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  Reine Talj Université de Technologie de Compiègne
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“As far as the laws of mathematics refer to reality, they are not certain; 
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Enhancing road safety by developing active safety system is the general purpose of this 
thesis. A challenging task in the development of active safety system is to get accurate 
information about immeasurable vehicle dynamics states. More specifically,  we need to 
estimate the vertical load, the lateral frictional force and longitudinal frictional force 
at each wheel, and also the sideslip angle at center of gravity.  These states are the 
key parameters that could optimize the control of vehicle’s stability.  The estimation of 
vertical load at each tire enables the evaluation of the risk of rollover.  Estimation of 
tire lateral forces could help the control system reduce the lateral slip and prevent the 
situation like spinning and drift out. Tire longitudinal forces can also greatly influence 
the performance of vehicle. The sideslip angle is one of the most important parameter to 
control the lateral dynamics of vehicle. However, in the current market, very few safety 
systems are based on tire forces, due to the lack of cost-effective method to get these 
information. 

For all the above reasons, we would like to develop a perception system to monitor 
these vehicle dynamics states by using only low-cost sensor. In order to achieve this ob- 
jective, we propose to develop novel observers to estimate unmeasured states. However, 
construction of an observer which could provide satisfactory performance at all condi- 
tion is never simple. It requires: 1, accurate and efficient models; 2, a robust estimation 
algorithm; 3, considering the parameter variation and sensor errors. As motivated by 
these requirements,  this dissertation is organized to present our contribution in three 
aspects: vehicle dynamics modelization,  observer design and adaptive estimation. 

In the aspect of modeling,  we propose several new models to describe vehicle dynam- 
ics.  The existent  models are obtained by simplifying the vehicle motion as a planar 
motion. In the proposed models, we described the vehicle motion as a 3D motion and 
considered the effects of road inclination.  Then for the vertical dynamics,  we propose 
to incorporate the suspension deflection  to calculate the transfer of vertical load. For 
the lateral dynamics,  we propose the model of transfer of lateral forces to describe the 
interaction between left wheel and right wheel. With this new model, the lateral force at 
each tire can be calculated  without sideslip angle. Similarly, for longitudinal dynamics, 
we also propose the model of transfer of longitudinal forces to calculate the longitudinal 
force at each tire. 

In the aspect of observer  design,  we propose a novel observation system, which is 
consisted of four individual observers connected in a cascaded way. The four observers 
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are developed for the estimation of vertical tire force, lateral tire force and longitudinal 
tire force and sideslip angle respectively.  For the linear system, the Kalman filter is em- 
ployed. While for the nonlinear system, the EKF, UKF and PF are applied to minimize 
the estimation errors. 

In the aspect of adaptive  estimation, we propose the  algorithms to improve  sensor 
measurement  and estimate vehicle parameters in order to stay robust in presence of 
parameter variation and sensor errors. Furthermore, we also propose to incorporate the 
digital map to enhance the estimation accuracy. The utilization of digital map could 
also enable the prediction of vehicle dynamics states and prevent the road accidents. 

Finally, we implement our algorithm in the experimental vehicle to realize real-time 
estimation. Experimental data has validated the proposed algorithm. 

 
 
 
 

Keywords: vehicle dynamics, state observer, tire road contact force, adaptive estima- 
tion 
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Résumé 
 

 
 

Le développement  des systèmes  intelligents pour contrôler  la stabilité  du véhicule  et 
éviter les accidents  routier est au cœur de la recherche automobile. L’expansion de ces 
systèmes intelligents à l’application réelle exige une estimation précise de la dynamique 
du véhicule dans des environnements  diverses (dévers et pente). Cette exigence implique 
principalement trois problèmes:  i), extraire des informations non mesurées à partir des 
capteurs faible coût; ii), rester robuste et précis face aux les perturbations incertaines 
causées  par les erreurs de mesure  ou de la méconnaissance  de l’environnement; iii), 
estimer l’état du véhicule et prévoir le risque d’accident en temps réel.  La motivation 
de cette thèse est de résoudre ces trois problèmes afin d’assurer le fonctionnement du 
système de sécurité en cas de situation critique. L’originalité de cette thèse par rapport 
à  l’existant, consiste dans le développement  des nouveaux algorithmes, basés  sur des 
nouveaux modèles du véhicule et des différentes techniques d’observation d’état, pour 
estimer des variables ou des paramètres incertains de la dynamique du véhicule en temps 
réel.  Le structure de notre observateur est montré dans le Figure 1. 

 

 
 
Figure 0.1: Les observateurs pour estimer les forces par pneu et l’angle  de dérive  au 

centre de gravité 
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La première étape de notre étude  est le développement  de nouveaux  modèles  pour 
mieux décrire le comportement du véhicule dans des différentes situations. Nous pro- 
posons trois nouveaux modèles pour décrire la dynamique verticale, latérale et longitudi- 
nale. L’avantage de ces nouveaux modèles est de considérer l’influence de la géométrie de 
la route, ce qui ce qui résulte dans une amélioration de la performance  des observateurs 
dans des routes avec dévers et pente. De plus, comparés avec le modèle de Dugoff et 
le modèle de Pacejka,  ces nouveaux  modèles sont plus efficaces et précises lors de fortes 
sollicitations latérales, car ils permettent de reconstruire  les efforts par pneu sans besoin 
de l’angle de dérive ou du taux de glissement. 

Pour minimiser les erreurs de modèle,  un système  d’estimation composé  de quatre 
observateurs est proposé  pour estimer les forces verticales, longitudinales et latérales 
par pneu, ainsi que l’angle de dérive, représentés par les bloc verts dans Figure 1. Pour 
l’estimation des forces latérales, trois techniques d’observation non linéaires (EKF, UKF 
et PF) sont appliqués pour tenir compte  des non-linéarités du modèle.  Pour valider la 
performance de nos observateurs,  nous avons implémenté en C++  des modules  temps- 
réel qui, embarqué sur le véhicule, estiment la dynamique du véhicule pendant le mou- 
vement.  Le véhicule expérimental et la piste d’essais sont montrés dans le Figure 2. 
 

 
 

Figure 0.2: Véhicule expérimental DYNA et la piste d’essais de UTAC CERAM 
 
 

En fin, nous proposons aussi des algorithmes  pour estimer  des paramètres physiques 
(la masse,  la rigidité  de dérive,  l’angle de la route, etc).   Limité  par la qualité  de 
mesure, l’estimation temps réel de ces paramètres n’est pas très précise. Afin d’améliorer 
l’estimation, nous proposons de récupérer des informations géométriques de la route à 
partir  d’une carte numérique.   De plus, basé sur les informations sur la route devant 
le véhicule, un système de prédiction est développé pour prévoir les forces par pneu et 
évaluer le risque potentiel d’un accident imminent..  Les données expérimentales sont 
utilisées pour valider l’algorithme proposé. 

 

 

Mots-clés : Dynamique du véhicule; Efforts au contact pneumatique/chaussée; Obser- 
vateur d’état; Anticipation de risque de conduite; Validation expérimentale. 
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1.1  Motivation 
 
Man’s mode of land transportation does not change too much until the advent of automo- 
bile. In 1768, the first steam-powered automobile  capable of human transportation was 
built by a French inventor, Nicolas-Joseph Cugnot [Eckermann,  2001]. One source states 
that it has seated four passengers and moved at a speed of 3.6 km/h [Manwaring, 1966]. 
The desire of a higher speed  and a greater power has continuously pushed forward 
the development  of automobile.  In 1807, François  Isaac de Rivaz designed the first 
car powered by an internal combustion  engine fueled by hydrogen. In 1886, the first 
petrol-powered automobile,  was invented by Karl Benz. The maximum speed is said to 
reach at 30 km/h.  Since then, the industry of automobile  has entered a period of rapid 
development. 

Now, in 21st century, the manufacturers of automobile  use new technologies to make 
the vehicles capable of accelerating easily and running faster. Lots of commercialized 
passenger cars are capable of accelerating to the speed of more than 200 km/h.   The 
fast transportation provides convenience in people’s daily life and promotes the devel- 
opment of human society.  On the contrary, the high speed transportation also brings 
critical problems to the society.  The increasing road accidents  has caused uncountable 
losses of people’s lives and properties every year all over the world.  According to the 
latest statistics report in ONISR (Observatoire National Internministriel de la Sécurité 
Routière), 56,109 accidents occurred in France in 2015, resulting in 70,442 injured and 
3464 fatalities [ONISR, 2015]. Improving road safety at high speed is the key challenges 
posed to road traffic today. 

According to the statistical data illustrated in Figure 1, the excessive speed is consid- 
ered as the prime reason of accidents. Consequently, many governments have established 
laws to put a limit on the maximum  vehicle speed. However, limiting the speed is not the 
best way to eliminate road accidents. Firstly, it is very hard to define the limit of speed. 
Many accidents happened at low speed. A dangerous  speed is not a speed surpassing a 
specific value but a speed that will cause the instability of vehicle. It can be influenced 
by many factors, such  as the road geometry, road surface condition and even weather 
condition. When the vehicle is passing an icy roundabout, it could be dangerous even 
at low speed.  To the contrast, when the vehicle is on an empty straight highway, it is 
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The first cause of fatal accidents 

during 15 months 

metropolitan 

France 

Speed 23% 

Alcohol 18% 

No respect of priority 12% 

Inattention 6% 

Narcotic 3% 

Discomfort 3% 

Dangerous overtaking 3% 

Fatigue 2% 

Wrong way 2% 

Lane changing 2% 

Telephone 1% 

Obstacles on the road 1% 

Equipment factors 1% 

Non respect of distances 1% 

Other causes 12% 

Cause unclear 9% 

 
 
 
 
 
 
 
 

a)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Accidents data provided by [ONISR, 2015]: a) Evolution of the annual mor- 

tality in France; b)Prime causes of fatal accidents 
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safe to drive at a very high speed. Secondly,  it is a fact that a considerable number of 
drivers has exceeded the speed limit, intentionally or unintentionally. It is necessary to 
emphasis the importance of respect the speed limit,  meanwhile it is also necessary to 
ensure the safety of the drivers who has exceeded the speed limit.  Thirdly, limiting the 
speed is just a temporary solution to enhance road safety. The desire of a higher speed 
is motivated by the development of human society. The limit  of speed has reduced  the 
efficiency of transportation and wasted the potential power of engines. In long term, 
the best solution to the traffic problem is to ensure the safety at high speed rather than 
limiting the vehicle to a low speed. 

A further study  of accident  data has uncovered the real reason of accidents. The 
study states that it is the human errors that account for over 90% of all road accidents 
[NHTSA, 2013]. Human errors could be caused by many reasons, such as the tiredness 
or the bad visibility.  These errors will possibly  cause the drivers to take wrong actions 
responding to the emergency situation, resulting in the lost of control of vehicle dynamics 
and then accidents. Thanks to the development of embedded systems high-tech  sensors, 
observation and control techniques, many intelligent systems has designed to help the 
drivers to reduce the human errors. These intelligent systems are capable of providing 
a better perception of the environment  and a better control of the vehicle in critical 
situation. These intelligent systems are commonly  named Advanced  Driver Assistance 
Systems (ADAS). 

The ADAS systems can be classified according to whether they are vehicle based sys- 
tems or infrastructure related systems which require interaction between the vehicle and 
the infrastructure aiming at sending, receiving, processing and storing various informa- 
tion (telematic systems).  Here we introduce several ADAS systems that are already in 
the market [Liu and Ye, 2011]. Systems from 1 to 6 are the vehicle based systems, while 
7-9 are the infrastructure realted systems. 

1. ABS, Anti-Lock Breaking System: it is the system that prevents the blocking of 
the wheels when breaking and thus allowing the car to stay on track. It is first taken in 
use in cars in late 1970’s.  Now ABS are required on all new passenger cars sold in the 
EU since 2004. 

2. ESP, Electronic Stability Program: system stabilising the vehicle and preventing 
skidding in critical situations.  ESP is integrated with the vehicle braking system to 
guarantee vehicle stability in critical condition. It is designed to automatically control 
the brakes at each tire to correct the slide and prevent  spinning.  It could minimize 
the loss of control during a already happened danger. It is reported that the European 
Commission has confirmed a proposal for the mandatory introduction of ESP on all new 
cars and commercial vehicle models sold in the EU from 2012. 

3.  Obstacle and collision warning: system detecting potential collisions with other 
vehicles or obstacles based on current speed. Available as an option in several European 
models. 
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4. Lane departure warning system: system warning the driver when unintentionally 
leaving the lane. Available for commercial  vehicles as an extra fitment for several years, 
for passenger vehicles some models available  in 2005. 

5. Monitoring the state of vigilance of the driver: system warning the driver in case 
of drowsiness, distraction or carelessness. 

6.  Adaptive  Head Lights:  system moving headlights when turning into bends and 
adjusting the luminous intensity in order to avoid dazzling. Available as an option in 
several European Models. 

7.  eCall, Emergency call system: system automatically calling the local emergency 
authorities and instantly transferring to them accurate vehicle position and other acci- 
dent related data when the vehicle is involved in a serious accident and thus reducing 
the time for the rescue services to arrive. The aim is to equip all new vehicles with eCall 
system starting 2010. 

8. Real time traffic and travel information: system providing real time information 
about the road network such as traffic jams and weather conditions allowing drivers to 
choose an alternative itinerary. 

9. Speed Alert: system detecting local speed limits on all types of roads and warning 
driver if they exceed these. 

These intelligent  systems are proved to be  efficient  at enhancing the road safety. 
According to the report of U.S Department of Transportation [NHTSA, 2013], for the 
vehicles equipped with both ABS and ESC, 7.5 percent ran off the road, while for the 
vehicles equipped with neither ABS nor ESC, 14.6 percent ran off the road. In the next 
few years, many other intelligent systems are going to appear to warn and assist the 
human driver in case of critical maneuvers. The development of a vehicle safety system 
can be generally divided into three steps: measurement (perception), decision(analysis) 
and action(control), as  illustrated in Figure 1.2.  This research concentrates  on the 
task of perception. All intelligent systems need accurate  information about the vehicle 
dynamics. Actually, the safety systems are based on basic information about vehicle 
dynamics, which could be directly measured by some low-cost  sensors, such as the wheel 
speed sensor, the gyroscopes and the accelerometers. These systems are widely employed 
in the automobile industry, due to the simplicity and robustness. But further developed 
safety systems and other high-level decision systems need more detailed information 
about the vehicle dynamics state like  tire/road  forces and sideslip angle. This needs 
us to have a better perception of all available vehicle dynamics states. One method to 
improve the perception is to add new sensors.  Another method is to develop “virtual 
sensors” to reconstruct or estimate the unknown variables without using new sensors. In 
this thesis, we prefer the second method, in order to develop a safety system which has 
high potential for real applications. As a conclusion, the methodology of this thesis is to 
extract as more information about vehicle dynamics states as we can by using only the 
sensors which are already available in the currently standard vehicles. Studying vehicle 
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Figure 1.2: Structure of an active safety system 

dynamics models and building robust observers are the kernel of this thesis. 

1.2  Objectives And Contribution 
 
Enhancing road safety by developing active safety system is the general purpose of this 
thesis.  A challenging task in the development  of this system is to get accurate in- 
formation about immeasurable vehicle dynamics states. More specifically,  we need to 
estimate the vertical load, the lateral frictional force and longitudinal frictional force at 
each wheel, and also the sideslip angle at center of gravity.  These states are the key 
parameters that could optimize the control of vehicle’s stability. However, in the current 
market, very few safety systems are based on tire forces, due to the lack of cost-effective 
method to get these information.  The current safety systems rely on information ob- 
tained through basic measurements and integration of inertial sensors, which may be 
prone to error and uncertainty [Fukada, 1999], [Van Zanten, 2002]. The accurate esti- 
mation of all vehicle dynamics states could greatly improve the performance of vehicle’s 
safety system [Doumiati et al., 2009]. The estimation of vertical load at each tire en- 
ables the evaluation of the risk of rollover. Estimation of tire lateral forces could help the 
control system reduce the lateral slip and prevent the situation like spinning and drift 
out. Tire longitudinal forces can also greatly influence the performance of vehicle. The 
sideslip angle is one of the most important parameter to control the lateral dynamics of 
vehicle. For all the above reason, lots of research have been conducted  to get accurate 
information about these vehicle dynamics states. 

In the literature, many dynamics models and observers have been proposed. When 
applying these existent models and observers in our research, we encountered  several 
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problems that are rarely discussed in the literature. Our research is started by the task 
to estimate vertical tire forces. In the literature, many authors  assume the vertical forces 
as constant values. However, in the experiments, a significant variation of vertical load 
at each wheel is perceived during cornering or braking. Some simple models are proposed 
in the literature to calculate the vertical load at each tire during dynamics maneuvers. 
These models are developed with the assumption that the road is level and flat. In real 
environment, road condition is complex and may vary a lot during a journey.  It is a 
challenging task to accurately estimate the vertical forces in all terrain. In the subsequent 
research, we found that the lateral dynamics and longitudinal dynamics are also greatly 
affected by the road condition. The currently widely-used vehicle dynamics models (the 
bicycle model and double track model) failed to take into account the influence of road 
irregularities.  They are obtained through an oversimplification of the real situation, 
approximating the vehicle dynamics by planar rigid body dynamics. Consequently, the 
estimation based on the current models are less accurate  at inclined road. In order to 
make our observer capable of operating safely at different road conditions, we have to 
modify the vehicle dynamics models to take into account the influence of road condition. 
However, even with the modified vehicle models, the estimation errors are still significant 
due to the sensor noises and model incertitude.  Thus the techniques to obtain the 
optimal estimation in presence of sensor noises and model errors are quite meaningful to 
our research. Different observer techniques are going to be studied and compared in this 
thesis. Then based on these observer techniques, we develop robust observers to provide 
accurate estimation during critical dynamics maneuvers.  Another remark of our work 
is to estimate the parameters of the vehicle. In the literature, the vehicle parameters, 
like mass, position of center of gravity and stiffness of sideslip, are usually considered  as 
known constants. In our research, these parameters  are regarded  as unknown variables 
and needed to be identified. Consideration of these challenging problems is motivated 
by the attempt to expand the active safety system from the research stage into useful 
real-world applications. We are trying to consider all possible variation in real conditions 
and make our observers realistic.  In this context, all our theoretical development will 
be implemented  in our experimental vehicle and evaluated by tests in real condition. In 
order to realize the real-time estimation, a balance point should be found between the 
accuracy of estimation and the computing efficiency. Finally, as an application of the 
vehicle dynamics  observer, we are going to develop a risk prediction system to advise 
the safe speed. 

Directed by the objectives described above, we have conducted studies in both theo- 
retical way and experimental way. Compared with the state-of-the-art of knowledge in 
this field, the new contribution in this dissertation could be concluded with the following 
points: 

❼  Development of novel models to better describe the vehicle dynamics in different 
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road conditions. Vehicle dynamics models have been studied since long time ago, 
but these models are either oversimplified or computationally expensive. We pro- 
posed some novel models to efficiently describe vehicle dynamics. In the aspect 
of vertical dynamics,  we integrated the deflections of suspension and the inertial 
sensors to take into account the pitch and roll motion of suspension. In the aspect 
of lateral dynamics,  we employ the three-dimensional dynamics rather than the 
planar dynamics to describe the vehicle’s motion.  In this way, we can consider 
the additional liberty of motion caused by the road irregularity. Furthermore, we 
proposed the model of transfer of lateral forces, which enables us to estimate the 
tire lateral force without the need of sideslip angle. In the aspect of longitudinal 
dynamics,  we proposed the model of transfer of longitudinal forces. 

❼  Development  of a set of observers devoted to estimate the tire forces and the 

sideslip angle in real-time. A system consisting of four individual observers, con- 
nected in a cascaded structure, is proposed in order to improve the robustness and 
efficiency of the overall estimation process.  For the linear estimation problems, 
the observers are developed  based on classic Kalman filter.   For the non linear 
estimation problem, three nonlinear observer techniques (EKF, UKF and PF) are 
addressed to cope to the nonlinearity of vehicle model. Compared with the pre- 
vious work in our laboratory and in the literature, the observers proposed in this 
thesis are more robust and accurate due to the fusion of different models. Both 
the new proposed models and the classic models are incorporated to estimate the 
vehicle states. We developed an algorithm to change the model uncertainty ac- 
cording to the vehicle dynamics state. Experimental validations demonstrate the 
performance of our observer in various road environments and driving maneuvers. 

❼  Development  of observers to filter out the bias of sensor measurement. In the 

literature, the sensor measurement (inertial sensors, GPS, wheel speed sensor) is 
regarded  as always  available and accurate. Nevertheless, during the experiments 
in real condition, we found that the unpredictable  sensor errors or sensor failures 
could happen at any moment. To improve the accuracy of sensor measurement, 
we proposed to combine multiple models and sensors to estimate each dynamic 
state, making the estimation insensitive to the sensor failure. 

❼  Development of the RLS algorithm to estimate the vehicle parameters, including 

the vehicle mass, road cornering stiffness and position of CoG. These parameters 
are important to the estimation of vehicle dynamics and are usually regarded  as 
constants. Adaptive estimation of these parameters  could improve the accuracy 
and robustness of our observer. 

❼  Development of a risk prediction system by incorporating digital road map and 

vehicle dynamics models. The existing observers are only capable of estimating 
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vehicle dynamics states at a current instant but not to predict the potential dangers 
in a future instant. In order to make time for correcting drive behaviors, especially 
when driving at high speed, it seems very appealing for us to predict an impending 
dangerous event and react before the danger occurs. The geometry of the upcoming 
path ahead of vehicle, obtained through the digital map, could be employed  to 
predict the future dynamics states. The OpenStreetMap is employed to create the 
database of the road information, like road curvature, road bank angle or slope 
angle. Experimental data validates that the digital map can effectively predict the 
vehicle dynamics states. 

❼  Implementation of software modules consisting of data processing and embedded 

application. Experimental implementation is also significant in this work. It should 
be highlighted that above-mentioned  observers for estimation of vehicle dynamics 
states are realized and validated through on-line real-time test. 

 

 

1.3  Work Frame 
 
The entire work is completed at the HeuDiaSyc (“Heuristic et Diagnostic  des Systèmes 
Complexes”) UMR 7253 CNRS Laboratory at the  Computer Science Department  of 
Université  de Technologie de Compiègne  (UTC)  in France, under the supervision of 
Prof. Ali Charara and Alessandro Corrêa Victorino.  This Ph.D funding is provided in 
part by China Scholarship Council (CSC). 

The works on this thesis were developed in relation to a Franco-German cooperation 
between the CNRS-UTC in Compiègne (Picardie, France) and TU Ilmenau (Thuringia, 
Germany), in the context of the latest European Project VERVE (Novel Vehicle Dynam- 
ics Control Technique for Enhancing Active Safety and Range Extension of Intelligent 
Electric Vehicles) . 

Both simulation software and experimental vehicle are employed to test and validate 
our observers. Certain theoretical tests are performed by using Simulator CALLAS soft- 
ware developed by OKTAL  society [www.callasprosper.com].  It is an advanced vehicle 
dynamics simulator validated by many research laboratories  and vehicle manufacturers. 
The experimental tests are conducted with the vehicle which is fully developed by our 
laboratory HEUDIASYC UMR 7253 CNRS at Compiègne, France. As illustrated in in 
Figure 1.3, we employ a Peugeot  308sw to install all the necessary sensors and other 
embedded systems. The equipped  sensors and in-vehicle systems are devoted to vehicle 
dynamics research and real-time application test. In this work, Matlab environment is 
used for theoretical development and off-line validation. Real-time applications are im- 
plemented in C++  language combining with Qt cross-platform development framework. 
More details are introduced in the section 4.2. 
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Figure 1.3: Heudiasyc laboratory  experimental vehicle: DYNA 
 

 

1.4  Dissertation  Outline 
 
In order to better  present the contribution  of our research, the remainder of this disser- 
tation  is divided into three principal parts, organized as follows: 

 

Theoretical  development of vehicle dynamics models and observer theory 
In  the first part  of  this ths;is,  we introduce  the vehicle dynamics theory  and the  basic 
concepts of the observation  theory.  This  part  provides solid theoretical  foundation  for 
the  construction  of the  observers.   Both  the classic vehicle dynamics  models and  the 
proposed novel models are introduced  and compared in this  part.  Moreover, the 

 

• Chapter 2:  Vehicle Dynamics Models 
 

The  state of  art  of  the  vehicle  and  tire  dynamics  theory  is briefly  reviewed in  this 
chapter.   We first  introduce  the  pneumatic  tire/road interaction  characteristics. The 
well-known brush tire mode!, the Pacejka's Magic tire mode!are compared with its own 
features.  Afterwards, we present the classic vehicle dynamics theory, which employs the 
planar  rigid body dynamics to describe the vehicle behaviors.  In order to consider the 
road irregularities, we propose to extend vehicle's planar  motion into 3D motion. Then 
we discuss  in details  about  the  vertical  dynamics,  lateral  dynamics  and  longitudinal 
dynamics of  the vehicle. It is highlighted that the  models proposed in this chapter  are 
capable  of estimating  each individual  tire's  forces in ali three  direction.  This  chapter 
provides the models needed for observer construction in Chapter  4. 

 

• Chapter 3:   Observer theory 
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This chapter provides a brief summary of the linear/nonlinear observation techniques. 
Firstly,  the estimation problem of a constant  parameter is discussed. The minimum 
variance unbiased estimator and the minimum mean square estimator are reviewed and 
compared. Then the estimation techniques for a dynamics system, the observers, are 
reviewed. The algorithms of Kalman Filter, Extended Kalman filter, Unscented Kalman 
Filter and Particle Filter are reviewed and compared in this chapter. 

 

Construction and experimental validation of observers for estimation of tire 
forces and sideslip angle 
In the second part of this thesis, we present the details about the observers we developed 
for estimation of tire forces and sideslip angle. 

❼  Chapter  4:  Observers for  estimation  of tire  forces and sideslip angle 

The target of this chapter is to estimate 13 dynamics states: the vertical, lateral and 
longitudinal forces at each tire and the sideslip angle at center of gravity.  This target 
is quite ambitious as no such system can be found in the literature.  Most observers 
found in the literature are developed to estimate only the sideslip angle. Some other 
observers are developed to estimate the forces at each axle rather than at each tire. 
The novel observers are inspired by the previous work of our laboratory but have some 
further advantages.  First of all, we employed more dynamics models to estimate more 
information about the vehicle dynamics with a higher accuracy.  Secondly, we proposed 
a more complicate structure of observers to stay robust and accurate against sensor 
errors. Furthermore, the implementation of experimental vehicle is also presented in 
this chapter. The experimental data in several critical tests is presented to validate the 
performance of our observers. 

 

Fusion of multiple sensors and digital map to enhance the road safety 
In the third part of this thesis, we present the supplementary methods to further improve 
the accuracy of our observers. 

❼  Chapter  5:  Adaptive  estimation  in  presence of  parameter  variation 
and sensor errors 

 

This chapter considers the estimation problem in a more realistic context. During the 
experiments in real condition, we find the performance of observers is very sensitive to 
the quality of sensor measurements  and the quality of vehicle parameter configuration. 
We developed the algorithms to automatically identify the vehicle parameters and filter 
out the sensor errors, called the adaptive estimation. Furthermore, we propose to incor- 
porate the digital map to predict the future dynamic states of vehicle. A risk prediction 
system aiming at enhancing road safety is developed based on the predicted tire forces 
. Experimental data is used to validate the proposed algorithms. 

Finally in Chapter 6, we give a conclusive summary of our work and outline some 
directions for the future work. 
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2  Vehicle Dynamics Model 
 
 
 

2.1  Introduction 
 
Comprehension of vehicle’s behavior is fundamental for improvement of vehicle’s stability 
and security. For a standard ground vehicle, the overall vehicle motion is supposed to be 
controlled by steering wheel, accelerator and brakes.  Unfortunately, in some situation, 
for example on slippery road, the steering wheel cannot effectively change the direction 
of vehicle and this usually leads to accidents. In addition, when the vehicle is driving on 
the inclined road, the vehicle dynamics is easier to enter the dangerous region leading 
to the instability of vehicle. To eliminate these dangerous situations and predict vehicle 
motion, the awareness of tire forces is needed. The tire forces that are meaninful for 
the safety systems include the longitudinal force, lateral force and vertical force. For 
technical  and economic reasons, it is not possible for a standard  passenger car to directly 
measure these tire forces. Therefore, we propose to construct observers, or the so-called 
virtual  sensors,  to provide a robust estimation of tire forces based on those low-cost 
sensors. A full comprehension of vehicle dynamics models is the key to develop an 
accurate virtual sensor. 

A vehicle is a highly complex system bringing together a large number of mechanical, 
electronic and mechatronics elements. The complexity of vehicle modeling representation 
depends on the desired objectives.  For the purpose of global location, the vehicle can be 
simply represented by a vector indicating the location and direction. To the contrast, 
for a simulator design for instance, complex finite element  methods are employed to 
reproduce  as exactly as possible  the behavior of each individual vehicle components. 
Simulations of such complex models are computationally expensive and time consuming. 
In our case, the modeling  issues are associated to two critical objectives : completeness 
and complexity.  In a side, our model must represent  as  closer as possible  the real 
behavior of the vehicle, this is completeness.  On the other side, this model is used in 
an state-observer system that  must be on-boarded  on the vehicle working in a real- 
time application (estimation of tire forces and evaluation of risk in real-time). Due to 
the limited calculation capacity of embedded system on vehicle, model simplifications 
have to be made, this is related to complexity. Developing vehicle models that describe 
accurately all dynamics of interest while as simple as possible  is the main challenge 
for the so far developed vehicle state observers, completeness versus complexity. This 
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chapter briefly reviews the vehicle dynamics theory. Furthermore, the limitation of the 
existent vehicle dynamics models and our proposed models will also be introduced in 
this chapter. 

We remember that the global problem we are considering in our thesis project: de- 
veloping state observer to describe the dynamics of the vehicle in a precise and robust 
way, even when the vehicle is navigating in a unleveled road (banked or sloped). This 
problematic was considered with a constraint: precisely estimating the geometry of the 
road (bank and slop angles) is not an objective in this work.  What we are searching 
for is to build observers that reconstruct the dynamics of the vehicle in level or unlevel 
roads, without searching to estimate the precise geometry of the road. To achieve this 
ambitious objective, the first point is to revisit the proposed vehicle dynamics modeling 
approaches, proposing our contributions. That is the objective of this chapter. Vehicle 
dynamics is a intense research subject for more than a hundred years. Many references on 
the subject are available. We can refer to [Rajamani, 2012][Rajamani,  2012] [Reza, 2007] 
[Thomas, 1997] [Schiehlen, 2009] [Kiencke and Nielsen, 2005] [Popp and Schiehlen, 2010] 
and [Wong, 2008]. To begin with, we would like to review the theory of tire road inter- 
action in section 2.2. The tire-road interaction is more of a contact mechanics problem. 
The principle factors affecting the generation of tire forces will be discussed in this sec- 
tion. Then in section 2.3, the rigid body dynamics are reviewed. Simplifying the car as a 
rigid body is an efficient method to capture the major features of vehicle dynamics. Most 
of the existent vehicle dynamics models are based on the theory of rigid body dynamics. 
Normally, the vehicle motion is simplified as a planar(2D) motion. However, when the 
road is irregular (banked or sloped or even curved), the vehicle motion has more liberty. 
In order to take into account the road irregularity , the 3D dynamics models of a rigid car 
is introduced in section 2.3. Tire dynamics and rigid body dynamics are the two most 
important elements to understand vehicle behaviors, but they still cannot represent all 
the features of a vehicle. Suspensions, steering  systems and other subsystem can also 
greatly influence the vehicle’s dynamics. In section 2.4, the tire dynamics, rigid body 
dynamics and subsystem’s characteristics are combined together to have a more detailed 
description of a real vehicle’s dynamics. The vertical dynamics, lateral dynamics and 
longitudinal dynamics are discussed in this section. Finally, in section 2.5, we present a 
conclusion about our contribution in the modeling of vehicle dynamics. 

 
 

2.2  Tire Models 
 
Tires are the only vehicle components generating external forces that can be effectively 
manipulated to control vehicle motions.  This important  role of tires make tire force 
modeling a crucial topic for vehicle control. The tire-road contact can generate longi- 
tudinal force, lateral force and vertical force (Fwx, Fwy Fwz ), and moments along three 
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Figure 2.1: Illustration of terminology in tire models 
 
 
direction (Mwx,  Mwy  Mwz ) allowing the car to accelerate/brake and to turn. The forces 
and moments generated at the tire-road contact point are illustrated in the Figure 2.1. 

The coordinate frame of the wheel is a local coordinate attached to the tire.  The 
origin point  of wheel frame is at  the center of tire contact patch w.  The wz-axis of 
wheel frame is always perpendicular to the road surface. The wy-axis is orthogonal to 
the tire direction and towards the left side of vehicle. The xw-axis is orthogonal to both 
yw and zw axis and parallel to the tire direction. One important parameter illustrated 
in Figure 2.1 is the tire slip angle α. 

❼  Tire slip angle α:  Tire slip angle is the angular difference between the direction 

of tire contact patch and the direction of the wheel. Positive slip angle delegate 
right orientation as it moves in the forward direction. 

 
In order to guarantee the optimal driving maneuvers in different road condition including 
slippery roads, it is important to be aware of the actual tire forces and the maximum 
attainable tire forces. In this way, we can decide whether the tire is at the imminence of 
losing control and whether the protection process should  be activated. Actually, there 
is no available sensors for ordinary passenger cars to directly measure tire forces for 
technical and economical reasons. Consequently, several types of mathematical models 
of the tire have been developed during the last half century to reconstruct  these forces. 
The developed model of tire forces are function of tire properties (material, tread pattern, 
tread depth and profile), the vertical load, and the velocities experienced by the tire. The 
relationship  between these factors are extremely nonlinear and complex. As concluded in 
the book of [Pacejka, 2006], the mathematical  models can be divided into four categories: 

❼  Models based on experimental data only: fitting full scale tire test data by regres- 

sion techniques, the so-called empirical model. 
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❼  Models using similarity method: distorting, rescaling and combining basic charac- 
teristics. 

❼  Models through simple physical model: using simple mechanical representation. 

❼  Models though complex physical model: describing tire in greater detail, using 

computer simulation or finite-elements method. 
 
Finite-elements  models of the tires are of particular use when considering  the distribu- 
tion of forces and the irregularity of road [Svendenius, 2007]. Models based on similarity 
method were useful early but have found less use recently as they are replaced by other 
models. Such models are discussed in [Pacejka, 2006]. These two models are not consid- 
ered in our research due to the limited computation capacity of embedded system. The 
two remaining model categories, empiric models and simple physical models are the two 
models most widely used in the literature for estimating and predicting tire forces. The 
empiric models are based on a curve-fitting approach and are able to describe the highly 
nonlinear behavior of the tires. The the parameters of the empirical models sometimes 
do not have a specific physical meaning. To the contrast, the simple physical models are 
based on the physical interpretation of the tire and are extremely useful to get a better 
understanding of tire behavior. 

In this section, first of all we will introduce the basic structure of pneumatic tires 
and the terminologies in tire modeling. Then the basic mechanism of tire forces and 
moments are discussed.  In this thesis, four different tire models are presented, which 
are the Brush model, the Dugoff ’s model, the linear model and the Pacejka’s Magic tire 
model. 

 
 

2.2.1  Tire Fundamentals 
 

Pneumatic tire is a flexible structure made of rubber and a series of synthetic materials. 
Thanks to its flexibility, the tire is able to reduce vibrations caused by the irregularity 
of road and to achieve a high friction coefficient in the interaction with the road surface. 
Both the materials and structure of the tires can greatly influence the tire characteristics. 
In order to make the tire able to hold the pressure of the inflated air and support the 
weight of vehicle, multiple layer structure is employed, including the body plies, bead 
bundle, belts, sidewalls and tire inner liner (combined by fiber, textile, and steel cords). 
The function of each layer is described in details in [Reza, 2007]. The mentioned interior 
components are illustrated in Figure 2.2. 

Depending on the desired working condition, the tire structure could be particularly 
designed to ensure a high performance. The tread pattern, the tire pressure, the tire 
radius, tire temperature and the camber angle are the important parameters to describe 
the tire’s operating conditions. 
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Figure 2.2: Illustration  of a sample tire  interior  components and arrangement 

[Reza, 2007] 
 
 

The tread pattern is made up of tread lugs (also called blocks) and tread voids (also 
called grooves). The lugs are the sections of rubber that make contact with the road 
and voids are the spaces that are located between the lugs. Tire’s traction ability and 
noise level are greatly influenced by the tire tread pattern of block-groove configurations. 
Tires with wide and longitudinal grooves have a lower noise level and high lateral friction. 
More lateral grooves could increase traction ability and noise levels. Both longitudinal 
and lateral grooves are necessary for the passenger car tires. Without such grooves, the 
rain water on the road would be compressed into the grooves and not be able to escape 
out to the sides of the wheel. This will lead to a dramatic decrease of tire friction, which 
is very dangerous. However, for driving only on a dry road, the tire treads are not not 
necessary because they reduce the contact area between the rubber and the road. This is 
the reason for using treadless or slick tires at smooth and dry race tracks. As a contrast, 
the mud-terrain tire is characterized by large blocks and large grooves, allowing the tire 
to grasp deeper in the mud and clean itself easily. The tread pattern is an important 
factor of the actual friction coefficient of the tire. 

Tire pressure can effectively  change the stiffness of tire and influence the generation 
of tire forces. Recently, interesting results have been obtained to improve  break and 
confort caracteristics by controlling the tire pressure in real-time [Savitski et al., 2015]. 
Decreasing the tire pressure  causes the tire to be more flexible so the contact patch 
area becomes bigger,  which increases the friction and the tire’s traction ability.  Lower 
tire pressure also helps the tire grip small obstacles and make contact with the object 
in more places. However, the low tire pressure will increase tire temperature and fuel 
consumption [Reza, 2007]. 

Tire loaded radius Rload   is the distance between wheel center and the tire contact 
center in the road plane. The tire load radius is determined by the stiffness of tire or the 
tire pressure. When the tire is rolling, the effective radius Ref f is between the unloaded 
radius Ro  and loaded radius Rload,  as illustrated in the Figure 2.3. The effective tire 
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a) b) 
 

Figure 2.3: Illustration of tire structure a) Tire effective radius Ref f compared to tire 
radius Ro and loaded height Rload  b) Tire camber angle 

 
 

radius Ref f shows the relation between its angular velocity and the linear velocity. 
 

Ref f =  vx 
ωw 

Ro >  Ref f  > Rload 
(2.1) 

 

where vx  is the forward velocity,  and ωw   is the angular velocity of the wheel.  It is 
approximately equal to 

Ref f = Ro ­ Ro ­ Rload (2.2) 
3 

During each rotation, the tire has experienced the compressing and releasing process, 
transforming the mechanical energy into thermal energy. That’s why the tire tempera- 
ture is increasing while driving at high speed.  The influence of tire temperature is not 
discussed in this thesis. Therefore, during the experimentation with our test car, the 
duration of each test is limited to several minutes, in this way the tire temperature will 
not vary too much. 

Another important parameter to describe the tire operation condition is the camber 
angle γ. The camber angle is the angle between the tire-plane and the vertical plane, as 
illustrated in Figure 2.3 b).  Camber  angle generates a lateral tire force called camber 
trust or camber force. The camber force is proportional to γ at low camber angles and 
depends directly on the wheel load Fzw  [Reza, 2007]. 

 

Fy  = ­Cγ γ  (2.3) 
 

where Cγ  is called the camber stiffness of tire. The camber angle γ is positive when the 
tire leans to the right. 

 
 

2.2.2  Mechanism Of Tire Forces 
 

In this section, we briefly explain the mechanism and the most important  factors in 
generating tire forces, allowing us to better understand the physical meaning of different 
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Figure 2.4: Deformation  of tire under longitudinal force and lateral force 
 

 
 

Figure 2.5: Vertical, longitudinal, and lateral stiffness curves[Reza, 2007] 
 
 
tire models. It is also based on the comprehension of how tire generates forces that we 
proposed a novel simplified tire model to estimate tire forces, which is introduced in the 
section 2.4. 

The tire-road contact forces are not applied at a point, but are the resultant from 
normal and shear stresses  distributed in the contact patch.  In [Thomas, 1997], the 
author explains clearly that the tractive force and lateral force of tire are equal to the 
integration of the shear stress at each tire tread. In [Reza, 2007], the author considers 
that the deformation behavior of tires in three directions x, y, and z is the first important 
tire characteristics in tire dynamics,  as illustrated in Figure 2.4. For a tire on a stiff and 
flat ground, the tire forces are the function of its deformation in each direction,   x,   y, 
 z : 
 

Fwx    = f (  x) 
Fwy    = f (  y) 
Fwz    = f (  z) 

 

An example of tire stiffness curves is illustrated in Figure 2.5. 

 

 

(2.4) 
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From the Figure 2.5, we can see that during small deformation, the tire forces are 
approximately proportional to the deflections. While during large deformation, the 
relations become nonlinear. Generally, the tire is most stiff in the longitudinal direction 
and least stiff in the lateral direction. The maximum lateral and longitudinal forces are 
limited by tire friction coefficient and vertical load. 

The deformation theory could intuitively  explain the characteristic of tire forces, but 
it is not practical for real application in an ordinary car. It is due to the difficulty of 
directly measuring the tire tread deformation while the vehicle is running. To overcome 
the difficulty, the concept of longitudinal slip ratio s and tire slip angle α are employed 
to represent the tire deformation in wx-axis and wy-axis respectively. 

The longitudinal slip ratio s is defined as: 

ωw Ref f ­ vx
 

s = 
ωw Ref f 

s = 
ωw Ref f ­ vx 

vx 

during acceleration (2.5) 
 

 
 

during braking (2.6) 

where vx  is the longitudinal velocity of tire, Ref f is the effective tire radius, ωw  is the 
wheel rotational speed.  The slip ratio is positive when accelerating and negative when 
braking. 

The tire lateral slip angle α is defined as: 
 

 

α = arctan( 

 

vy 

|vx| 

 

 

)  (2.7) 

 

where vy  is the lateral speed of the tire. The lateral slip angle is positive when slipping 
to the left side and negative when slipping to the right side. 

In ISO 8855:1991, the units of longitudinal slip and lateral slip are changed into [%] 
and [➦]:  100s [%] and α [deg]. The evolution of the longitudinal force with respect to 
the longitudinal slip ratio s is illustrated in the Figure 2.6. The relation between lateral 
forces, vertical load and tire slip angle is illustrated in Figure 2.7. 

The longitudinal force reaches a peak value at s c:: 0.1. At this moment the tire starts 
to undergo a pure sliding. When s > 0.1, the longitudinal ratio can no longer represent 
the tire tread deformation and the longitudinal force converges to a constant. 

According to the experimental data shown in Figure 2.7, the lateral force vary with 
respect to the lateral slip α, reaching its maximal value in a given value of α, beyond 
which the tire will completely skid. In this figure, we can also find the lateral force is 
affected by the vertical load applied to the tire.  The nonlinear characteristic of tire’s 
behavior can be explained by the existence of both kinetic friction and static tire tread 
deformation during the motion of tire. As explained in [Rajamani, 2012], the tire forces 
come from two sources: siding region and static region. The slip ratio s or slip angle α 
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Figure 2.6: Longitudinal tire force as a function of tire slip ratio [Rajamani, 2012] 
 

 
 
Figure 2.7: Lateral force behavior of a sample tire for different normal loads as a function 

of slip angle α [Rajamani, 2012] 
 
 
can be viewed  as an indicator of the percentage of static region. When they are small, 
most of the contact region is the static region. 

As a conclusion, the tire forces are mainly decided by the following three factors. 

❼  Vertical load Fwz 

❼  Friction coefficient µ 

❼  Slip ratio s or slip angle α 
 

Therefore, generally the tire forces can be represented by the following function: 
 

Fwx  = fT ire(Fwz , µ, s) 
Fwy  = fT ire(Fwz , µ, α) 

 

 
 
 

(2.8) 
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In this section, we have roughly explained the mechanism of tire forces. Tire defor- 
mation is the main cause of pneumatic tire forces. The tire slip ratio and tire slip angle 
are employed to represent the deformation of a rolling tire.  Besides the tire slip ratio 
and slip angle, vertical load and road friction are also important factors to affect the 
generation of tire forces. It is noted that tire forces depend on many other parameters 
such as pressure, temperature,  humidity and so on. In this thesis, limited by the number 
of sensors installed on the vehicle and the intention of simplicity, only the tire slip (s 
or α ), vertical load Fwz  and road friction condition µ are considered in the tire model. 

This simplification has neglected many details but it is validated by many authors in 
the literature to represent the major features of tire behaviors. 

Even the input variables of tire model are already chosen (s or α, Fwz  , µ ), it is still 
challenging to propose a precise model to fit the non-linearity of the curve illustrated in 
Figure 2.6 and 2.7. In the following section, we will introduce the four widely accepted 
steady state tire models: the Linear tire model, the Brush tire model, the Dugoff ’s tire 
model and the Magic tire model. 

 
 

2.2.3  Steady State Tire Models 
 

2.2.3.1  Linear Tire Model 
 

The strategy of using linear tire model is to simplify the calculation and concentrate on 
the major cause of tire forces: the tire slip (s or α).  Under normal driving, the tires 
are well away from saturation (maximal points on the curves of figures 2.6 and 2.7) and 
have small deformation and slip angle values. According to the work of [Lechner, 2002], 
the linear tire model can represent real tire behavior for vehicle accelerations under 0.4g. 
As a result, during small tire slip, it is common to use this linear approximation for the 
tire forces: 
 

Fwx  = Css 
Fwy  = Cαα 

 

where Cs is called the longitudinal slip stiffness, Cα  is the cornering stiffness. 

 

(2.9) 

The advantages of linear tire model mainly relies on the simplicity.  The linear model 
is widely employed in the observer of vehicle dynamics and the controller of vehicle 
motion.  However, the simplicity of model leads to a new challenging problem, which 
is to identify the value of longitudinal stiffness and cornering stiffness. As one can see 
on the curves of figures 2.6 and 2.7, the values of longitudinal and cornering stiffness, 
Cs and Cα, depend essentially on the road friction and on the tire load. Moreover, the 
linear tire model has neglected the effects of combined slip.  Due to the negligence of 
the efforts saturation, the tire forces tend to be over estimated by the linear model, 
especially when the tire slip is excessive.  When using these linear approximations, it is 
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1+s

 
 

 
 

Figure 2.8: The brush tire model. Left: the deformation of bristle during turning, Right: 
the tire at different slip condition (pure side slip, pure brake slip and com- 
bined slip ) [Pacejka, 2006] 

 
 
important to understand the operating region of the tires for the specific application. 
Otherwise, the accuracy of tire model is not guaranteed. 

 

 

2.2.3.2  Brush Tire Model 
 

To compensate the errors caused by the over simplification in linear model, some phys- 
ical models are proposed to describe the tire behaviors with more details, such  as the 
spring model and the brush model [Pacejka, 2006]. The brush model is a further expla- 
nation of the tire deformation. It consists of a row of elastic bristles that touches the 
road and can deflect in a direction parallel to the road surface. These bristles are the 
simplified representation of tread elements. Their compliance represents the elasticity of 
the combination of different tire components (carcass, belt, tread etc). The Brush tire 
model is illustrated by the Figure 2.8. 

In real driving situation, especially when the tire slip is large, the tire-road contact 
patch is divided into adhesion region and sliding region,  as illustrated in Figure 2.9. In 
adhesion region, the tire treads are static, while in the sliding region, the tire treads are 
undergoing pure slip.  The force distribution in each region is different. 

In adhesion region, the longitudinal deformation ubx  and lateral deformation uby  of 
each bristle along the contact patch can be approximated with a linear distribution, 
expressed by [Pacejka, 2006]: 

 

ubx = (a ­ x)  s 

uby = (a ­ x) tan α 

 

(2.10) 
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Figure 2.9: Bottom view of a deflected tire.  Left:  illustration  of adhesion region and 
sliding region during longitudinal deflection; Right: illustration of adhesion 
region and sliding region during lateral deflection. [Reza, 2007] 

 

 
 
where a denotes half length of the contact length, x denotes the position of the bristle 
in the contact patch, x ∈ [­a, a], x = 0 means the center of contact patch. 

With the assumption of linear elasticity, the longitudinal and lateral force distribution 
(qx,ad  and qy,ad) can be represented by: 

 

qx,ad  = cpx(a ­ x)  s 
1+s 

qy,ad  = cpy (a ­ x) tan α 
(2.11) 

where cpx, cpy  are the longitudinal and lateral stiffness of each bristle respectively. 
In the siding region, the lateral force of each bristle is equal to the maximum possible 

friction force. For the purpose of simplicity, we suppose the vertical load distribution 
per unit length qz  varies according  to a parabola,  expressed by: 

 
 

qz  = 
3Fwz  

  
4a 

1 ( 
x   )2

 
 

a 

 

(2.12) 

As a result, the distribution of the largest possible friction force in longitudinal and 
lateral direction (qx,max, qy,max) can be expressed by : 

 
2  2

 

qx,max  = µxqz  =  3   
x

 a −x 
wz    a3

 
 

qy,max  = µy qz  =  3   
y

 
aψ2 −x2 

wz 

(2.13) 

4 
µ F  

a3
 

where µx, µy are the friction coefficient in longitudinal and lateral direction respectively. 
Then the total longitudinal and lateral forces are the integration of the force distri- 

bution along the contact patch. The resulting formula for the lateral force is provided 
by [Pacejka, 2006] as: 

 
� 

1  2
   

 1
 

 
 

Fwy  = 

3µFwz θy σy 

  
1 ­ |θy σy | + 3 (θy σy ) � 

 
� 

if |σy | < θy 
 
 

(2.14) 
�µy Fwz sgnα if |σy | ≥ 1

 



23

2 Vehicle Dynamics Model 

 

θx 

σx =

xσ2

σt
F

σt
F

2

3 θx 

2

y

 
 

where 
 

θy  = 2cpy a 
3µy Fwz 

σy = tan α 
(2.15) 

Similarly, the tire force at pure longitudinal slip can be computed  by the following 
equations [Pacejka, 2006]: 

 
 

 
 

Fwx  = 

� 
��3µFwz θxσx    1 ­ |θxσx| + 
 
� 

 

1 (θxσx)2
 if |σx| <  1

 

 

 
 

(2.16) 
�µxFwz sgnσx if |σx| ≥ 1

 

 

where 
 

θx = 2cpy a 
3µx Fwz 

 s 
1+s 

(2.17) 

The equation 2.14 and 2.16 are obtained based on the assumption that the vehicle is 
undergoing pure side or longitudinal slip. However, in the real driving condition, the tire 
is possible to operate in presence of both side and longitudinal slip. In this situation, 
the coupling effect between longitudinal and lateral force has to be considered,  as the 
sum of tire force should not exceed the total friction force of tire µFwz . 

During combined slip behavior, the total tire slip is expressed  as [Rajamani, 2012]: 
 
 

σt  = 
 

 
 

+ σ2 

 

(2.18) 
 

 

The longitudinal force and lateral force during combined slip (Fwt,x, Fwt,y ) are the two 
components of total tire forces: 

 

Fwt,x  =  σx    
wt 

 

(2.19) 
Fwt,y  = σy    

wt 
 

where Fwt  is the total tire-road contact force. 
It is noted that the Brush model introduced here is based on the steady state assump- 

tion, which means the tire forces can react to the slip variation without time delay. In 
fact, for a real tire, it need time to develop the deformation when the slip occurs. The 
models which considered the dynamic process of the generation of tire forces are called 
the transient tire model. We will briefly introduce the transient model at section 2.2.4. 
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1+σx

Fy  = ­Cα 
tan α

λ = ­ µFwz (1+σx )

 
 

2.2.3.3  Dugoff ’s Tire Model 
 

The Brush tire model introduced above is a simplified analytical model, it could rep- 
resent both the linear and non-linear characteristic of tire.  However the inconvenient 
point  of this kind of models is the need of three parameters during application: the 
cornering stiffness, friction coefficient  and the length of contact patch.  Compared to 
the Brush model, the Dugoff ’s model offers a simpler formula, as it synthesizes all the 
tire property parameters into two constants, Cσ and Cα, referred to as longitudinal slip 

stiffness and cornering stiffness of the tire. Furthermore, the relation for combined slip is 
clearly expressed in Dugoff ’s model [Dugoff et al., 1969]. The coupling effect of friction 
in different direction is also called the “Friction  Ellipse”.  More details about the im- 
portance of “Friction  Ellipse” can be found in many literature [Pacejka, 2006]. Another 
significant advantage of Dugoff ’s tire model is that it has considered the influence of 
the vertical load on the generation of tire forces. Hence, in extensive literature such as 
[Zhang et al., 1998] [Dakhlallah et al., 2008] [Boyden and Velinsky, 1994] [Smith, 2004], 
the Dugoff model is adopted for its simplicity and efficiency. This model is one of the 
three models usually referred to as the HSRI-models  developed at the Highway Safety 
Research Institute [Dugoff et al., 1969]. The Dugoff ’s model is also an analytical model 
that assumes a uniform vertical pressure distribution on the tire contact patch. 

The Dugoff tire model can be used for calculation of lateral and longitudinal forces, 
either for pure-slip or combined-slip conditions. The longitudinal tire force is obtained 
by 

Fx  = ­Cσ 
 σx   f (λ)  (2.20) 

 

and the lateral tire force is given by: 
 

 
 

 
 

and f (λ) is given by: 

1+σx 
f (λ)  (2.21) 

 

 
f (λ) = 

( 
(2 ­ λ)λ 

1 

 

if λ < 1 

if λ ≥ 1 

 
(2.22) 

 

 

2[(Cσ σx )2 +(Cα tan α)2 ]1/2 (2.23) 
 

 
 
 

2.2.3.4  Magic Tire Model 
 

The brush model and the Dugoff ’s model are physically intuitive  and appear quite 
realistic, however these analytical models are not always accurate compared with exper- 
imental measurement [Pacejka, 2006]. Especially at large slip and at combined slip, the 
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x

 
 

difference between model prediction and measurement is not negligible. The following 
important features which are not included in the simple brush model may be responsible 
for these differences [Rajamani et al., 2006] 

❼  unequal stiffness in x and y directions, 

❼  non-symmetric and non-constant pressure distribution 

❼  non-constant friction coefficient, including a difference between static and kinetic 

friction coefficients 
 

It is possible to introduce  these factors into the physical model, but this will  highly 
increase the model complexity. Besides using analytical physical model, the empirical 
modeling based on experimental data is an alternate way to obtain a more accurate 
tire model. A very flexible empirical tire model is proposed by Holmes (1968) for curve 
fitting.  The model is a polynomial equation of speed and side slip angle,  expressed as 
[Holmes and Stone, 1969]: 

 

F0y = a0 + a1vx + a1v2 + a3α + a4α
2 + a5α

3 + a6R + a7P (2.24) 
 

where P is a tire -pattern constant and R is a tire-tread constant. The coefficients 
a1...7 are the empirical constant and have no physical interpretation. However, the idea 
to treat the dependence  of the velocity as an additional contribution was not really 
accepted by the other researchers in the field. 

Many other empirical tire models are also proposed to optimize the curve fitting for 
combined slip situation. More details about these models can be found in [Kiencke and Nielsen, 2005]. 

The paper [Pacejka et al., 1987] present  the “Magic Formula”,  which was  quickly 
widely accepted and became the best known empirical model. Compared with the model 
of Holmes, the Magic tire model is also referred to as semi-empirical,  because the model 
is based on measured data but also uses physical  models.  This model was developed as 
a joint venture between Volvo Car Corporation and the Delft University of Technology. 

The basic formula for this model is: 
 

 
 

 
with 

y = D sin[C arctan{Bx ­ E(Bx ­ arctan Bx)}] (2.25) 

Y (x) = y(x) + Sv 

x = X + Sh 

 

(2.26) 

 

In these formulas Y is the output variable: it could be longitudinal force Fwx  or lateral 
force Fwy  or aligning moment Mwz .  X  is the input variable, it stands for lateral slip 
angle α or longitudinal slip σx. Therefore the following equations are deduced: 
 

Fwx(σx  + Shx) = Dx sin[Cx arctan{Bxσx  ­ Ex(Bxσx ­ arctan(Bxσx))}] + Svx (2.27) 
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Figure 2.10: Explanation of magic formula parameters [Rajamani, 2012] 
 
 
 
 
 

Fwy (α + Shy ) = Dy sin[Cy arctan{By σy ­ Ey (By σy ­ arctan(By σy ))}] + Svy (2.28) 
 

The parameters B, C, D, E, Sv , Sh of this formula have their physical interpretations, 
as illustrated in the Figure 2.10. 

B : the stiffness factor. This factor determines the slope at the origin; C : the shape 
factor that controls the resulting curve; D: the peak factor; E : the curvature factor, it 
controls the value of the slip at which the peak of the curve occurs; B × C × D : this 
product corresponds to the slope at the origin . For lateral force, this factor corresponds 
to the cornering stiffness. Sh, Sv are the horizontal shift and vertical shift respectively, 
which are possibly caused by the rolling resistance and make the  curves not to pass 
through the origin. 

In 1991, Pacejka proposed  a detailed method to calculate the values of these pa- 
rameters [Pacejka and Sharp, 1991], which has taken into account  the camber angle, 
the cornering stiffness and the load variations  .  To visualize the Magic formula, the 
longitudinal, lateral and self-aligning moment evolution for different vertical loads are 
illustrated in the Figure 2.11. When the wheel load increases, the tire can better stick 
to the road and thus the maximum tire forces increase. 
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Figure 2.11: The characteristics of Magic tire model for longitudinal force, lateral force 
and aligning moment 



28

2 Vehicle Dynamics Model 

 

 

 

2.2.4  Transient State Tire Models 
 

Transient state tire model is developed to analyze the dynamic behavior of tire.  Due 
to pneumatic tire’s flexible structure, tire forces do not develop instantaneously at ma- 
neuvering actions, but require a short period of time to build up. In steady state tire 
model, we assume the tire slip can effectively represent the deformation of tire.  How- 
ever, in real situation, the tire works like a damping system, a sudden change of slip 
angle will not instantaneously lead to the deformation of tire.  The difference between 
steady state tire model and transient  tire model may occurs when the vehicle’s dy- 
namics states change quickly, especially at high speed. It has also been shown that 
experimentally measured lateral tire forces have under-damped  characteristics  at high 
speeds [Heydinger  et al., 1991]. Therefore, the transient tire model has lately gained a 
large interest. 

A simple way to model this transient behavior of tire dynamics,  was described and 
validated in [Clark, 1981]. The model represented by a first-order transfer function, 
describes the relation between the  measured slip, λ, and the  effective slip, λ, which 
generates the tire forces and corresponds to the real deformation of tire: 

 

σrel dλ = λ ­ λ  (2.29) 
vx   dt 

 

where σrel  is the relaxation length, which is the rolling distance needed to buildup tire 
deformation. vx  is the longitudinal speed, σ/vx  is the time constant of the system. 

The equation 2.29 shows that the tire deformation  needs time to build up when the 
tire slip occurs. A typical first order model that can describe the tire force dynamics is 
presented by [Rajamani, 2012]: 

τ Ḟy + Fy  = Fy  (2.30) 
 

where τ is the relaxation time constant, Fy  is the dynamics lateral force and Fy  is the 
lateral tire force calculated from a steady state tire model. 

The time constant τ can be approximated  by 
 

σrel
 

τ = (2.31) 
vx 

 

where σrel  is the length the tire need to develop the tire force, called as the relaxation 
length, 

The dynamic model is employed only in high velocity. At low velocities, the “damping 
effect” is not obvious and thus the transient tire model is not valid. 
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2.3  Dynamic Models Of A Rigid Car 
 
The rigid body dynamics studies the movement of systems of interconnected  bodies un- 
der the action of external forces. The vehicle can be regarded as a system of vehicle body 
and vehicle chassis, while the vehicle body and chassis are connected by the suspensions. 
In this section, we neglected the flexible interaction between the two parts of vehicle, 
considering the entire vehicle as one rigid body.  In this way, we can concentrate on 
the relationship between the external forces and vehicle’s movement, without studying 
the internal forces. In order to better describe the dynamics of a moving vehicle, the 
fundamental step is to clearly define the vehicle coordinate frame, as introduced in the 
section 2.3.1. Then the planar rigid vehicle kinematics is describe in details in Section 
2.3.2. The planar kinematics studies the vehicle behaviors at level pavement. In reality, 
the road can be irregular (banked or sloped). Consequently, the vehicle motion is no 
longer a planar motion but a three-dimensional motion. The 3D vehicle kinematics is 
discussed in Section 2.3.3. The relation between vehicle’s motion and vehicle’s external 
forces are explained in Section 2.3.4. 

 
 

2.3.1  Vehicle Coordinate Frame 
 

Generally there are two widely used coordinate  frames in the research of vehicle dynam- 
ics, the vehicle body fixed coordinate frame B(C xyz)  and the grounded fixed coordinate 
frame G(OX Y Z )  as shown in Figure 2.12. The vehicle coordinate frame is called the body 
frame or vehicle frame, and the grounded frame is called the global frame. The body 
frame is attached to the vehicle at the mass center C , and it is static related to the 
vehicle and passengers. In the frame of B(C xyz), the x-axis is a longitudinal axis passing 
through mass center C and directed forward. The y-axis goes laterally to the left from 
the driver’s viewpoint.  The z-axis is perpendicular to the ground, which makes the 
coordinate system a right-hand triad. The equations of motion in vehicle dynamics are 
usually expressed in body coordinate frame B(C xyz). 

The forces applied on the vehicle are vectors defined according to the body coordinate 
frame.  The resultant  of external forces and moments, that the vehicle receives from 
the ground and environment, makes the vehicle force system (BF,  BM), as shown  in 
equation 2.32. 

 
� 

Fx  
�

 
� 

Mx   
�

 
BF = � Fy 

Fz 

� , BM = �  My 

Mz 

� (2.32) 

 

where Fx, Fy ,Fz  are the resultant longitudinal, lateral and vertical forces of the vehicle, 
Mx, My ,Mz  are the resultant moments about the x, y and z axis. In this thesis, Fx  < 0 
if the vehicle is braking, Fy  > 0 if it is leftward from the driver’s viewpoint, Fz > 0 if it 
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Figure 2.12: Vehicle body coordinate frame [Reza, 2007] 
 
 
is upward, Mx  > 0 if the vehicle tends to turn anti-clockwise about the x-axis, My  > 0 
if the vehicle tends to turn about the y-axis and move the head down, Mz  > 0 if the tire 
tends to turn anti-clockwise about the z-axis. 

Besides the resultant forces, we also define the kinematic parameters according to the 
body frame. The roll angle ϕv  describes the rotation of vehicle body about the x-axis, 
pitch angle θv  is the rotation about the y-axis, and yaw angle ψv is about the z-axis. 
The rate of the rotation angles are called as roll rate ωx, pitch rate ωy , and yaw rate ωz 

respectively. vx, vy , vz  are the velocities referred to the body frame. ax, ay , az are the 
accelerations in the three corresponding directions. 

The vehicle’s motion is usually described in body frame, due to the velocities and ac- 
celerations measured by vehicle’s local perception system are parallel to the body frame. 
However, sometimes it is necessary to employ the global frame to describe vehicle’s mo- 
tion.  A typical  example is the application of GPS and digital map.  When we want 
to locate the vehicle on the digital map and visualize its trajectory, it is necessary to 
transform the motion into global frame. 

The transformation of speed vector can be obtained by equation 2.33. 
 

Gv = RGBv (2.33) 

Similarly, the angular velocity, angular accelerations and linear accelerations measured 
in body frame can be transferred  into global frame with equation 2.34. 
 

Gω= RGBω 
Gω̇ = RGBω̇ 
Ga= RGBa 

 

 

(2.34) 

 

Besides the six degree of motion, the heading angle, side slip angle of vehicle center and 
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Figure 2.13: Illustration of cruise angle, yaw angle and side slip angle 
 
 
cruise angle are also important parameters to describe vehicle’s behaviors. As illustrated 
in the Figure 2.13, the heading angle ψ is defined as the C x-axis direction in global frame. 
It is noted that the heading direction is different with the velocity direction, when the 
vehicle is turning.  The velocity of the vehicle v makes an angle β with the C x-axis, 
which is called as attitude angle or side slip angle. In addition, the vehicle’s velocity 
vector v makes an angle β + ψ with the global OX -axis that is called the cruise angle. 

 
 

2.3.2  Vehicle Dynamics At 2D Environment 
 

When the vehicle is regarded  as a rigid body and it is moving at horizontal and flat 
ground, the z-axis in body frame is always parallel to the Z -axis in global frame, as 
illustrated in Figure 2.14. Moreover, the roll movement and pitch movement could be 
ignored. . 

The rotation matrix at level ground is given by equation 2.35. 

� 
cos ψ ­ sin ψ 0 

�
 

RG  � � 
 
 

 
where ψ is the yaw angle. 

B  = � sin ψ cos ψ 0 � (2.35) 
0 0 1 

The dynamics relationship between the motion and the forces can be expressed by 
[Rajamani et al., 2006]: 
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Figure 2.14: Description  of motion in body frame and global frame 
 
 
 

� 
Fx  

�
 

� 
m(v̇x ­ ψ̇ vy ) 

�
 

� Fy
 
� = � m(v̇y + ψ̇ vx) �

 � � � � 
 

Fz  0 

 
 
 
(2.36) � 

Mx   

�
 

� � 

� 
0 

�
 

� � 
� My 

Mz 

� = � 0 � 
Iz ψ̈ 

 

where vx, vy , ψ̇ are the measured longitudinal speed, lateral speed and the yaw velocity, 
Iz  is vehicle’s moment of inertia around z-axis, g is the standard gravity on earth. 

The equation 2.36 is valid under the assumption that the road is level and horizontal, 
which is a simplification of the real road condition. In order to improve the accuracy of 
vehicle dynamics models, the road inclination (bank angle and slope angle) should be 
considered.  In the next section, we will discuss the vehicle dynamics at irregular road, 
the so called  3D environment. 

 
 

2.3.3  Vehicle Dynamics At 3D Environment 
 

When we consider the irregularity of the road, the z-axis in body frame is no longer 
parallel to the Z-axis in global frame. The axis of body frame make an angle with the 
axis of global frame,  as illustrated in Figure 2.15. 

Compared with the planar motion, the vehicle’s 3D motion has three additional degree 
of freedom, the pitch motion, the roll motion and the vertical motion. By neglecting the 
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Figure 2.15: A rigid car running at irregular road 
 
 

coupling  effects between each rotation, we can consider the orientation of the vehicle is 
obtained by realizing three basic rotations: firstly rotate the vehicle along X  axis with 
an angle ϕ, then rotate along Y axis with an angle θ, finally rotate along Z axis with 
an angle ψ. The final rotation matrix at irregular road is given by equation 2.37. 
 

B  c:: RX RY RZ  (2.37) 
 

where RX , RY , RZ  are the three basic rotation matrix which rotate vectors along X, Y, Z 
axis. 

 
� 

1 0 0 
�

 

RX = � 0   cos ϕ   ­sin ϕ  � (2.38) � 
 

 
� 

 

RY  = � � 

� 
0 sin ϕ  cos ϕ 

cos θ 0 sin θ 
�

 
0 1 0 � � 

­ sin θ 0   cos θ 

 
 
 

 
(2.39) 

� 
cos ψ ­ sin ψ 0 

�
 

RZ  = � � sin ψ cos ψ 0  � � 
0 0 1 

(2.40) 

 

If we consider the vehicle as a rigid body, the vehicle’s rotation about the global frame 
is only caused by the road angle. If we consider the deflection of suspension, the each 
rotation consists of two components: rotation motion caused by deflection of suspension 
(ϕv , θv , ψv ) and rotation motion caused by the road inclination ( ϕr , θr , ψr ). 
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θg  = θv + θr 
ϕg  = ϕv  + ϕr 

ψg = ψv + ψr 

 

 

(2.41) 

 

The force system in global frame is obtained with the Newton’s law, expressed by: 
 

� 
FX  

�
 

� � 

� 
v̇X   

�
 

� � 
� FY 

FZ 

� = m � v̇Y   � 
v̇Z 

 
 
(2.42) � 

MX  

�
 

� � 

� 
IX  0 0 

� 

� � 
ωẊ   

�
 

� � � 
� MY 

MZ 

� = � 0 IY 0 
0 0 IZ 

� � ω̇Y   � 
ω̇Z 

 

Then the force system expressed in the body frame can be obtained by the transfor- 
mation process, as shown  in the following equations: 

 
� 

Fx  

�
 

� 
FX   

�
 

� 
m(v̇x ­ ψ̇ vy )  

�
 

� Fy � = (RX RY RZ )−
 
� FY � = �

 
m(v̇y + ψ̇ vx)  �

 

� � 1 � � 
 

Fz  FZ 

� � 

­mvxθ̇ + mvy ϕ̇ 

 

(2.43) 

� 
Mx  

�
 

� 
MX   

�
 

� 
Ixω̇x + (Iz ­ Iy )θ̇ψ̇  

�
 

� My � = (RX RY RZ )−
 
� MY � = � Iy ω̇y + (Ix ­ Iz )ϕ̇ ψ̇  �

 

� � 1 � � � 
 

I ω̇
 
+ (I

 
� 

­ I )θ̇ϕ̇
 

Mz  MZ z   z y  x 
 

 

2.3.4  External Forces And Moments Applied On The Vehicle 
 

The forces acting on a system of connected rigid body can be divided into internal 
and external forces. Internal forces are acting between connected bodies, and external 
forces are acting from outside of the system. According to the principle of Newton, 
the motion of vehicle is controlled by external forces. The force systems obtained in the 
former section represent the resultant external forces and the resultant external moments 
applied on the vehicle. For a standard vehicle, the external forces and moments come 
from the tire-road contact, the gravity and the air. 

 
BF = Fgravity +Fwheel + Fair (2.44) 

 

 
 

BM = Mgravity + M wheel + Mair (2.45) 
 

 

Air resistance 
The air resistance is neglected in our development: 

 

Fair = [0 0 0]T 

Mair = [0 0 0]T 

 
 
 
 
 
(2.46) 
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Gravity force 
The gravity forces is determined by road geometry and vehicle mass. 

 
� 

0 
�

 

Fgravity = m(RG  T � � 

� 
­ sin θ 

�
 

� � 
B )  � 0 

g 
� c:: mg � ­ cos θ sin ϕ  � 

­cos θ cos ϕ 

 

(2.47) 

Mgravity = [0 0 0]T 

 

where the moment generated by gravity forces is zero, due to the moment center is at 
the gravity center. 

 

Tire-road contact force 
The tire-road contact forces Fwheel  are generated by the interaction between the road 
and tire. Tires affect a vehicle’s handling, traction, ride comfort, and fuel consumption. 
The performance of a vehicle is mainly influenced by the characteristics of its tires. The 
mathematical models for calculating tire forces are already introduced  in the section 2.2. 
In this section, we will explain how tire forces can affect vehicle’s motion. 
 

 
 

Figure 2.16: Projection of tire forces into the vehicle body frame 
 

 

The force system generated at the tire print can be expressed in the wheel frame with 
equation 2.48 

 

w F11  = Fx11
­
i
→ 

+ F 
w F12  = Fx12

­
i
→ 

+ F 
w F21  = Fx21

­
i
→ 

+ F 
w F22  = Fx22

­
i
→ 

+ F 

y11
­
j
→ 

+ F 

y12
­
j
→ 

+ F 

y21
­
j
→ 

+ F 

y22
­
j
→ 

+ F 

­→ 
z11  11 ­→ 
z12  12 ­→ 
z21  21 ­→ 
z22  22 

 
 
 
(2.48) 

 

where the index ij means the identity of each wheel,  11  means the front left wheel, 12 

represents the front right wheel, 21  means rear left wheel and 22  stands for rear right 
wheel. 

In order to describe the wheel forces in the body frame, we should rotate the wheel 
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W,ij

W,ij

 
 

frame along wz-axis until it becomes parallel to the body frame, as illustrated in the 
Figure 2.16. The rotation matrix needed is given by equation 2.49. 

 
� 

 

RB  � cos δij ­ sin δij 0 
�

 
� 

W,ij = � sin δij cos δij 0 � (2.49) 
0 0 1 

 

where δij  is the steering angle of the indicated tire. 
Hence, the forces of each tire are given by equation 2.50. 

 
BFij = RB w Fij � 

F xij 

�
 

� � 

�  
F xij cos δij ­ F yij sin δij   

�
 

� � 
 

(2.50) 
� F yij 

F zij 

� = � F xij sin δij  + F yij cos δij   � 
F zij 

 

BMij = RB w Mij 
 

� 
M xij 

�
 

� � 

� 
0 

�
 

� � 

 

(2.51) 

� M yij 
M zij 

� = � 0 � 
M zij 

 

where the tire moment at the tire print M xij , M yij  are regarded  as zero to simplify the 
equations. 

The resultant forces and moments generated by the tire-road contact are represented 
by equation 2.52 and 2.53. 

Fwheel = 
) 

BFij  (2.52) 
 

Mwheel = 
) 

BMij + 
) 

Pij ×B Fij  (2.53) 

 
�  

L1   

�
 

P11  = �  E1     � 

�   
L1  

�
 

� E1    � 
� 2 � P12  = � ­ 2    � 

­h ­h 
� 

 

P21  = �
 ­L2  

�
 

E2  � 

� 
­L2   

�
 

� E2    � 
(2.54) 

� 2 �   P22  = � ­ 2    � 
­h ­h 

 

where Pij   is the position of each wheel in the body frame, h is the height of gravity 
center, E1 and E2 are the length of front axle and rear axle respectively, L1 is the distance 
from front axle to the gravity center and L2    is the distance from the rear axle to the 
gravity center. 

If we only consider the planar motion of vehicle, then the relation between the tire 



37

2 Vehicle Dynamics Model 

 

 
 

forces and vehicle motion can be represented by equation 2.55. 
 

� 
m(v̇x ­ ψ̇ vy )  

�
 

� ­sin θ 
�

 
�  

Fxij cos δij ­ Fyij sin δij    
�

 
� m(v̇y  + ψ̇ vx ) � = mg � ­ sin ϕ cos θ �+ 

2: � Fxij sin δij  + Fyij cos δij   � 
0 ­cos θ cos ϕ Fzij  

(2.55) 
� 

0 
� �

 yij Fzij  ­ zij (Fxij sin δij  + Fyij cos δij )  
�

 
� 0 

Iz ψ̈ 

� = 
2: � ­xij Fzij  + zij (Fxij cos δij ­ Fyij sin δij )  � 

M zij  + xij (Fxij sin δij  + Fyij cos δij ) ­ yij (Fxij cos δij ­ Fyij sin δij ) 
 

If we consider the irregularity of the road and the 3D motion of the vehicle, then the 
relation between the tire forces and the vehicle motion can be represented  shown by 
equation 2.56. 

 
� 

m(v̇x ­ ψ̇ vy )  
�

 
� ­sin θ 

�
 

�  
Fxij cos δij ­ Fyij sin δij    

�
 

� m(v̇y  + ψ̇ vx ) 
­mvx θ̇ + mvy ϕ̇ 

� = mg � ­ sin ϕ cos θ 
­ cos θ cos ϕ 

�+ 
2: � Fxij sin δij  + Fyij cos δij   � 

Fzij 

 
� 

Ix ω̇x + (Iz  ­ Iy )θ̇ψ̇  � �
 yij Fzij  ­ zij (Fxij sin δij  + Fyij cos δij )  

�
 

� Iy ω̇y  + (Ix ­ Iz )ϕ̇ ψ̇ 
Iz ω̇z  + (Iy ­ Ix )θ̇ϕ̇ 

� = 
2: � ­xij Fzij  + zij (Fxij cos δij ­ Fyij sin δij )  � 

M zij  + xij (Fxij sin δij  + Fyij cos δij ) ­ yij (Fxij cos δij ­ Fyij sin δij ) 
(2.56) 

As a conclusion of section 2.3, our objective is to describe the relationship between the 
tire forces and the vehicle motion. In section 2.3.1, we have introduced two coordinate 
frame to describe the vehicle motion: the vehicle body frame and the global frame. In 
section 2.3.2, we employ the planar rigid dynamics to calculate the total external forces 
received by the vehicle. To generalize the vehicle dynamics model for different  road 
geometry,  we have developed the 3D vehicle dynamics models in section 2.3.3. In 3D 
motion, the vehicle has the liberty of pitch and roll motion, which makes our model valid 
even on the banked road or sloped road. The section 2.3.4 explains that the tire forces 
and gravity force are the main sources of the external forces. Then the relationship 
between the tire forces and the vehicle’s motion is concluded in the end of section 2.3.4. 

 
 

2.4  Dynamics Models Of A Real Vehicle 
 
The main objective of developing vehicle dynamics models in this thesis is to observe 
the tire forces at three directions: longitudinal tire force Fxij , lateral tire force Fyij  and 
vertical tire force Fzij . The models introduced in the section 2.3 are simplified descrip- 
tion of tire forces, they are not able to describe the forces at each tire.  In order to 
obtain more information about the tire forces, this section will consider the subsystems 
of vehicle, such as the suspension system, steering system and driveline system. In a 
real vehicle, the tire forces are greatly influenced by these subsystems.  In [Reza, 2007] 
[Doumiati, 2009] [Wang, 2013], the authors have also emphasized the importance of an- 
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alyzing these subsystems. They propose to decompose the overall description of vehicle 
dynamics into three relatively separate components, the model of vertical dynamics (sus- 
pension dynamics), the model of lateral dynamics (steering dynamics) and the model of 
longitudinal dynamics (driveline dynamics). In the following sections, we will introduce 
the state of art in the modeling of these subsystems.  Furthermore, we will present our 
proposed models for the description of tire’s vertical, lateral and longitudinal forces. 

 
 

2.4.1  Dynamics Models For Vehicle Vertical Motion 
 

Awareness of vertical load at each tire is fundamental to understand the vehicle’s behav- 
iors. The vertical load can affect the maximum braking (longitudinal) forces and turning 
(lateral) forces that a tire can generate.  Experimental data in [Lechner,  2002] has also 
confirmed the importance of vertical load in tire’s performance. A simple model for 
computing vertical force of each tire can be obtained  by assuming the vehicle  as a rigid 
car. However, in a real car, the vertical dynamics is mainly affected by the suspension 
system. The suspension links the wheels to the vehicle body and allows relative motion. 
The automotive suspension on a vehicle typically has the following basic tasks: 

 

1. To isolate a car body from road disturbances in order to provide good ride qual- 
ity.  Ride quality in general can be quantified by the vertical acceleration of the 
passenger locations. The presence of a well-designed suspension provides isolation 
by reducing the vibratory forces transmitted from the axle to the vehicle body. 

 

2. To keep good road holding.  The road holding performance of a vehicle can be 
characterized in terms of its cornering, braking and traction abilities.  Improved 
cornering, braking and traction are obtained if the variations in normal tire loads 
are minimized. This is because the lateral and longitudinal forces generated by a 
tire depend directly on the normal tire load. 

 

3. To provide good handling.  The roll and pitch accelerations of a vehicle during 
cornering, braking and traction are measures of good handling. A good suspension 
system should ensure that roll and pitch motion are minimized. 

 

4. To support the vehicle static weight. This task is performed well if the rattle space 
requirements in the vehicle are kept small. 

 

To better accomplish the first two tasks, the suspension should be soft or flexible. It 
is the flexibility  of suspension that reduces the transference of vibration and improves 
the comfort of vehicle. More information about the vehicle vibration dynamics can be 
found in [Reza, 2007]. Meanwhile, to accomplish the other two tasks, the suspension 
is better to be rigid.  For a car, the suspension system should be neither too soft nor 
too rigid.  During the design of suspension system, a compromise between being soft 
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Figure 2.17: Illustration of the vertical dynamics of a vehicle parked on level pavement 

 
 
or rigid has to be made. Another approach to improve the performance of suspension 
is to develop the active suspension.  The concept of active suspension system refers to 
the suspension which can generate additional moments to control the suspension motion 
[Fischer and Isermann, 2004]. The active control of suspension motion is equivalent to 
control the rigidity  of suspension.  When the objective is to reduce vertical vibration, 
the active control is closed and suspension is soft.  When the vehicle is undergoing a 
rapid turning, the active suspension control is activated to provide good handling. For 
more details about active suspension control, the readers can refer to [Rajamani, 2012]. 

In literature, the authors have already proposed  some models  for the vertical tire 
force. Both the existent models and our contribution will be introduced  in the following 
subsections. 

 

 

2.4.1.1  Vertical Forces Of A Rigid Car 
 

The vertical forces at each tire is affected by many factors: the mass distribution, the 
suspension dynamics and the wheel interactions. To model all these factors will result 
in a set of complex non-linear equations with a lot of unknown parameters. To simplify 
the calculation, in the literature, authors propose a solid car model, in which we suppose 
the vehicle is rigid and driving on level pavement, as shown in Figure 2.17. 

When the vehicle is accelerating or driving on a sloped road, the vertical forces at 
front wheels and rear wheels vary a lot.  In the literature [Doumiati et al., 2008], this 
phenomenon is explained by the theory of “virtual  mass”. The vehicle  mass is divided 
into two part: the front part mf  and the rear part mr . 

mf =  m L2  ­ m hax 

L Lg (2.57) 
mr = m L1 + m hax 

L  Lg 
 

Then the vertical force of each tire can be obtained by the following equations: 
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Figure 2.18: A quarter vehicle suspension system 
 
 
 

Fz11 =  1
 

L2  1  h
 

hL2
 

hψ2 L2
 

2 mg L  ­ 2 m L ax ­ m e1 L ay + m e1 Lg axay 
2

 

Fz12 =  1
 

L2  1  h
 

hL2
 

h L2
 

2 mg L  ­ 2 m L ax + m e1 L ay ­ m e1 Lg axay 
2

 

 

(2.58) 
Fz21 =  1

 
L1  1  h

 
hL1

 
h L1

 

2 mg L  + 2 m L ax ­ m e2 L ay ­ m e2 Lg axay 
2

 

Fz22 =  1
 

L1  1  h
 

hL1
 

h L1
 

2 mg L  + 2 m L ax + m e2 L ay + m e2 Lg axay 

where ax, ay are the longitudinal and lateral accelerations of vehicle motion. 
 

 

2.4.1.2  Vertical Forces Of A Soft-suspension Car 
 

When the vehicle suspension is very soft, the rigid car dynamics is no longer valid. To 
study the suspension behaviors, the authors in the literature have proposed quarter car 
suspension model [Rajamani, 2012], as shown in Figure 2.18. In the figure, the quarter 
of car is divided into sprung mass mq and unsprung mass mw . The suspension connects 
the sprung mass and unsprung  mass and it is characterized  as a spring of stiffness ku, 
and a damper with viscous damping coefficient du. The unsprung  mass mw  is in direct 
contact with the ground through a tire, which is also represented by a spring kw  and 
damper dw . According to the D’Alembert’s principle, the vehicle’s suspension system is 
governed by the following relations: 

 

mq Z̈u + du(Żu ­ Żw ) + ku(Zu  ­ Zw ) + mq g 
 

= 
 

0 
mw Z̈w ­ du(Żu ­ Żw ) ­ ku(Zu  ­ Zw ) + dw (Żw  ­ Żr ) + kw (Zw  ­ Zr ) + mw g = 0

Fwz + dw (Żw  ­ Żr ) + kw (Zw  ­ Zr ) = 0
    (2.59)
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vertical

noted as M 

vertical

model M 

 
 

where Zu, Zw  are the positions of sprung mass and unsprung mass respectively,  in the 
global coordinate frame. Zr is the height of road surface which describes the undulation 
of road. 

To simplify the calculation, we consider the total vehicle mass is supported by the 
suspension, which means mw  = 0. Then we can get 

 
Fzij  = duσ̇ij  + kuσij (2.60) 

where σij  is the deflection of a quarter of vehicle suspension, then σij  = Zw ­ Zu. 
 

 

2.4.1.3  The contribution  proposed for vertical dynamics model 
 

In the following paragraph,  we will propose a new mathematical model for the vertical 
tire forces. To begin with, we’d like to compare the models presented above. 

❼  The first model we introduced is the most widely used vertical dynamics model, 

represented by equation 2.58, noted as M 1 . This model is based on the rigid 
car assumption, which means all the vehicle mass can be regarded  as unsprung 
mass. 

❼  The second model is the quarter-car  suspension model as shown in equation 2.60, 
2 
vertical .  It uses directly the suspension deflection  to calculate vertical 

forces. The deflection of suspension at each wheel is relatively independent and 
could represent the mass distribution. However, the forces calculated with M 2 

is easily affected by the sensor noises when the vehicle is moving. Therefore, the 
2 
vertical is usually employed at static situation. 

 

To improve the accuracy of the vertical dynamics model at banked or sloped roads, we 
propose three modifications: 

 

1. Calibration of measured accelerations; 
 

2. Calculation of the transfer of vertical force by using the pitch and roll angle; 
 

3. Combination of the rigid car model and the soft car model. 
 
 

Calibration of the measured accelerations 
The rigid car model is not accurate especially at banked road, as it doesn’t take into 
account the roll and pitch angle of vehicle body. In a real situation,  as illustrated in 
Figure 2.19, The inertial sensors are installed at the vehicle body and thus will rotate 
with vehicle body.The  measured accelerations are not parallel to the ground, which will 
result in the errors of rigid car model. In order to eliminate the errors caused by the 
rotation of inertial sensors, we propose to project the measurement into the vehicle body 
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TF z,f = Fz11 ­ Fz12

TF z,r = Fz21 ­ Fz22

cos θv 0 sin θv 

0 1 0 

 
 

 
 

 

Figure 2.19: Illustration of errors of measured acceleration:  the measured lateral accel- 
eration is not parallel to the road surface 

 
 

frame. When both the pitch and roll motion are considered, the calibration process is 
represented by the following equations: 

 
� 

axm,c  
�

 
� 

axm  
�

 
� aym,c 

azm,c 

�  = RϕRθ �  aym 

azm 

� (2.61) 

 
where [axm,c, aym,c, azm,c] are the calibrated accelerations, Rϕ, Rθ  are the rotation ma- 
trix. 

 
� 

1 0 0 
� � �

 
Rϕ  = � 0  cos ϕv  ­sin ϕv 

0 sin ϕv  cos ϕv 

� ,  Rθ = �  

­ sin θv  0  cos θv 

� (2.62) 

where ϕv , θv  are the roll angle and pitch angle of vehicle body. 
 

Modeling of transfer of vertical load 
Different with the virtual mass theory, we propose to use the transfer of vertical load 
to explain the difference between the vertical force of each tire. The transfer of vertical 
load at front and rear axle (TF z,f  and TF z,r ) are defined  as the load difference between 
left wheels and right wheels: 

 
 

(2.63) 
 

 

With  the definition of transfer of vertical load, the vertical dynamics of a rigid car, 
expressed in equation 2.58, can be equally transformed to the following equations. 
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0  = L1Fzf  ­ L2Fzr  + mhax 

0  = Fzf  + Fzr  ­ mg 
0  = e1  · TF z,f  +  e2  · TF z,r + mhay

 

 
 
 
(2.64) 

2 2 

0  = 
e1  · TF z, f 

e2  · TF z, r 
­

 

 

Fzf 

Fzr 

where e1, e2  are the width of front and rear axles, Fzf  and Fzr  are the resultant vertical 
force at front and rear axle. 

Inspired by the work of [Wang, 2013], we propose  to use the roll angle and pitch 
angle to describe the transfer of vertical load, rather than using the accelerations. Note 
that the deformation of suspension already contains the information of gravity force. 
Therefore when using the suspension to calculate tire vertical load, it is not necessary to 
develop an additional item to represent the road inclination. The pitch and roll motion 
of suspension can be represented by the full car suspension model, as illustrated in Figure 
2.20. 

The full car model consists of four quarter-car suspension models and takes into ac- 
count the interaction between each part of the suspension,  as illustrated in Figure 2.20 
a).  The full car model could describe more details about the suspension motion but 
has too many parameters to configure. To facilitate the computation, we propose to 
simplify the full car suspension model  as illustrated in Figure 2.20 b). In the simplified 
suspension model (pitch-roll model), we only consider the pitch and roll motion of the 
suspension. The pitch angle and roll angle of suspension are noted as θb, ϕb. Usually, the 
roll center varies according to the vehicle movement, here we assumed that the vehicle 
roll center keeps constant and it is coincident with the center of gravity in the top view 
[Milliken et al., 2003]. The suspension system’s property is represented by the roll stiff- 
ness Kϕ,  the pitch stiffness Kθ , the roll damping coefficient Cϕ  and the pitch damping 
coefficient Cθ . Then according to the torque balance in the roll axis, the roll dynamics 
of the vehicle body can be described by the following differential equation: 

 

 

Ixxϕ̈b + Cϕϕ̇b + Kϕϕb    = maymhs  (2.65) 
 

where Ixxis the inertia moment of the vehicle with respect to the roll axis, while Iyy 

is respect to the pitch axis and hs is the distance between the mass center and the roll 
axis. 

Similarly, we can have the pitch dynamics  expressed as: 
 

 

Iyy θ̈b + Cθ θ̇b + Kθ θb    = maxmhs  (2.66) 

For a soft-suspension car, the roll-pitch motion of suspension will transfer torques to 
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Figure 2.20: a) Full-car automotive  suspension  model [Baffet, 2007] b) the proposed 
pitch-roll suspension model 
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0 = Fzf  + Fzr  ­ maz 

noted as M 

vertical 

vertical 

vertical

vertical and M3

 
 

the axles and wheels.  
Mx,sus  =  Cϕϕ̇b + Kϕϕb 

My,sus  = Cθ θ̇b + Kθ θb 

 
 

(2.67) 

 

where Mx,sus   , My,sus  are the torque about x-axis and y-axis respectively. 
Different with the quarter-suspension model, the pitch-roll model focus on the motion 

of the whole suspension.   The vertical force obtained through the pitch-roll model is 
3 
vertical , as shown  in the following equations. 

 
 
 

0   = e1   · TF z,f  +  e2   · TF z,r + Mx,sus
 (2.68) 2 2 

0   = 
e1  · Tlat, f 

e2  · Tlat, r 
­

 

 

Fzf 

Fzr 

Using the pitch angle and roll angle instead of deflection to calculate the vertical force 
can make the model sensible to the suspension motion. The biggest advantage of this 
model is that it doesn’t need the lateral or longitudinal accelerations. It could work 
when the inertial sensor is absent. 

 

Combination of the rigid car model and the pitch-roll model 
The rigid car model M 1 neglects the dynamics of suspension motion. Meanwhile, 
the pitch-roll model M 3 captures the features of suspension dynamics but it suppose 
all masses as unsprung. In a real car, neither the sprung mass nor the unsprung  mass 
could be neglected. Only the combination of the two  models could provide a more 
accurate model. Then we propose an new model M 4 to compute the tire vertical 
forces, which is the combination of M 1 vertical . 

 

0   = L1 Fzf  ­ L2 Fzr  + ξMy,sus + (1 ­ ξ)mhax 

0   = Fzf  + Fzr  ­ maz 

0   = e1   · TF z,f  +  e2   · TF z,r + ξMx,sus + (1 ­ ξ)mhay
 

 

 
 
(2.69) 2  2 

0   = 
e1  · Tlat, f 

e2  · Tlat, r 
­

 

 

Fzf 

Fzr 

where ξ is the interpolation coefficient, it is decided by the percentage of sprung mass 
in the total vehicle mass:  

ξ = 
msprung 

m 

 

 

(2.70) 

Having presented our contribution to the vertical dynamics,  we consider in the next 
section the lateral vehicle dynamics. 

 
 

2.4.2  Dynamics Models For Vehicle Lateral Motion 
 

Vehicle lateral motion control is quite important for the vehicle security. A failure in 
the lateral motion control will cause the lane departure, which is the number  one cause 
of fatal accidents in the United States, and account for more than 39% of crash-related 
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fatalities [NHTSA, 2013]. Many advanced driver assistance systems (ADAS) have been 
developed to automatically keep the vehicle in its lane and follow the lane as it curves 
around. In the researches, the development of lane keeping  systems focus on the im- 
provement of lane mark localization and vehicle localization. In [Guldner et al., 1996], 
the authors demonstrated a lane keeping system based on the use of cylindrical magnets 
embedded in the center of the highway lane. In the work of research groups at Berke- 
ley [Taylor et al., 1999], vision cameras were employed to realize the lateral position 
measurement. 

The common point of all these technology is to measure the lateral position of vehicle 
and then  control the steering to keep vehicle  in lane. This strategy of control works 
when the steering can actually control the lateral motion of vehicle. Unfortunately, in 
real driving situation, it is quite possible to find that the vehicle is slipping and the 
steering operation is not able to reach the desired target, as illustrated in Figure 2.21. 
 

 
 

Figure 2.21: Lane departure  caused by the failure of lateral dynamics control 
 
 

To avoid this dangerous situation, we should be aware of the lateral dynamics states 
and evaluate the safety of steering operation. The kinematic relationship between each 
tire is introduced in the section of steering geometry. Then the lateral forces at each 
tire during the steering operation are analyzed with the widely accepted vehicle models: 
bicycle model and the double track model. After presenting  these classical models, we 
will explain our contribution in the modeling of vehicle lateral forces. 

 

 

2.4.2.1  Steering Geometry 
 

In this subsection,  we will  study the kinematic model of steering behavior,  which is 
used for computing the velocity vector of each wheel during steering. In the previous 
section, we have emphasized the suspension’s flexibility.  However, in the study of steering 
kinematics, the vehicle is regarded  as rigid in the longitudinal and lateral directions. It 
is mainly for two reasons. 
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1. The suspension system only enables the vertical motion of vehicle body. 
 

2. Even if the tire or suspension is deflected, the deformation is negligible compared 
with tire’s global displacement. 

 

Let us consider a front-wheel-steering  vehicle that is rotating about a ground point O, 
as shown  in Figure 2.22. The four wheels of the vehicle are marked as A, B, C, D in 
the figure. The steering system is designed to control the wheel direction to facilitate 
the turning operation. One important factor of designing a steering system is to avoid 
excessive or unnecessary tire slip.  The undesired sideslip of tire could generate huge 
lateral forces which would not facilitate but resist the turning behavior. Furthermore, 
large tire side slip will cause damage to the tire and reduce the tire life. Therefore, in 
a perfect steering system, the velocities at each wheel should be parallel to its wheel 
direction so that the tire side slip approximates to zero. 
 

 
 

 

Figure 2.22: Ackerman geometry [Reza, 2007] 
 
 

For an ordinary car, the steering geometry can be approximated by the Ackerman 
geometry and is expressed by 

L 
tan δi  = 

R ­ E/2 
(2.71)

 
 

L 
tan δo  = 

R + E/2 
(2.72)

 
 

where δi  is the steer angle of the inner wheel, and δo is the steer angle of the outer wheel. 
The inner and outer wheels are defined based on the turning center O. L is the distance 
between front axle and rear axle, called as the wheelbase, E is the track width, R is the 
rotation radius. 

Then the relation between δi  and δo  is expressed by 
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2

 

 
 

cotδo ­ cotδi  = E
 

(2.73) 
L 

The E/L is the ratio between vehicle width and length. Figure 2.23 illustrates the 
Ackerman geometry for different values of E/L.  The inner and outer steer angles get 
closer to each other by decreasing E/L. 
 

 
 
Figure 2.23: Effect of E/L on the Ackerman condition for front-wheel-steering geometry 

 
 

The rotation radius R could be obtained by the following equation: 
 

 

R = L2 + L2cot2δ (2.74) 
 

 

where  δ is the cot-average of the inner and outer steer angles. 
 
 

cotδ = 
cotδo + cotδi 

2 

 

(2.75) 

A device that provides steering according to the Ackerman condition (2.143) is called 
Ackerman steering or Ackerman mechanism.  There is no four-bar linkage steering 
mechanism that can provide the Ackerman condition perfectly. However,  we may de- 
sign a multi-bar linkages to work close to the condition and be exact at a few angles 
[Reza, 2007]. It is noted that the Ackerman geometry can represent the real steering 
kinematic only when the vehicle is moving very slowly. Normally, during the real steer- 
ing operation, the rotation center O is not on the line C D and the side slip angle of rear 
wheel is not negligible,  as illustrated in Figure 2.24. 

Suppose the longitudinal velocity is vx  and the side slip angle at center of gravity is 
β. Then the lateral velocity at the gravity center is obtained by 

 

 

vy = vxβ  (2.76) 
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22
vx + 

E1 ψ̇

2

 
 

 
 

Figure 2.24: The position of rotation center in real driving condition 
 
 

According to the kinematic relationship between the wheel speeds and the speed at 
CoG, the sideslip angle at each wheel can be obtained by: 

 

vy +L1 ψ̇
 

α11 = ­δ11 + arctan( 
v E1  ˙ ) − 2 

α  = δ + arctan( vy +L1 ψ̇ 
) 

v  + x 

α = arctan( vy −L2 ψ̇ 
21 

vx − E1 ψ̇ 

α = arctan( vy −L2 ψ̇ 
2 

2  ψ̇ 

) 
 

) 

(2.77) 

 
2.4.2.2  Bicycle Model 

 

The bicycle model is a simplified expression of basic vehicle lateral dynamics,  as shown 
in Figure 2.25. 
 

 
 

Figure 2.25: Bicycle model 
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In the bicycle model, the left and right  front  wheels are represented  by one single 
wheel at point A. Similarly the rear wheels are represented by one single rear wheel at 
point B.  The gravity center of the vehicle is at point C .  For the front-wheel-steering 
vehicle, the steering angle of the front wheels is represented by δ, the steering angle of 
rear wheels is considered  as zero. The tire slip angle of front wheels and rear wheels 
are represented  as αf   and αr .  With  these simplification, the vehicle dynamics can be 
represented by the following functions 

 

v̇x  = 1 (Fxf cos(δ) ­ Fyf  sin(δ) + Fxr ) 
v̇y  = 1 (Fxf sin(δ) + Fyf  cos(δ) + Fyr ) ­ ψ̇ vx (2.78) 
¨ 1  [L1(Fyf  cos(δ) + Fxf sin(δ)) ­ L2Fyr ] 

 

where Fxf and Fyf  are the resultant longitudinal and lateral forces at point A. Fxr and 
Fyr  are the resultant longitudinal and lateral forces at point B. 

The bicycle model can be found in many literature, some detailed derivations are 
given in [Rajamani, 2012]. It is noted that in the literature, the road inclination (bank 
or slope) is neglected. 

In the above formulas, the vehicle lateral motion is represented by the lateral velocity, 
vy . However, in the field of vehicle control, researchers prefer to use the sideslip angle β 
to describe the vehicle lateral motion. In order to directly appear the side slip angle β 
in the formula, the authors in the literature have proposed another equivalent formula 
of bicycle dynamics model. 

 
 

V̇g  = 1 (Fxf cos(δ ­ β) + Fxr cos(β) ­ Fyf  sin(δ ­ β) + Fyr sin(β)) 
β̇  =    1   (Fxf sin(δ ­ β) ­ Fxr sin(β) + Fyf  cos(δ ­ β) + Fyr cos(β)) ­ ψ̇ (2.79) 
¨ 1  [L1(Fyf  cos(δ) + Fxf sin(δ)) ­ L2Fyr ] 

 

where Vg is the linear speed of vehicle, Vg = 
  

v2 + v2. x  y 

The bicycle model can be also employed to calculate the sideslip angle at point A and 
point B, as expressed by the following equations: 

 
 

αf  = ­δf  + β + L1ψ̇ 
vx 

 
(2.80) 

 
 

αr = β ­ L2ψ̇ 
vx 

 
(2.81) 

Obviously, the difference of left and right tire dynamics is not considered in the above 
equations. Thus, the bicycle model can only be employed to calculate the lateral force 
per axle, while it is not able to distinguish the lateral force of each wheel. A more 
complete vehicle model contains four wheels will be introduced in the following section, 
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Figure 2.26: Double track model 

which can give more precise description  of vehicle dynamics. 

2.4.2.3  Double Track Model 
 

The four wheels vehicle model represented in Figure 2.26 is discussed in[Reza, 2007] 
[Doumiati, 2009]. It is able to describe the vehicle planar dynamics with more details 
compared with the bicycle model, thus it can be found in plenty of applications aimed 
for vehicle state estimation and control strategy. 

The double track model is based on the planar rigid dynamics,  as introduced in section 
2.3.2. The full detailed function of the double track model is shown in equation 2.82. 

 

 

V̇g  = 1  [Fx11 cos(δ11 ­ β) + Fx12 cos(δ12 ­ β) + Fx21 cos(β) + Fx22 cos(β) 
­Fy11 sin(δ11 ­ β) ­ Fy12 sin(δ12 ­ β) + Fy21 sin(β) + Fy22 sin(β)] 

β̇  =  ­ψ̇ +   1    [Fy11 cos(δ11 ­ β) + Fy12 cos(δ12 ­ β) + Fy21 cos(β) + Fy22 cos(β) 
+Fx11 sin(δ11 ­ β) + Fx12 sin(δ12 ­ β) + Fx21 sin(β) + Fx22 sin(β)] 

¨ 1  {L1 [Fy11 cos(δ11) + Fy12 cos(δ12) + Fx11 sin(δ11) + Fx12 sin(δ12)] 
­L2 [­Fy21 + Fy22] 

2  [Fy11 sin(δ11) ­ Fy12 sin(δ12) ­ Fx11 cos(δ11) + Fx12 cos(δ12)] 

2  [­Fx21 + Fx22] 

 
 
 

(2.82) 
where δ11, δ12 are the steering angles at front left wheel and front right wheel respectively. 

When δ11   = δ12,  the double track model and bicycle model are equivalent.  The 
advantage of double track model over the bicycle model is the ability to distinguish the 
different steering angles of outer wheel and inner wheel during turning. Furthermore, in 
the double track model, the description of tire slip angle is more accurate than in the 
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bicycle model. The tire slip angle of each wheel is obtained by the equation 2.77. Then 
the lateral force of each tire can be obtained  with the tire models. 
 

Fy11 = fT ire(α11, Fz11) 
Fy12 = fT ire(α12, Fz12) 
Fy21 = fT ire(α21, Fz21) 
Fy22 = fT ire(α22, Fz22) 

 

 
(2.83) 

 

where fT ire( ) is the tire model, it could be the linear tire model, Dugoff ’s model or other 
non-linear tire model, according to the required accuracy. 

 

 

2.4.2.4  The contribution  proposed for Lateral Dynamics Models 
 

There are two principle limitations in the existent vehicle models for calculating the tire 
lateral forces. 

❼  Firstly, the road inclination is not considered. The banked road or sloped road will 

make the gravity force act on the lateral direction, which may cause model errors. 

❼  Secondly, there is no efficient method to calculate the lateral forces at each tire. 

The commonly used tire model requires an accurate measurement of tire slip angle 
which is difficult to realize with low-cost sensors. 

 
 

Solution to the first limitation 
In order to eliminate the first limitation,  we propose to consider the 3D dynamics of 
vehicle, as we  introduced in the section 2.3.3.  The components of gravity  force in 
longitudinal and lateral direction are taken into account in the modified model, expressed 
by 

 

v̇x + ψ̇ vy = 1 (Fxf cos(δ) ­ Fyf  sin(δ) + Fxr ­ mg sin θr ) 
v̇y + ψ̇ vx  = 1 (Fxf sin(δ) + Fyf  cos(δ) + Fyr  ­ mg sin ϕr ) 

 
 

(2.84) 
Iz ψ̈ + (Iy  ­ Ix)θ̇ϕ̇ = [L1(Fyf  cos(δ) + Fxf sin(δ)) ­ L2Fyr ] 

 

where θ̇ , ϕ̇ are the measured roll rate and pitch rate, they are caused by the suspension 
motion and the road irregularity. 

 

Solution to the second limitation 
In order to eliminate the second limitation, we proposed an original model to calculate 
tire force. The common method to calculate tire force is to employ the tire models. 
For instant, the linear tire model, Fwy  = Cαα, normally the cornering stiffness Cα  ∈ 
[10000, 100000].  The tire model has been studied by many researcher for many years, 
as introduced in section 2.1. The common point of these tire models is to study the 
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TF y, f = Fy11 ­ Fy12

TF y, r = Fy21 ­ Fy22

 
 

performance of a single tire under different condition. The tire is individually analyzed 
in the test, as shown  in Figure 2.27. 
 

 
 
Figure 2.27: Tire test equipment: providing different speeds and different vertical loads 

[Otso et al., 2016] 
 

 
In this thesis, we propose  a new strategy to calculate the tire forces, which is to 

calculate the value of transfer of lateral force (Fy11 ­ Fy12, Fy21 ­ Fy22). The motivation 
of proposing this new model is to consider the interaction between the wheels. When the 
vehicle is moving, the force of each tire is not only decided by its own working condition, 
but also influenced by the interaction between the four wheels. The lateral force per 
axle (Fyf , Fyr ) are available by using the bicycle model. The force at each wheel could 
be obtained if we have information about the difference between the left and right wheel 
(Fy11 ­ Fy12, Fy21 ­ Fy22). This difference in the lateral force is called the “Transfer of 
lateral force” in this thesis. The transfer of lateral force at front axle and at rear axle 
are noted as TF y, f and TF y, r respectively, and expressed by 

 

 
(2.85) 

 
 

The model we proposed for the calculation of transfer of lateral force is represented 
by the following equations: 

 
 

TF y, f = 
TF z,f 

Fzf 

 

Fyf  + a1 Fzf δ + a2 ψ̈vx 

 
 
(2.86) 

 

TF y, r = 
TF z,r 

Fzr 
Fyr  + a3 ψ̈vx 

 

where a1,2,3 are constant parameters, influenced by the road friction. 
The advantage of this model is to calculate the tire forces without tire slip angle, which 

could greatly reduce the difficulty of estimating tire forces. In the following paragraphs, 
we will provide the details of the development of the model. 

Proof: 



54

2 Vehicle Dynamics Model 

 

TF y, f = fT ire (α11 , Fz11 ) ­ fT ire (α12 , Fz12 )
TF y, r = fT ire (α21 , Fz21 ) ­ fT ire (α22 , Fz22 )

 
 

The proposed model is a further development based on the Brush model. The value 
of TF y, f and TF y, r can be obtained by employing the Brush model. 

 

 
(2.87) 

 
According to the experimentation data of many researchers [Pacejka,  2006] [Lechner,  2002], 

the vertical load have great impact on the generation of tire forces. Therefore, the tire 
model fT ire(·)  we used here is the Brush model, which has considered the impact of 
load transfer. To simplify the calculation,  we have generalized the representation of the 
non-linear tire model  as 

 

fT ire (α, Fwz ) = b1 Fwz (b2 α + b3 α2 + b4 α3 )  (2.88) 
 
where α is the slip angle of the corresponding wheel, Fwz  is the vertical load at this 
wheel, b1...4  are the model coefficients to represent the non-linearity of the model. 

Then this generalized tire model is employed to compute the transfer of lateral force, 
TF y, f and TF y, r . 

 

TF y, r = b1 Fz12 (b2 α21 + b3 α2
 

4   21 ) ­ b1 Fz22 (b2 α22 + b3 α2  3
 

22 + b4 α22 ) (2.89) 
 

To further simplify the calculation, we can have the following assumption: the vehicle 
is at a high speed so that 

α21  = α22  = αr 

α11 ­ α12  = δ12 ­ δ11 

 

(2.90) 

Then the  transfer of lateral force at rear axle TF y, r is computed by the  following 
equations: 

 

TF y, r = 
TF z,r 

Fzr 

 

Fyr (2.91) 

Similarly, the transfer of lateral force at front axle TF y, f is computed by the following 
equations: 

 

TF y, f =  b1 Fz11 (b2 α11 + b3 α2
 

4   11 ) ­ b1 Fz12 (b2 α12 + b3 α2  3
 

 
c:: 

 
TF z,f 

Fzf 

 
 
Fyf  + a1 Fzf δ 

12 + b4 α12 )  
(2.92) 

 
 

where a1Fzf δ represents  the force difference caused by the steering angle, 

resents the force difference caused by the load transfer. 

TF z,f 

Fzf 

 

Fyf  rep- 

With the proposed tire force model, the side slip angle is no longer needed for comput- 
ing tire forces. Instead, the tire forces are computed with vertical load transfer, velocity 
and yaw rate, which can be easily obtained with low cost sensors.  Another advantage 
of the proposed model is to take into account the first order dynamics of the tire behav- 
ior. The additional items a2ψ̈vx, a3ψ̈vx  in equation 2.86 represent the lateral tire forces 
caused by quick maneuvers. 
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2.4.3  Dynamics Models For Vehicle Longitudinal Motion 
 

Longitudinal dynamics has a direct impact on vehicle’s driving quality, thus it has been 
studied by many researchers and automotive manufacturers. The vehicle’s longitudinal 
dynamics states can determine the maximum attainable accelerating force and braking 
force, which are important for developing advanced longitudinal control system. In the 
modern cars, many intelligent system have been installed to improve the vehicle security, 
such as the anti-lock braking system, radar based collision avoidance system, adaptive 
cruise control and the individual wheel torque control system. The two major elements 
of longitudinal dynamics are the driveline dynamics and the longitudinal force system. 
The driveline dynamics studies the engine and transmission performance. The torque 
received by the drive wheel is determined by the torque generated by the engine and the 
efficiency of transmission system. In this thesis, the driveline dynamics is not discussed. 
For more details, the readers can refer to [Rajamani, 2012]. Our work focus on the 
development of mathematical model for the longitudinal tire dynamics. 

In the literature, the tire longitudinal forces can be obtained through following ap- 
proaches. 

 

1. the planar rigid dynamics, which is already introduced in the bicycle model and 
double track model. The longitudinal dynamics of the vehicle is expressed by 

max = Fxf cos(δ) ­ Fyf  sin(δ) + Fxr ­ mg sin θr (2.93) 

Note that the tire rolling resistance force and air dragging force are included into 
the tire longitudinal forces. We can also employ the rigid dynamics to analyze the 
forces at each wheel, expressed by 

 

mwij axij  = Fwxij + Fx,axle  ­ mwij g sin θr (2.94) 
 

where mwij  is the mass of wheel (ij), Fx,axle   is the interaction force between the 
wheel and the axle, which is unavailable in most vehicles. 

 

2. the tire models. The longitudinal force is a function of tire longitudinal slip, as 
explained in the section 2.2. Typically, it can be computed  with the linear tire 
model: 

Fwx  = Css (2.95) 
 

where Cs is the longitudinal slip stiffness. 
 

3. the  wheel rotational dynamics. The details will  be introduced in the following 
section. 

 

In this thesis, we propose a new model to calculate the longitudinal tire forces, which 
will be introduced in section 2.4.3.2. 
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TF x, f = Fx11 ­ Fx12

TF x, r = Fx21 ­ Fx22

 
 

2.4.3.1  Wheel rotational dynamics 
 

For the driving wheels, the dynamic equation for the wheel rotational dynamics is ex- 
pressed as 

Tij  ­ Tb ­ Ref f Fwxij ­ Mresis  = Iwij ω̇ij (2.96) 
 

where Tij  is the transmitted wheel torque, Tb is the braking torque, Ref f is the effective 
wheel radius, Iwij  is the moment of inertia of wheel ij, ω̇ij  is the angular acceleration. 
Mresis  is the wheel rolling resistant moment. 

For an ordinary passenger car, the tire force can be obtained by 

Tij  ­ Tb ­ Mresis ­ Iwij ω̇ ij Fwxij c::  

Ref f 
(2.97) 

 

For a front drive vehicle, the front wheel drive torque can be obtained by the torque 
sensor,  while the rear wheel drive  torque is equal to zero.  The braking torque is a 
function of the brake pressure, which is available in most modern vehicles. Then the 
accuracy of using equation 2.97 relies on the estimation of wheel resistance moment. The 
tire road contact is a complex process which produce both forces and moments. When 
the vehicle is moving in a straight line in a quasi-static way, the resistant moment can 
be regarded  as a constant. However, when the vehicle is turning, the resistant moment 
becomes significant and should be taken into account. In the following section, we will 
propose a new model to calculate the tire longitudinal forces. 

. 
 
 

2.4.3.2  The contribution  proposed for longitudinal tire forces model 
 

The slip ratio based tire models have clearly explained the physical relationship between 
tire forces and tire deformation. However, in the industrial application, it is very difficult 
to employ this sort of model, due to the large noise in the measurement of slip ratio. In 
order to overcome this problem, we would like to propose a new tire model for computing 
the longitudinal force without using the slip ratio. 

Similar to the modeling of lateral dynamics, here we would like  to introduce the 
concept of transfer of longitudinal force TF x. The transfer of longitudinal force at front 
axle and at rear axle are represented by TF x, f and TF x, r respectively,  expressed by 

 
 

(2.98) 

The model we proposed for the calculation of transfer of longitudinal force is repre- 
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v

 
 

 
 

Figure 2.28: Double track model 
 
 
sented by the following equations: 
 
 

TF x, f =  a4 

TF z,f 

Fzf 

 

Fxf + a5Fzf δ 
 

 
(2.99) 

 

TF x, r  = a6TF z,f 

 

For the rear wheels, the longitudinal force is normally simplified as zero. However, 
when the vehicle is turning, this simplification is not valid, as the tire’s longitudinal 
deformation is significant. It is due to the self-locking phenomenon during turning: the 
outer side of the wheel generates more deformation  than the inner side of the wheel, as 
illustrated in the Figure 2.28. For an axle, the outer wheel moves faster than the inner 
wheel. Similarly, for a wheel, the outer tread moves faster than the inner tread. Thus 
when the vehicle is turning, the outer tread will generates an additional deformation 
besides the deformation generated when it is driving straight ahead. The speed difference 
between the inner side and outer side of wheel is equal to ωz b. According to the definition 

of slip ratio, the slip ratio at outer side of wheel is computed with 

ωw Ref f ­ vx + ωz b 
s = = sa + sr (2.100) 

x 
 

where  b is the width of contact patch, ωz  is the vehicle’s yaw rate, vx is the wheel speed. 
Then the longitudinal slip ratio of the tire can be divided into two  elements: the 

average longitudinal slip sa, and the additional longitudinal slip caused by vehicle’s 
rotation motion sr . 
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TF y, f = fT ire(s11, Fwz11) ­ fT ire(s12, Fwz12)
TF y, r = fT ire(s21, Fwz21) ­ fT ire(s22, Fwz22)

 

 
 
 

sr  = 
ωz b 
vx 

 

(2.101) 

According to the tire models, during the turning, the transfer of longitudinal force 
can be obtained by 

 
 

(2.102) 
 
 

Similar to the lateral force model, we also use a generalized mathematical model to 
represent the non-linear model for longitudinal tire forces. 
 

fT ire(s, Fwz ) = b1Fwz (b2s + b3s2 + b4s3) (2.103) 

Combining equation 2.102 and 2.103 generates the proposed model. 
 

 

2.5  Conclusion 
 
This chapter provides a brief introduction to the state of art in the field of vehicle 
dynamics modeling. Furthermore, this chapter has also proposed  some original contri- 
butions to the modeling of vehicle dynamics for the purpose of efficiency and accuracy. 
The study of vehicle dynamics generally consists of two major subjects: the dynamics 
of road-tire contact and the dynamics of vehicle motion. The former subject covers the 
dynamic modeling of the road/tire system, it explains how the tire forces are generated. 
The second subject places an emphasis on the relationship between the tire forces and 
the vehicle’s kinematic motion. Therefore, in the organization of this chapter, we firstly 
introduced the tire models and then the rigid body dynamics. 

In the section of tire models, the linear tire model, the Brush model, the Dugoff ’s 
model and the quasi-static Magic tire formula are presented and compared. The linear 
tire model captures the principle relation between tire slip and tire forces, but it ignores 
the impact of the tire vertical load. The Magic Formula is the most widely used semi- 
empirical model. It takes into account the tire load and the combined slip and conforms 
very well to the experimental data. However, it requires a large number of tire-specific 
parameters that are usually difficult to be configured.  The Brush model and Dugoff tire 
model are developed based on simplified physical tire model. They are not as accurate 
as the magic formula, but they have successfully represented the non-linear relationship 
between the tire slip and tire forces, moreover, they have considered the impact of tire 
vertical load on the generation of tire forces. The Brush model is more intuitive, while 
the Dugoff ’s tire model is more suitable for calculation. The transient behavior of the 
tire is presented according to a relaxation tire model. 

In the section of rigid body dynamics, planar rigid dynamics is firstly presented.  In 
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the literature, the vehicle motion is usually simplified as a planar motion, as it could 
captures the major features of vehicle motion. However, the planar rigid dynamics has 
ignored the irregularity of the road. When the road is banked or sloped, the vehicle’s 
lateral motion and longitudinal motion will be influenced by the gravity force. In order 
to consider the road irregularity, we have developed a 3D vehicle dynamics model which 
could describe the 3D motion. 

The tire dynamics models and rigid body dynamics models are the physical expla- 
nation of vehicle’s dynamics behaviors. Comprehension of the two dynamics models is 
fundamental for further development of vehicle model. However, the two models cannot 
represent all details of the vehicle dynamics. For the purpose of simplicity, in the in- 
dustrial application, the description of vehicle dynamics are divided into three aspects: 
longitudinal dynamics, lateral dynamics and vertical dynamics. In fact, the dynamics 
models in the three directions can be regarded  as an equivalent transformation of the 
tire models and rigid body dynamics models. For the study of vertical dynamics, the 
vehicle can be simplified as a rigid car or two rigid body connected by soft suspension. 
For the study of lateral dynamics, we usually employ the bicycle model and double track 
model. 

In the classical vehicle dynamics models, there are two limitations which could greatly 
reduce the accuracy of calculation. 

 

1. the road irregularity is not considered, while in real condition it is quite possible 
to drive on the banked road or sloped road 

 

2. the tire forces are calculated with tire slip (slip ratio or slip angle), while the tire 
slip is a very small quantity and very difficult to be accurately  measured. 

 

To overcome these two limitations, we proposed two original modifications. 
 

1. applying the 3D rigid dynamics in the development of vertical dynamics model, 
longitudinal dynamics model and lateral dynamics model. 

 

2. introducing the concepts of “transfer of lateral force” TF y  and “transfer of longi- 
tudinal force” TF x. We develop the mathematical model of TF y , TF x  based on the 
Brush model. However, in the final formula of calculation, the slip ratio s or slip 
angle α is eliminated. Instead, the tire forces are calculated with accelerations, 
velocities, which are easy to be measured. 

 

In order to clearly present our contributions, in each aspect  of vehicle dynamics, the 
classical model is firstly presented and followed by the modified model. In this way, we 
can make a comparison between the classical model and the modified model. The entire 
chapter lays a solid theoretical foundation for the construction of the observers of vehicle 
dynamics states. The experimental validation of the dynamics models proposed in this 
chapter will be presented in the chapter 4. 
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3  Observer Theory 
 
 
 

3.1  Introduction 
 
Estimation is to extract useful information of a unknown or unmeasured  parameter  θ 
from a collection of observation data y. An accurate estimation is quite challenging due 
to the model imperfection,  sensor inaccuracies, signal distortion, additive noises, unac- 
counted source variability  and multiple interfering signals. Modern estimation theory, 
which help find the best estimation, can be found at the heart of many electronic signal 
processing systems designed to extract information. The target parameter  can be a con- 
stant value or a signal of a dynamic system. Specifically, the estimation of a time-varying 
signal of a dynamics system is referred  as the observer. The behavior of a dynamics sys- 
tem could be characterized  and described by a set of states, the more details you want 
to describe about the system, the more states you have to observe. It is often unrealistic 
to measure all the states of interest, due to the technical and economic reasons. In fact, 
even the measurement of a state is available, the real value of the dynamic state is still 
unknown. That’s because the perfect measurement is unrealistic. All the measurement 
should be considered  as the resultant of real value and the noises. The real values of 
the states are called the internal states of the system, and the available measurement is 
referred  as the external information. The objective of an observer is to extract internal 
information from external measurements. Another feature of observer is that it usually 
deal with real time estimation, therefore the sequential estimation algorithm is required. 
The need of observer can be motivated by various purposes: to monitor the process, to 
evaluate the performance or to control the system. 

The observer technology is widely employed in the development of the advanced driver 
assistant  system. In order to obtain the feedback signals for the control system, the 
detailed information about the vehicle dynamics states should be provided. Some of the 
states (speed, yaw rate, accelerations) are directly measured,  as the related sensors are 
sufficiently accurate and successfully commercialized.   However,  some other states are 
still immeasurable in ordinary passenger cars. Therefore, the construction of observers 
of vehicle dynamics states is of great interest to both the researchers and the automobile 
manufacturer.  The standard approach for development  of a vehicle dynamics state 
observer consists of a two-step procedure: firstly, a vehicle dynamics model is identified 
and successively an observer is designed using observation techniques. The previous 
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chapter provided suitable vehicle/tire models,  in this chapter observation techniques 
will be discussed. 

In general, a dynamic system can be divided into two categories:  linear system and 
nonlinear system. For the linear system, the estimation tools of states have been well 
developed by Luenberger and Kalman. The Kalman filter is widely used in the indus- 
try for the estimation of linear system. However for the nonlinear system, the classic 
Kalman filter is non longer valid because of the difficulties involved in dealing with non- 
linear model. In order to accurate estimation results for nonlinear systems, the extended 
Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), sliding-mode 
filter etc. are developed in the literature. The vehicle dynamics system consists of many 
sub-systems, including both linear and nonlinear systems.  To observe all these vehicle 
dynamics states, both linear observer and non linear observer are of great interest to 
our research.  This chapter is organized  as follows: at the beginning,  we introduce the 
basic estimation methods in the domain of parameter estimation, including the classi- 
cal estimation method and the Bayesian estimation method. Typically, the minimum 
variance unbiased estimator (MVU) and the minimum mean square estimator (MMSE) 
are reviewed and compared.  Then, the Kalman filter and state-space representation is 
presented to provide an effective solution for the estimate of linear system. To extend to 
a larger field, the nonlinear system, the theory of extended Kalman filter is expounded 
with the complete operation steps. Moreover, considering the highly nonlinearity sys- 
tem and non-Gaussian noises perturbed  within the system, the Unscented Kalman filter 
and the particle filter are also presented.  Finally, it is presented the conclusion of the 
observer theory description. 

 
 

3.2  Basic Estimation Methods 
 
Generally, the estimation problem is to find a function of the available data ( a N-point 
data set y), which could provide an estimate of the real value of the parameter θ. 

 

θ̂  = g(y) (3.1) 
 

where θ̂  is the estimated value, g(y) is known as the estimator function. 
It is very easy to find a candidate g(y), but obviously, not all of the candidates can 

provide the best estimation. A natural optimal criterion is to minimize the mean square 
error: 

mse(θ̂)   = E[(θ ­ θ̂)2] 
 

=  var(θ̂) + (E(θ̂) ­ θ)2
 

 
(3.2) 

A candidate of the g(y) can be developed by satisfying E(θ̂) ­ θ = 0 and minimizing 
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the var(θ̂).  This generates the Minimum Variance Unbiased Estimator. 
 
 

3.2.1  Minimum Variance Unbiased (MVU) Estimator 
 

As indicated by its name, the MVU estimator has to satisfy two criterion: to be unbi- 
ased and to have the minimum variance, which could be represented  by the following 
equations: 

E(θ̂) = θ 
 

θ̂M V U  = arg min{E((E(θ̂) ­ θ̂)2)} 

 
 

(3.3) 

 

Let us assume that the probabilistic density function (PDF) of the data is known and 
expressed as p(y; θ). Then according to the Cramer-Rao Lower Bound (CLRB) theorem 
[Cramér, 1947], the MVU estimator can be found by the following equation: 

 

∂ ln p(y; θ) 
∂θ 

= I (θ)(g(y) ­ θ) (3.4) 

 

If the PDF of the data can be transformed  into the above format, the MVU estimator 
is obtained by 

θ̂M V U  = g(y) (3.5) 
 

and the minimum variance is I −1(θ). 
Now consider the situation that the parameter θ is not directly measured but observed 

with a linear observation model, where the observation data follows a standard normal 
distribution, expressed as 

y = H θ + ω (3.6) 

where y is a N × 1 observation data vector, H is a m × N observation matrix, θ is a 

m × 1 vector of parameters to be estimated,  ω is a N × 1 noise vector with N (0, σ2I ). 
Then the MVU estimator of linear system can be obtained  through equation 3.4 and 

the result is expressed as 
θ̂M V U  = (H T H )−1H T y  (3.7) 

 

and the covariance of the estimation is 

P M  = σ2(H T H )−1 (3.8) 

To obtain a MVU estimator for more general cases, we assume the variance of different 
measurement are different. And the covariance of these measurement can be represented 
by Py . Then the general MVU estimator for linear model is 

 

θ̂M V U  = (H T Py 
−1H )−1H T Py 

−1y  (3.9) 
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where the estimation covariance is P M  = (H T Py 
−1H )−1. 

 

Observability  Analysis 
Observability is a measure for how well internal states of a system can be inferred by 
knowledge of its external outputs. The observability and controllability of a system are 
mathematical duals. The concept of observability was introduced by Kalman for linear 
dynamic systems [Kalman et al., 1960]. Here we employ the concept of observability 
to describe whether the measurement y has enough information to calculate the value 
of parameter  θ.  The observability of a MVU estimator is determined by the following 
equation 

kO  = rang(H )  (3.10) 

If kO  = m, the observer is observable. 

 

3.2.2  Minimum Mean Square Estimator (MMSE) 
 

The MVU estimator is based on the classic probabilistic approach, which regards the 
parameter θ  as unknown but deterministic.  Thus the PDF of the measurement  is a 
function of the data but parameterized by a constant θ, noted as p(y; θ). As a contrast 
to the classical approach, the Bayesian philosophy,  treated the θ as a random variable 
with a known prior PDF, p(θ).  Thus the PDF of the measurement is a joint PDF of 
both data y and θ, referred as p(y, θ).  The calculation of minimum mean square in 
Bayesian approach is different with the classic mse and is expressed as 

Bmse(θ̂) = E[(θ ­ θ̂)2] = 
¨ 

(θ ­ θ̂)2p(y, θ)dydθ  (3.11) 

The estimator which minimize the Bmse(θ̂)  is called the Minimum Mean Square 
Estimator (MMSE), noted as θ̂B . The formula of θ̂B  is derived by differentiating Bmse(θ̂) 
with respect to θ̂  and setting it to zero. The general form of the MMSE is expressed as 

 
 

θ̂B  = θp(θ|y)dθ (3.12) 
 

 

where the posterior PDF, p(θ|y) is given by: 
 

p(y, θ) p(y, θ) p(y|θ)p(θ) 
p(θ|y) = = = (3.13) 

p(y)  
´ 

p(y, θ)dθ 
´ 

p(y|θ)p(θ)dθ 
 

Now consider a Bayesian linear model: 
 

 

y = H θ + ω (3.14) 
 

where y is a N × 1 observation data vector, H is a N × m observation matrix, θ is a 
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m × 1 vector of parameters to be estimated  with prior PDF N (µθ , Pθ ), ω is a N × 1 
noise vector with N (0, Pω ). 

The MMSE for the linear system is expressed  as 
 

θ̂B =  µθ  + P θ H T (H P θ H T + P ω )−1(y ­ H µθ ) 

Pθ|y  = P θ ­ P θ H (H P θ H T 

 

)−1 H P T 
(3.15) 

 

Observability  Analysis 
For a MMSE estimator, the final estimation result is also influenced by the prior in- 
formation of the parameter. The parameter can be updated by the measurement, even 
though the measurement  is not complete, rang(H ) < m.  However, to simplify the 
analysis, we suppose all the parameters are independent from each other. Then the co- 
variance matrix P θ is a diagonal matrix. In this case, the estimator is observable when 
rang(H ) = m. 

 
 

3.2.3  Sequential MMSE 
 

In the previous sections, the observation data is usually a stream of data. The estimation 
strategy is to wait for N samples to arrive and then form our estimate  based on these 
samples.  Theoretically, the more samples we take into account, the more accurate the 
estimation is.  However, the delay in waiting for these samples will  be considerable. 
Furthermore, each time the data arrives we have to repeat the calculation of the former 
data. It will lead to a growing burden for calculation and buffer. One solution is to use 
the sequential mode of processing. The estimate at moment t = n, θ[n] is derived from 
the previous estimate θ[n ­ 1] . The Bayesian linear model can be expressed as 

y[n] = H [n]θ[n] + ω[n] (3.16) 

The covariance of θ[n ­ 1] is noted as P θ [n ­ 1]. The covariance of noise ω[n] is P ω [n]. 
As the θ[n ­ 1] is close to θ[n] and we ignore the dynamics behavior of θ, we could 
assume a prior information about θ[n], which is 
 

E(θ[n])  = θ[n ­ 1] 
var(θ[n])   = P θ [n ­ 1] 

 

(3.17) 

 

Then the MMSE of θ[n] could be developed by combining equation 3.15 and 3.17: 
 

θ[n] = θ[n ­ 1] + K[n](y[n] ­ H [n]θ[n ­ 1]) (3.18) 
 
 

K[n] = P θ [n ­ 1]H T [n](H [n]P θ [n ­ 1]H T [n] + P ω [n])−1 (3.19) 
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P θ [n] = (I ­ K[n]H [n])P θ [n ­ 1] (3.20) 

 
Observability 
The observability of sequential MMSE is the same with the MMSE. When all the pa- 
rameters to be estimated are independent  and rang(H ) equals to the number of the 
parameters, the estimator is observable. 

 
 

3.2.4  Estimator for non linear observation model 
 

When the observation model is non-linear,  shown as 
 

 

y[n] = h(θ[n]) + ω[n] (3.21) 
 

 

it is very difficult to get the mathematical formula of MMSE estimator by minimizing 

the Bmse(θ̂) expressed in equation 3.11. In order to simplify the problem, the non-linear 
model is usually approximated by a linear model at point θ = θk 

 

h(θ) c:: h(θk ) + ∂h(θ) 
∂θ  θ=θk 

(θ ­ θk )  (3.22) 

 

Then substituting the equation  3.22 into 3.18-2.21 provides the approximate MMSE 
for non linear model. 

 

θ[n] = θ[n ­ 1] + K[n](y[n] ­ h(θ[n ­ 1]))  (3.23) 

 
 

K[n] = P θ [n ­ 1]H T [n](H [n]P θ [n ­ 1]H T [n] + P ω [n])−1 (3.24) 
 
 
 

 

where H [n] = ∂h(θ) |θ=θ[n 

 

Observability analysis 

 
 
 
−1] 

P θ [n] = (I ­ K[n]H [n])P θ [n ­ 1] (3.25) 

For non-linear observation model, the observation matrix H [n] is not a constant and 
should be calculated at each point x[n]. If we assume the parameters are independent, 
the observability of the estimator can be examined by rang(H [n]). When rang(H [n]) = 
m, the estimator is observable. 
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xk+1 = Axk  + Buk  + q

yk+1 = C xk + r 

 

3.3  Observer of Dynamic System States 
 
In the previous section, we briefly introduced the theory for estimation of constant pa- 
rameters. Here we would like  to introduce the observer techniques for estimation of 
dynamics states. The state of a dynamic system is a set of physical quantities which 
could describe the transient evolution of this system. In a dynamics system, the states 
are varying with time.  The estimation of dynamic states is based on two models: first, a 
model describing the evolution with time (the dynamic model), and second, a model pro- 
jecting measurements into the state space (the observation model). More physical inter- 
pretation of a such representation  has been discussed in detail in [Kalman et al., 1960]. 
The two models are usually expressed in the state space as shown  in equation 3.26. 

( 
ẋ (t)  =  f (x(t), u(t)) 

 

y(t) =  h(x(t)) 
(3.26) 

 
where f (.) is the time evolution model, h(.) is the observation model, x(t) is the 

dynamic states to be estimated,  u(t) is the input of observer. 
 
 

3.3.1  Linear system and linear Kalman Filter 
 

When both the dynamics model and the observation model are linear, the continuous 
time system in 3.32 can be formatted as: 

( 
ẋ (t)  =   Acx(t) + Bcu(t) + q 

 

y(t)  =  Ccx(t) + r 
 

For the discrete time system, the state space can be expanded  as 

(3.27) 

 

 
(3.28) 

 

 

where x ∈ Rm   is the state vector, y ∈ Rn   is the vector of measurement,  u ∈ Rp
 

is the input vector.  A and C are the state evolution matrix and observation matrix 
respectively. q ∈ Rm   and r ∈ Rn   are the noise vector of the evolution model and the 

observation model respectively. Q and R are the covariance matrix corresponding to the 
noise  q and r. 

The observer of linear system is well developed in the literature.  Among all these 
observers, the Kalman filter is widely accepted  as the most effective method to filter a 
linear system. R. E. Kalman first published his famous statistical estimation theory in 
1960. It is described  as a recursive solution to estimate the instantaneous state of the 
process, in a way that the mean squared error could be minimized. The Kalman filter 
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can be viewed  as an extension of the sequential LMMSE, presented in section 3.2.3, to 
the case where  the parameter  θ varies with time.  In the following paragraph, we will 
explain how to obtain the Kalman filter based on the algorithm of sequential MMSE. 

Now, we suppose that our target of estimation is the state at instant t = k + 1, xk+1. 
The prior (predicted) PDF of state xk+1   could be represented by N ~ (µk+1|k , Pk+1|k ), 

where µk+1|k and Pk+1|k   are obtained through the dynamics  model, expressed as 
 

µk+1|k =  Axk  + Buk 

T
 

 

(3.29) 
Pk+1|k  =  APk|k A  + Q 

 

After getting the prior PDF of xk+1,  the sequential MMSE of xk+1   can be obtained 
by substituting equation 3.29 into 3.18-2.20. 

 

xk+1 = Axk  + Buk  + Kk+1(yk+1 ­ C xk )  (3.30) 

 
 

Kk+1 = Pk+1C T (C Pk+1C T + R)−1 (3.31) 
 

 

Pk+1|k+1  = (I ­ Kk+1C )Pk+1  (3.32) 
 

In the literature, the Kalman filter is interpreted as a physical process consisted  of 
model prediction and measurement update. 

 
P rediction f rom models : 

 

 

x̂k+1|k = Ax̂k|k + Buk+1 
T

 
Pk+1|k  = APk|k A + Qk+1  

 
(3.33) 

U pdate f rom measurements : 
 

Kk+1 = Pk+1|k C (C Pk+1|k C + Rk+1|k )− 

xk+1|k+1 = x̂k+1|k + Kk+1(zk+1 ­ C x̂k+1|k ) 
Pk+1|k+1 = (I ­ Kk+1C )Pk+1|k 

 

where x̂k+1|k and Pk+1|k  are the predicted value of state and predicted covariance of state 
based on the data at moment k. 

 

Observability  Analysis 
When all the states are independent from each other, the observability is determined 
by the observation matrix.  If rang(C ) = m, the system is observable. However, in a 
dynamics system, the states are usually highly correlated. Therefore, the observability 
is not only determined by the observation model C but also influenced  by the update 
model A.  The validation of observability of such discrete time system is given in the 
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matrix as follows: � 
C 

� 

� C A  � 

= 
� 

C A2  
�

 � � � � � � 

C Am−1 

 

 
 
 
 

(3.34) 

 

where m is the dimension of the state vector x. 
The system is observable  with  the condition that  the rank of above observability 

matrix is equal to the dimension of the state vector x. 
 

rang(O) = m  (3.35) 
 
 

3.3.2  Non linear system and Extended Kalman Filter 
 

As discussed in section 3.2.4, it is not practical to develop a non-linear MMSE, due to 
the computational difficulty.  A first-order linear approximation is usually employed to 
simplify the problem. The discrete-time state space representation of the system can be 
formed  as ( 

x(k + 1)  =  f (x(k),  u(k)) + q 
 

y(k + 1) = h(x(k + 1)) + r 
 

The linear approximation is given by 

 

(3.36) 

 

x(k + 1) c:: x(k) + 
 

y(k + 1) c:: y(k) + 

∂f (x) 

∂x   
|x=x(k)(x(k + 1) ­ x(k))  (3.37)

 

∂h(x) 

∂x  
|x=x(k)(x(k + 1) ­ x(k))  (3.38)

 

Then the state of non-linear system is observed with the linear Kalman algorithm. The 
combination of the linear approximation and linear Kalman filter is called the Extended 
Kalman Filter.  The overall process of the EKF can be also interpreted as two steps of 
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estimation: prediction with model and update with measurement. 
 

P rediction with models : 
 

 

x̂k+1|k = f (xk|k , uk+1) 
T

 
Pk+1|k  = F Pk|k F + Qk+1  

 
(3.39) 

U pdate with measurements : 
 

 

Kk+1 = Pk+1|k H (H Pk+1|k H + Rk+1|k )− 
 
 
 

 
where 

xk+1|k+1 = x̂k+1|k + Kk+1(zk+1 ­ f (xk|k , uk+1)) 
Pk+1|k+1 = (I ­ Kk+1H )Pk+1|k 

� ∂f1 

∂x1 
∂f1 

∂x2  
· · · ∂f1    

� 
∂xn 

F = ∂f (x) � . . . . . � 
∂x   |x=x(k)  = � . 

∂fn 

. 
∂fn 

. . � 
∂fn 

∂x1 
 

� 
∂h1 

∂x1 

∂x2  
· · · 

 
∂h1 

∂x2  
· · · 

∂xn 
 

∂h1    
� 

∂xn 

 

(3.40) 

H = ∂h(x) � . . . . . � 
∂x   |x=x(k)  = � . 

∂hn 

. 
∂hn 

. . � 
∂hn 

∂x1 ∂x2  
· · · ∂xn 

Although the EKF is widely used to solve the nonlinear dynamic system due to its 
simple conception and fast operation, it is also accused of being unstable when dealing 
with extreme non linear model. The errors of EKF is caused by the linear approximation 
process. More specifically, when we look into the entire process of EKF as shown in equa- 

T
 

tion 3.39, we can find the errors of EKF mainly come from the items like F Pk|k F +Qk+1, 
H Pk+1|k H and Pk+1|k H . These terms are obtained through the linear approximation 
process. To reduce the errors in these terms, the Unscented Kalman Filter and Particle 
Filter are introduced in the next sections. 

 

Observability  Analysis 
The observability of nonlinear systems is also defined to represent  how well the sys- 
tem output could indicate the internal states of the system. However, it is non longer 
possible to construct a constant  observability matrix  for nonlinear system.  Usually, 
the observability of nonlinear system is presented with local observability. The global 
consideration [Hermann and Krener, 1977][Khalil, 2002] is not refereed in this section. 
Local observability can be verified by using the Lie derivative.  The Lie derivative of 
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function h(x), at r + 1 order, is defined as: 
 

Lr+1  ∂  r
 

f (h(x)) = 
∂x 

[Lf (h(x))] · f (x) 
 

f (h(x)) = h(x) 

 
(3.41) 

 
 

It is noted that ḣ 
∂h ∂x  ∂h 

= = f = L1 (h(x)).  The observability matrix is given as: 
∂x ∂t ∂x  f

 

� 

 

 

dh(x)  
�

 
� 
� 

O = � 
dL1 (h(x))  � 

dL2 (h(x))  
�

 
 
 

(3.42) � f � � � � � 

f (h(x)) 
 

where the operator d means: 
 
 

dh(x) = 

 

 

( 
∂h(x) 

, 
∂x1 

 

 
 

∂h(x) 
∂x2 

 

 
 

, · · · , 

 

 

∂h(x)  
\ 

, 
∂xn 

 
 

 
(3.43) 

 

The system is observable with the condition that the rank of matrix O is equal to the 
dimension of state vector x. 

rang(O) = m  (3.44) 

It is noted that the h(x) can be a vector, when there is multi measures [h1, h2, · · · , hp]T . 
 
 

3.3.3  Unscented Kalman Filter 
 

Both the EKF and UKF are MMSE estimators. The general form of a MMSE-based 
observer could be represented by the following function: 

 

x̂k+1|k+1 = E(   f (xk , uk+1)) + Pxy, k+1|k P −  
k

 

yy, k+1[y ­ E(h(x ))]  

(3.45) 
Pxx, k+1|k+1 =  Pxx, k+1|k ­ Pxy, k+1|k P −

 
 

 
 

where the operator E(.) means the expected value. 

yy, k+1Pxy, k+1|k 

The development of a MMSE-based  observer is equivalent to find a method to cal- 
culate the E(f (xk , uk+1)),  E(h(xk )), Pxx, k+1|k , Pyy,k+1   and Pxy, k+1|k .  For the sake of 
abbreviation, they are noted as µprior , µy , Pprior , Pyy  and Pxy  respectively. 

To deal with the non-linear estimation problem, the EKF employs the linear approx- 
imation method, which would introduce errors to the estimation.  Different  with the 
EKF, the UKF employs the sampling techniques to approximate the covariance. The 
detailed derivation of UKF is already given in [Haykin et al., 2001]. Here we directly 
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present the principle steps to calculate the needed variables (µprior , µy , Pprior , Pyy  and 
Pxy  ). 

 

1. Creation of sigma points.   Generally speaking, the UKF is to use the weighted 
sample mean and covariance to approximate the needed variables. Therefore the 
first step is to create sample points. Given the estimation result of state and its 
variance at instant t = k, x̂k|k andPxx,k|k , we can represent the PDF of xk  with a 
number of 2Nλ + 1 points ,χ ∈ R1×2Nλ +1.  These sample points are expressed by 

� 
�x̂k|k i = 0 

χi  = 
�

x̂ 
� 

 
k|k 

 

+ (  (Nλ 

 

+ κ)Pxx [k|k])i i = 1 · · · Nλ (3.46) 
�x̂k|k  ­ (  (Nλ  + κ)Pxx[k|k])i−Nλ 

i = Nλ  + 1 · · · 2Nλ 

 
The (Nλ  + κ)P1)i  means the ith column of the square root matrix. κ and ε are 
constant parameters, more details can be found in [Haykin et al., 2001]. When we 
compute the mean value of sample points, the weight of each sample is obtained 
by equation 3.47. When we compute the covariance of sample points, the weight 
is obtained by equation 3.48. 

� 
    κ  

 
�� Nλ +κ i = 0 

W m [i] = 
� 

 
 
 
(3.47) 

� 
2(Nλ +κ) i = 1 · · · 2Nλ 

� 
    κ  

 
�� Nλ +κ + ε i = 0 

W c [i] = 
� 

 
 
 
(3.48) 

� 
2(Nλ +κ) i = 1 · · · 2Nλ 

 

2. Calculate the prior PDF of state xk+1, which is to find the mean value µprior  and 
variance Pprior   of xk+1. 

 

µprior =  
)

 

 
2Nλ

 

2Nλ 
 

0 
W m [i]f (χi , uk+1 ) 

2:
 

 
 
(3.49) 

Pprior = 
)

 
0 

W c [i](f (χi , uk+1 ) ­ µprior )(f (χi , uk+1 ) ­ µprior )T  + Q 
 

where Q is the additive noise of the dynamic model. 
 

3. Calculate the prior PDF of the external measurement yk+1, which is to find µy , 
Pyy . And then calculate the cross correlation matrix Pxy 

 

µy  = 
)

 

 
2Nλ

 

2Nλ 
 

0 

 

W m [i]h(χ[i]) 
 
 
 
(3.50) 

Pyy = 
)

 
0 

W c [i](h(χ[i], uk+1 ) ­ µy )(h(χ[i], uk+1 ) ­ µy , )T  + R 

Pxy  = 
)

 
2Nλ 
 

0 
W c [i](f (χ[i], uk+1 ) ­ µprior )(h(χ[i], uk+1 ) ­ µy , )T  + R 



72

3 Observer Theory 

 

yy

s

 
 

where R is the additive noise of the measurement. 
 

4. Calculate the posterior PDF of xk+1after the measurement update. 
 

x[k + 1] =   µprior + Pxy P −1 (y ­ µy ) 
 

Pxx [k + 1|k + 1]   = Pprior  ­ Pxy P −1 P T 

 
 
 
 
 
 
(3.51) 

yy xy 

 

3.3.4  The Particle Filter Algorithm 
 

We remind that the Bayesian estimation of a parameter θ is previously presented by 
equation  3.12 as 

θ̂B  = θp(θ|y)dθ 
 

where p(θ|y) is the posterior PDF of θ after the measurement. 
Here in the context of sequential estimation of a dynamic state, the Bayesian estima- 

tion of state xk+1   is given by 
  ˆ 

x̂k+1 = xk+1p(xk+1|y0:k+1)dxk+1 (3.52) 
 

where y0:k+1  means all the measurements from the initial instant to the current instant 
t = k + 1. 

According to the Monte Carlo method, the integral calculation can be approximated 
by a series of sample points χ0:N . 

 
� 

1 )N  

χi (a)
 

E(θ) = 
ˆ 

θq (θ)dθ c:: 
� 

N 
 

i=1 
 

(3.53) 
�2: χiqs(χi) (b) 

 
When the sample points are strictly taken over the designed probabilistic distribution 

qs(θ), the expectation is obtained through equation 3.53(a) .  Alternatively, when the 
analytical expression of qs(θ)  is not available, or it is hard to sample over qs(θ),  the 
expectation can be obtained with equation 3.53(b). The qs(χi)  physically means the 
weight of this sample. 

The particle filtering is based on the sampling theory and Monte Carlo method, where 
the system model can be extremely non-linear while without the need of linear approxi- 
mation and the noises are not limited to the Gaussian  processes noises. There  are many 
tutorials for the methods of the Particle filter in [Beadle and Djuric, 1997] [Candy, 2007]. 
The overall goal of Particle Filter  is to directly implement  the Bayesian estimation, 
by recursively approximating the complete posterior PDF p(xk+1|y0:k+1) with sampling 
points. In the particle filtering process, the system dynamic model is viewed as a Hidden 
Markov Model (HMM), as illustrated in Figure 3.1. The p(x0) is the initial probability 
of a state, p(xk+1|k ) is the likelihood of current state given the previous state. The PDF 
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Figure 3.1: Hidden Markov-chain Model 
 
 
of the measurement is expressed by p(yk+1|xk+1).  For a modeled dynamic system, the 
three PDF p(x[0]), p(xk+1|k ), p(yk+1|xk+1) are regarded  as known. Generally, according 
to the Particle Filter theory, the posterior PDF p(xk+1|y0:k+1) is obtained by two steps, 

just like the operation of Kalman Filter.  The two steps work in a recursive framework: 
Step 1: the prediction of the posterior PDF, p(xk+1|y0:k ), based on the former mea- 

surements; ˆ 
p(xk+1|y0:k ) = p(xk+1|xk )p(xk |y0:k )dxk  (3.54) 

 

Step 2: the correction of the prediction, p(xk+1|y0:k+1), with the new measurements; 

p(yk+1|xk+1)p(xk+1|y0:k ) p(xk+1|y0:k+1) =  

p(y 
 
k+1 |y0:k 

(3.55) 
) 

 

where ˆ 
p(yk+1|y0:k ) = 

 

p(yk+1|xk+1)p(xk+1|y0:k )dxk+1  (3.56) 
 

Due to the integral operation involved in the algorithm, it is quite difficult to obtain an 
analytical solution in the prediction and correction step. Hence the Monte Carlo method 
is introduced to numerically approximate the posterior PDF p(xk+1|y0:k+1) with a set of 
sample points (particles). The tricky problem here is how to sample these particles. In 
the literature [Haykin et al., 2001], the Sequential Importance Sampling (SIS) algorithm 
and the resampling algorithm are employed to facilitate the process of sampling. 

 

 

3.3.4.1  Sequential Importance Sampling: 

Suppose a number of N  sample points, χk+1  ∈ R1×N , are taken over a known PDF, 

also called the proposal distribution,  qsis(xk+1).   The estimation of xk+1   expressed in 
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χi

χi

k+1 k+1

(χ )

k+1

N

 
 

equation 3.52 can be transformed  into the following equation 
 

p(xk+1|y0:k+1) 
x̂k+1 =  

´ 
xk+1 

 

qsis 

 

(xk+1 
qsis(xk+1) dxk+1  (3.57) 

) 
 

Then substituting equation 3.53-3.56 into 3.57 generates the estimation of xk+1  through 
SIS algorithm: 

) 
k+1wk+1[i] 

x̂k+1 c::   i=1   (3.58) )N 
 

i=1 
wk+1 [i] 

where the variable wk+1[i] is known as the unormalized importance weights of particle 

k+1.  The detailed definition of wk+1[i] can be found in [Haykin et al., 2001], here we 
directly give its recursive form of definition : 

 

p(yk+1|χi )p(χi |xk ) 
wk+1[i]   =  wk [i]  

qsis 

 
i 
k+1 

 
(3.59) 

 

w0[i] = w0 

 

In our research, the initial particles are simply obtained through a uniform distribu- 
1 

tion, thus w0[i] = 
N 

. The proposal distribution qsis(xk+1) is set as equal to p(xk+1|xk ). 
As a result, the sampling process can be greatly simplified as 

 

wk+1[i]   =  wk [i]p(yk+1|χi ) 
 

 
(3.60) 

1 
w0[i] =  

N 
 

The sequential importance sampling algorithm has a serious limitation:  the variance 
of the importance weights increases stochastically over time.   Typically,  after a few 
iterations, one of the normalized importance weights tends to unity, while the remaining 
weights tend to zero. A large number of samples are thus effectively removed from the 
sample set because their importance  weights become numerically insignificant. To avoid 
this degeneracy, a resampling  process is used to eliminate samples with low importance 
weights and multiply samples with high importance weights. 

 

 

3.3.4.2  Resampling 
 

In the literature, several algorithms are proposed to correctly select the good samples, 
including sampling-importance resampling, residual resampling algorithm and the strati- 
fied resampling algorithm [Haykin et al., 2001]. These algorithms  can make each particle 
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Figure 3.2: Illustration of Sampling Importance Resampling algorithm 
 
 

has a equal importance weight. 
 

Sampling Importance Resampling 

Generally, the SIR process is to generate Ni copies of each sample χi
 

 
 
 

, while 
)

 

 

 
 
 
N 
 

i=1 

 
 
 
 
Ni  = 

N . The new set of samples is the assemble of all these copies. The role of the resampling 
algorithm is to decide the  value of Ni. This can be accomplished  by generating N 
independent random variables {ui; i = 1, · · · N } according  to the uniform distribution 
on interval (0, 1] and for each ui, one sample χj  will be selected according  to the inverse 

of the cumulative probability distribution.  For ui  ∈ (
)

 
i=j−1 
 

i=1 
wk+1[i], 

)
 
i=j 
 

i=1 
wk+1[i] ), 

the corresponding sample χj will be selected,  as illustrated in the Figure 3.2. After 
the SIR process, the original samples {χi

 

1 
, wk+1[i]; i = 1, · · · N } is mapped into a set 

of uniformly distributed samples{χi , N 
; i = 1, · · · N }.  When the number of samples 

is very big, the computational cost of the SIR algorithm is significant. In order to make 
the resampling  process more efficient, the residual resampling and stratified resampling 
algorithms are proposed. 

 

Residual resampling algorithm 
In the residual resampling algorithm, the value of Ni  is decided with a two-step process: 
Ni  = N A + N B  . i i 

 

❼  In  the first  step, the number of copies  are deterministicly obtained using the 
[ 

floor function, N A = lN wk+1[i]j. Then there still  remains Nres    = N ­ i= 
1]N 

2: lN wk+1[i]j particles to be sampled. 

❼  In the second step, the remaining samples are taken through the SIR method. The 
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Figure 3.3: Illustration of Stratified Resampling algorithm 
 
 

new importance weight after the first step is noted as wres  [i] and obtained by 
 

N wk+1[i] ­ N wk+1[i] 

k+1[i] =  

Nres 
(3.61) 

 

This procedure is computationally cheaper than the pure SIR. 
 
 

Stratified resampling algorithm 
The stratified resampling algorithm is firstly proposed in [Kitagawa, 1996], and thus it 
is also called the Kitagawa resampling algorithm. 

Different with the SIR method, the stratified resampling is to partition the interval 
(0, 1] into N  disjoint sets, (0, 1] = (0, 1/n] ∪ (1/n, 2/n] ∪ · · · ∪ (n ­ 1, n].  The ui  are 
drawn independently in each of these sub-intervals. It has cheaper computational cost 
as every time it take sample over a small interval instead of the whole interval (0, 1]. 
Furthermore, it has improved the sample variety. 

 
 

3.4  Conclusion 
 
This chapter provides a brief summary of the linear/nonlinear observation techniques. 
Firstly,  the estimation problem of a constant  parameter is discussed. The minimum 
variance unbiased estimator and the minimum mean square error estimator are reviewed 
and compared. The MVU is based on the assumption that the parameter to be estimated 
is a deterministic constant value and we do not know any information about it until the 
measurement arrives. While the MMSE estimator is based on the Bayesian philosophy, 
which considers the parameter  as a random variable with a prior distribution. The role of 
estimation is to update the distribution of the random variable after the measurement. 
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Then the estimation techniques for a dynamics system, the observers,  are reviewed. 
All the observers introduced in this section are based on the Bayesian philosophy. For 
the estimation of linear dynamics system, the classic Kalman filter is widely employed. 
Different with the classic explanation in the literature, we interpret the Kalman filter 
as a recursive LMMSE estimator. Furthermore, we also introduced the the observation 
techniques for nonlinear dynamics systems. The Extended Kalman filter employs the 
first order linear approximation method to simplify the problem. The drawback of the 
extended Kalman filter is that it introduces additional errors to the estimation due to 
the linear approximation. In order to overcome the shortcoming of EKF, the Unscented 
Kalman filter and Particle filter are introduced. The unscented Kalman filter is another 
extension of Kalman Filter.   It also assumes  that  the model errors follow a normal 
distribution, however it uses sampling  techniques  to approximate the covariance instead 
of the “first-order”  linearization.  Therefore, the Unscented Kalman filter is suitable 
for highly nonlinear systems. To further extend the observer  for a larger field, the 
particle filter is presented for highly nonlinear system with non-Gaussian noise. The PF 
directly approximates the posterior distribution of the estimates with the sample points 
(particles).  We  have briefly deduced the PF based on the  Monte-Carlo method and 
the MMSE theory. The performance of PF is greatly influenced by sampling process. 
The classic sequential  importance sampling may lead to the degeneracy problem. To 
overcome this shortcoming, different resampling techniques are introduced, such as the 
sampling-importance resampling, the residual resampling and the stratified resampling. 
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4  Observers For Estimation Of Tire 
Forces And Sideslip Angle 

 
 
 

4.1  Introduction 
 
Tires are the only vehicle components which could generate external forces to control 
vehicle motion.  The engines, brakes, steering systems are supposed to always be able 
to control the tire forces. Unfortunately, when the tire is undergoing  excessive slip, the 
driving operation (steering or braking) will not reach its intended target. This possibly 
results in the over-steering or under-steering situation, which is very dangerous for the 
vehicle. In such an emergent situation, the drivers usually are not able to make a good 
decision and control the vehicle back to the safe state. Many advanced driver assistance 
systems (ADAS) have been developed to ensure the vehicle stay in control in dangerous 
situation, such as the anti-lock  braking system (ABS) and electric stability  program 
(ESP). These safety systems are activated only when the dangerous tire slip has already 
happened. It is more interesting for us to detect the potential excessive tire slip and 
avoid the accidents from happening. Monitoring tire forces could help the drivers or 
the intelligent system to evaluate the safety of tires. Therefore,  awareness of tire forces 
becomes  very important  for the further development  of active  safety system.   These 
dynamics states could be obtained by two methods: measurement and observers. 

 

Direct measurement method 
Many high tech sensors have been developed to directly measure the dynamics states of 
the vehicle. The task of measuring sideslip angle is very challenging due to the difficulty 
of measuring vehicle speed in the absolute coordinate system. However, through the 
use of the high-tech optical sensor or the high-performance multiple-antenna Global Po- 
sitioning System (GPS) [Ryu et al., 2002] [Chen and Hsieh, 2008][Klomp et al., 2014], 
the vehicle’s over-ground  speed can be measured directly. Meanwhile, the shortcomings 
of direct measurement method is also very obvious. Firstly, this sort of sensor is too ex- 
pensive for ordinary car. The wheel transducers that measures the 6-components (three 
forces and three torques in the longitudinal, lateral and vertical direction) of road-tire 
contact force system, is about 100,000 euros. Secondly, limited by the physical mecha- 
nism of the sensor, they are sensitive to the variation of the environment and can only 
work in some particular condition. 
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State observer based method 
The state observer, also called as virtual sensor, is able to estimate the non-measured 
dynamics states based on the available measurement. The observer technique  can be 
further classified into two categories:  the liner observer and non-linear observer. The 
linear observer deals with the linear model, such as the Luenberger Observers, Recursive 
least squares algorithms  and the Kalman filters [Nam et al., 2013]. In order to deal with 
the non-linear vehicle dynamics models, many non-linear  observers are also developed in 
the literature. The extended Kalman filter is employed to estimate the sideslip angle at 
low friction road [Li et al., 2014a]. A fuzzy observer that utilizes fuzzy model with T–S 
fuzzy rules to represent the nonlinear vehicle model was proposed  to estimate vehicle 
slip angle [Dahmani et al., 2013]. The sliding mode observer is employed to estimate 
the tire forces in [Baffet, 2007]. The unscented Kalman filter is employed to estimate 
the tire forces and side slip angle in [Doumiati, 2009]. 

Generally, the existent observers for estimation of vehicle dynamics can be improved 
in two aspects: 

1. further development  of vehicle models, which accurately describe  all dynamics 
behaviors of interest while as simple  as possible. 

 

2. creative construction of observers, which reduce the model errors and sensor errors 
to the maximum extent. 

In this thesis, we propose contributions in both of the two aspects. In the aspect of 
vehicle modeling,  we propose several new vehicle dynamics models as introduced in the 
Chapter 2. We consider the vehicle motion as a three-dimensional motion rather than 
a planar motion. The pitch-roll motion of suspension is taken into account to calculate 
the vehicle load transfer. As a result, the vehicle model would be accurate  even when 
the vehicle is driving on the inclined road (road with bank angle or slope angle). In 
addition, we have also propose the models to calculate the transfer of lateral forces TF y 

and transfer of longitudinal forces TF x. The biggest advantage of our proposed model is 

to enable the estimation of tire frictional forces without the tire slip (tire sideslip angle 
or tire slip ratio).  Besides the proposed models, we also developed an robust observer 
to combine all existent models. The estimation of vehicle dynamics states is obtained 
through the fusion of multiple models and multiple sensors, which makes the observer 
robust in different driving condition. Our observer is developed according to the Kalman 
filter algorithm (including linear KF, Extend KF and Unscented KF). In order to further 
adapt to the non-linear system, we also develop an observers based on the Particle filter. 

In general, the contribution of the work in this chapter is to develop a robust observer 
for estimation of tire forces and sideslip angle. The estimation of tire forces is already 
widely discussed in the literature [Wang, 2013]. However,  we consider the problem in 
the following view points, which make the estimation more challenging and also more 
realistic. 
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1. considering the highly non-linear tire model; 
 

2. estimating the vertical , longitudinal and lateral forces of each tire; 
 

3. considering the road inclination; 
 

4. using only low-cost sensors; 

5. implementing the observers in the experimental vehicle for real-time estimation. 

This chapter is organized  as follows. Section 4.2 presents the implementation of embed- 
ded system on the experimental vehicle. Section 4.3 demonstrates experimental data to 
validate the proposed models. Section 4.4 introduces the observer design. Then, the 
performance of the new observers are evaluated by several critical tests. The analysis 
of experimental results are presented in Section 4.5. Finally, concluding remarks and 
future perspectives are given in Section 4.6. 

 
 

4.2  Implementation of Embedded System 
 
In this section, we will mainly present implementation of the experimental vehicle in our 
laboratory, including the embedded sensors and the software modules [Dherbomez et al., 2013a]. 
Our experimental vehicle DYNA is instrumented by the laboratory HEUDIASYC UMR 
7253 CNRS at Compiègne, France,  as shown in Figure 4.1. 
 

 
 

Figure 4.1: Heudiasyc laboratory experimental vehicle: DYNA 
 

 
4.2.1  Embedded sensors 

 

Plenty of sensors are equipped in our vehicle. They could be generally  classified as two 
categories, sensors used for validation and sensors used for input of the estimator. 

 

Sensors used for validation: 
❼  Kistler RoaDyn  S625 wheel force transducers:  It’s able to measure all the tire-road 

contact forces and wheel torques in three dimensions. Four wheel force sensors are 
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) 

 
 

fixed at each wheel.  These sensors are very expensive for ordinary cars. It is noted 
that they are used only for reference.(see Figure 4.2.a) 

❼  CORREVIT S-400: Non-Contact  Optical Sensor for measurement of lateral speed 

and sideslip angle. The sensor is installed at place of the spare wheel under the 
car.(see Figure 3.5.b) 

❼  A scenario record camera is used to register the vehicle trajectory. 
 

 

a b)  
Figure 4.2: a) Kistler wheel force transducers at front left wheel; b) The Correvit in- 

stalled at place of the spare wheel 
 

 
Sensors used for input measures: 

❼  CROSSBOW VG700AB: It combines MEMSIC’s high performance fiber optic gy- 
ros with silicon micro-machined (MEMS) accelerometer technology. It could pro- 
vide a highly accurate measurement of Vertical Gyro (VG) and Inertial parameters. 
(see Figure 4.3.a) 

 
 

a) b)  
 

Figure 4.3: a) MEMS sensor for inertial parameters and gyroscope; b) Laser sensor for 
chassis height measurement 

 

❼  CORRSYS-DATRON HT500:  it is a non contact distance sensor. It provides 

measurement  of the deflection between  chassis  and ground.  They are installed 
respectively at four corners of vehicle body. (see Figure 4.3.b) 
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❼  Available data on CAN bus: wheel rotation velocity, engine speed, yaw rate, brake 
pressure, lateral acceleration from the ESP, steering wheel angle. 

❼  GPS receiver operating in RTK mode locates the vehicle with centimetric accuracy. 

❼  Mobileye  system: it is able to provide a list of detected obstacles (pedestrians, 

vehicles, ...) and the position of the vehicle relative to the ground side markings 
on the vehicle CAN bus in real-time. 

❼  Ibeo Standard (8L) Eight Layer/Multi-Echo LUX Sensor (Ibeo LUX 8L): the sen- 

sor is installed at front bumper to track the object on top 4 layers and raw data 
ground scanning/ profiling (see Figure 4.4.a). 

 
These devices are located in the trunk of the car with the electric circuit system  as 
shown in Figure 4.4.b. The monitoring equipment is located on the back left seat. The 
operator can manipulate the configuration of the system with a monitor and keyboard. 
 

a) b)  
 

Figure 4.4: a) Laser sensor installed  at front bumper; b) Embedded electronics and com- 
puter in the trunk 

 
 

Sensor data should be sent to a computer which has installed the estimation algorithm. 
However, some of these sensors cannot  be directly connected to the computer. Therefore 
we developed an acquisition  system based on the UEI PowerDNA Ethernet DAQ Cube 
to fulfill the task. It is capable of acquiring 48 analog channels using a 24-bit converter. 
It consists of a computer UEI powered by a 200 MHz PowerPC processor running a real- 
time operating system Xenomai. The Xenomai is a real-time development framework 
cooperating with the Linux kernel. The software provides data acquisition by using the 
analog cards AI-217, shown in Figure 4.5. Digital filters with different cut-off frequency 
are installed in the cube to cut off high frequency noise. The acquisition frequency of 
the cube is 4 kHz, while the data is sent back in 200 Hz. 
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Figure  4.5: The  structure of the  acquisition system 

 

 
 

4.2.2  Software Modules 
 

This  car  is equipped   with  an  industrial PC  in  the  trunk.   A  particular  prototyping 

environment, PACPUS1(Perception  et  Assistance  pour  une Conduite Plus  Sûre),  is de- 
veloped  in C/C++ for the  real time  estimation system.   The  framework  of PACPUS  is 

illustrated in  Figure  4.6.  Following  the  principle  of component-oriented design,  PAC- 
 

 
,    <<use>>  ·--i 

 
 
 
 
 

XmlComponentConfig 

 
 
 
 

1 
1 
1 
1 

ComponentFactoryBase 
 

 
 

1 
•---------·<<dec lare>>    ·---------)>  ComponentFactory 

 

 
Figure  4.6: Software  architecture of PACPUS 

 
 

PUS  provides  users  more  versatility in  their  developments.   Different  components of 
PACPUS  are developed  in our  work to fulfill different  tasks.   For instance, we develop 
the  component "CubeClient" for the  task  of communication between  the  cube  and  the 
PC.  The  component is devoted  to  the  task  of sending  the  request,  receiving  the  UDP 
packet  and  then  decoding  the  UDP  packet.  Then  the  data  is sent  to the  component of 
vehicle dynamics estimation.   Similarly,  the  components for  management of the  other 

 

1The   framework  PACPUS  is   an   open   source   with    free   license   CeCILL-C.  It   is  available at 
https:// devel.hds.utc.fr /softwarejpacpus/wiki 
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sensors are also constructed  in our work. The estimation algorithm is developed in the 
.DLL form as a real-time application.  The framework PACPUS employs the Qt API 
for graphical interfaces and can be integrated with other development environment for 
multi-sensor fusion. The schema of PACPUS is shown in Figure 4.7. 
 

 
 

Figure 4.7: Software architecture of acquisition system and estimation system 
 

 
 

4.3  Open-loop Estimation Of Vehicle Dynamics States 
 
The model quality can greatly influence the performance of the observers.  In this sec- 
tion, we will present the experimental data to validate the dynamics models introduced 
in Chapter 2. In order to better demonstrate the quality of each model, the estimation 
results illustrated in this section are obtained by the open-loop method without  any 
filtering techniques or observer techniques. Therefore, the accuracy of the estimation 
result is completely dependent on the model quality and the sensor quality. The experi- 
mental vehicle is equipped with the inertial sensors, wheel speed sensors, which provide 
the input data for the estimation. Meanwhile, the wheel force transducers and optic 
sensor are employed to directly measure the tire forces and sideslip angle and only used 
as the ground truth to evaluate the open-loop estimation. 

A slalom test is performed to analyze the property of the different vehicle dynamics 
models. The maneuver time history of the slalom test is given in Figure 4.8. The vehicle 
is firstly accelerating to the speed of 70km/h, then following with a slalom maneuver 
with the lateral acceleration­10m/s2  < ay < 10m/s2  at constant speed 70km/s. This 
slalom test with high value of lateral acceleration is able to create obvious lateral load 
transfer, which will lead to great variation on vehicle’s dynamics states. Note that the 
experimental data in section 4.3.1-4.3.3 are the same set of data taken from this test. 
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Figure  4.8: Maneuver  time  history  of the slalom  test 
 

 
 

4.3.1 Vertical tire  force open-loop estimation 
 

The  models for estimation of vertical  forces can  be summarized with  table  4.1. 
 
 

Table 4.1: Summary of vehicle vertical  dynamics  models 

Model  symbol 1 Model  name 1 equation 
 

 

 
Fz ,modell 

 
Rigid  car  model 

More details in equation 2.58 
Mx =   mayhjE 

My  =  maxh/L 

 
Fz ,model2 

 

Quarter suspension model 
More details in equation 2.60 

Fzij  = d,./rij    + kuCTij 
 

 
Fz,model3 

 
Pitch-roll model 

More details in equation 2.67 

Mx, sus  =  C<py)b + K .p'Pb 
My,sus  =  Ceéb + KeBb 

 
Fz,model4 

 

Proposed  model 
More details in equation 2.69 

Fz,model4 = (1- Ç)Fz,modell + /;Fz,model3 
 

 

As introduced in the  Section  2.4.1, the  key to  estimate the  vertical  force at  each tire 
is  to  find  an  accurate   model  for  computing the  transfer   of vertical   load.   Figure  4.9 

illustr ates the  open-loop  estimat ion  of the  later al load  transfer  Tp z ,lat   = Fz11 - Fz12 + 
Fz21 -Fz22 . The red lines are the measureme nt of the force transducers on-boarded on the 

experimental vehicle DYNA.  Generally,  all the four  models  in Table  4.1 provided  good 
estimation of the  lateral  load transfer. By comparing the estimation of different  models, 

we can find the  rigid car model was less accurate at the  peak points,  while the  proposed 
new model  (dotted dark  lines in figure 4.9) cou ld tightly  follow the  measurements. The 
limitation of the  proposed  model  is the  need of measurement of suspension  defl.ection. 
In our experimental vehicle, laser senso rs have measured  the distances between the  r oad 
surface  and the  vehicle body.  When  the  road is well paved, the variation of this distance 
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can  be approximated as the  defiection  of suspension.  However, in the experiment, the 
road  was not  always  perfectly  even,  and  it  caused  the  bias at  t = 36s  (see figure 4.10 

left side).   The  open-loop  estimation of the  longitudinal load transfer TF z ,lcm = Fzn  + 
Fz 12 - Fz21  - Fz22  is illustrated in Figure  4.10.  The experiment data has validated  the 

proposed  model  for estimation of transfer  of vertical  load.   Then  the  vertical  force  at 

each tire  was obtained by employing  the  proposed  models,  as illustrated in Figure 4.11. 
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Figure  4.9: Open-loop estimation of lateralload transfer  TFz,lat = Fzn- Fz12+Fz21-Fz22 
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Figure  4.10: Ope n-loop estimation of longitudinal  load tra nsfer TF z,lon  = Fzn  + Fz12  - 

Fz21 - Fz22 
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Figure 4.11: Open-loo p estimation of vertical  force at  each tire 

 

 
 

4.3.2   lateral  tire  force open-loop estimation 
 

The  models  used  for estimating vehicle  lateral  dynamics  are summarized in the  Table 
4.2.   None of the  existent models  co uld  provide  an  accur ate ope n-loop  estimation of 
later al force at each tire,  when the sideslip angle is not avail able.  The  bicycle model and 
the double  tr ack model a re only able to compute  the  tire forces at each axle  but  not  at 
each t ire. Fig ure 4.12 illustr ates the o pen-loop estimation of later al fo rces at f ro nt axles 
and  rear  axles.   The  experiment data validated  t hat  the  bicycle  mode l can  effectively 
estimate t he res ulta nt lateral for ce at each axle.  In our experimental vehicle, the  ine rtial 
sensors are installed  at the  rear axle.  In order to obtain  the  acceleratio n at  COG ayco g , 

the following tra nsformation should  be performed , 
 

aycog  = ayinetial + L21/J (4.1) 
 

where a yinetial  is  the  measured  acceleration by the  inst alled accelerometer . 
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Table 4.2: Summary of vehicle lateral dynamics models 
 

Model symbol Model name equation 
 

Fy,model1 

 

Tire model 
More details in section 2.2 

Fwy  = Cα α 
 
 
 

Fy,model2 

 
 
 

Bicycle Model 

More details in equation 2.78 
1 

v̇x  =  (Fxf cos(δ) ­ Fyf  sin(δ) + Fxr ) m 
1 

v̇y = 
m

((Fxf  sin(δ) + Fyf  cos(δ) + Fyr ) ­ ψ̇ vx 

ψ̈ =  1  [L1 (Fyf  cos(δ) + Fxf  sin(δ)) ­ L2 Fyr ] Iz
 

 
Fy,model3 

 

 
Double track model 

More details in equation 2.82 
Fyf  sin(δ) = Fy11 sin(δ11 ) + Fy12 sin(δ12 ) 
Fyf  cos(δ) = Fy11 cos(δ11 ) + Fy12 cos(δ12 ) 

Fyr  = Fy21 + Fy22 

 
Fy,model4 

 
The proposed model

More details in equation 2.86 
Fy11 ­ Fy12  = TF z,f  Fyf  + a1 δFzf  + a2 ψ̈vx 

Fzf 

Fy21 ­ Fy22  = TF z,r Fyr  + a3 ψ̈vx 
Fzr

 
 

4 
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Figure 4.12: Open-loop estimation of resultant lateral force at front axle Fy,f  = Fy11 + 

Fy12 and at rear axle Fy,r = Fy21 + Fy22 
 
 

After getting the lateral forces at each axle, the challenging problem is to calculate the 
difference between the left wheel and right wheel, which is called the transfer of lateral 
force in this thesis. In the literature [Doumiati, 2009], the authors propose to firstly 
calculate the slip angle at each wheel and then employ the tire model to calculate the 
tire forces. The shortcoming of this approach is that the estimation process is complicate 
and it needs an observer to provide the value of slip angle. In this thesis, we propose a 
new model to directly calculate the transfer of lateral force. Figure 4.13 illustrates the 
open-loop estimation results of the transfer of lateral force at front axle and at rear axle. 
Experimental  results have validated that the proposed model could be used to compute 
the value of Fy11 ­ Fy12 and Fy21 ­ Fy22. 

Then the lateral force at each tire can be obtained by combining the results in Figure 
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Figure 4.13: Open-loop estimation of transfer of lateral force at front axle TF y,f = Fy11 ­ 

Fy12 and at rear axle TF y,r = Fy21 ­ Fy22 
 
 

4.12 and 4.13. To make a comparison with the proposed model, the lateral forces at 
each wheel is also calculated with the bicycle model by supposing that Fy11  = Fy12, 
Fy21  = Fy22.  Figure 4.14 illustrates the open-loop estimation result of lateral force at 
each tire.  The red lines are the measurement data of force transducer. The blue lines 
are the open-loop estimation result based on the proposed model. The green lines are 
results based on the assumption Fy11  = Fy12, Fy21  = Fy22.  The proposed models of 
transfer of lateral force make it possible to estimate the tire lateral force without the 
information of the sideslip angle. 
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Figure 4.14: Open-loop estimation of lateral force at each tire 
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Table 4.3: Summary of vehicle longitudinal dynamics models 
 

Model symbol Model name equation 

Fx,model1 Tire model More details in section 2.2 
Fwy  = Cs s 

 

 

Fx,model2 

 

 

Bicycle Model 

More details in equation 2.78 
v̇x = 1 (Fxf cos(δ) ­ Fyf  sin(δ) + Fxr ) m 
v̇y  = 1 (Fxf sin(δ) + Fyf  cos(δ) + Fyr ) ­ ψ̇ vx 

m 
¨    ψ = 1  [ (F  cos(δ) + F  sin(δ)) ­ L  F   ] Iz 

L1  yf xf 2   yr

Fx,model3 Engine torque model
More details in equation 2.97 

Tij −Tb −Mresis −Iwij ω̇ ij 
Fwxij  c:: Ref f 

 

Fx,model4 

 

The proposed model
More details in Equation 2.99 

  Fy11 ­ Fy12  =  c3 
ωz 

4  y  5  steering 

vx  
+ c a  + c δ 

F 21 ­ F 22 = c1
ωz 

2 
 

4.3.3  longitudinal tire force open-loop estimation 
 

The longitudinal tire force could be computed with tire slip ratio s [Pacejka, 2006] or the 
wheel torque [Altmannshofer  et al., 2016]. However, our objective is to estimate the tire 
forces with only low-cost  sensors which are available in a standard vehicle. Due to this 
limitation, the longitudinal tire forces at each wheel are usually regarded as inaccessible 
information during the development of ADAS system. In order to solve this challenging 
problem, we propose a new model for the estimation of longitudinal tire forces. The 
existent models for estimation of vehicle longitudinal forces are summarized in table 4.3. 

To begin with, we present the experimental data about the resultant longitudinal tire 
forces at front axle and at rear axle in Figure 4.15. The red lines are the measurement 
of force transducer. The blue lines are the estimation  based on the bicycle model. From 
the Figure 4.15, we can validate that the bicycle model can provide a good estimation 
of the longitudinal forces at each axle. The experimental data also showed that it is 
reasonable to approximate the longitudinal force at rear axle by a constant value. 
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Figure 4.15: Open-loop  estimation of resultant longitudinal force at front axle Fx,f  = 

Fx11 + Fx12  and at rear axle Fx,r  = Fx21 + Fx22 
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Figure 4.16: Open-loop estimation of transfer of longitudinal force at front axle TF x,f = 

Fx11 ­ Fx12  and at rear axle TF x,r  = Fx21 ­ Fx22 
 

 

The open-loop estimation results of transfer of the longitudinal force are illustrated in 
Figure 4.16. The proposed model has accurately  estimated  the transfer of longitudinal 
force at rear axle. However, it is less accurate  at the front axle. It can be explained  by 
the fact that the front wheels are the drive wheels.  The drive wheels are controlled by 
the engine and the steering system. In order to reduce the model errors at drive wheels, 
further development of model will be realized in our future work. 
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Figure 4.17: Open-loop estimation of longitudinal force at each tire 

 
 

The open-loop estimation result of longitudinal force at each tire is illustrated in 
Figure 4.17. The green lines are the estimation result obtained based on the bicycle 
model and the assumption that Fx11  = Fx12, Fx21  = Fx22.  The blue lines represents 
the estimation obtained through the proposed models, which has tightly  followed the 
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1 +

x ψ̇ +

ψ

L

v

 
 

real data. Figure 4.17 has also demonstrated  the importance of estimating longitudinal 
forces. In many literature, the longitudinal force at rear wheels are regarded  as zero. 
However,  we can see that when the vehicle is turning, the rear wheels could generate 
considerable longitudinal forces. 

 
 

4.3.4  Sideslip angle open-loop estimation 
 

In the literature, the side slip angle is usually estimated based on the bicycle model and 
linear tire model, described in equation 4.2. 

 

¨ 
r  

L1 Cf +L2 Cr 

­ 
L2 Cr −L1 Cf    

l   
ψ̇

 

2  2 

= Iz vx Iz 

β̇cog
 L2 Cr −L1 Cf 

­ 
Cf +Cr βcog

 

x 
­ m  v 

r 
L1 Cf 

+ Iz 
Cf 

mv vx 

mv v2  
v   x 

l 
 

δ + cov(noise) 

(4.2) 

where βcog is the sideslip angle at center of gravity, Cf , Cr  are cornering stiffness of front 
tires and rear tires. 

In open-loop method, to simplify the computation, we assume β̇cog  = 0. Then we can 
get the sideslip angle at steady state, expressed by 

 
 

βcog = 
L2Cr ­ L1Cf  ­ mv v2

 

vx(Cf  + Cr ) 

Cf 

Cf  + Cr 

 
δ (4.3) 

 

The sideslip angle can also be obtained  through steering geometry,  expressed by 
 
 

βcog = 
1 

L2 
δ + αr (4.4) 

+ L2 
 

whereαr  is the average tire slip angle at rear axle. 
In our experimental car, the optic sensor is installed at the middle of the rear axle 

to directly measure the average tire slip angle at rear axle. Then the measured sideslip 
angle at center of gravity βcog,m is obtained by 

 

L2ψ̇ 
βcog,m = + βr,m (4.5) 

x 
 

where βr,m  is the tire slip angle measured by the optic sensor. 
The models for estimation of vehicle sideslip angle are summarized in table 4.4. In 

order to better present the performance of each model, we conducted two different tests. 
The first test is the steady turning test, where the vehicle is turning with a constant 
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steering angle (30➦) and a low speed (10km/s).  The second test is the slalom test at 
speed of 45km/h.  The experimental result of open-loop estimation is illustrated in the 
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20

 

 
 

Table 4.4: Summary of Vehicle longitudinal dynamics models 
 

Model symbol Model name Equation
 

βcog,1 

 

Integration model 
´ ay ˙ βcog,1 = ( 

v 
­ ψ)dt 

x
 

βcog,2 

 

Steady state model
More details in equation  4.3 

2 

β = L2 Cr −L1 Cf −mv vx ψ̇ + Cf δ cog,2 vx (Cf+Cr )  Cf +Cr 
 

 

βcog,3 

 

 

Kinematic model 

More details in equation  2.80,2.81 

β = δ L1 ψ̇ 
+ Fyf 

cog,3 ­ 
vx 2Cf 

β = Lψ2 ψ̇  Fyr 
cog,4 vx  

+ 2Cr 

 
βcog,5 

 
Steering geometry

More details in equation  4.4 

β = 
L2

δ + Fyr 
cog,5 L 2Cr 

 
 

Figure 4.18 and 4.19. By comparing the performance of each model in the two tests, 
we can find that each of these models has its own advantages. The model βcog,2 and 
βcog,5 are close to the measurement βcog,m in the test of steady turning.  These models 
are more accurate at less dynamics  situation.  In Figure 4.19, the integration method 
has successfully followed the variation of the sideslip angle, but it has accumulated  the 
model errors causing a large shift from the real value. The kinematic model βcog,3 and 
βcog,4 provided a better performance at the slalom test than at the steady turning test. 
The best strategy to estimate the sideslip angle is to combine all these models. In the 
subsequent section, we will present the observers we developed for the purpose of robust 
estimation at different driving condition. 
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Figure 4.18: Open-loop estimation of sideslip angle during steady turning test 
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Figure  4.19: Open-loop estimation of sideslip  angle during slalom  test 
 
 
 

4.4  Observer Design 
 

This section  presents  a description of the observer devoted  to tire forces (vertical,  lateral 
and  longitudinal forces)  and  sideslip  angle.  The  need of observers  is motivated by the 
fact  that the open-loop  estimation is greatly influenced  by the sensor  noises and  model 
errors.  In orcier to minimize  the  inevitable errors  and  providing  the optimal estimation, 
observe r techniques are e mployed.   Ge nerally,  the  r ole of the  observer  is  to provide  a 
platform where the differe nt models can be incorpor ated to provide the  best estimation. 
In the observer , the estimation of different  models  are attributed with  different weights. 
The  more accurate the  model  is, the  more weights the  model will have.   The  observers 
we proposed  are based on the  algorithm  of K alman Filter .  The  classic  Kalma n filter is 
already  well develo ped and  widely acce pted  by the rese archers  as an effective method  to 
deal with the linear estimation problems.  The gener al algorithm is expressed by equation 
4.6.  In orcier to adapt  to the  non-linear estimation pr oblem, the EKF,  U KF and PF  are 
proposed  in t he liter ature.   More details  can be found in Chapte r 3. 
 

P rediction with mod el s : 

.xk+lfk = Axk 
 

k Buk+l 
1 

Pk+llk  = APkfkAT + Q k+lfk 

Kk+l = Pk+lfkHT ( HPk+lfkHT + Rk+lfk)-1 

 

 
( 4.6) 

 

U pdate wit h mea sur ements : xk+lfk+l= 

xk+lfk  + Kk+l (zk+l- HXk+lfk) Pk+lf k+l  = 
(I- Kk+lH )Pk+lf k 

 

The gener al theo ry of observer  technique is already  well develo ped in the  lite r ature. The 
observer  theory  can ens ure that the final estimatio n res ult is the mathematically optimal 
estimation based  on the  give n models.   For  a specifie  estimation task,  the  performance 
of the observer  is mainly  dec ided by the quality of the  models.  In the  previous  chapte r, 
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we have already developed adequate models to describe the dynamics behaviors of ve- 
hicle’s motion. The most challenging problem in this chapter is to design the structure 
of the observer in order to become robust and accurate in presence of unpredictable 
disturbances. The most simple but not the best method to construct an observer is to 
develop one single huge KF observer, which estimate all the unknown variables. That is 
to say, all the dynamics models will be substituted into one state space representation. 
This one single observer method has mainly two shortcomings: 

 

1. the observer will probably encounter the problem of observability. 
 

2. it is difficult to explain the estimation result when the estimation errors occur. 
The single observer works like  a black box, difficult to find out which model is 
responsible for the errors. 

 
 

4.4.1  Cascaded Kalman observers for estimation of vehicle 

dynamics states 
 

Due to the reasons explained  above, we propose to divide the entire estimation process 
into four blocks, as shown  in Figure 4.20. Each of the four observers will concentrate 
at one estimation target. The first observer is an Kalman filter to estimate the vertical 
forces at each wheel.  The estimation result of the first block will  be regarded  as a 
measurement in other blocks. The second observer is an non-linear filter to estimate the 
lateral forces at each tire. Both EKF, UKF and PF are employed to minimize the errors 
caused by the high non-linearity of tire’s nature. The third observer is for the estimation 
of the longitudinal forces at each tire.  The last observer is for the estimation of side 
slip angle. The strategy of using cascaded observers allows us to avoid the observability 
problems,  as in each small observer we can ensure the observation matrix is full rank. 
Furthermore it can enable the estimation process to  be carried out in a simple and 
practical way. 

 

 

Observer for tire’s vertical force OF z : 
 

The state space representation  of the vertical dynamics system is given by 
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Figure 4.20: Overall algorithm of the estimation of vehicle dynamics states 
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where Fzwij,model2  is obtained by equation 2.60, Fzwij,model4  is obtained by equation 2.69. 
τ1  is the time coefficient that the suspension  need to develop the vertical force. The 
accelerations and pitch-roll angle are regarded as available measurement, the parameters 
of vehicle are supposed to be constants.  wF z is the errors of time update model, υF z is the 
error of observation model. We assume that the errors follow the Gaussian distribution: 
wF z ~ N (0, Q1) , vF z ~ N (0, R1). 

 

 

Observer for tire’s lateral force OF y 
 

Due to the non-linearity of tire’s nature, the lateral dynamics system cannot be repre- 
sented with the state space representation. We employed the EKF algorithm to adapt 
to the non-linear system. However, the linearization process in EKF will introduce ad- 
ditional errors. In order to improve the estimation of non-linear system, the UKF is 
also employed in this thesis. The detailed algorithm of UKF is introduced in Section 
3.3.3. The time update models and observation models for the proposed EKF and UKF 
observers are identical, represented by the following equation 
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�   Ḟyw12 
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� � � 

�   Fyw21 
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Ḟyw22 
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τ  

� � � � � 
fT ire,y (α21 , Fwz21 ) ­ Fyw21 

fT ire,y (α22 , Fwz22 ) ­ Fyw22 

0 

� + wF y � � 

 
� 

max ­ Fxf  cos δ 
� may  Fxf  sin δ � 
� 

� � 
­ sin δ ­ sin δ 0 0 0   

� 
� 

� � cos δ cos δ 0 0 0   � � � � � 
� � � � 

Fyw11  

�
 

Fyw12  
� 
� 

� Iz ψ̈ ­ MF x ­ L1 sin δFxf   � �   L1 cos δ L1 cos δ ­L2  ­L2  0   � � � 
� � = � � �    Fyw21 � + υF y 
� TF y, f � 

TF y, r � 
βest 

� � 1 ­1 0 0 0   � � � � 
0 0 1 ­1 0   

� � � � � 
0 0 0 0 1 

Fyw22  
�

 
βcog 

 
(4.8) 
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where τ2 is the time coefficient that the tire need to develop the lateral force. fT ire,y (α, Fwz ) 
is the static lateral tire forces calculated  by Dugoff model. The detailed expression of 
Dugoff ’s model can be found in Section 2.2. TF y, f and TF y, r are the transfer of lat- 
eral force at front  axle and rear axle respectively. They are obtained by the models 
originally proposed  in the thesis, expressed by equation 2.86. ψ̈  is the change rate 
of yaw speed. MF x  is the moment  caused by the longitudinal tire forces, defined as 

E 
MF x  = (Fx12  + Fx22 ­ Fx11 ­ Fx11).  MF x  is provided by the observer of longitudinal 
dynamics OF x.  βest  is the sideslip angle provided by the observer of sideslip angle Oβ . 

 

wF y and υF y are the model errors and measurement errors respectively. We assume that 
the errors follow the Gaussian distribution: wF y ~ N (0, Q2) , vF y ~ N (0, R2). 

 
 

Observer for tire’s longitudinal force OF x 
 

In this thesis, the longitudinal tire force is not obtained by the function of tire slip ratio. 
Instead, the force at each tire is computed with the transfer of longitudinal forces TF x, f , 
TF x, r , as explained  in section 4.3.3. In order to develop a Kalman filter, the longitudinal 
dynamics models are transferred into the state space representation  form, expressed by 

�   
Ḟxw11 

�
 

�   Ḟ  � 

� 
0   0   0   0   0 

� �
 

� 0   0   0   0   0 � � 
Fxw11  

�
 

F  � 
xw12 

� ˙ � � � � xw12  � � � � 
�   Fxw21 � = � 0   0   0   0   0 � � Fxw21 � + wF x � ˙ � � � � � 
�   Fxw22  � 

Ṁ 
F x 

� 0   0   0   0   0 � � 
0   0   0   0   0 

Fxw22  � 
MF x 

 
 
 
(4.9) �  

(max +Fyf  sin δ)   
� 

cos δ � Fxr  
� � � � 

� 
1 1 1 1 0   

� �
 

� 0 0 1 1 0   � � � � � 

Fxw11  

�
 

Fxw12  
� � � 

� = � 1 
� � 

0   � � + vF x 

0   � � 
­ 2 

 

 

where Fyf   is the resultant lateral force at front axle, which is provided by the former 
observer OF y . Fxr is the resultant longitudinal force at rear axle. For a front drive car, 
Fxr  is regarded  as a constant value when it is not braking.  We also assume that the 
model errors follow the Gaussian distribution: wF x  ~ N (0, Q3) , vF x  ~ N (0, R3). 

 

 

Observer for vehicle’s sideslip angle Oβ 
 

As presented in the section of open-loop estimation, section 4.3.4, the sideslip angle at 
center of gravity can be obtained by five different equations. The integration model is 
used as the time update model. The other models are used as the observation model. 
Then the state space representation  of the sideslip angle is given by 
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(4.10) 
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�  ay −g sin ϕr
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˙  � � � 
� 
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­ ψ � 

0 

� 1 0 0  � vy 

0   vx  ­1 
 

 
 

where ωβ , vβ  are the noises of the models and measurements and follow the Gaussian 
distribution wβ  ~ N (0, Q4) , vβ  ~ N (0, R4).  The βcog,2-βcog,5 are introduced in Table 

4.4. Note that the needed lateral forces are provided by the former observer OF y . 
 
 

4.4.2  Filter settings 
 

The setting of Kalman filter parameters can greatly influence the observer’s performance. 
The covariance matrix can be viewed  as the representation of the model’s uncertainty. 
By setting the covariance  as a small value, we actually attribute more weights to the 
corresponding models. Generally, the estimation process based on Kalman filter can be 
expressed as 

R  Q 
Xest  = 

R + Q
Xpred  + 

R + Q
Xmeas  (4.11) 

where Xpred  is the prediction of state according to the process model with covariance Q. 
Xmeas   is the measurement of the state with variance R.  The Kalman gain is a subtle 
mix between process and observation  noises covariance. 

From the above equation, it is clear that the final estimation result is not only depen- 
dent on the quality of the models but also dependent on the value of Q1···4 and R1···4, 
which are the process noise covariance  matrix and the observation noise covariance ma- 
trix.  The basic strategy of setting the value of Q1···4 and R1···4 is to correspond to the 
uncertainty of the model. The situation we have to avoid is that the wrong measurement 
is attributed with a small covariance. In the literature, in order to reduce the complexity 
of the problem, Q1···4 and R1···4 are usually regarded  as constant values and configured 
according to the average uncertainty.  In real experiments, due to the variation of road 
condition, tire property and other unpredictable factors, the covariance of the model 
noises may vary along the journey. Therefore, to improve the accuracy of the estima- 
tion, we propose  to change the covariance Q and R according to the vehicle driving 
condition. Note that we consider Q1···4 and R1···4 as diagonal  matrix. 
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For observer OF z : 
 

The model Fz,model4  is accurate when the transfer of load is obvious, therefore, when 
|ay | > 2m/s2, R1  will be set as small. The model Fz,model2  is accurate when the vehicle 
is static. Then we configure Q1 with a small value when vx < 1m/s. 

 

 

For observer OF y : 
 

The tire model is more accurate when the vertical load is significant.  The proposed 
models (TF y,f , TF y,r ), are less accurate when the yaw speed change abruptly. Therefore, 
the values of Q2 and R2 are configured with the following equation. 

 

Q2 = 100000diag([f1(Fz11), f1(Fz12), f1(Fz21), f1(Fz22), 10−7]) 

R2 = 100000diag([10, 1, 1, f2(ψ̈), f2(ψ̈), 10−8]) 
(4.12) 

 

where � ( 
1 if Fz > 5000N 1 if  ψ̈  < 1rad/s2 

     
f1(Fz ) =  

100 if Fz 
f2(ψ̈) = 

< 5000N 
 

100 if 
 
ψ̈

  
> 1rad/s2 

(4.13) 

 
 

For observer OF x: 
 

The model of TF x,f  is less accurate  when the vehicle is accelerating. It is because the 
front wheels are the drive wheels. During accelerating, the drive wheel’s force is mainly 
controlled by engine. Thus R3(3, 3) is relatively big when ax > 1m/s2. 

 

 

For observer Oβ : 
 

The model βcog,2 is used to describe the static steering dynamics and thus is accurate 
when ψ̈  is small.  βcog,5 is more accurate while the vehicle is moving slowly.  To the 
contrary, the model βcog,3 and βcog,4 are more accurate when the speed is high. We also 
designed the best-wheel selection algorithm to select the wheel with the least tire slip and 

high tire load. When the rear tires are skidding, the vehicle is over-turning δ 
  
Lψ̇ 

  
< 0. 

x   
Lψ̇ 

  
When the front tires are skidding, the vehicle is under-turning|δ| ­  vx 

 
> 0. With this 

criterion, we can choose the best wheel to calculate the sideslip angle. The value of the 
Q4 and R4 are configured with equation 4.14. 

 

Q4 = diag([1, f3(ψ̈), 1]) 
 

 
 

where 

R4 = diag([4f4(vx), f4(vx), 1 ­ f4(vx), 1, 1]) 
(4.14) 

� 
0.01 if 

 
ψ̈

  
< 0.5rad/s2

 ( 
0.1 if v

 
 

 
< 5m/s

 

f3(ψ̈) = 
�

 f4(vx) = |  x| (4.15) 
� 1 if  ψ̈  > 1rad/s2 0.01 if |vx| > 5m/s 
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Fz11 = Fz12 = mgL2/(2L) 
Fz21 = Fz22 = mgL1/(2L) 
Fx11 = Fx12 = mv ax/2 
Fx21 = Fx22 

Fy11 = Fy12 

=
=

0
mv (ay + Lψ̈)L2/(2L)

Fy21 = Fy22 = mv ay L1/(2L) 
βcog = δL2/L 

 

 

4.4.3  Communication between the four observers 
 

Our strategy of estimation is to divide the whole estimation into four observers, and 
clearly define the “responsibility”  of each observer. For instance, OF z  is developed for 

vertical force, OF y  is developed for lateral force. In each observer,  only the targeting 
states are regarded  as the internal variables, all other parameters or variables are re- 
garded as external information. In this way, we can reduce the complexity of modeling. 
Meanwhile, the four observers are not completely independent. The estimation results 
of each observer  are communicated to other observers to enhance the accuracy of the 
final estimation. In this way, the interaction between tire forces in different directions 
could be taken into account. Nevertheless, the communication  between observers could 
possibly transmit the fatal estimation errors from one observer to another. In order to 
solve this problem, the algorithm of selective communication  is designed. 

 

 

Selective Communication by employing a limiter 
 
According to the Kalman filter algorithm, the estimation result of an observer could be 
represented by a Gaussian distribution Xk+1 ~ N (X�k+1|k+1, Pk+1|k+1). If this estimation 

result is correct, we use the estimation result X�k+1|k+1  as the measurement  (zk+1)  in 
another observer , the covariance of zk+1   could be set as Pk+1|k+1  (to emphasize the 
uncertainty of zk+1, we set the covariance  as 2Pk+1|k+1).  However, the estimation could 

be wrong, which means the N (X�k+1|k+1, Pk+1|k+1) cannot represent the real distribution 

of Xk+1.   In this situation, if we continue to use the X�k+1|k+1  as the measurement in 
other observers, the wrong estimation will cause the malfunction of the latter observer. 
To avoid this from happening,  we designed a limiter  to diagnose whether the  former 
observer has fatal errors. A fatal error is detected, if the following criterion is satisfied. 
 

X�k+1|k+1 ­ X�k|k    > ε  (4.16) 
 
where ε is the threshold value of the variation of the state. 

When the fatal error is detected, the  limiter  behaves  as a switch, as illustrated in 
Figure 4.21. When it has detected the fatal errors from the former observer, the estima- 
tion result will not be accepted as measurement in the latter observer. Instead, a rough 
estimation with large covariance will be sent to the latter observer. In this way the fatal 
errors will be filtered out. The rough estimation is given by the equation 4.17. 

 

 
 
 
 
 

(4.17) 
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Figure 4.21: Selective communication  between the four observers 
 
 
With  the selective communication mechanism,  the four observers are connected  but 
relatively independent. The whole estimation system will not collapse even one observer 
is completely failed. The advantages of our proposed observers will be discussed in the 
analysis of experimental validation tests. 

 
 

4.4.4  Particle filter based observer 
 

Among the four observers we proposed  in the previous section, only the observer for 
lateral tire forces OF y  is highly non linear. As explained above, the EKF can introduce 
errors of linearization when dealing with  high nonlinear system. For this reason we 
proposed to use the Unscented Kalman Filter to construct the observer for lateral tire 
force, OF yU K F . The UKF supposes the model noises follow a Gaussian distributions. In 
order to generalize our observer to a larger extend, we propose to use the Particle filter 
(PF) to process the nonlinear vehicle dynamics model, noted as OF yP F .  The Particle 
filter provides a direct approximation of the posterior distribution  with the weighted 
sample points. It doesn’t assume the white errors. The detailed algorithm of Particle 
Filter  was introduced in Section 3.3.4. The models we employed  to develop the PF 
observer are the same as the models used for Unscented Kalman Filter, expressed by 
equation 4.8. The particle number is set as 50. 

 
 

4.5  Experimental Validation Of The Observers 
 
In this section,  we will  focus on the experimental validation of the above-mentioned 
observers.  The input measurements of our observers are obtained from CAN bus, ac- 
celerometer, gyrometer and laser distance  sensors. The force transducers and Correvit 
are used as ground truth.  The complete description of the function of sensors and the 
entire architecture of the acquisition system is introduced in section 4.2.In order to bet- 
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Figue 4.22: The traj..,t,cny of rood circuit an plén 
 
 

ter pr"'ent  the  penœmél1Ce of our oœer,.,rs in different oanditions, we wwld  like to 
perlœm seven tests with different rœd  oanditians Md different speeds. The se"'n tests 
include: 

 

1. intense slélom test at. SO krnfh at. le,.,!gl'Ollnd; 
 

2. rnoderat.e sWan ta.t at. 30 krn/h at. leve! grwnd; 
 

3. stélldéld  chicone ta.! at. 20 krn/h at. leve! grwnd; 
 

4. stélldéld  chicone ta.! at. 100 krn/h at. leve! gl'Ollnd; 

S. circlingtest at. 40 krn/h at. leve! gl'Ollnd; 

6. slélorn t"'t at. 40 krn/h at. slippery rœd; 
 

7. slélorn t"'t at. 140 krn/h at. bênked rood. 
 
Ali th"'e tests oze perbrned with our experirnent '"hicle DYNA an the Mortefantéine 
Au<>mobile 'll!sting élld R.Eseozch Centre (CER.AM - Centre d'E'.sséis et de Recherche 
Autanobile de Mortefœtoine), es sho.vn in Figure 4.22. ln eoch test, we will pr"'ent 
the "'tirnat.ion ra.ults  of "'rticêl tire boa., tudinél tire forces, s&lip onde  ond 
thelat.erél tire boa.. The a.tirnatiœ r"'ults of the proposed new oŒervers oze nd.ed os 
OFx,N.OF>;f< ·  o , · For thelat.erél boa.,we developed three different nœ-lin= 
observers by ernp]cying EKF, UKF értd PF élg:nithrns, noted es O KF. OJ!>:J,UKF. 
OF>,PF· Th rnoke a, o::nnpel'io:m with the cbservers in the literai.ure, we élso developed 
observers besed an  the canrnœùy used bicycle rnodels.  'Iheir  estimation  r"'ults .,. 
noted os OFx,OF>;0   .Fùrtherrnore, to dernanstrat.e the o:mtributiœ â this 
thesis at(:!t thê pl'QYious wark in our lé.baré.tary, wa élso presant thE! estîmâtian results 
of the observers developed in (Wong. 2013), noted éS 0F9> OF,...., o...... 0-. 
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4.5.1  Intense slalom test at 50 km/h  at level ground 
 

Firstly, an extreme intense slalom test was performed. The test track was well paved 
and set to be dry (µ = 1). The maneuver time history is illustrated in Figure 4.23. 
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Figure 4.23: Maneuver time history of Test 1: Intense slalom test 
 

 
During this test, the maximum lateral acceleration reached to 0.9g, average speed of 

the slalom test was about 50km/h. The steering wheel angle changed from 200➦ to -200➦ 
in one second, which could cause the extreme variation of the dynamics states. The 
slalom test is usually considered  as a difficult maneuver from the estimation viewpoint, 
but it can better reveal the potential of the observer’s performances. 
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Figure 4.24: Test 1 (intense slalom test): Estimation of vertical force at each tire 
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Figure 4.24 demonstrates the estimation results of the vertical forces at each tire. The 
red lines correspond to the ground truth measured by the wheel transducer. Blue lines 
represent the results of the new observer that we proposed in section 4.4. The black 
dashed lines are used to illustrate the error bounds of the estimation. The value of the 
black dashed lines are equal to F zest ±

√
P , where P is the covariance obtained by Kalman 

filter.  Green lines are the results of the observers based on the commonly  used model, 
corresponding to the Fz,model1 in the table 4.1. During the slalom maneuver, the vertical 
tire forces changed quickly, but our observer can follow tightly  with the measurement. 
Almost all the red data can be included  in the error bounds [F zest ­ 

√
P , F zest + 

√
P ]. 

The advantage of our proposed observer is obvious at the moment of each peak turning. 
In the Figure 4.24, we can see the blue line is close to the red line even at the peak 
points, while the green line is less accurate. It can be explained  as the the pitch-roll 
motion based models are more sensitive to the variation of vertical force. 
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Figure 4.25: Test 1 (intense slalom test): Estimation of longitudinal force at each tire 
 
 

Figure 4.25 demonstrates the estimation results of the longitudinal forces at each 
tire.  The red lines correspond to the measurement of the wheel transducer. Blue lines 
represent the results of the new observer that we developed in section 4.4. The black 
dashed lines represent the error bounds of our observer. The Green lines are the results 
based on the bicycle model and the assumption that Fx11  = Fx12, Fx21  = Fx22. During 

the slalom test, the longitudinal force at front tires seems unrelated to the undulation 
of steering angle, while the longitudinal force at rear wheel appears a typical “slalom” 
characteristic. That could be explained by the fact that the experimental car is a front- 



10

4 Observers For Estimation Of Tire Forces And Sideslip Angle  

 

 

 

drive  car.    The  front  tire  forces  are  mainly  controlled   by the  engines.    The  rear  tire 

forces  are  mainly  affected  by the  turning behaviors,  as explained   in the  section  2.4.3. 
The estimation provided  by our new observer  can tightly  follow the variation of the 
longitudinal forces. 

 
Estimation of sideslip angle at cog (degree) 

Results of the  proposed observer Co fTl)arison betvveen  diff erent obse tvers 
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Figure  4.26: Test  1  (intense  slalom  test):  left)  Results  and  error  bounds   of the  new 

observer  for estimation of sideslip  angle at  CoG;  right)  Comparison of the 
estimation res ults of sideslip  angle  at CoG obtained by different  observers 

 

 

Figure  4.26 demonstrates the estimation res ult of the sideslip angle at center of gravity. 
The result of the proposed observer 013 and its error  bounds are illustrated in the left side 
of Figure  4.26.  The comparison  between diffe rent observers  is illustr ated in the right side 
of Figure  4.26.  Note that  the  reference  data  in this  figure is not directly meas ured but 
obtained  through  the  tr ansformation  presented  in equation 4.5.  The  blue lines represent 

the  res ults  of the  new obser ver 013 .  The  gree n lines are  the  results  of  the  commonly 
used observer re presented  by eq uation  4.2, which is based  on the  linear  tire  model  and 
bicycle model.  The cyan lines a re the results  of EKF observers developed  in the previous 
wo rk of our labor ator y [Wang, 2013],  noted  as OFy,prev·  There  a re three  remarks  about 
the  previous  obse rver OF y,prev :      (i) , the  Dugoff 's  non-linea r tire  model  is  employed  to 
estimate the  later al tire  force;  (ii),  the  obser ve r is based  o n the  EKF  algorithm;  (iii), 
the sideslip a ngle, longitudinal tire for ce and the  lateral tire fo rce are estimated by one 
single observer.   In  this  extreme  intensive slalom  test , the  estimation result  of  OF y,pr ev 

was obviously  wrong.   The  huge errors  of OF y ,prev  in this  test can be explained by the 
high non-linearity of Dugoff 's tire  model in presence of intensive  transfer of ve rticalload. 
The  linearization pr ocess in the  EKF  algorithm  has caused  significant  e rr ors and made 
the estimation of slideslip  angle unstable. 

In  our  new obse rver , the  sideslip  angle  is estimated by five different  models.    The 
influence  of  the  Dugoff 's  model  is  limited,  as  other  models  will correct  the  errors  in 
eve r y iter ation.    Furthermore,  the  estimation of  late r al  fo rces  a nd  sideslip  angle  are 
realized  by two se par ate  observers.   The  excessive  errors  will not  be communicated to 
each other. 

In orcie r to  validate  o ur o bserver  in a more co nvincing way, we t r ansfo rmed  t he es- 
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timated f3cog  into  the sideslip  angle  at rear  axle  f3r   and compared with  the  direct  mea- 
surement  of CORREVIT, as illustrated in Figure  4.27.  It  is clear  that our observer  has 
accurately estimated the sideslip  angle at  rear axle. 
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Figure  4.27: Test  1  (intense  slalom  test):  left)  Results  and  error  bounds   of the  new 
observer  for estimation of sideslip  angle at  rear  axle;  right)  Comparison of 
the  estimation results  of sideslip  angle  at  rear  axle  obtained by different 
observers 
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Figure  4.28: Test 1 (intense  slalom  test): Res ults and  error  bounds  of the  new observer 
for estimat ion of lateral forces at each tire 

 
 

Figure  4.28 demonstrates the estimation resu lts of the  lateral  forces at each  tire with 

the  new EKF  observer,  OFy ,EKF · The  red  lines are  the  real data acquired   by DYNA. 

The  blue lines are the  estimation result  of the  new EKF  observer  OFy,EKF·  The  black 



10

4 Observers For Estimation Of Tire Forces And Sideslip Angle  

 

x 10

Time 

Fy,PF

Fy,EKF

 
 

lines are the error bounds. From Figure 4.28, we can find that the new observer showed 
higher accuracy at rear tires than at front tires.  It is due to the model errors caused 
by intense slalom behavior. In this intense slalom test, the lateral forces at front tire 
are also greatly influenced by the steering torque, which is not considered in our model. 
Figure 4.29 illustrates the comparison between the results of different observers, includ- 
ing the previous EKF observer OF y,prev , the proposed new EKF observer OF y,U K F , the 
PF observer OF y,P F  and the UKF observer OF y,U K F . 
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Figure 4.29: Test 1 (intense slalom test):  Comparison of the estimation results of tire 
lateral forces obtained by different observers 

 
 

The estimation of OF y,prev  is completely wrong in this test.  The reason is already 

explained in the previous paragraph. During intense slalom test, the tire model is quite 
non-linear. The linear approximation in EKF observer brings fatal errors to the estima- 
tion.  However, the EKF observer developed in this thesis provided good performance. 
It is mainly because that we employed the proposed model, the transfer of lateral forces 
TF y .  With  this new model, the estimation of tire force is not only dependent on the 
Dugoff ’s tire model. Furthermore, the cascaded structure makes the observer more ro- 
bust.  The UKF and PF observer have also provided good performance. UKF has an 
obviously advantage that it doesn’t need the calculation of Jacobian matrix.  Further- 
more, the UKF is more efficient than the PF observer,  as much fewer sample points are 
needed. 
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4.5.2  Moderate slalom test at 30 km/h  at level ground 
 

This test is designed to validate the performance of our observers at a slower slalom test. 
The test track was also level and dry (µ = 1). The maneuver time history is illustrated 
in Figure 4.30. During this test, the maximum lateral acceleration was about 0.3g, much 
smaller than the first slalom test, and therefore it is called a moderate slalom test. The 
average speed of the slalom test was about 30km/h.  The changing rate of the steering 
wheel angle is also smaller than the intense slalom test. 
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Figure 4.30: Maneuver time history of Test 2: Moderate slalom test 

 
 

Figure 4.31 demonstrates  the estimation result  of the vertical forces at each  tire. 
Similar to the test of intense slalom test, our proposed observer can tightly  follow the 
variation of the vertical forces. At each peak points, the proposed observer provided a 
better estimation than the commonly  used observer. 

Figure 4.32 demonstrates  the estimation result of the longitudinal forces at each tire. 
The measured data once again proved that during the turning the rear wheels would 
generate considerable longitudinal forces. Our observers (the blue lines ) provided a 
good estimation of Fx  at rear left and right tires. In the estimation result at front left 
and right tires, the green lines are approximately coinciding with the blue lines. This 
demonstrats that for the front  drive  cars, the value of TF x,f  is not significant  during 
moderate driving operation. 
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Figure 4.31:  Test  2 (moderate slalom): estimation results of vertical force  at  each  tire 
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Figure  4.32: Test  2 (moderate slalom): estimation results of  Fx  at  each  tire 
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Figure 4.33 demonstrates the estimation result of the sideslip angle at center of gravity 
by different observers. The cyan lines are the estimation results of the observer OF y,prev . 
We remind that in the intense slalom test (Test 1), the results of observer OF y,prev  was 
totally wrong. However, in this moderate slalom test, the OF y,prev  could work normally. 
It is due to the transfer of vertical load in this test is small and the Dugoff ’s tire model 
is operating around the linear region. Furthermore, we can also find the green lines 
are close to the ground truth,  which proves that during the moderate slalom test, the 
linear tire model can successfully describe the tire dynamics. Figure 4.34 demonstrates 
the estimation result of the sideslip angle at rear axle. Our observer provided a better 
performance than the observer OF y,prev . 
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Figure 4.33: Test 2 (moderate slalom test):  left) Results and error bounds of the new 
observer for estimation of sideslip angle at CoG; right) Comparison of the 
estimation results of sideslip angle at CoG obtained by different observers 
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Figure 4.34: Test 2 (moderate slalom test):  left) Results and error bounds of the new 
observer for estimation of sideslip angle at rear axle; right) Comparison of 
the estimation results of sideslip angle at rear axle obtained by different 
observers 

 

 

Figure 4.35 demonstrates  the estimation results of the lateral forces at each tire ob- 
tained by our new observer. Figure 4.36 compares the estimation  results of different 
non-linear observers. The previously developed observer OF y,prev  provided good estima- 
tion of lateral tire force in this test.  The new observer had a better performance,   as 
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it combined  different  lateral  force models  (the  new proposed  model TFy and  the classic 

double  track  model). 
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Figure  4.35: Test  2 (moder ate slalom test) : Results and e rr or bounds of the  new observer 

for estimation of later al tire  for ces 
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Figure  4.36: Test  2 (moder ate slalom  test):  Co mparison  of different  observers  fo r the 
estimation of late r al tire for ces 
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4.5.3  Chicane test at 20 km/h  at level ground 
 

This test is designed to validate the performance of our observers at a low-speed chicane 
test. The chicane test can be viewed  as a standard lane changing behavior, which is a 
common driving behavior in the real life. The test track was also level and dry (µ = 1). 
The maneuver time history is illustrated in Figure 4.37. 
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Figure 4.37: Maneuver time history of Test 3: Low-speed chicane test 

 
 

The estimation result of the vertical forces and longitudinal forces at each tire are 
illustrated in Figure 4.38 and 4.39 respectively. The performance of the proposed ob- 
server was quite satisfactory. It is mainly due to the proposed models are accurate in 
slow chicane maneuver. The estimation results of sideslip angle at CoG and at rear axle 
are demonstrated in Figure 4.40 and 4.41. Then Figure 4.42 demonstrates the estimated 
lateral forces and error bounds at each tire with the proposed EKF observer. In Figure 
4.43, we compared the estimation results of different non-linear  observers. As we could 
see in Figure 4.38-4.43, generally all the different observers could provide good estima- 
tion close to the real data. In slow chicane test, the linear model and bicycle model are 
accurate enough to describe vehicle behavior. However, the advantage of our observer 
is obvious in Figure 4.41. The previous observer OF y,prev  (cyan dotted lines) had less 
accurate estimation of βr .  Our proposed observer could accurately estimate both the 
βcog and βr . The estimation result in this test demonstrated the importance of distin- 
guishing βcog and βr . In normal driving condition (no excessive tire slip happens), the 
βcog is mainly dominated by vehicle’s steering angle (βcog c::  L2 δ).  In order to estimate 
the tire slip state, the sideslip angle at rear axle, βr , is more interesting for us. 
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Figure  4.38: Test  3  (low speed  chicane  test):  Comparison of the  estimation results  of 
ve rtical  force at  each tire 
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Figure  4.39: Test  3  (low speed  chica ne test):  Comparison of the  estimation results  of 
longitudin al force at each  tire 
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Figure 4.40:  Test  3 (low s peed  chicane test):  left)  Results and  error  bounds of the  new 
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Figure 4.41:  Test  3 (low s peed  chicane  t est) :  left)  Results and  e rr or bounds of the  new 
observer for estimation of sideslip  angle  at  rear  axle;  right)  Co mpariso n of 
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4.5.4  Chicane test at 100 km/h  at level ground 
 

This test is designed to validate the performance of our observers at a high-speed chicane 
test.  The maximum speed reached  to 100 km/h.  It can be viewed as a sudden lane- 
changing behavior, which could generate dangerous situation.  The test track was also 
level and dry (µ = 1). The maneuver time history is illustrated in Figure 4.44. 
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Figure 4.44: Maneuver time history of Test 4: High-speed chicane test 

 
 

The estimation result of the vertical forces and longitudinal forces at each tire are 
illustrated in Figure 4.45 and 4.46 respectively.  The experimental data has proved that 
our proposed models, TF z , TF x  were accurate even in high speed chicane test. In Figure 
4.46, the errors of estimation at the time period [295s, 297s] were caused by the braking 
behavior. In our model, we consider the rear wheels are rotating freely without brakes. 
The estimation results of sideslip angle at CoG and at rear axle are demonstrated in 
Figure 4.47 and 4.48. Compared with the previous observer OF y,prev , our new observer 
had much better performance in the estimation of βcog  and βr .  In Figure 4.47, the 
proposed observer was less accurate  at peak points, which can be explained by that the 
sideslip angle in this test was too small (­1➦ < βcog  < 1➦ ), many other un-modeled 
factors could dominate its value. Then Figure 4.49 demonstrates  the estimated lateral 
forces and error bounds at each tire with the proposed EKF observer. In Figure 4.50, 
we compared the estimation results of different non-linear observers. The PF, EKF and 
UKF provided equally good performance. 
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Figure 4.45: Test 4 (high speed chicane  test):  Comparison of the estimation results of 
vertical force at each tire 
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Figure 4.46: Test 4 (high speed chicane  test):  Comparison of the estimation results of 
longitudinal force at each tire 
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Figure 4.47: Test 4 (high speed chicane test): left) Results and error bounds of the new 
observer for estimation of sideslip angle at CoG; right) Comparison of the 
estimation results of sideslip angle at CoG obtained by different observers 
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Figure 4.48: Test 4 (high speed chicane test): left) Results and error bounds of the new 
observer for estimation of sideslip angle at rear axle; right) Comparison of 
the estimation results of sideslip angle at rear axle obtained by different 
observers 



4 Observers For Estimation Of Tire Forces And Sideslip Angle 

120

 

 

 

 
Estimation of Lateral Force at Each Tire (N) 

 
 

2000 

 
0 

 
−2000 

Front Left Tire  
 

2000 

 
0 

 
−2000 

Front Right Tire 

 
−4000 

290 292 294 296 
Time 

Rear Left Tire 

−4000 
290 292 294 296 

Time 
Rear Right Tire 

 

2000 2000 
 

0 0 

 
−2000 

 
DYNA 

O 
Fy,EKF 

 
−2000 

 
−4000 

  Error bounds of O 
Fy,EKF 

−4000 
290 292 294 296 

Time 
290 292 294 296 

Time 
 
 

Figure 4.49: Test 4 (high speed chicane  test):  Results and error bounds of the new 
observer for estimation of lateral forces at each tire 
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Figure 4.50: Test 4 (high-speed chicane test): Comparison of the estimation results of 
tire lateral forces obtained by different observers 
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4.5.5  Circling test at 40 km/h  at level ground 
 

This test  is designed  to validate  the  performance of our observers  during circling  behav- 
ior.  The  steering wheel angle  was a constant value  (around  50°) during the  test.   The 

maximum  s peed  reached  to  40 km/ h.   The  test  track  was also  level and  dry  (J.l   = 1). 
The  maneuver  time  history  is illustrated in Figure 4.51. 
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Figure 4.51: M aneuver time  history of  Test 5: Circling  test 
 
 

Figure  4.52 demonstrates the estimation result  of the vertical forces at each tire.  The 
vertical  at left w heels were much s maller than that  of the  right wheels, as the  left wheels 
we re the  inner  wheels during this  circling  test. 

Figure  4.53 demo nstr ates the estimation result  of the  longitudinal for ces at  each tire. 
The  measurement of DY NA once again co nfirmed that the longitudin al for ce at rear left 
and  right wheels are differe nt during turning. The  model of transfer of longitudinal fo rce 
TFx has successfully  computed this  difference.  That 's why our  pr oposed observe r could 
acc ur ately estimate the  longitudinal for ce at each tire. 

Figure  4.54 demonstr ates the  estimation result  of  f3co g   by d ifferent observe rs.  Figure 
4.55 demonstr ates  the estimation res ult of  f3r·   Our new observer  provided  an accur ate 
estimation.  O ur estimation is based  on the  fusion  of five different models, s ummarized 
in Ta ble 4.4. 

Figure  4.56 demonstr ates  the  estimation results  of the  later al forces  at each  tire ob- 

tained  by our new obse rver.  In Figure 4.57, we compared  the estimation results  of later al 

forces  obt ained  by differe nt  non-linear  observe rs.  The  performance  of EKF  and  UKF 
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were equally satisfactory. However, the UKF observer is more simple as it doesn’t need 
to compute the Jacobian matrix. 
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Figure 4.52: Test 5 (circling test): Comparison of the estimation results of vertical force 
at each tire 
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Figure 4.53: Test 5 (circling test): Comparison of the estimation results of longitudinal 
force at each tire 
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Figure 4.54: Test 5 (circling test): left) Results and error bounds of the new observer for 
estimation of sideslip angle at CoG; right) Comparison of the estimation 
results of sideslip angle at CoG obtained by different observers 
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Figure 4.55: Test 5 (circling test): left) Results and error bounds of the new observer for 
estimation of sideslip angle at rear axle; right) Comparison of the estimation 
results of sideslip angle at rear axle obtained by different observers 
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Figure 4.56: Test 5 (circling test):  Results and error bounds of the new observer for 
estimation of lateral forces at each tire 
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Figure 4.57: Test 5 (circling test): Comparison of the estimation results of tire lateral 
forces obtained by different observers 
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4.5.6  Slalom test at 40 km/h  at slippery road 
 

This test is designed to validate the performance of our observers at low adhesion condi- 
tion. The test track was paved with marble tiles and the surface was covered by a layer 
of water. The maneuver time history is illustrated in Figure 4.58. 
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Figure 4.58: Maneuver time history of Test 6: Low adhesion slalom test 

 
 

Figure 4.59 demonstrates the estimation result of the vertical forces at each tire. The 
observer of vertical force is not influenced by the road adhesion condition, and therefore 
provided good performance. 

Figure 4.60 demonstrates  the estimation result of the longitudinal forces at each tire. 
The proposed model of TF xr is accurate even at low adhesion road. 

Figure 4.61 demonstrates the estimation result of the sideslip angle at center of gravity 
by different  observers. Figure 4.62 demonstrates the estimation result of the sideslip 
angle at rear axle. Our estimation could tightly follow the variation of real data but was 
less accurate  at peak points. This error is caused by the wrong configuration of cornering 
stiffness. The cornering stiffness is an important parameter which could influence the 
estimation of sideslip angle. 

Figure 4.63 demonstrates  the estimation results of the lateral forces at each tire ob- 
tained by our new observer. In Figure 4.64, we compared the estimation results of lateral 
forces obtained by different non-linear observers.  We can find the estimation result is 
less accurate  compared  with the former tests. As we explained  in equation 2.86, the 
transfer of lateral force is influenced by the road friction coefficient. The variation of 
road condition has increased the model errors and leaded to the estimation errors in the 
peak points in Figure 4.63. 
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Figure 4.59: Test 6 (low adhesion slalom test): Comparison of the estimation results of 

vertical force at each tire 
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Figure 4.60: Test 6 (low adhesion slalom test): Comparison of the estimation results of 

longitudinal force at each tire 
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Figure 4.61: Test 6 (low adhesion slalom test): left) Results and error bounds of the new 
observer for estimation of sideslip angle at CoG; right) Comparison of the 
estimation results of sideslip angle at CoG obtained by different observers 
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Figure 4.62: Test 6 (low adhesion slalom test): left) Results and error bounds of the new 
observer for estimation of sideslip angle at rear axle; right) Comparison of 
the estimation results of sideslip angle at rear axle obtained by different 
observers 
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Figure 4.63: Test 6 (low adhesion slalom test):  Results and error bounds of the new 
observer for estimation of lateral forces at each tire 
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Figure 4.64: Test 6 (low adhesion slalom test): Comparison of the estimation results of 
tire lateral forces obtained by different observers 
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4.5.7  Slalom test at 140 km/h  at banked road 
 

This test is designed to validate the performance of our observers at banked road. The 
test track was banked and dry (µ = 1).  The maneuver time history is illustrated in 
Figure 4.65. In the CERAM test center, there are three tracks: the bank angles at low 
track, middle track, and high track were 15➦, 30➦ and 40➦ respectively. During the test, 
the vehicle was continuously  changing from the high track to the low track. 
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Figure 4.65: Maneuver time history of Test 7: Banked road slalom test 

 
 

Figure 4.66 demonstrates the estimation result of the vertical forces at each tire. The 
bank angle of the road can cause the additional transfer of vertical load. However, the 
measured acceleration already contained the gravity component in lateral direction. As 
a result, the common model could also provide a good estimation of vertical force at 
banked road. However, our proposed model was more  accurate,  as the roll and pitch 
motion of suspension was taken into account. 

Figure 4.67 demonstrates  the estimation result of the longitudinal forces at each tire. 
At such a high speed (140 km/h),  even the direct measurement of force transducer was 
coupled with large noises. However, our observer provided a robust estimation about 
the longitudinal force, which proved the accuracy of the proposed model, TF x, at banked 
road. 

Figure 4.68 and Figure 4.69 demonstrate  the estimation results of βcog and βr .  The 
estimation of observer Oβ,com and Oβ,prev  were not accurate in this test. It is due to the 
road bank angle has greatly influenced the lateral dynamics. In our modified vehicle 
dynamics model (equation 2.56), the vehicle’s 3D motion is considered. The errors 
caused by road angle is eliminated. The road angle is used as available  information in 
this chapter, the method of estimating road angle is introduced in section 5.3. 

Figure 4.70 demonstrates  the estimation results of the lateral forces at each tire ob- 
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tained by our  new observer. In Figure 4.71, we compared the  estimation results of lateral 

forces obtained by different non-linear observers. The  proposed models, TFyf   and  TFyr, 

are  insensitive to  the  variation of road  angles, which  makes  our  new observer robust  in 

the  banked road. 
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Figure  4.66: Test 7 ( banked  road  slalom  t est) :  Compa rison  of the estimation results  of 
ve rtical force at  each  tir e 
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Figure 4.67:  Test  1 (banked road  slalom  t est) :  Comparison of the estimation results of 
longitudin al for ce at each  tire 
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Figure 4.68: Test 7 (banked road slalom test): left) Results and error bounds of the new 
observer for estimation of sideslip angle at CoG; right) Comparison of the 
estimation results of sideslip angle at CoG obtained by different observers 
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Figure 4.69: Test 7 (banked road slalom test): left) Results and error bounds of the new 
observer for estimation of sideslip angle at rear axle; right) Comparison of 
the estimation results of sideslip angle at rear axle obtained by different 
observers 
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Figure 4.70: Test 7 (banked road slalom test):  Results and error bounds of the new 
observer for estimation of lateral forces at each tire 
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Figure 4.71: Test 7 (banked road slalom test): Comparison of the estimation results of 

tire lateral forces obtained by different observers 
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4.6  Conclusion 
 
This chapter presents the new observers we developed for the estimation of the tire forces 
in three directions and the sideslip angle. We firstly introduced the implementation of 
our experimental vehicle. Then based on the experimental data, we validate and compare 
the qualities of different models through the open-loop estimation method. Among all 
the models validated in this chapter, there are three models originally proposed in this 
thesis: 

1, the model for computing the transfer of vertical  load by employing the roll and 
pitch angle; 

2, the model for computing the transfer of lateral force; 
3, the model for computing the transfer of longitudinal force. 
The open-loop estimation is greatly influenced by the sensor errors. In order to further 

improve the accuracy of estimation, we employed the observer techniques.  We propose 
to develop four observers to estimate the vertical force, longitudinal force, lateral force 
and the sideslip angle respectively. In each observer,  only the targeting variables are 
estimated, which could greatly reduce the complexity of modeling. In the observer of 
vertical force OF z , the linear Kalman Filter is employed. The vertical force is obtained 
by incorporating the suspension deflection and the acceleration. In the observer OF x, the 
estimation is also realized by employing linear Kalman Filter algorithm. In the observer 
of sideslip angle Oβ , five models are combined together to provide the best estimation 
through the KF algorithm.  The observer of lateral force OF y  is more complicate due 
to the non-linearity of tire’s  nature.  To adapt to the non linear tire model, we em- 
ployed the non-linear observer techniques. In order to make a comparison and choose 
the best estimation methods, the EKF observer, UKF observer and PF observer were 
developed for estimation of lateral forces. All  the three observation techniques could 
provide satisfactory estimation results. 

The four observers are not working individually but are connected in a cascaded way. 
The estimation  results of one observer will  be communicated  to other observers and 
regarded  as the measurement. However, the communication  between observers could 
possibly transfer the fatal errors in the estimation. Therefore, an algorithm to filter out 
the fatal errors is developed. 

Seven critical tests are performed to evaluate the performance of our new observers 
in different conditions. The observers generally provide satisfactory estimation results 
at all the tests. The estimation in this chapter is based on the condition that all the 
vehicle parameters are known. However, in real situation, these parameters  are difficult 
to be measured.  In the subsequent chapter, we will focus on the estimation of vehicle’s 
parameters. 
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5  Adaptive Estimation In Presence Of 
Parameter Variation 

 
 
 

5.1  Introduction 
 
In the previous chapter,  we have already developed observers based on low-cost sensors 
to estimate the non-measured dynamics states. These observers are developed based on 
two assumptions which has simplified the problem. Firstly,  the vehicle’s physical pa- 
rameters are assumed to be constants, which is not true in real condition. The changes 
in the vehicle’s mass, the position of CoG and the road grade angle will bring errors to 
the estimation. Secondly, we assume the available measurement about vehicle dynamics 
(the longitudinal speed, accelerations,  yaw rate) is reliable. However, those available 
measurement are always coupled with noises and errors.  The errors in these basic infor- 
mation would greatly influence the performance of the whole observer system. 

The major contribution of this chapter, is taking into account the variation of vehicle 
parameters and the unpredictable sensor errors in the estimation process. The vehicle’s 
physical parameters and other basic dynamics parameters are considered  as unknown 
variables  and estimated through the fusion of different  vehicle dynamics models and 
different sensors. Another important issue in this chapter is to propose a novel approach 
to employ the digital map to enhance road safety. The digital map contains information 
about the road geometry, which could be used to improve  the estimation of vehicle 
dynamics. The digital map and the inertial sensors should  be incorporated to evaluate 
vehicle’s safety. The performance of this algorithm is tested and compared with real 
experimental data. 

This chapter is organized  as follows. Section 5.2 presents the methods for improving 
the sensor  measurement. Section 5.3 introduces the method of estimating vehicle’s 
physical parameters.  Then, the use of digital map is presented in Section 5.4. In each 
section, the experimental data is presented to validate the proposed algorithm. 

 
 

5.2  Improvement Of Sensor Measurement 
 
The task of measurement becomes challenging  when we consider the occurrence of sensor 
errors. Sensor errors can be caused by many reasons, such as high temperature or low 
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battery or software bug. In real experiments,  undesired sensor errors could happen at any 
moment and could possibly  cause serious consequence. In order to solve this problem, 
we propose to use multiple models and sensors to estimate each dynamics  states. In 
this way, the estimation become less sensitive  to the error of one sensor,  as the error 
is corrected by the fusion of multiple sensors. In the section 5.2.1, we introduce the 
different models we developed for the calculation of vehicle’s kinematic and dynamics 
variables.   Then in section 5.2.2, we present  the whole state observer exploiting the 
measurement redundancy. 

 
 

5.2.1  Multiple measurement models 
 

Measurement of longitudinal velocity 
 

Vehicle longitudinal speed is usually regarded  as wheel speed. When rear wheels are 
rotating without  longitudinal slip, the relationship between wheel speed  and vehicle 
longitudinal velocity can be written as equation  5.1. 

 

vx,rl  = Ω21Ref f +  E ψ̇ + noise 
2 

vx,rl  = Ω22Ref f ­ E ψ̇ + noise 
(5.1) 

where vx,rl and vx,rr  are vehicle’s longitudinal speed computed  with the rear left and right 
wheel, Ref f is the effective tire radius, Ω21 and Ω22 are the angular velocities of rear left 
and right wheels respectively,  E is the vehicle track width, the noise represents model 
error. 

Nevertheless, wheel speeds could become unrelated  to the vehicle velocity when driving 
in slippery conditions. In this situation, we could use the integration method to obtain 
the vehicle longitudinal speed, as shown  in equation 5.2. 

 

vx,inter = 
´ 

ax ­ g sin θr dt + noise (5.2) 
 

where θr  is the slope angle of the road. 
In addition, the vehicle speed can also be obtained  by a GPS sensor and it is written 

as equation  5.3. 
 

 

vx,GP S = vgps cos βcog + noise (5.3) 
 

where vgps is the velocity measured by GPS, βcog is the sideslip angle at the center of 
gravity, the estimation of the sideslip angle is introduced in the previous chapter. 

As a conclusion, we have four sensors to measure the vehicle speed: two wheel sensors, 
the accelerometer and the GPS. 
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Measurement of yaw velocity 
 

Similar to the longitudinal velocity, the yaw velocity could also be observed by multiple 
sensors.  We propose four models for estimation of yaw velocity.  First of all, the yaw 
velocity could be measured by gyroscope sensors (ψ̇m), written as equation  5.4. 
 

ψ̇inertial  = ψ̇m + noise (5.4) 

In addition, the yaw rate can be computed by the difference between the speed of rear 
left and right wheels, as we can see in equation 5.5. 
 

ψ̇wheel =  Ω22  −Ω21
 

 
ef f + noise (5.5) 

 

Moreover, during slow turning, the yaw rate can be obtained according to the steering 
geometry: 
 

ψ̇steer  = vx(tan δf  ­ tan βr )/L + noise (5.6) 
 

where δf   is the steering angle at front wheel, βr  is the sideslip angle at rear wheel, L 
denotes the distance between front and rear axle. 

Another method to estimate yaw velocity is to differentiate the yaw angle,  as shown 
in equation 5.7: 
 

ψ̇dif f = (ψgps,t ­ ψgps,t−1)/ t + noise (5.7) 
 

where ψgps is the direction angle measured by GPS,   t is the step time. 
 

 

Measurement of Roll and Pitch Angle 
 

The roll angle can be calculated by integrating the roll rate measured by accelerometer. 
However, the sensor bias will also be integrated, leading to large calculation error. In 
this study, the roll angle and pitch angle are obtained via suspension deflection  sensors 
[Hac et al., 2004]. 
 
 

ϕv  = 
σ11 ­ σ12 + σ21 ­ σ22 

2E 

 

 
 
(5.8) 

 
θv = 

σ11 + σ12 ­ σ21 ­ σ22 
+ θ 

2L  s
 

where σij  is the measured suspension deflection  at corner of the vehicle, θs  is vehicle’s 
pitch angle when the vehicle is empty and static. 
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Measurement of accelerations 
 
 

 
 

Figure 5.1: Roll and pitch movement of vehicle body 
 
 

The accelerometer  measures directly the sum of accelerations  caused by the  vehicle’s 
motion and gravity, as illustrated in Figure 5.1.  In the vehicle dynamics model, the 
direction of acceleration should be parallel to the road. Thus a transformation should 
be realized,  as expressed by equation 5.9. 

 
f 

axequ ayequ azequ 

l
 

 

where the rotation matrices are : 

= Rθ Rφ 

f 
axm  aym  azm  

l
 

 

(5.9) 

 
� 

1 0 0 
�

 
�   

cos φv 0 sin φv   
�

 
Rθ = � 0   cos θv ­ sin θv 

0 sin θv cos θv 

� , Rφ = � 0 1 0 
­ sin φv 0   cos φv 

� (5.10) 

where θv  and φv are the pitch and roll angle of the vehicle chassis. axm  aym  azm  are the 
measured accelerations by the accelerometer installed at the vehicle body. 

The measured acceleration is also influenced by the vehicle vibration, especially in the 
vertical direction. The vehicle vibration could cause significant noises in the measure- 
ment. In order to filter out the noises, we introduce the following process model: 

 
r 

ȧ x 

 

ȧ y ȧ z  

l
 = 

r 
0  0  0 

lT
 

 

+ noise (5.11) 
 

The physical meaning of this process model is that the change rate of acceleration is 
close to zero. It actually works as a low-pass filter smoothing the direct measurement. 

 
 

5.2.2  Observer design 
 

The process for improving sensor measurement is presented by Figure 5.2. 
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Figure 5.2: Algorithm overview: Estimation based on the fusion of multiple sensors 
 
 

The estimation procedure is divided into 5 blocks. Each block of estimation is based 
on the Kalman filter algorithm.  The advantage of using 5 Kalman filters is to ensure 
the observability of each block and simplify the calculation of Kalman gain. The block 
of estimating the  sideslip angle and tire forces is already introduced in the previous 
chapter. In this chapter we focus on the estimation of vehicle speed, acceleration,  yaw 
rate. 

 

Estimation of vehicle longitudinal speed 
A linear Kalman filter is developed for estimation of vehicle longitudinal speed, expressed 
as the following equations: 

r 
v̇x  

l 
= 

r 
0 
l r 

vx  

l 
+ (axm  ­ gsinθr ) + cov(noise) 

 
� 

vx,rl 
�

 
� 

1 
�

 (5.12) 
� vx,rr 

vx,GP S 

� = � 1 � vx + cov(noise) 
1 

 

where vx,rl  and vx,rr  are obtained by equation 5.1. vx,GP S  is obtained by equation 5.3. 
 

Estimation of accelerations 
A linear Kalman filter is developed for estimation of accelerations,   expressed as the 
following equations: 
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� �

 

 
 

� 
ȧ x  

�
 

� � 

� 
ax  

�
 

3×3 � � 
� ȧ y 

ȧ z 

� = 0 � ay 

az 

� + cov(noise)  

 
 
 
(5.13) � 

axequ 
� a 

� � 
1   0   0   0 

�
 

ax � � 0   1   0   0 � � yequ � � � � � 
� � = � � �  ay � + cov(noise) 
� azequ � 

g cos ϕr cos θr 

� 0   0   1   0 � 
a 

0   0   1   0 z
 

 
Estimation of yaw speed 
We used 4 models for computing yaw rate, represented by equation 5.4-5.7. Then the 
four models are combined in the Kalman filter to estimate the yaw rate, expressed  as 
equation 5.14. 

 
� 

δ̇   
�

 
� 

0   0   0 
� � 

δ  
�

 
�  ¨ � � � �  ˙  �

 
� ψ � = � 0   0   0 � � 
ψ 

� + cov(noise) 

ψ̇  0   1   0 ψ 
 

� 
δC AN  

�
 

� ψgps 
� � � 

�  
1 0 0 

�
 

�  0 0 1 � � 
δ  

�
 � � 

(5.14) 

�  ˙ � = �
 � �  ˙  � 

� ψinertial   � � � �  0 1 0 � �  ψ 
� � � + cov(noise) 

�  vy, rear    � 
ψ̇wheel 

� vx  ­L   0 � ψ 
0 1 0 

 

where δC AN   represents the steering angle obtained from CAN bus, ψGP S  is the heading 
angle measured by GPS sensor, ψ̇inertial  represents the yaw rate measured by inertial 
sensor, ψ̇wheel  is the yaw rate obtained from wheel speed sensor,  vy, rear   is the lateral 
speed at rear axle, and is approximated to zero. 

It is noted that the vehicle direction measured by GPS, ψGP S , is within the range 
of[0, 2π].   Every time when it passes 2π,  it will  dramatically drop to 0.  The rapid 
change of ψ will cause errors in the estimation of yaw rate. In order to eliminate this 
effect, we regard ψGP S  as invalid measurement only when ψGP S ∈ 

r 
71 π, 2π

l 
∪ 

r
0,   1 π

l
, 

 

represented by equation 5.15. 
36 36 

 
(

1000000 if ψGP S ∈ 
r 

71 π, 2π
l 

∪ 
r
0,   1 π

l 
Ryaw (2, 2) = 36 

0.1 otherwise 
36 (5.15) 

 
where Ryaw  is the covariance matrix of observation model. Ryaw (2, 2) is the variance of 
measurement ψGP S . 
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5.2.3  Experimental validation 
 

A slalom test is conducted with our experimental vehicle (DYNA)  to validate the per- 
formance of the observers developed in section 5.2.2. During this slalom test, the speed 
was about 60km/h, the maximal lateral acceleration  was beyond 10m/s2, as shown  in 
Figure 5.3. 
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Figure 5.3: Description of slalom test 
 

 
5.2.3.1  Validation of different kinematic models 

 

Before presenting the results of the fusion of multiple models, we would like to validate 
the accuracy of each kinematic model introduced in section 5.2.1. The four models for 
computing vehicle speed (vx,rl , vx,rr , vx,inter , vx,GP S ) are compared in Figure 5.4. 
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Figure 5.4: Validation of four models for estimating longitudinal velocity: “Rear right 

wheel” refers to vx,rr , “Rear left wheel” refers to vx,rl ,“GPS” refers to vx,GP S 
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The speed obtained  by GPS (vx,GP S ) is regarded  as the reference data, represented by 
the green lines. The direct integration method (vx,inter ), represented by cyan dotted lines, 
showed less accuracy  than the other models due to the accumulated errors. Before and 
after the slalom behavior (t < 52s and t > 67s), we can see the results of vx,rl  and vx,rr 

were identical with the reference data. It proves that during normal driving behavior 
(with small tire slip), the wheel speed can be regarded as the vehicle’s longitudinal speed. 
However, during the slalom behavior, vx,rl   and vx,rr   were different  with the  reference 
data.  The difference is caused by the excessive tire slip during slalom behavior. The 
GPS measurement has the advantage of being accurate regardless of the tire slip , but 
it has the problem of signal lost in real driving scenarios. The motivation of the fusion 
of the four models is to filter out the errors of each model. 

Similarly, we also compared the four models (ψ̇inertial , ψ̇wheel , ψ̇steer ,ψ̇dif f ) for esti- 
mating yaw rate in Figure 5.5. Taking the measurement  of gyroscope (ψ̇inertial ) as a 
reference, we can see yaw rate computed by wheel speed model (ψ̇wheel ) is close to the 
real data.  The small time delay between the ψ̇inertial  and ψ̇wheel  is caused by the tire 
slip. The yaw rate computed by steering model (equation 5.6) was less accurate  in this 
intense slalom test. During slalom behavior, vehicle’s heading angle didn’t change a lot, 
therefore, the derivative of heading angle was a rough estimation of yaw rate. 
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Figure 5.5: Validation of four models for estimating yaw rate: “Gyroscope” represents 

direct measurement, “Wheel speed model” refers to equation 5.5, “Steering 
model” refers to equation 5.6, “Heading angle model” refers to equation 5.7 

 
 

The roll angle obtained by integration method and suspension deflections  are com- 
pared in Figure 5.6.  The integration method will  accumulate  considerable errors, as 
shown by the green line.  In contrast, the suspension deflections  method shows more 
accurate results. The fusion of the two model also provided good accurate estimation. 
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Figure 5.6: Estimation of vehicle roll and pitch angle. In this figure, the red lines are 
vehicle’s accelerations which could indicate the roll and pitch motion of ve- 
hicle. “Fusion” represents the results obtained by the fusion of integration 
method and suspension method. 

 
 
5.2.3.2  Fusion of multiple models to correct  sensor errors 

 

The advantage of fusion of multiple models is the ability to stay robust in presence of 
sensor errors. Even when the GPS and gyroscope are not working, we can still estimate 
the vehicle speed and yaw rate, as shown in Figure 5.7. The data of GPS and gyroscope 
was used only as reference. 
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Figure 5.7: Estimation of vehicle longitudinal speed and yaw rate based on sensor fusion. 
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5.3  Vehicle Physical Parameters 
 
This section describes the mathematical models  used to identify the value of vehicle 
parameters. In real driving condition, the vehicle parameters can vary a lot, such as 
the weight of vehicle, the cornering stiffness of tire.  In chapter 4, the Test 6 and Test 
7 ( tests at slippery road and banked road) have demonstrated that the knowledge of 
cornering stiffness and road angle is important to the good performance of observer. For 
this reason, we proposed to regard these physical parameters as unknown variables and 
estimate these parameters in real time. The parameters we will estimate in this chapter 
are listed in Table 5.1. 

 
 

Table 5.1: parameters of the vehicle 
 

  parameters   parameters

mv vehicle weight φr bank angle of the road 
L1 position of COG θr incline angle of the road 
Cβ cornering stiffness    

 
 

5.3.1  Parameters and models 
 

Vehicle mass 
 

Nowadays, many modern vehicle suspensions are equipped with relative position sensors 
to measure suspension deflections  σij   at each corner.  At a passive  suspension  with 
linear spring characteristics, a variation of sprung mass at each corner,   msij , changes 
the spring deflection. 

msij = 
ksσij  + Finternal 

az 
(5.16) 

where σij  is the spring deflection, ks  is the stiffness of suspension, Finternal is the inter- 
nal forces between  each quarter of the body, which could be introduced by the lateral 
and longitudinal accelerations.  The total mass of the vehicle could be obtained by the 
deflection of suspension, expressed by: 

 

m  = m  + 
ks 
)

 
z 

 

σij (5.17) 

 

where me is the mass of empty vehicle. 
In our vehicle, the suspension deflection is not directly measured. The installed laser 

sensors actually measure the distance between the road surface and the vehicle body, 
hij . Therefore, the variation of vehicle mass could be obtained by 

mg = a1 

) 
hij  + a2 (5.18) 
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where a1and a2  are empirical parameters, they represent the stiffness of the suspension. 
We set them as a1 = ­24464, a2 = 23603. 

 
 

Position of CoG 
 

The position of CoG, L1, refers to the distance between the front axle and the center of 
gravity. The larger the L1  is, the more load the rear axle will have. It could be explained 
by the moment balance with respect to pitch axis, as expressed by equation 5.19. 

 

F zf  ∗ L1 ­ F zr  ∗ (L ­ L1) = ­mv haxm  (5.19) 
 

where F zf  and F zr  are the vertical load at front and rear axle respectively. 
In the literature, the position of COG is seldom discussed and normally considered 

as a known constant. In this thesis, we employed the suspension deflection to identify 
this parameter. At static situation, the vertical load at each tire can be obtained by 
the suspension deflection,  as introduced in section 2.4.1.2. Then the position of CoG is 
expressed as 

n1(σ21 + σ22) + n2 haxm 

L1  = 
n3(

2: 
σij 

 

) + n4 
L 

azm 
(5.20) 

where h is the height of CoG, n1···4 are the empirical parameters determined by experi- 
ments. 

When the vehicle is parking on a level road, the calculation is further simplified as 
 

n1(h21 + h22) + n2 

L1  = 
n3(

2: 
hij 

 

) + n4 
L  (5.21) 

In our experiment, the parameters are configured   as n1   = ­23014,  n2   = 16302, 
n3 = ­24464, n4 = 38723. 

 

 

Cornering  stiffness 
 

Cornering stiffness, also called sideslip stiffness, is the key parameter to employ the linear 
tire model and Dugoff ’s tire model. It can reflect the ability of a tire to generate lateral 
forces. Normally, the cornering stiffness is supposed to be proportional to the road 
friction coefficient. Cβ ∝ µ. To some degree, estimating the cornering stiffness is equal 
to estimate the road friction coefficient. In [Ahn et al., 2012], the authors present four 
methods to estimate the friction coefficient based on four different excitation conditions: 
medium lateral excitation, large lateral excitation, small longitudinal excitation, and 
large longitudinal excitation. In this work, both tire forces and steering torques are used 
as inputs to estimate the road friction.  In this thesis, the estimation is only based on 
the low-cost  sensors and linear tire model. To simplify the problem, we only consider 



145

5 Adaptive Estimation In Presence Of Parameter Variation  

 

ym 2  ­

y(t) =  v 

21

x� �
L

 
 

the the medium lateral excitation condition. The cornering stiffness is estimated only 
when the vehicle is undergoing a slalom test. 

According to linear tire model and bicycle models, the lateral tire forces at each axle 
can be approximated  by the following equations: 
 

F yf  = ­2Cf (β + ωL1/vx ­ δf ) 
F yr  = ­2Cr (β ­ ωL2/vx) 

F yf  + F yr  = mv (aym + L2ω̇ ) 

 

 
(5.22) 

Iz ω̇ = L1F yf  ­ L2F yr 
 

To eliminate the β in (5.22), we assume the cornering stiffness of front and rear wheels 
are identical, Cf  = Cr  = Cβ . Then we have the estimation model for cornering stiffness 
as follows: 

2(ωL ­ vxδf )Cβ  = vxmv 
L1 ­ L2

(a  + ω̇ L )  2 
L 

Iz ω̇ 
vx  (5.23) 

L 
 

Road grade angles 
 

As mentioned in section 4.5.7, the negligence of road angles could cause significant errors 
in the estimation of sideslip angle. In this thesis, we use the inertial sensors to get a 
rough estimation of the road angle. The road angles can be extracted from the measured 
acceleration with equation 5.24. 
 

θr  = (axm  ­ v̇x)/g 
φr  = (aym + vxψ̇ )/g 

 

(5.24) 
 

 

5.3.2  Observer Design 
 

For the purpose of simplification, we employed the recursive least squares (RLS) algo- 
rithm to estimate these constant parameters, shown in equation 5.25. 
 

y(t) =  ϕT (t)θ(t) (5.25) 
 
where the estimated parameter θ(t), input regression ϕT (t), and measured output y(t) 
are given as 

θ(t) = [mv , L1, Cβ , θr , ϕr ]T 
 

ϕT (t) = diag[g, n3(
2: 

hij ) + n4, 2(ωL ­ vxδf ), g, g] 

 
� 

a1 
2: 

hij  + a2 + meg 
�

 
� n1(h � + h22 )L + n2L  � � � � 

mv � � 

L1 ­ L2 

L 

 

(aym 

 

+ ω̇ L2) 
Iz ω̇  

� 
­ 2 vx  

�
 � � 

� axm ­ v̇x  � 
aym ­ vxψ̇ 
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The recursive  process of the RLS algorithm, in a Kalman filter  interpretation,  is 
described  as [Nam et al., 2013]: 

 

θ̂(t + 1) = θ̂(t) + K (t + 1) · ε(t + 1|θ̂(t)) 
ε(t + 1|θ̂(t)) = y(t + 1) ­ ϕT (t + 1)θ̂(t) 

K (t + 1) = P (t)ϕ(t + 1)[λI + ϕT (t + 1)P (t)ϕ(t + 1)]−1 

P (t + 1) =  1 [I ­ K (t + 1)ϕT (t + 1)]P (t) 

(5.26) 

 

where I is the identity matrix, ε(t) is the prediction error, K (t) and P (t) are the Kalman 
gain and covariance matrices, respectively, λ is the forgetting factor. The smaller λ is, 
the less weight is assigned to the older data. In our test, λ = 0.99. 

 
 

5.3.3  Experimental Validation 
 

Estimation  of vehicle mass: 
To validate  our algorithm of estimating vehicle’s  mass, we changed the number of 

passengers (including the driver) from 0 to 3. During the test, the vehicle was parked on a 
well paved road. At the beginning, the vehicle was empty. Then during 130s < t < 180s, 
there were three passengers in the car, one sitting on the rear right seat and the other 
two sitting on the front seats. When 180s < t < 200s, there was only one passenger 
sitting on the front right seat. When 200s < t < 260s, there were three passengers. 
When 260s < t < 320s, there were two passengers sitting on the front seats. Figure 5.8 
shows the comparison between measured and estimated value of vehicle’s total weight. 
The The experimental results validated that the deflection of suspension could effectively 
represent the variation of vehicle’s mass. 
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Figure 5.8: Comparison of the estimated variation of vehicle weight with real data. “sus- 
pension” corresponds to the estimated value by suspension deflection. 

 
 

Estimation  of position of COG: 
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During the same test, we also validated the algorithm for estimation of position of 
CoG. In Figure 5.9, the blue lines illustrated the estimation results of the RLS estimator. 
When the vehicle was empty, the position of CoG is at a distance of 1.22m from the 
front axle. When there were one or two passengers sitting on the front seats, the CoG 
moved closer to the front axle. When there was passenger sitting on the rear seat, the 
CoG moved closer to the rear axle. The proposed estimator provided a good estimation 
of position of CoG. 
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Figure 5.9: Experimental  results of the estimator for position of CoG. “suspension” cor- 
responds to the value estimated with suspension deflection. 

 

 

Estimation  of cornering stiffness: 
The model for estimating cornering stiffness (equation 5.23) is only valid under con- 

siderable lateral acceleration, therefore the estimation is activated only at slalom test. 
We use the data of two different slalom test to validate our algorithm. 
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Figure 5.10: Estimation results of the cornering stiffness: a) slalom test at dry road; b) 
slalom test at wet slippery road 
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The first test is the Test 2 in section 4.5.2, a slalom test at dry road. The estimated 
cornering stiffness is illustrated in Figure 5.10.a). The estimated value, Cβ , was varying 
in the range of (3.6 ~ 4.4) × 104. The proposed algorithm is only capable of providing 
a rough estimation due to the simple model we used. Accurate estimation of cornering 

 

stiffness is a very challenging task.  Recent  works can be found in [Ahn et al., 2012]. 
The final estimation result of cornering stiffness is about 4 × 104 N/rad.  To evaluate 

the estimated  cornering  stiffness, we also illustrate the tire forces and the tire sideslip 
angle obtained by direct measurement in Figure 5.10.a). The results showed that our 
estimated cornering stiffness could generally fit these points. 

The second test is the Test 6 in section 4.5.6. The slalom test was conducted  at a 
slippery road. The proposed RLS algorithm could also roughly estimate the cornering 
stiffness. The estimated value of Cβ  is about 3 × 104 N/rad.  Comparing Figure 5.10.a) 
and 5.10.b), we can find that the estimator  has successfully detected the drop of cornering 
stiffness. 

Estimation  of road angle: 
The algorithm for estimation of road angle is validated by Test 7:  a slalom test 

at banked road.  The maneuver time history is illustrated in Figure 4.65. The bank 
angles at high, middle and low track were about 40 degree, 30 degree and 15 degree 
respectively. The estimated road angles are presented in Figure 5.11. We can find the 
proposed algorithm has successfully estimated  the road angles. 
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Figure 5.11: Estimation results of the road angles 
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5.4  Prediction Based On The Use Of OpenStreetMap 
 
5.4.1  Introduction 

 

This section presents a novel approach for estimating and predicting vehicle dynamics 
states by incorporating digital road map and vehicle dynamics models. In Chapter 4, 
we presented  different  observers to estimate vehicle dynamics states. However, these 
observers are only capable of estimating vehicle dynamics  states at a current  instant 
but not to predict the potential dangers in a future instant. In order to make time for 
correcting drive behaviors, especially when driving at high speed, it seems very appealing 
for us to predict an impending dangerous event and react before the danger occurs. 

In order to predict the accidents, the knowledge of the upcoming road is necessary. In 
[Wang, 2013], the author proposed to use the infrastructure to communicate the road 
curvature information to the vehicle. Then based on the road information, the vehicle 
would decide whether the current speed is safe to pass through the upcoming corner. 
Inspired by this work, we would like to develop an active safety system to warn the drive 
about the potential accidents based on the digital map. 

It is very meaningful to put useful information into the digital map, such as  the 
road curvature, road angle and even road coefficient. Then by using the digital map, 
we could not only predict the vehicle’s safety at future instant  but also improve  the 
estimation of vehicle dynamics  states at current  instant.  After the prediction of ve- 
hicle dynamics states, the evaluation of accidents risk is also a challenging work.  In 
the literature, various methods are presented to develop accidents risk assessments.  In 
[Bouton et al., 2007], a rollover indicator is proposed to predict the vehicle rollover phe- 
nomenon of light all terrain vehicles.  Some other vehicle rollover prediction method can 
be equally found in [Imine and Dolcemascolo, 2007] for heavy vehicles. [Sentouh et al., 2006] 
proposes an algorithm for the curve speed prediction which addresses control loss due 
to excessive speed in curves. In this thesis, we propose to use the tire forces to evaluate 
vehicle’s safety. 

The main contribution of this section is to incorporate the digital-map and inertial 
sensors to estimate and predict the safety of vehicle. The method of how to read the 
road information from the digital map is presented in Section 5.4.2. Then section 5.4.3 
introduces the risk assessment index. In Section 5.4.4, the whole estimation algorithm 
is presented. The results of experimental validation is illustrated in Section 5.4.5. 

 
 

5.4.2  Road Geometry Estimation 
 

The digital map we used is the OpenStreetMap(OSM). OSM [http://openstreetmap.fr] is 
a free editable map capable of describing a variety of information about roads. Typically, 
the OSM data is stored in a xml file.  The OSM data model consists of three basic 
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Table 5.2: Tags attributed to Critical Points 
 

Longitude Position Latitude Position Altitude 

x y h 

Road Direction Curvature Vertical curvature 

ψr κ ρ 

Road Friction Bank Angle Slope Angle 

µ ϕ θ 

ID in OSM Number of lanes Number of roads 

I dosm Nlane Nroad 

 
 

Table 5.3: Tags attributed to Corridors 
 

Id of Beginning CP Id of Ending CP Length of Corridor 

I d0 I dn Lcorr 

Id of corridor Curve or Line Stop or Not 

I dway Rcurve = {0, 1} Rstop  = {0, 1}
 
 

geometric elements:  1,N ode, which defines points in space. Each node comprises at 
least an id number and a pair of coordinates.  2,W ay, which represents linear features 
and area boundaries  and is defined by an ordered list of nodes. 3, Relation, which is 
used to explain how other elements work together. Each element can be attributed to 
multiple tags to represent different road information. 

 

 

Road geometry description 
 

The first  problem we encountered  is how to describe the road geometry with  a dig- 
ital  map.  Currently,  there is no available digital  map which has already contained 
the information about road curvature, road angle and road coefficient.  Therefore, we 
would like to create a new map database.  The OSM is a good tool to create new map 
database. We firstly measured the road curvature, road bank angle and road coefficient 
[Ghandour,  2011]. Then we put these information in the OSM. In OSM, a road is repre- 
sented by intensive and consecutive way points. It is unpractical to attribute road infor- 
mation to every way point, due to the huge amount of work needed. We only attribute 
road information to the points where the road condition changes a lot.  These points 
are called as Critical Point (CP), as critical situation could happen here (roundabout, 
slippery region or traffic light stop). After the CPs are defined, the vehicle path could be 
represented by the CPs and the corridors between two CPs [Victorino et al., 2003]. The 
list of tags we attributed to each CP is illustrated in the Table 5.2. Then the corridors 
can be obtained by connecting two CPs, as illustrated in Table 5.3. 

It is noted that  the connections between two  CPs can be straight  lines or curves. 
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In order to simplify the representation of the vehicle’s travel path, the CPs should be 
selected carefully and the following assumption is made. 

❼  Hypothesis 1: The CPs are carefully selected so that each corridor is represented 

by a straight line or a clothoid, defined by equation 5.27; 

❼  Hypothesis 2: The length of each corridor is known; 

❼  Hypothesis 3: The road condition is linearly distributed along the whole length of 

the corridor, as explained  by equation 5.28. 
 
The clothoid is widely used in urban road construction for representing curved road 
[Kühn, 2013]. They are defined by their begin curvature κ0  and a constant curvature 
change rate κ1  and their total length l. The current curvature of a clothoid after length 
lc can be obtained by equation 5.27. 

κ(lc) = κ0 + κ1 · lc  (5.27) 

The road information stored in the CPs is manually attributed,  then the road in- 
formation of the point  between two  CPs is obtained through the linear interpolation 
method. 

 

Statecurrent  = (1 ­  L  )StateC P 0 +  L  StateC P n  (5.28) Lcorr Lcorr 
 

where State means the road geometry information listed in Table 5.2, State = [x y h µ κ θ ϕ ρ ψr ], 
the index “current” means the current point, “C P0” represents the beginning point of 
the corridor and “C Pn” corresponds to the ending point, L is the length between the 
current position and C P0. 

 

 

Vehicle localization 
 

The vehicle location is measured by a differential GPS sensor.  However,  the GPS has 
the problem of signal lost. Therefore, the Extended Kalman filter algorithm is employed 
to incorporate the direct measurement and the integration of speed. The continuous 
state equations and measurement models are given by equation 5.29. 
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·

ψ ψ

 
 
 

Process model 
� 

Ẋ   � 
� Ẏ   � � � � � 

�  
sin(ψ) · vx   

�
 

�  cos(ψ) vx   
� � � � � 

� v̇x � = � ax ­ g sin θ � + noise 
�   ˙  � � ¨ � � � � � 

ψ̈ 0 
 
 

 
�  

Xgps    
�

 
�  Ygps   

� 

 

Observation model : 
� 

1   0   0   0   0 
� 

� 
X  

� 
� 0   1   0   0   0 � 

(5.29) 

� � � � � Y  � �   v � � 0   0   1   0   0 � � � 
� gps � � � � � 
� � = � � �  vx � + noise 
�  ψgps   � � 0   0   0   1   0 � �  

ψ 
� � 

vwheel  
� � 

0   0   1   0   0 
� � � � � 

ψ̇gyro 

� � 
ψ̇ 

0   0   0   0   1 
 

where Xgps, Ygps, vgps, vwhell , ψgps, ψ̇gyro are the measurement of GPS receiver and inertial 
units, ψ is the clockwise angle between the north and the vehicle direction.  In this 
equation,  we suppose the lateral speed is negligible in the calculation of displacement. 

 

 

Map matching 
 

When using the CPs and corridors to represent the path, we have simplified the map 
matching problem into a one-dimension localization problem, as illustrated in Figure 
5.12. 
 

 
 

Figure 5.12: Topological representation of vehicle path 
 
 

The map matching process can be divided into two  steps: firstly searching for the 
corresponding corridor and secondly localizing the vehicle’s position in the corridor. In 
the one-dimension localization problem, the most important  information is the total 
travel length, ltotal . When the vehicle is at the initial position, the total travel distance 
(ltotal ) equals to zero. Then the travel distance can be calculated  with the Kalman filter 
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i=1

 
 

expressed in equation 5.30. 
 

Process model f
l̇total 

l 
= 0 × [ltotal ] + [v] + noise 

 

 
Observation model 

[lmap] = [ltotal ] 

 
 
 
(5.30) 

 

where v is the speed of the vehicle, lmap is the travel distance read from the map, which 
is explained later by equation 5.33. 

Based on the calculated travel distance , the criterion for matching the corridor of 
number n is given by equation 5.31. 
 

2:n−1 n
 

i=1  Lcorr, i < ltotal < 
2:

i=1 Lcorr, i (5.31) 
 

where Lcorr, i is the length of the ith corridor. 
To further confirm the matching result obtained by equation 5.31, the estimated ve- 

hicle current location (Pcurrent) is used to check whether the vehicle is really within the 
located corridor. If the following equation is satisfied, then the corridor is regarded  as 
the current corridor. Otherwise the nearby corridors will be checked. 
 

dis(Pcurrent, corridorn) < ε  (5.32) 
 

where dis(·, ·) means the function to calculate the distance between two points or a point 

and a straight line, ε is the threshold to decide whether the point is within the corridor. 
After the current corridor, corridorn, is identified, we can calculate the travel distance 

with the information in the map, as expressed in equation 5.33. Then the travel distance 
obtained from map (lmap) is used to correct the accumulated errors in the integration of 
speed. 

 

dis(Pcurrent, C Psta) n−1 ) 
lmap = 

dis(P 
 
current 

 

, C P 
 
sta 

 

) + dis(P 
 
current 

 

, C P 
 
end 

Lcorr, n + 
)  

i=1 

Lcorr, i (5.33) 

where C Psta and C Pend are the starting and ending points of corridorn, we can find that 
every time the vehicle  passes a CP, the travel distance ltotal will be calibrated by the map 
information. 

 

 

Map Reading 
 

We remember that the reading of the map is based on the travel distance,  as previously 
explained in equation 5.28. 

For the reading of current road information, L = ltotal ­ 2:n−1 Lcorr, i. 
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i=1

x

x

µij  =

 

 

For the reading of the future road information, L = lf ut  + ltotal ­ 2:n−1 Lcorr, i.where 
lf ut  is the distance before vehicle’s current position. 

After reading these information from the map, we can predict the kinematic parame- 
ters of the vehicle with equation 5.34. 
 

axosm = dvx/dt + g sin θosm 

ayosm = v2 κosm + g sin ϕosm 

azosm = v2 ρosm + g cos θosm cos ϕosm 

 
 
 
(5.34) 

ψ̇osm = vxκosm 

δosm  = Lv κosm 
 

where θosm  and ϕosm   are the slope and bank angle of the road, ρosm  is the vertical 
curvature of the road, κosm  is the road curvature. 

The most important  information from the map is the curvature of road, κosm.   If 
the vehicle follows the road curve, κosm  could be regarded  as the curvature of vehicle’s 
trajectory. The lane changing behavior  can be viewed as a noise of the κosm. The noise 
variance of κosm  is set as 0.032. When κosm  is the curvature at current point, equation 
5.34 is an redundant resource of current dynamics states. When κosm  is the curvature 
at future point, the obtained accelerations and yaw rates are used to anticipate the tire 
forces. 

 
 

5.4.3  Risk assessment 
 

In order to evaluate vehicle’s safety, we employ three risk assessment  indexes:  load 
transfer ratio (LT R) and lateral skid ratio (LSR),  and the stopping distance (SD) 
[Imine and Dolcemascolo, 2007]. These risk assessments are based on the awareness of 
tire forces. The estimation of vertical and lateral tire forces and slip angle are already 
explained in Chapter 4.  The lateral load transfer ratio LT R is defined by using four 
wheel vertical forces as in equation (5.35). 

Fz11 ­ Fz12 + Fz21 ­ Fz22
 

LT R =  
Fz11 + Fz12 + Fz21 + Fz22 

(5.35) 

 

The lateral skid ratio LSR represents the loss of adhesion resulting in the lateral drift. 
The lateral skid ratio is defined by road friction coefficient and tire forces, as in equation 
5.36. 
 

LSRij  = 1 ­ µmax  ­ µij 

µ
 

 
Fyij 

Fzij 

max (5.36) 

 

where µmax  is the threshold of safe friction, it should be smaller than the real friction 
coefficient. 
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The stopping distance (SD) refers to the distance  needed to stop the vehicle. We 
assume that during the stopping process, the braking acceleration is a constant value 
axmax.   The axmax   is defined as  to ensure the comfort of passengers.   The stopping 
distance can be obtained by equation 5.37. 
 

SD =      1      v2 + vxte (5.37) 
 
where te is driver’s response time delay. 

2axmax    x 

 
 

5.4.4  Prediction Algorithm 
 

The overall prediction process can be expressed by the Figure 5.13. 
 

 
 

Figure 5.13: Overall structure of vehicle safety prediction system 
 
 

The sensor measurements  are used to locate the vehicle’s position and identify the 
corresponding corridors and CPs. Then CPs can provide information about road fric- 
tion coefficient which can improve the the estimation of current states. Moreover, by 
extracting the upcoming CPs, the estimator could anticipate the potential variation of 
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dynamics states. Then the dynamics states of current instant and future instant will be 
evaluated by three indicators of safety, introduced in the above section.  To simplify the 
prediction process, the vehicle keeps the current speed during the coming road. The pre- 
diction system will perform the risk assessment for the coming 300m road. If a potential 
danger is detected, the system will warn the driver to slow down. 

 
 

5.4.5  Experimental Validation 
 

Our current map database only contains the information about the road near our school, 
as shown in Figure 5.14.  In the experiment, the vehicle has followed the  trajectory 
indicated in this figure.  The prediction algorithm was  implemented in Matlab and 
validated by using the experimental data from this test. 
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Figure 5.14: Vehicle’s trajectory and maneuver time history: at t = 150s , the vehicle 
is at the point of black circle, t = 250s, the vehicle is at the point of black 
star. 

 
 

In total, 53 critical points and 52 corridors were defined to describe the trajectory. 
More CPs were defined around the sharp turning and road intersection in order to better 
describe the road. Some examples of CPs and corridors are demonstrated in Table 5.4. A 
segmentation of data (150 < t < 250s) is selected due to the successive turning behaviors 
in this period, represented by the black line in Figure 5.14. The maneuver time history 
are presented by red lines in Figure 5.14. The average speed is about 50 km/h.  The 
curvature at each critical point is illustrated by red spots in Figure 5.15. As we can see 
in this figure, the interpolation method (represented by red lines) was a simplification of 
real road geometry and was not always accurate. However, it effectively represented the 
main characteristic of the road. In the bottom of Figure 5.15, we also demonstrated  the 
result of localization. We have successfully estimated  the travel distance, and therefore 
we were able to read the geometry information about the road. 
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CP ID x(m) y(m) h(m) ψr (➦) κ ρ µmax ϕ(➦) θ(➦) 

. . . . . . . . . . 

7 -717.7 986.7 52.6 333.3 0 0 1 0 5 

8 -748.1 1066.1 56.8 2.1 -0.031 0 1 0 0 

9 -743.6 1103.3 57.0 343.7 0.046 0 1 0 0 

. . . . . . . . . . 

  Corridor  Id I d0 I dn Lcorr (m) Rcurve Rstop  

. . . . . . 
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Table 5.4: The construction of Critical points and corridors 
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Figure 5.15: The value of curvature stored in each Critical Point 
 
 

The obtained curvature was used to compute the value of accelerations and yaw rate 
with  equation 5.34.  The comparison  between inertial sensor measurement  and digi- 
tal map based (OSM) estimation was illustrated in Figure 5.16. Then two  data are 
incorporated to provide a robust estimation about the basic dynamics parameters,   as 
represented by the green lines in the same figure. The obtained kinematic parameters 
were used to estimate the tire forces and sideslip angle with the observers developed in 
chapter 4. The estimation results of tire forces are compared with the measurement of 
force transducer in Figure 5.17. The red lines are the measurement data. The green lines 
represented the estimation result based on inertial sensors.  The blue lines correspond 
to the estimation result based on the OSM. The accuracy of the OSM method depends 
on the intensity of critical points and map quality.  Moreover, it is also based on the 
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condition whether the vehicle has successfully followed the planned path. 
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Figure 5.16: Comparison  of lateral dynamics states estimated by inertial sensors and 
OSM 

 
 

At t = 175s, the driver did a lane changing behavior, which was not in the planning 
and caused some errors. As demonstrated by the experimental result, the inertial sensor 
based method can better follow the vertical force variation, while, the OSM based esti- 
mation method is accurate when the vehicle is following the curve. Fusion of these two 
estmation provides a better estimation of vertical force, as expressed by solid black lines 
in the Figure 5.17.a). The similar situation can be found in the estimation of lateral 
force. The advantage of OSM is obvious in the estimation of sideslip angle. The OSM 
method could get the correct Cr   from the digital map. It is clear that the combined 

method provided a better estimation of sideslip angle. 
Every time we localized the vehicle’s position, we also got the curvature of the following 

300 meters ahead of the vehicle’s current position. Then these information was used to 
predict the vehicle dynamics states with equation 5.34. And the vehicle’s safety was 
evaluated with the index introduced by equation 5.35-5.37.  Figure 5.18 illustrated the 
prediction of vehicle’s safety situation in the following 300 meters at instant t = 160 s 
and t = 180 s. The results showed at instant t=180s, the algorithm detected potential 
dangers in the upcoming path. 
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Figure 5.17: a) Estimation of of vertical forces at each tire; b) Estimation of lateral forces 
at each tire: comparison  between sensor measurement and estimation 
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Figure 5.18: Prediction of vehicle safety in the following 300 meters road 
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5.5  Conclusion 
 
This chapter considers the estimation problem in a more challenging and realistic con- 
text,  which is to consider the presence of sensor errors and the variation of vehicle 
parameters. The vehicle speed, accelerations, yaw rate and other basic sensor measure- 
ments are usually regarded as available  from the sensors.  In real driving scenario, it is 
quite possible that these sensors may contain fatal errors resulting in the malfunction of 
observers.  In order to make the observers robust even in presence of sensor errors, we 
propose to use the Kalman filter to improve the accuracy of these basic measurements. 
In this thesis, these basic vehicle dynamic states are estimated with different models. 
Besides the errors of sensors, the variation of vehicle physical parameters could also in- 
troduce significant errors in the estimation. The vehicle  mass and the position of CoG 
are the key parameters to estimate vertical forces at each tire. The sideslip stiffness and 
the road grad angle have great impact on vehicle’s lateral dynamics. These physical 
parameters are usually regarded as constant values. In this chapter, we proposed several 
models to calculate these parameters.  Then the RLS algorithm is employed to improve 
the estimation of parameters. 

Another contribution presented in this chapter is to propose an algorithm to improve 
the estimation and prediction of vehicle’s dynamics states by incorporating the knowl- 
edge of the environment around the vehicle, provided by a digital map.  The current 
and future road information was obtained from the digital map after the localization 
process.  Then the vehicles models and map data are combined to evaluate the safety 
of the vehicle, from the evaluation of the risk indicators in a diagnosis algorithm. Ex- 
perimental results validated the proposed algorithm. The future work will focus on the 
improvement of map quality and localization accuracy. 
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6  Conclusion And Perspectives 
 
 
 

6.1  Conclusions 
 
More and more intelligent vehicle safety systems have been developed in the university 
laboratories and research centers. To reduce the complexity of problem, many intelli- 
gent systems can only work in a limited speed and a simplified scenario. Expansion of 
these intelligent systems from the early-stage development into the real application re- 
quires an accurate estimation of the vehicle dynamics states in uncertain environments. 
This requirement mainly involves three challenging problems: 1, extract useful informa- 
tion about the immeasurable dynamics states from the limited measurements; 2, stay 
robust and accurate against the uncertain disturbances  caused by the sensors or the 
environment; 3, provide state estimation and risk prediction in real time. Specifically, 
the mentioned immeasurable dynamics states include the tire forces and the sideslip an- 
gle. Current and future vehicle control systems would benefit from knowledge of these 
fundamental variables of the vehicle’s handling. In this thesis, our solution to the three 
challenging problems can be briefly concluded  as one word: Observer. However, con- 
struction of an observer which could provide satisfactory performance at all condition is 
never simple. It requires: 1, accurate and efficient models; 2, a well-developed estimation 
algorithm; 3, more sources of reliable information. As motivated by these requirements, 
this dissertation  was organized  to present  our contribution in three aspects: vehicle 
dynamics modelization,  observer design and multi-sensor fusion. 

Chapter 2 reviewed the state of the art in the field of vehicle dynamics modeling and 
proposed some novel models to reduce the model errors caused by the road condition. 
The role of modelization is to find the relationship between the unmeasured states and 
the measured states. It is the fundamental step to extract information from the available 
measurements.  The existent models are obtained by simplifying the vehicle motion as 
a planar motion.  In the proposed  models,  we described  the vehicle motion as a 3D 
motion and considered the effects of road inclination. We also proposed to incorporate 
the suspension deflection to calculate the transfer of vertical load as suspension  is more 
sensitive to the variation of vertical load. For the lateral dynamics,  we proposed the 
model of transfer of lateral forces to describe the force difference between left wheel 
and right wheel. With this new model, the lateral force at each tire can be calculated 
without sideslip angle. Moreover, this model is insensitive to the variation of road angles. 
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Similarly, we have also proposed the model of transfer of longitudinal forces to calculate 
the longitudinal force at each tire. 

Chapter 3 reviewed the basic concepts in estimation theory. The estimation theory 
is to minimize the estimation errors in a statistical way.  The dissertation is started 
by the estimation of constant  parameters. The Minimum Variance Unbiased estima- 
tor and Minimum Mean Square estimator were introduced and compared. In order 
to realize real-time estimation, the sequential estimation algorithm was also presented. 
Then we introduced the technique for estimation of time-varying parameters, which is 
called the observer technique.  The algorithms of Kalman Filter, Extended Kalman filter, 
Unscented Kalman Filter and Particle Filter were reviewed and compared in this chap- 
ter.  In order to be more intuitive, we provided a new interpretation of these observer 
techniques based on the Bayesian philosophy. 

Chapter 4 presented the details about the observers we developed for the estimation 
of tire forces and sideslip angle. The construction of observers was based on the models 
and observer techniques introduced in the former chapters. The main contribution of 
this chapter is the design of the overall structure of the observer system. The tire forces 
in three direction and the sideslip angle are observed by four individual observers while 
connected in a cascaded way. The selective communication  mechanism has prevented 
the fatal errors of one observer  from being transferred to other observers. Further- 
more, we designed an algorithm to change the covariance of model noises according to 
the road condition and driving maneuvers. Another difficulty of the estimation is to 
consider the non-linearity of lateral dynamics. We developed three different non-linear 
observers for estimation of lateral forces by employing EKF, UKF and PF respectively. 
These observers were programmed  in C++  as a real-time application and embedded in 
our experimental vehicle DYNA. Then experimental data in several critical tests was 
presented to compare and validate the performance of our observers. 

Chapter 5 presented the algorithms to further improve the accuracy of estimation in 
the context of disturbance  caused by parameter variation and sensor errors. The key to 
filter out sensor errors is to find another source of reliable information, which could be 
an additional sensor or a new model. In this thesis, we preferred to use as less sensors 
as  possible. Therefore, we proposed  many models to compute each kinematic state 
with different sensors. Then information obtained through different models and sensors 
was incorporated  to obtain the optimal estimation. The fusion of multiple sensors was 
more robust than the measurement of one sensor. In addition, we have also proposed 
the models to estimate the vehicle parameters, such as the vehicle mass, position of 
CoG, road angle and so on. However, these models are only valid in several simplified 
scenarios. In order to get road information more easily, we proposed to take advantage 
of the digital map.  The road angle, road surface condition and road curvature was 
extracted from the digital map and was used for the estimation and prediction of tire 
forces. A risk prediction system  was developed  based on the predicted tire forces to 



163

6 Conclusion And Perspectives 

 

 
 

evaluate potential risk. It is highlighted that the use of digital map enables the system 
to anticipate the vehicle dynamics in the future instant and avoid the potential accidents. 
Experimental data was presented to validate our algorithm. 

 
 

6.2  Future work 
 
The following points are quite interesting for the future work: 

❼  Improvement of the models of transfer of lateral forces (TF y ) and transfer of lon- 

gitudinal forces (TF x).  The classic tire models concentrate on the single tire-road 
characteristics. In reality, the four tires are not moving freely but connected with 
the vehicle body. The motion and forces of each tire are highly interdependent. To 
study the interaction between the four tires is quite meaningful for understanding 
the behavior of a driving car. The model of TF x  and TF y  proposed in this thesis is 
our attempt to describe the interaction between left tire and right tire. However, 
these models are a simplification of the real problem. We suppose the interaction 
between tires is only determined by the load transfer, the steering angle and the 
acceleration. In order to improve the accuracy of estimation, further development 
of the models describing tire interaction is needed. 

❼  Utilization of the data of the past. All efforts in this dissertation is devoted to the 

real-time estimation of vehicle dynamics. All the observers developed in this thesis 
is based on sequential estimation algorithm. However, some useful information can 
be extracted in an off-line way. For example, employing the machine learning to 
extract the road friction or the driver’s habits. 

❼  Incorporation of the information obtained through computer vision. The difficulty 

of estimating the sideslip angle is mainly caused by the lack of information about 
vehicle’s lateral speed. However, it is possible to detect the lateral motion of 
vehicle with the cameras.  Furthermore, the vision-based method to estimate the 
road angles is also proposed in the literature.  It is believed that  the fusion of 
camera could enhance the accuracy of the estimation. 

❼  Improvement of the accuracy of localization. The localization is the fundamental 

step to use a digital map. The passed trajectory and the data of vision should be 
combined to improve the map matching and localization. 

❼  Application of these observers in the vehicle motion control. This relates to another 

huge topic, the design of controllers.  The various information provided by our 
observers could help the controllers  make a better decision in order to ensure the 
stability and safety of the vehicle. 
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risques de rupture d’itinéraire basés sur l’estimation de la dynamique du véhicule. 
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observation of the wheelsâ torques and the vehicle dynamic state. Vehicle System 
Dynamics, 51(5):737–766. 

 

[Pacejka, 2006] Pacejka, H. B. (2006). Tire and Vehicle Dynamics. SAE Interna- 
tional, second edition. 

 

[Pacejka et al., 1987] Pacejka, H. B., Bakker, E., and Nyborg, L. (1987). Tyre 
modelling for use in vehicle dynamics studies. SAE paper, 870421. 

 

[Pacejka and Sharp, 1991] Pacejka, H. B. and Sharp, R. S. (1991).  Shear force de- 
velopment by pneumatic tyres in steady state conditions: a review of modelling 
aspects. Vehicle system dynamics, 20(3-4):121–175. 

 

[Phanomchoeng, 2011] Phanomchoeng,  G. (2011).  State, Parameter, and Un- 
known Input Estimation Problems in Active Automotive Safety Applications. 
PhD thesis, University of Minnesota. 

 

[Popp and Schiehlen, 2010] Popp, K. and Schiehlen, W. (2010). Ground Vehicle 
Dynamics. Springer. 

[Rajamani, 2012] Rajamani, R. (2012). Vehicle Dynamics and Control. Springer. 

[Rajamani et al., 2006] Rajamani, R., Piyabongkarn, D., Lew, J. Y., and Grogg, 
J. A. (2006). Algorithms for real-time estimation of individual wheel tire-road 
friction coefficients. In American Control Conference. 

 

[Ray, 1997] Ray, L. R. (1997). Nonlinear tire force estimation and road friction 
identification: Simulation and experiments. Automatica, 33(10):1819 – 1833. 



172

Bibliography 

 

 
 

[Reza, 2007] Reza, N.  J.  (2007). Vehicle Dynamics Theory and Application. 
Springer. 

 

[Ryu and Gerdes, 2004a] Ryu, J. and Gerdes, J. C. (2004a). Estimation of vehicle 
roll and road bank angle. In American Control Conference, 2004. Proceedings 
of the 2004, volume 3, pages 2110–2115. IEEE. 

[Ryu and Gerdes, 2004b] Ryu, J. and Gerdes, J. C. (2004b). Estimation of vehicle 
roll and road bank angle.  In Proceedings  of the 2004 on American Control 
Conference, volume 3, pages 2110–2115 vol.3. 

[Ryu et al., 2002] Ryu, J., Rossetter, E. J., and Gerdes, J. C. (2002).  Vehicle 
sideslip and roll parameter estimation using gps. In Proceedings of AVEC 2002 
6th International Symposium of Advanced Vehicle Control. 

 

[Savitski et al., 2015] Savitski, D., Hoepping, K., Ivanov, V., and Augsburg, K. 
(2015). Influence of the tire inflation pressure variation on braking efficiency and 
driving comfort of full electric vehicle with continuous anti-lock braking system. 
SAE International Journal of Passenger Cars-Mechanical  Systems, 8(2015-01- 
0643):460–467. 

 

[Schiehlen, 2009] Schiehlen, W. (2009). Dynamical Analysis of Vehicle Systems. 
Springer. 

 

[Schindler, 2013] Schindler, A. (2013). Vehicle self-localization with high-precision 
digital maps. In Intelligent Vehicles Symposium (IV),  2013 IEEE, pages 141– 
146. IEEE. 

 

[Sentouh et al., 2006] Sentouh, C., Glaser, S., and Mammar, S. (2006). Advanced 
vehicle–infrastructure–driver speed profile for road departure accident preven- 
tion. Vehicle System Dynamics, 44(sup1):612–623. 

[Shiang-Lung et al., 2004] Shiang-Lung, K.,  Han-Shue, T.,  and Tomizuka, M. 
(2004).  Nonlinear tire lateral force versus slip angle curve  identification.  In 
Proceedings of the 2004 on American Control Conference, volume 3, pages 2128– 
2133 vol.3. 

 

[Smith and Starkey, 1995] Smith, D. E. and Starkey, J. M. (1995). Effects of model 
complexity on the performance of automated vehicle steering controllers: Model 
development, validation and comparison. Vehicle System Dynamics, 24(2):163– 
181. 

 

[Smith, 2004] Smith, N. D. (2004).  Understanding parameters influencing tire 
modeling. Department of Mechanical Engineering, Colorado State University. 

[Song, 2013] Song, R. T.  (2013).   Estimation of vehicle’s vertical and lateral 
tire/road forces with non-zero road bank angle. Master’s thesis, Université de 
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Université de Technologie de Compiègne. 
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174

Bibliography 

 

 
 

[Wang et al., 2012] Wang, B.,  Cheng, Q., Victorino,  A.  C., and Charara, A. 
(2012). Real-time experimental validation of nonlinear observer for vehicle dy- 
namics parameters estimation: A laboratory vehicle description. In Vehicular 
Electronics and Safety (ICVES), 2012 IEEE International Conference on, pages 
72–77. IEEE. 

 

[Wang et al., 2013] Wang, B., Correa Victorino, A., Charara, A., Augsburg, K., 
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