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le rôle de président du jury ainsi que L. Gagliardini d’avoir examiné ma thèse.
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Mes remerciements vont maintenant bien-sûr au professeur C. Soize, mon di-
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Summary

This work deals with an extension of the classical construction of reduced-order

models (ROMs) that are obtained through modal analysis in computational linear

structural dynamics. It is based on a multilevel projection strategy and devoted

to complex structures with uncertainties. Nowadays, it is well recognized that the

predictions in structural dynamics over a broad frequency band by using a finite

element model must be improved in taking into account the model uncertainties

induced by the modeling errors, for which the role increases with the frequency.

In such a framework, the nonparametric probabilistic approach of uncertainties is

used, which requires the introduction of a ROM. Consequently, these two aspects,

frequency-evolution of the uncertainties and reduced-order modeling, lead us to

consider the development of a multilevel ROM in computational structural dy-

namics, which has the capability to adapt the level of uncertainties to each part of

the frequency band. In this thesis, we are interested in the dynamical analysis of

complex structures in a broad frequency band. By complex structure is intended

a structure with complex geometry, constituted of heterogeneous materials and

more specifically, characterized by the presence of several structural levels, for

instance, a structure that is made up of a stiff main part embedding various flex-

ible sub-parts. For such structures, it is possible having, in addition to the usual

global-displacements elastic modes associated with the stiff skeleton, the appari-

tion of numerous local elastic modes, which correspond to predominant vibrations

of the flexible sub-parts. For such complex structures, the modal density may sub-

stantially increase as soon as low frequencies, leading to high-dimension ROMs

with the modal analysis method (with potentially thousands of elastic modes in

low frequencies). In addition, such ROMs may suffer from a lack of robustness

with respect to uncertainty, because of the presence of the numerous local dis-

placements, which are known to be very sensitive to uncertainties. It should

be noted that in contrast to the usual long-wavelength global displacements of

the low-frequency (LF) band, the local displacements associated with the struc-

tural sub-levels, which can then also appear in the LF band, are characterized by

short wavelengths, similarly to high-frequency (HF) displacements. As a result,

for the complex structures considered, there is an overlap of the three vibration

regimes, LF, MF, and HF, and numerous local elastic modes are intertwined with

the usual global elastic modes. This implies two major difficulties, pertaining to

uncertainty quantification and to computational efficiency. The objective of this

thesis is thus double. First, to provide a multilevel stochastic ROM that is able to

take into account the heterogeneous variability introduced by the overlap of the

three vibration regimes. Second, to provide a predictive ROM whose dimension
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is decreased with respect to the classical ROM of the modal analysis method. A

general method is presented for the construction of a multilevel ROM, based on

three orthogonal reduced-order bases (ROBs) whose displacements are either LF-,

MF-, or HF-type displacements (associated with the overlapping LF, MF, and HF

vibration regimes). The construction of these ROBs relies on a filtering strategy

that is based on the introduction of global shape functions for the kinetic energy

(in contrast to the local shape functions of the finite elements). Implementing the

nonparametric probabilistic approach in the multilevel ROM allows each type of

displacements to be affected by a particular level of uncertainties. The method

is applied to a car, for which the multilevel stochastic ROM is identified with

respect to experiments, solving a statistical inverse problem. The proposed ROM

allows for obtaining a decreased dimension as well as an improved prediction with

respect to a classical stochastic ROM.

Short summary

For some complex dynamical structures exhibiting several structural scales, nu-

merous local displacements can be intertwined with the usual global displace-

ments, inducing an overlap of the low-, medium-, and high-frequency vibration

regimes (LF, MF, HF). Hence the introduction of a multilevel reduced-order model

(ROM), based on three reduced-order bases (ROBs) that are constituted of either

LF-, MF-, or HF-type displacements. These ROBs are obtained using a filtering

method based on global shape functions for the kinetic energy. First, thanks to the

filtering of local displacements, the dimension of the multilevel ROM is reduced

compared to classical modal analysis. Second, implementing the nonparametric

probabilistic approach in the multilevel ROM allows each type of displacements to

be affected by a particular level of uncertainties. The method is applied to a car,

for which the multilevel stochastic ROM is identified with respect to experiments,

solving a statistical inverse problem.
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Résumé

Ce travail de recherche présente une extension de la construction classique des

modèles réduits (ROMs) obtenus par analyse modale, en dynamique numérique

des structures linéaires. Cette extension est basée sur une stratégie de projec-

tion multi-niveau, pour l’analyse dynamique des structures complexes en présence

d’incertitudes. De nos jours, il est admis qu’en dynamique des structures, la

prévision sur une large bande de fréquence obtenue à l’aide d’un modèle éléments

finis doit être améliorée en tenant compte des incertitudes de modèle induites

par les erreurs de modélisation, dont le rôle crôıt avec la fréquence. Dans un tel

contexte, l’approche probabiliste non-paramétrique des incertitudes est utilisée,

laquelle requiert l’introduction d’un ROM. Par conséquent, ces deux aspects,

évolution fréquentielle des niveaux d’incertitudes et réduction de modèle, nous

conduisent à considérer le développement d’un ROM multi-niveau, pour lequel les

niveaux d’incertitudes dans chaque partie de la bande de fréquence peuvent être

adaptés. Dans cette thèse, on s’intéresse à l’analyse dynamique de structures com-

plexes caractérisées par la présence de plusieurs niveaux structuraux, par exemple

avec un squelette rigide qui supporte diverses sous-parties flexibles. Pour de telles

structures, il est possible d’avoir, en plus des modes élastiques habituels dont les

déplacements associés au squelette sont globaux, l’apparition de nombreux modes

élastiques locaux, qui correspondent à des vibrations prédominantes des sous-

parties flexibles. Pour ces structures complexes, la densité modale est susceptible

d’augmenter fortement dès les basses fréquences (BF), conduisant, via la méthode

d’analyse modale, à des ROMs de grande dimension (avec potentiellement des

milliers de modes élastiques en BF). De plus, de tels ROMs peuvent manquer de

robustesse vis-à-vis des incertitudes, en raison des nombreux déplacements locaux

qui sont très sensibles aux incertitudes. Il convient de noter qu’au contraire des

déplacements globaux de grande longueur d’onde caractérisant la bande BF, les

déplacements locaux associés aux sous-parties flexibles de la structure, qui peu-

vent alors apparâıtre dès la bande BF, sont caractérisés par de courtes longueurs

d’onde, similairement au comportement dans la bande hautes fréquences (HF).

Par conséquent, pour les structures complexes considérées, les trois régimes vibra-

toires BF, MF et HF se recouvrent, et de nombreux modes élastiques locaux sont

entremêlés avec les modes élastiques globaux habituels. Cela implique deux diffi-

cultés majeures, concernant la quantification des incertitudes d’une part et le coût

numérique d’autre part. L’objectif de cette thèse est alors double. Premièrement,

fournir un ROM stochastique multi-niveau qui est capable de rendre compte de la

variabilité hétérogène introduite par le recouvrement des trois régimes vibratoires.

Deuxièmement, fournir un ROM prédictif de dimension réduite par rapport à celui
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de l’analyse modale. Une méthode générale est présentée pour la construction d’un

ROM multi-niveau, basée sur trois bases réduites (ROBs) dont les déplacements

correspondent à l’un ou l’autre des régimes vibratoires BF, MF ou HF (associés

à des déplacements de type BF, de type MF ou bien de type HF). Ces ROBs

sont obtenues via une méthode de filtrage utilisant des fonctions de forme glob-

ales pour l’énergie cinétique (par opposition aux fonctions de forme locales des

éléments finis). L’implémentation de l’approche probabiliste non-paramétrique

dans le ROM multi-niveau permet d’obtenir un ROM stochastique multi-niveau

avec lequel il est possible d’attribuer un niveau d’incertitude spécifique à chaque

ROB. L’application présentée est relative à une automobile, pour laquelle le ROM

stochastique multi-niveau est identifié par rapport à des mesures expérimentales.

Le ROM proposé permet d’obtenir une dimension réduite ainsi qu’une prévision

améliorée, en comparaison avec un ROM stochastique classique.

Résumé court

Pour des structures dynamiques complexes comportant plusieurs échelles struc-

turales, de nombreux déplacements locaux peuvent être entremêlés avec les déplace-

ments globaux habituels, induisant un recouvrement des régimes vibratoires basses,

moyennes et hautes fréquences (BF, MF, HF). D’où l’introduction d’un modèle

réduit (ROM) multi-niveau, basé sur trois bases réduites (ROBs) constituées

de déplacements de type BF, MF ou bien HF. Ces ROBs sont obtenues via

une méthode de filtrage utilisant des fonctions de forme globales pour l’énergie

cinétique. Grâce au filtrage de déplacements locaux, la dimension du ROM multi-

niveau est réduite, comparée à l’analyse modale classique. Un modèle probabiliste

non-paramétrique permet d’obtenir un ROM stochastique multi-niveau avec un

niveau d’incertitudes spécifique pour chacune des ROBs. La méthode est ap-

pliquée à une voiture, pour laquelle le ROM stochastique multi-niveau est identifié

expérimentalement, en résolvant un problème statistique inverse.
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Notations

DOF: degree of freedom.

FEM: finite element model.

FRF: frequency response function.

HF: high frequency.

LF: low frequency.

MF: medium frequency (or mid frequency).

ROB: reduced-order vector basis.

ROM: reduced-order model.

C-NROM: classical nominal ROM.

C-SROM: classical stochastic ROM.

ML-NROM: multilevel nominal ROM.

ML-SROM: multilevel stochastic ROM.

Cp: Hermitian space of dimension p.

Rp: Euclidean space of dimension p.

Sc: vector subspace for the classical ROM.

Sg: vector subspace for the global-displacements ROM.

S`: vector subspace for the local-displacements ROM.

St: vector subspace for the multilevel ROM.

SH: vector subspace for the scale-H ROM.

SL: vector subspace for the scale-L ROM.

SM: vector subspace for the scale-M ROM.

SR: vector subspace for the reduced kinematics.

SLM: vector subspace for the scale-LM ROM.

d: maximum degree of the polynomial approximation.

m: dimension of the FEM (number of DOFs).
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n: dimension of Sc.
r: dimension of SR.

ng: dimension of Sg.
n`: dimension of S`.
nt: dimension of St.
nH: dimension of SH.

nL: dimension of SL.

nM: dimension of SM.

nLM: dimension of SLM.

[B]: ROB of SR such that [B]T [M][B] = [Ir].

[B`]: ROB of SR such that [B`]T [M`][B`] = [Ir].

[Ip]: identity matrix of dimension p.

[M]: mass matrix of the FEM.

[M`]: lumped approximation of [M].

[Φ]: ROB of the classical ROM.

[Φg]: global-displacements ROB.

[Φ`]: local-displacements ROB.

[Φt]: ROB of the scale-t ROM.

[ΦH]: HF-type displacements ROB.

[ΦL]: LF-type displacements ROB.

[ΦM]: MF-type displacements ROB.

[ΦLM]: ROB of the scale-LM ROM.

[Ψ]: ROB of the multilevel ROM.



Chapter 1

Introduction

1.1 Context of the research

This work deals with an extension of the classical construction of reduced-order

models (ROMs) that are obtained through modal analysis in computational linear

structural dynamics, an extension that is based on a multilevel projection strat-

egy, for complex structures with uncertainties.

Nowadays, it is well recognized that the predictions in structural dynamics over

a broad frequency band by using a computational model, based on the finite

element method [1, 2, 3], must be improved in taking into account the model

uncertainties induced by the modeling errors, for which the role increases with

the frequency. This means that any model of uncertainties must account for this

type of frequency evolution. In addition, it is also admitted that the parametric

probabilistic approach of uncertainties is not sufficiently efficient for reproducing

the effects of modeling errors. In such a framework, the nonparametric proba-

bilistic approach of uncertainties can be used, but in counter part requires the

introduction of a ROM for implementing it. Consequently, these two aspects,

frequency-evolution of the uncertainties and reduced-order modeling, lead us to

consider the development of a multilevel ROM in computational structural dy-

namics, which has the capability to adapt the level of uncertainties to each part

of the frequency band. This is the purpose of the thesis.

In structural dynamics, the low-frequency (LF) band is generally characterized

by a low modal density and by frequency response functions (FRFs) exhibiting

isolated resonances. These are due to the presence of long-wavelength displace-

ments, which are global (the concept of global displacement will be clarified later).
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In contrast, the high-frequency (HF) band is characterized by a high modal den-

sity and by rather smooth FRFs, these being due to the presence of numerous

short-wavelength displacements. The intermediate band, the medium-frequency

(MF) band, presents a non-uniform modal density and FRFs with overlapping

resonances [4]. For the LF band, modal analysis [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

is a well-known effective and efficient method, which usually provides a small-

dimension ROM whose reduced-order basis (ROB) is constituted of the first elas-

tic modes (i.e. the first structural vibration modes). Energy methods, such as

statistical energy analysis [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], are com-

monly used for the HF band analysis. Various methods have been proposed

for analyzing the MF band. A part of these methods are related to determin-

istic solvers devoted to the classical deterministic linear dynamical equations

[4, 26, 27, 28, 9, 29, 30, 31, 32, 33, 34, 35]. A second part are devoted to stochas-

tic linear dynamical equations that have been developed for taking into account

the uncertainties in the computational models in the MF band (which plays an

important role in this band), see for instance [36, 37, 38, 39, 40, 41, 42, 43].

In order to illustrate the definitions of the LF, MF, and HF bands, a typical FRF

is shown in Fig. 1.1.

Frequency (Hz)

M
o

d
u

lu
s 

(d
B

)

Figure 1.1: Typical FRF including the LF, MF, and HF bands: modulus in dB

scale with respect to the frequency.
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1.2 Position of the research

In this work, we are interested in the dynamical analysis of complex structures

in a broad frequency band. By complex structure is intended a structure with

complex geometry, constituted of heterogeneous materials and more specifically,

characterized by the presence of several structural levels, for instance, a structure

that is made up of a stiff main part embedding various flexible sub-parts. For

such structures, it is possible having, in addition to the usual global-displacements

elastic modes associated with their stiff skeleton, the apparition of numerous local

elastic modes, which correspond to predominant vibrations of the flexible sub-

parts. In Figs. 1.2 and 1.3 are depicted the mode shapes of respectively the first

and the third elastic modes of a car body structure. The gray intensity is related to

the level of amplitude of the displacements (the greater amplitude is the lighter).

Throughout this document, any other plot of deformation shape will follow the

same rule. The first elastic mode (involving a localized deformation of a flexible

part at the front-right of the car) is considered as local whereas the other one is

considered as a global elastic mode (involving a global torsion of the car).

Figure 1.2: Mode shape of a local elastic mode of a car body structure (eigenfre-

quency 24 Hz).
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Figure 1.3: Mode shape of a global elastic mode of a car body structure (eigen-

frequency 39 Hz).

For such complex structures, which can be encountered for instance in aeronau-

tics, aerospace, automotive (see for instance [44, 45, 46, 47]), or nuclear industries,

two main difficulties arise from the presence of the local displacements. First, the

modal density may substantially increase as soon as low frequencies, leading to

high-dimension ROMs within modal analysis (with potentially thousands of elas-

tic modes in low frequencies). Second, such ROMs may suffer from a lack of

robustness with respect to uncertainty, because of the presence of the numerous

local displacements, which are known to be very sensitive to uncertainties. It

should be noted that, for such a complex structure, the engineering objectives

may consist in the prediction of the global displacements only, that is to say on

predicting the FRFs of observation points belonging to the stiff parts.

There is not much research devoted to the dynamic analysis of structures char-

acterized by the presence of numerous local elastic modes intertwined with the

global elastic modes. In the framework of experimental modal analysis, techniques

for the spatial filtering of the short wavelengths have been proposed [48], based

on regularization schemes [49]. In the framework of computational models, the

Guyan condensation technique [50], based on the introduction of master nodes at

which the inertia is concentrated, allows for the filtering of local displacements.
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The selection of the master nodes is not obvious for complex structures [51].

Filtering schemes based on the lumped mass matrix approximations have been

proposed [52, 53, 54], but the filtering depends on the mesh and cannot be ad-

justed. In [16] a basis of global displacements is constructed using a coarse mesh

of a finite element model, which, generally, gives big errors for the elastic energy.

In order to extract the long-wavelength free elastic modes of a master structure,

the free-interface substructuring method has been used [35]. Other computational

methods include image processing [55] for identifying the global elastic modes, the

global displacements as eigenvectors of the frequency mobility matrix [56], or the

extrapolation of the dynamical response using a few elastic modes [57]. In the

framework of slender dynamical structures, which exhibit a high modal density

in the LF band, simplified equivalent models [58, 59] using beams and plates, or

homogenization [60] have been proposed. Using these approaches, the construc-

tion of a simplified model is not automatic, requires an expertise, and a validation

procedure remains necessary. In addition, these approximations are only valid for

the LF band.

For a complex structure for which the elastic modes may not be either purely

global elastic modes or purely local elastic modes, the increasing of the dimen-

sion of the ROM that is constructed by using the classical modal analysis can be

troublesome. The methodology that would consist in sorting the elastic modes

according to whether they be global or local cannot be used because the elastic

modes are combinations of both global displacements and local displacements.

In addition, due to the large amplitude of the local displacements in comparison

to the global displacements, it is difficult to distinguish the global displacements

based on the mode shapes (this becomes even more difficult for higher frequen-

cies). In Fig. 1.4, we present a mode shape of an elastic mode found in the LF

band, which is representative of the regular mode shapes that can be observed

for the considered complex structure in this band. It allows for illustrating the

fact that in general the elastic modes are not either global or local. Indeed, such

mode is constituted of a global deformation of the structure assorted with local

deformations of distinct structural levels (the roof, the flexible part in the left

back). In Fig. 1.5, we present a mode shape of an elastic mode found in the

MF band, which is representative of the regular mode shapes that can be ob-

served for the car body structure in this band. It allows for illustrating the fact

that, as the frequency increases, the global displacements within the elastic modes

are becoming less and less perceptible: most of the mode shapes are dominated

by large-amplitude local displacements that are irregularly distributed over the

structure. Another solution would consist in using substructuring techniques for

which reviews can be found in [61, 62, 63] and for which a state of the art has
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Figure 1.4: Mode shape of a regular low-frequency elastic mode of a car body
structure (eigenfrequency 72 Hz).

Figure 1.5: Mode shape of a regular medium-frequency elastic mode of a car body
structure (eigenfrequency 262 Hz).

recently been done in [64]. A brief summary is given hereinafter. The concept

of substructures was first introduced by Argyris and Kelsey in 1959 [65] and by

Przemieniecki in 1963 [66] and was extended by Guyan and Irons [50, 67]. Hurty

[68, 69] considered the case of two substructures coupled through a geometrical
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interface. Finally, Craig and Bampton [70] adapted the Hurty method. Improve-

ments have been proposed with many variants [71, 72, 73, 74, 75], in particular for

complex dynamical systems with many appendages considered as substructures

(such as a disk with blades) Benfield and Hruda [76]. Another type of methods

has been introduced in order to use the structural modes with free geometrical

interface for two coupled substructures instead of the structural modes with fixed

geometrical interface (elastic modes) as used in the Craig and Bampton method

and as proposed by MacNeal [77] and Rubin [78]. The Lagrange multipliers have

also been used to write the coupling on the geometrical interface [79, 80, 81, 82].

The substructuring techniques would require to discard the component modes

associated with flexible sub-parts, hence removing their associated local displace-

ments. Unfortunately, for the complex structures considered, there is no clear

separation between the skeleton and the substructures for which the displace-

ments would be local. For instance, with fixed thickness, the curvatures of a shell

can lead to stiffened zones with respect to the rigidity of the flat zones. Con-

sequently, in addition to the various embedded equipments within the structure,

the complex geometry of the structure is responsible for the fact that there can

be no separation of the several structural levels, but rather a continuous series of

structural levels. In such conditions, the notion of local displacement is relative.

Figures 1.6 and 1.7 show two complementary points of view of a car body struc-

Figure 1.6: Computational model of a car body structure, in which the gray
intensity is related to the level of rigidity (the darker is the stiffer).
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ture, in which it can be seen that a stiff skeleton emerges among several structural

levels. In addition, there are numerous flexible parts spread over the whole struc-

ture (not only well identified components such as the roof or the floor panels, but

also erratically distributed flexible parts, see for instance the parts located at the

front of the car). It allows for illustrating the fact that no clear boundary can be

defined between the structural scales.

Figure 1.7: Computational model of a car body structure, in which the gray
intensity is related to the level of rigidity (the darker is the stiffer).

It should be noted that, in contrast to the usual long-wavelength global displace-

ments of the LF band, the local displacements associated with the structural

sub-levels, which can then also appear in the LF band, are characterized by short

wavelengths, similarly to HF displacements. As a result, for the complex struc-

tures considered, there is an overlap of the three vibration regimes, LF, MF, and

HF.

Concerning the taking into account of uncertainties in the computational model,

the probabilistic framework is well adapted to construct the stochastic models, for

the stochastic solvers, and for solving the associated statistical inverse problems

for the identification of the stochastic models, for the finite dimension and for the

infinite dimension. Hereinafter, we present a brief background that is limited to
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the probabilistic framework for uncertainty quantification. As a function of the

sources of uncertainties in the computational model (model-parameter uncertain-

ties and model uncertainties induced by modeling errors) and of the variabilities

in the real dynamical system, several probabilistic approaches can be used.

(i) Output-predictive error method. Several methods are currently available for

analyzing model uncertainties. The most popular one is the standard output-

predictive error method introduced in [83]. This method has a major drawback

because it does not enable the ROM to learn from data.

(ii) Parametric probabilistic methods for model-parameter uncertainties. An alter-

native family of methods for analyzing model uncertainties is the family of para-

metric probabilistic methods for the uncertainty quantification. This approach is

relatively well developed for model-parameter uncertainties, at least for a reason-

ably small number of parameters. It consists in constructing prior and posterior

stochastic models of uncertain model parameters pertaining, for example, to ge-

ometry, boundary conditions, material properties, etc [84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95, 96]. This approach was shown to be computationally efficient for

both the computational model and its associated ROM (for example, see [97, 98]),

and for large-scale statistical inverse problems [99, 100, 101, 102, 103, 104]. How-

ever, it does not take into account neither the model uncertainties induced by

modeling errors introduced during the construction of the computational model,

nor those due to model reduction.

(iii) Nonparametric probabilistic approach for modeling uncertainties. For model-

ing uncertainties due to more general modeling errors, a nonparametric prob-

abilistic approach was introduced in [105], in the context of linear structural

dynamics. The methodology is in two steps. For the first one, a linear ROM

of dimension n is constructed by using the linear computational model with m

degrees of freedom (DOFs) and a ROB of dimension n. For the second step,

a linear stochastic ROM is constructed by substituting the deterministic matri-

ces underlying the linear ROM with random matrices for which the probability

distributions are constructed using the Maximum Entropy (MaxEnt) principle

[106, 107]. The construction of the linear stochastic ROM is carried out under

the constraints generated from the available information such as some algebraic

properties (positiveness, integrability of the inverse, etc.) and some statistical

information (for example, the equality between mean and nominal values). This

nonparametric probabilistic approach has been extended for different ensembles

of random matrices and for linear boundary value problems [108, 109]. It was also

experimentally validated and applied for linear problems in composites [110], vis-

coelasticity [111], dynamic substructuring [112, 113, 114], vibroacoustics [44, 43],

robust design and optimization [115], etc. More recently, the nonparametric ap-

proach has been extended to take into account some nonlinear geometrical effects
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in structural analysis [116, 117], but it does not hold for arbitrary nonlinear sys-

tems, while the work recently published [118] allows for taking into account any

nonlinearity in a ROM.

In addition, the real systems exhibit variabilities: for a given design of a structure,

the associated manufactured objects exhibit variations, which result in dispersed

FRFs. It can be explained by the manufacturing process and by the small dif-

ferences in the design configurations. It should be noted that, in general, the

variability of the real system increases with the frequency. Figure 1.8 presents a

set of 20 trajectories obtained measuring, under the same conditions, the FRF

(modulus in log scale of the acceleration at a given location) of 20 nominally iden-

tical automobiles. One can see that the dispersion increases with the frequency.

200 400 600 800 1000 1200 1400

−80

−70

−60

−50

−40

−30

−20

−10

Frequency (Hz)

A
c
c
e

le
ra

ti
o

n
 (

d
B

,m
/s

2
)

Figure 1.8: Experimental measurements of 20 FRFs on a broad frequency band
performed on PSA cars of the same type [119].

1.3 Objectives of the research

As previously explained, for the complex structures considered, numerous local

elastic modes are intertwined with the usual global elastic modes. The resulting

high modal density and overlap of the LF, MF, and HF vibration regimes (pres-

ence of small-wavelength HF-type displacements with the usual large-wavelength

global displacements of the LF band) induces two major difficulties, pertaining to

uncertainty quantification and to computational efficiency.
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The objective of this thesis is thus double. First, to provide a multilevel stochastic

ROM that is able to take into account the heterogeneous variability introduced by

the overlap of the three vibration regimes. Second, to provide a predictive ROM

whose dimension is decreased with respect to the classical ROM constructed by

using the modal analysis method. Both these objectives are to be fulfilled by

means of efficient methods that are non-intrusive with respect to commercial soft-

ware.

1.4 Strategy of the research

Recently, a new methodology [120] has been proposed for constructing a stochas-

tic ROM devoted to dynamical structures having numerous local elastic modes

in the low-frequency range. The stochastic ROM is obtained by implementing

the nonparametric probabilistic approach of uncertainties within a novel ROM

whose ROB is constituted of two families: one of global displacements and an-

other of local displacements. These families are obtained through the introduc-

tion, for the kinetic energy, of a projection operator associated with a subspace

of piecewise constant functions. The spatial dimension of the subdomains, in

which the projected displacements are constant, and which constitute a parti-

tion of the domain of the structure, allows for controlling the filtering between

the global displacements and the local displacements. These subdomains can

be seen as macro-elements, within which, using such an approximation, no local

displacement is permitted. It should be noted that the generation of a domain

partition for which the generated subdomains have a similar size (that we call

uniform domain partition), necessary for obtaining a spatially uniform filtering

criterion, is not trivial for complex geometries. Based on the Fast Marching

Method [121, 122], a general method has been developed in order to perform

the uniform domain partition for a complex finite element mesh, and then imple-

mented for the case of automobile structures [45, 46]. Published papers related

to the methodology are given in [120, 45, 46, 123, 124]. Related to a part of these

papers, a former PhD thesis [125] was defended in 2012. In the present thesis

(see [126, 127, 128, 129, 130, 131, 132]), the filtering methodology is generalized

through the introduction of a computational framework for the use of any arbitrary

approximation subspace for the kinetic energy, in place of the piecewise constant

approximation. In particular, polynomial shape functions (with support the whole

domain of the structure) are used for constructing a global-displacements ROM

for an automobile. This generalization allows for carrying out an efficient con-

vergence of the global-displacements ROM with respect to the so-defined filtering
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(in contrast, constructing several uniform domain partitions of different charac-

teristic sizes can be, in practice, very time-consuming). In addition, a multilevel

ROM is introduced, whose ROB is constituted of several families of displacements,

which correspond to the several structural levels of the complex structure. More

precisely, a multilevel ROM whose ROB is constituted of three families, namely

the LF-, MF-, and HF-type displacements (successively, using several filterings),

is presented. The multilevel ROM allows for implementing a probabilistic model

of uncertainties that is adapted to each vibration regime. This way, the amount

of statistical fluctuations for the LF-, MF-, and HF-type displacements can be

controlled using the multilevel stochastic ROM that is obtained.

An alternative construction of a multilevel stochastic ROM has been proposed

in [129], but for which the implementation by using the non-intrusive algorithm

proposed in this thesis would not be possible.

It should be noted that multilevel substructuring techniques can be found in the

literature [133, 134, 135], but for which the purpose is to accelerate the solution

of large-scale generalized eigenvalue problems.

1.5 Manuscript layout

The thesis is organized as follows. In Chapter 2, the reference computational

model is introduced, followed by the classical construction of the ROM that is

performed by using modal analysis, on which the classical stochastic ROM is then

implemented by using the nonparametric probabilistic approach of uncertainties.

In Chapter 3, the methodology devoted to the filtering of the global and of the

local displacements is presented, which is then used in Chapter 4 for defining the

multilevel ROM. In this chapter, the numerical procedure is also detailed and the

construction of the multilevel stochastic ROM is given. Finally, in Chapter 5,

the proposed methodology is applied to an automobile, for which the multilevel

stochastic ROM is identified by using experimental measurements, and for which

its results are compared to those of the classical stochastic ROM.
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Classical reduced-order model

In this chapter, in addition to the reference computational model, we present the

very well known modal analysis method as well as the construction of the asso-

ciated stochastic ROM that is obtained by using the nonparametric probabilistic

approach of uncertainties [105]. This way, basic notions that will be reused later

are introduced. In addition, the multilevel stochastic ROM proposed in this work

will be compared to latter classical stochastic ROM.

2.1 Reference computational model

The vibration analysis is performed over a broad frequency band – denoted as

B – by using the finite element method. Let m denote the dimension (number

of DOFs) of the finite element model. For all angular frequency ω belonging to

B = [ωmin, ωmax], the m-dimensional complex vector U(ω) of displacements is the

solution of the matrix equation,

(−ω2[M] + iω[D] + [K] )U(ω) = F(ω) , (2.1)

in which F(ω) is the m-dimensional complex vector of the external forces and

where, assuming the structure is fixed on a part of its boundary, [M], [D], and

[K] are the positive-definite symmetric (m×m) real mass, damping, and stiffness

matrices.

In practice, dimension m of the reference (or high-fidelity) computational model

can be very high (millions of DOFs). Nevertheless, matrices [M], [D], and [K]

are sparse. However, Eq. (2.1) has to be solved for the frequency sampling and

possibly, for several external loadings. In addition, whole this computation must
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be done several times for implementing the Monte-Carlo method for uncertainty

quantification and also, for instance, in the context of a robust design, for which

a sampling of the design parameters has to be considered. In this context and

for complex structures, the introduction of ROMs is necessary for making such

computation tractable. In this thesis, we consider ROMs that are defined upon

their projection basis (that is to say their ROB), and which consist in using this

projection basis in order to project the equations associated with the reference

computational model. The ROB has to be constructed so that the associated

vector subspace consists of a good representation of the solution of the dynamical

problem. The steps for constructing the ROM are often referred to as the offline

stage, and the stage during which the ROM is used for performing the actual

simulation (including design optimization, stochastic analysis, etc.) is referred to

as the online stage. It should be noted that, in this context, the reduction of the

computational effort devoted to the offline stage is not of the greatest concern.

Instead, the reduction of the computational effort devoted to the online stage,

made possible through the use of a small-dimension ROM, is of great interest

for handling large-scale simulations (independently of the computational effort

required for the construction of the ROM). In next Section 2.2, the classical ROM,

for which the ROB is constituted of the first elastic modes, is presented. For

complex structures exhibiting numerous local elastic modes as soon the LF band,

the solution of the generalized eigenvalue problem associated with the conservative

linear dynamical system, for which the eigenvectors are the elastic modes, can

involve a great computational effort (corresponding to the offline stage), due to

the high modal density resulting from the presence of the local elastic modes. It

should be noted that this increased computational effort for the offline stage is

negligible compared to the increased computational effort induced by the use of a

high-dimension ROM for the online stage (high dimension due to the presence of

numerous local elastic modes in the ROB). In Chapter 3, a methodology for the

construction of a small-dimension ROM is presented, based on the use of a ROB

that is constituted of global displacements.

2.2 Classical nominal reduced-order model

For all α = 1, . . . ,m the elastic modes ϕα with associated eigenvalues λα are the

solutions of the generalized eigenvalue problem,

[K]ϕα = λα[M]ϕα . (2.2)
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The first n eigenvalues verify 0 < λ1 ≤ λ2 ≤ . . . ≤ λn < +∞ and the normaliza-

tion that is chosen for the eigenvectors is such that

[Φ]T [M][Φ] = [In] , (2.3)

in which [Φ] = [ϕ1 . . .ϕn], and where [In] is the identity matrix of dimension

n. Such a normalization with unit generalized mass is always adopted in this

document, in which several generalized eigenvalue problems are introduced. In

practice, only the first n elastic modes with n � m (associated with the lowest

eigenvalues or lowest eigenfrequencies fα =
√
λα/2π in Hz) are calculated. The

(m× n) real matrix [Φ] is the ROB of the classical nominal reduced-order model

(C-NROM). The vector subspace spanned by the ROB of the C-NROM is denoted

by Sc . Using the C-NROM, displacements U(ω) belong to Sc and we have

U(ω) ' [Φ]q(ω) =
n∑

α=1

qα(ω)ϕα , (2.4)

where the n-dimensional complex vector of generalized coordinates q(ω) = (q1(ω)

. . . qn(ω)) is the solution of the reduced-matrix equation,

(−ω2[M] + iω[D] + [K] )q(ω) = f(ω) , (2.5)

in which f(ω) = [Φ]TF(ω), [D] = [Φ]T [D][Φ] is, in general, a full matrix, and where

diagonal matrices [K] and [M] are such that

[K] = [Φ]T [K][Φ] = [Λ] , [M] = [Φ]T [M][Φ] = [In] , (2.6)

in which [Λ] is the matrix of the first n eigenvalues.

2.3 Classical stochastic reduced-order model

The classical stochastic reduced-order model (C-SROM) is constructed by us-

ing the nonparametric probabilistic approach of uncertainties [105] within the

C-NROM. In this nonparametric approach, each nominal reduced matrix of di-

mension n, say [A] (= [M], [D], or [K]), is replaced by a random matrix, [A]

(= [M], [D], or [K]), whose probability distribution has been constructed by

using the maximum entropy principle [106, 107] under the following constraints:

• Matrix [A] is with values in the set of all the positive-definite symmetric

(n× n) real matrices.

• E{[A]} = [A] , with E the mathematical expectation: the mean matrix is
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chosen as the nominal matrix.

• E{||[A]−1||2F} < +∞ , with ||.||F the Frobenius norm, for insuring the exis-

tence of a second-order solution of the stochastic ROM.

The construction of random matrix [A] is given by

[A] = [LA]T [Gn(δA)][LA] , (2.7)

where, using the Cholesky factorization [A] = [LA]T [LA] with upper-triangular

[LA], the random matrix [Gn(δA)] , whose construction is given in [105], is positive-

definite almost surely, with mean value [In], and is parameterized by a dispersion

parameter δA that is defined by

δ2
A =

1

n
E{||[Gn(δA)]− [In]||2F} . (2.8)

Hyperparameter δA of random matrix [Gn(δA)] has to verify 0 < δ < δmax, with

δmax given by

δmax =

√
n+ 1

n+ 5
. (2.9)

The construction of [Gn(δA)] proceeds from the application of the maximum en-

tropy principle under the following constraints:

• Matrix [Gn(δA)] is with values in the set of all the positive-definite symmet-

ric (n× n) real matrices.

• E{[Gn(δA)]} = [In] .

• E{||[Gn(δA)]−1||2F} < +∞ .

We now give the results for the random generation of matrix [Gn(δA)]. It can be

written as [Gn(δA)] = [LG(δA)]T [LG(δA)] , in which the (n× n) upper-triangular

random matrix [LG(δA)] is defined through its components as:

for i < j [LG(δA)]ij = δA(n+ 1)−1/2Uij , (2.10)

for i = j [LG(δA)]ij = δA(n+ 1)−1/2
√

2Vi , (2.11)

in which the random variables {Uij}ij are independent copies of a standard Normal

random variable and where the random variables {Vi}i are independent and are

such that Vi is a Gamma random variable with shape parameter αi = 2δ2
A/(n +
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1 + δ2
A(1− i)) depending on i and with rate parameter β = 1. The expression for

the gamma distribution fG is the following,

fG(x;α, β) =
βαxα−1e−xβ

Γ(α)
, (2.12)

in which gamma function Γ(α) is given by

Γ(α) =

∫ +∞

0

tα−1e−tdt . (2.13)

Using the Monte-Carlo simulation method [136], the C-SROM allows for comput-

ing the random displacements U(ω) associated with U(ω),

U(ω) = [Φ]Q(ω), (2.14)

in which the random complex vector Q(ω) of the generalized coordinates is ob-

tained by solving the random matrix-equation,

(−ω2[M] + iω[D] + [K] )Q(ω) = f(ω) . (2.15)

The Monte-Carlo simulation method consists in performing the calculation sev-

eral times using realizations of the random variables involved in the probabilistic

model. In Eq. (2.15), it allows for propagating uncertainties from the system ma-

trices [M], [D], [K] to the output FRFs U(ω).

The classical ROM presented in this Section 2 is built upon the use of the elastic

modes that are present in frequency band of analysis B (or a little further). In

this manner, the size of the model is reduced while preserving its accuracy for

this band. For the complex structures under consideration, numerous local dis-

placements are intertwined with the global displacements. As a result, among the

elastic modes present in B, many have little contribution to the robust dynamical

response of the stiff skeleton of the structure that is provided by the C-SROM.

Consequently, we present the construction of an adapted ROM that is based on

a ROB from which some local displacements have been filtered.
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Chapter 3

Global-displacements

reduced-order model

In this chapter, we present the construction of a new ROM that is based on

the use of a global-displacements ROB, instead of the classical ROB of elastic

modes, susceptible to include numerous local displacements. In Section 3.1, we

present the construction of an unusual mass matrix that is associated with a

reduced kinematics for the kinetic energy. In Section 3.2, we use this mass matrix

for obtaining unusual eigenvectors that constitute the global-displacements ROB

(this unusual mass matrix is not used as the mass matrix for computing the

response of the dynamical system). In section 3.3, an efficient and nonintrusive

algorithm is proposed for implementing the ROB. Finally, in Section 3.4, we

give the construction of a ROB that is constituted of the complementary local

displacements that are neglected in the global-displacements ROM.

3.1 Reduced kinematics for the kinetic energy

In order to filter local displacements, a reduced kinematics is introduced for the

mass matrix. This reduced kinematics is intended to be such that the local dis-

placements cannot be represented. Instead of using local shape functions within

the usual finite elements, we propose the use of r global shape functions, which

span a vector subspace, SR, and which constitute the columns of a (m × r) real

matrix, [B]. It should be noted that the support of these shape functions is the

whole domain of the structure and that they are approximated within the finite

element basis. In this work, the reduced kinematics used consists of polynomial

shape functions.
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3.1.1 Construction of the polynomial basis

The objective of this section is the construction of basis matrix [B] of subspace

SR . For all m-dimensional vector v belonging to SR , there exists a r-dimensional

real vector, c , such that

v = [B] c . (3.1)

In the work initialized in [120], the construction of the reduced kinematics is based

on a uniform domain partition of the struture, Ω, into Ns subdomains Ω1, . . . ,ΩNs .

For complex finite element models, such domain partitioning is not a straightfor-

ward task. In [45, 46], uniform domain partitions of the finite element mesh of

automobiles were performed using an algorithm [45] based on the Fast Marching

Method [121, 122]. In this thesis, the use, for the kinematics reduction, of more

accurate approximations (compared to the piecewise constant approximation),

allows for avoiding such a domain partitioning.

3.1.1.1 Polynomial reduced kinematics

In this work, we propose a polynomial approximation of maximum degree d over

the entire domain Ω of the structure. To do so, Nµ multivariate orthogonal poly-

nomials pα(µ) are used, where for µ = 1, . . . , Nµ multi-index α(µ) belongs to some

set Kd that is defined as follows. Let Kd be the set of vectors α = (α1, α2, α3) for

which integers α1 , α2 , and α3 verify

α3 ≤ α2 ≤ α1 ≤ d . (3.2)

It can be deduced (number of possible combinations) that,

Nµ = (d+ 1)(d+ 2)(d+ 3)/6 . (3.3)

The orthogonality for the polynomials is defined with respect to mass matrix

[M] . Denoting as Nf the number of free nodes of the finite element model, the

approximate displacement vjγ of node γ ∈ {1, . . . , Nf} following direction j is

written as

vjγ =

Nµ∑
µ=1

pα(µ)(xγ) c
j
µ , (3.4)

in which cjµ are the polynomials coefficients and where xγ = (xγ, yγ, zγ) is the

position vector of node γ at which the polynomials are evaluated. In matrix form,
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the Nf equations associated with Eq. (3.4) can be rewritten as

vj = [ p ] cj , (3.5)

in which vj is the sub-vector of v constituted of the Nf displacements vjγ , cj is

the sub-vector of c constituted of the Nµ coefficients cjµ , and where the (Nf ×Nµ)

real matrix [ p ] is constituted of the values, at each of the Nf mesh nodes, of each

of the Nµ polynomials pα(µ) . It should be noted that the same Nµ polynomials

are used for every direction j. Basis matrix [B] of subspace SR , which is such

that v = [B] c, is then assembled using [ p ]. This assembly is such that only the

3 translational directions are considered for constructing the reduced kinematics.

In order to make explicit the assembly, we give an example. Considering a given

node γ of the finite element mesh for which we suppose there are 6 DOFs, namely

the 3 translations and the 3 rotations, and for which the numerotation in the

finite element model is such that the 3 rotations come after the 3 translations,

the intersection, with the 3 columns associated with the number-µ polynomial

pα(µ) , of the 6 rows in matrix [B] that are associated with node γ , is the following

sub-matrix,

[T µγ ] =



pα(µ)(xγ) 0 0

0 pα(µ)(xγ) 0

0 0 pα(µ)(xγ)

0 0 0

0 0 0

0 0 0


. (3.6)

As a consequence, for a three-dimensional dynamical system, the column dimen-

sion of matrix [B] is r = 3Nµ (which is the dimension of subspace SR, associated

with the reduced kinematics).

The definition for the multivariate orthogonal polynomials pα(µ) is now given. For

this, using the same notation as for pα(µ) , the values, at the mesh nodes, of each

of the associated multivariate monomials, mα(µ) , can be written as

mα(µ)(xγ) = xα1−α2
γ yα2−α3

γ zα3
γ . (3.7)

Similarly to the definition of matrix [ p ], let [m ] be the (Nf × Nµ) real matrix

that is constituted of the Nf values, at the mesh nodes, of each of the Nµ mono-

mials mα(µ) . Matrix [m ] of the discrete monomials being introduced, the explicit

construction for [ p ] is the following. Matrix [ p ] is constructed as an orthonormal-

ization of [m ], with respect to mass matrix [M]. To do so, a QR decomposition
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is performed.

Remark 1 For the case of the use of a diagonally-lumped approximation for

mass matrix [M] (approximation for which we suppose the nodal mass is inde-

pendent of the translational direction), the computation of matrix [ p ] is car-

ried out by performing the thin QR decomposition of the (Nf ×Nµ) real matrix

[ a ] = [m`]1/2[m ], in which [m`] is the diagonal matrix constituted of the Nf nodal

masses. The QR decomposition is written as

[ a ] = [ q ][ r ] , (3.8)

in which [ r ] is a (Nµ×Nµ) real matrix and where [ q ] is a (Nf ×Nµ) real matrix,

which verifies

[ q ]T [ q ] = [INµ ] . (3.9)

Matrix [ p ] can then be obtained by using [ p ] = [m`]−1/2[ q ]. Pre-multiplying

latter equation by [m`]1/2 and using Eq. (3.9) yields the orthogonality property

for the multivariate polynomials,

[ p ]T [m`][ p ] = [INµ ] . (3.10)

It should be noted that, in practice, the computation of [ p ] is not necessary (which

allows the inversion of diagonal matrix [m`] to be circumvented, useful if some

diagonal terms in [m`] were to be zero). Instead, in order to construct the mass

matrix corresponding to the polynomial approximation, which will be defined in

next Section 3.1.2, only the product [m`]1/2[ q ] is required.

Remark 2 The use of orthogonal polynomials allows for obtaining an orthonor-

malized basis matrix [B], which verifies

[B]T [M][B] = [Ir] . (3.11)

It should be noted that this step (the orthogonalization) is important with re-

spect to the effectiveness of the method. In Section 3.1.2.1, the inversion of

the reduced matrix in Eq. (3.11) is involved in the construction of a projector

(orthogonal-projection matrix) that is used for the kinematics reduction of the

mass matrix. Without the orthogonalization step, round-off errors would lead to

an ill-conditioned reduced matrix (or even a rank-deficient one) and/or to large

errors.
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Deformation shapes via orthogonal projections onto polynomial bases

In order to illustrate the effect of using such a polynomial approximation, which

we recall to be devoted to the filtering of local displacements, we consider the

orthogonal projection, onto the polynomial basis (represented by matrix [B]), of

a regular low-frequency elastic mode of a car body structure. This elastic mode,

depicted in Fig. 3.1, includes displacements of several structural scales, including

(i) a global deformation of the body structure, (ii) a local deformation of the roof,

and (iii) a highly local deformation of a flexible part that is located at the left

back. The polynomial approximation is parameterized by the maximum degree d

used for the polynomials. The filtering is thus controlled by the value of d. For

different values of d, namely d = 5, d = 10, d = 15, and d = 20, the orthogonal

projection of the low-frequency elastic mode is performed. The results are plotted

in Figs. 3.2 to 3.5. It can be seen that, for the orthogonal projection given by

d = 5, both scales of local displacements have been filtered. For the orthogonal

projection given by d = 15, the first scale of local displacements, associated with

the roof, is recovered. Finally, for the orthogonal projection given by d = 20, the

original mode shape is recovered (including all the scales of displacements).

Figure 3.1: Mode shape of a regular low-frequency elastic mode of a car body

structure (eigenfrequency 72 Hz).
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Figure 3.2: Deformation shape of the orthogonal projection, onto the polynomial

basis of maximum degree d = 5, of the elastic mode shown in Fig. (3.1).

Figure 3.3: Deformation shape of the orthogonal projection, onto the polynomial

basis of maximum degree d = 10, of the elastic mode shown in Fig. (3.1).
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Figure 3.4: Deformation shape of the orthogonal projection, onto the polynomial

basis of maximum degree d = 15, of the elastic mode shown in Fig. (3.1).

Figure 3.5: Deformation shape of the orthogonal projection, onto the polynomial

basis of maximum degree d = 20, of the elastic mode shown in Fig. (3.1).
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3.1.1.2 Alternative reduced kinematics

The proposed reduced kinematics, which is presently applied to whole domain

Ω, can also be applied for each subdomain Ω1, . . . ,ΩNs of a partition of Ω. If

such a partition is introduced, and if the maximum degree d of the polynomial

approximation is chosen, for each subdomain, as d = 0 (which corresponds to

a constant displacement field by subdomain), we then obtain the formulation

introduced in [120]. In such a case, for the continuous formulation, a projection

operator hr of the displacement field u onto the subspace of constant functions

by subdomain is, for all x in Ω , written as

{hr(u)} (x) =
Ns∑
j=1

1Ωj(x)
1

mj

∫
Ωj

ρ(x′)u(x′)dx′ , (3.12)

in which 1Ωj(x) = 1 if x ∈ Ωj and is zero otherwise, where mj =
∫

Ωj
ρ(x)dx is

the mass of subdomain Ωj, and where ρ is the mass density. In [120], the finite

element discretization [Hr] of hr is used for obtaining the mass matrix associated

with the reduced kinematics, [Mr] = [Hr]T [M] [Hr].

On the other hand, if the maximum degree d of the polynomial approximation is

chosen, for each subdomain, as d = 1, then the reduced kinematics is very close

to a rigid-body displacements field by subdomain as proposed in [128].

Figure 3.6 presents the case of a heterogeneous plate for which two distinct struc-

tural levels can be defined: the first one consists of a stiff skeleton and the second

one of 12 flexible panels that are attached to the stiff skeleton. For this struc-

ture, numerous local displacements (associated with isolated vibrations of the

flexible panels) are intertwined with the global displacements (associated with

long-wavelength vibrations of the stiff skeleton). In order to filter the local dis-

placements, a uniform domain partition of the structure is introduced. Two differ-

ent approximations are used: a piecewise constant approximation and a piecewise

linear approximation. For an elastic mode including both global and local dis-

placements, both of these reduced kinematics allow the associated orthogonal

projections to get rid of the local displacements of the flexible panels. In addi-

tion, for this case, it can be seen that, in comparison to the piecewise constant

approximation, the piecewise linear approximation allows for obtaining a better

approximation of the original deformation shape of the stiff skeleton, while the

local displacements of the flexible panels remain filtered.
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Figure 3.6: Case of a heterogeneous plate including two structural scales (with a

stiff main frame supporting 12 flexible panels): undeformed configuration (top-

left), an elastic mode exhibiting both global and local displacements (top-right),

its orthogonal projection onto a subspace of piecewise constant functions (bottom-

left), and its orthogonal projection onto a subspace of piecewise linear functions

(bottom-right).
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3.1.2 Reduced-kinematics mass matrix

It should be noted that in the case where both the kinetic and elastic energies were

to be calculated using this polynomial approximation, the associated mass and

stiffness matrices would be of reduced dimension (r× r) and given by [B]T [M][B]

and by [B]T [K][B], respectively (which corresponds to a Galerkin projection, as

used throughout all the document). In the present work, the strategy employed

consists in approximating the kinetic energy while keeping the elastic energy ex-

act. The construction of an unusual mass matrix, corresponding to the reduced

kinematics, and which is compatible with keeping [K] as the stiffness matrix, is

given. In the following, such an unusual mass matrix will be referenced as the

reduced-kinematics mass matrix.

3.1.2.1 Definition

First, the kinetic energy Ek(V(t)) associated with any time-dependent real velocity

vector V(t) of dimension m is given by

Ek(V(t)) =
1

2
V(t)T [M]V(t) . (3.13)

Let then Vr(t) be the orthogonal projection of V(t) onto subspace SR, with respect

to the inner-product defined by matrix [M]. It can be written as

Vr(t) = [B] copt(V(t)) , (3.14)

in which copt(V(t)) is the unique solution of the optimization problem,

copt(V(t)) = arg min
c∈Rr

(V(t)− [B] c)T [M] (V(t)− [B] c) , (3.15)

and which can be shown to be given by

copt(V(t)) = ( [B]T [M] [B] )−1 [B]T [M]V(t) . (3.16)

Assuming the columns of [B] to be orthonormalized with respect to [M] (see

Eq. (3.11)), the projector [P] that is such that Vr(t) = [P]V(t) is therefore written

as

[P] = [B][B]T [M] , (3.17)
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the latter being a (m ×m) real matrix of rank r ≤ m . As a result, the reduced

kinetic energy, defined as Er
k(V(t)) = Ek(Vr(t)), can be written as

Er
k(V(t)) =

1

2
V(t)T [Mr]V(t) , (3.18)

in which the m-dimensional reduced-kinematics mass matrix,

[Mr] = [P]T [M][P] , (3.19)

is of rank r ≤ m , and can be written, using Eqs. (3.11), (3.17), and (3.19), as

[Mr] = [M][B][B]T [M] . (3.20)

3.1.2.2 Positiveness and null space

Since matrix [M] is positive definite, from Eq. (3.19) it can be deduced that the

null space of [Mr] is equal to the null space of [P] . The null space of [P] , which we

denote as S⊥R , is the orthogonal complement of subspace SR of Rm, with respect

to the inner-product given by matrix [M]. In other words, for all m-dimensional

real vector x , we have

x = xr + xc, (3.21)

in which vectors xr = [P] x ∈ SR and xc = ([Im]− [P]) x ∈ S⊥R verify

xc T [M] xr = 0 . (3.22)

The notion of orthogonal complement will be involved again later. Since dimension

r of SR is such that r ≤ m, matrix [Mr] is positive semidefinite.

3.1.2.3 Residual kinetic energy minimization

From Eqs. (3.13), (3.14), (3.15) and (3.22), it can be deduced that the construction

proposed is such that the residual kinetic energy, Ek(V)− Ek(Vr), verifying

Ek(V)− Ek(Vr) = Ek(V− Vr) , (3.23)

is minimum.

3.1.2.4 Mass conservation

Let mtot be the positive number such that mtot = 1
3
1T [M] 1, in which the m-

dimensional vector 1 is constituted of ones for the translation DOFs and of zeros
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for the rotation DOFs (if there exist in the computational model). Quantity mtot

represents approximately the mass of the structure (the mass located on the fixed

boundary conditions is not taken into account). If 1 belongs to SR (in which case

[P] 1 = 1), then the mass mtot,r = 1
3
1T [Mr] 1 is such that mtot,r = mtot . Since

vector 1 is spanned by the 3 columns of matrix [B] corresponding to polynomial

pα(1) (order-0 polynomial with multi-index α(1) = (0, 0, 0)), it can be deduced

that for any maximum degree d of the polynomial approximation, the mass is

conserved within the kinematics reduction.

3.2 Global-displacements reduced-order basis

In order to span the global-displacements space, denoted by Sg (and which is a

subspace of Rm), mass matrix [M] is replaced by [Mr] for obtaining the generalized

eigenvalue problem (that differs from the one used for computing the elastic modes

and that cannot be used for computing them),

[K]ψg
α = σgα[Mr]ψg

α , (3.24)

in which the eigenvectors ψg
α consist of global displacements and where σgα are

the associated eigenvalues. The first r eigenvalues are such that 0 < σg1 ≤ σg2 ≤
. . . ≤ σgr < +∞ and the eigenvalues of rank greater than r are all infinite, their

associated eigenvectors being orthogonal to vector subspace SR .

It should be noted that (i) the r eigenvectors ψg
α are not orthogonal with respect to

mass matrix [M] and (ii) they will be used for the projection of the computational

model defined by Eq.(2.1), which involves mass matrix [M] and not [Mr]. Let

us introduce the (m × ν) real matrix, [Ψg] = [ψg
1 . . .ψ

g
ν ], in which ν is a given

truncation order such that

ν ≤ r . (3.25)

The global-displacements ROB is then defined by the first eigenvectors of the

dynamical system, which are constrained to belong to the vector space spanned

by the ν columns of the (m× ν) real matrix [Ψg]. The global-displacements ROB

is denoted by [Φg] whose columns ϕgα are thus written as

ϕgα = [Ψg]rα , (3.26)

in which rα are the eigenvectors of the small-dimension generalized eigenvalue
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problem,

([Ψg]T [K][Ψg]) rα = λgα([Ψg]T [M][Ψg]) rα . (3.27)

The eigenvalues verify 0 < λg1 ≤ λg2 ≤ . . . ≤ λgν < +∞ . Introducing the matrix

[R] such that [R] = [r1 . . . rng ], in which ng is a given truncation order that will

be defined hereinafter, matrix [Φg] can be rewritten as

[Φg] = [Ψg][R] , (3.28)

which, using Eq. (3.27) and recalling our choice of a unit generalized mass nor-

malization, yields

[Φg]T [K][Φg] = [Λg] , [Φg]T [M][Φg] = [Ing ] , (3.29)

with [Λg] the diagonal matrix of the first ng eigenvalues λgα . Only the first ng
eigenvectors (associated with the lowest frequencies f gα =

√
λgα/2π) are kept for

constituting [Φg] = [ϕg1 . . .ϕ
g
ng ]. Dimension ng of global-displacements subspace

Sg is deduced from a cutoff frequency, f c, for which ng verifies

f gng ≤ f c. (3.30)

In addition, ng satisfies the inequality,

ng ≤ ν . (3.31)

Cutoff frequency f c is a data that must be chosen greater or equal to the up-

per bound ωmax/2π of frequency band B and that must be adjusted through the

analysis of the FRFs. It should be noted that truncation order ν cannot directly

be deduced from the value
√
σgν/2π because the eigenvalues σgα are not the eigen-

frequencies of the dynamical system. For ν ≤ r, the following inequality can be

shown,

λgν ≤ σgν , (3.32)

for which, in addition, the difference between λgν and σgν can be significant.

For brevity, no notation is introduced for the equations related to the global-

displacements ROM, which would be similar to Eqs. (2.4) and (2.5) and which,

anyway, would not be used.
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3.3 Numerical implementation

As the mass matrix [Mr] is a full (m ×m) matrix, this matrix is not assembled.

In addition, the eigenvalue problem defined by Eq. (3.24) requires the knowledge

of matrices [M] and [K], which can involve problems for the commercial software.

The purpose of this section is to present an efficient method for the construction

of the global-displacements ROB.

Let [M`] be the diagonal matrix that is a lumped approximation of mass ma-

trix [M]. For avoiding the use of [M], the following approximation of [Mr] is

introduced,

[Mr] ' [M`][B`][B`]
T

[M`] , (3.33)

in which [B`] is constructed as [B] (see Section 3.1) but is such that [B`]
T

[M`][B`] =

[Ir]. The projector [P] defined by Eq. (3.17) is then approximated by

[P] ' [B`][B`]
T

[M`] . (3.34)

As the reduced kinematics is based on the use of polynomial shape functions

defined over the whole domain, and as a lumped approximation of [M] can be

obtained by using constant shape functions within each element of the finite el-

ement model, the error induced by the approximation defined by Eq. (3.33) can

be considered negligible.

A double projection method is presented, which allows the knowledge of matrix

[K] to be avoided. It consists in projecting Eq. (3.24) onto subspace Sc that is

associated with the classical ROB made up of the elastic modes. Latter subspace

is supposed to provide, upon the use of a sufficiently large value of the number

n of elastic modes, an accurate representation within frequency band B. Then,

without loss of fidelity, such a projection can be obtained by writing

Sg ⊆ Sc (3.35)

that is satisfied if ψg
α is written as

ψg
α = [Φ]sα , (3.36)

in which sα is a n-dimensional real vector that has to be calculated as follows.

By using Eq. (3.36), the projection of Eq. (3.24) yields the following reduced-
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dimension generalized eigenvalue problem,

([Φ]T [K][Φ]) sα = σgα([Φ]T [Mr][Φ]) sα . (3.37)

The matrix [Φ]T [K][Φ] is the diagonal matrix [Λ] defined in Eq. (2.6), which is

available. By using Eq. (3.33), the full matrix [Φ]T [Mr][Φ] can be computed as

[Φ]T [Mr][Φ] ' [N ][N ]T , (3.38)

in which the (n× r) real matrix [N ] that is defined by

[N ] = [Φ]T [M`][B`] (3.39)

is also available. Introducing [S] = [s1 . . . sν ] and using Eq. (3.36), matrix [Ψg]

can be written as

[Ψg] = [Φ][S] . (3.40)

Denoting as [Σg] the diagonal matrix of the first ν eigenvalues σgα and recalling

our choice of a unit generalized mass normalization, it can then be deduced that

the reduced matrices involved in Eq. (3.27) are such that

[Ψg]T [K][Ψg] = [Σg] , [Ψg]T [M][Ψg] = [S]T [S] . (3.41)

Remark 1. Physical interpretation of the filtering strategy Introducing

the (m× n) real matrix [Φr] = [P][Φ], we obtain

[Φ]T [Mr][Φ] = [Φr]T [M][Φr] . (3.42)

The following interpretation for Eq. (3.37) can be given. While reduced stiffness

matrix [Φ]T [K][Φ] is the projection of stiffness matrix [K] onto the basis [Φ] of

the elastic modes (including both global and local displacements), the reduced

mass matrix [Φr]T [M][Φr] is the projection of mass matrix [M] onto displacements

represented by matrix [Φr], which belong to subspace SR, and in which some local

displacements are filtered.

Remark 2. Computational efficiency It should be noted that the numerical

rank, R , of [N ][N ]T is such that R ≤ r and R ≤ n, and that, similarly to

Eq. (3.25), truncation order ν must satisfy the inequality ν ≤ R. For computing

the generalized eigenvalue problem given by Eq. (3.37), three cases are considered.

• For r < n, a thin SVD (see [137]) of the (n × r) real matrix [Λ]−1/2[N ] is
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performed for a lower cost.

• For r � n, R = n is verified and matrix [N ][N ]T is positive definite. For

this case, the usual algorithms are used.

• For the intermediate case for which R is close to n, in order to obtain a good

accuracy, the SVD approach is more efficient.

3.4 Local-displacements reduced-order basis

In the rest of the document, it is assumed that the above numerical implemen-

tation of the global-displacements ROB explicited in Section 3.3 is used. In this

section, we present the construction of a local-displacements ROB. The vector

subspace associated with the local-displacements ROB, denoted by S` , is the or-

thogonal complement of subspace Sg of Sc , with respect to the inner-product

defined by matrix [M]. In particular, Sc is the orthogonal direct sum of Sg with

S`, and we write

Sc = Sg ⊕ S` . (3.43)

Thanks to this definition of S` , its ROB, denoted by [Φ`], satisfies the orthogo-

nality condition,

[Φg]T [M][Φ`] = [0], (3.44)

as well as the equality

[Φ`] = [Φ][Q`], (3.45)

in which [Q`] is the (n×n`) real matrix of the coordinates in the basis defined by

[Φ], and where the dimension n` is such that

n` = n− ng . (3.46)

Let [Qg] be the (n× ng) real matrix such that

[Qg] = [S][R] . (3.47)

Using Eqs. (3.28), (3.40), and (3.47) yields

[Φg] = [Φ][Qg] . (3.48)
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From Eqs. (2.3), (3.44), (3.45), and (3.48), the following orthogonality property

can be deduced,

[Qg]T [Q`] = [0] . (3.49)

Let [Z] be the (n× n`) real matrix whose columns are the right-singular vectors

associated with the n` zero singular values of the SVD of [Qg]T (and which, conse-

quently, constitute an algebraic basis of the null space of [Qg]T ). By construction,

matrix [Z] verifies

[Z]T [Z] = [In` ] . (3.50)

Equation (3.49) is satisfied for [Q`] expressed as

[Q`] = [Z][U ] , (3.51)

in which [U ] is a (n` × n`) real matrix of coordinates in the basis defined by [Z].

The local-displacements ROB represented by matrix [Φ`] is then defined by the

first eigenvectors of the dynamical system, which are constrained to belong to the

vector space spanned by the n` columns of the (m× n`) real matrix [Φ][Z]. The

columns ϕ`α of [Φ`] are thus written as

ϕ`α = [Φ][Z]uα , (3.52)

in which, thanks to Eqs.(2.6) and (3.50), it can be deduced that the columns uα of

[U ] are the eigenvectors of the following standard eigenvalue problem of reduced

dimension,

([Z]T [Λ][Z])uα = λ`α uα , (3.53)

in which the associated eigenvalues λ`α verify 0 < λ`1 ≤ λ`2 ≤ . . . ≤ λ`n` < +∞ .

In this Chapter 3, a general method has been presented for obtaining a global-

displacements ROM, for which the construction of the associated ROB depends on

the choice of parameters d (maximum degree of the polynomial approximation),

ν (truncation order), and f c (cutoff frequency). The dimension ng of the ROM

results from the values of these parameters. Suitable values of d and ν must be

tuned in order to obtain a smaller dimension ng ≤ n while preserving the fidelity

of the computational model. As higher frequencies are characterized by vibrations

of shorter wavelength, the choice of the values for d and ν strongly depend on the

value of frequency f c. The construction of a ROB made up of local displacements,

which is complementary to the global-displacements ROB, has also been proposed,
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and will be useful for the construction of a multilevel ROM.



Chapter 4

Multilevel reduced-order model

4.1 Formulation of the multilevel reduced-order

model

In this section, the previous developments are used in the construction of a mul-

tilevel ROM, for which three ROBs associated with the low-, medium-, and high-

frequency bands (LF, MF, HF) are introduced. In contrast to the HF band, the

LF band is associated with long-wavelength global displacements, while the MF

band is a combination of global and local displacements with more or less short

wavelength. For the complex structures considered, there is an overlap of the three

vibration regimes. For instance, numerous local elastic modes can be found in low

frequencies. The previously introduced filtering strategy is therefore used in order

to separate the LF-, MF-, and HF-type displacements. The filtering methodology

presented in Sections 3.3 and 3.4 can be condensed into the following mapping,

F1 : (Sc ; d, ν, f c) 7−→ (Sg ,S`) , (4.1)

which will be used for defining the multilevel ROM. Like the classical ROM, the

multilevel ROM is devoted to the vibration analysis over whole band B, which

can be decomposed into three bands, such that

B = BL ∪ BM ∪ BH . (4.2)

We now present the basic ideas concerning the construction of the multilevel

ROM, based on the introduction of three successive filterings, which are defined

through mapping F1 .
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Introducing the cutoff frequency, f cH , associated with the upper bound of BH ,

the (global-displacements) vector subspace, St , which includes the totality of the

remaining considered displacements and which is associated with the multilevel

ROM, is given by

(St ,S⊥t ) = F1(Sc ; dH, νH, f
c
H) , (4.3)

in which the values of the parameters dH and νH are tuned in order to obtain

a decreased dimension while preserving the fidelity of the ROM up to frequency

f cH . It should be recalled that subspace Sc is assumed to be associated with an

accurate classical ROM over band B. The (local-displacements) vector subspace

S⊥t , verifying Sc = St ⊕ S⊥t , is not used (the local displacements spanning this

subspace are discarded in order to decrease the dimension of the proposed ROM).

For carrying out the next filterings, similarly to the double projection method as-

sociated with Eq. (3.35), the computational model is now projected onto subspace

St , which is supposed to be associated with a sufficiently accurate representation.

Similarly, introducing the cutoff frequency, f cM , associated with the upper bound

of BM , the (local-displacements) vector subspace, SH , associated with the HF

vibration regime, is given by

(SLM ,SH) = F1(St ; dM, νM, f
c
M) , (4.4)

where SLM is the complementary (global-displacements) subspace belonging to

St . The values of the parameters dM and νM are tuned such that the ROB

associated with SLM yields an adequate representation up to frequency f cM . We

have the decomposition,

St = SLM ⊕ SH . (4.5)

Finally, introducing the cutoff frequency, f cL , associated with the upper bound

of BL , the (global-displacements) vector subspace, SL , associated with the LF

vibration regime, is given by

(SL ,SM) = F1(SLM ; dL, νL, f
c
L) , (4.6)

where SM is the complementary (local-displacements) subspace belonging to SLM .

The values of the parameters dL and νL are tuned such that the ROB associated

with SL , expected to mainly consist of global displacements, yields an adequate

representation up to frequency f cL . It should be noted that, similarly to before,

the proposed construction makes the assumption that subspace SLM , which is as-
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sociated with a higher polynomial degree having been tuned for covering a wider

frequency band (LF ∪ MF), is associated with a sufficiently accurate representa-

tion (for the LF band). Finally, we have the decomposition,

SLM = SL ⊕ SM , (4.7)

and consequently, using Eqs. (4.5) and (4.7), we obtain

St = SL ⊕ SM ⊕ SH . (4.8)

4.2 Implementation of the multilevel nominal

reduced-order model

4.2.1 Numerical procedure

In this section, no new concept is introduced, but only details useful for the

numerical implementation. The steps seen in Sections 3.3 and 3.4, devoted to

the construction of the global-displacements ROB and of the local-displacements

ROB, are summarized. Similarly to Eq. (4.1), the procedure is then compacted

in a mapping, F2 , which allows for defining the algebraic quantities associated

with the multilevel ROM formulated in Section 4.1. In the following, the steps

for calculating the outputs of mapping F2 are given.

For this, it is assumed that maximum degree d of the polynomial approximation,

truncation order ν, and cutoff frequency f c are given and in addition, some new

notations are now introduced in order to generalize the numerical procedure. Let

[Λ0] be a diagonal matrix of dimension n0 whose diagonal elements are strictly

positive. Let [Q0] be a (n1 × n0) real matrix for which n1 ≥ n0 and such that

[Q0]
T

[Q0] = [In0 ]. Let [N0] be a (n1 × rmax) real matrix for which rmax ≥ r , with

r = (d+ 1)(d+ 2)(d+ 3)/2 . (4.9)

These three matrices are the input parameters of mapping F2 in addition to the

filtering parameters, d, ν, and f c. The outputs of mapping F2 will allow us to de-

fine the construction of all the matrices involved in the multilevel ROM. It should

be noted that, aside from the multilevel ROM, mapping F2 allows for constructing

the global- and the local-displacements ROBs defined in Section 3 by using, as

inputs: [Λ0] = [Λ], [Q0] = [In] with n1 = n0 = n, and [N0] = [N ].

The matrix [N0] is associated with a reduced kinematics for which the maximum
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degree of the polynomials is greater or equal to d, and which may already have

been used during a previous filtering. Let [N0
r ] be the (n1× r) matrix constituted

of the first r columns of [N0]. In addition, the latter possible previous filtering is

associated with a change of basis defined by matrix [Q0]. Let [Nr] be the (n0× r)
real matrix defined by

[Nr] = [Q0]
T

[N0
r ] . (4.10)

The eigenvectors sα and associated eigenvalues σgα are calculated, similarly to

Eq. (3.37), as

[Λ0] sα = σgα([Nr][Nr]
T ) sα . (4.11)

Using [S] = [s1 . . . sν ] and [Σg] the matrix of the eigenvalues σgα , eigenvectors rα
and associated eigenvalues λgα are calculated, similarly to Eq. (3.27), as

[Σg] rα = λgα([S]T [S])rα . (4.12)

Dimension ng of the global-displacements ROB is the maximum integer α verifying

f gα ≤ f c, with f gα =
√
λgα/2π. Then, matrix [Λg] is made up of the first ng

eigenvalues λgα. In addition, matrix [R] = [r1 . . . rng ] is obtained, from which

matrix [Qg] = [S][R] is constructed. Introducing [C] = [Qg]T , the following SVD

is performed,

[C] = [UC ][ΣC ][VC ]T , (4.13)

from which the columns of [VC ] associated with the n` zero singular values in [ΣC ]

allow for obtaining the (n0 × n`) real matrix [Z] with n` = n0 − ng . Finally,

the eigenvectors uα and the associated eigenvalues λ`α are calculated, similarly to

Eq. (3.53), as

([Z]T [Λ0][Z])uα = λ`α uα , (4.14)

which allows for obtaining the matrix [U ] = [u1 . . .un` ] and the diagonal matrix

[Λ`] of the n` eigenvalues λ`α, followed by the construction of matrix [Q`] = [Z][U ].

The procedure just summarized allows the following mapping to be constructed,

([Λg], [Qg], [Nr], [Λ
`], [Q`]) = F2([Λ0], [Q0], [N0]; d, ν, f c) , (4.15)

whose outputs [Qg] and [Q`] can be shown, using Eqs. (3.27), (3.41), (3.45), (3.49),

(3.50), (3.51), and (3.53), and recalling our choice of a unit generalized mass
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normalization, to verify the following orthonormality properties,

[Qg]T [Qg] = [Ing ], [Q`]
T

[Q`] = [In` ], [Qg]T [Q`] = [0] . (4.16)

4.2.2 Construction of the reduced-order bases

4.2.2.1 First filtering

In Eq. (4.3), vector subspace St is obtained by the projection onto Sc in which

dH , νH , and f cH are the filtering parameters. Denoting by nt the dimension of the

multilevel ROM and setting rH = (dH + 1)(dH + 2)(dH + 3)/2, we define the real

matrices [Λt], [Qt], and [N t], respectively of dimensions (nt × nt), (n × nt), and

(n× rH) , as the first three outputs of mapping F2 , such that

([Λt], [Qt], [N t],∼,∼) = F2([Λ], [In], [N ]; dH, νH, f
c
H) , (4.17)

in which [N ] = [Φ]T [M`][B`]. The symbol ∼ indicates that the corresponding

output variables are not calculated. The ROB [Φt] associated with St is given by

[Φt] = [Φ][Qt] , (4.18)

in which, thanks to Eq. (4.16), [Qt] verifies

[Qt]
T

[Qt] = [Int ] . (4.19)

4.2.2.2 Second filtering

In Eq. (4.4), vector subspaces SLM and SH have their ROB defined through the

following outputs of mapping F2 ,

([ΛLM], [QLM], [NLM], [ΛH], [QH]) = F2([Λt], [Qt], [N t]; dM, νM, f
c
M) , (4.20)

in which νM ≤ nt and where, similarly to Eq. (4.16), the following properties are

verified,

[QLM]
T

[QLM] = [InLM ], [QH]
T

[QH] = [InH ], [QLM]
T

[QH] = [0] , (4.21)

in which nLM = dim(SLM) and nH = dim(SH) . The ROBs [ΦLM] and [ΦH] of

subspaces SLM and SH are given by

[ΦLM] = [Φt][QLM] , [ΦH] = [Φt][QH] . (4.22)
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4.2.2.3 Third filtering

In Eq. (4.6), vector subspaces SL and SM have their ROB defined through the

following outputs of mapping F2 ,

([ΛL], [QL],∼, [ΛM], [QM]) = F2([ΛLM], [QLM], [NLM]; dL, νL, f
c
L) , (4.23)

in which νL ≤ nLM and where, similarly to Eq. (4.16), the following properties

are verified,

[QL]
T

[QL] = [InL ], [QM]
T

[QM] = [InM ], [QL]
T

[QM] = [0] , (4.24)

in which nL = dim(SL) and nM = dim(SM) . The ROBs [ΦL] and [ΦM] of

respectively subspaces SL and SM are given by [ΦL] = [ΦLM][QL] and [ΦM] =

[ΦLM][QM] , which yields

[ΦL] = [Φt][QLM][QL] , [ΦM] = [Φt][QLM][QM] . (4.25)

4.2.3 Construction of the reduced-order models

4.2.3.1 Scale-S reduced-order model

For S = t , S = LM , S = H , S = L , or S = M , when using the scale-S
ROM, displacements U(ω) belong to the subspace SS that is defined as the space

spanned by the columns of matrix [ΦS ]. That is, they are approximated as

U(ω) ' [ΦS ]qS(ω) , (4.26)

where the nS-dimensional complex vector of generalized coordinates qS(ω) is the

solution of the reduced-matrix equation,

(−ω2[MS ] + iω[DS ] + [KS ] )qS(ω) = fS(ω) . (4.27)

In latter equation, thanks to the choice of a unit generalized mass normalization

and to Eqs. (2.3), (3.29), (4.18), (4.21), (4.22), (4.24), and (4.25), we have

fS(ω) = [ΦS ]
TF(ω) , [MS ] = [ΦS ]

T
[M][ΦS ] = [InS ] ,

[DS ] = [ΦS ]
T

[D][ΦS ] , [KS ] = [ΦS ]
T

[K][ΦS ] = [ΛS ] . (4.28)
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4.2.3.2 Multilevel nominal reduced-order model

Introducing the (m×nt) ROB, [Ψ], of the multilevel nominal ROM (ML-NROM),

which is given by

[Ψ] = [ [ΦL][ΦM][ΦH] ] , (4.29)

displacements U(ω) are approximated, using the ML-NROM, as

U(ω) ' [Ψ]q(ω) = [ΦL]qL(ω) + [ΦM]qM(ω) + [ΦH]qH(ω) , (4.30)

in which q(ω) = (qL(ω),qM(ω),qH(ω)) with qL(ω) in CnL , qM(ω) in CnM , and

qH(ω) in CnH . Complex vector q(ω) is the solution of the reduced-matrix equa-

tion,

(−ω2[M ] + iω[D] + [K] ) q(ω) = f(ω) , (4.31)

in which

f(ω) = [Ψ]TF(ω) , [M ] = [Ψ]T [M][Ψ] ,

[D] = [Ψ]T [D][Ψ] , [K] = [Ψ]T [K][Ψ] . (4.32)

Introducing [WL] = [QLM][QL] , [WM] = [QLM][QM] , and [WH] = [QH] , from

Eqs. (4.22), (4.25), and (4.29), it can be deduced that a block-writing of reduced

matrix [A] = [Ψ]T [A][Ψ] — for ([A], [A]) ∈ {([M ], [M]), ([D], [D]), ([K], [K])} —

can be written as

[A] =

[ALL ] [ALM ] [ALH ]

[AML] [AMM] [AMH]

[AHL ] [AHM ] [AHH ]

 , (4.33)

for which the matrix blocks are defined as follows. For I and J in {L,M,H},
the (nI × nJ ) real matrix [AIJ ] is given by

[AIJ ] = [W I ]
T

[At][WJ ] , (4.34)

where, using Eq. (4.18), we have [At] = [Qt]
T

[A][Qt] with [A] = [Φ]T [A][Φ] .

Moreover, Eqs. (4.19), (4.21), and (4.24) yield

[W I ]
T

[W I ] = [InI ] , [W I ]
T

[WJ ] = [0] if I 6= J , (4.35)

from which it can be deduced that [M ] = [Int ] .
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4.3 Multilevel stochastic reduced-order model

Similarly to the C-SROM, the multilevel stochastic ROM (ML-SROM) is based on

the nonparametric probabilistic approach of uncertainties. This approach allows

for taking into account both the model-parameter uncertainties and the model

uncertainties induced by the modeling errors. The ML-NROM previously pre-

sented is based on the use of three orthogonal ROBs represented by the matrices

[ΦL], [ΦM], and [ΦH], which are constituted of LF-, MF-, and HF-type displace-

ments, respectively. For instance, as explained in Section 4.1, the LF-type dis-

placements consist of long-wavelength global displacements, in contrast to the

short-wavelength local displacements associated with the HF regime. When a

small design change is performed in the structure, the local displacements that

exist in the modified part of the structure are likely to vary a lot, whereas the

shape of the global displacements is not really modified. Subsequently and as it is

well known, the local displacements are more sensitive to uncertainties than the

global displacements.

For a given random matrix [A] representing [M], [D] or [K] of the ML-SROM,

which is associated with the corresponding deterministic matrix [A] representing

[M ], [D] or [K] of the ML-NROM, three dispersion hyperparameters, δLA , δMA ,

and δHA are introduced. These parameters are intended to allow each type of

displacements to be affected by a particular level of uncertainties. For S equal to

L, M or H, the dispersion hyperparameter δSA is such (see Eq. (2.8)) that

(δSA)
2

=
1

nS
E{||[GnS (δSA)]− [InS ]||2F} . (4.36)

The random matrix [GA] with values in the set of all the positive-definite sym-

metric (nt × nt) real matrices, is written as

[GA] =

[ GnL(δLA) ] [ 0 ] [ 0 ]

[ 0 ] [GnM(δMA )] [ 0 ]

[ 0 ] [ 0 ] [ GnH(δHA ) ]

 , (4.37)

in which the random matrices [GnL(δLA)], [GnM(δMA )], and [GnH(δHA )], with di-

mensions (nL × nL), (nM × nM), and (nH × nH), are statistically independent

and are constructed similarly to the (n× n) random matrix [Gn(δA)] involved in

Eq. (2.7). Performing the Cholesky factorization [A] = [LA]T [LA], in which [LA]

is an upper-triangular matrix, the random matrix [A] is constructed as

[A] = [LA]T [GA][LA] . (4.38)
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The ML-SROM allows the random displacements U(ω) associated with U(ω) to

be obtained as

U(ω) = [Ψ]Q(ω), (4.39)

in which the Cnt-valued random variable Q(ω) is the solution of the random

matrix-equation,

(−ω2[M] + iω[D] + [K] ) Q(ω) = f(ω) . (4.40)

For all ω in B, the random equation defined by Eq. (4.40) is solved with the

Monte-Carlo simulation method.
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Chapter 5

Statistical inverse identification

of the multilevel stochastic

reduced-order model: application

to an automobile

5.1 Problem definition

5.1.1 Experimental measurements (excitation force and

observation points) and frequency band of analysis

Experimental measurements of some FRFs have been carried out for ne = 20

nominally identical cars over a broad frequency band, B = 2π × [10 , 900] Hz.

For each car, the same excitation force is applied at one of the engine fasteners

and the acceleration (following a given direction) is measured at two locations

referenced as the observation 1 that is far away from the excitation force and as

the observation 2 that is close to the excitation force.

5.1.2 Computational model

The finite element model is very dense and complex, including several kinds of

elements (springs, bars, beams, plates, shells, volume elements), rigid bodies and

constraint equations, with a total of m = 7,872,583 DOFs. A view of the finite

element model is displayed in Fig. 5.1.
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Figure 5.1: View of the finite element model of the automobile.

5.1.3 Modal density characterizing the dynamics and def-

inition of the LF, MF, and HF bands
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Figure 5.2: Modal density calculated with the computational model.
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Figure 5.3: Graph of the unwrapped phase as a function of the frequency in

logarithmic scale for the observation 1. Computational model (thick line) and 20

experimental measurements performed on the PSA cars of the same type [119]

(thin lines).

An intensive computational effort has been carried out for calculating the 24,578

elastic modes that are in the frequency band [0 , 2200] Hz. The graph of the modal

density corresponding to these 24,578 elastic modes is displayed in Fig. 5.2.

From this calculation, it can be seen that there are 7,258 elastic modes in frequency

band B. There are several possible definitions of the frequency bands BL , BM ,

and BH for a complex dynamical system. The definitions greatly depend on the

use that is made of the bands defined. In the present framework devoted to the

construction of a multilevel model reduction in structural vibrations, we choose

the approach proposed in [43], which is based on the analysis of the graph of

the unwrapped phase as a function of the frequency in logarithmic scale for the

observation 1 that is far away from the excitation force and consequently, for

which the propagation follows a long path. It is recalled that the unwrapped

phase corrects the radian phase angles by adding multiples of ± 2π when absolute

jumps between two consecutive sampled frequencies are greater than or equal

to the jump tolerance of π radians. It is known that in the LF range, the phase

rotates of π around an eigenfrequency while, in the HF band, the unwrapped phase

decreases quasi-linearly. Figure 5.3 displays the graph of the unwrapped phase

obtained with the computational model, which is compared to the 20 graphs that

correspond to the experimental measurements. The analysis of this figure allows
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for defining the following frequency bands BL = [10, 70] Hz, BM =]70, 300] Hz,

and BH =]300, 900] Hz. There are 159 elastic modes in low-frequency band BL ,

1,202 elastic modes in medium-frequency band BM , and 5,897 elastic modes in

high-frequency band BH , or, in average, about 2.5 modes per Hz in BL , 5 modes

per Hz in BM , and 10 modes per Hz in BH . A modal density of 2.5 modes per

Hz is quite high for the LF band of such a structure. This unusual feature is due

to the presence of numerous local displacements in addition to the usual global

displacements. For higher frequencies, the density of local elastic modes keeps

increasing, which yields a large number of elastic modes for the modal analysis.

5.1.4 Damping model for the automobile

The provided finite element model does not include a damping matrix, [D], and

consequently, the damping model is introduced at the ROM level. For each ROM

constructed in this application, the physical damping is introduced through the

use of a modal damping model. In the LF band and in the MF band, a multi-

parameter modal damping model is fitted by using the experimental FRFs. In

the HF band, a one-parameter modal damping model is identified by using the

experimental FRFs, for which the parameter is denoted by cH. For the deter-

ministic ROMs, three cases have to be considered in order to properly define the

damping model, depending on which ROM is used.

• The damping matrix of the C-NROM involved in Eq. (2.5) is defined by

[D] = 2[Ξ(cH)][Λ]1/2, in which the diagonal matrix [Λ] is defined by Eq. (2.6)

and where [Ξ(cH)] is a (n × n) diagonal matrix of modal damping rates,

which depend on parameter cH that has to be identified with respect to the

experimental measurements, in a deterministic framework. In such a case,

Eq. (2.5) consists of a diagonal matrix-equation.

• The damping matrix of the scale-S ROM involved in Eq. (4.27) is defined by

[DS ] = 2[ΞS(cH)][ΛS ]1/2, with [ΛS ] the diagonal matrix involved in Eq. (4.28)

and where [ΞS(cH)] is a (nS × nS) diagonal matrix of damping rates, which

depend on parameter cH that has to be identified with respect to the ex-

perimental measurements, in a deterministic framework. In such a case,

Eq. (4.27) consists of a diagonal matrix-equation.

• Concerning the ML-NROM, reduced stiffness matrix [K] involved in Eq. (4.31)

is a full matrix. In order to solve latter matrix equation, one possibility is

to perform a change of basis in order to diagonalize reduced matrices [K]

and [M ]. Doing so leads us back to scale-t ROM, for which the definition

of the damping matrix [Dt] is given in the item before.
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The modal damping rate number α of the classical ROM is given by

[Ξ(cH)]αα = ξ(ωα; cH) , (5.1)

in which ωα = [Λ]
1/2
αα and where the modal damping function (ω; c) 7→ ξ(ω; cH)

is defined as follows. In the LF and MF bands, modal damping function ξ is

independent of damping parameter cH. Concerning the rest of the band, the

value of function ξ reaches the value of cH for the maximum angular frequency

ωn. Figure 5.4 displays the graphs of this function for three distinct values of

damping parameter cH.

Similarly, the damping rate number α of scale-S ROM is given by

[ΞS(cH)]αα = ξS(ωSα ; cH) , (5.2)

in which ωSα = [ΛS ]
1/2
αα and where damping function (ω; c) 7→ ξS(ω; cH) is defined

as follows. In the LF and MF bands, the damping function ξS is the same as ξ.

Concerning the rest of the band, it is similar to ξ: the value of function ξS reaches

the value of cH for the maximum angular frequency ωSnS
.
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Figure 5.4: Modal damping function (ω; cH) 7→ ξ(ω; c) plotted, with respect to

the frequency in Hz, for: cH = 0.0275 (bottom line), cH = 0.03 (middle line), and

cH = 0.04 (top line).

For the stochastic ROMs, two cases have to be considered in order to properly

define the random matrix of the damping model, depending on which stochastic

ROM is used.
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• The definition given in Eq. (2.7) to random damping matrix [D] of the

C-SROM involved in Eq. (2.15) is not used. In order to solve Eq. (2.15),

the random generalized eigenvalue problem associated with random reduced

matrices [K] and [M] is solved, which yields the diagonal matrix, [Λ], of

the random eigenvalues and the matrix, [Φ], of the associated random eigen-

vectors. Equation (2.15) is then projected onto the stochastic ROB [Φ]. In

order to obtain a diagonal matrix-equation, random damping matrix [D]

of the C-SROM is then constructed similarly to deterministic damping ma-

trix [D] of the C-NROM given hereinbefore, except that diagonal matrix

[Λ] is replaced by the diagonal random matrix [Λ] constituted of the ran-

dom eigenvalues. The parameter cH has to be identified with respect to the

experimental measurements, in a stochastic framework.

• The definition given in Eq. (4.38) to random damping matrix [D] of the

ML-SROM involved in Eq. (4.40) is not used. In order to solve Eq. (4.40),

the random generalized eigenvalue problem associated with random reduced

matrices [K] and [M] is solved, which yields the diagonal matrix, [Σ], of the

random eigenvalues and the matrix, [Ψ], of the associated random eigen-

vectors. Equation (4.40) is then projected onto the stochastic ROB [Ψ]. In

order to obtain a diagonal matrix-equation, random damping matrix [D] of

the ML-SROM is then constructed similarly to deterministic damping ma-

trix [D] of the ML-NROM given hereinbefore, except that diagonal matrix

[Λt] is replaced by the diagonal random matrix [Σ] constituted of the ran-

dom eigenvalues. The parameter cH has to be identified with respect to the

experimental measurements, in a stochastic framework.

5.1.5 Definition of the observations

Let U(1)(ω), . . . ,U(nj)(ω) be the nj scalar observations that are made up of DOFs

or of combinations of DOFs of the displacement vector U(ω) involved in Eq. (2.1).

In this application, we have nj = 2 (corresponding to the two experimental ob-

servations). For each j, the computed observation is defined as the modulus

ω 7→ ucj(ω) in dB scale,

ucj(ω) = 20 log10|U(j)(ω)| , (5.3)

in which |.| is the modulus of a complex number. The counterpart for the ex-

perimental measurements of the k = 1, . . . , ne cars (with ne = 20) is denoted by

ω 7→ uej,k(ω) whose definition is the same as the definition of ucj(ω).
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5.1.6 Defining the objective function used for the conver-

gence analyses of the deterministic computational

ROMs

In order to define a distance between the computed deterministic FRFs and the

experimental FRFs, an objective function, Jd, is defined by

J2
d =

1

nj

nj∑
j=1

1

ne

ne∑
k=1

1

|B|

∫
B

(ucj(ω)− uej,k(ω))2dω , (5.4)

in which |B| = ωmax−ωmin . It should be noted that the construction of Jd would

remain unchanged if, in Eq. (5.4), the displacements were replaced by their cor-

responding accelerations.

5.1.7 Defining the objective function used for the identi-

fication of the stochastic computational ROMs

The parameters of the stochastic computational ROMs have to be identified with

respect to the experimental measurements (solving a statistical inverse problem).

Let U e
j (ω) be the real-valued random variable for which uej,1(ω), . . . , uej,ne(ω) are

ne independent realizations. Let U c
j (ω) be the real-valued random variable corre-

sponding to the deterministic quantity ucj(ω). The following objective function,

Js , is introduced

Js =
1

nj

nj∑
j=1

Js,j , (5.5)

in which the objective function Js,j associated with observation j = 1, . . . , nj is

written as

Js,j =
1

|B|

∫
B

OVL (U c
j (ω), U e

j (ω)) dω . (5.6)

In Eq. (5.6), the function (X, Y ) 7→ OVL (X, Y ) is defined by

OVL (X, Y ) = 1− 1

2

∫
R
|pX(x)− pY (x)| dx , (5.7)

in which X and Y are real-valued random variables, for which pX and pY are

the probability density functions. Function OVL is known as the overlapping

coefficient [138]. For all j = 1, . . . , nj and all ω in B, nsim realizations of random
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variable U c
j (ω) are computed by using the Monte-Carlo simulation method. The

probability density functions are estimated by using the kernel density estimation

method. It can easily be proved that the values of Js, of Js,j for j = 1, . . . , nj,

and of the OVL function, are between 0 and 1 (with 1 meaning a perfect match).

5.2 Classical nominal ROM and classical stochas-

tic ROM

In a first step, the dimension n of the C-NROM (deterministic) is calculated by

performing a convergence analysis of Jd as a function of n. For this value of n,

the C-NROM is used for computing the deterministic FRFs that are compared to

their experimental counterparts. In a second step, for the value of n determined

in the first step, the hyperparameters of the C-SROM (stochastic) are identified

by maximizing the objective function Js. Using the identified values of the hy-

perparameters, the C-SROM is used for estimating the confidence regions of the

random FRFs, which are compared to the experimental measurements.

5.2.1 First step: C-NROM

5.2.1.1 Convergence analysis of Jd as a function of n

The C-NROM is obtained by using Eqs. (2.4) and (2.5). A convergence analysis

of the C-NROM is performed with respect to its dimension n and to parameter cH
that controls the damping model. For each value of n, the optimal value, cH(n),

of cH is identified, in minimizing Jd. For each pair (n , cH(n)), Fig. 5.5 displays

the graph of Jd as a function of n and shows that convergence is reached starting

from n = 7,000. Nevertheless, we choose n = 8,450 (for which fn = 1,000 Hz),

in order (1) to have subspace Sc sufficiently rich for the construction of subspace

St ⊆ Sc of the multilevel ROM and (2) to have a classical ROM associated with

eigenfrequencies covering more than whole band B for obtaining a satisfactory

stochastic ROM.
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Figure 5.5: Convergence of the C-NROM with respect to its dimension: value of

Jd for several values of n (black crosses). Horizontal light-gray line: value of Jd
for n = 8,450.

5.2.1.2 Deterministic FRFs and experimental comparisons

The FRFs provided by the C-NROM, associated with observation 1 (acceleration

related to the displacement ω 7→ uc1(ω)) and with observation 2 (acceleration re-

lated to the displacement ω 7→ uc2(ω)), are plotted in Figs. 5.6 and 5.7 and are

compared to the ne = 20 experimental FRFs (accelerations related to displace-

ments ω 7→ uej,k(ω) with k = 1, . . . , ne). These figures clearly show that

• the experimental variabilities strongly increase with the frequency (it should

be noted that the relative important experimental variabilities in the LF

band for observation 1 that can be seen in Fig. 5.6 is due to measurement

noise).

• significant differences between the prediction of the computational model

and the experimental measurements can be observed, in particular in the

MF band.

• the big experimental variabilities cannot be represented by a simple deter-

ministic prediction, which would require the prediction of confidence regions

with a stochastic model.
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Figure 5.6: Observation 1: experimental FRF measurements performed on the
PSA cars of the same type [119] (black lines), deterministic FRF using the C-
NROM (gray line).
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Figure 5.7: Observation 2: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the C-

NROM (gray line).
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5.2.2 Second step: C-SROM

5.2.2.1 Experimental identification of the C-SROM

The C-SROM is obtained by using Eqs. (2.14) and (2.15) for which the disper-

sion hyperparameters and damping parameter cH must be identified with respect

to the experimental measurements, by solving a statistical inverse problem. The

random damping matrix [D] of the C-SROM is the one defined in Section 5.1.4

and consequently, there is no dispersion hyperparameter δD. The statistical in-

verse problem consists in computing the optimal values δopt
M , δopt

K , and copt
H of the

optimization problem defined as the maximization of the objective function Js
with respect to the three parameters δM, δK, and cH in the set of their admissi-

ble values. The optimization problem is not convex and a trial method is used

by introducing a fine grid of the admissible set with an non-homogeneous distri-

bution of the sampling points (that can be viewed in Fig. 5.8). For each point

(δM, δK) in the grid, cH 7→ Js(δM , δK , cH) is maximized yielding the optimal

value c?H(δM, δK). Figure 5.8 displays the graph of function (δM, δK) 7→ Js(δM,

δK , c
?
H(δM, δK)) calculated at the sampling points of the grid. It can be seen there

is a quasi-symmetry with respect to δM = δK axis. It can then be deduced the

optimal solution, for which δopt
M = 0.13 and δopt

K = 0.11.

Figure 5.8: Plot of function (δM, δK) 7→ Js(δM, δK) for the identification of hyper-

parameters δM and δK of the C-SROM. Black dots: sampling points, black cross:

optimal point.
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Concerning the calculation of the objective function, for each sampling point of

the grid, the value of the objective function Js is estimated using nsim Monte-Carlo

simulations. Figure 5.9 presents the convergence of the objective function Js as

a function of nsim evaluated at the optimal point (δopt
M , δopt

K , copt
H ). It can be seen

that, for a reasonable precision of Js (of about 0.01), convergence is reached quite

fast for nsim = 40, which can be considered as a good compromise between the

numerical cost and the accuracy (it would make little sense to carry out a very

fine statistical estimation if not exploring the parameter space with a sufficiently

fine grid – and vice versa).
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Figure 5.9: Convergence of objective function Js (black line), of Js,1 (dark-gray

line), and of Js,2 (light-gray line) with respect to number of simulations nsim.

Concerning the computational cost, for each independent realization of random

matrices [M] and [K] in Eq. (2.15), the matrix equation is diagonalized (solv-

ing the generalized eigenvalue problem of reduced dimension associated with the

conservative dynamical system) for obtaining an efficient resolution over (1) the

frequency sampling and (2) the sampling of parameter cH.
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5.2.2.2 Confidence regions of the random FRFs and experimental

comparison

Figure 5.10: Observation 1: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), random FRF using the identified

C-SROM (gray region), and overlap function OVL (black line underneath).

Figure 5.11: Observation 2: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), random FRF using the identified

C-SROM (gray region), and overlap function OVL (black line underneath).
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Figure 5.12: Observation 1, zoom into band BL ∪ BM: experimental FRF mea-

surements performed on the PSA cars of the same type [119] (black lines), random

FRF using the identified C-SROM (gray region), and overlap function OVL (black

line underneath).

Figure 5.13: Observation 2, zoom into band BL ∪ BM: experimental FRF mea-

surements performed on the PSA cars of the same type [119] (black lines), random

FRF using the identified C-SROM (gray region), and overlap function OVL (black

line underneath).
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Figure 5.14: Observation 1, zoom into band BL: experimental FRF measurements

performed on the PSA cars of the same type [119] (black lines), random FRF

using the identified C-SROM (gray region), and overlap function OVL (black line

underneath).

Figure 5.15: Observation 2, zoom into band BL: experimental FRF measurements

performed on the PSA cars of the same type [119] (black lines), random FRF

using the identified C-SROM (gray region), and overlap function OVL (black line

underneath).
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The confidence region (corresponding to a probability level of 95%) of each FRF

is computed by using the identified C-SROM. A convergence analysis of the con-

fidence region with respect to the number nsim of realizations in the Monte-Carlo

simulation method has been performed. A good convergence of the confidence re-

gion is reached for nsim = 10,000. The corresponding values of objective functions

Js,1 and Js,2 for the identified C-SROM are Js,1 = 0.62 and Js,2 = 0.56, which

yields Js = 0.59 (the statistical estimation is done with nsim = 10,000). The

results for observation 1 and observation 2 are displayed in Figs. 5.10 and 5.11.

On each figure it can be seen the confidence region, the 20 experimental mea-

surements, and the OVL function, ω 7→ OVL(U c
j (ω), U e

j (ω)), defined by Eq. (5.7)

and plotted between two horizontal lines: the lower horizontal line corresponds

to the value 0 and the upper one to the value 1. In Figs. 5.10 and 5.11, it can

be seen that, due (1) to the discrepancies of the C-NROM with respect to the

experiments and (2) to too narrow confidence regions provided by the C-SROM

in the LF band (and to a lesser extent in the MF band), the C-SROM does not

perfectly represent most of the experimental FRFs in the LF and MF bands, as it

can be seen in Figs. 5.12 and 5.13 that present a zoom of Figs. 5.10 and 5.11 into

band BL ∪ BM, and in Figs. 5.14 and 5.15 that present a zoom of Figs. 5.10 and

5.11 into band BL. It can be seen that OVL function confirms the not perfectly

correct prediction of the C-SROM in the LF and MF bands. The reason why

such a one-level stochastic model of uncertainties is not sufficient for predicting

the confidence regions in all the frequency band is that the effects of uncertainties

on the FRFs are not homogeneous in the frequency band. It should be noted

that, with this one-level stochastic ROM, if one would want to obtain broader

confidence regions in the LF band, one could use greater values for the dispersion

hyperparameters but in such a case, one would consequently obtain too broad

confidence regions in the HF band. The introduction of a multilevel stochastic

ROM allows for improving the prediction as demonstrated in the next section.

5.3 Multilevel nominal ROM and multilevel sto-

chastic ROM

In a first step, a deterministic analysis is carried out in order to find suitable

filtering parameters, which affect the reduction of the dimension of the model. In

fact, this deterministic analysis is not sufficient in itself, as the final objective is

the experimental identification of the ML-SROM. Consequently, in a second step,

all the filtering parameters defining the multilevel ROB and all the dispersion

hyperparameters are simultaneously identified. To this end, first, a temporary

choice of filtering parameters defining the ML-NROM is done, based on the de-



5.3 Multilevel nominal ROM and multilevel stochastic ROM 63

terministic analysis. Then, a sensitivity analysis with respect to the dispersion

hyperparameters allows for decreasing the number of dispersion hyperparameters

to be identified. Based on this assumption, a 3D coarse grid allows for finding

initial values for the dispersion hyperparameters. All the other parameters being

fixed, the filtering parameters of the HF band and the dispersion hyperparameter

of the HF band are simultaneously identified in a precise way. Finally, defining the

values of the other filtering parameters independently of the global optimization

problem, the remaining dispersion hyperparameters are identified at a low cost.

Using the identified ML-SROM, the confidence regions of the random FRFs are

statistically estimated and are then compared to the experimental measurements.

5.3.1 First step: ML-NROM

5.3.1.1 Convergence analysis of Jd as a function of dimension nt de-

duced from a first filtering

For constructing the multilevel ROM, the first step consists in defining the filtering

of local displacements that is devoted to the reduction of the final dimension nt
of the proposed ROM. This step corresponds to either Eq. (4.3) or Eq. (4.17). It

depends on the maximum degree dH of the polynomials of the reduced kinematics

of mass matrix [Mr], on truncation order νH that is indirectly related to the

upper bound of the frequency band (through the value
√
σtνH/2π in which σtα is

the eigenvalue of rank α in Eq. (4.11), involved in the mapping F2 in Eq. (4.17))

and to the cutoff frequency f cH. It should be noted that since by construction

one has St ⊆ Sc , the frequency f tnt =
√
λtnt/2π verifies the inequality f tnt ≤ fn .

Therefore, choosing f cH = fn = 1,000 Hz would automatically yield nt = νH .

We choose to set f cH as f cH = 925 Hz. It should be noted that scale-t ROM

given by Eqs. (4.26) and (4.27) yields the same response as the ML-NROM (by

construction). By abuse of terminology, we thus say that exploring the possible

values of parameters dH and νH allows the construction of the ML-NROM to be

adjusted. It is recalled that λtνH ≤ σtνH . For fixed dH , some sampling points are

explored in a segment in which parameter νH verifies

f cH ≤
√
σtνH/2π ≤ 10× f cH . (5.8)

Figure 5.16 presents a plot of function Jd with respect to parameters dH and νH ,

with dH ranging from 2 to 40 and with the corresponding values of νH deduced

from Eq. (5.8). It can be seen that for νH ≥ 4,000, the value of Jd is only sub-

jected to small fluctuations. It should also be noted that, in general, for a fixed

νH between 2,500 and 4,000, the value of Jd is larger (i.e. is less good) for a

larger value of dH. This is due to the fact that for an increasing value of dH, the
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value of νH has to increase in order that the quantity
√
σtνH/2π reach the upper

bound of the frequency band. Indeed, a larger maximum degree dH means an

increasing presence of local displacements, which means more basis vectors kept

in the construction of the ROM.

Figure. 5.17 shows the convergence of the ML-NROM with respect to its dimen-
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Figure 5.16: Plot of function Jd with respect to parameters dH and νH (lighter
gray level meaning higher Jd)

sion nt. For this, the value of Jd is plotted as a function of nt for several ROMs

(all the sampling points). Likewise, the convergence of the C-NROM is given

on the same figure, in order to put into evidence the faster convergence of the

ML-NROM towards a value corresponding to a reasonable accuracy, compared

to the C-NROM. This is explained by the fact that the ML-NROM lacks local

displacements (and thus has a lower dimension), which are not really important

for representing the dynamical responses. For a low maximum degree dH of the

polynomials (and for a low truncation order νH), the lower dimension nt that is

obtained for the ROM is associated with more important modeling errors. For

constructing the ML-NROM, a good compromise between the value of nt and

the accuracy associated with the value of Jd is sought. In fact, the purpose of

the multilevel ROM is to better represent the variabilities of the experimental

measurements in the frequency band (i.e. to obtain random FRFs that are able

to represent the experimental measurements) and consequently, the identification

of parameters dH and νH depends on the values taken by the dispersion hyper-

parameters of the ML-SROM (coupled problem). The previous exploration of

the possible values of parameters dH and νH is thus not sufficient. Nevertheless,
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Figure 5.17: For the C-NROM, graph of n 7→ Jd(n) (black crosses) and graph of
n 7→ Jd(8,450) (horizontal light-gray line). For the ML-NROM, graph of nt 7→
Jd(nt) (gray dots).

it allows for defining a sub-region in which the global identification (taking into

account the coupling of the dispersion hyperparameters with the filtering param-

eters) of the ML-SROM will be restrained. Concerning the computational cost,

one sampling point involves solving an eigenvalue problem of dimension νH (as-

sociated with Eq. (3.27) or Eq. (4.12)). In addition, it implies solving, for each

value of the maximum degree dH of the polynomials, an eigenvalue problem of

dimension n (associated with Eq. (3.37) or Eq. (4.11)), which can be solved at

a lower cost if dH (and thus column dimension rH of matrix [N t] in Eq. (4.17))

is low, through a SVD (as explained in Remark 2 of Section 3.3). Furthermore,

for each value of maximum degree dH of the polynomials, the matrix [N t], which

is constructed in Eq. (4.10) within the use of mapping F2 in Eq. (4.17), can be

obtained by extracting the first rH columns of a matrix [N t] associated with a

reduced kinematics of dimension rH,max that satifies rH,max ≥ rH for all consid-

ered rH. This way, the construction of matrix [B`] and the matrix product with

(m× n) matrix [Φ] are done once and for all.

5.3.1.2 Deterministic FRFs and experimental comparisons

Figures 5.18 and 5.19 show the deterministic FRFs obtained using the ML-NROM

with dH = 34 and νH = 4,250, which are the optimal values found solving the

global stochastic optimization problem presented in the next section. It can be

seen that the ML-NROM, with reduced dimension nt = 4,232, yields a satisfacory
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prediction with respect to that of the C-NROM.
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Figure 5.18: Observation 1: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the iden-

tified ML-NROM (gray line)
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Figure 5.19: Observation 2: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the iden-

tified ML-NROM (gray line)
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5.3.2 Second step: ML-SROM

5.3.2.1 Global experimental identification of all the parameters defin-

ing the ML-SROM

For the inverse identification of the ML-SROM, the global stochastic optimization

problem requires identifying the successive input parameters (filtering parameters)

of function F1 in Eqs. (4.3), (4.4), and (4.6) used for defining the ML-NROM.

Based on the ML-NROM, the ML-SROM is constructed upon dispersion hyper-

parameters δLK , δLM , δMK , δMM , δHK , and δHM that also have to be identified. The

random damping matrix [D] of the ML-SROM is defined in Section 5.1.4 and

consequently, there is no dispersion hyperparameters δLD, δMD , and δHD . The cutoff

frequencies f cL and f cM are chosen as the upper bounds of bands BL and BM,

that is to say f cL = 70 Hz and f cM = 300 Hz. It is recalled that f cH = 925 Hz.

In addition to damping parameter cH and to the 6 dispersion hyperparameters,

the ML-SROM is defined by the 6 filtering parameters, (dH , νH), (dM , νM), and

(dL , νL).

5.3.2.2 Construction of a first version of the ML-NROM

First, from the numerical exploration of parameters (dH , νH) in a deterministic

framework as described in latter section 5.3.1.1 (see also Fig. 5.16), a first version

of the scale-t ROM, given by dH = 20 and νH = 3,900, is chosen. Then, successive

numerical explorations of the parameters (dM , νM) and (dL , νL) are carried out

in a similar manner by using scale-LM and scale-L ROMs (these ROMs were

introduced in Section 4.2.3). These explorations yield (dM = 12, νM = 800) and

(dL = 6, νL = 275). It should be noted that the coupling with the dispersion

hyperparameters to be identified is, at this step, not taken into account.

5.3.2.3 Sensitivity analysis of the ML-SROM with respect to the dis-

persion hyperparameters

A sensitivity analysis of the ML-SROM associated with latter definition of the

ML-NROM is carried out. It shows that for a given scale S equal to L, M or H,

the influence of parameters δSM and δSK (associated with the statistical dispersion

of the reduced mass and stiffness matrices) is roughly identical. Therefore, only 3

dispersion hyperparameters δL , δM , and δH have to be identified: δL = δLK = δLM ,

δM = δMK = δMM , and δH = δHK = δHM .
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5.3.2.4 First identification of the hyperparameters of the ML-SROM

using a coarse 3D grid

A first identification is carried out using a coarse δL × δM × δH grid, for which

the boundaries are deduced from the previous sensitivity analysis. The 3D grid

is constituted of 540 sampling points, defined by the cartesian product of the

following sets δL × δM × δH:

δL = ( 0.15 , 0.20 , 0.25 , 0.30 , 0.35 , 0.40 , 0.45 , 0.50 , 0.55 , 0.60 ) ,

δM = ( 0.10 , 0.15 , 0.20 , 0.25 , 0.30 , 0.35 , 0.40 , 0.45 , 0.50 ) , (5.9)

δH = ( 0.05 , 0.07 , 0.09 , 0.11 , 0.13 , 0.15 ) .

As for the C-SROM, only nsim = 40 Monte-Carlo simulations are used for estimat-

ing the objective function Js associated with each sampling point. The optimal

point found is δL = 0.25 , δM = 0.25 , δH = 0.11 , which is sufficiently far from the

grid boundaries. Concerning the computational cost, similarly to the C-SROM,

for each independent realization of random matrices [M] and [K] of Eq. (4.40), the

matrix equation is diagonalized, by solving an eigenvalue problem of dimension

nt . In addition, damping parameter cH is identified for each sampling point. It

should be noted that, compared to dimension n = 8,450 of the classical ROM, the

final dimension nt = 4,232 of the identified multilevel ROM allows for obtaining a

non-negligible computational time gain of about a factor of ten (the complexity of

the algorithms for computing all the eigenvalues and eigenvectors of a full matrix

being approximately cubic).

5.3.2.5 Precise and simultaneous identification of the filtering param-

eters of the HF band and of the dispersion hyperparameter of

the HF band

We are now interested in adjusting the choice for parameters (dH , νH) that induce

the construction of subspace St of the ML-NROM of dimension nt. Supposing

these filtering parameters are sufficiently big, the choice of their values does not

influence the random FRFs in the LF and MF bands (which have already con-

verged with respect to them). The influence of parameter δM (and especially of

parameter δL) is not preponderant for the random response in the HF band. Con-

sequently, fixing the values of δL and δM that have been identified in the coarse

3D grid, the ML-SROM is identified with respect to filtering parameters (dH , νH)

and to dispersion hyperparameter δH, simultaneously. It should be noted that the

identification does not consist, at this step, in picking the parameters that maxi-

mize the objective function Js . Rather, it consists in finding a set of parameters
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for which Js is close to its maximum but under the constraint of a reasonably

small dimension nt for the ROM. It should be recalled that Js is only estimated

using nsim = 40 realizations and, in addition, the identification is subjected to

approximations. In such a context, between ML-SROMs with similar values for

Js, one should pick the ML-SROM for which the dimension nt is the smallest,

since, anyway, the value of Js suffers from approximations. This step completed,

the parameters that are chosen are the following: dH = 34, νH = 4,250, and

δH = 0.078.

5.3.2.6 Final stage for the global identification of the ML-SROM

Parameters (dL , νL) , (dM , νM) , δL , and δM remain to be identified. In order to

avoid a 6-dimensional costly optimization problem, the 4 filtering parameters are

left unchanged. It should be noted that these parameters control the overlap of

subspaces SL , SM , and SH of the multilevel ROM, associated with LF-, MF-,

and HF-type displacements. Also, if parameters (dL , νL) and (dM , νM) were

to tend towards infinity, there would be no overlap of subspaces SL , SM , and

SH . Qualitatively, subspace SL is supposed to be composed of long-wavelength

global displacements, without the numerous local displacements. Therefore, based

on these physical considerations, it is more suitable to force the values of filter-

ing parameters (dL , νL) and (dM , νM) outside the global stochastic identification

problem of the ML-SROM. Then, parameters δL and δM of the ML-SROM are

identified by estimating objective function Js over the sampling points of a given

2D grid, the other parameters being fixed. After this final stage, the identified

values are δL = 0.4 and δM = 0.22. For the identified ML-SROM, the values

of objective functions Js,1 and Js,2 evaluated by using, again, nsim = 10,000 re-

alizations, are Js,1 = 0.65 and Js,2 = 0.64, hence Js = 0.65, which constitutes a

non-negligible improvement with respect to the C-SROM.

5.3.2.7 Confidence regions of the random FRFs and experimental

comparisons

The confidence regions obtained using the identified ML-SROM are estimated us-

ing nsim = 10,000 realizations and are plotted in Figs. 5.20 and 5.21. It can be

seen that, despite the discrepancies of the ML-NROM (which are similar to those

of the C-NROM), the ML-SROM is able to represent most of the experimental

FRFs (unlike the C-SROM). This improvement is due to the increased flexibility

of the ML-SROM with respect to the C-SROM, particularly concerning the ca-

pability to adapt the level of uncertainties to each frequency band. It should be
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noted that, in general, on one hand the variability of the real system is low in the

LF band and that, on the other hand, the robustness of the computational models

is better in this band. In the present case, in the LF and MF bands, the modeling

errors are more important than the level of variabilities of the real system, hence

the large confidence intervals provided by the ML-SROM in these bands.

Figure 5.20: Observation 1: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), random FRF using the identified

ML-SROM (gray region), and OVL function (black line underneath).

Figure 5.21: Observation 2: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), random FRF using the identified

ML-SROM (gray region), and OVL function (black line underneath).
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Figure 5.22: Observation 1, zoom into band BL ∪ BM: experimental FRF mea-

surements performed on the PSA cars of the same type [119] (black lines), random

FRF using the identified ML-SROM (gray region), and OVL function (black line

underneath).

Figure 5.23: Observation 2, zoom into band BL ∪ BM: experimental FRF mea-

surements performed on the PSA cars of the same type [119] (black lines), random

FRF using the identified ML-SROM (gray region), and OVL function (black line

underneath).
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Figure 5.24: Observation 1, zoom into band BL: experimental FRF measurements

performed on the PSA cars of the same type [119] (black lines), random FRF using

the identified ML-SROM (gray region), and OVL function (black line underneath).

Figure 5.25: Observation 2, zoom into band BL: experimental FRF measurements

performed on the PSA cars of the same type [119] (black lines), random FRF using

the identified ML-SROM (gray region), and OVL function (black line underneath).

Figures 5.22 and 5.23 display a zoom of Figs. 5.20 and 5.21 into band BL∪BM and

Figs. 5.24 and 5.25 display a zoom of Figs. 5.20 and 5.21 into band BL . It can be

seen that the OVL function confirms the improved prediction of the ML-SROM

in the LF and MF bands.
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5.4 Complementary results

5.4.1 Deterministic analysis of the contribution of each of

the ROBs

In order to put into evidence the individual contribution of each ROB, [ΦL], [ΦM]

or [ΦH], the deterministic FRFs are calculated by using either scale-L, scale-

M, or scale-H ROM (of dimensions nL = 81, nM = 414, and nH = 3,737,

respectively). Figures 5.26 and 5.27 present the FRFs (modulus in log scale of

the accelerations of observations 1 and 2) given by these three ROMs, in addition

to the experimental measurements. For comparison, three ROMs are introduced,

for which the associated ROBs are (i) the first 159 elastic modes, (ii) the next

1,202 elastic modes, and (iii) the following 7,089 elastic modes. The same FRFs

are computed by using these ROMs and are depicted in Figs. 5.28 and 5.29. It can

be seen that, in contrast to the FRFs given by the different ROBs of elastic modes,

the ROBs constituted of the constructed LF-, MF-, and HF-type displacements

yield FRFs for which the dynamical contents overlap in frequency. It should be

noted that the scale-L ROM does not contribute beyond f cL = 70 Hz, neither

does the scale-M ROM beyond f cM = 300 Hz. This is explained by latter cutoff

frequencies, which have been used for constructing these ROMs.
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Figure 5.26: Observation 1: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the scale-L
ROM (blue line), deterministic FRF using the scale-M ROM (green line), and

deterministic FRF using the scale-H ROM (red line).
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Figure 5.27: Observation 2: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the scale-L
ROM (blue line), deterministic FRF using the scale-M ROM (green line), and

deterministic FRF using the scale-H ROM (red line).
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Figure 5.28: Observation 1: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the 159

LF elastic modes (blue line), deterministic FRF using the 1,202 MF elastic modes

(green line), and deterministic FRF using the 7,089 HF elastic modes (red line).
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Figure 5.29: Observation 2: experimental FRF measurements performed on the

PSA cars of the same type [119] (black lines), deterministic FRF using the 159

LF elastic modes (blue line), deterministic FRF using the 1,202 MF elastic modes

(green line), and deterministic FRF using the 7,089 HF elastic modes (red line).

5.4.2 Stochastic sensitivity analysis

5.4.2.1 Proposed ML-SROM

A sensitivity analysis of the ML-SROM with respect to the dispersion hyperpa-

rameters is presented. Using the identified parameters of the ML-SROM and

successively setting to zero 2 dispersion hyperparameters out of the 3 hyperpa-

rameters δL , δM , δH allow for quantifying the individual contribution of each

scale L , M , H of displacements in the random responses. The confidence re-

gions obtained using the proposed ML-SROM are estimated using nsim = 10,000

Monte-Carlo realizations. The confidence regions are obtained by using the iden-

tified ML-SROM and by setting, successively, δM = δH = 0 (see Fig. 5.30 for

observation 1 and Fig. 5.33 for observation 2), δL = δH = 0 (see Fig. 5.31 for

observation 1 and Fig. 5.34 for observation 2), and δL = δM = 0 (see Fig. 5.32 for

observation 1 and Fig. 5.35 for observation 2). In each figure, the vertical lines

indicate the boundaries between the LF, MF, and HF bands. Figures 5.32 and

5.35 show, for instance, that adding uncertainties to the HF-type displacements

yields the presence of uncertainties in the LF and MF bands. It is explained by

the fact that, since dH is greater than dM, some HF-type displacements are likely

to be present in the LF and MF bands. However, despite the absence of MF-type

displacements in the HF band (it is recalled that f cM = 300 for the construction
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given in either Eq. (4.4) or (4.20)), Figs. 5.31 and 5.34 show, for instance, that

adding uncertainties to the MF-type displacements yields the presence of uncer-

tainties in the HF band. This is due to the fact that the LF-, MF-, and HF-type

displacements are not orthogonal with respect to the stiffness matrix.

Figure 5.30: Observation 1: random FRF using the identified ML-SROM but for

which δM = δH = 0 is imposed.

Figure 5.31: Observation 1: random FRF using the identified ML-SROM but for

which δL = δH = 0 is imposed.
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Figure 5.32: Observation 1: random FRF using the identified ML-SROM but for

which δL = δM = 0 is imposed.

Figure 5.33: Observation 2: random FRF using the identified ML-SROM but for

which δM = δH = 0 is imposed.
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Figure 5.34: Observation 2: random FRF using the identified ML-SROM but for

which δL = δH = 0 is imposed.

Figure 5.35: Observation 2: random FRF using the identified ML-SROM but for

which δL = δM = 0 is imposed.
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5.4.2.2 Naive ML-SROM

A sensitivity analysis is carried out by using a naive ML-SROM that is defined as

follows. The vector basis associated with subspace SL is given by the 159 elastic

modes present in frequency band BL, the vector basis associated with subspace SM
is given by the 1,202 elastic modes present in frequency band BM, and the vector

basis associated with subspace SH is given by the next 7,099 elastic modes. It

should be noted that this ML-SROM corresponds to choosing filtering parameters

(dL , νL), (dM , νM), and (dH , νH) as going to infinity (no filtering). The sensitivity

analysis of this stochastic ROM is carried out using the same set of combinations of

the dispersion hyperparameters as in the previous section. The confidence regions

are estimated using nsim = 10,000 Monte-Carlo realizations. Figures 5.36, 5.37,

and 5.38 depict the confidence regions obtained for observation 1 and Figs. 5.39,

5.40, and 5.41 depict the confidence regions obtained for observation 2 . It can be

seen that, for this naive ML-SROM, the introduction of uncertainties for one given

vector basis induces the presence of uncertainties for the corresponding frequency

band, while practically none elsewhere. This stochastic ROM is thus not well

adapted for modeling uncertainties of complex dynamical systems for which the

LF, MF, and HF vibration regimes overlap.

Figure 5.36: Observation 1: random FRF using the naive ML-SROM for which

δM = δH = 0 is imposed.
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Figure 5.37: Observation 1: random FRF using the naive ML-SROM for which

δL = δH = 0 is imposed.

Figure 5.38: Observation 1: random FRF using the naive ML-SROM for which

δL = δM = 0 is imposed.
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Figure 5.39: Observation 2: random FRF using the naive ML-SROM for which

δM = δH = 0 is imposed.

Figure 5.40: Observation 2: random FRF using the naive ML-SROM for which

δL = δH = 0 is imposed.
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Figure 5.41: Observation 2: random FRF using the naive ML-SROM for which
δL = δM = 0 is imposed.



Chapter 6

Conclusions and future prospects

Conclusions

A general method has been developed for the construction of a multilevel stochas-

tic ROM devoted to the robust dynamical analysis of complex systems over a

broad frequency band. The complex systems considered are constituted of several

structural scales which, for instance, induce the presence in the low-frequency

range of numerous short-wavelength local displacements in addition to the usual

long-wavelength global displacements.

The proposed multilevel ROM is based on the construction of three orthogonal

ROBs whose displacements are either LF-, MF-, or HF-type displacements, asso-

ciated with the overlapping LF, MF, and HF vibration regimes. The construction

of these ROBs relies on a filtering strategy that is based on the introduction of

global shape functions for the kinetic energy (in contrast to the local shape func-

tions of the finite elements). In parallel to the fact that the local displacements are

more sensitive to uncertainties than the global displacements, implementing the

nonparametric probabilistic approach of uncertainties within the multilevel nom-

inal ROM, each ROB of the obtained multilevel stochastic ROM can be endowed

with a specific level of uncertainties through the values given to the dedicated

dispersion hyperparameters.

The numerical analysis and the algorithms have carefully been developed in or-

der to deal with large-scale finite element models. The complete methodology

has been implemented in a dedicated software (written in MATLAB language),

for which the inputs are the eigenfrequencies, the elastic modes, and a lumped

mass matrix of the finite element model, which are exported from any commercial
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software. Consequently, the approach proposed is nonintrusive with respect to

commercial software.

Several applications have been carried out in order to work out the method, the

numerical analysis, and the algorithms. All these applications are published in

the papers by the author and referenced in the introduction. These applications

are not reproduced in the thesis, in order not to complicate the presentation.

These applications concern a heterogeneous plate with two structural levels, a

heterogeneous plate with three structural levels, and a car body structure with a

large-scale finite element model (different from the one presented in the thesis).

The experimental validation has been given and the capability of the methodology

proposed has been demonstrated, for a multilevel stochastic ROM constructed for

a complex dynamical system consisting of an automobile, which has been identi-

fied with respect to experimental measurements, and which allows for obtaining a

decreased dimension as well as an improved prediction with respect to a classical

stochastic ROM.

Future prospects

A first development would consist in extending the current framework devoted

to the filtering between the global and the local displacements by introducing an

adaptive reduced kinematics for the kinetic energy.

A second point would be to test the capability of the methodology for other com-

plex structures and also for vibroacoustic systems.

A third point would consist in substituting the nonparametric probabilistic ap-

proach based on the random matrix theory by the nonparametric probabilistic

approach recently proposed [118] and based on the use of a stochastic ROB for

constructing the stochastic ROM.
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