
HAL Id: tel-01417606
https://theses.hal.science/tel-01417606

Submitted on 15 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding & Improving Mental-Imagery Based
Brain-Computer Interface (Mi-Bci) User-Training :
towards A New Generation Of Reliable, Efficient &

Accessible Brain- Computer Interfaces
Camille Jeunet

To cite this version:
Camille Jeunet. Understanding & Improving Mental-Imagery Based Brain-Computer Interface (Mi-
Bci) User-Training : towards A New Generation Of Reliable, Efficient & Accessible Brain- Computer
Interfaces. Psychology. Université de Bordeaux, 2016. English. �NNT : 2016BORD0221�. �tel-
01417606�

https://theses.hal.science/tel-01417606
https://hal.archives-ouvertes.fr


 
 
 

 
 
 

THÈSE PRÉSENTÉE  

POUR OBTENIR LE GRADE DE 
 

DOCTEUR DE 
 

L’UNIVERSITÉ DE BORDEAUX 

 

ÉCOLE DOCTORALE : Sociétés, Politique, Santé Publique 

SPÉCIALITÉ : Sciences Cognitives  
 

Par Camille JEUNET 
 
 

UNDERSTANDING & IMPROVING MENTAL-IMAGERY 
BASED BRAIN-COMPUTER INTERFACE (MI-BCI) USER-

TRAINING: 
Towards a New Generation of Reliable, Efficient & Accessible Brain-Computer 

Interfaces 
 

Sous la direction de : Bernard N’KAOUA 
(co-directeur : Fabien LOTTE) 

(co-directeur : Martin HACHET) 
(co-directeur : Sriram SUBRAMANIAN) 

 
 
Soutenue le 02 Décembre 2016 
 
 
Membres du jury : 
 
M. SCHERER, Reinhold Assistant Professeur      TU Graz               Président & Rapporteur 
Mme. KÜBLER, Andrea  Professeur                Univ. Würzburg         Rapporteur 
M. GUEHL, Dominique   Professeur, PH               Univ. Bordeaux         Rapporteur 
M. MATTOUT, Jérémie  Chargé de Recherche    INSERM Lyon          Examinateur 



Titre : Comprendre & Améliorer l’Entraînement des 
Utilisateurs d’Interfaces Cerveau-Ordinateur basées sur 
l’Imagerie Mentale : Vers une Nouvelle Gérération 
d’Interfaces Cerveau-Ordinateur Fiables, Efficientes et 
Accessibles. 

Résumé :  
Les Interfaces Cerveau-Ordinateur basées sur l’Imagerie Mentale (IM-ICO) permettent aux 
utilisateurs d’interagir uniquement via leur activité cérébrale, grâce à la réalisation de tâches 
d’imagerie mentale. Cette thèse se veut contribuer à l’amélioration des IM-ICO dans le but de 
les rendre plus utilisables. Les IM-ICO sont extrêmement prometteuses dans de nombreux 
domaines allant de la rééducation post-AVC aux jeux-vidéo. Malheureusement, leur 
développement est freiné par le fait que 15 à 30% des utilisateurs seraient incapables de les 
contrôler. Nombre de travaux se sont focalisés sur l’amélioration des algorithmes de traitement 
du signal. Par contre, l’impact de l’entraînement des utilisateurs sur leur performance est 
souvent négligé. Contrôler une IM-ICO nécessite l’acquisition de compétences et donc un 
entraînement approprié. Or, malgré le fait qu’il ait été suggéré que les protocoles 
d’entraînement actuels sont théoriquement inappropriés, peu d’efforts sont mis en oeuvre pour 
les améliorer. Notre principal objectif est de comprendre et améliorer l’apprentissage des IM-
ICO. Ainsi, nous cherchons d’abord à acquérir une meilleure compréhension des processus 
sous-tendant cet apprentissage avant de proposer une amélioration des protocoles 
d’entraînement afin qu’ils prennent en compte les facteurs cognitifs et psychologiques 
pertinents et qu’ils respectent les principes issus de l’ingénierie pédagogique. Nous avons 
ainsi défini 3 axes de recherche visant à investiguer l’impact (1) de facteurs cognitifs, (2) de la 
personnalité et (3) du feedback sur la performance. Pour chacun de ces axes, nous décrivons 
d’abord les études nous ayant permis de déterminer les facteurs impactant la performance ; 
nous présentons ensuite le design et la validation de nouvelles approches d’entraînement 
avant de proposer des perspectives de travaux futurs. Enfin, nous proposons une solution qui 
permettrait d’étudier l’apprentissage de manière mutli-factorielle et dynamique : un système 
tutoriel intelligent. 
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Brain-Computer Interface (Mi-Bci) User-Training: Towards 
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Abstract :  
Mental-imagery based brain-computer interfaces (MI-BCIs) enable users to interact with their 
environment using their brain-activity alone, by performing mental-imagery tasks. This thesis 
aims to contribute to the improvement of MI-BCIs in order to render them more usable. MI-
BCIs are bringing innovative prospects in many fields, ranging from stroke rehabilitation to 
video games. Unfortunately, most of the promising MI-BCI based applications are not yet 
available on the public market since an estimated 15 to 30% of users seem unable to control 
them. A lot of research has focused on the improvement of signal processing algorithms. 
However, the potential role of user training in MI-BCI performance seems to be mostly 
neglected. Controlling an MI-BCI requires the acquisition of specific skills, and thus an 
appropriate training procedure. Yet, although current training protocols have been shown to 
be theoretically inappropriate, very little research is done towards their improvement. Our main 
object is to understand and improve MI-BCI user-training. Thus, first we aim to acquire a better 
understanding of the processes underlying MI-BCI user-training. Next, based on this 
understanding, we aim at improving MI-BCI user-training so that it takes into account the 
relevant psychological and cognitive factors and complies with the principles of instructional 
design. Therefore, we defined 3 research axes which consisted in investigating the impact of 
(1) cognitive factors, (2) personality and (3) feedback on MI-BCI performance. For each axis, 
we first describe the studies that enabled us to determine which factors impact MI-BCI 
performance; second, we describe the design and validation of new training approaches; the 
third part is dedicated to future work. Finally, we propose a solution that could enable the 
investigation of MI-BCI user-training using a multifactorial and dynamic approach: an Intelligent 
Tutoring System. 
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"Jeeves," I said. "A rummy communication has arrived. From Mr. Glossop."
"Indeed, sir?"
"I will read it to you. Handed in at Upper Bleaching.
Message runs as follows:

When you come tomorrow, bring my football boots. Also, if humanly possible, Irish
water-spaniel. Urgent. Regards. Tuppy.

"What do you make of that, Jeeves?"
"As I interpret the document, sir, Mr. Glossop wishes you, when you come
tomorrow, to bring his football boots. Also, if humanly possible, an Irish
water-spaniel. He hints that the matter is urgent, and sends his regards."
"Yes, that is how I read it. But why football boots?"
"Perhaps Mr. Glossop wishes to play football, sir.”

— P.G. Wodehouse, Very Good, Jeeves!

Dedicated to
my Sunshine, who makes me happy when skies are gray,
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R É S U M É E T E N D U

introduction

L’histoire commence en 1875 lorsque Richard Caton, docteur en
Médecine exerçant à Liverpool (UK) fit une découverte fondamentale
: le cerveau produit une activité électrique (Caton, 1875). L’expérience 1875: Caton

découvre que le
cerveau produit une
activité électrique

sur laquelle cette découverte est basée consistait à placer des élec-
trodes sur le cerveau d’un chien: soit les deux électrodes étaient
posées à la surface du cortex, soit une était implantée à l’intérieur du
cortex et l’autre était posée sur le cuir chevelu. Les enregistrements de
cette activité cérébrale révélèrent que le cerveau produit un courant
dont l’amplitude augmente pendant le sommeil et qui disparaît après
la mort. L’étude de l’activité électrique générée par le cerveau est
maintenant appelée Electrophysiologie Cérébrale, et Richard Caton
est souvent décrit comme un pionnier de la discipline.

Quelques années plus tard, en 1924, le Psychiatre et Neurologue
allemand Hans Berger devint la première personne à enregistrer une
activité électrophysiologique chez l’Homme (Scientific Biography, 2008). 1924: Berger

enregistre le premier
EEG chez l’Homme

Son intérêt pour l’électrophysiologie, et de manière plus générale
pour l’étude du cerveau humain, lui vient d’un accident survenu
quelques années auparavant: : un jour, il frôla la mort au court d’un
exercice au sein de la cavalerie ; à ce moment précis, il se trouve que
sa soeur eut le présentiment que quelque chose de grave était en train
d’arriver à son frère. Hans Berger était persuadé qu’il avait eu avec sa
soeur une expérience télépathique grâce à laquelle il lui avait transmis
ses pensées. A partir de cet instant, Hans Berger fut fasciné par l’esprit
et développa l’ambition de comprendre les liens entre activité cérébrale
objective et phénomènes psychiques subjectifs. Après qu’il eut réussi à
enregistrer son premier ElectroEncephaloGraph (EEG) sur l’Homme,
en raison d’un manque de confiance en sa découverte, il attendit 5

ans pour publier son travail (Berger, 1929). Ses collègues européens
le recevèrent d’ailleurs avec beaucoup de scepticisme et il fallut atten-
dre 1937 pour que l’importance de la découverte de Berger soit enfin
reconnue par la communauté scientifique à travers le monde. Hans
Berger est maintenance considéré comme étant le père de l’EEG: entre
autres, il fut le premier à décrire les ondes alpha (et l’augmentation
de leur amplitude durant le repos), mais aussi l’altération des signaux
cérébraux lors de crises d’épilepsie.

Grâce à cette découverte, les scientifiques, et notamment les Doc-
teurs en médecine, furent capables de mesurer et visualiser l’activité
électrophysiologique du cerveau. En effet, l’amplitude de ces courants
-dans des bandes de fréquence spécifiques- était connue pour subir

ix
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des modifications dans certains contextes. A cette époque, les on-
des alpha (qui sont des oscillations dans la bande de fréquence 8-12

Hz, environ) étaient certainement les plus étudiées. Il a été montré
que leur amplitude était faible lorsque les personnes étaient éveil-
lées et concentrées, et que leur amplitude augmentait lorsque les
personnes étaient relaxées ou endormies. Au cours des années 1950

- début des années 1960, Joe Kamiya (Professeur de Psychologie à
l’Université de Californie Berkeley) a réussi, grâce à un système de
récompense simple, à entraîner des personnes à trouver d’eux-mêmes
des stratégies afin d’augmenter l’amplitude de leurs ondes alpha:
c’est la naissance du Neurofeedback (Kamiya, 1969). L’objectif du neu-1960s: Kamiya

développe des
paradigmes de
neurofeedback

rofeedback est d’apprendre à contrôler des patterns cérébraux spéci-
fiques (plus particulièrement ceux liés à une pathologie) de manière
à atteindre un certain état mental. Par exemple, le neurofeedback
peut être utilisé pour entraîner des patients souffrant de Troubles Dé-
ficit de l’Attention et Hyperactivité (TDAH) à se relaxer en augmen-
tant l’amplitude de leurs ondes alpha (Milstein, Stevens, and Sachdev,
1969).

Quelques années plus tard, les années 1970 sont témoin du développe-
ment de l’informatique et des sciences du numérique. Les ordina-
teurs fournissent une puissance de calcul inespérée et permettent à
des utilisateurs de contrîler de simples applications grâce au neuro-
feedback, par exemple grâce à l’affichage d’un curseur qui grossit
avec l’amplitude de leurs ondes alpha. Les recherches sur le neu-
rofeedback menèrent la communauté scientifique à imaginer un sys-
tème permettant aux humains de communiquer avec un ordinateur
uniquement grâce à leur activité cérébrale. Un tel système fut décrit
pour la première fois par Jacques Vidal dans un article scientifique
intitulé "Towards Direct Brain-Computer Communication", publié en
1973 (Vidal, 1973). A cette époque, Jacques Vidal était Professeur1973: Vidal décrit le

concept de
"Brain-Computer

Interface", ou
Interface

Cerveau-Ordinateur

d’Informatique à l’Université de Californie Los Angeles. Il fut la pre-
mière personne à utiliser l’expression "Brain-Computer Interface", ou
Interface Cerveau-Ordinateur, pour faire référence à un tel système.

Les Interfaces Cerveau-Ordinateur (ou BCI pour Brain-Computer
Interfaces) furent plus tard définies, dans un article de référence in-
titulé "Brain-Computer Interfaces for Communication and Control"
(Wolpaw et al., 2002), comme étant des systèmes hardware & software
de communication et de contrôle permettant à des êtres d’interagir
avec leur environnement sans utiliser leurs nerfs et muscles du sys-
tème nerveux périphérique, c’est-à-dire uniquement grâce à leur ac-
tivité cérébrale.

Au cours des trente dernières années, grâce aux avancées tech-
nologiques incroyables auxquelles nous avons assisté, les BCI ont
connu un développement significatif et une grande diversification.
Les systèmes BCI actuels peuvent ainsi être classifiés selon trois caté-

x
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gories principales : les BCI actives, réactives et passives 1 (Zander and
Kothe, 2011).

Les BCI actives sont des BCI qui requièrent de la part de l’utilisateur
qu’il effectue des tâches de contrôle. Il existe deux paradigmes princi-
paux pour les BCI actives : les BCI basées sur des potentiels corticaux
lents (SCP-BCI pour "Slow Cortical Potentials") et les BCI basées sur
l’Imagerie Mentale (MI-BCI pour "Mental-Imagery"). A l’origine, les
BCI étaient basées sur des SCP, c’est-à-dire des potentiels évoqués
cognitifs qui sont déclenchés, au niveau de la couche superficielle du
cortex, entre 300ms et quelques secondes après la réalisation d’un
évènement interne ou externe (attendu par l’utilisateur) (Birbaumer
et al., 1990). Ces SCP sont mesurables à l’aide d’un EEG. Parce qu’ils
peuvent être produits suite à des évènements internes à l’individu, il
est possible de s’entraîner à moduler ses SCP (positivement ou néga-
tivement par rapport à la baseline). Dans leur célèbre article paru
dans Nature "A Spelling Device for the Paralysed", Birbaumer et al.,
1999 décrivent la première SCP-BCI permettant à des patients atteints
du syndrome d’enfermement de contrôler une appication pour épeler
des mots après avoir suivi un entraînement basé sur une approche de
conditionnement opérant. Cette approche consistait à demander à
ces patients de trouver une stratégie de manière à moduler leurs SCP
positivement ou négativement ; cette modulation leur permettant en-
suite de sélectionner des lettres. Les deux patients qui prirent part à
cette étude indiquèrent qu’ils utilisaient des stratégies d’imagination
mentale, au moins au début de l’entraînement. Après plusieurs cen-
taines de sessions d’entraînement, ils réussirent tous les deux à con-
trôler efficacement l’application et à épeler des textes entiers correcte-
ment. Bien qu’efficace pour permettre à ces patients de communiquer
à nouveau de manière autonome, cette approche présente plusieurs
limitations (Birbaumer et al., 2006): l’entraînement est extrêmement
long (de plusieurs semaines à plusieurs mois), ce qui est en par-
tie dû au fait que seul l’utilisateur s’adapte au système (le système
lui ne s’adapte pas). Une seconde approche dépasse ces limitations
puisqu’elle permet de racourcir la durée de l’entraînement en consid-
érant un autre type de motifs cérébraux et en adaptant le système
à chaque utilisateur. Cette approche consiste à demander aux util-
isateurs de réaliser des tâches d’imagerie mentale spécifiques (telles
que des tâches d’imagerie motrice de leurs membres, du calcul men-
tal ou des tâches de navigation spatiale). Le fait de réaliser de telles

1. Il est approprié de noter que cette classification n’est qu’une classification
parmi d’autres, et qu’elle n’est pas unanimement approuvée par la communauté.
En effet, ce que l’on appelle BCI passives (Zander and Kothe, 2011), qui sont des BCI
pour lesquelles il n’y a pas d’interaction volontaire/consciente entre l’utilisateur et
l’application, peut ne pas être considéré comme une BCI par certains étant donné
que le terme de BCI implique une interaction délibérée. Cependant, en se basant
sur la définition de Wolpaw and Wolpaw, 2012, qui caractérise les BCI comme des
systèmes fournissant aux utilisateurs un feedback en temps réel, les BCI passives
sont en effet des BCI.

xi
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tâches mentales va d’abord induire une désynchronisation des neu-
rones (pendant que l’utilisateur fait la tâche) qui sera suivie d’une
synchronisation (une fois que l’utilisateur arrête de faire la tâche)
(Pfurtscheller et al., 1997). Ces phénomènes de désynchronisation
et synchronisation ont lieu dans des régions spécifiques du cortex
que le système est entraîné à identifier grâce à des techniques de ma-
chine learning. Une fois que le système est capable de reconnaître
les motifs cérébraux associés à chaque tâche mentale (par exemple,
l’activation du cortex moteur droit lors de tâches d’imagerie motrice
de la main gauche), ces motifs sont associés à des commandes spéci-
fiques : cette approche est appelée BCI basées sur l’Imagerie Mentale,
ou MI-BCI. La spécificité de cette approche réside dans la double
adaptation entre l’utilisateur et le système : le système est entraîné
à reconnaître, pour chaque individu, les motifs cérébraux associés à
chaque tâche mentale (grâce à des techniques de machine learning)
alors que l’utilisateur doit s’entraîner de manière à ce que ses com-
mandes mentales soient correctement reconnues par le système. Plus
de déails au sujet de cette approche sont donnés dans le premier
Chapitre du manuscrit.

D’un autre côté, les BCI réactives dépendent d’une réponse cérébrale
déclenchée par un événement externe sur lequel l’utilisateur est con-
centré. De telles réponses sont appelées Potentiels Evoqués. Il ex-
iste différents types de BCI réactives, basées sur différents potentiels
évoqués. L’un des paradigmes les plus utilisés est le P300 Speller,
introduit pour la première fois par Farwell and Donchin, 1988. La
P300 est un potentiel cortical positif qui apparaît environ 300ms après
l’occurence d’un événement rare et pertinent (qui peut être la présence
ou l’absence d’un stimulus) pour l’utilisateur. Ce potentiel est vis-
ible dans l’activité EEG. Ainsi, le P300 Speller consiste en une ma-
trice de symboles (principalement des lettres et symboles de ponc-
tuation) affichée à l’écran. Les lignes et les colonnes de la matrice
s’éclairent dans un ordre aléatoire à une fréquence donnée. Il est
demandé aux utilisateurs de se concentrer sur le symbole qu’ils veu-
lent épeler. Environ 300ms après que le symbole ait été éclairé, une
P300 apparaîtra dans le signal EEG. En recoupant les lignes et les
colonnes ayant engendré une P300, il est possible d’inférer le symbole
sur lequel l’utilisateur se concentrait. Parce qu’elle sont basées sur
des réponses cérébrales automatiques, ces BCI réactives ont l’avantage
de ne nécessiter que peu d’entraînement de la part de l’utilisateur.
Cependant, contrôler de telles BCI requiert d’importantes ressources
cognitives. En conséquence, il est difficile d’utiliser ces BCI dans des
situations d’interaction (comme lors de navigation) nécessitant aussi
d’importantes ressources attentionnelles visuelles et auditives. De
plus, les BCI réactives sont dites synchrones (ou "time-locked"), parce
que l’utilisateur doit attendre l’apparition d’un stimulus externe pour
pouvoir envoyer une commande.

xii
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Enfin, la dernière catégorie correspond aux BCI passives (Zander
and Jatzev, 2009). Les BCI passives sont des systèmes permettant
de mesurer l’état mental des utilisateurs de manière à adapter une
application/interface en fonction de ces derniers. Autrement dit, les
utilisateurs n’interagissent pas de manière volontaire avec la BCI, ils
n’ont pas pour objectif de lui envoyer des commandes. Plutôt, leurs
états cognitif (e.g., leur charge mentale), émotionel (e.g., leur frus-
tration) ou motivationel sont inférés à partir de leurs signaux EEG,
qui sont souvent combinés à d’autres marqueurs physiologiques et
comportementaux. Une fois cet état mental inféré, l’application sera
adapté pour répondre au mieux aux besoins de l’utilisateur. Par ex-
emple, si une application propose un exercice et que la BCI détecte
que l’utilisateur n’est pas motivé et frustré, l’exercice pourra être mod-
ifié de manière à ce que l’utilisateur retrouve un état mental positif,
propice à l’apprentissage. Dans notre projet, nous nous sommes fo-
calisés sur les BCI permettant la communication et le contrôle. Ainsi,
les BCI passives n’entrent pas dans le champ de notre recherche.

L’objectif de cette thèse est de contribuer à l’amélioration des BCI
dédiées à la communication et au contrôle dans le but de les ren-
dre plus utilisables et accessibles pour les patients aussi bien que
pour le grand public. Nous nous sommes concentrés sur les BCI ac-
tives car elles nous semblent être plus adaptées pour une utilisation
dans des situations interactives. En effet, elles permettent un contrôle
asynchrone et ne nécessitent pas que l’utilisateur alloue toutes ses
ressources attentionnelles à leur contrôle, contrairement aux BCI réac-
tives. Pour rappel, il existe deux paradigmes principaux pour les BCI
actives : SCP et MI. Nous avons choisi de nous concentrer sur les MI-
BCI car le processus d’entraînement est plus rapide, les rendant plus
adaptées et plus utilisables pour des application que les SCP-BCI. Par
ailleurs, les performances associées aux MI-BCI présentent un grand
potentiel d’amélioration, notamment à travers la compréhension et
l’amélioration du processus d’entraînement des utilisateurs. Par con-
séquent, l’objectif de notre manuscrit est d’atteindre une meilleure
compréhension des mécanismes sous-tendant l’apprentissage des util-
isateurs de MI-BCI dans le but d’améliorer ces procédures d’entraînement.
Nous espérons que ce travail pourra représenter une première étape
vers une nouvelle génération de BCI plus fiables, efficientes et acces-
sibles.

Les MI-BCI fonctionnent comme une boucle fermée (voir la fig-
ure 3). D’abord, l’utilisateur réalise des tâches mentales spécifiques.
Ces tâches sont associées à des motifs cérébraux qui leur sont pro-
pres, souvent mesurés et enregistrés à l’aide d’un EEG et transmis
à un ordinateur. Le système doit ensuite extraire l’information per-
tinente des signaux enregistrés de manière à déduire quelle tâche
l’utilisateur était en train de réaliser. Ensuite, l’utilisateur reçoit un
feedback qui lui indique quelle tâche a été reconnue par le système.
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Figure 1 – Représentation schématique de la boucle BCI.

En ce basant sur ce feedback, l’utilisateur devra trouver la stratégie de
manière à ce que ses commandes mentales soient reconnues le plus
souvent possible et le mieux possible. Dans le premier chapitre du
manuscrit, nous proposons une revue de la littérature décrivant en
détails le fonctionnement d’une MI-BCI. En effet, ce chapitre décrit
comment les MI-BCI fonctionnent, quelles tâches mentales sont util-
isées, il explique aussi la phase d’entraînement machine (appelée
calibration) et la phase d’entraînement de l’utilisateur. Dans cette
thèse, nous nous concentrons uniquement sur les MI-BCI basées sur
l’EEG, malgré le fait que de plus en plus de techniques d’imagerie
hautement performantes soient développées. En effet, pour qu’une
technique d’imagerie soit adaptée à l’usage de MI-BCI dans le cadre
d’applications de communication et de contrôle, elle doit être portable
et accessible en terme de prix, ce qui exclut l’Imagerie pas Réso-
nance Magnétique fonctionnelle (IRMf) et la MagnétoEncéphaloGra-
phie (MEG). La Spectroscopie proche InfraRouge fonctionnelle rem-
plit ces deux critères et possède une bonne résolution spatiale (au-
tour de 5mm) mais, parce qu’elle est basée sur des réponses hémody-
namiques, elle a aussi une résolution temporelle plutôt faible (autour
de 1000ms) comparé à l’EEG (autour de 50ms). Or, pour des appli-
cations de contrôle d’application et de navigation, une bonne résolu-
tion temporelle est essentielle. C’est pour cela que l’EEG est souvent
préféré au fNIRS. Cependant, pour des travaux plus fondamentaux,
la combinaison de l’EEG et du fNIRS est extrêmement prometteuse
en raison de la complémentarité de ces deux méthodes (Fazli et al.,
2012).

Depuis les années 1990, les MI-BCI ont beaucoup évolué. Elles
sont maintenant utilisées dans de nombreux domaines (Graimann,
Allison, and Pfurtscheller, 2010). Ce paragraphe a pour objectif de
présenter certains d’entre eux. A l’origine, les MI-BCI étaient vouées
à l’amélioration des conditions de vie des patients atteint d’un hand-
icap moteur sévère (par exemple les patients souffrant du syndrome
d’enfermement suite à un accident vasculaire cérébral -AVC- ou à
un traumatisme cérébral) de par l’amélioration de leur autonomie en
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termes de mobilité et de communication. Plus particulièrement, des
fauteuils roulants intelligents et des neuroprothèses contrôlés par des
MI-BCI furent développés (Millán et al., 2010; Pfurtscheller and Neu-
per, 2001; Wolpaw et al., 2002 - pour une review, voir Nicolas-Alonso
and Gomez-Gil, 2012). Concrètement, un fauteuil roulant contrôlé par
une MI-BCI fonctionnerait comme suit : la réalisation d’imagination
de mouvements de la main gauche ferait tourner le fauteuil vers
la gauche alors que la réalisation d’imagination de mouvements de
la main droite le ferait tourner à droite. De nos jours, de tels sys-
tèmes sont souvent contrôlés grâce à l’utilisation combinée d’une MI-
BCI et de capteurs infra-rouge permettant la détection d’obstacles, et
leur éviction automatique. En dehors de ces applications classiques,
d’autres applications ont émergé. Tout d’abord, de nouvelles tech-
niques de rééducation post-AVC basées sur l’utilisation de MI-BCI
grandissent en popularité, plus particulièrement pour la rééducation
de la motricité du membre supérieur (Ang and Guan, 2013; Ramos-
Murguialday et al., 2013). En effet, l’utilisation de MI-BCI permet aux
thérapeutes de visualiser l’activité cérébrale de leurs patients lorsque
qu’ils essayent de réaliser des mouvements lors de séances de réédu-
cation. De plus, il est ainsi possible de fournir un feedback haptique
aux patients, cohérents avec la tâche qu’ils sont en train de réaliser,
ce qui permet de "‘clore la boucle sensori-motrice"’ et de favoriser le
phénomène de plasticité synaptique. Par ailleurs, les MI-BCI sont de
plus en plus utilisées pour des applications destinées au grand public,
notamment dans les domaines des jeux vidéo et de la réalité virtuelle
(Coyle et al., 2013; Erp, Lotte, and Tangermann, 2012; Lécuyer et al.,
2008).

Pour résumer, les MI-BCI amènent des perspectives innovantes à la
fois pour les patients et pour le grand public, et ce dans de nombreux
domaines. Malheureusement, bien que prometteuses, la plupart des
applications basées sur des MI-BCI ne sont pas ncore disponibles sur
le marché. Et pour cause, il semblerait que 15 à 30% des utilisateurs
de MI-BCI soient incapables de contrôler de tels systèmes (Allison
and Neuper, 2010): ce phénomène est souvent appelé "BCI illiteracy"
ou "BCI deficiency". Même pour les utilisateurs "‘non illétrés"’, la
performance moyenne est généralement plutôt faible (Blankertz et al.,
2010b; Guger et al., 2003), c’est-à-dire autour de 75% de bonne clas-
sification pour des MI-BCI à 2 classes (c’est-à-dire pour des MI-BCI
requérant la réalisation de deux tâches d’imagerie mentale). Cepen-
dant, environ 20% des utilisateurs réussissent à obtenir des perfor-
mances allant de 80% à 100% de bonne classification (Hammer et al.,
2014) après entraînement, pour deux classes.

Deux facteurs principaux ont été identifiés pour expliquer le manque
de fiabilité des MI-BCI. Le premier, largement étudié par la commu-
nauté, concerne le traitement des signaux cérébraux. En effet, les
algorithmes de classification actuels son imparfaits (Allison and Ne-
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uper, 2010). D’un autre côté, le potentiel impact de l’entraînement
des utilisateurs de MI-BCI sur leur performance semble être négligé
de manière générale. Contrôler une MI-BCI requiert l’acquisition
de compétences spécifiques, et plus particulièrement la capacité de
générer des motifs de signaux cérébraux stables et distincts lorsque
l’on effectue les différentes tâches d’imagerie mentale (Neuper and
Pfurtscheller, 2010; Wolpaw et al., 2002). Un entraînement appro-
prié est nécessaire à l’acquisition de ces compétences (Neuper and
Pfurtscheller, 2010) et un protocole d’entraînement inefficace (soit
des instructions, tâches d’entraînement, feedback et environnement
d’apprentissage inappopriés) pourrait par conséquent être, au moins
en partie, responsable des performances modestes obtenues par les
utilisateurs. Or, bien que les protocoles d’entraînement actuels aient
été montrés comme étant théoriquement inappropriés pour acquérir
des compétences, peu de recherches ont été menées pour les améliorer
(Lotte et al., 2013).

Dans l’objectif d’améliorer l’apprentissage humain des MI-BCI, avec
pour but final l’amélioration de la fiabilité et donc de l’accessibilité de
ces technologies (pour les patients aussi bien que pour le grand pub-
lic), il est essentiel d’adopter une approche interdisciplinaire. En ef-
fet, les sciences cognitives, la psychologie et l’ingénierie pédagogique
sont nécessaires pour comprendre comment l’Homme apprend et
comment adapter le processus d’apprentissage aux différents indi-
vidus. Les neurosciences quant à elles permettent d’investiguer les

Figure 2 – Illustration de la feuille de route de cette thèse.
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processus neuronaux sous-tendant l’acquisition des compétences liées
au contrôle d’une MI-BCI, et de manière plus générale les proces-
sus neuronaux liés au contrôle d’une MI-BCI. Enfin, les domaines de
l’Interaction Homme-Machine (IHM) et des Facteurs Humains (FH)
sont nécessaires pour adapter efficacement le protocole d’entraînement
en se basant sur les recommandations issues de la psychologie et de
l’ingénierie pédagogique.

Cette thèse repose sur ces différentes disciplines, avec deux objec-
tifs majeurs en vue. Le premier est d’acquérir une meilleure com- Objectif:

Comprendre &
Améliorer
l’Apprentissage des
Utilisateurs de
MI-BCI

préhension des processus psychologiques et neurophysiologiques sous-
tendant l’apprentissage des utilisateurs de MI-BCI. Dans un second
temps, en se basant sur cette compréhension, nous avons pour but
d’améliorer les protocoles d’entraînement de manière à ce que les fac-
teurs psychologiques, cognitifs et neurophysiologiques soient pris en
compte et que ces protocoles suivent les principes issus de l’ingénierie
pédagogique, de l’IHM et des FH.

La première partie de cette thèse comprend deux revues de la lit-
térature permettant de présenter (1) les protocoles d’entraînement
actuels et leurs limitations, ainsi que des lignes directrices pour le
design de futurs protocols d’entraînement (i.e., Chapter 1), et une
overview des prédicteurs de performance actuels (i.e., Chapter 2). En-
suite, les problématiques de ce projet de thèse sont présentés dans
le détail, Chapitre 3. Pour rappel, le premier objectif de ce projet
était d’acquérir une meilleure compréhension des mécanismes sous-
tendant le processus d’apprentissage des MI-BCI. Dans un second
temps, les résultats de la première partie nous ont permis de de-
signer et évaluer de nouvelles approches d’entraînement ayant pour
but d’améliorer à la fois la performance et l’expérience utilisateur. Le
Chapitre 4 se veut présenter les matériels et méthodes utilisés dans
les différentes expériences réalisées pour atteindre nos objectifs. Cette
section est suivie de trois chapitres de recherche, chacun d’eux inves-
tiguant un aspect du processus d’apprentissage ayant un potentiel
impact sur d’efficacité de ce processus. Ainsi, le premier chapitre
était dédié aux facteurs cognitifs, le second à la personnalité, alors
que dans le troisième était investigué l’impact du feedback fourni
aux utilisateurs sur leur capacité à apprendre. Les trois chapitre suiv-
ent la même structure: dans un premier temps, on décrit les études
qui nous ont permis de déterminer quels facteurs (facteurs cognitifs,
personnalité, aspects du feedback) ont un impact sur la performance
; puis, nous décrivons les processus de design et de validation de
nouvelles approches d’entraînement aux MI-BCI basées sur les résul-
tats de la première partie ; enfin, dans la troisième et dernière partie
est dédiée à la présentation de potentielles applications de notre tra-
vail ou de futures recherches permettant d’approfondir nos résultats.
Pour conclure, un chapitre de Discussion Générale & Perspectives est
proposé.
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chapitre 1 - protocoles d’entraînement aux mi-bci & leur

limitations

Nous avons réalisé une revue de la littérature au sujet des pro-
tocoles d’entraînement utilisateur actuels pour l’apprentissage des
MI-BCI. Nous nous sommes plus précisément concentrés sur le pro-
tocole proposé par l’équipe BCI de Graz et sur ses variantes. La
comparaison de ce protocole avec les recommandations issues de la
psychologie et de l’ingénierie pédagogique nous a permis d’établir
les limitations des procédures d’entraînement actuelles et de pro-
poser des lignes directrices pour le design de futurs protocols. No-
tamment, nous insistons sur le fait que l’on devrait fournir aux ap-
prenants des instructions qui spécifient de manière explicite l’objectif
de l’entraînement; que les tâches d’entraînement devraient être adap-
tives et proposer une augmentation de la difficulté progressive ; que
le feedback devrait être multi-modal, explicatif et supportif ; et que
l’environnement d’apprentissage devrait être motivant.

chapitre 2 - prédicteurs de performance & leurs cor-
rélats neurophysiologiques

Nous proposons dans ce second chapitre une classification des pré-
dicteurs cognitifs et psychologiques de performance au contrôle des
MI-BCI. Trois catégories sont définies: la relation entre l’utilisateur
et la technologie, l’attention et les habiletés spatiales. La relation
utilisateur-technologie fait référence à des états et traits de person-
nalité influençant la perception qu’ont les utilisateurs de la technolo-
gie et donc la manière avec laquelle ils vont interagir avec elle. La
catégorie "‘attention"’ regroupe, entre autres, les habiletés attention-
nelles, la motivation et l’engagement envers la tâche. Ces éléments
sont essentiels à tout apprentissage. Ils sont aussi intimement liés à la
relation entre l’utilisateur et la technologie (par exemple, le fait de se
sentir en contrôle va augmenter l’engagement des utilisateurs envers
la tâche et ainsi les inciter à allouer plus de ressources cognitives à
la tâche). Enfin, les habiletés spatiales correspondent à la capacité de
produire, manipuler et transformer des images mentales, ce qui est
très lié à la capacité de contrôler une MI-BCI. La description de ces
catégories et de leurs corrélats neurophysiologiques nous a permis
de proposer des idées pour améliorer l’entraînement MI-BCI. Par ex-
emple, nous expliquons comment réduire la "‘computer anxiety"’ et
augmenter le "‘sense of agency"’, notamment grâce à l’utilisation d’un
feedback positivement biasé chez les novices. Aussi, nous proposons
des solutions pour solliciter et augmenter l’attention, par exemple en
utilisant le neurofeedback ou la méditation. Enfin, nous argumentons
sur le fait qu’entraîner les habiletés spatiales dans le but d’améliorer
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les habiletés spatiales des utilisateurs pourrait aboutir à une amélio-
ration des performances MI-BCI.

chapitre 3 - problématique

Ce chapitre vise à expliciter notre problématique. Nous soulignons
le fait que pour rendre les BCI plus fiables, efficientes et accessibles,
il est nécessaire de comprendre et améliorer l’apprentissage utilisa-
teur. Dans le but de réaliser ce challenge, nous avons défini 3 axes de
recherche qui consistaient à investiguer l’impact (1) de facteurs cog-
nitifs, (2) de la personnalité et (3) du feedback sur la performance MI-
BCI. Chacun de ces 3 axes a été développé en 3 étapes. D’abord, des
expériences ont été réalisées dasn le but de déterminer les facteurs
impactant la performance pour chaque catégorie. Ensuite, une solu-
tion prenant en compte ces facteurs pour améliorer la performance
des utilisateurs a été proposée et testée. Enfin, des idées de travaux
futurs ont été proposées.

chapitre 4 - matériels & méthodes

Ce chapitre décrit l’intégralité des matérieks et méthodes utilisés
lors de nos différentes expériences.

chapitre 5 - considérer les facteurs cognitifs pour com-
prendre et améliorer l’entraînement aux mi-bci

Tout d’abord, deux études utilisateurs sont décrites. Dans la pre-
mière, 18 participants ont été entraînés à réaliser trois tâches d’imagerie
mentale au cours de 6 sessions alors que dans la seconde, 20 partici-
pants ont été entraînés à réaliser 2 tâches d’imagerie motrice au cours
d’1 session. Les deux études ont révélé une forte corrélation entre
les performances MI-BCI (en terme de "‘classification accuracy"’) et
les scores de rotation mentale (Vandenberg and Kuse, 1978). Le score
de rotation mentale permet de mesurer les habiletés spatiales, c’est-
à-dire la capacité de produire, transformer et manipuler des images
mentales (Poltrock and Brown, 1984). En se basant sur ce résult, nous
avons investigué les effets d’un entraînement aux habiletés spatiales
sur la performance MI-BCI. Ainsi, nous avons designé et implémenté
un entraînement aux habiletés spatiales. Puis, nous avons mené deux
études visant à valider cette procédure d’entraînement: les résul-
tats ont montré qu’en effet, l’entraînement aux habiletés spatiales
était efficace pour améliorer les habiletés spatiales. Par conséquent,
nous avons inclus cette procédure dans un protocole d’entraînement
aux MI-BCI. Les résultats (N=24 participants) ont montré qu’il n’y
avait pas de différence entre les participants prenant part à 6 ses-
sions d’entraînement BCI et ceux prenant part à 3 sessions BCI et
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3 sessions d’entraînement aux habiletés spatiales. Néanmoins, la
longueur de l’entraînement aux habiletés spatiales semble impacter
la progression MI-BCI des utilisateurs, et les analyses neurophysi-
ologiques effectuées nous ont fourni des indications très intéressantes
sur la manière dont les motifs cérébraux évoluent tout au long du pro-
cessus d’entraînement. Enfin, dans la troisième partie de ce chapitre,
nous emettons l’idée qu’une entraînement aux habiletés spatiales pour-
rait éventuellement bénéficier aux patients lors d’une rééducation
post-AVC.

chapitre 6 - considérer la personnalité pour compren-
dre et améliorer l’entraînement aux mi-bci

Nous avons réalisé une étude avec 18 participants, prenant part à
6 sessions d’entraînement (cette étude est la même que celle présen-
tée dans le chapitre précédent). Les participants se sont entraînés
à réaliser 3 tâches d’imagerie mentale : rotation mentale, soustrac-
tion mentale et imagerie motrice de la main gauche. Grâce à une
régression linéaire pas à pas, nous avons défini un modèle prédic-
tif de la performance MI-BCI (R2adj=0.809, p60.001) incluant 4 traits
de personnalité : la tension, l’autonomie, les capacités d’imagination
et le style d’apprentissage (plus spécifiquement le fait d’être un ap-
prenant actif plutôt que réflectif). Ces dimensions sont décrites au
sein du chapitre et le modèle est discuté. Pour améliorer le protocole
d’apprentissage en se basant sur ce modèle, nous nous sommes focal-
isés sur les dimensions "‘tension"’ et "‘autonomie"’. En effet, il sem-
ble que les personnes fortement tendues et peu autonomes aient du
mal à apprendre à utiliser une MI-BCI. Nous avons fait l’hypothèse
que cela pourrait être dû, au moins en partie, au fait qu’aucune
présence sociale et aucun soutien émotionnel ne soient fournis aux
apprenants lors de leur entraînement. C’est pourquoi nous avons
designé, implémenté et testé un compagnon d’apprentissage dont
leur comportement est adapté à la performance et à la progression
de l’apprenant. Nous l’avons appelé PEANUT, pour "‘Personalised
Emotional Agent for Neurotechnology User-Training"’. Nous avons
testé l’efficacité de PEANUT pour améliorer l’entraînement aux MI-
BCI en termes de performance et d’expérience utilisateur. Les résul-
tats (N=31) ont montré que les participants qui étaient accompagnés
par PEANUT ont trouvé le système MI-BCI plus utilisables ; aussi,
PEANUT était plus apprécié quand son comportement était adapté à
la performance et à la progression des utilisateurs que lorsqu’il était
générique. Ainsi, utiliser PEANUT semble être une approche promet-
teuse pour améliorer l’apprentissage utilisateur. En guise de per-
spectives, nous discutons comment PEANUT pourrait évoluer. Tout
d’abord, nous aimerions que PEANUT puisse adapter son comporte-
ment au profil de l’utilisateur et non pas seulement à ses performance
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et progression. Par ailleurs, au delà du soutien émotionnel, nous
avoir pour objectif de permettre à PEANUT de fournir un soutien
cognitif aux utilisateurs afin de les guider vers l’acquisition de nou-
velles compétences. Plus spécifiquement, nous discutons la manière
dont PEANUT et TEEGI (Frey et al., 2014a) pourraient être combinés
afin de fournir aux utilisateurs un feedback explicatif.

chapitre 7 - considérer le feedback pour comprendre et

améliorer l’entraînement aux mi-bci

Dans la première partie de cette thèse, nous avons montré, en nous
basant sur la littérature, que le feedback actuel était théoriquement
inapproprié pour acquérir de nouvelles compétences. Dans le but
d’évaluer de manière expérimentale à quel point ce feedback impacte
la capacité des utilisateurs à acquérir une nouvelle compétence, nous
l’avons utilisé pour apprendre à des utilisateurs à réaliser de simples
tâches motrices : dessiner des cercles et des triangles sur une tablette
graphique. Les résultats (N=53) ont montré qu’avec ce feedback, 17%
des participants n’ont pas réussi à apprendre la compétence. Un sous-
groupe de participants (N=20 - 10 meilleurs et 10 moins bons partic-
ipants de l’expérience avec les tâches motrices) a ensuite participé
à une session d’entraînement BCI pendant laquelle ils apprenaient
à réaliser des tâches d’imagerie motrice de la main gauche et de la
main droite. Les résultats ont montré que ceux qui avaient eu des
difficultés pendant les tâches motrices se sont améliorés au cours de
la session BCI alors que les autres non. Nous avons fait l’hypothèse
que c’était lié à la forte quantité de ressources cognitives nécessaires
pour traiter le feedback. Nous avons fait l’hypothèse que, dans le
contexte de l’utilisation de BCI, la modalité visuelle était souvent
très (trop) sollicitée, un feedback tactile permettrait de réduire les
ressources cognitives nécessaires au traitement du feedback et donc
d’améliorer les performances des utilisateurs. Ainsi, dans ce chapitre,
nous expliquons comment nous avons designé, implémenté et validé
notre feedback tactile. Ensuite, nous décrivons comment nous avons
comparé ce feedback tactile à un feedback visuel standard. Les ré-
sultats (N=18) montrent que les participants ayant reçu du feedback
tactile ont obtenu de meilleures performances MI-BCI et ont aussi
été meilleurs à une tâche secondaire, de comptage de distracteurs
que ceux ayant reçu un feedback visuel. Ces résultats semblent con-
firmer que le feedback tactile requiert moins de ressources cogni-
tives que le feedback visuel dans un contexte BCI. Nous aimerions
maintenant comprendre les processus psychologiques et neurophys-
iologiques sous-tendant l’efficacité du feedback tactile. Nous avons
trois hypothèses, que nous présentons dans la partie perspectives de
ce chapitre : (1) le feedback tactile requiert moins de ressources cog-
nitives (hypothèse testée lors de l’expérience sus-nommée), (2) nous
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suggérons que le fait de fournir du feedback tactile sur les mains
stimule le cortex moteur, ce qui participe à la classification des sig-
naux EEG, (3) nous faisons l’hypothèse que le feedback tactile est as-
socié à un meilleur "‘sense of agency"’. Nous proposons un protocole
expérimental qui pourrait permettre de tester ces hypothèses.

chapitre 8 - discussion

L’objectif de ce chapitre est de fournir un résumé des contributions
de cette thèse. Les limitations de nos travaux y sont aussi discutées:
échantillons de faible taille, focus sur une population contrôle jeune
(pas d’études avec des patients), utilisation d’algorithmes de classi-
fication sous-optimaux, mesures de performance pas toujours adap-
tées.

chapitre 9 - perspectives

La performance MI-BCI présente un grand potentiel d’amélioration,
mais ce potentiel est actuellement limité par le fait que pour aller
plus loin il est nécessaire d’adopter une approche multi-factorielle
de l’apprentissage utilisateur. Nous expliquons pourquoi et com-
ment un Système Tutoriel Intelligent (STI) pourrait nous permettre
d’étudier l’apprentissage utilisateur avec une telle approche. Ensuite,
nous argumentons sur le fait que pour le moment, nous manquons de
connaissances théoriques à propos des connaissances théoriques à ac-
quérir pour développer un tel STI. En conséquence, nous proposons
un premier modèle cognitif de la tâche.

conclusion

Un long chemin reste à parcourir avant que nous soyons capa-
bles de proposer des BCI hautement efficientes, fiables et accessibles.
Ainsi, la communauté devrait évidemment continuer à investir des
ressources de manière à améliorer le "‘BCI hardware"’ (techniques
d’acquisition du signal) et "‘software"’ (traitement du signal). Cepen-
dant, même les meilleures techniques d’acquisition du signal EEG
associées aux meilleurs algorithmes de traitement du signal ne seront
pas suffisants pour rendre les BCI efficientes et fiables si l’utilisateur
n’est pas capable de contrôler la BCI correctement. C’est pourquoi un
effort similaire devrait être fait par la communauté pour comprendre
et améliorer l’entraînement utilisateur. Dans cette thèse, nous insis-
tons sur l’importance d’acquérir des connaissances théoriques appro-
fondies au sujet des compétences à acquérir pour contrôler une BCI et
sur les facteurs influençant l’acquisition de ces compétences. Dévelop-
per un modèle cognitif de la tâche BCI nous permettrait certainement
d’atteindre une meilleure compréhension des processus sous-tendant
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l’acquisition des compétences de contrôle d’une BCI. Etant donné
le fait que le développement d’un tel modèle nécessiterait énormé-
ment d’expériences et de travail théorique, l’idéal serait certainement
de développer une plateforme ouverte sur laquelle les chercheurs
pourraient partager leurs résultats (en termes de facteurs influençant
l’acquisition de compétences BCI) et leurs protocoles de manière à
ce qu’ils puissent être testés par d’autres équipes de recherche, en
combinaison avec d’autres facteurs. Au delà de l’élaboration d’un tel
modèle cognitif de la tâche, il est essentiel de re-penser les procédures
d’entraînement utilisateur. Comme mentionné dans ce manuscrit (et
par d’autres chercheurs), les protocoles d’entraînement actuels ne
suivent pas les recommandations faites dans la littérature en psy-
chologie, facteurs humains et ingénierie pédagogique. Or, des ré-
sultats expérimentaux préliminaires suggèrent que de meilleurs pro-
tocoles d’entraînement pourraient contribuer de manière significative
à l’amélioration des performances BCI. Pour résumer, il y a énormé-
ment de possibilités pour améliorer les performances BCI et nous
pouvons donc raisonnablement présumer que le jour viendra où nous
pourrons atteindre un degré d’efficience et de fiabilité suffisants pour
rendre les BCI utilisables et accessibles. Cependant, améliorer les per-
formances n’est pas suffisant pour faire en sorte que les BCI soient
utilisées à grande échelle en dehors des laboratoires. En effet, au delà
du système BCI lui-même, le rôle des chercheurs et autres spécial-
istes en BCI ne doit pas être négligé. Tout d’abord, les chercheurs
en BCI doivent travailler à la démystification de ces technologies
dans le but de réduire la "‘computer anxiety"’. Ceci peut être fait
grâce à des actions de médiation scientifique et une bonne commu-
nication avec les médias, entre autres. Ensuite, les chercheurs en
BCI doivent faire l’effort de rédiger des consentements éclairés et
feuilles d’information clairs et informatifs. Ceux-ci doivent perme-
ttre de fournir aux participants et patients une estimation objective
de la balance bénéfice/risque et permettre de réguler toute forme
d’espoir qui pourrait être générée (Nijboer et al., 2013). Enfin, la
présence sociale de l’expérimentateur ainsi que la relation de con-
fiance avec le participant/patient sont essentielles pour faciliter le
processus d’apprentissage et donc promouvoir d’utilisation de BCI
(Kleih et al., 2013).
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I N T R O D U C T I O N

The story begins in 1875 when Richard Caton, a Medical Doctor
from Liverpool (UK) made a fundamental discovery: the brain pro-
duces electrical activity (Caton, 1875). The experiment on which this 1875: Caton

discovers that the
brain produces
electrical activity

discovery was based consisted in placing electrodes on a dog’s brain:
two on the surface of the cortex, or one inside the cortex and one on
the skull. The electrical recordings revealed that the brain produces
a current which increases in amplitude during sleep and disappears
some time after death. The study of the brain’s electrical activity is
now called Cerebral Electrophysiology, and Richard Caton is often
described as a pioneer in this field.

Some years later, in 1924, the German Psychiatrist and Neurologist
Hans Berger became the first person to record electrophysiological
activity in a human brain(Scientific Biography, 2008). His motivation 1924: Berger records

the first human EEGto lead research in this field stemmed from an accident that had oc-
curred a few years earlier: one day, the story goes, when he found
himself in mortal danger during a cavalry training exercise, his sister
also reported that she had a feeling something bad had happened to
her brother. Hans Berger assumed that he transmitted his thoughts
to his sister by a kind of telepathy. From this moment, Hans Berger
became fascinated by the mind and his ambition was to understand
the correlation between objective brain activity and subjective psychic phe-
nomena. Once he had managed to record his first human ElectroEn-
cephaloGraph (EEG), he waited 5 years before publishing his work
(Berger, 1929) due to a lack of confidence in his discovery. Besides, his
European colleagues received the news with much scepticism, and he
had to wait until 1937 before the importance of his work and its im-
pact were finally recognised worldwide by the scientific community.
Hans Berger is now considered the Father of EEG: among other dis-
coveries, he was the first to describe alpha waves (and the way their
amplitude increases during rest), as well as the alteration of brain
signals during epileptic seizures.

Backed by this discovery, scientists, and especially Medical Doc-
tors, were able to measure and visualise specific electrical currents.
Indeed, the amplitude of these currents -in specific frequency bands-
was known to undergo modifications in certain particular contexts.
At the time, alpha waves (oscillations in the frequency range of 8-
12Hz approx.) were certainly the most investigated brain patterns.
It had been shown that their amplitude was low when people are
awake and concentrating, and that their amplitude increased when
they were relaxing or asleep. In the 1950s-early 1960s, using a simple
reward system, Joe Kamiya (Professor of Psychology at the Univer-

1
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2 introduction

sity of California in Berkeley) trained participants to find strategies,
by themselves, in order to alterate their brain waves and enter the al-
pha state, i.e., to increase the amplitude of their alpha waves: this is
considered the birth of Neurofeedback (Kamiya, 1969). The object of1960s: Kamiya

develops
neurofeedback

paradigms

neurofeedback is to learn to control specific brain patterns (especially
those involved in pathologies) in order to reach a certain mental state.
For instance, neurofeedback can be used to train patients suffering
from Attention Deficit Hyperactivity Disorder (ADHD) to relax by
entering the alpha state (i.e., by increasing the amplitude of their al-
pha waves) (Milstein, Stevens, and Sachdev, 1969).

Some years later, the 1970s saw the development of computer sci-
ences. These machines brought unhoped for computational power,
and enabled users to control simple applications using neurofeed-
back by, for example, displaying on a screen a cursor that was gets
bigger as the amplitude of the user’s alpha waves increases. This
work on neurofeedback led the scientific community to imagine a sys-
tem enabling humans to communicate with a computer using their
brain-activity alone. Such a system was first described in Pr. Jacques
Vidal’s paper entitled "Towards Direct Brain-Computer Communica-
tion" published in 1973 (Vidal, 1973). At the time, Jacques Vidal was1973: Vidal

describes the concept
of "Brain-Computer

Interface"

working as Professor of Computer Sciences at the University of Cali-
fornia Los Angeles. He was the first person to use the phrase "Brain-
Computer Interfaces" to refer to these systems.

Brain-Computer Interfaces (BCIs) were later defined, in a reference
paper entitled "Brain-Computer Interfaces for Communication and
Control" (Wolpaw et al., 2002), as a hardware and software communi-
cation and control system that enables humans to interact with their
surroundings without the involvement of peripheral nerves and mus-
cles, i.e., by using brain signals alone.

Over the last thirty years, helped along by incredible technological
advances, BCIs have undergone exponential development and great
diversification. Current BCI systems can be classified in three main
categories: active, reactive and passive BCIs 2 (Zander and Kothe,
2011).

Active BCIs are BCIs that require the user to intentionally perform
tasks to control the system. Two main paradigms exist for active BCIs:
Slow Cortical Potential based BCIs (SCP-BCI) and Mental-Imagery
based BCIs (MI-BCI). Historically, BCIs were based on SCP, i.e., cog-
nitive Event-Related Potentials (ERP) that are triggered, from the up-
per layer of the cortex, 300ms to several seconds after an internal or

2. It should be noted that this is not the only possible classification, and that no
definition is unanimously accepted by the community yet. Indeed, what we call here
passive BCIs (Zander and Kothe, 2011), for which there is no voluntary/conscious in-
teraction between the user and the computer, may not be considered as proper BCIs
by some, since the term BCI implies deliberate interaction. Nonetheless, based on
Wolpaw and Wolpaw, 2012’s definition, which characterises BCI as systems provid-
ing users with real-time feedback, passive BCI are indeed BCI.
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external event (that the user is expecting) occurs (Birbaumer et al.,
1990). These SCP are measurable using EEG. Because they can be
triggered by internal events, people can train to modulate their SCP
(positively or negatively with respect to the baseline) in a self-paced
way. In their famous paper "A Spelling Device for the Paralysed"
published in Nature, Birbaumer et al., 1999, describe the first SCP-
BCI enabling locked-in patients to control a spelling device after hav-
ing been trained through an operant conditioning approach. This
approach consisted in asking the patients to find a strategy to modu-
late their SCP positively or negatively in order to select letters. Both
of the patients who took part in this study reported using imagery
strategies, at least at the beginning of their training . After several
hundred sessions, they succeeded in efficiently controlling the device
and spelling full texts reliably. This approach, although efficient for
enabling such patients to communicate once again, presents several
limitations (Birbaumer et al., 2006): user-training is a long process
(which takes weeks or even months) and this is partly due to the fact
that only the user can adapt to the machine (the machine does not
adapt to the user). A second approach overcomes these limitations
by shortening the user-training process, by focusing on other brain
patterns and by adapting the system to each user. This approach
consists in asking the BCI users to perform specific mental-imagery
tasks (such as motor-imagery of the limbs, mental calculation or navi-
gation). These mental tasks first induce an Event-Related Desynchro-
nisation (ERD - while they are being performed) and then an Event-
Related Synchronisation (ERS - once the user has stopped performing
the MI task) (Pfurtscheller et al., 1997) in specific cortical regions that
the machine is trained to identify using machine learning techniques.
Once the the system is able to recognise the brain patterns associated
with the MI task, these patterns are linked to specific commands:
this approach is called MI-BCI. The specificity of this approach is the
double adaptation between the user and the machine: the machine is
trained to recognise the user’s brain patterns associated with each MI
task (using machine learning techniques) while the user has to train
so that his MI tasks are correctly recognised by the machine. More
details about this approach are provided in Chapter 1.

On the other hand, reactive BCIs are BCIs which depend on a cere-
bral response triggered by an external event on which the user is fo-
cusing. Such brain responses are called cognitive Event Related Poten-
tials (ERPs). Many different types of reactive BCIs exist, based on dif-
ferent ERPs. For example, one of the most popular current paradigms
is the P300 Speller, first introduced by Farwell and Donchin, 1988.
The P300 is a positive cortical potential that appears around 300ms
after the occurrence of a rare and relevant event (which can be either
the appearance or absence of a stimulus) which is expected by the
user. This potential is recognisable in the EEG signals. Thus, the
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P300 speller consists of a matrix of symbols (e.g., letters and punctu-
ation signs mostly) displayed on a screen. The rows and columns of
the matrix light up in a random order but at a known moment in time.
Users are asked to focus on the symbol they want to use. Approxi-
mately 300ms after the symbol is lit up, a P300 is generated in the
EEG signal. By finding out which row or column triggered the P300,
it is possible to infer which symbol the user was focusing on. Because
they are based on automatic brain responses, this kind of reactive BCI
has the advantage of not requiring much user-training and of being
very reliable. Nonetheless, controlling the BCI still requires consider-
able attentional resources, thus preventing these reactive BCIs from
being used in interactive situations (such as navigation and control)
that require high levels of visual and auditory attention. Such sys-
tems are called time-locked or synchronous BCIs, because the user
has to wait for an external stimulus to send a command.

Finally, the last type of BCIs are passive BCIs (Zander and Jatzev,
2009). Passive BCIs are systems that enable the user’s mental state to
be measured in order to adapt an application/interface accordingly.
In other words, users do not voluntary interact with the BCI, they do
not send commands. Instead, their cognitive (e.g., workload), emo-
tional (e.g., frustration) or motivational states are inferred from their
EEG signals, which can also be combined with other physiological
and behavioural data. An application can then be adapted to the
user’s state. For instance, if an application proposes an exercise but
the system detects that the user is not motivated and frustrated, the
exercise can be modified so that the user returns to a more positive
state. Here we focus on BCIs for communication and control and
therefore passive BCIs do not enter within the scope of this work.

The object of this thesis is to contribute to the improvement of BCIs
dedicated to communication and control in order to render them
more usable and accessible for patients as well as for the general
public. We focus on active BCIs as they have the potential to en-
able asynchronous control and do not require valuable attentional
resources to be allocated to an interface, as opposed to reactive BCIs.
As a reminder, two main paradigms exist for active BCIs: SCP and MI.
We chose to focus on MI-BCIs because the training process is faster,
making them both more suitable and more usable for BCI applica-
tions than SCP-BCIs. Furthermore, MI-BCI performance has a great
potential for improvement, especially through the understanding and
improvement of the user-training process. As a consequence, the ob-
ject of this manuscript is to reach a better understanding of the mech-
anisms underlying MI-BCI user-training in order to improve MI-BCI
training procedures. We hope this work will be a first step towards a
new generation of reliable, efficient and accessible MI-BCI.

MI-BCIs function as a closed loop (see Figure 3). First, the user has
to perform specific MI-tasks. These tasks are associated with specific
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Figure 3 – Schematic representation of the BCI loop.

brain patterns, typically measured using EEG, which are sent to a
computer. The system then has to extract the relevant information
from the signal in order to infer which task the user was perform-
ing. The user is then provided with feedback which apprises them
of the task recognised by the system. Based on this feedback, they
should adapt their strategy so that the MI-tasks they are perform-
ing get recognised as often and as well as possible. A more elab-
orate description of MI-BCIs is provided in our first review of the
literature, i.e., in Chapter 1. This chapter describes how MI-BCIs
work, which MI-tasks are used, the machine training phase (also
called calibration) and the user training phase. In this thesis, we
focus on EEG based MI-BCIs despite the fact that more and more
highly precise brain-imaging techniques are currently being devel-
oped. Indeed, in order to be usable for MI-BCIs, the device ought to
be portable and affordable, thus excluding functional Magnetic Res-
onance Imagery (fMRI) and MagnetoEncephaloGraphy (MEG). Func-
tional Near-InfraRed Spectroscopy complies with both these criteria
and has good spatial resolution (around 5mm) but, because it is based
on a haemodynamic response, it also has a poor temporal resolution
(around 1000ms) compared to EEG (around 50ms). If we consider a
BCI-based application for controlling a wheelchair, a neuro-prosthetic
or a video game, temporal resolution is of utmost importance. This is
why EEG is often preferred over fNIRS. Nevertheless, for more fun-
damental work the combination of EEG and fNIRS is very promising
due to the complementarity of the two techniques (EEG having a
modest spatial resolution of around 10mm) (Fazli et al., 2012).

Since the 1990s, MI-BCI have spread to a wide range of fields
(Graimann, Allison, and Pfurtscheller, 2010). This paragraph deals
with several of them. Originally, MI-BCIs were designed for the pur-
pose of improving living standards of severely motor-impaired pa-
tients (e.g. patients in a locked-in state due to a stroke or brain injury)
by enhancing their mobility autonomy and communication possibili-
ties. In particular, smart wheelchairs and neuroprosthetics controlled
by MI-BCIs were developed (Millán et al., 2010; Pfurtscheller and Ne-
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uper, 2001; Wolpaw et al., 2002 - for a review see Nicolas-Alonso and
Gomez-Gil, 2012). Concretely, a standard MI-BCI-based wheelchair
would work as follows: performing left-hand motor-imagery would
make the wheelchair turn left while right-hand motor-imagery would
make it turn right. Nowadays, these systems are often controlled us-
ing MI combined with a machine-based control system that relies on
infrared sensors which enable obstacles to be detected and avoided
automatically. In addition to these classic applications, several more
recent fields for MI-BCI based applications are emerging. First, MI-
BCI based stroke rehabilitation is growing in popularity, especially for
motor rehabilitation of the upper limbs (Ang and Guan, 2013; Ramos-
Murguialday et al., 2013). Indeed, MI-BCIs enable therapists to vi-
sualise patients’ brain activity while they perform attempted move-
ments during the rehabilitation process. More particularly, patients
can then be provided with haptic feedback that closes the sensorimo-
tor loop and helps brain-plasticity processes. For more details about
this application, please refer to Section 5.7. Moreover, more and more
MI-BCI-based applications for the general public are being designed,
especially for multimedia, gaming and virtual reality (Coyle et al.,
2013; Erp, Lotte, and Tangermann, 2012; Lécuyer et al., 2008). Some
of these applications are depicted in Section 7.5.

To summarise, MI-BCIs are bringing innovative prospects both to
patients and to the general public in many fields. Unfortunately, most
of the promising technologies based on MI-BCIs are not yet available
on the public market since an estimated 15 to 30% of users seem un-
able to control an MI-BCI based system (Allison and Neuper, 2010):
this phenomenon is often called "BCI illiteracy" or "BCI deficiency".
Even for MI-BCI users who are not "illiterate", average performance
is generally rather low (Blankertz et al., 2010b; Guger et al., 2003),
i.e., around 75% of classification accuracy for 2 class MI-BCIs (i.e.,
MI-BCIs which require users to perform 2 different MI tasks). Nev-
ertheless, around 20% of users do manage to obtain performances
ranging from 80% to 100% of classification accuracy (Hammer et al.,
2014) after training for two MI-tasks.

Two main factors have been identified to explain the low reliabil-
ity of MI-BCIs. The first, which has been extensively investigated,
concerns brain signal processing. Indeed, current classification al-
gorithms are still imperfect (Allison and Neuper, 2010). On the other
hand, the potential role of user-training in MI-BCI performance seems
to be mostly neglected. Controlling an MI-BCI requires the acquisi-
tion of specific skills, and particularly the ability to generate stable
and distinct brain activity patterns while performing the different
Mental-Imagery (MI) tasks (Neuper and Pfurtscheller, 2010; Wolpaw
et al., 2002). An appropriate training procedure is required in order
to acquire these skills (Neuper and Pfurtscheller, 2010) and an ineffi-
cient training protocol (which includes the instructions, training tasks,
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feedback and training environment) could consequently be partly re-
sponsible for users’ modest performances. Yet, although current train-
ing protocols are theoretically inappropriate for skill-acquisition (as
extensively investigated in Chapter 1), very little research is done to-
wards their improvement (Lotte et al., 2013).

In order to improve MI-BCI user-training with the ultimate goal of
increasing the reliability and thus accessibility of these technologies
(for patients as well as for the general public), an interdisciplinary ap-
proach is crucial. Indeed, cognitive sciences, psychology and instruc-
tional design are necessary to understand how humans learn and
how to adapt the training process accordingly. Neuroscience helps to
investigate the neural processes underlying the acquisition of MI-BCI
related skills, and more generally MI-BCI control. Finally, Human-
Computer Interaction (HCI) and Human Factors (HF) are necessary
to adapt the training protocol (instructions, tasks, feedback and en-
vironment) based on the recommendations from psychology and in-
structional design.

This thesis relies on these different disciplines with two main ob-
jects in view. The first is to acquire a better understanding of the Object:

Understanding &
Improving MI-BCI
User-Training

psychological and neurophysiological processes underlying MI-BCI
user-training, skill acquisition and control. Next, based on this under-
standing, we aim at improving MI-BCI user-training so that it takes
into account the relevant psychological, cognitive and neurophysio-

Figure 4 – Illustration of the Roadmap of this thesis. It will be completed
step by step throughout the manuscript.

– December 13, 2016



8 introduction

logical factors and complies with the principles of instructional de-
sign, HCI and HF.

The first part of this thesis comprises two reviews of the literature
introducing (1) the current training protocols and their limitations,
along with some design guidelines for future training protocols (i.e.,
Chapter 1), and (2) an overview of current MI-BCI performance pre-
dictors (i.e., Chapter 2). Then, the Research Challenges of this project
are described in further detail in Chapter 3. As a reminder, the first
object of this project was to reach a better understanding of the mech-
anisms underlying the MI-BCI user-training process. Secondly, our
findings concerning these mechanisms enabled us to design and eval-
uate new training approaches aiming at improving MI-BCI perfor-
mance and user-experience. Chapter 4 deals with the Materials and
Methods used in the different experiments that were led to reach both
of these goals. This section is followed by three research chapters,
each of which investigates one aspect of the training process which
has a potential impact on the efficiency of the process. Thus, the first
chapter focuses on cognitive factors, the second deals with personal-
ity factors and the third investigates the impact of the feedback users
are provided with during the training procedure. All three chapters
follow the same structure: first we describe the studies that enabled
us to determine which factors (cognitive factors, personality factors,
aspects of the feedback) have an impact on MI-BCI performance ; Sec-
ond, we describe the design and validation of new MI-BCI training
approaches based on the results of the first part ; in the third and final
part, some of the future prospects that await these new approaches
are proposed. More details about the content of these three Research
Chapters are provided in the Challenge Chapter. Finally, a General
Discussion and Prospects are introduced in the last Chapter. Figure
4 is a schematic representation of this roadmap which will gradually
be revealed throughout the manuscript.
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T H E O R E T I C A L B A C K G R O U N D

The first part of this manuscript is dedicated to the ex-
ploration of the theoretical background that led us to the
the definition of our research challenges. More precisely,
in the first chapter we give a review of the literature of
MI-BCI training protocols as well as their limitations and
gather some guidelines suggested in the literature to de-
sign more appropriate training protocols. In the second
chapter, we synthesise and classify predictors of MI-BCI
performance found in the literature. We also explain how
these predictors impact performance based on their neu-
rophysiological correlates and on psychological theories.
This theoretical work then leads us to define the research
questions developed in this thesis, which are detailed in
chapter 3.
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1
S TA N D A R D M I - B C I T R A I N I N G P R O T O C O L S , T H E I R
VA R I A N T S & T H E I R L I M I TAT I O N S - A S TAT E O F
T H E A RT.

roadmap -

quick summary -
We provide a review of the literature of current user-training ap-
proaches for MI-BCI. We more specifically focus on the Graz protocol
and its variants. The comparison of this protocol with recommenda-
tions from instructional design and psychology literature enabled us
to determine the limitations of current user-training procedures and
to propose guidelines for the design of future protocols. In particular,
we argue that the user should be provided with instructions that ex-
plicitly specify the training objective; that the training tasks should be
adaptive and allow a progression in terms of difficulty; that the feed-
back should be multi-modal, explanatory and supportive; and that the
training environment should be motivating.

related paper -
-1- Jeunet, C., N’Kaoua, B., and Lotte, F. (2016). ’Brain-Computer Interfaces.’
In: Iste/Wiley. Chap. Human learning for Brain-Computer Interfaces.

11
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1.1 introduction

BCIs are defined by Wolpaw (Wolpaw et al., 2002) as tools of com-
munication and control that allow users to interact with their envi-
ronment by means of their cerebral activity alone. This definition
highlights one fundamental aspect of BCIs, the interaction between
two components: the user’s brain and the computer. The challenge is
to make sure that these two components (brain and computer) "under-
stand each other", and adapt to each other so that the system perfor-
mance (often measured using the classification accuracy) is optimal.

Thus, a BCI (Wolpaw et al., 2002) works as a loop with two major
stages following the generation of a command by the users using their
brain activity (which we shall denote stage 0). During stage I, the
computer attempts to understand the command sent by the user, gen-
erally by extracting relevant information followed by classification.
Next, during stage II, it is the user’s turn to attempt to understand
the meaning of the feedback generated by the computer, which in-
dicates how the computer understood the command that it received.
To see how this loop works, consider the case of a standard BCI pro-
tocol based on motor imagery (Pfurtscheller and Neuper, 2001). In
this protocol, users can perform two motor imagery tasks, "imagine
moving the left hand" and "imagine moving the right hand", which
are associated with two distinct commands. To provide guidance to
the user, the system also produces feedback, often in the form of a
bar indicating the task recognised by the system. The direction of
the bar depends on the task recognised by the system (e.g. the bar
points left if the task "imagine moving the left hand" is recognised).
The size of the bar also depends on the value of the classifier out-
put (i.e. higher values indicate that the classifier is more confident
in the task recognition, and so the bar will be larger) (see Figure 5).
In this example, stage I of the loop is the computer’s recognition of
the motor imagery task performed by the user (Is the user imagining
moving his left hand, or his right hand?). Then, in stage II, the user
now has to understand the feedback generated by the system (What
does this bar mean? Did the system correctly recognise the task that
I performed? If so, how confident was it? What should I do so that
it recognises more easily my commands?). Unfortunately, it appears
that most current systems do not properly establish this mutual un-
derstanding, which might explain why users perform poorly when
attempting to control the BCI, as well as the non-negligible fraction
(between 15% and 30%) of users that find themselves completely in-
capable of controlling these systems (Allison and Neuper, 2010).

How can we facilitate this understanding? Over the last several years,
there have been many studies on stage I of the loop: how to make
the computer understand the task performed by the user. Signal pro-
cessing algorithms and machine learning techniques have been devel-
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oped to achieve this. But two fundamental factors for improving BCI
performance have not yet been sufficiently explored:

— Stage 0, the quality of the signals generated by the user: for the
classification algorithms to be effective (i.e. in order that they
can be capable of recognising motor imagery tasks by extracting
specific features from the cerebral signal), the user must be able
to generate a stable cerebral signal each time that he performs
the same task, and distinct cerebral signals when the tasks are
different. These two elements are non-trivial skills, and require
a training process that is both specific and adapted to each user.
This is rarely taken into account in BCI teaching protocols (Ne-
uper and Pfurtscheller, 2010).

— Stage II, user comprehension of the feedback produced by the system:
The standard BCI protocols often provide the user with feed-
back in the form of a graphical representation of the classifier
output (e.g. the bar described above). Although this is informa-
tive (and more importantly allows evaluation/correction), this
feedback does not explain to the user why a certain task was
or was not recognised, and even less what the user must do in
order to improve performance. In their review, Lotte et al., 2013

show that to be effective feedback must provide an explanation
(rather than just the possibility of correction), be multi-modal
(and not just visual), and finally be clear and explicit (which is
not the case with classifier output for non-experts).

These different ideas highlight a point that might allow user perfor-
mance to be improved: facilitating the acquisition of skills by provid-
ing adapted training protocols. As we will see in this chapter, estab-
lishing a training protocol requires various elements to be taken into
consideration: the instructions/indications given to the user, the train-
ing environment, the training tasks used to enable the acquisition of
knowledge/skills, and the feedback provided after performing the
various tasks.

In this chapter, we will explore the limitations of the standard pro-
tocols widely used by the BCI community. Next, we will analyse
the alternative training protocols that have been suggested for BCIs.
As stated in the Introduction, we will focus on protocols developed
for training users to use BCIs based on Mental Imagery (MI), also
known as spontaneous BCIs. Before we begin, however, let us de-
scribe two historical approaches that were used with BCIs, on which
most of the current training protocols are based. One protocol was
proposed by researchers in Graz (Pfurtscheller and Neuper, 2001),
based on techniques of machine learning while the other was proposed
by the researchers at the Wadsworth center (Wolpaw, McFarland, and
Vaughan, 2000) based on an operant conditioning approach.
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1.2 illustration : two historical bci protocols

Principle of the Graz protocol (Pfurtscheller and Neuper, 2001) - This
approach is organised into two stages: -I- training the system and -II-
training the user. In stage I, the user is instructed to successively per-
form a certain series of MI tasks (for example, imagining movements
of the left and right hands). Using the recordings of cerebral activ-
ity generated as these various MI tasks are performed, the system
attempts to extract characteristic patterns of each of the mental tasks
from the signal. These extracted features are used to train a classifier
whose goal is to determine the class to which the signals belong (i.e.
imagining a movement of the left hand or the right hand). This classi-
fier is then typically adjusted over the course of the training session so
that variations in the disposition of the EEG cap or in the user condi-
tions (e.g., EEG non-stationarity or different cognitive state) between
sessions are taken into account. When this stage is complete, stage
-II- consists in training the user. The user is instructed to perform the
MI tasks, but this time feedback (based on the training performed
by the system in stage -I-) is provided to inform him or her of the
MI task recognised by the system and the corresponding confidence
level of the classifier. The user’s goal is to develop effective strategies
that will allow the system to easily recognise the MI tasks that the
user is performing.

Concretely, this training protocol is generally organised over mul-
tiple sessions, each of which is comprised of sequences (often called
runs) lasting approximately 7min. Each session generally has 4 to 6

runs to avoid fatigue, which is often observed after the 6th run. Fi-
nally, the runs themselves are divided into trials. One run contains
10 to 20 trials per class (i.e. per MI task) depending on the number
of classes. A trial typically lasts for 8s, during which time a cross
appears on the screen followed by a sound to attract the user’s atten-
tion, further followed by an arrow symbolising the instruction (e.g.
an arrow pointing to the left corresponds to the instruction "imagine
moving the left hand") and then visual feedback shown as a bar indi-
cating the recognised task and the corresponding confidence level of
the classifier. The detailed chronology of a trial is shown in Figure 5.

Principle of the Wadsworth center protocol for 1D cursor control - The
BCI system proposed by the Wadsworth center team is based on con-
trolling the sensorimotor rhythms µ and β after a training process
based on operant conditioning (Wolpaw, McFarland, and Vaughan,
2000). The initial version of this BCI system, which has now become
standard, featured a cursor (or ball) on the screen moving continu-
ously from the left to the right, at constant speed. The user can control
the vertical position of the cursor by modulating the amplitude of his
or her sensorimotor rhythms. On the right-hand section of the screen,
several targets (generally between 2 and 4, represented by rectangles)
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are shown, aligned vertically, one-by-one. The user must adjust the
vertical position of the cursor using the BCI so that the cursor hits
the indicated target when it reaches the right-hand edge of the screen
(see Figure 6). This kind of BCI, based on operant conditioning, does
not impose any specific mental task on the user, unlike the BCI ap-
proach from Graz, nor does it make use of machine learning. Users
must find the strategy that allows them to effectively modulate their
cerebral rhythms to move the cursor across the screen, on their own.
Typically, users utilise motor imagery tasks at the beginning of the
training process, but with practice they report that they use these mo-
tor imagery tasks less and less (Wolpaw, McFarland, and Vaughan,
2000). Training to control the BCI takes time, generally several days,
weeks or even months of practice. This principle has nonetheless en-
abled certain users to master controlling a cursor with this BCI in 1

dimension (1D) (Wolpaw, McFarland, and Vaughan, 2000, 2D Wol-
paw, McFarland, and Vaughan, 2000), and more recently even 3D
(McFarland, Sarnacki, and Wolpaw, 2010).

1.3 review of the literature on standard mi-bci user-
training protocol & of their variants .

This section offers a review of the literature on existing BCI train-
ing protocols, that are variants of the Graz training protocol, with
the objective of establishing guidelines that will be useful for the de-
velopment of future BCI training protocols. These training protocols
can be divided into 4 elements: the instructions the participant is pro-
vided with, the training tasks used to enable him acquire BCI-related
skills, the feedback informing him about the task recognised by the
system so that he can adapt, and the training environment in which
the training process takes place.

Figure 5 – Chronology of a trial: at the beginning of the trial, a cross appears
at the center of the screen; after 2s, a sound is played to indicate
that the instruction is imminent; at 3s, an arrow appears for 1.25s:
the direction of the arrow indicates the MI task that should be
performed; at 4.25s the feedback is shown for 4s, and is generally
updated 16 times per second depending on classifier output.
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Figure 6 – Schematic illustration of a trial with the Wadsworth center proto-
col (Wolpaw, McFarland, and Vaughan, 2000).

1.3.1 Instructions

Very few studies have examined the instructions given to users
learning to control a BCI. Yet this is a central element of the train-
ing process, since these instructions help users to understand their
tasks. Often, these instructions consist only of a single directive in-
dicating that the goal of the exercise is to move the cursor/bar in
the correct direction. However, as pointed out by Lotte et al., 2013,
the ultimate objective of the training protocol is not to move the bar,
but to help the user to learn to generate a stable, specific signal for
each of the mental imagery tasks that he or she performs. It seems
therefore that the training objective should be made more explicit.
One study shows that prompting users to attempt kinesthetic imagi-
nation of movements (i.e. to imagine performing the motion, feeling
the same sensations, without actually moving anything) rather than
simply visual imagination improves the performance (Neuper et al.,
2005). On the other hand, another study shows that the users that
obtained the best performances were those who were not given any
specific strategy at the beginning of the training process (Kober et al.,
2013). The authors reason that the success of the training process
depends on subconscious training mechanisms, and that users who
attempt to follow a strategy overload their cognitive resources (which
does not result in a positive performance improvement).

1.3.2 Training tasks

Although most BCI training protocols only used one single train-
ing task, which is repeated identically multiple times, a few studies
have explored a more varied selection of tasks. In particular, Mc-
Farland et al. successfully implemented a progressive sequence of
training tasks; with operant conditioning, they taught users to first
control a 1-dimensional (1D) cursor separately in three different di-
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mensions, then in 2D (for each pair of dimensions), and finally in
3D (McFarland, Sarnacki, and Wolpaw, 2010). Vidaurre et al. experi-
mented with adaptive training tasks by giving subjects a BCI that was
initially generic in nature (i.e. independent of the subject, calibrated
with the data from multiple other subjects), then progressively more
and more adapted to the new user (by adapting the choice of sensors
and classifier to this user) (Vidaurre and Blankertz, 2010). This pro-
gressive and co-adaptive approach (the user adapts to the machine
and the machine adapts to the user) allowed users that were “illit-
erate” at first to eventually succeed in controlling the BCI. In a less
formal and systematic setting, Neuper et al. also explored the idea
of allowing the user to learning freely and asynchronously from time
to time, with positive results (Neuper et al., 2003). Even though this
approach has not been compared with the traditional approach (syn-
chronous only), this nonetheless suggests that organising self-paced
and asynchronous sessions can be beneficial to BCI training processes.
Finally, Eskandari et al. taught their users to meditate before using a
BCI, and demonstrated that this had a positive impact on the perfor-
mance (Eskandari and Erfanian, 2008).

1.3.3 Feedback

In the standard training protocols (Pfurtscheller and Neuper, 2001),
feedback is given in the form of a bar or a cursor shown on screen,
whose direction depends on the task recognised by the classifier and
whose size is proportional to the confidence of the classifier in the
recognised task. Some studies have suggested other variants for dis-
playing feedback. First of all, Kübler et al., 2001b developed a process
that displays a smiley after each successful trial. In their own study,
Leeb et al., 2007 replaced the cursor with a gray smiley that moves
towards the left or the right depending on the classifier output. After
each trial, the smiley becomes green and happy if the trial is success-
ful, sad and red if not. According to the authors, this study revealed
increasd motivation levels related to this feedback which led them to
conclude that users’ motivation is linked to improved performance.
However, on the one hand neither of these studies offered a formal
comparison with the standard feedback process, which unfortunately
prevent us from affirming that these kinds of feedback are more ef-
fective than standard ones.
Although the feedback described above (all of which was visual in
nature) is simple to implement and intuitive, its effectiveness is not
optimal for BCIs. Indeed, it is a recognised fact that in situations
of real-life interactions, the visual channel is often overloaded (Leeb
et al., 2013), which prompted certain researchers to consider provid-
ing feedback via the other senses. Accordingly, several experiments
were performed to evaluate the effectiveness of auditory feedback. In
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the same way as the standard visual feedback, the auditory feedback
provided usually represents the classifier output: instead of varying
the size of a bar, the classifier output is represented by variations in
the frequency of the sound (Gargiulo et al., 2012), or its volume (Mc-
Craedie, Coyle, and Prasad, 2014), or tone (Hinterberger et al., 2004;
Nijboer et al., 2008). For example, with their auditory BCI, Nijboer
et al., 2008 used the sounds of two different instruments to indicate
the recognition of each of the MI tasks. Although its utility has been
proven for patients suffering from locked-in syndrome (Smith and
Delargy, 2005), because this syndrome is often linked with visual de-
ficiencies and a loss of sensitivity, the performance achieved with
auditory feedback has generally been significantly inferior to the per-
formance achieved with visual feedback. One suggested explanation
is that it is less intuitive, and thus is longer and more difficult to
learn. Also, for real-life applications in open environments (e.g. nav-
igating a wheelchair), the auditory channel is very frequently used
(e.g., to perceive alert signals or to interact with other people) and
must remain available (much like the visual channel). These factors
suggest that auditory feedback is not ideal for applications involving
navigation or general entertainment.

Given this context, tactile feedback may have many advantages.
Firstly, the sense of touch is very infrequently used for interactions.
So, sending additional information via this channel will have zero or
limited effect on the workload (Lotte et al., 2013), and so will not af-
fect performance. Secondly, unlike visual and auditory feedback, tac-
tile feedback is personal, and is not perceived by others in the user’s
immediate environment. Motivated by this, various different types of
tactile feedback were tested with BCIs. Tactile feedback for MI-BCIs
has been mainly used in a medical context. Indeed, Wilson et al.,
2012 explored lingual electro-tactile stimulation, as the tongue pro-
vides an excellent spatial resolution, and its sensitivity is preserved
in the case of spinal cord injuries; while Gomez Rodriguez et al.,
2011 and Ramos-Murguialday et al., 2012 focused on proprioceptive
feedback (i.e., information about the limbs’ position and about the
strength developed while performing a movement) and showed that
proprioceptive feedback allows increasing BCI performance, indicat-
ing that these alternative feedback are very promising for patients.
However, these kinds of tactile feedback are quite cumbersome and
expensive. Thus, they do not seem to be relevant for applications
targeting the general public. A few studies explored tactile feedback
for general public applications. Most of these studies in which hap-
tic feedback has been chosen to inform the user about the classifier
output used vibrotactile feedback with either a variation of the vibra-
tion patterns (e.g., different motor activation rhythms according to
the classifier output) (Chatterjee et al., 2007) or variations in spatial
location (Cincotti et al., 2007; McCraedie, Coyle, and Prasad, 2014).
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Results show benefits when coupled with visual feedback, but only
when the vibrotactile feedback maps the “stimulus" location (i.e., the
MI task the participant has to perform). This relationship is known
as “control-display mapping" (Thurlings et al., 2012). For example,
when a right-hand MI is recognised, tactile feedback provided to the
right part of the body will be more efficient (i.e., associated with bet-
ter performance and user experience) than tactile feedback provided
to the left side. Results also show similar performances between vi-
sual and tactile feedback, and the participants reported that tactile
feedback was more natural than visual feedback, although negative
feedback due to a misclassification of the mental task can be annoy-
ing. Nevertheless, Cincotti et al., 2007 and Leeb et al., 2013 suggest
that although it is disturbing, negative vibrotactile feedback has no
impact on classification (i.e., it does not affect the brain patterns used
by the system to recognise the MI tasks). A few studies already at-
tempted to use continuous vibrotactile feedback (Cincotti et al., 2007;
Gwak et al., 2014; Leeb et al., 2013). For instance, Cincotti et al., 2007

propose a continuous tactile feedback in one of their studies: feed-
back is provided on the neck , updated every 2 seconds (as opposed
to every 0.250s, see Section 7.6) and more importantly, . Unfortu-
nately, this feedback has not been tested in a BCI control context. In
Gwak et al., 2014, a comparison between visual and tactile feedback
was proposed, and the findings showed that they are associated with
equivalent performances in a BCI context. In Leeb et al., 2013, visual
and tactile feedback were compared in the context of a visual atten-
tion task performed using a BCI. In the latter study, tactile feedback
was shown to be associated with better performances than the visual
one. Unfortunately, these studies present some limitations. First, the
samples are small: 6-7 subjects. Second, and most importantly, as
they used within subject comparisons and that the conditions were
not counterbalanced (the visual feedback was always tested before
the tactile feedback), one cannot rule out that these results are due
to an order effect. Finally, while the feedbacks were tested in pres-
ence of distracters (Leeb et al., 2013), it is not a multitasking context
as the visual attention task and the MI-BCI control task have been
performed sequentially.

As well as using different senses, changes in the content of the feed-
back have also been investigated. For instance, Hwang, Kwon, and
Im, 2009 suggested training based on neurofeedback. The feedback
was represented in the form of a schematic map showing the vari-
ous activated zones of the cortex in real time, which allowed users
to improve their performance. Another study (Kaufmann et al., 2011)
shows that increasing the level of required attention by using multi-
modal visual feedback (i.e., a visual feedback with more information)
does not decrease the performance compared to traditional feedback.
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Although these approaches are promising, they have not been yet
been thoroughly explored.

Finally, some studies used a procedure that introduced a bias into
the feedback (i.e. by leading users to believe that their performance
was better than it actually was). For example, Barbero and Grosse-
Wentrup, 2010 showed that expert users were hindered by biased
feedback, but that this procedure could sometimes prove useful to
new users. Another result showed that the users’ perception of uni-
quely positive feedback was changing along training (for a large num-
ber of sessions): after a while, it could decrease the feeling of control
and thus be detrimental (Kübler et al., 2001b). These results suggest
that the experience level of the user needs to be taken into account
when designing the optimal feedback system.

1.3.4 Training Environment

Most MI-BCI training protocols trigger a poor user motivation and
are generally associated with an average user experience. Gamified
training protocols were developed with the objective of maintaining
motivation levels and improving the user experience. For example,
McCraedie, Coyle, and Prasad, 2014 suggested two simple games
based on the ball-basket paradigm (i.e. manoeuvring a ball to pass
through a basketball hoop) and the concept of a spaceship that must
avoid asteroids. Other studies, summarised in a review by Lécuyer
et al., 2008, even suggested gamified BCI training protocols that in-
tegrated elements of virtual reality. In one of the games, the "Use
The Force" application inspired by Star Wars allows users to levitate
a spaceship by imagining moving their feet. Indeed, studies by Ron-
Angevin and Diaz-Estrella, 2009 and Leeb et al., 2006 show that using
entertaining protocols, in particular protocols based on virtual reality,
achieves an increase in performance for controlling BCIs compared to
traditional training protocols. Although these protocols are effective,
they all use feedback that is visual in nature. However, as we have
seen, the visual channel is often overloaded in interactive situations
for which BCIs might be useful. It would therefore certainly be pro-
ductive to combine these training environments with tactile feedback
systems, and then compare the performance with training situations
in traditional environments.

1.3.5 In Summary: Guidelines for Designing More Effective Training Pro-
tocols

In this section, we will provide a synthesis of the guidelines that
arise from the studies presented above, the objective of which is to act
as a guide for whoever wishes to implement more effective training
protocols.
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Instructions - It appears to be necessary to explicitly specify the train-
ing objective to the user, in particular the fact that the user must learn
to generate a stable, specific signal when performing the different MI
tasks in order to be able to control the BCI in the long term. Further-
more, it seems important to allow users to experiment independently
rather than imposing any particular strategy for performing the tasks.
On the other hand, for motor imagery, it appears that kinesthetic mo-
tor imagery is more effective than visual motor imagery.
Training tasks - Providing tasks that are designed to include a pro-
gression (increasing difficulty) and that are adaptive (specific to each
user) appears to facilitate the acquisition of BCI-related skills. Includ-
ing self-paced and asynchronous sessions and preparatory training
tasks (e.g. meditation) also seems to help.
Feedback - Even though this has not been formally shown in a study,
visual feedback with emotional connotations (e.g. smileys) seems to
increase user motivation levels and consequently their performance.
However, visual feedback is not ideal in interactive situations. The
same is true for auditory feedback, which does not appear to be truly
beneficial except for patients suffering from locked-in syndrome. Tac-
tile feedback is promising, so long as the principles of control-display
mapping are observed. Indeed, tactile feedback generally produces
a level of performance equivalent to visual feedback, but relies on a
channel that is much less saturated in interactive situations. Finally,
increasing the quantity and the quality of the information provided
(e.g. topography of cerebral activity) seems to be useful, as well as
adapting the way that the feedback is presented to the experience
level of the user.
Training environment - Several studies have shown that gamified train-
ing, especially including elements of virtual reality, increases the user
motivation, and consequently performance.

1.4 limitations of current mi-bci user-training proto-
cols .

BCI control being a skill, it has to be learned to be mastered by
the BCI user (Neuper and Pfurtscheller, 2010). Typically, a standard
BCI training process is performed by asking the user to control an
object on screen through the modulation of their brain activity in a
specific way (e.g., by doing motor imagery of their hands). As de-
picted in the previous sections, the feedback provided to the user
about his/her task performance is thus generally a uni-modal (gen-
erally visual) feedback indicating the mental task recognised by the
classifier together with the confidence in this recognition. It is gener-
ally represented by an extending bar or a moving cursor (Neuper and
Pfurtscheller, 2010). Typically, the bar/cursor extends in the required
direction if the mental task is correctly recognised and extends in the
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opposite direction otherwise. The length of the bar or the speed of
the cursor movement is also proportional to the classifier confidence
in its decision. Besides, the user is generally trained following a syn-
chronous protocol, i.e., the user is required to do specific tasks (e.g.,
imagining left hand movements) in specific time periods only. The
same protocol (i.e., training tasks and feedback) is usually repeated
until the user has learnt the BCI skill, i.e., until he/she has achieved
a given performance, often measured in terms of classification accu-
racy (to know more about classification accuracy computation, please
refer to Chapter 4, Section 4.2.3).

Unfortunately, such standard training approaches satisfy very few
of the guidelines provided by psychology of human learning and in-
structional design principles to ensure an efficient acquisition of a
skill (Lotte, Larrue, and Mühl, 2013). For instance, a typical BCI train-
ing session provides only corrective feedback (indicating whether the
learner performed the task correctly), using fixed and (reported as)
boring training tasks identically repeated until the user acquired the
BCI skill, with these training tasks being provided in a synchronous
way. In contrast, human learning and instructional design principles
recommend to provide an explanatory feedback (indicating what was
right or wrong about the task performed by the user) that is goal-
oriented (i.e., indicating a gap between the current performance and
the desired level of performance) and possibly multimodal, in an en-
gaging and challenging environment, using varied training tasks with
adaptive difficulty (Shute, 2008, Merrill, 2007) (see also Lotte, Larrue,
and Mühl, 2013 for many other guidelines that are not satisfied by
current BCI training approaches in terms of training environment, in-
structions, tasks and feedback). In short, current standard BCI train-
ing approaches are theoretically suboptimal, and are unlikely to en-
able efficient learning of BCI-related skills.

Moreover, according to Keller, 2008, it is necessary to consider the
user motivational and cognitive states to ensure he/she can learn and
perform efficiently, irrespectively of the task. Indeed, according to
Keller’s theory, optimising motivational factors - Attention (trigger-
ing a person’s curiosity), Relevance (the compliance with a person’s
motives or values), Confidence (the expectancy for success), and Satis-
faction (by intrinsic and extrinsic rewards) - leads to more user efforts
towards the task and thereby a better performance. Additionally, con-
sidering cognitive constraints such as the limited user working mem-
ory (requiring to minimise the amount of skill-unrelated information),
the way information is processed by him/her (requiring to make rel-
evant information salient) and the pre-existing knowledge stocked in
long-term memory (requiring to relate the to-be-learned skill to ex-
isting knowledge), leads to a more efficient skill acquisition. Again,
these different factors are typically not considered in BCI training pro-
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tocols, or only very few of them, leading to theoretically suboptimal
training protocols (Mühl et al., 2014).

1.5 conclusion

This chapter has allowed us to paint a picture of the current state
of research of BCI training protocols. The BCI community now recog-
nises that in order to achieve an improvement in performance, the
user must be included in the loop, and so training protocols must be
improved accordingly. We have seen that a few promising avenues
regarding the various constituent elements of these training proto-
cols (instructions, training tasks, feedback and training environments)
have been explored. Unfortunately, these types of study remain few
and far between and, critically, their results are insufficiently utilised
by the BCI community. We have also shown that by building on the-
ories in disciplines such as psychology and instructional design, it is
possible to suggest new, promising approaches for improving user
performance. One of the most important steps seems to be making
the effort of understanding how each user works cognitively in order
to offer training protocols adapted to their individual profiles.
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P R E D I C T O R S O F M I - B C I P E R F O R M A N C E & T H E I R
N E U R A L C O R R E L AT E S - A S TAT E O F T H E A RT.

roadmap -

quick summary -
We propose a review and classification of cognitive and psychologi-
cal predictors of MI-BCI performance. Three categories are defined:
the user-technology relationship, attention and spatial abilities. The
description of these categories and of their neurophysiological corre-
lates enables us to submit ideas to improve MI-BCI user-training. For
instance, we explain how to reduce computer-anxiety and increase
the sense of agency, notably through the use of a positively biased
feedback for novice users. Also, we propose solutions to raise and im-
prove attention, e.g., using neurofeedback or meditation. Finally, we
argue that spatial abilities could be trained to improve users’ capac-
ity to perform mental imagery and consequently, potentially improve
their MI-BCI performance.

related paper -
-1- Jeunet, C., N’Kaoua, B., and Lotte, F. (2016). ‘Advances in user-training
for mental-imagery-based BCI control: Psychological and cognitive factors
and their neural correlates.’ In: Progress in brain research.
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2.1 introduction

A tremendous inter- and intra-subject variability has been observed
in terms of performance (command classification accuracy) in virtu-
ally every MI-BCI paper, both with the machine learning and the
operant conditioning approaches (Allison and Neuper, 2010, Wolpaw
and Wolpaw, 2012, Kübler et al., 2013). Thus, it is now clear that one
of the major aspects contributing to MI-BCI control performances is
the individual characteristics of the BCI user (Kübler et al., 2013).
However, it is neither entirely clear which characteristics do impact
BCI performances, why they have such an impact nor what the ex-
tent of this impact is. This has led the BCI community to look for
predictors of MI-BCI performance, i.e., individual characteristics that
correlate with the command classification accuracy. Indeed, identi-
fying such predictors would allow BCI designers to find the most
suitable BCI for a given user. Alternatively, or additionally, identi-
fying such predictors would enable BCI researchers to identify what
makes some users fail to control MI-BCI and thus to work on design-
ing specific solutions. In particular, a promising research direction
would be to propose MI-BCI training approaches that are adapted
to users, according to their characteristics (Lotte, Larrue, and Mühl,
2013, Lotte and Jeunet, 2015). Interestingly enough, a number of neu-
rophysiological predictors have been identified, as reviewed in Ahn
and Jun, 2015. Some psychological predictors have also been iden-
tified for P300-based BCI and BCI based on SensoriMotor Rhythms
(SMR) (Kleih and Kübler, 2015). However, to the best of our knowl-
edge, there is no comprehensive and up-to-date review that surveys
the psychological and cognitive factors that impact MI-BCI perfor-
mances, presents some cognitive mechanisms that could explain why
they have such an impact, sheds light on the underlying neural cor-
relates of these factors and proposes theoretical solutions that could
take these factors into account to improve MI-BCI training. This is
therefore what this chapter sets out to offer.

First, this chapter surveys the BCI literature in order to identify the
psychological and cognitive factors that correlate with MI-BCI perfor-
mance (Section 2.2). This survey allowed the identification of differ-
ent predictors that can be organised into three main categories, each
representing a higher-level cognitive concept. In particular, it was
found that existing predictors of MI-BCI performance were mostly
related to the relationship between users and technology, their atten-
tion and their spatial abilities. Thus, the following sections define
each of these concepts in more detail, and describe their neural cor-
relates: the user-technology relationship is dealt with in Section 2.3,
attention is discussed in Section 2.4 and spatial abilities are attended
to Section 2.5. Finally, Section 2.6 proposes some future prospects and

– December 13, 2016



26 mi-bci performance predictors & their neural correlates

theoretically promising levers to improve MI-BCI training by taking
into account each of these three high-level factors.

2.2 psychological and cognitive factors related to mi-
bci performance

This first section offers a review of the latest developments in our
understanding of the psychological and cognitive factors reported to
influence MI-BCI performance (i.e., control accuracy). These factors
can be divided into three groups. The first group includes the factors
associated with the States of the user. Users’ states are described by
Chaplin, John, and Goldberg, 1988 as “temporary, brief, and caused
by external circumstances”. The second group gathers the factors re-
lated to the users’ Traits, characterised as “stable, long-lasting, and
internally caused” with respect to one’s environment and experience
(Chaplin, John, and Goldberg, 1988). Finally, the third group com-
prises the factors that can be qualified neither as Traits nor as States,
i.e., demographic characteristics, habits and environment-related fac-
tors.

2.2.1 Emotional and Cognitive States that Impact MI-BCI Performance.

Some aspects of users’ states, and more specifically of their cogni-
tive and emotional states, have been reported to influence their MI-
BCI performance in terms of control accuracy. First, Nijboer et al.,
2007 have shown that mood (measured using a subscale of the Ger-
man Inventory to assess Quality of Life - Averbeck, 1997 -) correlates
with BCI performance. On the other hand, both attention (Daum
et al., 1993, Grosse-Wentrup, 2011, Grosse-Wentrup and Schölkopf,
2012), assessed for instance by means of digit spans or block taping
spans (Daum et al., 1993), and motivation (Hammer et al., 2012, Neu-
mann and Birbaumer, 2003, Nijboer et al., 2007) levels have repeatedly
been shown to positively correlate with performance, both in the con-
text of Slow Cortical Potential (SCP) and SMR based BCI. Further-
more, in their study, Nijboer et al., 2007 suggested that higher scores
in mastery confidence, i.e., how confident the participant was that
the training would be successful, were correlated to better SMR reg-
ulation abilities, whereas higher rates of fear of incompetence were
correlated to lower SMR regulation abilities. This last point has also
been suggested in Kleih et al., 2013 for stroke patients taking part in
BCI-based rehabilitation. More generally speaking, fear of the BCI
system has been shown to affect performance (Burde and Blankertz,
2006, Nijboer, Birbaumer, and Kübler, 2010, Witte et al., 2013). In
the same vein, control beliefs (Witte et al., 2013), i.e., participants’
beliefs that their efforts to learn would result in a positive outcome,
and self-efficacy (Neumann and Birbaumer, 2003), which can be de-

– December 13, 2016



2.2 psychological & cognitive factors 27

fined as participants’ beliefs in their own abilities to manage future
events, have been suggested to play a role in BCI performance, in an
SMR and an SCP paradigm, respectively. Mastery confidence, control
beliefs and self-efficacy can be classed as context-specific states, i.e.,
states triggered each time a person faces a specific situation.

2.2.2 Personality and Cognitive Traits that Influence MI-BCI Performance

On the one hand, several aspects of the cognitive profile have been
related to BCI control ability. Memory span and attentional abilities
have been shown to correlate with the capacity to regulate SCP in pa-
tients with epilepsy (Daum et al., 1993). Hammer et al., 2012 also
showed that attention span played a role in one-session SMR-BCI
control performance. Furthermore, Hammer et al., 2012 have pro-
posed a model for predicting SMR-BCI performance - which includes
visuo-motor coordination (assessed with the Two-Hand Coordination
Test) and the degree of concentration (assessed with the Attitudes To-
wards Work) - that reaches significance. More recently, Hammer et al.,
2014 tested this model in a 4 session experiment (one calibration and
three training sessions) within a neurofeedback based SMR-BCI con-
text (i.e., involving no machine learning). Their results showed that
these parameters explained almost 20% of SMR-BCI performance in
a linear regression. However, the first predictor, i.e., visual-motor
coordination, failed significance. With this model, the average pre-
diction error was less than 10%. Finally, kinesthetic imagination and
visual-motor imagination scores have both been shown to be related
to BCI performance by Vuckovic and Osuagwu, 2013. On the other
hand, concerning personality traits, Burde and Blankertz, 2006 have
obtained a positive correlation between a Locus of control score re-
lated to dealing with technology and the accuracy of BCI control.

2.2.3 Other Factors impacting MI-BCI Performance: Demographic Char-
acteristics, Experience & Environment.

Some other factors that have also been related to the ability to con-
trol a BCI, cannot be classified as either traits or states. These factors
can be divided into three categories: (1) demographic characteris-
tics, (2) experience/habits and (3) environment. Concerning the first
point, demographic characteristics, age and gender have been related
to SMR-BCI performance (Randolph, 2012): women being more capa-
ble than men and over 25 year-old being more competent than their
younger counterparts. On the other hand, some habits or experiences
have been shown to increase SMR-BCI control abilities (Randolph,
Jackson, and Karmakar, 2010, Randolph, 2012). More specifically,
playing a musical instrument, practicing a large number of sports,
playing video games (Randolph, 2012), as well as spending time typ-
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ing and the ability to perform hand and arm or full-body movements
(Randolph, Jackson, and Karmakar, 2010) positively impact SMR-BCI
performance. However, the consumption of affective drugs seems to
have the opposite effect (Randolph, Jackson, and Karmakar, 2010). Fi-
nally, the user’s environment, and more particularly the quality of
caregiving for patients, has been suggested in an anonymous report
to play a role in SMR-BCI performance (Kleih and Kübler, 2015).

2.2.4 To Summarise - MI-BCI Performance is Affected by the Users’ (1)
Relationship with Technology, (2) Attention and (3) Spatial Abilities.

To summarise, the predictors of MI-BCI performance can be gath-
ered into the three following categories, as depicted in , Figure 7:

— Category 1 - The user-technology relationship & the notion of
control (in orange - spades, see Figure 7): indeed, based on

Figure 7 – This table summarises the different predictors which have been
related to MI-BCI performance in the literature, i.e. the predictors
related to the user-technology relationship (orange spades), to
attention (green clubs) and to spatial abilities (blue diamonds).
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the literature, it appears that people who apprehend the use of
technologies (and more specifically the use of BCIs) and who
do not feel in control, experience more trouble controlling BCIs.

— Category 2 - Attention (in green - clubs, see Figure 7): this cate-
gory includes both attentional abilities (trait) and attention level
(state). The latter can fluctuate with respect to different param-
eters such as environmental factors, mood or motivation. Both
these aspects of attention have been repeatedly evoked as being
predictors of BCI performance.

— Category 3 - Spatial Abilities (in blue - diamonds, see Figure
7): many predictors depicted in the previous brief review are
related to motor abilities (e.g., 2-hand coordination, sports or
music practice) or to the ability to produce mental images (e.g.,
kinaesthetic imagination scores). These predictors can be gath-
ered under the label of “spatial abilities”.

It is noteworthy that in the vast majority of the experiments during
which the predictors were computed, users were BCI-naïve and thus
novices. Indeed, as stated earlier, predictors were generally computed
during the first training session, whereas learning to control an MI-
BCI requires several training sessions (McFarland, Sarnacki, and Wol-
paw, 2010, Neuper and Pfurtscheller, 2010, Pfurtscheller and Neuper,
2001). In the next paragraph, we will argue that the involvement of
the predictors in Category 1, i.e., the User-Technology Relationship &
the Notion of Control, can be explained by the fact that users were
BCI-naïve while the involvement of the predictors in Categories 2 &
3, i.e., Attention & Spatial Abilities, can be explained by the fact they
were novices.

First, when confronted with a new technology, and even more so
when this technology is associated with a new interaction paradigm
(as is the case here with MI), users are likely to experience anxiety and
a related low feeling of control during their first interaction attempts.
Yet, the level of control perceived by a user (i.e., to what extent they
consider being responsible for the perceived outcome of their actions)
has been shown to positively correlate with motivation, performance
and general skill acquisition (Achim and Al Kassim, 2015, Saadé and
Kira, 2009, Simsek, 2011). These elements, which will be described in
further detail in Section 2.3, both explain why the notions of anxiety
and control are involved in BCI performance and how they are related
to other predictors. Second, the definition of attention and spatial
abilities as two major categories of MI-BCI performance predictors is
consistent with Phase ]1 of the Ackerman model of inter-individual
differences during skill acquisition (Ackerman, 1988). In his model,
Ackerman argues that skill acquisition is divided into three phases
and that inter-individual differences are explained by different factors
according to the phase in which the user is (Neumann and Birbaumer,
2003):
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— Phase ]1: Slow and error prone performance - During this phase,
inter-individual differences are mainly explained (1) by task-
appropriate abilities and (2) by “cognitive-intellectual general
ability, involving a strong demand on the cognitive attentional
system” (Neumann and Birbaumer, 2003).

— Phase ]2: Redefinition and strengthening of the stimulus - re-
sponse connections of the skill - During this second phase, speed
of perception plays a major role in inter-individual differences.

— Phase ]3: Automatic phase - During this third phase, non - cog-
nitive psycho-motor abilities are mostly responsible for inter-
individual differences (Wander et al., 2013).

As stated earlier, BCI users were in an early stage of learning, i.e.,
in Phase ]1 of the Ackerman model, when the predictors were com-
puted. This is coherent with the fact that BCI literature reports a
strong involvement of (1) spatial abilities and (2) attention. Spatial
abilities correspond to the ability to produce, transform and interpret
mental images (Poltrock and Brown, 1984). Thus, they can be defined
as “task-appropriate abilities” for an MI-BCI control task. On the
other hand, the involvement of attentional state and trait is consistent
with the second factor responsible for inter-individual differences in
Phase ]1, namely, “cognitive-intellectual general ability” and the “cog-
nitive attentional system”.

The concepts associated with each of the three categories of predic-
tors, i.e., relationship with technology, attention and spatial abilities
are introduced, and their neural correlates are described in the fol-
lowing sections.

2.3 the user-technology relationship : introducing the

concepts of computer-anxiety and sense of agency -
definition & neural correlates

In the previous section, we stated that some predictors of MI-BCI
performance could be gathered under the label “user - technology
relationship”. These factors can be divided into 2 categories: (1) the
apprehension of the use of technology and (2) the notion of control.

On the one hand, the fear of the BCI system (Burde and Blankertz,
2006, Nijboer, Birbaumer, and Kübler, 2010, Witte et al., 2013) and the
fear of incompetence (Kleih et al., 2013, Nijboer et al., 2008), all hav-
ing been shown to negatively impact MI-BCI performance, reflect a
certain apprehension of the user towards BCI use. This apprehension
can be defined as computer-anxiety.

On the other hand, the locus of control related with dealing with
the technology (Burde and Blankertz, 2006) will influence the ex-
tent to which users feel in control while using the BCI. In the same
vein, levels of mastery confidence (Nijboer et al., 2008), control beliefs
(Witte et al., 2013) and self-efficacy (Neumann and Birbaumer, 2003)
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will impact the experience of control of the technology. An experi-
mental study (Brosnan, 1998) suggested that self-efficacy would deter-
mine the way the person attempts to solve the task and that it would
explain around 50% of the variance in the task performance. Besides,
self-efficacy has been suggested to be related to motivation, work
engagement and performance (Achim and Al Kassim, 2015). This
would be consistent with the MI-BCI literature as both self-efficacy
and motivation were involved in MI-BCI users’ control abilities. It
appears that people with a high self-efficacy level perceive failure as
a challenge, and not as a threat (Achim and Al Kassim, 2015) which
could explain why they are prone to persevere, and thus more likely
to reach good performances. Furthermore, Vlek et al., 2014 indicate
that when users feel in control, their attitude towards the BCI system
is more positive which enables them to replenish mental resources
and increase motivation which in turn induces a better task engage-
ment. Both these studies and the predictors stress the importance
of the notion of control to reach better MI-BCI control abilities. This
notion of control can be conceptualised as the sense of agency.

These two aspects of the user - technology relationship, namely
the apprehension of the technology and the notion of control, are
much related. In the following sections, we will further detail these
two phenomena and the neural correlates associated to the sense of
agency (indeed, to our knowledge, no studies have investigated the
neural correlates of the specific concept of computer anxiety). We
will notably see that the sense of agency (i.e., the feeling of being in
control) actually mediates computer anxiety (i.e., the apprehension of
the technology).

2.3.1 Apprehension of Technology: the Concept of Computer Anxiety - Def-
inition

Computer Anxiety (CA), also called “Tech-Stress” (Achim and Al
Kassim, 2015), can be classed as a context-specific anxiety, i.e., a transi-
tory neurotic anxiety ranging between anxiety trait and anxiety state
(Saadé and Kira, 2009). Indeed, it is a kind of anxiety specifically as-
sociated to one context: the use of a computer or of a computer-based
technology.

Brosnan, 1998 has shown that CA has a direct influence over per-
formance when an unforeseen or unknown event occurs during the
interaction process. Moreover, CA has been shown to impact the per-
ceived ease-of-use of the technology, i.e., high computer anxiety will
result when perceived difficulty is high. Both these elements explain
why CA plays a major part when people are first exposed to new
technologies, especially when the paradigm of interaction is new for
them, as is the case for MI-BCI control. Brosnan, 1998 insists on
the fact that even those who do not usually experience it, may un-
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dergo CA when confronted with a piece of technology that is new
to them. Besides, around one third of the population is thought to
experience CA to some degree: from preferring not to use the tech-
nology to palpitations while using it (Brosnan, 1998). The relationship
between anxiety and performance could be explained, according to
Brosnan, 1998, by the fact that anxious people devote more cognitive
resources to “off-task” efforts (such as worrying about their perfor-
mance), which induces shifts in attention between task and “off-task”
considerations. As a consequence, the focused attention level ded-
icated to the task is decreased and fewer resources are available to
perform the task. Thus, the task takes longer to complete, and per-
formances drop in the case of tasks in which a limited amount of
time is allocated. Furthermore, Simsek, 2011 identifies CA as being
an affective response due to one’s beliefs about one’s lack of ability to
control the technology. This perception of the level of control that one
can exert on the task corresponds to the concept of self-efficacy. Sim-
sek, 2011 argues that decreasing CA, and thus increasing self-efficacy,
would lead to a better skill acquisition.

To summarise, based on empirical and theoretical studies, it seems
that CA levels could enable to predict one’s level of self-efficacy, which
in turn could enable prediction of one’s performance. More specifi-
cally, self-efficacy mediates the impact of CA on performance (Saadé
and Kira, 2009).

2.3.2 “I did that!”: The Concept of Sense of Agency - Definition

The sense of agency can be defined as “the sense that I am the one
who is causing or generating an action” (Gallagher, 2000). The sense
of agency is of utmost importance when a person is controlling an
external device, since it will influence their affect towards the tech-
nology, and thus their commitment to the task and their performance
(Vlek et al., 2014). However, in the context of MI-BCI, experiencing
this sense of agency is not straightforward. Indeed, as a component
of the “who” system (De Vignemont and Fourneret, 2004, Farrer and
Frith, 2002), i.e. a mechanism which allows one to attribute one’s
own actions to oneself, the sense of agency depends on the sensory
feedback resulting from the action. In other words, it depends upon a
bodily experience (Damasio, 1999). Yet, the absence of proprioceptive
feedback when performing mental imagery tasks prevents this bodily
experience from occurring (Haselager, 2013), and should theoretically
inhibit the sense of agency. However, evidence exists that the sense
of agency does not only depend on the outcome of an action, but
also that it is triggered before the action takes place (Gallagher, 2012,
Synofzik, Vosgerau, and Newen, 2008) which explains why mental
imagery, under certain conditions, can be associated with a sense of
agency (Perez-Marcos, Slater, and Sanchez-Vives, 2009).
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The sense of agency can be divided into 2 components (Farrer and
Frith, 2002, Gallagher, 2012, Synofzik, Vosgerau, and Newen, 2008):
(1) the feeling of agency and (2) the judgement of agency (also called
feeling of ownership). The feeling of agency is pre-reflective, implicit,
low-level and non-conceptual while the judgement of agency is reflec-
tive, explicit, high-order, belief-like and conceptual. In other words,
the feeling of agency precedes the action, and is triggered during
the preparation of the action, while the judgement of agency results
from the computation of the comparison between the predicted and
actual outcomes of the action. Synofzik, Vosgerau, and Newen, 2008

explains that a feeling of agency must be conceptually processed for
a judgement or an attribution of agency to occur. The judgement
of agency has been investigated in more depth than the feeling of
agency in the literature (Chambon et al., 2012).

In order to experience a judgement of agency, three principles must
be respected (Vlek et al., 2014): (1) the priority principle: the con-
scious intention to perform an act must immediately precede the ac-
tion, (2) the consistency principle: the sensory outcome must fit the
predicted outcome and (3) the exclusivity principle: one’s thoughts
must be the only apparent cause of the outcome (i.e. one must not
believe there to be an outside influence). Moreover, several indicators
influencing the judgement of agency have been proposed (Wegner,
2004, Wegner, Sparrow, and Winerman, 2004): bodily and environ-
mental cues (“Where am I?”), bodily feedback (proprioceptive and
kinesthetic information), bodily feedforward (i.e., the predicted sen-
sory feedback), sensory feedback, social cues, action consequences
and action-relevant thoughts (thinking about doing beforehand, in
other words: the feeling of agency). On the one hand, the absence of
some of these markers can lead to “a case of automatism” (Wegner,
2004), that is to say to the absence of judgement of agency: the agent
is “doing without feeling”. On the other hand, the manipulation
of the same markers can lead to “an illusion of agency/ownership”
(Wegner, 2004): agents who are “feeling without doing”, and thus
think they are in control although they are not.

2.3.3 "I did that!": The Concept of Sense of Agency - Neural Correlates

As stated by Ehrsson, Geyer, and Naito, 2003, the neural correlates
underlying the sense of agency remain poorly understood. How-
ever, some brain regions have been repeatedly associated with this
phenomenon. More specifically, here we will focus on the premotor
cortex (PMC), and more precisely on its ventral part i.e., the supple-
mentary motor area (SMA), as well as on the Angular Gyrus (AG)
which is part of the posterior parietal cortex (PPC), on the anterior
insula and on the cerebellum. All of the aforementioned brain areas
have been reported to be involved in sensorimotor transformation
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and motor control as well as in the sense of agency (David, Newen,
and Vogeley, 2008).

Self-agency has been shown to be underlain by an increased activ-
ity in the PMC (Farrer and Frith, 2002, Ehrsson, Geyer, and Naito,
2003) and more specifically in its ventral part, the SMA (Farrer and
Frith, 2002, Kühn, Brass, and Haggard, 2013). The neural popula-
tions in the ventral PMC (SMA) and parietal PMC have been stated
to represent both the seen and felt position of the limbs (Ehrsson,
Geyer, and Naito, 2003). Thus, it is thought that the PMC enables a
multi-sensory integration and thus provides a mechanism for bodily
attribution (Ehrsson, Geyer, and Naito, 2003). Farrer and Frith, 2002

have also suggested that the insula may play a role in the experience
or agency. More specifically, they measured an increase in activity
in the anterior insula when a person was aware of causing an action.
The authors justify this implication by the fact that the insula’s role
is to integrate all the concordant multi-modal sensory signals asso-
ciated with voluntary movements. This result seems very consistent
with the literature, since the activation of both these regions has been
linked to awareness and execution of self-generated actions, to action
preparation and to subjects’ own intention to act (David, Newen, and
Vogeley, 2008).

Contrariwise, the activation of the posterior parietal cortex (PPC)
has been shown to negatively correlate with the sense of agency: the
more a person tends to attribute the action to another person, the
more the PPC is activated (Farrer and Frith, 2002). In other words,
the activity in the PPC - and more specifically in the AG - increases
when discrepancies are noticed between the predicted and the actual
sensory outcomes of the action (Chambon et al., 2012). Indeed, PPC
activation is linked to the processing of visual-motor incongruence
during self-generated actions (David, Newen, and Vogeley, 2008). In
this process, the cerebellum acts as a relay to inform about the senso-
rimotor discrepancies between the predicted and actual outcomes of
the action (David, Newen, and Vogeley, 2008). But it seems that the
AG also monitors the signals linked to action selection in the dorsolat-
eral Pre-Frontal Cortex (dlPFC) to prospectively provide information
about the subjective feeling of control over action outcomes (Cham-
bon et al., 2012). Thus, the online monitoring of these signals by
the AG may provide the subject with "a subjective marker of volition,
prior to the action itself" (Chambon et al., 2012). While consistent,
these correlates are still discussed. For instance, Kühn, Brass, and
Haggard, 2013 report no correlation between AG activation and their
subjective measure of agency.

The fact that these brain areas belong to different functional brain
networks could explain their role in self-agency. For instance, the
insula and the PPC have been shown to be involved in complex rep-
resentations of the self (Farrer and Frith, 2002). Farrer and Frith, 2002
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suggested that the relocation from the insula (when experiencing self-
agency) to the PPC (when attributing the outcome to another person)
could correspond to a shift in the attentional process from the ego-
centric to the allocentric point of view. In a similar vein, the PPC and
the SMA are the key nodes in the human mirror neuron system: they
encode motor aspects of actions performed by oneself or by another
person (David, Newen, and Vogeley, 2008).

To summarise, the sense of agency seems to be related to complex
interconnections between several brain areas enabling one to experi-
ence (1) a feeling of agency before the action outcome (through the
involvement of the PMC/SMA and cerebellum among others) but
also (2) a judgement of agency by comparing the predicted and per-
ceived outcomes (notably through the activation of the insula and the
AG/PPC). However, the neural processes involved in each of these
phenomena, namely the feeling and judgement of agency, as well
as the differences between both, require further investigation (David,
Newen, and Vogeley, 2008).

2.4 attention - definition & neural correlates

The second category of factors that have been found to correlate
with BCI performances contains attention-related predictors. Indeed,
both attentional traits, i.e., the BCI user’s intrinsic attentional capac-
ities, and attentional states, i.e., the amount of the user’s attentional
resources dedicated to the BCI task, were found to be correlated to
BCI performances. To summarise (see Figure 7), the attentional traits
predicting BCI performances include attention span (Hammer et al.,
2012), attentional abilities (Daum et al., 1993), attitude towards work
(Hammer et al., 2012) which also measures the capacity to concentrate
on a task, and memory span (Daum et al., 1993) which measures the
ability to maintain attention (Engle, Kane, and Tuholski, 1999). The
higher the attentional abilities of BCI users, the better the BCI classifi-
cation accuracy they will reach. There is also some evidence that the
attentional state of BCI users seems to be correlated to their BCI per-
formances. Indeed, two different neurophysiological markers based
on neural correlates of the attentional state were defined and mea-
sured in single-trial EEG signals. They were both found to be signif-
icantly correlated to the classification accuracy obtained for these tri-
als (Grosse-Wentrup, Schölkopf, and Hill, 2011, Grosse-Wentrup and
Schölkopf, 2012, Bamdadian et al., 2014) (see Section 2.4.2 for more
details on these two EEG predictors based on attentional states).

Another factor, which is not a result of attention alone but is how-
ever related to it, is the user’s motivation for a given BCI session,
which has also been found to be predictive of their BCI performances
(Hammer et al., 2012, Neumann and Birbaumer, 2003, Nijboer et al.,
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2008). Indeed, attention appears to be a critical factor in many models
of motivation (Keller, 2008, Keller, 2010).

Finally, there are a number of other factors that have been found to
be correlated to BCI performances that are not related to attention per
se, but that are likely to impact the attentional resources that users de-
vote to the BCI task. These include mood (Nijboer et al., 2008), the
consumption of affective drugs (Randolph, Jackson, and Karmakar,
2010), as well as environmental factors for patients such as room
temperature, sleep quality or headaches (Neumann and Birbaumer,
2003).

The following sections define and describe in more detail some of
the cognitive mechanisms of attention, their associated neural corre-
lates and their relevance to BCI control.

2.4.1 Attention - Definition

Attention could be defined as the “the ability to focus cognitive
resources on a particular stimulus” Frey et al., 2014b. According to
Posner and Petersen, 1989, the attention system can be divided into
three main sub-systems, each of which corresponds to a major at-
tentional function. These three sub-systems are the alerting system,
the orienting system and the executive control system. The alerting
function is responsible for maintaining a state of vigilance over long
periods of time, i.e., it is responsible for sustained attention. Sus-
tained attention (or vigilance) is necessary to perform long and usu-
ally tedious tasks. The orienting function is involved in selecting
information among different information streams, such as different
modalities (sounds, images) or different spatial or temporal locations.
It is implicated in ignoring distracting events, and is thus involved
in what is known as selective attention. The third function, executive
control, is involved in the awareness of events and in the management
of attentional resources, which are limited. Indeed, two tasks compet-
ing for attention will interfere with each other, thus possibly reducing
performances for these tasks. Executive control is therefore involved
in what is known as focal attention. For further details concerning
the different components of attention, the interested reader can refer
to (Posner and Boies, 1971, Posner and Petersen, 1989, Petersen and
Posner, 2012). It is also important to note that attentional abilities and
resources vary between individuals (Petersen and Posner, 2012).

Attention has been known for many years to be necessary in en-
suring successful learning (Nissen and Bullemer, 1987). Indeed, if
learners do not assign enough attentional resources to a given learn-
ing task, e.g., because they have to perform dual-attentional tasks
(i.e., split their attentional resources between two tasks), their learn-
ing performance will be greatly reduced, or they may even fail to
be aware of relevant learning material and fail the learning task al-
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together (Nissen and Bullemer, 1987). Keller even stated that “atten-
tion is a prerequisite for learning” (Keller, 1987). This gave birth to
the ARCS model of instructional design, a well-known model used
to design learning material and training tasks (Keller, 1987, Keller,
2008). ARCS stands for Attention, Relevance, Confidence and Satis-
faction, which are the four main components of human motivation
that are necessary to ensure successful learning. In order to ensure
an efficient instruction and training, the ARCS model states that it
is necessary to get the attention of students on the relevant learning
stimulus (thus ignoring distracters), and to sustain this attention over
the duration of the instruction, in order to focus the attentional re-
sources on training-relevant problems (Keller, 1987). We can see here
that the three sub-systems of attention (sustained attention, selective
attention and focal attention) are therefore involved in the learning
process. Since MI-BCI control requires training, it therefore makes
sense that it also requires the user’s attentional resources, and thus
that attention and motivation are predictors of MI-BCI performance.

2.4.2 Attention - Neural Correlates

Interestingly enough, the attention system is associated with spe-
cific anatomical structures in the brain that are different than those
dedicated to information processing (Posner and Petersen, 1989). Each
of the three attention subsystems (alerting, orienting and executive
control) corresponds to a specific brain network (Posner and Petersen,
1989, Petersen and Posner, 2012). The alerting network, although still
not fully understood, seems to primarily involve the right hemisphere
(frontal and parietal lobes), including the right inferior parietal lobule
with the Angular Gyrus (AG) and thalamic areas (Seghier, 2013, Pe-
tersen and Posner, 2012). The orienting network notably involves the
Frontal Eye Fields, the intraparietal sulcus and the superior parietal
lobe, the temporo-parietal junction, the AG and the ventral frontal
cortex (Seghier, 2013, Petersen and Posner, 2012). Finally, the Exec-
utive Network involves multiple brain areas, including the medial
frontal cortex, the Anterior Cingulate Cortex (ACC), the dorsolateral
prefrontal cortex, the anterior prefrontal cortex, the precuneus, the
thalamus, the anterior insula, the intraparietal sulcus and the intra-
parietal lobule. There is large inter-individual variability in the effi-
ciency of these networks which explains, at least in part, the inter-
individual variations in attentional abilities, i.e., attentional traits (Pe-
tersen and Posner, 2012).

There are also a number of electrophysiological neural correlates,
in particular spectral variations in EEG signals that are related to
change in attention levels. Regarding the alerting system, decreased
vigilance levels are associated with a slowing of EEG frequencies, i.e.,
in an increased power for low frequency EEG rhythms (delta - ∼1-4z,
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theta ∼4-7Hz, low alpha ∼7-10Hz), and a decreased power for higher
frequency EEG rhythms (Frey et al., 2014b, Roy, 2015). The amplitude
of Event Related Potentials such as the P300 or the parietal N100

also decreases with lower vigilance. Concerning the orienting system,
alpha activity (∼8-12Hz) has also been shown to be related to selective
attention, with higher alpha power indicating lower attention, and
occipital alpha providing information on the location of spatial visual
attention (Frey et al., 2014b). A delta (∼3-8Hz) over beta (∼16-24Hz)
power ratio has also been used as a marker of sustained attention
(Bamdadian et al., 2014). Finally, it seems that the Gamma (∼55-85Hz)
power in attentional networks related to the executive control system
also correlates with the attentional level (Grosse-Wentrup, 2011).

Consistent with the literature in cognitive sciences stressing the im-
pact of attention on success in task-learning, the BCI community has
also identified a number of neural correlates of attention that are re-
lated to BCI performance. For instance, variation in Gamma power,
notably in executive control attentional brain networks, have been
found to be correlated to SMR-BCI performance and can be used
to predict successful or unsuccessful classification both for SMR-BCI
(Grosse-Wentrup, 2011, Grosse-Wentrup and Schölkopf, 2012) and for
general MI-BCI (Schumacher, Jeunet, and Lotte, 2015). Moreover, the
extent of activation of the dorsolateral prefrontal cortex (involved in
executive control as seen above), was also found to differ between
SMR-BCI users with high performances and SMR-BCI users with low
performances (Halder et al., 2011). Finally, an EEG predictor based
on frontal Theta, occipital Alpha and midline Beta power, which are
all neural correlates of sustained attention (thus involving the alert-
ing system) as described previously, has been shown to correlate with
SMR-BCI performances (Bamdadian et al., 2014).

2.5 spatial abilities - definition & neural correlates

As already seen, many studies have highlighted the role of spatial
abilities on BCI performance variation across subjects. The general
hypothesis is that low BCI performers have less-developed abilities
to generate or maintain mental images.

For example, Vuckovic and Osuagwu, 2013 relate the results of ki-
naesthetic and visual motor imagery questionnaires to performances
obtained with a BCI based on object oriented motor imagery. They
show that the kinaesthetic score could be a relevant predictor of per-
formance for an SMR-BCI. Moreover, the physical presence of the
object of an action facilitates motor imagination in poor imagers. It is
important to note that the impact of imagery abilities on BCI perfor-
mances might be mediated by differences in brain activation. Guillot
et al., 2008 attempted to identify the functional neuroanatomical net-
works that dissociate able versus poor imagers. They used functional
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magnetic resonance imaging (fMRI), to compare the patterns of cere-
bral activations in able and poor imagers during both the physical
execution and mental imagery of a sequence of finger movements.
Results show that good imagers activated the parietal and ventrolat-
eral premotor regions to a greater degree, both having been shown to
play a critical role in the generation of mental images.

Furthermore, Randolph, 2012 has shown that video game experi-
ence is likely to enhance BCI performance. Many studies have noted
a link between video game experience and spatial abilities. For ex-
ample, spatial abilities can be improved through playing action video
game (Dorval and Pepin, 1986, Subrahmanyam and Greenfield, 1994).
Feng, Spence, and Pratt, 2007 observe that performances in a mental
rotation test (Vandenberg and Kuse, 1978, that is often used to mea-
sure spatial abilities) are enhanced after only 10 hours of training with
an action video game. More remarkably, these authors found that
playing an action video game can decrease the well-known gender
disparity in mental rotation tasks (see also Ventura, Shute, and Zhao,
2013). All these elements strongly suggest that the link between video
game experience and BCI performance could be mediated by spatial
ability levels.

Moreover, Randolph, 2012 showed that using hand-and-arm move-
ments, or full body movements (such as playing sports or musical
instruments) also favors BCI performance. Many authors have also
observed a link between spatial abilities and motor processes (Hoyek
et al., 2014). For example, Moreau et al., 2011 compared elite and
novice athletes and found a significant relationship between sports
performance, activity, sport-specific training and mental rotation abil-
ities. In the Hoyek et al., 2014 study, the motor performance of 7 to
8 year old and 11 to 12 year old children was measured in a steeple
race and an equivalent straight distance sprint. Data revealed that
the time taken to complete the race was influenced by speed and sex,
but also by the individual mental rotation abilities. These links be-
tween motor performances and spatial abilities are also attested by
neuroimaging studies which provide evidence that motor areas are
involved in mental rotation (e.g., Lamm et al., 2007). Thus, it can be
assumed that the relationship between BCI performance and motor
processes are mediated by spatial ability levels.

Finally, Hammer et al., 2012 found that visual-motor coordination
abilities constitute a predictor of BCI efficiency, and Scordella et al.,
2015 showed a relationship between motor coordination and visual-
spatial skills (measured by a visual-constructive task). We can again
assume that the link between visual-motor coordination and BCI effi-
ciency is mediated by visual-spatial abilities.
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2.5.1 Spatial Abilities - Definition

As mentioned above, spatial abilities embody the ability to pro-
duce, transform and interpret mental images (Poltrock and Brown,
1984). Lohman, 1996 greatly highlighted the pivotal role of spatial
abilities and particularly mental imagery in all models of human abil-
ities. This author reports that high levels of spatial abilities have
frequently been linked to creativity in many domains (arts, but also
science and mathematics) (see also Shepard, 1978). He also indicates
that Albert Einstein, as well as other well-known physicists and in-
ventors (such as James Clerk Maxwell, Michael Faraday and Herman
von Helmholtz) , have been reported to have had high spatial abili-
ties, and that these abilities played an important role in their creativ-
ity. Furthermore, studies on developmental cognitive skills have con-
sistently shown that spatial aptitude and mathematical aptitude are
closely related (Geary et al., 2000). Moreover, the importance of spa-
tial ability in educational pursuits and in the professional world was
examined by Wai, Lubinski, and Benbow, 2009, with particular atten-
tion devoted to STEM (science, technology, engineering, and mathe-
matics) domains. Participants (Grades 9-12, N=400 000) were tracked
for 11 years. Results showed that spatial abilities were a significant
predictor of achievement in STEM, even after taking into account pos-
sible third variables such as mathematical and verbal skills (see also
Humphreys, Lubinski, and Yao, 1993, Shea, Lubinski, and Benbow,
2001).

The key role of mental imagery in human cognition has also been
highlighted by the fact that it is involved in certain pathological situa-
tions such as Post-Traumatic Stress Disorders (Brewin, Dalgleish, and
Joseph, 1996), schizophrenia (Oertel-Knöchel et al., 2013), depression
(Rogers et al., 2002) social phobia (Clark and Wells, 1995) and bipo-
lar disorder (Holmes et al., 2008). For example, impairment in image
generation or in mental rotation of letters has been shown in unipolar
major depression (Rogers et al., 2002).

Furthermore, the potential role of imagery for motor skill learn-
ing has been demonstrated in many situations, such as learning new
skills in sports (Murphy, 1994), improving performance both in novice
and expert surgeons (Cocks et al., 2014) and in Paralympics athletes
(Martin, 2012).

Today, it is common to distinguish between large scale and small
scale spatial abilities (Hegarty et al., 2006). Large scale abilities refer
to the notion of way-finding (or spatial navigation) defined as “the
process of determining and following a path or route between origin
and destination” (Golledge, 1999). Way-finding is assessed by tasks
such as search, exploration, route following, or route planning in con-
texts including outdoor and urban environments, indoor spaces and
virtual reality simulations (Wiener, Büchner, and Hölscher, 2009).
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By contrast, small-scale spatial abilities are usually assessed by
paper-and pencil tests which involve perceptually examining, imagin-
ing, or mentally transforming representations of small shapes or easy-
to-handle objects (Hegarty et al., 2006). These abilities also refer to the
notion of mental imagery consisting of several component processes.
For example, the classical model of Kosslyn (Kosslyn, 1980, Kosslyn,
1996) proposes a distinction between four components, namely image
generation (the ability to form mental images), image maintenance
(the ability to retain images over time), image scanning (the ability
to shift one’s attention over an imaged object), and image manipu-
lation (the ability to rotate or otherwise transform images) (see also
Marusan, Kulistak, and Zara, 2006).

2.5.2 Spatial Abilities - Neural Correlates

The neural correlates of visual mental imagery are subject to much
debate. Some authors claim a functional equivalence between visual
perception and visual mental imagery, with the retinotopic areas in
the occipital lobe acting as common substrate (for a review, see Bar-
tolomeo, 2008). However, some brain lesion studies indicate that vi-
sual imagery is possible without the involvement of primary visual
areas (Chatterjee and Southwood, 1995). Nevertheless, the frontal
eye fields and the superior parietal lobule seem to play a crucial role
in generating visual mental images (Mechelli et al., 2004). These re-
sults have been confirmed by Zvyagintsev et al., 2013 showing that
the visual network comprises the Fusiform Gyrus bilaterally and a
Fronto-Parietal network involving the Superior Parietal Lobule and
Frontal Eye Field bilaterally.

Motor imagery is a particular case of mental imagery defined as
the mental simulation of a specific action without any corresponding
motor output (Jeannerod, 1994). The neural substrate that underlies
motor imagery has also been subject to many debates. Miller et al.,
2010 measured cortical surface potentials in subjects during overt ac-
tion and imagery of the same movement. They demonstrated the
role of primary motor areas in movement imagery and showed that
imagery activated the same brain areas as actual motor movement.
In their study, the magnitude of imagery-induced cortical activity
was reduced compared to real movement, but this magnitude was
largely enhanced when subjects learned to use imagery to control a
cursor in a feedback task. It is important to note that a distinction
has been made between two types of motor imagery depending on
the point of view adopted to imagine an action: the third-person per-
spective point-of-view consists in self-visualizing an action, whereas
the first-person point of view perspective implies somesthetic sen-
sations elicited by the action. Some evidence suggested that visual
(third person) and somesthetic/kinaesthetic (first person) motor im-
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agery recruit distinct neural networks. Guillot, Collet, and Dittmar,
2004 showed that visual imagery predominantly activated the occip-
ital regions and the superior parietal lobules, whereas kinaesthetic
imagery preferentially activated the motor-associated structures and
the inferior parietal lobule. Finally, Ridderinkhof and Brass, 2015

specify that activation during kinaesthetic mental imagery is not just
a subliminal activation of the same brain areas involved in the real
action. For these authors the activation during kinaesthetic imagery
is similar to the activation associated with the preparatory planning
stages that eventually lead to the action (Jeannerod, 2006).

Interestingly enough, it has been shown that kinaesthetic motor im-
agery leads to better MI-BCI performances than visual motor imagery
(Neuper et al., 2005). Nevertheless, the distinction between these dif-
ferent forms of mental imagery, their neural correlates and their rela-
tionships with the neural circuits involved in motor processes remain
to be elucidated.

To conclude this section, spatial skills play a crucial role in human
cognition as they are involved in many activities including art, music,
mathematics, engineering, literature, etc. Many skills related to spa-
tial abilities (such as playing sports, musical instruments, action video
games, etc.) have been shown to be likely to improve BCI perfor-
mance. It is an attractive hypothesis to consider that imagery abilities
could contribute to explaining the “BCI illiteracy” phenomenon, but
further investigations are needed to make a more systematic study of
the relationship between certain cognitive and personality predictors,
spatial abilities and BCI efficiency.

2.6 prospects : the user-technology relationship, atten-
tion and spatial abilities as three levers to improve

mi-bci user-training

2.6.1 Demonstrating the Impact of the Protocol on Computer Anxiety &
Sense of Agency

In Section 2.3, we stressed the impact of the notion of control on
performance, notably through its mediating role on computer anxiety.
The notion of control can be conceptualised as a Sense of Agency, i.e.,
“the sense that I am the one who is causing or generating an action”
(Gallagher, 2000). Given the strong impact that the sense of agency
has on performance, it seems important to increase it as far as pos-
sible. Yet, in the context of MI-BCI control, it is not straightforward.
Indeed, the sense of agency is mainly based on a bodily experience,
whereas performing MI tasks does not provide the participant with
any sensory feedback. Thus, here we would like to insist on the
importance of the feedback, especially during the primary training
phases of the user (McFarland, McCane, and Wolpaw, 1998). Indeed,
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in the first stages, the fact that the technology and the interaction
paradigm (through MI tasks) are both new for the users is likely to
induce a pronounced computer anxiety associated with a low sense
of agency. Providing the users with a sensory feedback informing
them about the outcome of their “action” (MI task) seems necessary
in order to trigger a certain sense of agency at the beginning of their
training. This sense of agency will in turn unconsciously encourage
users to persevere, increase their motivation, and thus promote the ac-
quisition of MI-BCI related skills, which is likely to lead to better per-
formances (Achim and Al Kassim, 2015, Saadé and Kira, 2009, Sim-
sek, 2011). This process could underlie the (experimentally proven)
efficiency of biased feedback for MI-BCI user-training. Indeed, litera-
ture (Barbero and Grosse-Wentrup, 2010; Kübler et al., 2001b) reports
that providing MI-BCI users with a biased (only positive) feedback is
associated with improved performances while they are novices. How-
ever that is no longer the case once they have progressed to the level
of expert users. This result could be due to the fact that positive feed-
back provides users with an illusion of control which increases their
motivation and will to succeed. As explained by Achim and Al Kas-
sim, 2015, once users reach a higher level of performance, they also
experience a high level of self-efficacy which leads them to consider
failure no longer as a threat (Kleih et al., 2013) but as a challenge.
And facing these challenges leads to improvement.

However, to be efficient, this feedback must follow certain princi-
ples (Vlek et al., 2014). First, the priority principle, i.e., the conscious
intention to perform an act must immediately precede the act: here,
the feedback must appear after the users become conscious they have
to perform the act and have started to do it. Second, the consistency
principle, i.e., the sensory outcome must fit the predicted outcome.
And third, the exclusivity principle, i.e., one’s thoughts must be the
only apparent cause of the outcome. This last point suggests that the
user should not think that another person is controlling the feedback.
Thus, if the feedback is biased, it has to be subtle enough so that the
user is not aware of it. Otherwise, the user will not feel in control any-
more. The two latter principles could explain why biased feedback is
efficient for novices but not for experts. Indeed, experts develop the
ability to generate a precise predicted outcome that usually matches
the actual outcome (when the feedback is not biased). This explains
why when the feedback is biased, and therefore the predicted and
actual outcomes do not match, expert users attribute the discrepancy
to external causes more easily. In other words, it can be hypothesised
that experts might be disturbed by a biased feedback because they
can perceive that it does not truly reflect their actions, thus decreas-
ing their sense of being in control.

Furthermore, Beursken, 2012 tested the impact of the concept of
transparent mapping in a pseudo-BCI experiment. A protocol is said
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to be transparent when the task and the feedback are consistent. In
the experiment, the sense of agency of the participants was tested in
two conditions: one transparent and one non-transparent. The partic-
ipants had to imagine movements of their left and right hands. In the
transparent condition, a virtual left or right hand moved on the screen
when left or right hand imagination was recognised, respectively. In
the non-transparent condition however, the same tasks were associ-
ated with both hands making “thumbs-up” or “okay” movements.
Participants felt more in control in the transparent condition and re-
ported that less effort was required to understand the instructions
and remember the meaning of the feedback. Consequently, more re-
sources were available to perform the task. This result means that
when designing the feedback, researchers must be careful to propose
a feedback that fits the mental task. Yet, in standard training proto-
cols such as Pfurtscheller and Neuper, 2001, MI-tasks are associated
with a bar extending in a specific direction. Although the direction
of the bar is consistent with the task when participants are asked
to perform left- and right-hand motor imagery, it is not particularly
natural. Thus, the feedback-task transparency could be improved.
With reference to the Ackerman model (1988), when the outcome (the
feedback) is consistent with the task, during the Phase ]1 the “task-
appropriate” abilities, here spatial abilities, decrease in influence and
thus the between-subject variability in terms of performance also de-
creases. However, when the outcome is inconsistent with the task,
the requirements for information processing are important and the
impact of the user-profile, here in terms of attentional abilities and
spatial abilities, remains constant (Neumann and Birbaumer, 2003)
which makes the between-subject variability due to these factors sta-
ble even in advanced phases of the training. To summarise, we can
derive three guidelines for MI-BCI protocol design that could enable
users to experience a better sense of agency. First, providing the
users, especially novices, with a sensory feedback is essential as it
will increase their potential sense of agency. While positively biasing
the feedback can improve novice users’ sense of agency, motivation
and will to succeed, this is not the case for expert users who can be
disturbed by biased feedback. Second, in order to be efficient the
feedback must follow the principles of priority, consistency and ex-
clusivity. And finally, transparent protocols, i.e., protocols in which
the feedback fits with the MI-task, should be associated with better
MI-BCI performance as (1) they induce a greater sense of agency and
(2) they require less workload to be processed and thus grant more
cognitive resources to be devoted to the task.
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2.6.2 Raising and Improving Attention

As mentioned previously, attention is a major predictor of BCI per-
formances, and it has been shown that the better the users’ atten-
tional abilities and the more attentional resources they devote to BCI
training, the better their BCI performances. Therefore, BCI perfor-
mances could be improved by designing BCI training protocols that
1) train users to increase their attentional abilities and 2) ensure the
attentional resources of users are directed towards and maintained
on the BCI training tasks. A first suggestion to improve BCI training
is to include attention training tasks, to improve users’ attentional
abilities and thus their BCI performance. A number of approaches
may be used, but recently researchers have identified meditation and
neurofeedback as promising approaches for attention training (Brand-
meyer and Delorme, 2013). Indeed, it has been shown that medita-
tion is actually a successful form of attention training that improves
the ability of practitioners to focus their attentional resources on a
given task, possibly for long periods of time, as well as their ability
to ignore distractors. Expert meditators have been found to show dif-
ferent activation levels than non-meditators in the fronto-parietal and
the default mode networks, in functional Magnetic Resonance Imag-
ing (fMRI) studies (Braboszcz, Hahusseau, and Delorme, 2010). The
Gamma EEG power in these areas also differs between expert medita-
tors and non-meditators (Lutz et al., 2008). Such brain networks are
notably involved in sustained attention. Interestingly enough, these
areas, and gamma activity originating from there, have both been
identified as being related to BCI performance (Grosse-Wentrup and
Schölkopf, 2012, Halder et al., 2011). The promising usefulness of
meditation practice for BCI training is further supported by research
from a number of groups who have found that meditation increases
SMR-BCI performances (e.g., Eskandari and Erfanian, 2008, He et al.,
2015). In other words, meditation seems to improve attentional abili-
ties, which in turn would improve BCI performances.

Attentional capabilities can also be improved using neurofeedback
training, e.g., by providing users with games in which they have to
increase an EEG measure of their attentional level to win (Lim et al.,
2010, Lim et al., 2012). For instance, in Lim et al., 2012, children with
Attention Deficit Hyperactivity Disorder (ADHD) were asked to play
a game in which the speed of the character they were controlling
was directly proportional to their attentional level, as measured by
EEG. Thus, they had to focus as much attention as possible on the
game in order to move fast enough to complete it in the allotted time.
This was shown to be a successful form of attention training which
reduced the children’s ADHD symptoms (Lim et al., 2010, Lim et al.,
2012). Gamma neurofeedback was also shown to be useful in im-
proving visual attention abilities (Zander et al., 2013). To the best of
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our knowledge, such neurofeedback training of attentional capabili-
ties has not been explored with the aim of improving MI-BCI control
abilities, and thus could be a promising direction to investigate.

A second suggestion to improve BCI training is to design BCI train-
ing tasks, feedbacks and environments that capture and maintain the
attention of the user on the BCI training. In the ARCS model for
instructional design, Keller suggests a number of approaches to get
and maintain users’ attention (Keller, 1987). In particular, this in-
cludes ensuring the active participation of the learners, adding game-
like training, having a variety of supports, training materials and
tasks, ensuring concrete training tasks and feedbacks as well as en-
couraging inquiry and curiosity from the learners (Keller, 1987). In
practice, for MI-BCI, this could be achieved by having BCI users con-
trol video games or Virtual Reality (VR) applications with their BCI,
hence ensuring game-like training, active user participation and con-
crete training tasks. The fact that VR and game-based BCI training
were actually shown to improve BCI performances (Lotte et al., 2013)
further supports this suggestion. Moreover, rather than using the
same standard training protocol continuously and repeatedly, variety
in training can be obtained by adding other training tasks, with dif-
ferent objectives. For instance, users can be asked to practice each MI
task separately, or to perform a given MI-task as fast as possible as in
(Ramsey et al., 2009) for instance. Finally, to encourage enquiry and
add concreteness to the training, BCI users could be provided with
richer and more motivating visualisation and feedbacks that enable
them to see the impact of a given MI-task on their EEG signals in
real-time, thus motivating them to explore different strategies. This
could be achieved using recently proposed EEG visualisation tech-
niques such as Teegi (Frey et al., 2014c). With this approach, users
can see their own brain activity and EEG features in real-time, dis-
played in a user-friendly way on the head of a physical puppet they
can manipulate. Other considerations could be taken into account to
ensure users assign an appropriate amount of attentional resources to
the BCI training. For instance, the training protocol should avoid re-
quiring split attention, i.e., requiring users to divide their attentional
resources between two different subtasks, especially if these tasks in-
volve the same modality, e.g., two visual processing tasks. This would
indeed deplete the user’s cognitive resources and lead to poorer per-
formances and lower learning efficiency for any training task (Sweller,
Van Merrienboer, and Paas, 1998). This is a relevant point to consider
as BCI feedback is often provided on the visual modality, while the
controlled BCI application generally also requires visual processing,
e.g., to control a game or a visual speller. Thus, it would be inter-
esting to explore other modalities of feebdack such as the tactile or
the auditory modalities. Finally, since it is possible to measure users’
attentional level from EEG signals, this could be used in real-time
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to detect whether they are paying enough attention, and warn them
to refocus their attention, if necessary, as suggested in Schumacher,
Jeunet, and Lotte, 2015.

2.6.3 Increasing Spatial Abilities

If it appears that the training of spatial abilities could improve BCI
performance, it is necessary to review the studies that have tried
to better understand the effects of training on spatial skills. For in-
stance, it is well known that men perform better than women in spa-
tial perception and mental rotation tests (see for example, Linn and
Petersen, 1985). In a meta-analysis, Baenninger and Newcombe, 1989

found that improvements in men and women remain parallel in re-
sponse to practice and training, so that gender differences remain
constant. However, others studies have shown greater performance
improvement in women than in men (Okagaki and Frensch, 1994), or
a waning of gender differences (Kass, Ahlers, and Dugger, 1998). In
a meta-analysis of training studies, Uttal et al., 2013 indicated that
spatial skills are highly malleable and that training in spatial think-
ing is effective, durable, and transferable (to skills that have not been
subject to specific training). The authors outline that many studies
in which transfer effects were present administered large numbers of
trials during training, which allowed to conclude that such a transfer
is possible if sufficient training or experience is provided. The meta-
analysis did not show a significant effect of age or a significant effect
of the type of training on the degree of improvement. Finally, the
initial level of spatial skills affected the degree of malleability. Par-
ticipants who started at lower levels of performance improved more
in response to training than those who started at higher levels (Uttal
et al., 2013). Terlecki, Newcombe, and Little, 2008 confirmed the im-
pact of long-term practice or repeated testing, and training capacity
to improve mental rotation performances. However, neither mental
rotation practice nor video game training reduced gender differences.
It is also important to note that these effects can last over several
months and the effects of video game experience are transferable to
tasks that have not been trained for. All these results are extremely
interesting as they show that training and practice can improve spa-
tial skills. Mental training has been used to improve performances
in many domains such as sports, surgery, music, etc. However, very
few studies have focused on BCI practice. Erfanian and Mahmoudi,
2003 have investigated the role of mental practice and concentration
on a natural EEG-based Brain-computer interface for hand grasp con-
trol. The imagery task used was the imagination of hand grasping
and opening. For imagery training, the authors used a video based
method where subjects watched themselves performing hand-closing
and -opening while undertaking imagery. The results showed that
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mental and concentration practice increased the classification accu-
racy of the EEG patterns. Moreover, mental practice more specifically
affected the motor areas. This study shows very promising results
on the way spatial training could improve BCI performances. Thus,
it is a challenging project to study the impact of spatial training on
reducing the “BCI deficiency” phenomenon, and thus enabling BCI
to be more systematically used outside laboratories.

2.7 conclusion

In this chapter, we performed a literature survey in order to iden-
tify the psychological and cognitive factors related to MI-BCI perfor-
mance. This survey enabled us to classify most of the predictors into
three categories representing higher-level cognitive concepts: (1) the
user - technology relationship (comprising the notions of anxiety and
control during the interaction), (2) attention and (3) spatial abilities.
These three categories appear to be extremely relevant in the context
of MI-BCI training. Indeed, the predictors were computed during
the early stages of training, i.e., during the first or first few sessions.
Moreover, most studies were performed on BCI-naïve users who were
confronted with a BCI for the first time. Yet, the literature suggests
that this situation (early training phase and first exposition to the
technology) can induce an important level of anxiety associated to
a low sense of agency, both having potential negative repercussions
on performance (Achim and Al Kassim, 2015, Saadé and Kira, 2009,
Simsek, 2011). This first point justifies the involvement of the cate-
gory 1 predictors, i.e., those related to the users’ relationship with
the technology. Besides, the Ackerman model (Ackerman, 1988) sug-
gests that during the early stages of learning (phase ] 1), the inter-user
variability in terms of performance in mainly due to (1) differences in
“task-appropriate” abilities and (2) high-level cognitive abilities such
as attention. These two aspects correspond to the two other predic-
tor categories that we identified. Indeed, spatial abilities (category
3), i.e., the ability to produce, transform and interpret mental images
(Poltrock and Brown, 1984) can be considered as “task appropriate”
abilities in the context of MI-BCI training, while attention (category
2) clearly corresponds to the second parameter influencing inter-user
variability in Ackerman’s model. Hence the elaboration of these three
categories: the inclusion of the predictors in different categories was
justified, the associated cognitive models were introduced and the
neural correlates related to each concept were described. This work
was intended to provide a better understanding of the different fac-
tors impacting MI-BCI training and thus to provide, in the Prospects
section (i.e., Section 2.6), a discussion about how these factors could
be taken into account when designing future protocols in order to
optimise user-training. More specifically, the impact of the training
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protocol on users’ computer anxiety and sense of agency was demon-
strated. It has been suggested that a biased positive feedback could
increase novice users’ sense of agency and thus increase their perfor-
mance. Also, the significance of respecting the principles of priority,
consistency, exclusivity and a transparent mapping between the task
and the feedback was emphasised. Furthermore, it should also be
possible to increase BCI training efficiency by considering the user’s
attention. In particular, attention capabilities can be improved using
meditation or neurofeedback. Moreover, attentional resources can
be optimally directed towards BCI training by using gamified BCI
training tasks, varied tasks, rich and friendly feedback as well as mul-
timodal feedbacks. BCI efficiency could also be improved by using
training procedures of spatial skills, since spatial ability training has
proved to enhance performances in many domains (sport, music, sur-
gical practice, etc.). Moreover, this improvement has been shown to
be effective, durable, and transferable (to skills that have not been sub-
ject to specific training) when the training duration is long enough.

To conclude, we hope that this work will be useful to guide the
design of new protocols and improve MI-BCI user-training so that
these technologies become more accessible to their end-users.
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R E S E A R C H C H A L L E N G E : U N D E R S TA N D I N G A N D
FA C I L I TAT I N G B C I U S E R - T R A I N I N G .

roadmap -

quick summary -
We first explain the rationale of our research challenge. We argue that
to make BCIs more reliable, efficient and accessible, it is necessary to
understand and improve MI-BCI user-training. In order to face this chal-
lenge, we defined 3 research axes which consisted in investigating
the impact of (1) cognitive factors, (2) personality and (3) feedback on
MI-BCI performance. Each of these 3 axes was then investigated in
3 parts. First, experiments were performed to determine specific fac-
tors that impact performance. Second, a solution taking into account
these factors and aiming at improving MI-BCI user-training was de-
signed, implemented and tested. Third, ideas for future work were
introduced.

related paper -
-1- Lotte, F. and Jeunet, C. (2015). ‘Towards Improved BCI based on Human
Learning Principles.’ In: 3rd International Brain-Computer Interfaces Winter
Conference, pp. 1–4 - Invited paper.
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3.1 introduction

As stated in the introductory chapter, EEG-based BCIs make com-
puter control possible without any physical activity (Wolpaw and
Wolpaw, 2012). As such, they have promised to revolutionise many
application areas, including assistive devices and human-computer
interaction (Erp, Lotte, and Tangermann, 2012, Wolpaw and Wolpaw,
2012). Despite this promising potential, the revolutions that were
anticipated have not yet occurred, and BCIs are still barely used out-
side laboratories (Wolpaw and Wolpaw, 2012). The main reason for
this is the substantial lack of reliability of current BCIs (Wolpaw and
Wolpaw, 2012). In particular, BCIs often fail to correctly recognise
the mental commands sent by the user. As an example, for BCIs
that use imagined movements as mental commands, a study showed
that the average rate of correct command recognition was only 74.4%
(Blankertz et al., 2010a). Moreover, it is estimated that roughly 10 to
30% of BCI users cannot control the system at all (so-called BCI illit-
eracy/deficiency) (Allison and Neuper, 2010). Such poor reliability
makes current BCIs unable to compete with alternative input devices
(e.g., eye trackers), which are faster and more reliable (Wolpaw and
Wolpaw, 2012).

To operate a BCI, the user must produce EEG patterns, typically
using mental imagery tasks, which the machine can recognise with
signal processing techniques. So far, to address the reliability issue of
BCIs, most research efforts have been focused on EEG signal process-
ing alone (Allison and Neuper, 2010, Bashashati et al., 2007). While
this has contributed to increasing performance, improvements have
been rather modest. Indeed, BCI accuracy rates are still relatively low
and BCI deficiency rates still high (Allison and Neuper, 2010, Wolpaw
and Wolpaw, 2012). Thus, the reliability issue of BCIs is unlikely to
be solved by focusing on signal processing alone. Rather, there is a
need for a new paradigm in BCI design, to enable both EEG signal
processing and the user to work in synergy to optimise BCI perfor-
mance.

Indeed, BCI control is known to be a skill that must be acquired and
then mastered by the user (Wolpaw and Wolpaw, 2012). This means
that 1) a user’s BCI performances improve with practice and thus that
2) the user must learn how to produce stable, clear and distinct brain
activity patterns to successfully control a BCI. This can be achieved
so long as users are able to understand the feedback provided by the
system, and can use it to improve their strategy. Even the very best
signal processing algorithms will fail to recognise the user’s mental
commands if that user’s BCI control skills are too poor. Unfortunately,
the question of how to train users to control a BCI has been rather
scarcely studied in the BCI literature so far, and consequently the
currently used training protocols are theoretically inappropriate for
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acquiring skills (see Chapter 1). Thus, the best way to train users
to master BCI control skills remains unknown (Allison and Neuper,
2010, Wolpaw and Wolpaw, 2012).

The stance of this thesis is that changing the design of BCIs in
order to enable users to master BCI control skills is a very promising
step towards improving BCI reliability. Thus, the aim of this chapter
is to more precisely define the research challenges that have been
addressed along our project in order to reach this goal.

The theoretical limitations mentioned in Chapter 1 coupled with
users’ modest BCI control performances motivated our choice to ex-
plore the concrete/practical impact of the training protocol on BCI
performance. There is, however, a large inter-individual variability
between BCI users despite the fact they are trained with the same
protocol. Some users are indeed able to reach high BCI performances.
This observation suggests that inter-user differences, and thus users’
personalities and cognitive profiles, could impact BCI performance
and should therefore be considered for the design of BCI training
protocols. Thus, in line with the recommendations from psychology
(Lotte et al., 2013), these training protocols could be adapted to each
user.

To summarise, since current training protocols are suboptimal, it
appears necessary to redefine them so that they comply with theoret-
ical guidelines such as the ones introduced in Section 1.4. In order to
manage this, it is necessary to understand the factors impacting the
MI-BCI user training process and to improve the training protocols
accordingly.

Therefore, three research challenges were defined. The first re-
search challenge consisted in "Considering Cognitive Factors to Un-
derstand and Improve MI-BCI User-Training". The results of this first
challenge are introduced in Chapter 5. The second research chal-
lenge was about "Considering Personality Factors to Understand and
Improve MI-BCI User-Training", all the work related to this second
challenge being introduced in Chapter 6. Finally, the third challenge
was “Considering the Impact of the Feedback to Understand and Im-
prove MI-BCI User-Training". This last challenge led to different stud-
ies that are presented in Chapter7. User-training improvements can
manifest themselves in different ways: better performances (classifica-
tion accuracy), shorter/easier training process, better user-experience,
etc. In this thesis we mainly use classification accuracy as a metric of
improvement, but we also pay attention to user-experience in order
to judge the relevance of our propositions. Each research challenge is
dealt with in three steps/parts:

— "Which factors influence MI-BCI user-training?" - This first part
aims at experimentally determining the factors (cognitive fac-
tors, personality factors, aspects of the feedback) that could in-
fluence user-training, positively or negatively.
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Figure 8 – Schematic representation of the roadmap of this Thesis.

— "How could MI-BCI user-training be improved based on these
factors?" - This second part consisted of proposing solutions
that take the relevant factors (cognitive factors, personality fac-
tors, aspects of the feedback) into account in order to improve
the user-training process. First, the theoretical background be-
hind the proposed solution’s rationale is provided. Then, how
we came to design that solution is introduced. Finally, our so-
lutions were tested in a BCI experiment, and their efficiency for
improving user-training was assessed.

— "Prospects: further study" - This last part contains future work
ideas that could enable 1) the solutions we propose to be ap-
plied in MI-BCI user-training 2) the neurophysiological and psy-
chological correlates of these solutions to be investigated, which
could help to explain their efficiency for improving MI-BCI user-
training.

Figure 8 is a schematic representation of this roadmap. Further de-
tails about each part of these three challenges are provided in the
following sections.
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3.2 research challenge #1 : considering cognitive factors

to understand and improve bci user-training

BCI deficiency, and more generally the huge variability in users’
ability to control an MI-BCI, led to several studies searching for psy-
chological (Hammer et al., 2012, Nijboer et al., 2008) and neurophysio-
logical (Blankertz et al., 2010a, Grosse-Wentrup and Schölkopf, 2012)
predictors of MI-BCI performance (for a review of these predictors,
see Chapter 2). Unfortunately, no widely accepted and reliable predic-
tive model of performance exists yet. This could be partly due to the
fact that most of the predictors are based on one-session experiments,
while several sessions are required to learn to master an MI-BCI and
that several sessions are necessary to flatten the inter-session vari-
ability due to external factors unrelated to the user’s control abilities.
Another limitation of these predictors is the fact that they only con-
sider motor-imagery, even though other mental imagery tasks have
been shown to be associated to better performance in terms of classi-
fication accuracy (Friedrich, Scherer, and Neuper, 2013).

Our first research challenge is to consider cognitive and neurophys-
iological factors in order to understand and improve MI-BCI user-
training.

Therefore the first part of this chapter aims at understanding which
cognitive factors influence performance. We looked for predictors
based on data collected over several sessions, during which partici-
pants were asked to learn to perform a combination of mental-imagery
tasks shown to be associated with the best performance across sub-
jects. These tasks include both motor-imagery and non motor- im-
agery tasks; Friedrich, Scherer, and Neuper, 2013. This study re-
vealed, amongst other things, a strong correlation between Spatial
Abilities (measured using the mental rotation test -Vandenberg and
Kuse, 1978-) and MI-BCI performance. This correlation was repli-
cated in a following purely motor-imagery based study.

Then, based on the results of these first studies, a new training
paradigm was proposed with the object of improving MI-BCI user
training. This new paradigm aimed at testing the hypothesis of a
causal relationship between spatial abilities and MI-BCI performance,
or in other words: Would improving spatial abilities (by specifically
training these abilities) lead to an improvement in MI-BCI control
abilities? In this second part of the chapter, we depict the theoretical
background justifying this hypothesis, we describe the way the spa-
tial ability training protocol was designed and validated, and finally
we present the experiment that enabled us to test the efficiency of this
spatial ability training protocol to improve MI-BCI user-training.

Finally, in the third and last part of this chapter, we examine a
potential application for this work on Spatial Abilities: stroke reha-
bilitation. BCIs are used increasingly to improve motor rehabilitation
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after a stroke: the patient is asked to attempt movements of his limbs;
the patient’s brain activity is recorded so that the therapist knows
when the attempt at movement is performed, enabling him to pro-
vide the patient with an appropriate feedback. Nevertheless, this has
several disadvantages such as reminding the patient that he has lost
the ability to move. Spatial ability exercises trigger activity in the mo-
tor cortex and could thus be used to supplement the rehabilitation
process. It would be a more "transparent" therapy, which could help
to avoid worsening the patient’s depressive state.

3.3 research challenge #2 : considering personality factors

to understand and improve bci user-training

In a similar way as for Challenge #1 with the cognitive factors, some
aspects of the personality have been shown to impact the ability of
a person to acquire new skills in many fields. However, until now,
the impact of personality on MI-BCI training has remained unclear:
no predictive model had ever been developed. We thus led a first
experiment which aimed at determining the aspects of the user’s per-
sonality that have an impact on MI-BCI performance. This resulted
in a model which is able to predict approximately 80% of the per-
formance variance of our participants. This model includes 4 factors:
tension (negative impact), abstractness abilities, self-reliance and one
dimension of the learning-style (active learners perform better than
reflective ones). Interestingly, the fact that these dimensions are the
ones which contribute the most to MI-BCI performance is in line with
the scientific literature. This is explained in more detail in the first
part of Chapter 6.

Particularly, the tension and self-reliance dimensions can be found
in the literature as predictors of a person’s ability to acquire skills
in a Distance Learning environment (i.e., with no teacher or class-
mates). Indeed, students who are anxious and those who lack au-
tonomy struggle to follow distance training processes. This led us to
the solution that is proposed in the second part of this chapter: we
developped a Learning Companion that would provide users with
a social presence and emotional support. We named this compan-
ion PEANUT, for Personalised Emotional Agent for Neurotechnol-
ogy User-Training. Thus, in this second part, we detail the theoretical
background that led us to PEANUT. Then, we describe PEANUT’s
design and validation process, as well as the experiment that was
performed to assess its efficiency for improving MI-BCI user-training.
Finally, in a third part, we propose future developments for PEANUT
that could enable users to be provided with cognitive support in or-
der to help MI-BCI users improve their control abilities.
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3.4 research challenge #3 : considering the feedback to un-
derstand and improve bci user-training

The review introduced in Chapter 1 enabled the limitations of cur-
rent standard feedback (an extending bar that represents the classifier
output) to be demonstrated. While relevant, these limitations are only
theoretical limitations, and one may wonder whether they translate
into actual practical limitations. Indeed, this standard feedback still
enables many users to gain control of a BCI system. It would there-
fore be interesting to evaluate the impact of the current standard feed-
back on BCI performance and deficiency. Unfortunately, there are
many reasons why a given user may not gain BCI control: poor EEG
signal-to-noise ratio, non-stationarity of the signals or non-access to
the relevant brain signals due to the orientation of the user’s cortical
neurons, among many other factors. As such, failure to control the
BCI may stem from several EEG signal-related causes, but may not
be related to the feedback.

Therefore, we had to work around these issues to determine the
aspect(s) of the feedback that could impact on BCI performance. To
do so, in the first part of the chapter, we examine the relevance of a
standard BCI feedback for acquiring a non-BCI related skill. In par-
ticular, the results of this study suggest that the feedback is difficult
to process and requires considerable cognitive resources to be dealt
with, potentially leading to poor performance.

On these grounds, in the second part of the chapter, a solution is
proposed to modify the feedback in order to improve user-training.

Appropriate feedback has repeatedly been shown to be a key ele-
ment during the skill acquisition process (Lotte et al., 2013). Indeed,
in order to be able to learn efficiently, the user must be provided with
feedback that is meaningful and explanatory (Shute, 2008). This feed-
back should also be engaging and could benefit from multi-modality
(Shute, 2008, Lotte, Larrue, and Mühl, 2013). Yet, training protocols
most often associated with visual feedback, despite the fact that both
theoretical (Lotte, Larrue, and Mühl, 2013) and practical (Leeb et al.,
2013) evidence argues for the use of other sensory modalities that
could be more adapted to BCI-based applications (for more informa-
tion, see Chapter 1). Among these modalities, the tactile channel is
an interesting candidate as it is often not overtaxed in interaction con-
texts, contrary to the visual and auditory channels, and thus could
provide users with relevant information without increasing their cog-
nitive workload. We then explored this "tactile feedback" hypothesis,
and the results of the BCI experiment suggest that, as expected, tac-
tile feedback was more efficient than the equivalent visual feedback
both in terms of classification accuracy and in terms of performance
in a secondary (simultaneous) task, thus suggesting it requires less
cognitive resources to be processed.
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Finally, in the third part of the chapter, we present several other
hypotheses to explain the efficiency of tactile feedback to improve MI-
BCI performance (in addition to the fact that is requires less cognitive
resources to be processed). The first hypothesis is that stimulating
the hands with vibrations triggers the motor cortex, which in turn
contributes to the classification and leads to better classification accu-
racy. Our second hypothesis is that tactile feedback is associated to a
greater sense of agency. The sense of agency, as elaborated in Chapter
2,is a predictor of BCI performance and is underlain by an activation
of the premotor cortex (which, as explained previously, could im-
prove classification accuracy). Thus, in this final part, we explain the
theoretical background that led to these hypotheses and introduce a
future experiment that would enable to test these hypotheses.

3.5 prospects : towards an intelligent tutoring system

for an adaptive & user-specific mi-bci training .

Modest performances as well as flaws in the training protocols led
us to investigate solutions to improve MI-BCI training by adapting it
to each user. Some interesting insights have been gained (see Chap-
ter 2). Nonetheless, learning is a complex multi-factorial process, and
studying one aspect independently from the rest is likely to result
in non-ecological conclusions. It is necessary to study MI-BCI user-
training in its globality. Such an approach is possible using Intelligent
Tutoring Systems (ITS) 1 (Nkambou, Bourdeau, and Mizoguchi, 2010).
In this chapter, we show why ITS are relevant for MI-BCI training and
how this technology could be used. Indeed, we developed a concep-
tual architecture of such a system and specified the requirements (e.g.,
deeper theoretical knowledge and technical improvements) so that it
could be adapted for MI-BCI user-training.

3.6 to summarise

Although EEG-based BCIs are very promising for numerous ap-
plications, they mostly remain prototypes that are unused outside
laboratories, due to their low reliability. Poor BCI performances are
partly due to imperfect EEG signal processing algorithms but also
to the user, who may not be able to produce reliable EEG patterns.
Indeed, BCI use is a skill, requiring the user to be properly trained
to achieve BCI control. Therefore, rather than improving EEG signal
processing alone, the research direction defended in this thesis is to
also guide users to learn to master BCI control. Therefore, this the-

1. An Intelligent Tutoring System is a computerised training procedure aiming
at teaching specific skills with the particularity of being able to dynamically adapt
the sequence of exercises and the support provided to the users depending on their
profile and cognitive state.
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sis addresses the general challenge of understanding and improving
BCI user-training through the consideration of 3 levers: (1) cognitive
factors, (2) personality and (3) feedback. Challenges #1 and #2 attend
to cognitive factors and personality, respectively, to understand and
improve MI-BCI user training. Then, Challenge #3 considers the im-
pact of the feedback to understand and improve MI-BCI user-training.
Each of these challenges is processed in 3 steps, namely (1) under-
standing which factors impact BCI performance, (2) proposing solu-
tions to improve MI-BCI user-training and (3) introducing prospects
for future applications, further work or theoretical work aiming at
understanding why these solutions are efficient.

Figure 8 is a schematic representation of this roadmap.
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R E S E A R C H C O N T R I B U T I O N S

In the following chapters, the different studies we led over
the course of this PhD project are introduced. As ex-
plained in chapter 3, the work performed to understand
and improve MI-BCI user-training is divided into three
axes. The first focuses on Cognitive Factors, the second on
Personality Factors and the third on aspects of the Feed-
back. Each of these three axes is detailed in a specific
chapter. As a preamble, the materials and methods of the
different studies are introduced.
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4
M AT E R I A L S & M E T H O D S .

roadmap -

quick summary -
This chapter describes the entirety of the materials and methods used
in our different experiments. Thus, in the following chapters, for each
experiment, a brief table will present the materials and methods used
in that study. The reader can then refer back to this chapter for a
detailed explanation of each element presented in the table. In this
way we hope to avoid repetition which would otherwise have been
rather tedious for the reader. More precisely, these tables comprise 4

sections. The first provides a quick description of the pipeline of the
experiment. Then, all the psychometric and neurophysiological eval-
uations are described. The third part is dedicated to details concern-
ing the BCI training protocol (tasks, feedback, environment) while the
fourth details the hardware and software used to record and process
the brain signals.

61
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introduction

In this section are introduced the materials and methods used in
the different experiments led in the context of this project. First,
all the tests applied for psychometric and neurophysiological eval-
uations (used in the different experiments) are introduced. Then, the
materials and methods used for the BCI experiments themselves are
described. Thus, the training protocols, the software and hardware
used for brain signal recordings as well as the processing techniques
are introduced. One may note that while the general principle of all
the experiments was the same (i.e., it was based on the Graz training
protocol), each experiment had some specificities in terms of evalua-
tions, training protocol and signal processing. Thus, in a last section,
the way the specific materials and methods of each experiment will
be presented in the following research chapters is introduced.

4.1 psychometric evaluations

The psychometric evaluations aimed at determining potential rela-
tionships between the users’ profile/state and their BCI performance.
Depending on the purpose of each experiment, some of the evalua-
tions introduced hereafter were considered.

4.1.1 Personality Assessment

Three tests have been used to assess different aspects of the person-
ality of the users. They are described hereafter.

— the Learning Style Inventory (LSI) (Kolb, 1999) enables to identify
the students’ preferred learning styles according to four dimen-
sions: visual/verbal, active/reflective, sensitive/intuitive and
sequential/global.

— the 16 Personality Factors - 5 (16 PF-5) (Cattell and Cattell, 1995)
measures sixteen primary factors of personality (warmth, rea-
soning, emotional stability, dominance, liveliness, rule conscious-
ness, social boldness, sensitivity, vigilance, abstractness, private-
ness, apprehension, openness to change, self-reliance, perfec-
tionism and tension) as well as five global factors of personality
(extraversion, anxiety/neuroticism, tough mindedness, indepe-
dence and self control).

— the Internal, Powerful others and Chance scale (IPC) (Levenson,
1974) is a multi-dimensional locus of control assessment.
The first two tests, namely the Learning Style Inventory and the
16 Personality Factors - 5, have been chosen for covering a wide
range of personality aspects. The locus of control has been mea-
sured as it had been shown to correlate with BCI performance.
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4.1.2 Cognitive Profile Assessment

Different tests were used in order to evaluate high level cognitive
functions such as comprehension, reasoning, speed of processing,
memory, spatial abilities, motor skills, etc. These dimensions have
been shown in the literature to potentially impact users’ ability to
acquire new skills. The tests are described hereafter.

— 6 subscales of the Wechsler Adult Intelligence Scale (WAIS-IV)
(Wechsler, 2008), assessing the four IQ dimensions: similari-
ties & vocabulary (measuring verbal comprehension abilities),
digit span (measuring verbal working memory abilities), matrix
reasoning (measuring perceptive reasoning abilities), coding &
symbol search (measuring speed of processing abilities).

— the Corsi Block task (Berch, Krikorian, and Huha, 1998) focuses
on visuo-spatial short term and working memory abilities.

— the Revised Visual retention test (Benton, 1963) quantifies visual
retention abilities as well as perceptive organisation.

— the State Trait Anxiety Inventory Y-B (STAI) (Spielberger, Gor-
such, and Lushene, 1970) This subscale, STAI Y-B, measures
anxiety as a trait.

— the Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) (Bru-
ininks, 1978) evaluates motor abilities; based on Hammer et al.,
2012. We considered only some subtests evaluating bilateral
and upper limb coordination as well as fine motor skills.

— the Mental Rotation test (Vandenberg and Kuse, 1978) measures
spatial abilities.

— the Arithmetic test (Wechsler, 2008) is one of the WAIS-IV sub
scales, measuring working memory abilities and more specifi-
cally the ability to concentrate while manipulating mental math-
ematical problems.

4.1.3 Cognitive & Emotional State Measure

The State Trait Anxiety Inventory Y-A (STAI Y-A) (Spielberger, Gor-
such, and Lushene, 1970) measures anxiety as a state. When used,
participants had to complete it at the beginning of each session. Seven-
point Likert scale were also used to determine the levels of fatigue
and arousal after the runs. The flow, i.e., the optimal cognitive state
for skill acquisition, was measured using the EduFlow Questionnaire
(Heutte et al., 2016).

4.1.4 Neurophysiological Profile Assessment

Different neurophysiological patterns were explored. These pat-
terns have been proposed in the literature as being predictors of mo-
tor imagery based BCI performance. They are introduced below:
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— α-power [8-13Hz] over each electrode, measured pre-trial (2500

ms to 500 ms before the instruction) and in-trial (500 ms to 3500

ms after the feedback start). Low α-power in fronto-parietal
networks has been shown to be associated to a high attentional
level (Bamdadian et al., 2014; Klimesch, 1999).

— β-power [16-24Hz] over each electrode, measured pre-trial and
in-trial. In the paper of Ahn et al. (Ahn et al., 2013), it is stated
that “BCI-illiterates" have low β-power.

— θ-power [3-8Hz] over each electrode, measured pre-trial and
in-trial. Low θ-power was related to internalised attention in
(Aftanas and Golocheikine, 2001). High θ-power has also been
shown to be related to cognitive, and more specifically to mem-
ory performance, when combined with high α power (Klimesch,
1999).

— γ-power over each electrode, measured in pre-trial and in-trial.
High pre-trial fronto-parietal γ-power has been associated with
attentional processes (Grosse-Wentrup and Schölkopf, 2012). More-
over, the ability to modulate SMR has been shown to be nega-
tively correlated to γ power in occipital areas (Grosse-Wentrup,
2011). It has to be noted that muscular activity can represent a
confounding factor as it is also correlated with γ power (Grosse-
Wentrup, 2011).

— the predictor proposed by Bambadian et al. (Bamdadian et al.,
2014) was calculated on pre-trial (2500ms to 500ms before the
instruction). It is claimed to reflect the participant’s attentional
level, this state being, according to the literature, positively cor-
related to the θ-power and negatively correlated to both the α
and β-power:

F =

∑
c∈Cθ P

θ
c∑

c∈Cα P
α
c +

∑
c∈Cβ P

β
c

with Cθ =[F3, Fz, F4], Cα=[P7, P3, PZ, P4, P8] and Cβ=[CZ,
CpZ].

— the predictor proposed by Ahn et al., 2013 was computed on
electrodes C3 and C4 on the data of each trial (500ms to 3500ms
after the feedback start) :

F =
w1α+w2β

w3θ+w4γ

with all the wi=1.
— the Blankertz’s SMR-predictor (Blankertz et al., 2010b) certainly

is the most reliable (correlation of r = 0.53 with SMR perfor-
mance over a large dataset, N = 80). It is computed from a 2 min
baseline in a “rest with eyes open" state using two Laplacians
over the motor cortex, i.e., C3 and C4. This predictor allows to
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quantify the potential for desynchronisation of the SMRs at rest,
which can be used as an indicator of SMR strength during the
performance of motor-imagery tasks. As no 2 min baseline had
been recorded with our protocol, we used all the 3 sec. pre-trial
time windows of the run (3000ms before the instruction) and
computed the predictor on this sequence. More precisely, we
computed the power spectrum of each 2 sec time window, aver-
aged these spectrums (i.e., over time windows), and computed
the predictor on this average spectrum.

All these neurophysiological predictors except the Blankertz’s SMR-
predictor were computed for each trial, then averaged over all trials,
runs and sessions for each subject. The Blankertz’s SMR-predictor
was computed for each run and then averaged over all runs and
sessions for each subject. The relationship between these predictor
values and MI-BCI performance was then investigated.

4.1.5 Post-Experiment Evaluations: Usability Questionnaires

After the experiments, participants were asked to complete ques-
tionnaires measuring the usability of the system. The usability was
assessed based on four standard dimensions: learnability/memora-
bility, efficiency/effectiveness, satisfaction and safety. Given that no
validated questionnaire corresponded to our needs when we started
this project in 2013, we made our own ones. Being specific to each
study, these questionnaires will be described in the research chap-
ters when relevant. Since then, Kübler et al. proposed some metrics
(Kübler et al., 2014) that are specific to BCI and that we will use in
future experiments.

4.2 brain-computer interface experiments : training pro-
tocols , brain signal recordings & processing

In the following section are first introduced the specificities of the
training protocols used in the experiments, in terms of instructions,
training tasks, feedback and environment. Then, the brain signal
recording and processing techniques are depicted.

4.2.1 Training Protocol

The research studies introduced in this thesis are all based on the
currently most used training protocol, namely the Graz BCI Training
Protocol. Thus, in this section, the general pipeline of this protocol
is first introduced. Then, the specificities or variants of this protocol
(in terms of (1) instructions, (2) training tasks, (3) feedback and (4)
training environment) used in our studies are described.
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4.2.1.1 The Standard Graz BCI Training Protocol

This protocol was first proposed by the Graz BCI group as an al-
ternative to the Operand Conditioning (OC) approach (Wolpaw et al.,
2000), enabling to provide the participants with a shorter training.
Indeed, because in the OC approach the user has to adapt to the sys-
tem, training can take several weeks. In the Graz approach however,
which is based on Machine Learning, the system adapts to the user,
thus enabling training time to be reduced from weeks to few days
(Pfurtscheller, Flotzinger, and Kalcher, 1993). The Graz protocol also
has the specificity of being externally paced, since it is based on stim-
uli, and of being specific, since EEG is recorded on specific areas, i.e.,
most commonly over the sensori-motor cortex (while for the OC ap-
proach, undefined mental processes can be used for control). Indeed,
the most used tasks in the context of the Graz protocol are motor-
imagery tasks (such as the imagination of hand movements) which
are known to be associated with an activation of the motor cortex.

The Graz protocol is divided into two steps: (1) training of the
system and (2) training of the user.

During the first step, the user is instructed to perform several suc-
cessive motor imagery tasks such as the imagination of left- and right-
hand movements. From the recorded EEG signals collected during
the different MI tasks, the system extracts characteristic EEG patterns
which are specific to each MI task. These extracted patterns are then
used to train a classifier the goal of which is to determine the class to
which the EEG signals belong (i.e., imagination of left- or right-hand
movements). For MI-BCI training protocols that last over several ses-
sions (i.e., days), it is common to regularly retrain the classifier on
newly acquired data in order to take into account cap variations and
the condition/state in which the user is (which can change from one
session to another). For more information about these steps of EEG
signal processing, see Section 4.2.3.

Step 2 consists in training the user. To do so, the user is instructed
to perform the same MI tasks, but this time feedback (provided by the
classifier, which was optimised in Step 1) is provided to inform the
user which MI-task the system has recognised and how confident the
system is that the task it has recognised is the one being performed by
the user. Thus, the goal of the user will be to find strategies so that the
system recognises the mental task he/she is performing. This train-
ing protocol is most often performed over different sessions divided
into runs of approximatively 7 minutes each. One session typically
includes 4 to 6 runs, in order to avoid the fatigue which is usually
felt after more runs. Runs are themselves divided into trials, usually
between 10 to 20 per class (i.e., per MI-task). One trial typically lasts
8s. At the beginning of each trial, a fixation cross is displayed to an-
nounce the start of the trial and to avoid eye movements during the
following 2-second long rest period (which is usually used as a refer-
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ence period for event-related synchronisation and desynchronisation
calculation). Then, after 2s, a beep is used to trigger the attention of
the user and prepare him/her for the oncoming instruction. One sec-
ond later, at t = 3s, the instruction appears as an arrow the direction
of which indicates the MI task to be performed, i.e., an arrow point-
ing left indicates a left hand MI and an arrow pointing right a right
hand MI. From t = 3.250s, a feedback is provided for 4s in the shape
of a bar the direction of which indicates the mental task that has been
recognised and the length of which represents the confidence of the
system in the recognition of the MI-task. This sequence of events is
depicted in Figure 9.

Figure 9 – Timing of one trial in the Graz Protocol.

4.2.1.2 Instructions

At the beginning of the experiments, the experimenter was always
providing all the users with the same instruction pipeline. A typi-
cal script of instructions in presented below, with “XX" replacing the
elements varying from one experiment to another.

“ Hello. Thank your very much for volunteering to take part to
this study. This study is about XX. This experiment lasts XX sessions
of around XX hours each. Each of these sessions will be divided
into two parts: (1) you will be asked to complete different (online
and/or paper and pen) questionnaires and (2) you will be asked to
perform mental-imagery tasks to control a Brain-Computer Interface
(BCI). In order to do the BCI part, we will first equip you with an
EEG cap (which does not hurt) that enables to measure the electrical
activity generated by your brain. Then, there will be, once more,
two steps. First, we will train the BCI system to recognise how your
brain activity is modified when you perform the different mental-
imagery tasks; and then you will be trained to improve the way you
perform the mental imagery tasks so that they are better recognised
by the BCI system. [description of the mental tasks and of how to perform
them, see next paragraph]. Thus, during each session, you will perform
XX runs. Each run will be divided into trials. There will be XX
trials per run, i.e., XX trial of each of the mental task, displayed in a
randomised order. At the beginning of each trial, a fixation cross will
appear and will be followed by the instruction, on the shape of XX,
indicating the task that has to be performed. From this moment, you
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start performing the mental imagery task, and you do it continuously
until the end of the trial. After the instruction, you will be provided
with a feedback, on the shape of XX, indicating the task recognised by
the system as well as the confidence of the system in this recognition.
This feedback will be displayed for XX seconds. Once it disappears,
it is the end of the trial, you can stop the imagery and rest until the
next trial that will start 1.5 to 3.5 seconds later. The first run will be
used to train the system. As the system is not trained yet, it cannot
provide you with a feedback, we will thus display a sham feedback:
do not take it into account. It does not represent your performance.
It is just here so that this run is visually similar to the following runs.
Also, as the rest of the training will be based on this run, please try
to produce a signal as stable as possible, i.e., do exactly the same
imagination each time you do a specific task. After this first run, we
will use machine learning algorithms that will extract characteristic
patterns from your brain activity for each mental imagery task. Once
trained, the system will be able to provide you with a feedback about
the task it recognises in the following runs. Your goal will be to find
the right strategy so that you have the best feedback possible for all
the tasks. It is very important that you stay still during the runs,
i.e., that you do not speak or move so that we do not record muscular
activity that could "polluate" the recorded brain activity. Do you have
any question?".

When the experiment was composed of several sessions, on differ-
ent days, the instructions about the BCI were repeated at the begin-
ning of each of them.

4.2.1.3 Training Tasks

Depending on the study, participants were asked to learn to per-
form either (1) 2 motor-imagery tasks, namely left-hand motor-imagery
and right-hand motor imagery, which are the most commonly used
tasks or (2) 3 mental imagery tasks, namely left-hand motor imagery,
mental rotation and mental subtraction, which were chosen accord-
ing to Friedrich, Scherer, and Neuper, 2013, who showed that these
tasks were associated with the best performance on average across
BCI-users. “Left-hand motor imagery" (L-HAND) and “Right-hand
motor imagery" (R-HAND) refer to the kinaesthetic continuous imag-
ination of a left- or right-hand movement (respectively), chosen by
the participant, without any actual movement (Friedrich, Scherer,
and Neuper, 2013). The participant is allowed to chose either the
same imagined movement for the left and right hand or two differ-
ent ones. “Mental rotation" (ROTATION) and “mental subtraction"
(SUBTRACTION) correspond respectively to the mental visualisation
of a 3 Dimensional shape rotating in a 3 Dimensional space (Friedrich,
Scherer, and Neuper, 2013) and to successive subtractions of a 3-digit
number by a 2-digit number (ranging between 11 and 19), both being
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randomly generated and displayed on a screen (Friedrich, Scherer,
and Neuper, 2013). Link to a video of the

3 tasks: here!Furthermore, as an alternative of mental-imagery tasks, the effi-
ciency of other kinds of training tasks to improve MI-BCI perfor-
mance has been explored. More precisely, we designed a spatial abil-
ity training containing different exercises based on the principle of
the Vandenberg and Kuse, 1978 mental rotation test. The justification
and design of this spatial ability training, as well as a control verbal
comprehension training, are depicted in Section 5.4.

4.2.1.4 Feedback

In most of the studies introduced in the following research Chap-
ters, a standard visual feedback updated at 16Hz has been used.
More specifically, after the instruction had been provided, a blue bar
was displayed on screen for 4 seconds (as shown in Figure 9). The
direction of the bar corresponded to the task recognised by the clas-
sifier while its length corresponded to the confidence of the classifier
in its decision. Every 0.0625s (i.e., at a frequency of 16Hz), a new clas-
sifier output was provided and the feedback (i.e., the direction and
the length of the bar) was updated accordingly.

In the different studies we led, some variants of this standard feed-
back were used. The modifications concerned:

— the modality of the feedback: visual vs. tactile – The feedback was
either displayed as a bar on screen, as described in the previous
paragraph, or it was provided on the palms of the hands using
vibrotactile motors embedded in gloves (this feedback was used
in case of hand motor imagery only). The same way the feed-
back bar was extending towards the left/right, the motors of
the left/right hand glove were activated upon the recognition
of a left/right hand MI, respectively. Moreover, the more con-
fident the classifier, the more the motors near the thumbs were
activated. More details about the design of this feedback are
provided in Chapter 7.

— the update rate of the feedback: 16Hz vs. 4Hz – In the experi-
ments aiming at comparing a visual vs. a tactile feedback, the
later was updated at 4Hz rather than 16Hz (as it was the case
in the other studies). Indeed, so that two tactile stimuli are dis-
tinguishable on the palms, they have to last for at least 200ms
(Gescheider, Wright, and Verrillo, 2010).

— the information provided through the feedback: pure classifier out-
put vs. positively biased classifier output vs. only positive classi-
fier output / social presence & emotional support – In the standard
Graz training protocol, the feedback provided corresponds to
the classifier output. On the one hand, in some of the studies
introduced hereafter however, the participants were provided
with only positive feedback only: meaning that the classifier out-
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put was displayed only when the correct task (i.e., the task the
participant had been asked to perform) was recognised by the
system. On the other hand, in other studies the feedback was
positively biased, meaning that the classifier output was shifted
towards the right direction so that the participants thought they
were doing better than they were actually doing. More details
about the justification and implementation of this biased feed-
back are provided in Chapter 7. Furthermore, we implemented
a social companion made to provide BCI users with social pres-
ence and emotional support during the training process. The
justification and description of this feedback are described in
Chapter 6.

4.2.1.5 Training Environment

Two different training environments have been used in the studies:
a standard one (inspired from the Graz protocol) and a game-like
environment including distractors.

Concerning the standard training environment, it was just black as
shown in Figure 9, with red arrows indicating the instructions and
extending blue bars representing the feedback (in case of a visual
feedback).

The second training environment we used was designed in the con-
text of the evaluation of a tactile feedback for motor-imagery of the
left- and right-hands. Indeed, we wanted to evaluate the efficiency,
in terms of BCI performance, of this tactile feedback (in comparison
to a visual feedback) in a multitasking environment. Therefore, we
created an environment: a green planet, protected by a space craft
(steered by the participant through motor-imagery), that was threat-
ened by asteroids. The red arrows (instructions) were replaced by
asteroids falling from the left or the right of the screen, indicating
the users they had to imagine left- or right-hand movements, respec-
tively, so that they can face the asteroids with the spacecraft and de-
stroy them. Distractors, on the shape of rabbits, rockets and clouds,
were also displayed. More details about this environment, and more
generally about this experiment, are provided in Chapter 7.

4.2.2 Brain Signal Recordings

4.2.2.1 EEG Recordings: Hardware and Set up

The EEG signals were recorded from either a g.USBamp amplifier
(g.tec, Graz, Austria) or a BrainVision actiCHamp amplifier (Brain
Products,Germany), using 30 scalp electrodes (F3, Fz, F4, FT7,FC5,
FC3, FCz, FC4, FC6, FT8, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz,
CP4, P5, P3, P1, Pz, P2, P4, P6, PO7, PO8, 10-20 system) (Friedrich,
Scherer, and Neuper, 2013), referenced to the left ear (g.USBamp) or
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right mastoid (actiCHamp) and grounded to AFz. EEG data were
sampled at 256Hz.

4.2.2.2 EEG Recordings: Software - OpenViBE

All the data were recorded, processed and visually inspected with
OpenViBE (Renard et al., 2010).OpenViBE is a free and open source
software enabling to design a BCI without programming: through the
use of pre-existing signal processing and machine learning functions
that can be connected using graphical programming.

4.2.3 EEG Signal Processing & Machine Learning

4.2.3.1 General Pipeline

The data obtained after the first run of the first session (15 or 20

trials per MI task, depending on the experiment) were used to train
the classifier. While 15/20 trials per class is not much, it has been
shown to be sufficient to set up a motor imagery classifier (Blankertz
et al., 2008; Lotte et al., 2015). For instance, in Friedrich, Scherer, and
Neuper, 2013, a successful mental imagery BCI classifier was setup
with only 10 trials per class.

Thus, the following EEG signal processing pipeline was used to
train the classifier in order to classify the mental-imagery tasks online
in the next runs.

First, EEG signals were band-pass filtered in 8-30Hz, using a But-
terworth filter of order 4. Then a Common Spatial Pattern algorithm
was applied to spatially filter the signals (see Section 4.2.3.2 for more
details). The band power of the spatially filtered EEG signals was
then computed by squaring the signals, averaging them over the last
1 second time window (with 15/16s or 3/4 s overlap between con-
secutive time windows, depending on the frequency of update of the
feedback, namely 16Hz or 4Hz, respectively) and log-transformed.
The resulting band-power features we fed to a classifier (see Section
4.2.3.3 for more details). The classifier was then used online to dif-
ferentiate between the mental-imagery tasks during the rest of the
session. To reduce between session variability, in paradigms includ-
ing several sessions, the classifiers’ biases were re-calculated after the
first run of the other sessions (from session 2), based on the data from
this first run, as in Friedrich, Scherer, and Neuper, 2013.

4.2.3.2 Common Spatial Patterns (CSP)

The CSP algorithm aims at finding spatial filters whose resulting
EEG band power is maximally different between two classes. Thus,
in the case of experiments with 2 mental-imagery tasks, one CSP was
used to find 6 spatial filters whose resulting EEG power was max-
imally different between these two MI tasks. However, in the case
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of experiments with 3 mental-imagery tasks, the EEG signals were
spatially filtered using 3 sets of Common Spatial Pattern (CSP) filters
(Ramoser, Muller-Gerking, and Pfurtscheller, 2000). Each set of CSP
filters was optimised to discriminate EEG signals for a given class
from the other two classes. Hence, 2 pairs of spatial filters were opti-
mised for each class, corresponding to the 2 largest and lowest eigen
values of the CSP optimisation problem for that class, thus leading to
12 CSP filters. The resulting band-power features we fed to a classifier
(see Section 4.2.3.3 for more details).

4.2.3.3 Classifiers: Linear Discriminant Analysis (LDA) and Support Vec-
tor Machine (SVM)

In most of the studies reported below shrinkage Linear Discrimi-
nant Analysis (sLDA) (Müller et al., 2008, Lotte and Guan, 2010) was
used. However, for practical reasons, for the studies in which a tac-
tile feedback is tested a Support Vector Machine (SVM) was used as
a classifier. Indeed, on the one hand the SVM provides a probability
value in (0;1) easier to convert into activations of the motors for the
tactile feedback (more explanations about this point are provided in
Chapter 7). While on the other hand, the sLDA classifier output corre-
sponds to the distance of the feature vector from the LDA separating
hyperplane.

In the case of a 2-class experiment (i.e., with 2 different mental-
imagery tasks) the classifier was trained based on the 6 band-power
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features generated by the CSP. However, in the case of a 3-class exper-
iment, the resulting 12 band-power features (from the CSP) were fed
to a multi-class shrinkage Linear Discriminant Analysis (sLDA), built
by combining three sLDA in a one-versus-the-rest scheme.

As for the CSP filters, the sLDA were optimised on the EEG signals
collected during the calibration run, i.e., during the first run of the
first session.

The resulting classifier was then used online to differentiate be-
tween the mental-imagery tasks.

4.3 presentation of the materials and methods section

in the following chapters

Now all the different elements of the materials and methods used
in our studies have been introduced, the next sections will report the
experiments themselves. For each of these experiments, the materials
and methods will be reported using a table as the one that follows.
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5
C O N S I D E R I N G C O G N I T I V E FA C T O R S T O
U N D E R S TA N D & I M P R O V E M I - B C I
U S E R - T R A I N I N G .

5.1 research question

The review of the literature introduced in Chapter 2 shows that
all the studies concerning BCI-performance predictors considered ei-
ther SMR or Slow Cortical Potentials (SCP). Nonetheless, as stated by
Grosse-Wentrup, Schölkopf, and Hill, 2011, "it remains to be seen if
similar results can be obtained for BCI systems not [only] based on
motor paradigms". Furthermore, most of these studies were based on
very few runs, often recorded during a one-session experiment (an
exception being Hammer et al., 2014). Yet, except for SCP-BCI (Neu-
mann and Birbaumer, 2003), first session performance has not been
shown to be representative of long-term MI-BCI control performance.
Indeed, first session performance can differ greatly from subsequent
sessions due to several factors: (1) the fact that the classifier is often
trained only during the first session, (2) the fact that the position of
the cap can change, (3) EEG-signal non-stationnarity or (4) the nov-
elty effect. Finally, there is only one study, by Hammer et al., 2012, in
which psychological factors were combined with a neurophysiologi-
cal predictor (Blankertz et al., 2010b) to determine a predictive-model
of motor-imagery based BCI performance. Thus, the aim of Part I of
this Chapter is to investigate predictors of BCI performance (1) for
Mental-Imagery tasks that are not purely based on motor imagery
and (2) over a longer-term experiment. Then Part II proposes novel
training paradigms which aim to improve MI-BCI performance indi-
rectly, i.e., by increasing specific cognitive abilities. Finally, in Part III,
we argue that such training paradigms could be of utmost interest to
improve post-stroke rehabilitation therapies.

74
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PA RT I - W H I C H C O G N I T I V E FA C T O R S I N F L U E N C E
M I - B C I U S E R - T R A I N I N G ?

roadmap -

quick summary -
Two user studies are described. In the first, 18 participants trained to per-
form 3 MI-tasks during 6 sessions while in the second, 20 other participants
trained to perform 2 motor-imagery tasks during 1 session. Both studies
reveal a strong correlation between MI-BCI performance (in terms of classi-
fication accuracy) and mental rotations scores (Vandenberg and Kuse, 1978).
Mental rotation scores enable users’ spatial abilities to be assessed, i.e., their
capacity to produce, transform and manipulate mental images (Poltrock and
Brown, 1984).

collaborators -
Morgane Sueur & Emilie Jahanpour (Master Students).

related papers -
-1- Jeunet, C., N’Kaoua, B., Subramanian, S., Hachet, M., and Lotte, F. (2015).
‘Predicting Mental Imagery-Based BCI Performance from Personality, Cogni-
tive Profile and Neurophysiological Patterns.’ In: PLOS ONE 10.12, e0143962.
[please refer to Chapter 6 for other aspects, related to personality]
-2- Jeunet, C., Jahanpour, E., and Lotte, F. (2016). ‘Why standard brain com-
puter interface (BCI) training protocols should be changed: an experimental
study.’ In: Journal of neural engineering 13.3, p. 036024. [please refer to
Chapter 7 for other aspects, related to the feedback]
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5.2 study 1 - which cognitive factors could predict men-
tal imagery based bci performance?

The main contribution of this chapter is to propose predictors of
MI-BCI control performance, which was designed considering the
possibility of combining several psychological and neurophysiolog-
ical factors. Indeed, participants were asked to learn to perform three
MI tasks, namely one motor-imagery task, i.e., left-hand movement
imagination, and two non motor tasks, i.e., mental rotation and men-
tal subtraction. The analyses consisted in looking for correlations be-
tween (1) the average performance over the six sessions they attended
and (2) the scores obtained at the different psychometric tests as well
as neurophysiological predictors.

5.2.1 Materials & Methods

5.2.1.1 Participants

Eighteen BCI-naive participants (9 females; aged 21.5 ± 1.2) took
part in this study, which was conducted in accordance with the rel-
evant guidelines for ethical research according to the Declaration of
Helsinki. This study was also approved by the legal authorities of
Inria Bordeaux Sud-Ouest (the COERLE, approval number: 2015-004)
as it satisfied the ethical rules and principles of the institute. All the
participants signed an informed consent form at the beginning of the
experiment and received a compensation of 100 euros at the end. Fur-
thermore, in the aim of avoiding confounding factors, age [21.5 ± 1.2
year old] and educational level [14.5 ± 1.8 years of education] were
controlled, which means that the ranges of these variables were low:
participants were in the [20;25] year old interval and were studying
at the University, for a Bachelor or Master degree. All of the par-
ticipants were healthy and right handed (Harris lateralisation test -
Harris, 1958).

5.2.1.2 Experimental Paradigm

Please refer to Figure 10.

5.2.1.3 Variables and Factors

The aim of this study was to evaluate the impact of different psy-
chological and neurophysiological factors on MI-BCI performance in
healthy participants. Thus, the effect of the scores obtained at dif-
ferent neuropsychological questionnaires and of the values of neuro-
physiological markers on the variable “MI-BCI classification perfor-
mance" was evaluated.
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Figure 10 – Materials & Methods of the Study 1 of Section 5.2

5.2.1.4 Analyses

During each of the 6 sessions, participants performed 5 runs. How-
ever, as the classifier was updated after the first run of each session,
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we only used the 4 last runs (of each session) for the analyses. Thus,
we considered 360 trials (15 trials x 4 runs x 6 sessions) per mental
task, i.e. 1080 trials (360 x 3 MI-tasks) for each of the 18 participants.
EEG data were analysed using Matlab (http://www.mathworks.com)
in order to compute the different neurophysiological patterns that
could predict MI-BCI performance according to the literature. Then,
these features as well as the psychometric-test results were analysed
using SPSS (http://www-01.ibm.com/software/analytics/spss) in or-
der to find relevant MI-BCI performance predictors. In particular,
correlation analyses were computed as descriptive analyses.

5.2.2 Results

5.2.2.1 Mental-Imagery Task Performance

Eighteen participants took part in this experiment. The data of one
outlier participant were rejected since, with a mean performance of
67.21%, he outperformed (by more than two SDs) the group’s mean
performance over the six sessions (X̄group = 52.50%; SD = 5.62). Thus,
the following analyses were based on the data of 17 subjects.

Over the six sessions, participants achieved a mean performance
of X̄ = 51.63% (SD = 4.39; range: [43.04, 60.14]). All the participants
obtained performances higher than chance level, this chance level be-
ing estimated to be 37.7% of correct classification accuracy for three
classes and more than 160 trials per class and α=5% (Müller-Putz
et al., 2008). In the first session, mean performance was X̄ = 51.72%
(SD = 8.14), in the second X̄ = 51.18% (SD = 6.96), in the third, X̄
= 53.06% (SD = 6.04), in the fourth X̄ = 51.57% (SD = 5.64), in the
fifth X̄ = 51.78% (SD = 6.97) and in the sixth session X̄ = 50.49% (SD
= 6.25). The one-way ANOVA with the session number as the intra-
subject factor revealed no learning effect [F5,96 = 0.270, p = 0.928], as
was generally observed for 6 sessions of training in Kübler et al., 2010.
Moreover, no gender effect [t15 = -1.733, p = 0.104] was noticed.

5.2.2.2 Correlations Between Performance and Neurophysiological Predic-
tors

Bivariate Pearson correlation analyses between MI-BCI performance
and different neurophysiological patterns (i.e., α-power, β-power, θ-
power, γ-power, Bamdadian, Ahn and Blankertz predictors) were per-
formed. First, results showed no correlations between MI-BCI per-
formance and the Bamdadian predictor, the Ahn predictor and the
γ-power. Second, a tendency towards correlation was found between
BCI performance and the Blankertz SMR-predictor [r = 0.428, p =
0.087]. Finally, these analyses revealed some correlations between MI-
BCI performance and (1) parietal θ-power in both pre-trial and in-trial
measurements, (2) frontal and occipital α-power in both pre-trial and
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Figure 11 – Correlations between MI-BCI performance and neurophysiolog-
ical markers. Stastistically significant correlations (before the
correction for multiple comparisons) between MI-BCI perfor-
mances and the average signal power recorded on the electrodes
for the different frequency bands (θ, α and β) as a function of
the period: pre-trial (from 2500ms to 500ms before the instruc-
tion) or during trial (from 500ms to 3500ms after the feedback
start). None of these predictors reached significance after the
correction for multiple comparisons.

in-trial measurements and (3) β-power: FT7 in pre-trial and Oz in in-
trial measurements. These results are depicted in Fig. 11. However,
all these correlations failed to reach significance after a Positive False
Discovery Rate (pFDR) correction for multiple comparisons (Noble,
2009).

5.2.2.3 Correlations Between Performance and Psychometric Tests

Bivariate Pearson correlation analyses revealed a correlation be-
tween MI-BCI performance and Mental Rotation scores [r = 0.696,
p < 0.005]. This correlation reached significance after the Positive
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Figure 12 – MI-BCI Performance as a function of mental rotation scores
(r=0.696).

False Discovery Rate correction for multiple comparisons [p < 0.05]
(Noble, 2009). Other correlations between MI-BCI Performance and
personality factors were revealed. They are described in Chapter 6.

5.2.3 Discussion

In this section, we explored possible predictors of MI-BCI perfor-
mance based on the data of 17 participants. The important number
of runs (30, spread over 6 sessions) attenuated the between-session
variability (which could be due, to fatigue or motivation fluctuation,
cap position variation, etc.) and thus enabled to more precisely esti-
mate the participants’ actual long-term ability to control an MI-BCI.
For the first time, performance predictors were not determined in a
context of pure motor-imagery, since participants were asked to per-
form one motor imagery task -left-hand movement imagination- as
well as two non-motor MI-tasks -mental rotation and mental subtrac-
tion.

Different major results were obtained. The first is the strong corre-
lation between MI-BCI performance and mental rotation scores. The
second major result is the fact that, despite an apparent consistent
relation between MI-BCI performance and frontal α and parietal θ-
power which could suggest a role of attention processes, no signif-
icant correlation was revealed after the correction for multiple com-
parisons. Thus, in the context of this experiment, the considered pre-
dictors seem not to be robust nor relevant enough to predict MI-BCI
performance over multiple sessions. Two plausible explanations of
this result are the fact we considered 6 sessions whereas these neu-
rophysiological predictors were computed, on the literature, based
on one single session, and also the fact our paradigm involves three
different MI-tasks, whereas only motor-imagery was considered in
the studies from which the neurophysiological predictors were ex-
tracted. What is more, since participants were asked to perform one
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motor imagery task, it is interesting to notice the tendency towards
a correlation between the Blankertz’s SMR-predictor and MI-BCI per-
formances which strenghtens the reliability of this predictor for SMR
modulation abilities. The fact this predictor is not significantly corre-
lated with MI-BCI performance could also be partly due to our exper-
imental protocol. Indeed, as no 2 minute-long baseline was recorded
the predictor was computed based on the concatenation of all the
3 second-long pre-trials of the runs, which could impact its perfor-
mance.

A very interesting result is the prominent role of mental rotation
scores: this factor is highly correlated with MI-BCI performance. Men-
tal rotation scores reflect spatial abilities (Poltrock and Brown, 1984),
i.e., the capacity to understand, manipulate and remember spatial re-
lations between objects. Mental rotation, and thus spatial abilities,
are intimately related with the three mental imagery tasks consid-
ered in this study. First, the MI-BCI task "mental rotation" consists in
mentally rotating a 3D shape, which is actually the same task as the
one participants are asked to perform during the mental rotation test.
Second, Rourke and Finlayson, 1978 showed that children confronted
with difficulties to perform arithmetics also had low spatial abilities.
Third, the mental rotation test is actually used to evaluate motor im-
agery abilities in healthy subjects and patients with brain injuries
(Vromen et al., 2011). The close relationship between mental rotation
and the three MI tasks, that is described in Chapter 2, could explain
the strong implication of spatial abilities in participants’ capacity to
perform the MI tasks proposed to control a BCI system. This relation-
ship suggests that it would be interesting to consider each MI task
independently. However, given the protocol and the kind of classifier
used, doing so would most probably provide biased results and/or re-
sults that make little sense. Indeed, 3 "one vs all" linear discriminant
analysis (LDA) classifiers were used, which means that each classifier
was trained to discriminate the targeted MI task from the other two.
Thus, the feedback (blue bar) was not informing the user about how
well he was performing the target MI task, but how much this target
MI task was distinguishable from the other two. Thus, analysing the
performances "one MI task vs. one MI task" would make little sense,
as this was not what the user was trained to do. We could have
trained offline new classifiers to discriminate "one MI task vs. rest" to
know how well the different MI tasks were performed independently
from the others. But the performances could be very different from
the ones presented to the user. For instance, an MI-task could be as-
sociated with good performances when using a "one vs. all" classifier
(because it is well distinguishable from the other MI tasks) and at the
same time associated with bad performances when using a "one vs.
rest" classifier (because the brain activity associated with this MI task
is close to the resting state). In such a case, the participant would
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not have put much effort in trying to improve his performance while
doing this MI task because he thought he was managing well and so
it does not make sense to study his performance in another context
(i.e., with another classifier) as the participant did not receive any
feedback enabling him to know that he had to adapt his strategy.

It now remains to validate this Spatial Ability predictor, i.e. to test
if it would still predict performance with a different set of partici-
pants and with different mental-imagery tasks. Indeed, among the
three tasks used in the study introduced above, was a mental rota-
tion task that is close to the exercises proposed in the mental rotation
test (used to assess Spatial Abilities). Thus, one could argue that BCI
performance correlate to Spatial Abilities due to this task.

5.3 study 2 - do spatial abilities also influence pure

motor-imagery based bci performance?

This second study (the other results of which are introduced in
Chapter 7) aimed, among others, at determining if the Spatial Ability
predictor was relevant in a context of pure Motor-Imagery (of the left
and right hands). Indeed, it would be argued that the relationship be-
tween mental rotation scores (reflecting SA) and MI-BCI performance
could be due to the mental rotation task the participants are asked to
perform during the MI-BCI training protocol and which is similar
to the mental rotation test task. A second argument justifying this
study is the fact that motor-imagery based BCI are certainly the most
used MI-BCI. Therefore, it would be interesting to determine specific
predictors of performance. We also investigated the relationship be-
tween participants’ motor-imagery based BCI performance and the
Blankertz SMR-predictor as this predictor is especially relevant for
motor-imagery paradigms and was close to correlate with MI-BCI
performance in our previous study.

5.3.1 Materials & Methods

5.3.1.1 Participants

20 BCI-naive participants (10 females; aged 24.7 ± 4.0 year-old)
took part in this study, which was conducted in accordance with the
relevant guidelines for ethical research according to the Declaration
of Helsinki. This study was also approved by the legal authorities of
Inria Bordeaux Sud-Ouest (the COERLE, approval number: 2015-004)
as it satisfied the ethical rules and principles of the institute. All of
the participants were healthy and right handed (Harris lateralisation
test - Harris, 1958).
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5.3.1.2 Experimental Paradigm

Please refer to Figure 13.

5.3.1.3 Variables and Factors

The aim of this study was to evaluate the impact of spatial abili-
ties on motor-imagery based BCI performance in healthy participants.
Thus, the effect of the scores obtained at the mental rotation test on
the variable "MI-BCI classification performance" was evaluated, de-
pending on the gender of the user. Indeed, as stated above, literature
shows an important gender effect for mental rotation scores (Van-
denberg and Kuse, 1978). We also studied the correlations between
participants’ MI-BCI performance and the Blankertz SMR-predictor.

5.3.1.4 Analyses

A t-test has first been performed to assess a potential gender ef-
fect. Then, Pearson correlation tests have been performed in order to
evaluate the relationship between spatial abilities (measured through
the mental rotation test) or the Blankertz SMR-predictor and motor-

Figure 13 – Materials & Methods of the Study 2 of Section 5.3

– December 13, 2016



84 considering cognitive factors

imagery based BCI control abilities (assessed by the classification ac-
curacy).

5.3.2 Results

In these analyses, we considered two different measures of MI-BCI
performance: (1) the peak classification accuracy (measured at the
time window of the feedback period for which the classification ac-
curacy over all trials is maximal), which is the typical performance
measure used with the Graz protocol, see, e.g., Scherer et al., 2013

and (2) the mean classification accuracy over the whole feedback pe-
riod of all trials.

First, there was a clear gender effect on the mental rotation score,
consistent with the literature: meanmen=30.5 ± 7.12 - meanwomen=
20.7 ± 7.21 [t-test - t=3.058; p6 0.01]. Moreover, while Mental Ro-
tation scores were not correlated with mean motor-imagery based
BCI performance [r=0.266; p=0.257], they were correlated with the
peak mean motor-imagery based BCI performance [r=0.464; p=0.039].
These results confirm the important impact of SA on mean motor-
imagery based BCI performance which was demonstrated in Jeunet
et al., 2015b. More specifically, the positive correlation indicates that
people with better spatial abilities (i.e., higher mental rotation scores
in this instance) obtain higher MI-BCI control performance. Besides,
results revealed no significant correlation between the Blankertz SMR-
predictor and the mean MI-BCI performance [r = 0.151; p = 0.525] nor
with the peak MI-BCI performance [r = 0.078; p = 0.743].

5.3.3 Discussion

These results confirm that spatial abilities are related to mental
imagery-based BCI performances. We have shown such a relation-
ship before for a mental imagery based BCI that was not based purely
on motor imagery, but on left-hand motor imagery, mental geomet-
ric figure rotation and mental subtraction. The study introduced in
this section suggests that spatial abilities also play a role in purely
motor imagery based BCI performances, in which no mental rotation
tasks are involved. It thus confirms the importance of spatial abilities
for successful BCI control that were suggested in the literature and
by the results introduced in Section 5.2 but that we were the first to
explicitely measure the impact in both thesee studies, and reinforces
the idea that spatial ability training should be explored to improve
BCI control abilities. Concerning the Blankertz SMR-predictor, as
was the case in the study introduced in the previous section, the fact
that this predictor is not significantly correlated with MI-BCI perfor-
mance could be partly due to our experimental protocol. Indeed, as
no 2 minute-long baseline was recorded the predictor was computed
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based on the concatenation of all the 3 second-long pre-trials of the
runs, which could haved impacted its performance.

Now a correlation between SA and MI-BCI control abilities seems
to be confirmed, the next step will consist in exploring new solutions
to improve MI-BCI user-training based on this lever. This is the aim
of the second part of this chapter.
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PA RT I I - H O W C O U L D M I - B C I U S E R - T R A I N I N G B E
I M P R O V E D B A S E D O N T H E S E FA C T O R S ?

roadmap -

quick summary -
We investigated the effects of training spatial abilities (SA) on MI-BCI
user-training. Thus, the design and implementation of this SA train-
ing procedure are detailed. Then, the 2 user studies performed to
validate the SA training procedure are described: results suggest that
it efficiently improve participants’ SA. Consequently, we included this
SA training procedure in an MI-BCI protocol. Results (N=24) showed
no difference in classification accuracy between participants perform-
ing 6 MI-BCI sessions and those performing 3 SA and 3 MI-BCI ses-
sions. Nonetheless, SA training duration impacted users’ progression,
and neurophysiological analyses provided us with valuable insights
into brain pattern evolution throughout the training process.

collaborator -
Suzy Teillet (Engineering Student).

related papers -
-1- Jeunet, C. (2015). ‘Training Users’ Spatial Abilities to Improve BCI Per-
formance: A Theoretical Approach.’ In: CJCSC - Best Paper Award.
-2-Jeunet, C., Lotte, F., Hachet, M., Subramanian, S., and N’Kaoua, B. (2016).
‘Spatial Abilities Play a Major Role in BCI Performance.’ In: BCI Meeting.
-3- Teillet, S., Lotte, F., N’Kaoua, B., and Jeunet, C. (2016).‘Towards a Spatial
Ability Training to Improve MI-BCI Performance: a Pilot Study.’ In: SMC.
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5.4 theory - increasing spatial abilities to improve mi-
bci user-training .

5.4.1 Definition of Spatial Abilities & Relationship with Mental-Imagery

As mentioned earlier, SA can be defined as mental capacities in-
volving the construction, transformation and interpretation of mental
images (Poltrock and Brown, 1984). They reflect the use of MI to
manipulate spatial representations. Many studies have been led in
order to determine the different factors composing SA (for a review,
see Poltrock and Brown, 1984). Numerous models of these SA fac-
tors have been proposed, the relevance of many of them being still
discussed. Nonetheless, some factors are redundant in most stud-
ies: Visualisation, Orientation and Spatial Relations. Visualisation is the
ability to mentally manipulate a pictorially presented object. Orien-
tation corresponds to the ability to comprehend the arrangement of
elements. Finally, the Spatial Relation ability corresponds to the ca-
pacity to rapidly and accurately rotate a mental image. Considering
the BCI experiments described in Sections 5.2 and 5.3, one can notice
that SA are linked with all the MI tasks proposed, as was discussed
in Section 5.2.3. These links between SA and the three MI tasks led to
consider the potential positive impact an SA training could have on
MI-BCI performance.

5.4.2 Why Propose a Spatial Ability Training?

SA training has been shown to be efficient to improve performance
in many different areas such as surgery, mathematics or engineering
education, thus suggesting its potential positive impact on MI-BCI
control abilities. A large majority of these SA trainings are based
on the Vandenberg and Kuse, 1978 Mental Rotation test. This test is
composed of two sets of 10 items (see an example in Figure 14). Each
set has to be completed in 3 minutes maximum. An item consists in
a 3D shape on the left and four 3D shapes on the right. Among the
four 3D shapes, two are similar to the left one with a rotation of 60

o,
120

o or 180
o around the vertical axis. The other two are mirrored

reversed and rotated images of the left 3D shape. For each item, the
participant has to find the two 3D shapes similar to the left one.

Figure 14 – A item of the Vandenberg and Kuse, 1978 mental rotation test.
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Hoyek et al., 2009 used a computerised version of this Mental Ro-
tation test to train students’ SA and showed an improvement in their
ability to learn anatomy. Indeed, SA were shown to impact capaci-
ties in scientific learning (Bishop, 1980). This is why Wiedenbauer
and Jansen-Osmann, 2008 developed a manual version of the Mental
Rotation test for children. This manual version appeared to be effi-
cient to improve children SA. On the other hand, Mental Rotation test
scores have also been shown to be improved through different activ-
ities such as sport (Moreau et al., 2012), juggling (Jansen, Titze, and
Heil, 2009) or engineering courses (Baenninger and Newcombe, 1989).
Training SA through the administration of Mental Rotation tests is
considered as a specific training (as it enables to train one aspect of
SA: the Spatial Relations) by opposition to general trainings (focusing
on several aspects of SA) and indirect trainings (i.e., improving SA
through different activities such as sport of engineering classes).

In a meta-analysis, Baenninger and Newcombe, 1989 revealed that
to obtain the best performances, the SA training should be specific
and have a medium duration, i.e., 3 to 5 sessions spread over at least
3 weeks. In Section 5.2, participants followed a standard MI-BCI train-
ing protocol composed of 6 identical sessions during which they had
to learn to perform 3 MI-tasks: mental rotation, mental subtraction
and left-hand motor imagery. On the one hand, no improvement in
performance was noticed between the 1

st and 6
th session on aver-

age across participants. It suggests that despite the large number of
sessions, participants did not learn during this experiment. On the
other hand, the mean MI-BCI performance appeared to be strongly
correlated with users’ mental rotation scores. This correlation added
to the relationship between SA and the MI-tasks led to question a
potential causal relationship between both of them. In other words,
the question is: would an increase in mental rotation scores be asso-
ciated with an improvement of MI-BCI performance? In accordance
with the literature, it thus seems worth exploring the effect of the in-
clusion of a specific and medium duration SA training, based on 3 to
5 sessions of Mental Rotation tests (Vandenberg and Kuse, 1978), in
standard MI-BCI training protocols. These SA training sessions could
replace some of the MI-BCI training sessions.

5.5 design & validation of the spatial ability training

protocol

5.5.1 Design of the Spatial Ability Training Protocol

The objective of the Spatial Ability (SA) training protocol is to
specifically improve this skill, and particularly the “Spatial Relation"
aspect, by performing different kinds of mental rotation exercises.
Based on the recommendations from instructional design (Lotte et
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Figure 15 – One item per exercise included in the Spatial Ability training:
the shape on top is the target, and the participant must identify
the two shapes that are identical to the target among the four be-
low. From the left to the right are displayed the shapes, matrices,
cubes, arms exercises.

al., 2013), which have shown that variability in training tasks leads
to better learning, we propose different kinds of exercises, 4 in total
(see Figure 15), theoretically associated with a different degree of dif-
ficulty. Indeed, two exercises comprised 2D rotations while the other
two were associated with 3D rotations.

We wanted the SA training sessions to be comparable to standard
MI-BCI training sessions in terms of training duration and structure.
During each training session, participants had to perform 5 runs, each
of them lasting 7 minutes. At each run a different exercise was pre-
sented, but the instructions were always the same: a target figure
was displayed at the top of the screen, followed by a further four
figures below ; among these four figures, two corresponded to the
target figure that had been rotated and two were mirror images of
the target figure. The participant had to select the two correct pro-
posals, i.e. the two rotated figures. A time limit of 7 minutes was set,
during which participants had to answer as many questions as possi-
ble. From the second run onwards, participants were able to click on
a “check” button in order to receive feedback (i.e., to know whether
they had answered correctly or not).

The SA training was implemented with the aim of testing its effi-
ciency in terms of MI-BCI performance improvement. Thus, we com-
pared this Spatial Ability (SA) training protocol (1) with a standard
MI-BCI training protocol and (2) with a similarly structured Verbal
Comprehension (VC) training protocol. We chose to train verbal com-
prehension because it would appear that, to our knowledge, this skill
is independent from SA skills. In this way, the verbal comprehension
training should not have had any impact on users’ SA, but enabled
us to control that any improvement in MI-BCI performance was due
to the SA training, and not just to a different cognitive training.

Therefore, in order for VC and SA training to be comparable, we
proposed 4 different kinds of exercises. The first and second exercises
consisted in finding synonyms and antonyms, respectively. The third
consisted in completing sentences with analogies and the last one
consisted in determining the meaning of a proverb. The structure
of the sessions was the same as for the SA training protocol: during
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each session, participants performed 5 runs, each lasting 7 minutes.
At each run a different exercise was presented, but the instructions
were always the same: a target word/sentence was presented at the
top of the screen, followed by four options ; among these four options,
the participants had to select the two correct ones. For example, an
exercise on synonyms might provide the user with the word “Big”,
followed by four options : “Huge”, “Edible”, “Large” and “Fruitful”.
The goal of the participant is to select the two correct answers. A 7

minute time limit was set for participants to complete as many items
as possible. From the second run onwards, participants were able to
click on a “check” button in order to receive feedback (i.e., to know
whether they had answered correctly or not).

5.5.2 Validation - Step # 1 : Determining the Degree of Difficulty of SA
and VC Training Exercises

The aim of this first step was to determine the degree of difficulty,
both objective (i.e. performance) and subjective (i.e. perceived diffi-
culty), of the exercises proposed in the SA and VC training protocols.
This analysis enabled us to check experimentally if the different ex-
ercises were indeed associated with increasing degrees of difficulty,
as recommended by instructional design literature (Lotte et al., 2013).
Also, it enabled us to assess whether the SA and VC training pro-
tocols require participants to mobilise the same level of cognitive re-
sources.

5.5.2.1 Materials and Methods

Each participant (N=31, 9 women) performed 8 exercises (4 SA and
4 VC exercises). Half (N=16, 4 females) of the participants started
with 4 SA questionnaires and finished with the 4 VC questionnaires,
while the other half (N=15, 5 females) started with 4 VC question-
naires and then completed 4 SA questionnaires. The SA and VC
exercises were performed in a counterbalanced order across the par-
ticipants. This study was conducted in accordance with the rele-
vant guidelines for ethical research according to the Declaration of
Helsinki, and was approved by the Ethics Committee of Inria Bor-
deaux Sud-Ouest (the COERLE; approval number: 2016/02-00). All
the participants signed an informed consent form at the beginning of
the experiments.

As stated earlier, each participant performed 8 on-line exercises (4
SA and 4 VC). Each exercise comprised 8 items. At the end of each
exercise, they completed a Likert-scale in order to rate their perceived
effort from 0 to 10. The statistical analysis enabled us to detect any
significant differences between the exercises (and thus between the
training protocols), both in terms of performance (“objective” diffi-
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culty - called “score” in the analyses) and perceived effort (“subjec-
tive” difficulty - called “effort” in the analyses).

5.5.2.2 Results

We performed four ANOVAs to assess the differences between the
exercises of each training protocol, i.e., SA and VC, both in terms
of difficulty (“score”) and perceived effort required to complete the
task (“effort”). Concerning the SA training, the results showed a
main effect of the exercise both in terms of score (D(30)=102.900,
p60.001, η2=0.774) and in terms of effort (D(30)=118.637, p60.001,
η2=0.798). Post-hoc analyses indicated that the “shapes” exercise was
associated with significantly better scores and lower effort than the
“matrices” exercise, itself being easier and requiring less effort than
the “arms” exercise, itself being rated easier and requiring less ef-
fort than the “cubes” exercise. On the other hand, concerning the
VC training, the ANOVA revealed a main effect of the exercise in
terms of score (D(30)=22.942, p60.001, η2=0.433) but not in terms of
effort (D(30)=2.098, p=0.158, η2=0.065). Post-hoc analyses revealed
that the “synonyms” and “analogies” exercises were associated with
similar scores while the “antonyms” exercise was significantly more
difficult, and the “proverbs” exercise even more difficult still. Finally,
we performed a two 2-way ANOVA for repeated measures in order
to compare the two training protocols in terms of performance and
required effort. The first ANOVA revealed no difference in terms of
scores between the SA and VC trainings (p=0.902) while the second
revealed a main effect of the training type on the perceived effort
required to complete the task (p60.001): post-hoc analyses showed
that the SA and VC exercises were equivalent except from the cube
exercise that was perceived as much more difficult.

5.5.2.3 Discussion

This first study enabled us to to verify that both SA and VC train-
ing included exercises with different levels of difficulty, and thus fol-
lowed the recommendations from instructional design (Lotte et al.,
2013). Participants rated VC and SA exercises as demanding (subjec-
tive effort), except from the cube exercise that appeared to be much
more demanding (which could be due to the fact that difficult VC
exercises require previous knowledge while difficult SA exercises can
be solved by thinking about it). Their scores (objective effort) were
also equivalent for both training types, suggesting a comparable de-
gree of difficulty. Since the exercises from the VC and SA training
protocols proved to have an equivalent complexity, we were able to
use VC training as a control. The next step was to verify the effective-
ness of the SA training protocol for improving spatial abilities.
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5.5.3 Validation - Step # 2 : Validating the SA and VC Training Protocols

A second pre-study was carried out in order to evaluate the effec-
tiveness of our SA and VC training protocols. Indeed, although we
designed the questionnaire exercises with theoretical considerations
in mind, we still had to verify whether our SA training protocol actu-
ally led to an improvement of the user’s spatial abilities. Conversely,
we also had to ensure that the VC training protocol did not improve
SA, in order for the control group to be able to use it without affect-
ing the outcome. Accordingly, we enrolled two groups of participants
who completed the entire SA or VC training protocols. Their spatial
abilities were evaluated before and after training in order to assess
the impact of each training protocol on SA.

5.5.3.1 Materials and Methods

The participants (N=19, 10 women) first took part in a session dur-
ing which their SA and other cognitive abilities were measured. They
were then divided into two homogeneous groups in terms of gender
and mental rotation scores obtained during this first session. The
first group (N=9, 5 women) completed the SA training protocol, i.e.,
they performed each of the three SA training sessions over several
days. The second group (N=10, 5 women) completed the VC training
protocol, with sessions being similarly spread out over different days.
This study was conducted in accordance with the relevant guidelines
for ethical research according to the Declaration of Helsinki, and was
approved by the Ethics Committee of Inria Bordeaux Sud-Ouest (the
COERLE; approval number: 2016/02-00). All the participants signed
an informed consent form at the beginning of the experiments.

During the first session, participants performed the mental rotation
test (Vandenberg and Kuse, 1978) which assesses spatial visualisation
abilities, i.e., SA. Their training was then performed online and at
home, with a maximum of one session per day. They then performed
the same psychometric test again in the final session.

5.5.3.2 Results

In order to assess the effectiveness of the SA training protocol, we
performed a two way ANOVA for repeated measures. In this man-
ner, we were able to detect any significant differences between pre-
and post-training mental rotation scores (that were computed by di-
viding the raw score, out of 40, by the time spent to complete the
test in seconds, with a maximum of 360s), as a function of both the
group (SA vs. VC) and gender (as SA are known to be associated
with an important gender effect). Before performing the ANOVA,
we checked that the participants from both groups had similar SA
at the beginning of the experiment, i.e., before training. Results re-
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Figure 16 – Scores obtained at the Mental Rotation Test (“number of good
responses" / “time needed to complete the questionnaire") for
the two groups, SA and VC, before and after their training.

vealed that the variances were equal between the groups (F(19)=0.011,
p=0.917), as well as the mean rotation scores (t(19)=0.402, p=0.692).
Then, the ANOVA revealed, as stated in the literature, a main effect
of the gender (D(1,17)=5.056, p60.05, η2=0.229). Second, it revealed
a rotationScore * gender interaction effect ((D(1,17)=7.388, p60.05,
η2=0.303): participants in the SA group made significantly greater
improvements compared to those in the VC group (see Figure 16).

5.5.3.3 Discussion

This second pre-study allowed us to confirm that participants per-
forming the SA training protocol tend to improve their spatial abil-
ities significantly better than participants in the VC training group.
Although participants in the VC group did improve their SA, im-
provements were only minor and were more likely due to the fact
that they had completed each questionnaire twice, and consequently
were more familiar with the questionnaire the second time. Nonethe-
less, the marked improvement in SA abilities in the SA training group
does confirm that the training exercises that we designed do indeed
lead to improved spatial abilities. It was then possible to integrate
this training approach in an MI-BCI training protocol with a view to
assessing its impact on BCI performances.

5.6 test of the efficiency of the spatial ability train-
ing

In order to test the efficiency of our Spatial Ability training, we
asked participants to train to control an MI-BCI using 3 different train-
ing paradigms, all lasting 6 sessions. As depicted in Figure 17 all the
participants performed MI-BCI during sessions 1, 5 and 6. Sessions
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2 to 4 were dedicated to the specific training paradigms. Thus, the
control group #1 also performed MI-BCI during sessions 2 to 4 while
the control group #2 followed a VC training procedure and the experi-
mental group an SA training procedure. As explained in the previous
Sections, SA and VC training protocols consisted in different SA and
VC exercises, respectively, performed during 7-minute long runs so
that all the groups had similar training durations.

Figure 17 – Training paradigm (over the 6 training sessions) as a function of
the group participants were allocated to.

5.6.1 Materials & Methods

5.6.1.1 Participants

Each of the 27 participants was assigned to one condition: either
one of the two control conditions (standard BCI training and VC train-
ing) or the experimental condition (SA training). The participants in
the first control condition (N=9 - 5 women and 4 men; aged 21.5 ±
1.2 year-old) took part in 6 standard MI-BCI training sessions (MI
condition). The participants of this first control group were selected
from the participants of a previous study (Jeunet, 2015 - introduced in
Section 5.2) for matching the characteristics of the participants from
both the other groups in terms of mental rotation scores, MI-BCI per-
formance and gender. The participants in the second control condi-
tion (N=9 - 5 women and 4 men; aged 21.7 ± 3.5 year-old) took part
in 3 standard MI-BCI training sessions and 3 VC training sessions
(VC condition). Finally, the participant in the experimental condition
(N=9 - 5 women and 4 men; aged 23.8 ± 5.0 year-old) took part in
3 standard MI-BCI training sessions and 3 SA training sessions (SA
condition). One participant of the experimental group abandoned the
study after the third session. Therefore, her data were not considered.
All the participants were right handed and healthy, i.e. they did not
suffer from any neurological or psychiatric disorder that could im-
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pact their EEG signals or prevent them from focusing on a 2-hour
long task.

5.6.1.2 Variables and Factors

In a first instance, the efficiency of the SA training to improve SA
was assessed in terms of improvement of (1) mental rotation scores
(difference after vs. before the SA training) and (2) the SA/VC exer-
cises scores along the training (difference scores session 4 vs. session
2). In a second instance,ANCOVAs have been performed in order to
assess the impact of the Run (4 modalities: run 1, run 2, run 3, run
4), of the Session (3 modalities: session 1, session 5, session 6) and of
the group (3 modalities: MI, SA, VC) on MI-BCI performance, with
the improvement of spatial abilities (measured in terms of difference
of mental rotation scores before vs. after) as a covariable. MI-BCI
performance was measured through classification accuracy. On the
one hand, we considered the mean and peak classification accuracy
obtained online during the experiment (based on a training of the
classifier on the first run of the first session, as depicted in the ex-
perimental protocol). On the other hand, as we hypothesised that
the SA training could modify significantly users’ brain patterns, we
retrained the classifier, offline, on the first run of each session, and
assessed the offline performances of this session using this retrained
classifier.

5.6.1.3 Experimental Paradigm

Please refer to Figure 18.

5.6.1.4 Analyses

Concerning the evaluation of the SA training efficiency, t-tests were
performed to assess on the one hand mental rotation scores improve-
ment after vs. before the SA training, and on the other hand SA ex-
ercises scores improvement between the first and the last SA training
sessions (i.e. session 2 and session 4). Then, concerning the measure
of improvement of MI-BCI performance, ANCOVAs were performed
to assess the impact of the run (runs 2 to 5) the session (sessions 1, 5,
6) and of the group (MI vs. VC vs. SA) on MI-BCI performance, with
SA improvement as a covariable.

5.6.2 Results

The results of this experiment will be introduced following three
steps: (1) validation of the SA training’s efficiency to improve users’
SA, (2) evaluation of users’ MI-BCI performance improvement as a
function of their group (SA, VC, MI) and (3) neurophysiological anal-
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Figure 18 – Materials & Methods of the Study testing the efficiency of the
spatial ability training, Section 5.6

yses of users’ brain patterns evolution along the training as a function
of their group and of the MI task.
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5.6.2.1 Validating the Efficiency of the SA Training to Improve Uers’ SA

A Wilcoxon test was performed in order to evaluate the difference
of mental rotation score before vs. after the SA/VC training. It re-
vealed a significant increase of mental rotation scores after the train-
ing [Z(15)=3.299, p60.001]: X̄before=21.93±6.67, X̄after=29.40±8.70.
Nonetheless, this improvement surprisingly seems to be effective in
both SA and VC groups [SA: Z(7)=2.201, p60.05 ; VC: Z(8)=2.527,
p60.05]. This unexpected result led us to investigate the factors cor-
relating with the improvement of mental rotation scores in each of
the groups.

On the one hand, SA exercise scores significantly increased be-
tween the first SA training session (session 2) and the last SA training
session (session 4) [Z(15)=2.371, p60.05]: X̄firstSAsession=26.71±11.08,
X̄lastSAsession=33.54±12.71. Moreover, it appeared that the improve-
ment of mental rotation scores (before vs. after the SA training) was
positively correlated with this progression during the SA training (dif-
ference of scores between the first and last training session) [r=0.803,
p60.05]. Both these results suggest that our SA training has a sig-
nificant impact on participants’ spatial abilities and thus reaches its
goal.

On the other hand, concerning the VC group, no improvement
of VC scores was noticed during the training [Z(15)=0.560, p=0.575].
Also, in this group, users’ improvement in term of mental rotation
scores do not correlate with their progression during the VC training
but with their spatial memory score (assessed based on the Corsi test)
[r=0.863, p60.01] and coordination of upper limbs score (which is one
dimension of the BOT test) [r=0.814, p60.05]. Yet, both these scores
also reflect spatial abilities and interestingly enough, coordination of
the upper limbs abilities have already been shown to correlate with
MI-BCI performance in Hammer et al., 2014.

These results suggest that SA training enables the participants to
improve their SA. Nonetheless, it has to be noted that participants of
the VC group who have good SA skills (based on the Corsi and BOT
scales) also manage to improve their mental rotation scores during
the test-retest process.

5.6.2.2 Evaluating the Improvement of MI-BCI Performance as a Function
of SA Improvement

First, we checked that there was no difference in terms of MI-
BCI performance between the groups in session 1. The one-factor
ANOVA confirmed that the 3 groups had equivalent performance
[F(2,23)=0.074, p=0.929]: X̄SA=57.54±8.97, X̄VC=58.06±11.99, X̄MI=
56.38±6.16. Another ANCOVA has been performed to evaluate the
evolution of MI-BCI performance as a function of the Session (S3:
session1 vs. session5 vs. session6 - repeated measures), the Group
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(G3: SA vs. VC vs. MI - independent measures) and the Gender
(D2: men vs. women - independent measures), with the mental rota-
tion score as a covariable. This analysis revealed neither significant
effects of the factors nor any interaction. First, it could be due to
the small sample (7 to 9 participants per group). It could also po-
tentially result from the way the classifier was trained. Indeed, the
classifier was trained on the data of the first run of the first session
and was then rebiased after the first runs of the other sessions. Yet,
the SA training is expected to help the users improve their mental
imagery abilities, which could result in much different brain patterns
in sessions 5 and 6 (i.e., the 2 last MI-BCI sessions). Thus, in a sec-
ond instance we re-trained the classifier offline after the first run of
each session. Considering the resulting MI-BCI performance the AN-
COVA showed a strong tendency towards a main effect of mental
rotation scores (D(1,17)=3.843, p=0.067, η2=0.433) strengthening once
more the impact of SA on MI-BCI performance.

In the following analyses, we focused on MI-BCI performance ob-
tained offline after retraining the classifier on the first run of each
session.

We investigated, for each group (SA, VC and MI) the correlations
between MI-BCI performance progression and the training duration
(i.e., the time lapses between the sessions). On the one hand, Pear-
son correlation analyses on the data of the SA group suggest a strong
tendency towards a negative correlation between the duration of the
SA training (i.e., time lapse between session 2 and session 4) and
MI-BCI performance progression (between session 1 and session 5)
(r=-0.733, p=0.061) (see Figure 19 (a)); and a positive correlation be-
tween this MI-BCI performance progression (between session 1 and
session 5) and the time lapse between the end of the SA training (ses-
sion 4) and session 5 (r=0.940,p60.005) (see Figure 19 (b)). In other
words, based on our data these results suggest that the most efficient
planning would be to do a short SA training (less than 12 days) fol-
lowed by an incubation phase (more than 10 days) before performing
another MI-BCI session (here the second MI-BCI session, session 5).
For the VC group however, no correlation was found between the
training duration and MI-BCI performance or progression. The cor-
relations between le duration of the training and MI-BCI progress
for the SA group, as well as the absence of correlation in the VC
group, reinforce the hypothesis of an impact of the SA training on
MI-BCI control abilities (despite the fact there is no linear correlation
between SA progress and MI-BCI performance). Finally, for the MI
group (the participants of which performed 6 MI-BCI sessions), MI-
BCI progression (between session1 and session5/session6) negativel
correlates with inter-session time lapses (between session1 and ses-
sion5/session6, respectively) (r=-0.737, p60.05 / r=-0.769, p60.05, re-
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spectively). It suggests that a short inter-session period would enable
a better progress when performing only MI-BCI sessions.

5.6.2.3 Neurophysiological Analyses

The object of this SA training was to enable MI-BCI users to im-
prove their ability to perform MI tasks. This improvement may take
the form of modifications of their brain activity patterns. In other
words, it is likely that the patterns associated to each MI task are
different before vs. after the SA training. The classifier being only
trained on the first session, such a modification of brain activity pat-
terns may not result in better MI-BCI performances in our experimen-
tal paradigm. Therefore, we decided to perform analyses in order to
describe and quantify the neurophysiological differences between ses-

(a)

(b)

Figure 19 – MI-BCI progression, in terms of classification accuracy, as a func-
tion of participants’ group: SA (yellow triangles) or VC (green
diamond) and (a) as a function of the SA/VC training dura-
tion or (b) as a function of the time lapse separating the end of
the SA/VC training from the subsequent MI-BCI session (i.e.,
session 5). For the SA group, the progression is negatively cor-
related to the duration of the SA training, and positively corre-
lated to the time lapse between the end of the SA training and
session 5.
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sion1, session5 and session6 for each participant, with respect to their
group (SA, VC, MI).

In order to do so, we performed an analysis in two steps. First,
we computed the signal band-power for each participant/task/elec-
trode/trial/run/session, in [8;30] Hz, i.e., the frequency band used
for feature extraction and classification, on 2 time windows: (1) in
pre-trial, i.e., from 2500ms to 500ms before the instruction cue and
(2) during the feedback period, i.e., from 500 to 3500ms after the
cue. We then performed t-tests to assess the difference in band-power
between pretrial and feedback over each electrode for each MI-task,
session and participant. This difference should reflect the involved
brain areas during each MI task. In the second step of the analyses,
we selected only the electrode associated with the smallest p-value for
each task/session/participant. We transformed this p-value into an
activation coefficient c = -log(p-value) (Lotte et al., 2015) so that the
better the electrode is to discriminate between pre-trial and trial, the
higher its coefficient. In the second step, the signal band-power was
computed again for each task/session/participant, but only for the
selected electrode (with the highest coefficient) and on 4 frequency
bands: low alpha [8;10]Hz, high alpha [10;12]Hz, low beta[12;24]Hz,
high beta[24;30]Hz. We created 4 tables gathering the topographies
corresponding to this second step results. Each one of the tables cor-
responds to 1 frequency band; each head corresponds to one task,
one session and one group; on each head are displayed one point by
participant: the location of the point represents the selected electrode
while the size of the point represents the value of the coefficient for
this task/session/frequency-band. We only provide here, in Figure
20, the table corresponding to the low beta frequency band as it is the
one associated with the highest coefficients. The 3 other tables can be
found in Appendix B.

Despite the low spatial resolution of EEG and the fact we cannot
conclude on the source of the signal only based on the location of the
most relevant electrode, it is interesting to note clusters of activation
for each task. First, concerning the left-hand motor-imagery task, C4

is the most often selected channel (in 17% of the cases) ; yet, C4 is
above the right sensori-motor cortex, which is the zone theoretically
activated when performing left-hand motor-imagery (Pfurtscheller
and Klimesch, 1992). Second, FT8 seems to be the most solicited chan-
nel during mental-rotation tasks (in 36% of the cases). Yet, mental ro-
tation tasks, and more generally tasks related to spatial orientation/-
navigation have been shown to be underlain by the activation of the
right temporo-parietal cortex (Ratcliff, 1979; Roberts and Bell, 2000).
Finally, two main patterns emerge when observing the region related
to the mental subtraction task: either the more relevant channel was
F3 (in 11% of the cases) or around Pz/PO8/PO7 (Pz was selected
in 28% of the cases). It suggests that both the left-frontal lobe and
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Figure 20 – Table representing the selected electrode as well as its associated
activation coefficient for each participant-group/task/session in
the low beta band, i.e., [12;24]Hz; each head corresponds to one
task, on session and one group; on each head are displayed
one point by participant: the location of the point represents
the selected electrode while the size of the point represents the
value of the activation coefficient for this task/session. The black
crosses represent the "theoretical electrode", i.e., the one which
is theoretically the closest to the brain region triggered for each
of the MI tasks: C4 for the left-hand motor-imagery, FT8 for the
mental rotation, F3/Pz for the mental subtraction.

parietal regions would be involved in the mental subtraction process.
Yet, Burbaud et al., 1999, performed an fMRI study to investigate the
process of mental subtraction. Their results revealed that when partic-
ipants were performing the calculation, several areas were solicited:
frontal areas (the left dorso-lateral pre-frontal cortex, the pre-motor
cortex, Broca area) as well as the posterior parietal lobe. Interestingly
enough, despite the fact, once more, that with our 32-channel EEG we
do not have the precision of an fMRI, our results in terms of solicited
electrodes seem to match Burbaud et al., 1999, results. The observa-
tion of the tables seems to indicate a low variability of the selected
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electrodes over the different sessions for the MI group, for the mental
rotation and subtraction tasks. Most participants’ selected electrodes
are gathered around the "theoretical" electrode for both these tasks.
Nonetheless, for the mental-rotation task, while it was clear there
was a cluster around C4 during Session 1, it is not the case any-more
at the end of the training. Concerning the VC group, results reveal a
high variability in terms of selected electrodes, and consequently no
important cluster except maybe for the motor-imagery task. Also, the
coefficients associated to these electrodes seem to be lower than for
the other groups, especially for the mental rotation and subtraction
tasks. It suggests that the selected electrodes do not enable a strong
discrimination between pre-trial and in-trial band-powers. Finally,
participants of the SA group show an important cluster around C4

for the motor-imagery task at the end of the training. Furthermore, it
is interesting to see that for all the participants of the SA group, either
FT7 or FT8 was selected as the most relevant electrode for the mental
rotation task. It is the only group for which there is no right laterali-
sation for this task. Nonetheless, given the fact that during session 1

for some participants of this group left-temporal electrodes had been
selected, we cannot conclude on the fact it is due to the training or
not. Finally, participants of the SA group also show an important
cluster for the mental subtraction task, around Pz, by the end of the
training (while it was not the case at the beginning). In the future,
further statistical analyses would be necessary to quantify the evolu-
tion of the selected electrodes and of their relevance to discriminate a
specific task from rest.

Finally, we performed ANOVAs aiming at investigating the elec-
trodes solicited (in comparison to the ones that should theoretically
be solicited) as a function of the Task, of the Session (session1, ses-
sion5 and session6) and of the Group (MI, SA, VC). Thus, for each par-
ticipant/session/task, we computed the distance between the stan-
dard 3D coordinates of the selected electrode and of the electrode
that should be selected theoretically. For the motor-imagery of the
left-hand and the mental rotation tasks, C4 and FT8 were designated
as the electrodes theoretically solicited. For the subtraction task, we
chose to consider 2 theoretical electrodes: F3 and Pz. Thus, for this
last task, two distances were computed for each participant/session
(one for F3 and one for Pz). The results are summarised in the follow-
ing lines:

Motor-Imagery of the Left-Hand task – ANOVA with the distance to C4

as dependent variable.
— Main effect of the Group - no (D(2,21)=0.074, p=0.929, η2=0.007)
— Main effect of the Session - no (D(1,21)=0.097, p=0.758, η2=0.005)
— Group*Session Interaction effect - yes (D(2,21)=5.611, p60.05,
η2=0.348), see Figure 21 (a)
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Mental Rotation task – ANOVA with the distance to FT8 as dependent
variable.

— Main effect of the Group - no (D(2,21)=1.491, p=0.248, η2=0.124)
— Main effect of the Session - no (D(1,21)=1.315, p=0.264, η2=0.059)
— Group*Session Interaction effect - no (D(2,21)=0.807, p=0.459,
η2=0.071)

Mental Subtraction task 1/3 – ANOVA with the distance to F3 as de-
pendent variable.

— Main effect of the Group - no (D(2,21)=1.367, p=0.277, η2=0.115)
— Main effect of the Session - no (D(1,21)=0.171, p=0.683, η2=0.008)
— Group*Session Interaction effect - no (D(2,21)=0.333, p=0.720,
η2=0.031)

Mental Subtraction task 2/3 – ANOVA with the distance to Pz as de-
pendent variable.

— Main effect of the Group - no (D(2,21)=0.349, p=0.709, η2=0.032)
— Main effect of the Session - no (D(1,21)=0.497, p=0.488, η2=0.023)
— Group*Session Interaction effect - no (D(2,21)=1.263, p=0.304,
η2=0.107)

For the mental subtraction task, the ANOVAs did not reveal any
significant result. It is potentially due to the fact that the distances to
F3 and Pz should be considered together rather than separately. This
is why we combined them in a unique measure that corresponded to
the minimum between the distance of the selected electrode to F3 or
Pz. Here are the results:

Mental Subtraction task 3/3 – ANOVA with the minimum distance to
Pz/F3 as dependent variable.

— Main effect of the Group - no (D(2,21)=0.065, p=0.801, η2=0.003)
— Main effect of the Session - no (D(1,21)=0.497, p=0.488, η2=0.023)
— Group*Session Interaction effect - trend (D(2,21)=2.881, p=0.078,
η2=0.215), see Figure 21 (b)

Furthermore, no significant correlation was found between MI-BCI
performance and these distance measures.

To summarise, no effect was revealed for the mental rotation task.
However, the Session*Group interaction was shown for the left-hand
motor-imagery task: it seems that by the end of the training, the
distance between the selected electrode of participants of the SA and
VC groups and C4 is lower than for the MI group. Also, there is a
trend towards a Session*Group interaction for the mental subtraction
task (when the minimal distance to F3 or Pz is used as dependent
variable). Here, participants of the SA group are the only ones for
whom the distance between the selected electrode and either F3 or Pz
decreases. Both these effects are depicted in Figure 21.

5.6.3 Discussion

First, let us summarise the different results:
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(a)

(b)

Figure 21 – Representation of the average distance of the selected electrode
to C4 (a) or to closest electrode between F3 and Pz (b) as a func-
tion of the Group (SA, VC, MI) and the group.

-1- This experiment enabled us to validate the SA training protocol: (1)
participants’ mental rotation scores were increased after the training
process, (2) participants improved their SA exercise scores along the
training process, (2) mental rotation scores improvement correlates
with SA exercise scores improvement.
-2- The analysis of the improvement of MI-BCI performance as a func-
tion of participants’ group, session, gender and mental rotation scores
did not reveal any significant result. It could be de to the fact that par-
ticipants’ manner to perform the different MI-tasks evolves along the
sessions, which results in an obsolete classifier. This hypothesis was
tested thanks to the neurophysiological analyses summarised here-
after. To finish with this point: the duration of the SA training had a
significant impact on participants’ progression.
-3- The representation of the most solicited electrode fore each par-
ticipant/task/session revealed an important inter-session variablity.
Nonetheless, some clusters were revealed: C4 was much solicited for
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the left-hand motor-imagery task, FT8 for the mental rotation task
and finally F3/Pz were the most solicited channels for the mental-
subtraction task. The selection of these electrodes is in line with the
literature. Statistical analyses results suggest that for the left-hand
motor-imagery, participants of SA and VC groups solicit electrodes
close to C4 at the end of the training process ; for the mental subtrac-
tion task, only the participants of the SA group diminish the distance
of their most solicited electrode to F3 or Pz during the training.

Before going into further details, it should be reminded that these
results were obtained on small samples (7 to 9 participants per group)
and should therefore be considered with caution.

Nonetheless, it is interesting to note that despite the absence of a
linear correlation between SA progression and MI-BCI performance,
the duration of the SA training has an impact of MI-BCI performance.
A further investigation of the appropriate duration of an SA training
that would enable a skill transfer to MI-BCI is required. Also, as a
future work, the brain regions solicited during an SA training should
be investigated. I would also be interesting to evaluate the evolution
of the brain patterns along the training process. Furthermore, given
the high variability in terms of solicited electrodes over the sessions,
it seems important to use different classification methods and perfor-
mance measures in the future. Also, if metrics allowed to link specific
brain-patterns (e.g., the solicitation of specific electrodes) to MI-BCI
performance, we would be able to provide users with some kind of
cognitive feedback. Let us take the example of the mental subtrac-
tion task. Burbaud et al., 1999, explain in their paper that when the
subtraction is performed with calculation, frontal and parietal areas
are triggered; while when it is performed without calculation, mainly
frontal areas (and especially Broca) are triggered. If it appears (this is
only an example) that a parietal activation correlates to MI-BCI per-
formance, then we can hypothesise that performing a calculation is
more efficient than not performing a calculation. As a consequence,
users could be guided to this process and provided with more diffi-
cult subtractions (that would force them performing a classification,
potentially improving their MI-BCI performance). More details about
the possibility of providing users with a cognitive feedback are pro-
vided in Section 6.6.
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PA RT I I I - P R O S P E C T S : T O WA R D S T H E I N C L U S I O N
O F A S PAT I A L A B I L I T Y T R A I N I N G I N M I - B C I B A S E D
S T R O K E R E H A B I L I TAT I O N P R O C E D U R E S .

roadmap -

quick summary -
In this section, we argue that SA training could benefit MI-BCI based
stroke rehabilitation. Therefore, we first explain the rationale of MI-
BCI based stroke rehabilitation and we consequently elaborate on the
fact that training SA could potentially help patients feel better during
the rehabilitation process.

collaborators -
Suzy Teillet (Engineering Student).
Dr. Bertrand Glize (Ph.D-M.D) & Pr. Pierre-Alain Joseph (Ph.D-M.D)
Eric Sorita (Ph.D, Ergotherapist)
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5.7 a short review of stroke rehabilitation : focus on

mi-bci based stroke rehabilitation procedures

A stroke is caused by the blood supply to specific regions of the
brain being cut off, which in turn induces an inflammatory reaction in
the surrounding areas, and consequently a deterioration of the func-
tions related to those areas (i.e., cognitive, motor and emotional func-
tions). A stroke can be classified as either haemorrhagic (if it is due to
the rupture of an artery) or ischemic (if it is due to the occlusion of an
artery), the latter being the most frequent (around 85% of all strokes
are ischemic - Deb, Sharma, and Hassan, 2010). Stroke rehabilitation
represents a major challenge: strokes are the third cause of disability
world-wide (Feigin et al., 2014) and more than half of stroke patients
subsequently become dependent for daily-life activities (based on the
Intercollegiate Stroke Working Party report, 2012). Indeed, as stated
earlier, stroke often reults in cognitive and motor deficits. Diverse
cognitive deficit types can be observed (Rode, Jacquin-Courtois, and
Yelnik, 2008): lesions located in the left hemisphere are likely to re-
sult in aphasia or apraxia while right-hemisphere lesions are often
associated with hemineglect; moreover, bilateral lesions can result in
attention and memory deficits. On the other hand, concerning motor
after-effects, patients can suffer from various degrees of hemiparesis
of the side of their body opposite the lesion; also, the upper limbs
(arms and hands) are often affected.

Several procedures can be used for upper limb rehabilitation. First,
Physical Practice has been shown to be beneficial for the clinical im-
provement of patients in a chronic phase (Gaggioli et al., 2006; Johnson-
Frey, 2004; Liu et al., 2004; Page et al., 2001; Stevens and Stoykov,
2003). A specific type of physical practice is the Task Repetition Tech-
nique which consists in repeatedly performing the same sequence of
movements so that its execution is improved (O’Dell, Lin, and Har-
rison, 2009. However, in the context of upper-limb motor recovery,
no formal proof of the efficiency of this technique for patients in sub-
acute or chronic phases exists. On the contrary, Constraint-Induced
Movement Therapy (CIMT) has been scientifically validated in a study
including 222 patients (Wolf et al., 2006): patients who followed CIMT
showed significant clinical improvement of their symptoms. This
method consists in immobilising the healthy limb almost all day-long
and practising rehabilitation tasks such as prehension movements,
distal thumb-index pinch and precise target-reaching for at least 6

hours a day in order to solicit the impaired limb as much as possible.
Over the last few years, the exponential development of robotics

and artificial intelligence has enabled the emergence of new paradigms
for stroke rehabilitation, such as Robot-Assisted Therapy which con-
sists in the patient performing movements (i.e., doing physical prac-
tice) constrained by an electro-mechanical system. The use of robots

– December 13, 2016



108 considering cognitive factors

aims to provide patients with a proprioceptive feedback (which should
favour brain plasticity processes).

All the techniques introduced here-above require the patient to per-
form movements. Yet, many patients do not present any residual
movements at all. For these patients, MI-BCI based rehabilitation
could be useful. Indeed, MI-BCI enable attempted movements to be
detected in the patient’s brain-activity, which could not be otherwise
detected by the therapist. Then, the patient can be provided with
appropriate feedback, synchronised with their attempted movement.
Until now, two modalities have been proposed for this feedback: vi-
sual (in the shape or bar/cursor, like in standard MI-BCI paradigms,
or as a virtual representation of an arm) and proprioceptive (most of
the time using a brace or a robotic arm).

A review of the literature of MI-BCI based stroke rehabilitation
is proposed in Ang and Guan, 2015. To summarise, experimental
results tend to support the efficiency of MI-BCI to improve stroke
rehabilitation. More precisely, it seems that the feedback provided
by such technologies, which is consistent and synchronised with the
performed motor (or motor-imagery) tasks, enables a better recovery
of motor functions than MI alone. In the following section, we ar-
gue that incorporating SA training in the MI-BCI based rehabilitation
process may enable to improve the rehabilitation procedure by taking
the patient’s well-being into account.

5.8 how training spatial abilities could enable mi-bci

based stroke rehabilitation procedures to be improved.

In this Chapter, we demonstrated that having high spatial abilities
enables users to perform better at MI-BCI, supposedly because it facil-
itates the production and manipulation of mental images. It has also
been shown, as stated in the literature, that training spatial abilities
triggers the motor-cortex (Windischberger et al., 2003).

On the other hand, MI-BCI based stroke rehabilitation has been
shown to be related to valuable advantages, but also some draw-
backs. The advantage of this procedure is that it allows therapists to
visualise, in real time, representations of the patient’s brain activity,
but also provides the patient with sensorimotor feedback in real-time
(while he is performing the task) in order to close the sensorimotor loop.
This feedback is supposed to favour brain plasticity processes which
in turn lead to motor recovery. Along this procedure, as is the case in
more standard rehabilitation procedures, the patient is asked to per-
form (or attempt to perform) movements with their disabled arm. In
a personal communication, Reinhold Scherer explained that this pro-
cess, while having been proved efficient for motor recovery, does not
take into account the well-being of patients. Indeed, these patients
are often fragile, and often suffer from depression after their stroke.
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Reminding them, repeatedly, during the training process of the fact
that they have lost the ability to move their limb is likely to enhance
their depressive state.

Therefore, it would seem most appropriate to offer a different kind
of task, non-motor tasks, that could trigger the motor cortex without
risking a negative impact on the patient’s well-being. Spatial ability
tasks such as the ones introduced in this chapter could be used as
they are underlain by an activation of the motor-cortex and do not
require the patient to be asked to move their limbs. Thus, a rehabil-
itation procedure in which reduced motor tasks are alternated with
spatial ability tasks may be effective, especially at the beginning of
the process (when patients do not have any residual movements).

Of course, this training process should be adapted to each patient.
Indeed, some personality profiles prefer a direct rehabilitation pro-
cess: they want to recover mobility of their arm so they try to move
their arm and are not interested by other exercises they do not under-
stand the point of. On the contrary, some patients are prone to de-
pression and do not want to be constantly reminded that they cannot
move their limb. For them, indirect rehabilitation procedures leading
to motor recovery might be more adapted.
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6
C O N S I D E R I N G P E R S O N A L I T Y T O U N D E R S TA N D &
I M P R O V E M I - B C I U S E R - T R A I N I N G .

6.1 research question

As stated in Chapter 5, one of the main objectives of this project
was to investigate potential predictors of MI-BCI performance with
the view of improving MI-BCI user-training based on these predictors.
The previous Chapter revealed that Spatial Abilities are one such pre-
dictor related to the user’s cognitive profile. In addition to their cog-
nitive profile, users’ personality was investigated in our study, along
with the relationship between personality and MI-BCI control abili-
ties (Jeunet, 2015). Indeed, personality has repeatedly been shown to
impact both people’s ability to acquire knowledge and the manner in
which they acquire it (Cattell and Cattell, 1995). It thus seems nec-
essary to understand which personality factors impact users’ control
abilities so that we are able to adapt the training process accordingly.

110
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PA RT I - W H I C H P E R S O N A L I T Y FA C T O R S I N F L U E N C E
M I - B C I U S E R T R A I N I N G ?

roadmap -

quick summary -
We performed a study on 18 participants following a 6 session-long
MI-BCI training. They trained for 3 MI-tasks: mental rotation, men-
tal subtraction, left-hand motor-imagery. They were also asked to
complete psychometric questionnaires. Using a linear regression, we
determined a predictive model of MI-BCI performance (R2adj=0.809,
p60.001) including 4 personality traits: tension, self-reliance, abstract-
edness and the learning style (active vs. reflective).These dimensions
are described and the model is discussed.

collaborator -
Morgane Sueur (Master Student).

related papers -
-1- Jeunet, C., N’Kaoua, B., Subramanian, S., Hachet, M., and Lotte, F. (2015).
‘Predicting Mental Imagery-Based BCI Performance from Personality, Cogni-
tive Profile and Neurophysiological Patterns.’ In: PLOS ONE 10.12, e0143962.
[please refer to Chapter 5 for other aspects, related to cognitive factors]
-2- Jeunet, C., N’Kaoua, B., Hachet, M., and Lotte, F. (2015). ‘Predicting
Mental-Imagery Based Brain-Computer Interface Performance from Psycho-
metric Questionnaires.’ In: womENcourage’15.
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6.2 study 1 - how does personality impact mi-bci con-
trol abilities?

The study introduced below is the same one as the study intro-
duced in Chapter 5, Section 5.2 (Jeunet et al., 2015b). This study
aimed at understanding the impact of the user profile, notably per-
sonality and cognitive profile, on MI-BCI performance. The Chapter
5 focused on the cognitive profile and more specifically on spatial
abilities. In this section, the focus is on personality factors and on
their complementarity with spatial abilities to explain MI-BCI perfor-
mance. Also, both Section 5.2 and this section relating the results
resulting from the same study, some redundancies with former Sec-
tion will appear: the reader will be notified of these redundancies at
the beginning of the paragraphs.

6.2.1 Materials & Methods

6.2.1.1 Participants

As introduced in 5.2.1, 18 BCI-naive participants (9 females; aged
21.5 ± 1.2) took part in this study, which was conducted in accor-
dance with the relevant guidelines for ethical research according to
the Declaration of Helsinki. This study was also approved by the le-
gal authorities of Inria Bordeaux Sud-Ouest (the COERLE, approval
number: 2015-004) as it satisfied the ethical rules and principles of
the institute. All the participants signed an informed consent form
at the beginning of the experiment and received a compensation of
100 euros at the end. Furthermore, in the aim of avoiding confound-
ing factors, age [21.5 ± 1.2 year old] and educational level [14.5 ±
1.8 years of education] were controlled, which means that the ranges
of these variables were low: participants were in the [20;25] year old
interval and were studying at the University, for a Bachelor or Master
degree. All of the participants were healthy and right handed (Harris
lateralisation test - Harris, 1958).

6.2.1.2 Experimental Paradigm

Please refer to Figure 22.

6.2.1.3 Variables and Factors

The aim of this study was to evaluate the impact of personality
factors on MI-BCI performance in healthy participants in order to
propose a model that could predict MI-BCI performances. Thus, the
effect of the scores obtained at different neuropsychological question-
naires on the variable “MI-BCI classification performance" was evalu-
ated.
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Figure 22 – Materials & Methods of the Study 1 of Section 6.2

6.2.1.4 Analyses

During each of the 6 sessions, participants performed 5 runs. How-
ever, as the classifier was updated after the first run of each ses-
sion, we only used the 4 last runs (of each session) for the analy-
ses. Thus, we considered 360 trials (15 trials x 4 runs x 6 sessions)
per mental task, i.e. 1080 trials (360 x 3 MI-tasks) for each of the
18 participants. The psychometric-test results were analysed using
SPSS (http://www-01.ibm.com/software/analytics/spss/) in order
to find a relevant model of MI-BCI performance predictors. In par-
ticular, correlation analyses and (step-wise) linear regressions were
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computed as descriptive analyses. Then, leave-one-subject-out cross-
validation tests were performed in order to evaluate the predictive
power and the stability of the models.

6.2.2 Results

6.2.2.1 Mental-Imagery Task Performance

As a reminder (all the results in this paragraph having been re-
ported in Section 5.2), eighteen participants took part in this exper-
iment. The data of one outlier participant were rejected since, with
a mean performance of 67.21%, he outperformed (by more than two
SDs) the group’s mean performance over the six sessions (X̄group =
52.50%; SD = 5.62). Thus, the following analyses were based on the
data of 17 subjects.

Over the six sessions, participants achieved a mean performance
of X̄ = 51.63% (SD = 4.39; range: [43.04, 60.14]). All the participants
obtained performances higher than chance level, this chance level be-
ing estimated to be 37.7% of correct classification accuracy for three
classes and more than 160 trials per class and α=5% (Müller-Putz et
al., 2008). For more details about the performance per session, please
report to Section 5.2.2. No gender effect [t15 = -1.733, p = 0.104] was
noticed.

6.2.2.2 Correlations between Performance and Psychometric Tests

Bivariate Pearson correlation analyses revealed correlations between
MI-BCI performance and (1) Mental Rotation scores [r = 0.696, p <
0.005] (as stated in Chapter 5), (2) Tension [r = -0.569, p < 0.05], (3) Ab-
stractedness ability [r = 0.526, p < 0.05] and (4) Self-Reliance [r = 0.514,
p < 0.05] (see Fig. 23). Tension, abstractedness and self-reliance were
assessed by the 16 PF-5. High tension scores reflect highly tense, im-
patient and frustrated personalities. The Self-Reliant trait, also called
self-sufficiency, reflects the learners’ ability to learn by themselves,
i.e., in an autonomous way. Finally, abstractedness refers to creativity
and imagination abilities. Among these four factors, only the Mental
Rotation score reached significance after the Positive False Discovery
Rate correction for multiple comparisons [p < 0.05] (Noble, 2009).

6.2.2.3 First Predictive Model of MI-BCI Performance: Model ]1

A Step-Wise Linear Regression was used in order to determine
a predictive model of each user’s average MI-BCI performance ob-
tained across the different training sessions. To reduce the dimen-
sionality of the problem (and thus avoid the Curse-of-Dimensionality
- Friedman, 1997), while all the psychometric test scores were used
(43), only the neurophysiological predictors introduced in Section
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Figure 23 – MI-BCI Performance as a function of personality profile -
Graphs representing the participants’ MI-BCI performances as a
function of (1) Tension -top-, r=-0.569; (2) Self-Reliance -bottom
left-, r=0.514; (3) Abstractedness -bottom right-, r=0.526.

5.2.2 (and summarised in Figure 11) which were correlated with MI-
BCI performance before the pFDR (20 out of ±280 neurophysiolog-
ical patterns) were used as potential explanative variables in the re-
gression. This regression resulted in a first model, called Model ]1,
including six factors [R2adj = 0.962, p < 0.001] (see Fig. 24): Mental
Rotation score, Self-Reliance, Memory Span, Tension, Apprehension
and the “Visual/Verbal" subscale of Learning Style . Model ]1 ex-
plains more than 96% of the performance variance of the dataset.

In order to evaluate (1) the stability and (2) reliability of Model ]1,
step-wise linear regressions were then performed using a leave-one-
subject-out cross validation process. During the first step, 17 models
were generated, each of them based on the data of all the partici-
pants except one (i.e., the training dataset). This first step allowed to
assess the stability of the model by comparing the factors included
in each of the models to the ones included in Model ]1. During
the second step, each of these models was tested on the only partici-
pant not included in the respective training datasets (i.e., the testing
dataset). This second step aimed at determining the reliability of the
models. Each model generated from the training dataset enabled to
determine a predicted performance as well as a confidence interval
for the corresponding testing dataset. This testing dataset used the
participant’s scores obtained at the psychometric tests that were in-
cluded as factors in the respective training model. The model was
considered reliable when the real preformance fell within the pre-
dicted confidence interval.
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Figure 24 – Characteristics of Model #1 - This model included 6 factors:
Mental Rotation, Self-Reliance, Memory Span, Tension, Appre-
hension and the “Visual/Verbal" dimension of the Learning
Style. It enabled to explain 96.2% participants MI-BCI perfor-
mance variance [R2adj = 0.962, p < 0.001]

The first step of the leave-one-subject-out cross validation process
revealed the instability of Model ]1. Indeed, only 5 out of 17 models
included the same factors as Model ]1. In 11 out of 17 models, 2

or more factors were different from Model ]1. More specifically, the
cross validation resulted in 13 different models for the 17 training
datasets, with 27 different factors included in the different models.
Among these 27 factors, 17 were present in only 1 or 2 models out of
the 17.

The second step consisted in testing these 17 models on their re-
spective testing datasets, i.e., on the only participant not included in
each training dataset. Results revealed that the real performance of
9 out of 17 participants fell within the predicted confidence interval,
with an absolute mean error (Perfpredicted - Perfreal) of 2.68 points
(SD = 2.37, range: [0.38, 8.98]).

6.2.2.4 Second Predictive Model of MI-BCI Performance: Model ]2

In Model ]1, the mental rotation factor was selected first in the
regression and highly correlated with performance (r=0.696), which
demonstrates its strong influence on the model. While being con-
sistent with the nature of the tasks performed by the participants,
this strong influence was likely to hide the effect of other important
factors (Derksen and Keselman, 1992; Whittingham et al., 2006). Con-
sequently, a second regression analysis was performed without the
mental rotation variable. It resulted in a model, called Model ]2

[R2adj=0.809, p < 0.001], described in Fig. 25 and including 4 parame-
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Figure 25 – Characteristics of Model #2. This model included 4 factors:
Tension, Abstractedness, the “Visual/Verbal" dimension of the
Learning Style and Self-Reliance. Abstractedness, the “Visu-
al/Verbal" dimension of the Learning Style and Self-Reliance
had positive weights. Tension was the only factor to have a neg-
ative weight. This model enabled to explain 80.9% of MI-BCI
performance variance [R2adj=0.809, p < 0.001].

ters: Tension, Abstractedness, the Learning Style “Active/Reflective"
subscale and Self-Reliance. Tension, Abstractedness and Self Reliance
were assessed by the 16 PF-5, whereas the “Active/Reflective" dimen-
sion is a subscale of the Learning Style Inventory.

As was done for Model #1, the stability and reliability of Model #2

were assessed using a leave-one-subject-out cross validation process.
Results are detailed in Fig. 26 which presents each training dataset,
all\XX meaning that the training dataset was composed of all the par-
ticipants except XX. The factors included in the model as a function
of the dataset considered, as well as the R2adj value of each model are
also shown.

The first step allowed to evaluate the stability of Model ]2. The
same process as the one introduced in the previous section was used:
17 models were generated from the 17 training datasets, each of them
including the data of all the participants except one. Results revealed
that among these 17 models, 10 included exactly the same factors as
the ones included in Model ]2: Tension, Abstractedness, the “Ac-
tive/Reflective" Learning Style subscale and Self-Reliance. In 5 out of
the 7 remaining models, only one factor, Self-Reliance, was missing.
Finally, one training dataset (all\23) induced a model including all
the parameters present in Model ]2 plus the Power dimension of the
Locus of Control and the Matrix subscale of the WAIS-IV, while in
another dataset (all\28), Tension, Abstractedness and the Digit Span
subscale of the WAIS-IV were included.
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Figure 26 – The 17 models generated from leave-one-subject-out cross vali-
dation process. The coefficients for each factor that was included
in the model generated from the training datasets (all\XX mean-
ing that the training dataset was composed of all the participants
except XX) are detailed in each row.

The second step allowed to determine the reliability of Model ]2. It
consisted in testing each model on the corresponding testing dataset,
i.e., on the only participant whose data were not included in the train-
ing dataset. The results of this second step are detailed in Fig. 27.
This figure shows, for each participant (i.e., each testing dataset), (1)
real mean MI-BCI performance across the 6 sessions, (2) predicted
performance, with its associated confidence interval and (3) the error
of the model, i.e., Perfpredicted - Perfreal. The average size of the
confidence interval was 9.89% and the mean value of the absolute
model error was 2.87%. The real performance of 14 out of 17 partici-
pants fell within the confidence interval, while the real performance
of the 3 remaining participants, S14, S23 and S28, was lower than
predicted.

In order to ensure that the successful prediction of BCI perfor-
mance using the personality and cognitive profiles of the users was
not due to chance, a permutation test was performed. The aim of
this test was to estimate the true chance level in mean absolute error
given our data. To do so, the first step consisted in randomly permut-
ing the mean BCI performances of the training subjects (still using
a leave-one-subject-out cross validation). The second step consisted
in using the step-wise linear regression to obtain a model predict-
ing the (random) performances of these training subjects from their
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Figure 27 – Results of the test of the 17 models generated from the training
datasets on their respective testing datasets. The table shows
training and testing datasets, the real performance of the testing
dataset, the predicted performance of the testing dataset with
the corresponding confidence interval, as well as the error of
the model. Finally, in the last column the mental rotation score
of the participant is outlined.

(real) personality and cognitive profile, in order to simulate a ran-
dom predictive model. During the third step, this model was used
to predict the real BCI performance of the left-out subject. This step
was repeated using each subject as the test subject, and the obtained
mean absolute error over all subjects was stored. This process was
repeated 1000 times, each time with a different random permutation
of the subjects’ BCI performances, to estimate the performances ob-
tained by 1000 predictive models with chance level accuracy. The
obtained mean absolute errors were then sorted over the 1000 permu-
tations in descending order, and the 99-percentile and 95-percentile
were assessed to identify the chance level for p = 0.01 and p = 0.05,
respectively. The results indicated that the mean absolute error of 2.87

that we obtained was better than chance with p < 0.01. This means
our model can indeed generalise to new subjects and predict their
MI-BCI performances from their personality and cognitive profile.

6.2.2.5 Relationship between Model #2 and Mental Rotation Scores

Figure 28 outlines women’s results on top and men’s results on
the bottom at both the MI-tasks (left) and mental rotation test (right).
First, graphs on the left represent each participant’s real (left) and
predicted (right) performance for each participant, with the corre-
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Figure 28 – Real and predicted BCI performance as well as Mental Rotation
scores according to the gender. Women’s results are shown at
the top, men’s results on bottom. On the left, the graphical repre-
sentation of the real (left) and predicted (right) BCI-performance
of each participant, with the corresponding confidence intervals.
On the right, the mental rotation scores of each participant with
the horizontal line representing the mean score of the group.
The three participants for whom the model overrated the perfor-
mance are those with the lowest mental rotation scores (striped
participants).

sponding confidence intervals. These graphs show that the real per-
formance value of 14 out of 17 participants fell within the predicted
confidence interval, while it was lower for only 3 participants: S14,
S23 and S28. Second, graphs on the right represent the Mental Rota-
tion scores for all the participants. Women and men were separated
due to the important gender effect associated with this test (Vanden-
berg and Kuse, 1978). Women’s mean score is 19.13/40 (SD: 6.29,
range: [5, 27]). Men’s mean score is 29/40 (SD: 6.56, range: [18, 35]).
Women’s and men’s mean scores are represented as a horizontal line
on the graphs on the right of Fig. 28. The rectangle surrounding this
line represents the mean ± 1SD interval. Only 3 participants, one
woman and two men, are below this interval: S14, S23 and S28.

It is noticeable that the same participants, i.e. S14, S23 and S28,
(1) had lower real MI-BCI performance than the one predicted by the
model and (2) had lower mental rotation scores than the average.

6.2.3 Discussion

In addition to the strong correlation between Spatial Abilities and
MI-BCI performance, this study revealed interesting performance pre-
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dictors. Indeed, the Model #1 explained more than 96% of the vari-
ance of participants’ MI-BCI performance. This model was composed
of six factors: mental rotation, self-reliance, visuo-spatial memory
span, tension, apprehension and the “visual/verbal" dimension of
the learning style. The main flaw of Model #1 was its instability, re-
vealed by the cross validation process. This instability could be due
to the important role of the mental rotation factor in the MI-BCI per-
formance prediction. Indeed, its strong correlation with MI-BCI per-
formance could prevent other important factors from being expressed
in the regression. Thus, we proposed the Model #2, from which the
mental rotation factor was excluded. Model #2 explained more than
80% of MI-BCI performance variance and was composed of four fac-
tors: tension, abstractedness, self-reliance and the “active/reflective"
dimension of the learning style. This model appeared to be both sta-
ble and reliable to predict MI-BCI performance. Finally, the last very
interesting result is the complementarity between Model #2 and men-
tal rotation scores. Indeed, the only participants for whom Model #2

failed, by overestimating their performances, were the participants
with a very low mental rotation score. These results are discussed in
the following paragraphs.

Two personality factors were correlated with MI-BCI performance
and are included in both models: tension and self-reliance. The ten-
sion dimension reflects highly tense, impatient and frustrated per-
sonalities while the self-reliance dimension, also called self-sufficiency,
reflects the learner’s ability to learn by themselves, i.e., in an au-
tonomous way. Both were assessed using the 16 PF-5 questionnaire.
MI-BCI performance appeared to be negatively correlated with the
tension dimension and positively correlated with the self-reliance di-
mension. These factors have been shown to be related to the nature
of MI-BCI training which is a distant learning, i.e., a learning occur-
ring in a context free of social interaction (the learner interacts with
a computer, there are no teachers or students). Indeed, on the one
hand, Hara, 2001 showed that learners easily feel confusion, frustra-
tion and anxiety when confronted to distant education due to the lack
of feedback from an instructor, compared to classic classroom educa-
tion situations. Therefore, it seems relevant that learners with highly
tense personalities encounter difficulties in learning tasks based on
distant education such as the one presented in this study. On the
other hand, in Moore, 1972, autonomy is presented as being of ut-
most importance in independent learning, and thus in distant learn-
ing. During MI-BCI training, users have to lead important metacog-
nitive processing to identify knowledge and strategies allowing them
to optimise their performances. As a consequence, users with low
Self-Reliance scores may have difficulty when confronted with MI-BCI
training protocols, because they need more guidance about strategies
and key steps to carry out during a training session. To summarise,
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it seems users with high “Tension" and low “Self-Reliance" traits may
need a social presence and emotional feedback to improve their con-
trol performance.

The abstractedness dimension of the 16 PF-5 was also correlated
with MI-BCI performance and included in Model #2. Abstractedness
refers to creativity and imagination abilities. It has been reported that
creative people frequently use mental imagery for scientific and artis-
tic productions (LeBoutillier and Marks, 2003) which could explain
why participants with high abstractedness abilities are better at per-
forming mental imagery.

The other factors included in Model #1 and Model #2 were not
(linearly) correlated with MI-BCI performance. First, in Model #1,
three additional factors were included: memory span (assessed by
the Corsi block task), which had a negative impact on performance,
apprehension (dimension of the 16 PF-5) and the “Visual/Verbal" sub-
scale of the Learning Style Inventory, both of them having had a pos-
itive impact on participants’ MI-BCI performance. The instability of
Model #1 made the inclusion of these factors anecdotal. However,
concerning Model #2, the last factor, i.e., the “Active/Reflective" di-
mension of the Learning Style Inventory does not seem to be anec-
dotal as it was also included in 16 out of the 17 models generated
during the cross validation process. This “Active/Reflective" dimen-
sion seems to be an important factor even if it is not linearly corre-
lated to MI-BCI performance. Thus, active learners appear to be more
efficient in learning to control an MI-BCI. The “Active/Reflective" di-
mension considers the complex mental process that allows converting
perceived information into knowledge. This process can be of two cat-
egories: active experimentation or reflective observation (Felder and
Silverman, 1988). While active learners like testing and discussing the
information, reflective learners need more time to think and examine
it introspectively. As stated by Felder and Silverman, 1988, reflective
learners need the opportunity and time to think about the informa-
tion being presented to achieve a good level of performance. Yet, in
current standard protocols like the one used in the present study, par-
ticipants only have four seconds to perform each MI-task proposed.
Another characteristic of active learners is the fact they are more effec-
tive when they “learn by doing". Yet, Neuper et al., 2005 showed that
motor-imagery performances are higher when the subjects use active
kinaesthetic movement imagination strategies. It could also explain
the positive impact of the “Active" trait on MI-BCI performance.

The final result is of utmost interest and concerns the complemen-
tarity of Model #2 with the mental rotation score. Indeed, results
show that 14 out of 17 participants achieved a real MI-BCI perfor-
mance that fell within the predicted confidence interval generated
from the step-wise linear regression using a cross-validation process.
For the 3 other participants, the real performance was below this con-
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fidence interval. Yet, these three participants were also the ones with
the lowest mental rotation scores. This means that the only times
the model failed by overestimating a participant’s performance, was
when this participant’s spatial abilities were significantly lower than
average. This result suggests that the factors included in Model #2,
i.e., tension, abstractedness abilities, the “active/reflective" dimension
and self-reliance are highly reliable to predict MI-BCI performance
while the user has normal to good spatial abilities. However, if the
user’s spatial abilities are too low, this factor’s weight being the most
influential, it has the upper hand and decreases MI-BCI performance.
In this case, the model’s overestimation of MI-BCI performance can
be anticipated. Considering both Model #2 and spatial abilities to-
gether has the advantage of taking into account all the parameters
that seem to impact MI-BCI performance (according to our results).

This model should now be tested on larger and more heteroge-
neous populations (for instance to have a wider range of performance)
in order to confirm (or refute) its validity, and adjust the value of the
coefficients associated with each factor. Nonetheless, this model of-
fers promising perspectives for improving MI-BCI training protocols.
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PA RT I I - H O W C O U L D M I - B C I U S E R - T R A I N I N G B E
I M P R O V E D B A S E D O N T H E S E FA C T O R S ?

roadmap -

quick summary -
Highly tense and poorly autonomous users struggle when learning
to use an MI-BCI. We hypothesised that this could be due, at least
in part, to the fact that no emotional support or social presence are
provided during MI-BCI user-training. This is why we designed
and implemented a learning companion to provide this support, that
could be adapted to users’ performance and progression. We called
it PEANUT, for "Personalised Emotional Agent for Neurotechnology
User-Training". We tested PEANUT’s efficiency to improve MI-BCI
user training, both in terms of performance and user-experience. Re-
sults (N=31) showed that participants who were accompanied by
PEANUT found the MI-BCI system more usable; also, PEANUT was
more appreciated when its behaviour was adapted to users’ perfor-
mance and progression than when it was generic.

collaborators -
Léa Pillette (Engineering Student) & Boris Mansencal (Engineer).

related paper -
-1- Pillette, L., Jeunet, C., Mansencal, B., N’Kambou, R., N’Kaoua, B., and
Lotte, F. ‘PEANUT: Personalised Emotional Agent for Neurotechnology User-
Training.’ In: Submitted.
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6.3 theory - why to propose a learning companion to

facilitate mi-bci user-training?

Among the four factors included in the previously-mentioned model,
we chose to focus on the Tension and Self-Reliance parameters. As
a reminder, we have shown that highly tense and non-autonomous
MI-BCI users were struggling using MI-BCI. Such a result could be
explained by the fact the MI-BCI training process does lack one as-
pect of utmost importance for learning: social presence and emotional
support (Johnson and Johnson, 2009; Salancik and Pfeffer, 1978). In
other HCI fields, and especially in "Distance Learning" applications
(i.e., learning without a teacher or classmates, using a computer for
instance - Sherry, 1996), the absence of social presence and emo-
tional support has been shown to be efficiently compensated by the
use of Learning Companions (Nkambou, Bourdeau, and Mizoguchi,
2010). Learning Companions are virtual or physical characters that
can speak and have facial/bodily expressions. They provide the
learner with different kinds of interventions in order to overcome the
lack of social interactions and induce positive emotions. Indeed, emo-
tions have a significant impact on learning (Meyer and Turner, 2002).
Among others, positive emotions, induced by emotional support, can
result in increased creativity and flexibility during a problem solv-
ing task (Isen, Daubman, and Nowicki, 1987). Despite its potential
to improve MI-BCI user-training both in terms of performance and
user-experience, the use of a social presence and an emotional sup-
port as provided by a Learning Companion has never been explored
in this context. Besides, the supportive dimension, which is of utmost
importance to favour the learning process according to Shute, 2008,
has never been formally investigated in the context of MI-BCI user-
training. To our knowledge, only two studies used smiley faces as
feedback to maintain motivation along the MI-BCI training (Kübler
et al., 2001a; Leeb et al., 2007). More precisely, Leeb et al., 2007 used
a cursor with a grey smiley that moves towards the left or the right
depending on the task recognised. After each trial, the smiley was
becoming green and happy if the trial was successful, sad and red if
not. While associated with good results in terms of performance and
user-experience, neither of these studies offered a formal comparison
with the standard feedback to prove their efficiency.

In this section, we introduce the design, implementation and vali-
dation of a learning companion to improve MI-BCI user-training. We
called this companion PEANUT for Personalised Emotional Agent for
Neurotechnology User-Training.

We chose to use a learning companion because they can be seen as
social actors which are just as capable of influencing users than any
other social actor (Nass et al., 1993; Reeves and Nass, 1996). Several
research studies have already shown learning companions’ positive
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effect on motivation (Lester et al., 1997), interest towards the task and
efficiency while performing the task (Kim, Baylor, and Group, 2006).
Also, they have been shown to induce emotions favouring learning
(Arroyo et al., 2009). Learning companions can be allocated to dif-
ferent roles, e.g., the learner’s associate or a competitor (Chou, Chan,
and Lin, 2003). Nonetheless, they should always be on an equal foot-
ing with the learner and never have an authoritative attitude (Chou,
Chan, and Lin, 2003).

However, while being potentially beneficial when well conceived,
inappropriately designed companions can also have a decremental
impact on performance and user-experience (Kennedy, Baxter, and
Belpaeme, 2015). For instance, discrepancies between users’ expecta-
tions towards the companion and the latter’s real possibilities would
lead to a bad perception of the companion (Norman, 1994). Such a
situation is likely to happen when the companion’s design is realis-
tic while its functionalities are basic (and do not allow it to interact
with the learner for instance). As a consequence, the design process
of such a companion must be very cautious. Several challenges have
to be addressed. On the one hand, the time, frequency, content and
style of the interventions (i.e., speech and displayed emotions) should
be determined. On the other hand, the appearance of the companion
and the consistency of the character (body style and size, face style)
with respect to its abilities should be investigated. The whole design
process of PEANUT is described in the following sections.

6.4 design & implementation of peanut - personalised

emotional agent for neurotechnology user-training .

In the following paragraphs, we will introduce the design process
as well as the implementation of PEANUT. The design process was
divided into two steps: we first designed PEANUT’s behaviour and
then its appearance. All the decisions were thoroughly considered
based either on a review of the literature, on the analysis of data
from previous experiments or on user-studies. The whole process
that led to PEANUT is described below.

6.4.1 Designing the Behaviour of PEANUT

In order to design a relevant behaviour for PEANUT, different as-
pects had to be considered:

— Support content - What kind of intervention (sentence & facial
expression) should the participant be provided with according
to the context (performance & progression)?

— Intervention style - How should the intervention be expressed
with respect to the context? In other words, should it be exclam-
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atory or declarative; personal (second person) or non-personal
(third person)?

— Performance and progression thresholds - What performance
should be considered as poor/average/good? What progres-
sion should be considered negative/neutral/positive? The rele-
vance of the interventions depends on these thresholds.

6.4.1.1 Support Content

The companion’s behaviour can be determined based on differ-
ent elements such as the user’s emotional, motivational or cognitive
states. Nevertheless, physiological sensor-based emotion and motiva-
tion detection being still far from perfect, we chose not to use them
for inferring users’ state and selecting PEANUT behaviour. As a con-
sequence, the interventions of the companion were solely selected
with respect to objective measures: their MI-BCI performance and
progression. Hereafter is provided a list of the possible intervention
categories Arroyo et al., 2009; Dweck, 2002, the context for which they
were selected and their goal. An intervention corresponds to the as-
sociation of a sentence and a facial expression (see also Figure 29 for
an exhaustive description of the intervention selection rules).

— Temporal interventions are related to the temporal progress of
the experiment. They are divided into 2 categories, Temporal-
Start and Temporal-End, the goal of which is to greet and say
goodbye to the users, e.g., “I am happy to meet you”. Both these
intervention types were associated with a facial expression of
Joy for PEANUT.

— Effort-related intervention categories i.e., General Effort and Sup-
port Effort, contain sentences like "Your efforts will be rewarded".
Indeed, it seems important to value the efforts that are made by
the participant throughout training Dweck, 2002. These sen-
tences focus on the fact that learning is the goal, and are in-
tended to minimise the importance of current performance while
promoting long-term learning Woolf et al., 2010. More specifi-
cally, General-Effort interventions are more adapted to negative
or neutral progression while Support-Effort interventions are
appropriate for positive progression. Therefore, General-Effort
interventions were associated with Trust while Support-Effort
interventions were associated with Joy.

— The category expressing empathy, i.e. General-Empathy, aims
at letting users know that their companion understands that
they are facing a difficult training process, through the use of
sentences such as "Don’t let difficulties discourage you" or "I
believe in you". Indeed, learning has been suggested to cor-
relate with the amount of empathy and support received Gra-
ham and Weiner, 1996. This type of intervention was preferably
provided for negative or neutral progression, especially when
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combined with bad performance. These interventions were as-
sociated with animations ranging from Sadness to Trust.

— Categories associated with performance/results and progres-
sion, i.e. Results-Good, Results-VeryGood and Progress-Good, only
target positive performance and progression, e.g., “You are do-
ing a good job!”. Sentences in this category were designed to
motivate users by focusing on the abilities they had already
acquired Jaques et al., 2004. Also, Results-Good and Results-
VeryGood were associated to Joy and Admiration, respectively,
while Progress-Good was associated to an animation going from
Surprise to Trust.

— The last category consisted in strategy-related interventions, i.e.,
Strategy-Change and Strategy-Keep, with sentences such as “You
seem to have found an efficient strategy”. These interventions
aimed at encouraging people to keep the same strategy when
progression was positive or to change strategy when it was
negative/neutral. Strategy-Keep was associated with Joy while
Strategy-Change was associated with an animation going from
Pensiveness to Joy.

6.4.1.2 Style of the Interventions

Each intervention could have been provided in different styles, e.g.,
as an exclamatory or declarative sentence; in a personal (second per-
son) or non-personal (third person) mode. We hypothesised that de-
pending on the context, the users’ perception of these different styles
could be different. Therefore, we led a user-study to determine the
style in which the intervention should be provided, depending on the
context. This user-study consisted in an online questionnaire simulat-
ing an MI-BCI user-training process.

Materials & Methods
We created 3 questionnaires, each of them simulating an MI-BCI train-
ing process in a different context: negative progression, neutral pro-
gression, positive progression. Each questionnaire included 8 situa-
tions, with two possible interventions for each situation (which re-
sulted in 16 intervention sentences per questionnaire). Each situation
corresponded to an MI-BCI task that the participant was asked to per-
form (left-hand motor imagery, mental subtraction or mental rotation
- as explained in Figure 31), followed by feedback indicating the suc-
cess of the task. After the situation was introduced, two different sen-
tences were displayed on screen. Participants had to rate each of them
(on a Likert scale ranging from 1 to 5) based on five criteria: appropri-
ate, clear, evaluative, funny, motivating. The object of this question-
naire was to determine the impact of the Context (negative, neutral
or positive progression), of the Type (exclamatory or declarative) and
of the Mode (personal or non-personal) on the five dimensions intro-
duced above. Thus, four kinds of sentences were presented in each
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context: exclamatory/personal, exclamatory/non-personal, declara-
tive/personal, declarative/non-personal. One hundred and four peo-
ple answered the online questionnaires. Each of them was randomly
allocated to one questionnaire, which makes around 34 participants
per Context. We led five 3-way ANOVAs for repeated measures, one
per dimension, to assess the impact of the Context (C3 - independent
measures), Type (T2 - repeated measures) and Mode (M2 - repeated
measures) on each dimension.

Results
For the 5 dimensions, the ANOVAs showed Context*Type*Mode in-
teractions: appropriate [F(2,101)=5.861 ; p60.005, η2=0.104], clear
[F(2,101) =21.596 ; p60.001, η2=0.300], evaluative [F(2,101)=11.461 ;
p60.001, η2=0.185], funny [F(2,101)=4.114 ; p60.05, η2=0.075], mo-
tivating [D(2,101)= 7.854; p60.001, η2=0.135]. These results seem
to confirm that the Type and Mode of each intervention should be
adapted to the Context:

— Negative progression - In this context, people definitely prefer
declarative and personal sentences that they find more appro-
priate, clear, funny, motivating and less evaluative.

— Neutral progression - Here, people prefer personal sentences, but
appreciate as much the declarative and exclamatory sentences
for all the dimensions.

— Positive progression - In this context, declarative and non-personal
sentences are perceived as more clear, appropriate and less eval-
uative while exclamatory and personal sentences are perceived
as more funny and motivating.

Discussion
Based on these results, we chose to provide users facing a negative
progression only with declarative personal interventions and those
facing a neutral progression with either declarative or exclamatory
personal interventions. Finally, depending on the intervention goal,
we chose to provide participants showing a positive progression with
declarative non-personal sentences (when the goal was to give clear
information about the task) or exclamatory personal sentences (when
the goal was to increase motivation) (see Figure 29). One should add
that when an exclamatory sentence was used for the intervention, the
emotion displayed through PEANUT’s facial expressions was made
more intense than for an equivalent declarative sentence.

These results are rather general and thus may prove useful and
relevant beyond this MI-BCI application, for any other training appli-
cation involving a learning companion, or more generally involving
support during a training process. Indeed, exclamatory sentences for
instance can be perceived as more aggressive than declarative sen-
tences, and should therefore be avoided in situations of failure. Also,
in case of failure, emotional support is very important. Thus, per-
sonal sentences should be favoured to make the user feel the compan-
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ion is really taking care of them. On the contrary, good performers do
not consider they really require this support and thus prefer general,
non-personal interventions.

6.4.1.3 Performance and Progression Thresholds

As previously mentioned, we aimed for PEANUT to provide inter-
ventions based on the user’s performances and progression. There-
fore, we had to determine thresholds of performance/progression de-
limiting intervals within which specific interventions should be pro-
vided. We decided to define 2 performance thresholds delimiting 3

intervals: bad, average and good performance. These thresholds were
labelled the "low performance threshold" and the "high performance
threshold". Similarly, we determined a "negative progression thresh-
old" and a "positive progression threshold", separating negative from
neutral, and neutral from positive progression, respectively. Finally,
we had to decide which data to use in order to estimate those thresh-
olds and to ensure that these estimations could reliably predict per-
formance and progression thresholds in subsequent uses of the BCI
by the user. To do so, we re-analysed the data from 17 participants
Jeunet et al., 2015b who had learned to perform the same three men-
tal tasks as in the present study, over the course of 6 sessions, using
the same training protocol (without the companion) as in the present
paper (see Section Experimental Protocol). A session comprised 5 se-
quences called runs. A run was divided into trials, the participant
being asked to perform a specific mental task during each of these
trials. Run 1 of session 1 was used to calibrate the system, i.e., the
data collected was used to optimise the BCI. We used classification
accuracy as the performance metric for each trial , i.e., the percentage
of EEG time windows that were correctly classified as the required
mental task for this trial (see Section EEG Recordings & Signal Process-
ing for details). In order to estimate the different thresholds, the data
was analysed offline with Matlab using the same algorithms as the
ones used online (see Section EEG Recordings & Signal Processing).

Estimating the Performance Thresholds
To estimate performance thresholds, we constructed the distribution
of performance values over trials, and defined the bad and good per-
formance thresholds as the 25th and the 75th percentiles of that dis-
tribution, respectively. Thus, the bottom 25% were considered bad
performances, the top 25%good performances, and the remaining
performances in-between were considered neutral. The question was
to assess the feasibility of predicting future performance (and thus
thresholds) based on the data collected at the beginning of the train-
ing (first run of the first session). Indeed, the sooner we are able to
determine the performance thresholds, the sooner we provided the
users with interventions adapted to their performance, thus maximis-
ing the relevance of these interventions. First, we checked whether
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we could estimate those thresholds on the first run with BCI use,
i.e., on run 2 of session 1 (run 1 being the calibration run). We thus
estimated the performance thresholds independently on run 2, and
on runs 3, 4 and 5 of session 1 together. We then computed their
correlations over participants, to find whether thresholds estimated
on run 2 could be used to predict thresholds estimated on run 3,
4, 5. We obtained significant correlations of r = 0.6422 (p < 0.01)
for bad performance thresholds, and of r = 0.5482 (p < 0.05) for
good performance thresholds. The ratio between the thresholds es-
timated on run 2 and the thresholds estimated with runs 3, 4 and 5

was 1.1525± 0.35 and 1.1249± 0.22 for bad and good performances,
respectively. Thus, in order to select the appropriate behaviour for
PEANUT, we used as thresholds for runs 3, 4 and 5 of session 1 the
thresholds estimated on run 2 divided by 1.1525 and by 1.1249, for
bad and good performance thresholds, respectively. However, thresh-
olds estimated on the data from a single run are bound to be less reli-
able than thresholds based on several runs. We thus studied whether
thresholds estimated on runs 2 to 5 together, could be used to predict
the thresholds of the runs of subsequent sessions. They appear to be
correlated with r = 0.6628 (p < 0.01) and 0.4438 (p = 0.07 - not signif-
icant but a strong trend), and a ratio of 1.2166± 0.33 and 0.9971± 0.13,
for bad and good performance thresholds respectively. Thus, to de-
termine PEANUT’s behaviour for subsequent sessions, we estimated
the thresholds on runs 2 to 5 of session 1, and divided them by 1.2166

and 0.9971, for bad or good performance thresholds, respectively.

Estimating the Progression Thresholds
To estimate progression thresholds, we used the performances from
N successive trials, and computed the slope of a linear regression
relating time (here trial indexes) with performance. A positive/nega-
tive slope indicated a positive/negative progression, respectively. We
then constructed the distribution of these regression slopes over tri-
als, and determined the negative progression threshold as the 25th

percentile of this distribution, and the positive progression thresh-
old as the 75th percentile of this distribution. Similarly as for the
performance thresholds, we studied whether we could predict the fu-
ture progression thresholds from their estimation on the first runs.
Nonetheless, progression estimation requires more trials than perfor-
mance estimation (N versus 1). As such there are fewer progression
measures in a single run, which in practice made it impossible to
reliably predict the progression thresholds of runs 3, 4 and 5 by us-
ing run 2 alone for threshold-estimation. However, it appeared to be
possible to predict progression thresholds for all the runs of sessions
2 to 6, from the threshold-estimated based on runs 2 to 5 of session
1. In particular, the positive progression threshold appeared to be
significantly correlated with both the positive (r = 0.4843, p < 0.05)
and negative (r = −0.5476, p < 0.05) progression thresholds from the
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Figure 29 – PEANUT’s rule tree. Depending on the performance and pro-
gression ("-"=negative, "="=neutral", "+"=positive), a set of rules
is determined. Type of sentences: "perso." for personal, "NoP-
erso." for non-personal ; Mode of the sentence: "decl." for declar-
ative, "excl." for exclamatory. Interventions: "GEff" for general
effort, "SEff" for support effort, "GEmp" for general empathy,
"SK" for strategy keep, "SC" for strategy change, "RG" for re-
sults good, "RVG" for results very good, "PG" for progress good,
"PVG" for progress very good. Moreover, "∧" sign represents
the logical "and" while "∨" sign represents the logical "or".
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subsequent sessions. Their ratio was 0.9628± 0.21 and −0.8182± 0.17
respectively. Note that these correlations were obtained for N = 6.
Indeed, we studied N between 2 and 10, and selected the best N
as the one maximizing the correlations, to obtain the most reliable
thresholds. Therefore, the progression thresholds were estimated by
computing the positive progression threshold from runs 2 to 5 of
session 1, and dividing it by 0.9628 and by -0.8182 to obtain the pos-
itive and negative progression thresholds for the remaining sessions.
The companion thus provided progression related interventions only
from session 2 onwards. These analyses also guided the selection
PEANUT’s intervention frequency. Since progression was measured
over N=6 trials, we informally tested different intervention frequen-
cies of about one every 6 trials. These informal tests with pilot testers
revealed that interventions every 6± 2 trials seemed appropriate, as
they were neither annoying nor too rare. PEANUT thus intervened at
that frequency, the exact trial of intervention being randomly selected
in the 6± 2 trials following the previous intervention.

6.4.2 Summary

Once all the parameters governing PEANUT’s behaviour had been
determined, we were able to build the rule tree that enables the sys-
tem to select one specific rule (i.e., an intervention content - sentence
& expression - and style) with respect to the context. Figure 29 is
a schematic representation of this rule tree: based on a specific per-
formance and progression, it will execute a set of rules to select the
appropriate intervention.

6.4.3 Physical Appearance of PEANUT

The following paragraphs relate the design process of PEANUT’s
body and facial expressions. While the former relies on a review of
the literature, the latter was based on a user-study.

6.4.3.1 PEANUT’s Body

The literature guided our choice towards the use of a physical
companion which would increase social presence in comparison to
a virtual companion Hornecker, 2011; Schmitz, 2011. Also, it seems
that the use of anthropomorphic features facilitates social interactions
Duffy, 2003. Moreover, for the companion to be relevant, the combi-
nation of physical characteristics, personality/abilities, functionalities
and learning function had to be consistent. For instance if a learner’s
expectations of the companion are too high, due to a very realistic
design for instance, motivation and credibility can be impacted neg-
ativelyNorman, 1994. Therefore, we were inspired by TEEGI Frey
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et al., 2014a and TOBE Gervais et al., 2016, two avatars aiming at
providing users with tools to explore their inner state (EEG and phys-
iological data, among others). Since their functions are simple and
they are unable to interact with the user, their designers chose to pro-
pose cartoon-like characters with anthropomorphic child-like shapes.
The functionalities of our companion being basic as well (reaction
to performance/progression through a simple intervention: a sen-
tence associated with a facial expression), we also decided to design
a cartoon-like companion rather than a realistic one. Thus, we used
the voice of a child to record PEANUT’s interventions (which also en-
abled us not to associate PEANUT with a gender). Furthermore, we
had to take into account our own constraints deriving from the size
of the smartphone we used to display PEANUT’s face and the learn-
ing environment. Indeed, the smartphone we chose was very large
(around 150*75 mm) so the head had to be quite large. This might
not be a problem though, as children also have a bigger head and
baby-like shapes can induce positive emotions through our design
Um et al., 2012. Finally, concerning the size of the companion, since
PEANUT was on the desk right next to the computer screen that the
feedback was displayed on, its proportions had to be suitable: not too
small so that the body was proportional to its face, and not too large
so that it could always be within a user’s field of view without con-
cealing the screen. This process resulted in a 30 cm high companion,
see Figure 31.

6.4.3.2 Facial Expressions of PEANUT

Based on the results of PEANUT’s behaviour design, we wanted
the companion to be able to express eight emotions: Trust, Joy, Sur-
prise, Admiration, Boredom, Sadness, Anger and a Neutral expres-
sions. We asked a designer to create three styles of faces (see Figure
30). We wanted the faces to be cartoon-like, so that they fit the body
and complied with the recommendations from the literature. The ob-
ject of the user-study introduced hereafter was to find the best style
(among three) for PEANUT with respect to 5 dimensions: expressive-
ness, sympathy, appeal, childlikeness, coherence.

Materials & Methods
We created an online questionnaire which was divided into different
items, with each item corresponding to one emotion. These items
were presented in a random order. For each item, the three face
styles were presented (in a counterbalanced order), side by side. Par-
ticipants were asked to chose which of the three styles was the most
expressive, sympathetic, appealing, infantile and coherent (referred
to as the dimension hereafter). They were also asked to rate each
style on a 5-point Likert scale. Ninety-seven participants answered
the online questionnaire. We first led a 1-way ANOVA to determine
if the rates associated with each style were different. Then, we led
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a 3-way ANOVA for repeated measures, to assess the impact of the
face style (F3 - repeated measures), the type of emotion (E8 - repeated
measures) and the dimension (D5 - repeated measures) on the allo-
cated score.

Results
On a 5-point Likert scale, the face with eyebrows was rated 3.58 ± 1.26,
the face with a nose 2.96 ± 1.37 and the simple face 3.86 ± 1.10. The
1-way ANOVA for repeated measures revealed a main effect of the
style [F(1,93)=8.442 ; p60.005, η2=0.083]: the simple face and the face
with eyebrows were significantly better rated than the face with a
nose. However, there was no difference of rating between the sim-
ple face and that with eyebrows. Thus, we then performed a 3-way
ANOVA for repeated measures to evaluate the effect of the face, of
the emotion and of the dimension on the rating. Results suggested
a main effect of the style of face [F(1,93)=17.543 ; p60.001, η2=0.159],
of the emotion [F(1,93)=11.307 ; p60.001, η2=0.108] and of the dimen-
sion [F(1,93)=12.184 ; p60.001, η2=0.116]. Moreover, face*dimension
[F(1,93)=58.531 ; p60.001, η2=0.386], face*emotion [F(1,93)=11.307 ;
p60.001, η2=0.108] and dimension*emotion [F(1,93)=17.543 ; p60.001,
η2=0.159] interaction effects were revealed. The face with the eye-
brows was significantly preferred to the others, which was strength-
ened by participants’ comments indicating that eyebrows increased
expressiveness. However, this face was not preferred for Joy and
Admiration. An analysis of the comments helped us improve those
expressions: in particular, several people felt like the shape of the
eyes gave the impression the companion was about to cry and that it
was squinting.

Discussion
For PEANUT, we selected the face with eyebrows (see Figure 30)
which our results suggested was the most appropriate. We asked
the designer to improve the expressions of Joy and Admiration with
respect to participants’ comments. In a second instance, the designer

Figure 30 – Three face styles, with the example of 2 emotions: Joy and Sur-
prise. Participants of the dedicated user-study selected the face
with eyebrows for PEANUT.
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animated each of the expressions. The animations enabled a transfer
from a neutral expression to a high intensity of each of the emotions.

Figure 31 – Illustration of a participant taking part in a Mental-Imagery
based Brain-Computer Interface (MI-BCI) training process dur-
ing which he learns to perform different MI-tasks (here, imag-
ining a left-hand movement) to control the system. Along the
training, PEANUT provides the user with social presence and
emotional support adapted to his performance and progression.
This photo is an illustration ; the real experiments were per-
formed in an experimental room, and PEANUT was providing
interventions only between the trials - not during the trials so
that it does not disturb the participant while the latter was per-
forming the MI-tasks.

6.4.4 System Architecture

Implementing the whole BCI system as well as PEANUT required
to design, assemble and connect multiple pieces of hardware and soft-
ware. Users’ EEG signals were first measured using EEG hardware
(g.tec gUSBAmp, g.tec, Austria) and then collected and processed on-
line using OpenViBE Renard et al., 2010. OpenViBE provided users
with a visual feedback about the estimated mental task, and com-
puted users’ performances which were then transmitted to a home-
made software, the "Rule Engine" using the Lab Streaming Layer
(LSL) protocol (https://github.com/sccn/labstreaminglayer). The
rule engine processed performance measures received from Open-
ViBE to compute progression measures and browsed the Rule Tree
described in Figure 29 in order to select an appropriate intervention
(sentence and facial expression) for PEANUT with respect to the con-
text. The selected intervention was then transmitted to an Android
smartphone application, using WebSocket, which enunciated the sen-
tence and animated PEANUT’s facial expression. This whole archi-
tecture is summarised in Figure 32. These modules are described
hereafter.
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Figure 32 – Schematic representation of a standard MI-BCI functioning loop
to which we added PEANUT. PEANUT takes as an input the
user’s MI-BCI performance. Based on this performance, it will
compute user’s progression and consequently select a specific
intervention (sentence & facial expression) displayed using a
smartphone (placed as PEANUT’s face). The aim of this inter-
vention is to provide the user with emotional support and social
presence.

6.4.4.1 Rule Engine

The Rule Engine software receives from OpenViBE the markers
indicating the start and end of trials, runs and sessions, as well as
performance measures at the end of each trial. It first computes a
progression measure (see Section Estimating the progression thresholds)
and then browses the rule tree in order to select the intervention type
to be triggered. Each intervention type contained between 1 and 17

sentences. One of them was selected randomly, taking care not to
take a sentence that had already been chosen in the same run (thanks
to a small cache of already triggered sentences kept for each category)
in order to avoid repetition. Finally, the Rule Engine sent intervention
identifiers to the smartphone application.

6.4.4.2 Smartphone - Sentence Enunciation, Facial Expression Animation

To display the facial animations and enunciate the sentences, we
chose to use an Alcatel OneTouch Idol 3 with 5.5" screen, running
Android 5.0.2. Indeed, such a device integrates all the required hard-
ware (CPU, screen and speaker) in a small form factor that can be
embedded in the head of the companion to display its face.We de-
signed an Android application that displays the face of the compan-
ion, plays animations and sounds when required. By default a neu-
tral facial expression is shown, with eye-blinks occurring from time
to time. When intervention identifiers were received from the Rule
Engine, the application animated the facial expressions and enunci-
ated the sentences. Each of the (126) sentences had been previously
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recorded (as explained in the Physical appearance of PEANUT section).
We used Praat software (http://www.fon.hum.uva.nl/praat/) offline
in order to realise phonetic alignment with the companion’s mouth
movements for each sentence. Thus, phonemes, that may be de-
scribed as individual sounds that make up speech, were aligned on
the speech signal. Furthermore, visemes correspond to the shape of
the mouth when a phoneme is pronounced (several phonemes may
correspond to a given viseme). The number of visemes depends on
the language used and the desired fidelity. As our companion’s style
is cartoon-like, we did not aim for high fidelity: we used 35 phonemes
and 8 visemes. Once the animations and sounds had been planned,
the application combined visemes corresponding to phonemes in the
chosen sound, and added them to the animation plan. Finally, the
application scheduled animations and sounds for execution (for in-
stance, to ensure that an animation did not start while the companion
was blinking).

6.5 test of the efficiency of peanut to better mi-bci

user- training .

Once the companion’s behaviour and appearance had been de-
signed and implemented, the next step consisted in validating its
efficiency to improve MI-BCI user-training both in terms of MI-BCI
performance and user-experience. Below we present the study per-
formed to test PEANUT’s efficiency.

6.5.1 Materials & Methods

6.5.1.1 Participants

Thirty-two MI-BCI-naive participants (15 women; aged 23.16±2.50)
took part in this study, which was conducted in accordance with the
relevant guidelines for ethical research according to the Declaration
of Helsinki. This study was approved by the local ethical commit-
tee. All the participants signed an informed consent form at the be-
ginning of the experiment and received a compensation of 50 euros.
Each participant was allocated to one of 3 groups, which determined
the support they would received throughout the MI-BCI training ses-
sions: no learning companion (control group #1), learning companion
not adapted to their MI-BCI performance & progression (control group
#2), learning companion adapted to their MI-BCI performance & pro-
gression (experimental group). For the control group #1, data from a
previous experiment Jeunet et al., 2015b were used: among the 18

participants, 11 were selected so that they matched, as far as possible,
the characteristics of the participants from both the other groups in
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terms of gender, tension and self-reliance scores Cattell and Cattell,
1995.

6.5.1.2 Experimental Protocol

Please refer to Figure 33.

6.5.1.3 Variables & Factors

We studied the impact of the group (no companion, non-adapted
companion, adapted companion) on participants’ MI-BCI performance,
with respect to the session and participant’s profile (tension and self-
reliance scores). We also evaluated the impact of the group on MI-BCI

Figure 33 – Materials & Methods of the Study aiming at testing PEANUT’s
efficiency, Section 6.5
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Figure 34 – Timing of a trial

usability and on the perception of the companion, with respect to MI-
BCI performance. The corresponding questionnaires can be found in
Appendix A & C, respectively.

6.5.2 Results

6.5.2.1 MI-BCI Performance

Due to technical issues, several participants of the groups accompa-
nied by PEANUT were provided with a sub-optimal classifier which
resulted in low peak classification accuracy (measured at the time
window of the feedback period for which the classification accuracy
over all trials is maximal). Indeed, the group with no companion
(N=11) obtained 63.97% ± 5.18, the group with a non-adapted (N=11)
companion obtained 52.48% ± 11.17 and the group with the adapted
companion (N=10) obtained 48.25% ± 5.73 classification accuracy at
the first session. One outlier participant of the group provided with
a non-adapted companion was excluded (his performance, 78.74%,
was superior to the mean of his group plus two standard deviations).
Thus, the following analysis was performed on 31 participants. The
one-way ANOVA for repeated measures indicated a significant effect
of the group on peak performance of the first session [F(2,30)=11.995,
p60.001]. A similar result was obtained for mean performance.

As a consequence, we were not able to compare the performance
of the different groups for the other sessions. Nonetheless, we per-
formed several other analyses to evaluate user-experience, by taking
the performance as a covariable so that the usability scores are inde-
pendent from the performance.

6.5.2.2 Usability Questionnaires

The following section is dedicated to the description of usability
scores attributed to the MI-BCI system by each group. These scores
appeared to be dependent of users’ performance. Thus, we will
present the analyses associated to mean and peak performance sepa-
rately, most of the results being similar between both. We analysed
the influence of the group on usability scores, and more specifically
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on 4 dimensions: learnability/memorability (LM), efficiency/effec-
tiveness (EE), safety, satisfaction. We performed four 1-way ANCO-
VAs (one per dimension) with the Group as factor, the usability score
for the target dimension as dependent variable and the mean/peak
classification accuracy as covariable.

Mean Performance
The results of the ANCOVA revealed tendency towards a main effect
of the group on the LM dimension [D(2,30)=2.508; p=0.100, η2=0.157]:
participants who were provided with a companion (adapted or not)
considered the system’s learnability/memorability as higher than those
with no companion ; a main effect of the performance was also re-
vealed [D(1,30)=5.252; p60.005, η2=0.163]: thus, performance influ-
ences the perception of usability (the higher their performance, the
better users rate LM). Concerning the EE dimension: a main effect
of the Group was revealed [D(2,30)=3.999; p60.05, η2=0.228]: partici-
pants who were provided with a companion (adapted or not) consid-
ered their efficiency/effectiveness as higher than those with no com-
panion while interacting with the system ; similarly to the LM dimen-
sion, a main effect of the performance was revealed [D(1,30)=10.780;
p60.005, η2=0.285]. Nonetheless, for both safety and satisfaction, no
effect of the group was revealed.

Peak Performance
Results revealed a main effect of the group on the LM dimension
[D(2,30)=4.901; p60.05, η2=0.266]: participants who were provided
with a companion (adapted or not) considered the system’s learnabil-
ity/memorability as higher than those with no companion ; a main
effect of the performance was also revealed [D(1,30)=10.987; p60.005,
η2=0.289]: thus, performance influences the perception of usability

Figure 35 – LM and EE scores with respect to users’ group, after the AN-
COVA correction for the performance (estimated performance:
57,33% peak classification accuracy). Participants who were ac-
companied by PEANUT rated the MI-BCI system usability sig-
nificantly better than the others.
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(the higher their performance, the better users rate LM), see Figure 35.
Similar results were found for the EE dimension: a main effect of the
Group was revealed [D(2,30)=7.939; p60.005, η2=0.370]: participants
who were provided with a companion (adapted or not) considered
their efficiency/effectiveness as higher than those with no compan-
ion while interacting with the system ; similarly to the LM dimen-
sion, a main effect of the performance was revealed [D(1,30)=21.952;
p60.001, η2=0.448], , see Figure 35. Nonetheless, for both safety and
satisfaction, no effect of the group was revealed.

6.5.2.3 Perception of the Companion

On the other hand, we also explored the potential difference of per-
ception of the companion with respect to the fact it was adapted to
users’ performance and progression or not. Despite the high variabil-
ity of scores allocated to the adapted companion (71.43% ± 19.92) and
to the non-adapted companion (52.96% ± 22.89), the 1-way ANOVA
revealed a strong trend towards a main effect of the Group [F(1,19)=
3.746, p=0.069] suggesting that users provided with the adapted com-
panion found it more appropriate and enjoyable.

6.5.2.4 Impact of the Profile on Performance and Progression

Finally, we performed two last analyses to assess the impact of
the profile (self-reliance and tension levels) on performance, depend-
ing on the group and on the training session number. We re-trained
offline the classifier at the beginning of each session so that so that
users’ performance were not dependent on their previous control abil-
ities. Thus, two 2-way ANCOVAs with the Group and Session Number
as factors and the Performance as dependent variable were performed.
The first ANCOVA took users’ self-reliance scores as covariable while
the other one took their tension scores. No significant result was re-
vealed concerning the self-reliance scores. However, a main effect of
the Session was revealed for the ANCOVA using the tension level
as covariable [F(1,27)=7.223 ; p60.05, η2=0.211]. More importantly,
this same analysis also revealed, a Session * Tension level interaction
[F(1,27)=5.054 ; p60.05, η2=0.158]. These results suggest that users
progress along the sessions, but that their ability to improve depends
on their tension level. Pearson correlation analyses revealed strong
negative correlations between the Tension level and the Progression
between sessions 1 & 3 [r=-0.334, p=0.066] and Progression between
sessions 2 & 3 [r=-0.357, p60.05]. This result suggests that highly
tense participants are the ones struggling the most to improve in per-
formance. It confirms the importance of this personality trait for BCI
training as was suggested in the first studyrelated in this Chapter.
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6.5.3 Discussion

While this study did not allow us to draw conclusions about the
impact of PEANUT on BCI performance (due to random initial differ-
ences between groups), it revealed several interesting points. In par-
ticular, using PEANUT improved the usability of the MI-BCI: partici-
pants in both groups using PEANUT gave significantly higher learn-
ing/memorability scores and efficiency/effectiveness scores than those
given by the group with no companion. We therefore reached one of
our objectives: to improve MI-BCI training user-experience (which
is currently rather poor) thanks to the use of a learning companion
providing emotional support and social presence. Our participants
also seemed to prefer PEANUT with an adapted behaviour, as they
graded the general perception of PEANUT higher in the adapted
behaviour group (trend towards a significant effect: p=0.069). This Link to a video of

PEANUT: here!is in line with the literature from educational psychology that we
followed and that recommended providing adapted feedback Shute,
2008. Overall, this confirmed that carefully designing PEANUT based
on the literature from educational psychology and user-centred de-
sign methods substantially benefited MI-BCI training user-experience.
Another interesting result is the impact of users’ tension on MI-BCI
training: highly tense users struggle to improve their performance
over MI-BCI training sessions; this confirms the results obtained in
Jeunet et al., 2015b in which Tension was one of the variables that
could be used to predict BCI performances.

– December 13, 2016

https://youtu.be/p1ZCMf0rFF4


144 considering personality

PA RT I I I - P R O S P E C T S : T O WA R D S A C O G N I T I V E &
E M O T I O N A L S U P P O RT P R O V I D E D B Y A L E A R N I N G
C O M PA N I O N T O I M P R O V E M I - B C I U S E R - T R A I N I N G

roadmap -

quick summary -
Using PEANUT seems to be a promising approach to improve MI-
BCI user-training. In this section, we discuss how PEANUT could
evolve. First, PEANUT’s behaviour should not only be adapted to
users’ performance and progression, but also both to their personality
and emotional state. On the other hand, beyond emotional support,
PEANUT could be a promising tool to provide users with cognitive
support to help them improve their performance. More specifically,
we discuss how PEANUT and TEEGI (Frey et al., 2014a) could be
combined to provide explanatory feedback.

collaborators -
Léa Pillette (Engineering Student - and new PhD student :) ).
Renaud Gervais & Jérémy Frey (Post-Doc Fellows)
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6.6 prospects - using peanut to provide users with cog-
nitive support.

In this chapter, we first showed that personality had a significant
impact on the ability of users to control an MI-BCI. More specifically,
it seems that imaginative users as well as active learners perform
better. On the other hand, highly tense and non-autonomous users
struggle when learning to use an MI-BCI system.

Literature shows that highly tense and non-autonomous people re-
quire more emotional support and social presence throughout the
learning process. Such support is not currently provided in standard
training protocols: most of the time, MI-BCI users are alone in front
of a computer. With the aim of providing emotional support and so-
cial presence, we introduced a learning companion dedicated to MI-
BCI user-training: PEANUT. The strength of this companion is the
way it was designed: by combining recommendations from the litera-
ture, the analysis of data from previous experiments and user-studies.
What is more, these user-studies provided useful insights about the
kind of intervention that users prefer depending on their progres-
sion, which could be useful beyond the field of MI-BCIs. PEANUT
was validated in a large MI-BCI study (32 participants, 3 sessions per
participant), with three conditions: no learning companion, a learn-
ing companion with a generic behaviour, and a learning companion
whose behaviour was adapted to users’ performance and progress.
This study revealed that using PEANUT had a substantial impact on
user-experience. First, participants who used PEANUT found it was
easier to learn and memorise how to use the MI-BCI system and rated
themselves more efficient and effective than participants who had
no learning companion. Moreover, participants expressed a better
general preference for the companion which provided interventions
adapted to their performance/progression than for the non-adapted
companion, which is in line with the literature (Shute, 2008).

To summarise, it seems that using PEANUT does benefit MI-BCI
user-experience. In the future, a larger and more homogeneous pop-
ulation should be included in order to quantify any potential impact
of PEANUT on MI-BCI performance. It would also be interesting to
define more refined performance measures in order to provide more
specific/adapted interventions, possibly further improving the sup-
port.

Furthermore, it would also be of utmost importance to consider
the two other aspects of personality related to MI-BCI performance
(based on our study - Jeunet et al., 2015b): namely, abstractedness (or
imagination abilities) and the active/reflective dimension of the learn-
ing style. First, it would be interesting to make PEANUT able to help
users develop their abstractedness abilities. One possible hypothe-
sis is that more imaginative users present abilities to control MI-BCI
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because they are able to produce varied mental-images, and thus to
modify their strategy by exploring new mental-images when neces-
sary (this hypothesis of course requires further investigation). There-
fore, a future experiment could consist in investigating the ability of
PEANUT to guide users towards the exploration of different strate-
gies potentially leading to improved MI-BCI user-training. In the
same vein, active users, who "learn by doing", seem to perform bet-
ter than reflective users, who "learn by thinking". This result agrees
with results obtained by Neuper et al., 2005 which suggest that ki-
naesthetic motor-imagery leads to better MI-BCI performance than
visual motor-imagery. While visual motor-imagery is reflective as it
consists in visualising one’s own hand (or the hand of a third party)
moving, kinaesthetic motor-imagery can be categorised as active as it
suggests the person is sending a motor command to their limb with-
out moving it. It would be of utmost interest if PEANUT was able to
determine the type of MI being performed in real time and to guide
the user towards appropriate strategies with respect to their profile.

Both these types of support are classed as cognitive support. This
kind of support is also known as explanatory feedback and is recom-
mended by the educational psychology literature to ensure efficient
training (Shute, 2008). Although promising, explanatory feedback
cannot yet be provided in the context of BCIs. Indeed, it would re-
quire the definition of a cognitive model of MI-BCI tasks, i.e., theo-
retical knowledge about the skills to be acquired and how to acquire
them, in order to provide users with appropriate advice leading them
to the acquisition of MI-BCI related skills. The development of a cog-
nitive model of MI-BCI tasks is elaborated in the Prospects of this
manuscript, i.e., in Chapter 9.

Nonetheless, we hope that such theoretical knowledge will soon
be developed so that we are able to provide better cognitive and
emotional feedback to MI-BCI users thanks to the use of learning
companions. One direction we are thinking of is to combine the use
of PEANUT with the use of TEEGI (Frey et al., 2014a). TEEGI is a
Tangible EEG Interface that was developed in our team, Potioc, by
Jérémy Frey and Renaud Gervais. Originally, TEEGI was designed as
an avatar to enable the general public to visualise their brain activ-
ity and the neurophysiological consequences of different tasks such
as executing movements of their arms or closing their eyes, see Fig-
ure 36. This constructivist approach, through self-paced exploration,
allowed participants to significantly improve their knowledge about
the motor and visual cortex. In the context of MI-BCI user-training,
once a cognitive model of the task has been established, combining
PEANUT with TEEGI could enable PEANUT to propose strategies
and provide cognitive support to users. Users could apply the advice
provided by PEANUT and visualise how it impacts the neurophysi-
ological patterns on their avatar, i.e., on TEEGI. Despite the fact that
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we do not yet have such a cognitive model of the task, we still know
that theoretically, to optimise the efficiency of signal processing al-
gorithms and thus the classification accuracy, users should produce
stable and distinct brain activity pattern for each of the MI tasks.
Thus, the first step of the user-training process could be the visual-
isation of their brain-activity while performing different MI-tasks on
TEEGI. Helped by PEANUT, users could be trained to generate stable
and distinct brain-activity patterns. The visual feedback could indeed
overcome the lack of sensorimotor feedback while performing men-
tal tasks, while the cognitive support could help users to be guided
throughout the acquisition of these skills. Nonetheless, since brain
activity is extremely complex with a high noise-signal ratio, it should
not be provided in its raw state. Rather, the information on display
should be carefully selected so that users’ cognitive resources are not
overloaded and they are still able to acquire skills.

Figure 36 – Photo of TEEGI. TEEGI enables the visualisation of brain pat-
terns associated to specific tasks such as the execution of motor
movements.

Such a learning companion that is able to provide emotional and
cognitive support could be very useful in different rehabilitation con-
texts. For instance, as depicted in the previous chapter, MI-BCIs are
promising for stroke rehabilitation as they enable therapists both to
visualise brain-activity in real time and to provide the user with a sen-
sorimotor feedback accordingly. Also, as stated in the same chapter,
stroke patients often suffer from depression and from various cog-
nitive impairments (attention, memory, etc.). PEANUT could both
help to cope with the depressive state of patients by providing them
with emotional support and help to overcome their cognitive impair-
ments through cognitive support which aims to maintain their atten-
tion towards the task and helps them to remember the tasks to be
performed.
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We hope that more effort will be provided to establish a cogni-
tive model of the task so that such learning companions could be-
come standard useful tools for MI-BCI user-training. We think this
approach could push BCI performance and usability much further.
In this view, we designed and implemented PEANUT for a low cost,
using only open-source and free software.
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7
C O N S I D E R I N G T H E F E E D B A C K T O U N D E R S TA N D
& I M P R O V E M I - B C I U S E R - T R A I N I N G .

7.1 research question

The review of the literature dealing with current training protocols,
introduced in Chapter 1, suggests that these protocols are, at least the-
oretically, inappropriate to acquire a skill and thus that they could be
one of the factors responsible for inefficient MI-BCI user-training. In
particular, participants are most of the time provided with uni-modal
and evaluative feedback while literature recommends multi-modal,
informative and supporting feedback (Lotte, Larrue, and Mühl, 2013).
Although instructive, these insights (summarised in Lotte and Jeunet,
2015; Lotte et al., 2013) only provide theoretical considerations about
the flaws associated with the feedback approaches used in MI-BCI.
It is therefore necessary to concretely assess whether standard MI-
BCI feedback is appropriate to train a skill, and to what extent the
feedback impacts BCI performance and skill acquisition. Thus, the
first object of Part I of this section was to evaluate the efficiency of
a standard feedback, i.e., the Graz protocol feedback (Pfurtscheller
and Neuper, 2001), for the acquisition of MI-BCI related skills. As de-
scribed in Chapter 1, this feedback corresponds to the classifier out-
put provided to the users as a blue bar (the direction and length of
which informs the user about the task recognised by the system and
its confidence in whether the task was recognised correctly, respec-
tively). The following Part I determines the impact of the feedback
on MI-BCI skill acquisition and investigates the aspects of the feed-
back that could be modified in order to improve MI-BCI user-training.
In Part II we propose an alternative to the standard (visual) feedback:
a vibrotactile feedback. We justify this choice and then depict the
design, validation and testing of this feedback in an MI-BCI training
context, before presenting prospective evaluations in Part III aiming
at understanding the cognitive and neurophysiological mechanisms
underlying the efficiency of different kinds of feedback.

149
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PA RT I - H O W D O E S T H E F E E D B A C K I N F L U E N C E
M I - B C I U S E R T R A I N I N G ?

roadmap -

quick summary -
We have shown that the feedback MI-BCI users are provided with is
theoretically inappropriate. In order to experimentally evaluate the
extent to which such a feedback has an impact on their ability to ac-
quire a skill, we used it to teach users to perform simple motor tasks.
Results (N=53) revealed that with this feedback, 17% did not man-
age to learn the skill. A sub-group of participants (N=20) then took
part in a motor-imagery based BCI experiment. Results showed that
those who struggled during the first experiment improved in perfor-
mance during the second, while the others did not. We hypothesise
that these results are linked to the considerable cognitive resources
required to process this feedback.

collaborators -
Alison Cellard (Engineer) & Emilie Jahanpour (Master Student).
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computer interface (BCI) training protocols should be changed: an experi-
mental study.’ In: Journal of neural engineering 13.3, p. 036024.
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7.2 study 1 : investigating the relevance of a standard

feedback to acquire skills .

The objective of this first study was to evaluate the impact of a stan-
dard feedback (from the Graz protocol, introduced in Chapter 1) on
participants’ ability to acquire a skill in an MI-BCI free context. It is
necessary to perform this evaluation independently from MI-BCIs, to
rule out possible biases due to BCI complexity, EEG non-stationarity
and poor signal-to-noise ratio. Indeed, if a BCI training results in
poor performances (i.e., the subject fails to obtain BCI control), this
might not be due to the training protocol itself but simply to poor
EEG signal processing, noisy or non-stationary signals, or to the fact
that the relevant neural signals cannot be found in the EEG signals
due to the orientation of the user’s cortex, for instance. Therefore,
to study the impact and usefulness of a given training protocol (and
here more specifically a feedback approach), it is necessary to study
it without the possible confounding factors originating from the BCI
design.

Yet, studying the impact of this protocol in a BCI-free context led to
a major challenge: finding tasks comparable to motor-imagery tasks.
Or, in other words, tasks for which the standard feedback we will
provide the participants with is as relevant as it is for MI-BCI tasks.
It is not possible to provide users with a feedback about their perfor-
mance at motor-imagery tasks without EEG or BCI. We thus looked
for equivalent motor tasks. These motor tasks had to respect different
constraints. First, as stated before they had to be relevant for the stan-
dard feedback. Also, their associated instruction had to be simple
and the task precise, but while precise, the task also had to be vague
enough to be associated to different possible strategies as the goal for
the participants (as is the case for MI-BCI) was to find the right strat-
egy so that the system recognises their actions. Finally, the task had
to be possibly performed continuously during the feedback period.

We finally elected two motor tasks that participants were asked
to learn to perform: drawing triangles and circles with a pen on a
graphic tablet (see Figure 37), using the Graz protocol (Pfurtscheller
and Neuper, 2001) (i.e., same instructions and feedback). As would
have been the case in an MI-BCI training context, in which users have
to learn a suitable movement imagination strategy, the participants
here had to learn the strategy which allowed the system to correctly
recognise their drawing, e.g. they had to identify the suitable shape
size, angles and speed of drawing. The participants were divided into
two groups: one used a "Standard" training approach (Pfurtscheller
and Neuper, 2001) while the other one used a "Partially Self-Paced"
BCI training approach, which provides the user with more autonomy.
Indeed, with the standard approach, no autonomy is given to the user,
who always has to perform the tasks required by the protocol. Yet,
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autonomy is known to increase motivation and learning efficiency in
general (Lotte et al., 2013). Interestingly enough, the study described
in Neuper et al., 2003 obtained promising results when providing
more autonomy to a single BCI user.

7.2.1 Materials & Methods

7.2.1.1 Participants

54 BCI-naive and healthy participants (20 females; aged 25.1 ± 4.6
year-old) took part in this study, which was conducted in accordance
with the relevant guidelines for ethical research according to the Dec-
laration of Helsinki. This study was also approved by the legal au-
thorities of Inria Bordeaux Sud-Ouest (the COERLE, approval num-
ber: 2015-004) as it satisfied the ethical rules and principles of the
institute. All the participants signed an informed consent form at the
beginning of the experiment.

Figure 37 – Picture of a participant during the experiment. The instruction
(red arrow pointing right) indicates that the participant has to
draw triangles on the graphic tablet.

7.2.1.2 Experimental Paradigm

Each participant (N=54) had to learn to do 2 motor tasks, namely
to draw circles and triangles on a graphic tablet so that they were
recognised by the system. The training session was divided into runs
which were either standard (s) or self-paced (sp). S-runs were com-
posed of 20 trials per task. At the beginning of each trial a green cross
was displayed. After 2s, an auditory cue (a beep) triggered the atten-
tion of the participant towards the red arrow, which was displayed
at 3s for 1s, and indicated which task the participant had to perform,
i.e., draw triangles or circles continuously upon appearance of a right
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or left arrow, respectively. The mapping between the task (drawing
circles or triangles) and the instructions/feedback (arrow/bar extend-
ing to the left or right) being incongruent, we helped the participants
to remember it by providing them with a picture representing the
cross of the Graz protocol with a circle on its left and a triangle on
its right side. This picture was visible at all times to ensure subjects
could refer to it whenever needed. At 4.25s, a blue feedback bar ap-
peared and was updated at 16Hz for 3.75s. Its direction indicated the
shape recognised by the classifier (left: circle, right: triangle) and its
length was proportional to the classifier output. During sp-runs, no
instructions were given: the participants were asked to do the motor
tasks in an autonomous way, i.e., they could do the task they wanted
to, whenever they wanted to.

All participants were provided with the following instruction: “Your
goal is to find the right strategy so that the system recognises as well
as possible the shape you are drawing, which will concretely corre-
spond to having the feedback bar as long as possible in the correct
direction: left for circles and right for triangles”.

Half the participants (N=27) were asked to learn using a Standard
(S) training approach: they completed 4 seven-minute-long s-runs.
The other half learned using the Partially Self-Paced (PSP) training
approach: the 1st and 4th runs were s-runs, while the 2nd run was
replaced by a 3.5 minute long sp-run followed by a shortened s-run
(10 trials per task, 3.5 minutes), and the 3rd run was replaced by a
shortened s-run followed by a 3.5 minute long sp-run. Total training
duration was the same in both conditions. We studied the impact of
the condition, S vs. PSP, on the recognition accuracy of triangles and
circles by the system and on subjective experience (measured by a
usability questionnaire -UQ-).

7.2.1.3 Variables & Factors

The dependent variable was the Performance obtained by the par-
ticipants at the motor-tasks (i.e., the accuracy with which the draw-
ings were recognised by the system). The factors considered were
the run number and the condition to which the participant had been
allocated to (standard vs. partially self-paced). Also, at the end of
the experiment, participants have been asked to complete a usabil-
ity questionnaire measuring 4 dimensions: learnability/memorabil-
ity (LM), efficiency/effectiveness (EE), safety and satisfaction. These
four dimensions were studied as dependent variables potentially in-
fluenced by the Condition.

7.2.1.4 Signal Processing

In order to discriminate triangular from circular pen movements
on the graphic tablet, we used a pattern recognition approach as in
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BCIs. To this end, the 2D position of the pen on the tablet was ac-
quired at a sampling frequency of 16 Hz. From the past 1s-long time
window (in a sliding window scheme, with 1/16s step between con-
secutive time windows, with overlap) of the 2D pen position, a his-
togram of angles was computed. More precisely, the angles between
each consecutive segment of the time window were first computed.
Then the number of angles falling in the ranges 0-30o, 30-75o, 75-
105o, 105-150o and 150-180o were counted, and these 5 count values
were used as input features for a Linear Discriminant Analysis (LDA)
classifier. The (subject-independent) LDA classifier was trained on
60 trials from each movement, from 2 persons (1 left-handed, 1 right-
handed). The resulting classifier could discriminate triangles from
circles with 73.8% classification accuracy (10-fold cross-validation on
the training set), which is an accuracy equivalent to the average ac-
curacy of an MI-BCI Blankertz et al., 2010a. The output of the LDA
was mapped to the direction and length of the feedback bar, as in a
typical MI-BCI.

Classically, subject-specific classifiers are used in BCI experiments.
Nonetheless, here, the task being extremely simple, such a classifier
would most likely have been perfect, i.e., with 100% classification ac-
curacy, which is not the case in BCI experiments. We thus used a
subject-independent classifier which enabled us to have a classifica-
tion accuracy similar to that obtained for BCI. Furthermore, a subject-
specific classifier would have added another bias to the training pro-
tocol evaluation as the obtained accuracy would also have depended
on how well the two gestures were performed during the calibration
run, and not only on the training protocol (instructions, tasks and
feedback). Again, here we wished to isolate the training protocol in
order to study it, hence the use of a subject-independent classifier
(i.e., the same classifier for all), in order to obtain results that were
independent from the classifier.

7.2.1.5 Analyses

To study how well subjects could learn the motor tasks, we mea-
sured their performance as the average classification accuracy ob-
tained to discriminate triangular from circular pen movements, av-
eraged over the whole feedback period, i.e., from t=4.25s to t=8s after
the start of the trial. In order to analyse the interaction between the
"Condition" (2 modalities: S and PSP; independent measures) and the
performance obtained at each "Run" (4 modalities: run1, run2, run3
and run4; repeated measures), we performed a 2-way ANOVA for
repeated measures. Moreover, we asked the participants to complete
a usability questionnaire which measured 4 dimensions: learnabili-
ty/memorability (LM), efficiency/effectiveness (EE), safety and sat-
isfaction. Thus, we did four one-way ANOVAs, each of them aim-
ing at analysing the impact of the "Condition" on one "Evaluated
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Figure 38 – Graphic representing the performance of the participants (mean
classification accuracy) as a function of the run. For a better
visibility, we chose to represent the 10 best and 10 worst per-
formers. The average performance of the 34 other participants
is represented by the large grey line.

Dimension" (4 modalities: LM, EE, safety and satisfaction; repeated
measures).

7.2.2 Results

7.2.2.1 Performance analyses

Results (depicted in Figure 38) showed that 45 out of 54 partici-
pants managed to learn the task, i.e. obtained more than 70% aver-
age performance 1 -classification accuracy- (Müller-Putz et al., 2008)
(X̄ = 89.09%; SD = 6.35; range = [72.84, 98.26]) while 9 did not manage
(X̄ = 55.68%; SD = 6.35; range = [50.23, 65.64]). This rate of 16.67%
of people who did not manage to learn allows one to hypothesise
that BCI illiteracy could not only be due to the user, but also partly
to the training protocol, and especially to the feedback. All the par-
ticipants were cognitively and physically able to perform the simple
motor tasks. The fact that such a proportion of them (around 17%)
did not manage to reach good performance (when performing the
motor tasks) suggests that, most likely, the feedback is not suitable to
acquire skills (even if it is not a formal proof).

Furthermore, we performed a 2-way ANOVA for repeated mea-
sures to evaluate the impact of the Condition on motor performance ac-

1. This 70% accuracy is a threshold often used in the BCI community to distin-
guish subjects that achieved BCI control from those who did not achieve such a
control Allison and Neuper, 2010
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cording to the Run number. Checking the assumptions revealed that
the normality [Skewness test - sRun1=-0.203; sRun2=-1.295; sRun3=-
1.709; sRun4=-1.961] and equality of variance [Levene test - pRun1=
0.044; pRun2=0.024; pRun3=0.160 ] were not totally respected. Nonethe-
less, given that the results were close to the threshold and the ANOVA
being a robust analysis, we decided to use this analysis. The 2-way
ANOVA revealed neither a main effet of the Condition [F(1,52)=1.997;
p=0.164] nor a Condition*Run interaction [F(3,212)=1.301; p=0.259].
However, it revealed a main effect of the Run [F(3,50)=46.178; p60.001].
Post-hoc analyses -Student t-test for paired samples- showed a signif-
icant increase in performance between the Runs ]1 and ]2 [perfrun1=
72.88%, perfrun2= 84.48%; p6 0.001] and between Runs ]2 and ]3

[perfrun2= 84.48%, perfrun2= 87.62%; p6 0.005] but not between
Runs ]3 and ]4 [perfrun3= 87.62%, perfrun2= 89.11%; p= 0.277].

7.2.2.2 Usability questionnaires

Four one-way ANOVAs were performed to evaluate the impact
of the Condition (S vs. PSP) on these dimensions. The prerequi-
sites of the ANOVA were satisfied: all the dimensions had a nor-
mal distribution [Skewness test - sLM= -0.072; sEE= 0.046; ssafety=
0.098; ssatisfaction= 0.232] and the variances were equal [Levene test
- pLM= 0.938; pEE= 0.415; psafety= 0.861; psatisfaction= 0.143]. How-
ever, results revealed no effect of the Condition: LM [F(1,53)= 2.257;
p= 0.139], EE [F(1,53)= 0.089; p= 0.766], safety [F(1,53)= 0.166; p=
0.686] and satisfaction [F(1,53)= 0.895; p= 0.349].

7.2.3 Discussion

The aim of this study was to concretely assess whether the feed-
back used in BCI is appropriate to train a skill in general. Half the
participants were asked to learn to perform simple motor tasks us-
ing a “Standard" (S) training approach while the other half used a
“Partially Self-Paced" (PSP) one, in order to increase the feeling of
autonomy. Results showed no differences between the conditions (S
vs. PSP) in terms of performance or in terms of usability. This might
be explained by the fact that most participants of the PSP group had
found the right strategy, and thus had good performance, before the
first sp-run. It might be that sp-runs could be useful for participants
who still needed to explore strategies to find the right one. But once
the right strategy found, sp-runs might not bring any further help to
the particpants. In future experiments, it could be worth modifying
the protocol so that the sp-runs come earlier in the training.

A very relevant result is the fact that while a learning effect was
noted for the whole group on average over the 4 runs, around 17%
of the participants (9 out of 54) seemed unable to learn to perform
the motor tasks (their performances were below 70% on average over
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the 4 runs). While such an experiment provides no formal proof, it
seems most likely that a substantial proportion of participants’ mod-
est performances are partly due to the feedback given the fact that all
subjects were cognitively able to understand the instructions and had
the motor abilities to perform the tasks. This result emphasises the
fact that such a feedback should be improved to enable an efficient
BCI training. In particular, numerous subjects reported verbally that
the feedback was too poor as it did not indicate what they should
do or change in order to succeed. It has to be noted that the poor
performances of the participants might also be due to the difficulty
of processing the mapping between the tasks and the protocol, i.e.,
drawing circles and triangles upon the appearance of a left- or right-
facing arrow respectively. Indeed, the incongruence of this mapping
could have led to a high workload and a low feeling of agency. In or-
der to avoid such an effect, participants were provided with a picture
representing this mapping which was available during the entirety of
the experiment. Moreover, none of the participants reported difficul-
ties in processing the mapping.

These results lead to two questions needing further investigations:
(1) is the ability to learn using this kind of feedback correlated to
some aspects of the user’s personality, neurophysiological or cogni-
tive profiles? and (2) are the performances obtained at these simple
motor tasks predictive of MI-BCI performance?

Some aspects of these questions are investigated in the second
study introduced below.

7.3 study 2 : evaluating the impact of the feedback on

mi-bci related skill acquisition

If motor and MI-BCI performances are, at least partly, related to
the user’s ability to process the feedback, then one can hypothesise
that users who reached good performances at the simple motor tasks
should also be able to obtain good MI-BCI performances. This hy-
pothesis has been tested in the experiment introduced below. Thus,
this experiment enabled us to investigate the relationship between
the ability to learn to perform simple motor tasks (as done in the
first experiment) and the ability to learn to control an MI-BCI us-
ing a standard feedback (Pfurtscheller and Neuper, 2001). Indeed,
based on our hypothesis, users who could learn motor tasks using
this feedback would be likely to learn MI tasks using the same feed-
back as they already managed to learn a skill using this approach
before. We also hypothesised that some aspects of the participants’
profile would impact their MI-BCI performance. We focused on the
two predictors which seemed to be the most reliable and adapted
to our experiment context according to the literature and our previ-
ous experiments (see Chapter 5), namely the spatial abilities and the
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Blankertz SMR-predictor. We thus selected the ten best and the ten
worst performers from the first experiment (introduced in the previ-
ous Section), based on the averaged classification accuracy they ob-
tained, and asked them to take part in an MI-BCI experiment during
which they had to learn to perform motor-imagery tasks, i.e. imagi-
nation of left- and right-hand movements.

7.3.1 Material & Methods

7.3.1.1 Participants

20 BCI-naive participants (10 females; aged 24.7 ± 4.0 year-old) took
part in this second study, which was also conducted in accordance
with the relevant guidelines for ethical research according to the Dec-
laration of Helsinki and approved by the legal authorities of Inria
Bordeaux Sud-Ouest (the COERLE, approval number: 2015-004). Par-
ticipants were selected from the first experiment and divided into
two groups, the good and the bad performers. The 10 best perform-
ers of the first experiment [X̄ = 96.00% of performance - classification
accuracy; SD = 1.13] were in the good group while the 10 worst per-
formers of the first experiment [X̄ = 63.12% of performance - classifi-
cation accuracy; SD = 11.54] were in the bad group. These two groups
happened to be composed of 5 women and 5 men each. Moreover,
in each group, 7 participants were in the Standard (S) and 3 were in
the Partially Self-Paced (PSP) Conditions during the first study. Con-
sidering the results of the first experiment (showing no effect of the
Condition on performance) as well as the distribution of the Condi-
tions into the groups, we decided not to consider this variable (S vs.
PSP) in this second experiment. In other words, the MI-BCI training
only comprised standard runs.

7.3.1.2 Experimental Paradigm

Please refer to Figure 39.

7.3.1.3 Variables & Factors

In this study, we analysed the effect of 4 factors: the "Group" of
the first experiment, the "Run", the "Mental Rotation Score" and the
"Gender" on participants’ MI-BCI performance, that is to say their
classification accuracy (dependent variable).

7.3.1.4 Analyses

In this study, we analysed the effect of the "Group" of the first ex-
periment (2 modalities: good vs. bad; independent measures), of the
"Run" (4 modalities: run1, run2, run3 and run4; repeated measures), of
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the "Mental Rotation Score" (continuous covariable) and of the "Gen-
der" (2 modalities: men vs. women; independent measures) on partici-
pants’ MI-BCI performance, that is to say their classification accuracy.
We considered their "Gender" because of the important gender effect
associated with the Mental Rotation test. Thus, we performed an
ANCOVA with the "Mental Rotation scores" as the covariable and
the "Group", the "Run" and the "Gender" as independent variables.
We also studied the correlations between participants’ MI-BCI perfor-
mance and the Blankertz SMR-predictor.

7.3.2 Results

7.3.2.1 MI-BCI Performance

In our analysis aiming at evaluating the effect of the group (bad vs.
good performers in the first experiment), gender (men vs. women) and
run (run1, run2, run3, run4) on users’ MI-BCI performance once the
effect of the mental rotation had been controlled for, we considered
two different measures of MI-BCI performance: (1) the peak classifi-
cation accuracy (measured at the time window of the feedback period
for which the classification accuracy over all trials is maximal), which

Figure 39 – Materials & Methods of the Study 2 of Section 7.3
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is the typical performance measure used with the Graz protocol (see,
e.g., Scherer et al., 2013) and (2) the mean classification accuracy over
the whole feedback period of all trials. We thus performed two AN-
COVAs. Note that the mean accuracy being the averaged accuracy
over the whole feedback period, it is bound to be substantially lower
than the usually reported peak accuracy, identified for the best time
window. The mean accuracy is therefore a rather pessimistic per-
formance estimate. We nonetheless believe it is useful as it reflects
participant’s ability to produce a long and stable BCI control signal.

Peak Performance

The average peak performance of the 20 participants was 66.95%
(SD = 6.24; range = [57.09 ; 82.69]). Assumptions checking is depicted
in Figure 40. It shows that the criteria for a normal distribution was
satisfied for the mental rotation scores, for the peak performance of
run1 and run4 but not for run2 and run3 (which was anecdotal, espe-
cially given the low number of subjects per group, and thus should
not impact the analysis reliability). The homogeneity of the regres-
sion slopes and the equality of variance criteria were satisfied. How-
ever, it has to be noted that the linearity criteria was not: which could
also be explained by the important inter-run variability due to the
small sample size. Indeed, when considering the mean performance
over the four runs, a linear relation with mental rotation scores is
revealed. The ANCOVA with the peak MI-BCI performance as the
dependent variable revealed a main effect of Mental Rotation Scores
[F(1,15) = 6.991; p 6 0.05; η2 = 0.318] as well as a strong tendency to-
wards a main effect of the Run [F(1,15) = 3.638; p = 0.076; η2 = 0.195].
However, neither a main effect of the Group [F(1,15) = 0.388; p = 0.789;
η2 = 0.050] nor a main effect of the Gender [F(1,15) = 0.719; p = 0.410;
η2 = 0.046] were revealed. These results suggest a learning effect: par-
ticipants’ peak performance increased during the experiment. The
ANCOVA also revealed significant interactions. First, a Run * Men-
tal Rotation Scores interaction [F(1,15) = 6.269; p 6 0.05; η2 = 0.295]
suggesting an impact of mental rotation on the ability to improve in
terms of performance across the runs. Second, a Run * Gender inter-
action [F(1,15) = 7.936; p 6 0.05; η2 = 0.346] (see Figure 41) which
suggests that, if we consider performance independently from partic-
ipants’ spatial abilities, while men’s MI-BCI performances were sta-
ble accross the 4 runs, women’s increased significantly. Furthermore,
the Run * Group interaction [F(1,15) = 4.907; p 6 0.05; η2 = 0.246]
revealed that, again if we consider performance independently from
participants’ spatial abilities, participants from the good group per-
formed better than those of the bad group in the first run, but then
they did not improve while participants from the bad group improved
in terms of performance (see Figure 42). Finally, this ANCOVA re-
vealed a strong tendency towards a Run * Gender * Group interaction
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Figure 40 – Table representing the assumptions checking for the ANCOVA
on peak performance.

[F(1,15) = 4.221; p = 0.058; η2 = 0.220] (see Figure 43) but no Gender *
Group interaction [F(1,15) = 2.982; p = 0.105; η2 = 0.166].

Mean Performance

The 20 participants obtained an average mean classification accuracy
of 54.89% (SD = 6.56; range = [46.41 ; 68.12]). As expected, this mea-
sure leads to much lower and pessimistic performance estimates. The
analysis of the assumptions satisfaction for the ANCOVA are repre-
sented in Figure 44. Mental rotation scores as well as mean perfor-
mance of run1, run2 and run4 satisfied the criteria for a normal dis-
tribution, but run 3 did not. As stated in the previous paragraph,
this can be explained by the low number of participants per group
and should not impact the analysis reliability. Moreover, the homo-
geneity of the regression slopes as well as the equality of variance
criteria were both satisfied. However, as was the case for the peak
performance analysis, the criteria of linearity was violated which
can be explained by the small sample size. The ANCOVA with the
mean MI-BCI performance as the dependent variable was associated
with quite similar results as for the peak performance. Indeed, it re-
vealed a main effect of Mental Rotation Scores [F(1,15) = 5.817; p 6
0.05; η2 = 0.279] as well as a strong tendency towards a main effect
of the Run [F(1,15) = 4.100; p = 0.061; η2 = 0.215]. However, no main
effect of the Group [F(1,15) = 0.403; p = 0.535; η2 = 0.026] or of the Gen-
der [F(1,15) = 2.965; p = 0.106; η2 = 0.165] was revealed. Thus, these
results suggest a learning effect, as it was the case in the peak per-
formance analyses. This ANCOVA also revealed several significant
interactions. First, there was a Run * Mental Rotation Scores interac-
tion [F(1,15) = 7.545; p 6 0.05; η2 = 0.335]. Second, the Run * Gender
interaction [F(1,15) = 7.381; p 6 0.05; η2 = 0.330] suggests that while
men’s MI-BCI performances (corrected so that they are independent
from spatial ability scores) were stable accross the 4 runs, women’s
increased significantly (see Figure 45). Furthermore, the Run * Group
interaction [F(1,15) = 6.376; p 6 0.05; η2 = 0.298] revealed that, consid-
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(a)

(b)

Figure 41 – (a) Graph representing participants’ raw MI-BCI peak perfor-
mance (i.e., without the ANCOVA correction) as a function of
their gender and of the run; (b) Graph representing the AN-
COVA results for the Gender*Run interaction (p<0.05), consid-
ering the Mental Rotation Scores as a covariable. When consid-
ering the performance independently from the mental rotation
scores, women increase in performance accross the 4 runs while
men do not.

ering performance independently from participants’ spatial abilities,
participants from the good group obtained a better performance than
those of the bad group at the first run, but then they did not improve
while participants from the bad group improved in terms of perfor-
mance (see Figure 46), as was the case with the previous ANCOVA.
Finally, contrary to what we observed with peak MI-BCI performance,
it revealed a strong tendency towards a Gender * Group interaction
[F(1,15) = 3.833; p = 0.069; η2 = 0.204] (see Figure 47) but no Run *
Gender * Group interaction [F(1,15) = 2.319; p = 0.149; η2 = 0.134].
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(a)

(b)

Figure 42 – (a) Graph representing participants’ raw MI-BCI peak perfor-
mance (i.e., without the ANCOVA correction) as a function of
their group from experiment 1 and of the run; (b) Graph rep-
resenting the ANCOVA results for the Group*Run interaction
(p<0.05), considering the Mental Rotation Scores as a covari-
able. When considering the performance independently from
the mental rotation scores, participants from the "good" group
of the first experiment obtain stable performance across the four
runs while participants from the "bad" group of the first experi-
ment begin with lower performance but then improve and out-
perform the other group in the third and fourth runs.

7.3.2.2 Usability Questionnaires

We also evaluated the score associated with the four dimensions of
the usability questionnaire [learnability/memorability, efficiency/effective-
ness, safety and satisfaction] as a function of the participant’s "Group"
(good vs. bad), "Gender" (men vs. women) and of their "Mental Rota-
tion Score". We thus performed four ANCOVAs. The prerequisite
checking is depicted in Figure 48. The data satisfied the criteria for a
normal distribution, homogeneity of the regression slopes and equal-
ity of variances. However, it has to be noticed that the linearity criteria
was not satisfied.
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(a)

(b)

Figure 43 – (a) Graph representing participants’ raw MI-BCI peak perfor-
mance (i.e., without the ANCOVA correction) as a function of
their gender, of their group and of the run; (b) Graph represent-
ing the ANCOVA results for the Gender*Group*Run interaction
(p<0.05), considering the Mental Rotation Scores as a covari-
able. When considering the performance independently from
the mental rotation scores, it can be noticed that women from
the group "bad" [dark red on the left] improve in terms of per-
formance across the runs while all the other participants do not.

Figure 44 – Table representing the assumptions checking for the ANCOVA
on mean performance.

No effect of the Group, of the Gender nor an interaction of both
was revealed for the Learnability/Memorability, the Safety and the Satis-
faction dimensions. For the Efficiency/Effectiveness dimension however,
two strong tendencies were revealed: a tendency towards a main ef-
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(a)

(b)

Figure 45 – (a) Graph representing participants’ raw MI-BCI mean perfor-
mance (i.e., without the ANCOVA correction) as a function of
their gender and of the run; (b) Graph representing the AN-
COVA results for the Gender*Run interaction (p<0.05), consid-
ering the Mental Rotation Scores as a covariable. When consid-
ering the performance independently from the mental rotation
scores, women performances increase while men’s do not.

fect of the group [F(1,19) = 3.508; p = 0.081; η2 = 0.190] and towards a
group*gender interaction [F(1,19) = 3.439; p = 0.083; η2 = 0.187]. These
interactions suggest that men evaluated the Efficiency/Effectiveness of
the MI-BCI protocol the same whatever their performance at the first
experiment, while women evaluated this dimension with lower scores
when they had difficulties at the first experiment, and with higher
scores when they managed at the first experiment.

Due to the low number of participants per group (N=20, i.e., only
5 per group*gender), all the results depicted have to be treated with
caution.
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(a)

(b)

Figure 46 – (a) Graph representing participants’ raw MI-BCI mean perfor-
mance (i.e., without the ANCOVA correction) as a function of
their group from experiment 1 and of the run; (b) Graph rep-
resenting the ANCOVA results for the Group*Run interaction
(p<0.05), considering the Mental Rotation Scores as a covari-
able. When considering the performance independently from
the mental rotation scores, it can be noticed that participants
from the group "good" of the first experiment obtain stable per-
formance across the four runs while participants from the group
"bad" of the first experiment begin with lower performance but
then improve and outperform the other group from the third
run.

7.3.3 Discussion

This second aimed at determining the impact of the feedback in
the MI-BCI related skill acquisition process by comparing the profile
of users’ performance between the motor and MI-BCI tasks. Indeed,
the hypothesis was that if motor and MI-BCI performances are, at
least partly, related to the user’s ability to process the feedback, then
one can hypothesise that users who reached good performances at
the simple motor tasks should also be able to obtain good MI-BCI
performances.
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(a)

(b)

Figure 47 – (a) Graph representing participants’ raw MI-BCI mean perfor-
mance (i.e., without the ANCOVA correction) as a function of
their gender and of their group; (b) Graph representing the AN-
COVA results for the Gender*Group interaction (p<0.05), con-
sidering the Mental Rotation Scores as a covariable. When con-
sidering the performance independently from the mental rota-
tion scores, it can be noticed that men from both groups ("good"
and "bad") keep the same ratio at the second experiment: par-
ticipants from the "good" group outperform the ones from the
"bad" group. It is not the case for women. Indeed, while women
from the "good" group obtain similar performance to men of
their group, women from the group “bad" outperforme all the
other participants.

While this second experiment did not reveal any significant lin-
ear positive correlation between motor-task performance (first exper-
iment) and MI-BCI performance, the ANCOVA results showed that
whatever performance measure was used (peak or mean classification
accuracy), there is a main effect of the Mental Rotation scores as well
as significant Run*Mental-Rotation, Run*Gender and Run*Group in-
teractions. First, the main effect of Mental Rotation scores confirms
the important impact of spatial abilities on BCI performance that was
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Figure 48 – Table representing the assumptions checking for the ANCOVA.
It has to be noticed that all the assumptions but the linearity
were respected.

suggested in the previous Section for mental imagery based BCI (not
purely motor ones). The important role of spatial abilities was also
strengthened by the significant correlation between MI-BCI perfor-
mance (peak classification accuracy) and Mental Rotation scores. Sec-
ond, the interactions suggest that when the effect of the spatial abil-
ities is controlled for, (1) women improved across the runs while men
did not and (2) participants who were bad performers in the first ex-
periment began with lower MI-BCI performance than good perform-
ers. However the former improved across the runs whereas the lat-
ter did not. There is in fact a strong tendency [p=0.058] towards
a Run*Gender*Group interaction when assessing performance using
peak classification accuracy. This last interaction indicates that men
kept the same ratio between the first and the second experiment: men
who were good at the first experiment remained better at the second
experiment than the others (i.e., the bad performers of the first ex-
periment) but none of them improved during the second experiment.
Women who were good at the first experiment remained good at the
second (at the same performance level as the men of their group), but
they did not progress. However, women from the bad group began
with low performances in the second experiment but their perfor-
mances quickly improved and eventually surpassed the others. Thus,
it would seem that participants who faced difficulty during the first
experiment, especially women, improved more easily in terms of per-
formance during the second experiment. This could be explained by
the fact that facing difficulty in the context of a complex task (such
as MI tasks, for which we are not trained and for which we do not
have any proprioceptive feedback) requires substantial cognitive re-
sources. Thus, these resources are not available to understand how to
use the information provided by the feedback. By opposition, when
users face difficulty to find the right strategy in a less complex context
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(such as performing motor tasks which they know they can do and for
which they have proprioceptive feedback) their available resources al-
low them to pay attention to the feedback and to understand how the
latter could be used to improve their performance. Once the process
has already been executed, a re-exposition to this protocol would not
require as many resources and so could be used efficiently in a more
complex context.

In our case, understanding the feedback would mean understand-
ing what it means, when the user should maintain his strategy/when
he should modify it. People who faced difficulty during the motor
task learnt how and when to test and modify their strategies, which
helped them when confronted with the MI-BCI experiment which
was more complex. Of course, this hypothesis needs to be tested in a
future experiment.

It is not entirely clear why gender plays a role in BCI performance
and observed training effects. A possible interpretation could be that
since women have lower spatial abilities than men on average (Linn
and Petersen, 1985), and that spatial abilities are correlated to BCI
performances, they have more room for improvement, which could
explain why they improved over the runs while men did not. Indeed,
Uttal et al., 2013 have shown that spatial abilities could improve, espe-
cially when the initial level was low. Another interpretation could be
that women may rely on different cognitive mechanisms and strate-
gies when faced with a difficult learning problem, although we are
not aware of any literature on this topic. This should therefore be
investigated further.

To summarise, this experiment revealed an effect of the motor train-
ing on MI-BCI performance. Contrariwise to our hypothesis, the par-
ticipants who managed to reach the best MI-BCI performance were
those who faced difficulty during the motor training ; while the good
performers at the motor task did not manage to improve during the
MI-BCI training. This result suggest that the standard feedback is dif-
ficult to process, that it requires much cognitive resources at least at
the beginning. It would explain why participants who encountered
difficulty while doing simple motor tasks, who had free cognitive re-
sources, managed to learn how to use the feedback (and thus used it
during the MI-BCI training) while the participants who were needing
to use the feedback for the first time when confronted to a complex
task (MI-BCI training) had no free resources to process it. The next
Section relates theoretical cues that could be used to decrease the
feedback-related cognitive resources. These cues are then tested and
discussed.
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quick summary -
Our results suggest that the current standard feedback requires too
many cognitive resources to be processed. Based on the Cognitive
Load theory, we designed and implemented a tactile feedback, pro-
vided on the palms of the hands. We hypothesised that splitting
the information -about the task and the feedback- into 2 channels -
visual and tactile- would avoid cognitive resources being overloaded.
First, we explain how the tactile feedback was designed. Then, we
compare tactile and visual feedback. Results (N=18) show that partic-
ipants who received tactile feedback performed better at the MI-BCI
tasks as well as at a secondary attentional task than those who were
provided with visual feedback.
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related papers -
-1- Jeunet, C., Vi, C., Spelmezan, D., N’Kaoua, B., Lotte, F., and Subrama-
nian, S. (2015). ‘Continuous Tactile Feedback for Motor-Imagery based
Brain-Computer Interaction in a Multitasking Context.’ In: Proceedings of
Interact 2015.

– December 13, 2016



7.4 cognitive load theory 171

7.4 cognitive load theory - lessons from instructional

design : reducing the extrinsic cognitive load allo-
cated to the training protocol .

The two experiments we conducted provide a number of relevant
insights regarding MI-BCI training with standard training protocols.
The first experiment showed that using the Graz feedback, around
17% of the participants did not manage to find the right strategy to
reach good performances at simple motor tasks. This result, added
to the reports of the participants, suggests that the feedback is not
clear and difficult to process and thus should be changed in order to
enable all the participants to learn. Interestingly enough, this is also
what is theoretically recommended for successful training in instruc-
tional design literature (Lotte et al., 2013). The results of the second
experiment, that aimed at exploring the relationship between motor
and MI-BCI performance obtained with the same Graz training pro-
tocol, suggested that participants who faced difficulty during the first
experiment improved more easily in terms of performance during the
second experiment. This could be explained by the fact that facing
difficulty in the context of a complex task (such as MI tasks, for which
we are not trained and for which we do not have any proprioceptive
feedback) requires substantial cognitive resources. Thus, not much
resources are available to understand how to use the information pro-
vided by the training protocol or by the feedback. By opposition,
when users face difficulty to find the right strategy in a less complex
context (such as performing motor tasks which they know they can
do and for which they have proprioceptive feedback) they have more
available resources to allow them to process the training protocol and
feedback and to understand how the latter could be used to improve
their performance. Once the process has already been executed, a
re-exposition to this protocol would not require as many resources
and so could be used efficiently in a more complex context. Based on
this hypothesis, two solutions could be proposed: (1) to pre-expose
all the users to a “simple" task (i.e., not requiring all their cognitive
resources) and adapt the difficulty of this task so that they have to
process the feedback before they are confronted to complex MI-BCI
tasks or (2) to modify the feedback in order to decrease the amount
of resources required to process it so that it can be processed while
performing complex MI-BCI tasks.

These solutions can be modelled by the Cognitive Load Theory
from Instructional Design (De Jong, 2010). This theory states that
cognitive resources in working memory are limited and thus that if
a task requires too much resources to be performed, learning will be
hampered (De Jong, 2010). Therefore, the use of cognitive resources
should be optimised to avoid overload. In the aim to do so, 3 types
of cognitive load should be considered to design training protocols:
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— Extrinsic Cognitive Load - is the load caused by superfluous
information, itself due to design flaws in the training protocol.

— Intrinsic Cognitive Load - corresponds to the effort required to
perform the task ; the task being the mean to reach the goal of
acquiring knowledge

— Germane/Essential Cognitive Load - is the load corresponding
to the construction of new knowledge.

Research in instructional design suggests that to improve learning,
extrinsic cognitive load (and perhaps also intrinsic cognitive load, if
possible) should be reduced so that more resources are allocated to
the germane cognitive load.

To go back to MI-BCI user-training protocols, it seems that extrinsic
cognitive load is important notably due to the feedback that is diffi-
cult to process. One solution to reduce this extrinsic cognitive load,
and thus to enable BCI users to process the feedback at the same
time they perform a complex cognitive task (namely the BCI control),
would be to propose a feedback requiring less cognitive resources. In
the next section, we explain why we chose a tactile feedback to reach
this objective.

7.5 theory - a more intuitive tactile feedback to im-
prove mi-bci user-training .

7.5.1 Why Propose a Tactile Feedback?

Research in instructional design put much effort in looking for so-
lutions enabling to reduce extrinsic workload. Based on experimental
results, researchers described the Modality Effect (Ginns, 2005): when
performing a task requires the integration of different information
sources, it is most of the time more efficient to provide the learners
with these sources in different modalities. In other words, providing
the participant with different pieces of information through different
modalities would enable to reduce extrinsic cognitive load and thus
to favour learning (as more resources are allocated to the germane
cognitive load). One condition for the modality effect to occur is that
the sources of information are complementary (and not redundant).

Most MI-BCI studies to date involved visual feedback to inform
the user about the MI task recognised by the system. Yet, this visual
feedback is difficult to assimilate when integrated with the visual
layout of the primary interactive application that it supports (Gwak
et al., 2014). Indeed, in interactive environments most of the infor-
mation is communicated through the visual channel, the latter being
often overtaxed (Leeb et al., 2013). Thus, integrating the visual feed-
back into the application is likely to induce an overload and thus a
decrease in performance. Therefore, it seems that MI-BCI training
protocols could benefit from multi-modality which is, interestingly
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enough, consistent with the cognitive load theory and the modality
effect.

On the other hand, tactile feedback, although popular in other ar-
eas of HCI, has not received much attention for MI-BCI despite its ad-
vantages such as: (a) freeing the visual channel in order to reduce cog-
nitive workload (Leeb et al., 2013), (b) maintaining a certain amount
of privacy, as it is more difficult to be perceived by the surroundings
than the visual or auditory ones, and (c) the possibility to be used in a
wide range of interactive tasks, such as in gaming conditions. Using
tactile feedback will separate the application channel (visual) from
the MI-BCI feedback channel (tactile), thus potentially decreasing the
extrinsic cognitive load. This should consequently increase the user’s
performance and system’s efficiency.

The benefits of providing a tactile feedback to improve MI-BCI
users’ performance (i.e., their ability to do MI tasks correctly recog-
nised by the system) have been explored in the study introduced be-
low (Jeunet et al., 2015a). The efficiency of this feedback has been
tested in an environment containing visual distracters. Indeed, BCIs
are inherently developed to promote interaction. Yet, most MI-BCI
studies test their feedback efficiency (1) in a laboratory context, i.e.,
with no distracters and (2) with no side task, while in real applica-
tions such as games users would have to perform multitasking. Thus,
the efficiency of these feedbacks cannot be guaranteed in an inter-
active and multitasking context. This is why we study our tactile
feedback’s efficiency by comparing it to the equivalent visual feed-
back, similar to the Graz protocol (from which it differs only in terms
of sensory modality), (1) in a context including visual distracters (to
mimic an interaction environment) and (2) by adding a counting task
(to evaluate the cognitive resources needed to process each kind of
feedback) (for a description of the training environment, see Section
7.7.1). Our tactile system is in the form of a wearable glove that inte-
grates five vibrotactile actuators for each hand to provide continuous
tactile feedback to the user regarding the classifier output (for more
information about the design of the tactile feedback, see Section 7.6).
This feedback is expected to expand the user’s feedback bandwidth
while reducing the visual cognitive load.

7.5.2 State of the Art of Tactile Feedback for BCI User-Training

Tactile feedback for MI-BCIs has been mainly used in a medical
context. Indeed, Wilson et al., 2012 explored lingual electro-tactile
stimulation, as the tongue provides an excellent spatial resolution,
and its sensitivity is preserved in the case of spinal cord injuries;
while Gomez Rodriguez et al., 2011 and Ramos-Murguialday et al.,
2012 focused on proprioceptive feedback (i.e., information about the
limbs’ position and about the strength developed while performing a
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movement) and showed that proprioceptive feedback allows increas-
ing BCI performance, indicating that these alternative feedback are
very promising for patients. However, these kinds of tactile feedback
are quite cumbersome and expensive. Thus, they do not seem to be
relevant for applications targeting the general public.

A few studies explored tactile feedback for general public applica-
tions. Most of these studies in which haptic feedback has been chosen
to inform the user about the classifier output used vibrotactile feed-
back with either a variation of the vibration patterns (e.g., different
motor activation rhythms according to the classifier output) (Chatter-
jee et al., 2007) or variations in spatial location (Cincotti et al., 2007;
McCraedie, Coyle, and Prasad, 2014). Results show benefits when
coupled with visual feedback, but only when the vibrotactile feed-
back maps the "stimulus" location (i.e., the MI task the participant
has to perform). This relationship is known as “control-display map-
ping” (Thurlings et al., 2012). For example, when a right-hand MI is
recognised, tactile feedback provided to the right part of the body will
be more efficient (i.e., associated with better performance and user ex-
perience) than tactile feedback provided to the left side. Results also
show similar performances between visual and tactile feedback, and
the participants reported that tactile feedback was more natural than
visual feedback, although negative feedback due to a misclassifica-
tion of the mental task (e.g., vibrations on the left-hand because a
left-hand motor-imagery was recognised while you were imagining a
right-hand movement) can be annoying. Nevertheless, Cincotti et al.,
2007 and Leeb et al., 2013 suggest that although it is disturbing, neg-
ative vibrotactile feedback (i.e., vibrations on the wrong hand) has no
impact on classification (i.e., it does not affect the brain patterns used
by the system to recognise the MI tasks). A few studies already at-
tempted to use continuous vibrotactile feedback (Cincotti et al., 2007;
Gwak et al., 2014; Leeb et al., 2013). For instance, Cincotti et al., 2007

propose a continuous tactile feedback in one of their studies. How-
ever, their set up is different from ours: feedback is provided on the
neck (as opposed to the palm of the hand, see Section 7.6), only up-
dated every 2 seconds (as opposed to every 0.250s, see Section 7.6)
and more importantly, the feedback has not been tested in a BCI con-
trol context. In Gwak et al., 2014, a comparison between visual and
tactile feedback was proposed, and the findings showed that they are
associated with equivalent performances in a BCI context. In Leeb
et al., 2013, visual and tactile feedback were compared in the context
of a visual attention task performed using a BCI. In the latter study,
tactile feedback was shown to be associated with better performances
than the visual one. Unfortunately, these studies present some limi-
tations. First, the samples are small: 6–7 subjects. Second, and most
importantly, as they used within subject comparisons and that the
conditions were not counterbalanced (the visual feedback was always
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tested before the tactile feedback), one cannot rule out that these re-
sults are due to an order effect. Finally, while the feedbacks were
tested in presence of distracters (Leeb et al., 2013), it is not a multi-
tasking context as the visual attention task and the MI-BCI control
task have been performed sequentially. In our study, we propose to
overcome these limitations with a larger sample (18 participants), a
between-subject paradigm and an MI-BCI control task combined with
a counting task requiring supplementary cognitive resources.

7.6 design & validation of the tactile feedback .

The main goal of our work is to compare the standard visual feed-
back with an equivalent tactile feedback in a context of multitasking
and in an environment containing distracters in order to mimic pos-
sible interaction situations in which MI-BCIs could be used, e.g., a
video game. Thus, in this section we first explain how we designed
our vibrotactile and corresponding visual feedback. Then we describe
the developed hardware prototype and the design of the glove for
providing this tactile feedback at the hand, as well as the mapping
between visual and tactile stimuli.

7.6.1 Design of the Tactile Feedback

7.6.1.1 The Temporally Continuous Tactile Feedback

As pointed out earlier, the MI-BCI classifier output, which is usu-
ally provided as feedback to the user, is the combination of the label
of the recognised MI task and the confidence value of the classifier
in the recognition of this task. The classifier output can be mapped
to [-0.5, 0.5] (e.g., when a probabilistic SVM is used, see the Table in
Section 7.7.2.2). Negative values correspond to a left hand MI recog-
nition while positive values correspond to right hand MI recognition.
The closer these values are to the end of the range, the higher the
confidence level of the classifier (e.g., for right hand MI the value
0.42 represents a higher confidence level than 0.16). Our goal was to
represent this output via the tactile channel as closely as possible to
the standard visual feedback (in which the output is represented as
a bar varying in length and direction). The MI-BCI system we will
use in this study relies on left- and right-hand MI. Thus, we decided
to give tactile feedback to the hands to maintain the control-display
mapping (Thurlings et al., 2012) between the intended user actions
(MI) and the sensory information perceived by the user (the tactile
feedback). Indeed, control-display mapping has been shown to be
necessary so that tactile feedback is efficient (Thurlings et al., 2012).
The large surface of the palm (the average width is 74 mm for women,
84 mm for men) makes it possible to create a tactile display suitable
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Figure 49 – Visual feedback with current feedback symbolising the recogni-
tion of a right hand MI, at level 3/5.

for representing the MI-BCI classifier output. Indeed, considering the
two-point threshold of the palm (around 8 mm - Gescheider, Wright,
and Verrillo, 2010), the width of the actuators, 8 mm, and the fact that
we wanted our design to be suitable for most of the users (and thus
narrower than the average palm width, 74 mm), we determined that
we could put 5 motors maximum on each hand. Thus, we divided
the classifier output range of [-0.5, 0.5] into 10 discrete levels, with 5

levels on the left and 5 levels on the right hand. Vibrations on the left-
/right palm corresponded to the recognition of a left/right hand MI
by the classifier, respectively. With the palms being facing upwards,
vibrations near the thumbs corresponded to high confidence levels
(close to |0.5|) while vibrations near the little finger corresponded to
low confidence levels (close to 0). Standard MI-BCI update rates, i.e.,
16Hz (62.5ms), can be difficult to achieve with tactile feedback as a
stimulus should be provided for at least 200ms to be easily recognis-
able over the tactile channel (Gescheider, Wright, and Verrillo, 2010).
Consequently, we chose an update rate of 4Hz (every 250ms), to en-
sure a perceivable tactile feedback.

7.6.1.2 The Equivalent Visual Feedback

Standard visual feedback corresponds to a continuous bar varying
in length and direction. To make both the visual and tactile feedback
as similar as possible, and because the tactile feedback has been spa-
tially discretised (classifier output range of [-0.5, 0.5] divided into 10

discrete levels), we also discretised the standard bar in the same way.
Thus, the feedback was displayed as a red cursor on a cross, with 5

ticks on the left and 5 ticks on the right side (see Figure 49). The
cursor was on the left/right side of the cross when a left/right hand
MI was recognised, respectively. Moreover, the cursor moving to the
extremities of the cross represented high confidence values. Finally,
we also reduced the standard update rate of 16Hz to 4Hz so that it
fits the tactile feedback update rate.

7.6.1.3 Hardware Design

To provide the user with tactile feedback, we designed a glove for
the left and the right hand in which 5 vibrotactile actuators were em-
bedded (see Figure 50). The actuators were cylindrical vibration mo-
tors (model 307-100 by Precision Microdrives, Figure 50, left). Each
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Figure 50 – Left: A vibration motor. Right: Our gloves with 10 embedded
motors (5 per hand). In the tactile feedback condition, individ-
ual motors are activated to represent the classifier output.

motor is 8.0 mm wide and 25 mm long. The motors were connected
to a custom-built motor shield and were controlled by pulse-width
modulation using an Arduino Due. The ten motors were powered
from an external supply (2V).

7.6.2 Validation of the Tactile Feedback - Determining the Most Distin-
guishable Intensity and Pattern of Activation of the Motors.

As stated earlier, some previous studies have explored continu-
ously updated feedback for MI-BCIs (Cincotti et al., 2007; Gwak et
al., 2014; Leeb et al., 2013), but not much work has been led in order
to evaluate the optimal parameters for this feedback modality. For
instance, should the vibration pattern be encoded as localised vibra-
tion from a single motor, or as simultaneous vibrations of multiple
neighbouring motors to represent a specific classifier output? An-
other question concerns the tactile stimulus intensity. Indeed, the
vibration should be strong enough to be perceived but not too in-
tense, as it could distract the user and be uncomfortable. Below, we
describe the user study conducted to investigate these questions.

7.6.2.1 Participants

Ten volunteers (4 females; aged 28.8 ± 8.2 year-old) from the local
university participated in this study. Some participants had previous
experience with vibrotactile feedback but none of them had partici-
pated in this experiment before. This study has been approved by the
Ethics Committee of the University of Bristol (July 31st, 2014). All the
participants signed an informed consent form.

7.6.2.2 Experimental Design

We investigated two designs of vibration patterns for representing
the classifier output. One design implemented localised vibration,
i.e., only one of the vibration motors was active at a given time (e.g.,
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the third motor of the right hand if a right-hand MI was recognised
with a confidence value in [0.2, 0.3]). The other design implemented
simultaneous vibration of neighbouring motors. The latter pattern
entailed activating all motors of the hand corresponding to the recog-
nised MI task whose index value was smaller or equal to the current
classifier level (e.g., the first, second and third motors of the right
hand, from left to right, if a right-hand MI was recognised with a con-
fidence value in [0.2, 0.3]). The rationale between these two designs
was to (1) maintain the spatial mapping between the visual and tac-
tile feedback and (2) to indicate the relative change in the classifier’s
output. Our first informal test of the motors (2V) revealed a strong
unpleasant tactile stimulus (the normalised vibration amplitude of
the motor was 3G relative to a 100g mass). In order to design more
subtle tactile stimuli, we adjusted the voltage used to control the mo-
tors (pulse-width modulation), which implicitly changed the motor’s
vibration frequency and vibration amplitude.

The experiment followed a 2x4 within-participant design with the
factors:

— Pattern: localised vs. simultaneous vibration;
— Intensity: [0.1, 0.3, 0.5, 1] G with corresponding frequencies of

[10, 40, 60, 85] Hz.
The participants were then asked to put on the gloves and to place

their hands on the table in front of them in a supine position (palms
facing upwards, as in Figure 50, right). We designed 8 vibration se-
quences which simulated vibrotactile feedback. As in a real scenario,
these sequences were provided for 4s, during which 16 tactile stim-
uli appeared (4Hz update rate). We varied the factors Pattern and
Intensity to compare:

— a. Localised to simultaneous vibrations with the same intensity
level (4 possibilities);

— b. Localised vibration at 2 different intensity levels (6 possibili-
ties);

— c. Simultaneous vibration at 2 different intensity levels (6 possi-
bilities).

We considered both presentation orders for the patterns in (a), i.e.,
first localised then simultaneous and vice versa, and for the intensities
in (b, c), i.e., first intensity 1 then intensity 2 and vice versa. Overall,
we tested (4+6+6)*2=32 combinations. We randomly assigned one of
the eight sequences at each of the combinations (so that they are not
associated with the same combination for the different participants).
For each combination, we asked the participants their favourite feed-
back (in terms of distinguishability and sensation), i.e., localised or
simultaneous for (a) and intensity 1 or intensity 2 for (b, c). Thus, we
evaluated the quality of the different patterns and intensities accord-
ing to the number of times they were selected as the favourite one.
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Figure 51 – Average number of times that a pattern was preferred as a func-
tion of its intensity.

This paradigm allowed us to find the best pattern*intensity associa-
tion, which was the most often chosen as the favourite one.

7.6.2.3 Variables & Factors

The dependent variable studied here is the clearness/distinguisha-
bility of the feedback, as a function of 2 factors: the Intensity and
Pattern of Activation of the motors.

7.6.2.4 Results

The 2-way ANOVA for repeated measures reveals a Pattern x Inten-
sity interaction [F(3,72) = 8.785, p 6 0.001, η2 = 0.268], a main effect
of the pattern [F(1,72) = 10.184, p 6 0.005, η2 = 0.124], and a main ef-
fect of the intensity [F(3,72) = 6.071, p 6 0.005, η2 = 0.202] (see Figure
51). Participants preferred the localised vibration over the simultane-
ous vibrations. Moreover, they preferred the lowest intensity in the
case of simultaneous vibrations (the other ones being perceived as
too strong). For the localised vibration, however, the lowest intensity
(0.1G, 10Hz) was barely noticeable and did not allow the participants
to clearly perceive the tactile feedback. The highest frequency was as-
sociated with a very strong and uncomfortable sensation. Thus, they
preferred the middle intensity (0.3-0.5G).

7.6.2.5 Discussion

The results of this study suggest that the participants preferred a
localised vibration at the palm, with only one vibration motor being
active at a given time. Our findings also suggest that either 0.3G
(40Hz) or 0.5G (60Hz) is appropriate for providing tactile feedback
at the palm using the developed tactile feedback system. These find-
ings provide first guidelines on how to design tactile feedback for
stimulating the palm in an MI-BCI context. In addition, these results
can inform the design of feedback for other interactive tasks in HCI
which require a similar presentation of feedback to the user.
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Figure 52 – Timing of a trial.

7.7 test of the efficiency of the tactile feedback to im-
prove mi-bci user-training .

7.7.1 Description of the Training Environment: Multitasking & Distracters

BCIs are developed to be used in interactive applications (e.g., video
games or navigation tasks), i.e., in a context including distracters and
requiring multitasking abilities. Thus, it seems suboptimal to test the
efficiency of a feedback outside this kind of context, i.e., in laboratory
conditions by doing only an MI-BCI task. This is why we designed a
training environment including visual distracters and asked the par-
ticipants to perform a counting task at the same time they were per-
forming the MI-BCI task (see Figure 53). By adding these elements,
we were able to compare the cognitive load required to process each
kind of feedback in an interactive situation and to evaluate how cogni-
tive multitasking influences the efficiency of each feedback. In order
to include the distracters and the counting task to the MI-BCI task in
a consistent environment, we modified the standard MI-BCI training
protocol. The standard arrows pointing left or right to inform the
user he has to perform a left or right-hand motor-imagery have been
replaced by a spacecraft the goal of which was to protect its planet
by destroying bombs coming from the left or right (controlled by per-
forming left- or right-hand motor-imagery, respectively) (see Figure
52). Besides, the distracters were appearing randomly in the form of
(1) a missile, which was launched in a vertical direction from a tank,
(2) a rabbit crossing from the left to the right, or (3) a cloud crossing
from the right to the left (see Figure 53). Each distracter appeared for
a similar amount of time (approximately 2.5s).

7.7.2 Materials & Methods

7.7.2.1 Participants

Eighteen healthy volunteers (5 women; aged 27.6 ± 4.8 year-old)
participated in the study. Some of them had previously experienced
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(a)

(b)

Figure 53 – Two feedback types representing the recognition of a right-hand
MI, at level 3 out of 5. (a) Visual feedback was displayed as a
red circle moving along the axis and vibrotactile feed-back at the
palm was encoded as a vibration of the corresponding motor;
(b) Environment visualisation with all elements: an enemy (top
right), the spacecraft (centre), and visual feedback (lower centre,
below the spacecraft); three distracters: missile (top left), cloud
(top centre), and rabbit (bottom centre).

vibrotactile feedback. However, none of them had previous experi-
ence with MI-BCI. This study has been approved by the Ethics Com-
mittee of the University of Bristol (July 31st, 2014). All the partici-
pants signed an informed consent form.

7.7.2.2 Experimental Paradigm

Please refer to Figure 54.

7.7.2.3 Variables & Factors

The dependent variable considered was the Score obtained as a
function of 2 factors: the feedback condition (visual vs. tactile) and
the run number. The way the score was computed is explained below.
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Figure 54 – Materials & Methods of the Study aiming at testing the effi-
ciency of our tactile feedback, Section 7.7

.

At the end of each trial, the score was updated according to the
following formula:
NEW SCORE = CURRENT SCORE + CLASS LABEL * CLASSIFIER
OUTPUT * 200

The CLASS-LABEL was {+1} if a left-hand motor-imagery was recog-
nised and {-1} if a right-hand motor-imagery was recognised. The
CLASSIFIER-OUTPUT was the mean classifier output value calcu-
lated at the end of the trial: in [-0.5,0) if a left-hand MI was recognised,
and in (0,0.5] if a right-hand MI was recognised. Therefore, after each
trial, the score was increased or decreased by 100 points maximum,
given that to obtain 100 points at one trial, the mean classifier out-
put value of the trial had to be 0.5, which means that the classifier
output had to be 0.5 for each of the 15 time windows (the feedback
being updated at 4Hz for 3.75s). This value of 0.5 thus means that the
classifier was 100% sure that the participant was performing a right-

– December 13, 2016



7.7 test of the efficiency of the tactile feedback 183

hand motor-imagery for each of the 15 time windows. This never
happens in MI-BCI. Besides, while the mean classifier output is pos-
itive, it means that the trial has been correctly classified. Thus, to
take an extreme case, a score of 40/4000 at the end of the run (e.g.,
1/100 at each of the 40 trials of the run) could be associated with
a classification accuracy of 100% (as each mean classifier output was
positive, it means that all the trials have been correctly classified). The
motor-imagery score corresponded to the sum of the scores obtained
in each trial. Furthermore, at the end of each run, the participant was
asked to report the number of distracters (rabbits, clouds or rockets)
he counted. If this number was correct, the participant was rewarded
with 200 points being added to the MI score. If the error was in the
order of ± 1, the score remained unchanged. Otherwise, 200 points
were subtracted from the MI score. The final score corresponded to
the sum of the MI scores for the 40 trials of the run and the counting
task score. While arbitrary, this metric enabled to consider and give a
significant weight to both the MI score and the counting task which
allowed to evaluate the feedback relevance for both these aspects.

Besides, the participants were asked to complete a customised us-
ability questionnaire assessing 4 dimensions of usability of the sys-
tem: Learnability/Memorability, Efficiency/Effectiveness, Safety, Sat-
isfaction.

7.7.3 Results

The main measurements of interest are (1) the final score (the sum
of the motor-imagery task and the counting task scores), (2) the motor-
imagery score alone, and (3) the absolute value of the difference be-
tween the counted and the actual number of distracters. These mea-
sures were analysed using three two-way ANOVAs. We performed a
2-way ANOVA so that we can analyse the interaction between both
the feedback condition and the run number. However, given the low
number of participants per condition (8 and 9) it was not possible
to test the prerequisites for this analysis. Thus, we computed the ef-
fect sizes to ensure the robustness of our results. Analyses have been
performed on 17 participants: 8 in the visual condition and 9 in the
tactile condition. The data from one outlier participant have been re-
moved as his final score (1628.8 ±630.5) differed considerably from
his group mean final score (183.0 ±559.5).

The two-way ANOVA on the final score shows a main effect of
the Feedback-Condition (visual vs. tactile) [F(1,15) = 6.327, p 6 0.05,
η2 = 0.291], a main effect of the Run [F(1,15) = 3.961, p 6 0.01,
η2 = 0.457] but no Run * Feedback-Condition interaction [F(1,15) = 1.476,
p = 0.243, η2 = 0.09]. The Feedback Condition effect is due to partici-
pants in the tactile feedback group having significantly better results
than participants in the visual feedback group. Furthermore, concern-
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Figure 55 – Average of the final scores (with standard error): sum of the
MI task score and the distracter counting task score (reward
and penalty).

ing the Run main effect, post-hoc analysis shows a significant increase
of performance between Run 1 and Run 5 (p 6 0.005) (see Figure 56,
left) which reveals the learning effect of the performed motor-imagery
task, as indicated by the large effect size. The two-factor ANOVA on
MI scores (see Figure 56, left) shows strong tendencies towards a Run
main effect [F(1,15) = 3.961, p = 0.065, η2 = 0.209] and towards a Feed-
back Condition effect [F(1,15) = 4.063, p = 0.062, η2 = 0.213], as well
as no interaction between these two factors [F(1,15) = 1.207, p = 0.289,
η2 = 0.074]. These results indicate a strong tendency towards a better
MI score with tactile feedback than with visual feedback and a ten-
dency towards an improved MI score across the Runs. The two-factor
ANOVA on the counting task (see Figure 56, right) shows a main ef-
fect of the Run [F(1,15) = 9.806, p 6 0.01] but no main effect of the
Feedback Condition [F(1,15) = 2.860, p = 0.111] and no Run * Con-
dition interaction [F(1,15) = 0.000, p = 0.990]. Thus, the participants
improved their performance across the Runs for the counting task. In-
deed, post-hoc analysis shows a significant difference between Run 1

and Run 4 (p 6 0.001) and Run 1 and Run 5 (p 6 0.005) performances.
The 1 factor ANOVA did not reveal any differences in terms of

usability between the visual and tactile feedback conditions: LM
[X̄visual = 60.47 ±10.52, X̄tactile = 56.53 ±13.46 – F(1,17) = 0.444,
p = 0.515], EE [X̄visual = 67.86 ±13.72, X̄tactile = 56.19 ±19.95 –
F(1,17) = 1.921, p = 0.186], Satifaction [X̄visual = 67.50 ±13.42, X̄tactile = 58.70

±20.39 – F(1,17) = 1.071, p = 0.317], Safety [X̄visual = 61.25 ±18.08,
X̄tactile = 55.56 ±23.51 – F(1,17) = 0.307, p = 0.588].

7.7.4 Discussion

While the participants did not find the MI-BCI training easier or
more satisfying with the tactile feedback, results suggest that contin-
uous tactile feedback can significantly improve both users’ MI-BCI
and side visual task performances as compared to an equivalent vi-
sual feedback (same timing and update rate). Thus, it seems that a
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(a)

(b)

Figure 56 – Left: Average of the MI scores (with standard error) without
the counting task (reward and penalty). Right: Average of the
distracter errors (difference between the counted and the actual
number) for the counting task as a function of Run number and
Feedback Condition.

vibrotactile feedback is easier to process and enables to reduce the
extrinsic load dedicated to the training protocol and increase the ger-
mane load dedicated to the acquisition of knowledge. There are also
other potential explanations of our tactile feedback’s efficiency. First, Link to a video of

our vibrotactile
gloves: here!

this efficiency could be related to more important ERD/ERS in the
motor-cortex due to the vibration-motor stimulations on the palms.
Another potential explanation is that a feedback on the palms rein-
forces the control-display mapping, thus leading to a better sense of
agency, itself resulting in better performance. These two hypotheses
are investigated in the Part III of the current Section.

Besides, this study allowed us to determine some parameters the
consideration of which could be useful for future designs of a tactile
feebdack:
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— Tactile feedback location: we chose the hand palms for their high
spatial accuracy and the consistency with the motor-imagery
tasks (left- and right-hand movement) (Thurlings et al., 2012).

— Tactile feedback update rate: we used a 4Hz feedback update rate
so that each feedback is well perceived by the user (Gescheider,
Wright, and Verrillo, 2010).

— Pattern of vibration: our first user study suggested that a tactile
feedback based on localised stimulation (one motor at the time)
is more pleasant and distinguishable than simultaneous vibra-
tions.

— Intensity of vibration: our first study suggested that vibration in-
tensities between 0.3G (40Hz) and 0.5G (60Hz) were best: lower
intensities did not allow users to perceive the feedback clearly,
whereas higher intensities were uncomfortable.

In the future, different elements should be considered in order to
increase the validity of this study. First, more participants should
be included. Moreover, as long-term use of continuous tactile feed-
back could result in a palm desensitisation and thus a decrease of
performance, it would be important to determine when the feedback
is useful or not so that performance can be optimised. Finally, in this
study, only the feedback modality is discussed. Yet, much work has to
be done on feedback content so that its associated load is decreased.
Among others, the feedback should be explanative, supportive and
meaningful (Lotte et al., 2013).
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PA RT I I I - P R O S P E C T S : W H AT A R E T H E P S Y C H O -
L O G I C A L & N E U R O P H Y S I O L O G I C A L P R O C E S S E S U N -
D E R LY I N G TA C T I L E F E E D B A C K E F F I C I E N C Y ?

roadmap -

quick summary -
Tactile feedback seems efficient to improve MI-BCI performance. We
would like to understand the psychological and neurophysiological
mechanisms underlying this efficiency. We offer several hypotheses.
The first, as suggested before, is related to the fact that freeing the
visual channel may avoid overloading cognitive resources, and there-
fore enable the user to reach a better performance. In the second
hypothesis, we speculate that providing vibro-tactile feedback on the
hands triggers the motor-cortex, which in turn facilitates the classifi-
cation of motor-imagery tasks. Finally, the last is that tactile feedback
reinforces the control-display mapping and therefore the user’s sense
of agency. A theoretical analysis of the MI-BCI user-training process
that led us to hypothesise a potential role of the sense of agency is
first proposed. Then, an experimental protocol aiming at testing the
different hypotheses is described.

collaborator -
Patricia Cornelio (Ph.D Student).
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7.8 theory - what is the relationship between efficiency

of tactile feedback for improving mi-bci & the sense

of agency?

As explained in Chapter 2, the sense of agency can be defined as
“the sense that I am the one who is causing or generating an action”
(Gallagher, 2000). The sense of agency is of utmost importance when
a person is controlling an external device, since it will influence their
affect towards the technology, and thus their commitment to the task
and their performance (Vlek et al., 2014). However, in the context
of MI-BCIs, experiencing this sense of agency is not straightforward.
Indeed, the sense of agency mainly relies on the sensory feedback re-
sulting from a movement. Yet, the absence of proprioceptive feedback
when performing mental imagery tasks a priori prevents this bodily
experience from occurring (Haselager, 2013), and therefore could the-
oretically inhibit the sense of agency.

Thus, in Section 2.6, we insisted on the importance of the feedback,
especially during the primary training phases of the user (McFarland,
McCane, and Wolpaw, 1998). Indeed, in the first stages, the technol-
ogy and the interaction paradigm (through MI tasks) are both new
for the user. This is likely to induce pronounced computer anxiety
associated with a low sense of agency. Providing the users with a
sensory feedback informing them about the outcome of their "action"
(MI task) seems necessary in order to trigger a certain sense of agency
at the beginning of their training. This sense of agency will in turn un-
consciously encourage users to persevere, increase their motivation,
and thus promote the acquisition of MI-BCI related skills, which is
likely to lead to better performances (Achim and Al Kassim, 2015,
Saadé and Kira, 2009, Simsek, 2011).

Different cognitive models have been proposed with the aim of
modelling the sense of agency and strengthening the importance of
the feedback (also called sensory outcome). Among them, the com-
parator model (Feinberg, 1978), which is also called the central monitor-
ing theory, is well adapted to illustrate the sense of agency process in
an MI-BCI context. This model, described in Figure 57, suggests that
the judgement of agency depends on the level of congruence between
the predicted outcome and the sensory outcome of an action. If they
are congruent, the person will feel in control while if they are not,
the person will not feel in control. The predicted outcome is inferred
before the movement is performed, from the motor signals, i.e., the
efferent signals generated based on the intentions and motor plan con-
ceived by the person. On the other hand, the sensory outcome follows
the movement. Once perceived, this sensory outcome is compared to
the predicted outcome. If they are congruent, there will be a feel-
ing of "self-agency". Otherwise, the feeling of "‘self-agency"’ will not
be perceived. This model could underlie the (experimentally proven)
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Figure 57 – Schematic representation of the Comparator Model (Feinberg,
1978).

efficiency of biased feedback for MI-BCI user-training. Indeed, litera-
ture (Barbero and Grosse-Wentrup, 2010; Kübler et al., 2001b) reports
that providing MI-BCI users with biased feedback is associated with
improved performances, at least while users are novice (experts de-
velop the ability to generate a precise predicted outcome that usually
matches the actual outcome: thus, when the feedback is biased, and
therefore the predicted and actual outcomes do not match, expert
users attribute the discrepancy to external causes more easily).

As explained in Chapter 2, for the sensory outcome, or feedback,
to be congruent with the predicted outcome, several principles have
to be followed (Vlek et al., 2014): the priority principle (the conscious
intention to perform an act must immediately precede the act), the
consistency principle (the sensory outcome must fit the predicted out-
come) and the exclusivity principle (one’s thoughts must be the only
apparent cause of the outcome). Also, for the users to feel in control,
the feedback should be consistent with the task, which corresponds
to the concept of transparent mapping (Beursken, 2012) or control-
display mapping (Thurlings et al., 2012). Transparent mapping could
enable users to improve their performance on the one hand because
they reach a better sense of agency and on the other hand because it
allows more resources to be allocated to the task (the task-feedback
mapping being more intuitive).

The goal of the study introduced in Section 7.6 was to decrease
the workload associated to the feedback by splitting the cognitive
resources into two modalities: the visual channel for the application-
related information and the tactile channel for the MI-BCI feedback.
Also, tactile feedback was provided on the hands in order to improve
the transparent mapping between the motor-imagery tasks and the
feedback. Therefore, this feedback which was more consistent with
the task was also potentially expected to improve users’ sense of
agency.

The tactile feedback was revealed to be more efficient than an equiv-
alent visual feedback. We hypothesise that the sense of agency played
a significant role in the efficiency of tactile feedback. This hypothesis
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as well as the neural correlates of the sense of agency during MI-BCI
training should be explored. The experimental protocol that would
enable this test is introduced hereafter. Unfortunately, we did not
have enough time to perform the study and provide the results be-
fore the time came to submit this thesis.

7.9 towards an experimental protocol aiming at inves-
tigating the neurophysiological and psychological

processes underlying the efficiency of tactile feed-
back .

The goal of this experiment would be to reach a better understand-
ing of why tactile feedback is associated to better MI-BCI perfor-
mance than an equivalent visual feedback. Our experiment, intro-
duced in Part II, suggests that tactile feedback requires less cognitive
resources to be processed than an equivalent visual feedback (most
likely because it enables a more transparent mapping). We have two
additional hypotheses that could potentially explain this efficiency of
improve MI-BCI user-training. First, providing the user with vibra-
tions on the hands is likely to trigger the sensorimotor cortex. This
activation could then contribute to the classification and improve its
accuracy. The second hypothesis states that by improving control-
display mapping, we also increase the sense of agency (as explained
in Chapter 2). The first consequence could be to increase the involve-
ment of the user in the task, while the second consequence could be
an activation of the premotor cortex (which is a neurophysiological
correlate of the sense of agency - as depicted in Chapter 2). This
activation, similarly to the activation due to the vibrotactile stimula-
tion, could take part in the classification process and result in a better
classification accuracy.

In order to investigate the relevance of these hypotheses, we will
have to explore different situations. To investigate the first hypothe-
sis (i.e., motor cortex activation due to the vibrotactile stimulation of
the hands), we will have to study the brain patterns when the user:
(1) rests, (2) rests but receives vibrotactile stimulations on the hands
(mimicking an MI-BCI feedback), (3) performs MI-tasks with vibro-
tactile feedback. This way, we will be able to determine precisely if
there is an additional activation of the motor cortex due to the vi-
brotactile feedback and how much it contributes to the classification
accuracy. In a second instance, to investigate the second hypothesis
concerning the role of the sense of agency, we will have to study the
brain patterns of the user in the following situations: (1) rest, (2) MI-
BCI training with a low sense of agency, (3) MI-BCI with a high sense
of agency. We know, based on the literature (Kübler et al., 2001b) that
providing novices with a positively biased feedback increases their
sense of agency. We will use this trick to study the difference in the
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neurophysiological activity between situations providing low/high
sense of agency while users perform MI-BCI. The effect of the biased
feedback will be verified using questionnaires.

Thus, in this experiment we could manipulate two aspects of the
feedback: (1) the content: positively biased or non-biased feedback
and (2) the modality: tactile vs. visual feedback. Combined, these 2

times 2 manipulations, would give us our four feedback conditions:
biased/tactile, biased/visual, non-biased/tactile, non-biased/visual.
We hypothesise that biased and tactile feedback would be associated
with a better performance (i.e., classification accuracy). We would
compare their brain activity during these four conditions with control
conditions: rest, rest + visual feedback and rest + tactile feedback.

We have had not enough time to perform this experiment yet. But
we intend to carry it out as soon as possible in order to abate the
unbearable suspense.
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D I S C U S S I O N & P R O S P E C T S

To complete this manuscript, we first propose a Discus-
sion presenting the contributions and limitations of our
work. Then, in the last chapter, we present the future
Prospects of a potentially promising approach, which could
enable MI-BCI skill acquisition to be investigated as a mul-
tifactorial and dynamic process.
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D I S C U S S I O N

roadmap -

quick summary -
The aim of this chapter is to provide a summary of the contributions
of this thesis. It also aims at discussing the limitations of our work:
small sample sizes, the fact we focused only on young healthy adults,
sub-optimal classification algorithms or performance measures that
were not always adapted.

194
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8.1 mi-bci user-training - where are we?: current ad-
vancement & research challenges

Although very promising for a wide range of applications, MI-BCIs
remain barely used outside laboratories, in particular due to the dif-
ficulties users encounter when attempting to control them. Indeed,
10 to 30% of users are unable to control MI-BCIs (so-called "BCI defi-
ciency") while only a small proportion of them reach acceptable con-
trol abilities.

On the one hand, the modest average performances of MI-BCI
users suggests that current standard training protocols are not op-
timal to acquire MI-BCI related skills. In Chapter 1, we first reviewed
the available literature on MI-BCI training protocols, which gave rise
to several guidelines for the design of novel MI-BCI training protocol.
As a reminder, these guidelines were the following:

— Instructions - It appears necessary to explicitly specify the object
of the training process to the user, in particular the fact that the
user must learn to generate a stable, specific signal when per-
forming the different MI tasks in order to be able to control the
BCI in the long run. Furthermore, it seems important to allow
users to experiment independently rather than imposing any
particular strategy for performing the tasks. What is more, as
far as motor imagery is concerned, it appears that kinaesthetic
motor imagery is more effective than visual motor imagery.

— Training tasks - Providing tasks that are designed to become pro-
gressively increasingly difficult and that are adaptive (specific
to each user) seems to facilitate the acquisition of BCI-related
skills. The inclusion o self-paced and asynchronous sessions
and preparatory training tasks (e.g. meditation) also seems to
help.

— Feedback - Even though this has not yet been formally shown
in a study, visual feedback with emotional connotations (e.g.
smiley faces) seems to increase user motivation levels and, con-
sequently, performance. However, visual feedback is not ideal
in interactive situations. The same is true for auditory feed-
back, which does not appear to be truly beneficial except for
patients suffering from locked-in syndrome. Tactile feedback
is promising, so long as the principles of control-display map-
ping are observed. Indeed, tactile feedback generally produces
performances equivalent to visual feedback, but relies on a cog-
nitive channel that is much less saturated in interactive situa-
tions. Finally, increasing the quantity and quality of information
provided b the feedback (e.g. topography of cerebral activity)
seems useful. Another way of improving the feedback would
be to adapt the feedback to the user’s level.
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— Training environment - Several studies have shown that gamify-
ing the training process, especially by including elements of
virtual reality, increases motivation, and consequently perfor-
mance.

These guidelines show that several promising avenues regarding the
various constituent elements of these training protocols (instructions,
training tasks, feedback and training environments) have been ex-
plored. Unfortunately, such studies remain few and far between and,
critically, their results are rarely taken into account by the BCI com-
munity. By building on theories in disciplines such as psychology
and instructional design, it is possible to suggest new, promising ap-
proaches for improving user performance. Therefore, one of the most
important steps seems to be making the effort of understanding each
user’s cognitive specificities in order to adapt the training protocols
to their individual profiles.

In order to reach a better understanding of the profile/state factors
impacting MI-BCI skill acquisition and to adapt the training protocols
accordingly, the community investigated potential predictors of per-
formance related to users’ personality and cognitive profile. Chapter
2 is a literature survey on this topic. This survey enabled us to clas-
sify most of the predictors into three categories representing higher-
level cognitive concepts: (category 1) the user-technology relationship
(which comprises the notions of anxiety and sense of agency during
the interaction), (category 2) attention and (category 3) spatial abil-
ities. These three categories appear to be extremely relevant in the
context of MI-BCI training. Indeed, the predictors were computed
during the early stages of training, i.e., during the first or first few
sessions and most studies were performed on BCI-naïve users who
were confronted with a BCI for the first time. Yet, the literature sug-
gests that both of these situations (i.e., being in the early training
phase and being exposed for the first time to unknown technology)
can induce an important level of anxiety, which in turn is associated
with a low sense of agency. Both of these have potential negative
repercussions on performance (Achim and Al Kassim, 2015, Saadé
and Kira, 2009, Simsek, 2011). This justifies the involvement of cat-
egory 1 predictors, i.e., those related to the users’ relationship with
the technology. Besides, the Ackerman model (Ackerman, 1988) sug-
gests that during the early stages of learning (phase #1), the inter-user
variability in terms of performance is mainly due to differences in
"task-appropriate" abilities and high-level cognitive abilities such as
attention. These two aspects of the Ackerman model correspond to
the two other predictor categories that we identified. Indeed, spatial
abilities (category 3), i.e., the ability to produce, transform and inter-
pret mental images (Poltrock and Brown, 1984) can be considered as
"task appropriate" abilities in the context of MI-BCI training. Atten-
tion (category 2) clearly corresponds to the high-level cognitive abil-

– December 13, 2016



8.1 mi-bci user-training - where are we? 197

ities which influence inter-user variability according to Ackerman’s
model. Chapter 2 describes how these three categories were elabo-
rated: we justify the inclusion of each predictor in a different cate-
gory, we introduce the associated cognitive models and describe the
neural correlates related to each concept. This work was intended
to provide a better understanding of the different factors impacting
MI-BCI training and thus to provide, in the Prospects section (i.e.,
Section 2.6), a discussion about how these factors could be taken into
account when designing future protocols in order to optimise user-
training. More specifically, the impact of the training protocol on
users’ computer anxiety and sense of agency was demonstrated. It
has been suggested that a positively biased feedback could increase
novice users’ sense of agency and thus increase their performance.
Also, the significance of respecting the principles of priority, consis-
tency, exclusivity and a transparent mapping between the task and
the feedback has been emphasised. Furthermore, it should also be
possible to increase BCI training efficiency by considering the user’s
attention. In particular, attention capabilities can be improved using
meditation or neurofeedback. Moreover, attentional resources can be
optimally directed towards BCI training by using varied and gami-
fied BCI training tasks, and rich, friendly and multi-modal feedback.
BCI efficiency could also be improved by training spatial ability skills,
since spatial ability training has proved to enhance performance in
many domains (sport, music, surgical practice, etc.). Moreover, en-
hancing spatial abilities has been shown to be effective, durable, and
transferable (to skills that have not been subject to specific training)
when the training duration is long enough.

Three research challenges emerged from these reviews of the liter-
ature. Literature shows that MI-BCI use is a skill, requiring the user
to be properly trained to achieve control. Therefore, rather than im-
proving EEG signal processing alone (which is the most commonly
studied factor in the community), the research direction defended
in this thesis was to also guide users to learn to master BCI con-
trol. Therefore, this thesis addressed a general challenge which con-
sisted in improving and reaching a better understanding of BCI user-
training through the consideration of 3 levers: (1) cognitive factors,
(2) personality and (3) feedback. Challenges #1 and #2 dealt with
the consideration of cognitive factors and personality, respectively, to
understand and improve MI-BCI user training. Then, Challenge #3

consisted in considering the impact of the feedback to understand
and improve MI-BCI user-training. Each of these challenges was pro-
cessed in 3 steps, namely (1) understanding which factors impact
BCI performance, (2) proposing solutions to improve MI-BCI user-
training and (3) introducing potential future applications, further re-
search or theoretical work aiming at understanding why the solutions
are efficient. These challenges were summarised in Figure 8.
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8.2 contributions of this thesis

This manuscript enabled us to describe the contributions related
to the three challenges depicted in Figure 8. These contributions are
summarised in the following paragraphs.

Challenge #1 considered cognitive factors to understand and im-
prove MI-BCI user-training. Two studies (Jeunet et al., 2015b; Je-
unet, Jahanpour, and Lotte, 2016) revealed a strong correlation be-
tween MI-BCI performance (classification accuracy) and spatial abili-
ties (assessed by mental rotation scores). This correlation was shown
both for a pure motor-imagery paradigm (left- and right-hand motor-
imagery - Jeunet, Jahanpour, and Lotte, 2016) and a 3-MI paradigm
(left-hand motor-imagery, mental rotation and mental subtraction - Je-
unet et al., 2015b). We have shown that spatial abilities are intimatelyContribution #1:

Spatial Abilities
correlate with

MI-BCI performance

related with the different mental imagery tasks considered in these
studies (see Chapter 5). And most importantly, this result is in line
with the predictors described in the literature: different aspects of
spatial abilities having been repeatedly suggested to correlate to MI-
BCI performance. These results led to question a potential causal re-
lationship between MI-BCI performance and spatial abilities: would
increasing spatial abilities (which are malleable abilities, i.e., abilities
that can be trained - Uttal et al., 2013) induce an improvement of
MI-BCI control abilities? In order to investigate this research ques-
tion, inspired from the spatial ability literature, we designed a spatial
ability training protocol based on mental rotation exercises. In orderContribution #2:

Design, validation &
test of a SA training

procedure

to comply with instructional design literature, we proposed different
exercise types and difficulty levels. A first user study allowed us to
rank the different exercises according to their difficulty, while a sec-
ond user study enabled us to validate the efficiency of our training
to improve participants’ spatial abilities. Then, we were able to test
the efficiency of this spatial ability training protocol to improve MI-
BCI performance. Mainly, results suggested that the duration of the
spatial ability training as well as the time-lapse between the spatial
ability training and the MI-BCI sessions had a significant impact on
the efficiency with which spatial ability training improved MI-BCI
performance. More specifically, it seems that spatial ability training
should be short and intense, and followed by a significant time-lapse
before the next MI-BCI session. We also started to investigate the neu-
rophysiological patterns associated with each task with respect to par-
ticipants’ group. Mainly, the high inter-session variability combined
with the fact the classifier is only trained on the first session may ex-
plain that no improvement in performance was noticed over sessions.
Nonetheless, based on descriptive analyses, it seems that participants
in the SA group present the highest inter-subject stability in terms
of selected electrode (i.e., the electrode enabling to discriminate most
effectively between rest and task). Also, the results revealed impor-
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tant clusters around the right motor-cortex for the left-hand motor-
imagery task, around the right temporal lobe for the mental rotation
task and finally around the left frontal and parietal cortices for the
mental subtraction task. In the future, if we manage to associate
specific patterns to performance, it will enable us to provide MI-BCI
users with cognitive support, i.e., to guide them when they are trying
to generate these specific patterns (as discussed in Section 6.6). These
promising results encouraged us to think about potential applications
of such a spatial ability training process. In particular, it appeared in-
teresting to us to use spatial ability training in stroke rehabilitation
procedures. Indeed, MI-BCIs are promising for upper-limb rehabilita-
tion after a stroke as they enable brain-activity to be visualised while
the patient is attempting to move. The patient could then be provided
with proprioceptive feedback in order to close the sensori-motor loop
and favour synaptic plasticity. Nonetheless, this procedure reminds
patients they have lost the ability to move their arm which is likely
to induce or increase their depressive state. Spatial ability training is
known to theoretically trigger the motor-cortex 1 and could be used at
least at the beginning of the rehabilitation process, when the patient
has no residual movement, to trigger synaptic plasticity in a more
transparent way for the patient.

Challenge #2 considered personality factors to understand and im-
prove MI-BCI user-training. Our first study (Jeunet et al., 2015b) re-
vealed a robust predictive model of MI-BCI performance including
four personality traits: tension (negative impact), self-reliance, ab-
stractedness and the active/reflective dimension of the learning style.
As explained in Chapter 6, all these factors were in line with the
literature. More specifically, we focused on the tension and self- Contribution #3:

Definition of a
predictive model of
MI-BCI performance
based on 4
personality traits.

reliance traits. Indeed, beyond MI-BCI training, highly tense and
non-autonomous people have been shown to struggle with Distant
Learning (i.e., autonomous learning, with no teacher or classmates).
Indeed, distant learning lacks social interactions, which are of utmost
importance during the learning process, especially for tense and non-
autonomous learners. Based on the literature relevant to distance
learning, we designed and implemented a Learning Companion, the
goal of which is to provide the MI-BCI user with social presence and
emotional support in order to facilitate their training process. We Contribution #4:

Design,
implementation &
test of a learning
companion:
PEANUT.

called the companion PEANUT for Personalised Emotional Agent for
Neurotechnology User-Training. The design process enabled us to de-
termine appropriate behaviour and appearance for PEANUT based
on a review of the literature, on the analysis of data from a previ-
ous experiment and on user-studies. In particular, we determined
what the content and the type of each intervention (speech and facial

1. We have recorded participants EEG activity while they were performing the
SA training; unfortunately we have not had enough time to analyse the data yet. To
be continued...
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expression) should be depending on the context, i.e., depending on
MI-BCI performance and progression. Then, we tested PEANUT’s
efficiency to improve MI-BCI user-training, both in terms of perfor-
mance and user-experience. We were unable to conclude as to the
impact of PEANUT on performance, due to initial significant differ-
ences of classification accuracy between the groups. Nonetheless, re-
sults revealed that MI-BCI users who were accompanied by PEANUT
rated the system’s learnability/memorability as well as their self-
efficiency/effectiveness higher than participants who did not receive
support from PEANUT. Moreover, the general perception of PEANUT
was better when the latter’s behaviour was adapted to users’ perfor-
mance and progression (rather than generic). This last result is in line
with instructional design literature that insists on the importance of
providing support as well as adapted feedback (Shute, 2008). To sum-
marise, PEANUT significantly benefited user-experience during the
MI-BCI training process. The next step for PEANUT is to adapt its be-
haviour not only to the user’s performance and progression, but also
to their personality/cognitive profile and cognitive/emotional/moti-
vational states. Also, as discussed in the Prospects section of Chap-
ter 6, PEANUT represents a great opportunity to provide the users
with a multimodal and explanatory cognitive support (more elabo-
rated than the current feedback). For instance, by coupling PEANUT
with TEEGI (Frey et al., 2014a), who would become the user’s avatar,
PEANUT could provide the learners with indications to help them
explore their brain activity (displayed on TEEGI) while performing
MI-tasks. Indeed, the literature suggests that autonomy and explo-
ration are necessary to acquire new skills. More details about these
future prospects are provided in Chapter 6.

Finally, Challenge #3 considered how feedback could help us un-
derstand and improve MI-BCI user-training. Our first object here was
to determine the impact of a standard BCI-style feedback (Pfurtscheller
and Neuper, 2001) on skill acquisition. We thus decided to use this
feedback in an MI-BCI free context, to train participants to perform
simple motor tasks: drawing circles and triangles on a graphic tablet.
Results showed that around 17% of the participants, who all had the
cognitive and motor abilities required to perform the task, failed to
find a strategy that allowed the system to recognise the task they
were performing. Next, we asked the 10 best and 10 poorest per-
formers from this first study to perform an MI-BCI training session.
We hypothesised that if the feedback was partly responsible for par-
ticipants’ performance, there would be a correlation between their
performances in motor-tasks and MI-BCI tasks. Results did not re-
veal such a correlation. Nonetheless, it would seem that participants
who faced difficulty during the first experiment, especially women,
improved more easily in terms of performance during the second ex-
periment. This could be explained by the fact that facing difficulty in
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the context of a complex task (such as MI tasks, for which we are not
trained and for which we do not have any proprioceptive feedback)
requires substantial cognitive resources. Thus, these resources are not Contribution #5:

Standard feedback
requires many
cognitive resources
to be processed.

available to understand how to use the information provided by the
feedback. On the contrary, when users face difficulty to find the right
strategy in a less complex context (such as performing motor tasks
which they know they can do and for which they have propriocep-
tive feedback) their available resources allow them to pay attention
to the feedback and to understand how the latter could be used to
improve their performance. Once the process has already been ex-
ecuted, a re-exposition to this protocol would not require as many
resources and so could be used efficiently in a more complex con-
text. To summarise, it would seem that the current feedback requires
too many resources to be processed in the context of new and com-
plex cognitive tasks such as mental-imagery. We propose two pos-
sible solutions to overcome this issue: either to pre-expose the user
to the feedback in the context of a task that requires fewer cognitive
resources so that they can process the feedback; or to design a new
feedback that requires fewer cognitive resources to be processed. Tra-
ditionally, MI-BCI training protocols rely mainly on the visual chan-
nel. Yet, this channel is overtaxed in interactive situations such as
the ones for which BCIs are developed, e.g., spatial navigation or
video games. Adding visual feedback is likely to overload the cog-
nitive resources related to this channel and could thus be associated
with a decrease in performance. Literature suggests that by split-
ting information over different sensory channels, the cognitive load
could be diminished and thus performance could be preserved. We
thus decided to test the efficiency of a feedback similar to the stan-
dard visual feedback, but provided on another sensory channel: we
chose to provide a vibrotactile feedback on the palms of the hands. Contribution #6:

Design,
implementation &
test of a vibrotactile
feedback.

Indeed, in the case of hand motor-imagery, providing feedback on
the hands will also enable a transparent mapping (or control-display
mapping) thus potentially improving the sense of agency and con-
sequently the performance. We designed and implemented gloves
embedded with vibrotactile motors. A pre-study enabled us to de-
termine the most appropriate pattern and intensity for the vibrations.
Then, we tested the efficiency of our tactile feedback to improve MI-
BCI user-training. Results revealed that participants provided with
our tactile feedback obtained better MI-BCI performance and better
scores at a side task (which suggests that they had more free cognitive
resources) than the participants provided with visual feedback. The
next step, introduced in the Prospects section of Chapter 7 may con-
sist in investigating the factors underlying the efficiency of our tactile
feedback, based on neurophysiological and behavioural data. Results
of the previously mentioned study suggest that our tactile feedback
requires less cognitive resources to be processed, thus leaving more
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resources to be allocated to the MI-task, which enables the users to ac-
quire better performance. This hypothesis needs to be confirmed. We
have two additional hypotheses that could explain the efficiency of
tactile feedback: (1) providing tactile feedback on the hands activates
the motor-cortex, thus helping the classifier to correctly identify MI
tasks ; (2) the transparent mapping between the task and the feedback
induces a better sense of agency, itself leading to better performance.
The neural correlates of these different elements could allow us to
determine if they are involved in the efficiency of tactile feedback for
improving MI-BCI training. A future experiment will enable us to
test these different hypotheses.

8.3 limitations of this project

We hope this work represents a significant step towards more reli-
able, efficient and accessible MI-BCI. Nevertheless, some general lim-
itations have to be mentioned. First, we used a basic standard signal
processing pipeline (CSP/LDA-SVM). This is certainly not the most
advanced technique currently, nor the most successful, but we used
it because it is commonly used by the community and most impor-
tantly because we were focusing on user-training and thus wanted a
general pipeline usable in different contexts. Moreover, the classifier
was trained only on the data from the first run of the first session
(i.e., on 15 or 20 trials per class). If the experiment comprised sev-
eral sessions, only the classifier’s bias was adapted. We did so in
order to avoid users experiencing too much variability in terms of
feedback between the sessions. Nonetheless, it would be interest-
ing to assess the impact of re-training the classifier at each session
on users’ performance and on usability. Limited data as well as the
fact the classifier was not re-trained at each session could also ex-
plain users’ modest performance and progression. Indeed, if users
improved over several sessions, and if their brain patterns changed
during the process, then not re-training the classifier would prevent
them from perceiving their progress, since they did would not have
better feedback. In other words, such a classifier is a biased measure
of users’ skills. Indeed, it uses the data collected on the first run of
the first session (i.e., when the user is still novice) to characterise good
skills that the user should be able to reproduce in order to perform
well. However, because the user is performing the tasks for the first
time during the calibration run, their BCI skills are very likely not
yet reliable, e.g., they are not able yet to produce stable and distinct
brain-activity patterns for each task. As a consequence, the patterns
used by the classifier to discriminate the different classes may not be
the most relevant ones, or may indeed even be noise. Indeed, while
users are acquiring BCI skills, their brain patterns are likely to change
after the calibration run. Thus, although the user’s brain activity pat-

– December 13, 2016



8.3 limitations of this project 203

terns could be more stable and distinct than on the first run, they
could still be associated with negative feedback. This may explain
why the participants of our experiments manage to improve during
their first session but do not improve over the sessions. Furthermore,
we use classification accuracy as a performance metric, i.e., one value.
Yet, such a uni-dimensional metric cannot alone mirror the complex-
ity of MI-BCI performance and skill acquisition. One obstacle to the
definition of more appropriate metrics is that we are not yet able to
describe BCI skills. There is a lack of theoretical and experimental
research to determine precisely the skills to be acquired to efficiently
control an MI-BCI. Nonetheless, if we use classification accuracy to
measure performance, we can easily say that the skills to be acquired
are the ability to generate stable and distinct brain-activity patterns
for each task. Based on these skills, other performance metrics could
be used. More specifically, we could measure the stability of the brain
patterns associated with a given task; or measure how distinct each
task is from rest, and from the other tasks. To summarise, an effort
should be made in order to precisely describe BCI-related skills as
well as associated performance metrics.

Furthermore, due to the duration of BCI sessions, the inclusion
of large samples was difficult. Thus, all our experiments ought to
be replicated in order to confirm the results. Again, due to small
sample sizes, we decided to use homogeneous populations: young
and healthy adults (18-30 years old - with no neurological or psychi-
atric disorders or motor impairments), most of them students, which
limits the possibility of extrapolating these results to the whole popu-
lation. Therefore, on the one hand, other age groups and educational
levels should be investigated and on the other hand, the validity of
our results should be tested on patients. Indeed, many of our results
are introduced as promising in contexts of motor-rehabilitation. How-
ever, motor-impaired patients, whatever the cause of their disability,
present a huge variability in terms of motor and cognitive functions.
For now, we have no ground truth to prove that their profiles and
the way they use BCIs is similar to young healthy users, and therefore
we cannot claim that our findings are relevant for this population. In
this view, we started a collaboration with the hospital of Bordeaux
and plan to continue investigating MI-BCI user-training on patients,
especially in the context of stroke rehabilitation.

Whether for patients or for the general public, we are limited in the
investigation of the MI-BCI user-training process and in its improve-
ment due to the lack of theoretical knowledge about this process. In-
deed, while the literature describes some factors influencing MI-BCI
performance, we have a comprehensive model neither of the skills to
be acquired to control an MI-BCI, nor of the factors impacting the ac-
quisition of these skills. The last part of this manuscript is dedicated
to future research that could enable us to cope with this shortcoming.
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quick summary -
There is great potential for improving MI-BCI performance, but this
potential is currently limited by the fact that to go further, we need to
adopt a multifactorial and dynamic approach of MI-BCI user-training.
We explain why and how an Intelligent Tutoring System (ITS) could
enable us to study MI-BCI user-training with such an approach. Then,
we argue that, however, we lack theoretical knowledge about the MI-
BCI skills to be acquired to develop such an ITS. Consequently, we
propose a first, basic cognitive model of MI-BCI tasks.
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9.1 intelligent tutoring systems (its) for mi-bci user-
training : a promising multifactorial & user-specific

approach

9.1.1 Why & How to Use an ITS for MI-BCI User-Training? Research
Challenges.

This thesis focused on MI-BCI user-training. We have shown, both
theoretically and experimentally, that current training protocols are
suboptimal. Thus, we introduced a review of the research dedicated
to improving current MI-BCI user-training and then proposed differ-
ent levers of improvement, which are summarised in Section 8.2.

Nonetheless, although we obtained some promising results we have
not yet reached performances that would enable MI-BCIs to be widely
democratised. In fact, we are still far from achieving a complete un-
derstanding of the MI-BCI skill acquisition process. It can be argued
that this understanding will not be reached while the different fac-
tors impacting MI-BCI training are studied independently. As a mat-
ter of fact, skill acquisition being a complex multi-factorial process, a
global approach should be adopted for its investigation. Yet, current
research consists in evaluating the impact of isolated factors on MI-
BCI user training in an independent and sequential manner. This ap-
proach neglects any potential inter-factor interactions, and also over-
looks the evolving dynamics of the impact of these factors throughout
the training process (for instance, some emotions -like the frustration-
are good for learning at some stages of the training process, while
they are detrimental at other stages - Kort, Reilly, and Picard, 2001).
Interestingly enough, such a dynamic and multi-factorial approach
to understand and improve MI-BCI user-training would be possi-
ble using a dedicated Intelligent Tutoring System (ITS), i.e., a com-
puterised adaptive system aiming at supporting learning (Nkambou,
Bourdeau, and Mizoguchi, 2010). ITS have the specificity of enabling
the training process to be adapted online based on a student model
(which includes the learner’s profile and an online computation of
the learner’s state) and on a cognitive model of the task (i.e., theoret-
ical knowledge about the factors impacting the acquisition of target
skills). As such, ITS are more and more popular for Distance Learn-
ing procedures (i.e., situations in which the learner is alone in front
of a computer, with no teacher or classmates) because they enable
the absence of a teacher to be partially compensated by considering
the learner’s state and profile to adapt and optimise the sequences of
tasks and the support provided to the user. MI-BCI training resem-
bles distance learning as it is performed autonomously and could
thus also benefit from ITS. Besides, consistently with distance learn-
ing literature, highly anxious and poorly autonomous learners have
been shown to struggle with MI-BCI training (see Chapter 6) which is
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most likely due to the lack of social presence and emotional support
inherent to standard MI-BCI training protocols. In order to overcome
this drawback, as explained in Part II of Chapter 6, Learning Compan-
ions have been proposed. As a reminder, learning companions are
characters (either virtual or physical) that are able to provide users
with different kinds of support (emotional, cognitive, social presence)
through facial/bodily expressions and speech (see Chapter 6 and our
learning companion PEANUT for an example of emotional support
and social presence). Since learning companions have been proven
efficient for improving distance learning (Nkambou, Bourdeau, and
Mizoguchi, 2010), MI-BCI training may also benefit from them.

To summarise, the strength of ITS lies in (1) a personalised sup-
port (that can be provided through a learning companion) and (2)
an adaptation of the training process according to the learner’s pro-
file, state and skill evolution. Such an ITS represents a promising
inter-disciplinary approach for improving MI-BCI performance as it
would enable us to gather different levers and articulate them in or-
der to reach a deeper understanding of MI-BCI user-training to allow
this process to be optimised.

The architecture of such an ITS dedicated to MI-BCI user-training
is depicted in next section.

9.1.2 Architecture of an ITS for MI-BCI User-Training

In this section we propose a conceptual framework for an ITS sup-
porting MI-BCI user-training. Traditionally, ITS are composed of 4

modules:
— the Expert Module contains the concepts, rules and strategies of

the domain to be learned to acquire target skills.
— the Student Model is the core component containing information

about the user’s profile (personality, cognitive profile) and state
(cognitive, emotional and motivational states) at any given time
during the training process; the skills of the user being included
in the cognitive state.

— the Tutor module uses input from the two previous modules to
select a tutoring strategy, i.e., an appropriate sequence of exer-
cises and appropriate support/feedback.

— the Interface provides the user with access to the learning envi-
ronment; we will not detail the interface in the following sec-
tions, since we are at the stage of conceptual reflections rather
than HCI development.

In the following paragraphs, we will detail how the first 3 modules
would work. Figure 58 is a schematic representation of the architec-
ture of an ITS for MI-BCI user-training.

The Expert module contains a cognitive model of the task that
could be represented as an oriented network containing the skills to
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be acquired as well as all the factors potentially impacting the skill ac-
quisition process (nodes of the network) and the inter-dependencies
of these factors (links of the network, that can be positive or nega-
tive). This network is represented in Figures 59 & 60 and detailed in
Section 9.1.3. The Expert Module would also include a bank of exer-
cises arising from the cognitive model. Once we become familiar with
the skills that must be acquired as well as the factors that impact the
acquisition of these skills, it will be possible to design exercises that
intend to lead the learner, through intermediary steps, towards the ac-
quisition of target skills. In order to comply with recommendations
from instructional design (see Chapter 1, or Lotte, Larrue, and Mühl,
2013), these exercises should be varied and offer different levels of
difficulty.

We think the Student Model should contain 2 kinds of information.
The first is the user’s profile (assessed by questionnaires and offline
EEG measurements), including spatial abilities, aspects of their per-
sonality (e.g., abstractedness, tension and autonomy), or the ampli-
tude of the mu rhythm at rest: all having been shown to be related to
MI-BCI performance (see Chapters 5 & 6). The second kind of infor-
mation the Student Model should contain relates to the state of the
user. This includes their cognitive state (fatigue, workload, skills, etc.),
motivational state and emotional state (frustration, self-confidence,
etc.). However, since the accuracy with which these states can be de-
duced from EEG/physiological/behavioural data is far from perfect,
these measures must be taken with caution. The relevant aspects of
the user’s state and profile, based on the cognitive model of the task,
as well as the intrinsic/extrinsic factors influencing these aspects are
put together in a Bayesian network. Based on the cognitive model
of the task, on the inputs it receives and on psychological models of
learning (such as the model of Kort, Reilly, and Picard, 2001), the
Bayesian network could infer the cognitive, motivational and emo-
tional states of the learner. Such a network would enable the student
model to be updated online throughout the training process. Con-
cretely, the addition to this network of external factors which influ-
ence the states/traits of the user would correspond to the Cognitive
Model of the Task network (see Section 9.1.3) with probabilities associ-
ated with each of its nodes, the nodes being connected to measurable
intrinsic/extrinsic factors. The initial probabilities (i.e., probabilities
set at the beginning of the training process) could first be defined
by experts; the model could then be adapted/improved based on the
data collected from the users.

Based on the Student Model, on the Expert module as well as
on psychological models (such as the Kort, Reilly, and Picard, 2001

model), the Tutor would select the appropriate exercises and provide
users with a suitable support. The sequence of exercises would be de-
termined using dedicated algorithms. For instance, case-based algo-

– December 13, 2016



208 prospects - towards an its for mi-bci training

Figure 58 – Architecture of an Intelligent Tutoring System for MI-BCI user-
training.

rithms could be used: this would consist in browsing a bank of previ-
ous cases and finding situations similar to the current one. Once the
system has identified all the similar situations, the algorithm could
chose an exercise that appeared to be effective in the previous cases.
This is only an example, the choice of the algorithm should be further
investigated, since many constraints related to BCIs remain to be ad-
dressed (e.g., the fact that it would be difficult to have a large enough
data base of previous cases). The sequence of exercises should be
adaptive throughout the training process in order to fit the learner’s
state and optimise the learning process. Concerning support, two
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kinds could be provided. On the one hand, cognitive support would
provide the participant with information about the gap between their
current skills and the skills to be acquired, their performance and
advice to help them improve (one kind of basic cognitive support
is the standard feedback we used in this thesis - Pfurtscheller and
Neuper, 2001). On the other hand, emotional support and social pres-
ence should be provided in order to overcome the absence of social
interactions during the training process. In this thesis, we designed
and validated a learning companion, PEANUT, to provide this sup-
port. PEANUT is able to provide the user with support adapted to
their performance and progression. The next step would consist in
adapting this support to the learners’ profile, and to the evolution
of their emotional and motivational states throughout the training
process. Indeed, learners who have high tension and low autonomy
levels for instance, have been shown to need more social presence
and an emotional support (e.g., empathy) (Ditzen et al., 2008; Reeve
et al., 2004); also, women have been shown to appreciate learning
companions more than men (Burleson and Picard, 2007).

The architecture described here-above revealed important research
challenges related to the design of an ITS for MI-BCI user-training.

First, BCI skills should be explicitly described, as this would allow
relevant performance metrics to be determined. A second challenge
is to determine and implement relevant algorithms to manage the
behaviour of the tutor. The third challenge, which is most closely
related to this thesis, is the one we will focus on: the elaboration of a
cognitive model of the task.

9.1.3 Towards a Cognitive Model of the Task of MI-BCI User-Training

In their book titled "Cognitive Modeling", Jerome Busemeyer and
Adele Diederich describe cognitive models as models which aim to
scientifically explain one or more cognitive processes or how these
processes interact (Busemeyer and Diederich, 2010). Thus, three main
features characterise cognitive models: (1) their goal: they aim to
explain cognitive processes scientifically, (2) their format: they are
described in a formal language, (3) their background: cognitive mod-
els are derived from basic principles of cognition (Busemeyer and
Diederich, 2010). Cognitive models have three main advantages: they
guarantee the production of logically valid predictions, they allow
precise quantitative predictions to be made and they enable generali-
sation (Busemeyer and Diederich, 2010). Different steps are required
to build a cognitive model (Busemeyer and Diederich, 2010):

— First, building a cognitive model requires a formal description
of the cognitive process(es) to be described based on conceptual
theories.
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— Next, since the conceptual theories are most likely incomplete,
ad hoc assumptions should be made to complete the formal de-
scription of the targeted cognitive process(es)

— Third, the parameters of the model, e.g., the probabilities asso-
ciated with each element of the model, should be determined.

— Then, the predictions made by the model should be compared
to empirical data.

— Finally, this process should be iterated to constrain and improve
the relevance of the model.

Unfortunately, we have not yet had enough time to develop such a
complete model of MI-BCI user-training. But it is one of our major
research challenges for the future. Hereafter, we provide details con-
cerning the first step.

The field of BCI being rather large, in this model we decided to con-
centrate on the same focus as the rest of the manuscript: active BCIs,
and more specifically Mental-Imagery based BCIs. Also, a decision
had to be made about the cognitive processes targeted by the model:
we chose to investigate the cognitive processes leading to a good clas-
sification accuracy. Indeed, as explained in the previous section, cur-
rently, most MI-BCI studies consider the classification accuracy to be
a measure of performance. It can be argued that this performance
metric corresponds to the ability to produce stable and distinct brain-
activity patterns while performing the MI tasks. As such, this model
may not be relevant for other BCI skills or performance metrics. Also,
we only considered the factors that are supposed to impact perfor-
mance based on the MI-BCI literature: thus, several relevant factors,
that have not yet been studied by the BCI community, are likely to
be missing. They will be investigated in the second phase of the con-
struction of this model. Finally, since we are dealing with a model, it
is of course only a simplified representation of the complex cognitive
processes underlying MI-BCI tasks, and will certainly require to be
improved.

To provide a formal description of the cognitive processes leading
to good BCI performances, two steps had to be completed. First, we
had to describe both the intrinsic factors (i.e., users’ states and traits)
which impact performance as well as the connections between these
factors. Then, the extrinsic elements impacting the users’ states/-
traits, and consequently their performance, as well as the nature of
this impact had to be formalised. These extrinsic elements include
design artefacts and different cognitive activities or exercises. There-
fore, for more readability, we show two representations of our model:
one which shows the intrinsic factors alone; and one which includes
extrinsic elements and the intrinsic factors they influence. The next
paragraphs are dedicated to the description of both these representa-
tions.
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9.1.3.1 Step 1 - Building a Model of the Intrinsic Factors Influencing MI-
BCI Performance

The intrinsic factors included in this model correspond on the one
hand to users’ cognitive and motivational states and on the other
hand to users’ traits, i.e., personality traits and malleable cognitive
abilities that can be trained. All these factors are represented as
hexagons in the model, see Figure 59. The dodecagons represent
ways to measure these factors: they are either neurophysiological
markers or psychometric test scores. Moreover, vertically juxtaposed
hexagons as well as unidirectional arrows represent causal relation-
ships (if factor A is above factor B, then factor A influences factor B).
The plus and minus signs indicate if this causal relationship is pos-
itive or negative. On the other hand double-sided arrows connect a
specific state or trait and the tool used to measure it. Subsequently,
we briefly describe all the factors included in the model. For more
information about these factors or the studies that revealed their rela-
tionship with MI-BCI performance, please refer to the review of the
literature dedicated to the predictors of MI-BCI performance, Chapter
2.

This first model can be divided into 2 main parts. On the left and in
the middle, the factors related to the user-technology relationship (in
orange), to attention (in green) and to mood (in pink) can modulate
the user’s ability, at a given moment in time, to perform a cognitive
task. On the other hand, on the right side of the figure, the factors
related to the ability to perform an MI-task are represented in blue.
Thus, these factors will determine to what extent users are able to
reach good performances. Each of these blocks is described more
precisely in the following paragraphs.

Factors pertaining to the user-technology relationship (in orange)
are gathered on the left of the schematic representation of the model.
First, users showing low self-reliance traits, according to the 16-PF5

test (Cattell and Cattell, 1995), tend to perceive the task as more dif-
ficult (Miserandino, 1996). Moreover, the phenomenon of computer
anxiety, that is to say the apprehension of the user towards BCI use,
has been shown to reduce users’ self-efficacy (Simsek, 2011), which
in turn will induce a higher perceived difficulty (Brosnan, 1998) and
a decreased in performance. On the other hand, by reducing com-
puter anxiety, and consequently improving self-efficacy, it is possible
to improve users’ engagement towards the task and thus their moti-
vation and performance (Achim and Al Kassim, 2015). This can be
explained by the fact that self-efficient users do not consider difficulty
as a threat but as a challenge which encourages them to persevere to
reach good performance (Achim and Al Kassim, 2015). In order to
reduce computer anxiety, the sense of agency should be improved. Be-
sides, a high sense of agency will also increase the feeling of mastery
of the system and consequently reduce perceived difficulty, increase
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motivation and performance (Vlek et al., 2014). Finally, tense or anx-
ious users tend to have lower performances which is due, at least in
part, to the fact they devote a lot of resources to off-task considera-
tions (such as worrying about their performance) and thus have fewer
resources to allocate to focusing attention on the task (Brosnan, 1998).
To summarise, in order to enable users to reach good performance,
training protocols should enable them to experience a high sense of
agency and a low level of computer anxiety. Also, protocols should
be adapted to non self-reliant and highly tense/anxious users so that
their personality does not hinder their progress.

Tiredness has a negative impact on motivation, focused attention
and mood (in pink). Nonetheless, a good mood positively affects
motivation and performance (Nijboer et al., 2007).

Then, the green block in the middle comprises factors related to at-
tention. We have previously shown that engagement towards the task
as well as motivation are modulated by the user-technology relation-
ship and by their state (mood and tiredness). Motivation as well as
general attentional abilities will determine how much focused atten-
tion is dedicated to the MI-BCI task. The more resources are allocated
to the task, the better the performance. One neurophysiological pre-
dictor has been shown to correlate with attention state: the central
gamma power (in attentional networks related to executive control -
Grosse-Wentrup, 2011).

Finally, on the right of the model the blue elements represent the
various factors that have been suggested to be related to the ability to
perform mental-imagery tasks. Indeed, abstractedness abilities cor-
respond to the ability to produce mental images (Cattell and Cattell,
1995). Also, visual-motor coordination is one aspect of spatial abili-
ties, which are described as the ability to produce, manipulate and
transform mental images (Poltrock and Brown, 1984). Finally, active
learners prefer "learning by doing" and could thus be more prone
to producing kinaesthetic mental images, which have been shown
to be more efficient than visual ones (Neuper et al., 2005). These
abilities can be measure by different scores such as the Kinaesthetic
Imagination score or the Visual-Motor Imagination Score (Vuckovic
and Osuagwu, 2013) or the Mental Rotation Score (Vandenberg and
Kuse, 1978) that we have shown correlates with MI-BCI performance.
Moreover, mu rhythms could enable, to a certain extent, to measure
the ability to perform motor-imagery. Indeed, Blankertz et al., 2010b
have shown that a high mu amplitude at rest correlates with motor-
imagery based BCI performance. This can be explained by the fact
that a higher amplitude at rest allowed for a greater decrease while
performing motor-imagery tasks.
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Figure 59 – The States and Traits that Influence a user’s BCI Performance.

9.1.3.2 Step 2 - A First Attempt at a Cognitive Model of the Task

Once all the intrinsic factors had been integrated into a network,
we added the extrinsic elements that can be seen as levers to opti-
mise users’ performance, see Figure 60. These extrinsic elements are
mainly based on theoretical hypotheses. Their impact on the users’
states, traits and performance have not yet been quantified. As a con-
sequence, they should be considered with caution. As stated earlier,
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these extrinsic elements were of two kinds: design artefacts and cogni-
tive activities/exercises. We determined three types of links between
these extrinsic elements and the intrinsic factors:

— "Direct influence on user state" (solid lines): this link connects
extrinsic elements in the "design artefacts" category to intrin-
sic states (mainly). These extrinsic factors are suggested to in-
fluence the user’s state and, consequently, are likely to have a
direct impact on performance. For instance, proposing a posi-
tively biased feedback has been suggested to improve (novice)
users’ sense of agency.

— "Help for users with a specific profile" (dashed lines): this link
connects extrinsic elements to traits; they indicate that these ex-
trinsic elements could help users who have a specific profile to
improve their performance. For instance, proposing an emo-
tional support has been suggested to benefit highly tense or
anxious users.

— "Improved abilities" (dash-dot lines): finally, this link connects
extrinsic elements in the "cognitive activities/exercises" category
to abilities that could be improved thanks to these activities/ex-
ercises. For instance, attentional neurofeedback has been sug-
gested to improve attentional abilities.

The extrinsic elements related to the experimental design that the-
oretically have a direct impact on the user’s state are listed here-
after. First, providing novice users with a positively biased feedback
(Kübler et al., 2001b) is thought to improve their sense of agency and
consequently decrease perceived difficulty and increase their moti-
vation. Then a transparent mapping (Beursken, 2012), also called
control-display mapping (Thurlings et al., 2012) as well as the prior-
ity, consistency and exclusivity principles (Vlek et al., 2014) all aim
to improve users’ sense of agency. Moreover, providing users with
emotional support and social presence could improve their motiva-
tion (Nkambou, Bourdeau, and Mizoguchi, 2010). Finally, adapting
the difficulty and proposing progressive difficulty has also been sug-
gested to improve performance (Wolpaw et al., 2000). On the other
hand, meditation, emotional support and social presence could help
highly tense and non-autonomous users, as explained in Chapter 6;
while cognitive support could help users to produce mental-images
that the system can recognise efficiently. Finally, the last type of
links (dash-dot links) connect cognitive actvities/exercises to the spe-
cific abilities they could benefit. Indeed, video-games, meditation
and attentional neurofeedback have been suggested to improve atten-
tional abilities (Brandmeyer and Delorme, 2013); while video-games
and spatial-ability exercises may improve the ability to create mental-
images.

These two steps represent the first phase in the development of a
cognitive model of the BCI task. The next phases consist in making
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assumptions about the missing factors that should be included, deter-
mining the parameters of the model and then repeatedly testing the
model by comparing it to empirical data.

Figure 60 – First phase of the definition of a Cognitive Model of MI-BCI
tasks.
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There is still a long way to go before we are able to propose highly
efficient, reliable and accessible BCIs. Therefore the community should
of course continue to invest in improving BCI hardware (signal ac-
quisition techniques) and software (signal processing). Nevertheless,
even the best EEG recording systems combined with the best signal
processing techniques will not suffice to make BCIs efficient and reli-
able if the user is unable to control the BCI properly. That is why a
similar effort should be made by the community to understand and
improve MI-BCI user-training. In this thesis, we insist on the impor-
tance of acquiring a deep theoretical knowledge about both the skills
to be acquired to control a BCI and the factors impacting their acqui-
sition. Building a cognitive model of BCI tasks may certainly enable
us to reach a better comprehension of the processes underlying BCI
control abilities. Because it would require a huge amount of experi-
mental studies and theoretical work, maybe the ideal solution would
be to develop an open platform on which researchers could share
their findings (in terms of factors impacting BCI skill acquisition) so
that they can be tested by other research teams, in combination with
other factors. Beyond the elaboration of such a cognitive model, it is
also essential to rethink user-training procedures. As stated in this
manuscript (and by many other researchers), current training proto-
cols do not comply with the recommendations from the literature in
the fields of psychology, human factors and instructional design. Yet,
some early experimental results suggest that better training protocols
could significantly benefit BCI performance. To summarise, there is
considerable room for improvement and we can reasonably surmise
that one day we will achieve sufficient efficiency and reliability to
make BCIs accessible and usable. However, improving performance
is not enough to make BCIs widely used outside laboratories. In-
deed, beyond the BCI system itself, the role of researchers should not
be neglected. First, BCI researchers and experimenters should work
towards the demystification of BCIs in order to reduce computer anx-
iety. This can be done through scientific mediation and communica-
tion with the media for instance. Second, BCI experimenters should
be careful to write clear and informative informed-consent forms and
explanations. These should provide participants and patients with an
objective estimation of the benefit on risk balance and should regulate
any form of hope that may be generated (Nijboer et al., 2013). Finally,
the social presence of the experimenter as well as the trust relation-
ship with the user are essential in facilitating the learning process and
therefore promote the use of BCI (Kleih et al., 2013).
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A P P E N D I X B : TA B L E S R E P R E S E N T I N G T H E
S E L E C T E D E L E C T R O D E F O R E A C H G R O U P,
S E S S I O N A N D TA S K , F O R L O W A L P H A , H I G H
A L P H A A N D H I G H B E TA B A N D S .

Figure 61 – Table representing the selected electrode as well as its associated
coefficient for each participant-group/task/session in the low
alpha band, i.e., [8;10]Hz; each head corresponds to one task,
on session and one group; on each head are displayed one point
by participant: the location of the point represents the selected
electrode while the size of the point represents the value of the
coefficient for this task/session. The black crosses represent the
"theoretical electrode", i.e., the one which is theoretically the
closest to the brain region triggered for each of the MI tasks:
C4 for the left-hand motor-imagery, FT8 for the mental rotation,
F3/Pz for the mental subtraction.
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Figure 62 – Table representing the selected electrode as well as its associated
coefficient for each participant-group/task/session in the low
bata band, i.e., [10;12]Hz; each head corresponds to one task, on
session and one group; on each head are displayed one point
by participant: the location of the point represents the selected
electrode while the size of the point represents the value of the
coefficient for this task/session. The black crosses represent the
"theoretical electrode", i.e., the one which is theoretically the
closest to the brain region triggered for each of the MI tasks:
C4 for the left-hand motor-imagery, FT8 for the mental rotation,
F3/Pz for the mental subtraction.
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Figure 63 – Table representing the selected electrode as well as its associated
coefficient for each participant-group/task/session in the low
bata band, i.e., [24;30]Hz; each head corresponds to one task, on
session and one group; on each head are displayed one point
by participant: the location of the point represents the selected
electrode while the size of the point represents the value of the
coefficient for this task/session. The black crosses represent the
"theoretical electrode", i.e., the one which is theoretically the
closest to the brain region triggered for each of the MI tasks:
C4 for the left-hand motor-imagery, FT8 for the mental rotation,
F3/Pz for the mental subtraction.
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