1(β) = eβε1Z(1)
t (β) + eβε2Z(2)

t (β), (1.38)
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where Z(1)
t and Z(2)

t are two independent copies of random variable Zt and where ε1 and ε2 are two independent
random shifts. This can be seen by considering the two children of the initial particle and by splitting the sum
(1.34) into two sums, each over all the descendants of these two children. By using (1.38) in the definition (1.35)
of h(x, t), one can check directly that h(x, t) is indeed solution to (1.21).

1.4.2 Directed polymers in random medium
Consider a directed polymer in 1 + 1 dimensions on a lattice. A site (x, t+ 1) is linked to (x, t) and to (x− 1, t),
and independent identically distributed random energies are assigned to each link. The directed polymer, which
starts somewhere from the level t = 0, is a line made of several segments such that each segment follows a link,
always in the direction where the t coordinate increases. The energy of the polymer is the sum of the energies
of all the visited links. See the left part of Figure 1.5 for an illustration.

t

Figure 1.5: Illustration of a directed polymer. A site at level t+ 1 is linked to two sites at level t. (t increases
when going downwards). The directed polymer is the bold red line going through the links, always in the
direction such that t increases. On the left, the sites and the links are on a regular lattice. In the middle, the
sites and the links form a tree structure. On the right, the sites are linked to randomly chosen sites at the
previous level.

Let Zx,t(β) the partition function for a polymer of t segments ending at (x, t). It satisfies the recursion

Zx,t+1(β) = eβε1(x,t+1)Zx,t(β) + eβε2(x,t+1)Zx−1,t(β), (1.39)

where −ε1(x, t + 1) and −ε2(x, t + 1) are the energies of the two possible links (respectively the vertical and
diagonal link) leading to (x, t+ 1).

For a fixed t, the different values of Zx,t(β) for different x are identically distributed random variables but
they are correlated, which makes the problem difficult. In a mean-field variant of this model, one ignores these
correlations (which means that, actually, one considers that the polymer lives on a Caley tree; see the middle
part of Figure 1.5). Then [DS88]

Zt+1(β) = eβε1Z(1)
t (β) + eβε2Z(2)

t (β), (1.40)

which is the same as (1.38). The directed polymers on the Caley tree exhibit the same phase transition (1.37)
as in the previous model of spin glasses without correlations.

1.5 The necessity of adding a noise term to the FKPP equation
The FKPP equation often appears as a N → ∞ limit of some microscopic
stochastic model involving some large parameter N (typically, a population
size). When N is large but finite, an extra stochastic term needs to be added to
the FKPP equation. In all the examples given, the noise term has an amplitude√
h/N when h is small; it is therefore relevant where h is of order 1/N .

1.5.1 Reaction-diffusion
We introduced the FKPP equation as the deterministic limit of a reaction-diffusion process of type A+B → 2A:
if h is the local proportion of A particles, then the expected variation of h is due to diffusion and to a reaction
term h(1−h). Ignoring all fluctuations (which is the same as considering that there are infinitely many particles
per unit length), this leads to the deterministic FKPP equation. Any actual microscopic model of reaction-
diffusion is however bound to be stochastic, the total concentration is not infinity, and the propagation of the
front must actually be noisy. It is natural to try to evaluate the effect of this noise.
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Let us take a very simple example and consider a reaction process of the type

A+B
1+λ−−−→ 2A, A+B

λ−→ 2B. (1.41)

We assume for now that the reaction is well mixed: there is no relevant spatial dimension. Fix the total number
of particles to be equal to N , and call h(t) the proportion of particles of type A (so that there are Nh(t)
particles of type A and N

(
1− h(t)

)
particles of type B. The probability that a reaction occurs during dt must

be proportional to h(1− h) dt and, when it does occur, h increases or decreases by 1/N . Let us write

dh =





1
N

with probability (1 + λ)Nh(1− h) dt,

− 1
N

with probability λNh(1− h) dt,
0 otherwise.

(1.42)

In front of h(1− h) dt, the terms 1 + λ and λ give the relative rates of the two possible reactions, and the term
N was chosen to give a nice large N limit. With h given, one obtains easily

〈dh〉 = h(1− h) dt, 〈dh2〉 = 1 + 2λ
N

h(1− h) dt. (1.43)

We rewrite this as
dh = h(1− h) dt+

√
εh(1− h) dX, 〈dX〉 = 0, 〈dX2〉 = dt, (1.44)

with ε = (1+2λ)/N . One should be careful that dX is not a Gaussian variable, but some weird random variable
such that dh is most of the time equal to 0 and very rarely equal to ±1/N .

When h is neither close to 0 or 1, the noise term is small and negligible compared to the h(1 − h)dt term.
However, when h or 1− h is a O(ε) = O(N−1), both terms are important. We reach the perhaps unsurprising
conclusion that noise only matters when the number of A particles or the number of B particles is not large.

Let us now put back a spatial dimension, on a lattice of spacing a. One allows any pair of two particles at
two adjacent sites to exchange position with rate dt/(Na2). The same discussion as above leads to writing the
following equation for the fraction h(x, t) of A particles at site x:

∂th(x, t) = h(x+ a, t) + h(x− a, t)− 2h(x, t)
a2 + h(1− h) + noise, (1.45)

where the expectation of the noise is zero and its amplitude is of order
√
h(1− h)/N with N being now the

total number of particles per site. The noise is small compared to the reaction term except where h or 1− h is
of order 1/N .

1.5.2 Directed polymers
In Section 1.4, we introduced directed polymers in 1 + 1 dimension, which is a hard problem because for a
given t there are important correlations between the partition functions Zx,t ending at different points x. We
also introduced directed polymers on a tree, for which all the correlations are removed. It is naturally interesting
to consider a model with a tiny amount of correlation between the partition functions.

A way to do this is to imagine that at each level t there is a large number N of possible passage points for
the directed polymer. Each of these points at level t is linked to two other points chosen at random at level
t− 1, see the right part of Figure 1.5. As usual, a random energy is assigned independently to each link.

Let Zi,t(β) the partition function of a directed polymer of length t ending at point i ∈ {1, 2, . . . , N} at level t.
There are, as before, 2t possible paths leading to that point from the line t = 0, and the partition functions
satisfy the recursion

Zi,t+1(β) = eβε1Zj1,t(β) + eβε2Zj2,t(β), (1.46)
where j1 and j2 are the random indices of the two points at level t linked to (i, t+ 1) and where −ε1 and −ε2
are the corresponding energies of the links. Implicitly, ε1, ε2, j1 and j2 depend on i and t.

Two different points i and i′ at the same level t have correlated partition functions, but the correlation
becomes weak as N becomes large. Indeed, the probability that the two points i and i′ share a common parent
(which would mean that they are both linked to the same site at previous level), or a common grand-parent, is
only of order O(N−1). In fact, one needs typically to go back O(lnN) levels to find a link shared by the paths
leading to i and i′. As N →∞, one never finds a shared link and the model becomes equivalent to the directed
polymer on a tree.

To simplify a bit this hard problem, let us focus on the zero temperature limit β →∞. Calling −Xi(t) the
minimal energy of the 2t paths leading to (i, t), one has from (1.46)

Xi(t+ 1) = max
[
Xj1(t) + ε1, Xj2(t) + ε2

]
, (1.47)
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with the same notations as in (1.46).
Recall that t is here the length of the directed polymer, but (1.47) can also be seen as a dynamical system

where t is a time: at a given time t, one has a cloud of N values {X1(t), . . . , XN (t)}. Given the state of the
system at time t, the N new values at time t + 1 are obtained by repeating independently N times the same
procedure: pick uniformly at random two possible parents from generation t, add some random numbers to
their values and keep the largest. It is a kind of over-optimistic population model where Xi(t) represents some
desirable trait and where each individual “chooses” two parents at random and inherits from the best parent
with some mutation.

Let h(x, t) be the fraction of particles on the right of x at time t:

h(x, t) = 1
N

N∑

i=1
1{Xi(t)>x}. (1.48)

With the function h(·, t) given, the probability (with j and ε random) that Xj(t) + ε is on the right of x is∫
dε ρ(ε)h(x− ε, t). It is then easy to compute the expectation of h(x, t+ 1) given h(·, t).

〈
h(x, t+ 1)

∣∣∣ h(·, t)
〉

= P
(
Xi(t+ 1) > x

∣∣∣ h(·, t)
)

= 1−
(

1−
∫

dε ρ(ε)h(x− ε, t)
)2
. (1.49)

With the function h(·, t) given, the Xi(t+ 1) are independent variables. Writing an expression for the variance
of h(x, t+ 1) given the function h(·, t) is simple:

var
[
h(x, t+ 1)

∣∣∣ h(·, t)
]

= 1
N

var
[
1{Xi(t)>x}

∣∣∣ h(·, t)
]

= 1
N

[〈
h(x, t+ 1)

∣∣∣ h(·, t)
〉
−
〈
h(x, t+ 1)

∣∣∣ h(·, t)
〉2]

.

A simple way to summarize these last two equations is to write

h(x, t+ 1) = 1−
(

1−
∫

dε ρ(ε)h(x− ε, t)
)2

+ noise. (1.50)

It is a noisy version of the front equation (1.21) which was obtained for the directed polymer on the tree. The
“noise” term in the equation above is complicated: it is discrete, because h(x, t + 1) on the left hand side is a
multiple of N−1. It is correlated for different values of x, because the left hand side is a non-increasing function
of x. The expectation of the noise is zero, of course, and its standard deviation is of order

√
h/N where h is

small. This means again that the noise is comparable to the deterministic term where h is of order 1/N . As
N →∞, the noise disappears and one recovers, as already argued, the directed polymer on a tree.

1.5.3 Models of population dynamics
The model of directed polymers led in the zero temperature limit to (1.47) which looks like a model of population
dynamics: there is a constant population size N and we follow the value Xi(t) of some trait of individual i at
generation t. When building a new generation, each individual inherits the trait of one of its parent plus some
mutation.

In the specific case of (1.47), the number of children of a given individual is random and position-dependent:
all individuals have the same chance of being picked as a prospective parent, but because of the max in (1.47),
the rightmost individuals (i.e. with the largest values for X) are more likely to be finally chosen. This is a
selection mechanism: having a large value of the trait X relates to having more children.

One can devise models which are simpler and more natural than (1.47). For instance: each individual has at
first exactly two children, but after the reproduction phase, there is a pruning phase where half the population
is removed to keep its size constant at N individuals [BG10; DR11]. Without the pruning phase, the population
size would double at each generation and one would recover exactly a BRW.

The pruning phase can be done in several ways. A first possibility is to choose uniformly the N survivors of
the pruning phase. In this case there is no selection, the model we just defined is very close to the Wright-Fisher
model [Wri31; Fis30].

The other extreme, which we consider here, is to have a flawless selection: for the pruning phase, one keeps
the N rightmost individuals and remove the N leftmost:
{
Reproduction phase: particle i at time t is replaced by two particles at Xi(t) + ε1 and Xi(t) + ε2,

Pruning phase: only the N rightmost are kept.
(1.51)

Let us write an evolution equation for (1.51); define h(x, t) as 1/N times the number of particles on the right of
x at generation t, as in (1.48). With the function h(·, t) given, we want to compute h(x, t+1). We first compute
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h∗(x, t+ 1) defined as 1/N times the number of particles on the right of x after the reproduction phase leading
to generation t+ 1, but before the pruning phase. One obtains easily that

〈
h∗(x, t+ 1)

∣∣∣h(·, t)
〉

= 2
∫

dε ρ(ε)h(x− ε, t). (1.52)

(Nota: as there are 2N particles before the pruning phase, h∗(−∞, t) = 2.) The variance of h∗(x, t + 1) given
h(·, t) has an expression which is a bit more complicated, but one checks that it is of the order of h/N when h
is small [BDMM07]. As before, we simply write that h∗(x, t + 1) is equal to its expectation given h(·, t) plus
some noise. The pruning phase is then very easy to write: h(x, t+ 1) = min[1, h∗(x, t+ 1)]. One finally obtains

h(x, t+ 1) = min
[
1, 2

∫
dε ρ(ε)h(x− ε, t) + noise

]
, (1.53)

where the noise, which has an amplitude of order
√
h/N , is again negligible compared to the deterministic term

except where h is of order 1/N .

1.5.4 Universality of internal noise
We have introduced three models (reaction-diffusion, directed polymer, population dynamics) where we take
into account finite size effects: there is a large parameter N which is either the total number of particles per
lattice site, the number of passage points per level for the directed polymer, or the total population of the
system. Heuristically, when N is infinite, one recovers respectively the deterministic FKPP on a lattice, the
directed polymer on a tree and the BRW. When N is finite, we obtain in each case (see (1.45), (1.50) and (1.53))
an equation in the FKPP universality class but with an extra noise term. A natural question is of course to
determine how the picture described in Section 1.3 for the position of the FKPP front is modified by this noise
term.

Notice that the noise term is horribly complicated in the three cases we have considered, but it is always of
order

√
h/N for small h. The region where h is small is of course the most important because we know from

the general study of the (deterministic) FKPP universality class that the fronts are “pulled” by what happens
in the linear region, i.e. far on the right, where h is small. To summarize, all the models we presented have
noise terms with similar behaviours at the tip of the front, which is the only place where things matter for the
dynamics of the front. One can therefore expect similar behaviours for all these models.

A common feature of the noisy models we have presented is that the noise comes from the stochastic nature
of the motion of the particles defining the system. It is sometimes said to be an “internal noise”. One can
also consider equations with an “external noise” which is due to randomness in the environment [RES00; BN12;
Nad15]. To take an example, ∂th = ∂2

xh+[1+η(x, t)](h−h2) would describe the evolution of a population where
the reaction rate has a random contribution η(x, t) because, maybe, the birth rate depends on temperature and
temperature fluctuates.

In this memoir, we only consider noisy FKPP equations with an internal noise.

1.5.5 The stochastic FKPP equation, the coalescing BBM and duality
A reference noisy FKPP equation with an internal noise is the stochastic FKPP equation:

∂th = ∂2
xh+ h− h2 +

√
h− h2

N
η(x, t), (1.54)

where N is a large parameter and η(x, t) is a delta-correlated Gaussian noise:
〈
η(x, t)

〉
= 0,

〈
η(x, t)η(x′, t′)

〉
= δ(x− x′)δ(t− t′). (1.55)

The stochastic FKPP (1.54) behaves in the same way as the other models we have presented in this section
because its noise term has again the amplitude

√
h/N when h is small.

It might be tempting to see the stochastic FKPP as an hydrodynamic limit of a reaction-diffusion process
such as (1.41), but it is not directly the case [DMS03] because the randomness in the diffusion process makes
things complicated. The stochastic FKPP has however been shown to be the limit of some long range voter
model [MT95]. Furthermore, without taking any limit, it is also the dual process of a variant of the BBM called
the coalescing BBM, in the same way as the (deterministic) FKPP is the dual of the BBM through McKean’s
relation (1.7). In the coalescing BBM, particles diffuse and branch, as they do in the BBM, but they can also
coalesce with a small rate (ε� 1):

A
1−−⇀↽−−
ε

2A [coalescing BBM], (1.56)
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The meaning of (1.56) is clear when space is discrete: in a given box with n particles at time t, the probability
to create a new particle during dt is ndt and the probability to remove one particle is εn(n−1)

2 dt because there
are n(n−1)/2 pairs of A particles that might interact. At long times, the number of particles in the box should
oscillate around 2/ε. When space is continuous, it is more difficult but still possible to give a meaning to (1.56)
using local times; the simplest way is to start from a variant of the model with discrete space and then take the
limit where the lattice spacing goes to zero. Then, the model that one obtains is such that, at long times, the
density of particles at any given position oscillates around 2/ε� 1.

For the coalescing BBM, call again Nt the set of particles at time t and, for each u ∈ Nt, call Xu the position
of particle u. Then, if h(x, t) is the solution to the stochastic FKPP equation (1.54) with initial condition h0(x),
and if ε = 1/N , one has [DMS03; SU86]

〈 ∏

u∈Nt

(
1− h0(x−Xu)

)〉
=
〈 ∏

u∈N0

(
1− h(x−Xu, t)

)〉
. (1.57)

On the left hand side, the product is over all the particles present at time t while on the right hand side it is
a product on all the particles present in the initial condition. If the coalescing BBM is started from only one
particle at the origin, then the right hand side reduces to 1− 〈h(x, t)〉 and (1.57) looks very similar to (1.7).

1.5.6 The noisy FKPP equation in QCD
Remarkably, branching processes and FKPP fronts have found some application in particle physics.

In 1988, a first link was established in [BP88] where it was shown that the “random cascading process” leading
to the production of many particles during a scattering event can be analysed as a BRW using the methods
developed the same year in [DS88]. It was later recognized in [MP03; MP04a; MP04b] that the Balitsky-
Kovchegov equation (BK), which is used to describe high-energy scattering in quantum chromodynamics, is in
fact in the universality class of the FKPP equation. (The front h would represent the scattering amplitude, x
and t are not space and time, but parameters of the scattering. See also [MT02].) Finally, it has been suggested
that high-energy scattering in QCD might in fact be similar to models in the class of the stochastic FKPP
equation [IMM05], with the amplitude of the noise term related to the coupling constant.

The relationship between QCD and the FKPP equation is reviewed in [Mun09].

1.6 My contribution to the study of the BBM and the FKPP equa-
tion

In the following chapters, I present some of the results that my collaborators and I have obtained on the FKPP
equation and on branching processes during the last years.

I explain in Chapter 2 how we studied in great details the position of a FKPP front (say, the position where
the front is equal to 1

2 ). The asymptotic expansion for large times of this position must of course start like
Bramson’s result (1.10). The first vanishing term in this expansion was shown by Ebert and van Saarloos [ES00]
to be of order 1/

√
t for initial conditions that decay “fast enough”. By introducing two independent models in

the FKPP class that we were able to solve in two different ways, we could recover the result of Ebert and van
Saarloos, determine with precision what “fast enough” meant, make a new prediction for the first vanishing
term when the initial condition does not decay “fast enough” and find the second vanishing correction to the
position of the front.

I present in Chapter 3 my work on the limiting distribution of extremal points in the BBM: for any integer n,
the joint probability distribution function of the distances between the n rightmost particles in the BBM
converges as t → ∞ to some limiting distribution. This limiting distribution has a nice description as a
“decorated exponential Poisson point process”, and any feature of this distribution (for instance, the expected
distance between the two rightmost particles, or the distribution of this distance) can be measured by integrating
numerically the FKPP equation with some well-chosen initial condition.

Chapter 4 concerns the study of noisy FKPP equations, with an internal noise as described in Section 1.5.
These noisy fronts move more slowly than their deterministic counterparts; I explain how one can compute, to
leading order, the correction to the velocity, the diffusion constant and, in fact, all the cumulants of the position
of these fronts. When the noisy front comes from a model of population dynamics with N individuals, as in
Section 1.5.3, we also studied the statistical properties of the genealogical tree of the particles. We showed that,
properly rescaled and in the N →∞ limit, the genealogical tree can be described by the Bolthausen-Sznitman
coalescent, the same tree as occurs in the replica method for studying spin glasses.



Chapter 2

Vanishing corrections for the position
of the FKPP front

In this chapter, I discuss the position of a front described by the FKPP equation as a function of its initial
condition h0. Throughout this chapter, it is assumed that

h0 ∈ [0, 1], h0(−∞) = 1, h0(+∞) = 0. (2.1)

The large time asymptotic position of the front depends on how fast h0 converges to 0 at infinity.
The asymptotic position of the front is known up to a o(1) since Bramson [Bra83]. Ebert and van Saar-

loos [ES00] predicted the first vanishing term. I will present two different models which allowed us to better
understand this asymptotic position, and in particular to precise and refine the prediction from Ebert and van
Saarloos.

2.1 The Bramson term and the Ebert and van Saarloos term
We recall Bramson’s result and describe in detail the prediction by Ebert and
van Saarloos.

2.1.1 The Bramson term
For a non-lattice equation in the FKPP universality class, if the initial condition h0 decays fast enough so that

∫
dxh0(x)xeγcx <∞, (2.2)

(and assuming (2.1), of course), then

lim
t→∞

h(mt + z, t) exists and is not trivial (neither 0 nor 1) (2.3)

if and only if

mt = vct−
3

2γc
ln t+ C + o(1), (2.4)

where vc = v(γc) is the critical (minimal) velocity and C is any constant. The −3/(2γc) ln t in (2.4) is the
famous “Bramson term”.

The value of the limit (2.3) as a function of z is the critical travelling wave, which is only defined up to
translation because changing C in (2.4) shifts the limit in (2.3). To fix the invariance by translation, we insist
now that the limit (2.3) is 1

2 for z = 0. This determines uniquely the constant C in (2.4) for each initial condition
h0. Calling ω(z) the (now unique) critical travelling wave, the convergence (2.3) is uniform in z:

lim
t→∞

h(mt + z, t) = ω(z) uniformly in z, (2.5)

with of course ω(0) = 1
2 . It is furthermore known that there exists a positive constant A such that

ω(z) ∼ Aze−γcz for large z. (2.6)

For the FKPP equation itself, ∂th = ∂2
xh+h−h2, one has v(γ) = γ+γ−1, see (1.29), so that vc = 2 and γc = 1.

From (1.13) with v = 2, ω(z) is solution to

ω′′ + 2ω′ + ω − ω2 = 0, ω(−∞) = 1, ω(+∞) = 0, ω(0) = 1
2 . (2.7)

19
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The results above have been proved by Bramson [Bra78; Bra83] for the FKPP equation and the FKPP
equation with the reaction term h− h2 replaced by any f(h) which satisfies some properties, see Section 1.3.2.
They have also mostly been proved by Aïdékon in the case of a step initial condition h0(x) = 1{x<0} for any front
equation which is the dual through McKean (see Section 1.3) of a non-lattice BRW with some mild hypotheses
on the reproduction law [Aïd13]; see also [HS09; BDZ14]. Notice that (2.3) only makes sense if the equation is
non-lattice; the lattice case needs to be addressed separately [BDZ14].

The position of the front is not only known when (2.2) holds, but also for many other initial conditions; the
velocity and the Bramson term need however to be modified. To give some examples, the limit (2.3) exists and
is non-trivial if and only if mt is of the following given form, depending on the initial condition:

if h0(x) ∼ axνe−γcx, then mt =





vct+ ν−1
2γc ln t+ C + o(1) if ν > −2,

vct−
3

2γc
ln t+ 1

γc
ln ln t+ C + o(1) if ν = −2,

vct−
3

2γc
ln t+ C + o(1) if ν < −2,

if h0(x) ∼ axνe−γx with γ ∈ (0, γc), then mt = v(γ)t+ ν

γ
ln t+ C + o(1),

(2.8)

with, for each line, a different constant term C.

2.1.2 The Ebert and van Saarloos term
As the front h correctly centred looks more and more like the critical wave ω, one can show that for any
α ∈ (0, 1) and any large enough time t, there exists a unique position where the front is equal to α. Let µ(α)

t be
that position:

h(µ(α)
t , t) = α. (2.9)

It is clear that µ(α)
t must be, up to some translation, a valid mt in the sense of (2.5) and that, therefore,

µ(α)
t = vct−

3
2γc

ln t+ C(α) + o(1), h
(
µ(α)
t + z, t)→ ω

(
ω−1(α) + z

)
, (2.10)

for some α-dependent constant C(α). It makes sense to look for the next terms in the asymptotic expansion of
µ(α)
t . In a paper from 2000, Ute Ebert and Wim van Saarloos argued [ES00] that for any front in the FKPP

class, any α ∈ (0, 1), and any initial condition that decays fast enough, one has

µ(α)
t = vct−

3
2γc

ln t+ C(α) − 3
√

2π
γ5
c v
′′(γc) t

+ · · · , (2.11)

where, remarkably, the prefactor of the new 1/
√
t term does not depend on α; see also [MM14]. Ebert and van

Saarloos claimed furthermore that the next term was a non-universal O(t−1) term, but I now think there is first
a universal O[(ln t)/t] term, see Section 2.3. The method used in [ES00] consisted in studying eγcz

√
th(mt +

z
√
t, t)/

√
t as a function of z for large times. Derrida and I argued [BD97] in 1997 that this quantity was

converging to Az exp(−cz2) for some A and c, and this observation allowed us to recover the Bramson term.
Looking at the way this limit is reached allowed Ebert and van Saarloos to obtain their 1/

√
t term. What is still

missing is a rigorous derivation; in fact, one of the starting points of their argument is that one can obtain an
asymptotic expansion of the instantaneous velocity by taking the derivative of (2.10): µ̇(α)

t = vc−3/(2γct)+ · · · ,
but this has never been proved. [ES00] does not state precisely for which initial conditions (2.11) is expected
to hold. At the very least, one needs (2.2) because otherwise the Bramson term is not even there, but this is
not sufficient. In the following section, I explain why (2.11) holds if and only if

∫
dxh0(x)x2eγcx <∞. (2.12)

When (2.2) holds but not (2.12), then the Bramson term is present but the Ebert and van Saarloos term needs
to be modified.
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2.2 Understanding the Bramson term and the Ebert and van Saar-
loos term

The presence of a saturation term is important, but its nature is not. Taking
advantage of that fact, we study two different models in the FKPP class with
a simplified saturation term. The models can be solved.

The dynamics of equations in the FKPP class are essentially controlled by what happens where h is small.
However, the linearised FKPP equation alone is not even sufficient to understand Bramson’s −3/(2γc) ln t
term. Indeed, consider the solution to the linearised equation ∂th = ∂2

xh + h with a step initial condition
h0(x) = 1{x≤0}. One obtains easily that

h(x, t) = et√
4πt

∫ ∞

x

dy e−
y2
4t [linearised equation], (2.13)

and that

h(mt + z, t)→ e−z with mt = 2t− 1
2 ln t− 1

2 ln(4π) + o(1) [linearised equation]. (2.14)

The prefactor of the logarithmic correction is wrong (1/2 instead of 3/2) and the limit of h(mt + z, t) for large
z is missing a z prefactor in front of the exponential, as in (2.6). The conclusion is that even though the FKPP
front is essentially controlled in the linear region (where h is small), it is necessary to introduce a non-linear
saturation term so that the value of the front does not grow indefinitely in the region where h is not small. The
nature of this saturation term is not important (except for the value of C, the asymptotic expansion (2.4) of
mt would remain unchanged if the reaction rate h− h2 in the FKPP equation was replaced by h− h3), but it
is important to have a saturation mechanism.

If one believes in the universality of this problem and in the fact that the nature of the saturation mechanism
is not important, one is led to look for simple and, hopefully, solvable models in the FKPP class. I have studied
two such models.

2.2.1 The linear FKPP equation with an anchor
Since the position of a FKPP front is determined by what happens in the linear part, we look for a solvable
model which is essentially linear. However, as we have just seen, it cannot be linear all the way and one needs
a saturation mechanism. Consider the real FKPP equation and call µt = µ(α)

t the position where the front is
equal to α. On the right of µt, one can linearise the equation without changing the behaviour of the position.
One does not need to look on the left of µt; one expects it should not matter as long as there is some saturation.
It therefore seems reasonable to look at the following linear equation with boundary:

{
∂th = ∂2

xh+ h if x > µt,

h(µt, t) = α for any t > 0.
(2.15)

Of course, (2.15) is simply an initial-boundary problem with a Dirichlet boundary condition at µt, and one knows
that a solution to (2.15) exists for any (reasonable) choice of µt. As the goal is to determine the asymptotic
expansion of µt, (2.15) is clearly not sufficient, and an extra constraint needs to be added. A natural choice is
to fix the derivative of h at position µt:





∂th = ∂2
xh+ h if x > µt,

h(µt, t) = α for any t > 0,
∂xh(µt, t) = β for any t > 0,

(2.16)

with α and β two given numbers. In (2.16), both h and µt are the quantities to be solved for. In other words, µt
is determined as being the (hopefully unique) function such that the solution h(x, t) to (2.15) has its derivative
at position µt equal to β at all times.

For any front, a travelling wave solution is such that µt = vt and h(µt + z, t) = ωv(z) independent of t. In
the case of (2.16), one checks easily that one must have ω′′v + vω′v + ωv = 0 with ωv(0) = α and ω′v(0) = β, The
travelling waves ωv are non-oscillatory only for v ≥ vc = 2. For the critical velocity vc = 2, one obtains that

ω2(z) = [α+ (α+ β)z]e−z, (2.17)

and for v > 2 one gets ωv(z) = Ae−γz +Be−γ
−1z where γ + γ−1 = v and where A and B are some coefficients

that depend on α, β and γ.
Because all the ingredients (diffusion, growth, saturation) are in place, one expects (2.16) to be in the

universality class of FKPP for any choice of α and β, as long as α ≥ 0 and α + β > 0, because the critical
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travelling wave should be positive and behave like ze−z at infinity. The case α + β < 0 would correspond to a
“pushed” front, as in (1.31).

In [?BBHR15], we studied (2.16) with the parameters α = 0 and β = 1. (The same model was also studied in
[Hen14] using partial differential equations methods in the special case where the initial condition is compactly
supported.) Taking α = 0 might not seem very natural, but this choice should lead to a front in the FKPP
class and it simplifies a lot the analysis. Indeed, for α = 0 and only for α = 0, the solution h(x, t) to (2.15) for
a given boundary µt and a given initial condition h0 can be written by linearity as

h(x, t) = et
∫ ∞

0
dy h0(y)q(x, t; y), (2.18)

(we assume µ0 = 0) where q is solution to

∂tq = ∂2
xq for x > µt, q(x, t = 0; y) = δ(x− y), q(µt, t; y) = 0. (2.19)

Then, q is simply the density of probability that a Brownian path s 7→ Bs started from y arrives at time t at
position x without ever hitting the boundary:

q(x, t; y) = Ey
[
δ(Bt − x)1{Bs>µs ∀s∈[0,t]}

]
. (2.20)

(The Brownian path is normalized in such a way that 〈dB2
s 〉 = 2 ds.) Write (2.20) with x replaced by µt + x as

a path integral, and make the change of variable Bs = µs + B̃s, where the tilde is dropped after two lines:

q(µt + x, t; y) =
∫ Bt=µt+x

B0=y
DBs e−

∫ t
0

(dBs)2
4ds 1{Bs>µs ∀s∈[0,t]}, (2.21)

=
∫ B̃t=x

B̃0=y
DB̃s e−

∫ t
0

(µ̇sds+dB̃s)2
4ds 1{B̃s>0 ∀s∈[0,t]}, (2.22)

= e
− 1

4

∫ t
0

ds(µ̇s)2
∫ Bt=x

B0=y
DBs e−

1
2

∫ t
0
µ̇s dBs−

∫ t
0

(dBs)2
4ds 1{Bs>0 ∀s∈[0,t]}, (2.23)

= e
− 1

4

∫ t
0

ds(µ̇s)2
Ey
[
δ(Bt − x)e−

1
2

∫ t
0
µ̇s dBs

1{Bs>0 ∀s∈[0,t]}
]
, (2.24)

where in the last expression s 7→ Bs is again a Brownian motion. The passage from (2.20) to (2.24) is called a
Girsanov transform. The boundary is now a straight line at position 0, but there is a complicated extra term
inside the expectation. Write (2.24) as a conditional expectation

q(µt + x, t; y) = e
− 1

4

∫ t
0

ds(µ̇s)2
Ey
[
δ(Bt − x)1{Bs>0 ∀s∈[0,t]}

]
e−

x−y
2t µtψ(x, t; y), (2.25)

with

ψ(x, t; y) = e
x−y

2t µtEy
[
e
− 1

2

∫ t
0
µ̇s dBs

∣∣∣Bt = x and Bs > 0 ∀s ∈ [0, t]
]

= Ey→x
[
e
− 1

2

∫ t
0
µ̇s

(
dξs− x−yt ds

)]
, (2.26)

where the last expectation is over a Bessel bridge ξs going from y to x in a time t, which is of course the same as
a Brownian started from y, conditioned to end at x and to remain positive at all times. The expectation which
remains in (2.25) is easy to compute: it is the probability that a Brownian started from y ends at x without
ever touching the origin, and one obtains its expression through the method of mirrors:

Ey
[
δ(Bt − x)1{Bs>0 ∀s∈[0,t]}

]
= 1√

πt
sinh xy2t e

− x2+y2
4t . (2.27)

Therefore, it “only” remains to compute ψ(x, t; y).
In [?BBHR15], we have shown under some mild conditions on µt that the function ψ(x, t; y) has a large time

limit which is independent of x and can be written as an expectation over a Bessel process (not a bridge). Then,
with all the other terms in (2.25) and (2.18) known, it is easy to see that there exists a unique possible asymptotic
expansion for µt up to o(1) such that ∂xh(µt, t)→ 1 in the large time limit. This asymptotic expansion for µt
is given by (2.8) and the limit of h(µt + x, t) is of course the travelling wave with the corresponding velocity.

It is interesting to see that, after all, we did not have to solve (2.16); rather, we looked at (2.15) with the
extra condition that in the large time limit (only!) the solution h must satisfy ∂xh(µt, t)→ 1. This turned out
to be sufficient to determine, for any initial condition, the asymptotic expansion of the position µt of the front
up to o(1), and to show that the results are exactly the same as Bramson’s results for the real FKPP equation.

The second and more difficult part of [?BBHR15] was to estimate the speed at which ψ in (2.26) converges
to its limit. Used in (2.25) and (2.18), this allowed to determine the speed at which h(µt +x, t) would converge
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to its limit, the travelling wave. For instance, we showed that when solving (2.15) for a compactly supported
initial condition and for µt = 2t− (3/2) ln t+C − r/

√
t when t > 1, then h(µt + x, t) is equal to its limit plus a

correction of order 1/
√
t, except when r = 3

√
π, in which case h(µt + x, t) is equal to its limit plus a correction

of order at most (ln t)/t. This suggests strongly that the solution to (2.16) satisfies

µt = 2t− 3
2 ln t+ C − 3

√
π√
t

+ · · · (2.28)

which is the Ebert and van Saarloos prediction (2.11). We also showed that for an initial condition of the form
h0(x) ∼ Axνe−x, then (2.28) only holds if ν < −3, which is nearly the same as condition (2.12). We also
computed the first vanishing term for ν ∈ [−3,−2), which is the domain where Bramson’s term is present but
not the 1/

√
t correction from Ebert and van Saarloos. (Our findings are summarized in Section 2.3.)

Again, it is interesting to notice that, in order to obtain (2.28) or its generalisation, we did not after all solve
(2.16), but rather we determined the function µt which, in (2.15), maximises the speed of the convergence of
h(µt + x, t) to its limit.

2.2.2 A model on the lattice
Bernard Derrida and I have also studied the following model [?BD15]: space x is discrete and time t is continuous.
The values h(x, t) of the front, with x ∈ Z, evolve according to

∂th(x, t) =
{
h(x, t) + h(x− 1, t) if h(x, t) < 1,
0 if h(x, t) = 1.

(2.29)

In this model, the front undergoes a linear growth for all values of h smaller than 1 (not only in the limit h� 1).
There is some mixing (which plays the rôle of diffusion) because the growth rate of h on a given lattice site
depends on the lattice site on its left. Finally, the front saturates at h = 1, the stable phase.

Looking for travelling wave solutions of the form e−γ(x−vt) in the region where h < 1,one obtains the relation
between v and γ:

v(γ) = 1
γ

[
1 + eγ

]
. (2.30)

Looking for the minimum of this function gives vc = 3.59112 . . . and γc = 1.27846 . . ..
We always assume that the initial condition h0 satisfies h0(x) = 1 for x ≤ 0 and h0(x) ∈ [0, 1) for x ≥ 1,

and we introduce, for x ≥ 1, the time tx at which the front reaches the value 1 on site x:

h(x, t) < 1 if t < tx, h(x, t) = 1 if t ≥ tx. (2.31)

We also assume that h0(x) is a non-increasing function of x; this implies that h(x, t) remains at all time a
non-increasing function of x and that x 7→ tx is an increasing function of x.

The model (2.29) is sufficiently linear so that one can solve it [?BD15] in the following sense: for a given
initial condition h0(x), the times tx satisfy for λ small enough

∞∑

x=1
h0(x)λx = − λ

1 + λ
+ 2

1 + λ

∞∑

x=1
e−(1+λ)txλx. (2.32)

This remarkable equality allows to explore the question of the position of the front as a function of time.
One shortcoming, however, of (2.29), is that the model is defined on the lattice. This means that one cannot

consider the quantity h(mt + x, t) as in (2.3) because mt does not take integer values. Similarly, one cannot
define µ(α)

t as the position where the front is α because, most of the time, such a position does not exist. One
way to overcome this problem is to take advantage of the fact that time is continuous and, in some sense,
exchange the rôles of space and time. For instance, instead of considering the limit (2.3), one could investigate
the limit of h(x, tx − τ) for fixed τ as x goes to infinity. Furthermore, the quantity tx (time at which the front
reaches 1 on a given site x) plays a rôle similar to µ(α)

t (position at which the front is equal to α at a given
time t).

What we did in [?BD15] is to compute from (2.32) the large x asymptotic of tx for various initial conditions.
We argued that, if and only if ∑

x≥1
h0(x)x2eγcx <∞, (2.33)

(this is the discrete version of (2.12)), then

tx = x

vc
+ 1
γcvc

[
3
2 ln x+ C + 3

√
2πvc

γ3
c v
′′(γc)

x−1/2 + · · ·
]
, (2.34)
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where we were not able to compute the constant C. In (2.34), the position x is an integer, but if one forgets
this point and formally inverts the asymptotic expansion to obtain x as a function of t, one obtains the same
asymptotic expansion as (2.11).

The method we used to extract the asymptotic (2.34) from (2.32) consists in matching singularities in the
left and right hand sides of (2.32) when λ = eγc−ε with ε → 0+. Indeed, if and only if (2.33) holds, the left
hand side of (2.32) with λ = eγc−ε must have two finite derivatives at ε = 0+:

∑

x≥1
h0(x)e(γc−ε)x = a0 + a1ε+ a2ε

2 + o(ε2) with ai = 1
i!
∑

x≥1
h0(x)(−x)ieγcx, (2.35)

where the three numbers a0, a1 and a2 are finite by hypothesis. But we could show that without the x−1/2

term of (2.34), there would be a ε2 ln ε term appearing in the ε→ 0+ expansion of the right hand side of (2.32)
with λ = eγc−ε, in contradiction with (2.35).

By generalizing this method, the vanishing corrections to the asymptotic expansion of tx for large x can be
obtained for any initial condition, not just when (2.33) is satisfied. In particular, one can recover a recent result
[MM14] giving the first vanishing term for an initial condition satisfying h0(x) ∼ e−γcx.

2.3 Summary, and a conjecture for the next order term
When computing the vanishing terms in the asymptotic expansion of µ(α)

t , we
obtained the same results for the two models introduced in the previous section.
We now summarize these results. A conjecture for a (ln t)/t correction is also
introduced.

From the results of [?BD15; ?BBHR15], the following picture emerges in FKPP fronts for the position µ(α)
t

where the front is equal to α:




if
∫

dxh0(x)x2eγcx <∞ µ(α)
t = vct−

3
2γc

ln t+ C(α) − 3
√

2π
γ5
c v
′′(γc) t

+ · · · ,

if h0(x) ∼ Axνe−x with −3 ≤ ν < −2 µ(α)
t = vct−

3
2γc

ln t+ C(α) −D(ν)t1+ ν
2 + · · · ,

(2.36)

where, in the second line, the coefficient D(ν) depends on ν but not on α or on A. It is remarkable that we
obtained the same result in both models, and it suggests strongly that these results are universal for FKPP
fronts.

Notice that in the second line of (2.36), when ν = −3, the first vanishing correction D(−3)/
√
t is of the

same order as the correction from Ebert and van Saarloos on the first line. The prefactor is however different.
In a paper with Julien Berestycki [BB16], we considered again the model (2.29) on the lattice and pushed

the expansion of (2.32) with λ = eγc−ε up to terms of order ε3. We noticed that an ε3 ln ε term appears in the
expansion unless one adds a (ln x)/x term to (2.34) with a well-chosen coefficient. By inverting (2.34) with this
new term, we obtained a conjecture for the next-order term in the expansion of µ(α)

t for equations in the FKPP
class: if and only if ∫

dxh0(x)x3eγcx <∞, (2.37)

then

µ(α)
t = vct−

3
2γc

ln t+ C(α) − 3
√

2π
γ5
c v
′′(γc) t

+
54− 54 ln 2 + 3v

′′′(γc)
v′′(γc)

4γ3
c v
′′(γc)

ln t
t

+O
(1
t

)
. (2.38)

(The condition (2.37) is the continuous equivalent of the condition needed for the o(ε2) in (2.35) to be in fact
a a3ε

3 + o(ε3).) For the FKPP equation, γc = 1, vc = 2, v′′(γc) = 2, v′′′(γc) = −6, the conjecture (2.38) gives

µ(α)
t = 2t− 3

2 ln t+ C(α) − 3
√
π√
t

+ 9
8
(
5− 6 ln 2

) ln t
t

+O
(1
t

)
. (2.39)

The following term, of order O(1/t) cannot be universal: it is easy to see that it must depends on α, on the
initial condition, etc.

Numerical simulations [BB16] are difficult to perform but give results compatible with (2.39).



Chapter 3

The limiting distribution of extremal
points in the BBM

The positions of particles in the BBM can be seen as the actual positions of individuals in an ongoing invasion by
a population reproducing without limits, or as the value of some traits of these individuals, or, in a completely
different setting, as the energy spectrum of some disordered system similar to a spin glass. In any case, the
extremal values are important to study and understand.

The previous chapter focused in great details on the position µ(1/2)
t of a FKPP front, which is the same from

McKean (1.6) as the median position of the rightmost particle. But what about the second rightmost particle,
and the next ones? I have been working [?BD09; ?BD11; ABBS12] on the distribution of extremal points in
a BBM as seen from the rightmost tip of the system. The results we obtained can be extended to any BRW
[Mad15] and were the subject of a Bourbaki seminar [Gou13].

3.1 The limiting distribution seen from µt
We first consider the distribution of extremal points seen from the median
position µt of the rightmost particle. McKean’s formula is the keystone of this
work.

3.1.1 Use and abuse of McKean’s formula
Recall McKean’s formula (1.7): if h(x, t) is the solution of the FKPP equation with initial condition h0(x), then

〈 ∏

u∈Nt

(
1− h0(x−Xu)

)〉
= 1− h(x, t), (3.1)

where the product on the left is over all the particles present at time t in a BBM and where Xu is the position
of particle u. In particular, see (1.6),

h(x, t) = P(Rt > x) if h0(x) = 1{x<0}, (3.2)

because, for that choice of h0, the product in (3.1) is 1 if no Xu is larger than x and 0 otherwise.
In two papers [?BD09; ?BD11], Bernard Derrida and I have shown how to use (3.1) to obtain a description

of the statistics of extremal points; the same method was later used by Arguin, Bovier and Kistler to establish
a proven rigorous result [ABK11; ABK12; ABK13b]. To illustrate the method, consider the following example;
pick λ ∈ [0, 1) and assume that h0 is given by

h0(x) =
{

1− λ if x < 0,
0 if x ≥ 0.

(3.3)

The product in (3.1) is simply λN(x,t), where we introduce

N(x, t) =
[
number of particles on the right of x at time t in the BBM

]
. (3.4)

Then, of course,
h(x, t) = 1−

〈
λN(x,t)〉. (3.5)

25
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A small λ expansion gives

h(x, t) = 1− P
(
N(x, t) = 0

)
− λP

(
N(x, t) = 1

)
+O(λ2) = P(Rt > x)− λP(St ≤ x < Rt) +O(λ2), (3.6)

where St is the position of the second rightmost particle. At time t, there is a probability e−t that there is still
only one particle in the BBM, and then the position St of the second rightmost particle is not defined. The
expression above is still valid with the convention that St = −∞ if the number of particles is still 1.

Differentiate with respect to x

∂xh(x, t) dx = −P(Rt ∈ dx) + λ
[
P(Rt ∈ dx)− P(Nt > 1 and St ∈ dx)

]
+O(λ2), (3.7)

where Nt is also the number of particles in the system at time t. Multiply by x and integrate:
∫

dxx∂xh(x, t) = −〈Rt〉+ λ
[
〈Rt〉 − 〈1{Nt>1}St〉

]
+O(λ2). (3.8)

The coefficient of λ is the expected distance between the rightmost and second rightmost particles in the BBM
at time t (with a small and vanishing subtlety: there is a small probability e−t that the second rightmost does
not exist yet). Similarly, one checks that the term of order λ2 gives the expected distance between the second
and third rightmost particles, etc.

Note that the small λ expansion can be performed a priori: using h(x, t) = A(x, t) − λB(x, t) + O(λ2) in
the FKPP equation, one gets with (3.3):

∂tA = ∂2
xA+A−A2, A0(x) = 1{x<0}, ∂tB = ∂2

xB +B − 2AB, B0(x) = 1{x<0}, (3.9)

and the expected distance 〈Rt〉 − 〈1{Nt>1}St〉 is simply −
∫

dxx∂xB. It is easy to integrate numerically the
coupled equations (3.9) to compute the expected distance at any time.

By choosing other initial conditions h0, one can compute other statistical properties of the rightmost particles
in the BBM at any time t. For instance, by choosing

h0(x) =





1 if x < −a,
1− λ if −a ≤ x < 0,
0 if x ≥ 0,

(3.10)

one obtains from (3.1)
h(x, t) = 1−

〈
λN(x,t)

1{Rt≤x+a}
〉
. (3.11)

From there, it is quite easy to get the joint probability distribution of the positions of the rightmost and the
n-th rightmost particles at any time t; in particular, one can obtain the probability distribution function of the
distance between the rightmost and the n-th rightmost particles at time t.

By choosing more and more complicated initial conditions, one can obtain in such a way the joint probability
distribution of the positions of the n rightmost particles at time t for any value of n. It is sufficient, actually, to
consider initial conditions h0 such that h0(x) is constant by pieces and h0(x) = 0 for x ≥ 0, similarly to (3.10).

3.1.2 The large time limit
Bramson’s result allows to conclude that the distribution of points at the tip in the BBM does reach a large
time limit. Indeed, let

µt =
[
median position of the rightmost particle in the BBM at time t

]
= 2t− 3

2 ln t+ C + o(1). (3.12)

(When considering FKPP with a step initial condition, then µt is where the front is equal to 1
2 . In the previous

section, we called this quantity µ(1/2)
t .) Recall, from McKean’s relation (3.2) and from Bramson’s convergence

theorem (2.5), that one has

P(Rt > µt + z) = h(µt + z, t) −−−→
t→∞

ω(z), for a front h started from h0(x) = 1{x<0}. (3.13)

The meaning of (3.13) is that the distribution of Rt relative to the median position µt converges in law.
When considering other statistical properties of the positions of the particles at the tip of the BBM, for

instance the joint probability distribution of the positions of the n rightmost particles, one needs to consider
initial conditions such as (3.10) which are equal to zero for x ≥ 0. These initial conditions certainly decay
fast enough to apply Bramson’s result and one knows, see Section 1.2, that h(mt + z, t) → ω(z) if and only if
mt = µt − C[h0] + o(1), where C[h0] is a constant which depends on the initial condition h0. This leads to

h(µt + z, t) −−−→
t→∞

ω(z + C[h0]), for a front h started from any h0 that decays fast enough. (3.14)
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In words, pick a h0 such as (3.10); both the front started from h0 and the front started from the step initial
condition converge to the same shape. However, as h0 is smaller than the step initial condition, the front started
from h0 remains behind the front started from the step initial condition. In the large time limit, both fronts
have the shape ω(z), but shifted from each other by the quantity C[h0] ≥ 0 which represents the large time
delay, or lag, taken by the front started from h0 as compared to the front started from the step initial condition.

One can combine (3.14) with the conclusions of McKean’s relation; for instance, with h0 given by (3.10),
one gets from (3.11)

〈
λN(µt+z,t)1{Rt≤µt+z+a}

〉
−−−→
t→∞

1− ω(z + C[h0]). (3.15)

The delay C[h0] is an unknown function of λ and of a. From the left hand side, one can extract the joint
probability density that, at time t, the rightmost particle is at position µt + X and the n-th rightmost at
position µt + Y . The right hand side means that this joint probability density has a large time limit which
could be deduced from the knowledge of C[h0].

Similarly, by picking more complicated h0, one can show that the joint probability distribution of the
positions of the n rightmost particles relative to µt reaches a large time limit. Furthermore, the description of
this limiting distribution is entirely contained in the knowledge of the lags C[h0] for a well chosen family of
initial conditions h0.

Using this method, we studied in [?BD09] the front started from (3.3) and showed that, for this choice
of h0, one had C[h0] = − ln(1 − λ) − ln[− ln(1 − λ)] + O(1) as λ → 1. This allowed us to conclude that the
expected distance in the limiting distribution between the n-th and (n+ 1)-th rightmost particles in the BBM
was, for n large, of order 1/n−1/[n lnn]. By numerical integration of the FKPP equation, we also computed in
[?BD11] the limiting probability distribution function of the distance d1,2 between the two rightmost particles.
We found a distribution which is extremely close to a simple exponential distribution: P(d1,2 ∈ da) ≈ 2e−2ada,
see Figure 3.1. However, the distribution of d1,2 is not so simple [?BD11] and we found from a large deviation
analysis (confirmed by the numerical simulations) that the tail of the distribution is of order e−(1+

√
2)a for

large a. A precise measure of the expectation of d1,2 gives

〈d1,2〉 = 0.497 . . . (3.16)

We still do not understand why the distribution of d1,2 is so close to a simple exponential for its typical values.
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Figure 3.1: The limiting probability density that the distance d1,2 between the two rightmost particles in the
BBM is equal to a, compared to 2e−2a and to e−(1+

√
2)a. The left graph focuses on short values of a while the

right graph focuses on large values.

The curves in Figure 3.1 were obtained with the method outlined in this section by numerical integration
of the (deterministic) FKPP front equation with various initial conditions h0 in order to compute the delays
C[h0]. A direct Monte Carlo simulation of the (stochastic) BBM would never have allowed to reach such an
accuracy.
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3.2 Non-ergodicity and random shift
Lalley and Sellke have shown that the position of the rightmost particle around
its median was not ergodic, but was in fact given by a random shift and a fluc-
tuating Gumble. We extend this result to the limiting distribution of extremal
points.

3.2.1 Lalley’s and Sellke’s result
The position of the rightmost particle relative to its median position converges in law to the distribution defined
by the critical travelling wave ω(x), see (3.13). As noticed by Lalley and Sellke in 1987 [LS87], the distribution
of the rightmost particle is not ergodic:

lim
t→∞

P(Rt > µt + z) = ω(z) 6=
[
fraction of the time where Rt > µt + z for one given realization

]
. (3.17)

The reason for this is that even at large times, the BBM “remembers” what happens at small times. For
instance, consider a realization where by chance all the particles drift to the left while there are few of them.
In such a realization, the BBM is at all times shifted to the left, and the rightmost particle spends most of its
time on the left of the median position µt; this is illustrated in Figure 3.2

Figure 3.2: A realization of the BBM up to time 15. Time goes downwards and space is horizontal. The
dashed lines represent the median positions of the leftmost and rightmost particles. For this realization, both
the leftmost and the rightmost particles are nearly always on the left of their median positions.

Lalley and Sellke [LS87] gave a nice description of the position Rt of the rightmost particle, which amounts
to the following: for each realization of the BBM, there exists a random variable Z (which is a function of the
BBM) such that

Rt = µt + ln(AZ) + gt, (3.18)
where µt is the median of Rt, A is the constant appearing in ω(z) ∼ Aze−z for large z, see (2.6), and where,
for large time, gt is a Gumble variable:

lim
t→∞

P(gt ≤ z) = e−e
−z
. (3.19)

For instance, the value of ln(AZ) appearing in (3.18) is negative for the realization of Figure 3.2. Lalley and
Sellke conjectured that gt was ergodic (meaning that, for a given realization, the fraction of the time where gt
is smaller than z is also given by exp(−e−z)), but this was proved only quite recently [ABK13a].

The variable Z is the large time limit of the so called derivative Martingale [Nev88]

Zt =
∑

u∈Nt
(2t−Xu)eXu−2t, Z = lim

t→∞
Zt. (3.20)

(Recall that Nt is the set of all particles present at time t and Xu for u ∈ Nt is the position of particle u.) One
shows that Zt has a finite and positive large time limit Z with probability 1. This limit depends (of course)
on the realization of the BBM and, in fact, mostly depends on what happens in the early stages of the BBM,
when the number of particles is small. Combining (3.13), (3.18) and (3.19), one can relate the distribution of
Z to the travelling wave [LS87]:

ω(z) = 1−
〈
e−AZe

−z〉
. (3.21)
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3.2.2 Generalization to the extremal process
As explained above, in the BBM, the position of the rightmost particle for large times fluctuates as an ergodic
Gumble random variable around position µt + ln(AZ), where µt is the (deterministic) median position of the
rightmost particle and ln(AZ) is a random shift which is decided at the early stages of the BBM. Actually, this
random shift also applies to the whole stationary measure of the positions of the rightmost particles. Writing

[position of the n-th rightmost particle at time t] = µt + ln(AZ) + Y (n)(t), (3.22)

we have argued [?BD11] that the joint probability distribution of {Y (1)(t), . . . , Y (n)(t)} for any n reaches a large
time limit which is independent of Z. We conjectured that the distribution of the Y (n) was ergodic, but this was
proved only in [ABK15]. The positions of the rightmost points have therefore a deterministic contribution µt,
a random shift ln(AZ) which is decided at early times, and random fluctuations Y (n)(t) which depend on the
recent history of the process.

To obtain this result, we combined Lalley’s and Sellke’s proof [LS87] with the methods exposed in Section 3.1.
Pick an initial condition h0(x) which looks like (3.3) or (3.10), and start a BBM with a single particle at the
origin. Write an expression for the expectation of

∏
u[1− h0(x−Xu)] at time t as in McKean’s relation (3.1),

but this time condition about the state Fs of the BBM at a given time s < t:
〈 ∏

u∈Nt

(
1− h0(x−Xu)

)∣∣∣Fs
〉

=
∏

w∈Ns

〈 ∏

u∈Nt
u desc. of w

(
1− h0(x−Xu)

)∣∣∣Xw

〉
, (3.23)

=
∏

w∈Ns

(
1− h(x−Xw, t− s)

)
, (3.24)

where h is the solution of the FKPP with an initial condition h0. Indeed, in the left hand side, the product can
be split into products over the descendants of each of the Ns particles present at time s as in the right hand
side of (3.23). Each of these particles spawns, independently of the others, a simple BBM started from their
position Xw, and one applies McKean’s formula (3.1) for each of these BBM.

Use x = µt + z in (3.24) and take the large time limit:

lim
t→∞

〈 ∏

u∈Nt

(
1− h0(µt + z −Xu)

)∣∣∣Fs
〉

=
∏

w∈Ns
lim
t→∞

(
1− h(µt−s + (µt − µt−s) + z −Xw, t− s)

)
, (3.25)

=
∏

w∈Ns

(
1− ω(2s+ z −Xw + C[h0])

)
, (3.26)

where we used Bramson’s convergence with a lag (3.14), and also that µt−µt−s → 2s as t→∞, see (3.12). We
now take s large. As the rightmost particle at time s is around position 2s− 3

2 ln s+C, one knows that 2s−Xw

must be large for all w ∈ Ns. Writing that ω(z) ∼ (Az +B)e−z for large z, one gets from (3.26) for large s:

lim
t→∞

〈 ∏

u∈Nt

(
1− h0(µt + z −Xu)

)∣∣∣Fs
〉
∼
∏

w∈Ns

(
1−

[
A(2s+ z −Xw + C[h0]) +B

]
e−2s−z+Xw−C[h0]

)
, (3.27)

∼ exp
(
−
∑

w∈Ns

[
A(2s+ z −Xw + C[h0]) +B

]
e−2s−z+Xw−C[h0]

)
,

∼ exp
(
−
[
AZs + (B + z + C[h0])Ys

]
e−z−C[h0]

)
, (3.28)

with Zs the derivative Martingale as in (3.20) and where Ys =
∑
w∈Ns e

Xw−2s is the critical additive Martingale.
With probability one, for large s, one has [LS87] Ys → 0 and Zs → Z > 0, and hence

lim
s→∞

lim
t→∞

〈 ∏

u∈Nt

(
1− h0(µt + z −Xu)

)∣∣∣Fs
〉

= exp
(
−AZe−z−C[h0]) = exp

(
− e−z−C[h0]+ln(AZ)). (3.29)

By choosing different values of h0, the left hand side gives some information of the limiting distribution as
t→∞ of the rightmost particles conditioned by the state at some large time s of the BBM. For instance, with
h0 as in (3.10), one gets

lim
s→∞

lim
t→∞

〈
λN(µt+z,t)1{Rt≤µt+z+a}

∣∣∣Fs
〉

= exp
(
− e−z−C[h0]+ln(AZ)), (3.30)

which allows to determine the limiting joint probability distribution of the rightmost and n-th rightmost parti-
cles. This distribution features a random shift ln(AZ), and is otherwise entirely determined by the knowledge
of the delays C[h0].
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3.3 The structure of the limiting point process
The stationary point process of the rightmost particles seen from µt + ln(AZ)
can be described as a juxtaposition of independent families

3.3.1 Stability by juxtaposition and decorated Poisson point processes
At large times, the rightmost particles in the BBM can be described by a random limiting point process ν which
is shifted by a deterministic time-dependent value µt and by a random (realization-dependent) constant value
ln(AZ), see (3.22). The rightmost point in this limiting point process is Gumble distributed, see (3.18) and
(3.19).

The limiting point process of the BBM must feature a remarkable property: consider the BBM just after its
first branching event: there are two particles (say, a red and a blue particles) which evolve independently and
spawn a red and a blue BBM. When time is large, the rightmost red particles are distributed according to the
randomly shifted limiting point process; let νred be the realization of the process and µt + ared be the random
shift. The rightmost blue particles are also distributed according to the randomly shifted limiting point process,
and we call νblue the realization of the process and µt + ablue the random shift.

Of course, taken together, the rightmost particles (no matter whether they are blue or red) form a third
realization νall of the limiting point process, shifted by µt + aall. Then

{
νall shifted by aall

}
=
{
νred shifted by ared

}
∪
{
νblue shifted by ablue

}
. (3.31)

This is illustrated in Figure 3.3.

Figure 3.3: The superposability property: the shifted red realization (first line) and the shifted blue realization
(second line) of the limiting point process taken together give a third shifted realization (third line) of the same
point process.

But aall = ln(AZall). By decomposing Z over the red and blue particles and writing Zall = Zred +Zblue, one
gets easily that

aall = ln(eared + eablue). (3.32)

Because the realizations νred and νblue of the process and the shifts ared and ablue are independent, (3.31)
means that the superposition of two independent realizations of the point process ν shifted by two arbitrary
amounts ared and ablue must be equal in law to the same point process shifted by another amount given by
(3.32). We called this the “superposability” property [?BD11]; a better name seems to be “exp-1-stability”
[Mai13].

There exists a very simple exp-1-stable point process: it is the Poisson point process of density ρ(x) = e−x,
which we call the “exponential Poisson point process”. Indeed, ρ(x−a)+ρ(x−b) = ρ(x−c) with c = ln(ea+eb),
which yields the exp-1-stability property (3.31) with (3.32).

Starting from the exponential Poisson point process, it is not difficult to build other exp-1-stable point
processes. For instance, the exponential Poisson point process where each point is replaced by two points at the
same position is obviously exp-1-stable. More generally, choose an arbitrary point process σ such that there is
always one point at the origin and no point for positive positions; consider then the “σ-decorated exponential
Poisson point process” defined in the following way (see also Figure 3.4):





1. Pick a realization {X1 > X2 > X3 > · · · } of the exponential Poisson point process,
2. For each point Xi, pick an independent realization σi of the decorating point process σ,
3. The realization of the process is given by

⋃

i

{σi shifted by Xi}.
(3.33)

Obviously, any σ-decorated exponential Poisson point process is exp-1-stable. Conversely, it turns out
that any exp-1-stable point processes can be built as a σ-decorated exponential Poisson point process [Mai13;
DMZ08]; we conjectured that result in [?BD11]. Hence, there must exist a point process σ, the decoration,
such that the limiting point process of the BBM can be described as a σ-decorated exponential Poisson point
process (3.33).
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0

x

Figure 3.4: A realization of the σ-decorated exponential Poisson point process (3.33). On the first line, a
realization of the exponential Poisson point process is picked. On the five intermediate lines, for each of the
five rightmost points of the exponential Poisson point process, a realization of the decoration point process σ is
picked and then appropriately shifted. On the last line, all the points are put together.

3.3.2 Families and leaders
The most precise description known up to now of the limiting point process of the rightmost points in the BBM
is then the following: there exists a decoration σ such that the distribution of the rightmost points converge to
a σ-decorated exponential Poisson point process shifted by µt + ln(AZ), where we recall that µt is the median
position of the rightmost particle and ln(AZ) is some random variable.

The rightmost particles in the BBM are then naturally decomposed into “clusters”, or “families”: two
particles are in the same family if they are both parts of the same decoration. Each family has a “leader”, which
is the rightmost particle of each family. All the leaders taken together are the points in the exponential Poisson
point process.

Derrida and Spohn had already shown [DS88] in 1988 that two particles in a BBM picked around the right
tip have their first common ancestor either a “short” time ago (within a time of order 1 from the current time)
or a “long” time ago (within a time of order 1 from the origin of times). This defines equivalence classes of
particles at the tip having branched recently. Arguin Bovier and Kistler [ABK11; ABK12] have proved that in
fact, the equivalence classes of particles at the tip having branched recently and the families of the σ-decorated
exponential Poisson point process are the same thing: two particles at the tip have their first common ancestor
a short time ago if and only if they are in the same family. Otherwise, their first common ancestor is close to
the beginning of the process. This leads to two natural implicit descriptions of the point measure σ:

• One can look at the path followed by one leader, in reverse time [ABBS12]. There is some branching on
this line which generate sub-trees (in forward time), and the set of all the particles issued from all the
sub-trees form the decoration, because only one family was constructed, see Figure 3.5. However, the law
of the reversed path followed by the leader, the branching law and the law for generating the sub-trees
are complicated because they must ensure that, in the end, the leader is indeed their rightmost particle.

X1(t − s)

X1(t)
t

t − τ1

t − τ2

t − τ3

Figure 3.5: From the position X1(t) of the leader of one family at time t, the trajectory of the leader can be
reconstructed backward in time. Some branching occur on the line and the descendants of these branching
events are on the left of X1(t) at time t.

• As shown by Arguin Bovier and Kistler [ABK13b], one can consider a BBM conditioned to have its
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rightmost particle at time t on the right of 2t. This BBM goes unusually fast (the rightmost should be
around 2t − 3

2 ln t), so that, with overwhelming probability, only one family is present (it would be too
expensive to have two independent lines going unusually fast). However, because this BBM does not go
too fast (the velocity is not modified), the law of distances between the rightmost particles and the other
particles in its family is not modified. Hence, the set of rightmost points in this fast-but-not-too-fast BBM
has the same law as the decoration σ.

Unfortunately, these two descriptions of the decoration σ are not very explicit, and it is difficult to extract
useful information from them. The methods discussed in Section 3.1 can still be used to recover some information
on σ; for instance, recall that d1,2 is the distance for large times between the two rightmost particles in the
BBM, and call dσ1,2 the distance between the leader and the next particle in the decoration σ. Recall that the
probability that the two rightmost points in an exponential Poisson point process have a distance larger than
a is e−a; then:

P(d1,2 > a) = P(dσ1,2 > a)× e−a. (3.34)

Indeed, d1,2 > a if and only if the distance between the rightmost particle and its first runner-up in the same
family is larger than a (first term in the right hand side) and if, at the same time, the distance between the two
rightmost leaders is larger than a (second term). These two events are independent, hence (3.34). Then, from
Figure 3.1 and the discussion above it, one sees that the density of probability that dσ1,2 is around a is nearly
given by e−a when a is not too large, but is of order exp(−

√
2 a) for large values of a.

One can draw another unexpected relation from (3.34); the probability that the two rightmost particles are
of two different families is clearly

P(the 2 rightmost are in different families) =
∫ ∞

0
P(the 2 rightmost are in different families and d1,2 ∈ da),

=
∫ ∞

0
P(dσ1,2 > a)× e−a da, (3.35)

=
∫ ∞

0
P(d1,2 > a) da, (3.36)

= 〈d1,2〉 = 0.497 . . . , (3.37)

see (3.16) for the last equality. Similarly, with a bit more work, one obtains

P(the n rightmost particles in the BBM are in n different families) = 〈d1,2〉n−1. (3.38)

There are probably more relations such as (3.34) or (3.38) that one could derive in order to gain some partial
knowledge on the decoration σ, but the truth is that our understanding of σ is very incomplete.



Chapter 4

Position and genealogy in the noisy
FKPP equation

Consider the microscopic models described in Sections 1.5.2 (directed polymers) and 1.5.3 (population dynam-
ics): there is a cloud of N points or sites or particles following a Markovian evolution. At each time-step, each
particle is replaced by a number of children, and the position of each child is the position of the parent plus
some random number. The total number N of particles remains constant. The two models differ in the way
the number of children of each particle is chosen; in both cases, the particles on the right tend to have more
children than the particles on the left. In either model, one introduces h(x, t) the fraction of particles on the
right of x at time t, and one finds that h(x, t) follows a stochastic equation:
• For the model of Section 1.5.2 (directed polymers), to find the position of particle i at time t+1, one picks
randomly k > 1 prospective parents j1;i,t, . . . , jk;i,t at generation t (we used k = 2 in the introduction),
and the position Xi(t + 1) of the new particle is the largest of the k positions of the parents shifted by
random amounts ε1;i,t, . . . , εk;i,t. One finds, see (1.50),

Xi(t+ 1) = max
[
Xj1;i,t(t) + ε1;i,t, . . . , Xjk;i,t(t) + εk;i,t

]
,

h(x, t+ 1) = 1−
(

1−
∫

dε ρ(ε)h(x− ε, t)
)k

+ noise.
(4.1)

• For the model of Section 1.5.3 (population dynamics), each particle first has k > 1 children (we used
k = 2 in the introduction), whose positions are the position of the parent plus some random amounts.
The population size is then brought back from kN to N by keeping only the N rightmost individuals.
One finds, see (1.53),
[
population at time t+ 1

]
=
[
the N rightmost of

{
Xi(t) + εi,j;t , i ∈ {1, . . . N}, j ∈ {1, . . . , k}

}]
,

h(x, t+ 1) = min
[
1, k

∫
dε ρ(ε)h(x− ε, t) + noise

]
.

(4.2)

In both (4.1) or (4.2), the noise term at a position x where h is small is of order
√
h(x, t)/N . It is non-Gaussian

and correlated in space, because it ensures that x 7→ h(x, t) is a non-increasing function which only takes values
that are multiples of 1/N . As N →∞, the noise term goes to zero and one is left with a deterministic equation
which behaves like the FKPP for a large class of ρ(ε). (See [Aïd13]. In particular, any non-lattice distribution
with exponential tails works. We always assume ρ(ε) to be in that class.) These equations are, respectively,

h(x, t+ 1) = 1−
(

1−
∫

dε ρ(ε)h(x− ε, t)
)k
, and h(x, t+ 1) = min

[
1, k

∫
dε ρ(ε)h(x− ε, t)

]
. (4.3)

In the large time limit, for a step initial condition, a front described by one of the equations in (4.3) moves at
the critical velocity vc given by

vc = min
γ>0

v(γ) = v(γc), where v(γ) = 1
γ

ln
[
k

∫
dε ρ(ε)eγε

]
, (4.4)

see Section 1.3. It is the same function v(γ) in both models because the linearised equations are the same. The
limiting shape ω(z) of the front depends however on which equation is chosen, but in any case one has

h(µt + z, t) −−−→
t→∞

ω(z), with ω(z) ∼ Aze−γcz for large z [for (4.3), without the noise term], (4.5)

with µt the position of the front.
The question, naturally, is what happens for noisy equations such as (4.1) or (4.2) when N is large but finite.

33
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4.1 The position of the front
Because of the noise, the velocity of the front is significantly smaller than
vc, even for large N . Furthermore, the front diffuses. We introduce a phe-
nomenological description to compute the velocity correction and the diffusion
constant. In order to justify some step, several models which are nearly (but
not quite!) in the FKPP case must be investigated.

We focus on the models (4.1) and (4.2) which describe a cloud of N particles. The first thing to remark is
that the N particles stay together: the distance between the rightmost and the leftmost particles reaches for
large times a (N dependent) stationary distribution. Indeed, if the N particles were separated into several
well-distant clouds, the particles in the rightmost cloud would have more descendants than the particles in the
leftmost clouds and, as the population is conserved, the leftmost clouds would eventually disappear.

Define the “position of the cloud” µt at time t as the empirical average of the positions of the N particles:

µt = 1
N

N∑

i=1
Xi(t). (4.6)

One expects the cloud of particles to have a velocity vN which is close to vc:

lim
t→∞

µt
t

= lim
t→∞

〈µt〉
t

= vN , lim
N→∞

vN = vc. (4.7)

Furthermore, the position of the cloud diffuses with some small diffusion constant DN :

lim
t→∞

〈µ2
t 〉 − 〈µt〉2

t
= DN > 0, lim

N→∞
DN = 0. (4.8)

It is clear indeed that the system is diffusive: as the width of the front remains finite, the distribution of the N
points around µt must converge to some stationary regime. Then, for T large enough, the position increments
µnT+T − µnT for n ∈ N are nearly independent and identically distributed random variables. µt can then
(nearly) be seen as the sum of t/T identical independent variables and, hence, the variance of µt must scale
like t. This argument also allows to conclude that all the cumulants of µt must asymptotically increase like t.

Notice also that one could have defined µt as the position of the rightmost particle, for instance, or of the
leftmost particle: as the width of the cloud remains finite, all these possible definitions of the position differ by
some quantity that does not grow in time, so that the values of the velocity vN and of the diffusion constant
DN in (4.7) and (4.8) are not affected.

4.1.1 The cut-off theory
During my PhD, my supervisor Bernard Derrida and I proposed [BD97] the cut-off theory as a description of
the main mechanism to understand the asymptotic value of vc − vN .

The idea was to notice that one of the effects of the noise in (4.1) or (4.2) is to ensure that h(x, t) is for
all x and t an integer multiple of 1/N , because h(x, t) is defined as the fraction of the number of particles on
the right of x. In particular, if h(x, t) is non-zero, it cannot be smaller than 1/N . It is not hard to see that
this last fact alone must have a huge effect on the mechanism of velocity selection because, as we have seen in
Section 1.2.2, it is the asymptotic behaviour of the front for large x that determines the velocity.

For this reason, we proposed to replace the noise in noisy FKPP equations by a cut-off at 1/N ; for instance,
(4.1) with k = 2 becomes

h(x, t+ 1) =





1−
(

1−
∫

dε ρ(ε)h(x− ε, t)
)2

if this is larger than 1
N

,

0 otherwise.
(4.9)

This equation is deterministic: the noise has been completely removed and replaced by the cut-off. Let v(cut-off)N

be the velocity of (4.9); we conjectured (and checked numerically) that for large N

vc − vN ∼ vc − v(cut-off)N . (4.10)

Let us compute ∆ = vc − v(cut-off)N , which we expect to be a small positive number for large N . We look for
a travelling wave ω̃(z) such that h(x, t) = ω̃

(
x − (vc − ∆)t

)
is solution to (4.9). Let L be the position of the

cut-off (ω̃ and L depend implicitly on N); one has




ω̃(z) = 1−
(

1−
∫

dε ρ(ε)ω̃(z + vc −∆− ε)
)2

if z < L,

ω̃(z) = 0 if z > L,
ω̃(L) = 1

N
.

(4.11)
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Compare this to the equation satisfied by the travelling wave ωv at velocity v for the equation without cut-off:

ωv(z) = 1−
(

1−
∫

dε ρ(ε)ωv(z + v − ε)
)2
. (4.12)

We recall from Section 1.2.2 that a linear analysis of ωv leads for large z to:
{
ωv(z) =

[
Av + o(1)

]
e−γz if v > vc, with γ smallest solution of v(γ) = v,

ωvc(z) =
[
Az + o(1)

]
e−γcz if v = vc,

(4.13)

with A > 0, Av > 0 and with v(γ) defined in (4.4). (Because of the invariance by translation of (4.12), there
are many travelling wave solutions obtained by shifting the origin of z. In the v = vc case, we should have
written in all generality ωvc(z) = [A′z+B+ o(1)

]
e−γcz, but we fixed the translation invariance by choosing the

solution for which B = 0.)
We recall also that there exists no travelling wave ωv with values in [0, 1] for v < vc. However, it turns

out that if we allow ωv to become negative, there exists also travelling waves for v < vc. As in (4.13), a linear
analysis leads to ωv ∝ e−γz with v(γ) = v but, with v < vc, the solutions γ to v(γ) = v are complex numbers.
Then, writing γR > 0 and γI > 0 for the real and imaginary parts of γ, one can complete (4.13); for large z:

ωv(z) =
[
Av sin(γIz + Φv) + o(1)

]
e−γRz if v < vc, with v(γR ± iγI) = v, (4.14)

for some Av and Φv. We emphasize again that the solutions (4.14) for v < vc are negative in some regions and
cannot be reached by the FKPP equation from a non-negative initial condition.

Comparing (4.11) and (4.12), it is clear that for z small enough compared to L, one should have ω̃(z) ≈
ωvc−∆(z) but, as ∆ > 0, we need to consider the travelling waves (4.14) rather than (4.13). For v = vc − ∆
with ∆ small, and recalling that vc = v(γc) and v′(γc) = 0, one finds easily that

γR = γc +O(∆), γI ∼
√

2∆
v′′(γc)

. (4.15)

To leading order in (4.14), this gives

ωvc−∆(z) ≈ A
√
v′′(γc)

2∆ sin
(√

2∆
v′′(γc)

z

)
e−γcz for large z. (4.16)

Notice that we fixed the invariance by translation by choosing the solution such that Φv = 0. Furthermore, we
determined the leading behaviour of Avc−∆ by noticing that one must have ωvc−∆ → ωvc as ∆→ 0.

The travelling wave ωvc−∆ cancels for the first time when the argument of the sinus is π. This travelling
wave must be very close to ω̃ (the travelling wave of the problem with cut-off) which cancels at position L.
Hence, one expects √

2∆
v′′(γc)

L ∼ π, (4.17)

or
∆ = vc − v(cut-off)N ∼ π2v′′(γc)

2L2 . (4.18)

It remains to determine the value of L. The solution (4.16) to (4.11) for large z decays as e−γcz (with a sinus
prefactor which varies slowly). The cut-off is reached when ω̃ becomes close to 1/N and hence

e−γcL ∼ 1
N

or L ∼ lnN
γc

. (4.19)

Finally,

vc − v(cut-off)N ∼ π2γ2
c v
′′(γc)

2 ln2N
. (4.20)

Thus, a small cut-off of order 1/N at the tip of the front translates into a relatively huge correction to the
velocity of order 1/ ln2N . The precise way the cut-off is introduced is not so important: a cut-off at 2/N rather
than at 1/N gives the same leading correction to the velocity.

Since [BD97], some rigorous proofs of the cut-off effect have been written. For instance, both [BDL08;
DPK07] consider the following FKPP equation with cut-off

∂th = ∂2
xh+ h(1− h)1{h>1/N}, (4.21)
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and prove in two different ways that its velocity v(cut-off)N is given by

v(cut-off)N = 2− π2

ln2N
+O

( 1
ln3N

)
, (4.22)

as expected from (4.20).
Going back to noisy equations (4.1) and (4.2), the conjecture of [BD97], which was amply checked by

numerical simulations, is that the cut-off theory describes the main effect of introducing noise into FKPP-like
equations, as in (4.1) or (4.2); when N is large:

• the distance between the centre of the front and the rightmost particle scales like (lnN)/γc as in (4.19),

• the empirical density of particles relative to the centre of the cloud is typically given by the sin times
exponential shape (4.16),

• the leading term to the velocity correction vc − vN to the velocity is the same as in the cut-off theory:

vc − vN ∼ vc − v(cut-off)N ∼ π2γ2
c v
′′(γc)

2 ln2N
. (4.23)

The correction (4.23) to the velocity has rigorously been proved [BG10] by Bérard and Gouéré in 2010 for the
noisy FKPP model (4.2) under some assumptions on ρ(ε). Other proofs exist for other models in the same
class, see Section 4.3.

Notice however that the cut-off equation (4.9) is deterministic. Hence, there is no diffusion and the cut-off
theory provides no help for computing the diffusion constant DN .

4.1.2 Beyond the cut-off theory; a phenomenological description
In 2006, with Bernard Derrida, Stéphane Munier and Alfred H. Mueller, we proposed [?BDMM06a] a phe-
nomenological description of the effect of the noise on the position of the front. This description leads to a
better understanding of the velocity vN , and predicts the leading term for the diffusion constant DN and for
all the higher cumulants:

vN ≈ vc −
π2γ2

c v
′′(γc)

2
[

lnN + 3 ln lnN +O(1)
]2 ≈ v

(cut-off)
N + 3π2γ2

c v
′′(γc)

ln lnN +O(1)
ln3N

,

DN ≈ π2γcv
′′(γc)

π2/3
ln3N

, lim
t→∞

[n-th cumulant of µt]
t

≈ π2γ3−n
c v′′(γc)

n!ζ(n)
ln3N

for n ≥ 2,
(4.24)

where ζ(n) is the Riemann zeta function.
The main ingredients of the theory leading to (4.24) are the following:

• The cut-off theory is essentially correct: the noise is negligible everywhere except at the tip of the front,
and the main effect of the noise at the tip is to bring back the front to 0 when it becomes of order 1/N .
The shape of the front is most of the time given by the sinus-exponential shape (4.16):

h(µt + z, t) ≈ AL

π
sin
(πz
L

)
e−γcz1{z≤L} if z is large, (4.25)

where µt is the position of the front and L = (lnN)/γc.

• Fluctuations around the cut-off shape (4.25) are, for most of the time, negligible.

• At rare times, a large fluctuation occurs that changes significantly the shape of the front. The relaxation
of the shape of the front towards the sinus-exponential shape gives rise to a significant shift in the position
of the front.

• Taken together, all these shifts due to large fluctuations lead to (4.24).

Figure 4.1 shows one of these rare and large fluctuations that do have an effect on the position of the front.
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(d) (e) (f)

(a) (b) (c)

Figure 4.1: Snapshots of the simulation of a noisy front for some large value of N . The green dotted lines are
h(µt + z, t) and the red solid lines are h(µt + z, t)eγcz as a function of z, where we recall that µt is the position
of the front and L = (lnN)/γc. Each plot corresponds to a different time t. In plot (a), one recognizes the
sinus shape (4.25) predicted by the cut-off theory. In fact, most of the time, the front looks like plot (a). Plots
(b) and (c) represent a rare, large, fluctuation rising quickly, and (d), (e) and (f) are steps in the relaxation of
that fluctuation. In plot (f), the front is nearly back to its sinus shape. Notice that the fluctuation is invisible
on the green dotted plot representing h(µt + z, t); it is only on the red solid plot representing h(µt + z, t)eγcz
that there is something to see.

Understanding the relaxation of a fluctuation

Consider a deterministic front equation with cut-off; if the initial shape of the front is the sinus-exponential
travelling wave, then the position of the front at all times is µt = v(cut-off)N t. If the initial shape is different,
the function t 7→ µt is no longer linear at all times. However, at large times, one still expects to have µt =
v(cut-off)N t + Cste + o(1), where the constant depends on the initial condition. We focus here on computing this
constant. The idea is to identify this constant when the initial condition is the shape of the front just after
a large fluctuation (as in plot (c) of Figure 4.1) with the effect on the position of the noisy front that such a
fluctuation conveys.

So far, in the cut-off theory, we only focused on the travelling wave (4.25), but we need now to understand
the time evolution of the front. We did write a dynamical equation (4.9), but it is rather complicated. We now
write a simpler dynamical equation which also represents a front with cut-off:

∂th = ∂2
xh+ h− h2 if x < µt + L, h(µt + L, t) = 0, (4.26)

where µt is the position of the front defined in such a way that h(µt+z, t) converges to the travelling wave (4.25)
and where L ≈ (lnN)/γc. The cut-off, which was originally formulated as “the front cancels when it reaches
1/N” has been replaced by a boundary condition at µt + L. (4.26) can be simplified even more by getting rid
of the non-linearity. Indeed, one important effect of the non-linear saturation term −h2 in the FKPP is that
the travelling wave behaves for z � 1 as Aze−z, with a z prefactor in front of the exponential. This z prefactor
is present for any non-linear saturation term, and absent if one removes them. So, rather than putting the
non-linear term −h2 in (4.26), we enforce the presence of the Az prefactor in a more simple way by writing:

∂th = ∂2
xh+ h for x ∈ (µt, µt + L), h(µt, t) = 0, ∂xh(µt, t) = A, h(µt + L, t) = 0, (4.27)

where the non-linearity in (4.26) has been replaced by the two boundary conditions at µt, as in Section 2.2.1.
The equation (4.27) is linear. Writing

h(µt + z, t) = As(z, t)e−z, (4.28)

one obtains

∂ts = ∂2
zs− (2− µ̇t)∂zs+ (2− µ̇t)s, s(0, t) = s(L, t) = 0, ∂zs(0, t) = 1. (4.29)

The shape s(z, t) varies over the large space scale L. One therefore expects ∂zs to be typically L times smaller
than s and ∂2

zs to be typically L2 times smaller than s. Then, necessarily, ∂ts must be L2 times smaller than
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s and 2 − µ̇t must be of order 1/L2. This implies that the ∂zs term must be negligible for large L. Rewriting
the equation without it, one gets

∂ts = ∂2
zs+ (2− µ̇t)s, s(0, t) = s(L, t) = 0, ∂zs(0, t) = 1. (4.30)

Ignore for the moment the condition ∂zs(0, t) = 1. (4.30) can be solved by decomposing over eigenmodes:

s(z, t) =
∑

n≥1
an
L

π
sin
(nπz
L

)
e2t−µt−n

2π2
L2 t, (4.31)

where the coefficients an can be obtained by decomposing the initial condition s0(z) over the eigenmodes;
assuming µ0 = 0:

an = 2π
L2

∫ L

0
dz sin

(nπz
L

)
s0(z). (4.32)

The position µt of the front is now entirely determined by imposing the last boundary condition ∂zs(0, t) = 1
at all times.

We are mostly interested in the large t limit. For large times, only the first eigenmode n = 1 in (4.31)
contributes:

s(z, t) ≈ a1
L

π
sin
(πz
L

)
e2t−µt− π

2
L2 t for t� L2. (4.33)

With the boundary condition ∂zs(0, t) = 1, one concludes that

µt ≈
(

2− π2

L2

)
t+ ln a1 for t� L2. (4.34)

Recalling that, for the equation considered, one has vc = 2, γc = 1 and v′′(γc) = 2, one recovers the cut-off
velocity (4.18), or (4.20) when using L ≈ lnN . In fact, the derivation above could be made on a more general
equation and one would find

µt ≈ v(cut-off)N t+ 1
γc

ln a1 for t� L2. (4.35)

One recognizes also in (4.33) the same sinus shape as in (4.25); this shape is really a signature of the diffusion
equation in a strip of finite width L. The new information is the fact that one can now predict µt for all times
(depending on the initial condition) from (4.31) and, in particular, one finds in (4.35) the shift in the position
of the front for an arbitrary initial condition.

Understanding the fluctuations

In the previous paragraph, we only considered the deterministic FKPP equation with cut-off to determine in
(4.35) how the front relaxes from a fluctuation. To determine how fluctuations occur, the cut-off theory is
obviously insufficient and one needs to consider a model with an actual noise, such as model (4.2) describing
the evolution of a cloud of N points.

It is important to understand that the only place where noise is important is at the tip of the front, close
to the rightmost particle, where h is of order 1/N because the noise term is negligible in the bulk of the front.
In fact, we checked numerically [BD01], with models on the lattice, that if the noise is cancelled everywhere
except at the rightmost occupied site, the velocity vN and diffusion constant DN and even the noise correction
vN − v(cut-off)N are asymptotically not modified.

Recall that µt is the position of the front chosen in such a way that h(µt + z, t) looks (most of the time)
like the travelling wave (4.25), without any phase in the sinus. When considering FKPP with cut-off, we used
to say that the cut-off was at position µt +L with L ≈ (lnN)/γc; now, with a microscopic noisy model, we say
that the typical position of the rightmost particle is around position µt + L. Let us call

[position of the rightmost particle] = µt + L+ δt, (4.36)

where δt is some random number which is typically of order 1.
The model we consider describes a cloud of particles which diffuse and reproduce. The number of particles

remains equal to N by removing some of the leftmost particles. For the rightmost particles, the effect of
maintaining the population at N individuals has little incidence on time scales which are small compared to
L2: locally, for times not too large, the right boundary of the front does not “feel” the saturation around the
left boundary. For this reason, it is reasonable to assume that the distribution of δt becomes independent of N
as N →∞ and is actually given by the same law as the underlying branching process, without saturation. As
we have already discussed in Section 3.2.1, this distribution is Gumble, see (3.19). Introducing p(δ) dδ as the
probability per unit time that a fluctuation of size δ develops, we write

p(δ) ≈ C1e
−γcδ for δ large, (4.37)
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where C1 is some constant. (We only care for the large values of δ, for which the Gumble is like an exponential.)
Suppose now that at time t0, a large fluctuation occurs with some large value of δ in the position (4.36) of

the rightmost particle. The density of particles around µt0 + L and up to µt0 + L+ δ has increased by a small
amount of order 1/N . For large z we modify (4.25) into

h(µt0 + z, t0) ≈ AL

π
sin
(πz
L

)
e−γcz1{z≤L} + f(z), where f(z) =




O
( 1
N

)
for z ≈ L and z < L+ δ,

0 for z � L or z > L+ δ.
(4.38)

Multiply everything by eγcz/A to recover the sinus shape. Around where f is non zero, one has eγcz = NO(eγcδ):

1
A
h(µt0 + z, t0)eγcz ≈ L

π
sin
(πz
L

)
1{z≤L} + f̃(z), where f̃(z) =

{
O
(
eγcδ

)
for z ≈ L and z < L+ δ,

0 for z � L or z > L+ δ.
(4.39)

Even though the fluctuation is small on the level of h, it can easily become huge on the level of the sinus shape,
see Figure 4.1, plots (b) and (c). The sinus shape has a height L and the fluctuation a height eγcδ; one can
easily have eγcδ � L even though δ � L.

One can now estimate a1 appearing in (4.35) by using (4.39) as the initial shape s0(z) in (4.32), see (4.28).
A small difficulty is that (4.32) was established for a model with a hard cut-off at µt +L: the value of s0(z) for
z > µt +L is irrelevant. Here, the fluctuation extends up to µt +L+ δ with 0 ≤ δ � L, and obviously it has an
effect on the position of the front, even though it is on the right of µt+L. The point is that we have never been
very precise on the definition of the cut-off and, anyway, the microscopic model does not have a hard cut-off as
what was assumed to establish (4.32). What we do to fix this formal difficulty is to assume, just for applying
(4.32), that the big fluctuation of height eγcδ is a little bit on the left of the cut-off, rather than a little bit on
the right. Then,

a1 = 1 + 2π
L2

∫ L

0
dz sin

(πz
L

)
f̃(z) ≈ 1 + C2

eγcδ

L3 , (4.40)

where C2 is some constant. The 1 in the right hand side is the contribution of the sinus in (4.39), while the
other term is the contribution of f̃ . The denominator is L3 because only values of z very close to L contribute
to the integral and one can expand the sinus into π(L− z)/L with L− z of order 1.

Finally, using (4.35), one can get the long time effect R(δ) on the position of the front caused by the
relaxation of a fluctuation of size δ:

R(δ) ≈ 1
γc

ln
(

1 + C2
eγcδ

L3

)
. (4.41)

Phenomenological picture of the fluctuating front

From (4.41), small fluctuations have little effect on the position of the front: one needs to take δ ≈ 1
γc

3 lnL to
have an effect R(δ) which is not small. The probability to observe at a random instant such a fluctuation is of
order e−γcδ ∝ L−3; in other words, a relevant fluctuation occurs typically every O(L3) units of time.

The fluctuations, which occur locally at the tip of the front, rise quickly in a time scale of order 1 but, because
of the diffusive nature of the front, take a time of order L2 to relax back into the typical sinus-exponential shape.
The picture is therefore the following:

every O(L3) units of time, a relevant fluctuation rises quickly and then relaxes in a time O(L2).

This separation of time scales implies that there is asymptotically no need to consider overlapping fluctuations;
it is sufficient to assume that they occur and relax completely before the next one occurs. Then, it is easy to
obtain that [?BDMM06a]

vN − v(cut-off)N ≈
∫

dδ p(δ)R(δ), DN ≈
∫

dδ p(δ)R(δ)2, lim
t→∞

[n-th cumulant of µt]
t

≈
∫

dδ p(δ)R(δ)n. (4.42)

Using (4.37) for p(δ) and (4.41) for R(δ), one finds

vN − v(cut-off)N ≈ C3
3 lnL
γcL3 , DN ≈ C3

π2/3
γ2
cL

3 , lim
t→∞

[n-th cumulant of µt]
t

≈ C3
n!ζ(n)
γnc L

3 , (4.43)

where C3 = C1C2/γc. Note that in computing (4.43), all the values of δ up to (3 lnL)/γc + O(1) contribute
for computing the velocity. For the diffusion constant and the higher cumulants, only the values of δ equal to
(3 lnL)/γc +O(1) contribute.
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The correction to the cut-off velocity and all the cumulants are therefore obtained up to some constant C3.
The last step is of course to determine that constant and, unfortunately, we had no analytical argument for
determining C3. But we could guess that

C3 = C1C2
γc

= π2v′′(γc). (4.44)

With this value of C3, one recovers the prediction (4.24).

4.1.3 Justifications for the guess (4.44)
Modified cut-off theory

The guess (4.44) is such that the velocity of the noisy front is

vN = vc −
π2v′′(γc)

2L2 with L = 1
γc

[
lnN + 3 ln lnN +O(1)

]
. (4.45)

This is the cut-off velocity, except that the length L of the front (the distance between the middle of the front
and the rightmost particle) is (lnN + 3 ln lnN)/γc instead of (lnN)/γc. This length makes sense because it
corresponds to δ = (3 lnL)/γc, which is the maximal displacement of the rightmost particle that contributes to
(4.43). When applying the cut-off theory, we first used for L (defined as the distance to the cut-off) the typical
distance (lnN)/γc of the rightmost particle to the centre of the front. It turns out that one should use instead
the maximum distance (lnN + 3 lnN)/γc which is likely enough to have an effect.

BBM with an absorbing wall

What makes the BBM a tractable model is that all the particles, once born, behave independently from each
other. What make the models in the noisy FKPP class such as (4.2) so difficult is that this independence is
lost: a particle disappears if there are N other particles on its right.

In an appendix of [?BDMM06a] we considered the BBM with an absorbing wall, which is a model first
introduced [Kes78] by Kesten in 1978. The rules are the following:

• one starts at t = 0 with an initial finite set of particles on the positive axis,

• the particles diffuse and branch independently as in the BBM,

• there is an absorbing wall started from the origin and moving at velocity v; any particle touching the wall
is removed.

The idea behind this model is that it shares the “simplicity” of the BBM (particles once born behave inde-
pendently), but the particles on the left are removed in a way similar to what happens in models in the noisy
FKPP class. This model is illustrated in Figure 4.2.

The population is not kept at a constant size and, in the large time limit, one out of two things may happen:

• either the system goes extinct in finite time and all the particles are absorbed,

• either the number of particles diverges in spite of the wall.

When the velocity v of the wall is larger or equal to 2 (the velocity of a BBM), the particles do not stand a
chance and the probability of extinction is 1. When the velocity of the wall is smaller than 2, either outcome
has non-zero probability. Call pv(x) the probability of long time survival when the initial state consists of a
single particle located at x > 0 and when the wall goes at velocity v. A simple analysis similar to (1.8) leads to

p′′v − vp′v + pv − p2
v = 0, pv(0) = 0, with v < 2. (4.46)

This equation looks like the equation (1.13) for the travelling waves ωv of the FKPP at velocity v, except for
the boundary condition pv(0) = 0 and the fact that left and right are reversed (the sign of v is changed, and,
pv(∞) = 1 whereas all the fronts we usually consider are equal to 1 far on the left and to 0 far on the right).
Remember that ωv for v < 2 has an oscillatory behaviour at large x, see (4.16). Then, one sees easily that

pv(x) = ωv(Xv − x), with Xv = [smallest x such that ωv(x) = 0]. (4.47)

Assume now that the velocity of the wall is given by

v = 2− π2

L2 with L large. (4.48)



4.1. THE POSITION OF THE FRONT 41

BBM + wall N -BBM L-BBM

Figure 4.2: Three variations on the BBM where some particles on the left are removed (the removed particles
and the descendants they would have had are still drawn in a light colour.) On the left, a BBM with a wall:
the wall, a thick purple line, moves at constant speed and kills the particles it encounters. In the middle, a
N -BBM: at most N particles may live, and when this number is reached and a branching occurs, the leftmost
particle is removed. On the right, a L-BBM: all the particles at a distance larger than L from the rightmost
are removed. The N -BBM and L-BBM are discussed in Section 4.3.

(This looks like the velocity with a cut-off, of course, but here L is a free parameter: we have not introduced
anything called N yet in this model of BBM with wall.) The function ωv(z) for large z is given by the usual
sinus-exponential shape (see (4.16) with ∆ = π2/L2, γc = 1, vc = 2 and v′′(γc) = 2), one obtains Xv ≈ L and

pv(x) ≈





AL

π
sin πx

L
ex−L for x ≥ 0 and L− x� 1,

1 for x− L� 1.
(4.49)

(See also [DS07], and [BBS11] for a rigorous statement and proof, and [HH07] for the survival probability up to
time t when v > 2, and [GHS11; BG11] for the BRW case.) We are now ready to use our understanding of the
BBM with absorbing wall to get some insight on the FKPP equation with noise. The idea is to choose, for the
BBM with wall, the velocity of the wall and the initial condition in a way as similar as possible as the typical
state of the FKPP with noise:

• for the velocity of the wall, choose v = 2− π2

L2 ,

• for the initial condition, start with N particles with independent positions chosen according to a distribu-
tion that looks like the distribution of particles in the front with cut-off: ρ(x) ≈ B ln(N) sin πx

lnN e
−x
1{x<lnN}

for x large.
Up to that point, L and N are two independent parameters. For times not too large, one expects the particles
to move as in the FKPP equation with noise at velocity vN . But the wall moving at velocity v eats particles
from the left. If v > vN , the system has a high probability of going extinct. On the other hand, if v < vN , the
particles escape from the wall and survive indefinitely with high probability. If v = vN , finally, the probability
of survival should be neither close to 0 nor to 1.

Fortunately, the probability of survival of the cloud of particles is easy to compute from (4.49) because all
the particles are independent. With the initial condition we have just described, one finds, for large N and L,

[
probability that the system survives

]
≈





1 If L� lnN,
0 If L� lnN,
1− e−CN(lnN)3e−L If L ∼ lnN,

(4.50)

for some constant C. The probability of survival transitions from 1 to 0 when

L = lnN + 3 ln lnN +O(1), (4.51)

so that the velocity of the front in the noisy FKPP equation, equal to the velocity of the absorbing wall at the
survival transition, should indeed be given by (4.45).

In a more precise study of the BBM with an absorbing wall, Damien Simon and Bernard Derrida [SD08] have
considered a BBM with an absorbing wall started with one particle at distance 1 from the wall and conditioned
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to have exactly one particle at a very large time T . The conditioning prevents the system from going extinct
and also from having an exploding population size. At times t large enough to forget the initial condition, and
such that T − t is large enough to not feel too much the conditioning, the system reaches a quasi-stationary
state regime. As the velocity of the wall gets close to 2, they found that the expected number of particles in
the quasi-stationary state was given by

〈N〉 ∼ (2− v)3/2 exp
[ π√

2− v
]
. (4.52)

Inverting this relation to give v as a function of 〈N〉 gives back the velocity (4.45).
Julien Berestycki, Nathanaël Berestycki and Jason Schweinsberg [BBS13] have also studied this model of

BBM with absorbing wall (but with no conditioning on the state of the system at large times). They showed
that, starting from N particles not too much on the right, the number of particles at time u ln3N was of order
N in the limit N →∞ with u > 0 fixed, if and only if the velocity is given by (4.45).

The exponential model

In the noisy FKPP model (4.2), there is a cloud of N particles. At each time-step, each particle is replaced by
k children, but only the N global rightmost individuals are kept. Here, k is a fixed number (typically k = 2)
and N is sent to infinity while k is kept constant.

We consider now a model where, at each time-step, each particle has infinitely many children (with however
a finite number of descendants on the right), but only the N global rightmost individuals are kept. Occasionally,
these N rightmost might be the children of a single particle.

We assume that the descendants of a single particle are located according to a Poisson point process of
density ρ(ε) shifted by the position of the parent. The density ρ must satisfy

∫
dε ρ(ε) = ∞ (because having

infinitely many particles is the only way to make sure there are at least N of them) but
∫∞

0 dε ρ(ε) <∞ (because
there must only be finitely many particles on the right of any point so that “keeping the N rightmost” makes
sense).

Calling, as usual, h(x, t) the fraction of particles on the right of x, one finds easily that

h(x, t+ 1) = min
[
1,
∫

dε ρ(ε)h(x− ε, t) + noise
]
. (4.53)

One can compare (4.53) to (4.2), but one needs to be careful: the ρ(ε) in (4.2) is a density of probability
(normalized to 1) while the ρ(ε) in (4.53) is the density of the Poisson point process and its integral is infinity.

As N goes to infinity, the noise term goes to 0. Applying the usual techniques, one looks for travelling waves
that decay as h(x, t) ∼ e−γ(x−vt), which leads to

eγv =
∫

dε ρ(ε)eγε. (4.54)

Then, one looks at the minimal velocity vc = v(γc). To take an example, if ρ(ε) = 1{ε<1}, one finds v(γ) =
1− (ln γ)/γ and one finds that the minimum is reached for γc = e and that vc = 1− 1/e.

There exist however choices of ρ(ε) which are problematic. For instance, pick

ρ(ε) = e−ε. (4.55)

For this choice, the integral in (4.54) diverges for all values of γ. There is no function v(γ), no minimal velocity
vc and one concludes that (4.53) with (4.55) is not an equation in the FKPP class. It has however the significant
advantage of being a solvable model for any value of N [BDMM06b; ?BDMM07]. To see this, let us go back
to the definition of the model. Call Xi, i = {1, 2, . . . , N} the positions of the N particles at time t. Before
selection, the children of particle i are given by a Poisson point process of density ρ(x−Xi). Then, the children
of all the particles before selection are given by a Poisson point process of density

∑
i ρ(x−Xi). Finally comes

the selection process, and:
{
positions of the N particles at time t+ 1

}
=
{
the N rightmost of P.P.P. of density

∑

i

ρ(x−Xi)
}
. (4.56)

With the choice (4.55), the density of the Poisson point process can simply be written as
{
positions of the N particles at time t+ 1

}
=
{
the N rightmost of P.P.P. of density e−(x−µt)

}
, (4.57)

with
µt = ln

(∑

i

eXi
)
. (4.58)
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The quantity µt can be interpreted as the position of the cloud of N particles. It is the only quantity needed
to compute the positions of the N particles at time t+ 1. In particular, it is easy to see that

µt+1 − µt = ln
( N∑

i=1
ezi
)
, where {z1, . . . , zN} are the N rightmost of a P.P.P. of density e−z. (4.59)

Furthermore, the increments µt+1 − µt for different times t are independent. It is then possible to compute
exactly their cumulants, and one finally finds, for large N ,

vN = 〈µt+1 − µt〉 = ln
[

lnN + ln lnN +O(1)
]

= ln lnN + ln lnN +O(1)
lnN ,

DN = var(µt+1 − µt) ∼
π2/3
lnN ,

[n-th cumulant of µt]
t

∼ n!ζ(n)
lnN for n ≥ 2,

(4.60)

where ζ(n) is the Riemann zeta function.
This is of course very similar to the result (4.41) in the FKPP case. The most interesting point, however, is

that the phenomenological theory used to explain the FKPP case can also explain (4.60). Indeed, consider the
sum in (4.59): typically, the smallest zi is at position − lnN (because

∫∞
− lnN dz e−z = N) and the largest zi is

around the origin (because
∫∞

0 dz e−z = 1). Then, the sum is typically equal to
∫ 0
− lnN dz e−z × ez = lnN , and

one could have expected a priori a velocity asymptotically equal to ln lnN . Now, imagine a rare fluctuation
where the largest zi has a large value δ. Singling out this value and approximating the rest of the sum by
L = lnN , one gets

µt+1 − µt ≈ ln
(
L+ eδ

)
= lnL+R(δ) with R(δ) = ln

(
1 + eδ

L

)
and L = lnN. (4.61)

Of course, δ, as the rightmost point of a Poisson point process with exponential density, is Gumble distributed.
In particular, with p(δ) the law of δ,

p(δ) ∼ e−δ for large δ. (4.62)
Compare to (4.37) and (4.41). One can then recover (4.60) by writing vN ≈ lnL +

∫
dδ p(δ)R(δ), Dn ≈∫

dδ p(δ)R(δ)2, etc. The similarity with the usual FKPP case is striking: there is a base velocity computed
from the typical shape (v(cut-off)N in the FKPP case, lnL here). Corrections to that velocity are due to rare
fluctuations where the rightmost particle goes some large distance δ to the right of its typical position. The
distribution p(δ) is the same in both cases. The effect of that fluctuation is a shift R(δ). Comparing (4.41)
for the FKPP case to (4.61) above, the functions R(δ) are identical except that the denominator is L3 in the
former case and L in the latter. The most important contribution is therefore due to δ of order 3 lnL in the
FKPP case but only of order lnL here in the exponential model, and the effect of noise on the velocity is that
L should be replaced by L + 3 lnL in the FKPP case and by L + lnL here. A relevant fluctuation (for which
R(δ) ≈ 1) occurs every L3 steps in the FKPP case, and every L steps here, so that the diffusion constant and
all the higher cumulants per unit time scale respectively like 1/L3 and 1/L. The relaxation time to recover
from a fluctuation is L2 in the FKPP case and is 1 unit time here. In both cases, this relaxation time is L
times smaller than the time between two fluctuations, so that a relevant fluctuation has the time to relax before
another one occurs.

The Figure 4.3 summarizes the comparison between the noisy FKPP and the exponential model.

The Gumble model

In the noisy FKPP model (4.1), there are N particles at each generation. Each particle of a new generation
picks k prospective parents, looks at their positions, adds random amounts and chooses the highest value for
its own position. This procedure is repeated N times at each time-step to generate the N new particles.

Usually, one picks for k a fixed number (typically 2) and sends N to∞. With Bernard Derrida, we considered
in [BD04] the case k = N where every particle in the previous generation is a prospective parent of each new
particle:

Xi(t+ 1) = max
[
X1(t) + ε1, . . . , XN (t) + εN

]
. (4.63)

Given the state of the system at generation t, the positions of the new particles at generation t+1 are independent
and distributed according to:

P
[
Xi(t+ 1) < x] =

N∏

j=1
P
[
εj < x−Xj(t)

]
. (4.64)

In all generality, this is a difficult problem. However, if one chooses a Gumble distribution for the εj :

P[εj < ε] = e−e
−ε
, (4.65)
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noisy FKPP exponential model

vN vc −
K

(lnN + 3 ln lnN)2 + · · · ln(lnN + ln lnN) + · · ·

DN
2K
γc

π2

3(lnN)3 + · · · π2

3 lnN + · · ·

p(δ) C1γce
−γcδ e−δ

R(δ) 1
γc

ln
(

1 + C2
eγcδ

(lnN)3

)
ln
(

1 + eδ

lnN

)

Relaxation time (lnN)2 1

Most relevant fluctuation size 1
γc

3 ln lnN ln lnN

Figure 4.3: A comparison between the phenomenological theory of fluctuations in the FKPP and in the expo-
nential model. The constant K is given by K = π2γ2

c v
′′(γc)/2.

then (4.64) becomes

P
[
Xi(t+ 1) < x] = e−e

−(x−µt)
with µt = ln

( N∑

j=1
eXj(t)

)
. (4.66)

µt can be interpreted as the position of the front at time t. It has the same expression (4.58) as in the
exponential model. One concludes that, for the choice (4.65), the positions of the particles at generation t+ 1
are N independent Gumble variables relative to the position µt of the front at time t. From here, it is clear that
the velocity, diffusion constant and higher cumulants can all be computed. One finds the same results (4.60) as
for the exponential model, except that the velocity is increased by lnN :

vN = lnN + ln
[

lnN + ln lnN +O(1)
]

= lnN + ln lnN + ln lnN +O(1)
lnN ,

DN ∼
π2/3
lnN ,

[n-th cumulant of µt]
t

∼ n!ζ(n)
lnN for n ≥ 2,

(4.67)

where ζ(n) is the Riemann zeta function.
Again, one checks easily that these results can also be explained, to leading order, by the same phenomeno-

logical theory as in the exponential model and the noisy FKPP case, with the same scaling as in the exponential
model.

Fronts with global constraints

In [Hal11], Oskar Hallatschek considers noisy fronts following the stochastic equation

∂th̃ = ∂2
xh̃+ v∂xh̃+ f(x)h̃+

√
2h̃
N
η + [saturation term], (4.68)

where η is a space and time dependent Gaussian white noise and f(x) a space dependent reaction rate. If one
chooses f(x) = 1 for x > 0, this is very similar to the stochastic FKPP equation (1.54) seen in a frame moving
at velocity v. ([Hal11] is mainly concerned with the case f(x) = x, but he also considers briefly the FKPP
case.)

The originality of [Hal11] lies in the saturation term: it is a non-local term depending on the noise η tailored
in such a way that the global constraint

∫
dx h̃(x, t)u(x) = 1 is satisfied at all times for some given function

u. For a specific choice of u, a miracle occurs and 〈h̃(x, t)〉 obeys a closed equation. Looking at the stationary
regime ω̃(x) = limt→∞〈h̃(x, t)〉 for that specific choice of u, one finds

0 = ω̃′′(x) + vω̃′(x) + f(x)ω̃(x)− 2ω̃2(x)evx
N
∫

dy ω̃2(y)evy . (4.69)
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From the cut-off theory, if one assumes that ω̃(x) ≈ Lφ(x/L)e−x and v ≈ 2 (in fact, φ is the sinus shape), then
the integral in (4.69) is of order L3. If one assumes also that the growth term and the non-linear term are both
equal to e−L at the cut-off position x = L, one gets (remember that f(x) = 1)

NL3e−L ∼ Cste, (4.70)

which is the same relation as in (4.45). Notice however that h̃(x, t) in (4.68) is supposed to mimic h(vt+ x, t)
for a noisy FKPP front h, and that 〈h(vt + x, t)〉 for any choice of v does not reach a non-trivial stationary
state, so that the applicability of (4.68) to noisy FKPP fronts is debatable. It would be interesting anyway to
analyse in more detail (4.69).

4.2 Genealogies
Some models in the noisy FKPP class describeN particles diffusing and branch-
ing. These particles have a genealogical tree which is, once rescaled properly,
described by the Bolthausen-Sznitman coalescent.

In this chapter, we have considered several models in the noisy FKPP class describing the evolution of a cloud
of N particles. We focused up to now on the statistics of the position of the cloud but, in the models we
discussed, any given particle at generation t has one parent at generation t− 1 and zero, one or several children
at generation t+ 1. It makes sense, then, to study the statistics of the genealogical tree of the population.

4.2.1 Genealogies in models without selection
The study of genealogical trees in simplified models of population dynamics has of course a long history. One
of the most important model was the Wright-Fisher model [Wri31; Fis30] which describes the evolution of a
population of constant size N . The rule is simple: at each generation, each new individual chooses a parent at
random (with replacement) in the previous generation.

Consider two arbitrary individuals in the Wright-Fisher model, and call T2 the number of generations one
needs to go back in time to find the first common ancestor of these two individuals. There is clearly a probability
P(T2 = 1) = 1/N that the two individuals have the same parent. If they do not, there is a probability 1/N
that their parents have the same parent. It is then easy to see that P(T2 = g) = (1− 1/N)g−1/N , and that the
expected number of generations needed to find a common ancestor is

〈T2〉 = N [Wright-Fisher]. (4.71)

More generally, calling

Tn =
(

the number of generations one needs to go back in time
to find the first common ancestor of n given individuals

)
, (4.72)

one finds easily that, as N →∞,

〈T3〉
〈T2〉

→ 4
3 ,

〈T4〉
〈T2〉

→ 3
2 ,

〈Tn〉
〈T2〉

→ 2− 2
n

[Wright-Fisher]. (4.73)

The results (4.73) are very robust within models of population dynamics without selection. For instance,
in the Moran model [Mor58], one still has (4.73) while (4.71) is replaced by 〈T2〉 = N/2. (We recall that the
Moran model is a time-continuous version of the Wright-Fisher model: there is a population of N individuals,
and during dt, each individual has a probability dt of branching. To keep the population constant, a random
individual is removed at each branching event.)

In 1982, Kingman [Kin82] introduced what is now called “Kingman’s coalescent” as the most simple and
quintessential model of population dynamics without selection. Kingman’s coalescent is essentially the N →∞
limit of the Wright-Fisher model with time rescaled by a factor N and running backwards. In Kingman’s
coalescent, two particles have during dt a probability dt of coalescing, so that their coalescence time τ is
exponentially distributed. (In Wright-Fisher language: two individuals have their most recent common ancestor
Nτ generations ago with τ exponentially distributed.) If one considers n particles, the probability that during
dt one coalescence occurs where two particles merge into one is

(
n
2
)
dt because there are

(
n
2
)
pairs of particles.

Three or more particles may not coalesce at the same instant. Several pairs of particles may not coalesce at the
same instant (these events are possible in Wright-Fisher, but with a very small probability when N is large).
In Kingman’s coalescent, one has by construction 〈T2〉 = 1 and the ratios (4.73) are exact.

In general, a model of population dynamics with a fixed population size N and without any selection
mechanism looks, as N → ∞, more and more like Kingman’s coalescent after rescaling of time, and one
expects, for instance, 〈T3〉/〈T2〉 to converge to 4/3 when N becomes large.
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4.2.2 Genealogies in models with selection
One of the defining features of models in the noisy FKPP class is that there is a strong selection mechanism:
particles on the right have typically more children than particles on the left.

To pick an example, consider again model (4.2): each particle first has k children, whose positions are the
position of the parent plus some random amount, then comes the strong selection phase: out of the kN children,
only the N rightmost are kept. One could imagine replacing that selection phase by a simple neutral pruning:
out of the kN children, N chosen at random are kept. The model thus obtained would be very close to the
Wright-Fisher model. One would find 〈T2〉 = (kN − 1)/(k − 1), the time ratios would be given by (4.73) and
the genealogical trees properly rescaled would be those of Kingman’s coalescent. Also, the model would not be
in the noisy FKPP class.

In the original model (4.2) with its strong selection phase (only the N rightmost are kept) and which is in
the noisy FKPP class, the genealogical trees are different. In 2006, with Bernard Derrida, Stéphane Munier and
Alfred H. Mueller [BDMM06b], we measured numerically the different coalescence times 〈Tn〉; see also [BD13].
We found that they scaled like a power of lnN rather than like N as in (4.71), and that the ratios of the times
were very different from the values in (4.73). In fact, the numerical results were consistent with

〈Tp〉 ∝ (lnN)3 [noisy FKPP], (4.74)

and
〈T3〉
〈T2〉

→ 5
4 ,

〈T4〉
〈T2〉

→ 25
18 [noisy FKPP]. (4.75)

The ratios (4.75) are those obtained in the Bolthausen-Sznitman coalescent which was introduced [BS98] in the
context of the mean-field theory of spin-glasses.

We also simulated the exponential model of Section 4.1.3, page 42, and found results compatible with (4.75)
but not (4.74): we found, instead of (4.74),

〈Tp〉 ∝ lnN [exponential model]. (4.76)

Recall that the exponential model is not in the noisy FKPP class, but that it shares some important features
with models in that class, see Figure 4.3 on page 44. In particular, the diffusion constantDN scales like 1/(lnN)3

in the noisy FKPP case and like 1/ lnN in the exponential case, and one remarks that the coalescence times
〈Tp〉 scale as the inverse of the diffusion constant in both the noisy FKPP case and the exponential model.

One can solve exactly the exponential model [BDMM06b; ?BDMM07] and write explicit expressions for the
〈Tp〉 as functions of N . Then, one can show that (4.75) and (4.76) hold for the exponential model. (They also
hold for the Gumble model of page 43 [Cor16].)

Even more interestingly, the phenomenological theory of Section 4.1.2, which allowed us to describe the
position of the fronts in both the exponential model and in the noisy FKPP case, can be extended to explain
how the genealogical trees in both models look, as N →∞, more and more like a rescaled Bolthausen-Sznitman
coalescent [?BDMM07]. This is explained in Section 4.2.4 after a brief recall on the Λ-coalescents.

4.2.3 Λ-coalescents
Kingman’s coalescent and the Bolthausen-Sznitman coalescent are two particular cases of the large family of
Λ-coalescents [Pit99; Sag99]. See [Ber09] for an introduction and a review. Informally, in a Λ-coalescent, when
considering b particles, any given group of k ∈ {2, 3, . . . , b} particles coalesce into one single particle with a rate
λb,k. As explained in Figure 4.4, the λb,k must satisfy the relation

λb,k = λb+1,k + λb+1,k+1, (4.77)

which can be shown to imply that there exists a unique finite measure Λ on [0, 1] such that

λb,k =
∫ 1

0
fk(1− f)b−kΛ(df)

f2 . (4.78)

In Kingman’s coalescent, the measure Λ is a delta at 0, only coalescences of pairs (k = 2) occur and

λb,k = 1{k=2}, 〈T2〉 = 1, 〈T3〉 = 4
3 , 〈T4〉 = 3

2 , 〈Tn〉 = 2− 2
n

[Kingman]. (4.79)

In the Bolthausen-Sznitman coalescent, one has Λ(df) = df , any number of particles have a chance of
coalescing together during one single event and

λb,k = (k − 2)!(b− k)!
(b− 1)! , 〈T2〉 = 1, 〈T3〉 = 5

4 , 〈T4〉 = 25
18 , 〈Tn〉 ∼ ln lnn (n large) [Bolthausen-Sznitman].
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Figure 4.4: On the left drawing, the three rightmost particles coalesce together but without the two others
with rate λ5,3. One adds a sixth particle. The same three particles as before may coalesce together in two
different ways: without the sixth particle (see middle drawing) with rate λ6,3 or with the sixth particle (see
right drawing) with rate λ6,4. To ensure consistency, one must have λ5,3 = λ6,3 + λ6,4.

The value for 〈T2〉 is clear: when there are only two particles, the probability that they coalesce during dt is
λ2,2 dt = dt and the coalescence time of the system is a simple exponential variable. When there are three
particles (for instance), there is a probability λ3,3 dt that they coalesce at once during dt. There is a also a
probability 3λ3,2 dt (because there are three pairs) that exactly two particles coalesce. Then, by considering
what happens during the initial dt, one gets

T3 = dt+





0 with probability λ3,3 dt,
T2 with probability 3λ3,2 dt,
T3 with probability 1− λ3,3 dt− 3λ3,2 dt,

(4.80)

and, after averaging and using 〈T2〉 = 1, one obtains

〈T3〉 = 1 + 3λ3,2
3λ3,2 + λ3,3

. (4.81)

This is valid for any Λ-coalesecent. In Kingman’s case, λ3,2 = 1 and λ3,3 = 0 so that 〈T2〉 = 4
3 . In the

Bolthausen-Sznitman case, λ3,2 = λ3,3 = 1
2 and 〈T2〉 = 5

4 . Figure 4.5 shows side by side one realization
of Kingman’s coalescent and one realization of the Bolthausen-Sznitman coalescent when starting with 50
particles.

Figure 4.5: On the left, one realization of Kingman’s coalescent. One the right, one realization of the Bolthausen-
Sznitman coalescent. The total coalescence times are respectively 1.823 and 2.056.

4.2.4 Phenomenological theory for the genealogical trees
Recall the phenomenological theory for the position of the front: the front moves typically at the velocity of the
cut-off theory, but every O(lnαN) time-steps a large fluctuation occurs where a particle moves at a distance δ
ahead of its typical position. The distribution of δ is p(δ) ∝ e−γcδ, see (4.37), and the effect of such a fluctuation
is a shift R(δ) ≈ 1

γc
ln
(
1 + C2e

γcδ/Lα
)
in the position of the front, see (4.41) and (4.61). Here, α = 3 in the

noisy FKPP case, α = 1 in the exponential model, and we recall that L = (lnN)/γc.
The idea behind adapting this phenomenological theory to genealogical trees is the following: when a

large fluctuation occurs, there is a shift in the position of the front due to the numerous descendants of the
particle that jumped ahead of the front. In fact, after relaxation, the descendants of that particle represent
a finite fraction f of the population. Indeed, for a front h(x, t), the number of particles in a small ∆x is
N
[
h(x, t)−h(x+∆x, t)

]
≈ −N∂xh(x, t)∆x. Imagine now a front h̃ which followed the same history as h except
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h

x

R(δ)

1 − f

f

Figure 4.6: Relation between R(δ) and f . The dashed line (on the left of the grey area) is the front h(x, t). The
solid line (on the right of the grey area) is the front h̃(x, t) = h(x−R(δ), t) which followed the same evolution
as h, except that a large fluctuation of size δ just occurred and relaxed. The grey area represents the particles
that originated in the fluctuation, and f ≈ 1 − e−γcR(δ) is the fraction of the particles that originated in that
fluctuation.

that a fluctuation of size δ occurred and relaxed recently. One has h̃(x, t) = h(x − R(δ), t) and the number of
particles in ∆x for h̃ is approximatively −N∂xh(x − R(δ), t)∆x. The difference in the number of particles in
∆x between h and h̃ is due to the descendants of the particle that started the large fluctuation, see Figure 4.6.
The fraction f of particles in ∆x issued from the fluctuation is therefore

f ≈ ∂xh(x−R(δ), t)− ∂xh(x, t)
∂xh(x−R(δ), t) . (4.82)

But h (and ∂xh) are essentially proportional to e−γcx in the interesting region (the x prefactor does not matter
much). Hence, f is largely independent of x and is given by

f ≈ 1− e−γcR(δ) ≈ 1−
(

1 + C2
eγcδ

Lα

)−1
=
(

1 + Lαe−γcδ

C2

)−1
. (4.83)

Recall that p(δ) dδ is the probability per unit time that a fluctuation of size δ develops and that p(δ) ≈ C1e
−γcδ

for δ � 1, see (4.37). One then gets from (4.83) df ≈ Lαγc
C2

e−γcδf−2 dδ and the probability p̃(f) df per unit
time that a large fluctuation occurs where a fraction f of the population is replaced by the descendants of one
single runaway particle:

p̃(f) ≈ C1C2
γcLα

× 1
f2 for f � L−α. (4.84)

For the exponential model, one has C1 = C2 = γc = α = 1, so that

p̃(f) ≈ 1
L
× 1
f2 for f � 1/L [exponential model]. (4.85)

In the noisy FKPP case, C1C2/γc = π2v′′(γc) according to (4.44) and α = 3:

p̃(f) ≈ π2v′′(γc)
L3 × 1

f2 for f � L−3 [noisy FKPP]. (4.86)

Assume that a large fluctuation just occurred which replaced a fraction f of the population, and consider
b ≥ 2 particle. The probability that, out of these b particles, the k ∈ {2, 3, . . . , b} first ones coalesce (without
the b− k other) within the fluctuation is fk(1− f)b−k. As a fluctuation of size in df occurs per unit time with
a probability p̃(f) df , one concludes that the rate at which k particles out of b coalesce is given by

λ̃b,k =
∫
fk(1− f)b−kp̃(f) df. (4.87)

With p̃(f) given by either (4.85) or (4.86), one recognizes the rates λb,k of the Bolthausen-Sznitman coalescent
scaled by a factor 1/L or π2v′′(γc)/L3, see (4.78) with Λ(df) = df . The prediction (validated by numerical
simulation) is then that

〈T2〉 ∼ L [exponential model] 〈T2〉 ∼
L3

π2v′′(γc)
[noisy FKPP], (4.88)
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with the ratios (4.75). Combined to (4.24) and (4.60), and recalling that L = (lnN)/γc, one gets, for either the
exponential model or the noisy FKPP,

DN × 〈T2〉 = π2

3γ2
c

, (4.89)

with γc = 1 in the exponential model.
One needs to be a little bit careful with the meaning of (4.87). In the standard coalescent setting, there

is for each dt a probability λb,k dt that k out of b particles coalesce at once. Here, (4.87) means that for each
dt there is a probability λ̃b,k dt that a large fluctuation develops in which k out of b particles find a common
ancestor. But, certainly, the k particles cannot coalesce at once for models in the noisy FKPP class (there are
models where each particle has at most two children at each time-step). What happens is that large fluctuations
occur every L3 unit of times and relax within a time L2. When following the ancestry of the k particles out
of b, there is no coalescence during the time of order L3 needed to go back to the large fluctuation, and then
the particles coalesce in several steps during the relatively short time L2 that the fluctuation takes to relax.
This time L2 becomes instantaneous after rescaling time by L3, and only with this rescaling can one recover
the Bolthausen-Sznitman coalescent with its multiple coalescences.

4.3 Some other models around the noisy FKPP class
Some of the results presented so far have been rigorously proved in several
models. We make a small review of these results.

The models (4.1) and (4.2) on which we have focused so far describe the stochastic evolution of a cloud of N
particles in discrete time. The random front h(x, t) is then defined as the fraction of particles on the right of
x. However, in all our heuristic explanations, we did not need to go into the specifics of the model. Therefore,
one might expect our results to extend to other models in the noisy FKPP class.

In this section, we briefly describe several models which, except for the last, fall in the universality class of
the noisy FKPP equation and, in some cases, review rigorous results that have been obtained.

Reaction-diffusion

Consider the reaction-diffusion model on the lattice described in Section 1.5.1. There are two types of particles
(A and B), a total of N particles per site, and the number of A particles at site x at time t is by definition
Nh(x, t). Particles in adjacent sites may exchange positions and in any given site a A particle may contaminate
a B particle and change it into another A:

A+B → 2A. (4.90)
(One can also allow A+B → 2B with a smaller rate.) The quantity h(x, t) follows the noisy front equation (1.45):

∂th(x, t) = h(x+ a, t) + h(x− a, t)− 2h(x, t)
a2 + h− h2 + noise, (4.91)

where a is the lattice spacing and where the noise is of order
√
h(1− h)/N . As in (4.1) and (4.2), the front

values h(x, t) are multiples of 1/N , the noise term is non-Gaussian, correlated over different lattice sites and
of order

√
h/N for h small. An important difference with (4.1) or (4.2) is that x 7→ h(x, t) is no longer a

non-increasing function, because h is no longer the fraction of particles on the right of x.
The noise in (4.91) is negligible everywhere except where h or 1−h is of order 1/N . One does not expect what

happens for h close to 1 to matter, because the velocity selection mechanism of a front equation is controlled by
the region where h is small. The cut-off theory applies directly: there are no allowed positive values of h that
are smaller than 1/N . All the arguments of Section 4.1.1 apply and one expects the same 1/ ln2N correction
to the velocity as in (4.23) with the sinus shape for the front as in (4.16). The phenomenological theory of
Section 4.1.2 also applies with no modification, and one expects (4.24) to hold, because on the right of the front,
where the population per site of A particles is small compared to N , the stochastic evolution of the A particles
looks like a BRW on the lattice.

The reaction (4.90) can be interpreted as a parent A giving birth to two A children, and one can clearly
draw genealogical trees. The results of Section 4.2 are however difficult to apply, because the total number of
A increases indefinitely instead of staying equal to N . The coalescence time between two A particles clearly
depends on the (arbitrarily large) distance between the two particles.

The stochastic FKPP equation

It is tempting to send a to 0 in (4.91) and to replace the complicated noise by a nice delta-correlated Gaussian
noise term. One then gets the stochastic FKPP equation (1.54) introduced in Section 1.5.5:

∂th = ∂2
xh+ h− h2 +

√
h− h2

N
η(x, t), (4.92)
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where η(x, t) is a delta-correlated Gaussian noise:
〈
η(x, t)

〉
= 0,

〈
η(x, t)η(x′, t′)

〉
= δ(x− x′)δ(t− t′). (4.93)

This equation does not occur in a very natural way and, in particular, it is not the hydrodynamic limit
of (4.91) [DMS03]. N in (4.92) is no longer a total population size, as in the models (4.1) and (4.2), nor
a population size per site, as in (4.91), but simply some large parameter. The values h(x, t) are no longer
constrained to be multiples of 1/N , as in (4.1), (4.2) and (4.91), but can take any value in [0, 1].

Because h can take all the values in [0, 1], applying the cut-off argument is less straightforward. It can
however still be done because one effect of the noise is to bring back very quickly to zero any value which is
small compared to 1/N . One way to understand this is to remove the spatial dimension and to consider the
following equation for h(t):

dh = (h− h2) dt+
√
h− h2

N
dW. (4.94)

The process h(t) eventually gets stuck at either h = 0 or h = 1. It is an easy computation to check that

P(h gets eventually stuck at 0) = e−2Nh0 − e−2N

1− e−2N , (4.95)

where h0 ∈ [0, 1] is the starting value of the process. (Simply call f(h0) the probability (4.95); then by looking
at what happens during the first dt one gets f(h0) =

〈
f
(
h0 + (h0 − h2

0) dt+
√

(h0 − h2
0)/N dW

)〉
, which leads

to 2Nf ′(h0) + f ′′(h0) = 0. With the boundary conditions f(0) = 1 and f(1) = 0 one recovers (4.95). See
also [PL99; DMS03].) When N is large, what (4.95) means is that the process takes off and reaches 1 with a
large probability if h0 is large compared to 1/N and, on the other hand, the process goes back to 0 with large
probability if h0 is small compared to 1/N .

Going back to (4.92), with the spatial dimension, the same mechanism occurs: the noise term quickly brings
h to zero in any region where h is small compared to 1/N . It was actually shown [MS95; MMQ11] that for an
initial condition that decays fast enough, then at all positive times there exists a random position r(t) such that
h(x, t) = 0 for x > r(t). The intuition is that, because of the noise term, h(x, t) cancels at a small distance on
the right of the point where it is of order 1/N . We are then back to a situation where one can apply the cut-off
theory: the front h cancels very close to the point where it reaches 1/N , hence it must look like the travelling
wave (4.16) which moves at the velocity (4.23), with the 1/ ln2N correction.

For the stochastic FKPP equation (4.92), Mueller, Mytnik and Quastel have shown [MMQ08; MMQ11] that,
for N large enough,

2− π2

ln2N
− 28π2 ln lnN

ln3N
≤ vN ≤ 2− π2

ln2N
+ 9π2 ln lnN

ln3N
, (4.96)

see also [CD05]. This result is in agreement with the prediction from the cut-off (4.23) and is compatible with
the prediction (4.24) for the next order term from the phenomenological theory of Section 4.1.2.

Note that it is not easy to see directly on (4.92) why the phenomenological theory should apply to the
stochastic FKPP equation, as there are no particles in that model. For the same reason, there does not seem
to be a straightforward way to apply the results on genealogical trees of Section 4.2 on that equation.

The coalescing BBM

Recall the coalescing BBM also introduced in Section 1.5.5: it is a standard BBM with the added rule that
two particles meeting may coalesce with a small rate ε = 2/N . At the tip of the front, where particles are
few, the coalescences do not occur and everything behaves as in an usual BBM. Far on the left, however, the
number of particles per unit length fluctuates around N , which is the value for which branching and coalescence
occur at the same rate. As in the reaction-diffusion model on the lattice (4.90), the cut-off theory and the
phenomenological description are expected to apply and lead to the result (4.24) for the velocity and diffusion
constant of the rightmost particle. However, again as in (4.90), it is not clear how to apply the results on
genealogical trees.

Because of the duality (1.57) between the stochastic FKPP and the coalescing BBM, the velocity, diffusion
constant and other cumulants of the position per unit time must be the same in both models.

The N-BBM

In the N -BBM, particles diffuse and branch as in a BBM but, each time the population size is larger than N ,
the leftmost particle is removed; see the illustration in Figure 4.2, page 41. The N -BBM is really a time-
continuous version of model (4.2); it describes the motion of a cloud of N particles, and the cut-off theory, the
phenomenological theory and the results on genealogical trees are expected to hold. The N -BBM was rigorously
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studied by Maillard in 2016 [Mai16], who showed that if one starts with N particles distributed along a well
chosen sinus-exponential shape similar to (4.16) then, for fixed u > 0 and fixed α ∈ (0, 1),
〈
position of the (αN)-th rightmost particle at time u ln3N

〉
= xα + ṽN × u ln3N + o(1) as N →∞, (4.97)

for some explicit function xα and with ṽN given by

ṽN = 2− π2

ln2N
+ 6π2 ln lnN

ln3N
+ c

ln3N
, (4.98)

where c has a complicated expression. ṽN is the same as the velocity vN predicted (4.24) by the phenomenological
theory with an extra c/ ln3N term. (Whether or not that extra term is universal is an open question.) Maillard
also shows that, to leading order and on the same time scale ln3N , the diffusion constant and all the other
cumulants per unit time have the values predicted by (4.24).

This is a beautiful result, which validates the phenomenological theory. Unfortunately, it does not work for
an arbitrary initial condition and it does not prove that the front goes at the velocity (4.98) on different time
scales: there is no proof that ṽN defined in (4.97) is the same quantity (up to negligible terms) as the velocity
vN defined, for a fixed N , as the t→∞ limit of 1/t times the position of the front at time t.

One expects the rescaled genealogical trees in the N -BBM to converge to the Bolthausen-Sznitman coales-
cent, but no proof exists.

The L-BBM

In the L-BBM, particles diffuse and branch as in the BBM, but all particles that reach a distance L from the
rightmost particle are removed; see the illustration in Figure 4.2, page 41. The number of particles in the
L-BBM fluctuates. Recall however that, in the cut-off theory of a model with N particles, the distance between
the centre of the cloud and the rightmost particle is (lnN)/γc. As γc = 1, one can then expect the L-BBM to
look most of the time very much like the N -BBM if

L ∼ lnN. (4.99)

The results (4.24) from the cut-off theory and phenomenological description should apply with the simple sub-
stitution (4.99), and the genealogical trees with time rescaled by L3 are expected to converge to the Bolthausen-
Sznitman coalescent.

In [Pai16], Michel Pain proved that the velocity of the L-BBM is given by

vL = 2− π2

L2 + o

(
1
L2

)
, (4.100)

which is the same as the prediction from the cut-off theory (4.23) with the mapping (4.99) from L to N .

BBM with an absorbing wall

The BBM with an absorbing wall has already been discussed a lot in Section 4.1.3 in order to obtain the velocity
vN of the noisy FKPP front. Genealogies in this model have also been studied in [BBS13], where the authors
found that, for the BBM with an absorbing wall at velocity vN and with, initially, around N particles located
not too far on the right, the genealogy of the particles seen on a time scale of order (lnN)3 converges to the
Bolthausen-Sznitman coalescent.

Models of evolution with fitness

One of the most studied classes of models of evolution is the one in which individuals carry a fitness value.
They reproduce (or branch) with a rate which increases linearly with the difference between their fitness and the
population’s average fitness, and die with a constant rate which is adjusted in such a way that the population
size remains constant. Furthermore, the fitness values evolve randomly because of mutations. (There is of course
much variability in the precise definition of models in that class: is time discrete or continuous? Is the fitness
space discrete or continuous? Are deleterious mutations allowed, or only beneficial mutations? Do mutations
only occur at branching events or at all times? etc.)

Representing the fitness values as positions on a spatial dimension, these models of evolution are branching
processes which bear some similarities with models in the noisy FKPP class: in either case, particles on the
right are at an advantage over particles on the left. The difference comes from the way this advantage plays
out: in the N -BBM (to take an example in the FKPP class), all the particles have the same birth rate but only
particles on the left die. In models with fitnesses, all the particles have the same death rate but particles on
the right have a higher birth rate.
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The models of evolution with fitness do not enter in the universality class of FKPP. In particular, as N
increases, the velocity vN (or rate at which beneficial mutations accumulate) diverges. The way vN diverges
depends on how the mutation rate and the selective advantage of a mutation both scale with N . It has been
estimated in several scaling regimes [DF07; RBW08; BRW08; PSK10; YEC10; Hal11; HG15; GD13; Sch15a].
(The literature is huge, and this list of references is incomplete. To find more, [PSK10; YEC10; Sch15a] give
many pointers.)

Nevertheless, when time is properly rescaled (not by (lnN)3 but by some more complicated expression), it
turns out that the genealogical trees are still described by the Bolthausen-Sznitman coalescent [DWF13; NH13;
Sch15b]. The mechanism by which the Bolthausen-Sznitman coalescent appears is roughly the same as in the
phenomenological theory of the FKPP case: from time to time, a lucky individual gets a higher fitness than
what is typical and it replaces over some short time a fraction of the population.



Chapter 5

Conclusion

I have reviewed several aspects of branching processes, and of fronts described by an equation in the FKPP
class or in the noisy FKPP class. An equation in the FKPP class must feature some kind of diffusion, a growth
term, and a saturation mechanism. A remarkable feature is the apparent robustness of the results that can
be obtained; for instance, with a front in the FKPP class, one only has to linearise the equation to find the
function v(γ). Then, the velocity of the front, its shape and its asymptotic position can be determined with
great accuracy from the knowledge of this v(γ) only. If the front has an internal noise of order

√
h/N where h

is small, the correction to the velocity and, in fact, all the cumulants of the position can be determined from
v(γ) and N only.

The main reason for this universality seems to be that all that matters in a FKPP front takes place in the
linear region, where the equation reduces to diffusion plus growth. The presence of a saturation term is however
essential: the fully linear equation has a different behaviour.

As a physicist, I took advantage many times of this universality by first choosing, for each problem, the
most practical model available in order to obtain a result, and then by generalizing the result to other fronts in
the FKPP class. The problem of course is that this universality is not a proven fact and, rigorously, one cannot
extend results derived within one model to another.

An interesting open problem, among many others, is to determine the scope of this universality: which
property is universal, and which is not? To pick an example, consider the asymptotic expansion of the position
µ(1/2)
t of the front; even though a rigorous proof of the 1/

√
t Ebert and van Saarloos term exists only for one

toy model (see Section 2.2.1), it is widely believed to be true for any equation in the FKPP class. But what
about the next term, which we argued to be of order (ln t)/t, and the second next, of order 1/t? My intuition
is that the former is universal, but not the latter. This is however only an unconvincing guess which needs to
be substantiated. One way to proceed could be to manage to derive the same result for several other models in
the FKPP class, which would make the guess more convincing. A more ambitious goal would be to understand
better the universality class itself and to determine which properties are universal or not.
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Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts
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We propose a phenomenological description for the effect of a weak noise on the position of a front
described by the Fisher-Kolmogorov-Petrovsky-Piscounov equation or any other traveling-wave equation in
the same class. Our scenario is based on four hypotheses on the relevant mechanism for the diffusion of the
front. Our parameter-free analytical predictions for the velocity of the front, its diffusion constant and higher
cumulants of its position agree with numerical simulations.
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I. INTRODUCTION

The Fisher Kolmogorov-Petrovsky-Piscounov �FKPP�
equation �1�

�th = �x
2h + h − h2 �1�

describes how a stable phase �h�x , t�=1 for x→−�� invades
an unstable phase �h�x , t�=0 for x→ +�� and how the front
between these two phases builds up and travels �2�. This
equation was first introduced in a problem of genetics, but
equations similar to Eq. �1� appear in much broader contexts
like reaction-diffusion problems �3,4�, optimization �5�, dis-
ordered systems �6,7�, and even particle physics �8–10�. A
remarkable example is the problem of the high-energy scat-
tering of a projectile consisting of a small color dipole on a
target in the framework of quantum chromodynamics
�QCD�: in Ref. �8� it was recognized that the Balitsky-
Kovchegov �BK� equation �9�, a mean-field equation for
high-energy scattering in QCD, is in the same class as the
FKPP equation with h being the scattering amplitude, t the
rapidity of the scattering, and x the logarithm of the inverse
projectile size.

It is well known �2,11� that equations like Eq. �1� have a
family of traveling-wave solutions of the form h�x , t�=h�z�
with z=x−vt. There is a relation between the exponential
decay of each solution �h�z��exp�−�z� for large z� and its
velocity: v=v���. For example, v���=�+1/� for the FKPP
equation �1�. Other front equations would give different ex-
pressions of v���. See, for example, Sec. IV or Refs. �12,13�.

If one starts with a steep enough initial condition, the
front converges to the traveling wave with the minimal ve-
locity. Therefore,

vdeterministic = min
�

v��� = v��0� where v���0� = 0,

hdeterministic�z� � Aze−�0z. �2�

�The multiplicative factor z in hdeterministic is present only for
this slowest moving solution.�

There is a large class �the FKPP class� of equations de-
scribing the propagation of a front into an unstable state
which select the minimal velocity, as described by �2�.
�There exist also equations of fronts propagating into an un-
stable state, called “pushed” or “type II,” for which the ve-
locity selected by the front is not the slowest one and equa-
tions of fronts propagating into a stable state. The properties
of these fronts are quite different �2,14,15� from the proper-
ties of Eq. �1�, and we will not consider them in the present
paper.�

Deterministic front equations such as Eq. �1� usually oc-
cur as the limit of a stochastic reaction-diffusion model �16�
when the number of particles �or bacterias or reactants� in-
volved becomes infinite. In a physical situation, all numbers
remain finite and a small noise term should be added to Eq.
�1� to represent the fluctuations at the microscopic scale. One
might write, for instance �17�,

�th = �x
2h + h − h2 + �h�1 − h�/N��x,t� , �3�

where ��x , t� is a normalized Gaussian white noise and N is
the number of particles involved.

The effect of such a noise is to make the shape of the
traveling-wave fluctuate in time �4�. It affects also its veloc-
ity and makes the front diffuse �2,16,18�.

For a chemical problem, N might be of the order of the
Avogadro number and one could think that such a small
noise term should give small corrections, of order 1 /�N, to
the shape and position of the front. However, because the
front motion is extremely sensitive to small fluctuations in
the region where h�1/N, this is not the case. In the presence
of noise as in Eq. �3�, the front has an exponential decay if
h�x , t��1/N, but it vanishes much faster than this exponen-
tial in the region where h�x , t� is of order 1 /N �4�. �This is
obvious in a particle model, as there cannot be less than one
particle at a given place.� As an approximation to understand
the effect of the microscopic stochastic details of the system,
it has been suggested to replace the noise term by a deter-
ministic cutoff which makes the front vanish very quickly
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when h�1/N �12�. For instance, for the FKPP equation �1�,
one way of introducing the cutoff is

�th = �x
2h + �h − h2�a�Nh� ,

with a�r� = 1 for r � 1 and a�r� → 0 for r → 0. �4�

In the presence of such a cutoff, the velocity and shape �2�
become, for any equation in the FKPP class,

hcutoff�z� � A
L

�
sin	�z

L

e−�0z where L =

1

�0
ln N ,

�5a�

vcutoff � v��0� −
�2v���0�

2L2 . �5b�

�The shape �5a� is valid only in the linear region, where h is
small enough for the nonlinear term h2 to be negligible but
still larger than 1/N. Note that for z�L, the shape coincides
with �2�. A way to interpret the sine is to say that the front
moves slower than the minimal velocity vdeterministic=v��0�
and that the decay rate becomes complex: �=�0± i� /L.
Then, the expression of vcutoff results from an expansion of
v��� for large L.�

The prediction �5� does not depend on the details of the
microscopic model. It only depends on the deterministic
equation and on the existence of a microscopic scale. This
cutoff picture is also present in the mean field QCD context
in �19�, where it was introduced to avoid unitarity violating
effects in the BK equation at intermediate stages of rapidity
evolution. In this context, N is 1 /	QCD

2 where 	QCD is the
strong-coupling constant.

Extensive numerical simulations of noisy fronts have
been performed over the years �3,18�, and the large correc-
tion �5b� to the velocity found in the cutoff picture seems to
give the correct leading correction to the velocity of noisy
fronts. �See �20� for rigorous bounds.� Being a deterministic
approximation, the cutoff theory gives, however, no predic-
tion for the diffusion constant of the front.

In the present paper, we develop a phenomenological de-
scription which leads to a prediction for this diffusion con-
stant. This description tries to capture the rare relevant events
which give the dominant contribution to the fluctuations in
the position of the front. The prediction is that the full sta-
tistics of the front position in the noisy model depends only
on the amplitude 1/N of the noise at the microscopic scale
and on v���, a property of the deterministic equation. For
large N, all the other details of the underlying microscopic
model do not contribute to the leading order. Our description
leads to the following prediction for the velocity and for the
diffusion constant of the front for large N:

v − vcutoff = �2�0
3v���0�

3 ln ln N

�0ln3 N
+ ¯ , �6a�

D = �2�0
3v���0�

�2/3

� 0
2ln3 N

+ ¯ . �6b�

Actually, our phenomenological approach also gives a
prediction to the leading order for all the cumulants of the
position of the front. For n
2,

�nth cumulant�
t

= �2�0
3v���0�

n ! ��n�
� 0

nln3 N
+ ¯ , �6c�

where ��n�=�k
1k−n.
The 1/ ln3 N dependence of the diffusion constant was al-

ready observed in numerical simulations �18�. In the QCD
context, it was proposed in �21� to identify the full QCD
problem with a stochastic evolution, such as Eq. �3�, and the
dependence of the diffusion constant was used to suggest a
new scaling law for QCD hard scattering at, perhaps, ultra-
high energies.

We do not have, at present, a mathematical proof of the
results �6�. Rather, we believe that we have identified the
main effects contributing to the diffusion of the front. We
present our scenario in Sec. II where we state a set of four
hypotheses from which the results �6� follow. We give argu-
ments to support these hypotheses in Secs. III A–III D. Fi-
nally, to check our claims, we present numerical simulations
in Sec. IV for the five first cumulants of the position of the
front. These simulations match very well the predictions �6�.

II. PICTURE AND ITS QUANTITATIVE
CONSEQUENCES

To simplify the discussion, we consider, in this section,
more specifically a microscopic particle model rather than a
continuous stochastic model such as Eq. �3�. This is merely a
convenience to make our point clearer, but the discussion
below could be rephrased for other models in the stochastic
FKPP class.

We consider models where particles diffuse on the line
and, occasionally, duplicate. If one takes, for h�x , t�, the den-
sity of particles or, alternatively, the number of particles on
the right of x, it is clear that it is not yet described by a front
equation, because it grows exponentially fast with time; one
needs to introduce a saturation rule. For instance, one can �i�
keep the number of particles fixed by removing the leftmost
particles if necessary, or �ii� remove all the particles which
are at a distance larger than L behind the rightmost particle,
or �iii� limit the density by allowing, with a small probability,
that two particles meeting recombine into one single particle
�4�.

A. Scenario for the propagation of the front

The main picture of our phenomenological description is
the following. The evolution of the front is essentially deter-
ministic, and its typical shape and velocity are given by Eq.
�5�. But from time to time, a fluctuation sends a small num-
ber of particles at some distance � ahead of the front. At first,
the position of the front, determined by where most of the
particles are, is only modified by a negligible amount of
order 1 /N by this fluctuation. However, as the system re-
laxes, the number of wandering particles grows exponen-
tially and they start contributing to the position of the front.
Meanwhile, the bulk catches up and absorbs the wandering
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particles and their many offsprings; finally, the front relaxes
back to its typical shape �5a�. The net effect of a fluctuation
is therefore to shift the position of the front by some amount
R��� which depends, obviously, on the size � of the fluctua-
tion. A useful quantity to characterize the fluctuations is the
width of the front. It can easily be defined as the distance
between the leading particle �where h�1/N� and some po-
sition in the bulk of the front—for instance, where h=0.5.
�Changing this reference point would change the width by a
finite amount, independent of N.� This width is typically of
order L, where L is given by the cutoff theory �5a�. During a
fluctuation that sends particles at a distance � ahead of the
front, the width of the front increases quickly to L+� and
then relaxes slowly back to L.

We emphasize that, in this scenario, the effect of noise is
so weak that, most of time, it can be ignored and the cutoff
theory describes accurately the evolution of the front. It is
only occasionally, when a rare sequence of random micro-
scopic events sends some particles well ahead of the front
that the cutoff theory is no longer valid. The way this fluc-
tuation relaxes is, however, well described by the determin-
istic cutoff theory.

We shall encode this scenario in the following quantita-
tive assumptions.

�i� If we write the instantaneous fluctuating width of the
front as L+�, then the probability distribution function for �
is given by

p���d� = C1e−�0�d� , �7�

where C1 is some constant. Note that we assume this form
only over some relevant range of values: � large enough
�compared to 1� but much smaller than L �typically of order
ln L�. Fluctuations where � is “too small” are frequent but do
not contribute much to the front position. Fluctuations where
� is “too large” are so rare that we do not need to take them
into account. Only for “moderate” values of � do we assume
the above exponential probability distribution function.

�ii� The long-term effect of a fluctuation of size � �assum-
ing that there are no other fluctuations in between� is a shift
of the front position by the quantity

R��� =
1

�0
ln	1 + C2

e�0�

L3 
 , �8�

where C2 is another constant.
�iii� The fluctuations of the position of the front are domi-

nated by large and rare fluctuations of the shape of the front.
We assume that they are rare enough that a given relevant
fluctuation has enough time to relax before another one oc-
curs.

From these three hypotheses alone, one can derive our
results �6� up to a single multiplicative constant. This con-
stant can be determined with the help of a fourth hypothesis.

�iv� For the aim of computing the first correction to the
front velocity obtained in the cutoff theory �5�, one can sim-
ply use the expression �5b� with L replaced by Leff where

Leff =
1

�0
ln N +

3

�0
ln ln N + ¯ . �9�

It is important to appreciate that the typical width of the
front is still L and not Leff. The latter quantity is just what
should be used in �5b� to give the correct velocity.

A similar scenario was used by Kloster �22� to obtain the
ln ln�N� / ln3 N correction to the cutoff velocity of Eq. �6a�.
However, his prefactor differs from ours: in our notations,
Ref. �22� would give a “2” in the numerator of the right-hand
side of Eq. �6a� instead of our “3.”

B. How Eqs. (6) follow from these hypotheses

We are now going to see how the results �6� follow from
these four hypotheses.

First, we argue that the probability to observe a fluctua-
tion of size � during a time interval t can be written as
p���d� t /�, where p��� is the distribution �7� of the in-
crease of the width of the front and where � is some typical
time characterizing the rate at which these fluctuations occur.
Indeed, during a fluctuation of a given size, the width of the
front increases to that size and then relaxes back. For a large
�, observing a front of size L+� is very rare, but when it
happens, the most probable is that one is observing the maxi-
mum expansion of a fluctuation with a size close to �; the
contribution from fluctuations of sizes significantly larger
than � is negligible as they are much less likely.

Second, as a fluctuation builds up at the very tip of the
front where the saturation rule �see beginning of Sec. II� can
be neglected, we argue that the typical time � introduced in
the previous paragraph and the time it takes to build a fluc-
tuation of a given size do not depend on N. �However, the
relaxation time of a fluctuation depends on N as the bulk of
the front is involved in the relaxation.�

Let Xt be the position of the front, �0 the minimal size of
a fluctuation giving a relevant contribution to the position of
the front, and t a time much smaller than the time between
two relevant fluctuations, but much larger than the time it
takes to build up such a fluctuation and have it relax. �This is
authorized by the third hypothesis.� We have

Xt+t

=�Xt + vcutofft + R��� prob .
t

�
p���d� for � � �0,

Xt + vcutofft prob . 1 −
t

�


�0

�

p���d� . �
�Note that t

� ��0

� p���d� is the probability of observing a rel-
evant fluctuation during the time t. By definition of t, this
is much smaller than 1.�

One can then compute the average, denoted �·�, of
exp��Xt+t�. One gets, for � small enough,

�tln�e�Xt� = �vcutoff +
1

�
 p����e�R��� − 1�d� . �10�

Expanding in powers of �, one recognizes on the left-hand-
side the cumulants of Xt. Therefore, one gets
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v − vcutoff =
1

�
 p���R���d� ,

�nth cumulant�
t

=
1

�
 p���Rn���d� for n 
 2. �11�

At this point, one can notice from the expressions of p���
and R��� that the values of � such that e�0��L3 have a
negligible contribution to the integrals giving the velocity
and the cumulants. Thus appears naturally a �max
= �3/�0�ln L which is exactly the effective correction to the
width of the front appearing in Eq. �9�.

The integrals in Eq. �11� can be evaluated, and one gets

 p���Rn���d� =
C1C2

� 0
n+1L3

0

L3/C2
lnn	1 +

1

x

dx , �12�

with x= �L3 /C2�exp�−�0��. For n=1, this integral gives
ln�L3 /C2�. For n
2, one can integrate from 0 to � �the
correction is at most of order 1 /L6� and one recognizes
n !��n�. Finally,

v − vcutoff =
C1C2

��0

3 ln L

�0L3 ,

�nth cumulant�
t

=
C1C2

��0

n ! ��n�
� 0

nL3 . �13�

Everything is determined up to one numerical constant
C1C2 /�. As the fourth hypothesis gives the velocity, one can
easily determine that constant and recover Eqs. �6�.

All the cumulants �except the first one� are of the same
order of magnitude, as the fluctuations are due to rare big
events.

III. ARGUMENTS TO SUPPORT THE HYPOTHESES

A. First hypothesis

This first hypothesis is not very surprising if one consid-
ers that exp�−�0�� is the natural decay rate of the determin-
istic equation. A more quantitative way to understand Eq. �7�
is that building up a fluctuation is an effect which is very
localized at the tip of the front, where saturation effects can
be neglected. We present in Appendix A a calculation using
this property.

Moreover, numerical simulations �23� of that probability
distribution function give evidence that for large enough N,
the decay is exponential with the rate �0 as in Eq. �7�.

B. Second hypothesis

To obtain Eq. �8�, we need to compute the response of the
deterministic model with a cutoff �4� to a fluctuation at the
tip of the front. This is a purely deterministic problem: start-
ing with a fluctuation �i.e., a configuration slightly different
from the stationary shape�, we let the system evolve with a
cutoff and relax back to its stationary shape �5a�, and we
would like to compute the shift in position due to this fluc-
tuation.

Although the evolution is purely deterministic, the prob-
lem remains a difficult one. For simplicity, we discuss here
the case of the FKPP equation �4�. The extension to other
traveling wave equations in the FKPP class is straightfor-
ward.

There are two nonlinearities in Eq. �4�: one is the −h2

term, which is important when h is of order 1, and the other
one is the cutoff term a�Nh�, which is important when h is of
order 1 /N. Between these two points, there is a large length
of order L=ln N where one can neglect both nonlinearities.
This means that, for all practical purpose, one can simply use
the linearized version of the FKPP equation for the whole
front except for two small regions with a size of order 1 at
both ends of the front.

Let Xt be the position of the front and Lt its length. There
are many equivalent ways of defining precisely these quan-
tities; for instance, we can take Xt such that h�Xt , t�=10−5 and
Lt such that h�Xt+Lt , t�= 1

N . We expect that Xt−vcutofft and
Lt−L, which are quantities of order 1, have a relaxation time
of order L2, as for the shape of the front �14,24�.

For Xt�x�Xt+Lt, the problem is linear:

�th = �x
2h + h . �14�

Using the ansatz

�15�

with vcutoff=2− �2

L2 �see �5b� for v���=�+1/�� and keeping
only the dominant terms in L, the function G�y ,�� evolves
according to

��G = �y
2G + �2G , �16�

with the boundary conditions

G�0,�� � 0, G�1,�� � 0. �17�

�More precisely, G�0,�� and G�1,�� would be nonzero only
at the next order in a 1/L expansion.�

The problem reduces to a diffusion problem with absorb-
ing boundary conditions. The stationary configuration is the
sine shape �5a�, as expected.

If at time t=0 the shape is different from this stationary
configuration, it will relax back to it in the long-time limit up
to a multiplicative constant:

G�y, � � =
B

�
sin��y� . �18�

As the stationary shape for h�x , t� must be of the form given
by �5a�, we obtain, using Eq. �15� that the final shift in po-
sition is given by

R��� = lim
t→�

�Xt − vcutofft� = ln
B

A
. �19�

To compute the value of B, one simply needs to project
the initial condition on the sine shape:
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B = AeR��� = 2�
0

1

dy sin��y�G�y,0� . �20�

We now proceed to use this expression for the perturba-
tions we are interested in: perturbations localized near the
cutoff.

We do not have a full information on the initial condition
h�x ,0� or, equivalently, G�y ,0�. However, as we expect a
perturbation to grow at the very tip of the front, we expect
that h�x ,0� is identical to its stationary shape, except in a
region of size of order x�1 near the tip. On the scale we
consider, this means that G�y ,0� is perturbed over a region
of size y�1/L—in other words,

G�y,0� = A� 1

�
sin��y� + p�1 − y�� , �21�

where the perturbation p�y�� is nonzero only for y�=1−y of
order 1 /L. Therefore, from Eq. �20�,

eR��� = 1 + 2�
0

b/L

dy��y�p�y�� , �22�

where b is a number of order 1 representing the extent over
which a perturbation initially affects the shape of the front.
�p�y���0 if y��b /L.�

The precise shape of p�y�� is not known, but its amplitude
can be easily understood in a stochastic particle model: if
some particles are sent at a distance ��L ahead of the front,
h�x , t� increases by 1/N at position x=Xt+L+�. Because of
the exponential factor in Eq. �15�, this translates to an in-
crease of order p�y���exp��� /L for the reduced shape
G�y ,��. Combining everything, one finally gets

eR��� = 1 + C2
e�

L3 , �23�

where C2 is some number of order 1 which depends on the
precise shape p�y��. Expression �23� is just our second hy-
pothesis, up to factors �0, which can be put back by dimen-
sional analysis.

One consequence of the argument above is that C2 is of
order 1 compared to L. However, it gives no information
about the dependence of C2 on � or on the shape of the
fluctuation. We think that if C2 depends on �, it is a weak
dependence that we can ignore. A simple situation where this
can be checked is when � is large: if a particle jumps suffi-
ciently far ahead, it will start a front of its own that will
completely replace the original front. For such a front, it is
well known �12,25� that the position for large t is given at
first �while the cutoff is not relevant� by �+2t− 3

2 ln t. When
the velocity 2− 3

2t matches vcutoff, that is, at a time t0�L2, a
crossover occurs and the position becomes R���+vcutofft.
Matching the two expressions for the position at time t= t0,
one obtains R�����−ln L3, as predicted by Eq. �8�. This
indicates that, at least for large �, the number C2 has no �
dependence.

C. Third hypothesis

From Sec. II and Eq. �8�, the size � of the fluctuations that
contribute significantly to the diffusion of the front is such
that exp��0���L3. From Eq. �7�, the typical time between
two such fluctuations is therefore L3. On the other hand, from
Sec. III B, the relaxation time of a fluctuation is of order L2.
It is therefore safe to assume that a relevant fluctuation has
enough time to relax before another one occurs.

D. Fourth hypothesis

The fourth hypothesis states that, to compute the shift in
velocity, one should use a front width Leff that is larger than
what is predicted by the cutoff theory by an amount
3
�0

ln ln N. The hypothesis is plausible as this length is pre-
cisely the distance � at which the relevant fluctuations occur:
the main effect of the fluctuations would then be to increase
the effective width of the front that enters the cutoff theory
�5�. We present in Appendix B a simplified model to support
this claim.

Remarkably, the front width Leff emerges naturally in the
QCD context �19�.

IV. NUMERICAL SIMULATIONS

We consider here a reaction-diffusion model with satura-
tion which was introduced in �13� as a toy model for high-
energy scattering in QCD. Particles are evolving in discrete
time on a one-dimensional lattice. At each time step, a par-
ticle may jump to the nearest position on the left or on the
right with respective probabilities pl and pr and may divide
into two particles with probability �. We also impose that
each of the n�x , t� particles piled up at x at time t may die
with probability �n�x , t� /N.

Between times t and t+1, nl�x , t� particles out of n�x , t�
move to the left and nr�x , t� move to the right. Furthermore,
n+�x , t� particles are replaced by their two offsprings at x and
n−�x , t� particles disappear. Hence the total variation in the
number of particles on site x reads

n�x,t + 1� − n�x,t� = − nl�x,t� − nr�x,t� − n−�x,t� + n+�x,t�

+ nl�x + 1,t� + nr�x − 1,t� . �24a�

The numbers describing a time step at position x have a
multinomial distribution:

P��nl,nr,n+,n−�� =
n!

nl ! nr ! n+ ! n− ! n!
pl

nlpr
nr�n+��n/N�n−

��1 − pl − pr − � − �n/N�n, �24b�

where n=n−nl−nr−n+−n− and all quantities in the previ-
ous equation are understood at site x and time t. The mean
evolution of u�n /N in one step of time reads

�u�x,t + 1���u�x,t���

= u�x,t� + pl�u�x + 1,t� − u�x,t��

+ pr�u�x − 1,t� − u�x,t�� + �u�x,t��1 − u�x,t�� . �25�

When N is infinitely large, one can replace the u’s in Eq. �25�
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by their averages. One obtains then a deterministic front
equation in the FKPP class with

v��� =
1

�
ln�1 + � + pl�e−� − 1� + pr�e� − 1�� , �26�

and �0 is defined by v���0�=0; see �2�.
For the purpose of our numerical study, we set

pl = pr = 0.1 and � = 0.2. �27�

From Eq. �26�, this choice leads to

�0 = 1.3521 . . . , v��0� = 0.25538 . . . ,

v���0� = 0.16773 . . . . �28�

Predictions for all cumulants of the position of the front are
obtained by replacing the values of these parameters in Eqs.
�6�.

Technically, in order to be able to go to very large values
of N, we replace the full stochastic model by its deterministic
mean-field approximation u→ �u�, where �u� is given by Eq.
�25�, in all bins in which the number of particles is larger
than 103 �that is, in the bulk of the front�. Whenever the
number of particles is smaller, we use the full stochastic
evolution �24�. We add an appropriate boundary condition on
the interface between the bins described by the determi-
nistic equation and the bins described by the stochastic
equation so that the flux of particles is conserved �26�. This
setup will be called “model I.” Eventually, we shall use the
mean-field approximation everywhere except in the right-
most bin �model II�: at each time step, a new bin is filled
immediately on the right of the rightmost nonempty site with
a number of particles given by a Poisson law of expectation
�=N�u�x , t+1� � �u�x , t���. In the context of a slightly differ-
ent model in the same universality class �18�, this last ap-
proximation was shown numerically to give indistinguish-
able results from those obtained with the full stochastic
version of the model, as far as the front velocity and its
diffusion constant were concerned. We shall confirm this ob-
servation here.

We define the position of the front at time t by

Xt = �
x=0

�

u�x,t� . �29�

We start at time t=0 from the initial condition u�x ,0�=1 for
x�0 and u�x ,0�=0 for x�0. We evolve it up to time
t=ln2 N to get rid of subasymptotic effects related to the
building of the asymptotic shape of the front, and we mea-
sure the mean velocity between times ln2 N and 16� ln2 N.
For model I �many stochastic bins�, we average the results
over 104 such realizations. For model II �only one stochastic
bin�, we generate 105 such realizations for N�1050 and 104

realizations for N�1050. In all our simulations, models I and
II give numerically indistinguishable results for the values of
N where both models were simulated, as can be seen on the
figures �results for model I are represented by a circle and for
model II by a cross�.

First, we check that the effective width of the front is Leff
given by Eq. �9�. We extract the latter from the measured
mean velocity v using the formula

Leff = �� v���0�
2�v��0� − v�

. �30�

We subtract from Leff the width of the front obtained in the
cutoff theory L= �ln N� /�0 and compare the numerical result
with the analytical formula

Leff − L =
3 ln �ln N�

�0
+ c + d

ln�ln N�
ln N

. �31�

The first term on the right-hand side is suggested by our
fourth assumption �see Eq. �9��. We have added two sublead-
ing terms which go beyond our theory: a constant term and a
term that vanishes at large N. The latter are naturally ex-
pected to be the next terms in the asymptotic expansion for
large N. We include them in this numerical analysis because
in the range of N in which we are able to perform our nu-
merical simulations, they may still bring a significant contri-
bution.

We fit Eq. �31� to the numerical data obtained in the
framework of model II, restricting ourselves to values of N
larger than 1030. In the fit, each data point is weighted by the

FIG. 1. Measured Leff, defined by Eq. �30�,
from which we have subtracted the width L in the
cutoff theory, as a function of N. The dotted line
represents the leading terms 3 ln ln N /�0; see Eq.
�9�. The subleading terms �31� of the solid line
have been determined by a fit.
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statistical dispersion of its value in our sample of data. We
obtain a determination of the values of the free parameters
c=−4.26±0.01 and d=5.12±0.27, with a good quality of the
fit ��2 /NDF�1.15�. The numerical data together with the the-
oretical predictions are shown in Fig. 1. We see a clear con-
vergence of the data to the predicted asymptotics at large N
�dotted line in the figure�, but subleading corrections that we
have accounted for phenomenologically here are sizable over
the whole range of N.

We now turn to the higher-order cumulants. Our numeri-
cal data are shown in Fig. 2 together with the analytical
predictions obtained from Eqs. �6� �dotted lines in the fig-
ure�. We see that the numerical simulations get very close to
the analytical predictions at large N. However, like in the
case of Leff, higher-order corrections are presumably still im-
portant for the lowest values of N displayed on the plot.

We try to account for these corrections by replacing the
factor �ln N� /�0=L in the denominator of the expression for
the cumulants in Eqs. �6� by the ansatz for Leff given in Eq.
�31�, without retuning the parameters. The results are shown
in Fig. 2 �solid lines� and are in excellent agreement with the
numerical data over the whole range of N. We could also
have refitted the parameters c and d for each cumulant sepa-
rately, as, a priori, they are not predicted by our theory. We
observe that this is not required by our data.

This last observation suggests that all the cumulants can
be computed, with a good accuracy, with the effective width
Leff as the only parameter. We check this in Fig. 3, which
represents the ratio of the n th cumulant �divided by time� by
the correction to the velocity vdeterministic−v to the power 3/2.
If one supposes that the correction to the velocity varies like
1/Leff

2 and the cumulants like 1/Leff
3 for some effective width

Leff, this width disappears from the ratio plotted and one can
compare the numerical results to our analytical prediction
with no free parameter or unknown subleading terms. Within
statistical error, the data seem to agree for N large enough
with our prediction, suggesting that, indeed, all the cumu-
lants can be described with a good accuracy with only the
effective width Leff.

Simulations, not shown here, for the model introduced in
�18� support also our predictions �6�.

V. CONCLUSION

The main idea that we have put forward in the present
work is that all the fluctuations of the front position, and in
particular the diffusion constant, are dominated by large but
rare fluctuations at the tip of the front.

Under some more precise assumptions �hypotheses of
Sec. II� on these fluctuations, we were able to obtain explicit

FIG. 2. From top to bottom, the correction to
the velocity given by the cutoff theory and the
cumulants of orders 2–5 of the position of the
front in the stochastic model. The numerical data
are compared to our parameter-free analytical
predictions �6�, represented by the dotted line.
The subleading terms of the solid lines are nu-
merically the same as in Fig. 1; no further fit has
been performed for the present figure.

FIG. 3. The ratio of cumulants 2–5 divided by
the correction to the velocity to the power 3/2.
The dotted lines are the analytical prediction as-
suming only the cutoff theory �5b� for the veloc-
ity and the predictions �6� for the cumulants.
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expressions �6� of the cumulants of the position of the front.
We checked these predictions in our numerical simulations
of Sec. IV. In Sec. III, we gave some arguments in support of
the four hypotheses of Sec. II. None of these arguments can
be regarded as a mathematical derivation, and we can imag-
ine that some details, such as the precise shape of the distri-
bution of fluctuations �7� or the explicit expression �8�, could
be slightly modified by a more precise analysis. We believe,
however, given the good agreement of the predictions �6�
with the numerical simulations, that our picture is very close,
if not identical, to the actual behavior of the front for large
values of N.

An alternative picture to explain the 1/ ln3 N scaling of the
diffusion constant was proposed in �16�. So far, we have not
been able to relate the two approaches. One of the claims of
the present work is that all the cumulants have the same
1/ ln3 N dependence; it would be interesting to know if this is
also predicted by Panja’s theory �16�.

To conclude, we would like to point out the remarkable
similarity between the predictions �6� and the exact results
obtained recently �27� in the context of directed polymers.
Basically, the results of �27� are the same, mutatis mutandis,
as our present results �6�, for all the cumulants. The only
significant change is that the 3 ln ln N for the velocity and
the 1/ ln3 N dependence for all the cumulants in Eqs. �6�
corresponds, in �27�, to a ln ln N for the velocity and a
1/ ln N for all the cumulants �see Eq. �23� of �27� with L
=ln N and where the term L+ln L in the velocity corresponds
to vcutoff, as seen from Eq. �28� of �27��. What is interesting is
that our scenario of Sec. II for FKPP fronts applies also for
the system studied in �27�: Indeed, the fluctuations of the
position are mainly due to the rare big events taking place at
the tip of the “front” �see the last paragraph before the con-
clusion of �27��, the position of the rightmost particle is
given by Eq. �7� �see Eq. �32� of �27� with �=−ln q and Xt
=ln Bt�, the effect of a large fluctuation can be written as Eq.
�8� with the L3 term replaced by L �the logarithm of Eq. �34�
of �27� can be written as in Xt+1−Xt=L+ln L+R����, relevant
fluctuations �of size ln L instead of 3 ln L� appear every L
time steps �instead of every L3 time steps� and the relaxation
time is 1 instead of L2. This similarity may add a further
piece of evidence for our results.
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APPENDIX A: LIMIT N\�

In this appendix, we try to provide an argument for the
exponential decay �7� of the distribution for the width of the
front. To this aim, we consider a very simple model of
reaction-diffusion: particles diffuse on the line, and during
each time interval dt, each particle duplicates with a prob-
ability dt. The motions of all the particles are uncorrelated.

If one added a saturation rule as described at the begin-
ning of Sec. II, the density of particles �or the number of
particles on the right of x, depending on the precise satura-

tion rule� would be described by a stochastic FKPP equation.
However, the saturation affects only the motion of particles
in the bulk of the front, where the density is high. As the
fluctuations develop in the low-density region, it is reason-
able to assume that the distribution of the size of the fluctua-
tions are well described by the model without any saturation.

For this model without saturation, let Pt�x� the proba-
bility that, at time t, no particles are present on the right of x
given that, at t=0, there is a single particle at the origin:
P0�x�=��x�. During the first “time step” dt, the only particle
in the system moves by a quantity ��dt where � is a Gauss-
ian number of variance 2 and duplicates with a probability
dt. If it duplicates, the probability Pt+dt�x� is the probability
that the offsprings of both particles are on the left of x. As
the particles have uncorrelated motion, this is the product of
the probabilities for each offspring. Finally, one gets �28�

Pt+dt�x� = �Pt�x − ��dt��1 − dt� + Pt
2�x − ��dt�dt� ,

where the average is on �. After simplification,

�tP = �x
2P − P + P2. �A1�

One notices that 1− Pt�x� is solution of the deterministic
FKPP equation �1�. Therefore, for large t and x �2,12,25�,

1 − Pt�x� � ze−z−z2/4t for z = x − 2t +
3

2
ln t .

Let Qt�x� be the probability that there are no particles on the
right of x when the initial condition is a given density of
particles �0�x�. Using the fact that all the particles are inde-
pendent, one gets easily

Qt�x� = exp�− dy�0�y��1 − Pt�x − y��� . �A2�

�0�y� needs to reproduce the shape of the front seen from the
tip. Starting from �5a�, we write ��y�=Nhcutoff�L+y� and take
the large-N limit. One gets �0�y�=−y exp�−y� for y�0 and
�0�y�=0 for y�0. Evaluating the integral in Eq. �A2�, one
gets, for large t and x−2t��t,

Qt�x� � exp�− Ce−�x−2t�� . �A3�

�Notice that the �3/2�ln t factor canceled out.�
The probability distribution function of the rightmost par-

ticle is clearly �xQt�x�. We see that in this stochastic model,
the front moves at a deterministic velocity equal to 2 and that
the position of the rightmost particle around the position of
the front is given by a Gumbel distribution.

From �A3�, the distribution �xQt�x� gives our first hypoth-
esis �7� for large fluctuations ��=x−2t�1�. Our attempts to
check numerically �A3� by simulating fronts with a large but
finite number of particles confirmed this exponential decay
for large �, but showed some discrepancy for ��0, which
we do not understand. This, however, does not affect the
hypothesis �7�.

APPENDIX B: MOVING WALL

We consider again the reaction-diffusion model intro-
duced in Appendix A. As we said, one needs to add a satu-
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ration effect to obtain a propagating front equation for the
density, but doing so introduces correlations in the motions
of the particles that make the model hard to solve. In this
appendix, we introduce an approximate way of adding a
saturation effect which does not introduce any such correla-
tion.

In a real front, the tip is subject to huge fluctuations
happening on short time scales. On the other hand, the bulk
of the front moves smoothly and adjusts very slowly to the
fluctuations happening at the tip. Therefore, we believe that,
for times not too large, it is a reasonable approximation
to assume that the bulk of the front moves at a constant
velocity.

To implement this idea, our model is the following: a wall
starting at the origin is moving to the right at a constant
velocity v. Particles are present on the right of the wall. The
particles are evolving as in Appendix A, except that when-
ever a particle crosses the wall, it is removed.

We first consider a single particle starting at a distance z
of the wall. After a time t, either all the offsprings of this
particle have been caught by the wall or some have survived.
We want to compute the probability Et�z� that all the par-
ticles have been caught at time t. The original particle, after
a time dt, is at a distance z−vdt+��dt from the wall, and it
might have duplicated with probability dt. Using the same
method as in Appendix A, one gets

�tEt = �z
2Et − v�zEt − Et + Et

2, �B1�

with the conditions

E0�z� = 0 for z � 0 and Et�z� = 1 for z � 0. �B2�

In the long-time limit, Et�z� converges to the stationary so-
lution E��z� and one recognizes that h�z�=1−E��−z� is the
stationary solution of the FKPP equation �1� if z=x−vt. In
other words, 1−E��−z� is the shape of a traveling front. As
this shape reaches 0 for z=0, it must be a front with a sine
arch and a velocity v smaller than 2, as in �5�. So if v�2, the
probability 1−E��−z� is the shape of the front with a cutoff:

1 − E�z� � Le−Lsin	�
z

L

ez where v = 2 −

�2

L2 . �B3�

�The extra factor e−L comes from the fact that z=0 is the
tip of the front in �B3� while it is the bulk of the front in
�5a�. If v�2, all the particles eventually die and Et�z� con-
verges to 1.�

If one starts with a density ��z� of particles at time t=0,
the probability Et

* that everybody dies is given, similarly to
Eq. �A2�, by

Et
* = exp�− 

0

+�

dz ��z��1 − Et�z��� . �B4�

We consider, as an initial condition, the situation in the real
front with ��z�=Nh�z��NLsin��z /L�exp�−z� for z�L as in
�5a�. One gets, for long times,

Et
* → exp�− CNL3e−L� . �B5�

We see that the system survives if

NL3e−L � 1 or L � ln N + 3 ln ln N , �B6�

which, given �0=1, is exactly Eq. �9�.
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We consider a family of models describing the evolution under selection of a population whose dynamics
can be related to the propagation of noisy traveling waves. For one particular model that we shall call the
exponential model, the properties of the traveling wave front can be calculated exactly, as well as the statistics
of the genealogy of the population. One striking result is that, for this particular model, the genealogical trees
have the same statistics as the trees of replicas in the Parisi mean-field theory of spin glasses. We also find that
in the exponential model, the coalescence times along these trees grow like the logarithm of the population
size. A phenomenological picture of the propagation of wave fronts that we introduced in a previous work, as
well as our numerical data, suggest that these statistics remain valid for a larger class of models, while the
coalescence times grow like the cube of the logarithm of the population size.
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I. INTRODUCTION

It has been recognized for a long time that there is a
strong analogy between neo-Darwinian evolution and statis-
tical mechanics �1�. For an evolving population, there is an
ongoing competition between the mutations which make in-
dividuals explore larger and larger regions of genome space
and selection which tends to concentrate them at the optimal
fitness genomes. This is very similar to the competition be-
tween the energy and the entropy in statistical mechanics.

In the simplest models of evolution, one associates to
each individual �2,3� �or to each species �4�� a single number
which represents how fit this individual is to its environment.
This fitness is transmitted to the offspring, up to small varia-
tions due to mutations. A higher fitness usually means a
larger number of offspring �2,3,5–9�. If the size of the popu-
lation is limited by the available resources, survivors are
chosen at random among all the offspring. This leads in the
long term to a selection effect: the descendants of individuals
with low fitness are eliminated whereas the offspring of the
individuals with high fitness tend to overrun the whole popu-
lation.

Our focus in this paper is a class of such models �5–9�
describing the evolution of a population of fixed size N under
asexual reproduction. The ith individual is characterized by a
single real number, xi�g�, which represents its adequacy to
the environment. �This xi�g� plays a role similar to fitness in
the sense that offspring with higher xi�g� will be selected; in
the following, we shall simply call it the position of the
individual.� At a generation g, the population is thus repre-
sented by a set of N real numbers xi�g� for 1� i�N. At each
new generation, all individuals disappear and are replaced by
some of their offspring: the jth descendant of individual i has
position xi�g�+�i,j�g� where �i,j�g� represents the effect of
mutations from generation g to generation g+1. Then comes
the selection step: at generation g+1, one keeps only the N
rightmost offspring among the descendants of all individuals
at generation g. One may consider two particular variants of
this model.

Model A. Each individual has a fixed number k of off-
spring and all the �i,j�g� are independently distributed ac-
cording to a given distribution ����. For example, ���� may
be the uniform distribution between 0 and 1. A realization of
such an evolution is shown in Fig. 1.

Model B. Each individual has infinitely many offspring:
the �i,j�g� are distributed according to a Poisson process of
density ���� �this means that, with probabiliy ����d�, there
is one offspring of individual i with position between xi�g�
+� and xi�g�+�+d��. The density ���� is a priori arbitrary.
The only constraints we impose are that ���� decays fast
enough, when � increases, for the position not to diverge
after one generation, and that �−�

� ����d�=�, for the survival
probability to be 1. �This latter constraint implies in fact that
each individual i has infinitely many offspring before the
selection step. After selection, however, each individual has a
finite number of surviving offspring in the next generation,
and the model would remain the same if each individual had

x

hg(x)
1

0

FIG. 1. Numerical simulation of the evolution of model A, with
k=2 and ���� uniform between − 1

2 and 1
2 for N=10. Upper plot: The

filiation between each individual and its two offspring is shown. At
each generation, the N rightmost survive. Lower plot: The noisy
traveling wave front hg�x�, constructed as in �1�, is shown for the
five generations of the upper plot.
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N offspring located at the N rightmost positions of the Pois-
son process.�

Another example would be N branching random walks
where the size of population is kept constant by eliminating
the leftmost walk each time a branching event occurs.
A visual representation of this latter example is shown in
Fig. 2.

As discussed in Sec. II, these models are related to noisy
traveling wave equations, of the Fisher–Kolmogorov-
Petrovsky-Piscounov �Fisher-KPP� type �10–12�, which ap-
pear in many contexts: disordered systems �13,14�, reaction-
diffusion �15–18�, fragmentation �19� or QCD �20–22�. A
number of recent works �8,18,23–30� focused on the fluctua-
tions of the position of these fronts, and this will allow us to
predict how the fitness of the population evolves with the
number of generations.

Another interesting aspect of these models with stochastic
evolution is their genealogy �9�: one can associate to any
group of individuals, at a given generation, its genealogical
tree. One can then study how this tree fluctuates, and in
particular what is the number of generations needed to reach
their most recent common ancestor. The relationship between
noisy traveling waves and genealogies is the main purpose of
the present paper.

Note that in the present work, we will limit the discussion
to models A and B where selection is strict in the sense that
the N rightmost offspring are selected at each time step. In
the numerical simulations presented in �9�, we showed that
the behavior is robust, as it remains unchanged when selec-
tion is less strict, for example, when the N survivors are
chosen at random among the 3N /2 rightmost offspring.

While the models we consider here are difficult to solve
for arbitrary ���� and ����, one particular case of model B,
with ����=e−�, turns out to be analytically solvable both for
the statistics of the position of the population and for the
properties of the genealogical trees. We shall call this case
the “exponential model” and present its solution in Sec. III.

As explained at the end of Sec. II, the exponential model
is, however, nongeneric in the sense that it does not behave
like a Fisher-KPP front. The generic case �which behaves
like a noisy Fisher-KPP equation that we are not able to

solve� and the exponential model can, however, be both de-
scribed by a similar phenomenological theory �8� that we
develop in Sec. IV. As a consequence, we argue that both the
generic case and the exponential model have the same cumu-
lants for the position of the front �up to a change of scale�,
and that the genealogical trees have the same statistics in
both models �up to a change of time scale�. Numerical re-
sults, presented in Sec. V, support these claims.

II. THE LINK WITH NOISY FISHER-KPP FRONTS

Our models are nothing but stochastic models for the evo-
lution of the positions of N individuals along the real axis.
These positions form a cloud that does not spread: if an
individual happens to fall far behind the cloud, it will have
no surviving offspring, whereas the descendants of an indi-
vidual far ahead of the cloud grow until they replace the
whole population. With this picture in mind, it makes sense
to describe the population by a front. Let Nhg�x� be the num-
ber of individuals with a position larger than x,

hg�x� =
1

N
�

x

�

dz�
i=1

N

��z − xi�g�� . �1�

Clearly, hg�x� is a decreasing function with hg�−��=1 and
hg�+��=0. In this section, we write the noisy equation that
governs the evolution of this front.

Let Nhg+1
* �x� be the number of offspring on the right-hand

side of x at generation g+1 before the selection step. �So, for
instance, hg+1

* �−�� is k in model A and � in model B�. Once
hg+1

* �x� is known, the selection step to get hg+1�x� is simply

hg+1�x� = min�1,hg+1
* �x�� . �2�

Let us write the average and variance of hg+1
* �x� for both

models.

A. Statistics of hg+1
*

„x… for model A

In model A, one can write

Nhg+1
* �x� = �

i=1

N

ng+1
�i� �x� , �3�

where ng+1
�i� �x� is the total number of offspring before selec-

tion of the ith individual of generation g that fall on the
right-hand side of x. The probability that an offspring of i
falls on the right-hand side of x is �x

�d����−xi� and, as the k
offspring of xi�g� are independent, ng+1

�i� �x� has a binomial
distribution. The average and variance are therefore given by

ng+1
�i� �x� = k�

x

�

d� ��� − xi�g�� , �4�

Var�ng+1
�i� �x�� = k�

x

�

d� ��� − xi�g��

��1 − �
x

�

d� ��� − xi�g��	 .

As the variables ng+1
�i� �x� are uncorrelated, the average and

x

t

FIG. 2. A branching process for which the size N of the popu-
lation is limited to five. Each time the number of walks reaches six,
the leftmost walk is eliminated. Time goes downwards and the hori-
zontal direction represents space. The actual population is repre-
sented in black, while the grey lines represent what the population
would be for infinite N �i.e., in the absence of selection�.
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variance of Nhg+1
* �x� are simply from �3� the sums over i of

the averages and variances of the ng+1
�i� �x�. For the average,

one has

Nhg+1
* �x� = k�

x

�

d��
i

��� − xi�g��

= − k�
x

�

d�� dz ��� − z�Nhg��z� , �5�

where we used, from �1�,

�
i=1

N

��x − xi�g�� = − Nhg��x� . �6�

Simplifying, and doing the same transformation for the vari-
ance, one finally gets for model A

hg+1
* �x� = k� d� hg�x − ������ , �7a�

Var�hg+1
* �x�� =

k

N
� d� hg�x − ������

��1 − 2�
�

�

dz ��z�	 . �7b�

�Note that these average and variance are obtained for a
given hg�x�: they are not computed for the whole history.�

B. Statistics of hg+1
*

„x… for model B

In model B, before the selection step, an individual at
position xi�g� has infinitely many offspring given by a Pois-
son process of density ��x−xi�g��. As Poisson processes are
additive, the whole population �before selection� at genera-
tion g+1 is also given by a Poisson process of density 	�x�
with

	�x� = ��x − x1�g�� + ¯ + ��x − xN�g�� . �8�

The number of individuals on the right-hand side of x is
therefore a Poisson random number of average �x

�d� 	���,
thus

Nhg+1
* �x� = Var�Nhg+1

* �x�� = �
x

�

d� 	��� . �9�

One can rewrite 	��� using the same trick as in �6� and �5�.
One finally gets for model B

hg+1
* �x� =� d� hg�x − ������ �10a�

and

Var�hg+1
* �x�� =

1

N
� d� hg�x − ������ . �10b�

Front equations for both models and comparison to Fisher-
KPP fronts

Comparing �10� and �7�, one sees that one can write, for
both models

hg+1
* �x� = hg+1

* �x� + 
g�x�
Var�hg+1
* �x�� , �11�

where 
g�x� is a noise with 
g�x�=0 and Var�
g�x��=1. Us-
ing �2� one finally gets for model A,

hg+1�x� = min�1,k� d� hg�x − ������

+

g�x�

N


k� d� hg�x − �������1 − 2�
�

�

dz ��z�	�
�12a�

and, for, model B,

hg+1�x� = min�1,� d� hg�x − ������

+

g�x�

N


� d� hg�x − ������� . �12b�

The precise distribution of 
g�x� depends on N and on the
choice of the model. Far from both tips of the front, this
distribution is Gaussian. At the tip, however, where hg�x� is
of order 1 /N, both hg�x� and its variance are comparable and
the noise cannot be approximated by a Gaussian. �This is
because the number of individuals is small and the discrete
character of hg�x� cannot be forgotten anymore.� Further-
more, the noise is correlated in space but uncorrelated for
different g.

Thus, the precise expression of the noise 
g�x� is rather
complicated, but its variance is 1, so that the amplitude of the
whole noise term in �12� decays as 1/
N as N becomes
large.

Equations �12� are very similar to the noisy Fisher-KPP
equation

�hg�x�
�g

=
�2hg�x�

�x2 + hg�x� − hg�x�2 +

g�x�

N


hg�x� − hg�x�2,

�13�

where 
g�x� is a Gaussian noise with 
g�x�=0 and

g�x�
g��x��=��g−g����x−x��. The noisy Fisher-KPP equa-
tion appears as a dual equation for the branching process A
→2A �rate 1� and 2A→A �rate 1 /N� or, more simply, is an
approximate equation, valid for large N, describing the frac-
tion of A in the chemical reaction A+B→2A when the con-
centration of reactants is of order N �16,31,32�.

Comparing �12� and �13�, the convolution of hg�x� by
k���� or ���� in �12� spreads the front in the same way as the
diffusion term in �13�. The same convolution induces the
growth, similarly to the linear hg�x� term in �13�, as k����
and ���� both have an integral larger than 1. Thus, the fixed
point hg�x�=0 is unstable. To balance the indefinite growth
of hg�x�, both �12� and �13� have a saturation mechanism
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�respectively, the min�1,…� and the −hg�x�2 term� which
makes hg�x�=1 a stable fixed point. So, ignoring the noise
terms �N→��, both �12� and �13� describe a front that
propagates from a stable phase hg�x�=1 into an unstable
phase hg�x�=0. Finally, the noise terms in �12� and �13� have
a similar amplitude of the order of 
hg�x� /N in the unstable
region hg�x��1.

It is clear from the definitions of our models that the av-
erage velocity of the front is an increasing function of N. We
first consider the limiting case N→�, which is equivalent to
removing the noise term �
g=0� from �12� and �13�. To de-
termine �12� the velocity of such traveling wave equations, it
is usually sufficient to consider the linearized equation in the
unstable region hg�x��1 �where the saturation mechanism
can be neglected�. Looking for solutions of the form hg�x�
exp�−�x−vg��, one gets a relation between the decay rate
 and the velocity v=v�� that reads

v�� =
1


ln�k� d� ����e�	 for model A, �14a�

v�� =
1


ln�� d� ����e�	 for model B. �14b�

�For Fisher-KPP �13�, one has v��=−1+.�
In many cases, when v�� is finite over some range of 

and reaches a minimal value v�0� for some finite positive
decay rate 0, the selected velocity of the front for a steep
enough initial condition �12� is this minimal velocity v�0�.
For instance, for �13�, one has 0=1 and the selected veloc-
ity is v�0�=2. Whenever this minimal velocity exists, we
shall say that the model is in the universality class of the
Fisher-KPP equation �13�. For finite N, i.e., in the presence
of noise, there is a correction to this velocity and the front
diffuses. We shall recall �8� in Sec. IV that for the generic
Fisher-KPP case, the correction to the velocity is of order
1 / ln2 N and that the diffusion constant is of order 1 / ln3 N.

There are, however, some choices of ���� or ���� for
which v�� is everywhere infinite or has no minimum. An
example that we study in some detail in Sec. III is model B
with ����=e−�, for which v��=� for all . We shall see
that, in presence of noise, the velocity of that front diverges
as ln ln N for large N instead of converging to a finite value.
Another case would be model A with ����= p���−1�+ �1
− p����� for which v�� has no minimum when p�1/k.
�Note, however, that for p�1/k, the function v�� has a
minimum and the model belongs to the Fisher-KPP class.�

It has been known for a long time that traveling wave
equations are related to branching random walks �33,34�.
This can be seen by considering a single individual at the
origin at generation 0 and by looking at the evolution of the
probability Qg�x� that all of its descendants at generation g
are on the left-hand side of x. In the case of model B with
N=�, one has

Qg+1�x� = �
y

�1 − ��y�dy + ��y�dyQg�x − y��

= exp�� dy ��y��Qg�x − y� − 1�	 . �15�

This equation describes the propagation of a front of the
Fisher-KPP type, but where the unstable fixed point is at
Qg=1 instead of 0. For Qg close to 1, one gets exponentially
decaying traveling wave solutions of the form 1−Qg�x�
�exp�−�x−vg��, with v=v�� given by �14b�. �A similar
calculation for model A leads to v�� given by �14a�.�

III. EXACT RESULTS FOR THE EXPONENTIAL MODEL

In this section, we derive exact expressions �for large N�
of the velocity, diffusion constant, and coalescence times for
model B with ����=e−�. We first write some expressions
valid for model B with an arbitrary density function ����,
which we shall later apply to the exponential model.

Before selection, the positions of the individuals at gen-
eration g+1 are distributed according to a Poisson process of
density 	�x� defined in �8�. We now wish to know the dis-
tribution of the N rightmost individuals of this Poisson pro-
cess �i.e., of the offspring who survive the selection step�. We
first consider the probability that there are no offspring on
the right-hand side of x. Clearly, it is given by

�
x�z��

�1 − 	�z�dz� = exp�− �
x

�

	�z�dz	 . �16�

Then, the probability that the rightmost offspring at genera-
tion g+1 is in the interval �x1 ,x1+dx1�, and the second right-
most is in �x2 ,x2+dx2�, up to the �N+1�st rightmost particle
is, for xN+1�xN� ¯ �x1,

	�xN+1�dxN+1	�xN�dxN ¯ 	�x1�dx1exp�− �
xN+1

�

	�z�dz	 .

�17�

It will be more convenient not to specify the ordering of the
N rightmost particles. Then, the probability that the �N
+1�st rightmost particle is in the interval �xN+1 ,xN+1

+dxN+1� �as before� and that the N rightmost particles are in
the intervals �xk ,xk+dxk� for 1�k�N, with no constraint on
the order of x1 , . . . ,xN, becomes, for k=1, . . . ,N,

1

N!
	�xN+1�dxN+1	�xN�dxN ¯ 	�x1�dx1

�exp�− �
xN+1

�

	�z�dz	 when xN+1 � xk. �18�

One obtains the probability that the �N+1�st rightmost
particle is in the interval �xN+1 ,xN+1+dxN+1� by integrating
�18� over x1 , . . . ,xN,
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1

N!
	�xN+1�dxN+1��

xN+1

�

	�x�dx	N

exp�− �
xN+1

�

	�z�dz	 .

�19�

�As we imposed �−�
+�����d�=� in the definition of the model,

this distribution is normalized; see �8�.� Finally, the probabil-
ity of x1 , . . . ,xN given xN+1 is the ratio of �18� by �19�. One
can see that, given the value of xN+1, the distributions of
x1�g+1� , . . . ,xN�g+1� are independent and one gets that,
given xN+1, each of the N rightmost particles is in �x ,x+dx�
with probability

	�x�dx

�
xN+1

�

	�x�dx

for xN+1 � x . �20�

Therefore, to generate the whole population after selec-
tion at generation g+1, one needs to calculate the density
	�x� according to �8�, then to choose the position of the
�N+1�st rightmost particle according to �19� and, finally, to
generate independently the N rightmost particles x1�g
+1� , . . . ,xN�g+1� with the distribution �20�. Note that the
�N+1�st particle is not selected and is therefore eliminated
after the N rightmost particles have been generated. This
procedure is valid for any ����, but is in general complicated
because �8� is not easy to handle analytically.

A. Statistics of the position of the front in the exponential
model

In the exponential model ����=e−�, however, everything
becomes simpler: the Poisson process �8� becomes

	exp�x� = e−�x−Xg� with Xg = ln�ex1�g� + ex2�g� + ¯ + exN�g�� ,

�21�

which means that the offspring of the whole population are
distributed as if they were the offspring of a single effective
individual located at position Xg. The distribution of the �N
+1�st rightmost particle �19� becomes

xN+1 = Xg + z with Prob�z� =
1

N!
exp�− �N + 1�z − e−z� ,

�22�

and, once xN+1 has been chosen, the distribution �20� of the
xk�g+1� for k=1, . . . ,N becomes

xk�g + 1� = xN+1 + yk with Prob�yk� = e−yk for yk � 0.

�23�

We now recall the calculation of the statistics of the po-
sition of the front �9� which was done for a similar model in
�14�, because we shall use later the same approach to calcu-
late the statistics of the genealogical trees.

There are many ways of defining the position of the front
at a given generation g. One could consider the position of
its center of mass, or the position of the rightmost or leftmost
individual, or actually, any function of the positions xk�g�

such that a global shift of all the xk�g� leads to the same shift
in the position of the front. Because the front does not
spread, the difference between two such definitions of the
position does not grow with time so that, in the limit g→�,
all these definitions lead to the same velocity, diffusion con-
stant, and higher cumulants.

For the exponential model, it is convenient to use Xg,
defined in �21�, as the position of the front. Indeed, one can
write

�Xg = Xg+1 − Xg = z + ln�ey1 + ey2 + ¯ + eyN� , �24�

where the definitions and probability distributions of z and yk
are given in �22� and �23�. From �24�, the shifts �Xg are
uncorrelated random variables, and the average velocity vN
and diffusion constant DN of the front are given by

vN = ��Xg�, DN = ��Xg
2� − ��Xg�2. �25�

More generally, all cumulants of the front position at a long
time g are simply g times the cumulants of �Xg. To compute
theses cumulants, we evaluate the generating function G���
defined as

eG��� = �e−��Xg� = �
−�

+�

dz Prob�z�e−�z�
0

+�

dy1 Prob�y1� ¯

��
0

+�

dyN Prob�yN��ey1 + ¯ + eyN�−�, �26�

and one obtains the cumulants by doing a small � expansion,

G��� = �
n�1

�− ��n

n!
��Xg

n�c. �27�

Using �22�, the integral over z is easy,

�
−�

+�

dz Prob�z�e−�z =
1

N!
�

−�

+�

dz exp�− �� + N + 1�z − e−z�

=
��N + 1 + ��

��N + 1�
. �28�

To calculate the integrals over yi in �26�, one can use the
representation �valid for ��0�

Z−� =
1

�����0

+�

d� ��−1e−�Z �29�

with Z=ey1 + ¯ +eyN. This leads to the factorization of the
integrals over y1 , . . . ,yN. Replacing Prob�yk� by its explicit
expression from �23�, one gets for ��0 �a similar calcula-
tion can be made for ��−1�,

eG��� =
��N + 1 + ��
��N + 1������0

+�

d� ��−1I0���N, �30�

where

I0��� = �
0

+�

dy e−y−�ey
. �31�

One can rewrite I0��� in several ways,
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I0��� = ��
�

+� du

u2 e−u

= e−� + ��ln � + E� − ��
0

�

du
1 − e−u

u

= 1 + ��ln � + E − 1� − �
k=0

+�
�− 1�k

�k + 1��k + 2�!
�k+2,

�32�

where E=−���1� is the Euler constant. �It is easy to check
that the derivatives of these expressions divided by � coin-
cide and the integration constant can be checked in the large
� limit.� The expansion �32� can also be found in the litera-
ture �35� as I0 is an exponential integral.

As I0��� is a monotonous decreasing function, the integral
�30� is dominated by � close to 0. In fact, using �30�, one can
check that the range of values of � which dominate �30� is of
the order of 1 / �N ln N�. Indeed, if one makes the change of
variables

� = �N ln N , �33�

one gets I0���N for values of � of order 1,

�I0����N  exp�N��ln � + E − 1��

 exp� �

ln N
�ln � − ln N − ln ln N + E − 1�	

 e−��1 + �
ln � − ln ln N + E − 1

ln N

+
1

2
��

ln � − ln ln N + E − 1

ln N
	2

+ ¯ � , �34�

where terms of order 1 /N have been dropped. Replacing this
expression into �30� and using

�
0

�

d� �x−1e−��ln ��k =
dk

dxk��x� , �35�

one gets

eG��� 
��N + 1 + ��
��N + 1�����

1

�N ln N�������

+
���� + 1� + ��� + 1��− ln ln N + E − 1�

ln N
+ ¯ 	


��N + 1 + ��

��N + 1�
1

�N ln N���1 +
�

ln N
����� + 1�

��� + 1�

− ln ln N + E − 1	 + ¯ � . �36�

�The next order is obtained in Appendix A.� The Stirling
formula allows to simplify the expression

��N + 1 + ��
��N + 1�

1

N� = 1 + O� 1

N
	 . �37�

Then, one gets from �36� the following expression for the
generating function:

G��� = − � ln ln N −
�

ln N
�ln ln N + 1 − E −

���1 + ��
��1 + �� 	

+ o� 1

ln N
	 . �38�

�This expression was obtained assuming ��0, but one can
show that it remains valid for ��−1 by using, instead of
�29�, a different representation of Z−�.� Now one simply
reads off the expressions of the cumulants of the position of
the front by comparing the expansion of �38� in powers of �
and �27�,

vN =
�Xg�

g
= ��Xg� = ln ln N +

1

ln N
�ln ln N + 1� + ¯ ,

DN =
�Xg

2�c

g
= ��Xg

2�c =
�2

3 ln N
+ ¯

�Xg
n�c

g
= ��Xg

n�c =
n!��n�
ln N

=
n!

ln N
�
i�1

1

in + ¯ , �39�

up to terms of order ln ln N / ln2 N that are computed in Ap-
pendix A. The velocity vN diverges for large N, in contrast
with models of the Fisher-KPP class for which vN has a finite
large N limit. Note that velocities which become infinite in
the large N limit occur in other models of evolution with
selection �2�.

B. Trees in the exponential model

Let us now consider the ancestors of a group of p�2
individuals chosen at random in the population �of size N�.
Looking at their genealogy, one observes a tree which fluc-
tuates with the choice of the p individuals and which is char-
acterized by its shape and coalescence times.

For model B with an arbitrary density ����, the probabil-
ity of finding, at generation g+1 before selection, an off-
spring in �x ,x+dx� is 	�x�dx with 	 given by �8�. On the
other hand, the probability of finding in �x ,x+dx� an off-
spring of xi�g� is, by definition, ��x−xi�g��dx. Therefore,
given an offspring at generation g+1 and position x, the
probability that its parent was the ith individual �at position
xi�g�� is

Wi�x� =
��x − xi�g��

	�x�
. �40�

For general ����, these probabilities Wi�x� depend on x, mak-
ing the calculation of these coalescence times difficult. In the
exponential model, however, �40� becomes
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Wi = exi�g�−Xg =
exi�g�

ex1�g� + ¯ + exN�g� =
eyi

ey1 + ¯ + eyN
,

�41�

where the yk=xk�g�−xN+1�g� are the exponential variables of
�23�. Therefore the Wi do not depend on x. It follows that the
probability qp that p individuals at generation g+1 have the
same ancestor at generation g is simply

qp =��
i=1

N

Wi
p� , �42�

where the average is over the yi of �41�. After performing
this average, all the terms in the sum over i become equal
since the yi are identically distributed. Therefore

qp = N�W1
p�

= N�
0

+�

dy1 e−y1
¯ �

0

+�

dyN e−yNepy1�ey1 + ¯ + eyN�−p.

�43�

Using the representation �29�, one obtains

qp =
N

�p − 1�!�0

+�

d� �p−1Ip���I0���N−1 �44�

in terms of the function I0��� introduced in �31� and of its
derivatives

Ip��� = �
0

+�

dy e�p−1�y−�ey
= �− �p dp

d�p I0���

= �1−p�
�

+�

du up−2e−u. �45�

For small � one gets, by taking derivatives of Eq. �32�, to
leading order,

I0���  1 + ��ln � + E − 1�, I1���  − �ln � + E� ,

Ip��� 
�p − 2�!

�p−1 for p � 2. �46�

So far, �44� is an exact expression and valid for arbitrary
N. From now on, we will work at leading order in ln N,
leaving the extension to subleading orders to Appendix A.

As for the obtention of �38� from �30�, the integral over �
is dominated by the region where � is of order 1 / �N ln N�.
Doing the same change of variable �=�N ln N, one gets
I0���Ne−� and, using �46�, �p−1Ip����p−2�!. Therefore,
we obtain for p�2,

qp 
1

ln N

1

p − 1
. �47�

We see that for large N the probability that p branches merge
is of the same order for all p, in contrast to the neutral model
��36,37� and Appendix C� for which qp is of order 1 /Np−1, so
that q2�q3�q4�¯.

To calculate the moments of the coalescence times, it is
convenient to introduce the probability rp�k� that p randomly
chosen individuals at generation g+1 have exactly k ances-
tors at generation g. In one generation, at leading order in N,
only a single coalescence may occur among the p individu-
als, and �47� tells us that the coalescence probability goes
like 1/ ln N �any additional coalescence at the same genera-
tion would in fact cost an additional power of 1 / ln N; see
Appendix A�. Consequently, we just need that p−k+1 indi-
viduals coalesce to one ancestor, say individual number i �the
probability is Wi

p−k+1�, and that none of the other individuals
have i as an ancestor �probability �1−Wi�k−1�. Altogether,
this reads 1

rp�k� = � p

k − 1
	��

i=1

N

Wi
p−k+1�1 − Wi�k−1� . �48�

The factor �1−Wi�k−1 may be expanded and the average may
be expressed with the help of the qp defined in �42�,

rp�k� = � p

k − 1
	�

j=0

k−1 �k − 1

j
	�− 1�k−1−jqp−j . �49�

Replacing �47� in �49�, one gets after some algebra

rp�k� 
1

ln N

p

�p − k��p − k + 1�
, �50�

which holds for k� p. The probability rp�p� that there is no
coalescence at all among the p individuals �that is to say, that
all p have distinct ancestors� has a simple expression, which
is obtained from a completeness relation,

rp�p� = 1 − �
k=1

p−1

rp�k�  1 −
p − 1

ln N
. �51�

The knowledge of the probabilities rp�k� in �50� and �51�
allows one to determine �in the large N limit� all the statis-
tical properties of the trees.

We introduce the probability Pp�g� that p individuals have
their first common ancestor a number of generations g in the
past. For p�2, one may write a recursion for Pp�g� in the
form

Pp�g + 1� = �
k=2

p

rp�k�Pk�g� + rp�1��g
0. �52�

Using �50� and �51�, this becomes

1In the mathematical literature, one would rather use the transition
rates �b,q which give the probability that out of b individuals, the
only event is the coalescence of the q first individuals �38,39�.
Clearly, rp�k�= � p

k−1
��p,p−k+1. All the �b,q can be obtained through a

measure � through �b,q=�0
1xq−2�1−x�b−q��dx�. The exponential

model corresponds to a uniform measure �, studied in �40�.

EFFECT OF SELECTION ON ANCESTRY: AN EXACTLY… PHYSICAL REVIEW E 76, 041104 �2007�

041104-7

70 Facsimile of selected publications



Pp�g + 1� − Pp�g� = −
p − 1

ln N
Pp�g�

+ �
k=2

p−1
1

ln N

p

�p − k��p − k + 1�
Pk�g�

+ rp�1��g
0. �53�

In the large-N limit, the number of generations g over which
the coalescence occurs is typically ln N�1 �since the coales-
cence probabilities scale like 1/ ln N�. It is then natural to
introduce the rescaled variable t=g / ln N and the correspond-
ing coalescence probability Rp�t�dt= Pp�g�dg. In this new
variable, the recursion becomes for t�0,

dRp�t�
dt

= − �p − 1�Rp�t� + �
k=2

p−1
p

�p − k��p − k + 1�
Rk�t� .

�54�

This equation may be solved by introducing the generating
function

	��,t� = �
p�2

�p−1Rp�t� , �55�

which turns the summation over k in �54� into

�	

�t
= ��1 − ��ln�1 − ���

�	

��
− �ln�1 − ���	 . �56�

The general solution �which can be obtained by the method
of characteristics� reads

	��,t� =
1

1 − �
��e−t ln�1 − ��� , �57�

where � is an arbitrary function. The initial condition for
�54� is the probability that all p individuals coalesce between
times 0 and dt �see �47��,

Rp�t = 0�dt = qp
dg

dt
dt =

dt

p − 1
, �58�

and thus, �55� becomes

	��,t = 0� = − ln�1 − �� . �59�

This leads to

	��,t� =
d

dt
�1 − ��e−t−1. �60�

The expansion of �60� in powers of � using

�1 − ��−a =
1

��a� �p=0

+�
��p + a�
��p + 1�

�p, �61�

leads through �55� to

Rp�t� =
1

�p − 1�!
d

dt

��p − e−t�
��1 − e−t�

=
1

�p − 1�!
d

dt
��1 − e−t��2 − e−t� ¯ �p − 1 − e−t�� ,

�62�

which is just a polynomial of order p−1 in the variable e−t.
More explicitly, for the first values of p, one finds

R2�t� = e−t, R3�t� = 3
2e−t − e−2t, �63�

R4�t� = 11
6 e−t − 2e−2t + 1

2e−3t, . . . .

The average coalescence times �using �62�� are

�Tp� = �
g=0

�

gPp�g� = ln N�
0

+�

dt tRp�t�

= ln N�
0

�

dt�1 − �1 − e−t��1 −
e−t

2
	¯ �1 −

e−t

p − 1
	�
�64�

and one gets

�T2� = ln N, �T3� = 5
4 �T2�, �T4� = 25

18�T2�, ¯ .

�65�

These expressions contrast with a neutral model of coales-
cence with no selection �37,41�, where at each generation
one would choose the N survivors at random among all the
offspring at generation g+1 �see Appendix C�,

�T2
neutral� = O�N�, �T3

neutral� = 4
3 �T2

neutral� , �66�

�T4
neutral� = 3

2 �T2
neutral�, ¯ .

�Table I compares the frequencies of the trees in the cases
with and without selection.�

As shown in Appendix B, the ratios �65� are on the other
hand identical to those that would be computed if the genea-
logical trees had the same statistical properties as mean-field
spin glasses �40,42�.

We also see that �Tp� in �65� scales like ln N for any fixed
value of p, which means that on average, a given number of
individuals have their first common ancestor at order ln N
generations in the past. It is, however, interesting to note that
for large p,

�Tp�  ln N � ln ln p �67�

which is obtained by using, from �62�, Rp�t� d
dt p

−exp�−t�

 d
dte

−exp�−�t−ln ln p�� for large p; Rp�t� becomes a Gumbel dis-
tribution of width of order 1 centered at ln ln p.

IV. PHENOMENOLOGICAL EXTENSION TO GENERIC
MODELS

The exponential model had the advantage of being exactly
solvable, but as already mentioned, it is nongeneric because
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the velocity vN→� as N→�, in contrast to models of the
Fisher-KPP type. We do not know how to calculate directly
the velocity vN, diffusion constant DN, or the coalescence
times of the generic Fisher-KPP case. One can, however, use
a phenomenological picture of front propagation �8� and an-
cestry, which is consistent with exact calculations in the case
of the exponential model, and agrees with numerical simula-
tions in the generic case.

A. Picture of the propagation of fluctuating pulled fronts

Let us recall briefly the phenomenological picture of front
propagation that emerged from �8,43�. In this picture, most
of the time, the front evolves in a deterministic way well
reproduced by an equation obtained from �12� by removing
the noise term, and by adding a cutoff that takes into account
the discreteness of the number of individuals: This ensures
that hg�x� cannot take values less than 1/N. The evolution
equation in the case of model B reads �43�

hg+1�x�

= �min�1,� d� ����hg�x − ��	 if that number

is larger than 1/N ,

0 otherwise.
�

�68�

�Note that in the exponential model �����=e−��, it is easy to
see that the solution to �68� is

hg�x� = �1 for x � Yg,

e−�x−Yg� for Yg � x � Yg + ln N ,

0 for x � Yg + ln N ,
� �69�

where the parameter Yg can be used as the definition of the
position of the front. Substituting �69� into �68�, one obtains
the velocity

vcutoff
exp = Yg+1 − Yg = ln�ln N + 1�  ln ln N , �70�

which does agree, to leading order, with the exact expression
�39�.�

For fronts in the Fisher-KPP class �including �68��, the
cutoff theory can also be worked out �43�. One obtains

hg�x� � L0 sin��
x − Yg

L0
	e−0�x−Yg� �71a�

and

vcutoff
F-KPP = Yg+1 − Yg  v�0� −

�2v��0�
2L0

2 , �71b�

where v�� is given by �14�, 0 is the value of  which
minimizes v��, and L0= �ln N� /0 is the length of the front,
from the region where hg is of order 1 to the region where it
cancels. The expression of hg�x� in �71a� is only valid for
hg�x��1 and x−Yg�L0.

TABLE I. Probabilities of observing each of the possible genealogical trees for three and four individuals
in the neutral case and in the exponential model.
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By convention, we shall define 0=1 in the exponential
case. Then, both in �69� and in �71a�, the front has essentially
an exponential decay with rate 0 and its length is L0
= �ln N� /0.

So far, �70� and �71� have been obtained from a purely
deterministic calculation �68�, where only the discreteness of
hg�x� has been taken into account. Stochasticity may be put
back in the picture for the generic �Fisher-KPP� case in the
following phenomenological way, as developed in �8�.

From time to time, a rare fluctuation sends a few individu-
als ahead of the front at a distance � from its tip. This occurs
during the time interval dt with a probability p��� d� dt
where p��� was assumed �8� to be

p��� = C1e−0� �72�

for � large enough. C1 is a given constant.
These individuals then multiply and build up their own

front in an essentially deterministic way. After about L0
2 gen-

erations, the descendants of these individuals have mixed up
with the individuals that stem from the rest of the front. The
effect of this rare fluctuation is therefore to pull ahead the
front by a quantity R��� which, in the generic �Fisher-KPP�
case, is given �8� by

R��� =
1

0
ln�1 + C2

e0�

L0
� 	 , �73�

where C2 is another constant and �=3. Finally, in �8� it was
argued that

C1C2 = �20v��0� . �74�

�Note that �72�–�74� have ben obtained in �8� on heuristic
arguments and we do not know how to properly derive
them.�

As we shall show in the next section, the same picture
applies to the exponential model with some slight modifica-
tions: in �73�, one needs to take �=1 instead of �=3, every-
where 0 must be replaced by 1, one should replace �74� by
C1=C2=1 and the relaxation time of a fluctuation by 1 in-
stead of L0

2.
With these ingredients, it is not difficult to write the gen-

erating function of the position Yg of the front,

�e−�Yg� � egG��� where �75�

G��� = − �vcutoff +� d� p����e−�R��� − 1� .

The first term in G��� is due to the deterministic motion,
while the integral represents the effect of the forward rare
fluctuations. In the case of the exponential model, this ex-
pression leads to �39�, up to terms of order 1 / ln N for the
velocity and of order ln ln N / ln2 N for the other cumulants.
In the generic Fisher-KPP case, the average front velocity,
diffusion constant, and higher order cumulants are found
from �75� to be �8�

vN = v�0� −
�20

2v��0�
2 ln2 N

+ 0
2v��0��23 ln ln N

ln3 N
+ ¯

= v�0� −
�20

2v��0�
2�ln N + 3 ln ln N�2 + ¯ ,

DN = 0v��0�
�4

3 ln3 N
+ ¯ ,

��Yg − Y0�n�c

g
= 0

3−nv��0�
�2n!��n�

ln3 N
+ ¯ for n � 2.

�76�

One important aspect of �73� is that when � is of order
�� ln L0� /0, the front is shifted by one additional unit in
position due to this fluctuation. This means that a large frac-
tion of the population is replaced by the descendants of the
individuals produced by this fluctuation. Thus, when one
considers a given number of individuals at generation g, the
most probable is that their most recent common ancestor
belongs to one of these fluctuations that triggered shifts of
order 1 in the position of the front in the past generations.
According to �72�, such events occur once every �g�L0

�

generations. �g is likely to give the order of magnitude of
the average coalescence times. In Sec. IV C, we shall build
on this observation to obtain the statistics of the genealogical
trees and the coalescence times in the generic Fisher-KPP
case. But first, we show that this phenomenological picture is
consistent with the exact results �39� for the exponential
model.

B. Exponential model

Since the exponential model can be solved exactly �Sec.
III�, we are now going to test in this case our phenomeno-
logical picture of Sec. IV A. Let us first show that �72� gives
the correct distribution of fluctuations.

In the exponential model at any generation g, the front is
built according to �23� by drawing N independent exponen-
tial random numbers yk, which represent the positions of the
particles relative to a common origin xN+1. There is a prob-
ability �1−e−y�N that none of the yk are on the right of y;
therefore the distribution of the rightmost yk is

Prob�yrightmost� = N�1 − e−yrightmost�N−1e−yrightmost

 exp�− �yrightmost − ln N� − e−�yrightmost−ln N�� .

�77�

yrightmost is the distance between the rightmost particle and
the �N+1�st rightmost particle �before selection�. We define
the length l of the front as l=yrightmost. �A more natural defi-
nition could have been the distance between the rightmost
and the leftmost particles, which is obtained by replacing N
by N−1 in the previous equation. For large N, the difference
between these two definitions is negligible.� The average
length of the front is therefore �l� ln N+E with fluctua-
tions of order 1 given by a Gumbel distribution, and the
probability to observe a large fluctuation where l=ln N+�
with ��1 is given by
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p���  exp�− � − e−��  exp�− �� , �78�

which is the same as �72�.
We now wish to know the effect of such a fluctuation on

the position of the front. As the shape of the front isdecorre-
lated between two successive generations, the relaxation
time of a fluctuation is 1 and it is sufficient to compute �Xg

given the value of � at generation g. Given the value of l
=yrightmost, the distribution �23� of the N−1 other yk becomes

Prob�yk� =
e−yk

1 − e−l for 0 � yk � l . �79�

As in �26�, we introduce the generating function of the dis-
placement �Xg, given the value of l,

�e−��Xg�l� =� dz Prob�z�e−�z� dy1 Prob�y1� ¯� dyN−1 Prob�yN−1��ey1 + ¯ + eyN−1 + el�−�

=
��N + 1 + ��

��N + 1�
1

�1 − e−l�N−1�
0

l

dy1e−y1
¯ �

0

l

dyN−1e−yN−1�ey1 + ¯ + eyN−1 + el�−�, �80�

where �28� and �79� were used. By using the same represen-
tation �29� that led to �30�, one gets

�e−��Xg�l� =
��N + 1 + ��
��N + 1������0

�

d� ��−1

�� 1

1 − e−l�
0

l

dye−y−�ey	N−1

e−�el
, �81�

which, in terms of I0��� defined in �31�, is the same as

�e−��Xg�l� =
��N + 1 + ��
��N + 1������0

�

d� ��−1

�� I0��� − e−lI0��el�
1 − e−l 	N−1

e−�el
, �82�

where, using �32�,

I0��� − e−lI0��el�
1 − e−l = 1 − �

l

1 − e−l

+ �
k=0

+�
�− 1�k

�k + 1��k + 2�!
�k+2el�k+1� − 1

1 − e−l .

�83�

Expressions �82� and �83� are valid for any value of l. We
now consider a large fluctuation l=ln N+� with 1��
� ln ln N. As for �30�, the integral is dominated by values of
� of order 1 / �N ln N�. Making as before the change of vari-
able �=�N ln N, and dropping all the terms of order 1 /N,
one gets

� I0��� − e−lI0��el�
1 − e−l 	N−1

 exp�− ��1 +
�

ln N
	

+ �
k=0

+�
�− 1�k

�k + 1��k + 2�!

�� �

ln N
	k+2

e��k+1�� . �84�

We are only interested in the leading order in 1/ ln N. Drop-
ping higher order terms, one gets, in �82�,

�e−��Xg��� 
��N + 1 + ��
��N + 1�����

1

�N ln N���
0

�

d� ��−1

�exp�− ��1 +
� + e�

ln N
	�


1

�ln N���1 +
e�

ln N
	−�

, �85�

where �37� has been used and where � was neglected com-
pared to e�.

This means that up to the order 1 / �ln N� we are consider-
ing, �Xg given � is deterministic with

�Xg���  ln ln N + ln�1 +
e�

ln N
	  vcutoff + R��� , �86�

where we used �70� and �73� with C2=�=0=1.
The phenomenological picture we developed for the ge-

neric case is therefore justified for the exponential case: each
rare fluctuation of size � in the length of the front leads to a
shift R���, given by �73�, for the position of the front.

C. Genealogical trees

With the above scenario, one can also build a simplified
picture for the evolution of a population. We assume that, at
each generation, there is with a small probability a fluctua-

EFFECT OF SELECTION ON ANCESTRY: AN EXACTLY… PHYSICAL REVIEW E 76, 041104 �2007�

041104-11

74 Facsimile of selected publications



tion of amplitude f produced by an individual ahead of the
front. The long term effect of this fluctuation is that a frac-
tion f of the population is replaced by the descendants of this
individual.

One can now relate the probability distribution of f to the
phenomenological picture of front propagation. Starting with
a front at position Yg0

at generation g0, we consider its posi-
tion Yg at a generation g�g0. If no important fluctuation has
occurred, the tail of the front is given by

hno fluctuation�x,g� � e−0�x−Yg
no fluctuation� �87a�

with

Yg
no fluctuation = Yg0

+ vcutoff�g − g0� . �87b�

�See �71�; for simplicity, we neglect the sine prefactor in the
tail as it is a slowly varying factor which, to the leading
order, does not change our final result.�

If instead a fluctuation has occurred, generated by an in-
dividual ahead of the front by a distance �, then the shape is
eventually described by

hfluctuation�x,g� � e−0�x−Yg
fluctuation� �88a�

with

Yg
fluctuation = Yg0

+ vcutoff�g − g0� + R��� . �88b�

that is, the front is pulled ahead by R���. If one assumes that
the extra mass in the front with fluctuation �in gray in Fig. 3�
is due to the fraction f of descendants originating from the
fluctuation, then one gets hno fluctuation= �1− f�hfluctuation. The
substitution of �87� and �88� yields

f = 1 − e−0R���. �89�

This equation defines the mapping between the f and the �
representations of the phenomenological model. The prob-
ability distribution of � in �72� and the expression �73� of
R��� implies the following distribution of f:

Prob�f� =
C1C2

0L0
�

1

f2 . �90�

�Note that this expression cannot be valid down to f =0 for
the distribution to be normalized. One should therefore con-
sider that �90� is valid above a certain small threshold fmin.
This threshold has no effect on the correlations calculated
below.�

Using �74� and �=3 in the Fisher-KPP case, and C1=C2
=0=�=1 in the exponential case �see Sec. IV B�, one gets

Prob�f�

= �
1

ln N

1

f2 for the exponential model.

�20
3v��0�

ln3 N

1

f2 for the generic Fisher-KPP case.�
�91�

In this model, p individuals may coalesce if they belong to
the fraction f of individuals that are the descendants of a
fluctuation. The probability of such an event thus reads

qp = �
0

1

df Prob�f�fp =
C1C2

0L0
�

1

p − 1
�92�

which, for the exponential model, is identical to the exact
asymptotic result in �47�.

The coalescence probabilities in one generation rp�k� may
be obtained in a straightforward way in this model. One first
chooses the k−1 individuals among p that do not have a
common ancestor in the previous generation. The latter must
be part of the fraction 1− f of individuals, while the remain-
ing p−k+1 individuals that have their common ancestor in
the previous generation must belong to the fraction f . Thus

rp�k� = � p

k − 1
	�

0

1

df Prob�f�fp−k+1�1 − f�k−1

=
C1C2

0L0
�

p

�p − k��p − k + 1�
, �93�

with the same result as in �50� for the exponential model.2 At
this point, the combinatorics to get the coalescence probabili-
ties and average times are the same as in the exact calcula-
tion for the exponential model in Sec. III B. So, for the ex-
ponential model we recover the results of Sec. III B and for
the generic Fisher-KPP case, we get instead

�T2� 
ln3 N

�20
3v��0�

, �94�

while the ratios �Ti� / �T2� are the same �65� as for the expo-
nential model, in agreement with the results of numerical
simulations of �9� and of Sec. V below. Indeed, the rp�k�’s

2In the language of the transition rates �b,q defined in �38,39�, one
would write �b,q=�0

1df p�f�fq�1− f�b−q��0
1df fq−2�1− f�b−q. It is the

�-coalescent with the uniform measure, i.e., the Bolthausen-
Sznitman coalescent.

h

x

R(δ)

1 − f

f

FIG. 3. Effect of a fluctuation of a front. The dashed line is the
front �87� in the absence of a fluctuation. The plain line is the front
�88� if a rare fluctuation occured. The grey area represents the con-
tribution to the front from the descendants of the fluctuation. After
the front has relaxed, they represent a proportion f of the whole
population.
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given in �50� and �93� are identical except for an overall
constant which cancels out in the ratios.

We note an interesting relation between the average coa-
lescence time and the front diffusion constant, valid both in
the exponential model and in the generic Fisher-KPP case,

DN � �T2� 
�2

30
2 . �95�

We will test numerically this identity in Sec. V.
As a side remark, we note that if Prob�f� of �91� is re-

placed by Cste f−a with a→3 �instead of a=2 in our selec-
tive evolution models�, then the ratios of the coalescence
times are identical to those obtained for evolution models
without selection, see Appendix C.

V. NUMERICAL SIMULATIONS

A. Algorithms

In order to measure the velocity and diffusion constant of
our models, it is sufficient to follow the evolution of the
positions of the individuals. In the case of model A, at each
generation, one first draws at random the k offspring of each
individual and then one keeps the N rightmost offspring as
the new population. This can be done in a computer time
linear in N. For model B, one can start by drawing at random
the two rightmost offspring of each individual. If Z is the
position of the Nth rightmost offspring out of this first set of
2N, then one draws for each individual all its remaining off-
spring which are larger than Z. Then, taking the N rightmost
individuals among those drawn gives the new population.

We measured the velocity vN using vN= �Xg0+g−Xg0
� /g

and the diffusion constants DN as in �44�, using DN
= ��Xg0+g−Xg0

−vNg�2� /g for a large g. �These expressions
are in principle only valid in the g→� limit.� In practice, we
must choose an appropriate value of g and average over
many runs. For each value of N, we measured the diffusion
constant twice, once with g�2 ln3 N and once with g
�10 ln3 N, and we have plotted both values with the same
symbol. The fact that one cannot distinguish the two sets of
data indicates that the values of g we took are large enough
and that we accumulated enough statistics.

To measure the statistics of the genealogical trees in the
population, one needs to memorize more information than
simply the positions of the individuals in the current genera-
tion. The most naive method would be to record the whole
history of the population, keeping for all individuals in all
generations their positions and parents, and then to analyze
at the end the whole genealogical tree. This is clearly too
time and memory consuming. Instead, we used the three fol-
lowing algorithms.

The first algorithm consists in working with a matrix Tg,
the element Tg�i , i�� being the age of the most recent com-
mon ancestor of the pair of individuals i and i� at generation
g. This matrix is simple to update: if j and j� are the parents
of i and i�, then Tg+1�i , i��=1+Tg�j , j�� for i� i� and
Tg+1�i , i�=0. By sampling random elements of the matrix at
different generations, one obtains the average value of the
coalescence time between two individuals. The nice thing is

that, due to the ultrametric structure of the tree �for any i, j
and k, Tg�i , j��max�Tg�i ,k� ,Tg�j ,k���, no more information
is needed to compute the coalescence times of three or more
individuals: the age of the most recent ancestor of p indi-
viduals i1 , . . . , ip is simply given by
max�Tg�i1 , i2� ,Tg�i1 , i3� , . . . ,Tg�i1 , ip��. This method is appro-
priate for values of N up to about 103 as it takes a long time
of order N2 to update the matrix at each generation.

In the second algorithm, instead of working with this ma-
trix Tg�i , j�, we take advantage of the tree structure of the
genealogy by recording only its “relevant” nodes: at genera-
tion g, we say that a node is “relevant” if it is an individual
of the current generation g or if it is the first common ances-
tor of any pair of individuals of the current generation.
Clearly, the “relevant” nodes have a tree structure �the first
common ancestor of any two “relevant” nodes is a “relevant”
node�, which we record as well. The leaves of this tree are
the current generation, and the root is the most recent com-
mon ancestor of the whole population. This tree is simple to
update: if, after one timestep, a node has no child, it is re-
moved and its parent is updated. If a node has only one child,
it is removed as well and its child and parent get directly
connected. If the root of the tree has only one child, it is
removed and its child becomes the new root. As can be seen
easily, the tree has at most 2N−1 nodes and it can be updated
in a time of order N. The extraction of the interesting infor-
mation from the tree is also very fast: if a node has p chil-
dren, and these children are the ancestors of �1 , . . . ,�p indi-
viduals of the current generation, then this node is the most
common ancestor of �i�j�i� j pairs of individuals. More gen-
erally, this node is the most common ancestor of � �i�i

q
�

−�i
� �i

q
� groups of q individuals in the current generation. By

computing this quantity on each node of the tree, one obtains
the average �or even the distribution� of all the coalescence
times within the current generation in a computer time of
order N. This algorithm turns out to be very fast and we used
it for N up to about 106.

The third algorithm only works for a limited class of mod-
els, for which the positions xi�g� are integers: instead of re-
cording the N positions, one only needs to record the number
of individuals at a given site. The typical width of the front
and, therefore, the number of variables to handle, are only of
order ln N. Let us, then, consider model B with ���� given as
a sum of Dirac functions: ����=�q�q���−q�. This means
that, before selection, an individual at position x has a num-
ber of offspring at position x+q which has a Poisson distri-
bution of average �q. Considering now the whole population,
the number of offspring at time g+1 and site y is also a
random Poisson number of average �xn�x ,g��y−x, where
n�x ,g� is the number of individuals at site x and generation g
�compare to �8��. To simplify, we consider only cases where
�q=0 for q larger than some q0, so that one can easily update
the system from right to left by drawing Poisson numbers
and stopping when the total number of individuals at time
g+1 reaches N. So far, the method described allows us to
update the positions of the particles, and therefore to extract
the velocity and the diffusion constant, in a time proportional
to ln N per generation. A similar method has already been
used in �43,44� to simulate populations up to N10100. To
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extract the coalescence times, one needs to keep more infor-
mation. The difficulty resides in the fact that the many indi-
viduals at a given position usually have different ancestors.
To overcome this difficulty, one can consider the average

coalescence times T̄g�x ,x�� of two different individuals at
respective positions x and x�. To update that matrix, one
starts from the probability that an individual of generation
g+1 and position y is the offspring of an individual who was
at position x,

Prob�y comes from x� =
n�x,g��y−x

�
x�

n�x�,g��y−x�

. �96�

�Compare to �40�.� Then, one obtains that

T̄g+1�y,y�� = 1 + �
x,x�

Prob�y comes from x�

�Prob�y� comes from x��T̄g�x,x��

��1 −
�x

x�

n�x,g�
	 . �97�

�The term in parentheses is the probability that individuals at
positions y and y� come from two different parents given the
parents’ positions x and x�.� Then, the average coalescence
time of two individuals in the population is simply given by

1

N�N − 1� �
x,x�

T̄g�x,x��n�x,g�n�x�,g��1 −
�x

x�

n�x,g�
	 . �98�

Therefore, by storing a matrix of size ln2 N, which can be
updated in a time ln4 N, one can obtain the average coales-
cence time of two individuals. An interesting observation is
that this algorithm simulates one possible realization of the

positions of the particles; however, the quantity T̄g�x ,y� is

actually an average over all the possible genealogical trees in
the population given that realization of the positions over
time of the particles. A complexity in time of order ln4 N
allows already to simulate rather large systems. However, a
further optimization is possible in the special case where �q
is constant for q�q0. For that specific model, additional sim-
plifications occur �one can write a recursion on the matrix

elements� and the matrix T̄g�x ,x�� can be updated in a time
of only ln2 N. This allows one to study systems of size N up
to about 1050 in a few weeks time on standard desktop com-
puters. There is, unfortunately, not enough information in the
matrix Tg�x ,x�� to extract the average coalescence time of
three �or more� individuals: to that purpose, one needs to
simulate a tensor with three �or more� indices which can be
updated with rules very similar to �97�. Because of this extra
complexity, we only measured the average coalescence time
of three individuals for values of N up to 1020.

B. Results

Using this last algorithm, we have simulated model B for
����= 1

4�n�0���−n� up to N=1050. The velocity and diffu-
sion constants are shown in Fig. 4, compared to the predic-
tions �76� in plain lines. There is still a small visible differ-
ence between numerics and theory, but this difference gets
smaller as N increases. In order to obtain a better fit, we have
included subleading corrections by changing the denomina-
tor �ln N+3 ln ln N�2 for the velocity in �76� into �ln N
+3 ln ln N−3.5�2. Similarly, we changed the denominator
�ln N�3 for the diffusion constant in �76� into �ln N
+3 ln ln N−3.5�3. With these subleading terms �in dotted
lines on the figure�, the fit is almost perfect over more than
40 orders of magnitude.

We have no theory to justify these extra subleading terms,
but we simply notice that it is possible to fit both the correc-
tion to the velocity and the diffusion constant using the same

π2γ2
0v′′(γ0)/2

(ln N + 3 ln ln N − 3.5)2
and

π4γ0v
′′(γ0)/3

(ln N + 3 ln ln N − 3.5)3

π2γ2
0v′′(γ0)/2

(ln N + 3 ln ln N)2
and

π4γ0v
′′(γ0)/3

(ln N)3

DN

v(γ0) − vN

N

D
N

an
d

v
(γ

0
)
−

v N

103 105 1010 1030 1050
10−5

10−4

10−3

10−2

10−1

FIG. 4. Numerical simulations of model B with ����
= 1

4�n�0���−n�. For this model, one has 0=ln�2�, v�0�=−1, and
v��0�=2/ ln�2�. The circles are the correction to the velocity and
the triangles the diffusion constant, as a function of N. The plain
lines are the predictions �76�. The dotted lines are the predictions
�76� with, for both quantities, the same subleading terms added in
the denominators. �The scale on the N axis is proportional to
ln ln N.�

0.105(lnN + 3 ln ln N − 3.5)3 and ln N + ln ln N

0.105(lnN)3 and ln N

Exponential model
Model B, ψ(ε) = (1/4)

∑
n≤0 δ(ε − n)

N

〈T2〉

103 105 1010 1030 1050

10

102

103

104

105

FIG. 5. Numerical simulations of �T2� for model B with ����
= 1

4�n�0���−n� �circles� and for the exponential model �triangles�.
The plain lines are the predictions �65� for �T2� and �94�, while the
dotted lines are the same predictions with some subleading term: for
the generic case, we used subleading terms suggested by �95� and
the fit of Fig. 4, and for the exponential model the exact results
�A15�.
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subleading terms in the denominators of their respective ex-
pressions.

For the same model, �T2� is shown in Fig. 5 �using
circles�, compared to the prediction �94� in plain lines. As for
the velocity and diffusion constant, there is still a small vis-
ible difference and we obtain a better fit if we include sub-
leading terms �in dotted lines�: guided by �95� and the fit
used for the diffusion constant in Fig. 4, we changed the
numerator of �94� from �ln N�3 into �ln N+3 ln ln N−3.5�3.
On the same figure, �T2� for the exponential model is shown
�using triangles�, compared with the exact prediction �65�
�T2� ln N. Here again, the fit is improved by including the
subleading corrections �A15� �T2� ln N+ln ln N obtained in
Appendix A.

Figure 6 combines data from Figs. 4 and 5. The triangles
are the ratio of the diffusion constant and of the correction to
the velocity to the power 3/2. For large N, this should con-
verge to a constant which we can compute from �76�. The

circles are the product of the diffusion constant and of the
coalescence time �T2�, which we expect to converge to the
value given in �95�. The horizontal lines on the figure repre-
sent both predictions.

Finally, Fig. 7 shows the ratio �T3� / �T2� as a function of N
up to N=1020. The ratio is very close to 1.25 for large N,
which is the prediction of the phenomenological theory of
Sec. IV C �see also �65��.

VI. CONCLUSION

In the present work, we have solved exactly a simple
model of evolution with selection, the exponential model of
Sec. III. For this model, we have calculated the velocity and
the diffusion constant �39� of the parameter representing the
adequacy of the population to its environment, as well as the
coalescence times �64�,�65� which characterize the geneal-
ogy. We have shown that the statistical properties of the ge-
nealogical trees are identical to those trees which appear in
the Parisi mean-field theory of spin glasses �45,46�. They,
therefore, follow the Bolthausen-Sznitman statistics �40,47�,
in contrast to the case of evolution without selection which
obeys the statistics of the Kingman coalescent.

The reason why the exponential model is exactly soluble
is that, going from one generation to the next, the only rel-
evant information on the position of the individuals is con-
tained in one single variable Xg defined in �21�. The expo-
nential model belongs to a larger class of models
parametrized by a single function � �for model A� or � �for
model B�. We have not been able to solve the generic case
and, unfortunately, the exponential model is special: while
the generic case can be described by a Fisher-KPP front, with
a velocity which converges when N→�, the velocity of the
front associated to the exponential model diverges when N
→�. We have however constructed a phenomenological pic-
ture �Sec. IV� of front propagation which can be used both
for the exponential model and for the generic Fisher-KPP
case, and which also provides predictions for the genealogy.
Within this picture, the average coalescence times scale like
ln3 N with the size N of the population for the generic Fisher-
KPP case �while it grows like ln N for the exponential
model�, and the structure of the trees is the same as in the
Parisi mean-field theory of spin glasses.

Proving the validity of the phenomenological picture for
generic models is an interesting open question for future re-
search. Understanding more deeply why our models of se-
lective evolution are related to spin glasses would also de-
serve some efforts. Last, it would be interesting to study
genealogies in other models of selective evolution �2� to test
the robustness of our results.
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APPENDIX A: EXACT RESULTS FOR THE EXPONENTIAL
MODEL INCLUDING SUBLEADING ORDERS

In this appendix, we obtain higher orders in the large ln N
expansion, for the statistics of the position of the front and
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FIG. 6. Numerical simulations of model B with ����
= 1

4�n�0���−n�. The circles represent the product DN� �T2� com-
pared to the prediction �95�. The triangles are the ratio of the dif-
fusion constant and the correction to the velocity to the power 3/2,
compared to �
8/v��0� / �30

2�, which is the prediction obtained
from �76�. The predictions �95� and �76� are represented by the
horizontal lines.
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FIG. 7. Numerical simulations of model B with ����
= 1

4�n�0���−n�. The circles represent the ratio �T3� / �T2� as a func-
tion of N, compared to the result 5 /4 suggested by the phenomeno-
logical theory of Sec. IV C. �The scale on the N axis is proportional
to 1/ ln N.�
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for the coalescence probabilities in the exponential model.

1. Front position statistics

The exact expression for the cumulants of the front veloc-
ity was given in �30� in terms of the function I0 defined in
�31�. Discarding all the terms of order 1 /N or smaller, one
can use directly the expression �34� of �I0����N as a function
of the rescaled variable � in �30�. Keeping terms up to the
order 1 / ln2 N, one gets, using also �37�,

eG��� =
1

ln� N

1

�����0

�

d� ��−1e−�

��1 + �
ln � − ln ln N + E − 1

ln N

+
1

2
��

ln � − ln ln N + E − 1

ln N
	2

+ ¯ � . �A1�

The integrals of each term can be computed using �35�. One
gets

eG��� =
1

ln� N
�1 +

�

ln N
����� + 1�

��� + 1�
− l	

+
��� + 1�
2 ln2 N

����� + 2�
��� + 2�

− 2
���� + 2�
��� + 2�

l + l2	 + ¯ �
�A2�

with l=ln ln N−E+1. Taking the logarithm of �A2�, one
obtains G���. By expanding in powers of � and comparing
with �27�, one gets the cumulants of the position of the front.
We give the velocity and diffusion constant,

vN = ln ln N +
ln ln N + 1

ln N
−

�ln ln N�2 − 1 +
�2

6

2 ln2 N
+ ¯ ,

DN =
�2

3

1

ln N
−

1

ln2 N
��2

3
ln ln N −

�2

6
+ 2��3�	 + ¯ .

�A3�

Note that the first correction to the leading term can be in
both cases obtained by replacing in the leading term ln N by
ln N+ln ln N: vN ln�ln N+ln ln N� and DN��2 /3� / �ln N
+ln ln N�. This is reminiscent of the observation in Fig. 4
that, in the generic case, the fit was better by replacing the
ln N by ln N+3 ln ln N in the theoretical prediction for the
diffusion constant.

2. Tree statistics

To get subleading orders for the statistics of the tree in the
exponential case, one needs to generalize the discussion in
Sec. III B where we derived the leading term in the large
ln N expansion. The central quantity is still the probability
rp�k� that p individuals at generation g+1 have exactly k
ancestors in the previous generation. But while at leading
order it was enough to consider one coalescence at each step,

one needs to take into account up to n simultaneous coales-
cences when one wishes to keep terms of arbitrary order
1 / lnn N.

One must assign an ancestor at generation g to each indi-
vidual at generation g+1. We start from the probability Wi�x�
given in �40� that the parent of an individual at position x and
generation g+1 was the ith individual of generation g. In the
exponential model, Wi�x� does not depend on x �see �41��.
We consider p individuals of generation g+1 and we note pi,
the number of these individuals that are descendants of the
ith individual of generation g. The probability distribution of
the pi is

Prob�p1, . . . ,pN� =
p!

p1! ¯ pN!
�p1+¯+pN

p W1
p1
¯ WN

pN.

�A4�

One now averages over the positions of individuals at gen-
eration g, and rp�k� is simply the probability that there are
exactly k nonzero pi’s. After relabeling the individuals at
generation g, one gets

rp�k� = �N

k
	 �

p1�1,. . .,pk�1

p!

p1! ¯ pk!
�p1+¯+pk

p �W1
p1
¯ Wk

pk� .

�A5�

It is actually convenient to call n the number of pi that are
strictly larger than 1 and to write rp�k� as a sum over n: after
another relabeling,

rp�k� = �N

k
	�

n�0
�k

n
	 �

p1�2,. . .,pn�2

p!

p1! ¯ pn!
�p1+¯+pn

p−k+n

��W1
p1
¯ Wn

pnWn+1 ¯ Wk� . �A6�

Indeed, as we shall see, each term in the sum over n gives a
contribution of order 1 / lnn N in the final result. The averaged
term can be expressed using the probability Wi given in �41�,

Jp,k,n
p1,. . .,pn = �W1

p1
¯ Wn

pnWn+1 ¯ Wk�

= �
0

�

dy1e−y1
¯ �

0

�

dyNe−yN
ep1y1+¯+pnyn+yn+1+¯+yk

�ey1 + ¯ + eyN�p .

�A7�

The technique to evaluate the integrals involved here is
essentially the same as in Sec. III. We first use the standard
representation �29� for the denominator in the integrand.
Then the integral over yi may be expressed with the help of
the functions Ip��� defined in �45�:

Jp,k,n
p1,. . .,pn =

1

�p − 1�!�0

+�

d� �p−1Ip1
��� ¯

�Ipn
���I1���k−nI0���N−k. �A8�

As before, for large N, the term I0���N makes the integral
�A8� dominated by values of � of order 1 / �N ln N�. It is
sufficient to use the leading order �46� for the Ip��� as next
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orders in � would generate terms of order 1 /N, which we
discard throughout. Making the change of variables �

=�N ln N �see �33��, and using the fact that p1+ ¯ + pn= p
−k+n, one gets for the integrand of �A8�,

�p−1Ip1
¯ Ipn

I1
k−nI0

N−k 
�p1 − 2�! ¯ �pn − 2�!

Nk−1 lnn−1 N
�k−1e−��1 +

�k − n − ���ln ln N − ln � − E� − �

ln N
+ ¯ 	 , �A9�

�A8� can then be evaluated using �35�. One gets

Jp,k,n
p1,. . .,pn =

�p1 − 2�! ¯ �pn − 2�!
�p − 1�!

�k − 1�!
Nk lnn N

�1 +

n����k�
��k�

+ E − ln ln N	 − �k − 1�

ln N
+ ¯ � �A10�

as expected, jp,k,n has an amplitude proportional to 1/ lnn N.
To compute rp�k� for k� p to order 1 / ln2 N, one only needs
in �A6� the terms n=1 and n=2 �the term n=0 gives a con-
tribution only for k= p�,

rp�k� 
Nk

k!
�k

p!

�p − k + 1�!
Jp,k,1

p−k+1

+
k�k − 1�

2 �
p1=2

p−k
p!

p1!�p − k + 2 − p1�!
Jp,k,2

p1,p−k+2−p1 + ¯ 	 .

�A11�

After some algebra, one gets, for k� p,

rp�k� =
p

�p − k + 1��p − k�
1

ln N�1 +
1

ln N��
n=1

k−1
1

n

+
2�k − 1�
p − k + 2

� �
n=1

p−k−1
1

n
−

3

2
	 − ln ln N� + ¯ �

�A12�

�we used, among other things, ���k� /��k�+E=1+ 1
2 + ¯

+ 1
k−1 �.
We can now compute the �Tk�. From the recurrence

�Tp� = 1 + �
k=1

p

rp�k��Tk� , �A13�

we get, using �krp�k�=1 and �T1�=0,

�Tp� =

1 + �
k=2

p−1

rp�k��Tk�

�
k=1

p−1

rp�k�

. �A14�

For the first values of p, we obtain

�T2� = ln N + ln ln N + o�1� ,

�T3� = 5
4 �ln N + ln ln N� + o�1� ,

�T4� = 25
18�ln N + ln ln N� − 1

54 + o�1� . �A15�

APPENDIX B: THE PARISI BROKEN REPLICA
SYMMETRY

The replica trick is a powerful approach to calculate the
typical free energy of a sample in the theory of disordered
systems. In the replica trick, one considers n replicas of the
same random sample, one averages the product of their par-
tition functions, and at the end of the calculation one takes
the limit n→0. In some cases, the n dependence of this
averaged product is simple enough for the analytic continu-
ation n→0 to be unique leading to the desired free energy.

In the case of mean-field spin glasses, the situation is
more complicated: the symmetry between the replicas gets
broken as n takes noninteger values �n�1� and remains bro-
ken in the limit n→0. In this appendix we recall the statis-
tical properties of the trees predicted by the Parisi theory of
the broken replica symmetry �42,45,46,48�.

One starts with an integer n=n0 number of replicas. These
replicas are grouped into n0 /n1 groups of n1 replicas. Each of
these groups of n1 replicas is decomposed into n1 /n2 groups
of n2 replicas and so on: each group of ni replicas is formed
of ni /ni+1 groups of ni+1 replicas each. When this hierarchy
consists of k levels, it is characterized by k+1 integers

n = n0 � n1 � n2 � ¯ � nk = 1. �B1�

At level i, there are a total of n /ni groups of size ni. There-
fore, the probability that m distinct individuals chosen at ran-
dom belong to the same group at level i �without specifying
whether they belong or not to the same group at level i+1� is

Qm =

n

ni
�ni

m
	

� n

m
	 =

n�ni − 1��ni − 2� ¯ �ni − m + 1�
n�n − 1� ¯ �n − m + 1�

. �B2�

One can also associate a tree to each choice of m replicas:
the m replicas are at the bottom of the tree and when two
replicas belong to the same group at level i, but to different
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groups at level i+1, their branches merge at level i.
The various possible trees which might occur for three

replicas or four replicas are shown in Tables II and III with
their probabilities. For example, for the first tree of Table II,
the probability that two branches merge at level j and the
remaining branches merge at level i is

n�ni − ni+1��nj − nj+1�
n�n − 1��n − 2�

, �B3�

as there are n possible choices for the leftmost replica, ni
−ni+1 choices for the rightmost replica, and nj −nj+1 choices
for the replica at the center of the figure. The degeneracy
factor is simply the number of different ways of permuting
the roles of the replicas at the bottom of the tree.

In the Parisi ansatz, all the calculations are done as if all
the ni’s and all the ratios ni /ni+1 were integers. At the end of
the calculation, however, one takes the limit n→0 and one
reverses the inequality �B1� into

n = n0 � n1 � n2 � ¯ � nk = 1. �B4�

One then takes a continuous limit �k→��, where ni becomes
a continuous variable x,

ni = x . �B5�

In the spin-glass theory �45,46�, there is an ultrametric dis-
tance between pairs of replicas, related to the overlap q�,�.
�The distance is a decreasing function of the overlap.� This
overlap q�,� depends on the level at which the branches of
these two replicas merge: this means that at each level i of
the hierarchy, one associates a value qi of the overlap and
that q�,�=qi if the two replicas � and � belong to the same
group at level i and to different groups at level i+1. �qi is an
increasing function of i with q0=0 and qk=1.� In the limit
k→�, when ni becomes a continuous variable �B5�, the
overlap qi becomes a increasing function q�x�=q�ni�=qi with
q�0�=0 and q�1�=1.

The probability that two replicas have an overlap q�,�
�qi is

Prob�q�,� = q0� + Prob�q�,� = q1� + ¯ + Prob�q�,� = qi−1�

= 1 − Q2�ni� =
n − ni

n − 1
. �B6�

Therefore, in the n→0 limit, the probability P�q� that the

overlap q�,� between two replicas � and � takes the value q
is then given by

�
0

q�x�

P�q��dq� = lim
n→0

�1 − Q2� = x �B7�

and this leads to the famous relation �42� between the func-
tion q�x� and the probability distribution of the overlap

P�q� =
dx

dq
. �B8�

In our models, the coalescence time between a pair of
individuals in the population defines, clearly, an ultrametric
distance. In order to see whether the statistics predicted by
the replica approach remain valid for the trees of the expo-
nential model discussed in the present paper, one needs to
relate the overlap q�x� or the parameter x �which indexes the
height of the hierachy� to the coalescence time T by a func-
tion T�x�. It turns out that this can be achieved by identifying
the probability e−T that the coalescence time between two
individuals is larger than T �see R2�T� in �63�� with the prob-
ability that two replicas belong to different groups at level i.
In other words,

e−T = 1 − Q2 =
n�n − ni�
n�n − 1�

, �B9�

which leads in the n→0 limit to

e−T = x . �B10�

With this identification, if one assumes that the statistics
of the trees are given by Parisi’s theory, one can compute all
the statistical properties of the coalescence times of trees. For

TABLE II. All possible trees of three replicas, their probabili-
ties and degeneracies.

TABLE III. All possible trees of four replicas, their probabili-
ties and degeneracies.
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example, by taking the n→0 limit of �B2�, one gets that the
probability Qm that m individuals have a coalescence time
Tm�T is given by

Qm → ��m − x�
�m − 1�!��1 − x�

�B11�

which, by taking the derivative with respect with T, gives

��Tm�p� = �
0

1

dx T�x�pdQm

dx

= �
0

�

dT Tp d

dT

��m − e−T�
�m − 1�!��1 − e−T�

. �B12�

This coincides with the result of the direct calculation �62� of
the moments of the Tm and shows that the statistics of the
trees in the exponential model are the same as the ones pre-
dicted by the mean-field theory of spin glasses.

APPENDIX C: THE NEUTRAL MODEL

In this appendix we recall some well-known results on the
statistical properties of the coalescence times in neutral mod-
els �37,41� and derive �66�.

We consider a population of fixed size N with nonover-
lapping generations. Each individual i at a given generation g
has ki�g� offspring at the next generation. We assume that the
ki�g� are random and independent, and we call pk the prob-
ability that ki�g�=k. The total number M of offspring is
therefore given by

M = �
i=1

N

ki. �C1�

To keep the size of the population constant we choose N
individuals at random among these M individuals.

The probability qn that n individuals have the same parent
at the previous generation is

qn =��
i
�ki

n
	

�M

n
	 � =��

i

ki�ki − 1� ¯ �ki − n + 1�

M�M − 1� ¯ �M − n + 1�
� .

�C2�

For a population of large size, if pk decays fast enough with
k for the moments of k to be finite, the law of large numbers

gives that the denominator is approximatively equal to
�N�k��n and

qn 
1

Nn−1�k�n� ��k + 1�
��k − n + 1�� . �C3�

We see �when the moments of k are finite� that q2 is much
larger than all the other qn when the size N of the population
is large, and therefore in the ancestry of a finite number n of
individuals, branches coalesce only by pairs. Similarly, the
probability that two or more pairs of individuals coalesce at
the same generation is negligible.

Let Tn�g� be the age of the most recent common ancestor
of a group of n individuals at generation g. As for large N
only coalesences by pairs may occur from one generation to
the previous one, one has

Tn�g + 1�

= �Tn�g� + 1 with probability 1 − 1
2n�n − 1�q2,

Tn−1�g� + 1 with probability 1
2n�n − 1�q2.

�
�C4�

In the steady state �49�, this implies that

�Tn
p� = �1 −

n�n − 1�
2

q2	��1 + Tn�p� +
n�n − 1�

2
q2��1 + Tn−1�p�

�C5�

and using the fact that T1�g�=0, one gets

�Tn� = �2 −
2

n
	 1

q2
. �C6�

We see that all the times Tn scale like N �since q2�N−1� and
that

�T3�
�T2�

=
4

3
,

�T4�
�T2�

=
3

2
, ¯ ,

�Tn�
�T2�

=
2�n − 1�

n
. �C7�

One can also calculate from �C5� higher moments of the Tn’s
or their generating functions

��T2�2�
�T2�2 = 2,

��T3�2�
�T3�2 =

13

8
. �C8�

These distributions of the Tn as well as their correlations are
universal �in the sense that they do not depend on the details
of the distribution of the pk’s�.
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24 rue Lhomond, 75005 Paris, France, EU

received 24 July 2009; accepted in final form 16 September 2009
published online 12 October 2009

PACS 02.50.-r – Probability theory, stochastic processes, and statistics
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion
PACS 89.75.Hc – Networks and genealogical trees

Abstract – We study the limiting distribution of particles at the frontier of a branching random
walk. The positions of these particles can be viewed as the lowest energies of a directed polymer
in a random medium in the mean-field case. We show that the average distances between these
leading particles can be computed as the delay of a traveling wave evolving according to the
Fisher-KPP front equation. These average distances exhibit universal behaviors, different from
those of the probability cascades studied recently in the context of mean-field spin-glasses.
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The interest for branching random walks has a long
history in mathematics [1–3], physics and biology. In
biology they are commonly used to model the genealogies
of evolving populations, the spread of an advantageous
gene or of an infection, the combined effects of selection
and mutations [4–6]. In Physics they also appear in many
contexts such as reaction-diffusion models [7,8], particle
physics [9,10], or the theory of disordered systems [11,12].
In one dimension, the right frontier of a branching

random walk is the region located near its rightmost parti-
cle. An interesting question is what does the branching
random walk look like when seen from this frontier. For
example one can try to determine the position of the
second, the third, . . . or the n-th rightmost particle in
the frame of the first rightmost particle. The statistical
properties of these positions depend on time and have
a well-defined long-time limit [3] which we study in this
letter using traveling-wave equations of the Fisher-KPP
type [4,13,14]

∂h

∂t
=
∂2 h

∂x2
+h−h2. (1)

The fluctuating distances between these rightmost
particles allows one to understand why directed polymers
in a random medium [11] have non-self-averaging proper-
ties similar to mean-field spin-glasses [15]. Their study is

(a)E-mail: Eric.Brunet@lps.ens.fr
(b)E-mail: Bernard.Derrida@lps.ens.fr

also motivated by the growing interest for the statistics
of extreme events [12,16–22] which dominate a number
of physical processes [23,24]. The last two decades have
seen the emergence of universal statistical properties of
the probability cascades describing the energies of the
low lying states of several spin-glass models [22,25–30].
Somewhat surprisingly, as shown below, the distribution
of the distances between the extreme positions of particles
in a branching random walk (which are nothing but the
energies of the low lying states in the mean-field version
of directed polymer problem [11]) is different from the
predictions of the probability cascades [22,25–30].
To start with a simple case, we consider a continuous

time branching Brownian motion in one dimension. At
time t= 0 there is a single particle at the origin x= 0;
this particle diffuses (for convenience we normalize the
variance of its displacement during time t to be 2t)
and branches at rate 1. (This means that during every
infinitesimal time interval dt, the displacement of the
particle is a random variable η such that 〈η〉= 0 and
〈η2〉= 2dt, and that there is a probability dt that the
particle splits into two particles.) Whenever a branching
event occurs, the offspring become themselves independent
branching Brownian motions which diffuse and branch
with the same rates.
The number of particles in the system grows expo-

nentially with time and they occupy a region which
grows linearly with time [1,2]. It has been known for a
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long time [1,2,12] that the probability distribution of the
rightmost particle of a branching Brownian motion can
be determined by solving a traveling-wave equation: the
probability Q0(x, t) that, at time t, there is no particle at
the right of x, satisfies

∂Q0

∂t
=
∂2Q0

∂x2
+Q20−Q0. (2)

(The derivation of (2) is standard: one decomposes the
time interval (0, t+dt) into two intervals (0,dt) and
(dt, t+dt), and write that Q0(x, t+dt) =Q0(x, t)

2dt+
〈Q0(x− η, t)〉η(1−dt) where the first term represents the
contribution of a branching event and η in the second
term the displacement due to diffusion during the first
time interval (0,dt). With our normalization 〈η2〉= 2dt.)
Up to the change h= 1−Q0, eq. (2) is the Fisher-KPP

equation (1). Since at time t= 0 there is a single particle
at the origin, the initial condition is simply

Q0(x, 0) = 1 for x> 0, Q0(x, 0) = 0 for x< 0. (3)

If Qn(x, t) is the probability that there are exactly n
particles on the right of x, one can see, as for Q0, that the
generating function ψλ(x, t), defined as

ψλ(x, t) =
∑
n�0

λnQn(x, t), (4)

evolves according to the same eq. (2), the only difference
being that the initial condition is replaced by

ψλ(x, 0) = 1 for x> 0, ψλ(x, 0) = λ for x< 0. (5)

We are now going to see that the knowledge of ψλ(x, t)
allows one to obtain the average distances between the
rightmost particles of the system. If pn(x, t) is the proba-
bility of finding the n-th rightmost particle at position x,
it is easy to see that

∂Q0

∂x
= p1(x, t) and

∂Qn

∂x
= pn+1(x, t)− pn(x, t). (6)

The average position 〈Xn(t)〉 of the n-th rightmost particle
and the average distance 〈dn,n+1(t)〉 between the n-th and
(n+1)-th rightmost particles can then be defined by

〈Xn(t)〉=
∫
x pn(x, t) dx, (7)

〈dn,n+1(t)〉= 〈Xn(t)〉− 〈Xn+1(t)〉. (8)

(One should notice that the normalization of pn(x, t) is
not 1 but

∫
pn(x, t) dx= (1− e−t)n−1 due to the events

for which the total number of particles at time t is still
less than n. One could prefer to use different definitions
of the positions or of the distances, for example by
conditioning on the fact that there are at least n+1
particles in the system, but any such definition would
coincide with (7), (8) up to contributions which decay

Fig. 1: The average distances between the first rightmost
particles 〈d1,2(t)〉, 〈d2,3(t)〉 and 〈d3,4(t)〉 of a branching random
walk vs. 1/t, for t up to 3000.

exponentially with time and disappear in the long-time
limit that we study below.)
With the definition (8) we obtain from (4), (6), (7) that

∑
n�1

λn〈dn,n+1(t)〉=
∫
x

[
∂Q0

∂x
− ∂ψλ

∂x

]
dx, (9)

which relates the distances 〈dn,n+1(t)〉 between the right-
most particles to the solution ψλ(t) of the partial differ-
ential equation (2) with the initial condition (5).
We have integrated numerically the equations satisfied

by ψλ(x, t) and its derivatives with respect to λ to measure
the distances 〈dn,n+1(t)〉 between the n-th and (n+1)-th
rightmost particles. In our numerical integration, we had
to discretize space and time; we checked that our results
shown in fig. 1 were stable when we decreased our
integration steps.
One can remark that, in contrast to standard Monte

Carlo simulations, where all the branching events would
be simulated and for which the maximum reachable time
would be t∼ 20 (with a number of particles et of order
109), the integration of (2) or of its derivatives allows one
to achieve much larger times. One can also notice in fig. 1
that the distances converge like 1/t to well-defined values.
We will see that this 1/t convergence is consistent with
our analytic expression (24) below.
We did not find an analytic theory to predict the

limiting values that we measured as in fig. 1:

〈d1,2〉 � 0.496, 〈d2,3〉 � 0.303, 〈d3,4〉 � 0.219,
〈d4,5〉 � 0.172, 〈d5,6〉 � 0.142, 〈d6,7〉 � 0.121.

(10)

As shown below (17), we can, however, predict their large
n behavior.
Before doing so, it is interesting to compare our

results (10) to the expected values of the gaps between
the low lying energies of spin-glass models such as
the REM and the GREM [31,32]. In these models one
can show that these energies are given by probability
cascades [22,25,27–29] and that the energy gaps at the
leading edge are the same as those of a Poisson process on
the line with an exponential density. For such a process,
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with density e−αx, the probability distribution of the
positions is pn(x) = exp [−nαx− e−αx/α]/[αn−1(n− 1)!]
from which one gets through (7), (8)

〈dn,n+1〉GREM = 1
αn

. (11)

Clearly, there is no choice of α for which our numerical
results (10) are compatible with (11).
It is well known [2,14] that the solution Q0(x, t) of the

Fisher-KPP equation (2) with the step initial condition (3)
becomes, for large t, a traveling wave of the form

Q0(x, t)� F [x−〈X1(t)〉], (12)

where the shape F (z) of the front (F (z)→ 1 as z→∞
and F (z)→ 0 as z→−∞) is time-independent and its
position, which can be defined as the average position
〈X1(t)〉 of the rightmost particle, has the following long-
time behavior [2,14,33]:

〈X1(t)〉= 2t− 3
2
ln t+O(1). (13)

ψλ(x, t) is also the solution of the Fisher-KPP equa-
tion (2), but with the initial condition (5). As ψλ(x, 0)
decays fast enough [14], one expects the same large t
behavior as (12), (13), up to a λ-dependent delay f(λ)
due to the change of initial condition:

ψλ(x, t)� F [x−〈X1(t)〉+ f(λ)]. (14)

From (9), (12), (14) we see that the translation f(λ)
is nothing but the generating function of the average
distances

f(λ) = lim
t→∞

∑
n�1

λn〈dn,n+1(t)〉. (15)

We were not able to find an analytic expression of the
delay function f(λ) for arbitrary λ. For λ close to 1,
however, we are going to show that

f(λ) = τλ− ln τλ+O(1) with τλ =− ln(1−λ). (16)

This implies (15) that the distances have the following
large n asymptotics:

〈dn,n+1(t)〉t=∞ � 1
n
− 1

n lnn
+ · · · . (17)

Compared with (11), we see that there is a correction,
which we believe to be universal as discussed below. (Note
that the same asymptotic distances would be obtained for
uncorrelated particles distributed according to a Poisson
point process with a density −xe−x for negative x.)
For λ close to 1, the time τλ in (16) is the characteristic

time it takes ψλ(−∞, t) to reach a value close to 0. The
most näıve idea to derive (16) would be to say that it
takes this time τλ for ψλ(x, t) to look like the step function
Q0(x, 0), and then to start moving like Q0(x, t). As the
asymptotic velocity is 2 (see (13)) this would lead to a

delay f(λ)� 2τλ which is wrong (see (16)) by a factor 2.
The problem with this idea is that, while ψλ(x, t) evolves
to approach 0 on the negative x axis, a tail builds up on
the positive x axis which has a strong influence on the
dynamics later on.
To derive (16), we need to understand the shape of

ψλ(x, t) for t > τλ. Let Yt be the position where ψλ(Yt, t) =
1/2. We have checked both numerically and analytically
that the following picture holds for t and τλ large, with a
given ratio t/τλ larger than 1.
In the range where x−Yt is of order 1

ψλ(x, t)� φv(t)(x−Yt), (18)

where v(t) = Ẏt is the instaneous velocity of the front and
φv is the solution of the Fisher-KPP equation moving at
a constant velocity v, i.e. the solution of

φ′′v + vφ
′
v +φ

2
v −φv = 0, (19)

with φv(−∞) = 0 and φv(+∞) = 1. (The same form (18)
is used in [34].) For definiteness, we normalize such that
φv(0) = 1/2. This determines a unique solution which has,
if v > 2, the following asymptotics for z→+∞:

1−φv(z)�Bγ e−γz + o(e−γz), (20)

where γ is the smallest solution of

v= γ+ γ−1. (21)

On the other hand, in the range x−Yt� 1, ψλ(x, t) is
accurately given by the solution of the equation obtained
by linearizing (2) around 1:

1−ψλ(x, t)� (1−λ)e
t

√
π

∫ ∞
x/
√
4t

e−u
2

du. (22)

Then, using the asymptotics of the error function∫∞
X
exp (−u2) du� exp (−X2)/(2X) and requiring that

(18), (20) and (22) match in the range 1	 x−Yt	
√
t,

one gets that γ(t) and Yt should satisfy

Bγ(t)e
−γ(t)(x−Yt) � (1−λ)e

t
√
t

Yt
√
π

e−
Y 2t
4t −Yt(x−Yt)2t . (23)

To match the dependence in x−Yt, we need Yt � 2tγ(t)
to first order. Then matching the prefactors leads to

Yt � 2
√
t(t− τλ)− ln t

2γ(t)
− ln[2

√
πγ(t)Bγ(t)]

γ(t)
, (24)

with γ(t)�
√
t− τλ
t

. (25)

Note that the relation (21) is indeed satisfied to lead-
ing order as Ẏt � γ(t)+ γ(t)−1. In fig. 2 we see that
the agreement between the leading term in (24) and the
position obtained by integrating numerically (2) with the
initial condition (5) is quite good. One could also see
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Fig. 2: The prediction (24) to the leading order for the position
of the front (full line) is compared to the position measured
by integrating (2) with the initial condition (5). As in (16),
τλ =−ln(1−λ).

in (24) a 1/t convergence of the λ-dependent delay1 which
is consistent with the numerical results of fig. 1.
For t/τλ large, γ(t)→ 1 and v(t)→ 2. For v= 2, the

solution of (19) satisfies 1−φ2(z)�Aze−z for large z
[14,33]. For v slightly larger than 2, the next term in the
large z expansion (20) is 1−φv(z)�Bγe−γz +Cγe−z/γ +
o(e−z/γ). For consistency in the limit v→ 2, one has

Bγ �−Cγ � A

2(1− γ) as γ→ 1, (26)

so that Bγ(t) �At/τλ from (25), (26). Thus, (24)
becomes Yt � 2t− τλ− (3/2) ln t+ ln τλ+O(1), which
gives (13), (14), (16).
One can repeat everything if, instead of starting with a

single particle at the origin, one starts with K particles at
positions y1, . . . , yK . One simply needs to replace ψλ(x, t)
defined in (4) by

∏
1�i�K ψλ(x− yi, t), with a similar

change for Q0(x, t)≡ψ0(x, t). As a result, in the long-time
limit, the delay function f(λ), and therefore the distances
between the rightmost particles remain unchanged. This
property is remarkable: whatever the positions of the
initial particles are (as long as there are a finite number
of them) the limiting average distances and probably the
whole limiting measure seen from the rightmost particle
are the same.
We can also extend all our calculations to more general

branching random walks. For example one may consider a
discrete time case where at each time step, every particle
splits into K new particles, and the position of each new
particle is shifted from its parent by a random amount ε

1There is another way of understanding this 1/t convergence. In
the expression (13) of the position of the front, it is known [34] that
the bounded term O(1) can be written as a series in powers of 1/√t,
where all the coefficients depend on the initial condition except the
coefficient of 1/

√
t, which is universal. As our method is equivalent

to measuring the difference in positions of two fronts with different
initial conditions, the t, ln t and 1/

√
t terms in the position cancel

out, leaving a constant contribution (f(λ)), with a 1/t correction
and a 1/t3/2 second-order correction.

drawn from a given distribution ρ(ε). Apart from a few
changes, such as (21) which is replaced by

v= γ−1 ln
[
K

∫
ρ(ε) eγε dε

]
, (27)

τλ in (16) which becomes −ln(1−λ)/lnK or γ(t) in (25)
which becomes the solution of

γ2
dv

dγ
=− ln(1−λ)

t
, (28)

everything remains unchanged. In particular (16), (17) are
simply divided by the value γ0 of γ which minimizes the
expression (27) of v. Thus, the asymptotics of both the
delay (16) and the distances (17) look universal, up to a
scale factor γ0.
In the present letter we have seen that the distances

between the rightmost particles at the frontier of a branch-
ing random walk have statistical properties (10), (17)
which can be understood as the delay (14), (15), (16) of a
traveling wave. Other properties, such as the correlations
of these distances or even their whole probability distri-
bution can also be understood in terms of the delay of a
traveling wave. For example if Rn,m(x, y, t) is the proba-
bility that there are n particles at the right of x and m
particles at the right of y, on can show that

〈dn,n+1(t)dm,m+1(t)〉=
∫
dxx

∫
dy y

∂2Rn,m(x, y, t)

∂x∂y
,

while the generating function
∑
n,m λ

nµmRn,m(x, x+ c, t)

defined as in (4) evolves according to the Fisher-KPP
equation (2) with a new initial condition.
A surprising aspect of the present work is that the

statistics of the leading particles, in the long-time limit, do
not depend on the positions or on the number of particles
we start with, as long as there is a finite number of them.
This means that the limiting measure has the following
stability property: if one takes two realizations of the
leading particles according to this measure and shifts one
of them by an arbitrary amount, then the superimposition
of these two realizations gives a new realization of the same
measure, up to a translation.
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Abstract We show that all the time-dependent statistical properties of the rightmost points
of a branching Brownian motion can be extracted from the traveling wave solutions of the
Fisher-KPP equation. The distribution of all the distances between the rightmost points has
a long time limit which can be understood as the delay of the Fisher-KPP traveling waves
when the initial condition is modified. The limiting measure exhibits the surprising property
of superposability: the statistical properties of the distances between the rightmost points of
the union of two realizations of the branching Brownian motion shifted by arbitrary amounts
are the same as those of a single realization. We discuss the extension of our results to more
general branching random walks.

Keywords Branching random walk · Branching Brownian motion · Extreme value
statistics · Traveling waves

1 Introduction

A branching random walk is a collection of points which, starting from a single point, diffuse
and branch independently of the time, of their positions or of the other points, as in Fig. 1.

Branching random walks appear in many contexts ranging from Mathematics [1, 6, 11,
14, 25, 29, 33] to Biology [21, 23, 27]. They can for example be used to describe how a
growing population invades a new environment. In the one dimensional case, see Fig. 1,
there is, at a given time t , a rightmost individual at position X1(t), a second rightmost
at X2(t) and so on. (Note that the rightmost X1(t

′) at a time t ′ > t is not necessarily a
descendant of the rightmost X1(t) at time t .) The expected position mt = 〈X1(t)〉 of the
rightmost individual as well as the probability distribution of its position X1(t) around mt are
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A Branching Random Walk Seen from the Tip 421

Fig. 1 Two examples of branching random walks. Left: a branching random walk with discrete time where
each point splits into two points at each time step. Right: a continuous version called branching Brownian
motion where points diffuse as in a Brownian motion and branch with a constant rate

well understood [11, 33]; the goal of the present paper is to describe the statistical properties
of the positions of all the rightmost points in the system, in particular the distribution of the
distances between the two rightmost points, the average density of points at some fixed
distance from the rightmost X1(t), etc.

One motivation for studying these distances is that the problem belongs to the broader
context of extreme value statistics [8, 13, 16, 22, 24, 32, 38, 40, 41]: Trying to understand the
statistical properties of the rightmost points in a random set of points on the line is a problem
common to the studies of the largest eigenvalues of random matrices [41], of the extrema of
random signals [7, 9, 17, 18, 26, 37], or of the low lying states of some disordered systems
such as spin glasses [2, 3, 10, 34, 38]. In fact, the points generated after some time t by a
branching random walk can be viewed as the energies of the configurations of a directed
polymer in a random medium [15, 19, 25, 35], and the distances between the rightmost
points as the gaps between the low lying energy states.

The most studied example of branching random walk is the branching Brownian motion:
one starts with a single point at the origin which performs a Brownian motion and branches
at a given fixed rate (right part of Fig. 1). Whenever a branching event occurs, the point
is replaced by two new points which then evolves as two independent branching Brownian
motions. While the number of points generated after some time t grows exponentially with
time, the expected position mt of the rightmost point increases only linearly with time [11,
33]. In one dimension, McKean [33] and Bramson [11] have shown that the probability
distribution of the rightmost point is given by the traveling wave solution of the Fisher-KPP
equation, with a step initial condition. Here we will see that all the statistical properties of
the rightmost points can be understood in terms of solutions to the Fisher-KPP equation with
appropriate initial conditions [12]. We will also show that the distribution of the distances
between these rightmost points has a long time limit which exhibits the striking property of
superposability: the distances between the rightmost points of the union of two realizations
of the branching Brownian motion have the same statistics as those of a single realization.

This paper is organized as follows: in Sect. 2 we introduce some generating functions
useful to study random sets of points on the line, from which one can obtain all the proper-
ties of these random sets. In Sect. 3 we show that, for the branching Brownian motion, all
these generating functions are solutions of the Fisher-KPP equation. We also show that the
distribution of all the rightmost points as seen from mt or, alternatively, as seen from X1(t),
has a long time limit which can be computed as the delay of Fisher-KPP traveling waves.
This distribution has the property of superposability. In Sect. 4, we present results, mostly
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numerical, on some specific aspects of the limiting distribution of points in the branching
Brownian motion, namely the distribution of the distance between the two rightmost points
and the average density seen from the rightmost point. In Sect. 5 we explain how the re-
sults on the branching Brownian motion can be extended to more general branching random
walks. Finally, we study in Sect. 6 the distribution of all the rightmost points in a specific
frame which depends on the realization and which was introduced by Lalley and Sellke [29].

2 Statistics of Point Measures on the Line

In this section, we introduce some useful quantities (generating functions) to characterize
random sets of points on the line such that the number n(x) defined as

n(x) = (the number of points on the right of position x) (1)

is finite and vanishes for x large enough.

2.1 The Generating Functions

The first generating function one can define is

ψλ(x) = 〈
λn(x)

〉
. (2)

From the knowledge of this function, one can extract the probability distribution function
pi(x) of the position x of the i-th rightmost point. Indeed, by definition (2) of ψλ,

ψλ(x) =
∑

i≥0

Qi(x)λi, (3)

where Qi(x) is the probability that there are exactly i points on the right of x. One can
notice that Q0(x) + Q1(x) + · · · + Qi−1(x) is the probability to have less than i points on
the right of x. Assuming |λ| < 1, the generating function of these sums is, from (3),

λ

1 − λ
ψλ(x) = Q0(x)λ + [

Q0(x) + Q1(x)
]
λ2 + [

Q0(x) + Q1(x) + Q2(x)
]
λ3 + · · · . (4)

But Q0(x) + Q1(x) + · · · + Qi−1(x) is also the probability that the i-th rightmost point, if
it exists, is on the left of x. Therefore,

λ

1 − λ
∂xψλ(x) =

∑

i≥1

pi(x)λi, (5)

where pi(x)dx is the probability that the i-th rightmost point exists and is in the interval
[x, x + dx]. (Note that

∫
pi(x)dx ≤ 1 is the probability that there are at least i points on the

line.)
The knowledge of ψλ(x) gives in particular the average distances between the points:

from (5), one can see that
∫

dxx∂xψλ(x) = (1 − λ)[〈X1〉 + λ〈X2〉 + λ2〈X3〉 + · · · ],

= 〈X1〉 − λ[〈X1〉 − 〈X2〉] − λ2[〈X2〉 − 〈X3〉] − · · · ,
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where 〈Xi〉 = ∫
xpi(x)dx is the average position of the i-th point (with the convention that

Xi = 0 if there are less than i points in the system). Therefore
∫

dxx
[
∂xψ0(x) − ∂xψλ(x)

] =
∑

i≥1

〈di,i+1〉λi, (6)

where 〈di,i+1〉 = 〈Xi〉 − 〈Xi+1〉 is the average distance between the i-th and the (i + 1)-th
point.

To obtain the correlations between the positions of pairs of points, one can start, for
y < x, from the generating function

ψλμ(x, y) = 〈
λn(x)μn(y)

〉
. (7)

The coefficient in front of λiμj in the expansion of ψλμ in powers of λ and μ is the prob-
ability that there are exactly i points on the right of x and j points on the right of y. As
in (4), the coefficient of λiμj in the expansion of λ/(1 − λ) × μ/(1 − μ) × ψλμ(x, y) is the
probability that there are less than i points on the right of x and less than j points on the
right of y, which is also the probability that the i-th rightmost point (if it exists) is on the
left of x and the j -th rightmost point (if it exists) is on the left of y. Thus, for y < x,

λ

1 − λ

μ

1 − μ
∂x∂yψλμ(x, y) =

∑

i≥1
j>i

pij (x, y)λiμj , (8)

where pij (x, y)dxdy is the probability that both the i-th and j -th rightmost points exist and
lie respectively in the intervals [x, x + dx] and [y, y + dy].

One can generalize (2), (7) by defining, for x0 > x1 > · · · > xk , the generating functions

ψλ0,...,λk
(x0, . . . , xk) = 〈

λ
n(x0)

0 · · ·λn(xk)

k

〉
(9)

of the numbers n(x0), . . . , n(xk) of points on the right of positions x0, . . . , xk , and get as
in (5), (8) all the higher correlation functions. In that way, all the statistical properties of the
measure can be derived from the knowledge of the generating functions (9).

2.2 The Measure Seen from the Rightmost Point

In the following we will often try to characterize the random set of points as seen from the
rightmost point (i.e. in the frame where the rightmost point is at the origin). To do so, let us
define the generating functions of the numbers m(z) of points at the right of z in the frame of
the rightmost point. (Note that if X1 is the position of the rightmost, then m(z) = n(X1 + z)

and one has m(z) ≥ 1 for z < 0 and m(z) = 0 for z > 0.)

χλ1,...,λk
(z1, . . . , zk) = 〈

λ
m(z1)

1 · · ·λm(zk)

k

〉
. (10)

(As in (9), we assume z1 > z2 > · · · > zk .) These generating functions, as in Sect. 2.1, allow
one to calculate all the statistical properties of the measure in the frame of the rightmost
point (in particular the distribution of the relative distances between the points). They can
be determined from the knowledge of the generating functions ψλ0,...,λk

(x0, . . . , xk) defined
in (9) by

χλ1,...,λk
(z1, . . . , zk) =

∫
dx∂x0ψ0,λ1,...,λk

(x, x + z1, . . . , x + zk). (11)
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In Sect. 4 we will calculate the density of probability P12(a) that the two rightmost points
are separated by a distance a (and that there are at least two points on the line) and the
average density ρ(a) at a distance a from the rightmost point. From (10) one can see that

P12(a) = −∂a∂μχμ(−a)|μ=0 = −∂a

∫
dx∂μ∂x0ψ0μ(x, x − a)|μ=0. (12)

Then using that ∂x0ψ0μ(x, x − a) = (∂x + ∂a)ψ0μ(x, x − a), one gets

P12(a) = −∂2
a

∫
dx∂μψ0μ(x, x − a)|μ=0. (13)

By a similar calculation one can show that the average density ρ(a) of points at distance a

from the rightmost point is

ρ(a) = ∂2
a

∫
dx∂μψ0μ(x, x − a)|μ=1. (14)

2.3 Examples

We now describe a few examples of such measures.

2.3.1 A Poisson Process with an Arbitrary Density r(x)

Our first example is a Poisson process on the line with a density r(x). We assume that r(x)

decays fast enough to the right so that a rightmost point exists, and that
∫

r(x)dx = ∞ so
that there are infinitely many points on the line.

By definition of a Poisson process, each infinitesimal interval [x, x + dx] is occupied by
a point with probability r(x)dx and empty with probability 1 − r(x)dx, and the occupation
numbers of disjoint intervals are uncorrelated. The probability Qi(x) that there are exactly
i points on the right of x is given by

Qi(x) = R(x)ie−R(x)

i! where R(x) =
∫ ∞

x

r(z)dz. (15)

From this, we obtain ψλ(x) from (2), (3) and ψλμ(x, y) from (7) in the Poisson process:

ψλ(x) = e−(1−λ)R(x), ψλμ(x, y) = e−μ(1−λ)R(x)−(1−μ)R(y). (16)

Using (6), the generating function of the average 〈di,i+1〉 between the i-th and (i + 1)-th
points is

∑

i≥1

λi〈di,i+1〉 =
∫ ∞

−∞
dx

[
e−(1−λ)R(x) − e−R(x)

]
. (17)

The probability distribution function P12(a) that the distance d1,2 is equal to a and the aver-
age density ρ(a) seen at a distance a from the rightmost point are given by

P12(a) =
∫ ∞

−∞
dxr(x + a)r(x)e−R(x), ρ(a) =

∫ ∞

−∞
dxr(x − a)r(x)e−R(x). (18)

These expressions can be understood directly from the definition of the Poisson process or,
with a little more algebra, from (13), (14). One can notice that P12(a) and ρ(a) are given by
the same expression with a replaced by −a and are therefore analytic continuations of each
other whenever r(x) is analytic.
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2.3.2 A Poisson Process with an Exponential Density e−αx

In the special case where the density of the Poisson process is an exponential r(x) =
exp(−αx), one can simply replace R(x) in the previous expressions by exp(−αx)/α. This
gives

ψλ(x) = exp

[
−(1 − λ)

e−αx

α

]
= exp

[−e−α(x− ln(1−λ)
α )

]
,

ψλμ(x, y) = exp

[
−μ(1 − λ)

e−αx

α
− (1 − μ)

e−αy

α

]
,

(19)

so that from (6)
∑

i≥1

λi〈di,i+1〉 = − ln(1 − λ)

α
, (20)

and thus [12]

〈di,i+1〉 = 1

αi
. (21)

One also has from (18)

P12(a) = αe−αa, ρ(a) = αeαa. (22)

2.3.3 Decorated Measures

Start with a collection of points {ui} distributed according to some measure ν1 and, inde-
pendently for each point ui , replace it by a realization of another measure ν2 shifted by ui .
We say that the points ui are decorated by the measure ν2 and call the resulting measure as
ν1 decorated by ν2.

If the functions ψλ(x), ψλμ(x, y), . . . for the measure ν2 are known, the decorated mea-
sure is characterized by functions 	λ(x), 	λμ(x, y), . . . given by

	λ(x) =
〈∏

i

ψλ(x − ui)

〉

ui

, 	λμ(x, y) =
〈∏

i

ψλμ(x − ui, y − ui)

〉

ui

, (23)

where the average is over all realizations {ui} of the measure ν1. For instance, if ν1 is a
Poisson process of density r(u), then

	λ(x) =
∏

u

[
1 − r(u)du + r(u)ψλ(x − u)du

] = exp

[∫ [
ψλ(x − u) − 1

]
r(u)du

]
,

	λμ(x, y) = exp

[∫ [
ψλμ(x − u,y − u) − 1

]
r(u)du

]
.

(24)

2.3.4 Ruelle Cascades

For a decorated measure where the decoration ν2 is a Poisson process of density e−αx ,
the average over the ui ’s in (23) leads in general to complicated expressions for 	λ(x)

or 	λμ(x, y). The expressions for P12(a) and ρ(a) are however the same as in (22) for the
pure Poisson process of density e−αx . In fact, all the statistical properties of the distances
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between the rightmost points are the same as those in a Poisson process with an exponential
density.

This can be understood from the following reason: decorating the points u1, . . . , uk, . . .

by independent realizations of a Poisson process of density e−αx is equivalent to drawing
a single realization of a Poisson process of density

∑
k e−α(x−uk) = e−αx

∑
k eαuk , which is

just the same as one realization of a Poisson process of density e−αx shifted by the random
variable ln(

∑
k eαuk )/α.

The same argument applies to Ruelle cascades, which can be defined as follows [7, 9,
10, 37]: take an increasing sequence of positive numbers α1 < α2 < · · · and start with a
Poisson process of density e−α1x . At each step k > 1, each point in the system is decorated
by a Poisson process of density e−αkx . At step k, the measure of points in the system is
simply, from the previous argument, a Poisson process of density e−αkx globally shifted by
a random variable which depends on the positions of the points at step k − 1. Therefore, the
statistics of the distances of the rightmost points is the same as for the Poisson process of
density e−αkx .

3 The Branching Brownian Motion and Fisher-KPP Fronts

3.1 The Fisher-KPP Equation

We are now going to see how the generating functions (2), (7), (9) can be determined when
the random set of points on the line are the points generated at time t by a branching Brow-
nian motion.

To define the branching Brownian motion we start at time t = 0 with a single point at the
origin. This point diffuses and branches, and its offspring do the same. After some time t ,
a realization of the process consists of a finite number of points located at positions Xi(t) for
i = 1,2,3, . . . Then, during the next time interval dt � 1, each point, independently of what
the others do, moves a random distance Xi(t + dt) − Xi(t) = ηi(t)

√
2dt with 〈ηi(t)〉 = 0

and 〈ηi(t)
2〉 = 1, and, with probability dt , is replaced by two new points located at the same

position Xi(t).
For any function φ one can define the generating function Hφ(x, t) by

Hφ(x, t) =
〈∏

i

φ
[
x − Xi(t)

]〉
, (25)

where the Xi(t) for i = 1, . . . ,Nt are the positions of the Nt points of the branching Brow-
nian motion at time t and 〈·〉 denotes an average over all the possible realizations.

By analyzing what happens during the very first time interval dt , one can see that the
evolution of Hφ(x, t) satisfies

Hφ(x, t + dt) = (1 − dt)
〈
Hφ(x − η

√
2dt, t)

〉
η
+ dtHφ(x, t)2. (26)

The first term in the right hand side represents the motion of the initial point during the
first time interval dt and the second term represents the branching event which occurs with
probability dt during this first time interval. Taking dt to zero, one gets

∂tHφ = ∂2
xHφ + H 2

φ − Hφ, (27)
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which is the Fisher-KPP equation [21, 28, 33]. (The Fisher-KPP equation is often written
as ∂th = ∂2

xh + h − h2, but this is identical to (27) by the change of variable h = 1 − Hφ .)
Because there is a single point at the origin at time t = 0, the initial condition is simply,
from (25),

Hφ(x,0) = φ(x). (28)

The generating function (9) at time t

ψλ0,...,λk
(x0, . . . , xk) = 〈

λ
n(x0)

0 · · ·λn(xk)

k

〉
(29)

can be written, for 0 > z1 > · · · > zk , as

ψλ0,...,λk
(x, x + z1, . . . , x + zk) =

〈∏

i

φ
[
x − Xi(t)

]〉 = Hφ(x, t), (30)

where the function φ(x) is given by

φ(x) = λ
1−θ(x)

0 λ
1−θ(x+z1)

1 · · ·λ1−θ(x+zk)

k , (31)

and where θ(x) is the Heaviside step function defined by

θ(x) =
{

1 for x ≥ 0,

0 for x < 0.
(32)

See Fig. 2 for the general shape of (31).
With the choice (31) of φ, the generating function (9) and, therefore, all the properties of

the point measure in the branching Brownian motion at time t can be obtained as solutions
of the Fisher-KPP equation with the initial condition (28).

In the special case k = 0 and λ0 = 0 of (31), i.e. for the initial condition φ(x) = θ(x),
one gets

Hθ(x, t) = Proba(There is no point at time t on the right of x), (33)

and one recovers the well-known fact [11, 33] that the solution Hθ(x, t) of the Fisher-KPP
equation with a step initial condition is the cumulative distribution function of the position
of the rightmost point.

In Sect. 4 we will choose φ = φ1 and φ = φ2, other special cases of (31), given by

φ1(x) =
{

1 for x ≥ 0,

λ for x < 0,
φ2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for x ≥ a,

μ for 0 ≤ x < a,

λμ for x < 0,

(34)

Fig. 2 The function (31) for
k = 2
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to calculate the generating functions (2), (7) at time t

ψλ(x) = Hφ1(x, t), ψλμ(x, x − a) = Hφ2(x, t) (35)

needed to determine the distribution P12(a) and the density ρ(a) defined at the end of Sect. 2.

3.2 The Branching Brownian Motion Seen from the Rightmost Point

The Fisher-KPP equation (27) has two homogeneous solutions: Hφ = 1, which is unstable,
and Hφ = 0, which is stable. When the initial condition φ(x) is given by the step function
θ(x), see (32), the solution Hθ(x, t) of (27) becomes a traveling wave with the phase Hθ = 0
invading the phase Hθ = 1 [11, 21, 28]. As the front is an extended object, one can define its
position mt in several ways; for example one could define mt as the solution of Hθ(mt , t) =
α for some 0 < α < 1. Here it will be convenient to use the following definition

mt =
∫

dxx∂xHθ(x, t). (36)

One can see using (33) that mt defined by (36) is the average position of the rightmost point
in the branching Brownian motion.

If the initial condition (28) is not a step function but is such that φ(x) = 1 for all large
enough x and φ(x) is a constant smaller than 1 for all large negative x, as in (31), (34), the
solution Hφ(x, t) of (27) becomes also a traveling wave. Its position m

(φ)
t can be defined as

in (36) by

m
(φ)
t =

∫
dxx∂xHφ(x, t). (37)

We are now going to show that the whole measure seen from the rightmost point can be
written in terms of this position m

(φ)
t : one can rewrite (11) as

χλ1,...,λk
(z1, . . . , zk) =

∫
dx(∂x − ∂z1 − · · · − ∂zk

)ψ0,λ1,...,λk
(x, x + z1, . . . , x + zk),

= ψ0,λ1,...,λk
(x, x + z1, . . . , x + zk)|x=+∞

x=−∞

−
∫

dx(∂z1 + · · · + ∂zk
)ψ0,λ1,...,λk

(x, x + z1, . . . , x + zk),

= 1 + (∂z1 + · · · + ∂zk
)

∫
dxx∂xψ0,λ1,...,λk

(x, x + z1, . . . , x + zk). (38)

Then from (30) and (37) one gets

χλ1,...,λk
(z1, . . . , zk) = 1 + (∂z1 + · · · + ∂zk

)m
(φ)
t , (39)

where φ is the function (31) with λ0 → 0.
Therefore, with the definition (37) of the position of the front, the whole information

about the measure in the frame of the rightmost point, at any time t , can be extracted from
the φ dependence of m

(φ)
t .
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3.3 The Limiting Measure and the Delays

In the long time limit, it is known [11, 39] that the traveling wave solution Hθ(x, t) of (27),
with the initial condition (32), takes an asymptotic shape, F(x). This means that

Hθ(mt + x, t) −−−→
t→∞ F(x), (40)

where F(x) satisfies

F ′′ +2F ′ +F 2 −F = 0, F (−∞) = 0, F (∞) = 1,

∫
dxx∂xF (x) = 0. (41)

It is also known, since the work of Bramson [11], that, in the long time limit, the traveling
wave moves at a velocity 2 and that its position (36) is given by

mt = 2t − 3

2
ln t + Constant + o(1). (42)

If the function φ(x) is not the step function but is of the form (31), (34), the solution
Hφ(x, t) of (27) becomes also a traveling wave with the same shape F(x). This wave is
centered around the position m

(φ)
t , defined in (37), and one has

Hφ

(
m

(φ)
t + x, t

) −−−→
t→∞ F(x). (43)

For large times m
(φ)
t is still given by (42), but with a different constant [11]. This means that

mt − m
(φ)
t −−−→

t→∞ f [φ], (44)

where f [φ] is the long time delay in the position of the front due to the modified initial
condition, as compared to a front starting with a step function. Taken together, (43) and (44)
give

Hφ(mt + x, t) −−−→
t→∞ F

(
x + f [φ]). (45)

Using (30), this becomes

ψλ0,...,λk
(mt + x,mt + x + z1, . . . ,mt + x + zk) −−−→

t→∞ F
(
x + f [φ]), (46)

which shows that the measure of {X1(t) − mt,X2(t) − mt, . . .} (the rightmost points in
the branching Brownian motion seen from the mt frame) does converge when t → ∞ to a
limiting point measure characterized by the functions F(x) and f [φ].

The measure of {X2(t)−X1(t),X3(t)−X1(t), . . .} (the rightmost points in the branching
Brownian motion seen from the X1(t) frame) also has a well-defined limit when t → ∞.
Indeed, using (39) and (44), one gets

χλ1,...,λk
(z1, . . . , zk) −−−→

t→∞ 1 − (∂z1 + · · · + ∂zk
)f [φ]. (47)

Therefore, in the long time limit, all the information on the distribution of the rightmost
points seen from X1(t) is contained in the φ dependence of the delay f [φ].

Note that, in contrast to (39) which requires the position to be defined by (37), the delay
f [φ] in (46) or (47) depends only on φ: it would not change if we had chosen another
definition of the front position.
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3.4 The Superposability of Branching Brownian Motions

Let us now consider M independent branching Brownian motions starting at t = 0 at posi-
tions u1, . . . , uM . Following the same argument as in Sect. 3.1, the generating function (9)
of the union of the points at time t of these M branching Brownian motions is given by the
following generalization of (30)

ψλ0,...,λk
(x, x + z1, . . . , x + zk) =

M∏

α=1

Hφ(x − uα, t), (48)

where Hφ(x, t) is the same solution of (27) with the initial condition (31) as in the case of a
single branching Brownian motion starting at the origin. In the long time limit, using (45),

ψλ0,...,λk
(mt + x,mt + x + z1, . . . ,mt + x + zk) −−−→

t→∞

M∏

α=1

F
(
x + f [φ] − uα

)
. (49)

This means that here again, there is a limiting measure when t → ∞ for the rightmost points
in the mt frame. This measure is not the same as before (when one starts with a single point
at the origin), as can be seen by comparing (49) and (46). In particular, the distribution of
the rightmost point is different.

We now consider the distribution of points in the frame of the rightmost one, in the long
time limit. The integral in the last line of (38) can be written

∫
dxx∂xψ0,λ1,...,λk

(x, x + z1, . . . , x + zk)

= mt − f [φ] +
∫

dxx∂xψ0,λ1,...,λk
(mt + x − f [φ],mt + x − f [φ] + z1, . . . ,

mt + x − f [φ] + zk). (50)

(We made the change of variable x → mt + x − f [φ] and used the fact that ψ is 1 for
x = +∞ and 0 for x = −∞.) From (49), the last term in (50) converges at long times to∫

dxx∂x

∏
α F (x − ua) which does not depend on the parameters zi . The front position mt

does not depend either on the zi , so that only the term −f [φ] survives in the differentiation
in the last line of (38). Finally,

χλ1,...,λk
(z1, . . . , zk) −−−→

t→∞ 1 − (∂z1 + · · · + ∂zk
)f [φ], (51)

as in (47).
It is remarkable that the generating function χ does depend neither on the number M of

starting points nor on their positions uα . The picture which emerges is that if we superpose
several branching Brownian motions, starting at arbitrary positions, the limiting measure
in the frame of the rightmost point is, when t → ∞, the same as for a single branching
Brownian motion.

We will say that, in the long time limit, the measure of the distances between the right-
most points in a branching Brownian motion becomes superposable: the union of two (or
more) realizations of the process (even moved by arbitrary translations uα) leads to the same
measure in the frame of the rightmost point as for a single branching Brownian motion.

As a remark, it is easy to check, that the Poisson process with an exponential density
r(x) = e−αx , see Sect. 2.3.2, is an example of a superposable measure: the superposition of
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M such Poisson processes translated by arbitrary amounts u1, . . . , uM is identical to a single
Poisson process with an exponential distribution translated by α−1 ln(eαu1 + · · · + eαuM ).
One can also check that, for the same reason, all the decorated measures of Sect. 2.3.3 are
superposable when ν1 is a Poisson process with an exponential density.

In Sect. 6, we will state a stronger version of the superposability property of the branching
Brownian motion.

4 Some Quantitative Properties of the Branching Brownian Motion Seen
from the Rightmost Point

In this section we obtain, by integrating numerically (27) with the appropriate initial condi-
tion, some statistical properties of the limiting measure seen from the rightmost point.

4.1 Average Distances Between Consecutive Points

The analytic calculation of the delay f [φ] is in general not easy. For φ = φ1 given by (34),
however, it was possible to show [12] that when 1 − λ � 1, the delay is given by

f [φ1] � − ln(1 − λ) − ln
[− ln(1 − λ)

]+ O(1), (52)

and, from this, one could deduce that, in the long time limit, the average of the distance
di,i+1 between the i-th and the (i + 1)-th rightmost points is given for large i by

〈di,i+1〉 � 1

i
− 1

i ln i
. (53)

In [12], the numerical values of the distances between the rightmost points were also ob-
tained by integrating the Fisher-KPP equation with the initial condition φ1 in (34) and by
using (6) (in practice we integrated numerically the equations satisfied by the coefficients of
the expansion of ψλ(x) in powers of λ). It was found that

〈d1,2〉 � 0.496, 〈d2,3〉 � 0.303, 〈d3,4〉 � 0.219,

〈d4,5〉 � 0.172, 〈d5,6〉 � 0.142, 〈d6,7〉 � 0.121.
(54)

The results (53), (54) gave evidence that the distances between the rightmost points of the
branching Brownian motion were different from those of a Poisson process with an expo-
nential density (21).

4.2 Distribution of the Distance Between the Two Rightmost Points

According to (13), to obtain the distribution P12(a) of the distance between the two
rightmost points, one needs to calculate ψ0μ(x, x − a) to first order in μ. We first re-
mark that at time t for a > 0, ψ00(x, x − a) = Proba[n(x) = 0 and n(x − a) = 0] =
Proba[n(x − a) = 0] = Hθ(x − a, t) where Hθ(x, t) is the standard Fisher-KPP front with
the step initial condition (it is also easy to see from the definition (34) of φ2.) Then writing
at time t that

ψ0μ(x, x − a) = Hθ(x − a, t) + μRa(x − a, t) + O
(
μ2

)
(55)
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Fig. 3 The density of probability P12(a) of observing a distance a between the two rightmost points in the
t → ∞ limit, as a function of a. For a small (left part), the distribution is very close to 2e−2a . For larger

values of a, one observes a faster exponential decay of order e−(1+√
2)a

is solution of the Fisher-KPP equation, and using the initial condition φ2 in (34), one gets

∂tRa = ∂2
xRa − Ra + 2HθRa; Ra(x,0) =

{
1 for −a ≤ x < 0,

0 otherwise.
(56)

Then, from (13) one gets

P12(a) = −∂2
a

∫
dxRa(x, t). (57)

Figure 3 shows our numerical result for the distribution P12(a) of the distance between
the two rightmost points in the long time limit. More details on our numerical procedure are
given in Appendix A.

We see that P12(a) is very close to 2e−2a for the values of a which have a significant
probability of occurring. This is of course consistent with an average distance (54) close to
1/2. For large a (events with a small probability), however, the exponential decay is faster.
We now present a simple argument leading to the following prediction, which is consistent
with our numerical data,

P12(a) ∼ e−(1+√
2)a for large a. (58)

In the long time limit, the right frontier of the branching Brownian motion moves at velocity
v = 2. Let us assume that a large distance a between the two rightmost points is produced
by the following scenario: by a rare fluctuation, the rightmost point escapes and, without
branching, goes significantly ahead while the rest of the points go on as usual, forming a
frontier moving at velocity v = 2. Such an event leads to the distance a between the two
rightmost points if, during a time τ , the rightmost point moves (by diffusion alone) by a
distance a + 2τ without branching. The probability of such a scenario is

Proba(X1 − X2 � a after an escape time τ ) ∼ exp

[
− (a + 2τ)2

4τ

]
× e−τ . (59)

The first term is the probability of diffusing over a distance a + 2τ during time τ , and the
second term is the probability of not branching. The probability to observe a large distance
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a  1 is then dominated by the events with τ chosen to maximize (59), that is

τoptimal = a

2
√

2
, (60)

and this leads to (58) in good agreement with the numerical data of Fig. 3.
There is a remarkable relation between the decay rate in (58) and the shape of the trav-

eling wave solution of (41). Around the stable region F � 0, (41) can be linearized and one
has

F(z) � Cste × erz for z → −∞, with r2 + 2r − 1 = 0. (61)

We emphasize that this is a linear analysis of the stable region, which is usually uninteresting
(in contrast to the unstable region which determines the velocity). The solutions of (61) for
r are

r = −1 ± √
2. (62)

r = −1 +√
2 is the correct root as it is the only positive solution and F(−∞) has to vanish.

The other solution r = −1 − √
2 (the wrong root) coincides (up to the sign) with the decay

rate of the distribution P12(a) for the distance a between the two rightmost points (58).
As explained in Appendix B, this coincidence exists in a broad class of branching pro-

cesses: each variant of the branching Brownian motion is linked to a variant of the Fisher-
KPP equation, and the wrong root in the linear analysis of the stable region always gives the
asymptotic decay rate of P12(a).

4.3 Average Density Seen from the Rightmost Point

To obtain the average density of points at a distance a on the left of the rightmost point, one
needs, according to (14), to calculate ψ0μ(x, x − a) for μ close to 1. As in Sect. 4.2, we
first remark, from the definition (7), that ψ01(x, x − a) = Proba[n(x) = 0] = Hθ(x, t) is the
standard Fisher-KPP front with the step initial condition. Then, writing at time t that

ψ0μ(x, x − a) = Hθ(x, t) − (1 − μ)R̃a(x, t) + O
[
(1 − μ)2

]
(63)

is solution of the Fisher-KPP equation, and using the initial condition φ2 in (34), one gets

∂t R̃a = ∂2
x R̃a − R̃a + 2HθR̃a; R̃a(x,0) =

{
1 for 0 ≤ x < a,

0 otherwise.
(64)

It is the same equation as for Ra in (56), but with a different initial condition. Then, from
(14) one gets

ρ(a) = ∂2
a

∫
dxR̃a(x, t). (65)

One can notice the great similarity between the expressions for the average density ρ(a)

of points at a distance a from the rightmost (64), (65) and the probability distribution P12(a)

for the distance between the two rightmost points (56), (57): one goes from one to the other
by simple changes of signs, as in the example of a Poisson process (18).

Figure 4 presents our numerical results for ρ(a) in the long time limit. We see that ρ(a)

increases as

ρ(a) � Cste × aea for large a. (66)

102 Facsimile of selected publications



434 É. Brunet, B. Derrida

Fig. 4 The average density ρ(a)

of points at a distance a of the
rightmost in the long time limit
grows like aea . When the data is
multiplied by e−a , as shown in
the figure, the linear prefactor is
clearly visible

Note that a Poisson process with such a density would lead to asymptotic distances between
points given by (53). The branching Brownian motion is however not a Poisson process as
the points are correlated, at least near the tip.

5 Generalizations to Other Branching Processes

All the results of Sects. 3 and 4 can be generalized to other branching processes on the line
where points move and branch independently of the positions and of the motions of the other
points. In such systems, the function Hφ(x, t) defined in (25) is also solution of an equation
similar to the Fisher-KPP equation (27). Here are four examples:

(A) The points perform Brownian motions and branch as before, but at each branching event
there is a probability p to branch into three points and 1 − p to branch into two. Then
Hφ(x, t) evolves according to

∂tHφ = ∂2
xHφ + pH 3

φ + (1 − p)H 2
φ − Hφ. (67)

(B) Time is discrete with steps of duration δ; at each time step, a point at position x branches
into two points at positions x + ε1 and x + ε2, where the εi take independent random
values distributed according to some given ρ(ε). The evolution of Hφ(x, t) is then given
by

Hφ(x, t + δ) =
[∫

dερ(ε)Hφ(x − ε, t)

]2

. (68)

In this example, the positions of the points can be thought of as the possible energies of
a directed polymer on a Caley tree with independent random energies ε on the edges of
the tree [19, 35].

(C) Time is continuous but space is discrete with steps 1; during dt , each point at position x

has a probability dt of being removed and replaced by two points at position x + 1. The
equation satisfied by Hφ(x, t) is

∂tHφ(x, t) = Hφ(x − 1, t)2 − Hφ(x, t). (69)

This example is relevant to the theory of binary search trees [31, 32, 36].
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(D) Time and space are discrete with steps s for space and δ for time; in a given time step,
a point at position x has a probability δ of branching into two points at position x, a
probability δ/s2 of jumping to the left, δ/s2 of jumping to the right, and 1 − δ − 2δ/s2

of doing nothing. Then:

Hφ(x, t + δ) = Hφ(x, t) + δ

[
Hφ(x − s, t) + Hφ(x + s, t) − 2Hφ(x, t)

s2

− Hφ(x, t) + Hφ(x, t)2

]
, (70)

which is of course a discretized version of the original Fisher-KPP equation. (70) is
actually the equation we used in our numerical simulations, see Appendix A.

In all cases, these equations have Hφ = 1 as an unstable fixed point, and Hφ = 0 as a stable
fixed point. For initial conditions Hφ(x,0) = φ(x) of the type (31), (32), (34), the func-
tion Hφ(x, t) develops into a traveling wave moving at a specific velocity v∗. We recall
briefly the procedure to determine the asymptotic velocity v∗ of the front (which is also,
through (33), the velocity of the rightmost point in the branching process). One looks for
traveling wave solutions moving at velocity v of the form Hφ(x, t) = F(x − vt) and solve
the linearized equation around the unstable fixed point by writing 1 − F(x) � εe−γ x . This
leads to a relation between γ and v, and the minimal value v∗ of v reached at some γ ∗ is the
velocity selected by the front [39]. (We only consider here cases where the function v(γ )

has a minimum.) For our four examples

(A) v = γ + 1 + p

γ
; v∗ = 2

√
1 + p,

(B) v = 1

γ δ
ln

[
2
∫

dερ(ε)eγ ε

]
,

(C) v = 2eγ − 1

γ
; v∗ � 4.311,

(D) v = 1

γ δ
ln

[
1 + 2δ

cosh(γ s) − 1

s2
+ δ

]
.

(71)

Once the equation for Hφ of a particular branching process is written, one has access
to all the generating functions ψλ(x), ψλμ(x, x − a), etc., see (2), (7), (9), by choosing
the appropriate initial conditions (31), (34) for the front equation. The whole measure in the
frame of the rightmost point is then obtained from (39) at any finite time t . Note that to prove
the existence of a long time limit to the point measure in this frame for a specific branching
process, one would need a version of Bramson’s result (42) for this process which is, to our
knowledge, not known in the general case.

It is natural to ask which properties of the branching Brownian motion can be extended
to other branching processes. If the measure for the distances between the rightmost points
has a long time limit, then the arguments of Sect. 3.4 can be easily generalized and one
can show that it is superposable. We have checked that the analytical argument [12] leading
to the asymptotic expression (53) for the average distances 〈di,i+1〉 at large times can be
extended in case (B) for a large class of densities ρ(ε) and yields

〈di,i+1〉 � 1

γ ∗

(
1

i
− 1

i ln i

)
for large i. (72)

104 Facsimile of selected publications



436 É. Brunet, B. Derrida

We have also checked numerically on examples (C) and (D) that the density at a distance a

of the rightmost point is, as in (66),

ρ(a) � Cste × aeγ ∗a for large a. (73)

For the tail of the distribution P12(a) of the distance a between the two rightmost points,
we discussed a scenario, at the end of Sect. 4.2, which can be generalized (see Appendix B)
to calculate the exponential decay P12(a) for more general branching processes. This sce-
nario, however, can only hold if points can move without branching, as in our examples (A)
and (D); for instance, in example (A), it predicts an exponential with a decay rate equal to√

1 + p + √
2 + p. In examples (B) and (C), the points branch whenever they move and the

tail of P12(a) is in general not an exponential.
Note that special care should be taken if the points are located on a discrete lattice, as

in cases (C), (D) and possibly (B): quantities such as P12(a), see (13), become probabilities
rather than densities of probability and quantities such as ρ(a), see (14), become average
numbers rather than average densities, and all the formulas in the previous sections need
to be adapted: integrals become discrete sums, derivatives become finite differences, etc. If
one interprets n(x) as the number of points strictly on the right of x, then the generating
functions ψλ, ψλμ, . . . are still related to Hφ as in (30), (35) with the choices (31), (34) for
the initial condition φ. Then, for instance, one can show easily that (6) becomes

∑

x

x[ψ0(x) − ψ0(x − s) − ψλ(x) + ψλ(x − s)] =
∑

i≥1

〈di,i+1〉λi, (74)

where s is the lattice spacing. For these systems on the lattice, there are new properties that
can be investigated. As an example, if N is the number of points on the rightmost occupied
site, then it is easy to check that

〈
μN

〉 = 1 +
∑

x

[
ψ0μ(x, x − s) − Hθ(x, t)

]
. (75)

The whole distribution of N can then be determined by numerical integration. In the case of
our example (C), the number N corresponds to the number of leaves at the deepest level in a
binary search tree [36] and we found numerically that, at large times, Proba(N = 2) � 0.50,
Proba(N = 4) � 0.23, Proba(N = 6) � 0.11, Proba(N = 8) � 0.06, etc.

6 Large Time Measure in the Frame of Lalley and Sellke

We recall from the results of Sect. 3.1, see (40) and (33), that the distribution of the rightmost
point is given in the long time limit by

lim
t→∞ Proba

[
X1(t) < mt + x

] = F(x), (76)

where mt is the average position of the rightmost point and is asymptotically given by (42)
and where F is defined in (41). The property (76) is however non-ergodic, as shown by
Lalley and Sellke [29] in the sense that for a single realization of the branching Brownian
motion

[
fraction of the time that X1(t) < mt + x

] �= F(x). (77)
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Fig. 5 Two realizations of the branching Brownian motion up to time t = 20. The horizontal direction rep-
resents space, and time increases downwards. The dotted gray lines are mt and −mt , the average positions
of the rightmost and leftmost points, as measured from (36)

In fact, the left hand side of (77) is not self-averaging and depends on the realization. This
is illustrated in Fig. 5: for the realization on the left, there were few branching events at
early times and the first points wandered to the left, leading at larger times to an asymmetric
picture. For the realization on the right of Fig. 5, there were many branching events early.
For the right realization, the rightmost point is almost always on the right of mt while it is
almost always on the left of mt in the left realization.

Visually, these strong memory effects of the early stages of the branching Brownian
motion do not seem to decay with time, and it looks like the fluctuating right frontier of the
system settles at some random fixed distance C from mt :

X1(t) = mt + C + η1(t) for large t , (78)

where C would depend on the realization but not the time, and where η1(t) would be a time-
dependent random number centered around zero. A natural question is whether it is possible
to define C for each realization in such a way that the distribution of η1(t) becomes in the
long time limit independent of C and t , the idea being that the branching Brownian motion
at long times seen from mt + C would “look the same” for any realization, whatever is the
value of C.

A related question was addressed by Lalley and Sellke [29] in the following way: for
each realization of the branching Brownian motion, define Z as

Z = lim
t→∞Zt where Zt =

∑

i

[
2t − Xi(t)

]
eXi (t)−2t . (79)

(The sum is over all the points Xi(t) present at time t .) As shown in [29], Zt has a limit
Z for almost every realization; that limit is finite and positive. Lalley and Sellke prove then
a limit theorem for the frontier of the branching Brownian motion which we interpret as
follows:

lim
t→∞ Proba

(
X1(t) < mt + x|Z) = exp

(−AZe−x
) = exp

(−e−[x−ln(AZ)]), (80)

where A is a constant related to the large x behavior of F(x), see (102). This means that,
if one considers only the realizations of the branching Brownian motion with a given value
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of Z, then the large time distribution of the rightmost point is given by a Gumbel located
around mt + ln(AZ). To make the link with (78),

C = ln(AZ), Proba(η1 < x) = exp
(−e−x

)
. (81)

In Appendix C, we recall more precisely the theorem stated by Lalley and Sellke and we
argue that (80) should be equivalent to their result.

A natural extension to Lalley’s and Sellke’s result is to write for all the points i

Xi(t) = mt + ln(AZ) + ηi(t), (82)

as in (78), and ask whether the joint distribution of η1(t), η2(t), η3(t), . . . reaches a long
time limit which is independent of the value of Z. We show in Appendix C that Lalley’s and
Sellke’s result can be extended to all the generating functions Hφ . Our interpretation of this
extension is

lim
t→∞

〈∏

i

φ
(
mt + x − Xi(t)

)
∣∣∣∣Z

〉
= exp

(−AZe−x−f [φ]) = exp
(−e−[x−ln(AZ)+f [φ]]), (83)

where the delay function f [φ] is the same as in (45). By choosing φ = θ (the step function),
(83) reduces to (80). By choosing φ as in (31), one sees from (83) that the distribution of
points at the right of the branching Brownian motion conditioned by Z reaches a long time
limit where Z only appears through the global shift ln(AZ). This means that at large times,
the distribution of the rightmost points in a branching Brownian motion has a well defined
measure independent of Z located around mt + ln(AZ).

As an example, if one chooses the function φ1 defined by (34), one can easily show from
(83) and (52) that, in the mt + ln(AZ) frame, the average density of points at any position
diverges in the long time limit.

6.1 Superposability Property

If one considers two branching Brownian motions a and b starting at arbitrary positions, then
the points in a at large time will be characterized by a random value Z(a) and a realization
of the point measure described by (83); idem for the points in b. If one considers the union
of these two branching Brownian motions, one gets from (83)

lim
t→∞

〈∏

i

φ
(
mt + x − Xi(t)

)
∣∣∣∣Z

(a),Z(b)

〉
= exp

(−AZe−x−f [φ]) = exp
(−e−[x−ln(AZ)+f [φ]]),

(84)
with Z = Z(a) +Z(b). This means that the point measure reached in the long time limit in the
mt + ln(AZ) frame is the same whether one started initially with one, two or, by extension,
any finite number of initial points at arbitrary positions on the line. What does depend on the
initial number of points is only the law of the random number Z, not the positions around
mt + ln(AZ). This is to be related to the discussion in Sect. 3.4, where we showed that, in
the long time limit, the measure seen from mt depends on the initial number of points while
the measure seen from X1(t) does not.
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Furthermore, the large time measure of the points in the mt + ln(AZ) frame has the
following property:

Starting with two realizations {η(a)
i } and {η(b)

i }, then for any
pair of real numbers α and β , the set of points {η(a)

i + α} ∪
{η(b)

i + β} is another realization of the same measure shifted
by ln(eα + eβ). (85)

(Think of {η(a)
i } as the offspring of a in the mt + ln[AZ(a)] frame and of α as lnZ(a); idem

for b. The shifts α and β are arbitrary because Z(a) and Z(b) are unbounded independent
random numbers.)

The property (85) of the point measure in the mt + ln(AZ) frame is a stronger version of
the superposability property discussed in Sect. 3.4: clearly, it implies that the distribution of
distances between the rightmost points is invariant by superposition, but it gives more infor-
mation on the measure as it encompasses the position of the rightmost point. In particular,
one can check that, in any such measure, the rightmost point is Gumbel distributed.

The simplest point measure with the property (85) is the Poisson process with an ex-
ponential density Ke−x , for an arbitrary K . Furthermore, all the decorated measures of
Sect. 2.3.3 when ν1 is a Poisson process with an exponential density Ke−x are also super-
posable measures. A natural question is then: can any superposable point measure be con-
structed as a decorated exponential Poisson process for a well chosen decoration measure?
As shown recently [30], the answer is yes. In particular, the distribution of the rightmost
points in a branching Brownian motion seen in the mt + ln(AZ) frame converges to a deco-
rated exponential Poisson process, and the decoration has a simple interpretation: it is known
[4, 15, 19] that if one considers two points among the rightmost points in a branching Brow-
nian motion at a large time t , then the time one needs to go back to find their most recent
common ancestor is either very short (of order 1) or very long (of the order of the age t of the
system). This means that one can group the rightmost points into families where two points
belong to the same family if the branching event that generated them occurred recently. The
branching Brownian motion can then be seen as a decorated exponential Poisson process,
where the positions of all the families are distributed according to the Poisson process [4, 5]
and where the members of a given family form the decoration. This interpretation helps to
understand a question raised by our previous work [12]: the distances between points in the
branching Brownian motion are given by (53), (54), but if one keeps for each family only
its leader, then the distances between these leaders are given by (21) with α = 1, as in the
GREM or in the Ruelle cascade, see Sect. 2.3.4.

7 Conclusion

In the present work, we have shown that all the statistical properties of the rightmost points
in a branching Brownian motion can be obtained by solving a front equation with a well-
chosen initial condition. The distribution of the positions of the rightmost points seen in the
frame mt (the average position of the rightmost) has a long time limit. The properties of the
limiting distribution can be expressed as the long time delays of the traveling wave solution
of the Fisher-KPP equation when one varies the initial condition. This limiting distribution
is however modified if one considers the union of several branching Brownian motions.

If one considers, however, only the distances between the points, for example if one
looks at the distribution of all the positions of the rightmost points seen in the frame of the
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rightmost one, one obtains at large times another limiting distribution which does not depend
on the initial positions of the branching Brownian motions (as long as there are finitely many
of them). We called this property superposability.

In Sect. 4 we have measured a few properties of this limiting distribution, and in Sect. 5
we explained how our results can be extended to more general branching random walks.
Lastly, in Sect. 6, we argued that in the Lalley and Sellke frame, the branching Brownian
motion satisfies a stronger version (85) of the superposability property, and that the distri-
bution of points can be described by a decorated exponential.

In the future, it would be interesting to characterize more precisely the limiting measure
of the branching Brownian motion and of the branching random walks to see whether some
universal properties emerge. For example, we believe that the average density seen from the
rightmost point should always grow as in (73). It would also be interesting to determine
the properties of the decorating measure in Lalley’s and Sellke’s frame. The question of
ergodicity, raised at the beginning of Sect. 6, is also an interesting open question.

Acknowledgements We would like to thank Julien Berestycki and Simon Harris for interesting discus-
sions.

Appendix A: Numerical Simulations

We performed the numerical simulations by discretizing the branching Brownian motion in
space (with a grid length δ) and time (with steps s) as in the example (D) of Sect. 5. The
corresponding front equation is given by (70), which is of course the most straightforward
discretization of the Fisher-KPP equation (27). The solutions to the discrete equation (70)
converge to the solutions of the Fisher-KPP equation (27), if s → 0 with δ/s2 held constant
and small enough.

We used three sets of values for s and δ and computed the exact asymptotic velocity v∗ of
the front and the decay rate γ ∗ of the asymptotic shape F(x) by minimizing numerically the
function v(γ ) given in (71D). The decay rate β for the probability of observing a distance a

between the two rightmost points, see (58), was computed using the recipe given at the end
of Sect. 4.2 and explained in Appendix B. All these values are presented in Table 1.

The simulations were made on a finite but large domain centered around the position
of the front; typically it extended to about a distance 1000 ahead and behind the center of
the front (respectively 4000, 10000 or 20000 lattice sites depending on s). The values at
x = ±∞ were exactly computed and used for the boundaries of the domain. Whenever the
front moved by more than one unit space lattice, the whole data set was recentered. The
simulations were performed up to large times of order 10000 (0.8 to 24 millions of time
steps) and the data was extrapolated to obtain a value at t = ∞. To do this extrapolation, we

Table 1 Values of v∗, γ ∗ and β for our discretized branching processes, compared to the values in the
Fisher-KPP case

s δ v∗ γ ∗ β

0.25 s2/5 = 0.0125 1.980480133 1.004581693 2.387337826

0.10 s2/5 = 0.002 1.996840367 1.000747277 2.409772891

0.05 s2/6 � 0.000416667 1.999375296 1.000104046 2.412897517

Fisher-KPP 2 1
√

2 + 1 = 2.414213562
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Fig. 6 Average density at a
distance 30 from the rightmost
point as a function of time
(symbols), fitted for t ≥ 5000 by
the function A + B/t + C/t3/2

(line). The inset shows the
quality of the fit by displaying the
ratio between the data points and
the fitting function

used a more precise asymptotic expansion of the position of the front than (42): according
to [20],

mt = v∗t − 3

2γ ∗ ln t + Constant + a1/2

t1/2
+ a1

t
+ a3/2

t3/2
+ · · · , (86)

where the number a1/2 does not depend on the initial condition. As we measure the delay
mt − m

(φ)
t , many terms cancel and one gets

mt − m
(φ)
t = f [φ] + δa1

t
+ δa3/2

t3/2
+ · · · . (87)

All the quantities measured are derivatives of f [φ], see (47), and have therefore the same
large time expansion as (87). Thus, we extrapolated our numerical data to the large time
limit by fitting it with the function A + B/t + C/t3/2 for times larger than (typically) 5000,
see Fig. 6, and by using A as the end result.

On Fig. 3, the data points for the three values of s are shown together. On Fig. 4, we have
drawn together for each value of s the function ρ(a)e−γ ∗a using in each case the value of
γ ∗ of Table 1. In both cases, the agreement between the three values of s is very good, and
so we expect that on the scales of the figure, the curves would not change noticeably for
smaller values of s and δ.

Appendix B: Distribution of the Distance Between the Two Rightmost Points

In this appendix we generalize, to any branching random walk, the argument leading to the
asymptotic decay (58) of the distribution of the distance between the two rightmost points
in the branching Brownian motion.

We consider a generic branching random walk in discrete space (with spacing s) and time
(with intervals δ) defined by the following family of functions

pn(r1, . . . , rn) =
(The probability that a point at position x branches

during a time step into n points located at positions
x + r1, . . . , x + rn.

)

. (88)
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We assume that p0 = 0, so that there is no extinction. Then p1(r) can be thought as the
probability that the point does not branch but moves by a distance r . The continuous time
and/or space cases can be obtained as suitable s → 0 and/or δ → 0 limits.

Let exp[tg(β)] be the generating function of the displacement during time t of one point
conditioned on the fact that this point does not branch:

etg(β) =
∑

r

eβr Proba(the point moves a distance r without branching during time t ).

(89)
As the time steps are independent, the function g(β) can be computed during the time inter-
val δ which gives

eδg(β) =
∑

r

p1(r)e
βr . (90)

Note that g(0) < 0 as soon as the branching probability is non-zero. We want now to evaluate
the probability that a point moves a distance r , without branching, during time t . For large
t , it takes the form

Proba(the point moves a distance r without branching during time t) ∼ exp

[
tf

(
r

t

)]
,

(91)

where f (c) is a large deviation function. Using (89), one finds that f (c) and g(β) are related
by a Legendre transform

{
β = −f ′(c),

g(β) = f (c) + βc.
(92)

Now, assuming as in Sect. 4.2 that the events which contribute most to a large distance
a between the two rightmost points are those where the rightmost point moves, without
branching, a distance a ahead of the frontier of the branching Brownian motion, one gets

P12(a) ∼ max
τ

{
exp

[
τf

(
a + v∗τ

τ

)]}
, (93)

where v∗ is the velocity of the front. For large a, the optimal τ is also large and it satisfies,
by derivation,

f

(
a

τ
+ v∗

)
− a

τ
f ′
(

a

τ
+ v∗

)
= 0. (94)

Let c = a/τ + v∗. Using (92), (94) becomes

g(β) = βv∗. (95)

Remarkably, this equation does not depend on a. Replacing into (93) gives

P12(a) ∼ e−βa. (96)

The asymptotic decay rate of the probability distribution function of the distance between
the two rightmost points is therefore simply the positive solution β of (95) with g(β) given
by (90). In the branching Brownian motion, g(β) = β2 −1, v∗ = 2, so that (95) gives indeed
β = 1 + √

2.
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As can be checked easily from (90), the function g(β) is convex. Therefore, as g(0) < 0,
(95) has at most one positive solution and at most one negative solution. The positive solu-
tion is the relevant one here.

We are now going to show that the negative solution of (95), if it exists, gives the asymp-
totic shape of the associated traveling wave. We write the front equation associated to the
branching point process (88). Using the same method as in Sect. 3, we find

Hφ(x, t + δ) =
∑

n≥1

∑

r1,...,rn

pn(r1, . . . , rn)

n∏

i=1

Hφ(x − ri). (97)

We look at the shape F of the traveling wave solution for a step initial condition, which
moves asymptotically at the velocity v∗:

Hφ(x, t) = F
(
x − v∗t

)
. (98)

Using (97), we see that in the stable region F(x) � 1 one has

F
(
x − v∗δ

) =
∑

r

p1(r)F (x − r) + O
(
F 2

)
. (99)

We look for an exponential solution to this linearized equation: F(x) � eλx with λ > 0, as
F(−∞) = 0. (Note that a periodic modulation of this exponential could occur as r takes
only discrete values.) Inserting into (99) and using (90), one finds that the equation for λ is

g(−λ) = −λv∗, (100)

which is the same equation as (95) for λ = −β .
To summarize, a positive solution to (95) gives the exponential decay rate of the probabil-

ity distribution of the distance between the two rightmost points, see (96), while a negative
solution gives the coefficient −λ governing the shape of the front F(x) in the stable region
F(x) � 1.

Appendix C: Lalley’s and Sellke’s Result

Lalley’s and Sellke’s theorem [29] is

lim
s→∞ lim

t→∞ Proba
(
X1(t) < mt + x|{Xi(s)

}) = exp
(−AZe−x

)
, (101)

where A is the constant appearing [11] in the large x expansion of the function F(x) defined
in (41)

F(x) � 1 − (Ax + B)e−x for large x, (102)

and Z is defined in (79). In words, given the positions {Xi(s)} at time s, there is a t → ∞
limit to the probability that the rightmost is on the left of mt + x which depends, obviously,
on the {Xi(s)} and is as such a random variable. As s goes to infinity, this random variable
converges almost surely to the Gumbel distribution around ln(AZ).

This result can be extended into the following: for any suitable function φ (see Sect. 3.2),
one has

lim
s→∞ lim

t→∞

〈∏

i

φ
[
mt + x − Xi(t)

]
∣∣∣∣
{
Xi(s)

}〉 = exp
(−AZe−x−f [φ]), (103)

where f [φ] is the delay function (45). For φ = θ , (103) reduces to (101).
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We now give an outline of Lalley’s and Sellke’s proof applied to the case (103). Given the
positions Xi(s) of the points at time s, the system as time t > s can be seen as a collection
of independent branching Brownian motions at time t − s starting from the Xi(s). Therefore

〈∏

i

φ
[
x − Xi(t)

]
∣∣∣∣
{
Xi(s)

}〉 =
∏

i

Hφ

(
x − Xi(s), t − s

)
, (104)

where the product in the right hand side is made on all the points present at time s.
We replace x by mt + x, to center around the position of the front, and suppose t large. It

is easy to see from Bramson’s formula (42) that mt = mt−s + 2s + o(1) as t becomes large,
so that
〈∏

i

φ
[
mt + x − Xi(t)

]
∣∣∣∣
{
Xi(s)

}〉 =
∏

i

Hφ

(
mt−s + 2s + x − Xi(s) + o(1), t − s

)
, (105)

and, using (45),

lim
t→∞

〈∏

i

φ
[
mt + x − Xi(t)

]
∣∣∣∣
{
Xi(s)

}〉 =
∏

i

F
(
2s + x − Xi(s) + f [φ]). (106)

We now take s large. Of all the points present at time s, the rightmost is around 2s − 3
2 log s,

see (42). Therefore, 2s − Xi(s) diverges for all i. Using (102),

lim
t→∞

〈∏

i

φ
[
mt + x − Xi(t)

]
∣∣∣∣
{
Xi(s)

}〉

� exp

(
−
∑

i

[
A
(
2s + x − Xi(s) + f [φ])+ B

]
e−2s−x+Xi(s)−f [φ]

)
. (107)

Following Lalley and Sellke, we introduce the quantities

Ys =
∑

i

e−2s+Xi(s), Zs =
∑

i

[
2s − Xi(s)

]
e−2s+Xi(s), (108)

see (79), so that

lim
t→∞

〈∏

i

φ
[
mt + x − Xi(t)

]
∣∣∣∣
{
Xi(s)

}〉 � exp
(−[

AZs + (
Ax + Af [φ] + B

)
Ys

]
e−x−f [φ]).

(109)
Finally, the most technical part of Lalley’s and Sellke’s proof is that Ys and Zs are mar-
tingales converging when s → ∞ to lims→∞ Ys = 0 and lims→∞ Zs = Z > 0 respectively,
which leads to (103). We do not reproduce this part of the proof here as it does not concern
our extension with the function φ and it works in (103) exactly as in (101).

In (103), the average is made on all the realizations with a given set {Xi(s)} of points at a
large time s but the only relevant quantity appearing in the generating function (109) is Zs .
One would obviously have reached the same result if one had conditioned by Zs instead of
by the {Xi(s)}. Furthermore, as Zs converges quickly to Z, as illustrated on Fig. 5, we argue
that conditioning by Zs at a large time s or directly conditioning by Z should be equivalent,
hence (80), (83).
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Abstract For a simple one dimensional lattice version of a travelling wave equation, we
obtain an exact relation between the initial condition and the position of the front at any later
time. This exact relation takes the form of an inverse problem: given the times tn at which the
travelling wave reaches the positions n, one can deduce the initial profile.We show, bymeans
of complex analysis, that a number of known properties of travelling wave equations in the
Fisher–KPP class can be recovered, in particular Bramson’s shifts of the positions. We also
recover and generalize Ebert–van Saarloos’ corrections depending on the initial condition.

Keywords Fisher–KPP · Front equation · Travelling wave

1 Introduction

The study of the solutions of partial differential equations describing a moving interface from
a stable to an unstable medium is a classical subject [1–5] in mathematics, theoretical physics
and biology [6–9]. The prototype of such equations is the Fisher–KPP equation (after Fisher
[10] and Kolmogorov–Petrovskii–Piskunov [11])

∂u

∂t
= ∂2u

∂x2
+ f (u), (1)

where the field u satisfies 0 ≤ u(x, t) ≤ 1 and where f (u) ≥ 0. The unstable medium
corresponds to u = 0 (i.e. f (0) = 0 and f ′(0) > 0) and the stable one to u = 1 (i.e.
f (1) = 0 and f ′(1) < 0).
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802 É. Brunet, B. Derrida

One can show that equations of type (1) exhibit a continuous familyWv of travelling wave
solutions

u(x, t) = Wv(x − vt) (2)

indexed by their velocities v. Explicit expressions of the travelling waves are in general not
known except for particular velocities [12]. The best known example, due to Ablowitz and
Zeppetella [13], is u = [

1 + c exp[(x − vt)/
√
6]]−2 for the Fisher–KPP equation (1) with

f (u) = u − u2 and v = 5/
√
6.

Apart from describing the shapes of these travelling wave solutions (2), a central question
is to understand how the long time behavior of the solutions of (1) depends on the initial
condition u(x, 0). In general this asymptotic regime is controlled by the rate of the exponential
decay of this initial condition. A brief review of the properties of the travelling wave solutions
of (1) and on the way the position and the asymptotic velocity of the solution depend on the
initial condition is given in Sect. 2.

In the present paper we study a simple one dimensional lattice version of a travelling wave
equation. In this lattice version we associate to each lattice site n ∈ Z a positive number hn(t)
which plays the role of the field u(x, t) and these hn(t) evolve according to

dhn(t)

dt
=

{
ahn−1(t) + hn(t) if 0 ≤ hn(t) < 1,

0 if hn(t) ≥ 1.
(3)

We see that the evolution of hn(t) is linear except for the saturation at hn(t) = 1 which is the
only non-linearity in the problem. This saturation simply means that whenever hn(t) reaches
the value 1, it keeps this value forever. The evolution (3) therefore combines linear growth,
spreading (or diffusion) because of the coupling between neighboring sites, and saturation,
very much like in Fisher–KPP equation (1).

The aim of this paper is to show that the evolution (3) leads to behaviors very similar to
those expected for the usual Fisher–KPP equation (1). Moreover a number of properties of
the solutions of (3) are easier to determine than for the original Fisher–KPP equation (1).
Our approach is essentially based on the exact relation (32) derived in Sect. 3 which relates
the times tn at which hn(t) reaches 1 for the first time to the initial condition hn(0). We show
in Sect. 4 that from (32) one can obtain a precise description of the shape of the travelling
wave solutions, in particular explicit formulas for their asymptotic decay. We also show in
Sect. 5 that (3) shares with the Fisher–KPP equation most of the properties expected for the
dependence of the position of the front on the initial condition. Our results are summarized
in Sect. 6.

2 Some Known Properties of the Fisher–KPP Class

In this section we briefly recall some properties of the Fisher–KPP equation.

2.1 The Travelling Waves

For the Fisher–KPP equation (1) the shape Wv(x) of the travelling wave (2) satisfies an
ordinary differential equation

W ′′
v + vW ′

v + f (Wv) = 0 (4)
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with the boundary conditions Wv(−∞) = 1 and Wv(+∞) = 0. By linearizing (4) for small
Wv (when x is large),

W ′′
v + vW ′

v + f ′(0)Wv = 0, (5)

one can see that, generically, Wv(x) vanishes exponentially as x → ∞
Wv(x) ∼ e−γ x , (6)

with γ related to the speed v of the travelling wave by

v(γ ) = γ + f ′(0)
γ

. (7)

This relation shows that depending on v, the rate γ of the exponential decay is either
real or complex, and these two regimes are separated by a critical velocity vc where v(γ ) is
minimum

vc = v(γc) where v′(γc) = 0. (8)

With v(γ ) given by (7), one gets vc = 2γc and γc = √
f ′(0). Under certain conditions on

the function f (u) (such as 0 ≤ f (u) ≤ u f ′(0) for all u see [4,5,14] and references therein),
it is known that:

• For 0 < v < vc, the solutionsγ of the equation v(γ ) = v are complex. The corresponding
travelling waves solutions of (4) oscillate around 0 while decaying as x → ∞.

• For v > vc, the travelling wave is monotonically decreasing and decays for large x as

Wv(x) 
 A e−γ1x with A > 0, (9)

where γ1 is the smallest solution of v(γ ) = v.
• For v = vc, the equation v(γ ) = vc has a double root γc and the travelling wave is

monotonically decreasing and decays for large x as

Wvc (x) 
 A x e−γcx with A > 0. (10)

Remark 1 The facts (9) and (10) for v ≥ vc are not obvious and cannot be understood from the
linearized equation (5) only. These are properties of the full non-linear equation (4),which can
be proved under known conditions on the non-linearity f (u) (such as 0 ≤ f (u) ≤ u f ′(0)).
Fronts which satisfy these properties are called pulled fronts.

For well tuned non-linearities (which fail to satisfy these conditions), travelling waves
for v ≥ vc might not be monotone and the asymptotics (9) and (10) might be modified; for
instance in (9), depending on the value of v, one could have A < 0 or a decay in exp(−γ2x)
where γ2 is the largest solution of v(γ ) = v. Rather than (10), one could have A exp(−γcx)
without the x prefactor. In all these cases, the front equation is then said to be pushed [14,15].

2.2 The Selection of the Velocity

The travelling waves Wv solutions of (4) move at a constant speed with a time independent
shape. For general initial conditions u(x, 0), the shape of the solution is time-dependent and
the question of the selection of the speed is to predict the asymptotic shape and velocity of the
solution u(x, t) in the long time limit. For initial profiles decreasing from u(−∞, 0) = 1 to
u(+∞, 0) = 0 it is known since the works of Bramson [4,5,9,14,16] under which conditions
the shape of the solution u(x, t) converges to a travelling waveWv solution of (4) in the sense
that one can find a displacement Xt such that

u(Xt + x, t) → Wv(x), with
Xt

t
→ v. (11)
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In particular it is known that if the initial condition u(x, 0) satisfies for large x :

• u(x, 0) ∼ e−γ x with 0 < γ < γc,
then the asymptotic velocity is v(γ ), the asymptotic shape is Wv(γ ) and

Xt = v(γ )t + Cst. (12)

• u(x, 0) � xαe−γcx for some α < −2 (in particular for step initial conditions),
the asymptotic velocity is vc = v(γc), the asymptotic shape is Wvc and

Xt = vct − 3

2γc
ln t + Cst. (13)

• u(x, 0) ∼ xαe−γcx with α ≥ −2,
the asymptotic velocity vc and shape Wvc are the same as in the previous case but the
logarithmic correction to the position Xt is modified:

Xt = vct − 1 − α

2γc
ln t + Cst for α > −2, (14)

Xt = vct − 3

2γc
ln t + 1

γc
ln ln t + Cst for α = −2. (15)

(Initial conditions decaying too slowly would not lead to a travelling wave.)
Notice that the solutionsWv of (4) can always be translated along the x axis, so the “Cst”

in (12–15) depends on the particular solution of (4) that was chosen. It is often convenient
to single out one particular solution Wv of (4): for example one may select the solution such
that Wv(0) = 1/2 or such that

∫
xW ′

v(x) dx = 0. Once a particular prescription for Wv is
chosen, the “Cst” in the equations above is well defined. It can be computed in some cases
such as (12), but its analytic expression is not known in some other cases such as (13).

2.3 Vanishing Corrections

The convergence property (11) does not allow to define the displacement Xt to better than
a constant: if Xt satisfies (11), then Xt + o(1) also satisfies (11). It is however quite natural
to choose a particular Xt , which one might call the position of the front. A possible choice
could be

u(Xt , t) = c, (16)

where c ∈ (0, 1) is a fixed given number. Another possible choice would be to interpret
−∂u/∂x as a probability density and pick Xt as its expectation:

Xt = −
∫

dx x
∂u

∂x
. (17)

Either definition (16) or (17) gives a position Xt which satisfies (11). With such a precise
definition for Xt as (16) or (17), it makes sense to try to improve on (12–15) and determine
higher order corrections. Ebert and van Saarloos [17,18] have claimed that for steep enough
initial conditions, the first correction to (13) is of order t−1/2 and is universal: it depends
neither on the initial condition, nor on the choice of (16) or (17), nor on the value c in (16),
nor on the non-linearities. They found that

Xt = vct − 3

2γc
ln t + Cst − 3

√
2π

γ 5
c v′′(γc)

t−1/2 + · · · . (18)
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2.4 The Fisher–KPP Class

Themain ingredients of the Fisher–KPP equation (1)which lead to travellingwaves and fronts
converging to those travelling waves are a diffusive term, a growth term and a saturation term.
There existmany equationswith the same ingredientswhich share the above properties (8–18)
of the Fisher–KPP equation: the equation satisfied by the travelling waves (4), the dispersion
relation (7) and the values of γc and vc are modified, but everything else remains the same.

To give an example which appears in the problem of directed polymers on a tree [6], let
us consider an evolution equation of the type

G(x, t + 1) =
∫

G(x + ε)Bρ(ε) dε. (19)

(In the directed polymers context, B is the branching ratio on the tree and ρ(ε) is the distri-
bution of the random energies associated to edges of the tree). Then u(x, t) = 1 − G(x, t)
satisfies a discrete time evolution equation with an unstable uniform solution u = 0 and a
stable one u = 1 as in (1). Even though (1) is continuous in time while (19) is discrete, they
have similar properties: travelling waves for (19) are solutions of

Wv(x − v) =
∫

Wv(x + ε)Bρ(ε) dε (20)

instead of (4). By linearizing the evolution of G(x, t) around the unstable uniform solution
G = 1 and by looking for travelling wave solutions of this linearized equation of the form
1− G(x, t) ∼ exp[−γ (x − v(γ )t)], one gets a new dispersion equation which replaces (7):

v(γ ) = 1

γ
ln

[
B

∫
eγ ερ(ε) dε

]
, (21)

but all the above behaviors (8–18) remain valid with vc and γc computed from (21) and (8).
For example, for B = 2 and a uniform ρ(ε) on the unit interval (i.e. ρ(ε) = 1 for 0 < ε < 1
and ρ(ε) = 0 elsewhere) one gets, v(γ ) = 1

γ
ln

[ 2
γ
(eγ − 1)

]
which leads to vc 
 0.815172

and γc 
 5.26208.
Example (19) is a front equation where time is discrete. One could also consider travelling

wave equations where space is discrete, say x ∈ Z. For instance, one could discretize the
Laplacian in (1) or take (19) with a distribution ρ(ε) concentrated on integer values of ε.
When space is discrete, special care should be taken: it is clear from (2) that while the front
u(x, t) lives on the lattice, the travelling wave Wv(x) is defined for all real values x , and
even when (2) holds, the shape of the front Wv(x − vt) measured on the lattice evolves
periodically in time with a period 1/v. Furthermore, the convergence (11) no longer makes
any sense. One can still try to define a specific position of Xt by something like the following
generalization of (17):

Xt =
∑

x∈Z
x
[
u(x, t) − u(x + 1, t)

]
, (22)

but with such a definition, even if the front is given by the travelling wave Wv(x − vt), the
difference Xt − vt is no longer constant but becomes a periodic function in time because
the shape of the front on the lattice evolves also periodically. Similarly, in the discrete space
case, the Cst term in all the asymptotics (12–15) is in general replaced by a periodic function
of time.

An alternative way to locate the front when time is continuous and space is discrete is to
invert the roles of x and t : instead of defining Xt by u(Xt , t) = c as in (16), one can define
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tx as the first time when the front at a given position x reaches a certain level c:

u(x, tx ) = c. (23)

Note that when time and space are continuous, the functions Xt and tx are reciprocal and one
can write (12–15) as

tx = x

v(γ )
+ Cst′, for u(x, 0) ∼ e−γ x with 0 < γ < γc,

(24)

tx = x

vc
+ 3

2γcvc
ln x + Cst′, for u(x, 0) � xαe−γcx for some α < −2,

(25)

tx = x

vc
+ 1 − α

2γcvc
ln x + Cst′, for u(x, 0) ∼ xαe−γcx for α > −2, (26)

tx = x

vc
+ 3

2γcvc
ln x − 1

γcvc
ln ln x + Cst′, for u(x, 0) ∼ x−2e−γcx , (27)

and, for steep enough initial conditions, one can write (18) as

tx = x

vc
+ 1

γcvc

[
3

2
ln x + Cst′ + 3

√
2πvc

γ 3
c v′′(γc)

x−1/2 + · · ·
]

. (28)

The main advantage of (24–28) over (12–15,18) is that they still make sense when space is
discrete (with a real constant Cst′, not a periodic function of time). We will see that they
remain valid for our lattice model (3).

3 The Key Formula for the Position of the Front

In this section we consider the front hn(t) defined by (3) and we establish relation (32)
between the initial condition hn(0) and the first times tn at which hn(t) reaches the value 1.
Here we limit our discussion to the case a > 0 and to initial conditions of the form

hn(0) =
{
1 for n ≤ 0,

kn for n ≥ 1,
(29)

where the kn are non-negative, smaller than 1 and non-increasing, i.e.

1 > k1 ≥ k2 ≥ k3 ≥ · · · ≥ 0. (30)

Clearly, as a > 0, for a monotonic initial condition (30), the solution hn(t) of (3) remains
monotonic at any later time. One can define tn as the time when hn(t) reaches 1 for the first
time (i.e. hn(t) = 1 for t ≥ tn while hn(t) < 1 for t < tn). The monotonicity (30) of the
initial condition implies the monotonicity of the times tn

0 < t1 < t2 < · · · < tn < · · · (31)

Most of the properties of the solutions of (3) with the initial conditions (29) discussed in
this paper will be based on the following exact formula
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∞∑

n=1

knλ
n = − aλ

1 + aλ
+ a + 1

1 + aλ

∞∑

n=1

e−(1+aλ)tn λn, (32)

which relates the generating function of the initial condition {kn} to the times {tn}.
Formula (32) can be derived as follows. If one defines the generating functions

Hm(t) =
∑

n≥m

hn(t)λ
n−m+1, (33)

one can see that for tm−1 ≤ t ≤ tm (with the convention that t0 = 0) the evolution of Hm(t)
is given by

dHm(t)

dt
= (1 + aλ)Hm(t) + aλ. (34)

This of course can be easily solved to give

Hm(t) = − aλ

1 + aλ
+ 	me

(1+aλ)t , (35)

where the 	m’s are constants of integration. These 	m’s can be determined by matching the
solutions at times 0, t1, t2, …:

H1(0) =
∞∑

n=1

knλ
n, Hm(tm) = λ

(
1 + Hm+1(tm)

)
, (36)

and one gets that for tm−1 ≤ t ≤ tm

Hm(t) = − aλ

1 + aλ
+ a + 1

1 + aλ

∞∑

n=m

e(1+aλ)(t−tn) λn+1−m . (37)

Then (32) follows by taking m = 1 and t = 0 in (37).
Remark that formula (32) appears as the solution of a kind of inverse problem: given

the times tn , one can compute the initial profile kn by expanding in powers of λ. This gives
expressions of kn in terms of the times tm’s for m ≤ n. Alternatively one can determine the
times tn in terms of the initial profile km for m ≤ n:

e−t1 = a + k1
a + 1

, e−t2 = ak1 + k2
a + 1

+ at1e
−t1 , e−t3 = ak2 + k3

a + 1
+ at2e

−t2 − (at1)2

2
e−t1 ,

(38)
etc. Unfortunately these expressions become quickly too complicated to allow to determine
how the times tn depend asymptotically on the initial profile {kn} for large n. How these
asymptotics can be understood from (32) will be discussed in Sect. 5.

4 Travelling Wave Solutions

4.1 The Exact Shape of the Travelling Waves

As usual, with travelling wave equations, the first solutions one can try to determine are
travelling wave solutions moving at a certain velocity v. Because the hn(t) are defined on a
lattice, a travelling wave solution moving at velocity v satisfies

hn(t) = hn+1

(
t + 1

v

)
. (39)
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Clearly this implies that the times tn form an arithmetic progression, and by shifting the
origin of time, one can choose

tn = n

v
. (40)

This immediately gives, using (37), the generating function of the front shape at all times:
for example for 0 ≤ t ≤ t1 = 1/v, one takes m = 1 in (37) and gets

∑

n≥1

hn(t)λ
n = − aλ

1 + aλ
+ a + 1

1 + aλ
× λe(1+aλ)t

e(1+aλ)/v − λ
. (41)

Another way of determining the travelling wave solutions is to look directly for solutions
of (3) of the form (39). One sees that Wv must satisfy

Wv(x) = 1 for x ≤ 0, Wv(x) + aWv(x − 1) + vW ′
v(x) = 0 for x > 0. (42)

These equations can be solved iteratively: for x ≤ 0, one already knows that Wv(x) = 1.
For x ∈ [0, 1] one has therefore Wv + vW ′

v + a = 0, which implies for (x ∈ [0, 1]) that
Wv(x) = (a + 1)e−x/v − a (the integration constant being fixed by continuity at x = 0).
Knowing Wv(x) for x ∈ [0, 1], one can solve (42) for x ∈ [1, 2] and so on.

Wv(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x ≤ 0,

(a + 1)e−x/v − a if x ∈ [0, 1],
a(1+a)

v
(1 − v − x)e(1−x)/v + (1 + a)e−x/v + a2 if x ∈ [1, 2],

. . .

(43)

In fact one can solve directly (42) by considering for x ∈ [0, 1] the generating function
(λ, x) �→ ∑

n λnWn(x + n). Then, as can be checked directly from (41) and (42), Wv(x)
and hn(t) are related for all n ∈ Z and t ≥ 0 by

hn(t) = Wv(n − vt). (44)

4.2 The Decay of the Travelling Waves

The large n behavior of the travelling wave hn(t) (or equivalently the behavior of Wv(x) for
large x) can be understood by analyzing the singularities in λ of the right hand side of (41).
These singularities are poles located at all the real or complex zeros of

e(1+aλ)/v − λ = 0. (45)

(one checks there is no pole at λ = −1/a) and each pole gives rise to an exponential decay
in hn(t). Using λ = exp(γ ), (45) can be rewritten into

v(γ ) = 1 + aeγ

γ
. (46)

which is the dispersion relation for (3), similar to (7) or to (21). In fact, one can obtain (46)
as in Sect. 2 by looking for the velocity v compatible in (42) with an exponentially decaying
travelling wave of the form Wv(x) ∼ e−γ x .

One is then led to distinguish three cases depending on the number of real solutions of
(46). There is a critical value vc where (46) has a double zero on the real axis. This critical
velocity vc and the corresponding decay rate γc are the solution of

a(γc − 1)eγc = 1, vc = 1

γc − 1
. (47)
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1. For v < vc, there is no real λ solution of (45), but there are complex roots. The large n
behavior of hn(t) is then governed by the two roots λ1 and λ∗

1 of (45) closest to the origin

hn(0) 
 (a + 1)v

(1 + aλ1)(v − aλ1)
λ−n
1 + c.c. (48)

Because λ1 and λ∗
1 are complex, hn(t) changes its sign as n varies. So for v < vc, as

in the Fisher–KPP case, there are travelling wave solutions, but they fail to give positive
profiles.

2. For v = vc given by (47), there is a double real root λc = eγc of (45). Then for large n
the profile is of the form

hn(0) 
 2(1 + a)

1 + vc

[
n + 1 + 4vc

3(1 + vc)

]
e−γcn . (49)

3. For v > vc there are two real roots 1 < λ1 < λ2 of (45) and the large n behavior is
controlled by the smallest root:

hn(0) 
 (a + 1)v

(1 + aλ1)(v − aλ1)
λ−n
1 . (50)

We see that for all velocities, we get explicit expressions of the prefactors of the exponential
decay of the travelling waves. These prefactors are in general not known for more traditional
travelling wave equations, such as the Fisher–KPP equation (1).

In each case, corrections to (48–50) can be obtained from the contributions of the other
roots of (45). For instance, in the cases v < vc or v > vc one could write

hn(0) 

∑

r

(a + 1)v

(1 + aλr )(v − aλr )
λ−n
r , (51)

where the sum is over all the complex roots λr of (45). In Fig. 1, we compare the exact
solution (43) of (42) with the asymptotic expansion (51) truncated to a finite number of roots
of (45) closest to the origin and one can see that the truncation gives a very good fit of the
actual solution.

We have seen that the travelling waves for v < vc were oscillatory. For v ≥ vc, they
decrease monotonically towards 0; this can be seen directly from equation (42) verified by
Wv(x): write Wv(x) = R(x)e−γ x with γ a real positive number related to v through the

Fig. 1 The travelling wave Wv(x) solution of (42) for v = 4 and a = 1 as a function of x . The plain line
labeled “exact” is the exact small-x solution (43). The dashed lines are the sums (51) truncated to a given
number of first terms: “with 2 roots” means only the two real roots λ1 and λ2, “with 4 roots” means the two
real roots and the first pair of complex conjugate roots and “with 22 roots” means the two real roots and the
ten pairs of complex conjugates roots closest to the origin. The inset is a zoom of the small rectangle around
x = 0 and Wv = 1
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dispersion relation (46) (Notice that choosing such a γ is impossible if v < vc). Then (42)
gives

R(x) = eγ x for x ≤ 0, aeγ
[
R(x − 1) − R(x)

] + vR′(x) = 0 for x > 0. (52)

As R(x) is strictly increasing for x < 0 it must be strictly increasing for all reals; otherwise,
on the first local maximum xm , one would have R′(xm) = 0 and R(xm) > R(xm − 1) which
is incompatible with (52). Hence, Wv(x) is positive and, from (42), strictly decreasing.

5 How the Initial Condition Determines the Asymptotic Regime

We now discuss how the position of the front at large times (or equivalently the large n
asymptotics of the times tn) depends on the initial condition.

First, by using mostly a comparison property, we will show that the final velocity of the
front is determined by the large n decay of the initial condition kn . Then, we will recover
the logarithmic corrections (12–15) and sub-leading terms as in (18) by analyzing the key
relation (32) between the initial profile kn and the times tn .

We write (32) as
(1 + aλ)K (λ) = −aλ + (a + 1)T (λ), (53)

where the two functions K (λ) and T (λ) are defined by

K (λ) =
∞∑

n=1

knλ
n, T (λ) =

∞∑

n=1

e−(1+aλ)tnλn . (54)

The large n behavior of the kn’s and of the tn’s determines the domain of convergence of
these two sums and one can try to use (53) to relate their singularities.

When λ = eγ > 1, we will often use the following form of T (λ) written in terms of the
dispersion relation v(γ ):

T (eγ ) =
∞∑

n=1

eγ [n−v(γ )tn ]. (55)

5.1 Selection of the Velocity

Let us first show that the final velocity of the front is determined by the large n behavior of
the initial condition kn in the same way as for other equations in the Fisher–KPP class. To do
this, we use an obvious comparison property; considering two initial conditions {k(1)

n } and
{k(2)

n } with the corresponding times {t (1)n } and {t (2)n }, one has
if 0 ≤ k(1)

n ≤ k(2)
n for all n, then t (1)n ≥ t (2)n for all n. (56)

To keep the discussion simple, we focus only on initial conditions {kn} with kn ≥ 0 and the
following simple asymptotics:

• If kn ∼ nαe−γ n with 0 < γ < γc.
Pick an ε > 0 small enough so that 0 < γ − ε and γ + ε < γc, and consider the
two travelling waves going at velocities v(γ − ε) and v(γ + ε) (they decay respectively
like e−(γ−ε)n) and e−(γ+ε)n). It is clear that the initial condition {kn} can be sandwiched
between these two travelling waves suitably shifted in space, so that, by using the com-
parison property one gets
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1

v(γ − ε)
≤ lim inf

n→∞
tn
n

≤ lim sup
n→∞

tn
n

≤ 1

v(γ + ε)
. (57)

Now take ε → 0 to get

lim
n→∞

tn
n

= 1

v(γ )
. (58)

• If kn = 0.
It takes a time tn to have hn(t) = 1. But at time tn , the hn+m(t) for m > 0 are positive
so that, from the comparison property, one has

tn+m ≤ tn + tm . (59)

The sequence {tn} is sub-additive and therefore tn/n has a limit which we call 1/v. By
comparing the initial profile kn = 0 to the travelling wave going at velocity vc, one must
have 1/v ≥ 1/vc.
We are now going to show that 1/v cannot be strictly greater than 1/vc. Indeed, if we
had 1/v > 1/vc, the series (55) defining T (λ) would be uniformly convergent on the
whole positive real axis λ because v(γ )tn/n would eventually be larger than 1 + ε for
some ε > 0. One would then get

T ′(λ) =
∑

n≥1

λne−(1+aλ)tn
[n
λ

− atn
]

for all λ ≥ 0 (60)

because the series (60) would also be uniformly convergent.
However, for real and large enough λ (at least for λ > minn n/(atn)), one would obtain
T ′(λ) < 0. But, with kn = 0 one has K (λ) = 0 and from (53) T ′(λ) = a/(a + 1), in
contradiction with T ′(λ) < 0.
We conclude that one must have

lim
n→∞

tn
n

= 1

vc
if kn = 0 for n ≥ 1. (61)

• If kn ∼ nαe−γcn or if kn = o
(
e−γcn

)
.

Again, by the comparison property, the initial condition can be sandwiched between
kn = 0 and, for any ε > 0, the suitably shifted travelling wave going at velocity v(γc−ε).
This leads to conclude that

lim
n→∞

tn
n

= 1

vc
. (62)

The velocity selection thus works as for other equations of the Fisher–KPP class.

5.2 Sub-leading Corrections

We limit the discussion to initial conditions similar to those discussed in the previous section
which lead to a front with some asymptotic velocity V :

lim
n→∞

tn
n

= 1

V
. (63)

We also assume that kn ≥ 0 which implies that V ≥ vc as was shown in the previous section.
If V > vc, write V = v(γ1) = v(γ2) with 0 < γ1 < γc < γ2. We have seen that

this velocity is reached for initial conditions such as kn ∼ nαe−γ1n . In (55), it is then clear
that the series T (λ) is divergent for λ ∈ (eγ1 , eγ2) and convergent for λ < eγ1 or λ > eγ2 .
Furthermore, in (54), the radius of convergence of K (λ) is eγ1 and, as kn > 0, the function
K (λ) must have a singularity at λ = eγ1 . We thus see that both T (λ) and K (λ) become
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singular as λ approaches eγ1 from below on the real axis. By matching the singularities of
these two functions, we will obtain the sub-leading corrections to tn for large n.

For V = vc, if the initial condition is kn ∼ nαe−γcn , the same argument applies: both
T (λ) and K (λ) are singular when λ reaches eγc , and one must match the singularities. But,
with V = vc, one could also have an initial condition which decays faster than e−γcn and for
which the radius of convergence is larger than eγc (even, possibly, infinite). Then, of course,
K (λ) would have no singularity at λ = eγc , even though the convergence of T (λ) would
remain problematic when λ approaches eγc . We will see that the large n behavior of tn is
tuned to “erase” the singularities in T (λ) at eγc to satisfy (53).

Weattack the problembyassuming that the tn are given andwe try to obtain the asymptotics
of the kn . The starting point is thus to assume a velocity V = v(γ1) with γ1 ≤ γc, and study
T (λ) when λ gets close to eγ1 . If one chooses, in all generality,

tn = n

V
+ δn

γ1V
, (64)

where δn/n → 0, one gets from (55)

T (eγ ) =
∞∑

n=1

e
γ
[
1− v(γ )

V

]
n− γ v(γ )

γ1V
δn

. (65)

Now we want to take γ = γ1 − ε and expand for small ε in order to extract the nature of
the singularity. Two cases arise:

• If V > vc (which means γ1 < γc), then v′(γ1) < 0 and to leading order

T (eγ1−ε) =
∞∑

n=1

exp
[(γ1v

′(γ1)
V

ε + · · ·
)
n − (1 − με + · · · )δn

]
for V > vc, (66)

with μ = 1/γ1 + v′(γ1)/V .
• If V = vc (which means γ1 = γc), then v′(γc) = 0 and one must push the expansion

further:

T (eγc−ε) =
∞∑

n=1

exp
[(

−γcv
′′(γc)
2vc

ε2+· · ·
)
n−

(
1− 1

γc
ε+· · ·

)
δn

]
for V = vc. (67)

It is already clear that cases V > vc and V = vc need to be discussed separately.
Equations (66) and (67) are the starting point of our analysis which is presented in detail in
the following subsections.

We will make heavy use of the following formulas: for ε > 0 small,

∑

n≥1

nαe−εn
∣∣∣
∣
singular

=
⎧
⎨

⎩

�(1+α)

ε1+α ifα is not a negative integer,
(−1)αε−α−1 ln ε

(−α − 1)! ifα is a negative integer.
(68)

∑

n≥1

(ln n)nαe−εn
∣∣
∣∣
singular

=
⎧
⎨

⎩

−�(1+α) ln ε+O(1)
ε1+α ifα is not a negative integer,

(−ε)−α−1

(−α − 1)!
[
ln2 ε

2
+ O(ln ε)

]
if α is a negative integer,

(69)

where the meaning of “singular” for a function F(ε) with a singularity at 0 is that the
difference between F(ε) and F(ε)

∣∣
singular is a regular function of ε which can be expanded

as a power series.
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5.2.1 For V > vc

As explained above we write V = v(γ1) with γ1 < γc, and we choose tn such that tn/n that
converges to 1/V . If one chooses

tn = n

V
+ B ln n + C

γ1V
, (70)

by keeping the leading order in (66) and using (68) one gets for B not a positive integer

T (eγ1−ε)

∣
∣∣
singular


 �(1 − B)e−C
( V

−v′(γ1)γ1ε

)1−B
. (71)

It is then easy to check that matching the singularities leads to an initial condition decaying
as

kn 
 (1 + a)e−C

−v′(γ1)γ 2
1

[
Vn

−γ1v′(γ1)

]−B

e−γ1n . (72)

Remarks:As can be easily checked, even though (71) is not valid if B is a positive integer,
(72) is. One can also check that for B = C = 0 one recovers the asymptotics (50) of the
travelling wave.

5.2.2 For V = vc

if V = vc, the main difference with the previous case is that v(γc−ε)−v(γc) ∼ ε2 as ε → 0
and one must use the expansion (67) instead of (66). As before, we choose a specific form
for the times tn which allow to easily make the comparison with the different cases (13–15)
of the Fisher–KPP equation:

tn = n

vc
+ B ln n + C

γcvc
. (73)

With δn = B ln+C into (67), one obtains generically (when B /∈ {1, 3/2, 2, 5/2, 3, . . .}, see
discussion below)

T (eγc−ε)

∣∣
∣
singular


 e−C�(1 − B)

(
γcv

′′(γc)
2vc

)B−1

ε2B−2. (74)

Then, using (68) again and (53), one gets

kn 
 a + 1

γcvc
e−C

(
γcv

′′(γc)
2vc

)B−1
� (1 − B)

� (2 − 2B)
n1−2Be−γcn . (75)

We see that the asymptotics of the initial condition (75) and of the times (73) for large n are
related as in the Fisher–KPP case (26) and that the constant term in (26) can be determined.
As in (70), one must be careful when B is a positive integer: (74) should be modified to
include the logarithmic correction of (68), but (75) is not modified as can easily be checked
(the ratio of the two Gamma functions has a limit).

There is another difficulty when B ∈ {3/2, 5/2, 7/2, . . .}: for these values, the ratio of
Gamma functions in (75) is zero. This means that an initial condition {kn} leading to (73)
with B = 3/2 (for instance) must decrease faster than n−2e−γcn . For these special values of
B, the right hand side of (74) is actually regular as ε2B−2 is a non-negative integer power of
ε; any singular part of T (eγc−ε) must come from higher order terms.

We are now going to show that no non-negative initial condition {kn} can lead to a time
sequence {tn} with an asymptotic expansion starting as in (73) with B > 3/2. To do so, we
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will show that the initial condition kn = 0 leads to (73) with B = 3/2 (plus higher order
corrections). As any non-negative initial condition must lead to times {tn} which are smaller
than the times of the kn = 0 initial condition, this will prove that B cannot be larger than
3/2.

Consider therefore the case kn = 0; one has K (λ) = 0 and, from (53), one gets T (λ) =
aλ/(a + 1). Obviously, T (λ) has no singularity as λ approaches eγc , so the right hand side
of (74) must be regular, which implies that B ∈ {3/2, 5/2, 7/2, . . .}. We now rule out any
value other than B = 3/2 by looking at the term of order ε in the expansion of T (eγc−ε).
One can check that the only terms of order ε come from the εδn/γc in (67) and from (74) if
B = 3/2, so one has

T (eγc−ε) = T (eγc ) +
[
1

γc

∞∑

n=1

δne
−δn + e−C�(−1/2)

(
γcv

′′(γc)
2vc

)1/2

1B=3/2

]

ε + o(ε).

(76)
Notice (64) that δn ≥ 0 for the kn = 0 initial condition because it is below the travelling

wave at velocity vc for which δn = 0. The first term of order ε in (76) is therefore positive; on
the other hand, the second term (only if B = 3/2) is negative. But, from T (λ) = aλ/(a + 1)
the term of order ε must be negative; therefore one must have B = 3/2 for the zero initial
condition and, therefore, B ≤ 3/2 for any non-negative initial condition.

To summarize, the relationship between the times (73) and the initial condition (75) we
have established in this section is valid only for B < 3/2 because we only consider non-
negative initial conditions. Furthermore, to have (73) with B = 3/2, one must have an initial
condition decreasing faster than the n−2e−γcn suggested by (75). No non-negative initial
condition can lead to (73) with B > 3/2.

5.2.3 For V = vc and B = 3/2

The case B = 3/2 is of course the most delicate and it corresponds to (13, 15, 18) in the
Fisher–KPP case. For the tn given by (73) the leading singularity is not (74) but rather

T (eγc−ε)

∣
∣∣
singular


 3e−C

√
2πv′′(γc)

γcvc
ε2 ln ε. (77)

(This term comes from the first order expansion of the εδn/γc term in (67).) Relating this
to the {kn} through (53), it leads through (68) to kn ∼ n−3e−γcn with a negative prefactor.
So there is no way for a non-negative initial condition to be compatible with exactly (73),
without any extra term.

Therefore, we need to add some corrections to (73) when B = 3/2. Let us consider a
correction of the form

tn = n

vc
+

3
2 ln n + C + Dn−ξ

γcvc
(78)

for some ξ > 0. Plugging this correction into (67) one gets

T (eγc−ε) =
∞∑

n=1

e−C− γcv′′(γc)
2vc

ε2n n− 3
2

[
1 + 3ε

2γc
ln n − Dn−ξ + · · ·

]
, (79)

where the “· · · ” contains smaller order terms of ordersnε3, n−2ξ , εn−ξ , ε2 ln2 n, etc. Consider
in turns the terms in the square bracket. The “1” leads to the right hand side of (74) with
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B = 3/2, which is simply a regular term linear in ε. The term in ε ln n gives the right hand
side of (77) and the −Dn−ξ contribution can be computed from

∞∑

n=1

e− γcv′′(γc)
2vc

ε2n n− 3
2−ξ

∣
∣
∣
∣
singular

=
⎧
⎨

⎩
�(− 1

2 − ξ)
(

γcv
′′(γc)
2vc

) 1
2+ξ

ε1+2ξ if ξ /∈ { 12 , 3
2 , 5

2 , . . .},
2 γcv

′′(γc)
2vc

ε2 ln ε if ξ = 1
2 .

(80)
Several subcases must be considered

• If ξ > 1/2 this is smaller than ε2 ln ε; therefore the leading singularity is still given
by (77) which is incompatible with a non-negative initial condition.

• If 0 < ξ < 1/2 the leading singularity for T (eγc−ε) is ε1+2ξ as given by (80). This leads
to

kn 
 −De−C 1 + a

γcvc

�(− 1
2 − ξ)

�(−1 − 2ξ)

(
γcv

′′(γc)
2vc

) 1
2+ξ

n−2−2ξ e−nγc . (81)

With 0 < ξ < 1
2 , this is positive if D > 0.

• If ξ = 1/2 the corrections from (80) and from (77) are both of order ε2 ln ε. This leads
to

kn 
 2
1 + a

γcvc
e−C

[

D
γcv

′′(γc)
vc

− 3

√
2πv′′(γc)

γcvc

]

n−3e−γcn, (82)

which is positive if D is large enough. Notice also that the square bracket in (82) vanishes
for

D = 3

√
2πvc

γ 3
c v′′(γc)

. (83)

This means that initial conditions decaying faster than n−3e−γcn (including the zero
initial condition) must lead to (78) with ξ = 1/2 and D given by (83). This is exactly
the prediction (28).

To finish, notice that we found the first terms of the asymptotic expansion for the times
tn when the initial condition decays as nαe−nγc when α > −2 (see (73) for B < 3/2) and
when α < −2 (it is of the form (78) with ξ = −1− α/2 for −3 < α < −2 and ξ = 1/2 for
α ≤ −3), but we did not yet considered the case where kn 
 n−2e−nγc . One can check that
by taking, as in (27),

tn = n

vc
+

3
2 ln n − ln ln n + C

γcvc
, (84)

one obtains

T (eγc−ε)

∣∣∣
singular


 e−C

√
8πγcv′′(γc)

vc
ε ln ε, (85)

which leads to

kn 
 1 + a

γcvc
e−C

√
8πγcv′′(γc)

vc
n−2e−γcn . (86)

6 Summary

In the previous section, we have computed the initial conditions kn as a function of the
times tn . Table 1 summarizes our results.
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Table 1 Asymptotics of tn as a function of the leading behavior of the initial condition kn

1 kn ∼ nαe−γ n with
γ < γc

tn 
 n

v(γ )
+ 1

γ v(γ )

[
− α ln n + C

]
see (70, 72)

2 kn ∼ nαe−γcn with
α > −2

tn 
 n

vc
+ 1

γcvc

[
1 − α

2
ln n + C

]
see (73, 75)

3 kn ∼ n−2e−γcn tn 
 n

vc
+ 1

γcvc

[
3

2
ln n − ln ln n + C

]
see (84, 86)

4 kn ∼ nαe−γcn with
−3 ≤ α < −2

tn 
 n

vc
+ 1

γcvc

[
3

2
ln n + C + Dn1+

α
2

]
see (78, 81, 82)

5 kn � nαe−γcn for
some α < −3

tn 
 n

vc
+ 1

γcvc

[
3

2
ln n + C + 3

√
2πvc

γ 3
c v′′(γc)

n− 1
2

]

see (78, 82, 83)

Table 2 Asymptotic expansion of Xt as a function of the leading behavior of the initial condition u(x, 0)

1 u(x, 0) ∼ xαe−γ x with γ < γc Xt 
 v(γ )t + α

γ
ln t + C ′

2 u(x, 0) ∼ xαe−γcx with α > −2 Xt 
 vct + α − 1

2γc
ln t + C ′

3 u(x, 0) ∼ x−2e−γcx Xt 
 vct − 3

2γc
ln t + 1

γc
ln ln t + C ′

4 u(x, 0) ∼ xαe−γcx with −3 ≤ α < −2 Xt 
 vct − 3

2γc
ln t + C ′ − D′t1+

α
2

5 u(x, 0) � xαe−γcx for some α < −3 Xt 
 vct − 3

2γc
ln t + C ′ − 3

√
2π

γ 5
c v′′(γc)

t−
1
2

These asymptotics agree with all previously known results discussed in Sect. 2. Case 4
is a new prediction, and the domain of validity of Ebert–van Saarloos correction (18) from
[17] is made precise (case 5).

The constant C can easily be computed in cases 1 to 3, but we did not manage to get
a closed expression in cases 4 and 5. Similarly, we have no expression for D in case 4; in
particular, for α = −3, the D of case 4 is not given by the prefactor of n−1/2 in case 5 because
for α = −3 the right hand side of (82) must not vanish.

The vanishing terms n1+α/2 and n−1/2 in cases 4 and 5 depend only on the leading behavior
of kn for large n. One could compute higher order corrections in cases 1 to 3 using the same
technique by looking at the next singularities in T (eγ−ε), but one would need to know a bit
more about the asymptotic behavior of kn : one would find that

If kn = Anαe−γ n
(
1 + o

( ln n
n

))
,

then tn = [
as above

] +

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
ln n

n
in case 1 for α �= 0,

D
ln n√
n

in case 2 for α /∈ {−1, 0, 1},

D
1√
n

in case 3,

(87)
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where the prefactor D could be computed in each case. These vanishing corrections in cases 1
to 3 are less universal than in case 4 to 5 as they do not depend only on the leading behavior
of kn for large n, but also on the fact that the sub-leading behavior of kn decays fast enough
compared to the leading behavior. For case 1 with α = 0 and case 2 with α = 1, the initial
condition behaves asymptotically as the travelling wave eventually reached by the front, and
vanishing corrections might depend on the initial condition in a more complicated way. Case
2 with α = −1 or α = 0 are border cases with slightly different corrections.

If we conjecture that the new results (cases 4 and 5) of Table 1 hold for the whole
Fisher–KPP class one can obtain, by inverting the relations between tn and n of Table 1,
the asymptotics of the position Xt for initial conditions of the form u(x, 0) ∼ xαe−γ x . This
is done in Table 2.

7 Conclusion

The main result of the present work is the exact relation (32) between the initial condition
and the positions of the front at time t for the model (3). Relating the asymptotics of the tn’s
to those of the kn’s, using the exact relation (32) is an interesting but not easy problem of
complex analysis. It allows to obtain precise expressions of the shape of the travelling waves,
including prefactors which are usually not known in the usual equations of the Fisher–KPP
type. It also allows one to recover the known long time asymptotics of the front position, and
to get previously unknown results; in particular, we have shown how fast an initial condition
should decay to exhibit the Ebert–van Saarloos correction, and that there is a range of initial
conditionswhich exhibit the−3/2 ln t Bramson logarithmic term but forwhich the Ebert–van
Saarloos correction is modified (See cases 4 and 5 of Tables 1 and 2).

As shown here the analysis of the asymptotics (3), using complex analysis, is tedious
but rather straightforward. Higher corrections to the asymptotics of the position could be
determined.One could also try to studyhow, dependingon the initial condition, the asymptotic
shape is reached. Furthermore, it would be interesting to generalize (3) to evolutions involving
more than two neighboring sites, or to a non-lattice version of the model. More challenging
would be to attack the noisy version of the problem [19,20].

Appendix: An Heuristic Derivation of the Positions of the Front

In this appendixwe show that several expressions of the position of the front for a Fisher–KPP
front can be recovered by considering a simplified version of the Fisher–KPP equation (1)
where the non-linear term is replaced by an absorbing boundary. Consider the following
linearized Fisher–KPP equation with a given time-dependent boundary Xt with X0 = 0:

⎧
⎨

⎩

∂u

∂t
= ∂2u

∂x2
+ f ′(0)u if x > Xt ,

u(Xt , t) = 0.
(88)

For a given y > 0, we look at the value u(Xt + y, t) of the solution at a distance y from
the boundary. Intuitively, if Xt increases too quickly with t , this quantity is pushed to zero.
On the other hand, if Xt increases too slowly, it diverges with t . It is only for finely tuned
choices of Xt that u(Xt + y, t) remains of order 1.

Now we suppose that Xt is no longer given a priori but is instead determined by

u(Xt + 1, t) = 1. (89)
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It has been shown [21] that the solution of (88, 89) for compactly supported initial conditions
leads to the same long time asymptotics for Xt as for the Fisher–KPP equation (see Sect. 2):
one recovers the Bramson term (13) and the Ebert–van Saarloos correction (18).

For initial conditions decaying fast enough, one expects Xt to be asymptotically linear. If
Xt were really linear (not only asymptotically but at all times), (88) would be very easy to
solve. In this Appendix, we solve a simplified version of (88) where the boundary is replaced
by a straight line. This allows us to recover the velocity and the logarithmic corrections
(12–15) of the Fisher–KPP equation.

The version we actually consider is therefore the following: For each given time t , we
replace the boundary by a linear boundary of slope Xt/t and solve

⎧
⎪⎨

⎪⎩

∂u

∂s
= ∂2u

∂x2
+ f ′(0)u if x > Xt

t s,

u
( Xt

t
s, s

)
= 0.

(90)

We then tune the value of Xt to satisfy (89) at time t .
For an initial condition δ(x − x0) the solution to (90) is

g(x, s|x0) = e f ′(0)s
√
4πs

[
exp

(
− (x − x0)2

4s

)
− exp

(
Xt

t
x0 − (x + x0)2

4s

)]
. (91)

Taking s = t and writing x = Xt + y, one obtains

g(Xt + y, t |x0) = 1√
4π t

exp

[

f ′(0)t − (Xt + y)2 + x20 − 2Xt x0
4t

]

2 sinh
( yx0
2t

)
. (92)

Given a general initial condition u(x0, 0) for x0 > 0 one has

u(Xt + y, t) =
∫ ∞

0
dx0 g(Xt + y, t |x0)u(x0, 0), (93)

which, after writing Xt = ct − δt with δt � t , leads to

u(Xt + y, t) = 1√
π t

exp

[
t
(
f ′(0) − c2

4

)
− c

2
(y − δt ) − (y − δt )

2

4t

]
× It (y),

with It (y) =
∫ ∞

0
dx0 u(x0, 0) exp

[
cx0
2

− δt x0
2t

− x20
4t

]

sinh
( yx0
2t

)
.

(94)

Depending on the initial condition u(x0, 0), we can now determine for which values of c
and δt the front u(Xt + y, t) remains of order 1 for y of order 1 as t increases.

• For u(x0, 0) 
 Ae−γ x0 with γ < c/2, one finds that the integral It (y) is dominated by
x0 
 (c − 2γ )t . One obtains

It (y) 
 A
√
4π t sinh

(c − 2γ

2
y
)
exp

[(c2

4
− γ c + γ 2

)
t − c − 2γ

2
δt

]
,

and u(Xt + y, t) 
 2A sinh
[c − 2γ

2
y
]
exp

[(
f ′(0) − γ c + γ 2)t + γ δt − c

2
y
]
.

(95)
Writing u(Xt + y, t) ∼ 1 leads to c = γ + f ′(0)/γ = v(γ ) and δt 
 Cst. The starting
hypothesis γ < c/2 then translates into γ < γc = √

f ′(0). We conclude that
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For u(x0, 0) ∼ e−γ x0 with γ < γc, Xt 
 v(γ )t + C, (96)

as in (12).
• For u(x0, 0) 
 Axα

0 e
−γ x0 with γ < c/2, the integral It (y) is again dominated by

x0 
 (c − 2γ )t . The large t expression of u(Xt + y, t) has an extra term [(c − 2γ )t]α
which is canceled by taking now δt 
 − α

γ
ln t +Cst. (The value of c remains the same.)

We conclude that

For u(x0, 0) ∼ xα
0 e

−γ x0 with γ < γc, Xt 
 v(γ )t + α

γ
ln t + C. (97)

• For u(x0, 0) � e−γ x0 for some γ > c/2 (steep initial condition), the integral It (y) is
dominated by x0 of order 1. This leads to

It (y) 
 y

2t

∫ ∞

0
dx0 u(x0, 0)x0 exp

[cx0
2

]
,

and u(Xt + y, t) ∼ y

t3/2
exp

[
t
(
f ′(0) − c2

4

)
− c

2
(y − δt )

]
.

(98)

One needs to take c = 2
√

f ′(0) = vc = 2γc and δt = 3
2γc

ln t + Cst. The starting
hypothesis γ > c/2 translates into γ > γc and we conclude that

For u(x0, 0) � e−γ x0 for some γ > γc, Xt 
 vct − 3

2γc
ln t + C, (99)

as in (13).
• For u(x0, 0) 
 Axα

0 e
− c

2 x0 , depending on the value of α, the integral It (y) is dominated
by values of x0 of order 1 or of order

√
t . In any case, x0 � t and one can simplify It (y)

into

It (y) 
 y

2t

∫ ∞

0
dx0 u(x0, 0)x0 exp

[
c

2
x0 − x20

4t

]

. (100)

When α < −2, this integral is dominated by x0 of order 1, the Gaussian term can be
dropped and one recovers (98) and (99).
When α ≥ −2, the integral is dominated by x0 of order

√
t . One gets

It (y) 
 A
y

2t

∫ ∞

1
dx0 x

α+1
0 exp

[

− x20
4t

]



⎧
⎨

⎩

Ay2α�
(
1 + α

2

)
t

α
2 if α > −2,

Ay
ln t

4t
if α = −2.

(101)

Into (94) one must therefore take c = 2
√

f ′(0) = vc = 2γc and δt = 1−α
2γc

ln t + Cst if

α > −2 or δt = 3
2γc

ln t − 1
γc

ln ln t if α = −2. We conclude that

For u(x0, 0) ∼ xα
0 e

−γcx0 , Xt 


⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vct − 3

2γc
ln t + C if α < −2,

vct − 3

2γc
ln t + ln ln t

γc
+ C if α = −2,

vct − 1 − α

2γc
ln t + C if α > −2,

(102)

as in (13–15).
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Vanishing corrections for the position in a linear model of FKPP
fronts
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Abstract
Take the linearised FKPP equation ∂th = ∂2

xh+h with boundary condition h(m(t), t) = 0.
Depending on the behaviour of the initial condition h0(x) = h(x, 0) we obtain the asymptotics
— up to a o(1) term r(t) — of the absorbing boundary m(t) such that ω(x) := limt→∞ h(x+
m(t), t) exists and is non-trivial. In particular, as in Bramson’s results for the non-linear
FKPP equation, we recover the celebrated −3/2 log t correction for initial conditions decaying
faster than xνe−x for some ν < −2.

Furthermore, when we are in this regime, the main result of the present work is the
identification (to first order) of the r(t) term which ensures the fastest convergence to ω(x).
When h0(x) decays faster than xνe−x for some ν < −3, we show that r(t) must be chosen to
be −3

√
π/t which is precisely the term predicted heuristically by Ebert-van Saarloos [EvS00]

in the non-linear case (see also [MM14, BD15, Hen14]). When the initial condition decays
as xνe−x for some ν ∈ [−3,−2), we show that even though we are still in the regime where
Bramson’s correction is −3/2 log t, the Ebert-van Saarloos correction has to be modified.

Similar results were recently obtained by Henderson [Hen14] using an analytical approach
and only for compactly supported initial conditions.

1 Introduction
The celebrated Fisher-Kolmogorov-Petrovsky-Piscounof equation (FKPP) in one dimension for
h : R × R+ → R is:

∂th = ∂2
xh+ h− h2, h(x, 0) = h0(x). (1)

This equation is a natural description of a reaction-diffusion model [Fis37, KPP37, AW78]. It is
also related to branching Brownian motion: for the Heaviside initial condition h0(x) = 1{x<0},
h(x, t) is the probability that the rightmost particle at time t in a branching Brownian motion
(BBM) is to the right of x.

For suitable initial conditions where h0(x) ∈ [0, 1], h0(x) goes to 1 fast enough as x → −∞
and h0(x) goes to 0 fast enough as x → ∞, it is known that h(x, t) develops into a travelling
wave: there exists a centring term m(t) and an asymptotic shape ωv(x) such that

lim
t→∞

h
(
m(t) + x, t

)
= ωv(x) ∈ (0, 1), (2)

where m(t)/t → v and ωv(x) is a travelling wave solution to (1) with velocity v: that is, the
unique (up to translation) non-trivial solution to

ω′′
v + v ω′

v + ωv − ω2
v = 0 (3)

with ωv(−∞) = 1 and ωv(+∞) = 0.
In his seminal works [Bra83], Bramson showed how the initial condition h0 (and in particular

its large x asymptotic behaviour) determines m(t) in (2). For the important example h0(x) =
1{x<0} corresponding to the rightmost particle in BBM, he finds

m(t) = 2t− 3
2 log t+ a+ o(1) (4)

1
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for some constant a, and a limiting travelling wave with (critical) speed v = 2. (Here and
throughout, we use the notation f(t) = o(1) to mean that f(t) → 0 as t → ∞.)

What makes Bramson’s results extremely interesting is their universality; for instance Bram-
son proves [Bra83] that the previous result still holds if the reaction term h−h2 in (1) is replaced
by f(h) with f(0) = f(1) = 0, f ′(0) = 1 and f(x) ≤ x. The universality goes further than
that, and for many other front equations, it is believed and sometimes known that the centring
term m(t) follows the same kind of behaviour as for (1): one needs to compute a function v(γ)
which has a minimum vc at a point γc (in the FKPP case (1), v(γ) = γ + 1/γ, γc = 1, vc = 2);
then for an initial condition decreasing like e−γx, the front converges to a travelling wave with
velocity v(γ) if γ ≤ γc and critical velocity vc if γ ≥ γc.

When the centring term m(t) is defined as in (2), it is not uniquely determined: if m(t) is
any suitable centring term, then m(t) + o(1) is also a suitable centring term. Instead one can
try to give a more precise definition for m(t). For example, one could reasonably ask for

h
(
m(t), t

)
= α for some α ∈ (0, 1) or ∂2

xh
(
m(t), t

)
= 0 or m(t) = −

∫
dxx∂xh(x, t) (5)

in addition to (2). In the case h0(x) = 1{x<0}, so that h(x, t) = P(Rt > x) where Rt is the
position of the rightmost particle in a BBM at time t, the first definition in (5) would be the
α-quantile of Rt, the second definition would be the mode of the distribution of Rt, and the
third definition would be the expectation of Rt.

It has been heuristically argued [EvS00, MM14, Hen14, BD15] that any quantity m(t) defined
as in (5) behaves for large t as

m(t) = vct− 3
2γc

log t+ a− 3
√

2π
γ5

c v
′′(γc)

× 1√
t

+ o
( 1√

t

)
, (6)

for any front equation of the FKPP type and for any initial condition that decays fast enough.
In the FKPP case (1), one has γc = 1 and v′′(γc) = 2 so that m(t) = 2t − (3/2) log t + a −
3
√
π/t + o(1/

√
t).

Heuristically, the coefficient of the 1/
√
t term does not depend on the precise definition of

m(t) because the front h(x, t) converges very quickly to its limiting shape in the region where h
is neither very close to 0 nor very close to 1, so that the difference between any two reasonable
definitions of m(t) converges quickly (faster than 1/

√
t) to some constant. Note that the constant

term “a” is expected to be non-universal and to depend on the model, the initial condition and
the precise definition of m(t).

As argued in [EvS00], the reason why the “log t” and the “1/
√
t” terms in (6) are so universal

is that they are driven by the way the front develops very far on the right, in a region where it is
exponentially small and where understanding the position m(t) of the front is largely a matter
of solving the linearised front equation.

However there is a catch: solving directly the linearised equation ∂th = ∂2
xh + h with (for

instance) a step initial condition h0(x) = 1{x<0}, one finds hlinear(x, t) = 1
2e

terfc(x/
√

4t). Defin-
ing the position m(t) by hlinear

(
m(t), t

)
= 1 gives m(t) = 2t − 1

2 log t + a+ O((log2 t)/t
)

rather
than (4); the linearised equation has the same velocity 2 as for the FKPP equation, a logarithmic
correction but with a different prefactor and no 1/

√
t correction. The problem is that with the

linearised equation, the hlinear(x, t) increases exponentially on the left of m(t) and this “mass”
pushes the front forward, leading to a −1

2 log t rather than a −3
2 log t correction. This means

that in order to recover the behaviour of m(t) for the FKPP equation, one must have a front
equation with some saturation mechanism on the left. The behaviour of m(t) is not expected to
depend on which saturation mechanism is chosen, but one must be present. For these reasons,
we consider in this paper a linearised FKPP with a boundary on the left, as in [Hen14].

We emphasize that, in the present work, the FKPP equation is only a motivation: we do
not attempt to establish the equivalence between the FKPP equation and the linear model with

2
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a boundary. Our results are proved only for the linear model with boundary, and we can only
conjecture that they do apply to the FKPP equation.

2 Statement of the problem and main results
We study the following linear partial differential equation with initial condition h0(x) and a
given boundary m : [0,∞) → R:

{
∂th = ∂2

xh+ h for x > m(t),
h
(
m(t), t

)
= 0, h(x, 0) = h0(x).

(7)

Observe that without loss of generality we can (and will) insist that m(0) = 0 since otherwise
we can simply shift the reference frame by m(0) by the change of coordinate x 7→ x−m(0).

The same system was studied in [Hen14] by PDE methods for compactly supported initial
conditions. In this paper, we use probabilistic methods, writing the solution of the heat equation
as an expectation involving Brownian motion with a killing boundary. We give more general
results, in particular lifting the compactly supported hypothesis.

If the boundary is linear, m(t) = vt, the problem is easily solved explicitly. However, as soon
as m(t) is no longer linear, gaining any explicit information about the solution is known to be
hard (see for instance [HE15]) and there are few available results.

Motivated by the earlier FKPP discussion about convergence to a travelling wave as in (2),
we are looking for functions m : [0,∞) → R and ω : [0,∞) → [0,∞) such that

lim
t→∞

h
(
m(t) + x, t

)
= ω(x) for all x ≥ 0 (8)

with ω non-trivial, ω(0) = 0 and ω(x) > 0 for all x > 0. Note that such a function ω necessarily
satisfies

ω′′(x) + vω′(x) + ω(x) = 0, ∀x ≥ 0. (9)
In this case, the boundary condition anchors the front. Requiring the convergence of h(m(t) +
x, t) to a limiting shape means that m(t) must increase fast enough to prevent the mass near the
front from growing exponentially, but not so fast that it tends to zero. This provides a saturation
mechanism, and even though it might seem very unlike FKPP fronts to have h

(
m(t), t

)
= 0, as

discussed earlier we do expect the two systems to behave similarly.

Throughout the article we use the following notation:
• f(x) ∼ g(x) means f(x)/g(x) → 1 as x → ∞;
• f(x) = O(g(x)

)
means there exists C > 0 such that |f(x)| ≤ C|g(x)| for all large x;

• f(x) = o
(
g(x)

)
means f(x)/g(x) → 0 as x → ∞.

• A random variable G is said to have “Gaussian tails” if there exist two positive constants
c1, c2 such that P(|G| > z) ≤ c1 exp(−c2z2) for all z ≥ 0.

Our first theorem recovers the analogue of Bramson’s results for the system (7), (8).

Theorem 1. For each of the following bounded initial conditions h0, a twice continuously dif-
ferentiable function m(t) such that m(0) = 0 and m′′(t) = O(1/t2) leads to a solution h(x, t)
to (7) with a non-trivial limit (8) if and only if m(t) has the following large time asymptotics
where a is an arbitrary constant:
(a) if h0(x) ∼ Axνe−γx with 0 < γ < 1 for large x,

m(t) =
(
γ + 1

γ

)
t+ ν

γ
log t+ a+ o(1),

and then ω(x) = α
(
e−γx − e

− x
γ

)
with α = Ae−γa

(1
γ

− γ

)ν

.

(10a)

3
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(b) if h0(x) ∼ Axνe−x with ν > −2 for large x,

m(t) = 2t− 1 − ν

2 log t+ a+ o(1),

and then ω(x) = αxe−x with α = Ae−a

√
π

2νΓ
(
1 + ν

2
)
.

(10b)

(c) if h0(x) ∼ Ax−2e−x for large x,

m(t) = 2t − 3
2 log t+ log log t+ a+ o(1),

and then ω(x) = αxe−x with α = Ae−a

4
√
π
.

(10c)

(d) if h0(x) = O(xνe−x
)

with ν < −2 for large x and such that the value of α below is non-zero,

m(t) = 2t− 3
2 log t+ a+ o(1),

and then ω(x) = αxe−x with α = e−a−∆

2
√
π

∫ ∞

0
dy h0(y)yeyψ∞(y),

(10d)

where ∆ and ψ∞ are quantities depending on the whole function m (and not only the asymptotics)
which are introduced (in (61) and (68)) in the proofs.

Remarks.
• From the probabilistic representation of h(x, t) written later in the paper (21), it is clear

that the solution h(x, t) to (7) must be an increasing function of h0 and a decreasing
function of m (in the sense that if m(1)(t) ≥ m(2)(t) for all t, then h(1)(x, t) ≤ h(2)(x, t) for
all x and t). This implies that the α given in Theorem 1 must be increasing functions of
h0 and decreasing functions of m. This was obvious from the explicit expression of α in
cases (a), (b) and (c). In case (d), given the complicated expressions for ∆ and ψ∞, it is
not obvious at all from its expression that α decreases with m.

• Consider now a twice differentiable function m without the assumption that m′′(t) =
O(1/t2). The monotonicity of h(x, t) with respect to m still holds, and by sandwiching
such a m between two sequences of increasingly close functions that satisfy the O(1/t2)
condition, one can show easily in cases (a), (b) and (c) that if m has the correct asymp-
totics, then h

(
m(t) + x, t

)
converges as in Theorem 1. Case (d) is more difficult as both

∆ and ψ∞ might be ill defined when one does not assume m′′(t) = O(1/t2).

We now turn to the analogue of the Ebert-van Saarloos correction (6) for our model (7). As
explained in the introduction and shown in Theorem 1, with a characterization as in (8), m(t)
is only determined up to o(1). If we wish to improve upon Theorem 1, then we need a more
precise definition for m(t), analogous to (5). Natural possible definitions could be

h
(
m(t) + 1, t

)
= 1 or ∂xh

(
m(t), t

)
= 1. (11)

However, it is not obvious that such a functionm(t) even exists, would be unique or differentiable.
We are furthermore interested only in the long time asymptotics of m(t). Therefore, instead of
requiring something like (11) we rather look, as in [Hen14], for the function m(t) such that the
convergence (8) is as fast as possible.

Our main result, Theorem 2, tells us how fast h
(
m(t) + x, t

)
converges for suitable choices

of m in case (d) of Theorem 1. This case is the most classical as it contains, for example,
initial conditions with bounded support. It is the case studied by Ebert-Van Saarloos and
Henderson, and is the case for which universal behaviour is expected. Theorem 2 is followed by
two corollaries that highlight important consequences.

4
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Theorem 2. Suppose that h0 is a bounded function such that h0(x) = O(xνe−x
)

for large x
for some ν < −2, and such that α defined in (10d) is non-zero. Suppose also that m is twice
continuously differentiable with

m(t) = 2t − 3
2 log(t + 1) + a+ r(t) (12)

where r(0) = −a, r(t) → 0 as t → ∞ and r′′(t) = O(t−2−η) for large t for some η > 0. Then
for any x ≥ 0,

h
(
m(t) + x, t

)
= αxe−x

[
1 − r(t) − 3

√
π√
t

+ O
(
t1+ ν

2
)

+ O
( 1
t

1
2 +η

)
+ O

( log t
t

)
+ O(r(t)2)

]

(13)
with α as in (10d).
If we further assume that h0(x) ∼ Axνe−x for large x for some A > 0 and −4 < ν < −2, then

h
(
m(t)+x, t

)
= xe−x

[
α

(
1 − r(t) − 3

√
π√
t

)
− bt1+ ν

2 + o
(
t1+ ν

2
)

+ O
( 1
t

1
2 +η

)
+ O(r(t)2)

]
(14)

with
b = − A√

4π
e−a2ν+1Γ

(ν
2 + 1

)
> 0. (15)

This result allows us to bound the rate of convergence h
(
m(t)+x, t

)
to αxe−x: it is generically

of order max
(
1/

√
t, |r(t)|, t1+ν/2).

This also suggests that for m(t) defined as in either choice of (11), one should have r(t) ∼
−3

√
π/

√
t for ν < −3 and r(t) ≍ t1+ν/2 for −3 ≤ ν < −2. Note however that we are not sure

that such a m(t) exists and, if it exists, we do not know whether it satisfies the hypothesis on
m′′(t) that we used in the Theorem.

In the following two corollaries we highlight the best rates of convergence of h
(
m(t)+x, t

) →
xe−x that we can obtain from Theorem 2. For simplicity, we dropped the technical requirement
that m(0) = 0 in the corollaries; the expression for α must therefore be adapted.

Corollary 3. Suppose that h0 is a bounded function such that h0(x) = O(xνe−x
)

for large x
with ν < −3 and such that α is non-zero. If we choose

m(t) = 2t− 3
2 log(t+ 1) + a+ c√

t+ 1
, (16)

then

if ν ≤ −4, c = −3
√
π ⇐⇒ h

(
m(t) + x, t

)
= αxe−x + O

( log t
t

)
, (17)

if −4 < ν < −3, c = −3
√
π ⇐⇒ h

(
m(t) + x, t

)
= αxe−x + O

(
t1+ ν

2
)
. (18)

Note in particular that we have recovered the result of [Hen14], but with more general initial
conditions ([Hen14] only considered compactly supported initial conditions).

Corollary 4. Suppose that h0(x) is a bounded function such that h0(x) ∼ Axνe−x for large x
with −4 < ν < −2, with m, r and b as in Theorem 2. Then

if − 3 < ν < −2, r(t) = − b

α
t1+ ν

2 + o
(
t1+ ν

2
) ⇐⇒ h

(
m(t) + x, t

)
= αxe−x + o

(
t1+ ν

2
)
,

if − 4 < ν ≤ −3, r(t) = −3
√
π√
t

− b

α
t1+ ν

2 + o
(
t1+ ν

2
) ⇐⇒ h

(
m(t) + x, t

)
= αxe−x + o

(
t1+ ν

2
)
.

Notice that for h0(x) ∼ Ax−3e−x the position m(t) still features a first order correction in
1/

√
t but with a coefficient −(3√

π + 1
4αAe

−a
)

which is different from the ν < −3 case.

5
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3 Writing the solution as an expectation of a Bessel
In this section, we write the solution to (7) as an expectation of a Bessel process.

We only consider functions m(t) that are twice continuously differentiable. For each given
m(t), (7) is a linear problem. We first study the fundamental solutions q(t, x, y) defined as

{
∂tq = ∂2

xq + q if x > m(t),
q(t,m(t), y) = 0, q(0, x, y) = δ(x− y);

(19)

where δ is the Dirac distribution. Then

h(x, t) =
∫ ∞

0
dy q(t, x, y)h0(y). (20)

It is clear that e−tq(t, x, y) is the solution to the heat equation with boundary, and therefore

q(t, x, y)dx = etP
(
B

(y)
t ∈ dx, B(y)

s > m(s) ∀s ∈ (0, t)
)
, (21)

where t 7→ B
(y)
t is the Brownian motion started from B

(y)
0 = y with the normalization

E
[
(B(y)

s+h −B(y)
s )2] = 2h. (22)

Suppose f : [0,∞) → R is a continuous function, and At(f) is a measurable functional that
depends only on f(s), s ∈ [0, t]. Then by Girsanov’s theorem,

E
[
At(B(y))

]
= e− 1

4

∫ t

0 ds m′(s)2
E
[
At(m+B(y)) e− 1

2

∫ t

0 m′(s) dB
(y)
s

]
. (23)

Plugging into (21) at position m(t) + x instead of x, we get

q(t,m(t) + x, y)dx = et− 1
4
∫ t

0 ds m′(s)2
E
[
1{B

(y)
t ∈dx}1{B

(y)
s >0 ∀s∈(0,t)}e

− 1
2
∫ t

0 m′(s) dB
(y)
s
]
. (24)

We recall that, by the reflection principle, the probability that a Brownian path started from y
stays positive and ends in dx is:

P
(
B

(y)
t ∈ dx, B(y)

s > 0 ∀s ∈ (0, t)
)

= 1√
πt

sinh
(xy

2t
)
e− x2+y2

4t dx. (25)

Using (25), we write (24) as a conditional expectation:

q(t,m(t) + x, y) =
sinh

(xy
2t

)
√
πt

e− x2+y2
4t

+t− 1
4

∫ t

0 ds m′(s)2
E
[
e− 1

2

∫ t

0 m′(s) dξ
(t:y→x)
s

]
, (26)

where ξ
(t:y→x)
s , s ∈ [0, t] is a Brownian motion (normalized as in (22)) started from y and

conditioned not to hit zero for any s ∈ (0, t) and to be at x at time t. Such a process is called a
Bessel-3 bridge, and we recall some properties of Bessel processes and bridges in Section 4.

It is convenient to think of the path s 7→ ξ
(t:y→x)
s as the straight line s 7→ y+ (x− y)s/t plus

some fluctuations. This leads us to define

ψt(y, x) := E
[
e− 1

2
∫ t

0 m′(s)
(

dξ
(t:y→x)
s − x−y

t
ds
)]

= E
[
e− 1

2
∫ t

0 m′(s) dξ
(t:y→x)
s

]
e

m(t)
2t

(x−y),

= E
[
e

1
2
∫ t

0 m′′(s)
(

ξ
(t:y→x)
s −(y+ x−y

t
s)
)

ds)
]
,

(27)

where we have used integration by parts. With this quantity, (26) now reads

q(t,m(t) + x, y) =
sinh

(xy
2t

)
√
πt

e
m(t)

2t
(y−x)− x2+y2

4t
+t− 1

4

∫ t

0 ds m′(s)2
ψt(y, x), (28)

and the main part of the present work is to estimate ψt(y, x).

6
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4 The Bessel toolbox
Before we begin our main task, we need some fairly standard estimates on Bessel-3 processes
and Bessel-3 bridges. From here on, we refer to these simply as Bessel processes and Bessel
bridges; the “3” will be implicit. We include proofs for completeness.

We build most of our processes on the same probability space. We fix a driving Brownian
motion (Bs, s ≥ 0) started from 0 under a probability measure P, with the normalization E[B2

t ] =
2t.

For each y ≥ 0 we introduce a Bessel process ξ(y) started from y as the strong solution to
the SDE

ξ
(y)
0 = y, dξ(y)

s = dBs + 2
ξ

(y)
s

ds. (29)

It is well-known that ξ(y)
s has the law of a Brownian motion conditioned to never hit zero.

We also introduce, for each t ≥ 0 and y ≥ 0

ξ(t:y→0)
s = t− s

t
ξ

(y)
st

t−s

for s ∈ [0, t). (30)

This process is a Bessel bridge from y to 0 in time t, which is a Brownian motion started from y
and conditioned to hit 0 for the first time at time t. One can check by direct substitution that
ξ

(t:y→0)
s solves

ξ
(t:y→0)
0 = y, dξ(t:y→0)

s = dB̃t,s +
(

2
ξ

(t:y→0)
s

− ξ
(t:y→0)
s

t− s

)
ds, (31)

where for each t, (B̃t,s, s ∈ [0, t)) is the strong solution to

B̃t,0 = 0, dB̃t,s = t− s

t
d
(
B ts

t−s

)
, (32)

and is thus itself a Brownian motion.
One can compute directly the law of the Brownian motion conditioned to hit zero for the

first time at time t using (25) and check that this law solves the forward Kolmogorov equation
(or Fokker Planck equation) associated with the SDE (or Langevin equation) (31).

Similarly, we construct the Bessel bridge from y to x in time t, the Brownian motion condi-
tioned not to hit zero for any s ∈ (0, t) and to be at x at time t, through

ξ
(t:y→x)
0 = y, dξ(t:y→x)

s = dB̃t,s +
(

x

t− s
coth xξ

(t:y→x)
s

2(t − s) − ξ
(t:y→x)
s

t− s

)
ds. (33)

The advantages of constructing all the processes from a single Brownian path s 7→ Bs is
that they can be compared directly, realization by realization. In particular we use the following
comparisons:

Lemma 5. For any y ≥ z ≥ 0 and s ≥ 0,

ξ(z)
s ≤ ξ(y)

s ≤ ξ(z)
s + y − z and y +Bs ≤ ξ(y)

s . (34)

Furthermore, for any y ≥ 0, x ≥ z ≥ 0, t ≥ 0 and s ∈ [0, t],

ξ(t:0→0)
s ≤ ξ(t:y→0)

s ≤ ξ(t:0→0)
s + y

t− s

t
, ξ(t:y→z)

s ≤ ξ(t:y→x)
s ≤ ξ(t:y→z)

s + (x− z)s
t

. (35)

Proof. To prove (34) we make three observations.

7
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– The processes ξ(y)
s and y +Bs both start from y and

d
(
ξ(y)

s − (y +Bs)
)

= ds
ξ

(y)
s

> 0, s > 0, (36)

so that ξ(y)
s > y +Bs for all s > 0 and y ≥ 0.

– ξ
(y)
s and ξ

(z)
s follow the same SDE (29) and ξ

(y)
0 ≥ ξ

(z)
0 , so the two processes must remain

ordered at all times (see for instance [Kun97]).

– We have
d(ξ(y)

s − ξ(z)
s ) =

(
1
ξ

(y)
s

− 1
ξ

(z)
s

)
ds, (37)

and since ξ(y)
s ≥ ξ

(z)
s for all s ≥ 0 we see that ξ(y)

s − ξ
(z)
s is decreasing, yielding ξ(y)

s − ξ
(z)
s ≤

y − z for all s ≥ 0.

The inequalities in the left part of (35) are a direct consequence of (34) through the change
of time (30). We now focus on the inequalities in the right part of (35). First we assume that
z > 0.

The fact that for x ≥ z we have ξ(t:y→x)
s ≥ ξ

(t:y→z)
s follows from the fact that x coth(ax) ≥

z coth(az) for any a > 0 and x ≥ z.
For the other inequality, the fact that u(coth u− 1) is decreasing yields that

dξ(t:y→x)
s = dB̃t,s + 2

ξ
(t:y→x)
s

× xξ
(t:y→x)
s

2(t − s)

(
coth xξ

(t:y→x)
s

2(t − s) − 1
)

ds+ x− ξ
(t:y→x)
s

t− s
ds

≤ dB̃t,s + 2
ξ

(t:y→x)
s

× zξ
(t:y→z)
s

2(t− s)

(
coth zξ

(t:y→z)
s

2(t − s) − 1
)

ds+ x− ξ
(t:y→x)
s

t− s
ds

≤ dB̃t,s + z

t− s

(
coth zξ

(t:y→z)
s

2(t − s) − 1
)

ds+ x− ξ
(t:y→x)
s

t− s
ds,

(38)

so that, writing ζs := ξ
(t:y→x)
s − ξ

(t:y→z)
s ≥ 0 for the difference process,

dζs ≤ x− z − ζs

t− s
ds. (39)

But the solution to dφs

ds = (x − z − φs)/(t − s) and φ0 = 0 is φs = (x − z)s/t, implying that
ζs ≤ (x − z)s/t, which concludes the proof for z > 0. For the case z = 0 the proof is the same
but uses the inequalities 1 ≤ u coth u ≤ 1 + u for u ≥ 0.

We note that, intuitively, as the length of a Bessel bridge tends to infinity, on any compact
time interval the bridge looks more and more like a Bessel process. Similarly, as the start point
of a Bessel process tends to infinity, on any compact interval it looks more and more like a
Brownian motion relative to its start position. We make this precise in the lemma below.

Lemma 6. For all s ≥ 0 and y ≥ 0,

ξ(t:y→0)
s → ξ(y)

s as t → ∞. (40)

For all s ≥ 0
ξ(y)

s − y → Bs as y → ∞. (41)
For all s ≥ 0 and any yt → ∞ as t → ∞,

ξ(t:yt→0)
s − yt

t− s

t
→ Bs as t → ∞. (42)

8
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Proof. For (40), we simply recall (30) which defined

ξ(t:y→0)
s = t− s

t
ξ

(y)
st

t−s

for s ∈ [0, t), (43)

so we are done by continuity of paths.
For (41), recall from Lemma 5 that ξ(y)

s − y ≥ Bs. This both gives us the required lower
bound, and tells us that for any s ≥ 0, infu∈[0,s] ξ

(y)
u → ∞ as y → ∞. Thus

ξ(y)
s − y = Bs + 2

∫ s

0

1
ξ

(y)
u

du ≤ Bs + 2s
infu∈[0,s] ξ

(y)
u

→ Bs as y → ∞. (44)

Finally, for (42), we write

ξ(t:yt→0)
s − yt

( t− s

t

)
=
[
ξ(yt)

s − yt

]
−
[
s

t
(ξ(yt)

s − yt)
]

+
[( t− s

t

)
(ξ(yt)

s+ s2
t−s

− ξ(yt)
s )

]
. (45)

By (40), ξ(yt)
s − yt → Bs. By (34), Bs ≤ ξ

(yt)
s − yt ≤ ξ

(0)
s , so

s

t
(ξ(yt)

s − yt) → 0 as t → ∞. (46)

Using our coupling between the Bessel processes and Brownian motion we have dBu ≤ dξ(yt)
u ≤

dξ(0)
u for all u ≥ 0 and hence

B
s+ s2

t−s

−Bs ≤ ξ
(yt)
s+ s2

t−s

− ξ(yt)
s ≤ ξ

(0)
s+ s2

t−s

− ξ(0)
s (47)

so by continuity of paths,
(t− s

t

)
(ξ(yt)

s+ s2
t−s

− ξ(yt)
s ) → 0 as t → ∞, (48)

which concludes the proof of (42).

We need the fact that the increments of a Bessel process over time s are roughly of order
s1/2. By paying a small price on the exponent, we obtain the following uniform bounds:

Lemma 7. For any ǫ > 0 small enough, there exists a positive random variable G with Gaussian
tail such that uniformly in s ≥ 0 and y ≥ 0,

∣∣ξ(y)
s − y

∣∣ ≤ Gmax
(
s

1
2 −ǫ, s

1
2 +ǫ
)

and
∣∣Bs

∣∣ ≤ Gmax
(
s

1
2 −ǫ, s

1
2 +ǫ
)
. (49)

Furthermore, uniformly in x ≥ 0, y ≥ 0, t ≥ 0 and 0 ≤ s ≤ t,
∣∣∣∣ξ

(t:y→x)
s −

(
y + x− y

t
s
)∣∣∣∣ ≤ Gmax

(
s

1
2 −ǫ, s

1
2 +ǫ
)
. (50)

Proof. From (34) we have Bs ≤ ξ
(y)
s − y ≤ ξ

(0)
s . Also by symmetry P(|Bs| > x) = 2P(Bs > x).

Thus to prove (49), it is sufficient to show that

P
(

sup
s>0

ξ
(0)
s

max(s1/2−ǫ, s1/2+ǫ)
> x

)
≤ c1e

−c2x2 (51)

for some positive c1 and c2. The proof is is elementary and we defer it to an appendix.
To prove (50), notice that from (35) we have

ξ(t:y→x)
s −

(
y + x− y

t
s
)

≤ ξ(t:0→0)
s . (52)

9
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But from the change of time (30) and (49),

ξ(t:0→0)
s = t− s

t
ξ

(0)
st

t−s

≤ G
t− s

t
max

{( st

t− s

) 1
2 −ǫ

,
( st

t− s

) 1
2 +ǫ
}

≤ Gmax
(
s

1
2 −ǫ, s

1
2 +ǫ
)
, (53)

where the last step is obtained by pushing the (t− s)/t inside the max. This provides the upper
bound of (50). For the lower bound, we introduce Brownian bridges s 7→ B

(t:y→x)
s started from

y and conditioned to be at x at time t. We couple the Brownian bridge to the Bessel bridges by
building them over the family B̃t,s of Brownian motions defined in (32):

B
(t:y→x)
0 = y, dB(t:y→x)

s = dB̃t,s + x−B
(t:y→x)
s

t− s
ds. (54)

One can check directly that

B(t:y→x)
s = y + x− y

t
s+B(t:0→0)

s . (55)

Furthermore, by comparing (54) to (33), it is immediate from the fact that coth u ≥ 1 for all
u ≥ 0 that ξ(t:y→x)

s ≥ B
(t:y→x)
s . Therefore

ξ(t:y→x)
s −

(
y + x− y

t
s
)

≥ B(t:0→0)
s . (56)

Also, as in (30), we can relate Bs and B(t:0→0)
s through a time change:

B(t:0→0)
s = t− s

t
B st

t−s
for s ∈ [0, t), (57)

and, as in (53),

∣∣B(t:0→0)
s

∣∣ = t− s

t

∣∣∣B st
t−s

∣∣∣ ≤ G
t− s

t
max

{( st

t− s

) 1
2 −ǫ

,
( st

t− s

) 1
2 +ǫ
}

≤ Gmax
(
s

1
2 −ǫ, s

1
2 +ǫ
)
,

(58)
which concludes the proof.

5 Simple properties of ψt(y, x) and proof of Theorem 1
As in the hypothesis of Theorem 1, we assume throughout this section that m is twice continu-
ously differentiable with

m(0) = 0 and m′′(s) = O
( 1
s2

)
. (59)

The large s behaviour of m′′(s) implies that there exists a v such that, for large s,

m′(s) = v + O
(1
s

)
and m(s) = vs+ O(log s). (60)

We define
∆ = 1

4

∫ ∞

0
ds (m′(s) − v)2, (61)

which is finite because of (59).
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5.1 Simple properties of ψt(y, x)
We recall from (27) that the main quantity we are interested in is

ψt(y, x) = E
[
eIt(y,x)], (62)

with
It(y, x) = 1

2

∫ t

0
dsm′′(s)

(
ξ(t:y→x)

s −
(
y + x− y

t
s
))
, (63)

where we recall that ξ(t:y→x)
s , s ∈ [0, t] is a Bessel bridge from y to x over time t. We mainly

need to consider x = 0 so we use the shorthand

ψt(y) := ψt(y, 0). (64)

We also define
I(y) = 1

2

∫ ∞

0
dsm′′(s)

(
ξ(y)

s − y
)

(65)

where ξ(y)
s , s ≥ 0 is a Bessel process started from y.

Proposition 8. The function ψt(y, x) has the following properties:

• It is bounded away from zero and infinity: there exist two positive constants 0 < K1 < K2
depending on the function m′′(s) such that for any x, y, t,

K1 ≤ ψt(y, x) ≤ K2. (66)

• It hardly depends on x for large times: recalling that ψt(y) := ψt(y, 0),

ψt(y, x) = ψt(y)
(
1 + xO

( log t
t

))
uniformly in y and x. (67)

• For fixed y, it has a finite and positive limit as t → ∞:

ψ∞(y) := lim
t→∞

ψt(y) = E
[
eI(y)

]
> 0. (68)

• The large time limit ψ∞(y) has a well-behaved large y limit: for any function t 7→ yt that
goes to infinity as t → ∞,

lim
y→∞ψ∞(y) = lim

t→∞
ψt(yt) = E

[
e

1
2
∫∞

0 ds m′′(s)Bs
]

= e∆. (69)

Proof. For the first result, Lemma 7 tells us that
∣∣∣∣ξ

(t:y→x)
s −

(
y + x− y

t
s
)∣∣∣∣ ≤ Gmax

(
s

1
2 −ǫ, s

1
2 +ǫ
)
, (70)

where G > 0 is a random variable with Gaussian tail independent of t, y and x. Then, since
m′′(s) = O(1/s2),

∣∣∣It(y, x)
∣∣∣ ≤ 1

2

∫ ∞

0
ds
∣∣m′′(s)

∣∣Gmax
(
s

1
2 −ǫ, s

1
2 +ǫ
)

= GO(1). (71)

For the second result, we compare paths going to x with paths going to 0: we know from
Lemma 5 that 0 ≤ ξ

(t:y→0)
s − ξ

(t:y→x)
s + xs/t ≤ xs/t, so

∣∣It(y, 0) − It(y, x)
∣∣ ≤ 1

2

∫ t

0
ds
∣∣m′′(s)

∣∣×
∣∣∣ξ(t:y→0)

s − ξ(t:y→x)
s + x

t
s
∣∣∣

≤ x

2t

∫ t

0
ds
∣∣m′′(s)

∣∣s = xO
( log t

t

)
.

(72)
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We now turn to the third result. For any fixed s and y, Lemma 6 tells us that ξ(t:y→0)
s → ξ

(y)
s

as t → ∞. Thus, using (70) and (71), we can apply dominated convergence and obtain

It(y, 0) = 1
2

∫ t

0
dsm′′(s)

(
ξ(t:y→0)

s − y
t− s

t

)
→ 1

2

∫ ∞

0
dsm′′(s)

(
ξ(y)

s − y
)

= I(y). (73)

Furthermore, as the bound (71) is a random variable with Gaussian tails, using dominated
convergence again we get

lim
t→∞

E
[
eIt(y,0)] = E

[
eI(y)]. (74)

For the fourth statement, by Lemma 6 for any fixed s we have

lim
y→∞

(
ξ(y)

s − y
)

= Bs and lim
t→∞

(
ξ(t:yt→0)

s − yt
t− s

t

)
= Bs. (75)

Then, by dominated convergence using again a uniform Gaussian bound from Lemma 7,

lim
y→∞ψ∞(y) = lim

t→∞
ψt(yt) = E

[
e

1
2

∫∞
0 ds m′′(s)Bs

]
. (76)

It now remains to compute the right-hand-side. Let

Xt := 1
2

∫ t

0
dsm′′(s)Bs. (77)

By integration by parts,

Xt = 1
2m

′(t)Bt − 1
2

∫ t

0
m′(s) dBs = 1

2

∫ t

0

(
m′(t) −m′(s)

)
dBs (78)

so Xt is a time change of Brownian motion with

E
[
eXt

]
= e

1
2 var(Xt) = e

1
8

∫ t

0 (m′(t)−m′(s))2 2ds → e
1
4

∫∞
0 (v−m′(s))2 ds = e∆. (79)

Therefore, by dominated convergence as in (76), E[eX∞ ] = e∆.

5.2 Proof of Theorem 1
Since m(0) = 0 and m′′(s) = O(1/s2), we can write m(s) = vs + δ(s) with δ(0) = 0, δ(s) =
O(log s), and δ′(s) = O(1/s). Note that

∫ t

0
dsm′(s)2 =

∫ t

0
ds
(
v2 + 2vδ′(s) + δ′(s)2

)
= v2t+ 2vδ(t) + 4∆ + O

(1
t

)
, (80)

where we recall that ∆ = 1
4
∫∞

0 ds δ′(s)2. We now fix x > 0, so that any terms written as O(f(t))
might depend on x; since x is fixed this will not matter. For instance, instead of (67) we simply
write that ψt(y, x) = ψt(y)eO( log t

t
).

We recall (28):

q(t,m(t) + x, y) =
sinh

(xy
2t

)
√
πt

e
m(t)

2t
(y−x)− x2+y2

4t
+t− 1

4

∫ t

0 ds m′(s)2
ψt(y, x). (81)

Substituting in the estimate above we get

q(t,m(t) + x, y) = 1√
πt
et
(

1− v2
4

)
− v

2 δ(t)−∆− v
2 x+O

(
log t

t

)
sinh

(xy
2t
)
e

v
2 y+ δ(t)

2t
yψt(y)e− y2

4t . (82)

12

Facsimile of [BBHR15] 147



Then since h(x, t) =
∫∞

0 dy q(t, x, y)h0(y)—see (20)—we have

h
(
m(t) + x, t

)
= 1√

4πt3/2 e
t
(

1− v2
4

)
− v

2 δ(t)−∆− v
2 x+O

(
log t

t

)
H(x, t), (83)

with
H(x, t) =

∫ ∞

0
dy h0(y)2t sinh

(
xy

2t

)
e

v
2 y+ δ(t)

2t
yψt(y)e− y2

4t . (84)

We now must choose v and δ(t), depending on the initial condition, such that (83) has a finite
and non-zero limit as t → ∞.

We use the following simple calculus lemma to evaluate H(x, t). We defer the proof to the
end of this section.

Lemma 9. Let φ(y) a bounded function such that

φ(y) ∼ Ayα as y → ∞ (85)

for some A > 0 and some α. If ǫt = o
(
t−1/2) then, as t → ∞,

∫ ∞

0
dy φ(y)e− y2

4t
+ǫtyψt(y)





∼ A 2αe∆Γ
(1 + α

2
)
t

1+α
2 if α > −1 (86a)

∼ A

2 e
∆ log t if α = −1 (86b)

→
∫ ∞

0
dy φ(y)ψ∞(y) if α < −1. (86c)

If (85) is replaced by φ(y) = O(yα), then (86c) remains valid, and (86a) and (86b) are respec-
tively replaced by O(t(1+α)/2) and O(log t).

We now continue with the proof of Theorem 1. We distinguish two cases.

Case 1: h0(y) = O
(
yνe− v

2 y
)

for some ν

We introduce H1(t) such that xH1(t) is the same as H(x, t) with the sinh expanded to first
order:

H1(t) =
∫ ∞

0
dy
(
h0(y)e

v
2 y
)
ye

δ(t)
2t

yψt(y)e− y2
4t . (87)

For any z ≥ 0, by Taylor’s theorem (with the Lagrange remainder), there exists w ∈ [0, z] such
that 0 ≤ sinh(z) − z = z3

6 cosh(w) ≤ z3

6 e
z. It follows that

∣∣∣H(x, t) − xH1(t)
∣∣∣ ≤ x3

24t2
∫ ∞

0
dy
(∣∣h0(y)

∣∣e
v
2 y
)
y3e

x+δ(t)
2t

yψt(y)e− y2
4t . (88)

By applying Lemma 9 to φ(y) =
∣∣h0(y)

∣∣e v
2 yy3 with α = ν + 3 we obtain

H(x, t) − xH1(t) =





O
(
tν/2

)
if ν > −4,

O (
t−2 log t

)
if ν = −4,

O (
t−2) if ν < −4.

(89)

We now apply Lemma 9 to H1(t) with α = ν + 1 and obtain

xH1(t) ∼





x
A

2 e
∆ log t if h0(y) ∼ Ay−2e− v

2 y with A > 0,

xAe∆2ν+1Γ
(
1 + ν

2
)
t1+ ν

2 if h0(y) ∼ Ayνe− v
2 y with A > 0 and ν > −2,

x

∫ ∞

0
dy h0(y)ye

v
2 yψ∞(y) if h0(y) = O

(
yνe− v

2 y
)

for some ν < −2,

(90)
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where we assumed that in the third case the right hand side is non-zero. As the difference (89)
between H(x, t) and xH1(t) is always asymptotically small compared to the values in the right
hand side of (90), it follows that (90) also gives the asymptotic behaviour of H(x, t).

We now plug this estimate of H(x, t) into (83). To prevent h
(
m(t) + x, t

)
from growing

exponentially fast we need to take v = 2. Then δ(t) must be adjusted (up to a constant a) to
kill the remaining time dependence. We find

δ(t) =





−1 − ν

2 log t+ a+ o(1) if h0(y) ∼ Ayνe−y with A > 0 and ν > −2,

−3
2 log t+ log log t+ a+ o(1) if h0(y) ∼ Ay−2e−y with A > 0,

−3
2 log t+ a+ o(1) if h0(y) = O(yνe−y

)
for some ν < −2.

(91)

In (83), when t → ∞, all the t-dependence disappears and what remains is ω(x) from the
Theorem, with the claimed value of α. This proves cases (b), (c) and (d) of Theorem 1.

Case 2: h0(y) ∼ Ayνe−γy with γ < v/2

We write h0(y) = g0(y)e−γy with g0(y) ∼ Ayν so that (84) becomes

H(x, t) = 2t
∫ ∞

0
dy g0(y) sinh

(xy
2t
)
ψt(y)e

δ(t)
2t

ye
v
2 y−γy− y2

4t . (92)

The terms in the second exponential reach a maximum at y = λt with λ = v − 2γ. We make
the change of variable y = λt+ u

√
t; after rearranging we have

H(x, t) = 2tν+ 3
2 e

λ2
4 t+λ

δ(t)
2

∫ ∞

−λ
√

t
du g0(λt+ u

√
t)

tν
sinh

(λx
2 + ux

2
√
t

)
ψt(λt + u

√
t)eu

δ(t)
2

√
t
− u2

4 . (93)

We bound each term in the integral with the goal of applying dominated convergence.

• As g0 is bounded for small y and g0 ∼ Ayν for large y, we can take Ã such that
∣∣g0(y)

∣∣ ≤
Ã(y + 1)ν . Then
∣∣g0(λt + u

√
t)
∣∣

tν
≤ Ãλν

(
1 + u

√
t+ 1
λt

)ν

≤ Ãλνe
|ν|(u

√
t+1)

λt ≤ 2Ãλνeu for t large enough.

(94)

• We have the simple bound

sinh
(λx

2 + ux

2
√
t

)
≤ e

λx
2 + ux

2
√

t ≤ e
λx
2 +u for t large enough. (95)

• ψt(·) is bounded by Proposition 8.

• Finally, exp
(
uδ(t)/(2

√
t)
) ≤ eu for t large enough.

We have bounded the integrand in (93) by a constant times exp(3u− u2/4) for t large enough,
so we can apply dominated convergence. As t → ∞, the g0(·)/tν term converges to Aλν , the
sinh(·) term to sinh(λx/2), the ψt(·) term to e∆ and the exponential to e−u2/4. We are left with
some constants and the integral of e−u2/4, which is

√
4π, and finally:

H(x, t) ∼ 2tν+ 3
2 e

λ2
4 t+λ

δ(t)
2 Aλν sinh

(λx
2
)
e∆√

4π. (96)

14

Facsimile of [BBHR15] 149



In (83), this gives

h
(
m(t) + x, t

)
= 2 sinh

(λx
2
)
e− v

2 x × et
(

1− v2
4 + λ2

4

)
− v−λ

2 δ(t)+o(1)tνAλν . (97)

Recall that λ = v−2γ. To avoid exponential growth, we need 1−v2/4+λ2/4 = 0, which implies
v = γ + 1/γ with γ < 1 because we started with the assumption γ < v/2. As v−λ

2 = γ, to have
convergence of h

(
m(t) + x, t

)
we need δ(t) to be of the form

δ(t) = ν

γ
log t + a+ o(1) for large t. (98)

Writing the sinh(·) as the difference of two exponentials leads to 2 sinh(λx/2)e−vx/2 = e−γx −
e−(1/γ)x; we then recover case (a) of Theorem 1 with the claimed value of ω(x) and α.

This completes the proof of Theorem 1, subject to proving Lemma 9.

Proof of Lemma 9. Recall from Proposition 8 that ψt(y) is bounded in t and y, ψ∞(y) :=
limt→∞ ψt(y) exists, limy→∞ ψ∞(y) exists and equals e∆, and limt→∞ ψt(tα) = e∆ for any α > 0.

For α < −1, the result is obtained with dominated convergence by noticing that e−y2/(4t)+ǫty

is bounded by etǫ2
t (value obtained at y = 2tǫt). With ǫt = o

(
t−1/2), this is bounded by a

constant.
For α > −1, cut the integral at y = 1. The integral from 0 to 1 is bounded, and in the

integral from 1 to ∞ we make the substitution y = u
√
t:

∫ ∞

0
dy φ(y)e− y2

4t
+ǫtyψt(y) = O(1) + t

1+α
2

∫ ∞

1√
t

duφ(u
√
t)

tα/2 e− u2
4 +

√
tǫtuψt(u

√
t). (99)

A simple application of dominated convergence then leads to
∫ ∞

0
dy φ(y)e− y2

4t
+ǫtyψt(y) = O(1) + t

1+α
2

(∫ ∞

0
duAuαe− u2

4 e∆ + o(1)
)
, (100)

and the substitution t = u2/4 gives (86a).
For α = −1, we cut the integral at y =

√
t and again make the change of variable y = u

√
t

in the second part:
∫ ∞

0
dy φ(y)e− y2

4t
+ǫtyψt(y) =

∫ √
t

0
dy φ(y)e− y2

4t
+ǫtyψt(y) +

∫ ∞

1
du

√
tφ(u

√
t)e− u2

4 +
√

tǫtuψt(u
√
t).

(101)
Again by dominated convergence, the second integral has a limit; we simply write it as O(1).
For the first, the integrand is bounded so the integral from 0 to 1 is certainly O(1), and we may
concentrate on the integral from 1 to

√
t. Making the substitution y = tx, we have

∫ √
t

1
dy φ(y)e− y2

4t
+ǫtyψt(y) = (log t)

∫ 1/2

0
dx txφ(tx)e− t2x−1

4 +ǫttx
ψt(tx). (102)

The integrand on the right converges for each x ∈ (0, 1/2) to Ae∆ so by dominated convergence,
∫ t

1
dy φ(y)e− y2

4t
+ǫtyψt(y) ∼ A

2 e
∆ log t, (103)

as required.
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6 Estimating ψt: finer bounds, and Proof of Theorem 2
We want to refine Proposition 8 and estimate the speed of convergence of ψt(y, x) to its limit
as t → ∞. As we are only interested up to errors of order log t

t , it suffices to consider the case
x = 0 since by (67), ψt(y, x) = ψt(y)exO( log t

t
).

Recall that
ψt(y) = E

[
eIt(y)

]
, ψ∞(y) = E

[
eI(y)

]
, (104)

where, introducing It(y) := It(y, 0),

It(y) = 1
2

∫ t

0
dsm′′(s)

(
ξ(t:y→0)

s − y
t− s

t

)
= 1

2

∫ t

0
dsm′′(s)t− s

t

(
ξ

(y)
st

t−s

− y
)
,

I(y) = 1
2

∫ ∞

0
dsm′′(s)

(
ξ(y)

s − y
)
.

(105)

We have used the change of time (30) to give the second expression of It(y). As in the hypothesis
(12) of Theorem 2, we suppose that m is twice continuously differentiable and

m′′(t) = 3
2(t + 1)2 + r′′(t) with r′′(t) = O

( 1
t2+η

)
, η > 0. (106)

Our estimate of ψt(y) is based on the following two propositions. By writing It(y) = I(y) −
(I(y) − It(y)) in the definition of ψt(y), and expanding the exponential in the small correction
term I(y) − It(y), we show that:

Proposition 10. Assuming (106), the following holds uniformly in y:

ψt(y) = ψ∞(y)
(
1 − E

[
I(y) − It(y)

])
+ O

( log t
t

)
+ yO

(1
t

)
. (107)

Further, some straightforward computations give that:

Proposition 11. Assuming (106), the following holds uniformly in y:

E
[
I(y) − It(y)

]
= 3

√
π√
t

+ yO
( log t

t

)
+





O
(1
t

)
if η > 1/2,

O
( log t

t

)
if η = 1/2,

O
( 1
t1/2+η

)
if η < 1/2.

(108)

We prove Propositions 10 and 11 in Sections 6.2 and 6.3, after some preparatory work in
Section 6.1. We now show how to prove Theorem 2 from these two propositions.

Proof of Theorem 2. We assume that m(t) satisfies the hypothesis (12) of Theorem 2:

m(t) = 2t − 3
2 log(t+ 1) + a+ r(t) with r(t) = o(1) and r′′(t) = O

( 1
t2+ν

)
for large t. (109)

As in the proof of Theorem 1, we recall that h
(
m(t) + x, t

)
is related to H(x, t) through (83)

and that H(x, t) is given by (84). With v = 2 and δ(t) = −(3/2) log(t+ 1) + a+ r(t), these two
equations read:

h
(
m(t) + x, t

)
= 1√

4π
e−a−r(t)−∆−x+O

(
log t

t

)
H(x, t), (110)

H(x, t) =
∫ ∞

0
dy
(
h0(y)ey

)
2t sinh

(xy
2t
)
e

−(3/2) log(t+1)+a+r(t)
2t

y− y2
4t ψt(y), (111)
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We compute H(x, t) for an initial condition h0(x) = O(xνe−x
)

for some ν < −2. In (87) in the
proof of Theorem 1, we introduced H1(t) which is H(x, t)/x with the sinh replaced by its first
order expansion:

H1(t) =
∫ ∞

0
dy
(
h0(y)ey

)
ye

−(3/2) log(t+1)+a+r(t)
2t

y− y2
4t ψt(y), (112)

and we showed in (89) that the difference between H(x, t) and xH1(t) is very small. We continue
to simplify the integral by introducing successive simplifications

H2(t) =
∫ ∞

0
dy
(
h0(y)ey

)
ye− y2

4t ψt(y),

H3(t) =
∫ ∞

0
dy
(
h0(y)ey

)
ye− y2

4t ψ∞(y),

H4 =
∫ ∞

0
dy
(
h0(y)ey

)
yψ∞(y),

(113)

and by writing

H(x, t) =
(
H(x, t) − xH1(t)

)
+ x

(
H1(t) −H2(t)

)
+ x

(
H2(t) −

[
1 − 3

√
π√
t

]
H3(t)

)

+ x

[
1 − 3

√
π√
t

] (
H3(t) −H4

)
+ x

[
1 − 3

√
π√
t

]
H4. (114)

We now bound the successive differences in the above expression, as we did in (89), for the first
one.

For t large enough, −3
2 log(t+ 1) +a+ r(t) < 0 and for z > 0 we have 0 ≤ 1 − e−z ≤ z. Thus

∣∣∣H2(t) −H1(t)
∣∣∣ ≤

3
2 log(t + 1) − a− r(t)

2t

∫ ∞

0
dy
(∣∣h0(y)

∣∣ey
)
y2e− y2

4t ψt(y). (115)

An application of Lemma 9 with φ(y) = h0(y)eyy2 and hence α = ν + 2 then gives

H1(t) −H2(t) =





O
(
t

1+ν
2 log t

)
if ν > −3,

O
(

log2 t
t

)
if ν = −3,

O
(

log t
t

)
if ν < −3.

(116)

For the difference involving H2 and H3, we use Propositions 10 and 11 which give that
uniformly in y,

ψt(y) = ψ∞(y)
(

1 − 3
√
π√
t

)
+ yO

( log t
t

)
+





O
(

1
t

)
if η > 1/2,

O
(

log t
t

)
if η = 1/2,

O
(

1
t1/2+η

)
if η < 1/2.

(117)

We get

H2(t) −
(

1 − 3
√
π√
t

)
H3(t) =

∫ ∞

0
dy
(
h0(y)ey

)
ye− y2

4t

[
ψt(y) − ψ∞(y)

(
1 − 3

√
π√
t

)]
,

= O
( 1
t1/2+η

)
+





O
(
t

1+ν
2 log t

)
if ν > −3,

O
(

log2 t
t

)
if ν = −3,

O
(

log t
t

)
if ν < −3.

(118)
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Indeed, the yO( log t
t

)
gives the same correction as in (116) by another application of Lemma 9

with α = ν + 2. As
∫

dy
∣∣h0(y)

∣∣eyy < ∞ because ν < −2, the contribution of the yO( log t
t

)
term

subsumes the other O in (117) except in the case η < 1
2 .

Finally, notice that
∣∣H4

∣∣ < ∞ because we supposed ν < −2. Recalling ψ∞(y) ≤ K2, one has
∣∣∣H4 −H3(t)

∣∣∣ ≤
∫ ∞

0
dy
(∣∣h0(y)

∣∣ey
)
y
(
1 − e− y2

4t

)
ψ∞(y),

≤ K2

∫ √
t

0
dy
(∣∣h0(y)

∣∣ey
)
y
y2

4t +K2

∫ ∞
√

t
dy
(∣∣h0(y)

∣∣ey
)
y,

=





O
(
t1+ ν

2
)

if −2 > ν > −4,

O
(

log t
t

)
if ν = −4,

O
(

1
t

)
if ν < −4,

(119)

where we used h0(y)ey = O(yν). The end result comes from the integral from 0 to
√
t; the other

integral is always O(t1+ν/2).
Finally, collecting the differences (89), (116), (118) and (119) leads with (114) to

H(x, t) = xH4

[
1 − 3

√
π√
t

+ O
(
t1+ ν

2
)

+ O
( 1
t1/2+η

)
+ O

( log t
t

)]
. (120)

Substituting into (110) and expanding e−r(t) leads to the main expression (13) of Theorem 2,
with the value α given in Theorem 1.

We now turn to the second part of Theorem 2 and assume that h0(y) ∼ Ayνe−y with
−4 < ν < −2. We look for an estimate of H4 −H3(t) which is more precise than (119).

Writing H4 −H3(t) as a single integral and doing the change of variable y = u
√
t one gets

H4 −H3(t) = t1+ ν
2

∫ ∞

0
du h0(u

√
t)eu

√
t

tν/2 u
(
1 − e− u2

4
)
ψ∞(u

√
t). (121)

A simple application of dominated convergence then gives

H4 −H3(t) ∼ t1+ ν
2Ae∆

∫ ∞

0
duuν+1

(
1 − e− u2

4
)

= −Ae∆2ν+1Γ
(ν

2 + 1
)
t1+ ν

2 , (122)

and (120) becomes

H(x, t) = xH4

[
1 − 3

√
π√
t

]
+ xAe∆2ν+1Γ

(ν
2 + 1

)
t1+ ν

2 + o
(
t1+ ν

2
)

+ O
( 1
t

1
2 +η

)
. (123)

This leads with (110) to (13).

6.1 Decorrelation between I(y) and ξ(y)
s

A large part of our argument relies on a statement that roughly says “I(y) and ξ
(y)
s are almost

independent for large s”. The following proposition makes this precise.
Proposition 12. Suppose that m is twice continuously differentiable with m′′(t) = O(1/t2).
Define

w(y, s) = E
[
eI(y)(ξ(y)

s − y
)]− E

[
eI(y)

]
E
[
ξ(y)

s − y
]
. (124)

There exists a constant C > 0 such that
|w(y, s)| ≤ C log(s+ 1) for all s, y ≥ 0,

|w(y, s)| ≤ C(1 + y
log(s+ 1)√

s
) for all s, y ≥ 0,

∣∣∣w(y, s + δ) − w(y, s)
∣∣∣ ≤ C

δ

s+ 1 for all y ≥ 0, whenever 0 ≤ δ ≤ s2.

(125)

18

Facsimile of [BBHR15] 153



The proof of this result is quite involved. The first step is to prove two fairly accurate
estimates on the difference between two bridges with different end points, the first of which is
best when the starting point y is large and the second of which is more accurate when y is small.

It is well-known that a Bessel process started from y and conditioned to be at position x
at time t is equal in law to a Bessel bridge from y to x in time t followed by an independent
Bessel process started from x at time t. We defined ξ(t:y→x)

s for s ∈ [0, t] as a Bessel bridge from
y to x in a time t. In this section, we extend the definition of ξ(t:y→x)

s for s > t by interpreting
it as an independent Bessel started from x at time t, so that ξ(t:y→x)

s , s ≥ 0 is a Bessel process
conditioned to be at x at time t. We assume that the Bessel processes attached to ξ(t:y→x)

s for
s ≥ t are built for all x and t with the same noise, so that we can compare them to each other.
In particular, we apply (34) and (49) to these Bessel processes.

Recall that I(y) = 1
2
∫∞

0 dum′′(u)
(
ξ

(y)
u − y

)
and define

Ĩt(y, z) = 1
2

∫ ∞

0
dum′′(u)

(
ξ(t:y→z)

u − y
)
. (126)

Lemma 13. If m is twice continuously differentiable with m′′(t) = O(1/t2), then there exists a
constant c and random variables Gt with distribution independent of t and Gaussian tails such
that:

• For any t, y, z and x,

|Ĩt(y, z) − Ĩt(y, x)| ≤ c|z − x| log(t+ 1)
t

. (127)

• For any t, y and z,
∣∣∣Ĩt(y, z) − Ĩt(y, 0)

∣∣∣ ≤ z2

t3/2Gt + c

(
z

t
+ z3

t2
+ z2y

t2
log(t + 1)

)
. (128)

Proof. Recall from (34) and (35) that
∣∣ξ(t:y→z)

s − ξ
(t:y→x)
s

∣∣ ≤ |z − x| min(s/t, 1). Therefore
∣∣∣Ĩt(y, z) − Ĩt(y, x)

∣∣∣ ≤ 1
2

∫ ∞

0
ds |m′′(s)|

∣∣∣ξ(t:y→z)
s − ξ(t:y→x)

s

∣∣∣ (129)

≤ 1
2 |z − x|

(∫ t

0
ds |m′′(s)|s

t
+
∫ ∞

t
ds |m′′(s)|

)
. (130)

The first integral is O( log t
t

)
while the second is a O(1/t). Their sum can be bounded by

2c log(t+ 1)/t for some c, which proves the simpler bound (127).
To prove (128) we consider x = 0 and split the integral at t/2 and t. For s > t/2, with the

same simple bounds as above we have
∣∣∣∣
∫ ∞

t
2

dsm′′(s)
(
ξ(t:y→z)

s − ξ(t:y→0)
s

) ∣∣∣∣ ≤ z

(∫ t

t
2

ds |m′′(s)|s
t

+
∫ ∞

t
ds |m′′(s)|

)
= zO

(1
t

)
. (131)

From 0 to t/2, we claim that the following bound is true:

0 ≤
∫ t

2

0
dsξ

(t:y→z)
s − ξ

(t:y→0)
s

(1 + s)2 ≤ z3

3t2 + z2

t3/2Gt + 2z2y

3t2 log(t+ 1), (132)

for some non-negative Gt with distribution independent of t and Gaussian tails. Then, as there
exists some constant c′ such that |m′′(s)| ≤ c′/(1 + s)2, (131) and (132) give the result (128).
Therefore it only remains to prove (132).
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We use the bound coth(x) ≤ 1/x+ x/3, together with the SDEs (31) and (33). We already
know from Lemma 5 that ξ(t:y→0)

s ≤ ξ
(t:y→z)
s ≤ ξ

(t:y→0)
s + zs/t for any s ∈ [0, t]. Therefore for

any s ∈ [0, t),

dξ(t:y→z)
s − dξ(t:y→0)

s ≤
(

z

t− s
coth zξ

(t:y→z)
s

2(t − s) − 2
ξ

(t:y→0)
s

)
ds (133)

≤ z2ξ
(t:y→z)
s

6(t − s)2 ds (134)

≤
(

z3s

6t(t− s)2 + z2ξ
(t:y→0)
s

6(t − s)2

)
ds. (135)

By integration by parts,

∫ t
2

0
ds ξ

(t:y→z)
s

(s+ 1)2 =
∫ t

2

0

1
s+ 1dξ(t:y→z)

s −
ξ

(t:y→z)
t/2
t/2 + 1 + y. (136)

Using (35), the estimate on dξ(t:y→z)
s − dξ(t:y→0)

s from above, and t− s ≥ t/2 for s ≤ t/2, we get

0 ≤
∫ t

2

0
ds ξ

(t:y→z)
s − ξ

(t:y→0)
s

(s + 1)2 ≤
∫ t

2

0

1
s+ 1dξ(t:y→z)

s −
∫ t

2

0

1
s+ 1dξ(t:y→0)

s (137)

≤
∫ t

2

0
ds z3s

6t(t − s)2(s+ 1) +
∫ t

2

0
ds z2ξ

(t:y→0)
s

6(t − s)2(s+ 1) (138)

≤ 2z3

3t3
∫ t

2

0
ds s

s+ 1 + 2z2

3t2
∫ t

2

0
ds ξ

(t:y→0)
s

s+ 1 (139)

≤ z3

3t2 + 2z2

3t2
∫ t

2

0
ds y + ξ

(t:0→0)
s

s+ 1 (140)

≤ z3

3t2 + 2z2y

3t2 log(t + 1) + 2z2y

3t2
∫ t

2

0
ds ξ

(t:0→0)
s

s
. (141)

By the scaling property, we introduce another Bessel bridge ξ̃(1:0→0) by setting ξ
(t:0→0)
tu =√

tξ̃
(1:0→0)
u . By adapting Lemma 7 to the new Bessel bridge, there exists a random variable

Gt with distribution independent of t and Gaussian tails such that ξ̃(1:0→0)
u ≤ Gtu

1
4 . Hence

∫ t
2

0
dsξ

(t:0→0)
s

s
=
∫ 1

2

0
duξ

(t:0→0)
tu

u
≤

√
tGt

∫ 1
2

0
duu− 3

4 ≤ 4Gt

√
t. (142)

This bounds the last term in (141) and establishes (132), thereby completing the proof.

Finally, given that we are using random variables with Gaussian tails, the following trivial
result is useful.

Lemma 14. Suppose that G is a random variable with Gaussian tails. Then for any real number
a and any polynomial P , ∣∣E[P (G)eaG]

∣∣ < ∞. (143)

We can now prove Proposition 12.
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Proof of Proposition 12. Recall the definition(126) of Ĩ. For any deterministic x, since E
[
ξ

(y)
s −

E
[
ξ

(y)
s
]]

= 0 and E
[
eĨs(y,x)] is deterministic, we have

w(y, s) = E
[
eI(y)

(
ξ(y)

s − E
[
ξ(y)

s

])]
(144)

= E
[(
eI(y) − E

[
eĨs(y,x)])(ξ(y)

s − E
[
ξ(y)

s

])]
(145)

=
∫ ∞

0

(
E
[
eI(y)|ξ(y)

s = z
]− E

[
eĨs(y,x)])(z − E

[
ξ(y)

s

])
P
(
ξ(y)

s ∈ dz
)

(146)

=
∫ ∞

0
E
[
eĨs(y,z) − eĨs(y,x)

](
z − E

[
ξ(y)

s

])
P
(
ξ(y)

s ∈ dz
)
, (147)

where we used that E
[
eI(y)∣∣ξ(y)

s = z
]

= E
[
eĨs(y,z)]. Then

∣∣w(y, s)
∣∣ ≤

∫ ∞

0
E
[ ∣∣∣eĨs(y,z) − eĨs(y,x)

∣∣∣
]

×
∣∣∣z − E

[
ξ(y)

s

]∣∣∣× P
(
ξ(y)

s ∈ dz
)
. (148)

By the mean value theorem, |ea − eb| ≤ |a− b|emax(a,b) ≤ |a− b|eb+|a−b|. Thus

|w(y, s)| ≤
∫ ∞

0
E
[
eĨs(y,x)

∣∣∣Ĩs(y, z) − Ĩs(y, x)
∣∣∣ e|Ĩs(y,z)−Ĩs(y,x)|

] ∣∣∣z − E[ξ(y)
s ]
∣∣∣× P

(
ξ(y)

s ∈ dz
)

(149)

≤
∫ ∞

0
E
[
eĨs(y,x)

∣∣∣Ĩs(y, z) − Ĩs(y, x)
∣∣∣
]
ec|z−x| log(s+1)

s

∣∣∣z − E[ξ(y)
s ]
∣∣∣ × P

(
ξ(y)

s ∈ dz
)
, (150)

where we applied (127) of Lemma 13 in the exponential. Now, by Cauchy-Schwarz,

|w(y, s)| ≤ E
[
e2Ĩs(y,x)

] 1
2
∫ ∞

0
E
[∣∣∣Ĩs(y, z) − Ĩs(y, x)

∣∣∣2
] 1

2
ec|z−x| log(s+1)

s

∣∣∣z − E[ξ(y)
s ]
∣∣∣P(ξ(y)

s ∈ dz).
(151)

Decompose Ĩs(y, x) in the following way:

2Ĩs(y, x) =
∫ s

0
dum′′(u)

(
ξ(s:y→x)

u − y − (x− y)u
s

)
+
∫ ∞

s
dum′′(u)

(
ξ(s:y→x)

u − x
)

+
∫ s

0
dum′′(u)(x− y)u

s
+
∫ ∞

s
dum′′(u)(x − y). (152)

The first integral is 2Is(y, x). Using (50) it can be bounded uniformly in y, x and s by a variable
with Gaussian tails. The second integral, which does not depend on y, can also be bounded
uniformly in x and s using (49) by an independent variable with Gaussian tails. The third
integral is (x − y)O( log s

s

)
and the fourth is (x − y)O(1

s

)
; they can be bounded together by

2c|x− y| log(s+1)
s for some constant c. Finally, there exists a C1 and a c such that, uniformly in

s, y and x:
E
[
e2Ĩs(y,x)] 1

2 ≤ C1e
c|x−y| log(1+s)

s . (153)

Substituting back into (151), we get

|w(y, s)| ≤ C1e
c|x−y| log(1+s)

s

∫ ∞

0
E
[∣∣∣Ĩs(y, z) − Ĩs(y, x)

∣∣∣2
] 1

2
ec|z−x| log(1+s)

s

∣∣∣z − E[ξ(y)
s ]
∣∣∣P(ξ(y)

s ∈ dz).
(154)

First we concentrate on showing the first line of (125), i.e. that |w(y, s)| ≤ C log(s + 1).
Using (127) again,

E[|Ĩs(y, z) − Ĩs(y, x)|2]1/2 ≤ c|z − x| log(s+ 1)
s

, (155)
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so we get, by choosing x = E
[
ξ

(y)
s
]
,

|w(y, s)| ≤ C1c
log(s+ 1)

s
ec
∣∣E[ξ(y)

s ]−y
∣∣ log(1+s)

s

∫ ∞

0
ec
∣∣z−E[ξ(y)

s ]
∣∣ log(1+s)

s

(
z − E[ξ(y)

s ]
)2
P(ξ(y)

s ∈ dz),

= C1c
log(s+ 1)

s
ec
∣∣E[ξ(y)

s ]−y
∣∣ log(1+s)

s E
[
ec
∣∣ξ(y)

s −E[ξ(y)
s ]
∣∣ log(1+s)

s

(
ξ(y)

s − E[ξ(y)
s ]
)

2
]
. (156)

It remains to bound the expectations above. Note from (34) that for all z ≥ 0 we have
B1 ≤ ξ

(z)
1 − z ≤ ξ

(0)
1 and therefore

B1 − E[ξ(0)
1 ] ≤ ξ

(z)
1 − E[ξ(z)

1 ] ≤ ξ
(z)
1 − z ≤ ξ

(0)
1 , (157)

so, with Γ the positive random variable with Gaussian tail defined by

Γ := max
{∣∣B1 − E

[
ξ

(0)
1
]∣∣,
∣∣ξ(0)

1
∣∣}, (158)

we have, uniformly in z,
∣∣ξ(z)

1 − E
[
ξ

(z)
1
]∣∣ ≤ Γ,

∣∣ξ(z)
1 − z

∣∣ ≤ Γ. (159)

Therefore, by the scaling property,

|w(y, s)| ≤ C1c
log(s+ 1)

s
ec

√
sE[Γ] log(1+s)

s E
[
ec

√
s Γ log(1+s)

s sΓ2
]

≤ C log(s+ 1), (160)

for some constant C, where we used Lemma 14 to bound the last expectation. This is the first
line of (125).

We now turn to showing the second line of (125), that |w(y, s)| ≤ C
(
1 + y log(s+1)√

s

)
. Given

that we have already proven that |w(y, s)| ≤ C log(s + 1), it suffices to consider y ≤ √
s.

Recall (128):

∣∣∣Ĩs(y, z) − Ĩs(y, 0)
∣∣∣ ≤ z2

s3/2Gs + c

(
z

s
+ z3

s2 + z2y

s2 log(s + 1)
)
. (161)

By Cauchy-Schwarz, if a, b ≥ 0 and X is a non-negative random variable with finite second
moment, then

E[(aX + b)2]1/2 ≤ aE[X2]1/2 + b. (162)

This tells us that

E[|Ĩs(y, z) − Ĩs(y, 0)|2] 1
2 ≤ C2as,y,z with as,y,z = z

s
+ z2

s3/2 + z3

s2 + z2y

s2 log(s+ 1) (163)

for some constant C since the distribution of Gs does not depend on s.
Now choosing x = 0 in (154) and substituting (163), we get

|w(y, s)| ≤ C1C2e
cy

log(1+s)
s

∫ ∞

0
as,y,ze

cz
log(1+s)

s

∣∣∣z − E[ξ(y)
s ]
∣∣∣P(ξ(y)

s ∈ dz). (164)

≤ C3E
[
a

s,y,ξ
(y)
s
ecξ

(y)
s

log(1+s)
s

∣∣∣ξ(y)
s − E[ξ(y)

s ]
∣∣∣
]
, (165)

where we used y ≤ √
s to bound the factor in front of the integral by a constant. Using the

scaling property, writing ξ̃1 = ξ
(y)
s /

√
s we have as in (159)

∣∣ξ̃1 − E[ξ̃1]
∣∣ ≤ Γ,

∣∣ξ̃1 − y/
√
s
∣∣ ≤ Γ, ξ̃1 ≤ 1 + Γ (166)
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for some positive random variable Γ with Gaussian tails; we used y ≤ √
s in the last equation.

Then

|w(y, s)| ≤ C3E
[
as,y,

√
s(1+Γ)e

c
√

s(1+Γ) log(1+s)
s

√
sΓ
]
, (167)

but
as,y,

√
s X

√
s = X +X2 +X3 +X2y

log(s+ 1)√
s

, (168)

so using Lemma 14 again we obtain |w(y, s)| ≤ C
(
1 + y log(s+1)√

s

)
for some constant C, which is

the second line of (125).
Finally we turn to the last line of (125) and bound the increments of w(y, s). Our approach

is very similar to the above, conditioning on the value of ξ(y)
s+δ − ξ

(y)
s instead of ξ(y)

s .
Let X = ξ

(y)
s+δ − ξ

(y)
s and µ = E[X], and also define

E(x) = E
[
eI(y)

∣∣∣X = x
]
. (169)

Directly from the definition (124) of w, since E(µ) is deterministic and E[X − µ] = 0, we have

w(y, s + δ) −w(y, s) = E
[
eI(y)(X − µ)

]
, (170)

= E
[(
eI(y) − E(µ)

)
(X − µ)

]
, (171)

=
∫ ∞

−∞

(E(x) − E(µ)
)
(x− µ)P(X ∈ dx). (172)

Applying the Markov property at time s, we have

E(x) − E(µ) =
∫ ∞

0
P(ξ(y)

s ∈ dz)E
[
e

1
2

∫ s

0 du m′′(u)
(

ξ
(s:y→z)
u −y

)]

· E
[
e

1
2
∫∞

0 du m′′(s+u)
(

ξ
(δ:z→z+x)
u −y

)
− e

1
2
∫∞

0 du m′′(s+u)
(

ξ
(δ:z→z+µ)
u −y

)]
. (173)

We now use the simple bound

|ξ(δ:z→z+x)
u − ξ(δ:z→z+x′)

u | ≤ |x− x′| for all z, x, x′, δ, u ≥ 0, (174)

which follows from Lemma 5 and implies that
∣∣∣
∫ ∞

0
dum′′(s+ u)(ξ(δ:z→z+x)

u − ξ(δ:z→z+µ)
u )

∣∣∣ ≤
∫ ∞

0
du |m′′(s+ u)||x− µ| ≤ 2c|x − µ|

s+ 1 (175)

for some constant c. This, together with the bound |ea − eb| ≤ |a − b|eb+|a−b| for any a, b ∈ R,
tells us that
∣∣∣e

1
2

∫∞
0 du m′′(s+u)

(
ξ

(δ:z→z+x)
u −y

)
− e

1
2

∫∞
0 du m′′(s+u)

(
ξ

(δ:z→z+µ)
u −y

)∣∣∣

≤ e
1
2

∫∞
0 du m′′(s+u)

(
ξ

(δ:z→z+µ)
u −y

)
c|x− µ|
s+ 1 e

c|x−µ|
s+1 . (176)

Substituting this into (173), we have

|E(x) − E(µ)| ≤
∫ ∞

0
P(ξ(y)

s ∈ dz)E
[
e

1
2

∫ s

0 du m′′(u)
(

ξ
(s:y→z)
u −y

)]

· E
[
e

1
2

∫∞
0 du m′′(s+u)

(
ξ

(δ:z→z+µ)
u −y

)]c|x− µ|
s+ 1 e

c|x−µ|
s+1 (177)

= E(µ)c|x− µ|
s+ 1 e

c|x−µ|
s+1 . (178)
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Returning to (172), we obtain

|w(y, s + δ) − w(y, s)| ≤
∫ ∞

−∞
E(µ)c|x− µ|

s+ 1 e
c|x−µ|

s+1 |x− µ|P(X ∈ dx) (179)

= E(µ)E
[
c(X − µ)2

s+ 1 e
c|X−µ|

s+1

]
. (180)

Finally, by scaling, conditionally on ξ
(y)
s = z we have

|X − µ| (d)=
√
δ
∣∣∣ξ(z/

√
δ)

1 − E
[
ξ

(z/
√

δ)
1

]∣∣∣ ≤
√
δ Γ, (181)

where Γ was defined in (158) and is a non-negative random variable with Gaussian tail. Therefore

E
[
c|X − µ|2
s+ 1 e

c|X−µ|
s+1

]
≤ C

δ

s+ 1 (182)

for some constant C provided δ ≤ s2, and one may check similarly to (153) that E(µ) is also
bounded uniformly in y, s and δ. This establishes the last line of (125) and completes the
proof.

6.2 Proof of Proposition 10
To prove Proposition 10 we proceed via three lemmas. We first write It(y) = I(y)−(I(y)−It(y)

)
,

and show that the correction I(y) − It(y) is small in the following sense:

Lemma 15. Suppose that m is twice continuously differentiable and satisfies (106). Then there
exist positive random variables G and Gt with Gaussian tails, where all the Gt have the same
distribution, such that uniformly in y,

I(y) = GO(1) and I(y) − It(y) = GtO
(
t−

1
2
)
. (183)

Unsurprisingly, for random variables with Gaussian tails we can make series expansions
rather easily:

Lemma 16. Let G and Gt be positive random variables with Gaussian tails such that all the
Gt have the same distribution. Suppose that At and Bt are random variables such that

At = GO(1), Bt = GtO(ǫt) (184)

where ǫt ≥ 0 is a deterministic function with ǫt → 0 as t → ∞. Then for any integer n ≥ 0,

E
[
eAt+Bt

]
=

n∑

p=0

1
p!E

[
eAtBp

t

]
+ O(ǫn+1

t ). (185)

Taking n = 1, ǫt = t−1/2, At = I(y) and Bt = −(I(y) − It(y)
)
, we find

E[eIt(y)] = E[eI(y)] − E
[
eI(y)(I(y) − It(y)

)]
+ O

(1
t

)
. (186)

The difficult part is then to show how the I(y) decorrelates asymptotically from I(y) − It(y):

Lemma 17. Suppose that m is twice continuously differentiable with m′′(t) = 3
2(t+1)2 + r′′(t)

where r(t) = O(t−2−η) for some η > 0. Then

E
[
eI(y)(I(y) − It(y)

)]
= E

[
eI(y)

]
E
[
I(y) − It(y)

]
+ O

( log t
t

)
+ yO

(1
t

)
. (187)
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Of course ψ∞(y) = E[eI(y)] and ψt(y) = E[eIt(y)], so these lemmas together give Proposi-
tion 10. It remains to prove the lemmas.

Proof of Lemma 15. The bound on I(y) is easy by applying Lemma 7 since |m′′(s)| ≤ c
(1+s)2 for

all s and some constant c. We now turn to It(y) − I(y).
Recall the expression (105) of It(y), replace m′′(s) by its expression (106) and cut the integral

into three pieces to obtain

It(y) = 1
2

∫ t

0
ds m′′(s)t− s

t

(
ξ

(y)
st

t−s

− y
)
, (188)

= 3
4
t+ 1
t

∫ t

0

ds
(s + 1)2

(
ξ

(y)
st

t−s

− y
)

− 3
4t

∫ t

0

ds
s+ 1

(
ξ

(y)
st

t−s

− y
)

+ 1
2

∫ t

0
ds r′′(s)t − s

t

(
ξ

(y)
st

t−s

− y
)
.

(189)

Recall that, by scaling,
ξ

(y)
tu =

√
t ξ̃(ỹ)

u with ỹ = y/
√
t (190)

where ξ̃(ỹ)
u is another, t dependent (implicit in notation), Bessel process started from ỹ. We can

apply Lemma 7 to the Bessel process ξ̃(ỹ)
u but, as it depends on t, the random variable G must

be replaced by some other random variable G̃t which has the same Gaussian tails as G. Then
∣∣ξ̃(ỹ)

u − ỹ
∣∣ ≤ G̃t max

(
u

1
2 −ǫ, u

1
2 +ǫ
)

so
∣∣ξ(y)

tu − y
∣∣ ≤ G̃t

√
tmax

(
u

1
2 −ǫ, u

1
2 +ǫ
)
. (191)

In the second integral of (189), make the change of variable u = s/t and use (191) to obtain
∣∣∣∣
1
t

∫ t

0

ds
s+ 1

[
ξ

(y)
st

t−s

− y
]∣∣∣∣ ≤ 1

t

∫ 1

0

du
u
G̃t

√
tmax

{( u

1 − u

) 1
2 +ǫ

,
( u

1 − u

) 1
2 −ǫ
}

= G̃tO
(
t−

1
2
)
. (192)

In the first integral of (189), make the change of variable u = st/(t − s) to obtain

It(y) = 3
4
t+ 1
t

∫ ∞

0

du
(u+ 1 + u/t)2

(
ξ(y)

u − y
)

+ 1
2

∫ t

0
ds r′′(s)t − s

t

(
ξ

(y)
st

t−s

− y
)

+ G̃tO
(
t−

1
2
)
. (193)

We now turn to I(y). In expression (105) of I(y), use the expression (106) and cut the
integral into the following pieces:

I(y) = 3
4

∫ ∞

0

ds
(s+ 1)2

(
ξ(y)

s − y
)

+ 1
2

∫ t

0
ds r′′(s)t− s

t

(
ξ(y)

s − y
)

+ 1
2

∫ t

0
ds r′′(s)s

t

(
ξ(y)

s − y
)

+ 1
2

∫ ∞

t
ds r′′(s)

(
ξ(y)

s − y
)
. (194)

Applying Lemma 7 and the fact that r′′(s) is bounded (since it is continuous on [0,∞) and
tends to 0) with r′′(s) = O(s−2−η) for some η > 0, it is easy to check that the third and fourth
integrals are bounded in modulus by GO(t−1/2) if ǫ < η. Using Lemma 7 again, it is also easy
to check that the first terms in (193) and (194) are equal up to an error of size GO(1/t) which
we absorb in the GO(t−1/2) that we already have. Thus we get

It(y) − I(y) = 1
2

∫ t

0
ds r′′(s)t− s

t

(
ξ

(y)
st

t−s

− ξ(y)
s

)
+ G̃tO

(
t−

1
2
)

+GO(t− 1
2
)
. (195)

We now focus on the remaining integral. The difference ξ(y)
st/(t−s) − ξ

(y)
s is the position at time

s2/(t− s) = st/(t− s) − s of a new Bessel process started from ξ
(y)
s . It is also, by scaling, equal
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to t−1/2 times the position at time ts2/(t − s) of another Bessel process started from
√
tξ

(y)
s .

Applying Lemma 7 again to this last Bessel process, we get

∣∣∣ξ(y)
st

t−s

− ξ(y)
s

∣∣∣ ≤ Ĝt√
t

max
{( ts2

t− s

) 1
2 +ǫ

,
( ts2

t− s

) 1
2 −ǫ
}

≤ Ĝt√
t

×





t

t− s
s1+2ǫ if 1 < s < t,

t

t− 1 if 0 < s < 1.
(196)

where Ĝt is another t-dependent positive random variable with the same Gaussian tail as G.
Since r′′(s) is bounded and r′′(s) = O(s−2−η), the integral

∫∞
1 ds r′′(s)s1+2ǫ is finite provided

ǫ < η/2, and we obtain
It(y) − I(y) = GtO

(
t−

1
2
)
, (197)

with Gt = max(G, G̃t, Ĝt). This concludes the proof.

Proof of Lemma 16. With the hypothesis of the lemma, write |At| ≤ αG and |Bt| ≤ βǫtGt for
some α > 0 and β > 0. Writing

eAt+Bt =
∞∑

p=0

1
p!e

AtBp
t , (198)

we can apply dominated convergence—since the partial sums are dominated by exp(At + |Bt|)
which has finite expectation—and obtain

E
[
eAt+Bt

]
=

∞∑

p=0

1
p!E

[
eAtBp

t

]
. (199)

It only remains to show that the sum for p ≥ n+ 1 is O(ǫn+1
t ). To do this observe that

∣∣∣ 1
p!E

[
eAtBp

t

]∣∣∣ ≤ ǫpt
p!E

[
eαG(βGt)p] ≤ ǫptE

[
eαG+βGt

]
, (200)

where the last expectation is finite. Then, as soon as ǫt < 1, we have

∣∣∣
∞∑

p=n+1

1
p!E

[
eAtBp

t

]∣∣∣ ≤ ǫn+1
t

1 − ǫt
E
[
eαG+βGt

]
, (201)

which concludes the proof.

Proof of Lemma 17. Define

Jt(y) = 2E
[
eI(y)(I(y) − It(y)

)]− 2E
[
eI(y)

]
E
[
I(y) − It(y)

]
. (202)

We want to show that Jt(y) = O( log t
t

)
+ yO(1

t

)
. Clearly,

Jt(y) = 2
(
E[eI(y)I(y)] − E[eI(y)]E[I(y)]

)
− 2

(
E[eI(y)It(y)] − E[eI(y)]E[It(y)]

)
(203)

=
∫ ∞

0
dsm′′(s)

(
E
[
eI(y)(ξ(y)

s − y
)]− E

[
eI(y)

]
E
[
ξ(y)

s − y
])

−
∫ t

0
dsm′′(s)t− s

t

(
E
[
eI(y)

(
ξ

(y)
ts

t−s

− y
)]

− E
[
eI(y)

]
E
[
ξ

(y)
ts

t−s

− y
])

(204)

=
∫ ∞

0
dsm′′(s)w(y, s) −

∫ t

0
dsm′′(s)t − s

t
w
(
y,

ts

t− s

)
, (205)
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where we recall the definition of w from (124). We now apply Proposition 12. Cut the integrals
at t/2 and rearrange the terms:

Jt(y) =
∫ ∞

t
2

dsm′′(s)w(y, s) +
∫ t

2

0
dsm′′(s)s

t
w(y, s) −

∫ t

t
2

dsm′′(s)t− s

t
w
(
y,

ts

t− s

)

−
∫ t

2

0
dsm′′(s)t− s

t

(
w
(
y,

ts

t− s

)
− w(y, s)

)
. (206)

Using from Proposition 12 that |w(y, s)| ≤ C log(s + 1) and of course m′′(s) = O(1/s2), the
first and third integrals are both O( log t

t ), uniformly in y. Now using from Proposition 12 that
|w(y, s)| ≤ C

(
1 + y log(s+1)√

s

)
, the second integral is yO(1

t

)
+ O( log t

t ).
We now turn to the fourth integral. Writing st

t−s = s+ s2

t−s and noticing that for s < t/2 we
have s2

t−s < s2 as soon as t ≥ 2, the last part of Proposition 12 gives
∣∣w
(
y, ts

t−s

)−w(y, s)
∣∣ ≤ C s

t−s ,
and therefore the fourth integral is O( log t

t

)
, which concludes the proof.

6.3 Proof of Proposition 11

For y ≥ 0 we introduce the notation µ(y, t) := E[ξ(y)
t ] − y and observe that

µ(y, tu) =
√
tµ( y√

t
, u), µ(0, s) = 4√

π

√
s, max

[
0, µ(0, s) − y

]
≤ µ(y, s) ≤ µ(0, s). (207)

(The first equality is the scaling property, and the inequalities are from (34). The second
equality can be calculated directly from the probability density function for a Bessel process;
see for example [RY99, page 446].)

With this notation we can rewrite

E[I(y)] = 1
2

∫ ∞

0
dsm′′(s)µ(y, s) (208)

E[It(y)] = 1
2

∫ t

0
dsm′′(s)t − s

t
µ
(
y,

st

t− s

)
. (209)

As usual we use the expression (106), decomposing E
[
I(y) − It(y)

]
into terms containing

3/2(s + 1)2 and terms containing r′′(s). In the former we make our usual change of time
u = st/(t− s), but in the latter we do not.

E
[
I(y) − It(y)

]
= 3

4

∫ ∞

0
ds 1

(s+ 1)2µ(y, s) − 3
4

∫ ∞

0
du 1

( tu
t+u + 1)2

( t

t+ u

)3
µ(y, u)

+ 1
2

∫ ∞

0
ds r′′(s)µ(y, s) − 1

2

∫ t

0
ds r′′(s) t− s

t
µ
(
y,

st

t− s

)
. (210)

Rearranging we get

E
[
I(y) − It(y)

]
=3

4

∫ ∞

0
ds
(

1 − t

t+ s

) 1
(s+ 1)2 µ(y, s)

+ 3
4

∫ ∞

0
ds
( 1

(s+ 1)2 − 1
(s+ 1 + s/t)2

)
t

t+ s
µ(y, s)

+ 1
2

∫ t

0
ds r′′(s)

(
µ(y, s) − t− s

t
µ
(
y,

st

t− s

))
+ 1

2

∫ ∞

t
ds r′′(s)µ(y, s),

(211)

and we treat each of the four integrals on the right-hand side in turn.
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The first integral in the right hand side of (211)

Making the change of variable s = tu and using the first part of (207) we have
∫ ∞

0
ds
(

1 − t

t+ s

) 1
(s + 1)2 µ(y, s) = 1√

t

∫ ∞

0
du u

(u+ 1)(u+ 1/t)2µ
( y√

t
, u
)
. (212)

We now approximate µ(y/
√
t, u) by µ(0, u), bounding the error by using the last part of (207):

∣∣∣∣
1√
t

∫ ∞

0
du u

(u+ 1)(u + 1/t)2µ
( y√

t
, u
)

− 1√
t

∫ ∞

0
du u

(u+ 1)(u+ 1/t)2µ(0, u)
∣∣∣∣

≤ 1√
t

∫ ∞

0
du u

(u+ 1)(u + 1/t)2
y√
t
. (213)

The right hand side is yO( log t
t

)
, and using the second part of (207), we have

1√
t

∫ ∞

0
du u

(u+ 1)(u+ 1/t)2µ(0, u) = 4
√
π√
t

+ O(1/t). (214)

We therefore conclude that
∫ ∞

0
ds
(

1 − t

t+ s

) 1
(s+ 1)2 µ(y, s) = 4

√
π√
t

+ yO
( log t

t

)
+ O

(1
t

)
. (215)

The second integral in the right hand side of (211)

We note that
1

(s+ 1)2 − 1
(s+ 1 + s/t)2 = 1

(s+ 1)2 O
(1
t

)
, (216)

and t/(t+ s) ≤ 1, so using the bound µ(y, s) ≤ µ(y, 0) = 4
√
s/

√
π from (207), we easily see that

the second integral is O(1/t) uniformly in y.

The third integral in the right hand side of (211)

We use the following result: for any δ > 0,

0 ≤ µ(y, s+ δ) − µ(y, s) ≤ µ(0, s + δ) − µ(0, s) = 4√
π

(√
s+ δ − √

s
)
. (217)

This follows from the Markov property plus (207). Then
t− s

t
µ
(
y,

st

t− s

)
− µ(y, s) = t− s

t

[
µ
(
y,

st

t− s

)
− µ(y, s)

]
− s

t
µ(y, s), (218)

so that
− 4√

π

s3/2

t
≤ t− s

t
µ
(
y,

st

t− s

)
− µ(y, s) ≤ 4√

π

t− s

t

[( st

t− s

)1/2
− s1/2

]
(219)

But ( st
t−s)1/2 = s1/2(1+ s

t−s)1/2 ≤ s1/2(1+ s
2(t−s)

)
so the right hand side of the previous equation

is at most (4/
√
π) × s3/2/(2t). We conclude that

∣∣∣∣
∫ t

0
ds r′′(s)

[
µ(y, s) − t− s

t
µ

(
y,

st

t− s

)]∣∣∣∣ ≤ 4√
πt

∫ t

0
ds s3/2∣∣r′′(s)

∣∣ =





O
(1
t

)
if η > 1

2 ,

O
( log t

t

)
if η = 1

2 ,

O
( 1
t

1
2 +η

)
if η < 1

2 ,

(220)
uniformly in y.
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The fourth integral in the right hand side of (211)

Since r′′(s) = O(s−2−η) for some η > 0, using (207) again we have
∣∣∣∣
∫ ∞

t
ds r′′(s)µ(y, s)

∣∣∣∣ ≤ 4√
π

∫ ∞

t
ds |r′′(s)|√s = O

( 1
t

1
2 +η

)
(221)

uniformly in y.

Putting together the results from the four integrals give the proposition.

Appendix
Lemma 18. For any ǫ > 0, the non-negative random variable

G := sup
s>0

ξ
(0)
s

max
(
s1/2−ǫ, s1/2+ǫ

) (222)

has Gaussian tail under P.

Proof. We do this in two parts, first considering the supremum over s ∈ (0, 1]. We have

P
(

sup
s∈(0,1]

ξ
(0)
s

s1/2−ǫ
> z

)
≤

∞∑

n=2
P
(

sup
s∈
( 1

n,
1

n−1
]
ξ

(0)
s

s1/2−ǫ
> z

)
. (223)

By scaling, this equals

∞∑

n=2
P
(

sup
s∈
(

1,
n

n−1
]
ξ

(0)
s

s1/2−ǫ
> znǫ

)
≤

∞∑

n=2
P
(

sup
s∈(1,2]

ξ(0)
s > znǫ

)
. (224)

Now note that there exist c3 > 0 and c4 > 0 such that P
(

sups∈(1,2] ξ
(0)
s > z

) ≤ c3 exp
[−c4z2]

for all z > 0, so

P
(

sup
s∈(0,1]

ξ
(0)
s

s1/2−ǫ
> z

)
≤ c3

∞∑

n=2
e−c4z2n2ǫ

, (225)

and it is an easy exercise to show that there exist c1 and c2 (with c1 depending on ǫ) such that
c3
∑∞

n=2 e
−c4z2n2ǫ ≤ c1e−c2z2.

Similarly for s ∈ (1,∞),

P
(

sup
s∈(1,∞)

ξ
(0)
s

s1/2+ǫ
> z

)
≤

∞∑

n=1
P
(

sup
s∈(n,n+1]

ξ
(0)
s

s1/2+ǫ
> z

)
. (226)

By scaling, this equals

∞∑

n=1
P
(

sup
s∈(1,

n+1
n ]

ξ
(0)
s

s1/2+ǫ
> znǫ

)
≤

∞∑

n=1
P
(

sup
s∈(1,2]

ξ(0)
s > znǫ

)
. (227)

and the end of the argument is the same as in the previous case.
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Some aspects of the Fisher-KPP equation
and the branching Brownian motion

Abstract

The Fisher-Kolmogorov, Petrovski, Piscounov equation (FKPP) is a deterministic partial differential equation.
It describes the evolution of an invasion front from a stable phase into an unstable phase. Branching Brownian
motion (BBM) is a stochastic Markov process where particles diffuse and duplicate. Both the FKPP equation
and the BBM can be seen as modelling the evolution of a population, but the former is deterministic and with
saturation, while the latter is stochastic and without saturation. They are however directly related to each
other by McKean’s duality.

In this dissertation, after a brief review of classical and essential results concerning the FKPP equation and
the BBM, I present some of the contributions my collaborators and I have made to this field.

A first set of results concerns the asymptotic position of the FKPP front; on two well-chosen models in the
FKPP class, I present two different ways to recover the classical results of Bramson and the prediction by Ebert
and van Saarloos. I also make a prediction for the next order term.

A second set of results concerns the limiting distribution of the rightmost particles in the BBM. As we found
out, they are distributed according to a so-called “randomly shifted σ-decorated exponential Poisson point
process”, which we define and characterize. These results were mostly obtained by using the duality between
the BBM and the FKPP equation.

A last set of results concerns the behaviour of noisy FKPP fronts in the limit of a weak noise. I present
a phenomenological theory which allows to compute, to leading order, all the cumulants of the position. Fur-
thermore, in models for which it makes sense, the genealogical tree of the population is given by a rescaled
Bolthausen-Sznitman coalescent.

Quelques aspects de l’équation Fisher-KPP
et du movement brownien branchant

Résumé

L’équation de Fisher-Kolmogorov, Petrovski, Piscounov (FKPP) est une équation déterministe aux dérivées
partielles. Elle décrit l’évolution d’un front avec une phase stable qui envahit une phase instable. Le mouve-
ment brownien branchant (BBM) est un processus aléatoire de Markov avec des particules qui diffusent et se
reproduisent. L’équation FKPP et le BBM peuvent tous deux être vus comme une modélisation de l’évolution
d’une population, mais la première est déterministe et avec saturation, alors que le second est aléatoire et sans
saturation. Ils sont néanmoins tous les deux reliés par la dualité de McKean.

Dans ce mémoire, après un rappel rapide de résultats classiques et essentiels concernant l’équation FKPP
et le BBM, je présente plusieurs des résultats que mes collaborateurs et moi avons obtenus.

Une première série de résultats concerne la position asymptotique d’un front FKPP ; sur deux modèles bien
choisis dans la classe FKPP, je présente deux méthodes différentes pour retrouver les résultats classiques de
Bramson et la prédiction d’Ebert et de van Saarloos. Je fais également une prédiction pour le terme d’ordre
suivant.

Une deuxième série de résultats concerne la distribution limite des particules les plus à droite dans le BBM.
Comme nous l’avons mis en évidence, elles sont distribuées selon ce qu’on peut appeler un « processus de
Poisson exponentiel σ-décoré et aléatoirement décalé », que nous définissons et caractérisons. Ces résultats ont
essentiellement été obtenus en utilisant la dualité entre le BBM et l’équation FKPP.

La dernière série de résultats concerne le comportement des fronts FKPP bruités dans la limite des faibles
bruits. Je présente une théorie phénoménologique qui permet de calculer, à l’ordre dominant, tous les cumulants
de la position. De plus, dans les modèles pour lesquels la question fait sens, l’arbre généalogique de la population
est donné sur la bonne échelle de temps par le coalescent de Bolthausen-Sznitman.
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