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Abstract 
Recent progresses in microfluidics, synthetic biology, and microscopy automation now make 

it possible to control gene expression externally and in real time. Among the challenges facing 

the field of external real-time control of gene expression is the control of intricate, multistable 

gene regulation networks as well as the control of several target genes at the same time. To 

advance the domain in this direction we studied the controllability of a simple bistable two-

genes network, the so-called genetic toggle switch, in the vicinity of its unstable equilibrium 

point for extended periods of time. 

Throughout this document, we present the development of a custom control platform for 

external control of gene expression at the single-cell level as well as a bacterial cellular 

chassis and a library of toggle switch genetic circuits for us to control. We use the platform to 

drive and maintain our genetic system in its region of unstability with both closed-loop and 

open-loop strategies. Not only do we demonstrate that in silico control platforms can control 

genetic systems in out-of-equilibrium states, we also notably maintain a population of cells in 

their unstable area with open-loop periodic stimulations. These results suggest the possible 

emergence of different regimes of stability in gene regulation networks submitted to 

fluctuating environments, and can potential insights in the study of cellular decision making. 

We also introduce a new approach for microscopy image analysis which exploits information 

hidden in several focal planes around the specimen instead of using only a single-plane image. 

The objective of this method is to automatically label different parts of an image with 

machine learning techniques inspired by hyperspectral imaging. The method is then shown to 

facilitate segmentation and be easily adaptable to various different organisms. 
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Ré sumé  
Les progrès récents de la microfluidique, la biologie synthétique, la microscopie automatisée 

rendent aujourd'hui possible le contrôle externe de l'expression des gènes en temps réel. Parmi 

les défis que devra relever le domaine du contrôle externe et temps-réel de l'expression des 

gènes se trouve la possibilité de contrôler des réseaux de régulation génique aux dynamiques 

complexes et multi-stables, et le contrôle de multiple gènes en parallèle. Pour faire avancer le 

domaine dans cette direction nous avons étudié la contrôlabilité d'un réseau bistable composé 

de deux gènes, appelé genetic toggle switch, ou bascule génétique, autour de son point 

d'équilibre instable sur de longues périodes. 

Dans ce document, nous présentons la mise en place d'une plateforme de contrôle externe de 

l'expression des gènes en cellule unique, ainsi que le développement d'un châssis cellulaire 

bactérien et d'une librairie de circuits de bascules génétique à contrôler. Nous utilisons la 

plateforme pour diriger et maintenir notre système génétique dans sa région d'instabilité avec 

des techniques de stabilisation à la fois en boucle ouverte et en boucle fermée. Nous 

démontrons non seulement que les plateformes de contrôle in silico peuvent être utilisées pour 

contrôler un système génétique dans un état hors-équilibre, nous démontrons aussi la 

possibilité de maintenir une population de cellules dans leurs région d'instabilité à l'aide de 

stimulation périodiques en boucle ouverte. Ces résultats suggèrent l'émergence de régimes de 

stabilité différents dans des réseaux de régulation génique lorsqu'ils sont soumis à des 

environnements fluctuants, et peuvent fournir de nouvelles perspectives dans l'étude de la 

prise de décision cellulaire. 

Nous présentons aussi une nouvelle approche pour l'analyse d'images de microscopie qui 

exploite l'information cachée dans plusieurs plans focaux autour du spécimen au lieu d'utiliser 

seulement un seul plan focal. L'objectif de cette méthode est d'identifier automatiquement les 

différents parties d'une image à l'aide de techniques d'apprentissage machine inspirées de 

l'imagerie hyperspectrale. La méthode facilite la segmentation de l'image et peut être 

facilement adaptée à différents organismes. 
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1 Motivation: From steam to electronics to cybergenetics. 

1.1 Control Theory 
As S. Bennet reminds us at the beginning of his book series A History of Control Engineering 

(Bennett 1979) the will to control natural elements and make them self-regulate dates back 

thousands of years. In Politics, Aristotle already understood the potential of what would later 

be called “control theory”: 

“...if every instrument could accomplish its own work, obeying or anticipating the will of 

others [...] if the shuttle weaved and the pick touched the lyre without a hand to guide them, 

chief workmen would not need servants, nor masters slaves.” 

Control theory is the science of regulating and driving physical processes to accomplish tasks 

that are important to us. It is used somewhat interchangeably to describe automatic feedback 

mechanisms in which the state of a process, for example, the water level in a tank, is first 

sensed, e.g. with an ultrasonic sensor or, more simply, a floater, and the process is acted upon 

on-the-fly to make it reach a desired state, such as, by opening or closing valves. The 

applications of control theory are ubiquitous in our day-to-day life; perhaps recently one of 

the most sensational being the technological prowess of the successful landing of SpaceX’s 

falcon 9 rocket
1
. But aeronautics and astronautics are not the only domains in which control 

theory is of central importance; applications include abstract tasks such as monetary 

regulation in central banks or smart power grid management, to more mundane examples like 

air conditioning. 

 

Figure 1-1 The general scheme of feedback control. A process of interest, usually called a “plant”, is regulated in real time by 

a control apparatus. The state of the process is sensed through different sensors and a control algorithm computes the strategy 

to follow by influencing the process via various means of actuation to steer it in the desired direction. 

It is in ancient Greece that antique implementations of control devices started appearing. The 

earliest documents relating water clocks and pneumatic control date back more than 23 

                                                 
1
 The Falcon 9 rocket, designed and manufactured by the company SpaceX, is a two-stage-to-orbit launch 

vehicle, designed for commercial cargo delivery into orbit. Its key feature is the use of a re-usable main stage, 

which can land autonomously after detachment of the payload, to reduce costs. On December 21
st
 2015, the 

company successfully landed the main stage for the first time, in what is seen as a major step forward and a 

 technological tour de force. 

http://www.theverge.com/2015/12/21/10640306/spacex-elon-musk-rocket-landing-success 

http://www.theverge.com/2015/12/21/10640306/spacex-elon-musk-rocket-landing-success
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centuries ago. Heron of Alexandria’s float valve regulator for water level control can still be 

found in every modern toilet water tank. These early implementations spread through the 

Greek and Arab worlds and control theory remained largely confined to pneumatics and water 

level control until the 17th century. After the Renaissance, European scientists rediscovered 

the classical Hellenic knowledge and soon Cornelius Drebbel implemented the first 

thermostated incubators. But perhaps the most important landmark in early control theory 

history is the centrifugal governor. Invented by Thomas Mead in 1787(Mead 1787), it was 

soon applied by James Watt and Matthew Boulton to rotary steam engines to regulate their 

speed (see Figure 1-2). 

 

Figure 1-2 Adapted from (Routledge 1881). Watt & Boulton’s centrifugal governor - The two masses (E) spread outward 

when the rotational speed applied to the main shaft (D) increases, thus actioning a mechanism that will reduce the aperture of 

the steam throttle-valve (A) and finally reduce the rotational speed. The centrifugal governal was the central object of study 

of early control theory in the 19th century. It is difficult to distinguish the sensor from the controller and from the actuator in 

those early implementations, but the “plant” is the steam engine, or the rotational speed out of a steam engine. 

The centrifugal governor played a major role in the industrial revolution. The possibility of 

not only harnessing steam, but also regulating it, led to unprecedented sustained power and 

left its mark in every contemporary scientific mind. Perhaps it should not be too surprising to 

us then that, in an analogy perfectly tailored to the purpose of this thesis, Charles Darwin and 

Alfred Russel Wallace wrote about the principle of evolution in 1858 (Darwin & Wallace 

1858): 

“The action of this principle is exactly like that of the centrifugal governor of the steam 

engine, which checks and corrects any irregularities almost before they become evident; and 

in like manner no unbalanced deficiency in the animal kingdom can ever reach any 

conspicuous magnitude, because it would make itself felt at the very first step, by rendering 

existence difficult and extinction almost sure soon to follow.” 

The importance of centrifugal governors in 19th century technology, from trains to steamships 

to hydraulic pumps, drew scientific attention to their improvement. Because of the lack of any 

integral error compensation, errors in the choice of the masses would almost always cause 

offset error. Nonlinear effects generated limit cycles. And also the steady-state speed could 

not be modified on-the-fly. These problems could be circumvented with differential gears, 
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springs, and a variety of ingenious mechanisms, but soon engineers ran into stability issues. 

Throughout 19th century Europe interest in the mathematical analysis of the stability of those 

systems increased, laying the first theoretical framework for control theory. 

From then on, theoretical analysis would foster the development of control devices even 

further. New needs for precise positioning, steering engines, and various stabilizers on one 

hand, and the advent of powerful combustion engines and electrical sensors, actuators, and 

signal processors on the other, also promoted widespread deployment of automatic feedback 

mechanisms, but it wasn’t until after World War II that the various analytical approaches 

would be unified under a common theory and convention. The Cold-War era rocket frenzy, 

the exponential growth of computing power, and the third industrial revolution would make 

control theory into the established and ubiquitous science it is today. 

 

Figure 1-3 Modern implementation of control feedback loops. The “plant” can be a chemical reaction, a temperature to 

regulate or a modern rocket. Various electronic or electromechanical sensors, like pH meters, thermometers or 

accelerometers,  will feed data about the process to the computer, or at least the part of the electronic circuit that implements 

the control algorithm. Finally, the state of the electronic or electromechanical actuators, like valves, heaters, or motors, is 

modified in real time to steer the process in the right direction. 

1.2 Control engineering and biology  
In 1948, the book Cybernetics: or Control and Communication in the Animal and the 

Machine was published. The result of a collaboration between control theory pioneer Norbert 

Wiener at the Massachussetts Institute of Technology and Harvard Medical School 

physiologist Arturo Rosenblueth, the book became a reference in the field and beyond, 

defining the term of cybernetics as a transdisciplinary approach for exploring regulatory 

systems, their structures, constraints, and possibilities. The book exposes the possible 

contribution of the discipline to a variety of scientific domains. Of particular interest to us, it 

laid bare the connection between early control theory and a number of physiological 

regulations, like body homeostasis or biomechanical feedback control. 

Indeed, since the 1950s the study of prehension, locomotion, and motor coordination in 

animals and human beings has relied heavily on a control theory approach(Todorov & Jordan 
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2002): It is generally accepted that the tensions in the many muscles implied in any 

movement, to grasp a pencil for example, are updated throughout the entire process according 

to sensory inputs (e.g. vision, touch, and proprioception) and advanced control algorithms 

taking place at all levels of the nervous system. Similarly, in physiology, following the 

seminal paper by Grodins (Grodins et al. 1954) on the subject, the study of body homeostasis 

including thermoregulation, blood pressure, blood pH, and the levels of calcium, potassium, 

sodium and glucose in the blood were all studied from the angle of control theory(Milhorn 

1966). 

The discovery of DNA, and more importantly, the identification of genetic regulation 

mechanisms in 1961(Jacob & Monod 1961) opened the way to the study of the inner 

workings of cells themselves. Refinements in protein sensing technology and in quantitative 

biology over the years unveiled the staggering complexity of the genetic-proteomic circuitry. 

Gene networks have since become one of the main subjects of study of systems biology, and 

the seminal works of Alon, Barkai and Leibler(Barkai & Leibler 1997; Alon et al. 1999) in 

the late 1990s first suggested and demonstrated that adaptation to constant stimuli by the 

bacterial chemotaxis system is a robust property of the network and not a result of fine-tuning 

of biochemical parameters. In the following years, control theoreticians looked into the 

interplay between network topologies and the robustness of their responses. A review on the 

subject can be found in (Stelling et al. 2004). 

The early 2000s also saw the appearance of another related field: synthetic biology. Synthetic 

biology stems from the progress made in genetic manipulation tools in the late 1980s and 

1990s (most notably in cloning techniques, PCR and DNA sequencing) and systems biology. 

It aims at integrating an exogenous genetic network in the cell that not only can provide the 

genetic information for synthesizing new proteins, as is routinely done in traditional genetic 

manipulations, but also incorporates a function or program encoded into the genetic material 

to respond to certain external or internal stimuli or to increase the robustness of the desired 

process. Potential applications include drug production and smart drug delivery, biofuel 

synthesis, bioremediation, biosensing, and waste processing (Collins & Khalil 2010; Cameron 

et al. 2014). Because synthetic biology draws a significant part of its goals from computer 

science and electrical engineering, control theory was rapidly incorporated into the 

fundamental concepts that drove its development. The difficulty of designing synthetic 

genetic modules to assemble into more elaborate systems became rapidly apparent, and soon 

engineered circuit modules involved feedback loops to increase robustness and reliability. For 

a detailed description of the co-evolution of synthetic biology and control theory see (Del 

Vecchio et al. 2016). 

Unfortunately the processing subtleties that can be involved in modern control algorithms can 

hardly ever be incorporated into genetic circuitry, and a new theoretical framework for in vivo 

internal stochastic control algorithms must be formulated to reach the long-term objectives of 

synthetic biology. But looking at the history of control theory, the trend over the post-war era 

has been to externalize the control process out of the electromechanical realm into the more 

computation-indulgent digital one. Key technological advances that made this shift possible 

were the development of reliable, precise, digital sensors on one hand, and efficient and 
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powerful electromechanical actuators on the other, with of course the exponentially increasing 

computational power of modern microprocessors. In the years to come, the expansion of in 

vivo external real-time control to new applications will be fostered by: a) renewed interest in 

fluorescent probe design following the recent breakthrough of super-resolution imaging; b) 

the actuation capacity provided by the sophistication of optogenetics over the last decade; and 

c) continued innovation in microfluidics both for observation and actuation through chemicals 

delivery. 

1.3 Externalizing Control 
Inducible promoters are now routinely used in systems and synthetic biology to understand 

and construct genetic regulatory networks. Because of the stochasticity of gene expression 

and its limited measurability in cells, such uses have long remained limited to short term, full 

induction of populations of cells. Fine-tuning of in vivo protein levels in bacteria remains a 

challenge. 

Before using drug-responsive promoters like the lac or tet systems(Lutz & Bujard 1997) to 

induce gene expression in living cells, the first technique to study the action of a gene in an 

organism was complete gene knockout. Not only is it a demanding task, but the process is not 

reversible, not quantitative, and one cannot observe the effect of the gene’s removal on the 

rest of the genetic network dynamically. A step towards quantifiable and dynamic studies of 

gene expression was made with the introduction of phage promoters in the cells, such as PL of 

phage lambda(Elvin et al. 1990) or the RNA polymerase and promoter of T7 phages(Studier 

& Moffatt 1986). Again, those techniques are not convenient and hardly quantitative: it 

required heavy cloning procedures where all the phage transcription machinery had to be 

expressed by the cell, and the induction level of the promoters could not be fine-tuned over 

time, as the PL promoter is activated by temperature shifts and T7 promoter activation 

necessitates the introduction of the T7 RNA polymerase in the cell via phage infection. 

Finally, during the 1990s, a lot of effort was put into the development and characterization of 

inducible promoters that could be quantitatively tuned, induced over wide ranges of 

expression, and would be orthogonal to most of the cells’ natural repressors(Guzman et al. 

1995; Skerra 1994). The most widely used systems are the lac and tet promoter-repressor 

couples(Lutz & Bujard 1997). These inducible systems opened the way for quantitative 

studies of gene regulatory networks and later, synthetic biology. However, although these 

newer inducible promoters allow for a more finely graded induction of gene expression levels 

than the original on/off phage-based systems, and refinements based on self-regulating 

feedback loops make this resolution even finer(Nevozhay et al. 2009; Rosenfeld et al. 2002), 

induced gene expression is still unpredictable, heterogeneous, and shows significant 

fluctuations in time. 
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Figure 1-4 General description of our platform for external control of intracellular processes. The “plant” to control is the 

expression level of a gene of interest. Time-lapse, epifluorescence movies of the cells are acquired and the data is sent to a 

computer for evaluating the control strategy. The environment of the cells is then modified via microfluidics accordingly to 

steer gene expression in  the appropriate direction. 

In the State of the Art section of this thesis I will detail recent results that show that gene 

expression levels can be precisely manipulated over extended periods of time using control 

theory, with in silico feedback loop control platforms. Externalizing the control system allows 

for more sophisticated control strategies and a broader range of possible dynamic 

perturbation, or programming, of the system of interest. With precise control of gene 

expression, the signal processing properties of a genetic circuit can be analyzed by measuring 

its dynamic input-output function. The circuit can then be used as a brick in a larger assembly 

and used to drive chemical processes of interest or as a precise input knob on other cellular 

processes. 

Multistable systems play a central role in both synthetic and natural gene regulatory networks, 

and it is important for the applicability of control theory to demonstrate that such systems can 

be controlled in a large portion of their state space. A particularly good point for external 

control would be to demonstrate that cells can be maintained for extended periods of time in 

states that cannot be maintained by constant induction of inducible promoters. Such a result 

would extend the domain of possible study of cellular phenomena, since it would allow the 

experimenter to bring the system into states that could not be reached or maintained with 

previous methods, and without extensively modifying the underlying genetic network. 

The development of external control of gene expression platforms in conjunction with other 

developments in the fields of microfluidics, optogenetics, and fluorescent probes should lead 

to the routine use of external control in the years to come. This is the central problem of my 

PhD work. I built an experimental platform for the real time control of gene expression and 

put significant efforts into making sure that it can be used by others. 

With this single-cell control platform for bacteria, I investigated the controllability of a simple 

bistable system, the genetic toggle switch. 
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2 Scientific problem: Long-term and real-time control of a bistable 

genetic system in single-cell bacteria 

The main objective of my PhD was to develop a single cell control platform to study the 

feasibility of control in single cell Escherichia Coli bacteria, and specifically control of  a 

bistable gene circuit, the toggle switch. It implied studying and integrating together the 

different domains that are necessary for a functional control platform: actuation through 

synthetic biology and microfluidics, sensing through microscopy and image analysis, and 

control theory.  

The genetic toggle switch consists in two genes mutually repressing each other, and features 

two stable states in which either of the two genes is expressed and completely represses the 

other. A third, unstable, equilibrium point in which the two genes expression levels are such 

that their equivalent repression strengths are balanced is predicted by deterministic models of 

the system. However in practice the cells are always in either of the two stable states and can 

sometimes switch between the two due to random fluctuations. My objective was to maintain 

Escherichia coli cells harboring this circuit in their unstable area by dynamically changing 

their environment. 

This genetic toggle switch control problem bears several similarities with the benchmark 

control problem of the inverted pendulum and allowed me to investigate the potential offered 

by external control theory on single-cell control. The genetic toggle switch is also a 

fundamental topology in core natural gene regulatory networks as well as one of the 

foundational results of synthetic biology and as such is frequently used in complex synthetic 

circuitry when bistability, memory or binary signal processing is desired. Hence, studying the 

dynamics of the toggle switch, especially in its unstable area, where it is rarely observed, was 

also one of the goals of this thesis. Combining a hands-on approach made possible by external 

cell control with a theoretical study of its dynamics made it possible to study the behavior of a 

multistable gene regulatory network out of equilibrium, as it is perturbed by time-varying 

perturbations that modify its phase portrait, thus allowing us to further the study of 

multistable genetic systems and raise new questions about their implications in stochastic cell 

fate determination, commitment and its reversibility, and the extent of dynamic or periodic 

stimulations in natural gene networks. 

3 Approach 

To make single-cell control of a multistable genetic system possible, I started by designing a 

control platform for single-cell bacteria. I developed several microfluidic chips to contain 

Escherichia coli cells and be able to both observe single cells for extended durations, and 

programmatically and rapidly change their environment. I also worked on image analysis to 

extract long-term single cell fluorescence levels, and experimented with state-of-the-art 

segmentation algorithms before developing my own image segmentation algorithm. I also 

developed a modular set of programs to integrate the different software parts of the control 

platform together and completely automate all hardware elements. 
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In parallel I developed Escherichia coli strains to minimize interferences between the host cell 

and the lac and tet systems I used to control gene expression. I iterated on the chassis strains 

while trying to control simple transcription units. I developed a library of 36 dual-reporter 

LacI-TetR toggle switches, and picked the best of them to conduct characterization 

experiments to identify the parameters of a model inspired by other works in the literature. I 

used both deterministic and stochastic simulations based on this model to assess its 

controllability and study different control strategies and implementations. 

Once platform development, biological implementation, and theoretical study reached 

maturity, I performed control experiments under various control strategies. The knowledge 

garnered from these successful control experiments on the behavior of toggle switch in its 

unstable area allowed me to identify a family of open-loop dynamic stimulations that would 

invert the stability map of the system. 

4 Contributions 

The first, practical, contribution of this thesis is the development of a platform combining 

hardware and software elements from different disciplines, to achieve long-term tracking, 

real-time actuation, and external control on single-cell bacteria. This platform combines 

microfluidics, microscopy automation, image analysis, and control. The platform offers the 

possibility to control the expression level of a specific gene with minor genetic manipulations 

and minimal knowledge of the underlying process. It is also highly modular: the 

implementation of the control platform consists of different processes that communicate with 

each other, so that parts of the control loop, like image analysis or control strategy 

computation, can be modified independently and adapted to different situations, and also be 

distributed over several machines if more computational power is needed. We believe this 

platform, in combination with other works in the field, will open the way to a new level of 

precision in the study of gene regulatory networks dynamics. 

Because the platform allows for single-cell measurements, we were able to use it on an in vivo 

stochastic bistable system: the genetic toggle switch. The genetic toggle switch can be viewed 

as the genetic equivalent to the benchmark problem in control theory that is the inverted 

pendulum problem. Multistable systems are widespread in all dynamical systems and their 

control and controllability has always been an important subject of study. Multistability can 

be undesirable: it can force discretization of responses, with a limited number of accessible 

states linked to the attractors of the system, when one might want to investigate its 

intermediate, graded responses. But it can also be advantageous in systems where mutually-

exclusive tasks are attached to specific states of the systems, like in differentiation. In all 

cases, controlling multistable systems is a generally more difficult problem than controlling 

linear or non-linear monostable systems. It is an important milestone in any control 

implementation, and demonstrates the potential of our control framework. 

Beyond the simple demonstration of the potential of control theory, multistability plays a 

central role in the genetic circuitry of all organisms, and is a core element of any advanced 
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synthetic biology circuit. The toggle switch in particular is present in many gene regulatory 

networks involved in cellular decision making, and has been used in a number of synthetic 

circuits where strong bistable filtering of genetic information was necessary (see State of the 

Art for a detailed analysis). The ability to control multistable systems opens the way to high 

precision setting of cellular state, even allowing for the study of intermediate states out of 

equilibrium before the system is fully committed. We also demonstrate the possibility of 

stabilizing the system in areas that are inaccessible with traditional induction techniques, thus 

expanding the area of investigation on gene regulatory networks. In particular, it allowed us to 

investigate the dynamics of the toggle switch in the vicinity of its unstable steady-state. 

Another contribution of this thesis is multiple inputs-multiple outputs (MIMO) gene control. 

MIMO systems are also a common subject of study in control theory, since most systems 

consist in intricate, multivariate interactions, where more than one input knob can help better 

steer the system, and one might want to control more than one of its outputs. The genetic 

toggle switch is a perfect example of a non-streamlined genetic circuit where MIMO control 

is necessary. In a more general sense, MIMO control of gene expression should improve the 

performance of GRNs (Gene Regulatory Network) control. 

This work is also the first theoretical and experimental study of dynamic stabilization in an 

externally-driven gene regulatory network. The study of cellular response to dynamic 

stimulations is still in its infancy, with studies of time-varying concentrations of morphogens 

inputs on embryo development and patterning booming in the late 2000s and early 2010s (see 

Kutejova et al. 2009 and Sorre et al. 2014 for discussions of those results). The results 

presented here illustrate the importance of out-of-equilibrium study of gene regulatory 

networks dynamics, which can lead to unexpected results, even from well-documented 

network topologies. The model developed to study the dynamic response of the toggle switch 

to external stimuli gave valuable insights into how multistable systems react to dynamic 

stimulations and as such can be used to further study the behavior of this fundamental 

network. 

One of the tools I developed, Stack-based image analysis, can be used beyond the scope of 

single-cell bacteria segmentation, and can be transparently applied to other organisms without 

any software modifications. This method proposes the use of machine learning methods on z-

stacks of images above and below focus to identify regions of the images for cell 

segmentation. Cell segmentation is one of the core difficulties of single-cell control, and 

although recent developments in the field of Convolutional Neural Networks (CNN) are 

promising, no cell segmentation algorithm has given satisfactory results for online, long-term 

cell tracking yet. The use of high-dimension information hidden in Z-stacks combined with 

traditional segmentation algorithms and newer deep learning techniques can lead to fast 

advances in online image analysis of microscopy images, with possible further developments 

in 3D segmentation. 

Finally, all the tools I developed, especially the control platform, will be released in open-

source and open-hardware formats, and my data will be made available, following a 



Foreword 

11 

 

movement in modern science of transparency and exchange that I believe will be beneficial to 

science in general and to the field of external control in particular. 

5 Outline 

My thesis document is organized as follows: 

Chapter 1 will present the state of the Art, detailing both the recent development of external 

real-time control of gene expression, and the central role of double negative feedback loops, 

or toggle switches, in both natural and synthetic gene regulatory networks. 

In chapter 2, I present the main techniques and implementation choices for controlling the 

genetic toggle switch. I discuss the development of Escherichia coli chassis strains to 

circumvent problems caused by cellular processes interfering with the control inputs. I report 

the various constructs I developed for obtaining a bistable switch and the changes in 

implementation that occurred throughout my work. I also present the implementation of the 

control platform, with various obstacles and solutions for microfluidic chip fabrication, inputs 

delivery, image analysis, cell containment and experiment automation. I close this chapter by 

discussing the modeling of the toggle switch and its simulation, both deterministic and 

stochastic, as well as the control implementation choices and the parameters identification 

approach.  

In chapter 3, I present the main results of this thesis, both numerical and experimental, and 

present their implications on our understanding of the toggle switch dynamics and on genetic 

multistability in general. 

In chapter 4, I present a novel image analysis and cell segmentation algorithm inspired by 

hyperspectral imaging. The results extend well beyond bacteria cell segmentation and holds 

great promises for online cell segmentation, and can be combined with other techniques in 

cell segmentation, especially recently developed deep neural network for cell segmentation. 

Chapter 5 concludes this thesis.  

The Appendix present additional data and development made during this thesis. 
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1 Genetic networks as dynamical systems. 

As the study of biological systems becomes increasingly quantitative, ecosystems, organisms 

and genetic circuits are studied more and more with tools from dynamical systems theory. 

This evolution was the result of improved measurement techniques over several decades. In 

the dynamic study of gene regulation networks, the shift occurred throughout the 1990s and 

led first to the establishment of the field of systems biology (Alon 2007; Kitano 2002), and 

then to the field of synthetic biology (Benner and Sismour 2005; Endy 2005). Although the 

two fields are connected and mutually benefit from one another, the former favors a top-down 

approach to the question and focuses on large-view studies of gene networks made of smaller, 

finer detailed subunits (or systems), while the latter, synthetic biology, favors a bottom-up 

approach in which hands-on studies of minimal synthetic genetic networks are used to gain 

understanding on gene expression by mimicking nature (Di Ventura et al. 2006). The quality 

of the dynamical data acquired on the evolution of genetic circuits increased thanks to 

developments in several fields I the 1980s and 1990s. First of all, as discussed in the 

introduction of this thesis, the development of new genetic manipulation techniques 

(Sambrook and Russell 2003), inducible genetic systems (Lutz and Bujard 1997) and 

intracellular fluorescent probes (Shaner, Steinbach, and Tsien 2005) in this period made the 

assembly, steering and observation of such systems possible. But the study of the dynamics of 

those systems was still rudimentary, and biological microfluidics, in combination with 

automated timelapse microscopy, was developed subsequently to facilitate the study of gene 

regulation networks in time and at the single cell level. Microfluidic chips are microfabricated 

devices in which low volumes of fluids are moved, mixed, separated or otherwise processed 

to miniaturize procedures with applications in various domains of physics, chemistry and 

biology. Microfluidic rapidly became a key element in the study of the dynamics of synthetic 

gene regulation networks because it could be used both to trap cells and hence monitor their 

fluorescence over many generations, possibly at the single cell level, but also because it could 

be used to change the environment of the cells dynamically (Bennett and Hasty 2009). With 

this type of setup, inducible synthetic systems could be steered and observed in real time, and 

the study of their dynamic response to time-varying perturbations was used to gain a deeper 

understanding of the temporal mechanics of genetic systems. (Bennett et al. 2008; Hersen et 

al. 2008; Mettetal et al. 2008) are seminal studies that used microfluidic devices to create 

temporal changes in the growth medium to study dynamic biological phenomena. In (Bennett 

et al. 2008; Hersen et al. 2008) the authors used periodic osmotic shocks to study the 

frequency response of the High Osmolarity Glycerol pathway in yeast and used those results 

to identify the mechanisms of the cellular response to shocks at different timescales. In 

(Bennett et al. 2008) the authors also studied the frequency response in yeast to periodic 

changes in the external carbon source by using a microfluidic platform. The galactose 

utilization network is shown to filter out fast fluctuations in the nutrients source, but to slowly 

adapt to long-term evolutions. In this paper the interplay between mathematical modeling, 

dynamic experiments and biology is elegantly illustrated by the discovery of a previously-

unknown post-transcriptional regulation loop in the network because of a discrepancy 

between the model-predicted dynamics of the system and experimental data. 
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Figure 1-1 From (Bennett and Hasty 2009) – The study of the dynamics of gene expression can reveal hidden processes in 

the system. A simple one-gene system can produce various types of temporal profiles for its level of expression, and the 

study of its dynamics can help discriminate between the different possible models for its expression. 

The response of biological systems to fluctuations of their growth environment has brought 

deeper understanding of the dynamic properties and structure of fundamental genetic network 

implied in the response to environmental change. But precise manipulation of elements of the 

networks themselves to study the effects on the rest of the system has the potential to be both 

more informative and have a larger scope of study (Del Vecchio, Dy, and Qian 2016). With 

microfluidics, automated time-lapse microscopy, and progresses in automated image analysis, 

closing the loop for performing real-time control of intracellular processes became possible. 

In the following section I present recent results made in this direction. 

2 External control 

The field of external control of intracellular processes, or in silico cybergenetics
1
, is born 

from the desire to bring the dynamical study of genetic network to a higher level of scrutiny. 

The underlying idea is to dissect the dynamic response of gene regulation networks by 

shifting the stimuli from external changes to the environment to arbitrary fluctuations within 

the networks themselves. The field is still in its infancy, and the first experimental results date 

back to 2011. Since then a number of theoretical and experimental studies were published, in 

a variety of organisms, using different control approaches, different methods of actuation, and 

different cell cultures. In this section I will analyze and compare the work done so far in 

external feedback control of gene expression. 

2.1 External control of gene expression – first results 2011-2012 
Three studies can be considered as seminal in the field (Milias-Argeitis et al. 2011; Toettcher 

et al. 2011a; Uhlendorf et al. 2012). Although all three studies have different objectives and 

use different approaches to implement the control framework, they all follow the same 

general approach. First of all, the cells are minimally modified to actuate and/or observe the 

genetic system of interest. They all achieve complex manipulations of intracellular processes 

with simple genetic manipulations of the controlled system, where tedious circuit 

development would have been required to create an equivalent single-usage, intra-cellular 

                                                 
1
 The term was coined by Prof. Mustafa Khammash during a plenary session at the IFAC’14 conference, in a 

reference to the term cybernetics which describes the study of regulatory systems, in domains like mechanics, 

engineering, physics, biology, cognitive sciences, social sciences or economics (see Wiener 1948 for the original 

definition of cybernetics). 
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function. Secondly, even though the different studies differ in their cell culture apparatus, 

measurement method and actuation, the feedback loop is implemented in silico and the level 

of refinement of the feedback function is much higher than any possible internal 

implementation of genetic regulation. Finally, those different studies achieve levels of control 

of their respective systems that open-loop stimulation based on models and predictions could 

not have achieved. 

 

Figure 2-1 From (Toettcher et al. 2011a). a) Schematic of the Phy-PIF recruitment optogenetic system. Under different light 

conditions, the Phy domain switches between a closed state and an open state that triggers recruitment of the PIF-tagged 

proteins. The feedback control loop senses membrane recruitment by image analysis, and applies the appropriate amount of 

light to control the amount of recruitment at the membrane. b) The schematic of the feedback control loop. The user specifies 

a target function, and the controller compares it to the observed cell level and corrects the light input accordingly. c) Setpoint 

control results for different feedback parameters. The blue curves represent the binding of the PIF-tagged protein to the 

membrane. The red curve is the amount of light input sent to the cells by the controller. The black dashed line represents the 

objective. d) Control experiments of time varying profiles. 

The first one (Toettcher et al. 2011b) to be published focused on controlling a signaling 

pathway  by first driving fluorescence recruitment at the membrane of HeLa cells, and then 

using the method to recruit the PI 3-kinase responsible for the synthesis of 

phosphatidylinositol-3-phosphate (PIP3) at the membrane and thus control the location of 

those lipids. The PI 3-kinase is attached to the Phy-PIF optogenetic
2
 system (Toettcher et al. 

2011a) for actuation and the production level and location of the lipids are monitored through 

an engineered fluorescent proxy: PHAkt-Cerulean, which binds to the produced lipids (see 

Figure 2-4b). Recruitment and fluorescence levels are monitored via epifluorescence 

microscopy. Optogenetic membrane recruitment is activated by shining light on cells 

observed. Because of the dynamics of the different systems involved, the time resolution of 

their acquisitions is in the order of seconds, and their experiments typically last about 10 

minutes. Because of this short timescale and the optogenetic actuation, the study did not 

                                                 
2
 Optogenetics is a biological technique which involves the use of light-sensitive proteins to control intracellular 

processes, such as gene expression, protein recruitment, or enzymatic activity.  
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require a complex cell culture and input delivery platform and the experiments were 

performed in liquid cultures on a microscope. A proportional-integral controller connects the 

observation and actuation in silico. Proportional-integral (PI) controllers are controllers that 

correct an error between a measured output of the system of interest and a target level by 

changing the input to the system both proportionally, i.e. by a quantity that is proportional to 

the current error, and integrally, i.e. by a quantity that is proportional to the integral of the 

error over time. Several procedures exist to fine-tune PI controllers to minimize oscillations 

and overshooting (Åström and Hägglund 2006), but they all apply to linear systems. For the 

class of nonlinear systems we are interested in here, those techniques can be used as a starting 

point but their results usually need to be refined empirically. The authors show that not only 

are they able to control membrane recruitment and the synthesis of PIP3 with a PI controller, 

at setpoint levels and in time-varying profiles, they also reduce cell-to-cell variability in 

recruitment resulting from non-uniform expression of the optogenetic system.  

 

Figure 2-2 From (Milias-Argeitis et al. 2011). a) The in silico feedback control loop. A batch of cells are illuminated in red 

and far-red light to drive a synthetic genetic system. b-c) Regulation of the fluorescence level around the setpoint (black line). 

The controlled system, in orange, is compared to a numeric simulation of the cells, in gray, and to an open-loop dynamic 

stimulation. The red and black bars at the bottom represent the light pulses in red and far-red, respectively. d) Setpoint 

control from different random initial points. 

In the second study (Milias-Argeitis et al. 2011), the authors use a control platform to drive 

the expression of a synthetic system (see Figure 2-4a) in a population of Saccharomyces 

cerevisiae cells. The expression of a fluorescent protein downstream of an another Phy-PiF-

based optogenetic system (Tyszkiewicz and Muir 2008) is controlled around a setpoint by 

using pulses of light in a batch culture of yeast cells. In liquid batch apparatuses, cells grow in 

suspension in a liquid media, under constant shaking and temperature control. However since 

the cells are growing in large volumes in a flask, the sensing must be done on a sample of the 

cell culture because the traditional instruments used for fluorescence measurement are not 

adapted for in situ use in large volumes of cell culture. Here the state of the cells is measured 

periodically by flow cytometry and used by the control algorithm. A model-predictive control 

approach is chosen to implement the feedback loop between measurement and actuation. In 



 I – State of the Art  

20 

 

model predictive control, or MPC, a dynamic model of the system is used to predict how the 

process will react to series of possible inputs, and the best course of action is applied until the 

next acquisition. This type of approach thus requires a priori knowledge about the system to 

control, but typically yields better results than PI controllers. A state estimation algorithm is 

also used in combination with the model-predictive controller to estimate the state of the non-

observable variables that are used by the model-predictive controller. The authors 

demonstrate the possibility to control the gene expression level at various levels of expression 

for several hours, and also the possibility to drive the system after different random 

perturbations to the state of the cells. 

Finally, in (Uhlendorf et al. 2012) the authors use the natural high osmolarity glycerol (HOG) 

pathway in Saccharomyces cerevisiae to control gene expression downstream of it (see Figure 

2-4c). The HOG pathway is a phosphorylation cascade, and one of the genes that are activated 

downstream of it is STL1 (Rep et al. 2000). The authors used its native promoter to drive the 

expression of a fluorescent protein by submitting the cells to pulses of high-osmolarity media. 

The level of the fluorescent protein is observed in real time and at the single-cell level by 

time-lapse microscopy and automated image analysis, and the cells are grown in a 

microfluidic chip in which the osmolarity of the growth media flown through the chip can be 

changed in real time. In microfluidic chips the problem of cell sampling and measurement is 

greatly simplified, and the same population of cells, or even single cells, can be followed over 

extended periods of time. Again a model-predictive control approach is chosen to numerically 

close the loop. The authors use their platform to perform setpoint control experiments and 

also to force the cells fluorescence to follow time-varying profiles for up to 17 hours. They 

demonstrate that pre-computed open-loop dynamic stimulation cannot control the system as 

accurately. The microfluidic and time-lapse components of the platform allowed for both 

population and single-cell control. The individual cells were segmented through a circular 

Hough transformation. The authors use their platform to demonstrate the feasibility of control 

at the single cell level, but they also use the single-cell data acquired study the effect of 

population and single-cell control on noise levels. 

Together, these studies demonstrate that real-time control can be used to robustly drive 

intracellular processes in real-time, dynamically limit the effects of gene expression 

stochasticity, or counter the effects of endogenous feedback loops. Different types of 

intracellular processes are controlled, in different organisms and with different actuation and 

sensing method, demonstrating the versatility of external control of gene expression. 
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Figure 2-3 From (Uhlendorf et al. 2012). a) Yeast cells are cultured in microfluidic chambers and observed via 

epifluorescence microscopy. Individual cells are segmented and tracked over time. State estimation followed by model 

predictive control are applied to the extracted single-cell fluorescence levels, and the environment of the cells is modified in 

real time in the microfluidic device to steer the process of interest accordingly. b) Setpoint and time-varying control 

experiments. The dashed red line represents the objective, and the orange line represent the fluorescence of the single 

controlled cell. The dark blue line represents the population average and the light-blue enveloppe is the standard deviation of 

the population. c) Open-loop stimulation of gene expression. The light inputs to apply to the cells was computed prior to the 

experiment to follow a certain trajectory (dashed red line). The average population levels and the standard deviation are 

represented in blue.  

2.2 External control of gene expression – 2014-2016 
Since then a number of refinements to the implementation of external feedback loops have 

been developed, and the approach has been extended to new organisms and processes. 

In (Menolascina et al. 2014) the authors use a platform based on a microfluidic apparatus to 

observe in real time via epifluorescence microscopy and actuate on their system via chemical 

inducers delivery. The authors control the expression of a fluorescent protein downstream of a 

synthetic network in yeast named IRMA (Cantone et al. 2009, see also Figure 2-5e). The 

same team proposed  one year later on the same platform, but on a simpler genetic system, a 

range of control approaches and compared their performance (Fiore et al. 2015). The authors 
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use galactose and glucose to turn on or off the expression of the GAL1 promoter to control the 

fluorescence level of GFP. On top of the previously-used control algorithms, the authors 

propose zero average dynamics control. Zero average dynamics (ZAD) is a type of sliding-

mode control algorithm. It produced results comparable to model-predictive control. In 

(Fracassi et al. 2016) the same team developed a microfluidic platform for long term control 

of gene expression in mammalian cells. A fluorescent protein under a synthetic tetracycline-

inducible system is controlled over extended periods of time (up to 58 hours). 

In (Melendez et al. 2014) the authors use an approach similar to (Milias-Argeitis et al. 2011) 

but improve the automation of the platform and add a turbidostat to the cell culture apparatus, 

i.e. they control the density of cells in the flask. They also use a bang-bang control approach: 

It is similar to the PI control approach, but does not apply intermediary inputs to the system it 

tries to control. Instead the system is fully activated or inhibited when it is respectively below 

or above its objective. With this setup the authors are able to drive protein expression for up 

to 45 hours. 

Finally, in (Milias-Argeitis et al. 2016) the authors expand on the approach described in 

(Milias-Argeitis et al. 2011) and develop a similar platform for bacteria. Additional effort is 

put on the automation of the platform and the authors can precisely control gene expression 

but are also able to control the growth rate of the cells by actuating on the vital synthesis of 

methionine (see Figure 2-4d). The sensing of the population density is done by optical density 

directly in the flask and the growth rate is derived from it. This result demonstrates the 

possibility offered by in silico control of gene expression to manipulate fundamental functions 

with minimal modifications to the cell. 

All of these improvements on the principle of in silico control platforms show on one hand 

how much potential the field has. Control theory is a broad discipline and all the knowledge 

gathered over the decades of existence of the field can be used to drive the development of 

those control platforms. On the other hand, it also shows how recent this field is. So far, all 

applications of the approach remain limited to proofs of concepts on the feasibility of the 

method on new toy systems or organisms or on the comparison of performance between 

different control strategies. Although the ultimate goal is to use control to induce precise 

intracellular perturbations to study the response of the rest of the cell, the field is still being 

explored. The knowledge necessary to apply this methodology to biological question still 

needs to be acquired and open questions on the potential of the field remain. During this PhD 

I worked on the question of external control of multistability in bacteria, by studying 

stabilization of a bistable genetic system in its unstable area. 

Closely related to the dynamical study of gene expression, recent advances in iterative 

experiment design (Ruess et al. 2015) could be combined with control platforms to further 

automate the study of intracellular processes: Instead of having the experimenter run control 

experiments and then decide on what perturbations to run next, the data could be analyzed on-

the-fly by iterative experiment design algorithms which would, as a higher-level layer, dictate 

control profiles to the control platform to maximize the quantity of information acquired, thus 

completely automating the process. 
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Apart from the dynamic study of genetic systems, external control of gene expression could 

also be applied to other domains of study. Being able to drive intracellular processes of 

interest can also of course find applications in biotechnology. In this domain, external 

feedback control has already been suggested to improve productivity, robustness and batch-

to-batch reproducibility (Polizzi and Kontoravdi 2015). In (Milias-Argeitis et al. 2016) the 

authors already discuss the scalability of their approach to industrial bioreactors. Although 

some of the studies presented here were performed in batch cultures (Melendez et al. 2014; 

Milias-Argeitis et al. 2011, 2016) of yeast or bacteria and are therefore closer in their 

implementation to bioreactors, scaling up the size of the batch culture raises a number of 

issues, one of them being the difficulty to stimulate cells with optogenetic tools in the dense, 

opaque molasses that can typically be found this kind of apparatus.  
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Figure 2-4 Examples of controlled circuits. A) From (Milias-Argeitis et al. 2011). The authors control the fluorescence level 

of a light-switchable gene system based on PhyB-PIF3 interaction in Saccharomyces cerevisiae. The transcription activation 

domain of Gal4 is recruited to the promoter under red light and induces transcription of the fluorescent reporter, Venus. Far-

red light causes dissociation of the activator. B) From (Toettcher et al. 2011b). PI3K is recruited to a membrane target under 

650nm light input and catalyzes the production of 3′ phosphoinositide (PIP3) lipids at the membrane of mammalian cells. 

The authors control the PI3K lipid products level by observing the membrane translocation of a fluorescent Akt-PH domain 

that binds to PIP3 lipids. C) From (Uhlendorf et al. 2012). The authors induce osmotic shocks by injecting glycerol in the 

environment of Saccharomyces cerevisiae cells to control the expression of a fluorescent reporter under a shock-responsive 

promoter downstream of the HOG cascade. D) From (Milias-Argeitis et al. 2016). The authors use the CCaS-CCaR 

optogenetic system to activate or repress expression of the MetE enzyme with green or red light inputs. MetE catalyses 

synthesis of methionine which is necessary for cell growth and division. The authors use this optogenetic system to control 

cellular growth rate in Escherichia coli via turbidity measurements. E) From (Menolascina et al. 2014). The IRMA network, 

implemented in Saccharomyces cerevisiae, is composed of 5 genes encoding for transcription factors modulating the 

expression of each other. The authors use galactose injection via microfluidics to drive the expression of the GFP reporter 

downstream of network. 
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3 The genetic toggle switch 

So-called genetic toggle switches consist of two genes repressing each other expression. As a 

result of this double negative feedback, the genetic circuit features two stable states in which 

one of the two genes is expressed at a high level and completely represses the expression of 

the other. 

 

Figure 3-1 Principle of the genetic toggle switch topology. A) Two genes x and y repress each other’s expression. This 

genetic circuit is bistable: either x or y can take over and be expressed at high concentrations. The repression of the opposite 

gene “locks” the system in the x-dominant or y-dominant state. The system can fall in either basin of attraction. It remains in 

a basin of attraction unless noise or perturbations to system make it switch basins. B) External inducers can be used to switch 

the system between the two states. The inducers can modify the repression strength of one of the two genes and make the 

system monostable. 

Double negative regulation topology has been known to play a central role in many natural 

gene regulatory networks involved in cellular memory, stability or cellular decision-making. 

The construction of a genetic toggle switch was first published in 2000 and is largely viewed 

as one of the foundational results of synthetic biology. It has been employed since then in 

various synthetic biology projects. Toggle switches have been investigated from a systems 

biology perspective due to the frequent presence of simple bistable topologies in natural and 

synthetic genetic circuits, and studies on the toggle switch, both as a toy example for 

benchmarking algorithms or as a central theme of study, is abundant. Recently, with the 

advent of techniques for external control of gene expression, several studies focused on the 

interplay between a genetic toggle switch and a number of control frameworks. In this section 

I present the scientific literature investigating the toggle switch. I will first present examples 

of natural toggle switches in gene regulatory networks in a variety of organisms, and then 

describe its crucial role in synthetic biology. Finally I will present theoretical studies of its 

dynamics, with a section on external control of the toggle switch. 
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3.1 Double repressive loops in natural gene regulatory networks 
Simple bistable networks can be found in numerous organisms, at the heart of important 

internal cellular processing functions. Examples of complex cellular processes driven by 

simple bistable circuits include cell fate determination, cellular memory, bet-hedging, nutrient 

selection, and tissue patterning. The double-negative regulation of the toggle switch is not the 

only simple gene network topology to exhibit bistability (Siegal-Gaskins et al. 2015) and 

single-positive, self-activating loops have been shown to be at the heart of many bistable gene 

regulatory networks. See (Dubnau and Losick 2006; Ferrell 2002, 2012) for reviews on the 

subject of positive feedback bistability in prokaryotes and eukaryotes. 

Nevertheless, the genetic toggle switch can be found in a wide range of organisms and at 

different levels of genetic cellular organization. Although not really an organism, the most 

studied and first-discovered example of a genetic toggle switch was found in the 

bacteriophage lambda lysis-lysogeny decision making process (see Oppenheim et al. 2005 for 

an extensive review). In this network the CI and Cro proteins, driving the lysogenic and lytic 

responses respectively, mutually repress their expression. In higher eukaryotes, several 

double-repressive toggle switches have been demonstrated to drive cellular decision making 

and cell differentiation (Johnston et al. 2005; Mikeladze-Dvali et al. 2005), tissue patterning 

(Collier et al. 1996), as well as fundamental cellular processes like the cell cycle (Yao et al. 

2008), and cellular proliferation (Lu et al. 2013).  

 

Figure 3-2 Examples of toggle switch topologies in natural genetic circuits. A) Adapted from (Mikeladze-Dvali et al. 2005). 

A double negative feedback loop between the wts and melt genes is responsible for cell fate determination of retinal cells in 

Drosophila. B) Adapted from (Norman et al. 2013). The SlrR – SinR double negative feedback loop stabilizes Bacillus 

subtilis cells in either a motile or a chained state. The cells switch periodically between the two states in what is believed to 

be a bet-hedging strategy. 

More closely related to my project, prokaryotes also exhibit bistable behaviors caused by 

genetic toggle switches. An excellent example can be found in a Bacillus subtilis cellular 

decision mechanism, where a double-repressive loop is at the center of a fundamental 

behavior (Norman et al. 2013). The cells alternate between a motile state in which they swim 

independently and a so-called “chained” state where they grow and divide as usual but 

daughter cells do not separate completely and remain attached to each other. This second state 

allows the rapid formation of biofilms if the environment becomes hostile to the cells. 

Stochasticity of gene expression switches cells at random times into the chained state. On the 

other hand, chained cells resume the motile state after about eight generations, so that 

chaining does not condemn the cells to lower nutrient sources forever, and that at all times a 
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portion of chains of optimal length exist in the colony. This constitutes a prime example of 

cellular decision making and bet-hedging
3
 in bacteria driven by a toggle switch. 

3.2 The genetic toggle switch in synthetic biology 
Gardner and Collins published the first synthetic genetic toggle switch in bacteria (Gardner, 

Cantor, and Collins 2000). They implemented two versions, a temperature-IPTG sensitive 

one, and the aTC-IPTG sensitive toggle switch I worked on in my thesis. They show that after 

the toggle has been induced into one state or another, it remains in that state until the opposite 

inducer is added to the growth medium. It is worth noting that only one of the two branches is 

monitored directly with a fluorescent reporter. Later implementations will use a reporter on 

both branches to monitor the state of the system, making model fitting and parameters 

identification more difficult. The system was soon adapted to mammalian cells with an 

antibiotic-regulated switch that showed bistability even after encapsulation and implantation 

in mice (Kramer et al. 2004). The toggle switch was then given its pivotal role in synthetic 

biology as a building block by being interfaced with other synthetic and endogenous elements 

to drive biosensing, biofilm formation, cell-density-dependent gene activation (Kobayashi et 

al. 2004), improvement of metabolic biosynthetic productivity of biofuels (Anesiadis, Cluett, 

and Mahadevan 2008), or to monitor changes in the mammalian gut environment (Kotula et 

al. 2014). Advances in modeling and prediction of synthetic circuits behavior eventually led 

to automated design of toggle switches in silico and accurate prediction of their stability 

(Chen et al. 2012; Ellis, Wang, and Collins 2009). The study by Chen and colleagues in 2012 

constitutes, to my knowledge, the only example of a dual-reporter toggle switch in the 

literature, however the authors did not use it to fit a dynamic model of the toggle switch. 

The toggle switch has since gone through major implementation modifications. A major 

change in bistability implementation in synthetic circuits occurred in the 2000s when (Ham et 

al. 2006) designed a recombinase switch which, while not exactly equivalent to a toggle 

switch in its topology, leads to strong bistability and low leakage. It does not rely on 

transcription factors to inhibit the expression of a gene, but instead uses invertases that will 

flip a promoter’s orientation to stably turn two gene’s expression fully on or off. The principle 

can even be generalized to an n-states switch by using orthogonal invertases since the number 

of possible states evolves exponentially with the number of recombinases (Ham et al. 2008). 

This type of system has been used in synthetic biology since then as an advanced, robust and 

reversible memory module (Bonnet, Subsoontorn, and Endy 2012) and to perform 

computational tasks within the cells (Moon et al. 2011; Yang et al. 2014). However such 

systems have an all-or-none nature to them and are not well-suited to the control problem we 

are interested in. Another exotic implementation of the genetic toggle switch is based on RNA 

interference in mammalian cells (Deans, Cantor, and Collins 2007), which allows for specific 

gene targeting and is used to control various biological processes. 

But the most important change in gene regulatory network design and construction in the last 

few years was brought by the recent revolutions in transcriptional regulator design with the 

                                                 
3
 Bet-hedging is the process by which, in some species, a variety of different phenotypes exist within a 

population of to ensure that a subpopulation is well prepared for environmental changes. The phenomenon is 

well documented in antibiotic resistance and biofilms formation in bacteria (Lewis 2007). 
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CRISPR/Cas9, zinc fingers, and TALE systems. The possibility to design custom, orthogonal 

transcription factors calls for the reconstruction of custom versions of pioneering synthetic 

biology circuits. However none of those techniques has so far been engineered for cooperative 

binding of DNA, as is seen in the naturally occurring transcriptional regulators used in 

traditional toggle switches. The bistability of the toggle switch and the functioning of many 

other synthetic circuits rely on the nonlinearities introduced in their dynamics by the 

cooperative binding of multimeric transcription factors such as TetR or LacI. However, in 

(Lebar et al. 2014), the authors design and implement a toggle switch based on the TALE 

system and solve the non-cooperative binding problem by introducing nonlinearities through 

the competitive binding of 2x2 TALE assemblies fused to both activator (VP16) and repressor 

domains (KRAB). They argue that their approach can be adapted to CRISPR/Cas and zinc 

fingers to obtain nonlinearities in custom orthogonal synthetic circuits. Another approach for 

the possible use of custom monomeric DNA-binding domains derived from the CRISPR/Cas 

in multistable gene regulatory networks can be found in (Cuba Samaniego et al. 2016) which 

relies on molecular titration to introduce strong nonlinearities. The prospect of designing  

 

Figure 3-3 Examples synthetic toggle switches. A) Adapted from (Kobayashi et al. 2004). A genetic toggle switch (red 

rectangle) was integrated in a synthetic quorum-sensing-based circuit to binarize the expression of a reporter as a function of 

population level. A variation on this circuit is proposed in (Anesiadis et al. 2008) to control population levels. B) Adapted 

from (Lebar et al. 2014). The authors use competitive binding to introduce nonlinearities in a double-negative loop based on 

TALE technology in mammalian cells. They succeed in obtaining a bistable switch, thus circumventing the problem of non-

cooperative binding of the recently developed TALE system, and propose this topology for other custom DNA-binding 

domains technologies. C) Adapted from (Bonnet et al. 2012). The authors propose a robust, rewritable bistable circuit based 

on an invertase + excisionase implementation to switch between RFP and GFP expression. 
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arbitrary regulatory interactions with the recent breakthrough of the CRISPR/Cas and TALE 

systems coupled with the possibility of introducing strong nonlinearities in the networks 

would open a new wide range of possibilities in synthetic biology. 

Synthetic implementations of the traditional genetic toggle switch have also been used to 

study the mechanics of cell fate determination (Sekine et al. 2011; Wu et al. 2013). In spite of 

using a reduced, isolated prototype of a cellular regulatory circuit, the authors garner insights 

on the dynamic responses of cellular decisions and use it to predict the evolution of the two 

stable phenotypes in the cell population. They also demonstrate how the autonomous, 

stochastic repartition of cells between the two stable states of the system can be influenced by 

external stimuli, like manually added inducers or quorum sensing signals. Such circuits can 

also be used in synthetic biology to obtain two sub-populations of cells in a population of 

genetically identical individuals. 

 

Figure 3-4 Synthetic toggle switches used to study cellular decision making. A) Adapted from (Sekine et al. 2011). A LacI-

Clts toggle switch is coupled to a quorum sensing module. The system becomes bistable when the population level reaches a 

threshold value, and two phenotypes arise. B) Adapted from (Wu et al. 2013). The authors use a synthetic toggle switch to 

investigate cell fate determination in yeast cells. The toggle switch is repressed on both branches when the cells are grown in 

glucose, and the toggle switch circuit is activated under galactose. Cell fate can be influenced by the presence of aTc in the 

media. The authors use their experimental results to infer a model of their circuit, of which the quasi-potential landscape on 

the right is deduced. On this landscape the two basins of attraction LacI-high and TetR-high are visible. We use the fitted 

model from this study as a starting point for our model of the genetic toggle switch. 

3.3 Theoretical studies of the genetic toggle switch 
In the years leading up to the construction of the genetic toggle switch by Gardner and Collins 

in 2000, a number of theoretical studies led to a better understanding of the cooperative 

binding mechanisms that are necessary for nonlinearity and bistability to arise in the double-

negative feedback loop (Arkin, Ross, and McAdams 1998; Cherry and Adler 2000; Thomas, 

Thieffry, and Kaufman 1995). The coupled ODEs with Hill function design (see Figure 3-5) 

was introduced and it was shown that higher Hill coefficients improved the stability of the 
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system. Despite the apparent importance of the magnitude of the Hill coefficients, it was later 

shown that cooperative binding was not the only possible source of nonlinearity in the toggle 

switch and that other mechanisms such as competition for operator sites can also generate it 

(Warren and Ten Wolde 2004). 

 

Figure 3-5 Theoretical study of the toggle switch. Adapted from (Cherry and Adler 2000). A) The standard ODE model of 

the toggle switch. The two species of the toggle switch, x and y repress each other’s expression. This repressive effect is 

modeled by coupled ODEs: a Hill function describes the decrease in expression of one gene product because of the increase 

in the opposite gene product. B) The nullclines of the model are represented in the state space. The nullclines are the 

solutions to the functions 
  

  
( )    and 

  

  
( )   . The arrows represent the direction of the derivatives of the x and y 

variables, the stable and unstable equilibrium points are identified at the intersection between the nullclines. C) Values of the 

parameters  ̃        ⁄  and  ̃       ⁄  for which the system is bistable for different values of the hill coefficient n. 

Values inside the cusps works for each of the particular values of n. Higher hill coefficients, and hence stronger 

nonlinearities, increase the domain of bistability of the network. 

Because the toggle switch can play a central role in decision making, biosensing, and 

patterning, its stochastic behavior and response to noise was also extensively studied. The 

stochastic nature of gene expression and burst transcription can play a major role on stability 

and on levels of inducers necessary for state-transition (Bokes et al. 2013; Mackey and Tyran-

kami 2015; Tian and Burrage 2006; Walczak, Sasai, and Wolynes 2005) . Stochasticity of 

gene expression can also compensate for the linearity of non-cooperative binding and produce 

stable states on a monomeric double-repression loop (Andrecut et al. 2011; Lipshtat et al. 

2006; Loinger et al. 2007). There is also growing evidence in the literature of the presence of 

a third or even a fourth “stable state” that can be introduced by the stochastic behavior of gene 

expression, small number effects, or transcription-translation delays in the toggle switch 

topology (Loinger et al. 2007; Ma et al. 2012; Strasser, Theis, and Marr 2012). A study of 

patterning in toggle-switch-controlled differentiation of cellular tissues also shows that 

stochasticity can alter the pattern from the deterministic prediction (Perez-Carrasco et al. 

2016). An elegant analysis of stochastic toggle switch behavior can be found in (Kim and 

Wang 2007), where the authors use tools traditionally used in quantum mechanics to derive 

the potential energy landscape in the toggle switch, which can be of particular interest for the 

probabilistic examination of responses to external stimuli. 

It is worth noting though, that to my knowledge, none of the models of the toggle switch 

reported so far in the literature have been fitted to single-cell data, and they were at best 

roughly compared to flow cytometry curves. The only exception being the paper by (Wu et al. 

2013), where the authors construct a genetic toggle switch in yeast and use it to study 
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stochastic cell fate determination in naïve cells. They develop a deterministic coupled ODE 

model with nested Hill functions to account for the double repression in the inducer-TF-

promoter interaction. They fit experimental results and use it to predict the stability of their 

designs. They also then run stochastic simulations of their model to study stochastic cell fate 

determination. This study is of particular interest for this work since it is the only one that has 

been fitted to real data. I use the model and parameters in this study as a starting point for my 

own model (See Chapter 2). 

3.4 Theoretical control of the toggle switch 
External control of genetic systems is still in its infancy, and although no experimental 

attempts have been made so far to control a genetic toggle switch externally, there are a few 

theoretical studies on the subject. I the first theoretical studies on controllability and control of 

the genetic toggle switch (Farcot and Gouzé 2007a, 2007b, 2008) the authors report a 

piecewise affine differential model of the toggle switch and make it follow a transition graph 

between the different regions of their model by inferring piecewise constant feedback control 

laws. Another study on the subject of toggle switch control can be found in (Wang et al. 

2016). A control framework for nonlinear differential models is developed for controlling 

multistable networks, including an “enhanced” version of the genetic toggle switch. Their 

control framework is based on bifurcation analysis and focuses on control and controllability 

of the system from one attractor, or stable state, to another. A small discussion of the possibly 

beneficial effects of noise on controllability is also included, where the authors argue that an 

appropriate amount of noise can help destabilize attractors that would otherwise be too strong 

for the control strategy to successfully drive the system around. 

We can also cite the series of papers by Sootla and colleagues (Sootla et al. 2013; Sootla, 

Oyarzún, et al. 2016; Sootla, Mauroy, and Goncalves 2016) where the authors focus on robust 

switching pulse strategies between the two stable states of a LacI-TetR toggle switch. Their 

proposed solutions are based on either reinforcement learning, which they conclude can be 

impractical due to the large amount of measurement data it necessitates, or on monotone 

systems theory, which relies on a model but is robust to parametric uncertainty. They go on to 

identify the so-called “switching separatrix” in the space of the two parameters of the input 

pulses (duration and intensity) and, interestingly, use their framework to investigate forced 

oscillations in a generalized eight species repressilator. They do not however investigate 

periodic switching between the states of the toggle switch or the out-of-equilibrium behavior 

of their eight species model. 

Two focus on the specific question of controlling the genetic toggle switch towards its 

unstable equilibrium point or towards the unstable area. In the first one the authors use a 

piecewise affine model to describe the toggle switch and use the piecewise constant control 

framework previously described to drive the system towards the unstable steady state (Chaves 

and Gouzé 2011). They suggest approximate solutions to drive the system in the 

neighborhood of the state, or by passing through an unstable state cyclically. The second 

paper (Mohajerin Esfahani, Milias-argeitis, and Chatterjee 2013) uses the toggle switch 

system as an example to demonstrate the possibilities offered by the recently developed 

stochastic motion planning framework (Mohajerin Esfahani, Chatterjee, and Lygeros 2015) or 
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external cell control. The authors develop a stochastic differential equation model of the 

toggle switch by deriving the Langevin equation of the system, and then infer optimal input 

policies that maximize the probability of staying in the neighborhood of the deterministic 

unstable equilibrium point. They also investigate the possibility of controlling the toggle 

switch with only one input inducer and observe a dramatic decrease in performance. 

In this thesis we will explore the possibility to control externally the bistable genetic toggle 

switch around its unstable equilibrium point. This thesis provides the first control results on 

bacteria at the single-cell level. New tools are created for this particular task, and others are 

improved, thus expanding the domains of applicability of in silico cybergenetics. The toggle 

switch is a fundamental topology encountered in both synthetic and natural gene regulation 

networks, and being able to control toggle switches and to maintain them in their unstable 

area opens the door to the study of intricate multi-stable networks, but it also opens a new 

range of possible usage for this topology in synthetic genetic circuits. In this thesis we 

demonstrate for example that it is possible to “reset” a population of toggle-switch-bearing 

bacteria by stabilizing them in the unstable area and then releasing the stabilization to let them 

separate in the two basins of attraction. It is also a difficult control problem, which would 

have required tedious trial-and-errors to implement in vivo, and solving it demonstrates the 

possibility offered by single-cell external control approaches. Finally, observing the dynamics 

of the genetic toggle switch in the vicinity of its unstable equilibrium point helped us expand 

the knowledge on its dynamics. 
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1 Introduction 

The development of an external single-cell control platform involves a number of different 

methods and scientific fields: genetic engineering, signal processing, microfabrication, 

microscopy, electrical engineering, control theory, and programming were all required to 

achieve real-time control of gene expression in bacteria. Specifically, the possibility of 

controlling gene expression through an in silico feedback loop at the single cell level was 

made possible by recent developments in time-lapse microscopy, cell segmentation, and 

microfluidics, but a number of open problems still remain to be solved by the experimenter 

for each different application. The necessity of automated and on-line imaging, data analysis 

and actuation required by real-time control increased the difficulty of creating such a 

platform. In this chapter, I discuss the obstacles I had to cope with and the implementation 

choices I made. 

The first section focuses on the biological aspects of my work. I start by describing how I 

modified the host cell strains to prevent endogenous cellular processes from interfering with 

the synthetic toggle switch. Then, I review the different iterations for the design of the toggle 

switch itself. The design and construction methods were chosen to maximize the chances that 

at least one designed circuit would be bistable. I finish the section by describing the 

characteristics of the selected circuit. 

In the second section, I discuss the hardware and software choices that were made to develop 

the platform. In order to control a multistable system and be able to accurately measure its 

state, I needed to be able to track single cells for extended periods of time and to extract their 

level of fluorescence periodically, which necessitated a microfluidic-based platform rather 

than a batch-culture type of platform. The platform described in this section is comprised of: a 

custom-made microfluidic chip for long-term tracking of bacteria as well as automated 

chemical actuation; an entirely automated epifluorescence microscope; various pieces of 

software to link the different interfaces together, extract data, and run the control algorithms; 

and finally a custom-made electronic valve actuator for precise, real-time modification of the 

chemical environment of the cells. 

Finally, the last section of this chapter details the mathematical model derived from a 

simplified chemical description of our toggle switch, and the simulation algorithms that were 

used to study the feasibility of real-time control of the toggle switch. The control algorithms 

used to control toggle switches in real-time (namely the PI and bang-bang strategies) are also 

discussed. The last part of the section describes the procedure for parameters identification 

that was applied to characterization data.  
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Figure 1-1 General architecture of the control platform. A) Microscope automation (section 0) makes it possible to image 

cells in both red and green channels over extended periods of time with a precise focus. B) Image analysis (section 3.2) are 

run on-the-fly to observe cell state in real time. C) The fluorescence state of the cells is used by the control algorithms 

(section 4.5) to decide on the concentrations of inducers to apply to the cells to maintain them around the control objective. 

D) The decision is sent to a custom-made arduino-based electronic circuit connected to the computer to mix the inducers to 

the right concentrations with solenoid valves and pulse-width modulation (section 3.1.6). E) The mix of inducers and 

nutrients is flown through a “mother machine” microfluidic device in which the cells are grown in isolated chambers (section 

3.1.3). The microfluidic device is placed on the microscope for automated time-lapse observation and control of the cells. F) 

To circumvent serious interferences between the host cell and the controlled circuit, genes were removed from the genome of 

our Escherichia coli strain to obtain a usable “chassis” strain (section 2.1). G) A library of toggle switches was developed for 

control and transformed into the chassis strain (sections 2.2 to 2.6). H) A mathematical model of the toggle switch was 

developed and fitted to the data to study toggle switch dynamics and controllability (section 4). 
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2 Synthetic biology 

At the heart of the platform, the cells and their synthetic genetic circuit went through many 

iterations throughout this PhD. In this section I describe the main design choices as well as 

the protocols that were developed to obtain both host cell strains adapted to our control needs, 

and a bistable toggle switch circuit to control. All circuits and strains are listed in appendix A. 

 

Figure 2-1 Hierarchy of the strains presented in this study. The initial strain was taken from the Keio collection, and after 

several iterations the bPH_127 chassis strain was used as the host for toggle switch control experiments. The red arrow 

represents flipase excision to remove the Kan cassette for kanamycin resistance. Green arrows represent P1 phage 

transduction. Blue arrows represent Datsenko-Wanner knockouts. Yellow arrows represent plasmid transformations. The 

bPH_121, bPH_122, and bPH_128 strains were transformed with plasmids to run exploratory experiments on the developed 

chassis for control. See appendix A for an exhaustive list of strains. 



 II – Observing and actuating on trapped bacterial cells  

 

46 

 

2.1 Chassis development 
The cellular chassis

1
 is an integral part of the platform, as the genome of the organism needs 

to be modified in such a way that the toggle switch can be implemented, observed, and 

controlled. In the case of this toggle switch based on the action of the tet and lac repression 

systems, some cellular mechanisms, described in the following paragraphs, can interfere with 

the action of the inducible promoters and impede the controllability of the system, and had to 

be removed. Furthermore, E. coli possess flagella and can usually swim around in their 

growth media, which presents a problem for long-term observation and tracking in the 

microfluidic device. In Figure 2-1, a hierarchical representation of the main strains presented 

in this study is given. After several rounds of experimental characterization, the final chassis 

strain, bPH_127, is selected as the best host for synthetic circuits to control. 

As a starting point for my chassis, I used the JW1907 strain from the Keio collection (Baba et 

al. 2006). The Keio mutants collection features all possible E. coli K-12 BW25113 strains 

with  all non-lethal single-gene knockouts in the genome. In JW1907 the fliA gene is knocked 

out. fliA encodes for the specialized flagellar sigma factor σ28 (McCarter 2006; Wilkinson et 

al. 2011; Ikebe et al. 1999; Dailey & Berg 1993), and is traditionally removed to prevent the 

cells from swimming around in microfluidic chips. Keio strains feature a resistance cassette, 

which I removed to obtain the first chassis strain bPH_103.  

From this strain, I developed the strain bPH_104 by deleting the lacY gene. Gene lacY 

expresses a lactose permease that is responsible for bi-stability in the lac operon (Santillán et 

al. 2007; Ozbudak et al. 2004). The expression of LacY is activated when lactose (or 

analogues such as Isopropyl β-D-1-thiogalactopyranoside
2
) is present in the growth media, 

and this increase in expression of the permease causes more lactose to be transported into the 

cytoplasm, further increasing permease expression (see strain BW25113 in Figure 2-2). This 

type of self-activating network makes the expression of genes downstream of the promoter 

bistable: LacY would interfere with our constructions based on the lac promoter and with 

lactose/IPTG induction. I removed the lacY gene using standard P1 phage transductions 

(Miller 1992). Interestingly, once the LacY permease is removed, lactose or its equivalent 

IPTG can still diffuse through the membrane, although at much lower rates (Marbach & 

Bettenbrock 2012). Thus we could drive the internal concentration of inducer but without the 

bistable effects of the lac operon. 

Finally, I implemented a variant of this strain by integrating the regulator genes tetR and lacI 

in tandem to the chromosomes of bPH_104 to produce two more strains, bPH_121 and 

bPH_122, respectively. The constitutive expression of TetR and LacI allowed me to control 

the expression of any gene placed under a lac or tet promoter. The cassette containing lacI 

and tetR was transferred from the E.coli strain DH5αZ1(Lutz & Bujard 1997), again by 

standard P1 phage transduction (Miller 1992). I did not remove the antibiotic resistance 

                                                 

1
 The engineered Escherichia coli strains in which the genetic circuits to control will be transformed are referred 

to as “chassis” strains. We refer to the original BW25113 strain as “wild-type”. 
2
 Isopropyl β-D-1-thiogalactopyranoside, or IPTG, is a molecular mimic of allolactose that cannot be 

metabolized by the cell. Allolactose is an isomer of lactose and is the actual inhibitor of the LacI protein. Lactose 

is converted to allolactose by the β-galactosidase enzyme of the lac operon. 
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cassette used for selection, therefore the bPH_121 and bPH_122 strains are spectinomycin 

resistant. These two strains are the chassis strains I used to conduct my first series of control 

experiments and gather knowledge on the different systems I was working with.  

Early in my exploratory experiments I observed adaptation to anhydrotetracycline (aTC) 

induction of the tet system, i.e. the response of the tet system to successive inductions would 

weaken over time. aTC is part of the tetracylines family of antibiotics and it is the inducer of 

choice for the tet induction system in bacteria because it is less toxic to cells than tetracycline 

itself or its readily-available variants (Rasmussen et al. 1991). The tet induction system is 

derived from the Tn10 operon system, which is activated in presence of tetracycline and 

expresses an efflux pump for evacuating tetracyclines out of the cytoplasm. The original wild-

type BW25113 strain does not have the tetA gene responsible for the expression of the 

tetracyclines-specialized pump. However, it is suspected that Escherichia coli uses another 

efflux pump for adapting to high concentrations of tetracycline: the acriflavine pump encoded 

by the acrA and acrB genes (Ma et al. 1995; Zgurskaya & Nikaido 1999; Le et al. 2006), 

which are present in the genome of BW25113. No clear connection has been identified 

between the tetracyclines and the two genes, but it would not be surprising that the expression 

of AcrA and AcrB is directly or indirectly activated by tetracyclines levels, thus leading to 

slowly decreasing activation of the tet promoter‟s expression by aTC. See strain BW25113 in 

Figure 2-2 for a visual representation of the mechanism. 

In order to make control of gene expression with the tet system possible for extended periods 

of time, I designed another strain in which the acrA and acrB genes were deleted. To do this, I 

removed the two genes, which are next to each other, in a one-step deletion from the “wild-

type” BW25113 genome. Then I transferred the double deletion through P1 phage 

transduction into strain bPH_104 to obtain strain bPH_127, as is the classical procedure to 

avoid off-target mutations. Double acrAB deletion was performed by a modified Wanner 

chromosomal deletion/integration protocol (Datsenko & Wanner 2000). This protocol uses 

lambda-red homologous recombination to replace the target genes in the chromosome with a 

selection cassette. Because the technique requires short homology regions flanking the acrAB 

genes, I could easily obtain them via oligo annealing. I transferred the regions into standard 

modular cloning (MoClo) plasmids
3
 to rapidly construct the replacement cassettes and to offer 

the possibility of fast chromosomal integration of MoClo circuits. Once the acrA and acrB 

genes were removed, we observed a higher sensitivity to light, especially during fluorescence 

imaging, and antibiotics, as well as a lower growth rate in presence of antibiotics. It is 

believed that the acriflavine pump that those two genes encode for is actually a multi-drug 

efflux pump transporting a wide range of toxic elements out of the cell (Zgurskaya & Nikaido 

1999). However, the absence of this efflux pump may lead to the accumulation of other toxic 

chemicals, leading to the hypersusceptible phenotype observed in the new bPH_127 strain. 

                                                 

3
 Modular cloning, or MoClo, is a standardized cloning method based on the Golden gate protocol. This 

methodology was used extensively during my PhD because it offers a number of advantages for synthetic 

circuits construction. The method and its usage are described in section 2.2. 

The MoClo plasmids bearing the homology regions are described in appendix A as level 1 plasmids 1.25 to 1.27. 
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Figure 2-2 - Chassis strains used in this thesis with the type of circuits they were transformed with. The wild type strain from 

the Keio library (BW25113) features several elements that hinder the quality of control or make long-term observation 

difficult: the flagellum makes the cell move around the field of view, and the lactose permease (lacY) and the acriflavine 

pump (acrAB) interfere with cytoplasmic levels of inducers. In the bPH_122 chassis strain I removed the flagellum (fliA) and 

inserted a cassette into the chromosome to express lacI and tetR constitutively. Characterization experiments with simple 

transformed plasmids showed that the response to IPTG induction was bistable, so I also removed the lacY gene responsible 

for the permease, and bistable induction by IPTG was no longer observed. I ran control experiments on simple circuits 

transformed into this chassis strain and observed long-term adaptation of the cells to anhydrotetracycline. In the last chassis 

strain, bPH_127, I removed the acrA and acrB genes responsible for the production of the efflux pump that would cause 

adaptation to aTC. LacI and TetR were no longer expressed constitutively, and I transformed the strain with several different 

toggle switch plasmids to work on the final goal of this thesis: real-time control of a genetic toggle switch. 
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Because this strain was going to be transformed with toggle switch plasmids in order to 

control them, I constructed it from the bPH_104 strain instead of bPH_122. This way the 

strain did not express LacI and TetR constitutively, which would interfere with the 

functioning of the toggle switch. 

To summarize, the final chassis strain bPH_127 is a quadruple mutant of Escherichia coli 

K12 BW25113 strain with genes fliA, lacY, acrA and acrB knocked out. The cells do not self-

propel, their response to IPTG or other lactose derivatives is not bistable and they do not flush 

out tetracyclines. 

Now that it has been developed, the chassis strains I developed and present here can be used 

for controlling other systems as they are adapted to the control framework. A list of the strains 

I developed during my PhD can be found in appendix A. 

2.2 LacI-TetR toggle switch 

I chose to develop a toggle switch based on the lac and tet systems, both because these 

systems have been extensively used and studied in synthetic biology, and because inducer 

chemicals can be delivered into the growth media to the expression downstream of each 

system. To be able to observe the state of the toggle switch in real time, I also ensured that 

two different fluorescent reporter proteins would be co-expressed with the toggle switch. I 

chose to combine LacI with the mKate2 fluorescent protein and TetR with the mEGFP 

protein. The two opposite parts of the toggle switch consisting of, on one hand, the tet 

promoter (pTet), the lacI gene and the mKate2 fluorescent protein, and, on the other hand, the 

lac promoter (pLac), the tetR gene and the mEGFP fluorescent protein, are referred to as 

“branches” here. Also, in order to maximize the chances of having at least one bistable toggle 

switch, I constructed a library of circuits with different expression strengths for the two 

branches. I eventually picked the circuit in the library that seemed the most promising, circuit 

2.31 (see appendix A). 

The final toggle switch design is illustrated in Figure 2-3. This 2.31 plasmid was eventually 

transformed into bPH_142 strain and used to perform the control experiments described in the 

next chapter. In the rest of the section I will present the design choices that were made to 

construct this circuit, the protocols I used and developed to construct the library and some of 

the problems I ran into. 

2.3 Modular Cloning (MoClo) and toxicity issue 

To build a bistable toggle switch it is important that both TetR and LacI are expressed in 

proportions such that their mutual repressive strengths are comparable. Also, tagging both 

genes with a different fluorescent protein allows for the monitoring of the state of the toggle 

switch by microscopy. Thus, developed a library of toggle switch circuits to ensure I would 

obtain at least one bistable toggle switch with appropriate properties (dynamics, bistability, 

symmetry). I took advantage of recent technical progresses in the field of molecular cloning 

and developed a few techniques of my own to accelerate the process. 
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Figure 2-3 Plasmid map of the 2.31 toggle switch plasmid. The yellow arrows represent the coding sequences of transcription 

factors and fluorescent proteins. The light green arrows represent the pLac and pTet promoters to which the transcription 

factors will bind to repress each other‟s expression. The sharper green arrows represent ribosome binding sites. The red 

arrows represent terminators. The pink arrow represents the chloramphenicol resistance cassette, and the blue arrow 

represents the origin of replication of the plasmid. 

Instead of traditional cloning methods, I used a recently-developed cloning protocol called the 

Modular Cloning method(Weber et al. 2011). MoClo is based on the Golden Gate cloning 

protocol (Engler et al. 2008; Engler et al. 2009) which uses type IIS enzymes. Those enzymes 

have the particularity of cutting outside of their recognition site. These  recognition sites can 

be inserted into the DNA sequences of interest to minimize the cloning scar and possibly 

avoid it completely. The Golden Gate cloning procedure consists of cycles of restriction and 

ligation that make the cloning more robust and efficient, thus requiring lower quantities of 

DNA at each step. Building on the reliability of the Golden Gate cloning method and on 

previous DNA parts standardization initiatives (Rebatchouk et al. 1996; Knight 2003; 

Anderson et al. 2010), the MoClo procedure is a standardized version of the Golden Gate 

DNA assembly method. In synthetic biology circuits, construction mostly consists of 

assembling the same type of elements in the same order. In MoClo, the genetic circuits 

consist of assemblies of transcriptional units, which themselves consist of an assembly of the 

following elements: a promoter (P) – a 5‟ untranslated region (U) – an optional signaling 

peptide (S) – a coding sequence (C) – and finally a terminator (T). The authors designed a 

series of plasmids with ligation overhangs such that elements of each category would always 

assemble in the same order (P>U>S>C>T). One of the great advantages inherited from 

Golden Gate is that it all the parts can be assembled together during a single one-pot 

assembly, meaning that an entire transcriptional unit consisting of up to 5 elements can be 

assembled overnight with MoClo, when traditional cloning methods would require at least 

three steps.  
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It also allows an easy combinatorial assembly: because parts are standardized, several 

assembly pots can be easily set up with a single variation between them (e.g a different 

5‟UTR, various promoters…), and each would produce a different transcription unit. Golden 

Gate / MoClo even offers the possibility of assembling families of construct variants in one 

pot (Engler et al. 2009), although the task of screening for the better constructs then becomes 

the bottleneck (Engler et al. 2009; Engler & Marillonnet 2011). See Figure 2-4 for a 

description of the MoClo protocol as well as illustrations and appendix A for a list of the 

MoClo vectors used and developed in this thesis. 

To summarize, the Modular Cloning technique offers a number of valuable advantages for 

circuit library assembly, and I used this method to assemble my library of toggle switches. To 

maximize the chances of obtaining a bistable switch, a simple solution was to design and 

implement circuits with a wide range of protein translation rates. These different circuits 

would only differ in their ribosome binding sites, so the only part that would change in my 

assemblies would be the 5‟UTR parts of each branch (“U” part of MoClo assemblies). Once I 

transferred the ribosome binding site (RBS) libraries to the MoClo Level 0 plasmids (pL0-U), 

the possibility to rapidly produce all the variants of each branch used in the circuits greatly 

sped up the process. It would also permit rapid reconstruction of the branches if necessary, 

since I could re-use the same parts. With the knowledge gathered on the branches during this 

work on the toggle switch to model circuit behavior, I can also construct new circuits with 

those same branches without much effort or time. 

I had to cope with several complications during the assembly of the toggle switches.  At the 

transcriptional unit level, the promoter or RBS region of the level 1 transcriptional units were 

mutated. The fact that these specific parts of the branches were mutated suggested that the 

proteins expressed from the plasmids caused significant burden to cells.  This intuition was 

also supported by the fact that the pUC replicon (Yanisch-Perron et al. 1985) used in the 

backbone plasmids of the MoClo system create a high number of plasmid copies, from 500 to 

700 copies per cell (Lin-Chao et al. 1992). 

Todecrease the burden caused to cells, I developed a library of MoClo backbone plasmids 

based on low copy origins of replication (see Figure 2-5A). I mainly used the ACYC family 

of plasmids, which are based on a p15A replicon (Chang & Cohen 1978) producing about 10-

12 plasmids per cell (Sambrook & Russell 2003), and a chloramphenicol resistance gene for 

selection. I also developed MoClo variants from the CDF plasmids family, based on the 

CloDF13 replicon (Veltkamp et al. 1979) which produces about 20 to 40 copies per cell 

(Sambrook & Russell 2003), and with either Kanamycin or Spectinomycin resistance genes 

(see appendix A for a list of all the low-copy MoClo plasmids). The use of these novel 

backbone plasmids does not change the procedure for Modular Cloning, except for differing 

antibiotics used at the selection step. 
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Figure 2-4 The Modular Cloning procedure. A) Level 0 golden gate assembly. The golden gate cloning uses cycles of 

restriction and ligation to assemble DNA strands robustly and efficiently. When activated at 37°C, the type-IIS restriction 

enzymes will cut out a portion of the target DNA strands, leaving 4 base pairs DNA overhangs for subsequent ligation. The 

ligase, when activated at16°C, will assemble some of the DNA strands back into their original configuration, before 

restriction. But, if the overhangs are chosen properly, the ligase can also assemble the parts of interest together. Although 

very few will be assembled together in one cycle, the use of type IIS enzymes favors the assembly of the product of interest 

over time. Since type-IIS enzymes cut outside of their recognition site, the product of interest does not feature the enzyme‟s 

recognition site after assembly. On the other hand, strands that re-assemble into the intial DNA parts will still feature the 

recognition site and can again be restricted during the next restriction cycle. Over enough cycles (typically ~30), most of 

DNA parts have assembled into the product of interest. This procedure does not require a lot of initial DNA and can assemble 
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more than two parts at once. In the MoClo version of this Golden gate technique, the overhangs are standardized so that they 

always ligate in a specific order. The MoClo procedure illustrated in this panel is level 0 promoter integration into the library, 

i.e. the introduction of a new promoter into a level 0 pL0-P backbone. The bpiI restriction enzyme is used for level 0 

assemblies. B) Level 1 assembly. In level 1 assembly a transcription unit is created from level 0 parts on level 0 plasmids 

(pL0). In this study the level 0 plasmids that will be used are promoters (pL0-P), RBSs (pL0-U), coding sequences (pL0-SC), 

and terminators (pL0-T). These 4 elements constitute the basic parts of transcription units in bacteria. In this illustration 4 of 

those parts are assembled together and into a level 1 backbone plasmid (pL1) to form a transcription unit. The bsaI restriction 

enzyme is used for level 1 assembly. C) Level 2 assembly. In level 2 assembly, transcription units from previous level 1 

assemblies are ligated together and into a level 2 backbone to form a genetic circuit. Level 2 assembly is performed with bpiI 

restriction enzymes. 

This change in the copy number of plasmids per cell solved the mutation problem for almost 

all variants of the toggle switch branches. An interesting outcome is that although the copy 

numbers of plasmids in each cell with this new library were between 10 and 70 times lower 

than the original MoClo plasmids, the plasmid yields out of the plasmid preparation steps that 

were performed at the end of each MoClo step were only 2 to 5 times lower than the typical 

yields with pUC origins. This result illustrates a tradeoff between yield and the burden on the 

amplifying cells. Higher copy plasmids may not always be the best choice for MoClo, and for 

plasmid preparation in general, especially in the case of Golden Gate cloning, which does not 

require high concentrations of plasmids. A remarkable result of the original MoClo paper is 

that the authors are able to seemingly easily construct 11 different transcription units and 

assemble them into a 33 kb plasmid, without burden problems. It is important to note however 

that the circuits developed are to be expressed in plants, with plant promoters and plant virus 

RBSs used in the transcription units. So, even though the plasmid preparations are performed 

in bacteria at each MoClo step, the encoded proteins are not expressed, and the burden is 

therefore much lower.  

Unfortunately, in a few cases I still had problems assembling the plasmids, even with low 

copy plasmids. I did not know whether expression burden during plasmid preparation was the 

problem or if it was happening earlier, during DNA assembly. To circumvent the issue 

without having to pinpoint the source of the problem, I incorporated a new part into my 

library of RBSs in MoClo level 0 format (see Figure 2-5B and parts 32 and 33 in appendix 

A). This part consists of type IIS identification sites instead of an actual RBS sequence: this 

way, non-functional transcription units can be constructed and assembled into circuits, and the 

real RBSs can be incorporated into the circuit at the last moment (see Figure 2-5C). This 

solved several problems: firstly, there was no protein expression burden from the level 1 

plasmids during plasmid preparation of the toggle switch branches, in which the lac and tet 

promoters are completely unrepressed. Secondly, the assembly of multiple parts at once, 

although an advantage of the MoClo technique, is of course less efficient than a one part-one 

backbone assembly with the same procedure. Therefore, the fact that RBS integration was 

done at the end of the whole assembly, with only one part inserted at a time, would 

compensate the ligation difficulties that could be associated to that specific part. Finally, even 

though this method required one extra step to start from single parts to obtain a final working 

switch, once I got the version of the toggle switch circuit with the “wildcard” restriction-site 

parts inserted where the RBSs should be, it took only one extra step to produce a new, 

different toggle switch. With this circuit now, inserting completely new RBSs only requires 

one robust and efficient golden gate step. Or two in the case of a “double-wildcard” toggle 

switch. 
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Figure 2-5 New MoClo tools for bacterial constructions. A) Several different MoClo level 1 and level 2 vectors were made 

on low copy plasmids, to reduce the burden problems caused by over-expression of the transcription units assembled into the 

vectors. B) MoClo “RBS swapper” or “wildcard”: These two short constructs have been synthesized via oligo-annealing and 

integrated into pL0-U MoClo plasmids in lieu of real RBSs. They feature opposing type IIS restriction enzyme recognition 

sites that can be later swapped for a normal DNA part in the MoClo standard using the appropriate enzyme and Golden Gate 

assembly. The same principle can be applied to all MoClo level 0 parts. C) Once one of the two RBS swapper was assembled 

into each branch of a toggle circuit, robust creation of new toggle switches was made possible in two overnight Golden Gate 

assemblies of one vector + one RBS part in the MoClo standard. 

2.4 Operon branches design 
In order to co-express the LacI and TetR transcription factors with fluorescent proteins to 

measure the state of the toggle switch in real time, I developed operons in which the lacI and 

tetR genes were transcriptionally coupled respectively to the genes encoding for the mKate2 

and mEGFP fluorescent proteins. 
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Operons are omnipresent in bacteria and are its main method of transcriptional coupling in 

cases where different proteins must be expressed at comparable levels. RNA polymerases 

transcribe the coding sequences of all genes in an operon on a single strand of messenger 

RNA, and ribosomes translate it into proteins from the same strand. Although coupling can be 

even stronger with fusion protein designs, an operon induces a strong correlation between 

fluorescence intensity and transcription factor concentration in the cell since most of intrinsic 

noise seems to happen at the transcription level (Ozbudak et al. 2002). 

In an operon, the ribosomes read each coding sequence and release the unfolded protein 

strand at the end of each CDS when they reach a stop codon. Normal ribosome behavior when 

they reach a stop codon is to unbind from the RNA strand. However, two mechanisms exist in 

operons to ensure that the ribosome continues translating after each gene. The first, more 

common one is the presence of another ribosome binding site in the intercistronic region 

(Maizels 1974; Schaefer et al. 1989). This allows for different translation rates between the 

different CDS in the case of operons where proteins need to be expressed in non-equal 

stoichiometry but still have linear co-expression levels. In those cases ribosomes that just 

unbound the previous coding sequence immediately rebinds the next ribosomal binding site 

and continues translation, but other ribosomes can also bind to the second coding sequence 

directly. A second, more complex mechanism induces translational coupling and co-

expression in a 1:1 stoichiometry. In this mechanism, the stop codon of the first CDS is next 

to, or sometimes overlaps with, the start codon of the next coding sequence, and the end of the 

CDS of the first gene features a statistically weak Shine-Delgarno sequence
4
 (Oppenheim & 

Yanofsky 1980; Torgov et al. 1998; Govantes et al. 1998). 

I developed both types of operon by PCR amplification and re-assembly into a MoClo pL0-

SC plasmid similar to that of fusion proteins described in section 2.5. I only developed the 

versions where the fluorescent reporter genes were placed after the tetR and lacI genes, so that 

I could infer whether co-expression of both proteins in the operon was happening from simple 

fluorescence measurements. I then assembled these new CDS level 0 parts into level 1 

transcription units for the branches of my toggle switch (see appendix A, level 1 TUs 1.40 to 

1.51). I could not get the overlapping stop-start codon strategy to work, and continued 

working with only the multiple RBS operon designs.  

2.5 Fusion protein branches design 
Before designing operon-based toggle switches, I tried to design fusion proteins to observe 

the state of the toggle switch. I designed circuits with the LacI and TetR transcription factors 

fused to the monomeric fluorescent proteins mKate2 (red fluorescent protein) and mEGFP 

(green fluorescent protein). I initially went through the trouble of making fusion proteins 

because measuring their associated fluorescence would give me the state of the toggle switch 

directly, whereas other methods such as co-expression, in an operon or another transcription 

                                                 

4
 The Shine-Dalgarno (SD) sequence is a part of ribosomal binding sites in prokaryotic messenger RNA. The 

RNA sequence helps recruit the ribosome to the messenger RNA to initiate protein synthesis by aligning the 

ribosome with the start codon. The six-base consensus sequence is AGGAGG. Variants of this sequence have 

more or less chances of recruiting the ribosome. 



 II – Observing and actuating on trapped bacterial cells  

 

56 

 

unit under the same promoter, would not have a 1:1 transcription factor to fluorescent report 

ratio, as the co-expressed protein levels would be subject to independent noise and 

independent degradation times.  

There are examples in the literature of fusions between the TetR and LacI proteins with 

fluorescent reporters (Rosenfeld et al. 2002; Webb et al. 1997; Dewar et al. 2004; Marshall et 

al. 1997; Kato & Lam 2003). For TetR-GFP fusions it has been demonstrated that the TetR 

transcription factor keeps its DNA-binding property, represses expression downstream of the 

tet promoter, and is still inhibited by tetracyclines (Rosenfeld et al. 2002). The LacI-FP 

fusions, on the other hand, were proven to bind the DNA domains, but the expression 

downstream of the lac promoter as well as the effect of lactose equivalents have not been 

reported in the literature. Due to the tetrameric nature of both LacI and TetR binding to DNA, 

it was unclear whether DNA binding of fusion proteins could take place, but the 

aforementioned studies proved otherwise. The question of IPTG-LacI binding was still open. 

I developed the fusion proteins, each with the fluorescent reporter on either the N-terminus or 

the C-terminus of the transcription factor protein, to obtain the following assemblies: 

LacI::mKate2, mKate2::LacI, TetR::mEGFP and mEGFP::TetR. I amplified the coding 

sequences by PCR and inserted type IIS enzymes restriction site at the 5‟ and 3‟ tail ends of 

the amplicons to introduce a standard flexible Serine-Glycine protein linker(Chen et al. 2013) 

between the two  coding sequences (see appendix A). I then transferred them back into 

standard pL0-SC MoClo vectors to be able to use them in my assemblies. Unfortunately 

Level 1 cloning was problematic for most of the branches, and I would sometimes get 

mutations in the linker region in addition to the more usual mutations in the RBS and 

promoter regions. I did not assemble them into toggle switches right away, but instead 

assembled them into simpler one-gene-one-feedback circuits (see circuits 2.4 and 2.5) to 

rapidly find out whether the circuits would respond to inducer inputs and to see if I was able 

to measure the fluorescence levels. 

Although the cells were fluorescent, large foci would appear in the cells indicating toxicity, as 

well as a remarkable increase in photosensitivity resulting in cell death during the first few 

hours of time-lapse experiments, and those cells that did not die right away would often 

elongate or stop growing altogether. This could be a sign of misfolding of the transcription 

factors, leading to toxic aggregates. It seems however that not all of the transcription factors 

would misfold, since, in survivor cells, the levels of each fluorescence level could be swayed 

with IPTG or aTC induction. Still, it became rapidly evident that the catastrophic cellular 

death rate during observation would make it almost impossible to try to control individual 

cells on any practical time horizon. 
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Figure 2-6 Fusion proteins: A) Cells present fluorescent loci in their cytoplasms and die after a few hours of exposition. B) A 

population of bPH_122 cells transformed with the pConst-LacI::mKate2-pLac-mEGFP circuit is submited to various levels 

of IPTG. The fluorescence level is influenced by the inducer. 

 

2.6 The toggle switch library 
Having developed my strategy to obtain healthy, fluorescent cells, I could proceed with the 

generation of a full library of putative toggle switches. To maximize the chances of obtaining 

at least one bistable toggle switch with which to do control experiments, I developed a library 

of 2x6 toggle switch branches with different expression strengths that I combined together 

into 36 independent toggle switches (see appendix A, circuits 2.10 to 2.45). I used a common 

library of RBSs in bacteria and calculated the respective expression strength on each branch 

with the Salis RBS calculator(Espah Borujeni et al. 2014). The RBS family used spans a wide 

range of expression level values, although they are not spaced perfectly linearly (see Table 

2.6-1). This at least gave me an idea of the range of expression levels at which bistability 

would occur. I used the MoClo technique and the variants I developed (see section 2.2) to 

obtain a family of toggle switches. 

I obtained a first batch of toggle switches which I transformed into strain bPH_127 to obtain 

strains bPH_137 to bPH_151. I performed switching experiments in overnight culture to 

discriminate potentially bistable circuits (see Table 2.6-2 and Figure 2-7). I grew the cells 

transformed with the different variants of the toggle switch in overnight cultures with high 

concentrations of IPTG (1mM) or aTC (100 ng/mL), as well as a control tube without 

inducers, to observe any switching between the two states. A number of circuits would only 

express one of the two states, demonstrating either unlikely mutations in the corresponding 

branch that might have happened after sequencing, or a complete imbalance of the circuit in 

favor of one of the two states. I then washed the cultures twice and resuspended them in 

growth media with either inducer or without any inducer at all and observed whether they 

would retain their state or switch again over time.  
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RBS reference pTetO-lacI-mKate2 

branch 

Translation 

Initiation Rate (au) 

pLacO-tetR-

mEGFP branch 

Translation 

Initiation Rate (au) 

B0030 3440 7734 

B0031 53 458 

B0032 12 8788 

B0033 27 301 

B0034 1035 1624 

B0035 251 520 

Table 2.6-1 RBS strengths as calculated by the Salis RBS Calculator v2.0. Note the importance of the context of the RBS. 
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RBS 

B003x 
30 (3400) 34 (1000) 35 (251) 31 (53) 33 (27) 32 (12) 

32 (8800) 
Switches 

Not bistable 
Not tested GFP locked Not tested Not tested 

GFP 

locked 

30 (7700) 
Switches  

Not bistable 
Not tested GFP locked Not tested GFP locked Not tested 

34 (1600) Not tested GFP locked Not tested Not tested 
Switches 

Not bistable 
Not tested 

35 (520) Not tested Not tested Switches 

Not bistable 
Not tested 

Switches + 

bistable 
Not tested 

31 (458) RFP locked Not tested Not tested GFP locked Not tested 
GFP 

locked 

33 (301) GFP locked Not tested Not tested Not tested 
Switches + 

bistable 
Not tested 

Table 2.6-2 Summary of early characterization results. A corresponding table listing the circuit numbers can be found in  

appendix A. 
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Out of all tested circuits only two were capable of switching and were bistable. I proceeded 

with circuit 2.31 (strain bPH_142) because it produced the most well-defined states (the 

expression level in either states was high and the expression of the opposite protein was 

almost entirely repressed) and would remain in either state for over 8 hours without inducers. 

Figure 2-7 shows the switching behavior of several circuits as well as the stability of strain 

bPH_142 over time. 

 

Figure 2-7 Behaviors of different toggle switch circuits. A) Different circuits may or may not switch when subjected to 

inducers. B) Strain bPH_142 is stable over long periods of time. The cells were grown overnight at 37C in LB without 

inducer. They were re-suspended for ~4 hours in fresh media. Their fluorescence was measured using epifluorescence 

microscopy and then the cells were re-suspended for 8 hours in fresh media with inducers (either 100 ng/mL of aTC or 1mM 

of IPTG). After 8 hours their fluorescence was measured again, and the cells were washed twice and then re-suspended in 

fresh media without inducer. Finally, fluorescence was measured after 8 more hours. The red curves shows the mKate2 level 

and the green curves show the mEGFP levels. Dashed curves represent the fluorescence levels of the cells grown in aTC for 

the first 8 hours, and the solid curves represent the fluorescence levels of the cells grown in IPTG for the first 8 hours. The 

2.31 toggle switch in strain bPH_142 showed impressive stability in batch culture, even after more than one washing. 

3 Microfluidics & automation 

Containing and observing single bacteria over extended periods of time is a difficult task. 

Time-lapse microscopy and microfluidics have been around for some time now, but the 

automation of acquisition, especially when several experiments are run in parallel, is still not 

completely straightforward and requires a non-negligible amount of work before experiments 

can be run routinely. Another crucial aspect is concurrent cell containment and culture: cells 

should be observed in their normal state of growth, but should also be contained so that they 

do not leave the field of view of the experiment. This difficulty is exacerbated in the case of 

single-cell observations. Image analysis is also a complex problem, in particular in bacteria. 

This difficulty is also exacerbated in the case of external control, which introduces 

requirements of robustness and reliability. Finally, in the case of external control or dynamic 

stimulations in general, input delivery has to be automated and interfaced with the control 

algorithm. 

In this section I present how I tackled these different problems. I developed several 

microfluidics devices to contain and observe the cells, and make rapid changes to their 

chemical environment possible. I developed software and hardware to control solenoid valves 
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for input delivery. Finally, I wrote software for microscope control, basic image analysis, 

control and communication with the valves controller, thus closing the loop and allowing for 

cellular control. 

3.1 Microfluidics 
I had the opportunity to access a clean room facility at Paris-Diderot University where I could 

experiment with lithography and microfabrication techniques, and design my own wafers for 

microfluidic devices. Our team has a history of developing its own microfluidic wafers for S. 

cerevisiae (Uhlendorf et al. 2012; Vulin 2014; Llamosi et al. 2016) and I took advantage of 

the expertise in the team to develop my own devices for bacteria. 

3.1.1 Molded PDMS devices 

The dominant approach for making microfluidic devices is based on soft lithography and 

PDMS molding. A silicium wafer is covered in a layer of epoxy-based resin of known 

thickness. The resin is insulated to obtain a desired pattern on the wafer. The insulation 

techniques used in this thesis are described in the following two sections. Once the desired 

pattern has been drawn, the so-called master wafer is used as a reusable negative for replica-

molding of the pattern with Polydimethylsiloxane. 

Polydimethylsiloxane (PDMS) is a transparent silicon that is a viscous fluid in its monomeric 

form, and an elastic solid when homopolymerized. Liquid PDMS supplemented with a curing 

agent to catalyze polymerization is poured onto the wafer mold. The liquid PDMS will 

perfectly follow the mold‟s shape and then cure into its solid polymerized form. To form a 

working microfluidic device, the solidified silicon is peeled off the master wafer and stuck 

onto a glass slide. The glass slide floors the circuit and the device can then be used to load 

cells, flow media and various chemical, and the chambers and channels can be observed 

through the glass slide on a microscope. Transmitted light can be shone through the device 

since PDMS is transparent. 

3.1.2 Microfluidic wafers fabrication methods 

Various methods exist for developing microfluidics devices for in vivo cell cultures and 

observation, such as wafer engraving, 3D printing, or CNC milling. The most common 

technique is so-called „soft‟ lithography, in which layers of epoxy-based resins are insulated 

locally to create patterns on a silicium wafer. This method is described in this section and was 

used to develop the microfluidic devices presented here.  

3.1.2.1 Photolithography 

The most common way of designing microfluidic devices is by coating a wafer with an 

epoxy-based resin, the SU-8 resin developed in the 1980s by IBM, and then illuminating this 

resin with high intensity UV light. The light goes through a custom made negative mask and 

only the desired parts are exposed to the high-energy photons. The resin is photosensitive and 

will solidify when exposed to high-energy particles. A solvent bath will dissolve all parts that 

were not exposed to the UV light, and only the exposed part will remain. Coating of the wafer 

is performed with a spin coater, and rotational speed is adjusted to obtain precise layer 

thickness. Several variants of the resin exist, of different viscosities, to allow for a wide range  
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Figure 3-1 Microfluidic devices fabrication protocol. Steps 1 to 6 are microfabrication steps to develop the master wafer and 

are performed in the clean room. Steps 7 and 8 are the actual microfluidic chip assembly steps and are performed in the lab, 

every time a new microfluidic chip is needed. 1) Epoxy-based SU8 resin is spread over a silicium wafer. The wafer and the 

resin are spun at a high speed (typically 2000 to 8000 rpm) to obtain desired layer thickness. This process is known as spin 

coating. 2) The resin is solidified by exposition to high-energy particles: 2a) UV light is shone through a patterned chrome 

mask to insulate parts of the SU8 resin. This process is known as photolithograpy. 2b) An electron beam is scanned through 

the SU8 layer following a pre-programmed pattern. Magnetic deflectors are used to insulate the pattern at nanometric 

resolutions. 3) Non-insulated SU8 resin is dissolved and only the insulated pattern remains. 4) A new SU8 layer of higher 

thickness is spun onto the wafer for producing objects of different height. 5) The higher objects are insulated via 

photolithography. In our case, the main flow channels are produced via photolithography because they are too large for EBL. 

6) non-insulated resin is washed away. This final product of microfabrication is the master wafer, i.e. the wafer that will be 

used as a re-usable negative mold to produce microfluidic chips: 7) Polydimethylsiloxane (PDMS) is poured on the master 

wafer and cured for about 8 hours at 65C. After curing, the once fluid PDMS solidifies. 8) The solidified PDMS countermold 

is stuck onto a microscopy glass slide by plasma bonding. This final microfluidic chip will be used to grown cells and deliver 

nutrients and chemicals. In our design, the smaller regions are the growth chambers, and the bigger and higher regions are the 

main flow channels. Chips are used for a single experiment and then a new chip is produced from the master wafer. 
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of possible layer thickness (from about 500nm to 100μm). Several objects of different heights 

can be obtained on the same device by sequentially applying different layers of SU-8 and 

insulating them with UV light one by one through patterned chrome masks (see step 2a in 

Figure 3-1). A review of the type of devices that can be obtained with this procedure is given 

in (Ng et al. 2002). 

Although photolithography is a relatively simple and fast process, it is limited in its resolution 

by the diffraction of light on the insulation mask. Details under 5 µm start getting difficult to 

obtain and require the use of vacuum chambers and optical filters. The closer the dimensions 

get to the wavelength of UV light, the more imprecise the details get. 

3.1.2.2 Electron-Beam lithography 

For smaller details, typically around 1 micron or less, I had to use electron-beam lithography, 

or EBL: Since using a lithography mask causes diffraction that limits the resolution of the 

insulation, the solution is to direct the high-energy particles beam directly towards the wafer 

and scan it through the parts to be polymerized. However, mechanical orientation of the beam 

is very imprecise, and a light beam cannot be bent easily towards a specific location on the 

wafer. Electron trajectories, on the other hand, can be very precisely oriented with an 

electromagnetic field, as is routinely done in a scanning electron microscope. In practice, 

electron-beam lithography actually uses slightly modified scanning electron microscopes to 

guide an electron beam over a resin layer, following an insulation path predetermined 

numerically by the experimenter (see step 2b in Figure 3-1). Similarly to photolithography, 

the high-energy electrons create Lewis acids in the resin and catalyze the homo-

polymerization reaction. 

EBL allows for nanometer-precise details, and since no physical mask is used, the variety of 

shapes, sizes, details and structures of the microfluidic circuits obtained is not limited by the 

price and delays linked to the manufacturing of a photolithography mask. It cannot be used on 

thick layers of resin however, since electrons scatter in matter as they lose energy penetrating 

into SU-8. Increasing the energy of the electrons allows for deeper penetration, but the 

penetration depth increases only logarithmically with the electrons‟ energy (Suñé 2008). The 

working surface on our apparatus is also limited to, at best, 1mm. One can insulate several 

working surfaces, but the details may not be perfectly aligned from one working area to the 

next since the displacement between scanning surfaces is performed mechanically. 

Although this method has been used extensively in other domains of micro- and nano-

fabrication (Tseng et al. 2003; Suñé 2008), and has been demonstrated to be a versatile micro- 

and nano-fabrication method in SU8 resin (Kudryashov et al. 2003), its usage in microfluidic 

devices fabrication is still anecdotal (Mali et al. 2006). I started working on this technique 

after discussing my light diffraction problems with quantum physicists at the clean room who 

used this method routinely on other resins. Although the production of a complete device with 

EBL and photolithography is more tedious than with photolithography only, iterations on the 

EBL part of the designs can occur at a much faster time scale because the technique does not 

require the edition of a new insulation mask after each modification to the desired pattern. I 
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could test several different designs in a day. I tested the limits of the method and observed 

that I could produce objects that were about 100nm in width without much difficulty. 

3.1.3 Main device – Mother Machine 

The main microfluidic device used in this thesis is a so-called “Mother machine” (P. Wang et 

al. 2010) device that traps individual cells in narrow growth chambers. A team of 

collaborators (Lindner team, U1001 INSERM) uses such a so-called mother-machine 

microfluidic device that consists of one single nutrient channel flanked by 0.6-to-0.8µm-high 

chambers that are slightly wider than an E. coli cell (about 1 µm wide). In this setup the cells 

do not grow next to each other and instead form one single line of mother-daughter pairs. In 

addition to greatly simplifying segmentation (as cells are contained in a predefined space), the 

cell that is at the end of the chamber is never washed away and that cell can be observed for 

extended periods of time. Our collaborators use this setup to study the evolution and aging of 

one cell over weeks.  

 

Figure 3-2 – From Wang et al.(P. Wang et al. 2010) The so-called mother machine microfluidics device. Cells are trapped in 

chambers of about 1µm width and grow in single cell lines. The cells at the bottom of the chambers are not pushed away and 

remain there until they die. Others are pushed to the end of the chamber and washed away in the main channel. 

I started working on this type of device with molds that were provided by our collaborators. 

The first results were promising and I started making my own molds in the clean room. Since 

the details on those circuits were close to the theoretical minimal resolution of 

photolithography, the traditional method for creating microfluidic devices, I had to use a 

combination of traditional photolithography for the larger elements, like the flow channels, 

and Electron Beam Lithography for resin insulation for the narrow chambers. 

To accelerate my research and obtain more data at once, I designed a new device based on our 

collaborators‟ mother machine design that can run up to six independent experiments at once. 

Alignment of multiple elements between EBL and photolithography is tedious and error-

prone, and the development of entire wafers with up to 6 different EBL motifs required 

significantly more time and care to develop than photolithography-based wafers. Because of 

their dimensions, the wafers are also more delicate. To summarize, one of the inconveniences 

of this method is that wafers are difficult to obtain and cannot be replicated. The destruction 

of the master wafer would stall the experiments, and it has to be handled with extra care. 

Cell loading is another known problem in mother-machine-type devices. Because the 

chambers are narrow and only one of their ends is open, it is difficult to get the cells inside 
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them. Two methods exist: 1) let cells grow everywhere in the microfluidic chip. The cells end 

up colonizing the chambers and at this point the cells in the flow channel are flushed away. 

This method has various limitations: first of all, it requires setting up the experiment a long 

time in advance to let the cells grow into the chambers. The second problem is that flushing 

will not be 100% efficient, and some cells will remain in the channel flow after flushing and 

grow in the flow channel. 2) Centrifuge cells into the chambers. I designed a microfluidic chip 

centrifugation arm that can be used with a spin coater to ease cell loading. Once the cells were 

loaded I would set up the chip in the input delivery and flow apparatus and on the microscope 

for single cell observation. 

3.1.4 Early device designs: Population chambers 

I based my first wafers on the device developed by Jannis Uhlendorf in our team for his 

control platform for yeast (Uhlendorf et al. 2012). I adapted it to get the right height for the 

chambers to make sure that my bacteria would not grow in several layers in the chambers or 

be able to move at all once in there, but of course the chambers also had to be high enough to 

allow the cells to enter in the first place. I found that the optimal height for the growth 

chambers was 0.7µm. Because the chambers were wide compared to their height of 0.7µm, 

the ceiling of the chambers would often collapse. 

 

Figure 3-3 – Adapted from Uhlendorf et al.(Uhlendorf et al. 2012) The first device that I used was based on this design. (left) 

the general microfluidic setup, the device is connected to a valve that selects between two media. The media are flown 

through the channels and end up in the waste (purple tubing). The chambers are between the two channels and nutrients and 

drugs are  transmitted to the bacteria by diffusion. Epifluorescence microscopes are used to image the cells from below, 

inside the chambers. (middle and right) The chambers are 0.4mm in length, and about 0.7 µm in height. The channels are 40 

µm in height. 

To work around this issue I then adapted another device developed for yeast by Clément 

Vulin, another Ph.D. student on the team, to my organism. This second device was similar to 

the previous one, except that it featured chambers of various widths, which solved the 

collapsing ceiling problem. I was able to obtain good images of my bacteria where they would 

grow as a single layer. Those two devices did not feature details smaller than 5 microns, and I 

used only photolithography (section 3.1.2.1) to create their molds. 
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Figure 3-4 – Images obtained with the second device. The cells do not move in the device or grow as multiple layers and the 

quality is good enough to try single cell segmentation. (left) Phase contrast 100X imaging of E.coli cells. (right) 100X 

composite image of red fluorescence imaging and transmitted light imaging of E.coli cells. 

I could not use those devices for single-cell control experiments. I did use them at the 

beginning of my PhD for population control, but the lack of robust segmentation algorithms 

for single-cell tracking and the rapid and free movement of cells in and out the field of view 

made them not adapted to online single-cell tracking. However the number of cells in the field 

of view is 10 to 100 times higher than in mother machine devices, and population effects can 

also be observed in this type of devices. Recent progresses made in cell segmentation might 

make it possible to monitor the fluorescence level of thousands of single-cells in a 2D layer 

on-the-fly (see chapter 4 for a short review of the state of the art in cell segmentation). 

3.1.5 Surface passivation, clogging, and flushing 

Bacteria tend to grow everywhere in microfluidic devices, both on PDMS and glass. This can 

cause several problems: First of all the accumulation of cells in the channels just outside of 

the growth chambers can exert pressure on the cells inside the chambers and have an impact 

on their growth rate. Secondly, the number of cells growing in the delivery channels would 

keep on increasing, possibly up to a point where nutrients and input chemicals are segregated 

or consumed by those cells, hindering the controllability of the cells inside the growth 

chambers. Finally, bacteria tend to aggregate and form biofilms, and an uncontrolled growth 

in the main flow channel would rapidly lead to clogging of the channel, possibly with 

biofilms forming in the entire apparatus. 

I have faced all the above scenarios, both in mother machine devices and in monolayer 

devices, and the necessity of good control of bacterial growth outside of the dedicated 

chambers rapidly became evident. Surface passivation was a first step to help reduce the 

spread of bacteria in main channel. I started using bovine serum albumine (BSA) with the 

population device described in section 3.1.4, and the results were promising. I followed the 

same procedure with the mother machine device but two problems arose: first of all, BSA is a 

fragile and somewhat expensive protein. Its passivation effect degrades with time and new 

stocks must be prepared periodically. It also degrades throughout the experiment and after 12 

to 16 hours bacteria start growing in the channels again. The second, more inconvenient 
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problem was that cell loading in the mother machine chambers was harder after BSA 

passivation. Whether it was caused by accumulation of BSA in the chambers, a higher fluid 

viscosity or other effects is unknown, but I had to passivate the surface after cell loading, 

which was both more complicated and less efficient since some cells were already stuck to the 

surfaces of the device. 

I switched to a cheaper and more robust alternative with Pluronic F-127. Surface passivation 

with pluronic prior to cell loading did not pose the same problem as BSA. Pluronic is a 

cheaper and more stable molecule, so not only was storage not a problem, I could also mix 

Pluronic into the growth media that would later be flown through the microfluidic device and 

autoclave it, which meant that surfaces would not be depleted of Pluronic over time. 

To further reduce cell growth outside of the dedicated chambers I would also periodically 

flush them by running the peristaltic pump at full speed for a short period of time (usually for 

30 seconds every 30 minutes). The custom program interfacing with the pump would also 

communicate with the acquisition session, to ensure that the pump was not flushed during 

acquisitions: With the pump running at full speed, the minor change in pressure in the chip 

would suffice to slightly distort the shape of the chambers, thus reducing the performance of 

the autofocus, drift correction, and image analysis. See section 0 for more details. 

3.1.6 Input delivery 

Characterizing the library of putative toggle switches and carrying out PI control experiments 

required the possibility of injecting variable levels of the two inducers in the microfluidic 

chip, so I had to develop some sort of mixing apparatus. While a variety of microfluidic 

mixers exist in the literature (Lee et al. 2011), none of them was suited to our approach. 

Passive mixers introduce delays in the time between mixing and delivery or require complex 

microfabrication techniques, and active methods require even more complex assembly 

methods, sometimes alongside the integration of bulky and obstructive hardware close to the 

chip. Moreover, those systems require some form of pressure control system, which is itself a 

costly and finicky piece of equipment. 

In our implementation of microfluidic mixing, we assumed that the process of delivery 

through the microfluidic tubing and channels via peristaltic pumping, and the diffusion 

through the cellular membrane, acts as a low pass filter for chemical signals between the 

environment and the cytoplasm, and therefore would tend to average out fast oscillatory 

changes in the environment. Such an assumption makes it possible to use pulse-width 

modulation in our drug delivery method. To get a certain “sensed” concentration of inducers 

for the cell, we switch between three inputs: one with a high concentration of IPTG (1mM), 

one with a high concentration of aTC (100ng/mL), and one without inducers for dilution. For 

a certain concentration of inducer, the duty cycle is adapted and diffusion in the tubing and 

the device and through the membrane does the rest (see Figure 3-5). To ensure that the 

average concentration sent to the cells was the one indicated by our choice of duty cycle, we 

calibrated the duty-cycle to concentration ratio by running the valve controller for extended 

periods of time at different duty-cycle values and measured volume depletion. We then used 

this 3-way PWM valves setup to mix solutions of fluoresceine and rhodamine and measured  
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Figure 3-5 The valve controller and mixing apparatus. An Arduino Nano can control up to 8 MCP23017 chips over i2c, and 

each of those chips can control up to 16 different transistors. The transistors are necessary to handle the power necessary to 

actuate the solenoid valves used for PWM mixing of the three input media: Luria-Bertani (LB) growth medium, LB + 1mM 

IPTG, and LB + 100ng/mL aTc. The Arduino receives mixing commands from the computer, and handles the sequential 

updating of the state of the MCP23017 chips to mix the three media. B) The actual printed circuit board. Up to 4 board can be 

connected together over i2c to control up to 128 valves with a single Arduino. C) The valve actuation setup partially 

assembled. A support that also distributes the different input tubes among the valves was 3D printed to fit within the 

microscope‟s temperature control box and attach to the microfluidic chip holder. D) Calibration experiment: PWM mixing 

was run over extended periods of time at different duty cycles, and volume consumption was measured. The results were 

surprisingly precise, and did not vary much between valves sets or between inputs. However, the correspondence between the 

PWM duty cycle and the volume of input actually flown through the controller was not completely linear. E) Various 

concentrations of fluoresceine and rhodamine were flowed through the microfluidic device (mother machine) and 

fluorescence was measured in the chambers. The fluoresceine level nicely follows the mixing levels imposed by the valve 

system for media 2. However it was observed that rhodamine would take a longer time to be flushed out of the chip by lower 

mixing concentrations. Clumps of rhodamine would be visible in the microfluidic chambers. This could also be another 

explanation for the delays we could observe over actuation. 
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fluorescence levels in a microfluidic chip to double check our result and also to verify that 

cells received a mixed level of both inducers (see Figure 3-5). 

To be able to alternate fast enough between media and also to resist high flow rates and high 

pressures, we used valves from the Lee Company. These valves operate on 12 V and can draw 

up to 100 mA. For those reasons they could not be operated with a simple Arduino and a 

power adaptation circuit was necessary, especially to drive more than one valve. We designed 

a custom arduino-based circuit board to host all electronic components and act as an interface 

between the computer and the solenoid valves. The board can drive up to 36 different valves. 

To optimize space, adaptability and ease of use, the card is built around an Arduino nano 

board that drives two MCP23017 chips
5
 over i2c serial, which themselves drive power 

MOSFETs that drive the valves. The entire design and code for Matlab and the Arduino Nano 

can be found on github
6
. I have since developed new, more compact implementations of this 

board to drive up to 40 solenoid valves for other projects that can be found on the same page. 

3.1.7 Reference crosses 

In the next section (3.2) I am going to present some of the image analysis and data extraction 

algorithms I used to monitor cells fluorescence. But an important step prior to that is the 

optimization of the acquired images. The image analysis is greatly simplified if the images are 

of good quality and their acquisition conditions are consistent with eachother. Good focussing 

is an important aspect of this process. A microscope does not stay in focus on the observed 

specimen over time if its position is not corrected periodically. Images are acquired 

automatically and in real time, without user supervision and usually at several different 

positions on the chip. All these issues further complicate the task of acquiring good quality, 

consistent data. 

Autofocussing is a non-trivial problem in time-lapse microscopy, and online image analysis 

requires a precise and robust autofocus for optimal quality data. A number of autofocussing 

algorithms exist, and can be separated in two groups: hardware based autofocus and image-

based autofocus. The hardware based ones measure the distance between the objective and the 

specimen observed, usually using laser triangulation, and try to maintain this distance 

constant. Although this approach is usually more robust, it does not measure image properties 

directly, and uses the proxy of the measured distance instead. Unfortunately, the measure can 

drift over time, especially in the case of immersion oil objective. The changes in focus are 

usually small, but in the case of bacteria, minor variations in focus can have dramatic effects 

on the quality of the extracted data. The second approach measures some property of the 

images acquired (usually average image gradient) and tries to minimize or maximize it. 

Although this can produce satisfactory results, the robustness of such a method is often 

inadequate for time-lapse microscopy of live cells. Because the cells are growing in the field 

of view, the measured properties of the image change over time, which can lead to focus drift 

                                                 

5
 MCP23017 are port expansion chips, made specifically for increasing the number of I/O ports on a 

microcontroller, like an arduino. Up to 8 chips can be connected on a 2-wires i2c serial bus, which means a 

single arduino could drive up to 128 valves. 
6
 github.com/Lab513/ValveControllerNano 

https://github.com/Lab513/ValveControllerNano
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or sometimes complete loss of focus. A significant advantage of microfluidics in this situation 

is cell containment: there are parts of the device where the cells cannot grow.  

Since conventional focusing techniques were another source of uncertainty in the program, I 

took advantage of this property of microfluidics and combined it with image-based 

autofocussing techniques. I added crosses to the design of my devices that the cells could not 

grow into, and used those crosses as reference objects for autofocussing: At the beginning of 

time-lapse acquisition a z-stack of images of the crosses would be acquired, and at every time 

point it would be used as a reference for focusing the image. Since the appearance of the 

crosses did not change over time, the focus was extremely robust. By using an entire stack as 

reference instead of a single initial image of the cross, information hidden in the out-of-focus 

frames of the stack significantly increases the precision of the autofocus correction. This is 

one of the intuitions that led me to developing the segmentation algorithm described in 

chapter 4. 

 

Figure 3-6 Mother Machine and autofocussing. A) The final microfluidic device. B) Typical autofocusing curve. The image 

sharpness measured through a stack during an acquisition (in red) is compared to the curve acquired at the beginning of the 

experiment (in blue) and the new in-focus frame is inferred from it (green line). Using the entire stack for comparison is more 

precise than using a single image as reference. 

3.2 Image analysis 

Single cell segmentation is a notoriously difficult problem. Tracking is even worse, since 

segmentation errors tend to cause tracking errors that accumulate over time.  

It is especially critical in the context of external control, because control platforms require 

robust, precise, fully automated, and unsupervised cell segmentation and fluorescence 

sensing. It is one of the key challenges in external control theory of singe cells. In this 

platform we greatly simplified the problem by trapping cells in one-cell-wide chambers, 

where the mother cells can easily be tracked over extended periods of time. 

In chapter 4 of this document I will present a segmentation algorithm with high segmentation 

accuracy on our mother machine images, but also on a wide range of other type of 
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microfluidic devices or even different organisms. We have used it to perform robust real-time 

segmentation of our cells on this platform, but not on closed loop experiments. This algorithm 

has been designed in my last year of PhD and has evolved continuously during that time 

period. To keep data consistent between experiments as well as to avoid the delays that a full 

integration into the platform might cause, we decided not to use it in our control experiments. 

Prior to the development of this technique however, we developed several cell segmentation 

techniques. The first, most robust one, simply extracts the fluorescence from the end of the 

mother machine chamber. This simple method was used for online image analysis for 

fluorescence extraction because it would perform robustly throughout the experiment. Other 

methods were also developed for a posteriori image analysis. 

3.2.1 Robust algorithm for online measurement of fluorescence levels 

Cell segmentation is performed a posteriori because it usually requires tinkering and often 

trials-and-errors to work robustly on an entire dataset, and its performance can vary from one 

dataset to another to another. Most cell segmentation approaches still require a significant 

amount of manual corrections by the user to reach satisfactory tracking performance. Because 

of this, traditional segmentation approaches based on morphology or active contours could 

not be used on online experiments. A much simpler image analysis technique was used for the 

majority of the toggle switch analysis.  

In time-lapse acquisitions of the mother machine device, the mother cells at the end of the 

mother machine chambers stay in the same position in the image throughout the entire 

experiment. Bacteria reproduce by dividing in the middle, so some part of the image always 

included a significant portion of the mother cell. The algorithm used for online image analysis 

simply extracts the mean fluorescence from that part of the image.  

 

Figure 3-7 The simplest, and most robust method, relies on the shape of the mother machine device, where mother cells are 

trapped at the end of the growth chambers, to extract fluorescence from a pre-arranged ROI. Motion compensation 

algorithms are used to ensure that the same part of the chamber is sampled at every timepoint. 

At the beginning of the experiment, the user selects the chambers to observe throughout the 

experiment and draws a rectangular region of interest (ROI) of 20 by 10 pixels where the 

mother cell is. During the time-lapse acquisition, lateral drift is corrected, and the 

fluorescence in GFP and RFP is measured and sent to the control algorithm. 
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3.2.2 Image gradient and ellipsis fitting on mother machine images 

With the mother machine microfluidic device, the segmentation problem was greatly 

simplified, and the algorithm described above was sufficient to extract fluorescence levels for 

the mother cells, but could not identify daughter cells and extract their fluorescence. Here I 

describe a simple segmentation algorithm to identify single cells in the chambers and measure 

their fluorescence. 

Identifying growth chambers is a simple task, since they are well separated and of known size 

and shape. With the chambers identified, the complexity of segmenting cells in each chamber 

decreased significantly. The cells cannot grow side-by-side, which is a major problem for 

morphology or active contour methods (see Figure 3-10 and chapter 4), and also grow in a 

well-aligned strand of cells. One of the disadvantages of the narrow chambers though is the 

proximity of the cells borders with the chamber walls, which can interfere with morphology 

operations such as range filtering or with active contour methods. 

I developed a custom segmentation program that circumvents the problem of the PDMS walls 

and identifies the separations between cells robustly. To avoid dealing with the walls 

altogether, only the image gradient along the chambers axis was considered and not the 2D 

image gradient commonly used for edge detection. In combination with morphology 

operations and thresholding the identification of cells separation would be easily and robustly 

obtained throughout an entire image sequence. Ellipses were then fitted to the identified cell 

regions to identify elliptic ROIs for fluorescence extraction. Although ellipses are not the best 

model for describing the shape of Escherichia coli bacteria, the minimal number of their 

parameters allowed for fast and robust identification with known algorithm. More complex 

descriptions of the shape of the cells would have taken more time to fit and be more prone to 

errors. Moreover, it became rapidly apparent that even in the simplified setting of the mother 

machine, considerable user oversight was still necessary for the segmentation to run smoothly 

in online experiments. 

The main problem emerged from the fact that between experiments lighting and focusing 

conditions are never exactly the same. Even throughout an experiment and even with state-of-

the art autofocussing, focus might drift slightly over time. Aging cells also present visible 

differences from young cells. All those changes require fine-tuning of the few parameters of 

the algorithm before each experiment, with the hope that the images will not change too much 

throughout the experiment. So even though the algorithm I developed can segment an entire 

time-lapse automatically with almost no segmentation errors a posteriori, it could not be used 

for online segmentation since in this case the optimal segmentation parameters must be 

guessed prior to the experiment. 
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Figure 3-8 Description of the chamber segmentation algorithm (without the ellipsis fitting). The image would be pre-

processed by applying a Gaussian filter, and then a 1D gradient along the y axis would be applied. Simple morphological 

range filtering would highlight the separations between cells in the chamber, which could easily be identified through peaks 

detection. 

 

Figure 3-9 The ellipsis-fitting method: The boundaries between cells (in green) are identified (see previous figure), and 

ellipses are fitted to the image gradient to define a region of interest from which to extract single-cells fluorescence. 

3.2.3 Mathematical morphology attempts on single layers of cells 

During recent years great advances have been made in single-cell segmentation with recent 

developments in the field of machine learning. I discuss those results in chapter 4 of this 

thesis. However, during the first years of this PhD, single-cell segmentation of microscopy 

images was mostly built around background/foreground extraction with either image filtering 

techniques or mathematical morphology operations and then cell borders identification with 
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active contour or feature extraction techniques like the generalized Hough transform, 

sometimes in combination with a model of the expected cell shape and various cost 

minimization schemes. I tried most of the available cell segmentation programs I could find in 

the literature(Kamentsky et al. 2011; Chowdhury et al. 2013; Hilsenbeck et al. 2016; Q. Wang 

et al. 2010; Young et al. 2012; Delgado-Gonzalo & Unser 2013; Huth et al. 2011; Klein et al. 

2012; Hand et al. 2009). Unfortunately, although they can perform well for offline cell 

segmentation, and near perfectly with a user‟s supervision, none of them gave satisfactory 

results for online segmentation and tracking. 

The core problem with those methods is that they rely on a long sequence of minor operations 

that, though efficient and relatively robust when taken separately, amass into a complex 

segmentation procedure with a lot of independent tuning parameters. Each sequence in the 

whole operation is optimized by the user to give the best results for a reduced collection of 

images, and then the algorithm is applied to entire time-lapse sequences. Unfortunately the 

optimization of the parameters of a list of operations by the user is a very rigid approach, 

which doesn‟t generalize well to new situations and is especially detrimental to online 

segmentation. The thresholds, structuring elements sizes or other parameters will not be 

optimal for all images or even all cells in a single image, leading to segmentation 

inaccuracies, and accumulating tracking errors. The user/developer can try to set up rules for 

the program to adapt and tune its parameters to different situations, but very quickly the 

algorithm turns into an ever-increasing collection of exceptions and caveats and special cases, 

and it ends up being even less applicable to other experiments. See Figure 3-10 for an 

illustration of the problems faced by those algorithms. 

 

Figure 3-10 Mathematical morphology and active contour methods are often not robust enough for online segmentation. In 

this example, obtained with MAMLE(Chowdhury et al. 2013) but characteristic of other similar programs, 4 cells are not 

segmented properly. The details of the borders between cells are below the optical resolution of normal microscopes, and 

finding segmentation parameters that work for all cells in the image is often impossible, thus requiring user supervision. 
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3.3 Experiments automation 
Experiment automation, although not as obviously demanding as other technical components 

of the real time control platform, required a substantial amount of work. While numerous 

microscope management software exist, few allow interfacing with custom programs. We also 

wanted to be able to implement complex image acquisition routines, and this dictated our 

implementation of our own acquisition engine from low-level microscope management 

function. Following the same logic, we developed the other parts in the control loop in a 

modular structure: Each part of the algorithm would consist of objects with standardized 

inputs and outputs to make the replacement of any algorithm in the loop seamless, such as a 

switch between control strategies (e.g. PI, Bang-bang) or between image analysis algorithms. 

To make the entire experimental automation robust we also divided the automation into four 

main independent blocks: 1) Microscope management, 2) image analysis, 3) control 

algorithms, and 4) microfluidic actuator supervision. These four blocks were implemented in 

Matlab and run separately in four different Matlab sessions that would communicate through 

TCP/IP. Beyond making the software more robust because the four blocks work 

independently and asynchronously, it also facilitates parallelization or even distribution of the 

entire control feedback loop over different machines: i.e. to run the image analysis or control 

strategy block on a separate machine for computational reasons. 

All traditional microscopy brands implement their own in-house version of microscopy 

platform control software. However, our application requires some interfacing with the 

microscope software, and the microscopy brands develop closed, proprietary software that 

will not interface with all other brands. To access this level of flexibility we used the open-

source microscope management suite Micromanager (Edelstein et al. 2014). Micromanager is 

an open-source, cross-platform desktop application, to control a wide variety of motorized 

microscopes, scientific cameras, stages, illuminators, and other microscope accessories. It 

supports a wide range of microscopy hardware and can also be interfaced with custom 

hardware, with native support for Arduino-based devices. Although it features a graphical 

user interface and scripting abilities, the standalone version of Micromanager was not flexible 

enough for our usage and could not easily be interfaced with our Matlab analysis functions. 

But a convenient feature of the program is the possibility to access the Core API of 

Micromanager, as well as some of its graphical functions, through Matlab. We developed a 

functional Graphical User Interface to control our microscope via Matlab, and at the same 

time implemented an advanced time-lapse acquisition engine, with easy interfacing with our 

custom scripts. It gave us the liberty to call our homemade Matlab scripts in the middle of 

microscopy acquisitions, and to send information to other Matlab sessions easily. We also 

implemented custom scripts for autofocussing or lateral drift stabilization. 

The other three modules of experiment automation are mainly servers that communicate with 

each other to close the feedback loop. Each one of them would instantiate object 

implementations of the image analysis, control and actuators supervision algorithms and 

forward it the data received. The inputs and outputs of the object methods are standardized so 

that different algorithms can be used without requiring any re-writing of the main structure of 
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the code. For example, the image analysis algorithm described in chapter 2 was integrated to 

the platform with little effort once the algorithm implementation was standardized. 

Although still a work in progress, this general code architecture and corresponding user 

interfaces are proposed as a generic implementation of any gene expression control platform, 

in which different core algorithms can be used interchangeably on a variety of hardware 

equipment. All source code as well as documentation can be found on our github page for the 

project
7
. 

With the platform assembled and automated, the cell chassis constructed and toggle switch 

circuits assembled, I could start to acquire characterization data and, with the knowledge 

gathered from it, develop a mathematical model of my system to simulate control in silico and 

study its response to dynamic perturbations. 

                                                 

7
 In progress 
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Figure 3-11 Code structure of the control platform. The main advantage of this modular structure is that different parts of the 

platform can be not only parallelized but also easily distributed over different machines if necessary. 
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4 Modeling 

To understand the dynamics of our system and analyze the results of the control experiments 

on genetic toggle switches, we developed an in silico model of toggle switch behavior. The 

mathematical model of the system was fitted to experimental data and used to study 

theoretically the controllability of the toggle switch with various control strategies. It was then 

used to analyze the behavior of the toggle switch after surprising control experiments results 

and helped us understand its response to dynamic perturbations. We developed both 

deterministic and stochastic simulation approaches to study the effects of noisy gene 

expression on control performance. 

Although models of the toggle switch exist in the literature, none of them have been fitted to 

data, except for the one described in Wu et al. (2013). But, their LacI-TetR toggle switch was 

implemented in Saccharomyces cerevisiae, and based on a completely different family of 

promoters. I used their study of the genetic toggle switch as a starting point for developing a 

model of the toggle switch. The model is presented here in its final version. 

The reaction network of the genetic toggle switch and our modeling choices are described in 

the following paragraphs. Any gene regulatory network cannot be entirely independent from 

its host cell, and of course some of the modeling choices are going to appear as over-

simplifications of the intricate network surrounding even this simple 2-gene synthetic circuit. 

Nonetheless, we believe they are sufficient to understand the main dynamics of the toggle 

switch and study its response to dynamic perturbations and control. We could have reduced 

the complexity of our model even further, as in early studies of the toggle switch (Gardner et 

al. 2000; Cherry & Adler 2000), but we are especially interested in the dynamics of our 

system, and those early models do not account for the inertial nature of the evolution of our 

toggle switch state, which is a key element in the evaluation of the performance of the 

different possible control approaches. 

4.1 The reaction network 
In this section I present a model of the pseudo-reactions describing the functioning of the 

genetic toggle switch that was used as a basis for developing our model. 

4.1.1 LacI-DNA and LacI-IPTG interactions 

The lac repressor LacI forms a tetramer of four identical subunits that normally binds tightly 

to the promoter. However, the repressor can also be only partially bound and not fully inhibit 

the expression of the genes downstream of the promoter. When IPTG binds to LacI, the 

protein changes shape and no longer can bind to the DNA. A detailed description of the DNA-

LacI-IPTG interactions can be found in (Lewis et al. 1996). A list of the corresponding 

interactions is then
8
: 

                                                 

8
 Dimer versions of the lac repressor can also bind the operator site on the promoter and can also be bound by 

IPTG. However, for simplicity here we consider only the binding of the tetrameric version. The binding events 

linked to the other versions are taken into account (among other things) later on in the associated Hill 
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With         and         describing the dimeric and tetrameric versions of LacI 

respectively, while         and      represent the repressed states of the LacI tetramer and 

lac promoter respectively.  

4.1.2 TetR-DNA and TetR-aTC interactions 

In a similar fashion, TetR dimers assemble to bind to DNA. Although they do not twist DNA 

into a loop, the TetR family of repressors strongly binds to DNA through a Helix-Turn-Helix 

motif. Access to DNA is thus blocked for RNA polymerase binding. However, the TetR 

protein features a cavity in which tetracyclines can bind. In the presence of tetracyclines the 

TetR protein changes conformation and can no longer bind DNA. It is not clear whether two 

dimers can bind a tet operator. For a detailed description of those interactions see (Ramos et 

al. 2005). The list of interactions is
9
: 

                 

                     

                      

With         describing the dimeric state of TetR.         and      representing the 

repressed states of the TetR dimer and tet promoter respectively.  

4.1.3 Transcription and translation 

Transcription happens downstream of the unrepressed promoters, and proteins are then 

translated from the transcribed mRNAs. We do not consider here leaky expression connected 

to partial binding of the repressor to the toggle switch and consider that a bound 

dimeric/tetrameric repressor completely represses the expression of the promoter. 

                    

                    

                         

                         
                                                                                                                                                         

coefficients, which are not fixed to 4 as a strict mechanistic interpretation would have it, and are given a wide 

fitting range instead. 
9
 Again, monomer binding to DNA and aTC is not represented. Monomer interaction as well as the potential 

double binding of TetR dimers to DNA is taken into account in the non-preset hill coefficient in the fitting 

section. 
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4.1.4 Dilution and degradation 

Finally we model the decrease in protein and mRNA levels caused by growth dilution and 

degradation. In the case of protein dilution we do not model cell volume specifically, we 

model it instead as a normal degradation reaction for simplicity: 

              

              

          

          

With the symbol   representing nothing, or null. 

4.2 ODE model 

To reduce the dimensionality of our model and to reduce the number of parameters involved 

we model the binding-unbinding event using Hill functions. With this assumption, the ODE 

model was narrowed down to a 5-dimensional set of coupled ODEs: 

Transcription 
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The transcription rate consists in two main terms: The “basal rate”     
  describing leaky 

expression from completely repressed promoters, and the modulated expression rate 

describing the expression from the proportion of unrepressed promoters consisting in two 

nested Hill functions. The rate of unrepressed transcription is represented by the     
  

parameters, and the   and   terms represent respectively the half occupation level and Hill 

coefficient for each of the binding-unbinding mechanisms. This structure causes the rate of 

transcription of each mRNA species to be a decreasing function of the opposing free protein, 

and the fraction of the free protein is also a decreasing Hill function of the associated inducer. 

The degradation of the two mRNAs is a simple linear function. The LacI and TetR variables 

in the model represent all forms of the repressors, monomers, dimers and tetramers, with and 

without bound inducers.  

Translation 
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Here the degradation of LacI and TetR is a linear function of the protein. But because it is 

generally accepted that decrease in protein concentration is mostly due to dilution (Larance et 

al. 2013), the degradation rate is the same for both proteins. 

IPTG delay 

      

  
                   

         

We observed significant delay in the action of IPTG molecules, which we connected to the 

removal of the LacY permease that transported it through the membrane (see section 2.1). We 

added a first order equation for a simplified model of diffusion through the membrane with a 

constant diffusion term      . To keep the model simple, diffusion time of aTC through the 

membrane was considered negligible. The      and       variables are input signals 

provided by the experimenter or the control algorithm. 

Matlab code implementing those equations can be found on our modeling github repository
10

. 

Because the mRNA dynamics and the protein dynamics evolve different timescales, we used 

a stiff ODE solver (ode23s in Matlab) to integrate the equations in between changes in the 

driving      and       variables. In in silico control experiements, the control algorithm is 

ran outside of the model evaluation algorithm for the sake of implementation simplicity and 

modularity. Therefore our general implementation considers the ODE set to be a switched 

nonlinear system and features a custom solver for such systems built around the ode23s 

solver
11

. 

4.3 Gillespie’s stochastic simulation algorithm 
Because noise can greatly affect the quality of control, I also developed a stochastic model 

based on the pseudo-reactions described in section 4.1
12

. This interpretation is based on a 

continuous-time Markov chain model of the process and can be solved using Gillespie‟s 

Stochastic Simulation Algorithm (SSA)(Gillespie 1977). The Gillespie algorithm is an exact 

simulation of the stochastic behavior of a process. However, because it was designed to 

simulate random encounters between relevant molecules due to Brownian motion, it requires 

simulating every single reaction between two or less molecules/complexes. In our case, we 

                                                 

10
 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_derivative_sim.m 

11
 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/generate_data.m 

12
 Because the ODEs of the deterministic model and the propensities of this model are based on the same 

network of pseudo-reactions, and because they use the same rates and assumptions, I could use the same 

parameter values in both approaches. 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_derivative_sim.m
https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/generate_data.m


 II – Observing and actuating on trapped bacterial cells  

81 

 

kept the assumption on the Hill functions done in the ODE model of the reactions network for 

two reasons. Firstly, parameters were fitted to the Hill-based ODE model, and it would not 

have been possible to deconstruct the model back into equations where all binding and 

unbinding events are simulated. Even if a deconstructed model had been fitted to the 

characterization data, some of the parameters could not have been identified because of 

current limits on protein data resolution, and to my knowledge state-of-the-art in vivo proteins 

levels measurement is still a long way from reaching the necessary precision level. The 

second reason is that binding-unbinding events happen orders of magnitude more often than 

other events, which led us to the Hill functions in the first place, and simulating those events 

with Gillespie‟s SSA would severely increase computational time. Applying this 

approximation to the SSA in the case of chemical kinetic systems with disparate rates is a 

common workaround to this issue, and in most cases does not have a major impact on the 

simulated levels of noise (Rao & Arkin 2003). The pseudo-reactions modeled by our SSA 

implementation and their propensities are described in Table 4.3-1. The implementation of the 

stochastic model can be found in our github repository
13
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13
 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_props_stoich.m 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_props_stoich.m
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Table 4.3-1  Pseudo-reactions and propensities used in the Stochastic Simulation Algorithm 

IPTG diffusion was considered deterministic and the IPTG concentration dynamics were 

integrated outside of the SSA function through Matlab‟s ode23s solver. 

4.4 Parameter identification 
To obtain calibration data, we performed 6 experiments differing by the initial state of the cell 

population and by the temporal profiles of the inducers and probing in various ways the 

dynamics of the system (see section 3.1 of chapter 3). Model fitting was made using the 

global optimization tool CMA-ES (Hansen & Ostermeier 1996). We used the measured 

fluorescence values for RFP and GFP directly as proxies for measured molecule numbers per 

cell, which means that the transcription, translation, degradation and dilution rates as well as 

Hill half occupation levels are fitted to fluorescence levels. As a first approximation, we 

assume the measured fluorescence levels per cell to be proportional to molecule numbers. The 

objective for CMA-ES was to minimize the mean squared relative deviations between model 

predictions and averaged measured fluorescence.  

The optimization was repeated 8 times. Despite the use of a simple model not all parameters 

were fully constrained by the data, however all estimations produced similar dynamics and 

similar equilibrium points could be inferred from the different sets of parameters. We picked 

the set of parameter that produced the unstable equilibrium point with the highest levels of 

LacI and TetR to maximize the signal-to-noise ratio during our control experiments.  

The final parameter values obtained were: 

Transcription 

rates 

  
  1.607 

m
o
lec./m

in
 

 

Hill 

coefficients 

      2.093 

 

  
  1.009       2.000 

  
  0.0238      2.000 

  
  0.1715       2.000 

Translation 

rates 

  
  7.268 

Half 

occupation 

levels 

      123.0 molec. 

 

  
  1.906       226.8 molec. 

Degradation 

rates 

       0.1477      38.9 ng/mL 

       0.1386       0.300 mM 

Dilution rate   0.0199 
Table 4.4-1 Parameter values after CMA-ES identification after fitting the model to characterization data. 
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4.5 Controllers 
The main controllers used in this study are fairly simple although we did use model predictive 

control algorithms in early theoretical studies of toggle switch controllability. We used the 

same algorithms for in vivo control and in silico simulations.  

4.5.1 Bang-bang control 

The so-called bang-bang controller, also known as a hysteresis controller, is a feedback 

controller that switches abruptly between two states. Although bang–bang controllers can 

produce optimal control strategies in some cases, they are often implemented because of 

simplicity or convenience. The input delivery technique can also restrict actuation to a binary 

all-or-nothing choice in some microfluidic devices. However in our case, the use of a bang-

bang controller was dictated by early theoretical results that indicated that PI controllers with 

a strong proportional term would perform better on a population of cells (see chapter 3). This 

incited us to try the extreme case of bang-bang control: 

      {
    

                      

    
                     

 ,   and          {
     

                      

     
                      

With       and       being the setpoint objectives chosen for control, and          
    and 

         
    as parameters indicating the minimum and maximum values reachable by the input 

device (Here the maximally closed/open states of the valves). 

Code implementation of this control algorithm that was used both in silico and on real control 

experiments can be found in our github repository
14

. 

4.5.2 Proportional-integral control 

A Proportional-Integral (PI) controller continuously calculates an error value that is the 

difference between a desired setpoint and the measured level of fluorescence. The controller 

attempts to minimize the error over time by adjusting the level of inducer. But contrary to the 

bang-bang controller, the PI controller does not completely open or close the valves, but it can 

take advantage of the pulse-width modulation implemented with the 3-way valves (see section 

3.1.6) and provide intermediary concentrations of inducers to the cells. It also takes into 

account past errors in an integral term to correct offset errors over time. 
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 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/BBcontrollerNew.m 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/BBcontrollerNew.m
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With           {
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With the   
   

 and   
   

as the proportional and integral parameters respectively,          
  

the reference levels of aTC or IPTG obtained experimentally (20 ng/mL of aTC and 0.25 mM 

of IPTG for all toggle switch control experiments), and    the time delay before the integral 

term is applied. The last element, the time delay, was added later in the experimental process 

to avoid overshoot effects caused by the error just after the objective is applied before the 

system can be in the vicinity of the objective, which typically takes about two hours. 

Code implementing this control algorithm and that was used both in silico and on real control 

experiments can be found in our github repository
15

. 

5 Conclusion 

In this chapter we presented the materials and methods used in this thesis to control a genetic 

toggle switch. In the first part of this chapter, the biological side of the problem was 

presented, with details on possible implementation choices that did not work to expose the 

limits of the approach as well as some of the possible ways of improvements over the current 

implementation. For example, while the fusion protein design was not adapted to our 

problem, in other problems it should be possible to use this type of design for sensing the 

level of a protein of interest. Another important contribution is the development of a chassis 

strain for IPTG- and aTC- based induction that can be used for other control applications. To 

the best of my knowledge, no bacterial strain was ever optimized for simultaneous induction 

of the lac and tet systems. Finally, as a general remark on biological systems development, 

the construction of a chassis and circuit is a time-consuming process in the workflow of 

external cell control that should not be overlooked when undertaking such a task. 

In the second part of the chapter, hardware and software choices are discussed. In particular, a 

3-way pulse-width-modulation mixing apparatus is described in what is, to the best of my 

knowledge, the first attempt at double chemical induction in microfluidic devices. Variants of 

the mother-machine microfluidic device are also presented to facilitate long-term acquisition 

and image analysis. This setup allows us to robustly extract single-cell fluorescence data and 

control single-cells over extended periods of time. The efforts put into the development, 

automation and integration of the different parts of the platform can be re-invested in single 

cell control of other genetic circuits, with the possibility to rapidly modify different parts of 

the platform thanks to its modular nature. One important aspect of the methodology of 

                                                 

15
 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/PIcontrollerNew.m 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/PIcontrollerNew.m
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external control of gene expression that will make reproducibility possible is opening the 

design of different elements of the platform, and I have already released parts of the designs 

presented here, and will release the rest of the platform under open-source and open-hardware 

licenses. 

In the third part of this chapter, we discussed the elaboration of an ODE model and an SSA 

model of the genetic toggle switch to perform deterministic and stochastic simulations of the 

genetic toggle switch. In the next chapter we use this model to evaluate the possibility to 

control the toggle switch with different control strategies. Throughout the process of 

characterization we observed delays in the system that we incorporated into the model. We 

also discuss fitting of the model to characterization data, and our choices in implementation of 

the control strategies. A number of improvements could be added to the control strategies, as 

the two control strategies presented here have been studied extensively and a number of 

improvements on those techniques as well as other techniques have been presented in the 

literature. 

One of the main domains of application of this in silico feedback platform would be 

automated characterization of genetic circuits in bacteria, synthetic or endogenous. The 

control algorithm and the induction techniques presented here are generic enough that the 

method could be applied to various genetic networks with minor modifications.  
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1 Introduction 

With the 2-inputs-2-outputs feedback platform presented in the previous chapter, we 

investigated the possibility of controlling the genetic toggle switch. The toggle switch system 

is a fundamental element in numerous natural and synthetic gene regulation networks. In this 

chapter I am going to present dynamical control attempts, and successes, at stabilizing single 

toggle-switch-bearing cells in the unstable area of this double-negative feedback system. I 

start by presenting the characterization experiments used for fitting the model of our system, 

and then present a study of the stability of the fitted model for different values of the inducer 

concentrations. The main in silico and in vivo results of this thesis are then presented, 

demonstrating the possibility to control the bistable toggle switch in real-time in the vicinity 

of the unstable point. Finally, surprising results for population control of toggle-switch-

bearing cells are analyzed and a new regime of stability for the genetic toggle switch is 

demonstrated. 

2 Characterization experiments 

In order to gather some knowledge on the system as well as identify parameters for the toggle 

switch model, the selected toggle switch circuit (see section 1 of chapter 2) was submitted to a 

series of characterization experiments. In the first series of experiments the cells were 

submitted to long-term exposure to either of the two inducers IPTG or aTC to observe basic 

dynamic switch responses. A surprising result contrasting with the overnight experiments in 

batch cultures was that the toggle switch, in absence of inducers, would not remain in its 

LacI-RFP-dominant state, and would instead drift towards a TetR-GFP-dominant state, even 

when switched in the opposite state initially. Less surprisingly, this TetR-GFP-dominant state 

would produce a lower level of green fluorescence than fully activated. Although models 

predict that this monostable behavior in the absence of inducers is possible, it is relatively 

surprising that microfluidics experiments provoke a behavior that differs from the batch 

culture ones. It should be noted however that cells in mother machine devices are submitted to 

a constant flow of nutrients, which both washes the inducers away continuously and 

efficiently after they are removed, and puts the cells in a continuous exponential growth phase 

since they never lack nutrients. Microfluidic device culture conditions and batch culture 

conditions differ significantly. 

Theory suggests that, when a toggle switch can be switched between its too stable states, there 

exists a concentration of base levels of aTC and IPTG that should transform the landscape of 

the toggle switch into a so-called “balanced” landscape where the system is bistable and the 

basins of attraction are symmetrically separated. We empirically obtained concentrations of 

aTC and IPTG, subsequently called reference concentrations, for which both states were 

stable in microfluidic experiments. If, when „releasing‟ the system, we switched to those 

reference concentrations of aTC and IPTG instead of no inducers, the system would stay in 

whichever state (LacI-RFP-high/TetR-GFP-low or LacI-RFP-low/TetR-GFP-high) it was 

before the release. These concentrations for which our cells are bistable are aTC = 20 ng/mL 

and IPTG = 0.25 mM. 
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Figure 2-1 Switching experiment. The cells, initially in the TetR-GFP-high state, are submitted to 50ng/mL of aTc for 9 

hours and then switched to 0.5mM of IPTG for ~8 hours. A) The cells switch between an RFP-high/GFP-low and an RFP-

low/GFP-high state over time. B) The measured fluorescence levels for the two fluorescent proteins are represented over 

time. Thin lines represent individual cell behaviors, and the thicker lines represent the average fluorescence of the population. 

Below the fluorescence curves, the mixed concentrations of aTc and IPTG over time are shown. C) The ratio of the two 

fluorescence levels is shown. Although this representation removes some of the information it shows the correspondence 

between the RFP and GFP levels of individual cells better than the previous panel. D) The trajectory of individual cells 

through the protein space [TetR-GFP, LacI-RFP] are shown in gray. The mean trajectory of the population is color-coded in 

time from blue to red. The color bar below the graph indicates the correspondence between time and color. Taken together, 

all those representations help better understand the complex data resulting from our single-cell timelapse experiments. 

3 Fitted model 

The model described in section 3 of chapter 2 was fitted to the characterization data presented 

in Figure 3-1. From this dynamical model we could study the behavior of the toggle switch 

under a feedback loop, and also its behavior under static or dynamic inducer stimulations, but 

we also needed the model to localize the unstable equilibrium in the protein space and use 

these levels as a reference for our setpoint control objectives. 

3.1 Fitting results 
The fitting was performed using CMA-ES on a set of characterization experiments presented 

in Figure 3-1. To test how the fit of the parameters was constrained by the data, we ran 

several instances of CMA-ES in parallel on the same dataset and obtained different fitted 

parameters sets. Ideally instances of CMA-ES would converge to the same parameter values. 

Although a similar fit to the data was obtained with all parameter sets, some parameters had 
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significantly different values in the different parameter sets. The estimations were not 

completely constrained by the data, which is a common issue in parameter fitting for 

biochemical models (Ashyraliyev et al. 2009; Villaverde & Banga 2013). However the 

localization of the equilibrium points, stable and unstable, was well constrained by the data 

and, for all parameters sets, the unstable equilibrium points in reference conditions were close 

to each other. As a reference for our control experiments, we used the unstable equilibrium 

point that had the highest level of both proteins at LacI-RFP   750 and TetR-GFP   320. We 

made this choice because the levels of the estimated unstable states are relatively low 

compared to their dynamic range, and at those levels the signal gets noisy. 

 

Figure 3-1 Characterization experiments that were used to fit the toggle switch model. The concentration profiles of each 

inducer on the left produced the experimental data on the right. The thin, light red/green curves represent the individual cell 

trajectories. The thick red/green curves are the population averages to which the model is fitted. The thick, dark red/green 

curves represent the deterministic simulation of the response to the inducer inputs from the fitted model. 

Although the predictions extracted from the fitted model presented here are satisfactory, as 

illustrated in the following sections and in Figure 3-1, they should be interpreted mostly 

qualitatively for several reasons: first of all, the study of noise in genetic expression tells us 

that a significant part of it is caused by so-called extrinsic sources of noise (Raser & O‟Shea 

2005; Elowitz et al. 2002). In other terms, cell-to-cell variability causes significant variations 

in gene expression levels, and each cell in the experiment might differ significantly in its 
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behavior from the others, and from any predicted behavior. Our stochastic simulations are 

based on the Gillespie algorithm (see chapter 2), which can produce an exact simulation of 

noise in biochemical reactions, but is limited to intrinsic noise. The study of noise and cell-to-

cell variability in gene expression is a well-studied problem but has remained largely limited 

to simulations of stochasticity in gene expression. Only recently were models fitted to high-

quality single-cell datasets to represent the variability of gene expression between cells as a 

consequence of phenotypic differences in the population (Llamosi et al. 2016). Although, for 

the purpose of our study the Gillespie-based simulation framework allowed us to test the 

behavior of our control algorithms when exposed to noisy gene expression, it does not 

accurately simulate the extrinsic variability of gene expression in a population of different 

cells. With the quality of the data acquired for this study, an interesting development of our 

modeling approach would be to apply the aforementioned population models, known as 

mixed-effect models, to the study of noise and cell-to-cell variability in a populations of 

toggle-switch-bearing bacteria. 

3.2 State space analysis  
To better understand the behavior of our toggle switch and be able to intuitively investigate its 

response to external stimuli, we computed the vector field, nullclines and equilibrium points 

of our ODE system. The graphical representation helped us visualize the underlying rules that 

govern the dynamics of our system. 

The vector field consists of computing the derivative of our system in its state space (or, in 

our case, the protein space). It is then typically represented by a so-called “quiver” plot in 

which arrows represent the gradient vectors for each of the evaluated elements of the state 

space. Because it is impossible to represent the vector field in the five dimensions that counts 

our ODE model, and because we are primarily interested in the evolution of the protein level, 

we did a quasi-steady-state approximation on the mRNA and IPTG levels and used this 

reduced model to compute the vector field presented in Figure 3-2. The quasi-steady-state 

approximation of our system can be performed because of the timescale separation of the 

transcription and translation processes: The time constants for mRNA expression differ from 

the protein expression time constants by at least one order of magnitude. The pahse portrait is 

a powerful representation to illustrate key concepts in the dynamics of the genetic toggle 

switch. In a similar spirit we also represented the nullclines of the toggle switch, which are the 

curves representing the steady state values for each of the two proteins as a function of other 

variables of the system. Again, to be able to represent the nullclines in 2 dimensions, the 

additional approximation of quasi-steady-state  mRNA levels was made, i.e. the represented 

curves are solutions to the ODE model such that: 
      

  
   and  

          

  
        , for 

all values of TetR, and 
      

  
   and  

          

  
        , for all values of LacI. 
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Figure 3-2 State-space representation of the dynamics of the toggle switch from the fitted model for the reference 

concentrations of inducers. The vector field is represented in gray. The vector field is directed towards the stable equilibrium 

points, and we can see the “saddle” topology around the unstable equilibrium point. The nullclines for the LacI-RFP and 

TetR-GFP proteins are represented by red and green lines, respectively. The two stable points are presented by disks of the 

appropriate color. The unstable point is represented by an orange star. The unstable equilibrium point is located at LacI-RFP 

= 768 and TetR-GFP = 320. The LacI-RFP-high and TetR-GFP-high equilibrium states were estimated at [2057,159] and 

[221,997] respectively. 

 

Figure 3-3 State space representation for different values of aTC and IPTG. High concentrations of either of the two inducers 

makes the system monostable. 

This representation helped us better understand how the landscape is modified by changes in 

the concentrations of IPTG or aTC (see Figure 3-3). Although, as we demonstrate in the next 

section, an entire part of the state space cannot be made stable with static concentrations of 

inducers, it is possible to drive the system between the two stable states, and make it pass in 

the vicinity of the unstable point as shown in Figure 3-4. This result suggests that it should at 

least be possible with external control to maintain the system in the vicinity of the unstable 

point. 
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Figure 3-4 Simulated trajectory of a toggle switch. Our toggle switch model is subjected to 3 different environments: First, 

starting with zero levels of the mRNAs and proteins, the reference concentrations of inducers (20 ng/mL of aTC and 0.25 

mM of IPTG) are applied for 12 hours. Then aTC is removed and 0.45 mM of IPTG are applied to the toggle switch for 4 

hours. Finally, inducers are switched back to their reference concentrations for 24 hours. A) The LacI-RFP and TetR-GFP 

responses are plotted against time. The system converges towards the LacI-RFP-high stable state for the first 12 hours, and is 

then driven towards the TetR-GFP stable state from 12h to 16h. Finally the toggle switch falls in the opposite basin of 

attraction, TetR-GFP-high, when the reference concentrations of inducers are re-established. B-D) State space representation 

of the system‟s dynamics during the 3 different periods of the simulation. The blue dots represent the state of the simulated 

switch in the LacI-TetR space every ten minutes. Light blue dots represent the trajectory from past periods and darker blue 

dots represent the trajectory for the current period. An interesting observation, that is primarily visible in panel D, is that the 

trajectory does not follow exactly the orientation of the vector field. At the beginning of the 3rd period, right after the switch 

back to balanced concentrations, the systems trajectory follows a trajectory that is closer to the dynamics illustrated the 

vector field in panel C. As mentioned in the text, this is because the quasi-steady state approximation that was used to draw 

the vector field in 2D hides some of the delays and inertias inherent to our 5-dimensional model, especially because of the 

large IPTG delay.  

3.3 Stable states and bifurcations 
The study of equilibrium points in multistable systems is a domain of research in itself. In this 

section, in an approach similar to bifurcation analysis, we analyze the stability of our system 

for different values of IPTG and aTC in the inputs space. Bifurcation analysis aims at 

identifying key properties of dynamical systems, such as attractors, limit cycles or saddle 

points, in systems of ordinary differential equations under parameter variation. The domains 

of application are as diverse as fluid mechanics, electronics, chemistry or theoretical ecology 

(Strogatz 1994) as this approach is part of dynamical systems theory. In particular stable 
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points emerge or disappear in the deformable landscape of multistable genetic circuits when 

environmental conditions change. The emergence of multistability throughout the evolution 

of the cell is a core concept in cellular decision making, as famously illustrated by 

Waddington‟s epigenetic landscape (Waddington 1957). The toggle switch, a fundamental 

topology for decision making, is an interesting example in this regard (Sekine et al. 2011; Wu 

et al. 2013). To better understand the dynamics of the toggle switch under changing 

conditions, we used our model to perform an analysis of its stability similar to bifurcation 

analysis. 

From the model, we could infer the equilibrium points for any combination of IPTG and aTC. 

By applying various concentrations of inducers we could identify an entire region of the phase  

 

Figure 3-5 Stable and unstable equilibrium points for various concentrations of aTC and IPTG between 0 and 500 ng/mL, and 

0 and 5 mM, respectively. The blue dots represent stable equilibrium points for inducer concentrations that make the system 

monostable. Each one of those blue points is the unique possible steady state of the deterministic system. The red and green 

dots represent stable equilibrium points for inducer concentrations that make the system bistable. Red dots are the LacI-RFP-

high stable states and green dots are the TetR-GFP-high states. The orange dots are the unstable equilibrium points for 

inducer concentrations that make the system bistable. The area approximately delimited by these dots will be referred to as 

the unstable area, and no static concentration of inducers can stabilize the system in this area. Driving and maintaining the 

system in the unstable area requires dynamic control. 

space in which no stable equilibrium exist, meaning that the cells could not be maintained 

with any static concentration of inducers. With a slight abuse of terminology, we call this 

region of the LacI-TetR space the unstable area. This result demonstrates the necessity of 

dynamic stimulations to maintain the toggle switch anywhere in its unstable area. 

As explained in section 2, we determined experimentally what we call reference 

concentrations, i.e. concentrations that make the toggle switch bistable, that were then used 
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for the PI control algorithms (see parameter          
  in section 4.3.2 of chapter 2). However 

in Figure 3-6A we present all the possible levels of aTC and IPTG concentrations that could 

make the toggle switch bistable. An interesting combination of Figure 3-5 and Figure 3-6A is 

Figure 3-6C where the TetR to LacI ratio of equilibrium points vs inducer levels is presented. 

The surface created by all the equilibrium points is similar to a cusp catastrophe curve 

(Strogatz 1994). The hysteresis behavior that is typically associated with toggle switches can 

be seen as a trajectory over this landscape. Although catastrophe theory has been applied early 

on to biological problems (Poston & Stewart 1979), to my knowledge the parallel between the 

toggle switch and catastrophe theory has not been drawn before. 
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Figure 3-6 Bifurcation analysis. A) The orange region represents values of the inducer concentrations for which the system is 

bistable. The black cross represents the values of the “reference” concentrations of inducers determined experimentally as 

IPTG = 0.25 mM and aTC =20 ng/mL. The segment going from point a (IPTG = 0, aTC = 45ng/mL) to point i (IPTG = 

0.45mM, aTC = 0) and that passes through the reference concentrations is represented in black. B) The base-10 logarithm of 

the LacI/TetR ratio of the stable and unstable equilibrium points of the system are represented for different concentrations of 

IPTG and aTC along the line between point a and point i. The monostable points are represented in blue. The LacI-high and 

TetR-high stable points of the bistable region are represented in red and green respectively. The unstable equilibrium points 

of the bistable region are represented in orange. In the bistable region, the steady state of a toggle switch system depends on 

its history: If the system goes from point a to point i, it will stay in the LacI-RFP-high basin of attraction until it reaches a 

concentration of approximately 15ng/mL of aTC and 0.3mM of IPTG and switches to the TetR-GFP-high basin. In the other 

direction, the system will stay in the TetR-GFP-high basin until it reaches about 25ng/mL of aTC and 0.20mM of IPTG and 

switches. This hysteresis behavior is typical of toggle switches. The black crosses represent the stable and unstable states for 

the balanced concentrations of inducers. C) Different views of the cusp-catastrophe curve. The base-10 logarithm of the 

LacI/TetR ratio of the stable and unstable points of the system is represented for different concentrations of IPTG and aTC in 

their concentrations ranges of 0-1mM and 0-100ng/mL respectively. The hysteresis line from parts A and B of this figure is 

represented in black. The black crosses represent the stable states for the reference concentrations of inducers (unstable state 

not represented). 

4 Single-cell toggle switch control 

With the knowledge acquired from the characterization experiments and the analysis of the 

fitted model, we focused on single-cell control of a toggle switch. While our ultimate goal 

was to control cells in vivo, we started by investigating different control approaches in silico 

and then used the algorithms on the experimental platform. 

Our objective is to maintain cells bearing a toggle switch system in the unstable area. For this 

reason the concentrations for the unstable equilibrium point in the reference conditions (LacI-
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RFP = 750 and TetR-GFP = 350)
1
 were used as the objective for setpoint control experiments 

described in this section. As discussed earlier, this is analogue to the benchmark control 

problem of the inverted pendulum, in which the objective is to maintain a pendulum at its 

unstable equilibrium point. As a benchmark problem, a large number of control frameworks 

have been tested on this system, and in a similar spirit we present the genetic toggle switch as 

a model of a multistable gene regulation network for evaluating the potential of external 

control platforms for gene expression. In this section we use two feedback control 

frameworks to address this control problem: proportional-integral control and bang-bang 

control. 

We started by studying the feasibility of controlling the switch in silico using deterministic or 

stochastic models to simulate the effects on populations of cells. After the in silico study we 

performed the control experiments on single cells bearing the toggle switch. 

4.1 PI control 
Because of their simplicity, we considered using two independent proportional-integral (PI) 

controllers to drive each protein to its target level. In this framework, the LacI-RFP controller 

modulates the aTC concentration and hence drives the pTet promoter activity, and the TetR-

GFP controller modulates the IPTG concentration (see Figure 4-1). Two aspects make this 

problem non-trivial.  First, inducers alleviate the repression of their corresponding protein on 

gene expression. Therefore, when a protein is in low concentration modulating the level of the 

inducer has very little impact. Second, because of the structure of the network the two 

controllers, acting independently, often compete against each other. Indeed, by maintaining 

the level of their controlled protein to relatively low levels, they decrease the effectiveness of 

the other controller‟s actions.  

 

Figure 4-1 The control approach: Two independent controllers are used to drive each branch. 

                                                 
1
 As described in section 2, the estimated levels for the unstable equilibrium point are actually slightly different, 

with LacI-RFP = 768 and TetR-GFP = 320, but the decision for the value of the control setpoint was based on an 

earlier estimation of those levels. 



 III – Toggle switch stabilization   

104 

 

4.1.1 In silico control 

We implemented two Proportional-Integral controllers presented in section 4.5 of chapter 2 on 

each branch of the simulated toggle switch. The toggle switch was simulated deterministically 

and stochastically. We controlled a stochastically simulated toggle switch, but also simulated 

the response of other cells submitted to the same environment to investigate their response. 

The non-controlled cells eventually drift away from the cell being controlled and fall back 

into one of the basins of attraction of the stable equilibrium states. 

 

Figure 4-2 PI control results for the stochastic model. The left panel represents the simulation results for the levels of each 

protein, and the right panel represents the same results but as a ratio between the two fluorescence levels. The thicker, darker 

curves represent the controlled cell and the thinner lines represent other simulated cells submitted to the same inputs. The 

straight lines represent the control setpoint . At the bottom are the concentrations of each inducer applied to the cells as a 

decision from each controllers. After a while, all non-controlled cells start drifting away from the objective levels. 

4.1.2 In vivo control 

We initially used the parameters from the in silico control experiments. However the control 

actions were too weak (i.e. the proportional parameters were too low) to extract the system 

out of its basin of attraction. After a few manual adjustments of the parameters of the two 

controllers, we obtained a control strategy that was effective to maintain an individual cell, 

chosen at random among the observed cells, far from the two stable equilibrium states and in 

the vicinity of our target control point (see Figure 4-3). We also observed large oscillations 

around target values, a likely consequence of the hysteresis of the circuit with respect to 

inducer changes.  
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Figure 4-3 Experimental PI control results. The highlighted trajectory in each plot is the controlled cell. The controlled cell is 

maintained in the vicinity of the setpoint objective, whereas the other cells drift away.  

Very surprisingly, we observed in some control experiments that the applied inputs, defined 

so as to drive one particular cell, were effective to drive the whole cell population (see Figure 

4-4). Because of the stochasticity of gene expression and the existence of significant cell-to-

cell differences, it was highly unexpected that the same stimulations can maintain several 

cells far from their equilibrium states. Following our analogy, it would be equivalent to 

driving a set of inverted pendulums differing by their height and size and each under 

individual disturbances by applying a unique force (see Figure 4-5). Note that this 

entrainment of other cells is of variable duration and is not always observed. Using our 

model, we investigated whether similar responses were found in silico. 
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Figure 4-4 Experimental PI control result. All cells stay in the vicinity of the objective setpoint. 

Numerical simulations suggested that the application of strong control actions helped to keep 

non-controlled cells away from the two attracting states, at the cost of creating more 

pronounced oscillations around the target point. This motivated us to investigate the use of a 

bang-bang control framework using all-or-none control decisions. 

 

Figure 4-5 The challenge of controlling a population of toggle switches. Since all cells are different, it seems difficult to keep 

them all together in the unstable area by applying the same inputs. In our analogy with the inverted pendulum, it corresponds 

to trying to maintain several different pendulums upright with a single driving force. 
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4.2 Bang-bang control 
In bang-bang controllers, either the minimal or maximal concentration of inducers is applied 

depending on the sign of the difference between the target and the observed fluorescence 

values. This crude control requires minimal knowledge from the experimenter and is 

sometimes an optimal control strategy for some applications, especially in minimum-time 

problems (Brogan 1990). 

4.2.1 Model  

We observed both numerically and experimentally that stronger PI parameters would produce 

better results at the population level. Following that logic we implemented a dual bang-bang 

controller, as described in section xx of chapter 2, and investigated its effect on simulated 

deterministic toggle switches and on simulated populations of stochastic toggle switches. We 

observed better results at the population level with this control framework, but the results at 

the single-cell level are fundamentally limited by the inertial dynamics of the system. 

 

Figure 4-6 In silico bang-bang experiments. With this approach better control results are obtained at the population level. 

Numerical simulations indicated that better control performance can be obtained with smaller 

oscillations around the target values and with superior entrainment capacities for the non-

controlled cells. 

4.2.2 Experiments 

Bang-bang control experiments showed control performances that are comparable to the 

double PI controller but with better population entrainment capacities (see Figure 4-7). At the 

level of individual proteins, TetR-GFP followed accurately its target value, whereas LacI-RFP 

showed marked oscillations. 
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Figure 4-7 Experimental bang-bang control experiment. The cells seem closer together, suggesting that driving forces are 

more homogenous for the cells in the population in this type all-or-none stimulations. The dynamics of the system make the 

controlled cell strongly overshoot in RFP in this bang-bang approach. 

5 Open-loop dynamic stabilization 

To understand why the entire population followed the controlled cell in some of the PI and 

then in the bang-bang control experiments, we studied the dynamics of the system under 

strong stimulations. The crude control approach of the bang-bang strategy, made of repeated 

maximal induction of the two branches of the circuit suggested that fast, periodic alternations 

of the aTC and IPTG levels could be used to drive cells away from both attracting states in an 

open-loop manner. And indeed, in silico simulations showed that periodic stimulation of the 

two branches of the circuit could drive all cells in a state of balanced expression (see Figure 

5-1). 
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Figure 5-1 Stochastic simulation of periodic stimulations. The cell population can be stabilized in the unstable area by 

alternating between the two inducers. 

We tested this hypothesis experimentally and were able to drive the fluorescence of the cells 

into the unstable area of the state space (see Figure 5-2), albeit for input profiles that differed 

from the ones predicted in silico. Strikingly, we were able to drive the cell population close to 

the separatrix of the two basins of attraction of the toggle switch in reference conditions as 

evidenced by the observed partitioning of the cell population observed when interrupting the 

periodic oscillations (Figure 5-3). 

 

Figure 5-2 Experimental results showing dynamic stabilization coming from periodic stimulations. No particular trajectory is 

highlighted. In panel C)  all cell trajectories in the are represented proteins space and color-coded in time. With periodic 
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alternations between the two inducers, the population of toggle switches is maintained in its unstable area for about 11h, and 

then falls into the LacI-RFP-high basin of attraction when periodic stimulations are interrupted.  

 

Figure 5-3 Experimental dynamic stabilization. In first two panels A) and B), the highlighted trajectory is the average 

trajectory of the population of cells.  In panel C)  all cell trajectories in the are represented proteins space and color-coded in 

time. E) Composite RFP-GFP image at the end of the experiment. 

This stabilization of the system in the unstable region is a dynamic stabilization phenomenon. 

Dynamic stabilization is the process by which a system, unstable in at least parts of its 

operating state space, is trapped dynamically within its domain of instability due to the 

influence of an external high-frequency oscillating input and of the systems‟ own inertial 

forces (Landau & Lifshitz 1976). Dynamic stabilization was first introduced by Kapitza for an 

inverted classical pendulum stabilized by rapidly oscillating external modulations (Kapitza 

1951). In short, a pendulum which base is subjected to fast vertical oscillations becomes 

stable in its upward, unstable equilibrium position. Dynamic stabilization techniques were 

soon applied to a number of stabilization problems, with remarkable achievements in domains 
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including synchrotron beam focusing (Courant et al. 1952),  plasma containment (Osovets 

1960), and quantum-mechanical systems (Grozdanov & Raković 1988). The main advantage 

of this type of approach is that, unlike real-time feedback control, it does not require 

observation of the controlled system. 

Using our fitted model of the toggle switch, we computed the representation of the dynamics 

of the system in the protein space averaged in time over a period of our oscillatory driving 

inputs. Figure 5-4 helps understand the observed synchronous behavior of the cell population.  

This time-averaged vector field presents a unique null point, acting like a globally-attractive 

equilibrium point for the slowly-evolving genetic system. Therefore periodic oscillations of 

the environment were able to reset the state of a population of cells into an “undifferentiated” 

state, with low levels of either genes being expressed, from which several cell fates were 

possible once the external, global forcing was released.  

 

Figure 5-4 Vector field of the system averaged over a period of aTC and IPTG stimulation. A null point appears in the 

unstable area. 

 

6 Conclusion 

In this chapter we studied the possibility of real-time control on a synthetic bistable gene 

regulation network, the genetic toggle switch. Here, we showed two approaches to maintain a 

bistable genetic circuit close to its unstable equilibrium state: closed-loop control and periodic 

stimulation. Strikingly, in most cases, the proposed solution is effective to maintain the whole 

cell population away from the two attractive states despite the stochasticity of gene expression 

and phenotypic heterogeneity. This result was unexpected but could be explained by time-
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scale separation: subjected to fast periodic stimulations, the comparatively slower genetic 

circuit approximately follows a dynamics corresponding to the time-averaging of two 

opposing vector fields that presents a globally-stable equilibrium point at intermediate 

concentrations for LacI and TetR proteins. 

As a contribution to in silico cybergenetics, we demonstrated that single-cell control of a 

bistable system can be achieved with relatively simple control frameworks and very little a 

priori knowledge of the system. This result opens the door to the study of gene regulation 

networks of increased complexity and in operating domains unreachable or unsustainable thus 

far. The architecture of our control framework demonstrates the possibility for two controllers 

to steer two connected processes without communicating with each other. It illustrates the 

possibility to perform multiple-input-multiple-output control studies of genetic networks, 

which would facilitate and accelerate the examination of internal network dynamics, but it 

also demonstrates that control can be performed on networks where, due to only partial 

knowledge of the regulatory linkage, the controllers might compete against each other. 

The quality of the single-cell data obtained with our platform and the prolonged observations 

of the toggle switch system in its domain of unstability also allowed us to expand the general 

knowledge on this fundamental circuit. Toggle switches, and multistable systems in general, 

are known to play a central role in cell fate determination. Indeed, decision processes are 

understood as the continuous transformation of a stable equilibrium in which cells reside into 

an unstable one, separating the state space in several basins of attractions of novel equilibria, 

corresponding to the different possible futures of the cells (Waddington & Kacser 1957; 

Balázsi et al. 2011; Wang et al. 2011). The toggle switch is also a fundamental component of 

synthetic biology circuits. Therefore, in addition to its importance as a test assay for control of 

complex circuits in living organisms, the control methods we outlined in this article are 

relevant to drive and understand cell decisions, cell fate, differentiation and dedifferentiation 

dynamics, but also analyze the input-output functions of core elements of synthetic biology 

circuits. 

Finally, the stabilization of an entire population of toggle switch cells in the unstable area of 

the system in open-loop experiments is a new observation that was suggested by closed-loop 

control experiments and new knowledge acquired on the dynamics of the system. This 

dynamic stabilization phenomenon, similar to the inversion of stability in the Kapitza 

pendulum (Kapitza 1951), could be used both as a control approach for multistable systems, 

possibly to reset the state of cellular decision making circuits, but also in general dynamic 

stabilization could be studied as a possible range of operation for multistable networks. 

Oscillating morphogen stimulations have already been shown to trigger differentiation 

processes in embryos (Kirst et al. 2016; Sorre et al. 2014; Aulehla & Pourquié 2010). The 

study of dynamic stability in cellular decision networks in fluctuating concentrations of 

inducers can expand our understanding of those processes and create a new framework of 

analysis for those systems. 
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Chapter IV 
Stack segmentation 

“Many facets of [cell segmentation] appear to be well within the grasp of present-day 

technology.” 

Prewitt & Mendelsohn 1966 
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1 Introduction:  Automated cell segmentation, a core problem for 

single-cell control 

The amount of data available to biologists dramatically increased at the turn of the century. 

With the democratization of next generation sequencing techniques, microarrays, RNA-Seq, 

and imaging techniques, the field has definitively entered the era of high throughput 

acquisitions and big data analysis. A new field, quantitative biology, emerged out of these 

innovations and draws upon a multitude of approaches from the physical sciences and 

engineering to make biology quantitative and predictive. However, even though progresses 

were made in the field of multi-channel time-lapse microscopy imaging, the analysis of the 

formidable amount of data generated by such methods still often requires manual input from 

the experimenter. Such a procedure typically requires a lot of work from the experimenter and 

not only limits the throughput of the approach, but also makes on-the-fly segmentation 

impossible, which is crucial in the case of single-cell control.  

1.1 Cell segmentation: Filtering, mathematical morphology and active 

contours 
Before the changes brought about by microscope automation and microfluidics on one hand, 

and the advent of digital image processing on the other, cell segmentation and data extraction 

used to be performed manually. Since then a number of image analysis and segmentation 

tools have been developed to help the experimenters in their task. So far, the tools proposed 

can be considered semi-automatic as they require a significant amount of post-processing to 

achieve satisfactory segmentation results and make cell tracking possible. 

The first, simplest form of automatic image segmentation is filtering and thresholding. In 

cases where the cells are well separated and their pixel intensity is homogeneous and different 

from the background (for example, in phase contrast microscopy images or in fluorescence 

imaging), a simple histogram threshold can segment cells at minimal computational cost. It 

can also be quite robust: Automatic threshold selection (Otsu 1979; Glasbey 1993) is usually 

preferred to hard-set thresholds, which has the double advantage of finding an optimal 

threshold value without the need for heuristics and allows the algorithm to adapt to changes in 

illumination between images. Another improvement is the use of adaptive thresholding 

(Yanowitz & Bruckstein 1988), which partitions an N x M image in overlapping windows of 

n x m pixels and finds local thresholds for each. A thresholding map is then interpolated for 

the entire image. This partitioning approach is especially useful in images where, due to 

uneven illumination, the luminosity and contrast between the cells and the background varies 

within the image. However these thresholding methods become insufficient as soon as the 

cells in the image are not well separated, which is almost always the case in time-lapse 

movies of growing populations of cells. 

The next level of cell segmentation is feature extraction. A more robust approach is to identify 

cell features, usually cell boundaries. Instead of identifying the cell region entirely, the 

boundaries are identified and cell region is inferred from it. This type of approach uses a 

variety of linear image filters that transform the image into a map of the features of the image 

first and then applies a threshold to the result to identify the borders. One of the advantages of 
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this approach is that it is inherently robust to changes in illumination, as long as the contrast 

between the cells boundary and the background is not too low for efficient thresholding. The 

boundary detection methods usually apply first-order (gradient) or second-order (Laplacian) 

operations to the image to enhance edges or ridges, and then threshold the transformed image. 

The most common algorithms for edge detection usually combine these operations with 

various preprocessing steps, and then apply thresholding methods discussed previously to 

identify boundaries(Davis 1975; Canny 1986). If the boundaries identified do not form closed 

paths, either the two endpoints are connected directly by a line, or the threshold level can be 

lowered progressively until the path is closed. 

Thresholding and feature detection are usually considered a first step in the majority of cell 

segmentation algorithms. In most cases, the objects identified via thresholding actually 

consist of multiple cells next to one another. The boundaries identified via edge detection 

often over- or under-segment because of noise, to which first and second order derivatives are 

especially sensitive, or because the magnifications and numerical apertures of microscope 

objectives limit the optical resolution of the images, and the details at the intersection between 

cells are not discernable. Simple thresholding or edge detection do not succeed at identifying 

those separations, since in most cases they do not produce a visually different region between 

cells. Another problem arising from noisy images or other objects in the environment of the 

cells is false positives, where the algorithms wrongly identify parts of the image as cells. The 

opposite also happens, in some cases some cells can look significantly different from the rest 

of the population, and are left out by the segmentation algorithm. At this point, spatial 

considerations come into play. 

 

Figure 1-1 Binarization and post-processing of a 100X phase contrast image of Escherichia coli. 

The Otsu algorithm is a method to automatically identify the threshold level to binarize an image by maximizing the inter-

class variance between the two identified regions. All bacteria are still connected. 

Laplacian of Gaussian (LoG) is an edge detection technique consisting in the application of a Gaussian 2D filter on the image 

and then applying the Laplacian operator on the image. Thresholding is then performed to identify edges. 

Morphological opening with a disk structuring element of radius 4 was applied to the Otsu thresholding image. 

Morphological opening can separate connected objects, but it can lead to over- or under-segmentation. 

Mathematical morphology is often used as a post-processing step for edge detection and 

thresholding, and consists of operations of arbitrary complexity based on a small number of 

fundamental, non-linear operators(see Dougherty & Lotufo 2003 for a review). Mathematical 

morphology was initially designed for binary images in the 1960s, but later got expanded to 
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grayscale images and even RGB images. But binary morphology operations can be used to 

smooth objects contours, filter out small objects or to fill holes in the shapes. It can also be 

used to connect unconnected objects depending on the distance separating them, or to separate 

connected objects with narrow „bridges‟ between them. The most commonly used 

morphology operations in cell segmentation are the distance transform and the watershed 

segmentation method. The former computes the distance of each pixel in the binary input 

image from its nearest „0‟ pixel, and the latter identifies boundaries between objects from a 

gray scale image by seeding each object in local minima and spreading them iteratively 

through the levels until the objects connect (see Figure 1-2). This method is a low level 

assumption on the shape of the cells: In essence, it segments the objects into convex sub-

parts. Because the shape of the cells is often irregular, this method has a tendency to over-

segment. A number of improvements can be added to the technique, but still more processing 

steps are usually required after watershedding. 

 

Figure 1-2 The distance transform was applied to the final image of Figure 1-1. For each “1” pixel in the image, its distance 

from the nearest “0” pixel is measured and attributed to the corresponding pixel in the distance transform image. 

Watershedding is then applied to the distance-transformed image. In the case of automatic watershedding, local minima in 

the input image are used as seeds. This approach often results in over-segmentation. 

Seed-based, or marker-based, watershedding follows the same procedure as watershedding, but instead of using local minima 

in the image as seeds, the user provides the seeds. Erroneous seeds will yield poor segmentation results. Here the seeds are 

identified through a simple procedure of marking all elements below a certain distance in the distance transform as seeds, 

thus removing small local minima from the seeds. 

Finally, until recently the methods that yielded the best results in the domain of cell 

segmentation were based on active contours and deformable models of cell shape. Even 

though the two terms are often used interchangeably, the former describes a family of 

methods based on splines while the latter uses specific models of the shape of the objects they 

are supposed to segment. Active contours and deformable models both function in similar 

ways though, in that they are first applied to rough estimates of cells positions, for example 

from the output of a watershedding step, and are then fitted to the image (or usually one or 

several features of the image, like edges) through the optimization of some cost function. The 

advantage of this type of approach is that in the case of time-lapse acquisitions the previous 

cell position can be used as a „seed‟ to find the new position of the cell. Another advantage is 

that the parameters of the shape, which not only represent the position of the cell but also 

what it “looks like”, can be used for tracking. 
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Figure 1-3 From (Meijering et al. 2009). A deformable model of the cell shape is applied to roughly-identified cell regions. 

Then, the identified model from the first frame is used as a seed to identify the new region the next frame. The model can 

also be split into two regions to account for divisions. An advantage of those models for tracking is that the parameters of the 

model give valuable information on the position but also the shape of the cell, which can be used to discriminate between 

different possible cells between one frame and the next. 

An interesting (if only a bit short) review on the evolution of the field until 2012 can be found 

in (Meijering 2012). The conclusion is particularly interesting in that the author does not 

foresee the advent of new machine learning methods that are about to completely change the 

field. 

1.2 Deep learning: the revolution. 
In recent years a paradigm shift occurred in the field of image analysis with the advent of 

deep learning methods. In contrast to previously described algorithms, these techniques do not 

require strenuous algorithm elaboration for each special case of object segmentation and 

meticulous parameters selection after each experiment. The principle behind all these new 

techniques is the training of some learning algorithm with a set of manually or semi-

automatically labeled images, and then the trained algorithm is used to classify images or 

objects in the images. Different types of deep learning approaches exist, and in this section, 

after introducing the concepts behind Artificial Neural Networks (ANN), I am going to briefly 

discuss the family of deep learning algorithm that is used the most in image analysis, and cell 

segmentation problems, today: Convolutional Neural Networks (CNN or ConvNet). 

1.2.1 Artificial neural networks 

Artificial neural networks take inspiration from the central nervous system of animals, in 

particular, certain parts of the brain. They consist of a network of elementary units called, 

unsurprisingly, artificial neurons that imitate the behavior of biological neurons: Artificial 

neurons receive one or more inputs (representing dendrites) and sum them to produce an 

output (representing a neuron's axon). The sum of each input is weighted, and is then passed 

through a (usually sigmoidal) activation function, that approximates a threshold function that 

will decide whether the neuron is activated (thus mimicking the firing of biological neurons). 

Artificial neural networks were initially designed as fully-interconnected layers of neurons, 

and this family of network architectures is called perceptron networks, in reference to the first 
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work on ANNs (Rosenblatt 1957). The principle of these networks was to be applied on a set 

of inputs, typically images, that were pre-labeled by the experimenter. This set of labeled 

inputs is hereafter referred to as the groundtruth. The output of the network was compared to 

the groundtruth, and the parameters of each neuron are updated to minimize the measured 

error. 

 

Figure 1-4 Artificial neural networks (ANN). The sigmoid neuron is used in the vast majority of ANN today. It receives n 

inputs from other neurons or from a data input, and multiplies them by weights (  *        )). Their weighed values 

are then summed, with a bias parameter b. A sigmoid function is applied to the result as a sort of soft threshold to produce the 

neuron output  . In non-convolutional networks, the weights and biases of all neurons are independent, which means that 

each neuron has its own set of parameters. 

The traditional perceptron architecture consists of one output and one input layers, and an arbitrary number of intermediate 

layers called hidden layers. The number of neurons per hidden layer can vary, but each neuron in any layer is connected to all 

neurons in the next one. While this architecture can formulate complex, high-level models of the operations to perform on the 

input, its number of parameters grows exponentially with the number of neurons per layer. For the simple network illustrated 

here, 360 parameters must be fitted to each of the inputs in the training set. 
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The number of parameters in this type of networks increases exponentially with the number of 

neurons in each layer, and one might fear that training a model with such a high number of 

parameters would require impractically long computational times. While this is mostly true, 

and one of the reasons why it took about 50 years for large-scale artificial neural networks to 

emerge, two things must be noted: First, ANNs require a surprisingly low number of training 

inputs compared to the number of parameters they use to produce satisfactory 

classification/identification results. This is probably related to the yet-unknown reason why 

they are better than other learning algorithms at generalizing their results to completely new 

observations (Nielsen 2015). For that reason, even small networks were able to perform 

reasonably well compared to other image classification/segmentation algorithm, if only a bit 

slower. The second, more remarkable thing is that developments on ANN training since the 

1950s have greatly sped up the training process by a) an optimization of error gradient 

computation for each neurons layer, called the backpropagation algorithm(Rumelhart et al. 

1986), b) a drastic reduction of total computation time by randomly subsampling training 

data, called stochastic gradient descent (Bottou & Bousquet 2007), and c) improvements in 

the implementation of the algorithms that made massive parallelization on GPUs possible 

(Raina et al. 2009). All these improvements ultimately led to the multi-record-breaking deep 

learning revolution: The development and training of large-scale networks was possible at 

last, and the large number of neurons layers made it possible to estimate intricate recognition 

functions. For a review of the history of deep learning as well as a discussion on recent 

advances in the field see (LeCun et al. 2015). 

1.2.2 Convolutional Neural Networks 

The CNN class of network architectures has proven especially efficient in image analysis and 

segmentation (LeCun et al. 2015). Convolution is a fundamental operation in image analysis 

and signal processing. In image processing it consists in evaluating for each pixel a weighted 

sum between the pixel and its neighborhood, with a mask, or kernel matrix, of weights 

applied to each pixel. This approach is used to implement image filters, including average, 

Gaussian, or gradient-type filters, amongst others. But the same principle can be applied to 

layers of neurons: Instead of fully connecting layers of neurons, i.e. using all the outputs of a 

layer as inputs for each neuron of the next layer and fitting the weights, the convolutional 

approach connects a small local set of neurons on one layer to one corresponding neuron on 

the next layer. Another property of CNNs is that the parameters for all neurons on a 

convolutional layer are shared, which means that different sets of weights are not fitted per 

neuron, but instead one “global” set of weights is fitted for each convolutional layer, and the 

same local operation is applied to the whole image. We can immediately see how this 

approach drastically reduces the number of parameters to fit. From an image processing point 

of view, convolutional layers also make sense since they can also mimic the actions of 

traditional image processing operators such as de-noising filters, gradient estimation and 

feature extraction, or even thresholding. Finally Convolutional Neural Networks usually 

consist of a number of different convolutional layers that are then used as an input to more 

inter-connected layers as one goes deeper in the network, up to the point where the layers 

become fully interconnected like in a perceptron type of architecture. These more fully 

connected layers usually perform more advanced, or “high-level” functions, while the less 
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connected convolutional layers can be seen as “low-level” operations. Not only does this type 

of network structure simulate the structure of the animal visual cortex, it also resembles 

closely the evolution of image analysis and algorithm structures used prior to deep learning: 

The first low-level operations like thresholding, feature detection and filtering are performed 

on the raw images. Then more advanced morphological operations are performed on the 

results of the preceding steps, and finally active contour and deformable models are applied as 

a high-level final operation for segmentation. The great advantage of deep learning and CNNs 

is that it is so-called representation learning: It takes raw data in, and with little necessary 

knowledge of image processing techniques or arbitrary decisions required from the user, 

directly outputs classification/segmentation data. Where an extensive knowledge of image 

processing and tedious and error-prone programming was required to produce a segmentation 

algorithm that would often not generalize robustly to new observations, CNNs can segment 

robustly an image with minor intervention from the experimenter once the training set has 

been created. 

 

Figure 1-5 Convolutional layers. Neurons in convolutional layer are connected to input data or neurons from an upstream 

layer, however they are not connected to all neurons or inputs in the previous layer but to a subset of neighbor neurons. 

Furthermore, in each convolutional layer the parameters, like weights and biases, are shared among all neurons. This way, all 

neurons perform the same operation, like detecting features such as edges, circles, or textures. This structure drastically 

reduces the number of parameters to fit to training data. 

1.2.3 U-Net 

The first notable application of deep learning to cell segmentation dates back to 2012, when 

biological neuron membranes were identified in electron microscopy images (Ciresan et al. 

2012). However the approach chosen by the authors can appear unconventional and counter-

productive: Instead of training and using their deep neural network on the entire image, they 

apply it on a small sliding window of the image and use it to classify the center pixel of the 

window. While this network easily won the ISBI 2012
1
 challenge for its category, it has two 

major drawbacks: First, the procedure is relatively slow because the network is used on 

hundreds of thousands of overlapping windows to classify one pixel each time, and second, 

                                                 

1
 The IEEE International Symposium on Biomedical Imaging is a joint initiative from the IEEE Signal 

Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). It proposes 

several cell segmentation challenges every year for the attendees to compete on and compare cell segmentation 

techniques. 
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the choice of this reduced view of the entire image deprives the network of some of the 

context in the entire image that could have improved its performance. It is fairly easy to 

understand though why the authors chose to implement their network this way: Historically 

deep learning algorithms have been developed to classify images, not to segment them. The 

networks had been structured to take an image as an input, and identify what type of food or 

dog breed was in the image, but not delimitate where it was. The most straightforward way to 

apply these structures to segment images was then to use it on sliding windows and classify 

each of them as “image-with-a-neuron-membrane-in-the-center” or not. 

The necessary tradeoff between localization and context remained a central problem in deep 

learning until very recently, when a team proposed a new network architecture that contracts 

from convolutional layers to a fully connected network, and then expands progressively back 

into convolutional layers until its output layer produces a segmented mask of the original 

image (Long et al. 2015). This architecture was soon applied to cell segmentation, breaking 

preceeding records in a number of segmentation challenges by large margins (Ronneberger et 

al. 2015). Another interesting aspect of their work is the procedure devised for data 

augmentation, namely random elastic deformations, which is important in deep learning since 

those networks require a large number of training samples to be able to fit the millions of 

parameters they are using. With this procedure they were able to train their relatively large 

network with only 20 original training images. Although the segmentation results are still not 

perfect, the U-Net architecture is a leap in cell segmentation with 77.5% correct segmentation, 

to be compared to the previous record of 46% for the same image set. 
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Figure 1-6 From (Ronneberger et al. 2015) . A) The U-Net architecture: 64 convolutional layers are applied as a first step to 

identify low-level features. The results of the convolutional layers are progressively aggregated through s-called pooling 

operations to progressively identify higher-level features from the lower level ones. Once high level objects have been 

identified, the results are propagated and expanded back into the original image format by so-called up-convolution 

operations. B) Segmentation result of the U-Net approach on images of HeLa cells, a notoriously difficult segmentation 

problem. 
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1.3 Hyperspectral imaging 
Before I fortuitously re-discovered biology through the iGEM competition in 2011, I was 

studying signal processing. At that time, I was contemplating the idea of doing my PhD in 

hyperspectral data analysis. The field of hyperspectral imaging emerged with the apparition of 

digital image sensors that could sense dozens to hundreds of narrow wavelength ranges on the 

electromagnetic spectrum. Where a standard digital camera can sense one or three 

wavelengths (depending on whether they acquire „gray scale‟ images or RGB images), a 

hyperspectral sensor can provide high-resolution spectral signatures for each pixel in the 

acquired image. The signatures of each pixel can then be analyzed to extract useful 

information about the elements in the picture, e.g. the materials they are made of. The 

common application of hyperspectral imaging is remote geosensing (see van der Meer et al. 

2012 for a review), where high-spectral and -spatial resolution sensors are mounted on 

satellites or aircraft (recently drone-mounted sensors started appearing) to monitor 

agricultural soils, map land or prospect for resources. But interesting results were also 

obtained for food quality assessment (Gowen et al. 2007) , and, more in line with our 

interests, on hyperspectral microscopy images of living cells (Vermaas et al. 2008; Gao & 

Smith 2015). 

 

Figure 1-7 Hyperspectral data structure. Hundreds of images of an object/area are acquired at different wavelengths. For each 

pixel in the compiled “cube”, different types of objects, matter or chemicals produce different spectral signatures. 

Although hyperspectral sensors were developed in the early 1990s, it was not until the mid-

2000s that efficient data analysis methods were developed and that the main analysis 

framework was established (Melgani & Bruzzone 2004). Hyperspectral data analysis resisted 

the revolution of deep learning for a surprisingly long time, with deep learning methods 
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exceeding the performance of the more traditional support vector machines (SVMs) only 

recently (Chen et al. 2014; see Zhang et al. 2016 for a review). 

1.3.1 Support Vector Machines 

Spectral signature identification is a classification problem: Whether some region of the 

image represents a type of soil, buildings or cellular organelles boils down to a classification 

choice. Out of the myriad of classification algorithms developed for different statistical 

problems, SVMs have long offered the best results for hyperspectral data analysis, and are 

today second only to recently developed Deep Neural Networks.  

SVMs, Support Vector Machines, have been around since the 1960s (Vapnik 1963) and rely, 

in their simplest form, on identifying a hyperplane that can separate (with a maximal margin) 

all n-dimensional observations in a provided training set of m observations. In less obscure 

terms, SVMs (or, more precisely, linear SVMs) identify and optimize linear boundaries 

between classes of training points. To reduce computational cost, instead of estimating the 

coordinates of the optimal hyperplane by using all datapoints, support vector machines use a 

subset of the datapoints that lie at the boundary between classes, which are called support 

vectors. It has been demonstrated that the optimal hyperplane for separating the two classes 

and maximizing generalization performance is the one maximizing the margin between the 

itself and the support vectors of the two classes (Vapnik & Kotz 1982). 

Once the optimal hyperplane has been estimated, when new data is acquired and needs to be 

classified the algorithm evaluates whether a new observation is situated on one side or the 

other of this boundary. The result, usually called a prediction, determines whether this new 

observation is part of one class or another, but it also provides an estimate of how “certain” 

that classification is: The Euclidean distance from the estimated boundary is usually extracted 

from the algorithm as a classification score, which can be useful a posteriori to assert the 

validity of segmentation results. 

Of course, linear classifiers like linear SVMs are often not adapted to real-life data, in which 

the different classes are often spread in complex intertwined regions of their feature space. A 

workaround for this problem was developed in the early 1990s (Boser et al. 1992) and made 

SVMs the go-to classifiers for almost 20 years. The idea was not only to transform the feature 

space of the observations into another, where the differences could be separated linearly, but 

also creating new dimensions from the ones existing if necessary. This method is called the 

kernel trick, because the new dimensions are created through so-called kernel functions, 

which allow the SVM classifier to operate in a high-dimensional, implicit feature space 

without ever computing the coordinates of the data in that space. Instead, the dot products that 

are normally used on the data to compute their classification score in linear SVMs are 

replaced by the kernel functions. This operation is computationally cheaper than the explicit 

computation of the coordinates, and makes the separation of nonlinear data possible. A lot of 

kernel functions have been used in the literature, but in the field of hyperspectral imaging 

Gaussian radial basis functions typically yield higher performance with respect to speed and 

accuracy (Mountrakis et al. 2011): 
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 (    )     (  ‖    ‖ )                

‖    ‖  can be recognized as the squared Euclidean distance.   is estimated by the SVM 

algorithm to best separate the different classes. 

 

Figure 1-8 The principles of SVMs. A) The hyperplane optimally separating two classes of 2-dimensional data is H3. B) The 

optimal hyperplane is the one optimizing the margin between itself and the two classes of data. C) In most real-life cases, the 

classes cannot be separated by a linear boundary. D) To work around this problem, SVMs artificially create new dimensions 

from the existing ones to be able to separate them linearly. 

Another problem that often arises is over-fitting, which is often worsened by the fact that 

training data can contain errors. Although there is no commonly accepted method to ensure 

that over-fitting does not occur, and in general the approach boils down to fancy trial-and-

error procedures, the problem of mislabeled elements in training datasets has a more agreed-

upon solution. The underlying principle is that instead of finding a perfect separation between 

all elements of each class, a „soft-margin‟ approach is used in which misclassified elements 
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are given a misclassification weight depending on some mislabeling score
2
. A tradeoff 

parameter between the sum of weighed misclassifications and the size of the feature space is 

set by the experimenter, and is typically determined empirically (Steinwart & Christmann 

2008). 

Finally, the curse of high-dimensionality is a problem in SVMs too, and the number of 

features, or wavelengths, in hyperspectral data reduces the performance of the classifiers (this 

behavior is known as the Hughes phenomenon (Hughes 1968)). The common procedure is 

therefore to reduce the dimensionality of the feature space while minimizing information loss 

via so-called feature extraction procedures. Although a number of algorithms for feature 

extraction has been used for specific applications, one of the first and most straightforward 

algorithms to be used and that dominated the field in the early years of hyperspectral imaging 

is principal component analysis (Hotelling 1933) and a number of its variants(Mountrakis et 

al. 2011). 

The analysis of hyperspectral data with SVMs was first suggested in the late 1990s (Gualtieri 

& Cromp 1999) but the first paper to compile all the improvements on SVM performance 

mentioned above and to establish SVMs as the undisputed hyperspectral data classifiers for 

more than a decade appeared only five years later (Melgani & Bruzzone 2004). For an in-

depth technical discussion on SVMs see (Steinwart & Christmann 2008). For an extensive 

review of SVMs and their ameliorations in hyperspectral data analysis, see (Mountrakis et al. 

2011). 

As a side note, SVMs have also been used for microscopy image analysis, and cell 

segmentation in particular. But because SVMs are primarily classifiers that must be wrapped 

in several layers of image analysis and feature extraction to transform input images into a 

myriad of observations to classify, their usage remained largely confined to niche 

applications, like white blood cell identification (Ramoser et al. 2005; Osowski et al. 2009). 

1.3.2 The framework of hyperspectral imaging 

To summarize, the typical workflow of hyperspectral data analysis with support vector 

machines is as follows: 

1. Training 

1.1. Hyperspectral training and evaluation datasets are acquired, and experts label the 

different classes in it. 

1.2. A feature reduction step is applied, thus drastically reducing the number of 

dimensions while preserving a maximum of the original information in the data. 

1.3. A number of SVM are fitted to the labeled training set after feature extraction, each 

with different sets of parameters (kernel function, misclassification/dimensions 

tradeoff, maximum number of support vectors…) 

                                                 

2
 This family of methods is called loss functions. The most common one used with SVMs is the hinge loss 

function (Gentile & Warmuth 1998; Steinwart & Christmann 2008) 
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1.4. The classification performance of each SVM is then assessed on the evaluation set, 

and the best result is used for identification, or the experimenter can go back to step 3 

to try to improve performance based on those results. 

2. Prediction/Production 

2.1. Acquire new unlabeled hyperspectral data. 

2.2. Transform data into the new feature space from training step 1.2. 

2.3. Classify the signatures of each pixel into the classes from step 1.1. 

3. (Optional) Use classified images for target recognition/detection (Vehicles, 

infrastructures, forests…) with traditional image segmentation techniques. 

 

This procedure inspired the segmentation algorithm I am going to present in this chapter, 

which replaces the spectral signatures from hyperspectral imaging with so-called “focal 

signatures” that are acquired by imaging focal plans above and below the cells‟ imaging 

plane. The focal signatures are the pixel illumination levels acquired at each focal plane, 

which vary depending on the element of the in-focus image. Basic optics suggests that these 

changes in signature between the different elements depend on the shape and composition of 

the object being observed, thus making object class identification possible in theory. 

2 Z-stacks and focal signatures 

While working on autofocussing techniques to try to obtain stable time-lapse movies and 

minimize measurement noise, I had to acquire a number of Z-stacks to use as inputs for the 

algorithms I was developing (see section 3.1.7 of chapter 2). So-called Z-stacks are stacks of 

images acquired at different focal planes, usually around the focal plane of interest where the 

cells are most discernable. If we adopt the usual convention of naming the 2 dimensions along 

which the images are taken x and y, the axis along which the focal-plane stack is acquired is 

logically labeled z, hence the name Z-stack. The development of autofocussing techniques 

was an ongoing task throughout my PhD, but I rapidly realized that, instead of trying to 

simply identify the best frame in the stack according to some criterion (image sharpness, 

histogram levels…), results that were both more precise and accurate would be achieved by 

measuring the same feature in all stacks in the image and then comparing it to some reference 

“signature” acquired at the beginning of the experiment.  

Around the same time, I was also trying machine learning algorithms for cell segmentation. I 

did not know then of the results acquired with DNNs on neurons membranes (Ciresan et al. 

2012), and was trying to use methods typically used for pedestrian identification in images 

based on SVMs and HOG transforms
3
 (Dalal & Triggs 2005). While this method gave 

satisfactory results on another project I was collaborating on for ant segmentation, it became 

rapidly clear that the method was not adapted to bacterial cell detection. Somewhat 

                                                 

3
 Histogram of oriented gradients, or HOG, is a feature extractor for 2D images that splits an image into 

overlapping windows and computes for each of them a histogram of the gradient for different orientations. 
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paradoxically, the complex shapes humans or ants can adopt made them more easily 

discernable from other objects or between themselves, while the simple shape of bacteria 

coupled with the quality of the images at this level of magnification made the approach 

irrelevant. 

But eventually one day, in a perfect illustration of the Eureka phenomenon (Asimov 1971), 

while precariously riding home on my bicycle after one too many beers and a frustrating 

number of desperate attempts at segmenting cells with dubious combinations of SVMs and 

feature extractors, I finally thought of using the information that I knew could be found in Z-

stacks to identify cells. 

After acquiring new Z-stacks with hundreds of frames
4
 and analyzing what would later be 

called the focal signature of specific objects in the stack, it became evident that not only did 

the “signature” of some criterion along the Z-axis was specific to the object that was being 

observed and hence identifiable (see autofocussing method in section 3.1.7 of chapter 2), but 

also that the signature of each z-pixel
5
 in the stack was closely related to the class of object 

they were part of. The acquisition process as well as the typical shape of the signatures is 

detailed in Figure 2-1. 

The Z-stacks were acquired on a number of different automated microscopes, two of which, 

referenced here and amongst labmates as Mustard and Marple, are in our lab and are based on 

the IX71 and IX81 Olympus chassis and feature a variety of different equipment. The most 

notable piece of equipment on the IX71-based microscope Mustard is the piezo-driven 

motorization of the objective nosepiece along the Z axis, which allows for precision 

positioning with a resolution in the tens of nanometers. For that reason, and also that Mustard 

was the microscope on which I implemented the control platform and was the most familiar 

with, the majority of acquisitions were performed on this microscope. Unless otherwise 

specified, the Z-stacks were acquired on it. Two other microscopes were used by collaborators 

to acquire Z-stacks for evaluating the performance of the algorithm, one located in the lab of 

the Biologie et Dynamique des Chromosomes group of CNRS UMR 7212 at Hôpital Saint-

Louis in Paris, and another located in the lab of the Molecular Microbial Ecology group at the 

Department of Environmental Systems Science of ETH Zurich. These two microscopes will 

be referred to here as St-Louis and Zurich.  

The stacks were acquired with varying distance steps (z-steps) between each frame, from 

100nm to 1μm. The original number of frames per stack was 100, with 100nm steps between 

all stacks, but eventually it became clear that much lower numbers of frames were sufficient 

to achieve satisfactory signature classification performance for robust segmentation, although 

higher frame numbers increased the performance marginally (see section 4.2.1). I also 

                                                 

4
 I will refer to single images acquired at specific focal plans in a Z-stack as frames. 

5
 I call a z-pixel the vector of intensity values along the Z axis that are acquired in each frame of the Z-stack for a 

specific set of pixel coordinates (x, y) along the X and Y axis. The term might  be used interchangeably with 

focal signature, but is generally preferred here when referring specifically to raw data, while the term signature 

will be used in a more conceptual way and regardless of the feature space it is represented in. 
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observed that a non-fixed z-step, i.e. non-linearly spaced acquisitions along Z, yielded better 

results. 

 

Figure 2-1 Acquisition principle and focal signatures. A) The specimen is placed on a microscope, and an automated z-stage 

(preferrably piezo-driven) is used to acquire stacks of frames above and below the focal plan of the cells. B) In our mother 

machine setup, the intensity of the pixels changes the focus. C) Close-up of a chamber. D) Different regions are manually 

identified by the experimenter. E) The mean and standard deviation of the signatures for each class are extracted. The 

signatures are visibly different depending on the type of z-pixel. 

3 Training  

Based on the observation that different classes of z-pixels seemed discernable from each 

other, I started working on building training sets and fitting SVMs to classify pixels. In this 

section I describe the procedure for constructing training sets, normalizing the data, training 

SVMs and finally evaluating the performances of the trained SVMs. 

3.1 Training set and evaluation set construction 
I developed a graphical user interface (GUI) in Matlab to simplify training set construction. 

The interface allows the experimenter to build a training set based on any number of Z-stacks, 

and allows for the creation of any number of different classes. 
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Figure 3-1 Graphical user interface (GUI) for training set construction. Several Z-stacks can be loaded at once, and any 

number of classes can be created and edited. The user can add and remove regions in the images that will then be extracted 

from the stacks and concatenated into a training set and an evaluation set. 

When constructing new training sets, the experimenter must be careful about several things: 

First of all, although I used a hinge loss function to make the training more robust to 

erroneous outliers in the dataset (see section 1.3.1), the experimenter must take extra care 

when creating the training set of not mislabeling data. Although this might seem obvious, it is 

easy for the experimenter to start labeling data a certain way on one part of the set and end up 

labeling it in another way when they reach the end of the tedious process of creating training 

datasets. A typical case is, when labeling cell membranes and cell cytoplasm in bacteria, the 

limit between the two classes is hard to visualize and by a large portion arbitrary. It is 

therefore preferable to leave a wide margin between the two classes when identifying z-pixels 

to ensure that the two will be well-separated in the feature space. At the very least, when 

establishing a new set, the experimenter/expert should check periodically how they did their 

labeling at the beginning of the process to avoid drifting too much. A major part of the 

classification performance will depend on the quality of the training dataset, and while initial 

trials might be done on roughly labeled datasets and still produce decent results, the 

performance would be improved by careful training set construction. 

3.2 Data normalization and focus invariance 
Two problems arose early in the development of this segmentation procedure: The shifting 

and scaling of the input data that could occur between different stacks or different 

experiments. The scaling is a known problem in hyperspectral imaging: between one 

acquisition and the next, light intensity can vary and the intensity measured for each 

wavelength can vary. The same problem happens in our case: Light intensity can change 

during an experiment, and will almost always change between different experiments. To 

normalize our data we perform a standard histogram equalization procedure with 1% loss on 
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the histograms of all the training stacks and, once the SVM were trained, on all new Z-stacks 

as well, to ensure that all data were spread over the same intensity scale. 

The second problem, shifting, does not happen in hyperspectral data. It consists in a shift of 

the signatures along the Z axis caused by autofocussing error. Because the training Z-stacks 

are acquired around the focal plan at which the cells are precisely in focus, the frames are 

taken always at the same distance from the central in-focus frame. That means that the 

features of the training signatures are acquired at specific points in Z around the in-focus 

point. However autofocussing is not always perfect, or the specimen observed can be tilted, 

and this can lead to a shift of the signature in Z. In this case, the shape of all signatures in the 

stack will appear drastically different to the SVM. 

The physics of hyperspectral sensors make such a shift impossible in this type of data, so 

unsurprisingly there were no solutions to be found in the literature. For a time we 

experimented with pre-processing methods to re-shift the data in such cases or iterative 

prediction steps to select the best result. But in the end, a more elegant solution was to simply 

train the SVM on shifted data: The stacks for training at a high resolution in z were acquired, 

and then subsampled for the frames we needed in the stack to train for in-focus data. Then,  an 

artificial shift in Z would be applied by re-subsampling for the frames with a shift in Z. 

Subsamples were acquired for an arbitrary shift range and the SVM were trained on all those 

data: the in-focus data, but out-of-focus data as well. This procedure not only made the z-pixel 

classification more robust to autofocussing errors, up to the point where the autofocus could 

be so wrong that cells could not be identified anymore in the supposedly in-focus frame and 

still the z-pixels could be identified properly, but it also made the results more accurate when 

there were no autofocussing errors. We think that the latter is because the shifting procedure 

works as a sort of data-augmentation method that made the SVMs better at generalizing to 

new observations. Another advantage of this method is that, except for the shifting range that 

is decided at the beginning and that can be seen as the “range of robustness to autofocussing 

error”, the algorithm does not require any arbitrary parameter to be decided upon by the user 

or any knowledge of signal or image processing for correcting focusing errors. 

A third problem, which we are currently working on but that only arises when lamp alignment 

was not performed properly prior to the acquisition, can be referred to as „skewing‟. It 

consists in a shift of the objects in the image along the X and Y axes when the frames are 

acquired along the Z axis. In other terms, images are not well-aligned between focal plans. 

The shift appears to be linear, i.e. the image is shifted by a constant vector (     ) every fixed 

z-step. We still have not found a way to robustly and automatically identify the shift to correct 

it. 
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Figure 3-2 Focus shifting. A) The signatures extracted from the stack are artificially shifted, by changing the reference of the 

in-focus frame (in grey). This procedure mimics what happens when erroneous autofocussing shifts the acquired stack. B) 

Shifted signatures: The SVM will be trained on shifted variants of same signatures. 

3.3 Feature extraction 
As discussed in section 1.3.1, SVMs perform poorly in high-dimensional input spaces, and 

the dimensionality can be reduced by a number of feature extraction algorithms. A common 

feature extraction algorithm in hyperspectral imaging is principal component analysis (PCA) 

and it is the approach we used here, but other approaches could yield better results. 

PCA is performed by computing the set of orthogonal, unit eigenvectors of the covariance 

matrix of the data and transforming the input data into this new space. In other terms, the set 

of orthogonal axes along which the input data varies the most are computed as linear 

combinations of the original axes that are called principal components, and data is represented 

in this new base. One of the properties of PCA is that the first component of the new base has 

the largest possible variance, and then the second has the largest possible variance of what 

remained and so on… This ordered selection of orthogonal components maximizing variance 

makes it possible to easily choose an arbitrary number of dimensions in the principle 

components space that maximizes the variance that could be accounted for. 

In our application, we performed PCA on the training data to obtain the principal component 

coefficients, also known as loadings, which allowed us to transform our data into the principal 

components space. The same coefficients are applied later to transform the unlabeled data in 

Z-stacks into the principal components space for prediction. However, in order to reduce 
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dimensionality, only a subset of the first N‟ principal component dimensions are used to 

represent the data that are used to train the SVMs and are later predicted upon. As a rule of 

thumb, we chose N‟ such that the amount of variance accounted for by the first N‟ 

components was at least 95% of the original variance, except if that meant N‟ was greater 

than 20, to ensure we would not train the SVMs on too high-dimensionality data. However for 

improved performance one should compare the prediction results of the fitted SVMs with 

different numbers of components to see which performs best for a specific case. 

 

Figure 3-3 Principal components. The signatures from the training set are tranformed into their principal components space. 

Each point represents a labeled signature in its first 3 components. The different colors represent the different lebels of the 

signatures. Already in the 3 first components, class clusters of datapoints can be observed. 

3.4 SVM fitting 
Because SVMs are binary classifiers, the most common way of handling multiclass data 

identification is to fit an SVM to each class against all others and then to run all SVMs on 

each signature at the prediction step and take the best result. While other, more 

computationally efficient techniques based on hierarchical classification trees exist (Yuan et 

al. 2006; Cesa-Bianchi et al. 2006), this method (known as winner-takes-all SVM, or WTA-

SVM) has the double advantage of providing a classification score for each class, which can 

be used for segmentation as we will see in section 5, but also not require the experimenter to 

establish a classification tree, which can be a difficult problem. Other non-hierarchical 

methods than WTA-SVM have been developed over the years. They rely on voting and can 

give better results, but are usually less computationally efficient since they require a number 

of SVMs that grows exponentially with the number of classes (Duan & Keerthi 2005; Mathur 

& Foody 2008). 

Although our general approach was winner-takes-all SVMs, which means that z-pixels are 

classified as whichever class obtains the highest classification score, we will see in section 5.2 

that the SVM results for each class can be used in combination with spatial rules to improve 

the classification. 
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The SVM implementation was based on the Matlab fitcsvm package, which has the advantage 

of featuring automatic hyperparameter optimization, with a Gaussian radial basis function as 

kernel and a hinge loss function (see section 1.3.1). To reduce training time, the fitting of the 

SVMs for each class was parallelized. The fitting was performed until all SVMs converged 

(typically 15 minutes to 1 hour). The results were then compared to the evaluation set to 

estimate the performance of the classification against hyper-hyperparameters such as the 

number of frames used or the dimensionality of the final feature space. 

 

Figure 3-4 Multi-class SVM approaches. Winner-takes-all (WTA) SVM fits SVMs to each class against all others (dashed 

lines). When a new observation (black cross) is evaluated, the SVM that produces the highest score wins, and the observation 

is attributed to the corresponding class. Voting-based multiclass SVMs fits SVMs to all possible combinations of 1 class 

against another. New observations are evaluated by each one of them, and the class with the highest number of votes wins. 

While this approach usually yields slightly better prediction results, the number of SVMs to fit to the data rises polynomially 

with the number of classes and can dramatically increase the computation time. Hierarchical approaches partition the 

classification procedure into a decision tree, and fit the corresponding SVMs. New observations are evaluated sequentially 

until they are labeled as a specific class. While this approach can reduce computational time, it requires a priori knowledge 

on the structure of the data. 

3.5 Evaluation 
After a labeled set was constructed, we typically divided it into 2 parts by random data 

subsampling: The first part, consisting of 90% of all datapoints was the training set that was 

used to train the SVM. The remaining 10% were used as an evaluation set. The evaluation set 

was used to compare the results of the SVMs with different parameters (Number of frames in 

the stacks, shift-correction range, number of principal components…) by running the 

classification of the SVM on the evaluation set and then comparing it to the labels established 

by the user. 
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4 Classification 

4.1 Class prediction and confidence map 
Once a set of SVMs has been trained, it is used for „production‟, or to identify new stacks for 

cell identification and segmentation. 

When a new stack is acquired, it is first scaled to the same dynamic range as the training 

stacks (basically the histogram of the entire stack is equalized over the maximum range of the 

training data type, which is usually uint16) 

It is then transformed into the principal components base by multiplying the z-pixels by the 

principal coefficients from the feature extraction step described in section 3.3. 

The SVM is used on the transformed data, and for each z-pixel a set of classification scores 

that correspond to each of the classes the SVMs were trained for is produced. Because all z-

pixels are independent from each other and their classification does not depend on the 

classification of other pixels, parallelization of the prediction process is trivial. Unfortunately 

Matlab does not feature a GPU-accelerated SVM library, which can decrease processing time 

by two orders of magnitude (Catanzaro et al. 2008). Parallelization can still be performed at 

the CPU level. We used a Dell Precision T7910 with a 20-core Xeon ES-2650v3 processor, 

that allowed us to significantly decrease processing time, down to a bit more than a minute for 

an entire stack of 100 frames and 1392x1040 pixels per frames. Processing time can of course 

be reduced by defining regions of interest in the image and not classifying the rest of the 

image. 

The SVMs raw scores are also used to establish a confidence map of the classification in the 

image. To produce this so-called confidence map, we apply the softmax function to the SVM 

classification results for each result, and pick the score of the best class as the classification 

“confidence”. The softmax function is commonly used in deep neural networks and is used to 

normalize classification scores. It is defined as: 
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With    being the vector of the SVM classifications scores (  
      

 
) of the m SVMs for 

each of the m classes in the training set, for a z-pixel p of coordinates (x,y).    ( 
 )  is the 

softmax function evaluated for class i on the classifications scores of z-pixel p. We call 
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 )) the vector containing the m softmax evaluations of each class for 

a z-pixel p. The softmax function restricts the scores to the interval [0, 1], where the initial 

SVM classification scores could be any element of  . The second interesting property of the 

softmax vector is that the sum of its elements ∑    (  ) equals one. For those reasons the    

vector can be interpreted as a probability distribution, and   ( 
 ) as the probability that pixel 

p is of class i. The    vector can also be seen as a sort of composition of the signature of z-

pixel p in terms of the archetypal signatures for each of the classes. The confidence map   is 
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constructed for any of its pixel of coordinates (x,y) from the softmax vectors of the 

corresponding z-pixel p as the highest softmax score for that z-pixel: 

 (   )   ‖  ‖  

The confidence maps can be seen in the results in section 4.2 and inform the experimenter or 

a downstream algorithm on the reliability of different parts the classified image. The class 

map    defined as   (   ) =   ( 
 ) of a specific class i can be used to improve 

segmentation as we will see in section 5.3. 

4.2 Results 
The results presented here are classification results obtained on different organisms. In section 

5 I present how these results can be used to segment cells. Unless otherwise specified, the 

results were obtained on different stacks than the ones used for training the SVMs 

4.2.1 Escherichia coli – Mother Machine 

The mother machine type of Z-stacks are the ones I worked on the most since I did most of 

my work on the toggle switch in this microfluidic device. The SVMs were trained to identify 

6 classes: 

 Inside: The inner part of the cells. 

 Membrane: The outer part of the cell.  

While the distinction between those two parts of the cells is not strictly necessary and 

a single class for the entire cell gives equivalent results, this partition  of the cell 

simplifies segmentation, and can be used for simple watershedding as demonstrated in 

section 5.1. 

 Halo: The region of the mother machine chambers that is in between the cells and the 

PDMS wall. 

 PDMS wall: The PDMS wall of the chambers. 

 Chamber: Empty mother machine chambers. 

 Empty: Empty parts of the image. 

The training set was constructed with regions in the vicinity of the chambers because it was 

the only part of the images we were interested in. The classification is therefore not as good or 

relevant in other parts of the image. In section 5.1 we reduce the classified image to a region 

of interest (ROI) to avoid dealing with misclassified parts of the region. 

In the results presented on Figure 4-1, we can see that different regions in the image are 

correctly labeled, except for a few mistakes that are caused by glitches in the image. Such 

minor errors can be ignored altogether or can be corrected a posteriori with morphological 

rules. 



 IV -  Stack segmentation  

142 

 

 

Figure 4-1 Identification result on mother-machine type of images. Stacks of 100 frames with 0.1um z-steps were acquired on 

Mustard with a 100X oil objective, in transmitted light. On the classification maps we can see that the procedure correctly 

labels almost all z-pixels in the mother machine chambers, but performs poorly on the rest of the image. This is because the 

training set was constructed only for the chambers part of the image since this is the only part we are interested in. On the 

confidence map, the softmax score of the classification is represented as a heat map. We can see that the confidence drops in 

the areas of the image the algorithm was not trained for. The confidence also drops at the boundary between different regions 

of the image. 

An interesting aspect of the WTA-SVM technique used here is that it provides us, for each z-

pixel, with scores for each of the 6 classes. As can be seen on the confidence map of Figure 

4-1, the softmax classification score of the predicted class is lower at the boundary between 

classes: this is due to the transition from one class to the next as illustrated in Figure 4-2. This 

information can be exploited later for segmentation, as discussed in sections 5.2 and 5.3. 

 

Figure 4-2 Scores per class for each z-pixel. The softmax scores for each class are represented for each z-pixel along a line 

between points A and B in the close-up of the classification map. We can see how the scores transition from one class to the 

next as the line goes through the different regions. 
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The effect of the number of frames per stack on performance was also studied. From the same 

stack and labeled z-pixels, different subsets of frames in the 100 that counted the stack were 

used, with different subsampling methods. We used between 3 and 99 frames per stack and 

performed feature extraction, training, and mislabeling evaluation on those subsets (see 

section 3). Once the SVMs were trained, we classified entire frames and recorded the total 

classification time. We discovered that, while higher numbers of frames would tend to 

increase performance, the gains were marginal after 10-20 frames per stack (see Figure 4-3A). 

We were able to obtain segmentable results with only 7 frames per stack (see Figure 4-3B), 

which could also be brought down by identifying the most informative frames in the stacks 

from feature extraction. This result can be particularly interesting in cases where time is an 

issue (for example in multi-position time-lapse acquisitions) or in cases where cells are 

sensitive to long exposure times. 
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Figure 4-3 Performance for different numbers of frames per stack. The training procedure was performed for different sub-

samplings of the original 100-frames stacks. Linear sub-sampling in which the selected frames are sampled linearly, i.e. with 

a constant z-step between them, was performed from 3 to 100 frames per stack. Log subsampling, in which the z-step 

increases logarithmically the further away the sampling is from the in-focus image, was performed from 3 to 60 frames per 

stack. Finally, a so-called hand-picked method was used, in which I chose the frames that seemed to be the most informative 

in the stack. A fourth method which I have not implemented yet would be to use the results from the feature extraction step to 

infer which frames are the most informative. A) Different performances were evaluated against the number of frames in the 

stack. The performance increases significantly between 3 and ~20 frames, and from there the gains in performance are 

marginal. The Hand-picked method gives the best results and reaches its plateau at already 7 frames-per-stack. Training was 

performed without parallelization, while whole-frame classification was parallelized on CPU over 20 cores. 

B) Classification result for the three methods and selected numbers of frames. At 7 frames per stack the results from the 

Hand-picked method are already good enough for the segmentation procedure described in section 5.1.  
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4.2.2 Saccharomyces cerevisiae 

A number of people in the lab work on the budding yeast, Saccharomyces cerevisiae. While 

the size and shape of these cells make them slightly easier to segment than Escherichia coli 

cells, robust yeast cell segmentation is still an open problem. 

Five classes were created for this training set: 

 Inside: The inner part of the cells. 

 Membrane: The outer part of the cells. 

 Halo: White “halo” around the cells. 

 PDMS wall: The PDMS wall of the device 

 Empty: Empty parts of the image 

 In the results presented in Figure 4-4, we can see how the classification of yeast cell images 

produces little errors and makes the problem of yeast cell segmentation easier. Another 

interesting observation is that buds, the daughters of mother yeast cells, can be identified early 

on, and perhaps could even be connected directly to their mothers. The budding reproduction 

of yeast cells makes it difficult to reconstruct their lineage, and the possibility to automatically 

reconstruct lineages without using fluorescent markers would make the study of inherited 

behaviors much easier. 

 

Figure 4-4 Identification result on yeast monolayer microfluidics. Stacks of 100 frames with 0.1um z-steps were acquired on 

Mustard with a 100X oil objective, in transmitted light. Yeast cells are identified almost perfectly. The training set was not 

constructed properly for the PDMS wall class, and parts of it are identified as cell inside or cell halo, but this 

misclassification can be corrected a posteriori by spatial rules like the ones presented in section 5.2. 

 

4.2.3 Saccharomyces cerevisiae & Escherichia coli 

Another interesting property of this approach is the possibility to identify different types of 

cells in an image. In this example yeast and bacteria were mixed and put under agar pads. 

The five following classes were established for the training set: 

 Inside_ecoli: The inner part of bacteria. 

 Membrane_ecoli: The outer boundaries of bacteria. 
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 Inside_yeast: The inner part of yeast cells. 

 Membrane_yeast: The outer boundaries of yeast cells. 

 Empty: The empty parts of the images. 

Because there were a reduced number of stacks in this dataset and the focus varies between 

stacks of this dataset, I could not train the images on some stacks and then evaluate it on some 

others. I had to construct the training set on the same stack I ran the classification on, but I 

separated the images in 4 sub-regions of equal size, three of which I used for training and the 

fourth I used for classification. 

The stack also featured a reduced number of frames (35), which made the focus shifting 

method described in section 4.2.3 less efficient and classification quality worse overall. 

Confidence drops in at the interface between yeast cells and bacteria, but the quality of the 

classification is still sufficient for simple segmentation methods (see section 5.2 for a 

segmentation technique that re-labels misclassified bacteria once the yeast cells have been 

segmented. 

 

Figure 4-5 Identification result on monolayers of yeast and bacteria under agar pads. Stacks of 35 frames with 0.3um z-steps 

were acquired on St-Louis with a 60X oil objective, in transmitted light. Because the inside of yeast and bacteria are similar 

and the number of frames per stack in this dataset is lower than in others, parts of bacteria are misclassified as yeasts. This 

misclassification can be corrected a posteriori by spatial rules like the ones presented in section 5.2. 

4.2.4 HeLa cells 

Mammalian cells are notoriously difficult to segment. In this example, the boundaries of 

HeLa cells are identified and in section 4.2.4 those results are used to segment the cells with 

simple watershedding-based techniques. 

Three classes are used here: 

 Inside: The inner part of the cells. 

 Membrane: The outer part of the cells. 

 Empty: Empty parts of the image. 

The best results are illustrated in Figure 4-6. In this figure the segmentation is nearly 

sufficient for simple watershedding as described in sections 5.1 and 5.2. However the cell 
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boundaries are not all completely closed, and in section 5.3 I present how the information 

from the confidence maps can be used to segment the cells. 

 

Figure 4-6 Identification results on HeLa cells. Stacks of 150 frames with 0.3um z-steps were acquired on Marple with a 60X 

oil objective, in transmitted light. The classification result is of excellent quality and the cells are almost segmented already. 

In section 5.3 I discuss a method that uses the confidence maps for closing the contours of the cells and segmenting them. 

Mammalian cells have a tendency to clump together and the boundaries are not always as 

nicely delimited as in the in-focus image of Figure 4-6. In Figure 4-7 one of the worst results 

is presented: Boundaries are not as well-delimited, and at the interface between the empty 

region and the cells, the classification confidence drops. Although the technique presented in 

Section 5.3 is still able to segment the cells well, over or under- segmentation can occur. 
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Figure 4-7 Identification results on HeLa cells. Stacks of 150 frames with 0.3um z-steps were acquired on Marple with a 60X 

oil objective, in transmitted light. Here the quality of segmentation is a bit lower, especially around the empty part of the 

image. In section 5.3 I discuss a method that uses the confidence maps for closing the contours of the cells and segmenting 

them. 

5 Segmentation 

I do not consider cell segmentation to be part of this algorithm, because almost all types of 

cell segmentation techniques can be used downstream of this classification/identification step. 

Traditional methods like watershedding or active contours can be used, or even deep learning 

approaches, although if one is to go through the trouble of implementing a deep learning 

algorithm, with a little extra effort the performance should be greatly improved by fusing the 

identification and segmentation step as I discuss in section 7. 

However, here I will present simple implementations of cell segmentation to illustrate how 

easy cell segmentation becomes once the different parts of a microscopy image are identified, 

but also to illustrate how confidence maps and classification scores can be used to improve 

segmentation. 

It should be noted that none of the segmentation procedures presented here use active 

contours or deformable models. Hence no assumption on the shape of the cells is made by the 

experimenter, which should improve the segmentation performance if chosen properly. 

5.1 Escherichia coli – Mother Machine 
This example illustrates the simplest form of segmentation that can be used to identify single 

cells in classified images. I will apply this procedure to the results described in section 4.2.1 

because it is the most relevant to this thesis, although a similar approach can be used on the 

results presented in section 4.2.2.  

A simplified form of 2-step watershedding is applied to the classified image as follows: The 

different watershedding objects/regions are seeded as the “cytoplasm” regions of the bacteria 

and are then spread into the membrane regions until they connect, thus delimiting the borders 

of each cell. The procedure as well as the results are described in Figure 5-1. 
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Figure 5-1 A Seed-based watershedding method is used to segment cells from the classification map. The halo, PDMS wall 

and chamber regions are removed and re-labeled as empty. A region of interest (ROI) is drawn to avoid the parts of the 

classification map that are mislabeled. Another procedure could be to identify the chambers first, from the PDMS wall class, 

and use those as ROIs. Only regions of the inside class that are within a membrane contour are used as seeds, and a 

morphological opening of 2-pixels radius is applied to clean the image. The seed-based watershedding algorithm is applied to 

expand the seeds back into the classes inside and membrane and identify single cells. 

This simple procedure produced perfect segmentation on mother machine type of 

acquisitions, and excellent (>90%) results on monolayers of both bacteria and yeast cells. 

5.2 Saccharomyces cerevisiae & Escherichia coli 
In this example I will illustrate how spatial or morphological rules can be used to correct 

misclassification errors. The segmentation presented here is used on the results presented in 

section 4.2.3. The only morphological assumptions that is made here is that the “inside_yeast” 

class should be surrounded or almost entirely surrounded by a region of the 

“membrane_yeast” class. Based on this assumption, we filter out regions of both the 

“inside_yeast” class and “membrane_yeast” class that do not respect this rule, and use a 

watershedding procedure similar to the one described in section 5.1 to identify yeast cells. 

Then, the scores of the “inside_yeast” and “membrane_yeast” classes are removed from the 

   classification vectors to form the new     . The softmax vectors     are then re-computed 

for those new classification scores. The z-pixels that were classified as part of the two 

removed classes but did not end up being part of the final identified yeast cells regions are re-

labeled as the next most-probable class in    . This way, z-pixels that were wrongly labeled 

as part of yeast cells are re-labeled as other classes, in most cases for the better. See Figure 

5-2 for an illustration of the segmentation results. 
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Figure 5-2 Identifying yeast and bacteria separately. The yeast cells are identified first in a procedure similar to the one 

described in section 5.1. Once yeast cells are identified, the yeast classes are removed and the mislabeled elements are re-

classified as the next highest-scoring class. Watershedding is applied again to identify bacteria. 

One of the advantages of this method, as already discussed in section 4.2.3, is that it can be 

used to segment images in which a mixture of cells are present, a result that has, to the best of 

my knowledge, so far eluded the field of single cell segmentation. This type of approaches 

could open the way to high-throughput quantitative analysis of ecosystems of cells. 

5.3 HeLa cells 
In this example I will illustrate the use of information from the class maps, and in particular 

the class map for the membrane class, to improve segmentation performance in the results 

presented in section 4.2.4. Because the membrane regions in the classified images do not 

completely encircle all the cells in the image, instead of using the z-pixels that are strictly 

identified as membrane by our WTA-SVM approach, we will use the class map for the 

membrane to identify which z-pixels are most likely to be the contour of the cells. 

The first step in the process is to obtain a rough estimate of the cell centers by eroding the cell 

objects with a structuring element of variable size (see section 1.1). This step is actually 

crucial because the size of the structuring element is the only parameter that is set arbitrarily 

by the experimenter. Too big a structuring element will remove small cells, but if it is too 

small it may not separate cells that are connected on the classified image. 

From those reduced cell regions, the seeds are expanded back into the confidence map until 

they connect. The segmentation is excellent for the first stack in Figure 5-3, with only minor 

errors such as removal of cells on the outer parts of the image. In Figure 5-4 however, 

although the result is well above what a typical single-image-based algorithm would do, either 

based on deformable models or deep learning, the segmentation is not perfect and is partially 

under-segmented. Deformable model methods applied to confidence maps might yield better 

results, but the limit of this SVM & Z-stacks approach might be reached. In section 7 in 

particular I discuss how a combination of this method with state-of-the-art deep learning 

methods could be used in conjunction with the Z-stack approach to yield better results. 
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Figure 5-3 Watershedding on the confidence map. This method uses the confidence map, and not the classification map, to 

segment cells. Here the classification does not completely close the contour of the cells. Seeds are identified from the lowest-

scoring elements of the Membrane confidence map and morphologically eroded to partition cells. The seeds are then 

expanded back into the membrane confidence map until they all connect. This method has the advantage of using information 

from the classification confidence instead of morphological rules. 

 

 

Figure 5-4 Watershedding on the confidence map. On this stack, the same procedure as in Figure 5-3 is applied. But seeds 

identification relies on arbitrary parameters, and the choice of the parameters can lead to under- or over-segmentation. Here 

the leftmost cell region is probably two different cells, but is not identified as such. 
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6 Towards 3D segmentation 

To my knowledge, there have been no algorithms proposed for 3D segmentation of cells in Z-

stacks of transmitted light images. While this problem is even more difficult than cell 

segmentation in a single focal plane, the possibility to segment colonies of cells freely 

growing in 3 dimensions would make the study of complex ecosystems of cells possible, or 

the evolution and growth of tissues, biofilms or embryo without requiring complex, and 

sometimes impossible, cloning procedures. 

In this section I present a slight modification of the procedure described in previous sections 

that gave encouraging results in this direction. I used stacks of Staphylococcus aureus and 

mammalian red blood cells in solution. One particularity of those stacks is that cells are not 

all in the same focal plane, with red blood cells being in-focus about 7 microns above the 

bacteria. Because of this wide variety in focus I decided to try to segment the cells in 3D. 

Instead of using the entire stack to train and segment the cells, I used only 20 frames around 

the focal plan of the different parts of the training set and trained the SVMs on those local 

signatures. I then ran the classification on all possible moving stack of 20 frames along the Z 

axis through the entire 300-frame stack. For each center frame the local stack would be 

classified and the classification scores were kept. 

In Figure 6-1, the in-focus frame, as well as the corresponding classification map, are 

represented for different local Z-stacks. The different parts of the image are correctly 

classified when they are in focus, but are incorrectly classified when out of focus. This error 

can probably be blamed on bad dataset construction, which is a tedious task in 3 dimensions, 

and also on the long computation times: The software has not been developed, and therefore 

not optimized, for this 3-dimensional approach, and the classification time for an entire stack 

is counted in hours. This puts a hard limit on the speed of development of this aspect of the 

algorithm. Furthermore, 3D convolutional neural networks might be more adapted to this type 

of application, as discussed in section 7. 

The classes used in this training set were the following ones: 

 Staph_inside: Inner part of Staphylococcus aureus. 

 Staph_membrane: Outer part of Staphylococcus aureus. 

 Red_blood_cell: Entire red blood cells. 

 Empty: Empty parts of the image. 
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Figure 6-1 3D segmentation. Stacks of 300 frames with 0.1um z-steps were acquired on Zurich with a 60X oil objective, in 

transmitted light. Both Staphylococcus aureus and mammalian red blood cells are imaged together in solution. The different 

cells are all on different focal plans, and a training set consisting in local subsamples of the stack was used to train an SVM 

architecture that can identify different signatures along the X and Y axes, but also along Z. The Staphylococci and red blood 

cells are correctly identified in their respective frames, but are mislabeled in others. 

7 Conclusion 

In this chapter I presented a machine-learning-based algorithm for image analysis inspired by 

techniques in hyperspectral imaging. The algorithm identifies regions of the image as part of a 

certain class of objects, which simplifies the subsequent segmentation process. It can be used 

on a variety of organisms without requiring any changes to the program itself, but only the 

design of new labeled training set. Simple image segmentation techniques can be applied to 

the classified images and provide segmentation performances on par with state-of-the-art 

segmentation algorithm. The algorithm also provides a “classification confidence” metric that 

can be useful to assess the quality of the identification results and adjust the segmentation step 

accordingly. It can be adapted to a variety of microscopy setups and to a variety of acquisition 

parameters and still provide satisfactory results. 

One of the advantages of this method is that SVMs typically require less samples for training 

than deep learning techniques (Liu et al. 2016) and, since they do not train on entire z-stacks 
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but on each z-pixel independently, it is not necessary to label entire stacks for training. In fact, 

we achieved results that were almost as good with only small regions of the stacks labeled (2-

5% of one stack labeled would already provide segmentable identification results over 

hundreds of other stacks). Although z-stacks can rapidly represent a significant amount of 

data to store for time-lapse experiments, which could limit the applicability of the method, it 

is possible to perform the identification online when the stacks are acquired and not store the 

stacks but only the identification results. We developed a Matlab script for online, parallel 

identification that can be used with our more general software framework described in chapter 

2. 

Although simple segmentation algorithms applied to identified images were sufficient to 

achieve state-of-the-art segmentation performance, the performance could be further 

improved by the use of active contour or deformable model techniques. Another combination 

with existing techniques would be the use of identified images as the input for a deep learning 

segmentation method, like the U-Net architecture (Ronneberger et al. 2015). However, as 

suggested by recent advances in hyperspectral imaging (Zhang et al. 2016) it would also be 

possible to perform the identification step through a deep learning approach. To my 

knowledge, there are no published examples of segmentation from hyperspectral data using a 

deep-learning based framework yet, and only identification problems have been studied so 

far. However combining the identification function and the segmentation function into a 

single neural network based on the U-Net architecture but with 3x3xN convolutional layers, 

with N being the number of frames per stack, instead of the 3x3 convolutional layers used in 

the original U-Net paper (see Figure 7-1). We started investigating this possibility but the 

necessary tools for 3D convolution had not been developed yet. A few months ago, the two 

main software libraries in deep learning implemented new functions that make 3D-

convolutions possible, making the development of such architectures an interesting extension 

to the work presented here. 

 

Figure 7-1 Possible architecture for a deep learning approach of Z-stack segmentation. Instead of 2-dimensional 

convolutional layers, 3-dimensional convolutional layers can be used as the first level in a U-Net like network (see section 

1.2.3 and Figure 1-6) to identify single cells in an image. 

Finally, robust, unsupervised and fast segmentation of any type of cells in timelapse 

fluorescence images is a quantum leap, not only for external control of gene expression at the 

single-cell level where online cell segmentation and tracking is crucial, but also more 
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generally for quantitative biology the possibility to generate single-cell data robustly and with 

minimal human inputs would allow for a finer level of analysis of gene expression in gene 

regulation networks at the population level but also, with sufficiently good data, at the lineage 

level. 
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1 Contributions 

In this dissertation, I presented several tools for implementing a platform for single-cell 

control of gene expression in bacteria. I propose this platform to control a bistable, 2-inputs 2-

outputs genetic circuit, the genetic toggle switch, to illustrate the possibilities offered by 

external control of gene expression, but also to study the dynamics of this fundamental 

network. A seducing aspect of the control results presented here is that a diffcult task like 

stabilizing the genetic toggle switch in its unstable area was performed with a simple control 

framework and minimal a priori knowledge of the controlled system. In general, the shift of 

the implementation of the regulatory process from in vivo to in silico allows for faster 

implementation-experimentation cycles, and more importantly allows for the development of 

control strategies that are significantly more complex than what can currently be designed for 

in vivo regulation. 

The online single-cell aspect of the platform and acquired data presented here is also 

important. Single-cell data measures gene regulation networks dynamics at a finer level of 

details than population or flow cytometry measurements, and is crucial for the study of some 

aspects of gene expression. For example distinguishing intrinsic and extrinsic noise in the 

dynamic study of stochastic gene expression would be impossible without long-term single-

cell definition. The study of inheritance in populations of cells would also be impossible 

without single-cell data, tracking, and lineage reconstruction in timelapse microscopy images. 

In this study, controlling a multistable system like the toggle switch would not have been 

possible without single-cell timelapse data: On one hand, if fluorescence had been extracted 

from timelapse data at the population level, like in (Fracassi et al. 2016; Fiore et al. 2013) , 

and not at the single-cell level, it would have been impossible to distinguish cells in the 

unstable area from a mixed population of cells in either of the two basins of attraction, since 

the fluorescence in those states would have been averaged. On the other hand, flow cytometry 

or similar methods used in other control platforms (Melendez et al. 2014; Milias-Argeitis et 

al. 2011; Milias-Argeitis et al. 2016) would not have provided the history of the measured 

cells and it would have been impossible to know whether cells were really maintained in the 

unstable area or simply transiting through it. 

With this platform, we studied the possibility of real-time control on a synthetic bistable gene 

regulation network, the LacI-TetR genetic toggle switch. As illustrated in the state-of-the-art 

of this thesis, toggle switches, and multistable systems in general, are known to play a central 

role in cellular decision-making, and to be a key component of synthetic biology circuits. We 

showed two approaches to maintain this bistable genetic circuit close to its unstable 

equilibrium state: closed-loop control and periodic stimulation. We demonstrated that single-

cell control of a bistable system can be achieved with relatively simple control frameworks 

and very little a priori knowledge of the system. We also demonstrate the possibility to 

perform multiple-input-multiple-output control studies of genetic networks, which would 

facilitate and accelerate the examination of internal network dynamics. Finally, the dynamic 

stabilization of an entire population of toggle switch cells in the unstable area of the system in 

open-loop experiments is a new observation that suggests that multistable genetic networks 

could be extracted from, and maintained outside of, their stable states without observing their 
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state in real-time. Another implication is that gene regulation networks can feature hidden 

stable states that could occur because of dynamic stabilization phenomena. Therefore, with 

the advent of the dynamic study of gene regulation networks, it should be possible to look for 

such effects that could not be discovered throughout the simple study of static connections 

between different elements of a gene regulation network. 

One of the important aspects of single-cell control of gene expression is the ability to segment 

and track single cells. In the previous chapter of thesis I presented a new concept for 

automated cell segmentation. An untapped amount of optical information about the objects 

observed through a microscope is hidden in focal planes above and below the focal plane of 

the specimen. I developed a machine-learning algorithm that exploits this information to 

accurately identify regions of the image as part of different classes of objects. The procedure 

can be applied to mixtures of various types of objects like yeast cells, bacteria, mammalian 

cells, but also microfluidic structures. I also demonstrate that with this identification of the 

different regions of the image cell segmentation is facilitated and can be achieved with 

rudimentary image analysis tools. The development of machine learning-based tools for 

robust image analysis should lower the necessary efforts to control and investigate new gene 

regulation networks at the single-cell level in new organisms. 

2 Limitations 

The approach, of course, has its limitations. The use of chemical inducers like IPTG and aTC 

forced us to modify the host strain to ensure it would not interfere with the concentrations of 

inducers applied to the cells. The modifications increased delays in our system which limited 

the control performance. It also made the cells less more sensitive to environmental stresses, 

which also made control experiments more challenging since the cells had a tendency to 

filament during experiments. The use of chemical inducers should not be abandoned however, 

but used in conjunction with optogenetic induction mechanisms to expand the number of 

possible input knobs. Optogenetics and chemical inducers can also be used to examine the 

interplay between environmental changes and intracellular phenomena. 

Also, the platform as it is implemented now only controls fluorescence level, and not actual 

proteins levels or the level of some biologically relevant element. It appears that in all 

applications of external control platforms so far, the state variable that is actually controlled is 

the one that is directly measurable, i.e. fluorescence. It is possible to estimate the levels of the 

system variables that are not directly measurable though, through state estimation techniques 

that have been part of control theory for a long time. In (Uhlendorf et al. 2012; Milias-

Argeitis et al. 2011; Fiore et al. 2015; Milias-Argeitis et al. 2016) such state estimation filters 

were used, to not only estimate the state of the observed fluorescent probes that were being 

controlled, but also estimate the state of internal variables of their models. Those internal 

variables could also be controlled. In biological systems, most often the variable/process to 

control is not directly measurable and its observation is hidden behind intricate dynamics and 

noise. The ability to control hidden state variables in gene regulatory networks would be a 
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remarkable development in external cell control and would expand the area of its possible 

applications. 

The application of model-predictive control has not been performed on our control problem. 

Although plugging this new controller into the platform would be facilitated by its modular 

structure, and we now have the knowledge necessary to establish a new model of the 

dynamics for controlling our toggle switch (since models used for model-predictive control 

are usually simpler than the one we have described here) we have not experimented with this 

approach yet, except in preliminary in silico studies. One of the possible extensions of the 

work presented here would be the analysis of control performance of the genetic toggle switch 

with this type of approach. 

Several limitations are also inherent to the various elements of the platform. In the next 

section I discuss recent developments in various related domains that might trigger other 

progresses in the field of external control of gene expression. 

3 Developments of the control platform 

The field of in silico cybergenetics has emerged from recent developments in microfluiduics, 

molecular biology, systems biology, image analysis and in vivo measurement automation that 

made the assembly of external control platforms possible. Naturally, the range of applications 

of the field is going to expand with progresses made in those areas over the years to come. 

Some recent progresses have not been integrated to the platforms yet, or only partially, and 

here I am going to discuss some of those recent advances that could benefit our domain. 

3.1 Active microfluidics 
In our platform, and in all microfluidics-based platforms used for control so far, the valves 

and mixing apparatus were not fully integrated to the chip. It is possible however to integrate 

various valves and pumps to the microfluidic device (Unger et al. 2000; Li et al. 2005; 

Sundararajan et al. 2005). Those mechanisms have since been used to develop high-

throughput labs-on-a-chip for chemistry and molecular biology, but they have also been used 

successfully for high-throughput studies of gene expression in live cells (Sorre et al. 2014; 

Dénervaud et al. 2013). Such systems could be used in control platforms to parallelize the 

study over different gene networks, different strains, or different independent stimulations. 

3.2 Optogenetics 
Optogenetics is a biological technique which involves the use of light-sensitive proteins to 

control intracellular processes, such as gene expression, protein recruitment, or enzymatic 

activity. The field is relatively recent, with the first system for controlling gene expression in 

yeast (Shimizu-Sato et al. 2002) appearing in the early 2000s. Over the following decade 

other optogenetic systems were developed in bacteria (Levskaya et al. 2005; Tabor et al. 

2011; Kaberniuk et al. 2016) and mammalian cells (Strickland et al. 2008; Gunaydin et al. 

2010; Toettcher et al. 2011a) to control either gene expression, signaling, or enzymatic 

activity.  
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Although optogenetic has been used in some control platforms (Milias-Argeitis et al. 2011; 

Melendez et al. 2014; Milias-Argeitis et al. 2016) its integration into microfluidic platforms is 

more difficult, although not impossible (Renault et al. 2015). Integrating optogenetic 

actuation into the light path of the microscope makes it even possible to illuminate the cells 

with chosen patterns (Levskaya et al. 2009; Yang et al. 2013), which would open the door to 

independent single-cell actuation of all cells within a population. 

3.3 Fluorescence  
Fluorescent probes design has gone through a rebirth in the last few years with the advent of 

super-resolution imaging (Mishin et al. 2015). One of the interesting developments for 

external control of gene expression is that new fluorescent probes have been developed that 

span new regions of the visible spectrum, therefore making it possible to observe higher 

numbers of fluorescent proteins at once. A promising result in this regard is the expansion of 

the space of discrimination between proteins into a new dimension: Time-modulation of light 

inputs, in addition to the traditional discrimination through the wavelengths of excitation and 

emission of the proteins, should make it possible in the near future to discriminate between a 

number of fluorescent proteins never reached before (Querard et al. 2015). Other remarkable 

advances in this direction are made to expand the usable spectrum for illumination and 

observation into the infra-red (Filonov et al. 2011). But infrared fluorescent proteins do not 

only expand the range of usable wavelength, they also permit deeper penetration of the light 

input into biological materials, and could be used in the future to image and control cells or 

cell populations inside colonies, biofilms or even tissues. The development of photoacoustic 

probe proteins goes even further in this direction, recently making the observation of gene 

expression up to 10 millimeters deep within tissues possible in live mice at high spatial 

resolution and in 3 dimensions (Yao et al. 2015). 

The problems of fluorescent protein maturation delays and photobleaching limit the resolution 

of discernable dynamics in timelapse fluorescent imaging, and this can reduce the control 

performance. Fast-maturing fluorescent proteins have been developed over the years (Bevis & 

Glick 2002; Fisher & DeLisa 2008) but a recent shift in the field of fluorescent probe design 

that solves both maturation delays and bleaching issues uses so-called fluorogen-activating 

proteins (Schwartz et al. 2015; Plamont et al. 2016): Instead of waiting for the protein to fold 

completely for the chromophore to be activated, a synthetic chromophore is provided in the 

growth media. Fluorescence is activated by the genetically-encoded protein, which is simpler 

and smaller than fluorescent proteins and does not require chromophore maturation. 

3.4 Image analysis 
Image analysis was discussed extensively in chapter 4. New techniques for cell segmentation 

and tracking were developed in recent years, and the emergence of machine learning methods 

is a game-changer in the field, not only in cell segmentation but also in other sub-domains of 

image analysis (LeCun et al. 2015). Beyond the cell segmentation methods proposed in this 

thesis and in the U-net architecture (Ronneberger et al. 2015), machine learning could be used 

for robust tracking and lineage reconstruction, as such methods have been applied to similar 

problems in other areas of image analysis (Wang & Yeung 2013; Shen & Liu 2008). Robust 

cell segmentation, tracking and lineage reconstruction combined with the single-cell 
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optogenetic control procedure described earlier, would open the door to the study of 

epigenetic and transmission phenomena in gene regulation networks within populations of 

cells. 

3.5 Cloning and genome engineering 
In our study, the cellular chassis is considered part of the study. Indeed, now that a cellular 

chassis has been developed for long-term control in Escherichia coli with the lac and tet 

systems, other circuits can be constructed and transformed in this host cell for control 

experiments. The development of such chassis strains is a tedious process and can be 

accelerated by recently developed techniques in DNA manipulation and cloning. This also 

applies to the development of synthetic circuits for control, or to the integration of actuation 

and observation elements in the gene regulation networks to study. Although external control 

platforms require much less modifications of the genome or less complex synthetic networks, 

cloning and genome engineering are still necessary, and any progress made in this direction 

would benefit the study of those systems. 

The recent revolutions of the ZFN, TALE and CRISPR/Cas9 systems (Gaj et al. 2013) are of 

course possible ways to speed up the control workflow. But not only can those systems be 

used for genome engineering, they can also be used as custom recombinases, transposases, 

and more importantly transcription factors (Kabadi & Gersbach 2014). The possibility to 

design custom-target transcription factors would make it possible to control the dynamics of 

arbitrary genes in gene regulation networks. Recently, a photoactivable version of the 

CRISPR/Cas9 system was developed for optogenetic genome editing (Nihongaki et al. 2015), 

and one can expect the design of custom optogenetic transcription factors to become possible 

in the near future. 

New cloning techniques developed over the past decade, like the Golden Gate technique 

(Engler et al. 2008) and its standardized version the Modular Cloning technique (Weber et al. 

2011), or the Gibson assembly (Gibson et al. 2009) made it faster and easier to assemble long 

circuits into plasmids, which in turn can speed up the workflow of control-based analysis of 

genetic networks. De novo synthesis also became one of the preferred method for developing 

new circuits (Kahl & Endy 2013) thanks to a drop in price over the past few years, and we can 

hope that these methods will eventually replace the tedious process of parts assembly in the 

long run.  

4 Perspectives 

In silico feedback control of biological processes in vivo has just emerged recently as I have 

detailed in the state-of-the-art of this dissertation, but it already sparked interest in the 

community (Del Vecchio et al. 2016) with possible applications speculated in medicine 

(Menolascina et al. 2012), optimal experimental design (Ruess et al. 2015; Ruess et al. 2013), 

metabolic engineering (Shiue & Prather 2012), or even space exploration (Menezes et al. 

2015). It has to be noted though, that the work I presented here should be seen as a proof-of-

concept implementation of a feedback control system for gene expression of multistable 
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systems in bacteria, and significant work remains to be done to actually apply feedback 

control systems for the generation of precise perturbations of any chosen biological system. In 

this final section however, I will detail possible long-term applications of in silico 

cybergenetics. 

The recent success of systems biology illustrates the importance of investigating not only the 

structure and function, but also the dynamics of biological systems. In this respect, recent 

progresses in cloning, genome engineering and custom transcription factors fabrication should 

make it possible to control arbitrary genes in endogenous gene regulation networks to dissect 

their dynamics. Another interesting domain progressing quickly is the field of iterative, 

optimal experimental design. Given some initial information on a biological system, along 

with a defined objective (e.g. estimating the parameters of a model of the system, being able 

to perform the best predictions of a given situation etc.), it is possible to optimize the choice 

of experiments to be conducted to reach that objective. This method is particularly relevant to 

reverse-engineer complex genetic networks for which intuition is not sufficient to estimate the 

best course of action to extract a maximum of information out of all the expectable 

consequences of given perturbations. Control platforms could be used as automated tools for 

optimal experimental design to achieve on-the-fly, optimal, and possibly high-throughput 

scrutiny of endogenous networks. 

Another closely related area of research that could benefit from external control of gene 

expression is circuit testing and characterization. By automating the process and parallelizing 

the platforms, library of circuits could be tested in different settings, with different dynamic 

perturbations. A significant obstacle for the construction of novel functions in synthetic 

biology is the integration of low-level modules together to obtain high-level signal processing 

functions in the biochemical network. Because the dynamics of the different modules are 

often poorly characterized, as we saw with the genetic toggle switch in this thesis, assembling 

them together to produce a desired function is often a difficult task. Parallelized control 

platforms could be used to characterize precisely those modules, and the inferred models 

could be used to predict the behavior of assembled circuits. 

In a different domain, bioreactors used for industrial production of chemicals of interest are 

notoriously difficult to calibrate and batch-to-batch reproducibility and yield maximization 

are often imperfect (Polizzi & Kontoravdi 2015). External control of gene expression could 

help solve these problems (Milias-Argeitis et al. 2016) and lower the costs of production of 

the chemicals by minimizing chemical inducers and culture costs. Several problems remain to 

scale up the processes described in batch culture control of gene expression, especially input 

delivery, but this should be one of the most direct contributions of current gene expression 

control platforms to the industry. 

One related domain where control platforms could also be applied in the near future is 

metabolic engineering. It has been shown that the yield of synthetic metabolic pathways can 

be optimized by integrating control loops between the metabolic layer and the genetic layer of 

the patway (Zhang et al. 2012; Oyarzùn & Stan 2012). Optogenetic tools for driving 

enzymatic activity already exist (Beyer et al. 2015) and a plethora of biosensors for various 
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metabolites have been developed over the years (Okumoto et al. 2012; Su et al. 2011; Polizzi 

& Kontoravdi 2015). The seminal work of (Toettcher et al. 2011b) in this regard proves that 

similar intracellular processes can be controlled over short timescales, and it should be 

possible to adapt control platforms to the synthesis of chemicals of interest like biofuels. 

Finally the recent development of infrared fluorescent proteins (Filonov et al. 2011) and 

photoacoustic tomography (Yao et al. 2015) makes it possible to observe gene expression in 

live mammalians, and with the development of those techniques, one of the possible future 

domains of applications for external gene expression control platforms is real-time control of 

gene expression in live animals, with possible biomedical applications. 

To summarize, in silico control of intracellular processes is still in its infancy, and we are still 

a long way from routine utilization of those methods to dissect genetic network dynamics, or 

to optimally produce chemicals of interest in bulk. On the other hand, this is the closest we 

have ever been to reaching those goals, and the field of in silico cybergenetics should play a 

major role in the years to come in the broader domains of synthetic biology and systems 

biology. Developing a platform for single-cell control of gene expression in bacteria, 

controlling a landmark bistable genetic network like the genetic toggle switch, and the 

surprising result of dynamic stabilization in a gene regulation network it entailed, will 

hopefully contribute to the development of the field into an established discipline.  
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The MoClo backbones, parts, transcription units and cricuits are presented here, as well as the 

chassis strains that were developed in this PhD as well as those that were transformed with 

synthetic circuit plasmids for control. Not all strains were used in this PhD nor were all Level 

2 MoClo plasmids transformed into specific strains. 

1 Plasmids 

1.1 Backbones 
The backbones are used to assemble the different levels of the MoClo process into. They are 

organized such that they always assemble in the same order. 

Name Level Short description Res Origin 
copy 
nb. 

pL0-P 0 
Level 0 standard promoter 
backbone Spec pUC 500-700 

pL0-U 0 Level 0 standard RBS backbone Spec pUC 500-700 

pL0-SC 0 Level 0 standard CDS backbone Spec pUC 500-700 

pL0-T 0 
Level 0 standard terminator 
backbone Spec pUC 500-700 

pL1-F1 1 
Level 1 standard #1 transcription 
unit Amp pUC 500-700 

pL1-F2 1 
Level 1 standard #2 transcription 
unit Amp pUC 500-700 

pL1-F3 1 
Level 1 standard #3 transcription 
unit Amp pUC 500-700 

pL1-F4 1 
Level 1 standard #4 transcription 
unit Amp pUC 500-700 

pL1-F5 1 
Level 1 standard #5 transcription 
unit Amp pUC 500-700 

pL1-F6 1 
Level 1 standard #6 transcription 
unit Amp pUC 500-700 

pL1-F7 1 
Level 1 standard #7 transcription 
unit Amp pUC 500-700 

pL1-F1a 1 
Level 1 low-copy #1 transcription 
unit Cm ACYC 10-12 

pL1-F2a 1 
Level 1  low-copy #2 transcription 
unit Cm ACYC 10-12 

pL1-F3a 1 
Level 1  low-copy #3 transcription 
unit Cm ACYC 10-12 

pL1-F4a 1 
Level 1  low-copy #4 transcription 
unit Cm ACYC 10-12 

pL1-F1c 1 
Level 1 low-copy #1 transcription 
unit Cm CDF 15-20 

pL1-F2c 1 
Level 1  low-copy #2 transcription 
unit Cm CDF 15-20 

pL1-F3c 1 Level 1  low-copy #3 transcription Cm CDF 15-20 
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unit 

pL1-F4c 1 
Level 1  low-copy #4 transcription 
unit Cm CDF 15-20 

pL2-1 2 Level 2 standard circuit backbone Kan pUC 500-700 
pL2-1a 2 Level 2 low-copy circuit backbone Cm ACYC 10-12 
pL2-1cc 2 Level 2 low-copy circuit backbone Cm CDF 15-20 
pL2-1cs 2 Level 2 low-copy circuit backbone Spec CDF 15-20 
 

Orange backbones were developed in-house to circumvent burden problems. 

1.2 Level 0 – Parts 
Level 0 parts are the basic building blocks of MoClo circuits. In our case a MoClo 

transcription unit is composed of 4 level 0 parts: Promoter (pL0-P plasmids), RBS/5’ UTR 

(pL0-U plasmids), Gene/coding sequence (pL0-SC plasmids), and Terminator (pL0-T). The 

overhangs of each of those parts are organized such that they assemble in the right order. 

Part no. Designation (Geneious) Designation (short) Description 

1 pL0-P LacO pLac lac promoter 

2 pL0-P TetO pTet tet promoter 

3 pL0-P J23119 j23119 consitutive promoter 

4 pL0-T pFAB801 FAB801 Terminator 

5 pL0-T pFAB822 FAB822 Terminator 

6 pL0-T pFAB816 FAB816 Terminator 

7 pL0-T pFAB815 FAB815 Terminator 

8 pL0-SC mKate2  mKate2 mKate2 fluorescent protein 

9 pL0-SC mEGFP mEGFP mEGFP fluorescent protein 

10 pL0-SC EYFP EYFP EYFP fluorescent protein 

11 pL0-SC LacI LacI LacI transcription factor 
12 pL0-SC TetR TetR TetR transcription factor 
13 pL0-U B0030 B0030 Ribosome binding site 

14 pL0-U B0031 B0031 Ribosome binding site 

15 pL0-U B0032 B0032 Ribosome binding site 

16 pL0-U B0034 B0033 Ribosome binding site 

17 pl0-SC mKate2::LacI SL mKate2::LacI mKate2-LacI fusion protein 

18 pl0-SC mKate2::LacI LL 
 

mKate2-LacI fusion protein 

19 pl0-SC LacI::mKate2 SL 
 

mKate2-LacI fusion protein 

20 pl0-SC LacI::mKate2 LL 
 

mKate2-LacI fusion protein 

21 pl0-SC mEGFP::tetR SL mEGFP::TetR mEGFP-TetR fusion protein 

22 pl0-SC mEGFP::tetR LL 
 

mEGFP-TetR fusion protein 

23 pl0-SC TetR::mEGFP SL 
 

mEGFP-TetR fusion protein 

24 pl0-SC TetR::mEGFP LL 
 

mEGFP-TetR fusion protein 

25 pl0-P J23110 j23110 consitutive promoter 

26 pl0-P J23111 j23111 consitutive promoter 

27 pl0-P J23112 j23112 consitutive promoter 

28 pl0-P J23113 j23113 consitutive promoter 

29 pl0-P J23114 j23114 consitutive promoter 
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30 pL0-U B0033 B0034 Ribosome binding site 

31 pL0-U B0035 B0035 Ribosome binding site 

32 pL0-U RBSswapAarI RBS swapper AarI RBS swapper 

33 pL0-U RBSswapEsp3I RBS swapper Esp3I RBS swapper 
34 pL0-SC_LacI-mKate2-OPE34 LacI_mKate2 mKate2-LacI operon 

35 pL0-SC_TetR-mEGFP-OPE34 TetR_mEGFP mEGFP-TetR operon 

36 
pL0-SC_LacI-mKate2-
STPSTRT 

 
mKate2-LacI operon 

37 
pL0-SC_LacI-mKate2-
STPSTRT 

 
mEGFP-TetR operon 

38 
pL0-LacI-
mKate2_opeRBSswap 

 
mKate2-LacI operon 

39 
pL0-TetR-
mEGFP_opeRBSswap 

 
mEGFP-TetR operon 

 

1.3 Level 1 – Transcription units 
Transcription units, made of different level 0 parts, express one or, in the case of operons, 

several genes downstream of a promoter. They are assembled together into level 2 circuits to 

form synthetic genetic networks. The level 1 assemblies are made into different backbones 

that are designed to assemble into a specific order: The overhangs on the backbones are 

organized such that a pL1-F1 transcription units will ligate to level 2 backbone on one end, 

and to a pL1-F2 unit on the other. A pL1-F2 unit assembles with a pL1-F1 and a pL1-F3 unit 

and so on until pL1-F7, which ligates back with the level 2 backbone, thus closing the 

assembly. Of course not all 7 level 1 units are necessary to construct a level 2 circuits, and 

one can assemble only one transcription unit into a level 2 backbone if they wish. 

Name Prom RBS CDS Term bckbn Res Ori Description 

  pL0-P pL0-U pL0-SC pL0-T 
pL1-
FX       

1.1 pLac B0034 mKate2 FAB801 pL1-F2 Amp pUC Single FP transcription unit 

1.2 pTet B0034 mKate2 FAB801 pL1-F2 Amp pUC Single FP transcription unit 

1.3 j23119 B0034 mKate2 FAB801 pL1-F2 Amp pUC Single FP transcription unit 

1.4 pLac B0034 mEGFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.5 pTet B0034 mEGFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.6 j23119 B0034 mEGFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.7 pLac B0034 EYFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.8 pTet B0034 EYFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.9 j23119 B0034 EYFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.10 pLac B0034 mEGFP::TetR FAB815 pL1-F2 Cm ACYC Single FP transcription unit 

1.11 pTet B0034 mKate2::LacI FAB816 
pL1-
F2a Cm ACYC Single FP transcription unit 

1.12 j23114 B0034 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC Single FP transcription unit 

1.13 CmR resistance cassette flanked by FRT sites pL1-F1 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.14 CmR resistance cassette flanked by FRT sites pL1-F2 Amp pUC 
Resistance cassette for chromosomal 
integration 
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1.15 CmR resistance cassette flanked by FRT sites pL1-F5 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.16 KanR resistance cassette flanked by FRT sites pL1-F4 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.17 KanR resistance cassette flanked by FRT sites pL1-F2 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.19 KanR resistance cassette flanked by FRT sites pL1-F5 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.20 pLac B0034 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.21 pTet B0034 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.22 intS 5' Homology region pL1-F1 Amp pUC 
homology region for intS chromosomal 
integration 

1.23 intS 3' Homology region #1 pL1-F3 Amp pUC 
homology region for intS chromosomal 
integration 

1.24 intS 3' Homology region #2 pL1-F6 Amp pUC 
homology region for intS chromosomal 
integration 

1.25 acrB 5' Homology region pL1-F1 Amp pUC homology region for acrA-B knockout 

1.26 acrA 3' Homology region #1 pL1-F3 Amp pUC homology region for acrA-B knockout 

1.27 acrA 3' Homology region #2 pL1-F6 Amp pUC homology region for acrA-B knockout 

1.28 pLac B0030 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.29 pLac B0031 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.30 pLac B0032 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.31 pLac B0033 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.32 pLac B0035 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.33 pTet B0030 mKate2::LacI FAB816 pL1-F3 Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.34 pTet B0031 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.35 pTet B0032 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.36 pTet B0033 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.37 pTet B0035 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.38 pLac RBS swapper AarI mEGFP::TetR FAB815 
pL1-
F3a Cm ACYC 

plac-tetR "wildcard"Toggle switch branch - 
Fusion 

1.39 pTet 
RBS swapper 
Esp3I mKate2::LacI FAB816 

pL1-
F4a Cm ACYC 

pTet-lacI "wildcard"Toggle switch branch - 
Fusion 

1.40 pLac B0030 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.41 pLac B0031 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.42 pLac B0032 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.43 pLac B0033 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.44 pLac B0034 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.45 pLac B0035 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.46 pTet B0030 LacI_mKate2 FAB816 pL1- Cm ACYC pTet-lacIToggle switch branch - operon 
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F2a 

1.47 pTet B0031 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.48 pTet B0032 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.49 pTet B0033 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.50 pTet B0034 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.51 pTet B0035 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.52 pLac RBS swapper AarI TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC 

plac-tetR "wildcard"Toggle switch branch - 
operon 

1.53 pTet 
RBS swapper 
Esp3I LacI_mKate2 FAB816 

pL1-
F2a Cm ACYC 

pTet-lacI "wildcard"Toggle switch branch - 
operon 

 

1.4 Level 2 – Circuits 
Level 2 circuits are assembled from level 1 transcription units are the final product of 

Modular Cloning. Some of the plasmids presented here were then transformed into the chassis 

strains. The orange element represents toggle switches. 

Name Pos. 1 Pos. 2 3 4 5 6 7 
Re
s 

Origi
n Description 

2.1   1.1           Cm ACYC 
Single transcription 
unit 

2.2   1.2           Cm ACYC 
Single transcription 
unit 

2.3 1.22   
1.2
1 

1.2
0 

1.1
9 

1.2
4   Cm ACYC 

Toggle switch - fusion 
proteins 

2.4 1.22 1.4   
1.2
0 

1.1
9 

1.2
4   Cm ACYC 

Fusion proteins 
testing 

2.5 1.22 1.2 
1.2
1   

1.1
9 

1.2
4   Cm ACYC 

Fusion proteins 
testing 

2.6 1.22 1.1     
1.1
9 

1.2
4   Cm ACYC 

Single transcription 
unit 

2.7 1.22 1.2     
1.1
9 

1.2
4   Cm ACYC 

Single transcription 
unit 

2.8 1.25 1.17 
1.2
6         Cm ACYC acrA-B knockout 

2.9 1.22 1.4     
1.1
9 

1.2
4   Cm ACYC 

Single transcription 
unit 

2.10 to 
2.45 

1.40 to 
1.45 

1.46 to 
1.51           Cm ACYC Toggle switches - operons 

2.46 1.52 1.53           Cm ACYC Toggle switch - "wildcard" 
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The numbering of the circuits of the library of toggle switches is as follows: 

  pTet-mKate2-LacI branches 

p
La

c-
m

EG
FP

-T
et

R
 b

ra
n

ch
es

 

 
1.46 1.47 1.48 1.49 1.50 1.51 

1.40 2.10 2.11 2.12 2.13 2.14 2.15 

1.41 2.16 2.17 2.18 2.19 2.20 2.21 

1.42 2.22 2.23 2.24 2.25 2.26 2.27 

1.43 2.28 2.29 2.30 2.31 2.32 2.33 

1.44 2.34 2.35 2.36 2.37 2.38 2.39 

1.45 2.40 2.41 2.42 2.43 2.45 2.46 

The greyed-out circuits could not be constructed. The orange circuit 2.31 is the selected 

circuit for the control experiments. 

2 Strains 

Name From Plasmid 
Chromosome 
integr. Gene deletions Description 

bPH_103 BW25113 
  

fliA fliA- strain from the Keio collection 

bPH_104 bPH_103 
  

fliA, lacY fliA- lacY- chassis strain 

bPH_121 bPH_103 
 

Z1: LacI+, TetR+ fliA fliA- lacI+ tetR+ chassis strain 

bPH_122 bPH_104 
 

Z1: LacI+, TetR+ fliA, lacY fliA- lacY- lacI+ tetR+ chassis strain 

bPH_123 bPH_121 2.1 Z1: LacI+, TetR+ fliA Population control strain 

bPH_124 bPH_121 2.2 Z1: LacI+, TetR+ fliA Population control strain 

bPH_125 bPH_122 2.1 Z1: LacI+, TetR+ fliA, lacY Population control strain 

bPH_126 bPH_122 2.2 Z1: LacI+, TetR+ fliA, lacY Population control strain 

bPH_127 bPH_104 
  

fliA, lacY, acrA, 
acrB 

fliA- lacY- acrAB- chassis strain 

bPH_128 bPH_122 
 

Z1 
fliA, lacY, acrA, 

acrB 
fliA- lacY- acrAB- lacI+ tetR+ chassis 

strain 

bPH_130 bPH_128 2.2 Z1 
fliA, lacY, acrA, 

acrB 
Population control strain 

bPH_129 bPH_127 2.3 
 

fliA, lacY, acrA, 
acrB 

Fusion toggle switch strain 

bPH_131 bPH_127 2.4 
 

fliA, lacY, acrA, 
acrB 

Fusion tests strain 

bPH_132 bPH_127 2.5 
 

fliA, lacY, acrA, 
acrB 

Fusion tests strain 
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bPH_133 bPH_128 
 

Z1, 2.6 
fliA, lacY, acrA, 

acrB 
Chromomal integration - single TU 

bPH_134 bPH_128 
 

Z1, 2.7 
fliA, lacY, acrA, 

acrB 
Chromomal integration - single TU 

bPH_135 bPH_127 
 

2.9 
fliA, lacY, acrA, 

acrB 
Chromomal integration - single TU 

bPH_136 bPH_127 
 

2.3 
fliA, lacY, acrA, 

acrB 
Chromomal integration - Fusion toggle 

bPH_137 bPH_127 2.38 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_138 bPH_127 2.10 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_139 bPH_127 2.17 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_140 bPH_127 2.46 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_141 bPH_127 2.24 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_142 bPH_127 2.31   
fliA, lacY, acrA, 

acrB 
Toggle switch strain 

bPH_143 bPH_127 2.15 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_144 bPH_127 2.16 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_145 bPH_127 2.22 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_146 bPH_127 2.27 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_147 bPH_127 2.13 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_148 bPH_127 2.18 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_149 bPH_127 2.28 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_150 bPH_127 2.37 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_151 bPH_127 2.43 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

 



 



 


