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Mass-wasting episodes in the geological evolution of the Azores islands: 

timing, recurrence, mechanisms and consequences 
 

 Large-scale flank collapses are recurrent in the geological evolution of volcanic ocean 

islands. Such catastrophic episodes of destabilization can be voluminous and generate large 

tsunamis, which may cause considerable damage and thus represent extremely hazardous 

events.  

 The Azores islands east of the Mid-Atlantic Ridge are located on the 

Eurasia(Eu)/Nubia(Nu) plate boundary, and therefore subject to structural control and seismic 

activity (historical events of magnitude up to ca. 7). However, prior to MEGAHazards Project 

(PTDC/CTE-GIX/108149/2008, funded by FCT, Portugal), large-scale flank collapses in the 

Azores were considered to be lacking, mainly due to the small dimension of the volcanic 

edifices. Here, we conclude unequivocally on the occurrence of such events in the Azores. 

 The present PhD thesis addresses the evolution of the Pico-Faial steep volcanic ridge, 

which sits on a major normal fault associated with the Eu/Nu diffuse boundary, focusing 

especially on the large-scale flank failures in Pico Island. Based on high-resolution sub-aerial 

and submarine Digital Elevation Models, new structural and stratigraphic data, and high-

resolution K-Ar dating on separated volcanic groundmass, we: (1) constrain the volcano 

stratigraphy of Pico; (2) reconstruct the major phases of growth and destruction in Pico and 

Faial islands in the last 200 kyr; (3) reconstruct the ca. 125 kyr evolution of the currently 

active large-scale slump in the SE of Pico Island; (4) provide new structural 

data/interpretations regarding the scarp that sharply cuts the S flank of Pico Stratovolcano; 

(5) report on the occurrence of large-scale failures in the N and S flanks of the Pico Island 

between ca. 125 and 70 ka, which generated large submarine debris deposits; and (6) propose 

that the role of the Pico-Faial ridge as a structure accommodating part of the extension on the 

diffuse Nu/Eu boundary has been consolidated in the last ca. 125 kyr. 

 Many factors favouring the development of such large-scale flank instabilities have 

been proposed in the literature, but their exact role and mutual contribution remain poorly 

understood. We here present an analytical solution for the cohesive Coulomb Critical Wedge 

theory applied to gravitational instabilities, and associated analogue simulations to test some 

structural implications of the model. We investigate the impact of several variables on the 

stability of volcanic flanks, including: wedge slope and dimensions, cohesion, internal 

friction along the basal detachment, and fluid overpressure. We conclude that: (1) the 
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steepening of the volcanic flanks and basal detachment lead to a decrease in the fluid 

overpressure ratio (fluid overpressure divided by lithostatic pressure) necessary to produce 

failure. (2) The decrease of the stabilizing effect of cohesion with increasing depth of the 

basal detachment favours the occurrence of deep-seated large-scale gravitational 

destabilization in basal detachments deeper than ca. 2000-2500 m (in volcanic edifices 

necessarily higher than 2500 m). For shallower basal detachments, the overpressure ratios 

required to induce failure are comparatively larger. For shallower basal detachments, steeper 

flanks and stronger edifice materials, shallow failure parallel to the edifice flank surface is 

favoured, instead of deep-seated deformation. (3) With increasingly deeper basal detachments 

(possible in larger volcanic edifices), while the impact of cohesion diminishes, the relative 

importance of basal internal friction for the stability of the edifice increases. 

 The investigation of the occurrence of large-scale mass-wasting in the Azores islands, 

and the modelling of the variables controlling the stability of the volcanic edifices are only at 

their first steps and will be further developed in the future.  

 

 

Keywords: Pico-Faial volcanic ridge; Azores Triple Junction; large-scale flank collapses; 

destabilizing factors, cohesive Critical Coulomb Wedge 
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Mass-wasting episodes in the geological evolution of the Azores islands: 

timing, recurrence, mechanisms and consequences 

Extended Abstract 

 Large-scale flank collapses are recurrent in the geological evolution of volcanic ocean 

islands. Such catastrophic episodes of destabilization can be voluminous and generate large 

tsunamis, which may cause considerable damage and thus represent extremely hazardous 

events.  

 The Azores islands east of the Mid-Atlantic Ridge are located on the 

Eurasia(Eu)/Nubia(Nu) plate boundary, and therefore subject to structural control and seismic 

activity (historical events of magnitude up to ca. 7). However, prior to MEGAHazards Project 

(PTDC/CTE-GIX/108149/2008, funded by FCT, Portugal), large-scale flank collapses in the 

Azores were considered to be lacking, mainly due to the small dimension of the volcanic 

edifices. Here, we conclude unequivocally on the occurrence of such events in the Azores. 

 The present PhD thesis addresses the evolution of the Pico-Faial steep volcanic ridge, 

which sits on a major normal fault associated with the Eu/Nu diffuse boundary, focusing 

especially on the large-scale flank failures in Pico Island. Based on high-resolution sub-aerial 

and submarine Digital Elevation Models, new structural and stratigraphic data, and high-

resolution K-Ar dating on separated volcanic groundmass we: (1) found evidence for large-

scale flank collapses; (2) reconstructed with unprecedented resolution the growth and 

destruction of Pico and Faial islands, focusing specially on the large-scale flank failures that 

affected Pico Island during the last 200 kyr. 

 Pico Island comprises three main volcanic systems, from older to younger: (1) the 

Topo Volcano, (2) the Fissural System, and (3) the Pico Stratovolcano. (1) The Topo 

Volcano is partly exposed in Pico’s SE flank, and is here dated between 186 ± 5 and 125 ± 4 

ka or 115 ± 4 ka. It was significantly destroyed by a N-directed large-scale flank collapse 

between ca. 125 and 70 ka. Offshore, a debris deposit was identified and interpreted as 

corresponding to this flank collapse. The deposit has a maximum length of 20 km and covers 

an area of ca. 150 km2. It comprises hectometre blocks, and has an exposed volume here 

estimated between 4 and 10 km3, although the actual volume probably exceeds 10 km3. 

During the same period, gradual deformation started in the SE flank of the Topo Volcano, 

producing a composite collapse structure: (1) a slump complex in the west, which is still 

active, and (2) a catastrophic flank collapse in the east. A first episode of deformation most 

probably occurred between ca. 125 and 115 ka, along the master fault of the slump. Between 
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ca. 115 and 75 ka, the scar was partially filled by volcanic products erupted from volcanic 

cones developed within the slump depression, and possibly from the early WNW-ESE 

Fissural System. Subsequent deformation in the slump area affected in part the filling units, 

leading to the individualization of secondary curved faults. Between ca. 125 and 69 ka, the 

eastern distal part of Topo Volcano's SE flank and the early sub-aerial sequence of the 

Fissural System experienced catastrophic flank collapse towards the S, which generated a 

large offshore debris deposit with a minimum run-out of ca. 17 km. More recent volcanic 

products have gradually masked the mass-wasting scars. The young Pico Stratovolcano grew 

in the westernmost sector of the island, at least since ca.  57 ka. Its southern flank has been 

partially destroyed by flank collapse(s), and subsequently covered by more recent volcano-

sedimentary products.  

 The evolution of the Pico-Faial volcanic ridge in the last 200 kyr has been marked by 

simultaneous volcanic growth and destruction in both Pico and Faial islands. While the Topo 

Volcano grew in Pico (ca. 186-125 ka) and was partially destroyed (ca. 125-115 ka), in Faial 

Island the period defined for major deformation in the Faial graben ended (ca. 360-115 ka), 

and a central volcano started growing inside the graben (ca. 130-115 ka). This rapid and 

simultaneous evolution of Pico and Faial islands constitutes evidence for the accommodation 

of extension associated with the Nu-Eu plate boundary on this ridge during the last 200 kyr. 

 Many factors favouring the development of such large-scale flank instabilities have 

been proposed in the literature, but their exact role and mutual contribution remain poorly 

understood. We here present an analytical solution for the cohesive Coulomb Critical Wedge 

theory applied to gravitational instabilities, and associated analogue simulations to test some 

structural implications of the model.  We investigate the impact of several variables including 

wedge geometry, cohesion, coefficient of internal friction and fluid overpressure ratio (fluid 

overpressure divided by lithostatic pressure) on wedge stability. We focus especially on how 

cohesion influences the stress regime within the wedge, by inhibiting deformation and 

constraining failure location. We show that the stability of a cohesive wedge under fluid 

overpressure is size-dependent (the influence of cohesion is more significant for smaller 

wedges), while the stability of a non-cohesive wedge under fluid overpressure is size-

independent. The stabilizing effect of cohesion is more significant for the most superficial 

domain of the wedge. The thickness of this stable superficial layer decreases with increasing 

fluid overpressure ratio. Within the layer impacted by cohesion, the principal compressive 

stress rotates and the expected faults are listric. If the thickness limit expected for this layer is 

reached within the wedge (given the properties of the materials, the fluid overpressure ratio, 
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and the configuration of the wedge), the generated listric faults become parallel to the 

wedge's upper surface at the thickness limit. This limit means that the material strength 

reached the failure envelope.  

 We assess the stability of the wedge along a basal detachment, through comparison of 

the forces driving and resisting the downslope movement. We verify that the stabilizing effect 

of cohesion is accentuated in the foremost thin domain of the wedge, defining a required 

Minimum Failure Length (MFL). This MFL decreases for smaller cohesions, smaller 

coefficients of internal friction, larger fluid overpressure ratios, steeper upper surface and 

basal detachment of the wedge.      

 Although this analytical model does not integrate the local effects of topography in 

the stress field, we applied it to gravitational instabilities in volcanic systems, considering as 

variables: volcanic edifice slope and dimensions (volcanic flanks dipping 7-15°, basal 

detachment surfaces dipping 0-2°, maximum wedge height above the basal detachment up to 

5500 m), cohesion (volcanic wedge: from 0 to 2.6 MPa; basal detachment: from 0 to 0.9 

MPa), coefficient of internal friction (volcanic wedge: 0.45; basal detachment: 0.18 and 

0.32), and fluid overpressure (ranging from null to higher than the lithostatic pressure). We 

conclude that: (1) the steepening of the volcanic flanks and basal detachment lead to a 

decrease in the fluid overpressure ratio necessary to produce failure; (2) the decrease of the 

stabilizing effect of cohesion with increasing depth of the basal detachment favours the 

occurrence of deep-seated large-scale gravitational destabilization in basal detachments 

deeper than ca. 2000-2500 m (in volcanic edifices necessarily higher than 2000-2500 m). For 

shallower basal detachments, the overpressure ratios required to induce failure are 

comparatively larger. For shallower basal detachments, steeper flanks and stronger edifice 

materials, shallow failure parallel to the edifice flank surface is favoured, instead of deep-

seated deformation; (3) With increasingly deeper basal detachments (possible in larger 

volcanic edifices), while the impact of cohesion diminishes, the relative importance of basal 

internal friction for the stability of the edifice increases. 

 Besides the main work reported above, additional field and laboratory (K-Ar dating) 

works were performed in the scope of the MEGAHazards Project. The published works 

directly related to the subject of this thesis are included in this manuscript. These concern the 

reconstruction of Faial's volcano-tectonic evolution, and the study of current deformation in 

the large-scale slump that affects Pico's SE flank. The results of the GPS campaigns 

performed in Pico and Faial Islands were additionally included in published works regarding 
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the diffuse Nu-Eu plate boundary and the WSW-ENE associated transform structures. These 

published works are included as annex files. 

 The investigation of the occurrence of large-scale mass-wasting in the Azores islands, 

and the modelling of the variables controlling the stability of the volcanic edifices are only at 

their first steps, and will be further developed in the near future. 

 

 

Keywords: Pico-Faial volcanic ridge; Azores Triple Junction; large-scale flank collapses; 

destabilizing factors, cohesive Critical Coulomb Wedge 

 

 

  



vii 
 

Episódios de movimento de massa na evolução geológica das Ilhas 

Açorianas: idade, recorrência, mecanismos e consequências 
 

 Movimentos de massa de larga escala são recorrentes na evolução geológica das ilhas 

vulcânicas oceânicas. Quando catastróficos, estes episódios de destabilização podem ser 

volumosos e gerar grandes tsunamis, capazes de causar estragos consideráveis, e portanto 

constituem eventos de perigosidade considerável. 

 As ilhas dos Açores a Este da Crista Médio-Atlântica distribuem-se ao longo da 

fronteira de placas Euroasia(Eu)/Nubia(Nu), e estão por isso sujeitas a controlo estrutural e 

actividade sísmica (eventos históricos com magnitude até ca. 7). Contudo, antes do Projecto 

MEGAHazards (PTDC/CTE-GIX/108149/2008, financiado pela FCT, Portugal), 

considerava-se que os Açores não teriam sofrido colapsos de flanco catastróficos, devido às 

pequenas dimensões das ilhas. Aqui concluímos, inequivocamente, que os Açores sofreram 

colapsos catastróficos. 

 A presente tese de doutoramento aborda a evolução da íngreme crista vulcânica Pico-

Faial, desenvolvida sobre uma importante falha normal associada à fronteira difusa Eu/Nu, 

dando especial atenção à ocorrência de grandes colapsos de flanco na ilha do Pico. Com base 

em Modelos Digitais de Terreno sub-aéreos e submarinos de alta resolução, novos dados de 

estratigrafia e tectónica, e datação K-Ar de alta resolução executada em matriz vulcânica, 

aqui apresentamos: (1) evidências para a ocorrência de grandes colapsos de flanco; (2) a 

reconstrução, com resolução sem precedentes, das fases de crescimento e destruição nas ilhas 

do Pico e Faial, focando especialmente a ocorrência de grandes colapsos de flanco no Pico 

nos últimos 200 kyr.  

 A ilha do Pico é constituída por três sistemas vulcânicos (do mais antigo para o mais 

recente): (1) o Vulcão do Topo; (2) o Sistema Fissural, e (3) o Estratovulcão do Pico. O 

Vulcão do Topo aflora parcialmente no flanco SE do Pico, e é aqui datado entre 186 ± 5 e 

125 ± 4 ka ou 115 ± 4 ka. O flanco N deste edifício foi significativemte destruído por um 

grande colapso entre ca. 125 e 70 ka. No domínio submarino, um depósito foi identificado e 

interpretado como correspondente a este colapso de flanco. O depósito tem um comprimento 

máximo de 20 km e cobre uma área de ca. 150 km2. Este depósito inclui blocos 

hectométricos, e um volume exposto aqui estimado entre 4 e 10 km3, embora o volume real 

provavelmente ultrapasse os 10 km3. Neste intervalo de tempo, de ca. 125 a 70 ka, o flanco 

SE do Vulcão do Topo começou a deformar-se gradualmente, gerando uma estrutura de 
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colapso compósita: (1) a Oeste, um slump de grande escala, ainda hoje activo, e (2) um 

colapso de flanco catastrófico a Este. O primeiro episódio de deformação ocorreu muito 

provavelmente entre ca. 125 e 115 ka, gerando a estrutura principal do slump. Entre ca. 115 

ka e 75 ka, a cicatriz resultante foi parcialmente preenchida por produtos vulcânicos 

provenientes de cones localizados na depressão do slump e, provavelmente, de cones do 

Sistema Fissural. Posteriormente, a deformação na área do slump affectou parcialmente as 

unidades que preencheram a cicatriz, com a propagação de estruturas secundárias arqueadas. 

Entre ca. 125 e 69 ka, a parte distal do flanco SE do Vulcão do Topo e a sequência sub-aérea 

primordial do Sistema Fissural colapsaram catastroficamente para Sul, gerando um grande 

depósito offshore, com extensão mínima de ca. 17 km. As cicatrizes de colapso foram depois 

parcialmente cobertas por produtos vulcânicos. Desde há pelo menos ca. 57 ka o 

Estratovulcão do Pico tem-se desenvolvido no sector Oeste da ilha. O flanco S deste edifício 

foi parcialmente destruído por colapso(s) de flanco, e posteriormente coberto por produtos 

vulcano-sedimentares. 

 A evolução da crista vulcânica Pico-Faial nos últimos 200 kyr foi marcada por fases 

simultâneas de crescimento e destruição em ambas as ilhas. Enquanto o Vulcão do Topo 

crescia (ca. 186-125 ka) e era parcialmente destruído (ca. 125-115 ka) no Pico, no Faial 

terminava o período definido para a deformação significativa no graben (ca. 360-115 ka) e 

um vulcão central preenchia a depressão central deste (ca. 130-115 ka). Esta evolução rápida 

e simultânea das ilhas Pico e Faial aponta para a acomodação de extensão associada à 

fronteira de placas Eu/Nu ao longo desta crista nos últimos 200 kyr. 

 Muitos factores que favorecem o desenvolvimento de colapsos de flanco de larga 

escala têm sido propostos na literatura. Contudo, ainda não se compreende bem o papel 

específico de cada um destes factores, e como se relacionam entre si. Apresentamos aqui uma 

solução analítica para a teoria do Prisma Crítico de Coulomb coesivo, aplicada a 

destabilizações gravitacionais, complementada por testes de modelação análoga para verificar 

implicações estruturais da solução analítica. Averiguamos o impacto de variáveis como a 

geometria do prisma, coesão, coeficiente de atrito interno e rácio de sobrepressão de fluidos 

(sobrepressão de fluidos a dividir pela pressão litostática) no estado de estabilidade do 

prisma. Abordamos especialmente a influência que a coesão exerce no campo de tensões 

dentro do prisma, inibindo a deformação e condicionando a localização da ruptura. 

Concluímos que a estabilidade de um prisma coesivo sob a infuência de sobrepressão de 

fluidos depende das dimensões do prisma (a coesão do material do prisma tem um maior 

impacto em prismas de pequenas dimensões), enquanto a estabilidade de um prisma não 
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coesivo sob sobrepressão de fluidos é independente das dimensões do mesmo. O efeito 

estabilizador da coesão é mais significativo no domínio superficial do prisma. A espessura 

desta camada superficial diminui com o aumento do rácio de sobrepressão de fluidos. Dentro 

da camada influenciada pela coesão, a orientação da principal componente de tensão 

compressiva roda, esperando-se a geração de falhas lístricas. Se o limite de espessura desta 

camada é atingido no interior do prisma (para determinada resistência do material, rácio de 

sobrepressão de fluidos, e configuração do prisma), as falhas lístricas geradas tornam-se 

paralelas à superfície superior do prisma à profundidade correspondente a este limite de 

espessura. Este limite corresponde à chegada do material do prisma ao seu envelope de 

ruptura. 

 Avaliamos a estabilidade do prisma ao longo de um descolamento basal, ao 

confrontarmos as forças destabilizadoras e resistentes à deformação. Verificamos que o efeito 

estabilizador da coesão é mais acentuado no domínio frontal (menos espesso) do prisma, 

definindo um Comprimento Mínimo para a Ruptura (CMR). Este CMR diminui para menores 

valores de coesão e coefficiente de atrito interno, maiores rácios de sobrepressão de fluidos, e 

maiores inclinações da superfície superior do prisma e do descolamento basal. 

 Embora este modelo analítico não considere o efeito da topografia no campo de 

tensões, nós aplicamo-lo a destabilizações gravitacionais em sistemas vulcânicos, 

considerando como variáveis: inclinação dos flancos (7 e 15º), inclinação do descolamento 

basal (0 e 2º), dimensões do edifício (altura máxima da cunha vulcânica acima do 

descolamento basal até  5500 m), coesão (cunha vulcânica: de 0 a 2.6 MPa; descolamento 

basal: de 0 a 0.9 MPa), coeficiente de atrito interno (cunha vulcânica: 0.45; descolamento 

basal: 0.18 e 0.32), e sobrepressão de fluidos (de nula a superior à pressão litostática). 

Concluímos que: (1) o aumento da inclinação dos flancos e do descolamento basal conduz à 

diminuição do rácio de sobrepressão de fluidos necessário para provocar ruptura; (2) a 

diminuição do efeito estabilizador da coesão com o aumento da profundidade do 

descolamento basal favorece a ocorrência de destabilização gravitacional ao longo de 

descolamentos basais a profundidades superiores a ca. 2000-2500 m (edifícios vulcânicos 

com altitude superior a ca. 2000-2500 m). Para descolamentos mais superficiais, os rácios de 

sobrepressão necessários para induzir ruptura são comparativamente maiores. Para 

descolamentos mais superficiais, flancos mais inclinados e materiais vulcânicos mais 

coesivos, é favorecida a ocorrência de ruptura superficial paralela à superfície dos flancos 

vulcânicos; (3) Com o aumento da profundidade dos descolamentos basais (edifícios 
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vulcânicos de maiores dimensões), enquanto a importância da coesão diminui, a importância 

relativa do atrito ao longo do descolamento basal aumenta. 

 Para além do trabalho acima mencionado, foi executado trabalho de campo e 

laboratório (datação K-Ar) adicional, no âmbito do Projecto MEGAHazards. As publicações 

(em co-autoria) directamente relacionadas com o tema desta tese estão incluídas no 

manuscrito. Estas abordam a reconstrução vulcano-tectónica da ilha do Faial, e o estudo da 

deformação actual no slump de larga escala que affecta o flanco SE da ilha do Pico. Os 

resultados das campanhas de GPS executadas nas ilhas do Pico e Faial foram integrados em 

publicações que abordam a fronteira diffusa Eu/Nu e suas estruturas transformantes WNW-

ENE. Estas publicações são apresentadas como ficheiros anexos. 

 A investigação da ocorrência de movimentos de massa de larga escala nas ilhas dos 

Açores, e a modelação das variáveis que controlam a estabilidade dos edifícios vulcânicos 

estão ainda num estado embrionário, e serão aprofundadas num futuro próximo. 

 

 

Palavras-Chave: crista vulcânica Pico-Faial; Junção Tripla dos Açores; colapsos de flanco de 

larga escala; factores destabilizadores, Prisma Crítico de Coulomb coesivo. 
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Episodes de destruction gravitaire durant l'évolution géologique des îles 

Açores: âge, récurrence, mécanismes et conséquences 

 Les grands effondrements de flanc sont des phénomènes récurrents dans l'évolution 

géologique des îles océaniques. Ces épisodes de déstabilisation volumineux, le plus souvent 

catastrophiques, sont capables de générer d'importants tsunamis, qui peuvent causer des 

dommages considérables, et représentent donc des événements extrêmement dangereux. 

 Le îles des Açores à l’est de la Dorsale Médio-Atlantique sont situés sur la frontière 

de plaques diffuse entre l’Eurasie (Eu) et la Nubie (Nu), et donc sous l'influence d’un 

contrôle structural  et d’une activité sismique importante (événements historiques de 

magnitude jusqu'à ca. 7). Avant le projet MEGAHazards (PTDC / CTE-GIX / 108149/2008, 

financé par FCT, Portugal), les effondrements de flanc à grande échelle ont été considérés 

comme inexistants aux Açores, principalement à cause de la petite dimension des édifices 

volcaniques. Ici, nous concluons sans équivoque que de tels événements se sont bien produits 

dans les Açores. 

 La thèse de doctorat concerne l'évolution de la ride volcanique escarpée de Pico-Faial, 

qui se trouve sur une faille normale majeur associée à la limite diffuse Nu/Eu. Nous nous 

concentrons particulièrement sur les grands effondrements de flanc qui ont affecté l'île de 

Pico. A partir de données topographiques à haute-résolution (modèle numérique aérien et 

données bathymétriques), de nouvelles données structurales et stratigraphiques, et de 

nouvelles datations K-Ar sur mésostase volcanique, nous avons: (1) mis en évidence des 

grands effondrements catastrophiques jusqu‘alors non reconnus; (2) reconstruit avec une 

résolution temporelle sans précédent les phases majeures de croissance volcanique et de 

destruction dans les îles Pico et Faial, plus spécialement les instabilités qui ont affecté l'île de 

Pico, durant les derniers 200 ka. 

 L'île de Pico es constituée par trois systèmes volcaniques principaux, de l'ancien au 

plus jeune: (1) le Volcan Topo, (2) le Système Fissural, et (3) le Stratovolcan Pico. (1) Le 

Volcan Topo est partiellement exposé dans le flanc SE de l’île, et est daté ici entre 186 ± 5 et 

125 ± 4 ka ou 115 ± 4 ka. Il a été significativement détruit par un effondrement de flanc de 

grande échelle vers le N, entre environ 125 et 70 ka. Au large, nous identifions une champ de 

de débris, interprété comme généré par cet effondrement sectoriel. Ce dépôt a une longueur 

maximale de 20 km et couvre une superficie d’environ 150 km2. Il comporte des blocs 

hectométriques, et a un volume exposé estimé ici entre 4 et 10 km3, bien que le volume réel 

dépasse probablement 10 km3. Durant la même période, la déformation progressive a 
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commencé dans le flanc SE du Volcan Topo, générant une structure d’effondrement 

composite: (1) l’initiation d’un slump complexe à l'ouest, qui est toujours actif, et (2) un 

effondrement de flanc catastrophique plus à l'est. Le premier épisode de déformation a très 

probablement a eu lieu entre ca. 125 et 115 ka, le long de la faille majeure du slump. Entre 

115 et 75 ka, la cicatrice a été partiellement remplie par les produits volcaniques issus de 

cônes volcaniques développés dans la dépression du slump, voire à l’axe du Système Fissural 

précoce, d’orientation principale ONO-ESE. La déformation ultérieure dans la zone du slump 

a affecté partiellement les unités de remplissage, conduisant à l'individualisation de failles 

secondaires courbes. Entre ca. 125 et 69 ka, la partie distale E du flanc SE du Volcan Topo et 

la première séquence sub-aérienne du Système Fissural ont été tronqués par un autre 

effondrement sectoriel catastrophique vers le S, ce qui a généré un grand dépôt de débris 

sous-marin  avec une course minimale de 17 km. Les produits volcaniques plus récents ont 

masqué graduellement les cicatrices de destruction gravitaire. Le jeune Stratovolcan Pico 

s’est développé dans le secteur ouest de l'île, au moins depuis environ 57 ka. Son flanc sud a 

également été partiellement détruit par un ou plusieurs effondrements de flanc(s), et par la 

suite couvert par des produits volcano-sédimentaires plus récents. 

 L'évolution de la ride volcanique Pico-Faial dans les derniers 200 ka a été marquée 

par l'occurrence simultanée de croissance volcanique et de destruction dans les îles de Pico et 

Faial. Tandis que le Volcan sub-aérien de Topo se construisait à Pico (ca. 186-125 ka) puis 

était partiellement détruit (ca. 125-115 ka), une phase de déformation majeure se terminait 

sur l’ile voisine de Faial, donnant lieu au développement d’un large graben (ca. 360-115 ka), 

lui-même rempli par la croissance rapide d’un volcan central (ca. 130-115 ka). Cette 

évolution rapide et simultanée des îles Pico et Faial constitue un indice fort de 

l'accommodation de l'extension associé à la limite des plaques Nu/Eu le long de cette ride 

durant les derniers 200 ka. 

 De nombreux facteurs favorisant le développement des instabilités de flanc sur les îles 

volcaniques ont été proposés dans la littérature, mais leur rôle exact et leur contribution 

mutuelle restent mal compris. Nous présentons ici une solution analytique pour la théorie du 

Prisme Critique de Coulomb (Critical Coulomb Wedge) cohésif, appliquée à des instabilités 

gravitaires, et des simulations analogiques complémentaires pour tester certaines implications 

structurales du modèle. Nous étudions l'impact de plusieurs variables sur la stabilité du 

prisme, notamment la géométrie et les dimensions du prisme, la cohésion, le coefficient de 

friction interne et le rapport de surpression de fluide (surpression de fluide divisé par la 

pression lithostatique). Nous examinons particulièrement comment la cohésion influence le 
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régime de contraintes dans le prisme, inhibant la déformation et contraignant la localisation 

de la rupture. Nous montrons que la stabilité d'un prisme cohésif soumis à surpression de 

fluides dépend de sa taille (influence de la cohésion plus sensible dans les prismes plus 

petits), tandis que la stabilité d'un prisme non-cohésif sous l'effet de surpression de fluides est 

indépendante de la taille. L'effet stabilisateur de la cohésion est plus important pour le 

domaine le plus superficiel du prisme. L'épaisseur de cette couche superficielle stable 

diminue avec l'augmentation du rapport de surpression de fluide. Dans la couche influencée 

par la cohésion, l'orientation de la contrainte principale compressive tourne et les failles 

générées sont listriques. Si l'épaisseur critique pour cette couche est atteinte dans l'intérieur 

du prisme (en fonction des propriétés des matériaux, du ratio de surpression de fluide, et de la 

configuration du prisme), les failles listriques générées deviennent parallèles à la surface 

supérieure du prisme. Cette limite indique que le matériel du prisme atteint son enveloppe de 

rupture. 

 Nous évaluons la stabilité du prisme le long du décollement basal, grâce à la 

comparaison des forces motrices et des forces qui résistent au mouvement descendant. Nous 

vérifions que l'effet stabilisateur de la cohésion est accentué dans le front moins épais du 

prisme, définissant une Longueur Minimale pour la Rupture (LMR). Cette LMR diminue 

pour les cohésions plus faibles, pour les petits coefficients de friction interne, pour les 

rapports de surpression de fluide élevés, et pour des surfaces (supérieure et de décollement) 

du prisme plus inclinées. 

 Bien que ce modèle d'analyse n'intègre pas les effets locaux de la topographie sur le 

champ de contraintes, nous l'avons appliqué à des instabilités gravitaires dans les systèmes 

volcaniques. Nous avons considéré plusieurs variables: la pente des flancs et les dimensions 

de l’édifice (flancs volcaniques plongeant de 7-15 °, décollement basal incliné de 0 à 2°, 

hauteur maximale du prisme au-dessus du détachement basal jusqu'à 5500 m), la cohésion 

(prisme volcanique: de 0 à 2,6 MPa; décollement basal: 0 à 0,9 MPa), le coefficient de 

friction interne (prisme volcanique: 0.45; décollement basal : 0.18 et 0.32), et la surpression 

de fluides (entre zéro et supérieure à la pression lithostatique). 

 Nous concluons que: (1) l’augmentation de la pente des flancs du volcan et du 

décollement basal conduit à une diminution du rapport de surpression de fluide nécessaire 

pour produire la rupture; (2) la diminution de l'effet stabilisateur de la cohésion avec la 

profondeur du décollement basal favorise l'occurrence de déstabilisation gravitaire profonde à 

grande échelle pour des décollements plus profonds que 2000-2500 m. Pour des décollements 

basals plus superficiels, les ratios de surpression de fluide nécessaires pour induire la rupture 
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sont relativement supérieurs. Pour les décollements moins profonds, des flancs très inclinés et 

des matériaux très résistants, la rupture superficielle parallèle à la surface du flanc est 

favorisée, par rapport à la rupture profonde. (3) Pour des profondeurs supérieures à 2500 m 

(cas des grands édifices volcaniques), tandis que l'impact de la cohésion diminue, l'effet de la 

friction interne le long du décollement basal devient relativement plus importante. 

Au delà du travail principal indiqué ci-dessus, des travaux supplémentaires, tan sur le terrain 

qu’en laboratoire (géochronologie K-Ar) ont été réalisés dans le cadre du projet 

MEGAHazards. Les articles publiés comme co-auteur, et directement liés au sujet de cette 

thèse, sont inclus dans le manuscrit. Ceux-ci concernent la reconstruction de l'évolution 

volcano-tectonique de Faial, et l'étude de la déformation actuelle dans le slump de grande 

échelle que affecte le flanc SE de Pico. Les résultats des campagnes GPS réalisées aux îles 

Pico et Faial Îles ont également été inclus dans travaux publiés comme co-auteur, concernant 

le limite diffuse Nu/Eu et les structures transformantes OSO-ENE associées. Ces travaux 

publiés sont inclus dans les fichiers annexes. 

 L’étude des grands effondrements de flanc dans les îles des Açores, et la modélisation 

des variables qui contrôlent la stabilité des édifices volcaniques ont fournit des résultats 

pertinents et importants pour la compréhension des instabilités gravitaires sur les îles 

volcaniques en général. Ces travaux demeurent cependant incomplets, et seront approfondis 

dans futur proche. 

 

 

Mots-Clés: ride volcanique Pico-Faial; Triple Junction des Açores; grands effondrements de 

flanc; facteurs déstabilisants; Prisme Critique de Coulomb cohésif 
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Introduction 
 

 Large-scale gravitational destabilization is recurrent in the geological evolution of 

volcanic ocean islands. It has been known to occur within a spectrum of deformation 

mechanisms between gradual deformation along deep listric faults, as slumps, or catastrophic 

deformation, as debris avalanches (Moore et al., 1989, 1994a). Both gradual and catastrophic 

failures usually occur during the main eruptive history of a given island, and the volume of 

individual failure episodes partly depends on edifice size. For example, the most extreme 

debris-avalanches have been extensively recognized along the Hawaiian Emperor volcanic 

chain, which comprises by far the largest volcanic islands on Earth.  These debris fields were 

shown to reach volumes up to thousands of km3, run-outs up to hundreds of kms, and often 

result in the transport of blocks of kilometric dimensions. The most conspicuous example is 

the Nu'uanu debris avalanche on the NE of Oahu Island, Hawaii, which covers 23000 km2, 

has an estimated volume of 2500-3500 km3, a run-out of 220 km, and which involved the 

transport of a 30 km long/ 600 km3 block along ca. 55 km (Moore et al., 1989; Normark et 

al., 1993; Moore and Clague, 2002; Satake et al., 2002).  

 Other giant catastrophic flank failure events (> 10 km3) have been interpreted from 

evidence onshore and offshore all over the world: e.g. in Hawaii (Lipman et al., 1988; Moore 

et al., 1989,1994a; Moore and Clague, 2002), the Canary (Navarro and Coello, 1989; 

Carracedo et al., 1999; Krastel et al., 2001; Masson et al., 2002; Boulesteix et al., 2012; 

2013), in Cape Verde (e.g., Day et al., 1999; Masson et al., 2008), along the Caribbean arc 

(Deplus et al., 2001; Le Friant et al., 2003; Samper et al., 2007; Germa et al., 2011), in 

French Polynesia in the Pacific (Clouard et al., 2001; Clouard and Bonneville, 2004; 

Hildenbrand et al., 2004; 2006), or in Reunion Island in the Indian Ocean (Duffield et al., 

1982; Gillot et al., 2004; Kelfoun et al., 2010) . 

 Catastrophic episodes of destabilization can be voluminous and generate large 

tsunamis (Keating and McGuire, 2000): as shown by numerical modelling (Giachetti et al., 

2011; Paris et al., 2011); and as evidenced by marine conglomerates identified onshore at 

high altitudes (e.g., Pérez-Torrado et al., 2006; Ferrer et al., 2013 in Canary Islands; Paris et 

al., 2011; Ramalho et al., 2013 in Cape Verde;  Paris et al., 2013 for La Reunion; Moore and 

Moore, 1984,1988; Moore et al., 1994b; Moore, 2000; McMurty et al., 2004; for Hawaii). 

The large tsunamis generated may cause considerable damage and thus represent extremely 

hazardous events.  
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  While for the large-scale events as the ones reported for the large Hawaii volcanic 

islands a recurrence between ca. 25 and 100 ka is estimated, small collapses in volcanic 

islands are generally considered more frequent (Lipman et al., 1988; Normark et al., 1993 in 

Keating and McGuire, 2000).  

 The Azores islands are of small dimensions when compared with the Hawaiian 

counterparts. For instance, the dimensions of the whole Faial Island are close to those of the 

Tuscaloosa seamount, the biggest block identified in the Nu'uanu debris avalanche, to the NE 

of Oahu Island. The Azores islands east of the Mid-Atlantic Ridge (MAR) are located on the 

Eurasia(Eu)/Nubia(Nu) diffuse plate boundary, along steep volcanic ridges bounded by major 

faults that accommodate the diffuse deformation (Marques et al., 2013, 2014a). Historic 

records attest the occurrence of volcanic growth episodes (Madeira and Brum da Silveira, 

2003) and surface deformation events related to volcanic (e.g., Catalão et al., 2006) and 

seismic activity (magnitude up to ca. 7 - Fernandes et al., 2002; Madeira and Brum da 

Silveira, 2003; Borges et al., 2007; Marques et al., 2014b), constituting a real risk for the 

local population. Given the dimensions, configuration and tectonic setting of the islands, the 

flank collapses in the Azores islands are expected to be much less voluminous, but much 

more frequent than the typical cases studied in Hawaii. Despite the smaller volumes 

displaced, these more frequent events have been shown to still have potential for generation 

of tsunamis (Kelfoun et al., 2010; Giachetti et al., 2012). The consequences of such frequent 

events would be extremely damaging for the populations of the island (partially) destroyed, 

as well as for the populations of the islands nearby through tsunami propagation, as the 

islands are spatially close to one another, and the populations are concentrated near the 

coastlines. However, despite the active tectonic setting and the steep configuration of the 

islands, prior to MEGAHazards Project (PTDC/CTE-GIX/108149/2008, funded by FCT, 

Portugal), large-scale flank collapses in the Azores were considered to be lacking, mainly due 

to the small dimension of the volcanic edifices (e.g. Mitchell, 2003; Mitchell et al., 2008).  

 The present PhD thesis addresses the long term evolution and current gravitational 

deformation of the Pico-Faial steep volcanic ridge, which sits on a major normal fault 

associated with the Eu/Nu diffuse boundary. We focus especially on the large-scale flank 

failures in Pico Island. 

 Based on high-resolution sub-aerial and submarine Digital Elevation Models (DEM), 

new structural and stratigraphic data, and high-resolution K-Ar dating on separated volcanic 

groundmass, we: (1) reconstruct the volcanostratigraphy of Faial and Pico Islands; (2) 

identify and characterize onshore and offshore evidence for large-scale destruction events in 

6



the Pico-Faial volcanic ridge; (3) constrain in time these occurrences, and analyse them in the 

context of the evolution of the islands; (4) reconstruct the evolution of the major phases of 

growth and destruction in the Pico-Faial ridge, and analyse its long term evolution in the 

context of the diffuse Eu/Nu plate boundary; (5) interpret currently active large-scale 

gravitational structures in Pico Island. 

 Many factors favouring the development of such large-scale flank instabilities have 

been proposed in the literature (e.g., McGuire, 1996; Keating and McGuire, 2000), but their 

exact role and mutual contribution remain poorly understood. Through analytical, numerical 

and analogue modelling (performed in Université du Maine, Le Mans, France, in 

collaboration with Dr. Régis Mourgues), we assess the roles of edifice 

geometry/configuration and dimensions, the strength of the volcanic materials and basal 

detachments (cohesion and internal friction), and fluid overpressure We focus especially on 

how cohesion influences the stress regime within the wedge, by inhibiting deformation and 

constraining failure location.  

 

Organization of the manuscript 

 

 The introductory Part I includes the present chapter and, as Chapter 2, a concise 

geological setting of the study area. 

 

 The core of this manuscript is divided in three main parts (Parts II, III and IV). In 

each part, articles signed as first author (published, submitted or in preparation), or as co-

author (published articles directly related to the subject of this thesis) are presented. The 

numbering of figures, tables and equations is independent for each paper. The references 

cited and the supplementary files of each article are properly presented at the end of each 

article.  

 

 Part II concerns the long term evolution of the Pico-Faial volcanic ridge. This part 

comprises:  

 - Chapter 3, which corresponds to the co-authored work on the reconstruction of the 

evolution of the Faial Island by  Hildenbrand et al. (2012a). As Annex I, a reply to a 

comment by Quartau and Mitchell (2013) regarding this paper (Hildenbrand et al., 2013a) is 

presented. 
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 - Chapter 4, where we show the occurrence of large-scale flank collapses in the N 

flank of Pico Island more than 70 ka ago (Costa et al., 2014). 

 - Chapter 5, which corresponds to a more complete work regarding the geological 

evolution of Pico Island, including the evolution of the large-scale slump structure on its SE 

flank and the analysis of the overall evolution of Pico-Faial ridge in the last 200 kyr (Costa et 

al., submitted). 

 

 Part III concerns the current deformation in Pico Island, and comprises: 

 - Chapter 6, which corresponds to a co-authored published work that reports on the 

current activity of a large-scale slump on the SE flank of Pico Island, based on GPS and 

InSAR data (Hildenbrand et al., 2012b). As Annex II, a reply to a comment by Mitchell et al. 

(2013) on this paper (Hildenbrand et al., 2013b) is presented.  

 

 Part IV comprises the modeling work regarding the impact of edifice 

configuration/dimension, cohesion, internal friction and fluid overpressure on gravitational 

destabilization. This part includes: 

 - Chapter 7, in which are presented: an analytical solution for the cohesive Coulomb 

Critical Wedge theory applied to gravitational instabilities, and associated analogue 

simulations to test some structural implications of the model (Costa et al., in prep a); 

 - Chapter 8, which corresponds to the application of the analytical solution to the 

occurrence of gravitational destabilization in volcanic flanks (Costa et al., in prep b). 

 

 Finally, in the final Part V: 

 - Chapter 9, in which the main conclusions of this PhD work are summarized; 

 - Chapter 10, in which a complete list of the references cited through this thesis is 

provided. 

  

 Additional published co-authored works, in the scope of MEGAHazards Project, are 

presented as annexes: 

 Annex III - "GPS and tectonic evidence for a diffuse plate boundary at the Azores 

Triple Junction", by Marques et al. (2013), and respective corrigendum (Marques et al., 

2014a); 

  Annex IV- "The 1998 Faial earthquake, Azores: Evidence for a transform fault 

associated with the Nubia-Eurasia plate boundary?", by Marques et al. (2014b). 
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Geological setting  
 

 The Azores Islands are located near the triple junction between North-America (Na), 

Eurasia (Eu) and Nubia (Nu) lithospheric plates, the so-called Azores Triple Junction (ATJ) 

(Fig. 1). The ATJ is diffuse, currently of rift-rift-rift type, and located between 38.3ºN, 

30.3ºW and 39.4ºN, 29.7ºW along the Mid-Atlantic Ridge (MAR) (Marques et al., 2013a, 

presented as Annex III). This diffuse domain is marked by a decrease in the MAR seafloor 

spreading rates N and S of the ATJ (DeMets et al., 2010): from ca. 22.5 mm/yr N of latitude 

40ºN (Na/Eu) to ca. 19.5mm/yr S of 38ºN (Na/Nu) (Marques et al., 2013a). 

  The islands located to the E of the MAR sit on a strongly fractured/anomalously 

elevated portion of the lithosphere, known as the "Azores Plateau", which is defined by the 

ca. 2000 m isobath (Krause and Watkins, 1970; Searle, 1980). These islands are distributed 

along the Eu/Nu plate boundary. Considering Eu stationary, the predicted GPS angular 

velocity of Nu is 4.6 ± 0.3 mm/yr toward S87.9º ± 3.3º (Marques et al., 2013a).  

 The western half of the Eu/Nu plate boundary is presently diffuse (Fig.1a, e.g. 

Lourenço et al., 1998; Luis et al., 1998; Miranda et al., 1998; Fernandes et al., 2006; Borges 

et al., 2007; Lourenço, 2007; Hildenbrand et al., 2008; Luis and Miranda, 2008;  Marques et 

al., 2013a; 2014a ; Neves et al., 2013; Trippanera et al., 2014; Hildenbrand et al., 2014; 

Miranda et al., 2014). The deformation is mostly accommodated by several extensional 

structures in a ca. 140 km wide area (Marques et al., 2013a, 2014a, Annex III):  

 (1) the Terceira Rift (TR , Fig. 1, Machado, 1959; Krause and Watkins, 1970; Searle, 

1980; Vogt and Jung, 2004); 

  (2) the ca. WNW-ESE graben-horst-graben structure to the SW of the TR (Fig. 1) 

(Marques et al., 2013a, 2014a), which is arranged en échelon at the scale of the diffuse 

boundary. It comprises the S. Jorge Graben (Lourenço, 2007) and the Faial Half-Graben, with 

an intervening horst, the S. Jorge/Faial Horst (Marques et al., 2013a, 2014a).   

 In this diffuse deformation area, have been recorded numerous volcanic eruptions 

have since the XVth century, and seismic events with magnitude up to ca.7 since 1939 

(Madeira and Brum da Silveira, 2003; Borges et al., 2007). The registered seismic events 

with magnitude larger than 4 have involved predominantly normal kinematics (Marques et 

al., 2014b, Annex IV). 

 To the SW of the TR, the regional deformation has influenced the development of 

narrow and steep volcanic ridges, S. Jorge and Pico-Faial (Fig. 1), bounded by the major  
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Fig. 1. (A) Location of the Azores archipelago on the triple junction between the North 

America (NA), Eurasia (EU) and Nubia (NU) plates (lighting from WSW). Main active 

structures represented as thick white lines (Middle Atlantic Ridge – MAR, Terceira Rift – TR); 

limits of the diffuse Eu/Nu plate boundary represented as dotted lines, and extension 

orientation indicated as thick white arrows; and the currently inactive East Azores Fracture 

Zone (EAFZ) as dashed-dot-dashed white line. Yellow dashed rectangle marks the area 

presented in B. (B) 3D surface (viewed from NW and lighting from E) of the sector that 

includes the WNW-ESE volcanic ridge studied in this thesis, composed of the Faial (Fa) and 

Pico (Pi) islands. TR marked as a thick dashed white line. The graben/horst structure SW of 

the TR is defined according to Marques et al. (2013a, 2014a). SJG - S. Jorge Graben; SJFH - S. 

Jorge/Faial Horst; FHG - Faial Half-Graben. SJ - S. Jorge Island; Gr - Graciosa Island. The 

bathymetric data are from Lourenço et al. (1998). 
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structures mentioned above in (2). These volcanic ridges are characterized by slopes 

commonly around 25-35º, locally reaching higher values along coastal cliffs. These ridges are 

characterized by a multi-stage development during the last 1.3 Myr (Féraud et al., 1980; 

Demande et al., 1982; Hildenbrand et al., 2008).  

 

 The origin of the volcanism in the Azores is still a controversial subject. Some authors 

advocate the existence of a mantle plume, from geochemical data (Schilling, 1975; White et 

al., 1976; Turner et al., 1997; Moreira et al., 1999; Bourdon et al., 2005; Madureira et al., 

2005; 2011; Beier et al.,. 2012) and from seismic tomography (Silveira and Stutzmann, 2002; 

Montelli et al., 2004, 2006; Pilidou et al., 2005; Silveira et al., 2006; Yang et al., 2006; Adam 

et al., 2013; Saki et al., 2015). The so-called Azores plume is considered to have contributed 

to the formation of the Azores plateau (Gente et al., 2003), and to be presently at the end of 

its activity (Cannat et al., 1999; Silveira et al., 2006). Others consider that the magmatism in 

the Azores can be explained by an upper mantle source enriched in volatiles (Bonatti, 1990; 

Métrich et al., 2014), and/or propose that lithospheric deformation along the Eu/Nu plate 

boundary has largely controlled melt production and volcanic outputs (Neves et al., 2013; 

Hildenbrand et al., 2014; Métrich et al., 2014). 

 

1. Pico-Faial volcanic ridge 

 

 The Pico-Faial volcanic ridge sits on the master fault bounding the Faial Half-Graben 

in the north, and is locally parallel to the orientation of the Eu/Nu plate boundary (Fig. 1b, 

Marques et al., 2013a, 2014a). This structure currently accommodates part of the inter-plate 

deformation (Marques et al., 2013a; Trippanera et al., 2014). The western and central sectors 

of the ridge are aligned WNW-ESE, parallel to the local orientation of the Eu/Nu plate 

boundary (Fig. 1a). Towards the E, the submarine prolongation of the ridge is oriented N150º 

(Stretch et al., 2006; Lourenço, 2007; Mitchell et al., 2012a).  

 The sub-aerial growth of the Pico-Faial ridge started prior to the Matuyama-Brunhes 

transition (789 ± 8 ka, Quidelleur et al., 2003). Negative magnetic anomalies were identified 

in Faial Island, located on the westernmost sector of the ridge, and on the submarine 

continuation of the ridge towards SE of Pico (Miranda et al., 1991; Lourenço, 2007; 

Hildenbrand et al., 2012a), where the oldest age was obtained for this ridge, ca. 1.5 Ma 

(Ar/Ar dating, Beier, 2006). 

  Although the WNW-ESE direction constitutes the most obvious structural trend, the 
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Pico-Faial ridge is punctuated by three WNW-ESE aligned central-type volcanoes, 

interpreted as a consequence of the intersection of structural trends oblique to WNW-ESE 

(e.g., Madeira, 1998).  These secondary oblique structural trends are:  

 (a) NNW-SSE: this orientation is strongly represented in the structures interpreted 

from the bathymetry (Marques et al., 2013a,2014a) and in the solutions of focal mechanisms 

determined for historical seismic activity (Marques et al., 2014b). It is consistent with the 

orientation expected for the structures accommodating pure extension in the Nu-Eu plate 

boundary (Marques et al., 2014b, Annex IV). This trend was also interpreted on the flanks of 

the Pico Stratovolcano, from the alignment of the volcanic vents of the 1718 volcanic 

eruption (Madeira and Brum da Silveira, 2003); 

 (b) NNE-SSW: this is the orientation of faults, dykes and extension fractures 

recognized on the sub-aerial domain of the polygenic edifices in Faial Island (Trippanera et 

al., 2014); and interpreted as MAR-inherited (e.g., Chovelon, 1982) 

 (c) WSW-ENE: it coincides with the orientation of minor scarps interpreted in the 

submarine domain of the volcanic ridge (Lourenço, 2007; Marques et al., 2013a, 2014a); 

such orientation is also the one expected for transform structures associated with the present 

Eu/Nu plate boundary (Marques et al., 2014b, Annex IV).). 

 

 Here we address the long-term geological evolution of the islands along this ridge, 

Faial and Pico, focusing especially on what is known about the occurrence of major tectonic 

and gravitational deformation in these islands.  

 
2. Faial Island 

 

2.1. Volcanic stratigraphy 

 

 Faial is located on the western sector of the Pico-Faial volcanic ridge (Fig. 1). 

Chovelon (1982) defined the following main volcanic units in Faial, from older to younger 

(Fig. 2a): 

 - the old Galego volcano, cropping out on the E sector of the island. The edifice was 

strongly dismantled by deformation in an island-scale graben (Machado, 1955). Nonetheless, 

a lateral correspondence between palaeosoil levels visible on the SE and on the NE of the 

island was assumed (Chovelon, 1982). 

 - a central-type edifice, the Central Volcano (CV), which developed inside the graben  
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Fig. 2. (A) Simplified geological map of Faial (modified by Hildenbrand et al., 2012a after 
Chovelon, 1982). Presented K/Ar ages, in thousands of years (ka), from Féraud et al. (1980) 
and Demande et al. (1982), and the location/year of the historical eruptions. (B) Shaded relief 
of high-resolution DEM from Faial (lighting from N), with interpretation of graben structures 
and SSW-NNE profiles. Figures modified after Hildenbrand et al. (2012a). 
 

and experienced at least two phases of activity (Fig. 2b, Féraud et al., 1980). 

  - volcanics filling the island-scale graben in the last 30 kyr;  

  - volcanics in the SE of the island, with small volcanic cones and basaltic lava flows. 

  - trachytic pumice deposits resulting from explosive activity in the CV (Chovelon, 

1982; Serralheiro et al., 1989; Madeira et al., 1995). These deposits have covered extensive 

areas of the island during the last 10 kyr (dotted blue area in Fig. 3a, Serralheiro et al., 1989; 

Madeira, et al., 1995; Madeira, 1998 - with ages determined through radiocarbon dating). 

 - the volcanics from the WNW-ESE Capelo peninsula, on the westernmost sector of  
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Fig. 3. Geological map of Faial presented by: (A) Serralheiro et al. (1989). Main units 
represented: Red - Ribeirinha Complex (equivalent to Galego volcano); Ligh yellow - 
Almoxarife Formation (equivalent to graben filling units); Light-rose and small green areas: 
Cedros Complex (equivalent to the first main growth phase of the Central Volcano); Blue-
Dotted areas - sectors covered by deposits resulting from the explosive activity of the Central 
Volcano; Orange and purple areas on the Capelo peninsula - recent fissural vulcanism 
(Capelo Complex), including historical volcanic activity (purple). (B) Madeira and Brum da 
Silveira (2003) (after Serralheiro et al., 1989, and Madeira, 1998). 
 

Faial. They consist mainly of basaltic scoriae cones and associated lavas erupted in the last 10 

kyr. Two historical eruptions in this area occurred in 1672-1673, and 1957-1958 (Fig. 2a). 

 After Chovelon (1982), and prior to Hildenbrand et al. (2012a) (Chapter 3), several 

works focused on the reconstruction of Faial’s evolution by more detailed cartographic work 
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and radiocarbon dating (Fig. 3, Serralheiro et al., 1989; Madeira et al., 1995; Madeira, 1998). 

However, these works relied always on the K/Ar data from Féraud et al. (1980) and Demande 

et al. (1982) regarding the age of the early phases of sub-aerial development of Faial (Fig. 3 - 

e.g., Serralheiro et al., 1989; Madeira, 1998; Pacheco, 2001; Madeira and Brum da Silveira, 

2003). These previous ages acquired on whole-rock samples are scarce and fairly imprecise, 

and do not allow a clear calibration of the volcanic stratigraphy. For instance, there is an 

apparent overlap between the age range for the old Galego volcano (730 ± 70 ka to 210 ± 20 

ka), which was heavily dismantled by the island-scale graben, and the age range for the main 

growth of the Central Volcano (440 ± 30 ka to 30 ± 10 ka), which was built inside the graben 

(Hildenbrand et al., 2012a).  

 

2.2. The Faial Graben 

 

 Faial is affected by an island-scale WNW-ESE graben (Fig. 2b, Machado, 1955), 

whose scarps are more developed in the E. Towards the W, the scarps have been masked by 

the successive deposits of the large polygenic CV, centred in the subsided central block of the 

graben (Féraud et al., 1980). This large volcanic edifice has been itself affected by the graben 

structures. Further W, the scarps continue in the offshore domain. 

 The fault scarps are generally oriented N110º-120º, with faults dipping 60-70º 

towards the SSW in the N, and towards the NNE in the S. Evidence for transtensional 

movement along the graben faults has been reported: normal dextral slip for the major 

WNW-ESE faults, and normal sinistral slip for the (less expressive) conjugate NNW-SSE 

faults (Madeira and Ribeiro, 1990; Madeira, 1998; Madeira and Brum da Silveira, 2003). 

More recently, Marques et al. (2014b) interpreted bends along the trace of the major WNW-

ESE structures as evidences for sinistral slip along the WNW-ESE graben faults, instead of 

dextral.   

 Prior to Hildenbrand et al. (2012a), different ages have been proposed for the 

beginning of the graben activity: Féraud et al. (1980) suggested a maximum age of 670-730 

ka (without considering the uncertainties of the data), Chovelon (1982) proposed a minimum 

age of 30 ka, and Madeira (1998) proposed that the graben activity began at 73-40 ka. 

Madeira and Brum da Silveira (2003), based on paleoseismological studies and radiocarbon 

dating, report on recurrent episodes of graben activity through the Holocene, until historical 

times. 

 Although the origin of this graben can be related to tectonics (Tazzief, 1959), its  
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Fig. 4. (A) Vertical deformation (contours defined for 0.25 m spacing) (i) and displacement 
(ii) determined for the period 1937-1987, in Faial (Catalão et al., 2006). There is represented 
the location of Capelinhos volcano, resulting from the 1957-1958 eruption; (B) Coseismic 
displacements determined for the last large seismic event that affected the Pico-Faial ridge, at 
July 9th 1998 (Marques et al., 2014b, after Fernandes et al., 2002). The structure responsible 
for this seismic event, the associated kinematics and the location of the main shock are 
represented (Marques et al., 2014b). 
 

 

development has been influenced by volcanic processes, as shown by the events of the 

seismic crisis in May-June of 1958, during the eruption of Capelinhos volcano (1957-1958) 

on the WNW end of the island (Fig. 2a). This seismic crisis generated the opening of fissures, 

with up to 1m vertical movements along the WNW-ESE graben faults (Tazzief, 1959; 

Zbyszewski and Da Veiga Ferreira, 1959; Machado et al., 1962; Madeira and Brum da 
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Silveira, 2003), and opening of N55º fractures inside the caldera of the central volcano with 

associated fumarolic/phreatic activity (Tazieff, 1959). Based on geodetic measurements 

carried out between 1937 and 1987, Catalão et al. (2006) concluded that the main surface 

deformation in Faial over this period probably corresponds to the deformation associated with 

the Capelinhos eruption (Fig. 4a). The results of this study show a maximum subsidence of -

1.75 m on the NW of the island, for the mentioned period (Catalão et al., 2006). 

 The epicentre of the most recent major tectonic seismic event that affected the Pico-

Faial ridge (July 9th, 1998, with magnitude ML = 5.8 - Matias et al., 2007) was located on the 

offshore, 10 km to the NE of Faial (Fig. 4b). The main shock induced a clockwise rotation of 

Faial (Fig. 4b, Fernandes et al., 2002), with associated reactivation of (more superficial) 

major faults in the NE of Faial Graben (Marques et al., 2014b). 

 

3. Pico Island 

 

3.1. Volcanic stratigraphy 

 

 Previous studies have shown that Pico comprises three main volcanic complexes (Fig. 

5a, Zbyszewski et al., 1963a, 1963b; Forjaz, 1966; Woodhall, 1974): (1) the relicts of an old 

extinct volcano in the SE, generally referred to as the Topo Volcano; (2) a ca. WNW-ESE 

lineament of strombolian cones in the middle and eastern parts of the island, known as the 

Fissural System; and (3) the Pico Stratovolcano, peaking at 2351 m above sea level, which 

makes up the western half of the island.  

 According to previous geochronological data, the sub-aerial part of Pico has 

developed during the last ca. 300 kyr (250 ± 40 ka, in Demande et al., 1982, Fig. 5a). Pico’s 

sub-aerial growth seems to have started in the east, with the growth of the Topo Volcano 

(Fig. 5a, Zbyszewski et al., 1963a; Forjaz, 1966; Woodhall, 1974; Madeira, 1998; Nunes, 

1999; Nunes et al., 1999a), interpreted as a shield volcano by Woodhall (1974). The remnants 

of this early sub-aerial volcano have been partially covered unconformably by younger 

volcanic products poured from scattered scoria cones and WNW-ESE aligned cones of the 

sub-aerial Fissural System (Zbyszewski et al., 1963a, 1963b; Woodhall, 1974; Madeira, 

1998; Nunes, 1999; Nunes et al., 1999b, Fig. 5a).  

 The latest stages of island growth comprise the development of the Fissural System 

and the Pico Stratovolcano, which have been active through the Holocene, up to historical 

times (Fig. 5a, e.g., Zbyszewski et al., 1963b; Forjaz, 1966; Woodhall, 1974; Madeira, 1998;  
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Fig. 5. (A) Shaded relief of the 10 m resolution DEM of Pico Island (lighting from ESE), 
with coordinates in metres UTM (zone 26N). White squares and triangles mark the K-Ar ages 
from Féraud et al. (1980) and Demande et al. (1982), respectively. Also shown a radiocarbon 
age (plus sign) from Nunes (1999). The ages are indicated in thousands of years (ka). 
Simplified geologic/physiographic map (modified after Madeira, 1998). Traces of the Capitão 
Fault (CF) and Topo Fault (TF) (after Madeira, 1998; Nunes et al., 1999; Madeira and Brum 
da Silveira, 2003). There are indicated the location  and years of the historical eruptions; (B) 
Slope map of Pico Island built from the 10 m resolution DEM. Dashed black lines: scarps 
interpreted from zones of anomalously steep slopes, referred in the text as 1, e 2 and 3. 
Perspectives (yellow eyes) identified as A, B and C are presented as 3D surfaces in Fig. 6.  
 

 

Nunes, 1999; Nunes et al., 1999a; Madeira and Brum da Silveira, 2003; Mitchell et al., 2008).  

 Available whole-rock K-Ar data from Féraud et al. (1980) and Demande et al. (1982) 

(Fig. 5a) are very scarce and do not allow the age calibration of Pico's volcano-stratigraphy. 
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For instance, one lava flow from the old Topo Volcano was previously dated at 250 ± 40 ka, 

whereas two lava flows sampled in the western and eastern sectors of the Fissural System 

yielded ages of 270 ± 150 ka and 230 ± 80 ka, respectively (Demande et al., 1982, Fig. 5a). 

These three ages overlap within their range of uncertainty, and thus are not precise enough to 

confidently reconstruct the evolution of the island. Ages estimated younger than 25 ka and 37 

ka (Fig. 5a; Féraud et al., 1980) have been also obtained on lava flows from the northern and 

southern flanks of the island, respectively, but their geological significance remains elusive. 

A few radiocarbon data on charcoal fragments and/or paleosoils covered by lava flows help 

to constrain the age of some of the most recent eruptions (Madeira, 1998; Nunes, 1999). 

However, these data are of limited use to study the long-term evolution of the ridge due to the 

restricted applicability of the method (< ca. 50 kyr).  

 The lack of precise and representative isotopic ages in Pico (França, 2000), the lack of 

marked lithologic variability between main volcanic units (França, 2000; França et al., 2006), 

and the temporal partial overlap of the volcanic activity, all have hampered the definition of 

Pico’s volcanic stratigraphy. The earlier works have relied greatly on the published K-Ar and 

radiocarbon ages, on the alteration degree of the volcanic deposits, and on local field 

relationships (e.g., Madeira, 1998; Nunes, 1999; Nunes et al., 1999a; França, 2000; França et 

al., 2000).  

 Two WNW-ESE faults have been recognized in Pico, and interpreted as normal 

dextral (Fig. 5; Madeira, 1998; Madeira and Brum da Silveira, 2003): 

 - The Topo Fault (TF in Fig. 5), evidenced by scarps with height up to 140 m, affects 

the old Topo Volcano (Woodhall, 1974; Madeira, 1998). Madeira (1998), based on 

morphological analysis and assuming that the N-S outcrop visible to the N of this fault was 

originally in continuity with the highest outcropping remnants of Topo in the S, interpreted 

the kinematics as predominantly dextral strike-slip (ca. 600 m), with a smaller dip slip 

component towards the N (ca. 44 m). Madeira (1998) considered that the Topo Fault 

remained active during the sub-aerial evolution of Pico (period of ca. 300 kyr); 

 - The Capitão Fault (CF in Fig. 5), dipping towards the S, and with a scarp up to 20 m 

high (Zbyszewski et al., 1963b; Forjaz, 1966; Madeira, 1998; Madeira and Brum da Silveira, 

2003). This fault scarp was masked on the W by recent deposits of the Pico Stratovolcano, 

and on the E by recent volcanic cones (including the one involved in the historical eruption of 

1562-1564, Fig. 5a), and has been considered active during the Holocene (Madeira, 1998; 

Madeira and Brum da Silveira, 2003). 
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3.2. Mass-wasting structures in Pico Island 

 

 Earlier studies in Pico have highlighted the existence of several structures affecting 

the various volcanic complexes (Figs. 5b and 6): (1) two concave steep zones on Pico’s 

northern flank; (2) several nested scarps in SE Pico; and (3) a WNW-ESE scarp on the 

southern flank of the Pico Stratovolcano.  

 (1) On Pico’s northern flank, two topographic embayments were considered by 

Mitchell (2003) as "ambiguous candidates for landslides" (Figs. 5b and 6a). Mitchell et al. 

(2008) identified a hummocky terrain area on the shallow bathymetry (depth up to of a few 

hundred meters) adjacent to a sub-aerial embayment (Fig. 2 in Mitchell et al., 2008, feature 

A), which was interpreted as a deposit resulting from either debris avalanche or repeated lava 

delta failure. 

  (2) The easternmost topographic embayment on the northern flank is mirrored in 

Pico’s southern flank by another concave and steep main scarp and a series of less-

pronounced scars (Figs. 5b and 6b). The main scarp has been variably interpreted as: a crater 

or caldera (Zbyszewski et al., 1963a), a "trap door" type caldera of the Topo Volcano 

(Woodhall, 1974), a landslide scar (Madeira, 1998; Madeira and Brum da Silveira, 2003; 

Mitchell, 2003), or a fault constituting the headwall of a slump structure (Nunes, 1999; 

França, 2000; Nunes, 2002). Nunes (1999, 2002) has proposed that this structure is younger 

than 37 ka, and inactive since the beginning of the Holocene. This hypothesis was later 

reinforced by Mitchell et al. (2012). These authors did not find evidence for deformation of 

the current coastal shelf by the slump structures, and considered that the lava delta was 

formed according to the present sea level.  

 (3) The WNW-ESE scarp on the southern flank of the Pico Stratovolcano (Figs. 5b 

and 6c) has been interpreted either as an avalanche scar (Woodhall, 1974; Madeira, 1998; 

Madeira and Brum da Silveira, 2003) or as a fault scarp (Forjaz, 1966; Machado et al., 1974; 

Chovelon, 1982, Forjaz et al., 1990; Nunes, 1999; Nunes et al., 1999a,b; Mitchell, 2003). 

This scarp has been described as being masked by more recent volcanic products from the 

Pico Stratovolcano (Chovelon, 1982; Madeira, 1998; Nunes, 1999), and its base covered by 

recent and thick colluvium deposits (Madeira, 1998; Nunes, 1999).  
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Fig. 6. Images obtained by superimposing the 3D view of Pico Island relief (vertical 
exaggeration: 2x) and the slope map image (shared color scale for slope angles), obtained 
from a 10 m resolution DEM. Perspectives presented A,  B and C, are indicated in Fig. 5b by 
"a.", "b." and "c.", respectively. (A) Perspective from E (lighting from NW), of Pico Island's 
topography, with interpretation of the N and S flanks' main scarps as dashed white lines. (B) 
View from ESE of the slump structure's topography (lighting from SW). Scarps interpreted as 
white dashed lines (structures interpretation as presented in Mitchell et al., 2012b). (C) 
Perspective from SE of Pico stratovolcano's strongly dipping southern flank (lighting from 
SE).  
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 Costa et al. (2014), Chapter 4, presented new data and interpretations regarding the 

embayments on the N flank mentioned in (1). Hildenbrand et al. (2012b), Chapter 6, focused 

on the slump structure mentioned in (2), providing the interpretation for its complex 

configuration and evidence for its current activity. Costa et al. (submitted), Chapter 5, 

provides the reconstruction of Pico Island, calibrated by high-resolution K-Ar data, 

constraining in time the structures referred to in (1) and (2), and provides new 

data/interpretations regarding the structure (3). 
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The morpho-structural evolution of oceanic islands results from competition between volcano growth and
partial destruction by mass-wasting processes. We present here a multi-disciplinary study of the successive
stages of development of Faial (Azores) during the last 1 Myr. Using high-resolution digital elevation model
(DEM), and new K/Ar, tectonic, and magnetic data, we reconstruct the rapidly evolving topography at succes-
sive stages, in response to complex interactions between volcanic construction and mass wasting, including
the development of a graben. We show that: (1) sub-aerial evolution of the island first involved the rapid
growth of a large elongated volcano at ca. 0.85 Ma, followed by its partial destruction over half a million
years; (2) beginning about 360 ka a new small edifice grew on the NE of the island, and was subsequently
cut by normal faults responsible for initiation of the graben; (3) after an apparent pause of ca. 250 kyr, the
large Central Volcano (CV) developed on the western side of the island at ca 120 ka, accumulating a thick
pile of lava flows in less than 20 kyr, which were partly channelized within the graben; (4) the period be-
tween 120 ka and 40 ka is marked by widespread deformation at the island scale, including westward prop-
agation of faulting and associated erosion of the graben walls, which produced sedimentary deposits;
subsequent growth of the CV at 40 ka was then constrained within the graben, with lava flowing onto the
sediments up to the eastern shore; (5) the island evolution during the Holocene involves basaltic volcanic ac-
tivity along the main southern faults and pyroclastic eruptions associated with the formation of a caldera vol-
cano–tectonic depression. We conclude that the whole evolution of Faial Island has been characterized by
successive short volcanic pulses probably controlled by brief episodes of regional deformation. Each pulse
has been separated by considerable periods of volcanic inactivity during which the Faial graben gradually de-
veloped. We propose that the volume loss associated with sudden magma extraction from a shallow reservoir
in different episodes triggered incremental downward graben movement, as observed historically, when im-
mediate vertical collapse of up to 2 m was observed along the western segments of the graben at the end of
the Capelinhos eruptive crises (1957–58).

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The geological evolution of oceanic islands is generally marked by
rapid volcanic growth alternating with destruction by a variety of
mass-wasting processes including giant sector collapses, vertical calde-
ra subsidence, fault generation/propagation, shallow landslides and
coastal erosion (e.g., Moore et al., 1989; Mitchell, 1998; Hildenbrand
toire IDES, UMR8148, 91405
33 1 69 15 48 91.
Hildenbrand).

rights reserved.
et al., 2004, 2006, 2008a, 2008b; Quartau et al., 2010; Boulesteix et al.,
2012). The study of such destruction events is of particular societal rel-
evance, since they can cause considerable damage. The Azores volcanic
islands in the Atlantic are particularly sensitive to mass-wasting pro-
cesses. The region is characterized by intense deformation responsible
for high magnitude earthquakes (e.g., Borges et al., 2007). Like the
neighbouring islands of Pico, S. Jorge, Terceira and Graciosa in the cen-
tral Azores, Faial is still active and is characterized by the localization
of volcanism along N110°-trending eruptive fissures and vents. Faial is
additionally marked by a large graben-like structure elongated along
the same azimuth (N110°). The island thus offers a great opportunity
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to study the interactions between volcanism and tectonics. We present
here a new study aimed at reconstructing the architecture and the vol-
cano–tectonic evolution of Faial during the last 1 Myr. Our approach
combines new tectonic analysis, K/Ar dating and palaeomagnetic data
on selected samples, which, together with high-resolution DEM data
and analyses of magnetic anomalies carried out during an aerial survey
(Miranda et al., 1991), provides valuable insight into the competition
between volcanic construction and destruction by tectonic processes,
mass-wasting, and erosion throughout the geological evolution of the
island.
2. Geological background

The Central Azores islands (Fig. 1) were formed during the Qua-
ternary on top of an oceanic plateau, the Azores Plateau, at the triple
junction between the North American, Eurasian and Nubian litho-
spheric plates (e.g., Searle, 1980; Miranda et al., 1991; Luis et al.,
1994; Lourenço et al., 1998; Vogt and Jung, 2004). The origin of the
volcanism in the area is still controversial: some authors argue for
an origin from volatile-enriched upper mantle domains (Schilling et
al., 1980; Bonatti, 1990), whereas others, based on geochemical data
(Schilling, 1975; White et al., 1979; Flower et al., 1976; Davies et al.,
1989; Widom & Shirey, 1996; Turner et al., 1997; Moreira et al.,
1999; Madureira et al., 2005; 2011) or seismic tomography (Silveira
and Stutzmann, 2002; Montelli et al., 2004; Yang et al., 2006), consid-
er the Azores volcanism to be related to a mantle plume. According to
Silveira et al. (2006), the shallow S-wave negative anomaly (down
to ~250 km) results from the presence of a dying and now untailed
plume, the head of which was responsible for building of the
Azores Plateau. Furthermore, regional deformation has largely con-
trolled the distribution of volcanic vents, leading to the construc-
tion of submarine ridges with N150° and N110° main orientations
(e.g., Lourenço et al., 1998; Stretch et al., 2006; Hildenbrand et al.,
2008b; Silva et al., 2012). Most of the Azores islands have experienced
historic volcanic activity. The most recent volcanic crisis on Faial, the
Capelinhos eruption (1957–1958), was characterized by a surtseyan
and strombolian activity, which increased the island area to the west
(Machado et al., 1959; Zbyszewski and Veiga Ferreira, 1959; Machado
et al., 1962).
Fig. 1. Main figure: Location of the Azores volcanic archipelago near the triple junction be
dashed rectangle localizes the inset. Bold black lines show the Mid-Atlantic Ridge (MAR)
(EAFZ). SJ: S. Jorge; Gra: Graciosa; Ter: Terceira; Fai: Faial; Pi: Pico; Flor: Flores; Cor: Corvo
al. (1998). Inset: Main submarine structures around Sao Jorge, Pico and Faial. Black and wh
Modified from Hildenbrand et al. (2008b).
Faial constitutes one of the emerged parts of a single main volcanic
ridge, the Pico–Faial Ridge. This structure is roughly elongated along
the N110° direction, but probably older N150° submarine ridges can
be observed or are suspected offshore the eastern ends of both Faial
and Pico (Fig. 1). The geology of Faial island has been divided by
Chovelon (1982) into five main volcanic units (Fig. 2a): (i) the Galego
volcano mapped in the east and northeast areas of the island, from
north of Horta to the northern coast; (ii) a main volcanic edifice, the
Central Volcano (CV), built on the western side of the Galego volcano,
during at least two main phases of activity; (iii) recent volcanic units
filling the graben, from 0.03 Ma to the present; (iv) basaltic units in
the E (Horta) and W (Capelo). The Horta volcanism, located in the
SE corner of the island, is characterized by a series of small scoria
cones and associated basaltic lava flows. The Capelo volcanism corre-
sponds to the most recent volcanic activity that formed a peninsula in
the westernmost part of Faial. It was erupted during the last 10 kyr
(Madeira et al., 1995), and is morphologically characterized by a se-
ries of volcanic cones aligned WNW-ESE that stretches the island to-
wards the Capelinhos volcano, which emerged during the 1957–1958
eruption; (v) widespread trachytic pumice deposits generated by re-
cent explosive activity of the Central Volcano over the last 10 kyr.
Subsequently, other workers have conducted more detailed geologi-
cal mapping, and have renamed the main units (e.g., Serralheiro et
al., 1989; Madeira, 1998; Pacheco, 2001). These works were mostly
based on the original geochronological framework established by
Féraud et al. (1980) and Demande et al. (1982), which we therefore
used as a basis for the present study.

The recent eruptive history of Faial has been quite well document-
ed from radiocarbon dating on charcoal fragments collected in pyro-
clastic deposits and/or palaeosoils (e.g. Madeira et al., 1995). The
earlier volcano–tectonic evolution of the island, however, remains
unclear in the absence of sufficient reliable temporal constraints.
Five K/Ar ages have been published in the early 1980s for the whole
island, two of which are being related to very young volcanic episodes
(Féraud et al., 1980). The remaining three samples have been collect-
ed along the eastern end of the island, in an area attributed to the
Galego volcano. The results on these samples vary from 0.73±
0.07 Ma to 0.21±0.02 Ma, which means that the sub-aerial part of
the old volcanic system would have developed over a period of
about 0.5 Myr. A few additional unpublished K/Ar determinations
tween the North American (NA), the Eurasian (EU) and the Nubian (NU) plates. The
and the Terceira Rift (TR), and the white line shows the East Azores Fracture Zone
; SMig: S. Miguel; SMar: Santa Maria. Background bathymetric data from Lourenço et
ite arrows show linear submarine ridges with N110 and N150 directions, respectively.
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Fig. 2. (a) Geological map of Faial (modified after Chovelon, 1982). Previous K/Ar ages (in Ma) from Féraud et al. (1980) and Demande et al. (1982) are shown. (b) Magnetization
map combined with a high-resolution digital elevation model (DEM) of the island. The colour scale shows the magnetization values. White dots with black circles show the location
of our new samples collected for both K/Ar and magnetic analyses. Localities are shown in white. PMC: Pedro Miguel creek.
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presented in a report (Demande et al., 1982) and a thesis (Chovelon,
1982) have been subsequently acquired on whole-rock samples from
the central volcanism sampled in the northern and western parts of
the island. They range in age between 0.44±0.03 Ma and 0.03±
0.01 Ma. From the few previous K/Ar data available for Faial (Féraud
et al., 1980; Chovelon, 1982; Demande et al., 1982), the twomain vol-
canic systems would thus have experienced synchronous growth be-
tween 0.44±0.03 Ma and 0.21±0.02 Ma. This seems in apparent
contradiction, since the main volume of the Central Volcano has ap-
parently grown within the main graben cutting the Galego volcano
(Fig. 2b). Therefore, the timing for graben initiation, and the relation-
ships between volcanic construction and destruction, and tectonics
remain insufficiently documented to allow the development of a co-
herent and comprehensive model.

3. Fieldwork and sampling strategy

The interactions between volcanic growth and partial destruction
on volcanic islands such as Faial generally result in complex relation-
ships of the different geological units, in response to a rapidly
evolving topography. In such conditions, reconstructing the succes-
sive stages of construction and graben development requires strategic
investigations on target areas. We first used available morphological
and geophysical data to identify the zones of major interest for field-
work and selective sampling. Such preliminary work includes the
combination of a high-resolution DEM of Faial with a magnetization
map built from magnetic data acquired during a previous aerial sur-
vey of the island (Miranda et al., 1991) merged with the aeromagnet-
ic map of the Azores Platform (Luis et al., 1994) into a regular grid
with a 0.005º step both in longitude and latitude (Fig. 2b). Magnetiza-
tion was computed with the actual topography and using the 3D-
inversion technique of Macdonald et al. (1980). This inversion proce-
dure makes two main assumptions: (1) a constant thickness source
layer (1.0 km), the upper surface of which is defined by the bathym-
etry, and (2) fixed values for the main field and the magnetization
(59.5 A.m−1 and −17 A.m−1, respectively). A band pass filter (1.1–
120 km) was applied to ensure convergence. The processing was
made with the Mirone software suite (Luis, 2007).

The magnetization map evidences an area with high-magnitude
negative values in the eastern side of the island. This zone coincides
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with a narrowmorphological relief, the northern part of which is affect-
ed by the main graben. Such sector retains crucial information, because
the predicted magnetization may reflect volcanic construction during a
period with reversed polarity of the magnetic field, e.g., during the
Matuyama chron prior to 0.789±0.008 Ma (Quidelleur et al., 2003).
The lowermost and uppermost parts of this apparently old volcanic suc-
cession thus have been extensively sampled for geochronological and
magnetic measurements (samples AZ05-AL, AM, AQ, AR). The parts of
the faults exposed along the eastern shore have also been investigated
carefully.

The NE part of the island attributed to the Galego volcanism in
earlier studies shows a zone of low-magnitude negative magnetiza-
tion roughly elongated in the N110 direction. This sector is addition-
ally characterized by a prominent topographic high with relatively
steep slopes towards the North. It is composed of a moderately
thick volcanic succession, including porphyritic lavas with dominant
plagioclase phenocrysts. This succession is cut by the northern fault
of the main graben, and by an additional scarp farther North, near
the village of Ribeirinha. The lower and upper distal parts of this suc-
cession were sampled close to shore level in the NE tip of Faial
(samples AZ05-AN and AZ05-AP, respectively). A sample was also
collected at an elevation of ca 500 m on the upper rim of the main
fault near Galego (Fa10D) to constrain a maximum age for initiation
of the graben. The geometry and kinematics of the eastern end of
the main fault were additionally examined at the shore level.

The Central Volcano in the western half of the island is marked by
an overall positive magnetization highlighted by yellow to red col-
ours on the magnetization map (Fig. 2b). The maximum is centred
close to the present caldera depression, but rapidly vanishes towards
the distal parts, where slightly negative values are observed. A lava
flow at the base of the volcanic succession exposed in the caldera
walls was sampled at an altitude of 575 m to constrain the earliest ac-
cessible stage of edification of the Central Volcano (sample Fa11A).
The external parts of the volcano overall have smooth and gentle
slopes extending up to the northern and southern shores of the is-
land, where they are cut by large coastal cliffs. We took advantage
of these natural sections to collect lava flows at the base of the succes-
sion at Praia do Norte and Porto Salão (samples AZ05-AO and Fa10B,
respectively). A lava flow from the upper part of the CV succession
was additionally sampled at an altitude of ca 300 m uphill Praia do
Norte (sample Fa 10A).

The central part of the CV has relatively steep slopes incised by re-
cent narrow canyons. The canyons have a relatively radial distribu-
tion close to the eruptive centre, but they bifurcate close to recent
Fig. 3. Left: Schematic log showing the main geometrical relationships between the various
lines mark individual lava flows. White parts show sediments, with circles and dots represe
the main unconformity. Right: close up image on the main unconformity. The age of the la
scars apparently truncating the (previous) external slopes of the vol-
cano. Such bifurcation is quite obvious in the eastern sector, where in-
dividual lava flows and erosion have apparently been geometrically
constrained within the graben. Consequently, detailed field investiga-
tions were carried out in the graben depression, along the Pedro
Miguel creek. These investigations allowed us to identify old lava
flows (sample Fa10H) overlain in unconformity by sedimentary de-
posits, which in turn have been buried by more recent lava flows.
Some of the young lava flows were sampled throughout the longitu-
dinal section of the creek (samples Fa10F, Fa10I, Foz RPM), where
they define morphological steps. However, they exhibit complex
local architecture with important internal flow patterns and complex
lateral overlap (Fig. 3), suggesting their channelling into a low topog-
raphy, down to sea level.

4. Methods and results

4.1. K/Ar geochronology

After careful petrographic examination of the samples in thin-
section, the micro-crystalline groundmass was selected for potassium–

argon (K–Ar) analyses. Some of the samples are characterized by
high amounts of plagioclase phenocrysts/glomerocrysts, which can
amount up to 40% in volume. They also contain pyroxene, minor ol-
ivine and various oxides. Such minerals partially crystallized at a
deep level in the magma chamber and thus are not representative
of the age of eruption at the surface. They are also K-poor and
may carry significant amount of inherited excess Ar. After crushing
and sieving the samples to 125–250 μm, all the phenocrysts have
been so systematically removed with heavy liquids. Narrow density
spans generally in the range 2.95–3.05 have been achieved to select
the freshest part of the groundmass and eliminate the fraction with
a lower density, that is potentially affected by alteration and sec-
ondary zeolitisation.

K and Ar were measured on two separate aliquots of the select-
ed grains, the former by flame absorption-spectrophotometry and
the latter by mass spectrometry. K is determined with a 1% relative
uncertainty from replicate analyses on standards (Gillot et al.,
1992). The 40Ar/36Ar isotopic composition of Ar has been measured
according to the Cassignol–Gillot unspiked technique (Gillot and
Cornette, 1986; Gillot et al., 2006). With this particular technique,
the 40Ar and 36Ar are simultaneously collected avoiding any
potential drift associated with peak switching. The level of atmo-
spheric contamination is then accurately determined by comparing
units recognized in the Pedro Miguel creek. Light grey areas separated by thin dashed
nting coarse conglomerates and sandstones, respectively. The thick dashed line shows
va flows below and above the unconformity reported here are shown.
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the 40Ar/36Ar ratios of the sample and of an air pipette measured in
strictly similar pressure conditions, allowing the detection of mi-
nute amounts of radiogenic Ar, as low as 0.1% (Gillot et al., 2006).
The Cassignol–Gillot technique has been shown especially suitable
to date low-K and high-Ca basalts and andesites of late Quaternary
age with an uncertainty of only a few ka (e.g., Hildenbrand et al.,
2003, 2008b; Quidelleur et al., 2008; Samper et al., 2009; Germa
et al., 2010, 2011). For high-K lavas, it has been extended to the
last millennium with an uncertainty of only a few centuries
(Quidelleur et al., 2001). Both K and Ar were analysed at least
twice in order to obtain a reproducible value within the range of
uncertainties. The decay constants used are from Steiger and
Jäger (1977). The results are presented in Table 1, where the uncer-
tainties are quoted at the 1σ level.

The ages measured on our samples from Faial range between
848±12 ka and 38±1 ka. The results obtained on the different lava
flows from the old volcanic succession are tightly clustered around
850 ka, and overlap within the range of uncertainties at the 1σ level.
These results are significantly older than previous K/Ar determinations
at 0.73±0.07 Ma (Féraud et al., 1980). The new ages measured on lava
flows from the distal part of the volcanic succession exposed on the NE
corner of Faial (Ribeirinha) yield indistinguishable values of 358±7 ka
and 363±8 ka (samples AZ05-AN and AZ05-AP, respectively). The lava
flow sample collected on the same succession cut by themain graben is
dated here at 389±7 ka, which is similar to a previous age of 0.39±
0.03 Ma obtained by Demande et al. (1982) on an aphyric sample col-
lected at a similar level to the West (Fig. 2).

The new ages measured on lava flows sampled at the base of the
caldera wall and at the base of the coastal cliffs in the NE and N
parts of the CV succession are very close to each other, ranging be-
tween 129±2 ka and 118±3 ka (samples Fa11 A and AZ05-AO, re-
spectively). The age for the upper part of the same succession
(sample Fa10A) yields a similar value of 118±3 ka, showing that
the CV has experienced a very rapid stage of sub-aerial growth at
Table 1
Results of the K–Ar dating on fresh groundmass separates. The ages are indicated in
thousands of years (ka). The uncertainties are reported at the 1σ level.

Sample Long. Lat. K% 40Ar*
(%)

40Ar*
(1012at/g)

Age
(ka)

Unc.
(ka)

Mean
(ka)

AZ05-AM −28.609 38.552 1.430 29.9 1.2630 845 12 848±12
30.8 1.2704 850 12

AZ05-AQ −28.613 38.543 1.694 28.3 1.4948 845 12 847±12
35.4 1.5011 848 12

AZ05-AL −28.609 38.552 1.585 43.0 1.3976 844 12 846±12
40.1 1.4043 848 12

AZ05-AR −28.625 38.553 1.863 33.3 1.6399 843 12 843±12
39.5 1.6424 844 12

FA10D −28.631 38.591 1.060 9.7 0.4349 393 7 389±7
9.2 0.4262 385 7

AZ05-AN −28.612 38.599 1.222 14.8 0.4651 364 6 363±6
16.5 0.4618 362 6

AZ05-AP −28.608 38.599 1.264 7.7 0.4739 359 7 358±7
10.0 0.4727 358 6

Fa11A −28.713 38.592 3.173 9.2 0.4332 131 2 129±2
11.8 0.4217 127 2

FA10B −28.658 38.626 1.539 4.9 0.2023 126 3 127±3
5.0 0.2061 128 3

AZ05-AO −28.750 38.613 1.827 4.3 0.2203 115 3 118±3
3.7 0.2293 120 4

FA10A −28.750 38.608 1.419 3.8 0.1754 118 4 118±3
4.0 0.1750 118 3

FA10H −28.620 38.577 1.785 4.7 0.2195 118 3 116±3
5.2 0.2141 115 3

FA10I −28.620 38.577 1.503 1.8 0.0716 46 3 46±3
1.8 0.0735 47 3

Foz RPM −28.612 38.578 2.225 3.2 0.0960 41 1 40±1
3.6 0.0910 39 1

FA10F −28.622 38.577 1.919 2.9 0.0778 39 1 38±1
4.0 0.0757 38 1
about 120 ka. The new age obtained on our sample Fa10H collected
in the deepest parts of the Pedro Miguel creek is also dated at 116±
3 ka. The late phase of graben filling is finally constrained from dating
successive young lava flows from Pedro Miguel creek between 46±
3 ka and 38±1 ka. The oldest age is obtained on the lava flow (sam-
ple Fa10I) immediately covering sediments on top of the older lava
flows here dated at 116±3 ka (sample Fa10H), confirming therefore
the existence of a major unconformity (Fig. 3).

4.2. Paleomagnetic data

Silva et al. (2008, 2010, in preparation) performed a paleomagnet-
ic study on Faial Island on 140 samples collected along 6 different sec-
tions that mostly correspond to the flows dated in this study.
Rockmagnetic experiments identified magnetic carriers favourable
for paleomagnetic study (presence of magnetite of Pseudo-Single
Domain-Single Domain states). Demagnetizations have shownmostly
the presence of a single stable magnetization component defining a
characteristic remanent magnetization.

Virtual Geomagnetic Poles for 11 lava flows indicate a normal po-
larity of the Earth magnetic field and for 5 flows a reversed polarity.
The reversed polarity is exclusively measured on the samples dated
in this paper at about 0.85 Ma. This confirms that the phase of old vol-
cano construction occurred at the final stages of the Matuyama re-
versed chron.

The other lava flows show a positive polarity, in accordance with
their eruption during the Brunhes normal chron, i.e. during the last
0.789±0.008 Myr (Quidelleur et al., 2003). When accessible, lava
flows from the same lava pile generally exhibit very similar paleo-
magnetic directions, confirming the existence of massive pulses dur-
ing volcano construction. We note, however, that data from 2 flows of
the old volcanic sequence along the sea cliff show abnormal paleo-
magnetic direction with respect to the average values. This could be
highlighting local tilting processes associated with differential move-
ment along recent faults.

4.3. Tectonic analysis of fault geometry and kinematics

Themost prominent tectonic feature in Faial is the central graben af-
fecting the whole island. The graben fault scarps are clearly visible in
successive topographic cross-sections (Fig. 4) but the actual fault sur-
faces are only visible locally along sea cliffs (Fig. 5). Faults and fault
scarps strike N110° on average; some fault scarps dip 35–45º to the
NNE or SSW, while others dip more steeply at the surface, at around
55–75º to the NNE or SSW. Tilting of the lavas in the hanging-wall
block and steepness of faults at the Earth's surface indicate a listric ge-
ometry at depth. The observed fault striations are dip-slip, which
means that they are normal faults. Fault displacement, as shown by
the displacement of the topography, gradually increases away from
the Central Volcano, especially to the E; this can mean that part of the
older fault displacement has been gradually covered by CV eruptions.
The few faults that presently show a significant displacement, even
close to the south flank of the caldera, indicate that recent fault dis-
placement has been greater in the south than elsewhere (Fig. 4). We
dated the oldest rocks here at about 850 ka, so they are not associated
with these southernmost faults bounding the graben. This implies that
there was a south dipping topography of the old island, otherwise the
southernmost fault would show the oldest rocks.

5. Discussion

5.1. Successive stages of volcano–tectonic evolution

5.1.1. Rapid construction of a first main volcano
The old volcanic succession cropping out in the eastern side of the is-

land is dated here between 848±12 ka (sample AZ05-AM) at the base
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Fig. 4. Left: Shaded-relief map drawn from the high-resolution DEM (illumination from the North), showing the main topographical characteristics of the island. Thick black lines
show the base of the various fault scarps, with ticks towards the footwall. The dotted line shows the inferred prolongation of the southern fault under recent basaltic volcanic cones
in the Horta sector. Dashed lines localize the topographic profiles shown on the right. The eye symbols show the points of view from which the photographs in Fig. 5 have been
taken. Right: Topographic cross-sections evidencing recent apparent fault displacements across the width of the Faial graben. Grey areas show the remnants of the volcanic system
older than 850 ka (reversed magnetization). Thin dotted lines show the restored topography.
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and 843±12 ka (sample AZ05-AR) at the top, in full agreement with
the reversed polarity recorded by the lava flows. These new ages over-
lapwithin the uncertainties, testifying to a rapid stage of growthprior to
the end of theMatuyama period. Our new results are significantly older
than previous K/Ar determinations of 0.73±0.07 Ma and 0.67±
0.09 Ma acquired on whole-rock samples from the same area (Féraud
et al., 1980). The latter value, despite its large uncertainty, is inconsis-
tent with the reversed polarity here recorded for this sector. Such age
under-estimation in earlier studies may result from the experimental
procedure used previously. The samples dated by Féraud et al. (1980),
were pre-degassed at ca 230 °C under vacuum for a period of up to
20 hours before analysis (Féraud, 1977). Such procedure, initially
aimed at removing part of the atmospheric contamination adsorbed
on the surface of the grains, is unsuitable because it can also result in
partial diffusion and removal of radiogenic argon from the poorly reten-
tive volcanic glass, which can in turn yield too young ages.

The initial geometry of the old volcanic system cannot be con-
strained precisely, because it was largely destroyed during a period
of up to 500 kyr, and more recently was covered by volcanic activity
and partly affected by tectonic activity and mass-wasting processes.
However, the original dimensions can be estimated by combining
all our data. Low magnitude negative magnetizations computed
(light blue colour shades) for the eastern part of the island (Fig. 2)
do not mean that the outcropping lavas have a reversed polarity, be-
cause the polarity measured on the samples collected in that area is
normal. The inversion process we used computed a vertical average
of the magnetization, interpreted to reflect a thin and young
(b0.780 Ma) layer of rocks with normal polarity overlaying a deep
and older layer of reversed polarity. Therefore, the thinner the layer
of normal magnetic polarity lavas on top of the reversed polarity
rocks is, the more the colour approaches deep blue. The persistence
of the light blue area close to the island shore in the different sectors
of Faial (except the SW) suggests that the original volcano is present
underneath most of the recent lava units and therefore had a geo-
graphical extent encompassing most of the present island area
(Fig. 2). The narrow sector presently cropping in the eastern sector
(strong negative magnetizations evidenced by a deep blue colour,
and measured ages of about 850 ka) must have been a persistent
topographic high, which has not been covered by subsequent young
lava flows. We can get a rough idea of the old topography (prior to
present-day graben) by restoring surface displacements to their orig-
inal position (Fig. 4). This shows that the topography prior to recent
faulting was convex upward (topographic high), which is not
favourable for blanketing by younger positive lava flows. Therefore,
this area most likely coincides with a relatively high morphological
crest in the eastern side of the original volcanic system. We note
that the elongation of the inland negative magnetization is slightly
oblique with respect to the present N110 axis of the island. High-
magnitude negative values also extend offshore Faial to the north-
west. This suggests that the old volcanic system possibly had a
ridge-like morphology with a main axis closer to the northwest-
southeast direction (Fig. 6a). Prolongation of such a volcanic edifice
would thus extend into the Faial–S. Jorge channel as proposed by
Miranda et al. (1991). An old volcanic edifice with such elongation
is also compatible with the presence of northwest-southeast trending
old ridges recognized at the scale of the Azores plateau, e.g., in the
eastern part of S. Jorge (Hildenbrand et al., 2008b).

5.1.2. Prolonged volcanic gap and construction of a small edifice in the NE
part of Faial

The oldest lava flows collected in the NE sector of the island are
dated here at 387±7 ka, revealing an apparent gap in volcanism of
at least 450 kyr after the construction of the old volcano. Such a gap
could reflect in part a sampling bias, i.e. un-investigated volcanic
units could potentially be intercalated between the old volcanic suc-
cession and the lava pile here dated between 387±7 ka and 358±
7 ka. However, this is not supported by the magnetization map,
which shows low negative values in the NE sector reflecting a thin
cover of lavas with normal polarity on top of the older units. The mor-
phological surface in the NE tip of the island also supports lavas local-
ly flowing from a small volcanic edifice towards the North and
Northeast, on the partly preserved outer slopes of the Matuyama vol-
cano (Fig. 6b).

Geomorphological data, however, do not support such lava flows
on the southern and western sides of the island. Several authors
have proposed that early sub-aerial construction of the CV could be
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Fig. 5. Photographs taken from the sea showing the contrasted geometry of old and recent fault scarps. See Fig. 4 for localization.
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as old as 0.47 Ma (Demande et al., 1982; Madeira and da Silveira,
2003; Quartau et al., 2010). Such an inference relies on a K/Ar
whole-rock age of 0.44±0.03 Ma obtained on a highly porphyric
sample containing high amounts of olivine and pyroxene pheno-
crysts, which was sampled in the western wall of the caldera
(Demande et al., 1982). Whole-rock dating on such porphyric and/
or weathered samples in the Azores and elsewhere has been clearly
shown to yield abnormaly old ages by incorporation of inherited
excess argon and/or potassium removal by alteration processes
(e.g., Johnson et al., 1998; Quidelleur et al., 1999; Hildenbrand et al.,
2004). In contrast, the new age of 129±2 ka obtained on the fresh-
separated groundmass of our sample Fa11A from the base of the cal-
dera succession shows that most of the CV has been built much later
(see next section). Therefore, prior to such recent volcanic growth, the
western side of the old volcano has most probably experienced a pro-
longed period of volcanic inactivity exceeding 500 kyr. Partial destruc-
tion of the original morphology by mass wasting processes, including
coastal and stream erosion and tectonics, and subsequent blanketing
by the CV on thewestern side of the island can thus explain the absence
of the negative anomaly such as observed in the eastern sector.
5.1.3. Initiation of the Faial graben and early development of the Central
Volcano

Early sub-aerial growth of the CV within a very short period is
supported by our new age constraints obtained for samples from
the base and uppermost parts of the thick succession exposed both
in the caldera walls and at the northern part of the island near Praia
do Norte. We note that two similar, though less precise ages, have
been previously measured at 0.10±0.03 Ma and 0.11±0.03 Ma on
sub-aphyric samples from the northern and southern coasts, near
Porto Salão and Lombega, respectively (Demande et al., 1982). The
positive anomalies observable on the magnetization map in the sector
of Praia do Norte are consistent with emplacement of a thick lava
cover immediately to the North of the main Caldera eruptive centre.
A similar pattern, though less pronounced, is also visible as far as
the southern coast of the island. In contrast, the persistence of nega-
tive anomalies in the sector of Porto de Salão indicates a more re-
duced thickness. There, the northern gentle slope of the CV also
exhibits a clear morphological lateral contrast with the prominent
unit here dated between 389±7 ka and 358±7 ka, which confirms
that the latter had a restricted geographical extension.
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Fig. 6. Schematic model of evolution showing the main stages of volcanic construction separated by incremental fault migration and graben development.
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Our new sample collected in the deeper parts of the graben is dated
at 116±3 ka, verymuch in agreementwith the agewe obtained for the
upper northern flank of the CV (sample Fa10A, 118±3 ka). This clearly
shows that (1) the graben was already partly formed at that time, and
(2) lava flows from the upper part of the CV were channelized in this
prominent topographic low (Fig. 6c). Therefore, the eastern part of the
graben experienced a significant phase of development between
390 ka and 120 ka, which is much older than previously thought. We
note that the fault near Ribeirinha could have formed during this period,
which could explain the eroded aspect of the scarp recognized in the
field (Fig. 5a).

5.1.4. Incremental evolution of the graben and further construction of the
Central Volcano

The several lava flows sampled on top of the unconformity in
Pedro Miguel Creek range in age between 46±3 ka and 38±1 ka.
These new ages do not overlap each other but attest to very rapid
burying of the graben. Although a few scoria cones have developed
recently within the graben, such massive filling was most probably
fed by renewed activity at the Caldera eruptive centre, as revealed
by the present prominent morphology of the volcano (Fig. 6d). The
unconformity in Pedro Miguel creek shows an apparent volcanic
gap of ca. 80 kyr, which can explain the deep erosion of the older
lava flows and the local accumulation of sedimentary deposits on
their remnants. The presence of large boulders (up to 1 m in size)
most probably highlights morphological rejuvenation upstream,
which can therefore be associated with significant vertical deepening
of the graben between 120 ka and 40 ka. Furthermore, the younger
succession shows that the pilling of lava flows was interrupted from
time to time by smaller erosion surfaces and smaller grain-size con-
glomeratic deposits (see Fig. 3). We interpret these interruptions in
the lava piling as times of movement along the adjacent normal
faults, which could thus be linked with repeated eruptions at the
CV. The scars developed on the southern side of the volcano have a
very prominent surface expression, featuring high slopes and a signif-
icant vertical offset. This suggests recent reconfiguration of the defor-
mation, with increasing displacement along the southern edge of the
graben. The more prominent positive magnetization along these scars
supports partial buttressing of the lava flows erupted from the CV
against the southern faults.

5.1.5. Late evolution during the last 40 kyr
The young units of Faial Island previously dated by radiocarbon

(b10 ka) are mainly related to the very recent explosive volcanic ac-
tivity at the CV (Madeira et al., 1995). Several basaltic volcanic
cones are additionally distributed along the southernmost fault of
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the graben, suggesting that magma ascent was constrained along this
mechanical discontinuity, but they do not give precise information as
to whether the latter was active at that period, because a pre-existing
fault could also have focussed magma ascent. The southern faults in
the western sector do, however, affect the recent part of the CV,
showing downward movement very recently, i.e., additional west-
ward propagation of the graben during the last 40 kyr, and most
probably during the last 10 kyr. Several recent basaltic cones and
vents on the western tip of the island, including the historical erup-
tions, also occurred during the last 10 kyr (Madeira et al., 1995).
The caldera could thus have experienced partial development in re-
sponse to magma withdrawal associated with emptying of a shallow
reservoir during the several differentiated pyroclastic eruptions and/
or an additional phase of graben development (Fig. 6e), two processes
which might be intimately linked, as discussed in the next section.
5.2. Links between regional deformation, volcano growth and graben
development

Our new data show that volcanic activity on Faial has occurred
through short periods of robust volcanic construction, each lasting
less than 30 kyr and being separated from the others by prolonged
hiatuses, up to 500 kyr in duration. This is similar to the case of the
neighbouring island of S. Jorge, where multi-stage volcanic growth
alternating with prolonged gaps have been recently shown by geo-
chronological analyses on samples prepared according to the same
procedure and analysed with the same technique (Hildenbrand
et al., 2008b). Furthermore, comparison of these data with recent
stepwise 40Ar/39Ar analyses on separated volcanic groundmass on
Terceira (Calvert et al., 2006) shows synchronous short phases of vol-
canic construction on the three islands, e.g. between 400 ka and
350 ka, and probably throughout most of the last 300kyr. Recent
magma outputs in the area thus have been concentrated along the
N110 direction to develop simultaneously S. Jorge, Faial and Terceira,
which most probably reflects significant episodes of intense regional
deformation. Similarly, volcanic construction has been constrained
by 40Ar/39Ar at about 850 ka in S. Miguel (Johnson et al., 1998),
i.e., synchronous with the construction of the old volcano on Faial.

MacDonald (1972) concluded that the exact origin of the Faial gra-
ben was not known but proposed three mechanisms: (1) removal of
magma from an underlying chamber, or (2) stretching of the surface
of the volcano, or (3) stretching of the entire underlying crust due to
spreading of the Atlantic Ocean basin. Our new data support the first
hypothesis, and provide additional insight on the iterative develop-
ment of the Faial graben in relation with the several volcanic pulses.
The most conspicuous arguments for our interpretation are:

(1) The inward listric geometry of the faults responsible for local
tilting of the island surface suggests their flattening at shallow
depth, strongly indicative of the existence of (an) underlying
magma chamber(s) developed within the volcanic edifice.

(2) Each of the short volcanic episodes here evidenced included the
eruption of either highly porphyric lavas featuring plagioclase
phenocrysts/glomerocrysts, or evolved lavas like mugearites,
benmoreites and trachytes. Such characteristics support inter-
mittent storage of themagma in a reservoir prior to their extrac-
tion to the surface.

(3) Each volcanic stage, at least during the last 400 kyr, has been
followed by a period of graben development. Westward migra-
tion of volcanic construction has also been followedby systematic
westward propagation of the graben faults, supporting dominant
deflation above the main zone of magma withdrawal.

(4) Thepresence of sediments intercalatedwithin the lava flows here
dated at 120 ka and 40 ka suggests themorphologic rejuvenation
of the scarps during the interval separating the twomain periods
of eruption, supporting incremental displacement along themain
faults of the graben.

(5) Such a mechanism occurred in recent time during the Capelinhos
eruption, where 1.5 m of vertical displacementweremeasured in
1958, late in the eruptive crisis that started in 1957 (Machado et
al., 1959; Zbyszewski and Veiga Ferreira, 1959; Machado et al.,
1962; Catalão et al., 2006).
6. Conclusions

This study shows the suitability of using complementary ap-
proaches for retrieving the architecture and understanding the evolu-
tion and development of oceanic islands in response to complex
interactions between volcanic growth and partial destruction by a va-
riety of mass-wasting processes. The combined use of precise K/Ar
geochronology on separated groundmass, morpho-tectonic analyses,
and magnetic data allow us to depict a step by step model emphasiz-
ing short stages of volcanic growth separated by long periods of inac-
tivity during which the volcanic units were subjected to significant
mass wasting, including coastal and stream erosion, possibly lateral
collapse, and incremental normal faulting. Therefore, the present ar-
chitecture of the island does not result from simply the coeval devel-
opment of two main volcanic edifices that were synchronously active
over long periods of time.

The successive phases of rapid volcano growth shown in this study
have apparently been controlled by short volcanic pulses confined
along the main lithospheric structures, triggered by brief episodes of
regional deformation. In contrast, the gradual development of the
Faial graben appears to be closely linked to the dynamics of magma
extraction from ESE-WNW elongated magma chamber(s) at depth,
which episodically loses volume and triggers passive gravitational
collapse. Such a model is applicable to other oceanic islands, in the
Azores and elsewhere.
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Large-scale flank collapses are common in the geological evolution of volcanic ocean islands in the Atlantic. To
date, catastrophic lateral collapses in the Azores Islands have been difficult to identify, leading to suggestions
that a lack of events may relate to the relatively small size of the islands. Here we show evidence for two
major collapses on the northern flank of Pico Island (Pico–Faial volcanic ridge, central Azores), suggesting that
this island had a collapse incidence similar to that of other Atlantic volcanic islands.
The study is based on the analysis of: (1) offshore and onshore high-resolution digital elevationmodels; (2) field
data focused on the N flank; and (3) new K–Ar ages on selected lava flow samples.
Pico sub-aerial northern flank is marked by two conspicuous arcuate shaped depressions concave towards the
sea, here interpreted as landslide scars. A main debris field is observed offshore the largest depression. This
deposit has 20 km of maximum length, covers ca. 150 km2, is composed of meter to hectometer blocks, and
has an exposed volume here estimated between 4 and 10 km3, though the actual volume probably exceeds
10 km3. Debris flow towards the ESE was apparently determined by the slope of the narrow WNW–ESE
S. Jorge channel.
Young lava flows cascade over the interpreted scars, thus concealing the older volcanic sequence(s) affected by
the landslide(s). New K–Ar ages measured on these lava flows provide a minimum age of ca. 70 ka for the large-
scale collapse(s) in Pico's northern flank.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The destruction of volcanic islands occurs at small and large scales,
gradually or suddenly on catastrophic events. Large-scale flank failure
in volcanic islands can involve either gradual movement along deep
listric faults (slump) or the generation of debris avalanche (Moore et al.,
1989). These two mechanisms are not mutually exclusive, as a creeping
slump may suddenly turn into a catastrophic debris avalanche. From
on-land and offshore studies, catastrophic large-scale mass wasting has
been identified on volcanic islands all over the world (e.g., Duffield
et al., 1982; Moore et al., 1989; Gillot et al., 1994; Deplus et al.,
2001; Krastel et al., 2001; Masson et al., 2002; Hildenbrand et al., 2006).
In the Atlantic, more specifically, catastrophic failure episodes have
been extensively documented, e.g. in the Canary (Navarro and Coello,
1989; Carracedo et al., 1999; Krastel et al., 2001; Masson et al., 2002;
Boulesteix et al., 2012, 2013), in Cape Verde (e.g., Day et al., 1999;
Masson et al., 2008), and along the Caribbean arc (Deplus et al., 2001;
Le Friant et al., 2003; Samper et al., 2007; Germa et al., 2011).

To date, catastrophic flank collapses in the Azores Islands have been
difficult to identify, leading to suggestions that a lack of collapses may
relate to the relatively small volume of individual islands and volcanic
ridges (e.g. Mitchell, 2003). Two topographic embayments on the
southern flank of Pico Island have been related to lateral flank move-
ment in the form of old catastrophic landslides or slumping processes
(Woodhall, 1974; Madeira, 1998; Nunes, 1999, 2002; Madeira and
Brum da Silveira, 2003; Hildenbrand et al., 2012b, 2013b; Mitchell
et al., 2012, 2013), but none of these features is clearly and unambigu-
ously associated with well-identified offshore deposits.

Here we put forward evidence of two major collapses, and respec-
tive submarine deposits, on Pico's northern flank, showing that the
island has experienced episodes of flank instability like other Atlantic
volcanic islands.

The identification of offshore debris deposits and the interpretation
of onshore source zones in Pico's northern flank are here primarily
based on morphological characterization, through combined analysis
of a 10 m resolution sub-aerial digital elevation model (DEM) and the
new 50 m resolution bathymetry of the narrow S. Jorge Channel
(between Pico's northern flank and S. Jorge's southern flank). The anal-
ysis of the bathymetry also supports the discussion of the influence of
channel morphology on the landslide submarine flow and deposition.
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In order to determine the age and recurrence of the failure events, we
performedfieldwork focused on the establishment of volcanic stratigra-
phy/structure of the source zones, aiming at finding possible landslide
scars/deposits and to sample the volcanic sequences affected by and
covering the landslide related features. The sampled rocks were then
processed according to the K–Ar Cassignol–Gillot unspiked technique.

2. Geologic setting

The Azores Islands are located about the triple junction between
North-America, Eurasia and Nubia plates (Fig. 1). The study region is
located on the locally diffuse Nubia/Eurasia plate boundary (Lourenço
et al., 1998; Fernandes et al., 2006; Borges et al., 2007; Marques et al.,
2013), where regional deformation has influenced the development of
narrow and steep volcanic ridges (Fig. 1). The volcanic ridges of S. Jorge
and Pico–Faial (Fig. 1) are characterized by slopes commonly around
25–35°, locally reaching higher values along coastal cliffs. These ridges
are characterized by a multi-stage development during the last 1.3 Myr
(Féraud et al., 1980; Demande et al., 1982; Hildenbrand et al., 2008,
2012a). This multi-stage development includes short periods of volcanic
construction interrupted by long periods of island destruction. The island
destruction processes are either gradual (e.g., erosion, graben develop-
ment) or catastrophic like the events here reported. The growth of the
sub-aerial Pico–Faial ridge started ca. 850 ka ago on the eastern part of
Faial Island (Quartau et al., 2010, 2012; Hildenbrand et al., 2012a,
2013a; Quartau and Mitchell, 2013), with the growth of sub-aerial
Pico during the last ca. 300 ka (Fig. 2, 250 ± 40 ka, in Demande et al.,
1982). The oldest outcropping volcanic unit in Pico, the Topo Unit (TU),
is located on its SE flank (Fig. 2), which is deeply affected by a currently
active slump structure (Hildenbrand et al., 2012b) (Fig. 3, feature 1). A
WNW–ESE fissural system (FS) developed N of Topo (Fig. 2), and a stra-
tovolcano (Fig. 2, PS) constitutes the westernmost part of the island
(Fig. 2, e.g., Forjaz 1966); both have been volcanically active through
the Holocene and in historic times (Madeira, 1998; Nunes, 1999;
Mitchell et al., 2008). Two topographic embayments on Pico's northern
flank (Fig. 3) were considered by Mitchell (2003) as “ambiguous candi-
dates for landslides”. Mitchell et al. (2008) identified a hummocky ter-
rain area on the shallow bathymetry (depth up to of a few hundred
meters) adjacent to a sub-aerial embayment (Fig. 2 in Mitchell et al.,
2008, feature A), which was interpreted as a deposit resulting from de-
bris avalanche or repeated lava delta failure. Despite these evidences,

to date the published works (e.g., Mitchell, 2003; Mitchell et al., 2008)
do not conclude unequivocally on the occurrence of major landslides in
Azores islands.

3. Morphological analysis

3.1. Construction of the DEMs

The submarine grid of the deepest sector of the Pico–S. Jorge channel
(50 m resolution, Fig. A.1a) was constructed using the multibeam data
acquired with a 12 kHz Kongsberg EM120 multibeam echo sounder
system (Lourenço, personal communication). The depth accuracy
(RMS) for this system is estimated as 0.2–0.5% of the water depth
(Kongsberg, 2007). Considering that the maximum water depth in the
study area is ca. 1300 m, the maximum RMS expected for this data set
lies in the range 2.6–6.5 m.

Themultibeam data were processed using the CARIS software, clean
of noise and converted to an ASCII file (Lourenço, personal communica-
tion). Next, the 50 m resolution ASCII data were converted to a raster
structure of 50 m spatial resolution, using a simple gridding method.

The onshore data used in this study was produced from a digital to-
pographic map of Pico Island (Portuguese Army Geographic Institute,
IGeoE). Photogrammetric methods led to the production of this infor-
mation at the 1:25,000 scale. The vertical accuracy of these data is
approximately 5 m (Afonso et al., 2002). The nodes and lines with
three-dimensional coordinates (x, y and z) of the contour lines were
then used to generate a TIN (Triangulated Irregular Network) model,
which is a vector-based representation of the relief based on a network
of non-overlapping triangles (Burrough and McDonnell, 1998). The
conversion of the TIN model to a raster structure was then performed
interpolating the cell z-values from the input TIN at the spatial resolu-
tion of 10 m and50 m to produce the final onshoreDEMs for Pico Island
(10 m spatial resolution), S. Jorge and Faial Islands (50 m spatial resolu-
tion). To this purpose, we used the ArcGIS 9.3 software from ESRI with
the 3D Analyst extension. For the final grid, we introduced in the
no-data zone on Pico's northern coast (between the sub-aerial and sub-
marine grids described above) the 100 m spaced contours obtained
from photogrammetry of Fig. 2 in Mitchell et al. (2008). The final
50 m resolution grid was built through combination of the sub-aerial
and submarine DEMs described above (Fig. 4), filling the no-data zone
with a 200 m resolution interpolation that included the depth contours

Fig. 1. Location of the Azores archipelago on the triple junction between the North America (NA), Eurasia (EU) and Nubia (NU) plates. Main active structures represented as thick black
lines (Middle Atlantic Ridge — MAR, Terceira Rift — TR) and inactive structure as dashed white line (East Azores Fracture Zone — EAFZ). The white dashed rectangle encompassing the
islands of Pico (Pi), S. Jorge (SJ) and Faial (Fa) limits the study area. Bathymetric data from Lourenço et al. (1998); Image available at http://w3.ualg.pt/~jluis/acores_plateau.htm. (right
top rectangle) Inset for the location of the Azores Triple Junction (Google Earth image — 19-08-2013).
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extracted fromMitchell et al. (2008). Further details on the composition
of the final DEM grid are provided in Appendix A.

For the construction of Pico's elevation gradient in the sub-aerial do-
main (Fig. 3), we took the original 10 m resolution elevation grid of the
sub-aerial domain and created a final 10 m resolution terrain slope grid
in the Surfer software (Golden Software, Inc.; software version 9.11.47).
For each grid node, the angle of dip was calculated considering the ele-
vation gradients between neighboring nodes inN–S and E–Wdirections
(Golden Software, Inc., 2002, after Moore et al., 1993). Therefore,
though the final slope grid presents values for 10 m spaced nodes, the
calculation of the final values is based on the elevation gradient be-
tween nodes at a 20 m distance from each other (twice the horizontal
resolution of the original DEM).

3.2. Pico's sub-aerial northern flank

On an elevation gradientmap (Fig. 3), the northernflank is generally
steeper than the southern flank. On the northern flank, the sub-aerial
elevation gradient of the fissural system (Fig. 2, FS) reaches 30–45° on

two sectors of concave profile, reaching ca. 800 m of maximum height
(Fig. 3):

1. On the western sector of the fissural system, the 30–45° slopes are
aligned WNW–ESE (Fig. 3, feature 2). They are masked in the west
and in the east by more recent volcanic deposits erupted by the
younger Pico stratovolcano and by the fissural system, respectively
(Figs. 2 and 3).

2. On the eastern sector of the northern flank, the steep slopes define an
arcuate topography, which is concave towards the sea and grossly
parallel to the volcanic ridge axis (Fig. 3, feature 3).

3.3. S. Jorge Channel bathymetry

The building of the gridmosaic, combining sub-aerial and submarine
grids, is described in Appendix A of the supplementary material.

Pico and S. Jorge islands are separated by a ca. 20 km wide WNW–

ESE channel, known as the S. Jorge Channel (Fig. 4). The maximum
depth along its axis varies between ca. −1230 m and−1270 m, with
a basal surface defined around −1270 m, deepening towards its

Fig. 2. Shaded relief of the 10 m resolution DEM of Pico Island (lighting from ESE), with coordinates inmeters UTM (zone 26N).White dots and numbers along Pico's northern flankmark
the location and the K–Ar ages presented in this study.White squares and trianglesmark the K–Ar ages presented in Féraud et al. (1980) and Demande et al. (1982), respectively. The ages
are indicated in thousands of years (ka). Simplified geologic/physiographic map (modified after Madeira, 1998).

Fig. 3. Slopemap of Pico Island built from the 10 m resolution DEM.Dashed black lines: scarps interpreted from zones of anomalously strong slopes. Numbered features: 1— active slump;
2—westernmost scar of Pico's N flank; 3— easternmost scar of Pico's N flank coastal; 4— coastal cliff mentioned in Section 4; 5— location of the creeks referred to in Section 4; 6— scarp
that limits the outcropping TU to the N.
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WNWand ESE ends. On the bathymetry of the S. Jorge Channel (Fig. 5a),
we identified:

1. The main feature in the central sector, a WSW–ENE elongated hum-
mocky area,with a positive relief relative to the surrounding seafloor
(Fig. 6a, feature “A”). It has a maximum visible length of 20 km
(ca. 22 km, measured along a longitudinal profile) and spreads
over an area of ca. 150 km2. The grain size of the material at the sur-
face of this positive-relief feature is generally too small to be distin-
guishable on this 50 m resolution DEM. The largest individual
hummocks observed are located on the distal part of the deposit, at
an average depth of −1240 m (Fig. 6a): the largest is 1700 m long,
1200 m wide and 100 m high (Fig. 6a, feature 1), and the second
largest is 1000 m long, 600 m wide and 200 m high (Fig. 6a, feature
2). On the SE zone of the hummocky terrain, a homogeneousmass of,
apparently, intermediate size debris material can be identified
(Fig. 6a, feature “A”, dashed yellow line). At the foot of Pico's subma-
rine flank, on the surface of this homogeneousmass (high resolution
bathymetry presented as Fig. 2 in Mitchell et al., 2008), there are
visible lineaments perpendicular to the submarine flank. Uphill, on
the submarine flank, there are two small arcuate scarps (Fig. 6a, red
dashed lines).

2. ANNE–SSWelongated, lobate-shapedhummocky terrain on thewest-
ern sector (Fig. 6a, feature “B”). Its maximum extent is ca. 8 km, mea-
sured from, and perpendicularly to, the base of Pico's submarine flank.
It is generally composed of small debris, undistinguishable on the50 m
resolution DEM, but with some larger hummocks. The limits of the

deposit are not well defined in the proximity of Pico's flank, covering
a minimum area of 32 km2.

3. A smaller deposit at the base of S. Jorge's southern flank (Fig. 6a,
feature “C”), with 4 km of maximum length, measured from, and
perpendicularly to, the base of S. Jorge's submarine flank, and cover-
ing an area of ca. 12 km2. Upslope the submarine flank, there is an
arcuate-shaped scar (Fig. 6a, red dashed line).

4. Lobate-shaped deposits visible along the base of Pico and S. Jorge's
flanks. These deposits are generally composed of small size debris,
undistinguishable on the 50 m resolution DEM, but with some larger
hummocks.

3.4. Debris volume

The exposed volume of Pico's northern deposit (Fig. 6a, feature “A”)
was estimated considering solely the space between the actual topo-
graphic surface of the deposit and hypothetical basal surfaces (based
on submarine flank profiles performed on deposit-free sectors). We
built NNE–SSW cross sections of the original grid (perpendicular to
the coastline on the zonewhere the deposit is thickest), spaced approx-
imately 1.2 km, and covering the deposit area and the surrounding
deposit-free area (Fig. 7). The origin considered for the horizontal dis-
tance of the cross sections is the −100 m contour line, roughly the
limit of the Pico's shelf. For the calculation of the exposed volume, we
assume that the upward limit of the deposit is at −100 m contour
(we assume that it is limited to the extent visible on the bathymetry,

Fig. 4. Topographic grid used as basis for this study. (a) Shaded relief (50 m resolution, lighting from WNW) of Pico Island (Pi), S. Jorge Island (SJ) and bathymetry of S. Jorge channel.
The red rectangle indicates the area comprised in b. (b) Final grid resulting from the combination of the DEMs presented in (a) and contours extracted from Mitchell et al. (2008)
(50 m resolution, lighting fromW). Contour levels for 100 m spaced depths are presented. A detailed description of the grid construction is presented in Appendix A.
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not continuing landward), and we do not consider the effects of
blanketing by more recent volcanic/sedimentary materials.

As the channel deepens and gets narrower towards the ESE (Fig. 4),
the volume will be given as an interval: minimum volume estimated
with a hypothetical basal profile representative of the WNW limit of
the deposit, and maximum volume estimated with a hypothetical
basal profile that considers the greater depths of the ESE limit of the de-
posit. The hypothetical basal profile from theWNW limit of the deposit
(Fig. 7b, black dashed line) was determined from the average of closely
spaced cross sections (Fig. 7a, full white line cross sections), on a zone
relatively undisturbed by the presence of sedimentary deposits or vol-
canic cones. In order to build the hypothetical basal profile used for
the determination of the maximum volume (Fig. 7b, red dashed line),
we considered all the cross sections performed perpendicularly to the
coast, and determined the maximum depth attained by the bulk of
these cross sections for 1 km spaced horizontal distance values.

For the construction of each hypothetical basal surface, we intro-
duced the values determined for the “normal profiles” in the blank
area (Fig. 7a, area comprised by the green dashed line) and performed
a 200 m resolution spatial interpolation (kriging) (Fig. 8a and b). The
standard deviations associated with the interpolation method used
have a maximum value of 25 m (Fig. B.1). These spatial interpolations
have associated Root Mean Square (RMS) errors within a range of
4.7–5.6 m, and a maximum residue of 26.0 m, for the deposit's blanked
area (Table B.1). Though the maximum residue obtained for the com-
plete grid has a value of 145.1 m (Table B.1), this residue was obtained
outside the deposit's blanked area, therefore outside the zone consid-
ered in the volume calculation (Fig. B.2). We built “deposit thickness”
grids by subtracting each of the hypothetical basal surfaces from the
real topographic surface (Fig. 8c and d). The maximum thickness of
the deposit lies between ca. 238 and 304 m (Table 1). In Fig. 8c and d,

it is visible that there are appreciable volumetric anomalies on the sur-
roundings of the limits defined for the deposit, where it would be ideal
to have a perfect fit between real and estimated basal surfaces. In order
to partially eliminate these anomalies, the volume was calculated only
for the deposit's area (Fig. 8c and d, area comprised by the dashed
black line). The volume of the deposit visible on the bathymetry
is, roughly, between 4 and 10 km3 (Table 1, positive volume). If we con-
sider that, for the hypothetical maximum depth basal surface, there are
still zones on which the basal surface lies above the real topography
(Table 1, negative volume), then the exposed volume of the deposit
must be closer to 10 km3 than to 4 km3.

4. Fieldwork

In order to constrain the age of failure events on Pico's northern
flank, we attempted to sample the volcanic sequence affected by the
flank failure and the one covering the landslide scar(s). The fieldwork
was focused on the zones where it would be more probable to
reach the older volcanic sequence affected by the eventualflank failures,
i.e., inside deep creeks incising the cascading lavas, and along coastal
cliffs close to these features.

On the eastern sector of Pico's N flank, the high coastal cliff has a
maximum height of ca. 400 m. It intersects the steep slope zone that
defines the eastern embayment (Fig. 3, feature “4”). Along this coastal
cliff, the outcropping sequence consists mainly of lava flows that dip
to the N on the western sector, whereas lava flows dip to the NE on
the eastern sector (Fig. 6a). No major unconformities have been ob-
served on the outcropping sequence. Nevertheless, we sampled a lava
flow (Table 2 and Fig. 2, sample Pi10X), as close as possible to the
base of the outcropping sequence.

Fig. 5. (a) Shaded relief map of the S. Jorge channel, sub-aerial Pico and S. Jorge islands (lighting from ESE, 50 m resolution DEM). (b) Topographic profile across Pico Island's sub-aerial
domain and submarine northern flank, presented as a yellow dashed line in (a).
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On thewestern sector of Pico's northern flank, weworked upstream
along two creeks that incise the zone of steep slope (Fig. 3, feature 5).
Here we observed cascading lava flows dipping 35–45° towards the
sea (Fig. 6a), intercalated with pyroclastic and clastic sedimentary
deposits. Again we could not observe a significant unconformity that
could represent a landslide scar. Anyway, we sampled a lava flow at
the base of this volcanic sequence (Table 2 and Fig. 2, sample Pi11N).
Other samples were collected at the base of coastal cliffs along Pico's
northern coast (Table 2 and Fig. 2, samples Pi10R, Pi10P, and Pi10U),
in order to constrain the age of the fissural system volcanism.

The easternmost embayment identified on Pico's northern flank is
located immediately to the N of the exposed remnants of TU (Figs. 2
and 6a). Additional fieldworkwas performed on this sector, in the south-
ern flank of the island (cut by the SSW–NNE cross section presented in
Figs. 5 and 6). The observed TU deposits consist mainly of meter thick
lava flows with dips in the range 0–25°, and a variation in maximum
dip orientation (Fig. 6a). The outcropping TU lavas are limited in the N
by a slightly arcuate W–E scarp, ca. 150 m high, whose maximum dip
reaches 35–40° towards the N (Fig. 3, feature 6). Near this scarp, the
TU lava flows dip 10° towards the NW (Fig. 6a).

5. K–Ar geochronology

The sampleswere prepared anddated byK–Ar at the IDES laboratory,
Université Paris-Sud (Orsay, France). In order to check the unaltered
state of the samples, thin sections were carefully observed under the
microscope. The samples were crushed and sieved to a homogeneous
size fraction (125–250 μm). As phenocrysts may carry inherited excess

Ar, by crystallizing previously to the eruption under high pressures at
depth, their presence in the analyzed samplemay lead to the determina-
tion of an excessive age. Therefore, we systematically removed all the
phenocrysts (olivine, pyroxene and plagioclase), through magnetic sep-
aration and heavy-liquid sorting. At the end of this process, we obtained
a groundmass of homogeneous grain size (125–250 μm) and density
(classically ranging between 2.95 g/cm3 and 3.05 g/cm3 for basaltic
samples).

K was measured by flame absorption-spectrophotometry, with 1%
uncertainty from systematic analysis of standards (Gillot et al., 1992).
Ar was measured by mass spectrometry, according to the Cassignol–
Gillot unspiked technique (Cassignol and Gillot, 1982; Gillot and
Cornette, 1986; Gillot et al., 2006). The Cassignol–Gillot technique has
been shown especially suitable to date low-K and high-Ca basalts and
andesites of late Quaternary age with an uncertainty of only a few ka
(e.g., Samper et al., 2007; Hildenbrand et al., 2008, 2012a; Germa
et al., 2011; Boulesteix et al., 2012, 2013). With this technique, 40Ar
and 36Ar are measured simultaneously, avoiding any potential signal
drift. Also with this technique, the level of atmospheric contamination
is accurately determined by comparison between the isotopic ratios of
the sample and an air pipette at strictly similar 40Ar level. This allows
the detection of tiny amounts of radiogenic 40Ar, as low as 0.1% (Gillot
et al., 2006).

K and Ar were both measured at least twice to ensure the reproduc-
ibility of the results. The used decay constants are from Steiger and Jäger
(1977). The obtained ages are presented in Fig. 2 and Table 2, where the
uncertainties are quoted at the 1σ level. The various lava flows sampled
in this study are dated between 70 ± 4 ka and 52 ± 5 ka. The oldest

Fig. 6. (a) Shaded reliefmapof the S. Jorge channel, sub-aerial Pico and S. Jorge islands (lighting fromESE, 50 mresolutionDEM),with interpretation of possible scars, blocks and limits of debris
deposits. Yellow arrows indicate the biggest individual hummocks observed. Green dashed line indicates the extent of the TU. Dashedwhite line indicates the cross section presented in b. The
lavafloworientationsmeasured on thefield are indicated. The non-interpreted version of this shaded reliefmap is presented as Fig. 5a. (b) Topographic profile across Pico Island and the prox-
imal zone of themain debris deposit interpreted on the bathymetry. Representation of themain geometry of the deposits observed on thefield. The non-interpreted version of this topographic
profile is presented as Fig. 5b.
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flows covering the western and eastern scars yield similar values of
70 ± 4 ka and 69 ± 4 ka (samples Pi10X and Pi10 R, respectively).

6. Discussion

6.1. Sub-aerial scarps on Pico's northern flank

Although still very steep on the slope map, the two main curved
scarps visible on Pico's sub-aerial N flank are presently smooth, due to
blanketing by volcanic products that erupted from the fissural system
and Pico stratovolcano. These younger volcanic deposits have therefore
been deposited on top of a sharper and steeper scarp. Wide lava deltas
have formed at the base of the curved scarps (Figs. 2 and 3), thus
smoothing also part of the submarine scarp.

Following Mitchell (2003), who hypothesized a landslide related
origin for these conspicuous scarps, we interpret these features as
scars resulting from past failure events on Pico's northern flank.

6.2. Main debris deposit

6.2.1. Debris dimensions
Some of the hummocks in the debris deposit A (Fig. 6a) are easily dis-

cernible on the shaded relief image due to the strong reflection/shadow
contrast of their “soft” surfaces under the imposed lighting. As these

hummocks generally have an irregular shape rather than being conical
features, we interpret them as blocks rather than small volcanic edifices.

Despite its significant dimensions, the height of the biggest
hummock identified (see Section 3.3) is very small when compared to
its width/length, and the hummock's surface is extremely irregular
and weakly reflects the imposed lighting (Fig. 6a, feature “1”, see
Section 3.3). We interpret this large hummock as evidence for either a
big irregular block or an agglomerate of blocks, covered by smaller
debris. The second largest hummock identified (Fig. 6a, feature “2”,
see Section 3.3) constitutes the biggest individual block observed on
the surface of the deposit.

6.2.2. Debris source(s) and number of failure events
Based on the location, shape, and thickness spatial distribution, we

interpret this hummocky terrain as a deposit of material resulting
from partial collapse of Pico's northern flank. The deposit's shape and
thickness spatial distribution at the foot of Pico's submarine flank
suggest a source area of relatively small lateral extent (ca. 7 km). This
source zone likely corresponds to the sub-aerial scar immediately
upstream the deposit (Fig. 6a).

We interpret the homogeneous debris size domain on the SE of the
deposit (Fig. 6a, feature A, yellow dashed line) as a deposit resulting
from a more recent collapse of Pico's submarine flank. As suggested by
the deposit's shape and the longitudinal flow structures visible on its

Fig. 7. (a) Full colored lines on the deposit area represent themost relevant NNE–SSW cross sections. Full white lines on theNW represent the cross sections considered for the calculation
of the “normal” submarine profile, used in the estimation of minimum volume. Contour of debris deposit is represented by a dashed white line, and the contour of the area blanked for
volume calculation purposes is defined by the green dashed line. (b) Plot of themost relevant SSW–NNE cross-sections on the deposit area (full lines) and of the hypothetical basal profiles
built for the calculation of minimum volume (red dashed line) and maximum volume (black dashed line).
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surface (lineaments mentioned in Section 3.3, visible in Fig. 2 from
Mitchell et al., 2008), the interpreted sources of this deposit's material
are the two arcuate scarps uphill of the submarine deposit (Fig. 6a).
The scars interpreted on the sub-aerial northern flank have been cov-
ered by more recent volcanic deposits. The significant protrusion near
sea level observable in the area interpreted as source zone of the main
deposit (Fig. 6) is interpreted as a consequence of more recent subma-
rine flank reconstruction and lava delta accumulation (Mitchell et al.,
2002, 2008; Mitchell, 2003), thus reshaping the scar left by the debris
avalanche.

Therefore, it is impossible to assess directly (a) the landward conti-
nuity of the deposit (Fig. 9), (b) the exact configuration, at depth, of
the scar associated with the failure (Fig. 9, yellow dashed line), and
(c) which volcanic sequences were affected by the flank collapse. The
possible scenarios for the sequences affected by the studied flank failure
were constrained by the local topography (Fig. 6) and fieldwork data,
and depend on the premises we assume for: (a) the continuity of the
TU volcanic edifice towards the N, where it is masked by deposits of
the more recent fissural system; (b) the actual configuration of the

scar at depth; and (c) the possible development of a pre-collapse
sequence of sub-aerial fissural system deposits.

Three main hypotheses can be put forward regarding the sequences
that were affected by the major flank failure identified in this study:

1. The TU volcanic edifice was continuous and higher towards the N,
and its northern flank collapsed catastrophically (Fig. 9a);

2. The TU volcanic edificewas shallower towards theN, on top ofwhich
a pre-collapse fissural system grew. Then failure occurred in the N,
with catastrophic removal of deposits from both TU and pre-
collapse fissural edifices (Fig. 9b).

3. The TU volcanic edifice was shallow towards the N, on top of which a
thick sequence of pre-collapse fissural systemdepositswas emplaced.
When the N flank failure occurred, only the pre-collapse fissural
system was affected (Fig. 9c).

Though hypotheses 2 (Fig. 9b) and 3 (Fig. 9c) cannot be excluded,
fieldwork observations on the scar did not allow the identification of a
pre-collapse fissural system sequence. Therefore, scenario 1 (Fig. 9a),
which considers the failure of TU volcanics only, is here considered as
the soundest hypothesis.

Based on this hypothesis, we propose the following evolution for this
sector of the volcanic ridge:

1. Growth of the TU volcanic edifice (Fig. 10a and b). The variation of the
maximum dip orientation of the volcanic deposits observed in the
field (Fig. 10a) suggests that the original summit of this volcanic edi-
ficewould be located in the area of the SEPico active slumpdepression
(Figs. 3 and 10). Such location had already been proposed for the core
of the referred volcanic edifice by Nunes et al. (2006), from the inter-
pretation of a major positive Bouger anomaly identified there.

2. Destruction of most of the TU volcanic edifice (Fig. 10c).

Fig. 8. Estimated basal surfaces for minimum volume (a) and maximum volume (b) calculations (grid lighting from WNW, 0 m contour lines of the surfaces plotted as full black lines).
Grids of deposit thickness for the minimum volume (c) and maximum volume (d) (black dashed line limits the area considered for the volume calculations, and the full black lines
represent the islands' coastlines). Color scale for the deposit thickness (c and d) is presented on the right.

Table 1
Values of volume and thickness obtained for the models of minimum and maximum
volumes. Positive volume is the volume between the surfaces, being the hypothetical
basal surface under the actual topographic surface. Negative volume is the volume
between the surfaces, being the hypothetical basal surface above the actual topographic
surface.

Positive volume
(km3)

Negative volume
(km3)

Maximum thickness
(m)

Minimum volume 4.278 1.6 238
Maximum volume 10.242 0.015 304
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The clear N–S scarp that affects this edifice's eastern sector (Fig. 3,
feature “1”) shows that part of the mass-wasting has been accommo-
dated along the structure(s) that constitute the currently active large-
scale slump structure (mass wasting structure not represented in
Figs. 6 and 9, since it is not intersected by the cross section).

It is not possible to observe the continuation of TU edifice towards
the N, due to large-scale flank destruction andmasking of the remnants
by the more recent fissural system deposits (Fig. 10d). The destruction
of this edifice's northern flank would have occurred along the sub-
aerial scar interpreted for the eastern sector of Pico, and originated the
major submarine deposit here reported. The orientation and dip of the
exposed north-facing scarp that constitutes the northern limit of TU's
outcrops (Fig. 3, feature “6”) are not concordant with the local orienta-
tion of volcanic deposits (see Section 4). This structure was previously
interpreted as a fault scarp (Madeira and Brum da Silveira, 2003), and
it might constitute the uppermost expression of a secondary structure

located further S of the interpreted main sub-aerial scar (Fig. 10c and
d, yellow dashed line with question marks). This interpreted structure
could have accommodated non-catastrophic deformation of the TU's
volcanic sequence to the S of the main scar.

3. Growth of thefissural system (Fig. 2, FS), masking the sub-aerial scar
in TU edifice's northern flank (Fig. 10d). The real configurations of
the interpreted scar and of the remnants of the TU volcanic edifice
have been extensively masked by more recent volcanism. Therefore
it is not possible to establish a detailed comparison between the
configuration of the scars identified on Pico's northern flank with
landslide scars exposed elsewhere.

Debris deposits resulting from the accumulation of multiple failures
have been described in some oceanic islands (e.g. Urgeles et al., 1999;
Watts and Masson, 2001; Masson et al., 2006; Hunt et al., 2011). In
Pico, with the exception of the homogeneous debris field in the SE

Table 2
Results of the K–Ar dating on fresh-separated groundmass. The ages are indicated in thousands of years (ka). The uncertainties are reported at the 1σ level.

Samples UTM E UTM N K
(%)

40Ar*
(%)

40Ar*
(1010 at/g)

Age
(ka)

Uncertainty
(ka)

Mean
(ka)

Pi10X 26405050 4255843 0.897 1.7 6.378 68 4 70 ± 4
1.8 6.715 72 4

Pi10R 26386933 4262897 1.057 2.3 7.823 71 3 69 ± 4
1.2 7.116 64 6

Pi11N 26384950 4261825 0.913 1.9 5.602 59 3 56 ± 4
1.0 4.949 52 5

Pi10P 26383509 4265958 0.831 0.5 4.116 47 9 53 ± 5
1.4 4.788 55 4

Pi10U 26392413 4260735 0.961 1.0 5.523 55 5 52 ± 5
0.9 4.951 49 5

Fig. 9.Geological interpretation of the sectionmarked in Figs. 5 and 6. Yellowdashed linemarks the scar suggested as debris source. Red dashed line represents the basal surface considered
in the estimation of the maximum volume. Black dashed lines indicate the suggested contacts between volcanic sequences and the deposit. White dashed line indicates a suggested
secondary structure that affected TU volcanic sequence. Possible scenarios for the volcanic sequence(s) affected by the flank failure: (a) scar only affects TU deposits; (b) scar affects
TU and fissural system deposits; (c) and scar only affects fissural system deposits.
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sector of the main deposit, and interpreted as resulting from the
collapse of the submarine flank, we did not findmorphological or chro-
nological evidence supporting the formation of the debris deposit by ac-
cumulation of multiple failures. Therefore, we consider that the deposit
results from a single failure event, with the exception of a subsequent
small failure on the submarine flank.

6.2.3. Debris volume
The lack of data regarding the inner structure of the island

(i.e. geophysical data) prevents us from assessing the extent of surface
morphology change since the flank failure, due to factors like the
partial filling of the topographic embayment by younger volcanic

products. However, considering the geometrical constraints im-
posed by the topography, the geometry/location of the interpreted
scar, the geometry of the observed deposit surface offshore, and
field data (Fig. 6a), we provide simplified interpreted schemes
(Fig. 9) for the inner structure of the island along the cross section
presented in Figs. 5 and 6.

The constraints imposed by the location/geometry of the interpreted
scar (Fig. 9, yellow dashed line) and by the northern flank topography
represented in the cross section suggest the inland continuation of the
debris deposit (Fig. 9). Therefore, we consider that even the maximum
volume of 10 km3 here estimated for the exposed part of the deposit
(Fig. 9, red dashed line represents the basal surface considered in the

Fig. 10. Presentation of the hypothesis in which the failure that originated themain deposit only affected the TU sequence. (a) Map view of sub-aerial Pico with the representation of the
actual extent of sub-aerial TU volcanic edifice (dark red area) and its lava flow orientations, the schematic configuration of the original TU edifice (semi-transparent light red area) and the
location of its original crater (smallwhite dashed line circle). SSW–NNEwhite dashed line represents the cross section interpreted. Yellow dashed lines represent the scarps interpreted in
the study area. Schematic representation of the evolution of this volcanic ridge sector, across the SSW–NNE topographic profile: (b) original configuration of TU edifice. (c) TU's northern
flank destruction; (d) current stage, with fissural system (FS) deposits concealing the scar of the failure event in study.
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estimation of the maximum volume observable) will constitute an
underestimation of the actual volume of the debris deposit.

Catalão and Bos (2008) present a free air gravity anomalymap of the
Azores (Fig. 11b, extract of Fig. 3 in Catalão and Bos, 2008), produced
from land gravity data, ship-borne gravity data, and a background grid
of satellite altimeter-derived gravity data (model KMS02, from
Andersen et al., 1999). In order to avoid possible anomalies of the satel-
lite data near the steep coastlines of the islands, these data were not
considered for offshore areas at less than 20 km from the coastlines
(the coastlines were masked with a 20 km buffer on the offshore
domain) (Catalão and Bos, 2008).

This map of the free air gravity anomaly (Fig. 11b) displays a strong
negative anomaly in the S. Jorge Channel. However, it is clear from the ba-
thymetry (Fig. 11a) that this area does not correspond to a strong topo-
graphic low. Note that the deep basins (magenta in Fig. 11a)
correspond to strong negative gravity anomalies (magenta in Fig. 11b).
Therefore, we interpret the contrasting association of high topography
(green in Fig. 11a) and strong negative gravity anomaly as the result of
accumulation of a rock with density much lower than basalt, most likely
corresponding to thick accumulation of marine sediments (low density
deposits). The thick accumulation of sediments may have blanketed the
debris deposits, thus concealing their actual dimensions.

Therefore, considering the probable inland continuation of the
deposit (Fig. 9) and the masking of the actual deposit by more recent
blanketing by volcanic/sedimentary products, we conclude that the
actual volume probably exceeds the estimated 10 km3.

6.2.4. Flow mobility and constraints
The deposit's shape and the debris distribution in the deposit sug-

gest that part of the debris flowed towards NNW and NNE, but the
most significant part of the landslide material (including the biggest
blocks)flowed towards greater depths towards the E. It was thus clearly
conditioned by the submarine topography.

The mobility of a landslide can be expressed as a function of the
ratio H/L (H — height between the topmost source zone of the material
and the deposit; L — maximum runout length), which represents the
apparent coefficient of friction of the avalanche (e.g. Lipman et al.,
1988; Hampton et al., 1996). This ratio decreases (mobility increases)
for material volumes larger than 0.001 km3 (Scheidegger, 1973, in
Hampton et al., 1996). More recently, Legros (2002) argued that L
is mainly controlled by the volume (V) of the failed mass, instead of
being controlled by H.

The estimated maximum volume of Pico's debris deposit is
ca. 10 km3, L is ca. 22 km (measured along a longitudinal profile), and
H is ca. 2 km. The estimated volume is below, and the ratio H/L is
above the values given for volcanic submarine landslides in Legros
(2002). The graphs in Fig. 12 show correlations between H, L, V and
H/L data from several oceanic islands' landslide deposits (data presented
in Table 3). From the graph in Fig. 12c it is clear that themobility of Pico's
debris deposit, the smallest deposit plotted, broadly fits the trend of de-
creasing H/L for decreasing volume values. Though the control imposed
by the buttressing S. Jorge flank is clear in the morphological analysis
of the deposit, its effect on the landslide mobility (i.e., effect on the
runout distance reached by the deposit) is not clear in the graphical
analysis.

6.2.5. Configuration, block dimensions and spatial distribution
The general shape of the studied deposit is very similar to that of

Güimar's debris deposit, resulting from the destabilization of a growing
volcanic ridge on the SE flank of Tenerife Island (Canary Islands)
(Krastel and Schmincke, 2002), and to that of Monte Amarelo's debris
deposit, resulting from the destabilization of Fogo Island (Cape Verde)
(Le Bas et al., 2007; Masson et al., 2008). Similarly to Pico, the landslide
products in Tenerife and Fogo were mostly constrained by submarine
channels: the Güimar landslide products were confined to the channel
between Tenerife and Gran Canaria islands, and the Monte Amarelo's
landslide products have been confined to the channel between Fogo
and Santiago Islands. As recognized byMitchell et al. (2008) for the sector
of Pico's depositmost proximal to its source, the spatial distribution of de-
bris is similar to one of the deposits on west La Palma, which resulted
from the accumulation of debris from more than one landslide event
(Playa de la Veta Debris Avalanche Complex, and Cumbre Nueva Debris
Avalanche, Urgeles et al., 1999).

There are no clearly observed erosional chutes between the source
zone and Pico's debris deposit, unlike many cases identified offshore
some of the Canary and Hawaiian Islands (Mitchell et al., 2002). We
consider that the absence of a well defined chute in Pico's deposit is
due to the combination of a relatively small runout (imposed, at least
in part, by the nearby topographic obstacle of the S. Jorge ridge), and
the extensive masking of the source and proximal sector of the deposit
by more recent volcanic products.

Though the maximum runout and volume of Pico's deposit are at
least one order of magnitude lower than giant landslides recognized
in other oceanic volcanoes (Canary, Hawaii), the largest block dimen-
sions are similar to the ones observed in the Canaries (e.g.,; Masson,
1996; Krastel et al., 2001; Watts and Masson, 2001), but much
smaller than the largest blocks exposed offshore the Hawaiian islands
(e.g., Moore et al., 1995).

While in Güimar's deposit the largest blocks are observed in the
most proximal sector of the deposit, the largest blocks visible in Pico's
northern deposit are located on the distal sector of the deposit. A similar
spatial arrangement of the blocks has been observed in other deposits
found in Hawaii (e.g., South Kona deposit in the SW of Hawaii island —

Fig. 11. (a) 1300 resolution DEM (lighting from NW) of the study area. Bathymetric data
from Lourenço et al. (1998), available at http://w3.ualg.pt/~jluis/. Fa — Faial Island, Pi —
Pico Island, SJ— S. Jorge Island. (b) Free air gravity anomalymap of the same area (extract
of Fig. 3 from Catalão and Bos, 2008).
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Fig. 12. Plots of correlation betweenmaximum runout length (L) (km), height (H) (km), ratioH/L, and volume (V) (km3) for volcanic landslides in oceanic islands. Values plotted (Hawaii
Islands, Canary Islands, Tristan da Cunha, Cape Verde and Pico) and respective references are indicated in Table 3. Graphical representation, equation and coefficient of determination (R2)
of power law trend lines (full black lines) and linear trend line (gray dashed line).

Table 3
Data from landslides of Hawaii Islands, Canary Islands, Tristan da Cunha Island, Cape Verde Islands, and Pico Island, plotted in Fig. 12.

Island Landslide Volume (km3) L (km) H (km) H/L References

Azores Islands
Pico N10 22 2 0.091 This study

Hawaii Islands
Hawaii Alika–1 400 80–100a 5.8 0.064 Lipman et al. (1988)

Alika–2 200 55–60a 4.8 0.083 Lipman et al. (1988)
Kae Lae slide 40 65 5.2 0.080 Legros (2002)

Molokai Wailau slide 1500 b195 5 0.026 Moore et al. (1989), Moore and Clague (2002),
Satake et al. (2002)

Oahu Nuuanu 3000 235 5 0.021 Moore et al. (1989), Moore and Clague (2002),
Satake et al. (2002)

Tristan da Cunha Islands
Tristan da Cunha 150 50 3.75 0.075 Hampton et al. (1996)

Canary Islands
El Hierro El Golfo 150–180a 65 5 0.077 Masson et al. (2002)

Las Playas II b50 50 4.5 0.090 Masson et al. (2002)
El Julan 130 (?) 60 4.6 0.077 Masson et al. (2002)

La Palma Cumbre Nueva 95 80 6 0.075 Masson et al. (2002)
Playa de la Veta 650 (?) 80 6 0.075 Masson et al. (2002)

Tenerife Icod 150 (?) 105 6.8 0.065 Masson et al. (2002)
Roques de Garcia 500 (?) 130 7 0.054 Masson et al. (2002)
Orotava 500 (?) 90 6.6 0.073 Masson et al. (2002)
Güimar 120 N 50 4 0.080 Masson et al. (2002)

Cape Verde
Fogo Monte Amarelo 130–160a 45 5.5 0.122 Day et al. (1999), Masson et al. (2008)
Santo Antão Tope de Coroa 2 50 40 4.6 0.115 Holm et al. (2006), Masson et al. (2008)

Tope de Coroa 1 150 45 5 0.111 Holm et al. (2006), Masson et al. (2008)

a For dimensions given as intervals, the value plotted was the average of the interval range.
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Moore et al., 1995) and Canary Islands (e.g., Icod deposit to the N
of Tenerife, where relatively large blocks are concentrated along the
margins of the deposit — Watts and Masson, 2001), which have been
interpreted as evidence of the high velocity of the avalanches.

The comparatively smaller size of debris in the Canaries relative to
Hawaii has been interpreted as being caused by several possible factors
and processes: (1) block interaction and disintegration caused by con-
fined flow along narrow chutes (Mitchell et al., 2002); (2) relatively
more important component of failed sub-aerial material in Canary
Islands, which would promote a more effective disintegration, due to
a confining pressure lower in the sub-aerial domain than in the subma-
rine domain (Mitchell et al., 2002); and (3) another factor thatmight in-
fluence the disintegration process is the higher proportion of pyroclastic
material in the Canary, whichwill bemore prone to disintegration than
sequences constitutedmainly by basaltic intrusive/extrusive rocks with
aminor pyroclastic component (Mitchell et al., 2002, afterMasson et al.,
2002).

The debris transport in Pico's deposit was comparatively shorter and
involved a smaller volume of material than the ones in Hawaii and the
Canary (Fig. 12a). Moreover, the remnants of the edifice interpreted as
the main source of northern Pico event(s) comprise a sequence mostly
made of shallow dipping, meter thick lava flows, with no significant
pyroclastic deposits. Therefore, the disintegration process in the Pico's
event should be less effective than for the events in the Canary Islands.

6.3. Minor debris deposits

The shape of the “B” debris deposit (Fig. 6a) shows that it resulted
from the accumulation of material transported from Pico's flank. How-
ever, it is not possible to define a source for this material as the limits
of the deposit are undefined near Pico's submarine flank: it could result
simply from the gradual accumulation of material from Pico's subma-
rine flank; or it could be the relict of the deposit resulting from the
collapse along the interpreted westernmost sub-aerial scar, now almost
completely masked by the younger volcanic deposits.

The “C” debris deposit (Fig. 6a) is interpreted here as having resulted
from a collapse of the uphill submarine flank of S. Jorge, where a scar is
still visible (Fig. 6a, red dashed line).

6.4. Age of Pico's northern flank failure(s)

Previous K–Ar ages published on Pico (Féraud et al., 1980; Demande
et al., 1982; Fig. 2) were acquired on a limited number of samples, and
therefore do not constrain accurately the evolution of the island. Some
of those previous ages also must be considered with caution, as they
have been acquired on whole-rock samples, which can significantly
bias the results, as discussed in Hildenbrand et al. (2012a).

On Pico's northern flank, we only observed outcrops of the volcanic
deposits that cover the interpreted scar depressions (see Section 4),
therefore the new K–Ar ages here obtained on fresh groundmass only
provide a minimum age for the flank failure(s). The maximum age
of 70 ± 4 ka and 69 ± 4 ka here obtained on the lava flows Pi10X
and Pi10 R filling the sub-aerial scars (Fig. 2 and Table 2), provides a
minimum age of ca. 70 ka for the occurrence of large-scale collapse(s)
in Pico's northern flank.

Based on our data, we cannot establish if the two sub-aerial scarps
here identified on Pico's northern flankwere produced by two synchro-
nous flank collapses. For the scar interpreted on the western sector of
the fissural system (Fig. 3, feature “2”), there is not a corresponding
major deposit offshore. Asmentioned in Section 6.2, theflank failure de-
posits might appear masked by more recent volcanic/sedimentary
products. As the deposit corresponding to the eastern sub-aerial scar
is still clearly visible, this could suggest that the western scar is older
than the eastern.

6.5. Possible causes and consequences

Given the geologic setting of the studied volcanic edifice, a steep vol-
canic ridge located on a tectonically active region, catastrophic failure of
Pico northern flank may have been influenced/triggered from a variety
of possible processes:

1. Progressive destabilization due toflank overload and oversteepening
of TU edifice and/or along the tectonically controlled WNW–ESE
volcanic ridge;

2. Triggering by NNE–SSW magma push (associated to the growth of
Pico–Faial WNW–ESE volcanic ridge);

3. Fluid overpressure directly or indirectly associated with volcanic
activity;

4. Local focusing of destabilization promoted by the physical disconti-
nuity between the TU edifice surface and the fissural system deposits
(Fig. 10).

Mitchell (2003) suggests a height threshold of ca. 2.5 km, above
which large-scale landslides become common. Previously, Mitchell
(2001) suggested that the transition between stable and unstable con-
ditions for submarine volcanic edifices would occur gradually for an in-
terval of edifice heights between 2 and 4 km. The height between Pico's
highest point and the sea bottom is above this threshold, i.e. ca. 3.6 km.
However, this maximum is attained for Pico stratovolcano, on thewest-
ernmost sector of the island, i.e. far from the studied failure. The current
height between the topmost level of the source zone and the studied
debris deposit is ca. 2 km. When discussing the edifice height at the
time of the occurrence of a large-scale landslide, we should take into ac-
count that the current configuration of the island does not necessarily
correspond to the configuration of the island at the time the landslide
occurred. From the absolute ages here presented for Pico, it is not
clear that the Pico stratovolcano was already developing by the time
the studied flank collapse occurred. However, therewas the TU volcano,
whose original size and maximum altitude are not known. Therefore,
the current height of ca. 2 km between the topmost sector of the source
zone and the surrounding submarine floor probably constitutes an
underestimation of the height at the time the flank collapse occurred.
Considering that the height of the affected volcanic edifice relative to
the surrounding sea floor was greater than ca. 2 km, the studied event
supports the trend presented in Mitchell (2001).

One of the most important consequences of catastrophic flank
collapses on volcanic ocean islands lies in their ability to trigger large
tsunamis. Considering that S. Jorge lies to the north of Pico, only ca.
20 km apart, the sudden collapse of a sector several km3 in dimension
would have generated a large tsunami that most likely strongly impact-
ed the southern coast of S. Jorge. Therefore, further investigations
should focus on the southern coast of S. Jorge.

6.6. Flank failure in northern and southern Pico

The scar in northern Pico is mirrored in the S flank by a steep slope
embayment that includes the currently active slump (Fig. 3, feature
“1”). On the offshore area adjacent to this embayment on the southern
flank there is a significant deposit whose debris were identified
on side scan sonar data (Mitchell, 2003), and which constitutes a
topographic bulge on the low resolution bathymetry (see Fig. C.1, in
Appendix C). Therefore, both Pico's flanks have been affected by large-
scale flank failure, highlighting the strong susceptibility of steep ridge-
shaped edifices to flank failure.

7. Conclusions

From the new geomorphologic, stratigraphic, structural and geo-
chronologic data acquired in the present study, we conclude that the
evolution of the Pico Island volcanic ridge was marked by the
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occurrence of flank failures in both N and S flanks. The landslide debris
resulting from the collapse of Pico's N flank have accumulated on the
ocean floor of the S. Jorge Channel, and their likely sources are two
major scars standing out on Pico's slope map.

Here we conclude that, more than 70 ka ago, after the growth of the
TU volcanic edifice, Pico's northern flank collapsed catastrophically,
forming two steep and arcuate sub-aerial scars. The material mobilized
from the eastern source zone likely exceeds 10 km3, and consists of a
mixture of meter to hectometer blocks. These flowed towards greater
depths in the E, along the channel between Pico–Faial and S. Jorge vol-
canic ridges. The tsunami resulting from the km3 collapsemost probably
rapidly traveled the ca. 20 km wide channel and violently impacted
S. Jorge's southern flank. Since ca. 70 ka and until historic times,
more recent deposits, volcanic products related to the growth of the
WNW–ESE fissural system and Pico stratovolcano have been progres-
sively filling the sub-aerial scars. These post-collapse volcanic products,
and marine sediments as well, have been covering the island's subma-
rine flanks, masking partially or completely the evidence of failure
events.

The evolution of the Pico's sector in the Pico–Faial volcanic ridge
was also marked by large-scale flank failure on the southern flank,
generating a sub-aerial scar (symmetrical to the easternmost scar in
the N flank) and a debris deposit observed on the offshore. Further in-
vestigations are being conducted, in order to constrain the evolution
of this volcanic ridge.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jvolgeores.2014.01.002.
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Appendix A. DEM – grid building 

  

 We composed a 50 m resolution mosaic grid with the bathymetric data grid, the 10 m 

resolution topographic grid of Pico, and the 50 m resolution topographic grids of Faial and S. 

Jorge Islands (Fig. A.1a). 

 For the shallow submarine zone, we integrated data from Fig. 2 in Mitchell et al. 

(2008), showing the shallow depth bathymetry of Pico’s northern flank, as a contour map 

with 100 m spaced contour lines. On this map, the wide coastal shelf is visible. The non-

consideration of this shallow, low-slope feature would impact directly on the surfaces 

interpolated, submarine profiles and, consequently, on the analysis of the deposits proximal 

to the island´s flank.  

 In order to extract the data from Mitchell et al.’s (2008) map: (a) the figure was 

georeferenced (1st order polynomial transformation, with an accuracy of ± 8.9 m RMS, and a 

maximum residual of 19.56 m); (b) the compatibility between data sets was verified by 

superimposing the contour maps from both data sets and comparing the contour lines on 

overlapping areas; (c) the contour lines were individually digitized from the georeferenced 

Mitchell et al.’s (2008) map for the no-data zone of our study area, the respective depth 

values were attributed, and these contour lines were integrated in our general grid data file 

(Fig. A.1b).  

 Afterwards, we performed a 200 m resolution spatial interpolation (kriging) for the 

study area (Fig. A.2a). The standard deviations associated with the interpolation method used 

are presented in Fig. A.2b. Though the maximum standard deviation value obtained on the 

whole grid area is 170 m, on the area of interest for this study the standard deviation values in 

heights range between 0 m and 25 m.  For this kriging operation, considering the Z-value  
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Fig. A.1. (a) initial 50 m resolution grid mosaic with topography of Pico, Faial and S. Jorge, and deep 

bathymetry (lighting from ENE). Red rectangle: study area (Figs. b and c). (b) zoom on the initial grid 

mosaic (lighting from ENE) with plot of the 100 m spaced contour lines extracted from Mitchell et al. 

(2008). (c) Surface resulting from the filling of the originally no-data zones (b) with 200 m resolution 

spatial interpolation data, considering the contour lines extracted from Mitchell et al. (2008) (lighting 

from ENE).  
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Fig. A.2. (a) Shaded relief of the 200 m resolution DEM, considering the data from the original grids 

and the data extracted from Mitchell et al's (2008) figure (lighting from ENE). White dashed line at 

the right bottom corner comprises the area blanked afterwards due to strong artifacts; (b) Standard 

deviations associated with the spatial interpolation performed in the building of  the 200 m resolution 

DEM presented in (a); (c) Map of the residues between the 200 m resolution interpolated surface and 

the data input. 
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residues between the interpolated surface and the data input for interpolation (Fig. A.2c), an 

accuracy of 5.4 m RMS was obtained, with a residue's maximum absolute value of 125.0 m. 

 Then, a 50 m resolution mosaic was built for the study area, from the general 50 m 

resolution mosaic (Fig. A.1c), filling the no-data zones with the data from the 200 m 

resolution grid previously built.   
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doi:10.1029/2007GC001725. 
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Appendix B. Volume and Maximum Thickness of Main Debris Deposit 

  

 
 

Fig. B.1. Standard deviations associated with the spatial interpolations performed in the building of  

the theoretical basal surfaces for volume calculation. 

 

 

Table B.1. Root Mean Square (RMS) errors associated with the kriging interpolation performed to 

build the theoretical basal surfaces used in the volume estimation. In "Complete Grid" we consider the 

residuals of Z values between the interpolated surface and all the data points considered in the 

interpolation. In "Deposit's  blanked area" we consider only the residuals of Z values between the 

interpolated surface and the "theoretical" data points inserted in the deposit's blanked area (Fig. B.1, 

black dashed line). 

   

 Complete Grid Deposit's blanked area 

Theoretical Basal 

Surfaces 

RMS 

(m) 

Maximum residue 

(absolute value) 

(m) 

RMS 

(m) 

Maximum residue 

(absolute value) 

(m) 

Minimum volume 5.5 145.1 4.7 22.9 

Maximum volume 5.5 145.1 5.6 26.0 
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Fig. B.2. Maps of the residues absolute values (values in meters) for the basal surface used in the 

maximum volume calculation (a), and for the basal surface used in the minimum volume calculation 

(b). The area blanked for the construction of the basal surfaces is indicated as a full red line. In order 

to obtain clearer maps, the residual values  lower than ± 5 m are not represented outside the blanked 

area. 
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Appendix C - Debris deposit on Pico's southern flank 

 

 

 

 

Fig. C.1. Shaded surface of Pico Island and surrounding sea floor (lighting from E). 1300 m 

resolution DEM, from Lourenço et al. (1998), available at http://w3.ualg.pt/~jluis/.  White dashed line 

- sub-aerial embayment in the S flank. Yellow dashed line - limits of the debris deposit interpreted on 

the offshore. 
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Abstract 

 

 The Pico Island constitutes the easternmost sub-aerial domain of a steep WNW-ESE 

volcanic ridge, which has developed within the Nubia-Eurasia diffuse plate boundary (Azores 

Triple Junction). The island comprises three volcanic systems, from older to younger: the Topo 

Volcano, the Fissural System, and the Pico Stratovolcano. From a high-resolution Digital 

Elevation Model (10 m), and new bathymetric, stratigraphic, structural, and high-precision K-Ar 

data, we reconstruct the main successive stages of growth and partial destruction of the island 

over the last 200 kyr. The Topo Volcano is partly exposed in Pico SE flank and is here dated 

between 186 ± 5 and 115 ± 4 ka. It was significantly destroyed by a N-directed large-scale flank 

collapse between ca. 125 and 70 ka. During the same period, gradual deformation started in the 

southern flank, producing a slump complex that is still active. A first episode of deformation 

occurred between ca. 125 and 115 ka along the master fault of the slump. Between ca. 115 and 

75 ka, the scar was partially filled by volcanic products erupted from volcanic cones developed 

within the slump depression, and possibly also from the early WNW-ESE Fissural System. 

Subsequent deformation in the slump area affected in part the filling units, leading to the 

individualization of secondary curved faults. Between ca. 125 and 69 ka, the distal part of the 

southern flank , the scar filling units and the early sub-aerial sequence of the Fissural System 
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experienced catastrophic flank collapse towards the S, which generated a large debris-avalanche 

deposit with a minimum run-out of ca. 17 km. Recent volcanic products have gradually masked 

the mass-wasting scars. The young Pico Stratovolcano grew in the westernmost sector of the 

island, at least since ca. 57 ka. Its southern flank has been significantly destroyed by flank 

collapse(s), and subsequently covered by more recent volcano-sedimentary rocks. The evolution 

of the Pico-Faial volcanic ridge in the last 200 kyr has been marked by simultaneous volcanic 

growth and destruction in both Pico and Faial islands. While the Topo Volcano grew in Pico (ca. 

186-125 ka) and was partially destroyed (ca. 125-115 ka), in Faial Island the period defined for 

major deformation in the Faial graben ended (ca. 360-115 ka), and a central volcano started 

growing inside the graben (ca. 130-115 ka). This rapid and simultaneous evolution of Pico and 

Faial islands constitutes evidence for the accommodation of extension associated with the Nu-Eu 

plate boundary on this ridge during the last 200 kyr. 

 

Keywords: large-scale mass wasting; volcanic construction; flank collapse; active slump; K-Ar 

dating; Pico-Faial volcanic ridge; Azores Triple Junction 
 

1. Introduction 

 

 The evolution of oceanic islands is generally marked by the interplay between volcanic 

construction and repeated destruction by a variety of mass-wasting processes.  Large-scale lateral 

flank instabilities, especially, have been recognized as a ubiquitous and potentially highly 

destructive geological phenomenon documented around many volcanic islands worldwide, e.g. 

in Hawaii (Lipman et al., 1988; Moore et al., 1989,1994; Moore and Clague, 2002), in the Cape 

Verde archipelago (e.g., Day et al., 1999; Masson et al., 2008), in French Polynesia (Clouard et 

al., 2001; Clouard and Bonneville, 2004; Hildenbrand et al., 2004; 2006), and in the Canary 

Islands (e.g., Carracedo. 1994; Krastel et al., 2001; Masson et al., 2002). Two main types of 

movement are classically distinguished: slow and gradual rotational movement along a deep 

detachment, often referred to as “slump”, and (2) catastrophic rupture of an island flank, yielding 

the sudden generation of voluminous debris-avalanches, which can trigger destructive tsunamis 

(Moore et al., 1989; Satake et al., 2002). Both types usually occur during the main eruptive 

history of a given island, and the volume of individual failure episodes partly depends on edifice 

size. For instance, the most extreme debris-avalanches have been extensively recognized along 

the Hawaiian Emperor volcanic chain, which comprises by far the largest volcanic islands on 

Earth. The most extreme events have mobilized huge amounts of material, up to several 
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thousands of km3, and generated debris-avalanches with impressive run-out, sometimes 

exceeding 100 km (e.g. Moore et al., 1989; 1994).  However, such episodes appear quite 

infrequent, with an estimated recurrence of about 100 kyr (Normark et al., 1993). In contrast, 

smaller volcanic islands seem to experience smaller but more frequent destabilization events, 

which still can amount to several cubic kilometres and generate large tsunamis (e.g. Keating and 

McGuire, 2000). Therefore, studying the link between volcanic construction and repeated 

destabilization in relatively small volcanic islands like Pico is of particular societal relevance. 

 Here we focus on the evolution of the Pico-Faial volcanic ridge in the Azores, which 

comprises the islands of Pico (main focus) and Faial. Both are much smaller than the Canary or 

Hawaiian islands, but, in contrast, located in an active tectonic setting. Like the other volcanic 

islands in the Central Azores, the Pico-Faial Ridge is located on the diffuse boundary between 

the North America (NA), Eurasia (Eu) and Nubia (Nu) plates (Fig. 1a), and sits on an 

anomalously elevated portion of the Mid-Atlantic Ridge (MAR, Fig. 1a) known as the Azores 

Plateau. The western end of the Nu-Eu plate boundary is presently diffuse (Fig.1a, e.g. Lourenço 

et al., 1998; Luis et al., 1998; Miranda et al., 1998; Fernandes et al., 2006; Borges et al., 2007; 

Lourenço, 2007; Hildenbrand et al., 2008; Luis and Miranda, 2008;  Marques et al., 2013a; 

2014a ; Neves et al., 2013; Trippanera et al., 2014; Hildenbrand et al., 2014; Miranda et al., 

2014). The deformation is mostly accommodated by several extensional structures in a ca. 140 

km wide area: (1) the Terceira Rift (TR, Fig. 1), and (2) the ca. WNW-ESE graben-horst-graben 

structure to the SW of the TR (Fig. 1b), which comprises the 200 m deep S. Jorge Graben 

(Lourenço, 2007) and the Faial Half-Graben, with an intervening horst, the S. Jorge/Faial Horst 

(Marques et al., 2013a, 2014a).   

 While the S. Jorge volcanic ridge developed apparently inside a graben, the Pico-Faial 

ridge developed in great part on the master fault bounding in the north the Faial half-graben (Fig. 

1). The sub-aerial growth of this ridge started ca. 850 ka ago on the eastern part of Faial (Fig. 1, 

Hildenbrand et al., 2012a). Faial Island evolved by short periods of voluminous volcanic 

construction intercalated with longer periods of major destruction by large-scale mass wasting. 

The evolution of these steep volcanic ridges appears intimately related to tectonic deformation, 

which may partly control the successive stages of volcanic growth and repeated episodes of 

destabilization, mostly through large catastrophic sector collapses (Woodhall, 1974; Madeira, 

1998; Nunes, 1999; Mitchell, 2003; Mitchell et al., 2008; Costa et al., 2014) or large-scale 

slumping (Nunes, 1999; Mitchell et al., 2012a; Hildenbrand et al., 2012b). 

 Despite the relatively small volume of the Azorean islands, increasing evidence for large-

scale catastrophic destruction in the form of lateral flank collapses has been accumulated  
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Fig. 1. (A) Location of the Azores archipelago on the diffuse boundary between the North 
America (NA), Eurasia (EU) and Nubia (NU) plates (lighting from WSW). Main active 
structures represented as thick white lines (Mid-Atlantic Ridge – MAR, Terceira Rift – TR); 
limits of the diffuse Nu-Eu plate boundary represented by dotted lines and extension orientation 
indicated by thick white arrows; and inactive structure as dashed-dot-dashed white line (East 
Azores Fracture Zone – EAFZ). Yellow dashed rectangle marks the area presented in B. (B) 3D 
surface (viewed from NW and lighting from E) of the sector that includes the WNW-ESE Pico 
(Pi)-Faial (Fa) volcanic ridge studied in this paper. TR marked by thick dashed white line. The 
graben/horst structure SW of the TR is defined according to Marques et al. (2013a, 2014a). SJG - 
S. Jorge Graben; SJFH - S. Jorge/Faial Horst; FHG - Faial Half-Graben. SJ - S. Jorge Island; Gr 
- Graciosa Island. Bathymetric data from Lourenço et al. (1998). 
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(Marques et al., 2013b; Sibrant et al., 2014), particularly in Pico Island (Costa et al., 2014). 

 Furthermore, evidence of current activity of a large-scale creeping slump in Pico’s SE 

flank has been reported in Hildenbrand et al. (2012b). The integration of the data here presented 

with previously published data on Pico and Faial (Madeira, 1998; Nunes, 1999; Hildenbrand et 

al., 2012a; Costa et al., 2014) will allow us to reconstruct the main stages of sub-aerial evolution 

of the ridge and discuss the influence of regional deformation on the successive episodes of 

volcanic construction and destruction.  

 The present study is based on the analysis and interpretation of a high-resolution Digital 

Elevation Model (DEM), detailed stratigraphic and structural observations and measurements, 

and high-precision K-Ar dating: (1) the geomorphological analysis from high-resolution sub-

aerial and submarine DEMs allowed the interpretation of volcanic complexes, mass-wasting 

scars and offshore debris deposits; (2) the detailed stratigraphic observation along sea cliffs and 

major canyons allowed the recognition of the main volcano-stratigraphic unconformities, and 

therefore to distinguish the main volcanic systems and their geometry; (3) the structural study, 

with the recognition and measurement of attitudes of faults, dykes and lava flows showed where 

the main structural discontinuities are, and their effects on the overall structure and evolution of 

the island; (4) the stratigraphic and structural data were used to carry out strategic sampling for 

K-Ar isotopic dating, which provides an accurate temporal framework to constrain the timing of 

volcanic construction and destruction episodes.  

 

2. Geological background 

 

2.1. Pico’s volcanic stratigraphy 

 

 Previous studies have shown that Pico comprises three main volcanic complexes (Fig.1): 

(1) the relicts of an old extinct volcano in the SE, generally referred to as the Topo Volcano; (2) 

a ca. WNW-ESE linear chain of strombolian cones in the middle and eastern parts of the island, 

known as the Fissural System; and (3) the impressive Pico Stratovolcano, peaking at 2351 m 

above sea level, which makes up the western half of the island (Fig. 2a). According to previous 

geochronological data, the sub-aerial part of Pico has developed during the last ca. 300 kyr (250 

± 40 ka, in Demande et al., 1982, Fig. 2a). Pico’s sub-aerial growth seems to have started in the 

east, with the growth of the Topo Volcano (Fig. 2a, Zbyszewski et al., 1963; Forjaz, 1966; 

Woodhall, 1974; Madeira, 1998; Nunes, 1999; Nunes et al., 1999a), interpreted as a shield 

volcano by Woodhall (1974). Remnants of this early sub-aerial volcano have been  
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Fig. 2. (A) Shaded relief of the 10 m resolution DEM of Pico Island (lighting from ESE), with 
coordinates in metres UTM (zone 26N). White squares, triangles and circles mark the K-Ar ages 
from Féraud et al. (1980), Demande et al. (1982) and Costa et al. (2014), respectively. Also 
shown a radiocarbon age (plus sign) from Nunes (1999). The ages are indicated in thousands of 
years. Simplified geologic/physiographic map (modified after Madeira, 1998). Traces of the 
Capitão Fault (CF) and Topo Fault (TF) (after Madeira, 1998; Nunes et al., 1999; Madeira and 
Brum da Silveira, 2003). (B) Slope map of Pico Island built from the 10 m resolution DEM. 
Dashed black lines: scarps interpreted from zones of anomalously steep slopes. Grey dashed line: 
gentle slope anomaly oriented WNW-ESE on the N flank of Pico Stratovolcano. Perspectives 
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(yellow eyes) identified as A, B and C are presented as 3D surfaces in Fig. A2 (Supplementary 
Data - Appendix A). The white arrow in the southern flank of Pico Stratovolcano locates a 
canyon along which part of the fieldwork was done, the S. Caetano canyon. (C) Surface map of 
Pico Island built from the 10 m resolution DEM, indicating the North-based azimuth of strongest 
dip. Dash-dot white line marks the boundary between two domains of the Fissural Complex with 
different azimuths of strongest dip. The clean version of this figure is provided as Fig. A1 
(Supplementary Data - Appendix A).  
 

unconformably covered by younger volcanic products poured from scattered scoria cones and 

WNW-ESE aligned cones making up the sub-aerial Fissural System (Zbyszewski et al., 1963; 

Woodhall, 1974; Madeira, 1998; Nunes, 1999; Nunes et al., 1999b, Fig. 2). The latest stages of 

island growth comprise the development of the Fissural System and the Pico Stratovolcano, 

which have been active through the Holocene, up to historical times (Fig. 2a, e.g., Zbyszewski et 

al., 1963; Forjaz, 1966; Woodhall, 1974; Madeira, 1998; Nunes, 1999; Nunes et al., 1999a; 

Madeira and Brum da Silveira, 2003; Mitchell et al., 2008).  

 Available whole-rock K-Ar data from Féraud et al. (1980) and Demande et al. (1982) 

(Fig. 2a) are very scarce and do not allow the age calibration of Pico's volcano-stratigraphy. For 

instance, one lava flow from the old Topo Volcano was previously dated at 250 ± 40 ka, whereas 

two lava flows sampled in the western and eastern sectors of the Fissural System yielded ages of 

270 ± 150 ka and 230 ± 80 ka, respectively (Demande et al., 1982, Fig. 2a). These three ages 

overlap within their range of uncertainty and thus are not precise enough to confidently 

reconstruct the evolution of the island. Ages estimated younger than 25 ka and 37 ka (Fig. 2a; 

Féraud et al., 1980) have been also obtained on lava flows from the northern and southern flanks, 

respectively, but their geological significance remains elusive. A few radiocarbon data on 

charcoal fragments and/or paleosoils covered by lava flows help to constrain the age of some of 

the most recent eruptions (Madeira, 1998; Nunes, 1999). However, these data are of limited use 

to study the long-term evolution of the ridge due to the restricted applicability of the method (< 

ca. 50 kyr).  

 The lack of precise and representative isotopic ages in Pico (França, 2000), the lack of 

marked lithologic variability between main volcanic units (França, 2000; França et al., 2006), 

and the temporal partial overlap of volcanic activity, have hampered the definition of Pico’s 

volcanic stratigraphy. The earlier works relied greatly on the published K-Ar and radiocarbon 

ages, on the alteration degree of the volcanic deposits, and on local field relationships (e.g., 

Madeira, 1998; Nunes, 1999; Nunes et al., 1999a; França, 2000; França et al., 2000).  
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2.2. Mass-wasting in Pico Island  

 

 Earlier studies in Pico have highlighted the existence of several large structures affecting 

the various volcanic complexes (Fig. 2b): (1) two concave steep zones on Pico’s northern flank; 

(2) several nested scarps in SE Pico; and (3) a WNW-ESE scarp on the southern flank of the 

Pico Stratovolcano. (1) On Pico’s northern flank, a detailed analysis of high-resolution 

bathymetry, coupled with fieldwork and K-Ar dating on Pico's northern flank, led Costa et al. 

(2014) to identify a 4 to 10 km3 submarine debris deposit interpreted as resulting from a 

northwards catastrophic flank collapse of the old Topo Volcano, prior to ca. 70 ka. (2) The 

easternmost scarp on the northern flank is mirrored in Pico’s southern flank by another concave 

and steep main scarp and a series of less-pronounced scars (Fig. 2b). The main scarp (Figs. 4 and 

5) has been variably interpreted as: a crater or caldera (Zbyszewski et al., 1963), a "trap door" 

type caldera of Topo Volcano (Woodhall, 1974), a landslide scar (Madeira, 1998; Madeira and 

Brum da Silveira, 2003; Mitchell, 2003), or a fault constituting the headwall of a slump structure 

(Nunes, 1999; França, 2000; Nunes, 2002; Hildenbrand et al., 2012b). Nunes (1999, 2002) 

proposed that this structure is younger than 37 ka and inactive since the beginning of the 

Holocene. This hypothesis was later reinforced by Mitchell et al. (2012a). These authors did not 

find evidence for deformation of the current coastal shelf by the slump structures, and considered 

that the lava delta was formed according to the present sea level. However, GPS data acquired 

between 2001 and 2006, and InSAR data acquired between 2006 and 2009, indicate that this 

structure is currently active, with horizontal movement of 1.6 ± 1.3 mm/yr, and subsidence 

ranging between 5 and 12 mm/yr (Hildenbrand et al., 2012b, 2013). Here we will argue that the 

landslide scar in SE Pico is much bigger than the portion of the active slump, and therefore 

constitutes the scar of a major catastrophic flank collapse, with the respective debris deposit at 

the ocean bottom, here newly reported. (3) The WNW-ESE scarp on the southern flank of the 

Pico Stratovolcano (Fig. 2b) has been interpreted either as an avalanche scar (Woodhall, 1974; 

Madeira, 1998; Madeira and Brum da Silveira, 2003) or as a fault scarp (Forjaz, 1966; Machado 

et al., 1974; Chovelon, 1982, Forjaz et al., 1990; Nunes, 1999;  Nunes et al., 1999a,b; Mitchell, 

2003). This scarp has been described as being masked by more recent volcanic products from the 

Pico Stratovolcano (Chovelon, 1982; Madeira, 1998; Nunes, 1999), and its base covered by 

recent and thick colluvium deposits (Madeira, 1998; Nunes, 1999). Here we present a description 

of the observations made along a creek incising the scarp.  
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3. Methods and results 

 

3.1. Geomorphological analysis  

 

 A 10 m resolution sub-aerial DEM was complemented with bathymetric data acquired 

offshore Pico's SE flank. The submarine data include previously published data (Lourenço et al., 

1998; Mitchell et al., 2012a) and new high-resolution bathymetric data with a spatial resolution 

between 50 m and 250 m, aimed at identifying potential debris deposits generated by mass 

wasting episodes in SE Pico. All these data were merged into a single grid. Details about the data 

sources and grid construction are provided in the supplementary material (Appendix A). 

 Shaded-relief and slope maps constructed from the synthetic grid allowed us to 

distinguish important morphological features at both island and more local scales. Pico has a 

general WNW-ESE orientation, but is continued in the east by a NW-SE submarine ridge (e.g. 

Stretch et al., 2006; Lourenço, 2007; Mitchell et al., 2012b). Pico Island has a maximum length 

of ca. 46 km and maximum width of ca. 16 km. Its overall linear morphology is interrupted by 

two central-type volcanoes, with constructional slopes reaching more than 15º, especially in the 

upper part of the Pico Stratovolcano. Much higher slopes are locally observed over the island, 

which correspond to (1) coastal sectors, where impressive sub-vertical cliffs (maximum height of 

ca. 400 m on the northern flank) cut the various volcanic successions, and (2) scarps related to 

mass-wasting/faulting. These sub-aerial scarps are often strongly masked by more recent 

volcanic deposits (Chovelon, 1982; Madeira, 1998; Nunes, 1999; Mitchell et al., 2008; 

Hildenbrand et al., 2012b; Mitchell et al., 2012a; Costa et al., 2014). The steep submarine flanks 

of the island have been considered to fit the profile expected for constructional slopes (Mitchell 

et al., 2008, after Mitchell et al., 2002).   

 The interpretation of the shaded reliefs, slope maps and surface map (Figs. 2 to 6, A.1 to 

A.4) allowed us to distinguish and characterize different morpho-structural sectors.  

 The remnants of the Topo Volcano are partly exposed in the central part of the island. 

They constitute a prominent cape making up the southernmost sector of the island (Figs. 3 and 

4). In this area, the remnants of Topo Volcano have been partly masked by more recent volcanic 

cones (Fig. 4b). The Topo Volcano remnants are located to the S of the axis of the Fissural 

System, and masked on the W, N and E by more recent volcanic products (Fig. 4b). Close to the 

Main Scarp headwall, Topo’s sub-aerial SW sector presents steep slopes up to 20-25º (Fig. 3b). 

There, the older volcanic sequence crops out, and the topographic surface truncates the volcanic 

sequence, suggesting that significant erosion has occurred (Figs. A.3c and A.3d). Downslope,  
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Fig. 3. Map views of the SE sector of Pico Island based on the 10 m resolution DEM. (A) 
Shaded relief (vertical lighting), with contour lines spaced 25 m. (B) Slope map. (C) Shaded 
relief with lighting from NW. (D) Surface map (north-based azimuth of the strongest dip). All 
the images show conspicuous curved NNE-SSW scarps in the west, and (older) less obvious 
curved E-W scarps covered by more recent volcanic deposits. 
 

 

more recent volcanic materials from parasitic cones aligned SSW-NNE blanket the slopes and 

partially cover a small NNW-SSE scarp (1 in Fig.4a). Despite the more recent volcanic cover, it 

is clear that the sub-aerial remnants of the Topo Volcano are affected in the N and E by 

prominent scarps (Fig.  4a). In the SE, the Topo Volcano is also cut by a 5 km long prominent 

and straight WSW-ENE sea cliff (2 in Fig.4a, height up to 160 m above sea level, only locally 

interrupted by a lava delta). The Topo remnants are bounded in the N by a N-facing scarp (3 in 

Fig. 4a), and the lineament that continues further E, which have been interpreted by Madeira 

(1998) as the Topo Fault (TF in Fig.4). Both blocks involved in this fault are affected by the 

headwall of the slump (Main Scarp in Fig. 4a). This scarp defines the eastern limit of the sub-

aerial remnants of the Topo Volcano. It trends between NNW-SSE in the south and E-W in the 

north, and is thus concave to the SSE. Within the Main Scarp, several smaller scarps are nested 

in one another, and also concave to the SSE, and are designated Sn. S1 presents a general SSW-

NNE orientation, and its height and slope vanish towards the N. S2 extends further E than the 

area that accommodates the current slump activity constrained by Hildenbrand et al. ( 2012b) 

(Fig. 3b). Its trend is parallel to S1 in the W (SSW-NNE) and parallel to the Fissural System axis  
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Fig. 4. (A) Shaded relief presented in Fig. 3c, with interpretation of the top (red dashed lines) 
and base (yellow dashed lines) of the scarps (numbered features addressed in the main text). We 
follow the designations attributed to the arcuate scarps of the slump in Hildenbrand et al. 
(2012b), but we identify as Main Scarp the conspicuous scarp limiting the slump area. (B) 
Simplified geologic map (complete version presented as Fig. 13). 
 

 

in the north (E-W). The slope reaches 40º in the central area of the slump (Hildenbrand et al., 

2012b), but S2 vanishes towards W and E (Figs. 2b and 3b). S3 is oriented SW-NE and vanishes 

towards the SW. Towards the NE, S3 meets S2 (Figs. 3b and 4a). The slump scarps are partially 

masked by volcanic deposits erupted from monogenetic cones formed along the axial zone of the 

Fissural System or aligned along the slump scarps (Fig. 4b). 

 The orientation of the sub-aerial Fissural System changes from W-E in the E to WNW-

ESE in the W. Such inflection roughly occurs near the Topo volcano (Nunes, 1999; França, 
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2000). The axis of the Fissural System is well-defined and narrow to the E of Topo volcano, 

whereas it becomes wider, with a flatter top (slope dip < 5-10º) towards the Pico Stratovolcano. 

To the S of the inferred Capitão Fault (CF in Fig.2c, Madeira and Brum da Silveira, 2003), the 

topographic surface of the Fissural System dips towards the eastern quadrant. This domain has 

been integrated in the Pico Stratovolcano complex by previous authors (França et al., 1995 in 

França, 2000; Nunes et al., 1999a). Immediately to the east, the slope of the Fissural System dips 

towards the W (Fig. 2c). The northern flank of the Fissural System presents two steep scarps 

with headwalls oriented parallel to the axial zone (Fig. 2b). The topographic expression of these 

scarps is subdued, as they are strongly masked by volcanic products erupted from the axis of the 

Fissural System and from cones located on the scarp, and by the eastern sub-aerial flank of the 

Pico Stratovolcano. 

 The western half of the island is dominated by the Pico Stratovolcano, with quite a 

regular conical morphology all around except in the southern flank, where a conspicuous scarp is 

visible. The centre of the Pico Stratovolcano is located S of the longitudinal axis of the island, 

but it is part of a major alignment comprising the Caldera Volcano in Faial, the Pico 

Stratovolcano and the Topo Volcano, which is parallel to the underlying normal fault in the 

basement, bounding, in the north, the Faial half-graben. The southern flank of the Pico 

Stratovolcano is characterized by a sharp slope break oriented ca. WNW-ESE (3 in Fig. 2b), 

which seems to continue laterally towards both WNW and ESE. The central part of the scarp is 

incised by a deep canyon (S. Caetano canyon in Fig. 2b). The upper part of this canyon has 

slopes that exceed 60º. Along the foot of this scarp, a prominent lava platform is visible. It is 

covered by a few scoria cones. The northern flank of the Pico Stratovolcano is less steep than the 

southern. Nevertheless, a slight WNW-ESE slope break is visible (Fig. 2b). The general 

distribution of the parasitic cones on the flanks of the Pico Stratovolcano suggests a 

predominance of the WNW-ESE lineaments. 

 The morphology of Pico’s NE flank is marked by two WNW-ESE prominent and arcuate 

scarps facing N, whose details are given in Costa et al. (2014). The easternmost part of the island 

has the common shape of a narrow and straight volcanic ridge, made up of many WNW-ESE 

aligned scoria cones. 

 Offshore, the WSW-ENE to SW-NE direction of the straight coast and dykes measured 

along the SE coast is also suggested by the presence of submarine alignments of volcanic cones 

with trends ranging from SSW-NNE to SW-NE (light blue dashed lines in Fig. 5). Offshore the 

slump area (Figs. 5 and 6), the new high-resolution bathymetric data show a protuberant area of 

hummocky terrain extending up to 17 km from the coast, along the NW-SE direction. From the  
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Fig. 5. (A) Different data sets used to compose the 50 m resolution grid presented in (B): green – 
10 m resolution sub-aerial DEM; turquoise – 250 m resolution bathymetry; grey – 50 m 
resolution bathymetry; black lines – depth contours from Fig. 1b in Mitchell et al. (2012a); blue 
dots – bathymetric data extracted from the 1000 m resolution grid from Lourenço et al. (1998). 
(B) and (C) are shaded reliefs from the 50 m resolution grid, with vertical lighting and lighting 
from WNW, respectively. In C we interpreted the outline of the proximal sector of the 
hummocky terrain area (green dashed line), and the biggest block identified (1). We also indicate 
the alignments of submarine cones observed to the SW of Topo (light blue dashed lines), and the 
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scars (yellow lines) identified in the sub-aerial sector adjacent to the submarine debris deposit. 
The apparent WSW-ENE lineaments visible in the area of interpolation of contours extracted 
from Mitchell et al. (2012a) constitute interpolation artefacts. A clean version of this figure is 
provided as Fig. A.4. (D) Cross sections of the submarine flank indicated in (C).   
 

 

 
 
 
Fig. 6. 3D surface of the area represented in Fig. 5 viewed from SE, with elevation exaggerated 
3x, and with lighting from SW. The sub-aerial domain is presented as a slope map. The extended 
outline and source of the deposit is interpreted with red dashed line and arrows. The interpreted 
sub-aerial source area for the debris material interpreted offshore is delimited by a black dashed 
line.  
 

 

bathymetric mosaic that includes the low-resolution data, the deposit reaches depths of ca. 1700 

m, but apparently extends farther South, beyond the high-resolution stripe (Fig. 6). The large 

hummocks are significantly masked by smaller size material, especially in the domain closer to 

Pico’s submarine slope (in agreement with Mitchell et al., 2012a, 2013). The imposed lightings 

in Figs. 5b and 5c highlight the irregular shape of these hummocks, here interpreted as large 

blocks. These are especially clear in the distal part of the deposit, where the largest block is ca. 

850 m long (1 in Fig. 5c).  
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3.2. Fieldwork and sampling 

 

 Our fieldwork investigations and sampling strategy were devised to constrain in time the 

main phases of volcanic growth and partial destruction of the ridge. We concentrated our 

observations and sampling on the steep scarps, in deep canyons, and along the high coastal cliffs 

where the exposure of the geological units is maximal. Otherwise the exposure is very scarce. 

Figure 7 shows a synthetic illustration of the sampling strategy within the central part of the 

island, including the active slump area. Figure 8 additionally shows the location and 

identification of the samples collected, as well as the most relevant observations made in the 

field. 

 

 
 

Fig. 7. Schematic illustration of the sampling strategy for (A) the Topo Complex/ SE active 
slump (especially along the WSW-ENE sea cliff), and (B) the scars on the northern flank. The 
position of some of the key samples is shown as white dots (exact position presented in Fig. 8). 
 
 
 The volcanic sequence of the Topo Volcano is partly exposed in the small SW scarp, the 

southern sea cliff and in the Main Scarp. On the small SW scarp of the Topo Volcano, we 

observed a basal sequence of lava flows gently dipping towards the W sector, overlain 

unconformably by lava flows and pyroclastic deposits. We sampled the basal sequence (Pi11B, 

Pi10H, Pi11K) and a lava flow from the overlying sequence (Pi11L). The southern sea cliff 

comprises a succession of metre to decametre thick lava flows locally dipping towards the SW, 

and cut by sub-vertical dykes striking between N040° and N070° (Figs. 8b and 8c). We collected 

the lowermost accessible lava flows at the base of the sea cliff (samples Pi10AA, Pi10AB) and 
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the uppermost ones at the top of the scarp (Pi10D, Pi12A, Pi11E). These samples should 

constrain the period of growth of the Topo volcano and the maximum age of the collapses 

towards the N and towards the SE. On the WSW-ENE sea cliff (Figs. 8c, A.5 to A.7), the Topo 

rocks are intruded by dykes near the "step" between Pi10AA and Pi10AB sampling sites, and are 

locally covered by a recent rock slide deposit. The Main Scarp shows breccia/coarse talus 

deposits at the base (Figs. 8c and 9), which are overlain by a younger thick sequence of S-

dipping lava flows. The basal lava flows of this overlying sequence are generally very thin (up to 

1m thick) on the E, except at the contact with the basal breccia deposit (Fig. 9b), where a 

pahoehoe lava flow shows significant local thickening and onlaps the basal topographic step of 

the Main Scarp (Fig. 8c). In contrast, the uppermost lava flows that cover the mid-slope talus 

deposit are generally massive and up to 10 m thick. These lava flows wedge out laterally against 

the main scarp (Fig. 9a). Although we did not observe erosive truncation, the separation between 

these distinct basal and upper lavas may constitute an unconformity (dash-dotted line in Fig. 8c,  

and supplementary Figs. A.6 and A.7). This sequence covering the Main Scarp is cut by NNE-

SSW thin sub-vertical dykes and, in the E, is affected by the sharp S1. We sampled the 

lowermost (Pi10B) and the uppermost lava flows (Pi10L, Pi10J, Pi10O) of this sequence 

covering the Main Scarp. These samples should provide the minimum age for the generation of 

the Main Scarp, the maximum ages for the formation of the breccia/talus deposits, and the 

maximum age for the propagation of S1. S1 is masked by cascading lava flows, except inland on 

its topmost sector, where it cuts metre thick lava flows. East of S1, the small sea cliff comprises 

a sequence of sub-horizontal lava flows intercalated with paleosoils (Fig. 8c). We sampled the 

basal and topmost lava flows of the coastal cliff at the foot of S1 (Pi11A and Pi10AE, 

respectively), and a lava flow cascading over S1 (Pi10AD), which should constrain the minimum 

age of the formation of S1.  

 Towards the E, along S2, we only observed volcanic deposits (mostly lava flows) 

strongly dipping towards the sea. The eastern sector of S3 consists of a monotonous sequence of 

metre thick lava flows, with apparent dip of 10º towards the E-ENE, apparently corresponding to 

the lava flows that cascaded over S2 (Fig. 8b). We sampled a lava flow from this sequence 

(Pi11G, Fig. A.8), which should provide the minimum age for the formation of S2 and the 

maximum age for the formation of S3.We also sampled the basal and topmost lava flows of the 

sequence cropping out on the sea cliff E of the slump area (Pi11P and Pi12H, respectively), 

which should constrain the minimum age for the formation of S2. On the western sector of S3, 

the height and slope of the scarp decrease, and a sequence of thin cascading lava flows covers  
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Fig. 8. Shaded reliefs (lighting from ESE in A., and from NW in B.), and image of the coastal 
section marked with c in B. (A) Ages from Costa et al. (2014) (in yellow), and sample 
location/identification of the new samples (in white). (B) Zoom of the slump sector, with 
indication of top and base of the scarps, identification of the scarps inside the slump area, 
indication of the attitude of lava flows, and location/identification of the new samples. (C) 
WSW-ESE view of the coastal cliff marked c in B. Thin white lines – local orientation of the 
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volcanic deposits as observed on the sea cliff. Grey dash-dotted line - possible unconformity. 
Red dashed lines - structural surfaces. Location/identification of the samples collected on (and in 
the proximities of) the sea cliff. Yellow lines - dykes. Green dashed lines – top of the observed 
fossilized talus/breccia deposits. Green dashed rectangles a and b mark the zoomed images of the 
sedimentary deposits presented in Figs. 9a and b, respectively. Td - Recent talus deposit. A clean 
version of this figure is provided as Fig. A.5 (Supplementary Data - Appendix A). Zoom in 
figures of the sea cliff section are provided as Figs. A.6 and A.7 (Supplementary Data - 
Appendix A). 
 

 
Fig. 9. (A) and (B) are zoomed pictures of the areas limited by the red rectangles a and b in 
Fig.8c, respectively. (A) Detail of the wedge-shaped talus deposit (Td), covered by lava flows 
(green dashed line). (B) Breccia (Br) covering the eastern edge of the footwall block (yellow 
dashed line), and overlain by a lava flow sequence (green dashed line). 
 

 

S3, towards the current lava delta. We sampled a lava flow from the lava delta (Pi11O). 

 Despite Pico’s northern flank being cut by deep canyons, we did not manage to observe 

the sequences affected by the flank collapses that generated the identified sub-aerial scars (Costa 

et al., 2014). Additionally to the samples presented in Costa et al. (2014), we sampled other 

rocks from the lava flows masking the scars in the N flank: Pi10T and Pi10W (Fig. 8a). 

 The Pico Stratovolcano stratigraphy is poorly exposed, as most of the lava flows at the 

surface have been generated by very young volcanic eruptions, especially during the historical 

period. The coastal cliffs around the volcano are very short, and therefore do not allow the 

observation and sampling of the earlier phases of volcano growth. Nevertheless, we sampled a 

lava flow from the NW sector of the Pico Stratovolcano: Pi11Q (Fig. 8a).  

 Further fieldwork on the island was restricted to the scarp that affects its southern flank, 

and observations were made along the S. Caetano canyon (Figs. 10 and 11). On the mouth sector 

we observed meter to decametre thick debris deposits covering sequences of lava flows. At the 

base of the scarp we observed, from bottom to top (Figs. 10 and 11):  

 A – Lava flows dipping towards downslope (L1 to L3, Fig. 11a), intercalated with 

82



 

sedimentary deposits (D1 to D3, Fig.11a), overlain by a several meters thick and coarse 

(boulders) talus deposit (D4, Fig. 11a). Though there are coarse deposits related to the current 

canyon erosion, we observed that the metre thick deposits are overlain by, at least, one lava flow. 

 B – Several meters thick sequence of volcano-sedimentary material intercalated with lava 

flows, and intruded by dykes that strike N88-130º, mostly steeply dipping towards downstream 

(examples in Figs. 11b to 11e). The thickness of the dykes generally ranges between decimetres 

and metres. The thinner ones are sometimes disposed en échelon, with average strike of N120º 

and dip of 50-65º towards the SW (Fig. 11c).  

 The stratigraphic relationship between the sequences described in A and B is not clear. 

However, the coarse talus deposit D4 in A (Fig. 11a) seems to cover also the downslope limit of 

the sequence described in B (Fig. 11b).  

 We did not observe an unconformity surface that could correspond to the failure surface 

of the S. Caetano scar. Unfortunately, the volcanic deposits observed did not present the 

conditions favourable for K-Ar dating, because the lava flows observed were extremely 

vesicular. 

 

 
 

Fig. 10. (A) Shaded relief of the Pico Stratovolcano's S flank (vertical lighting), with indication 
of the trace of the cross section presented in (B), cut along the S. Caetano canyon. (B) 
Topographic profile along the S. Caetano canyon (no vertical exaggeration). The locations of the 
photographs presented in Fig. 11 are indicated, and the local orientations of the observed dykes 
and lava flows/sedimentary deposits represented. 
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Fig. 11. Photographs taken in the S. Caetano canyon (order according to upslope observations). 
(A) Lava flows intercalated with sedimentary deposits. (B) Thick small grained volcaniclastic 
(pyroclastic) sequence with some thin lava flows intercalated and cut by steeply dipping dykes. 
Zoom in: view of the dykes located near the red square. (C) Small-grained volcaniclastic 
sequence intruded by en échelon dykes. (D) and (E) Metre thick dykes steeply dipping towards 
downslope, cutting the sequence of lava flows and volcano-sedimentary material. The dykes and 
their orientations are indicated with white arrows. A clean version of this figure is provided as 
Fig. A.9 in Appendix A (Supplementary Data). 
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3.3. K-Ar dating 
 
 We here present 28 new high-precision K-Ar ages (Fig.12 and Table 1), which together 

with the 5 ages acquired by Costa et al. (2014) constitute an unprecedented dataset to reconstruct 

the main successive stages of growth and partial destruction of the island over its whole eruptive 

history (Fig. 12).  Our lava flow samples are fresh, aphyric to porphyric basalts (olivine, 

pyroxene and plagioclase phenocrysts), with low vesicular content. Dating precisely such young 

and mafic products requires the capability to measure extremely small amounts of radiogenic 

argon (40Ar*, in Table 1). The Cassignol-Gillot technique, developed at Lab. GEOPS (University 

Paris-Sud, Orsay) is particularly suitable for such purpose (Gillot et al., 2006). It allows dating 

young, even K-poor, volcanic rocks with uncertainties of only a few ka (e.g., Samper et al., 

2007; Hildenbrand et al., 2008, 2012a; Germa et al., 2011; Boulesteix et al., 2012, 2013; Costa et 

al., 2014). 

 The sample preparation included the following steps: (1) Careful observation of thin 

sections under a microscope to check that the samples have not suffered significant alteration; 

(2) crushing and sieving of the samples in order to obtain an homogeneous granulometry in the 

range 125-250 µm; (3) systematic removal of the phenocrysts through magnetic and heavy liquid 

sorting in order to extract the microlitic groundmass, which in the case of such basaltic samples 

is the only phase representative of the eruption age; (4) observation of the resulting sample under 

the binocular magnifier in order to attest its homogeneity.  The groundmass samples obtained 

with this procedure present homogeneous size (125-250 µm) and density (2950-3050 kg/m3for 

basaltic samples).  

 For each sample, K and Ar were both measured at least twice on distinct aliquotes of the 

homogeneous groundmass preparation by flame spectrophotometry and mass spectrometry, 

respectively. Details on the analytical procedure can be found elsewhere (Cassignol and Gillot, 

1982; Gillot and Cornette, 1986; Gillot et al., 2006). The decay constants considered are from 

Steiger and Jäger (1977), and the age uncertainties are quoted at the 1σ level. 

  The oldest age obtained for the Topo volcano is 186 ± 5 ka, for the Fissural System is 70 

± 4 ka, and for the Pico Stratovolcano is 53 ± 5 ka (Fig. 12 and Table 1). The Topo volcano is 

extinct, but both the Fissural System and the Pico Stratovolcano are still active. 

 The volcanic sequence on the sea cliff cutting the Topo rocks was dated between 186 ± 5 

ka and 125 ± 4 ka (Fig. 12).  This old sequence is blanketed on the SW by younger volcanics 

erupted from parasitic cones, here dated between 60 ± 2 and 57± 2 ka.  
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Fig. 12. Ages (in ka) obtained for the samples indicated in Fig. 8. Further details of this figure 
are provided in the caption of Fig. 8.  
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Table 1. Results of the K-Ar dating in the present study. The ages are presented in thousands of 
years (ka). The results are reported at the 1σ level. For sample Pi11E, the two Ar analyses did 
not overlap at 1σ, and therefore the uncertainty on the mean ages is obtained from the standard 
deviation to the average.   
 
 

Samples UTM E UTM N K 
(%) 

40Ar* 
(%) 

40Ar* 
(1010at/g) 

Age 
(ka) 

Uncertainty 
(ka) 

Mean 
(ka) 

Pi10AA 26393459 4249592 0.864 4.9 16.479 183 5 186 ± 5 
    5.1 17.048 189 5 
Pi10AB 26393316 4249531 0.811 7.5 14.452 171 3 173 ± 3 
    8.0 14.771 174 3 
Pi11B 26390763 4249755 1.042 3.7 14.619 134 4 137 ± 4 
    3.5 15.303 141 5 
Pi11E 26392854 4253249 1.084 6.8 15.482 137 3 133 ± 5 
    6.8 14.716 130 3 
Pi10H 26390851 4249857 1.227 8.6 16.832 131 2 130 ± 2 
    8.2 16.589 129 2 
Pi12A 26392889 4249607 1.04 7.1 14.163 130 3 128 ± 3 
    7.3 13.724 126 2 
Pi10D 26393271 4249709 1.223 4.8 15.951 125 3 127 ± 3 
    5.3 16.440 129 3 
Pi11K 26390641 4251460 1.102 3.6 14.291 124 4 125 ± 4 
    4.0 14.452 126 4 
Pi10B 26393790 4249778 1.029 3.7 12.375 115 3 115 ± 4 
    3.6 12.437 116 4 
Pi11A 26394364 4250173 1.096 2.1 10.414 91 5 90 ± 5 
    1.9 10.152 89 5 
Pi10J 26393403 4249657 2.025 1.7 16.183 77 5 78 ± 5 
    1.4 16.646 79 6 
Pi10L 26393814 4249872 1.085 2.9 8.399 74 3 75 ± 4 
    1.4 8.544 75 6 
Pi11G 26395876 4251479 0.717 1.7 5.247 70 4 69 ± 4 
    1.9 5.153 69 4 
Pi12B 26392279 4249613 1.153 3.0 7.174 60 2 60 ± 2 
    3.8 7.297 61 2 
Pi10T 26386690 4263257 0.889 1.1 5.559 60 6 

58 ± 6 
    1.0 5.179 56 6 
Pi11L 26390641 4251460 1.074 2.4 6.587 59 3 57 ± 2 
    2.6 6.251 56 2 
Pi11C 26393748 4253573 1.453 4.9 8.342 55 1 52 ± 4 
    5.7 7.576 50 1 
Pi10AD 26394024 4250211 0.912 1.2 4.552 48 4 49 ± 4 
    1.7 4.693 49 3 
Pi10AE 26394268 4250217 0.942 1.1 4.715 48 4 46 ± 4 
    1.1 4.283 44 4 
Pi10O 26393298 4249923 1.12 1.3 5.862 50 4 47 ± 3 
    2.1 5.267 45 2 
Pi11P 26399484 4251796 1.067 0.6 4.830 43 8 43 ± 8 
    0.5 4.794 43 9 
Pi10AG 26405991 4255709 1.513 1.0 3.095 20 2 19 ± 2 
    0.8 2.749 17 2 
Pi10AF 26396362 4251625 1.077 0.7 1.481 13 2 13 ± 2 
    0.5 1.309 12 2 
Pi11O 26395881 4251008 1.278 0.4 0.951 7 2 10 ± 2 
    0.5 1.651 12 3 
Pi12G 26399372 4253385 1.109 0.1 0.687 6 5 9 ± 4 
    0.3 1.199 10 4 
Pi12H 26400154 4251895 1.15 0.1 0.208 2 3 5 ± 3 
    0.2 0.691 6 3 
Pi10W 26399674 4256931 1.476 0.1 0.482 3 2 

4 ± 2 
    

0.2 0.657 4 2 
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  Immediately east of the Main Scarp, the lava pile comprises ages between 115 ± 4 and 75 

± 4 ka (Fig. 12c). A lava flow sampled from the top of this sequence, at the foot of the Main 

Scarp, yields an age of 47 ± 3 ka (Figs. 12b and 12c). S1 is partially covered by a 49 ± 4 ka lava 

flow (Fig. 12b). The volcanic sequence at the foot of S1 was dated between 90 ± 4 and 46 ± 4 ka 

(Fig. 12c). A lava flow cropping out on the eastern sector of S3, and apparently cascading over 

S2, was dated as 69 ± 4 ka. Towards the E, other lavas cascading over S2 were dated between 43 

± 8 ka and 5 ± 3 ka. The lava flow that forms the eastern sector of the delta yields an age of 10 ± 

2 ka.  

 The oldest ages determined for the northern slope of the Fissural System, published in 

Costa et al. (2014), correspond to the base of a prominent coastal cliff in the E, which was dated 

at 70 ± 4 ka, and to a lava flow masking an interpreted landslide scar in the W, which was dated 

at 69 ± 4 ka (Fig. 12a). Younger ages were measured on samples collected along the coastal 

cliffs and one canyon, ranging between 58 ± 6 and 4 ± 2 ka. 

 For Pico Stratovolcano, an age of 53 ± 5 ka was obtained in its NE flank (Fig. 12a, Costa 

et al., 2014). Unfortunately, it was not possible to determine precisely the age of the sample 

collected in the NW flank (Pi11Q). The Ar analysis was attempted 4 times, but there was no 

satisfactory convergence of results, which ranged between 0 and 35 ka. Therefore, we consider 

that the age of this sample is just indicative, but overall supports volcanism younger than 35 ka. 

 

4. Discussion 

 

 The new K-Ar ages here presented, complemented by the data published in Costa et al. 

(2014), are fully consistent with our field observations, and allow the age calibration of Pico's 

volcano-stratigraphy for the last 200 kyr. The new data further show that the island has 

experienced several phases of rapid volcanic growth and episodic lateral destabilization. 
 

4.1. Geological evolution of Pico 

 

4.1.1. Early construction of the island 

 

 The sub-aerial growth of the Topo Volcano is here constrained between ca. 186 ± 5 and 

125 ± 4 or 115 ± 4 ka (Figs. 13, 14 and 15). Given the present morphology of the Topo sector 

and the attitude of the lava flows (Figs 12 and 13), the summit of the Topo Volcano should have 

been originally located in the topographically depressed area bounded by the Main Scarp, which 
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is consistent with the positive gravity anomaly detected in this area (Nunes et al., 2006). 

 
Fig, 13. (A) Geologic map built from the field observations and the new K-Ar data, with units 
defined as a function of the main unconformities observed in the field, and calibrated by the 
isotopic ages. Geology drawn on shaded relief with 10 m resolution DEM. (B) Interpreted profile 
of the coastal cliff indicated by green dashed line in (A). Grey dash-dotted line shows possible 
unconformity. Yellow lines represent dykes. RS corresponds to a recent small rockslide. Td 
corresponds to a recent talus deposit. Yellow wedge with embedded squares marks a talus 
deposit covered by the 78 ka lavas. 
 
4.1.2. Destruction of the early edifice 

 

 The several scars that affect the central/eastern part of the island point to repeated large-

scale episodes of lateral destabilization, which may have occurred either in a gradual and/or in a 

catastrophic way. The new ages here reported on the lava successions affected by and/or 

concealing the main failures provide important new insights into the nature and the possible 

sequential development of these flank instabilities. 

 In the uppermost sector of the Topo volcano, the lateral contrast between the blocks to 
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the South and North of the inferred Topo Fault (Fig. 13a) support the existence of a fault that 

accommodated subsidence of the northern block (Madeira, 1998), but we could not find evidence 

for a strike-slip component (as proposed by Madeira, 1998). Costa et al. (2014) suggested that 

the destruction of Topo’s N flank involved gradual deformation along this structure, coupled 

with catastrophic failure towards the N more than ca. 70 ka ago. The youngest possible age of 

115 ± 4 ka obtained for the Topo volcanic succession provides a new temporal bound, which 

now constrains the occurrence of the northern catastrophic flank collapse between ca. 115 and 70 

ka. 

 In Pico’s SE flank, the collapse structure is much more complex than in Pico´s N flank, 

in terms of geometry, unconformities, faults, type of collapse, and ages. Most importantly, the 

collapse structure in the SE seems composite, i.e., with an earlier catastrophic collapse and a still 

active slump, in great contrast to the northern collapses. Therefore, it deserves a more detailed 

discussion before coming to the conclusions. 

 At the shore level, an apparent discontinuity between samples Pi10AA and Pi10AB (Fig. 

8c) exists in the (downward) prolongation of the Main Scarp. This discontinuity can thus be 

interpreted as a fault segment (Fault 1, Fig. 14). However, the ages of the lava flows on the base 

of the sequences affected by  this possible fault show an older age on the hanging wall, 

seemingly inconsistent with a normal fault. Given the E-W orientation of the Main Scarp's 

headwall, and that the lava flows dip to the SW, the ca. N-S part of the scarp must have a dextral 

strike-slip component that can justify the ages obtained to each side of the fault. 

 

 
Fig. 14. Interpretative scheme of the slump structure. 
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Fig. 15. Time line of the evolution of Pico and Faial in the last 200 kyr.  
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 Some tens of meters farther east, the discontinuity interpreted as Fault 2 (Fig. 14) 

presents an irregular geometry and is apparently connected to the Main Scarp.  Fault 2 is 

overlain by old breccia/talus deposits, and it separates two volcanic sequences of distinct ages 

(ca. 186 – 127 in the foot wall, and ca. 115 – 75 ka in the hanging wall). The age of 115 ± 4 ka 

obtained on a lava flow exposed at the base of the sequence in the hanging wall  almost overlaps 

within the range of uncertainties with the age of 125 ± 4 ka measured on the uppermost lava 

flows from the Topo Volcano . Therefore, the lava flow here dated at ca. 115 ka may either 

constitute (1) the top of Topo Volcano edifice displaced by a (normal) fault, or (2) the base of a 

volcanic sequence filling a low topography created during an early phase of destruction of Topo 

Volcano (Fig. 15). 

(1) In the first hypothesis, gradual displacement along Fault 2 would imply a cumulative 

vertical displacement of at least 200 m (current difference in altitude plus erosion of the top of 

Topo) during a maximum period of 115 kyr, which gives an average conservative rate of ca 2 

mm/yr. Such value is a minimum, because the lava flows onlapping the midslope talus deposit at 

the foot of the Main Scarp are here dated at ca 78 ka. This suggests that significant movement on 

Fault 2 occurred between ca. 115 ka and 78 ka, which would indicate an average rate of 

downward displacement closer to 5 mm/yr. Noticeably, the two rates here estimated are similar 

to present vertical displacements recorded by GPS and InSAR data within the SE Pico slump 

(Hildenbrand et al., 2012b). This scenario implies that the upper displaced sequence of Topo is 

presently under sea level, and without any unconformity separating the 125 from the 115 ka 

lavas. 

(2) In the second hypothesis, an early phase of destruction affected the Topo Volcano 

between ca. 125 and 115 ka, with these younger lavas sitting unconformably on the younger 

lavas of the Topo Volcano (ca. 125 ka) in the hanging wall. A catastrophic collapse seems 

unlikely, because the submarine slopes offshore Fault 2 seem globally preserved, though slightly 

disrupted (Fig. 6). Therefore, we prefer the hypothesis of a gradual downward movement of the 

island flank close to the Main Scarp. This scenario is thus similar to hypothesis 1, but it implies 

that the upper displaced sequence of Topo is presently under sea level, and with an unconformity 

separating the 125 from the 115 ka lavas. It also means that initiation of the slump between 125 

ka and 115 ka was followed by significant volcanism filling part of the former SE depression at 

ca. 115 ka. This supports a significant eruptive response to flank movement, as observed on 

other oceanic islands (e.g., Manconi et al., 2009; Boulesteix et al., 2012). However, in our case, 

early slumping was not followed by the growth of a large, well-individualized post-collapse 

edifice. The attitude and the dip of the 115 ka lava flows filling the depression could suggest that 
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they were erupted from small cones located on the headwall zone, but these feeders have not 

been found. We note that the dip of the 115 lava flows, after removal of the probable rotation 

over a listric fault, would be consistent with the dip of the Topo Volcano’s southern flank. 

 The ca.115-75 ka volcanic sequence is bounded in the E by a steep scarp corresponding 

to S1, which is covered by a cascading lava flow equivalent to our sample Pi10AD, here dated at 

49 ± 4 ka. This suggests that S1 accommodated significant deformation between ca. 75 and 49 

ka (Figs. 14 and 15). The lava flow sampled at the base of the S1's hanging wall is here dated at 

90 ± 5 ka, which is very close to the age of one of the uppermost lavas from the ca. 115 - 75 ka 

succession (sample Pi10J, age of 78 ± 5 ka), within the range of uncertainties. This suggests that, 

like the Main Scarp, S1 developed in a gradual rather than catastrophic way. Consequently, it 

seems reasonable to infer that, locally, the displaced flank of the old volcano is under present sea 

level, immediately at the foot of S1.  

  In contrast, the submarine flank of the island is clearly interrupted by a large embayment 

offshore S2 (Fig.6). The debris field recognized on the distal submarine slope also closely 

matches the inland extension of S2. This supports the creation of the S2 arcuate structure by a 

catastrophic flank collapse, which generated large debris-avalanche deposits. Despite careful 

inland investigation, we could not observe the volcanic sequence cut by S2. Instead, the scar has 

been extensively covered by more recent cascading lava flows. In the western portion of S2, 

especially, cascading lava flows partly formed a sub-aerial platform which is nowadays cut by 

S3. One of these lavas sampled at the base of the S3 cliff (sample Pi11G) is here dated as 69 ± 4 

ka (Fig. A.6). Another lava flow cascading on the eastern part of S2 (our sample Pi11D) yields a 

K/Ar age of 43 ± 8 ka. From these new data, the catastrophic sector collapse here proposed 

occurred prior to ca 69 ka. The maximum age of the collapse is more difficult to establish, 

especially as the possible connection between S1 and S2 remains enigmatic. As S2 affects a 

domain previously occupied by Topo Volcano, we establish ca. 125 ka as maximum age for S2 

formation (Fig. 15). The sub-aerial part of S2 truncates the previous lava succession(s) up to a 

height of ca. 600 m. From the volcanic pile(s) exposed immediately to the west of S1, it seems 

plausible that the collapse removed not only the whole flank of the old volcanic edifice, but also 

part of the filling succession here dated between 115 ka and 75 ka. In such hypothesis, the 

catastrophic flank collapse here proposed possibly occurred between 75 ka and 69 ka. This 

narrow time interval coincides with the development of widespread volcanism along the whole 

Fissural System, as massive lava flows concealing the scars in the northern sector of the island 

yield similar ages (Costa et al., 2014). Parasitic scoria cones also developed close to the main 

scarp, upon the eroded remnants of the Topo Volcano, ca 60 ka ago. Such apparent synchronicity 
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support a close link between volcanism and deformation along the various structures affecting 

the central part of the island. More recently, volcanic cones grew on S2, which coupled with the 

current distribution of subsidence in the slump area suggest that S2 has accommodated gradual 

subsidence recently (Hildenbrand et al., 2012b).  Similarly, the steepness of the Main Scarp 

suggests that it accommodated movement recently. 

Finally, S3 constitutes a steep curvilinear scarp (Fig. 13a), whose orientation is 

compatible with the general orientation of the slump structures previously described. This scar 

cuts lava flows here dated at 69 ± 4 ka, and is partially blanketed in the west by volcanic deposits 

that form the lava delta here dated at 10 ± 2 ka (Fig. 13a). From the bathymetric data, it appears 

quite clear that this portion of the island flank partly sits on the submarine embayment associated 

with S2, and therefore that it may be quite unstable. Therefore, we cannot exclude that the 

arcuate scarp S3 formed by repeated detachment of coastal segments, prior to ca 10 ka.  

 It is acknowledged that the evolution of a slump structure can lead to catastrophic 

destabilization (e.g., Moore et al., 1989, 1994; Urgeles et al., 1999).  From the step-by-step 

evolution here presented, we conclude that Pico's SE flank slump evolved mostly through 

gradual deformation during the last 125 kyr, with the occurrence of a catastrophic flank collapse 

along S2 between ca. 75 and 69 ka (Fig. 15). The consecutive local development of faults most 

probably potentiated the current focus of subsidence (Keating and McGuire, 2000; Hildenbrand 

et al., 2012b). 

 

4.1.3. Growth and destruction of the Pico Stratovolcano 

 

 The onset of Pico Stratovolcano sub-aerial growth remains poorly constrained in time. 

The age obtained by Costa et al. (2014) on a lava sampled in a small cliff (NE of the main 

edifice), and the results obtained from our sample Pi11Q from the northwest part of the island (≤ 

35 ka), both suggest that the volcano developed during the last 50 kyr, and more specifically 

during the last 35 kyr. This points to a concentration of the volcanism in the western side of the 

island, yielding the fast construction of a robust (still active) edifice within only a few tens of 

kyr. However, our data show that recent (synchronous?) volcanic activity also occurred along the 

main Fissural System, and in the slump area ca 40-50 ka ago, and during the last 15 kyr.  

 Regarding the WNW-ESE scarp on the southern flank of Pico Stratovolcano, previous 

published works only mentioned that this scarp was covered by volcanic deposits from the 

stratovolcano, and that there are significant recent colluvium deposits along the base of the scarp 

(Chovelon, 1982; Madeira, 1998; Nunes, 1999; Nunes et al., 1999a). Our field observations add 

94



 

to the published knowledge regarding this scarp. In the S. Caetano canyon, as we did not observe 

a large-scale unconformity, we propose that the sequences observed on the scarp are concealing 

a large-scale failure surface (Fig. 16). These sequences of volcano-sedimentary material and lava 

flows are cut by numerous dykes disposed en échelon, which strike parallel to the main scarp 

orientation and dip downstream (Figs. 11 and 16).  

 
Fig. 16. Interpretation of the topographic profile and observations presented in Fig.10.   
 
The overall intrusion of the dykes along the scar alignment may have been conditioned by: (1) 

the deflection of magma ascent towards an orientation sub-parallel to the scarp, possibly caused 

by the influence of the Pico Stratovolcano's topographic load on the stress field  (McGuire and 

Pullen, 1989; Acocella and Neri, 2009; Maccaferri et al., 2011); (2) the structural control of an 

hypothetical deep WNW-ESE fault (Nunes, 1999); (3) the discontinuity of the scar, at least close 

to the surface. 

 The local en échelon arrangement of the dykes suggests that the intruded volcano-

sedimentary sequence was undergoing shear deformation at the moment of intrusion (Fig. 16), 

most likely as a slump. Furthermore, the possibility of future structurally controlled dyke 

intrusions along this scarp, as Pico Stratovolcano has been historically active, suggest that this 

sector is prone to landslide occurrence triggered by dyke intrusion. A parallel may be established 

with the case of Fogo Island (Cape Verde), where historic volcanic events led to the opening of 

en échelon fissures in the filling sequence, regarded as evidence for progressive destabilization 

of the affected flank (Day et al., 1999). The local steepness of the topography and even the 
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sporadic strong discharge of stream water along the deeply incised creek reinforce the idea that 

this scarp is highly prone to further landslide occurrence. 

 

4.2. Evolution of the Pico-Faial ridge during the last 200 kyr 

 

From our new data, the volcanism in Pico occurred through short episodes of volcanic 

construction and repeated destabilization during the last 200 kyr. Our data additionally suggest 

that the growth of the island and its repeated destruction have occurred along preferential 

directions, i.e. NNE-SW, ENE-WSW and WNW-ESE. These directions correspond to major 

regional tectonic structures in the lithosphere. 

 The NNE-SSW direction is a major regional trend, which is parallel to the local 

orientation of the MAR (Fig. 1a). The NE-SW to ENE-WSW trend is a transform direction 

associated with the present Eu/Nu plate boundary (DeMets et al., 2010), and has been recently 

recognized by Marques et al. (2014b) and Sibrant et al. (2014) in Faial-Pico volcanic ridge and 

Graciosa island, respectively. The WNW-ESE trend corresponds to the major horst/graben and 

volcanic ridge structures in central Azores. These main trends can all be found in Pico: the dykes 

along the coastline range in strike between NNE-SSW and ENE-WSW (Fig. 13a); the sea cliff 

and the marine platform that limits the sub-aerial remnants of Topo Volcano to the E is oriented 

ENE-WSW (Fig. 5); Pico is elongated WNW-ESE, and the Caldera (Faial), the Pico and the 

Topo volcanoes follow the same trend. Based on the position of these three main volcanoes, the 

main lithospheric trends, and recently recognized faults (e.g. Marques et al., 2014b), we 

conclude that the main central-type volcanoes developed at the intersection of major lithospheric 

faults. 

In Faial, the oldest sub-aerial volcanism was dated at ca. 850 ka by Hildenbrand et al. 

(2012a). It was followed by ca. 500 kyr period of destruction of the original edifice (see also 

Appendix B). Around 360 ka, a new smaller edifice was growing in NE Faial. The equivalent of 

this construction/destruction activity in Faial was not found in Pico, despite belonging to the 

same volcanic ridge. 

 Based on the data/interpretations here presented and on previous works (mainly 

Hildenbrand et al., 2012a; Costa et al., 2014), we propose the following evolution of the Pico-

Faial ridge for the last 200 kyr (Figs. 15 and 17). The schemes provided in Fig. 17 were drawn 

on a 3D perspective of the ridge provided as Fig. B.1. 
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Fig. 17. Step-by-step evolution of the Pico-Faial volcanic ridge in the last 200 kyrs. (A) 
Simultaneous development of the island-scale graben in Faial and growth of the Topo volcano 
(pink coloured edifice) in Pico. (B) Growth of a central volcano in Faial, partially filling the 
Faial Graben, and partial destruction of Topo in Pico, forming the main scarp of the slump 
structure. (C) Volcanic growth hiatus in Faial, with development of the graben structure, while 
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there was widespread growth of the Fissural System in Pico, with failure(s) on the N and S 
flanks, generating significant debris deposits indicated by yellow dashed lines. (D) Growth of the 
Fissural System, parasitic cones on Topo’s flanks, and development of the Pico Stratovolcano in 
Pico. Volcanic growth in Faial, with partial filling of the graben structure, growth of the 
southeastern volcanic platform and western peninsula, with volcanic growth phases associated 
with gradual development of the graben structures. 
 
  

  (1) In Faial, a WNW-ESE island-scale graben, the Faial Graben, developed between ca. 

350 and 130 ka (Hildenbrand et al., 2012a). Meanwhile, the sub-aerial Topo Volcano was 

growing in Pico (ca. 186-125 ka) (Figs. 15 and 17a).  

 (2) While Topo was reaching its final stages of growth in Pico and being dismantled (ca. 

125-115 ka), a central-type volcano (the Caldera Volcano) was growing in Faial (ca. 130-115 ka, 

Hildenbrand et al., 2012a), partially filling the central depression of the Faial Graben (Figs. 15 

and 17b).  

 (3) Between ca. 125 and 70 ka, there was considerable sub-aerial growth and 

destabilization of the Fissural System in Pico. The volcanics from the Fissural System partially 

masked the scar(s) affecting the Topo Volcano (Figs. 15 and 17c). Two major catastrophic flank 

collapses occurred prior to 70 ka, and produced debris deposits now identified in the ocean 

bottom. 

 (4) Since ca. 70 ka (Figs. 15 and 17d), volcanic products have erupted from the Fissural 

System in Pico, and partially masked the earlier collapse scars. Around ca. 60 ka, parasitic cones 

developed on Topo Volcano’s SW flank, covering it unconformably. The Pico Stratovolcano has 

been growing on the westernmost sector of the island, at least since ca. 53 ka. The S flank of this 

stratovolcano has suffered a partial flank collapse. In the last 10 kyr, extended volcanic activity 

has occurred in both Pico Stratovolcano, the Fissural System, and as parasitic activity on Topo’s 

SW flank. A slump is currently active in SE Pico (Hildenbrand et al., 2012b). In Faial, since ca. 

46 ka, newly erupted materials have partially filled the Faial Graben, extending the surface of the 

island towards the SE. Since ca. 10 ka, a WNW-ESE sub-aerial fissural system grew towards the 

W, and episodes of explosive activity occurred in the central volcano (Madeira and Brum da 

Silveira. 2003; Hildenbrand et al., 2012a, Figs. 15 and 17d).   

 From this reconstruction, we notice that: (a) the growth of Topo Volcano’s sub-aerial 

edifice in Pico occurred at the end of the time interval defined for the major development of the 

Faial Graben in Faial (Figs. 14 and 17a); (b) the time span for the final stage of Topo Volcano’s 

growth, its destruction towards the SE, and the probable beginning of the Fissural System growth 
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in Pico, coincides with the growth of the Caldera Volcano in Faial (Figs. 14 and 17b). These 

moments reflect particularly well the dynamics of growth and destruction in the evolution of the 

Pico-Faial volcanic ridge. 

 The Pico-Faial volcanic ridge sits on top of a master fault, locally parallel to the 

orientation of the Nu-Eu plate boundary (Fig.1b), which currently accommodates part of the 

inter-plate deformation (Marques et al., 2013a, 2014a). In the last 200 kyr, the ridge has been 

punctuated by three WNW-ESE aligned central-type volcanoes, as a consequence of the 

intersection of structural trends oblique to WNW-ESE. These structural trends are expressed by: 

(a) the orientation of the submarine alignments, dykes and SE coastal cliff cutting the Topo 

volcano (ranging between the MAR-inherited ca. NNE-SSW orientation, and the WSW-ENE 

orientation of the transforms of the Nu-Eu plate boundary); (b) the NNW-SSE fracture in Pico 

Stratovolcano, interpreted from the alignment of the volcanic vents of the 1718 volcanic eruption 

(Madeira and Brum da Silveira, 2003), the orientation expected for the structures 

accommodating pure extension in the Nu-Eu plate boundary (Marques et al., 2014b); (c) the 

NNE-SSW faults, dykes and extension fractures recognized on the sub-aerial domain of the 

polygenic edifices in Faial Island (Trippanera et al., 2014); (d) minor scarps interpreted in the 

submarine domain of the volcanic ridge, oriented according to the structural trends mentioned 

above (Lourenço, 2007). The marked dynamics of growth/destruction in both islands in the last 

200 kyr is here considered to be intimately connected to the recent deformation in this diffuse 

plate boundary.  

 The sub-aerial fissural system in the S. Jorge ridge started to develop at ca 1.3 Myr, much 

earlier than the beginning of the sub-aerial growth of Faial (ca. 850 ka). The bulk of the sub-

aerial S. Jorge was already built before sub-aerial Pico started to grow. According to 

Hildenbrand et al. (2008; 2014), the volcanic sequence in S. Jorge Island is younger than ca. 750 

kyr, contemporaneous with the development of the sub-aerial Pico-Faial ridge, and was marked 

by lower degrees of partial melting than the 1.3-1.2 Ma sequence. Furthermore, the widespread 

sub-aerial growth of Pico-Faial fissural systems in the last ca.125 kyr contrasts with the reduced 

recent volcanic growth recorded for S. Jorge Island (Hildenbrand et al., 2008). These evidences 

suggest that the accommodation of the extension associated with the Nu-Eu plate boundary along 

these two ridges (Marques et al., 2013a, 2014a) changed from a state of main extension 

accommodated along the S. Jorge ridge (previous to ca. 850 ka), to a state of extension 

accommodated by both volcanic ridges (in the last ca. 850 kyr), with reinforcement of the Pico-

Faial ridge as a structure accommodating extension in the last ca. 125 kyr.  
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5. Conclusions 

 

 From the data/interpretations here presented, coupled with the results/interpretations 

presented in Costa et al. (2014), we propose the following evolution for Pico Island (Fig. 15): 

 A – The sub-aerial development of Topo Volcano lasted between ca. 186 and 115 ka. 

 B – The destruction of Topo Volcano's N flank occurred between ca. 125 and 70 ka, with 

gradual subsidence along the Topo Fault and catastrophic deformation further N (probably 

already affecting deposits from the Fissural System, with associated generation of the submarine 

debris deposit reported in Costa et al., 2014). The gradual destruction of Topo's SE flank 

occurred between ca. 125 and 115 ka, generating the Main Scarp of the currently active slump 

(Hildenbrand et al., 2012a). Between ca. 125 and 69 ka, the distal sector of this flank was 

affected by a major catastrophic collapse. 

 C – Between ca. 125 and 69 ka, the sub-aerial Fissural System grew substantially. In the 

same period, this fast growing edifice suffered catastrophic flank collapses: (1) on the 

westernmost and easternmost sectors of the Fissural System's N flank, with the occurrence of 

collapses directed towards the N, older than ca. 69 ka ago and constrained between ca. 125 and 

70 ka, respectively (Costa et al., 2014, and this study); (2) on the Fissural System's S flank, 

propagating the eastern sector of S2 (affecting the most distal sector of the subsided SE flank of 

Topo volcano) and generating the large debris deposit on the offshore, between ca. 125 and 69 

ka. 

 D – Since ca. 70 ka, volcanic products erupted from the Fissural System, blanketing in 

great part the collapse scars. Around ca. 60 ka, parasitic cones developed unconformably on the 

SW flank of the Topo Volcano. 

 E – The Pico Stratovolcano has been growing on the westernmost sector of the island, at 

least since ca. 53 ka. The S flank of this stratovolcano has suffered a partial flank collapse. The 

interpreted failure surface was afterwards covered by more recent volcano-sedimentary deposits, 

which have been repeatedly intruded by dykes parallel to the scarp surface and disposed en 

échelon. This scarp is considered to be highly prone to landslide occurrence.  

 F – A slump is currently active in SE Pico, re-activating in-depth older mass-wasting 

structures, as there was shown clear evidence for movement along S2 (Hildenbrand et al., 

2012a).  

 The development of Pico and Faial islands during the last 200 kyr illustrates the strong 

dynamic competition between volcanic construction and destruction in such active tectonic 

settings, with evidence for simultaneous occurrence of large-scale destruction in one island while 
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there was significant volcanic growth in the other. The comparison of the evolution of the Pico-

Faial ridge and the evolution of the neighbouring S. Jorge ridge suggests that the role of Pico-

Faial ridge as a structure accommodating part of the extension on the diffuse Nu-Eu boundary 

has been consolidated in the last ca. 125 kyr. 
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APPPENDIX A  

 

DEM origin and construction 

 

 The sub-aerial topographic data here presented were produced from the digital 

topographic map of Pico Island (Portuguese Army Geographic Institute), of 1:25,000 scale and 

vertical accuracy of ca. 5 m (Afonso et al., 2002). Details on the sub-aerial DEM construction 

are provided in Costa et al. (2014). The DEMs presented for Pico and Faial islands have spatial 

resolution of 10 and 50 m, respectively. 

 The 50-250m resolution submarine data here presented resulted from a swath 

bathymetry survey with a 12 kHz Kongsberg EM120 multibeam echo sounder system. The 

estimated depth accuracy (RMS, Root Mean Square) is 0.2-0.5% of the water depth (Kongsberg, 

2007). As the maximum depth of the presented high-resolution area is ca. 1750 m, the maximum 

RMS estimated for these data ranges between 3.5-8.75 m. The data were processed using CARIS 

software, clean of noise and converted to an ASCII file. Afterwards, these data were converted to 

a raster structure of either 50 m or 250 m spatial resolution, using kriging spatial interpolation. 

The grid displaying these submarine data (Figs. 5 and 6) was built from a composition of data 

from different sources and of different resolutions (Fig. 5a): (a) the sub-aerial data of 10 m 

resolution (green area in Fig.5a); (b) the submarine 50 and 250 m data (grey and light blue areas, 

respectively, in Fig. 5a); (c) 100 m spaced depth contours for the shallow depths adjacent to the 

scar on Pico's SE flank (Fig.4), obtained from photogrammetry of Fig. 1a in Mitchell et al. 

(2012) (black lines in Fig.5a); (d) 1000 m resolution bathymetric data (blue dots in Fig. 5a, 

Lourenço et al.,1998). First we performed a spatial interpolation of 200 m resolution on the 

submarine domain, considering the data distribution represented in Fig. 5a. The WSW-ESE 

apparent alignments visible on the shaded reliefs from Figs. 5b and 5c, are artefacts related to the 

spatial interpolation of the contour levels (Fig. 5a). Afterwards, we composed the final 50 m 

resolution grid mosaic, considering preferentially the 50/250 m resolution bathymetric data and 

the 10 m resolution sub-aerial data, and filling the remaining space with the 200 m resolution 

data from the interpolation performed previously. 
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Fig. A.1. (A) Shaded relief of the 10 m resolution DEM of Pico Island (lighting from ESE), with 
coordinates in metres UTM (zone 26N). (B) Slope map of Pico Island built from the 10 m 
resolution DEM. 3D perspectives indicated as yellow eyes are presented in Fig. A.2. "a" - view 
presented in Fig. 3a. Perspective "B." - view presented in Fig. 3b. Perspective "C." - view 
presented in Fig. 3c. (C) Surface map of Pico Island built from the 10 m resolution DEM, 
indicating the North-based azimuth of strongest dip. 
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Fig. A.2. Images obtained by superimposing the 3D view of Pico Island relief (vertical 
exaggeration: 2x) and the slope map image (shared color scale for slope angles), obtained from a 
10 m resolution DEM. Perspectives presented A,  B and C, are indicated in Fig. 2b by "A.", "B." 
and "C.", respectively. (A) Perspective from E (lighting from NW), of Pico Island's topography, 
with interpretation of the N and S flanks' main scarps as dashed white lines. (B) View from ESE 
of the slump structure's topography (lighting from SW). Scarps interpreted as white dashed lines 
(structures identification and interpretation modified after Hildenbrand et al., 2012). Black 
triangles identified as a, b, c, d and e indicate the observation spots of the corresponding 
panoramic pictures presented in Fig. A3 (Appendix A). (C) Perspective from SE of Pico 
stratovolcano's strongly dipping southern flank (lighting from SE).  
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Fig. A.3.  Panoramic views of the slump structure scarps. Observation spots of the pictures are 
indicated and identified on Fig. A2 (black triangles). Scarps are identified and interpreted as 
yellow lines. 
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Fig. A.4.  (A) Different elements used to composed the 50m resolution grid presented below: 
green - 10 m resolution sub-aerial DEM; blue - 250m resolution bathymetric data (made 
available by EMEPC); grey - 50m resolution bathymetric data (made available by EMEPC); 
black lines - depth contours from Fig. 1b in Mitchell et al. (2012); blue dots - bathymetric data 
extracted from the 1000 m resolution grid from Lourenço et al. (1998), available at 
http://w3.ualg.pt/~jluis/acores_plateau.htm. (B) and (C) constitute shaded reliefs from the 50m 
resolution grid composed as described in (A), with vertical lighting and lighting from WNW, 
respectively. The apparent WSW-ENE lineaments visible in the area of interpolation of contours 
extracted from Mitchell et al. (2012) constitute interpolation artefacts. 
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Fig. A.5. (A) Shaded relief of Pico Island from a 10 m resolution DEM (lighting from ESE). (B) 
Shaded relief of Pico Island from a 10 m resolution DEM (lighting from NW). (C) WSW-ESE 
view of the sea cliff whose extent is indicated as a green dashed line in (B).  
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Fig. A.6.  Zoom in on the sea cliff presented as Fig. A.5c. 
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Fig. A.7. Interpretation of the sea cliff section presented in Figs. A.5c and A.6. Yellow dashed 
line indicates possible unconformity. Full red line represents a main physical discontinuity. The 
samples collected on this sea cliff are indicated in A. 

114



 

 
 
 
 

 
 
Fig. A.8. (A) View of the easternmost sector of S3. The outcropping sequence locally apparently 
dips towards E. (B) Location of sampling of Pi11G. The lava flow is laterally continuous to the 
sequence visible on (A). 
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Fig. A.9. Photos from S.Caetano creek (order according to upslope observations): (A) lava flows 
intercalated with sedimentary deposits, and overlain by a thick coarser deposit with decimetric 
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boulders; (B) Thick small grained volcaniclastic (pyroclastic) sequence with some thin lava 
flows intercalated and cut by strongly dipping dykes. Zoom in: view of the dykes located on the 
red square zone.; (C)  Small grained volcaniclastic sequence cut by en echelon dykes (strongly 
inclined dyke on the right cutting a small dyke); (D) and (E) Metric thick/ strongly inclined 
dykes towards downslope, cutting the sequence.  
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APPPENDIX B 

Evolution of the Pico - Faial ridge previous to 200 kyrs 

 

Here we resume the evolution of the Pico-Faial ridge previous to 200 kyrs: 

  (1) The distribution of magnetic anomalies along the ridge shows evidence for the 

development of the Pico-Faial ridge on the Faial sector and on the submarine domain to the SE 

of Pico, previous to the Matuyama- Brunhes transition (Miranda et al., 1991; Lourenço, 2007; 

Hildenbrand et al., 2012), at 789±8ka (Quidelleur et al., 2003). 

 (2)  Between ca. 850─800 ka, a volcanic edifice grew on the SE sector of Faial Island 

(Figs. B.1 and B.2a), followed by a volcanic hiatus between ca. 800─400 ka, during which this 

edifice was heavily dismantled (Hildenbrand et al. 2012, Fig. B.2b); 

 (3) Between ca. 400─350 ka, newly erupted volcanic material masked Faial Island's NE 

sector (Fig. B.2c);  

 (4) In Faial Island, a WNW-ESE island-scale graben propagated between ca. 350─130 ka 

(Fig.  B.2d) (Hildenbrand et al., 2012). Meanwhile, towards ESE (Pico Island), sub-aerial Topo 

Volcano started to grow (ca. 186─125 ka) (Fig. 17a).  

 The volcanic growth in NE Faial in (3) and graben development in (4) coincide in time 

with the volcanic growth of the westernmost sector of S.Jorge Island (Hildenbrand et al., 2008). 
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Fig. B.1. (A) Map view of  the topographic surface from the area comprising Pico-Faial  and S. 
Jorge ridges. The observed topographic surface resulted from the combination of 50 m resolution 
DEMs for Pico, Faial and S. Jorge Islands and a 1 km resolution DEM of the submarine domain. 
Bathymetric data from Lourenço et al., (1998) , available at http://w3.ualg.pt/~jluis/. (B) 3D 
perspective (view from ESE) of the Pico-Faial volcanic ridge, used as a base for the 
representation of the ridge evolutionary steps presented in Figs. 9 and 10. 
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Fig. B.2. Schematic step-by-step evolution of the Pico-Faial volcanic ridge, following the data 
and interpretations presented in Hildenbrand et al., (2012). The theoretical schemes presented are 
superimposed with a 3D perspective of the ridge DEM (Fig. B.1). (A)  Beginning of the sub-
aerial development of the volcanic ridge with growth of a volcanic edifice on Faial Island sector 
(ca. 850 - 800 ka). (B) Partial destruction of the volcanic edifice referred in (A) (ca. 800 - 400 
ka). (C) Volcanic growth phase on the northern sector of Faial Island (ca. 400 - 350 ka). (D) 
Development of a WNW-ESE island-scale graben structure (ca. 350 - 130 ka). Graben scarps 
represented as red lines. 
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Chapter 6 

 
Large-scale active slump of the southeastern flank of 

Pico Island, Azores  

 (Hildenbrand et al., 2012b) 
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ABSTRACT
We report evidence for ongoing lateral slump of part of the 

southeastern fl ank of the Pico volcanic ridge in the Azores. Data 
from a high-resolution digital elevation model, fi eld work, GPS, 
and radar interferometry show that: (1) the slumping sector is 
several cubic kilometers in size; (2) the structure involves several 
curved scars with normal fault kinematics; (3) the central part is 
undergoing little horizontal displacement toward the southeast (1.6 
± 1.3 mm/yr), but signifi cant downward movement (5–12 mm/yr); 
and (4) the outer part of the southeastern fl ank of Pico is subsid-
ing faster than the inner parts; this likely refl ects recent individu-
alization of a steep seaward-dipping fault in the moving mass. The 
slump shares similarities with active slumps recognized elsewhere, 
although the studied area may represent only the proximal part of a 
much larger complex potentially affecting the deep submarine base 
of the island. Displacement of the subaerial part of the southeastern 
fl ank of Pico seems to be accommodated by the movement and rota-
tion of large blocks along listric normal faults.

INTRODUCTION
The growth of volcanic islands is generally punctuated by large 

lateral fl ank failures, which can trigger destructive tsunamis (Keating 
and McGuire, 2000; McMurtry et al., 2004). Giant sector collapses have 
been recognized around numerous islands worldwide, e.g., in Hawaii 
(Lipman et al., 1988; Moore et al., 1994; Morgan et al., 2000), French 
Polynesia (Clouard and Bonneville, 2004; Hildenbrand et al., 2006), 
the Canary Islands (Krastel et al., 2001; Walter and Schmincke, 2002; 
Boulesteix et al., 2012), Reunion Island (D uffi eld et al., 1982; Gillot et 
al., 1994), and the Caribbean arc (Le Friant et al., 2003; Samper et al., 
2007). A number of triggering factors have been proposed over the past 
20 years (e.g., McGuire, 1996; Elsworth and D ay, 1999; McMurtry et al., 
1999, 2004; Klüge l et al., 2005; Quidelleur et al., 2008), including con-
centration of dikes along rift zones and associated fl uid pressurization 
by heating and/or compression of groundwater trapped between dikes, 
ground shaking by large regional earthquakes, gravitational spreading 
of the volcanoes along weak geological layers, or sea-level variations 
associated with climatic changes.

Contrasting types of sector collapse have been distinguished (Moore 
et al., 1994): (1) slow-moving rotational landslides along a deep-sea 
detachment fault, often called slumps; and (2) catastrophic landslides 
produced by the rapid detachment of the island fl ank, which may release 
fast-moving debris avalanches. These two kinds of processes are not 
mutually exclusive; part of a slump may suddenly collapse and trigger a 
tsunami (e.g., Tilling et al., 1976; Moore et al., 1994).

The Azores archipelago, in the Atlantic Ocean, comprises nine 
active volcanic islands and numerous linear submarine ridges developed 
close to the triple junc tion between the North American, Eurasian, and 
African lithospheric plates (Fig. 1), in an area characterized by impor-
tant regional deformation and recurrent high-magnitude earthquakes 
(Borges et al., 2007). The islands are marked by a multistage evolution, 

including fast-growing phases and multiple destruction events, such as 
vertical caldera collapse, lateral landslides, and rock fall of various sizes 
(Mitchell, 2003; Calvert et al., 2006; Hildenbrand et al., 2008; Silva et 
al., 2012).

Pico Island is a narrow and steep volcanic ridge, formed by magma 
concentration along the N110° trend (Fig. 1). The oldest volcanic units 
are exposed in the central and eastern parts of the island, whereas more 
recent volcanic activity produced the Pico volcano, which occupies the 
western third of the island (Woodhall, 1974; Nunes, 1999).

D ue to its steep topography, Pico Island is particularly sensitive to 
fl ank instability. The southern fl ank of the ridge shows several curved 
structures that are concave toward the ocean (Fig. 1), previously inter-
preted as refl ecting early caldera development, faulting, or ancient lat-
eral collapse (Woodhall, 1974; Nunes, 1999; Mitchell, 2003; Nunes et 
al., 2006). Knowledge of the geometry, volume, and kinematics of these 
structures, and understanding of their recent evolution and susceptibil-
ity to further movement, are critical for risk and hazard assessment, but 
remain poorly constrained. Our study focuses on the unstable southeast-
ern part of the ridge; data from a high-resolution digital elevation model 
(D EM), fi eld work, GPS, and radar interferometry show that part of the 
fl ank is currently being displaced toward the ocean, accommodated by 
the motion of large blocks that may eventually detach, with catastrophic 
consequences.

SLUMP GEOMETRY AND KINEMATICS
Using cartographic data and maps generated in 2005 by the Portu-

guese Army Institute (scale 1:25,000), we developed a D EM with 10 m 
spatial resolution and a vertical accuracy of 2 m. It was used to produce a 
shaded relief map (Fig. 2A), a slope map, and topographic cross sections *E-mail: anthony.hildenbrand@u-psud.fr.
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Figure 1. Location of Azores volcanic archipelago near triple junc-
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(TR). FZ—fracture zone. Inset: Shaded relief map showing main mor-
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zone. Two main landslide failures affect southern fl ank of island. 
Rectangle shows geographical extension of studied southeastern 
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(Fig. D R1 in GSA D ata Repository1), which, together with geologic data 
(Figs. 2B and 3), provide important new constraints on the geometry of 
the failure. 

1. The main collapse rim is exposed as an arcuate scarp open to the 
southeast. It forms a 300-m-high prominent headwall with steep slopes 
dipping as much as 60° . The northern part of this structure has been partly 
covered by recent lava fl ows, but discontinuous unburied segments can be 
identifi ed, suggesting an overall horseshoe-shape geometry. 

2. The inner portion of the collapse sector is marked by a morpho-
logical plateau with gentle slopes. The upper part of the plateau is com-
posed of recent lava fl ows erupted from small cones developed at the base 
of the main failure. 

3. The plateau is interrupted by slope breaks; from west to east, three 
main scarps can be identifi ed (S1, S2, and S3, Fig. 2; Item D R1 in the 
D ata Repository). S1 occurs along a lineament roughly parallel to the 
southern end of the main failure. Its northern end is apparently connected 
with the main scar. S2 extends over a large area as an arcuate structure 
affecting the outer part of the plateau. It has a geometry typical of lateral 
failures, starting with a north-south rim at sea level, then bifurcating east-
ward and becoming almost parallel to the main axis of the island. This 
scarp is characterized by a steep seaward dip of as much as 45° . Farther 

east, the slope is smoothed by recent lava fl ows erupted from volcanic 
cones located along the main rift zone, and from parasitic cones developed 
within the collapse sector. The S3 scarp has been previously interpreted as 
fossil coastal cliffs (Nunes, 1999); however, it defi nes a clear embayment 
partly covered by recent lava fl ows, which cascaded down to the sea and 
formed a lava delta.

The architecture and kinematics of the slump are further constrained 
by fi eld data (Fig. 3; Item D R2). The in situ old volcanic sequence is 
exposed along coastal cliffs as a pile of thin lava fl ows, including red lev-
els of Strombolian fallout deposits (π symbol in Fig. 3). This succession 
is interrupted by a main scarp making up the western rim of the slump 
(Fig. 3). To the east of this maj or discontinuity, a different volcanic suc-
cession crops out. It likely defi nes the top of a large downthrown block, 
which would therefore indicate a minimum vertical offset of ~ 300 m. This 
large block is overlain by a thick layer of poorly sorted talus deposits (Td 
in Fig. 3), including angular lava blocks exceeding 1 m in size, that imply 
rapid infi lling of a steep-sided canyon by large blocks probably shed from 
the main slump scar. The talus unit is covered by a suite of thick volcanic 
lava fl ows wedging out toward the main fault scarp (Fig. 3; Item D R2). All 
the fi eld data suggest that the main collapse rim has acted as a maj or fault 
with normal kinematics. Gradual downward movement resulted in the 
persistence of a narrow drainage system, which was fi lled by lava fl ows 
and signifi cant amounts of debris. Recent movement can also be suspected 
from the active development of a narrow debris fan remobilizing the talus 
deposits along the main scar (Fig. 3).

SLUMP MONITORING BY GPS AND RADAR 
INTERFEROMETRY

In the framework of the research proj ects SARAÇ ORES (D eforma-
tion Partition in Azores using interferometric SAR Images; Catita et al., 
2005) and TANGO (TransAtlantic Network for Geodesy and Oceanogra-
phy; Fernandes et al., 2004), a dense GPS network was installed in Faial 
and Pico Islands (details in Item D R3). It consists of 31 stations, distrib-
uted mostly along the coastlines. One station (PRIB) is located near sea 
level in the central part of the collapse area, close to the town of Ribeiras. 
Four GPS campaigns were carried out on Faial and Pico Islands between 
1999 and 2006. Measurements were made in survey mode, with a mini-
mum of three sessions (24 h consecutive observation each) per station. 
The data set was complemented by synthetic aperture radar (SAR) data, 
aimed at producing interferograms and quantifying vertical displacements 
between 2006 and 2009 (for details, see the D ata Repository and Catalão 
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1GSA D ata Repository item 2012264, Item D R1 (detailed morphology of 
Pico southeastern slump), Item D R2 (thick lava fl ows overlying the talus deposits), 
and Item D R3 (methods and data processing; GPS and InSAR), is available online 
at www.geosociety.org/pubs/ft2012.htm, or on request from editing@geosociety
.org or D ocuments Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 3. Photograph taken from sea showing geometric relation-
ships between main geological units exposed along southern end of 
main collapse rim at shore level. Td—talus deposits; pi symbols—
levels of Strombolian fallout deposits; blue outline and symbol show 
point of view from which photo exposed in Item DR2 (see footnote 1) 
was taken (upward). 

126



GEOLOGY | October 2012 | www.gsapubs.org 3

et al. [ 2011] ). The GPS horizontal surface velocities of Pico were used to 
estimate the parameters of the rigid body motion model associated with 
regional plate tectonics. The residuals between the rigid body motion and 
the geodetic data are attributed to intra-island deformation and are a good 
measure of local variations of the strain fi eld.

Residual velocities computed at PRIB (2σ uncertainties)  show a 
slight southeast displacement, with an average value of 1.6 ±  1.3 mm/yr, 
and a signifi cant average vertical subsidence of 7.1 ±  1.9 mm/yr. Such 
downward vertical motion is consistent with the values obtained from 
radar interferometry (Fig. 4), although those data were acquired between 
2006 and 2009 and show slightly higher rates of subsidence. The InSAR 
(In— interferometric) data show that the sectors outside of the collapse 
area are rather stable, with no signifi cant vertical movement or little sub-
sidence (< 5 mm/yr), whereas downward vertical movement in the collapse 
area reaches 12 mm/yr, i.e., a net subsidence of 7 to 12 mm/yr. The highest 
rates are observed in the central part of the collapse, whereas the sector 
bounded by the main fault scar shows values between 5 and 8 mm/yr.

SLUMP MECHANISMS AND PROPAGATION
Previous studies have considered that the present confi guration of the 

southeastern fl ank of Pico could refl ect vertical caldera collapse (Woodhall, 
1974; Mitchell et al., 2011). This is inconsistent with observed geology and 
our data, because (1) the horseshoe shape of the failures supports lateral 
movement; (2) central caldera collapse should have cut the east and west 
fl anks of the old volcano in a symmetrical way, but its eastern fl ank is not 
exposed on land; and (3) present-day vertical motion is inconsistent with 
caldera collapse of the oldest volcanic lavas of the island. Lateral collapse 
has been proposed, but is considered as currently inactive (Nunes, 1999; 
Nunes et al., 2006; Mitchell et al., 2011); this is inconsistent with our data. 
One may argue that the measured displacements could result from active 
movements along strike-slip faults coinciding with the main axis of the 
island (Madeira and Brum da Silveira, 2003), with possible development 
of a pull-apart structure between such faults. However, such right-lateral 
movement would imply compression along the north-south main collapse 
rim, which is inconsistent with the measured fl ank spreading.

The main scar extends to the eastern parts of the ridge main axis, 
where numerous young cones have developed. The localization of the 
main failure surface thus may have been infl uenced by dike intrusion and 
magma push along the main rift zone, a mechanism frequently advocated 

to explain the development of fl ank instability on volcanic islands (Moore 
et al., 1994; Elsworth and D ay, 1999; Hildenbrand et al., 2006).

The initiation of the failure is not well constrained in time, because 
there are insuffi cient geochronological data. Extrapolating the measured 
rate of subsidence along the main rim (net value of 5 mm/yr on average) 
suggests gradual downward movement during the past 60 k.y., but dis-
placement rates may not have been constant through time. Nevertheless, 
the several curved scars developed farther east show less vertical offset 
and affect younger lava fl ows erupted from vents that apparently migrated 
sequentially eastward. This suggests recent eastward propagation of the 
failure within the central outer parts of the moving mass. The develop-
ment of volcanic cones along the trace of the several secondary curved 
scars thus probably refl ects the opening of lateral cracks, which served 
as local pathways for recent magma ascent. Although our InSAR data do 
not record present differential movement along S3, the formation of this 
arcuate scarp is here interpreted as resulting from recent deformation close 
to the island shore, which yielded the recurrent detachment of coastal seg-
ments. This is consistent with the presence of a moderate-sized debris fi eld 
on the southern submarine slope of the ridge, identifi ed from marine geo-
physical surveys (Mitchell, 2003).

Our new geodetic data show that the present deformation affects a 
signifi cant part of the southeastern fl ank of Pico Island, and not solely the 
central lava delta. Therefore, other causes of subsidence such as recent lava 
cooling or compaction of underlying sediments cannot adequately explain 
the recorded movement, especially as a similar recent lava delta developed 
west of the collapse area does not show any appreciable downward move-
ment (Fig. 4). D ifferential deformation at the foot of the various scars iden-
tifi ed here also suggests the discrete displacement of large blocks along 
several curved faults with typical normal kinematics, as recognized or sus-
pected on the Hilina fault system in Hawaii (Smith et al., 1999), the Cumbre 
Viej a western sector collapse on La Palma in the Canary Islands (Hilden-
brand et al., 2003; Gonzá lez et al., 2010), or on the east fl ank of the dor-
mant D amavand volcano in northern Iran (Shirzaei et al., 2011). The rates 
of subsidence reported here are signifi cantly higher than the rates measured 
on the western slope of La Palma, but they are one order of magnitude lower 
than the values recorded on the southern mobile fl ank of Kilauea volcano in 
Hawaii (Owen et al., 2000). With a subaerial volume estimated as ~ 10 km3, 
the southeastern collapse of Pico also appears to be signifi cantly smaller 
than typical Hawaiian giant landslides (Moore et al., 1994), but the struc-
tures on Pico may evidence only the proximal part of a much larger complex 
potentially affecting the deep base of the submarine fl ank.

FURTHER EVOLUTION?
The lack of volcanic eruptions or detectable infl ation of the volcanic 

ridge over the period of geodetic monitoring implies that active downward 
displacement of the southeastern mobile fl ank of Pico Island is not a direct 
result of forceful magma intrusion along the rift zone. In addition, the 
lack of detected shallow earthquakes within the collapse area during this 
geodetic monitoring time interval suggests that creep is currently the main 
mode of deformation.

The higher rates of current vertical displacement measured near sea 
level possibly refl ect cumulative displacements along the main rim of the 
collapse, and additional displacements along the more recent outer fail-
ures, especially S2 (Fig. 4). By this hypothesis, vertical displacements in 
the outer fl ank reach an average value of ~ 3–5 mm/yr, which is similar to 
or slightly higher than the maximum horizontal displacement rate derived 
from our GPS station (2.9 mm/yr), when uncertainties are accounted for. 
Such data support the fact that the distal part of the ridge is currently mov-
ing along a steep fault with a minimum dip of 45°  toward the southeast. 
This is consistent with the exposed geometry of the outer arcuate structure 
S2, which therefore constitutes a priority target for further monitoring and 
hazard assessment, e.g., eventual block detachment and associated poten-
tial tsunami.

GPS horizontal: 1.6 ± 1.3 mm/yr
GPS vertical: -7.1 ± 1.9 mm/yr
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Figure 4. Horizontal and vertical displacement rates within collapse 
area derived from GPS and synthetic aperture radar (SAR) data ac-
quired from 2001–2006 and 2006–2009, respectively. Distinct colors 
for various rates of average vertical displacements are in mm/yr. 
Negative values and positive values are for downward and upward 
movements, respectively.
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Item DR1: Maps detailing the morphology of Pico SE slump 
 
(A) Shaded-relief map and morphology of the main scars here identified 

 
 
 
(B) Topographic contour map and cross-section (vertical exageration of a factor 2)  

 
 
(C) Slope map 

 

GSA DATA REPOSITORY 2012264 Hildenbrand et al.
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Item DR2: Photograph	  showing	  the	  thick	  lava	  flows	  overlying	  the	  Td.	  The	  geometry	  of	  
individual	   lava	   flows	   evidence	   their	   buttressing	   against	   the	   main	   lateral	  
discontinuity	  of	  the	  sector	  collapse.	  Geologist	  in	  the	  center	  of	  the	  picture	  for	  scale. 
 

 

130



! "!

Item DR3: Details on the methods and data processing (GPS and InSAR) 

 

 

Figure DR3A. Localization of the GPS stations on Faial and Pico islands 

 

1. GPS data acquisition and processing 

In 2001 a dense GNSS network was installed in the central Azores, including 20 and 11 

sites on Faial and Pico, respectively. This network was designed as a densification of 

the existing TANGO-OA/DEOS network originally consisting in only six stations per 

island (Fernandes et al., 2004). All sites were set up with metallic benchmarks installed 

in outcrops of solid rock. Four GPS campaigns were conducted from 1999 to 2006 

(1999, 2001, 2003 and 2006). The reference campaign is 2001 when all the 31 stations 

were observed. On the other campaigns, only a subset of the network was observed but 

ensuring that every station was measured at least three times. The observation protocol 

was maintained in all surveys: each site was surveyed for 12 to 24 hours per day over an 

average of 3 consecutive days while the receiver installed in FAIM site (Faial Island) 

operated in continuous mode during the whole period. All the surveys were performed 

using dual-frequency GPS receivers, collecting data every 30 sec. 
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We analyzed all GPS data using GAMIT/GLOBK software (Herring, 2003; King and 

Bock, 2002). The data analysis involves two major procedures, as described elsewhere 

(Feigl et al., 1993; McClusky et al., 2000). The first procedure uses GAMIT to estimate 

parameters such as station position and orbital trajectory on a daily basis for a given 24-

hour interval, from the union of the campaign stations and 9 global IGS stations. This 

daily procedure is completely standard and detailed in McClusky et al. (2000). A priori 

hydrostatic and wet models from Saastamoinen (1972) and Niell’s (1996) mapping 

function were used to model the troposphere.  Tropospheric parameters were estimated 

at each station every three hours. A linear picewise estimation model was used to 

estimate the zenith delay. The a priori estimates of the satellites’ orbital parameters 

come from the precise trajectories computed at the Scripps Orbit and Permanent Array 

Center at SIO (Bock et al., 1997). In the second procedure, we combine the daily 

solutions with 3 global IGS subnetworks (IGS, IGS3 and EURO), using GLOBK 

software (Herring, 2003) in a regional stabilization approach (McClusky et al., 2000). 

This stabilization procedure defined a reference frame by minimizing, in a least squares 

sense, the departure from a priori values based on the International Terrestrial Reference 

Frame 2008 (Altamimi et al., 2011), of the positions and velocities for a set of 26 

globally distributed stations. These stations thus move in a “no net rotation” reference 

frame approximately aligned with the ITRF2008. The average GPS station velocities 

were calculated from the GPS time series by linear regression of the survey position 

estimates generated using the GLOBK software. PRIB station time series are shown in 

figure DR3B. The estimated velocity for this station is: easting 10.1 ± 0.5 mm/yr, 

northing 13.4 ± 0.5 mm/yr and up -7.1±1.9 mm/yr.  
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a) 

 

b) 

 

c) 

  

 

Figure DR3B. Time series for PRIB GPS 

station showing displacements relative to 

ITRF2008: (a) north, (b) east, and (c) up.  

Error bars on station positions reported 

at 2σ. The lines show linear fit to the 

data.  

 

 

 

The horizontal velocities, computed with GPS data from 1999 to 2006, were used to 

estimate the rigid body motion represented by the three components of the Euler vector 

(ωx, ωy, ωz). The rigid body motion is associated with the regional plate tectonics. The 

residual displacement for each GPS station was computed as the difference between the 

estimated rigid body motion and the GPS station velocity. The residual displacement is 

associated to the intra-island deformation related with local deformation effects.  
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The PRIB station has a residual horizontal motion outwards with a velocity of 1.6 ± 1.3 

mm/yr and an average downward vertical displacement of 7.1 ±1.9 mm/yr.  

 

2. INSAR data acquisition and processing 

The interferometric dataset consisted of 57 ENVISAT-ASAR images covering Faial, 

Pico and S. Jorge islands, from 2006 March to 2009 January. Twenty-nine images were 

acquired along the descending pass and 28 along the ascending one. The perpendicular 

baseline range from -756m to 944m with a mean value of 126 m. The master image was 

chosen to minimize both the temporal and perpendicular baseline. 

The DORIS software (Delft University of Technology, Kampes et al., 2003) was used 

for interferometric processing. A mask over sea was applied to the original data 

improving considerably the coregistration and interferometric processing. In the Azores, 

the coherence of interferograms is markedly low and the Persistent Scatterers approach 

seems to be the only reliable technique to extract useful information from 

interferograms. STAMPS software (Hooper et al., 2007) was used to determine the 

Permanent Scatterers using the stack of interferograms already processed for the 

ascending and descending passes.  

The InSAR technique has two main limitations: first, it measures only the displacement 

along the radar line of sight (LOS) and second the measured displacement contains 

information on both the surface displacement and the temporal changes of the 

atmospheric phase delay.  Concerning the first limitation, it is worth mentioning that 3-

D terrain displacement is difficult to measure even in the case of InSAR measurements 

taken along both ascending and descending satellite passes. In fact, even in this case, 

there would be three unknown velocity components and just two independent InSAR 

LOS velocity measurements. For that, we have used a methodology to merge InSAR 
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point-like estimations, from both ascending and descending passes, and repeated GPS 

measurements of terrain displacement velocity to derive accurate maps of 3-D terrain 

displacement. A four-parameter trigonometric polynomial, representing a bias and a tilt, 

is computed by minimizing, separately for the ascending and descending passes, a cost 

function. It was observed that the merging of PS-InSAR and GPS data reduces the 

velocity dispersion of PS falling within the circular area around each GPS station from 

7.2 mm·yr-1 to 2.1 mm·yr-1 on Pico Island. The complete description of the method and 

data can be found in Catalao et al. (2011).  

As far as the second limitation is concerned the geodetic and atmospheric signals in 

INSAR data were disentangle using high-resolution numerical weather models. For any 

SAR image acquisition, the 3-D refractivity field and radar phase delay is computed 

using the high-resolution Weather Research and Forecasting (WRF) model to generate 

forecasts of the atmospheric parameters at a 1-km horizontal resolution and at the same 

time of SAR acquisitions. Synthetic interferograms corresponding to the atmospheric 

phase delays were then obtained as the difference between the atmospheric phase delays 

computed at the acquisition times of the master and slave SAR images. Before applying 

the PS-InSAR processing, atmospheric artifacts were mitigated by removing the 

corresponding synthetic interferogram of atmospheric phase delay from each SAR 

interferogram of the time series. The use of the WRF model further reduces the 

dispersion of estimates to 1.5 mm.yr-1 almost everywhere on both islands. It was 

observed that the mitigation of atmospheric artifacts reduces the spatial dispersion of 

velocity estimates up to 30%. The INSAR time series for PSs within a radii of 200 m 

centered in PRIB is plotted in figure DR3C. A seasonal effect is seen on the time series 

interpreted as the response to soil water content variation. The mean precipitation in 

Azores islands is very high and can induce seasonal apparent vertical deformation. This 
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effect can be filtered out with a time series longer that an annual meteorological cycle. 

In our case, we have three years of SAR data and a tendency can be derived by linear 

regression of the relative position estimates. The estimated trend for the set of PS’s 

close to PRIB is -6.1 mm/yr with an error of 1.3 mm/yr. 

 

	  

 

 

 

 

Figure DR3C. Time series for Persistent Scatters on a radii of 200 m around PRIB 

station. 
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Gravitational instability in a cohesive granular 

material atop an overpressured  
detachment – analytical derivation and  

experimental testing 

(Costa et al., in prep a) 
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Abstract  

 

 The critical taper theory of Coulomb wedges has been traditionally applied to 

compressive regimes (accretionary prisms/ fold-and-thrust belts), but more recently it has 

been applied to gravitational instabilities. The works using this theory either assume a non-

cohesive wedge, or do not provide a simple analytical solution for the cohesive system. Here 

we derive an analytical solution for the cohesive critical wedge, and compare with results of 

analogue experiments. We focus on the role of cohesion on the stability state of the wedge, 

and analyze how cohesion conditions the stress regime within the wedge, by inhibiting 

deformation and conditioning failure location. We investigate the roles of wedge geometry, 

cohesion, and fluid overpressure. Structural implications of the analytical model were 

analyzed through analogue modeling carried out during the present study. We show that the 

stability of a cohesive wedge under fluid overpressure is size-dependent (the influence of 
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cohesion is more significant for smaller wedges), while the stability of a non-cohesive wedge 

under fluid overpressure is independent of its size. The stabilizing effect of cohesion is 

significant for the most superficial domain of the wedge. The thickness of this more stable 

superficial layer decreases with increasing fluid overpressure ratio. Within this layer, the 

principal compressive stress rotates and the expected structures are listric. If the limit of the 

thickness expected for this layer is reached within the wedge (given the material's properties, 

fluid overpressure ratio and wedge configuration), the generated listric structures become 

parallel to the wedge's upper surface at this limit. This limit marks the reach of the failure 

envelope for the wedge's material. In terms of the wedge's stability along a basal detachment, 

the stabilizing effect of cohesion is accentuated in the foremost thin domain of the wedge, 

defining a required Minimum Failure Length (MFL). This MFL decreases for: smaller 

cohesions, smaller coefficients of internal friction, larger fluid overpressure ratios, steeper 

upper and basal surfaces of the wedge.      

 

 Keywords 

Critical taper theory; Coulomb wedges; cohesion; gravitational instabilities; gravitational 

spreading; shallow landsliding 

 

1. Introduction 

  

 Events of large-scale gravitational destabilization occur in a wide range of geological 

settings (e.g., Moore et al., 1989; Haflidason et al., 2004; Lacoste et al., 2009), and in many 

cases only the surface deformations or the scar/deposits of the landslide are detectable (e.g., 

Hildenbrand et al., 2012; Costa et al., 2014). Geophysical methods allow the interpretation of 

the basal detachment and the characterization of the internal deformation of the displaced 

volume (Morgan et al., 2003; Haflidason et al., 2004).  

 Landsliding results from progressive changes of physical parameters critical for the 

stability state of slopes (e.g., decrease of the material's strength and surface morphology due 

to weathering/erosion, sedimentation, tectonics, changes of pore pressure) (e.g., Voight and 

Elsworth, 1997; Masson et al., 2006). The identification and study of the factors that lead to 

the decrease of the material stability and/or trigger landslide events are of high interest in 

many areas of geosciences with direct social implications (e.g., geotechnics and civil 

engineering, volcanology, oil industry). 
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 Abnormal pore pressure (fluid overpressure) is  a critical destabilization factor 

involved in numerous gravitational instabilities with low-dip slopes in sub-aerial and 

submarine structures at various scales: e.g., large-scale flank collapses in volcanic islands 

(Iverson, 1995; Day, 1996), sub-aerial landslides in active margins associated with river 

incision (Waitawhiti landslides, New Zealand - Lacoste et al., 2009, 2011), submarine 

landslides affecting passive margins (Amazon Fan - Cobbold et al., 2004; Mourgues et al., 

2009; Gulf of Mexico - Flemings et al., 2008; 3000 km3 Storegga slide - North Sea Fan - 

Kvalstad et al.,  2005). Fluid overpressure is generated through several mechanisms, such as 

compaction disequilibrium (Walder and Nur, 1984; Day, 1996), mechanical and thermal 

pressurization of the porous medium (e.g., direct effect of magmatic intrusion, and associated 

effect of magmatic degassing - Iverson, 1995; Day, 1996; Elsworth and Voight, 1996; Voight 

and Elsworth, 1997; Reid, 2004), seismic loading (Elsworth and Voight, 1996), changing sea 

level (Iverson, 1995; Quidelleur et al., 2008; Smith et al., 2013), groundwater flow of 

meteoric water (Reid, 2004), and hydrocarbon generation (e.g., Cobbold et al., 2004, 2013; 

Zanella et al., 2014a, 2014b). Fluid overpressure is an important factor to take into 

consideration when addressing the global hydrological dynamics of a sedimentary basin, and 

with important implications for the oil industry (hydrocarbon maturation and risks associated 

to the drilling phase) (e.g., Nadeau, 2011). 

 In the last decades, much has been done to achieve a better understanding of these 

processes through numerical, analytical and analogue modeling (e.g., Reid, 2004; Mourgues 

et al., 2014; Zanella et al., 2014b). The simplification of the process inherent to modeling, 

often requires the neglect of variables that can be important for the understanding of the 

studied process (e.g., cohesion of the material), and often the formulation or results are too 

complex to allow for a clear and simple view of the role of each variable tested. 

 Cohesion of the materials conditions failure in compressive (accretionary wedges and 

thrust-and-fold belts - Davis et al., 1983; Dahlen et al., 1984) and extensional settings (e.g., it 

affects the depth of gravitational failure in volcanic edifices - del Potro et al., 2013).  Even 

though its impact decreases with increasing depth (Dahlen et al., 1984; Iverson, 1995), two 

major landslide examples in submarine settings present large blocks of undisrupted material 

in their deposits and preserved steep scars: the Storegga slide,  affected a sediment volume of 

2400-3200 km3 in the continental platform in the North Sea,  developed retrogressively, with 

lateral spreading of large scale blocks (Toreva blocks) along  1.1-1.4º dipping failure 

surfaces, and generation and maintenance of a currently stable headwall scar with 20-45º dip 

(Haflidason et al., 2004; Bryn et al., 2005; Kvalstad et al., 2005a, 2005b); the Nu'uanu debris 
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avalanche, affected a volume of 2500-3500km3 in the NE of O'ahu Island in Hawaii 

archipelago, and involved the transport of a 30km long/ 600 km3 block (Tuscaloosa 

seamount) along ca. 55 km (Moore et al., 1989; Moore and Clague, 2002; Satake et al., 

2002). The association of these major collapse events to fluid overpressure (Iverson, 1995, 

Kvalstad et al., 2005a), highlights the interest of studying the occurrence of gravitational 

destabilization in cohesive materials with intervention of fluid overpressure. 

    Through detailed structural analysis (e.g., from seismic data) and application of 

mathematical models efficient in describing the deformation, it is possible to reach an indirect 

estimation of some mechanical properties of the sediments. Among the analytical models 

used in tectonics, the critical taper model developed by Davis, Dahlen and co-authors (Davis 

et al.,1983; Dahlen et al.,1984; Dahlen, 1984, 1990) is one of the most known. It has been 

widely applied to the shape of accretionary wedges and thrust-and-fold belts, and used to 

estimate the weakness (often related to high pore fluid pressure) of the basal detachment. The 

basis of the critical taper theory in Coulomb wedges have been set in a series of papers: Davis 

et al. (1983); Dahlen et al. (1984) and Dahlen (1984, 1990). A wedge of Coulomb material 

under lateral compression will deform internally until a critical taper is reached. At this state, 

the prism and the basal detachment are everywhere on the verge of shear failure. The 

deformation will proceed with the growth of the wedge (self-similar growth, for non-cohesive 

material), through accretion of new material to the toe/ internal deformation, thus maintaining 

the critical taper and sliding along the basal detachment (Davis et al., 1983; Dahlen, 1984; 

Dahlen et al.,1984). 

 The mathematical formulation has multiple solutions, depending on the shear 

orientation on the basal detachment and the state of stress within the wedge (i.e., compressive 

or extensional, respectively, Fig. 1). Mourgues et al. (2014) pointed out that few studies 

focused on the applicability of the solution to gravitational spreading and gliding along 

passive margins, where elevated pore-fluid pressure is common in sediments and where 

numerous gravitational structures, such as landslides and debris flows, are identified (e.g., 

Storegga slide, Norway, Kvalstad et al., 2005; Demerara Rise, French Guiana, Pattier et al., 

2011). They investigated the applicability of the solution to gravitational instabilities 

triggered by high pore-fluid pressure, in the absence of any external compressive or 

extensional forces, for non-cohesive material. They also proposed an expression alternative to 

the one presented in Dahlen (1984), better suited to the study of slope instabilities (Mourgues 

et al., 2014) and verified the predictions of the analytical model by using physical 

experiments in which compressed air was applied at the base of dry sand wedges to trigger 
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gravitational instabilities (Mourgues and Cobbold, 2006a, 2006b; Lacoste et al., 2012). In 

their analysis, Mougues et al. (2014) neglected the cohesion of the wedge, as it was initially 

postulated in Davis et al. (1983) and Dahlen (1984). However, cohesion is the main 

parameter of rock's strength that allows steep slopes and vertical cliffs to be stable and it 

cannot be reasonably neglected in stability analysis. Cohesion was introduced in-depth in the 

critical taper model by Dahlen et al. (1984).  These authors predict that cohesion has a strong 

effect in the thinnest part of the wedge, while the deformation of the thickest part is similar to 

that of non-cohesive material (Davis et al., 1983; Dahlen et al., 1984). This implies that the 

upper surface of a Coulomb wedge will be concave: flatter in the foremost thinner sector 

more resistant to deformation, and steeper in the thicker sector where the slope tends towards 

the expected for a non-cohesive wedge (Davis et al., 1983).  

 Following the initial hypothesis of Coulomb critical taper theory, we reformulate the 

analytical approach presented in Mourgues et al. (2014) in order to study the occurrence of 

gravitational destabilization in a cohesive wedge with planar upper surface. We show that 

cohesion has clearly visible structural effects. It introduces a minimal length of sliding, and 

listric faults are formed (flat if high pore pressures are present in the cohesive cover). This 

last prediction is verified with physical experiments involving pore fluids in cohesive and 

permeable granular materials.  

  

 

Fig.1. Gravitational deformation of a non-cohesive wedge. From Mourgues et al. (2014).  
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2. The non-cohesive critical taper – a force equilibrium approach 

 

The critical taper theory is based on the assumption that the internal state of stress of a 

homogeneous wedge composed of material deforming following the Mohr-Coulomb criterion 

is on the verge of failure everywhere (Davis et al., 1983). The shape of the wedge, growing 

self-similarly, depends on the strength of the material and on the relative magnitude of the 

resistance to sliding at the base. 

 

2.1. Solutions derived from the equilibrium of internal stresses  

 

Dahlen (1984) provides an exact solution for non-cohesive wedges by expressing the 

total taper angle of the critical wedge (expressed as the sum of the critical surface slope, , 

and the basal detachment, ) as a function of pore pressure ratios (considered as constant) 

along the basal detachment, b, and within the wedge, , coefficients of sliding friction along 

the basal detachment, b, and within the wedge, : 

 +  = o + b        (1) 

 Where o + b are the angles between the maximum principal stress and the upper 

surface/ basal detachment, respectively. These two angles are written more explicitly: 

            
    
    

           (2) 

with           
 

   
          (3) 

            
     

 

    
       

 
     (4) 

 With   the angle of friction of the wedge and  ’b the effective angle of friction on the 

detachment defined by Dahlen (1984) as: 

 
 
      

 
 

   
 

   

 
      (5) 

 Recently, Mourgues et al. (2014) provided an alternative formulation of Dahlen’s 

expression (Dahlen, 1984) and Lehner’s graphical solution (Lehner, 1986). Their expression 

allows a direct calculation of the fluid pressure (or the basal friction) required for sliding on 
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the basal detachment, whereas Dahlen’s critical taper exact solution required the resolution of 

an equation.  Mourgues et al. (2014) expressed the fluid overpressure ratio required for the 

wedge to slide on a basal low-resistance layer as: 

 
         

  

   
      (6) 

With  

E1 = (1 - *) {Y + (1 - Y) cos[2(-)]} + tan() sin[2(-)]  (7) 

E2 = (1 - *) {(Y - 1) sin[2(-)]} + tan() cos[2(-)]  (8) 

  
            

     
     for extensional state of stress    (9) 

  
            

     
     for compressive state of stress    (10) 

And 

   
    

          
       (11) 

This solution is better suited to the study of slope instabilities (Mourgues et al.,2014) and it 

provides important indications on the stability of the surface slope and the potential triggering 

of shallow slumps through the expression of the factor of safety FS (Eq.7). 

 

2.2. Solution derived from the balance of external forces applied on a triangular segment of 

the wedge  

 

 Expressions 1 and 6 are derived from the equilibrium of internal stresses within the 

wedge. An alternative solution can be found by considering the balance of external forces 

applied on a triangular segment of the wedge. Dahlen used this approach in his review paper 

(Dahlen, 1990) to introduce the critical theory through a pedagogical approach but he used a 

simplified state of stresses and he did not derive the exact solution this way. In such an 

approach, the balance of forces applied on a triangular segment of length l and acting in the x1 

direction (Fig. 2b) is 

F +Fw +FS + Fb = 0        (12) 
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 F  is the force exerted by x1 on the sidewall of the wedge. Fw is the x1 component of 

the gravitational body force. Fs is the net x1 component of the force resulting from the pore 

fluid pressure (seepage force, SF), and Fb is the frictional force exerted at the base. Detailed 

expressions of these forces are given in appendix. An exact solution of Eq. 6 can be found for 

a non-cohesive wedge by considering the state of stresses defined by Dahlen (1984) and 

expressions derived by Mourgues et al. (2014): 

 
    

   

   
              

   

           
   (13) 

with  

E3 = (1 - *) (Y + (Y -1) cos2(-)) - tan sin2(-)  (14) 

 Solutions 1, 6 and 13 are numerically strictly identical. Wang et al. (2006) and 

Mourgues et al. (2014) pointed out that the use of an effective angle of friction  ’b (Eq.5) 

introduced by Dahlen is erroneous because of an error introduced in the reference coordinate 

used to defined . Mourgues et al(2014) proposed a corrected value of the effective basal 

friction: 

 
 
 

 
   

   
 

  
             (15) 

and gave a second solution for the critical taper referred as Model II. By using this corrected 

friction, Equation 13 becomes: 

 
       

 

 
              

   

           
   (16) 

 

3. The cohesive critical taper – a force equilibrium approach 

  

 The model developed here is based on Mourgues et al. (2014), but considering a non-

negligible cohesion (Dahlen et al., 1984).  Following the critical Coulomb wedge theory, we 

assume that the wedge is everywhere on the verge of failure, including along the basal 

detachment. Like in Mourgues et al. (2014), we consider that the model is not affected by 

external extensional or compressive forces, but is affected by pore fluid pressure.   
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 We consider a wedge (Fig. 2a) with an upper surface angle α and basal surface angle 

β, both surfaces dipping in the same sense, and thus both angles are considered as positive. 

The Cartesian coordinate system x,z is defined with components parallel (x) and 

perpendicular (z) to the wedge’s upper surface. The Cartesian coordinate system x1,z1 is 

defined with components parallel (x1) and perpendicular (z1) to the wedge’s basal surface. 

The maximum prism length (L) and height (H) are defined perpendicularly to the wedge’s 

basal surface. 

 

 
Fig. 2. (A) Representation of the wedge's configuration, Cartesian coordinate systems and 
variables. (B) Representation of the forces considered in the assessment of the wedge's 
stability along the basal detachment. 
 

 The detailed step-by-step formulation of the stress components within the wedge is 

presented in Appendix A. 

 Following Mourgues et al. (2014), we establish the equations of static equilibrium for 

the system relative to the Cartesian coordinate system x,z, and we define as boundary 

conditions that: (1) there is no variation of stresses along the x axis; (2) for z = 0 the effective 

stress components are null; (3) the fluid overpressure ratio λ* (Shi and Wang, 1988; Saffer 

and Bekins, 1998) is constant within the wedge (the pore fluid pressure is assumed to 

increase linearly with z). 

   
   

        
        (17) 

in which σ' is the effective stress, ρ' is the density corrected for hydrostatic buoyancy, g is the 

gravitational acceleration, and Pov is the fluid overpressure (Hubbert and Rubey, 1959). 

 Considering the effective stress components σ'xz and σ'zz determined with the equations 

of static equilibrium, and that the wedge is on the verge of failure everywhere, the analysis of 

the Mohr diagram  allows the determination of σ'xx, and the integration of the parameter 

cohesion (Co) in the analytical expressions. 
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 Afterwards, we imposed a rotation of  the Cartesian coordinates from  the x,z 

coordinate system to the x1,z1 coordinate system, in order to proceed to the stability analysis 

of the wedge along the basal detachment. The assessment of the stability state of the wedge is 

made through the balance between the forces driving (Fd) and inhibiting (Fb) the downslope 

movement along the basal detachment (Fig. 2b). The detailed step-by-step formulation of the 

considered forces is presented in Appendix B. 

 Fd for a given point l along the basal detachment is the result of the sum of the force 

components (Fig. 2b): 

    

                   (18) 

 a) Fσ corresponds to the integral of   
    along the local wedge height ( , along the z1 

axis), representing the effect of cohesion: 

      
      

 

 
        (19) 

 b) Fw at a point along the basal detachment of length   and height   corresponds to the 

gravitational load of the wedge section comprehended between that point and the wedge tip 

(   , and    ). Considering a unitary width wedge slice: 

          
  

 
       (20) 

in which ρ' is the density corrected for hydrostatic buoyancy, and g is the gravitational 

acceleration. 

 c) Fs is the component of the seepage force (SF) parallel to x1, considering a wedge 

slice of unitary width:  

                
  

 
      (21) 

in which λ* is the fluid overpressure ratio within the wedge, and θ = α-β. 

 Fb, at a given point l on the basal detachment corresponds to the integral of the basal 

friction between l and the wedge tip (   ,    ): 

 

         
     

 

 
          (22) 
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with 

  
    

          
                  (23) 

 

in which µb, Cob and λ*
b correspond to the internal friction coefficient, the cohesion, and the 

fluid overpressure ratio along the basal detachment, respectively. σ'n is the effective stress 

component normal to the basal surface of the wedge, taking into account a possible 

discrepancy between λ* and λ*
b. 

 

4. Structural consequences of cohesion 

 

 From the expressions derived for the effective stress components relative to the x,z 

coordinate system (Eqs. A5, A6 and A12), we observe that Co impacts on σ'xx only, while λ* 

affects σ'zz and σ'xx. The variation of these effective stress components as a function of z, 

shows that σ'xz and σ'zz increase linearly with depth (Fig. 3). The gradient of σ'zz with depth is 

smaller for higher values of λ*.  

  On the other hand, σ'xx is negative for small z values due to cohesion, and increases 

non-linearly with depth, with ever increasing gradients, surpassing the values of σ'xz and σ'zz. 

The increment in gradient is more accentuated for higher values of λ*. For high values of λ*, 

σ'xx reaches a solution limit for critical depth limit (Zc), which is shallower for higher λ*. 

 The analysis of the Mohr diagram shows that this Zc of σ'xx is reached when the plot of 

σ'xz and σ'zz (x,z coordinate system) coincides with the σ'n and τ of the Mohr-Coulomb failure 

envelope of the wedge material (Fig.4a, grey line). This indicates that the expected failure 

surface at Zc would be perpendicular to the σ'zz axis, parallel to the wedge's upper surface. 

 We determined the variation of the maximum compression σ1 and generated fracture 

orientations relative to the z axis, as a function of depth z, using the following expressions 

from Mourgues and Cobbold (2003) (Fig. 5): 

 

                               (24) 

 

                (25) 
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Fig. 3. Variation of the effective stress components in function of depth z, for different values 
of λ*. Dotted line - σ'xx   ; Full line -   σ'zz; Dashed line - σ'xz. The horizontal dotted lines 
represent the Zc for each value of λ* (Zc decreases for increasing λ*). 

 

is no

 
 

Fig. 4. (A) Representation of the Mohr diagram for λ* below, equal or above a critical λ* 
value (λc

*). (B) For λ* < λc
*, Zc is not attained within the wedge, and the faults propagated do 

not become parallel to the wedge's upper surface. C. For λ* > λc
*, Zc is attained within the 

wedge, and the faults propagated become parallel to the wedge's upper surface. 
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Fig.5. (A) Variation of the angle (ω) between σ1 and the z axis with depth, for different λ* 

values. (B) Variation of the angle (γ) between the generated fracture and the z axis with 
depth, for different λ* values. 

in which ω is the angle between σ1 and the z axis, and γ is the angle between σ1 and the 

generated fracture. 

 We confirm that for 0 ≤ z ≤ Zc, there is a rotation of the orientation of σ1 with 

increasing z, stronger for high λ*, becoming progressively closer to the orientation of the 

upper surface of the wedge (Fig. 5a). Consequently, the generated fractures will be listric 

(curved like a shovel), becoming parallel to the upper surface of the wedge at Zc (Fig.5b). 

 Dahlen et al. (1984) had already predicted that cohesion would induce a change in 

orientation of the  principal stresses within the wedge, contrary to the non-cohesive wedge for 

which was expected a non-variation of the principal stresses' orientation. 

 From the coincidence between σ'xz and σ'zz (x,z coordinate system) and σ'n and τ (the 

Mohr-Coulomb failure envelope) for Zc (Fig. 4a, grey line), we have: 

        

                                   (26) 
 
         (27) 

   
  

                        
 

  

The thickness Zc of the layer, within which the  rotation of σ1 orientation occurs, increases 

with increasing cohesion (Co) of the material, and is null for non-cohesive materials (Figs. 6a 

and 6b). As stated previously, Zc decreases for increasing λ*, but the previous equation also 

shows that λ* is more effective in decreasing Zc for large values of the angle α (Fig. 6c).  
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Fig. 6. (A) For a cohesive material with λ* > λc
*, there is a superficial Zc thick layer, within 

which the generated fractures will be listric, and beyond which the generated fractures will be 
parallel to the wedge's upper surface. (B) For a non-cohesive material with λ* > λc

*, the 
generated fractures will be parallel to the wedge's upper surface. (C) The thickness Zc of the 
upper layer for cohesive material (Co= 142 Pa), as a function of λ*, and of the angle α. 
 

 A parallel can be established between this cohesion-dependent critical depth Zc and 

the discussion made by Dahlen et al. (1984) on the relationship between wedge deformation 

and material's cohesion, stating the existence of an "upper boundary layer in which cohesion 

plays a dominant role even near the back of the wedge". His expression estimating the critical 

thickness of this upper layer (expression derived from Eq. (23) in Dahlen et al. (1984) is very 

similar to Eq. (11), even though a dependency on the angle α is not expressed. 

 The intersection of the failure envelope at Zc indicates that, if a cohesive wedge is big 

enough so that Zc is reached within it, the cohesive wedge is internally unstable (Fig. 4c). 

From the Mohr-Coulomb diagram, we observe that the intersection (or not) of the failure 

envelope of the material is highly dependent on the value of λ*:  

 (a) if λ* is below or equal to a critical value λc
*, the failure envelope is not reached 

(Fig. 4a), and the orientation of the maximum compression/generated fractures tends to 

stabilize towards higher depths, not rotating towards an orientation that would imply the 

generation of fractures parallel to the wedge's upper surface (Fig. 4b).  

 (b) If λ* is above λc
*, then Zc is attained within the wedge, the failure envelope is 

reached (Fig. 4a), and the orientation of the generated fractures tends to rotate as a function of 
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depth, towards an orientation that would imply the generation of fractures parallel to the 

wedge's upper surface at Zc (Fig. 4c). 

 In order to determine the λc
* beyond which the Zc is attained within a cohesive wedge 

of maximum height H (with Zc = H × cos θ), we reformulated Eq. (26): 

           (28) 

  
    

    

    
 

  

                 
 

 For a non-cohesive material, we obtain, from Eq. (28), the expression by Hubbert and 

Rubey (1959) for the λ* necessary for the propagation of fractures parallel to the wedge's 

upper surface: 

          

          
                                     (29) 

  
    

    

    
 

 From Eq. (28), it is clear that a cohesive wedge is internally more stable than a non-

cohesive wedge. However, the relative importance of Co for the stability state of the wedge 

depends on the wedge's dimensions and configuration: its importance decreases for bigger 

wedges (H) and smaller α and θ. In the limiting case of an extremely large wedge, λc
* would 

tend to the one predicted for a non-cohesive wedge. 

 The stability of a non-cohesive wedge under fluid overpressure is independent of its 

size, while the increased stability of a cohesive wedge under fluid overpressure is size-

dependent (the influence of cohesion is more significant for smaller wedges). 
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5. Experimental analogue modeling 

 

5.1. Experimental setup and procedure 

 

 Experimental studies have successfully applied fluid overpressure through injection of 

compressed air (e.g., Cobbold and Castro, 1999; Mourgues and Cobbold, 2003,2006a, 2006b; 

Lacoste et al., 2011, 2012; Mourgues et al., 2014).  

 Mourgues and Cobbold (2003) performed tests in tilted tabular models of 

homogeneous non-cohesive materials (fine sand), under extension and with upward injection 

of compressed air perpendicularly to the base of the model, in order to verify the structural 

consequences of pore fluid pressures.  

 We performed similar tests for cohesive materials, in order to verify the formation of 

listric faults predicted by the analytical model for cohesive material. We built a tilted tabular 

model of cohesive granular material (Fig. 7), over an equally large sieve (sieve 1 in Fig. 7), 

and laterally constrained by acrylic walls. Then, a predetermined pore fluid pressure was 

imposed to the model, by injection of compressed air through the basal sieve. Afterwards, 

extension was applied to the model, by moving the downslope mobile wall attached to a basal 

sieve (sieve 2 in Fig. 7) that created a velocity discontinuity at the base of the model. 

 We used as cohesive material glass microbeads (Table 1). The cohesion and 

coefficient of internal friction were determined with a series of direct shear tests on the 

material compacted to ρ = 1600 kg/m3 (initially ρ =  1360 kg/m3). We built the layer 

sequence up to a thickness of 6 cm, by gradually laying 0.5 and 1 cm thick layers of 

microbeads. The microbeads layers were intercalated with thin dark marker layers of Silicon 

carbide - grain 120 (BROTLAB) laid near the front wall (to serve as markers of deformation 

and visualization only). The model construction required the compaction of the sequence, in 

order to attain the density of 1600 kg/m3. During this compaction, the dark silicon carbide 

markers were significantly distorted. 

 The whole sequence was then tilted 21°, a value below the angle of internal friction of 

the microbeads (ϕ = 26º). The tilt value was chosen in order for the critical depth (predicted 

depth at which the generated fault becomes parallel to the upper surface of the model) to 

coincide with the base of the tabular model, for a fluid pressure value attainable by our 

compressed air mechanism. If we had used a model of higher cohesion and/or lower tilt of the 

model, we would need much higher fluid pressures and a model much thicker to be able to 

see the listric shape of the fault. 
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 For the different tests, different pore fluid pressures were imposed: 0 Pa (λ* = 0), 200 

Pa (λ* = 0.2275) and 400 Pa (λ* = 0.4550). These pressures correspond to λ* values below the 

λc
* = 0.5441 calculated for this 21º tilted, 6 cm thick tabular model. 

 
 

Fig.7. Experimental setup. The free edge of sieve 2 works as a velocity discontinuity. 

 

Table 1. Properties of the material used in the analogue modeling, and considered in the 
presented analytical model simulations. The properties indicated were determined for a 
density of 1600 kg/m3. 
 

 
Grain 
size 
(µm) 

Bulk 
density 
(kg/m3) 

Angle of 
internal 
friction 

(°) 

Coefficient 
of internal 
friction (µ) 

Permeability 
(m2) 

Cohesion 
(Pa) 

Glass 
microbeads 

0 ─ 50 1600 26 0.49 6×10-14 142 
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5.2. Results 

 In Figs. 8 to 10 we present the interpreted photographs taken during the experiments 

(the photographs are tilted 21º, parallel to the experiment device). The fault length (length 

between surface scarp and root of the fault, measured along the base of the model) of the fault 

first developed in the model, and the approximate dihedral angle between the first set of 

conjugate faults formed at each experiment are presented in Table 2.  

 For null pore fluid pressure, the first fault rooted at the basal velocity discontinuity 

(Fig. 8a). The deformation progressed with forward propagation of new structures near the 

velocity discontinuity (Figs. 8b and 8c): steep normal faults dipping downslope, and 

respective conjugate faults (steep normal faults dipping upslope). 

 For an intermediate pore fluid pressure (ca. 200 Pa), the first fault rooted at the basal 

velocity discontinuity (Fig. 9a). The deformation proceeded with backwards propagation of 

normal faults, and their steep conjugates (sub-vertical to reverse,  considering the 21º tilt of 

the photographs in Fig. 9) near the velocity discontinuity (Fig. 9b), with the deformation 

extending afterwards to the upslope domains of the model ( with reverse conjugate fault, 

considering the 21º tilt of the model, Fig. 9c). The listric geometry is not obvious in the early 

stages for some of the faults, but it becomes clearer with the progressive rotational 

deformation of the kinematic markers near the base of the model.  

 At the highest value of fluid pressure (ca. 400 Pa), the first fault propagated from near 

the back wall of the model, did not root at the velocity discontinuity, and encompassed a slab 

with a length equal to that of the entire model (Fig. 10a). The deformation proceeded with 

further development of the initial low-angle normal fault and with the generation of its 

conjugate, a steep reverse fault (Fig. 10b). 
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Fig. 8. Photographs (clean and interpreted) from the experiment with fluid P = 0 Pa (λ* = 0). 
The base of the photos was aligned to the base of the model (21º tilt in reality). (A) First 
structure formed. (B) and (C) portrait the progression of the deformation.  
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Fig. 9. Photographs (clean and interpreted) from the experiment with fluid P ≈ 200 Pa (λ* = 
0.2275). The base of the photos was aligned to the base of the model (21º tilt in reality). (A) 
First structures formed. (B) and (C) portrait the progression of the deformation.  
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Fig.10. Photographs (clean and interpreted) from the experiment at fluid P ≈ 400 Pa (λ* = 
0.4550). The base of the photos was aligned to the base of the model (21º tilt in reality). (A) 
First structure formed. (B) portraits the progression of the deformation.  

Table 2. Measurements from the physical modeling experiments and predictions from the 
analytical model. 

 Physical Model Analytical model 

 Fault Length (m) 
Dihedral angle between 

first set of conjugate faults 
(º) 

Fault Length 
(m) 

0 Pa 
(λ*=0) 0.067 ≈ 65 0.0635 

≈ 200 Pa 
(λ*=0.2275) 0.068 ≈ 45 0.0732 

≈ 400 Pa 
(λ*=0.4550) 0.166 ≈ 30 0.0954 

Pc ≈ 478 Pa 
(λc

*=0.5441)  0.1287 
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5.3. Discussion of the experimental results and comparison with the predictions of the 

analytical model 

 The length of the faults increases for higher values of fluid pore pressure, because the 

general dip of the faults decreases, and therefore the faults nucleate closer to the back wall 

(Table 2). The dihedral angle between the first formed set of conjugate faults decreases for 

higher values of fluid pore pressure (Table 2). 

 Similar extension experiments presented in Mourgues and Cobbold (2003) for non-

cohesive materials show that for non-cohesive material the faults have a rectilinear profile, 

and the dip of the normal faults decreases for increasing pore fluid pressure. For high values 

of pore fluid pressure, the dip of the normal fault dipping towards the moving wall can be so 

low that its conjugate becomes a reverse fault. The dihedral angle between the normal fault 

and its conjugate decreases with increase in fluid pressure. Similarly to Mourgues and 

Cobbold (2003), we verify that the fault dip and dihedral angle between conjugate faults 

decreased with increasing fluid pressure. However, our experiments with a cohesive material 

show that the faults generated are listric, in accordance with the predictions of the analytical 

model (Section 4).   

 Based on the analytical model, we determined the fault profiles expected for the 

different experimental tests ( λ*< λc
* ) and for λc

* (Fig.11a). The maximum pore fluid pressure 

simulated corresponds to the λc
* predicted to generate a detachment along the base of the 

model (Zc equivalent to the model thickness). The expected fault profile for the test without 

upward injection of fluid (λ* = 0) is only slightly listric, with steep fault dip near the base of 

the model. For increasing fluid pore pressure, the expected fault profile becomes more clearly 

listric, longer, with decreasing angle between the fault surface and the base of the model. The 

predicted fault lengths for the different λ* values are presented in Table 2. 

 For most of the experimental tests, the generated faults are clearly listric. The faults 

become longer for higher pore fluid pressure, as generally predicted by the analytical model. 

The experimental length of the faults obtained for the lower pore fluid pressures (0 Pa, 200 

Pa) are very close to the ones predicted by the analytical model (Table 2). However, that was 

not the case for the 400 Pa test. Even though the extension was imposed to the model only 

after a stable value of pore fluid pressure was reached, there were variations of the measured 

fluid pressure during deformation. 
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Fig.11. (A) Shape of the predicted faults for different fluid pore pressure values. (B) Shape of 
the predicted faults for Co ≈ 142 Pa  (solid lines) and hypothetical lower Co ≈ 102 Pa (dashed 
lines). We observe a more marked impact of variable material cohesion at higher pore fluid 
pressures. 
 

 The compaction of the model in order to attain ρ = 1600 kg/m3 (density for which was 

determined the cohesion and coefficient of internal friction of the material) most probably 

generated heterogeneities in the properties of the material, especially along the perpendicular 

to the model's base. Changes in the properties of the material can impact greatly on the shape 

of the generated fractures, especially for high values of pore fluid pressure, because:  

 - Variable density and permeability can impact on the distribution of fluid pore 

pressure, generating differently shaped faults (Fig. 11a). The effects of a heterogeneous 

distribution of permeability of the material are expected to be greater for higher values of 

pore fluid pressure. 

 - The cohesion presented in Table 1 was determined for a closely packed ρ = 1600 

kg/m3 material. A more loosely packed material with ρ = 1360 kg/m3 is most probably 

associated with lower cohesion. In Fig. 11b we observe that the variation of cohesion impacts 

on the shape of the generated fracture, especially for larger values of pore fluid pressure. 

 We therefore conclude that the differences between the expected fault profiles 

predicted by the analytical model and the results of the experimental tests for high pore fluid 

pressure are justified by the heterogeneity of the physical model, contrasting with the 

homogeneity assumed in the analytical model. 

 Despite the differences between the results of analytical and analogue modeling, we 

confirmed: 
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 a)  the generation of listric faults in cohesive materials; 

 b)  the influence of  λ* in the geometry of the generated structures, in accordance with 

the interpretations presented in Mourgues and Cobbold (2003) for non-cohesive materials.  

 

6. Cohesive wedge model – Minimal Failure Length (MFL) 

 

 As stated in Section 3, the stability state of the cohesive wedge along the basal 

detachment is here determined through the confrontation between the force driving the 

downslope movement (Fd) and the force inhibiting it (Fb), along the basal detachment 

(parallel to x1). It was assumed that the cohesive wedge is everywhere on the verge of failure, 

including along the basal detachment. However, the plots of these forces for wide ranges of 

conditions guaranteeing instability along the basal detachment show that, for values of l 

below a critical value lc (near the front tip of the wedge), Fd is lower than Fb (wedge stable 

along the basal detachment), and that, for l > lc, Fb is higher than Fd (wedge unstable along 

the basal detachment) (Fig. 12a). Therefore, the failure of the wedge along the basal 

detachment occurred for l values equal or exceeding this lc, hereafter referred to as MFL 

(Minimum Failure Length). In Fig. 13a we present the evolution of the Fd and Fb curves for 

increasing λ*, for a cohesive wedge composed of the material used in the analogue modeling 

(Table 1). For non-cohesive wedge materials and basal detachment, this MFL is undefined, 

because Fd and Fb converge towards a wide overlap for increasing values of λ*
w and λ*

b, 

instead of an intersection at a single point (Figs. 12b and 13b).  

 The higher stability of the foremost thin part of the wedge is directly related to the 

variation of the stress components as discussed in Section 4, and consistent with Davis et al. 

(1983) and Dahlen et al. (1984), with the cohesion of the material inducing a higher strength 

to the most superficial layer of the wedge. 

 The estimation of MFL cannot be made through a simple equation, depending on 

numerical models that calculate the values of Fd and Fb and determine the intersection 

between the resulting curves. 
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Fig.12. (A) Balance between Fd and Fb for a cohesive wedge, and schematic representation 
of the stable domain of the wedge (with a characteristic Main Failure Length - MFL) and 
unstable domains in the wedge. (B) Confrontation of Fd and Fb for a non-cohesive wedge, 
without the MFL long stable front. 
 

 
Fig.13. Balance between Fd and Fb for different λ*, considering a wedge composed of the 
material in Table 1. (A) The material's actual cohesion (142 Pa) is considered.  (B). 
Practically null cohesion. α=15º and β=5º (angles of the upper and basal surfaces of the 
wedge, respectively). 
 

167



 The MFL varies as a function of several factors:  

 -The MFL increases with increasing cohesion values in the wedge (Cow) and along the 

basal detachment (Cob).  

 -  The MFL increases with increasing µ values in the wedge (µw) and along the basal 

detachment (µb). 

 - The MFL decreases with increasing λ* values in the wedge (λ*
w) and along the basal 

detachment (λ*
b). 

 -The MFL increases with decreasing α and β.  

 For a set of conditions of Co, µ, λ*, α and β, there is an MFL value that is constant for 

any maximum dimensions attributed to the wedge. Thus, for a cohesive wedge internally 

stable (λ* < λc
*), if the maximum length of the wedge (L) is not greater than MFL, the wedge 

remains stable along the basal detachment. For a cohesive wedge internally stable (λ* < λc
*), 

but for which the maximum length of the wedge (L) is greater than MFL, the wedge becomes 

unstable along the basal detachment, and listric faults are generated rooting in the basal 

detachment at l > MFL. A deeply rooted slump system is created (Fig. 4b). When the fluid 

overpressure ratios are high (λ* > λc
*), the cohesive wedge becomes internally unstable: the 

failure envelope of the material is reached within the wedge, generating listric faults that tend 

to become parallel to the upper surface of the wedge at depth (Zc), as discussed in section 4. 

A shallow slump system is created, rooted at z = Zc (Fig. 4c). 

 

7.  Conclusions 

 

 We show that the stability of a cohesive wedge under fluid overpressure is size-

dependent (the influence of cohesion is more significant for smaller wedges), while the 

stability of a non-cohesive wedge under fluid overpressure is independent of its size. The 

stabilizing effect of cohesion is significant for the most superficial domain of the wedge. The 

thickness of this more stable superficial layer decreases with increasing fluid overpressure 

ratio. Within this layer, the principal compressive stress rotates and the expected structures 

are listric. If the limit of the thickness expected for this layer is reached within the wedge 

(given the material's properties, fluid overpressure ratio and wedge configuration), the 

generated listric structures become parallel to the wedge's upper surface at this limit. This 

limit marks the reach of the failure envelope for the wedge's material. In terms of the wedge's 

stability along a basal detachment, the stabilizing effect of cohesion is accentuated in the 

foremost thin domain of the wedge, defining a required Minimum Failure Length (MFL). 
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This MFL decreases for: smaller cohesion, smaller coefficient of internal friction, larger fluid 

overpressure ratio, steeper upper and basal surfaces of the wedge.      
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APPENDIX A - Determination of the stress components for a cohesive wedge 

 

 The equations of static equilibrium determined for the cartesian coordinates x,z are: 

 

         (A1) 

     
  

 
     
  

         
    
  

 

         (A2) 

     
  

 
     
  

         
    
  

 

 

 In which σ' is the effective stress, ρ' is the density corrected from hydrostatic 

buoyancy, g is the constant acceleration of gravity and Pov is the fluid overpressure (Hubbert 

and Rubey, 1959). 

 We establish as boundary conditions: 

 (1) Following the infinite slope model, we assume that there is no stress variation 

along x axis, provided that "compaction is invariant along the slope and that the principal 

axes of the permeability tensor are approximately parallel and perpendicular to the free 

surface" (Lacoste et al.,2012, referring to Mandl and Crans,1981). 

           (A3) 
 

  
   

 

 (2) For the upper surface of the prism (z=0): 

           (A4) 

            

 Here we ignore the effect of the water column weight for a submarine setting. 

 (3) the fluid overpressure ratio (λ*, Eq. 17) is constant within the wedge (the pore fluid 

pressure is assumed to increase linearly with depth (z). 

 Considering the boundary conditions, the expressions (Eqs. A3 and A4) become: 

  

                 (A5)  
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                         (A6)  

                                 

 

 From geometric analysis of the Mohr diagram, assuming that the prism material is on 

the verge of shear failure everywhere, and for known σ'xz and σ'zz (Fig. A.1): 

 

 
Fig. A.1. Mohr diagram, assuming that the prism material is on the verge of failure 
everywhere. 
 

(A7) 
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 In which r is the radius of the Mohr circle,  0 is the center of the Mohr circle (average 

value of the maximum and minimum normal stresses), T is the tension strength and ϕ is the 

angle of internal friction. As we consider that the failure of the material will obey to the 

rectilinear Coulomb failure criterion, the T value will be directly related to the cohesion (Co)  

of the wedge material as: 

(A9) 
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 From the equivalence between Equation A7 and  the square of Equation A8, we 

obtain an expression that allows the determination of two    solutions: 

(A10) 

          

             
   

            
  

 
   

  
  

         

   
     

  
 

 Considering the solution for  0 of the lateral extensional domain of Mohr circle, and 

knowing that: 

(A11) 

   
         

 
      

 σ'xx can be determined: 

(A12) 

              

 

 With  0 as the center of the Mohr circle (average value of the maximum and minimum 

normal stresses) of the lateral extension domain. 

 As this analytical model is especially focused on the stability conditions along the 

basal detachment, it is necessary to transform the stress components from x,z coordinate 

system  to x1,z1 coordinate system .This transformation consists in a rotation of θ° (α - β): 
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APPENDIX B - Assessment of the wedge stability along the basal detachment - Balance 

of forces 

 

 The stability of the wedge along the basal detachment will be analyzed as a 

confrontation between the resulting of the forces inducing and resisting the downslope 

movement (Fd and Fb, respectively), for each point along the basal detachment (of given h 

and l). 

 Fd at a given point of the basal detachment constitutes the resulting of the following 

force components: 

(B1) 

            

 Fσ results from the integration of  σ'xx1 along the local wedge height (h , along z1 axis), 

incorporating the effect of the wedge material's cohesion (Fig. A.2).  

(B2) 

      
      

 

 

 

 

 
Fig. A.2. Representation of  the wedge and variation of σ'xx1 along the local wedge height. 
 

 Fw at a point along the basal detachment of length l and height h will correspond to the 

gravitational load of the wedge section comprehended between that point and the wedge tip (l 

= h =0) (Fig. A.3): 

(B3) 

             
 

 

 

 if considering a unitary width wedge slice: 
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(B4) 

          
  

 
 

 

 
Fig. A.3. Respresentation of the wedge and Fw. Fw at a point along the basal detachment 
corresponds to the gravitational load of the wedge section comprehended between that point 
and the wedge tip (l = h =0). 

 

 A seepage force (SF) results from the drag exerted by moving fluid on the solid 

framework of a porous material, while under the effect of fluid overpressure gradient 

(Mourgues and Cobbold, 2003) (Fig. A.4). As this frictional drag caused by a moving fluid 

will not be applied simply to a determined surface, but rather acts pervasively on the whole 

mass, the seepage force will be expressed as a body force (an integral considering the three 

dimensions), similarly to Fw. 
 The seepage force expression considered in our calculations (Fs) will be constituted 

solely the component parallel to the basal detachment (SFx1, Fig. A.4), as the component 

acting perpendicularly to the basal detachment (SFz1)  is already considered in the calculation 

of the effective stresses (σ'zz1). 

 

 
Fig. A.4. Representation of the wedge and Seepage Force components. 
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(B5) 

             
 

 

 With Pf as the pore fluid pressure. Considering a wedge slice of unitary width, and 

Eq. 17 for λ*:  

(B6) 

            
  

 
 

 

 as the local wedge length (l) can be expressed in function of the wedge height (h): 

(B7) 

  
 

    
 

(B8) 

            
      

     
 

 

 Determining the component parallel to the basal detachment (SFx1): 

(B9) 

                     
  

 
 

 

 Finally, the resisting force Fb is the integration of basal friction between a given point 

of the basal detachment (l) and the wedge tip (l = h =0): 

(B10) 

     
 

 

     

 Considering that the wedge is on the verge of failure, according to Coulomb failure 

criterion: 

(B11) 

       
      

 

 Taking µb as the internal friction coefficient of the basal detachment, σ'n as the 

effective normal stress component, and Cob as the basal detachment cohesion. 
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(B12) 
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(B13) 

  
    

                      

 

 Considering again Eq. 17 and that  z= h × cos θ: 

(B14) 

  
    

          
               

 

 or rather considering that l×sin θ = h×cos θ, as Fb is expressed as an integral along 

the wedge's length (Eq. B8): 

( B15) 

  
    

          
               

 

 With λ* as the fluid overpressure ratio in the wedge, and λ*
b as the fluid overpressure 

ratio along the basal detachment. 
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Abstract 

 

 The Coulomb Critical Wedge (CCW) theory has been most commonly applied to 

overpressured systems in compressive regimes, and more recently applied to gravitational 

instabilities. Here we present the application of a new analytical solution for the cohesive 

CCW theory to gravitational instabilities in volcanic edifices.  We investigate the impact of 

several variables on the stability of the flanks of volcanoes, including: wedge slope and 

dimensions, cohesion, internal friction along the basal detachment, and fluid overpressure. 

We conclude that: (1) the steepening of the volcanic flanks and basal detachment leads to a 

decrease in the fluid overpressure ratio (fluid overpressure divided by lithostatic pressure) 

necessary to produce failure. (2) The decrease of the stabilizing effect of cohesion with 

increasing depth of the basal detachment favours the occurrence of deep-seated large-scale 

gravitational destabilization in basal detachments deeper than ca. 2000-2500 m (in volcanic 

edifices necessarily higher than 2500 m). (3) For shallower basal detachments, the 
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overpressure ratios required to induce failure are comparatively larger.  (4) In edifices with 

steeper flanks and stronger materials, shallow failure parallel to the edifice flank surface is 

favoured, instead of deep-seated deformation. (5) With increasingly deeper basal detachments 

(possible in larger volcanic edifices), while the impact of cohesion diminishes, the relative 

importance of internal friction on the stability of the edifice increases. We then discuss the 

results of the model, and the implications regarding the stability of volcanic edifices in 

various settings, and with diverse configurations/dimensions (Hawaii, Canary and the smaller 

Azores islands). 

 

Keywords 

Coulomb critical taper theory; cohesion; fluid pressure distribution; gravitational instabilities; 

volcanic edifices; fluid overpressure4 

 

1. Introduction 

 

 The susceptibility of volcanic edifices to large-scale flank failure is dependent on a 

number of internal and external factors (e.g., McGuire, 1996; Keating and McGuire, 2000). 

Factors intrinsic to the growth and evolution of each volcano include the geometry and 

architecture of the edifice (Siebert, 1984), the existence and development of potential 

volcano-tectonic discontinuities (dykes and faults)( Elsworth and Voight, 1996), the 

properties of the materials that constitute the edifice (e.g. strength, permeability, 

layering)(Mitchell, 2003; Oehler et al., 2005), their change in time (e.g., through 

hydrothermal or meteoric alteration) (Siebert, 1984; López and Williams, 1993; van Wyk de 

Vries, et al., 2000), and gradual deformation (e.g. Reid et al., 2010). On the other hand, 

"external" factors include seismic activity (Elsworth and Voight, 1996; Keating and McGuire, 

2000), the eventual presence of thick and weak sedimentary layers below the edifice 

(Dieterich, 1988; Iverson, 1995; van Wyk de Vries and Borgia, 1996), and climatic changes, 

e.g., through eustatic variations of the sea level (Iverson, 1995; Quidelleur et al., 2008.   

 The fluid overpressure was already considered as being more important for the 

stability state of volcanic edifices than coefficient of internal friction or cohesion (Day, 

1996), and has been considered as a partial justification to the large-scale destabilization of 

low-slope shield volcanoes (sub-aerial dip between 4 and 8º - Walker, 1999) and the long 

runout of associated debris avalanches  (López and Williams, 1993; Iverson, 1995; Elsworth 

and Voight, 1996; Morgan and Clague, 2003). The increase of fluid overpressure has been 
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shown to push the volcanic edifice towards the stability limit, and lead to the deepening of 

the potential failure surfaces (Thomas et al., 2004a), producing an effect similar to a decrease 

in the basal strength (Morgan and McGovern, 2005a).  

 In volcanic islands, the role of cohesion in the gravitational destabilization is not 

consensual: either as negligible (Iverson, 1995) or of minor importance (Day, 1996); 

however: 

 (a) coherent pillow lavas, and not the much weaker hyaloclastites, are the major 

constituent of the submarine sector of volcanic oceanic edifices (Garcia and Davis , 2001, 

opposed to the interpretation presented in Moore and Chadwick, 1995; and about the relative 

weakness of hyaloclastites - Nielson and Stiger, 1996; Schiffman et al., 2006; Thompson et 

al., 2008, Table A.1). Several factors highlight the need to study the destabilizing effect of 

fluid overpressure build-up in domains with strength contrasts (e.g., cohesion): (1) the 

strength contrast between hyaloclastites (that can be practically non-cohesive -  Nielson and 

Stiger, 1996) and lavas; (2) the susceptibility of hyaloclastites to become impermeable 

through compaction and hydrothermal alteration (Mitchell, 2003; Walton and Schiffman, 

2003; Schiffman et al., 2006); (3) the widely recognized consequences of the 

hyaloclastites/lavas interface for the stability of  the volcanic edifices (Mitchell, 2003; 

Schiffman et al., 2006); and (4) the contrast between the materials in the volcanic edifice and 

the underlying pelagic sediments (e.g., Iverson, 1995). 

 (b) in numerical modeling, the cohesion of the rocks in the volcanic edifice has been 

shown to affect the resulting deformation (e.g., Morgan and McGovern, 2005a),  relatively to 

the cohesion along the basal detachment.  

 (c) cohesion has been considered to have an impact on failure depth (del Potro et al., 

2013). 

 (d) the largest submarine debris deposit resulting from flank collapse(s) on volcanic 

islands (Nu'uanu debris avalanche, Hawaii, with estimated volume of 2500-3500km3) 

apparently involved the transport of a 600 km3 block (Tuscaloosa seamount) along ca. 55 km 

(Moore et al., 1989; Moore and Clague, 2002; Satake et al., 2002), suggesting that the 

cohesion should not be disregarded when studying large-scale failure events.  

 (e) from observation of volcanic edifices located near mid-ocean ridges, some authors 

(e.g. Mitchell, 2003) proposed that large-scale flank failure becomes common for edifices 

higher than 2500 m. Such height threshold would coincide with the beginning of the 

development of well-defined rift zones, which would potentiate the destabilization of the 

edifice through dyke intrusion (Mitchell, 2003). Furthermore, the size-dependency of flank 
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collapse occurrence could also reflect the change of material strength with the growth of the 

volcanic edifice, associated with decreasing water depth: the composition of the materials 

tends towards increasing vesicularity and relative importance of the volcaniclastic 

component, with progressive incorporation of the resulting deposits in the structure of the 

growing edifice (Fornari et al., 1979; Staudigel and Schminke, 1984; Batiza and White, 1999; 

Schmidt and Schminke, 1999; DePaolo et al., 2001; Garcia and Davis, 2001; Mitchell, 2003; 

Oehler et al., 2005; Garcia et al., 2007). The conclusion by Costa et al. (in prep) on the 

decrease of the cohesion impact with the increasing size of the volcanic edifice is consistent 

with the apparent dependency of the large-scale flank collapses on the size of the volcanic 

edifice.  

 The above mentioned arguments suggest an effective impact of fluid overpressure and 

cohesion on the development of large flank collapses in volcanic edifices. However, the exact 

role of these various factors and their mutual interactions remain in most cases poorly 

assessed quantitatively.  

 In Costa et al. (in prep), the Coulomb Critical Wedge (CCW) theory is applied to 

gravitational destabilization in cohesive materials under the effect of fluid overpressure. The 

present study applies the model of Costa et al. (in prep) to volcanic edifices, and especially 

aims at better defining the conditions for which the cohesion plays a major role or not, 

considering different volcanic edifice sizes, geometry (steepness of the flanks), material 

strength and fluid overpressure. 

 

2. Cohesion of volcanic edifices 

 

 The overall cohesion of a volcanic edifice in previous modeling works has been 

considered to reach either 1 MPa (van Wyk de Vries et al., 2000; Cecchi et al., 2005), up to 

10 MPa (e.g., Donnadieu and Merle, 1998, for a silicic stratovolcano; Oehler et al., 2005 for 

shield volcanoes), or even up to 100 MPa (Delcamp et al., 2008). Thomas et al. (2004b) 

refers to previous works estimating the general cohesion of volcanic edifices: of 

approximately 1 MPa (Jaeger and Cook, 1979; Voight et al., 1983 in Thomas et al., 2004b); 

within the range of 0.6-6 MPa for basaltic volcanic edifices (Schultz, 1995, 1996 in Thomas 

et al., 2004b); in the range 0-0.4 MPa for altered rocks in stratovolcanoes (Watters et al., 

2000).   

 The cohesion values obtained through tests on intact rock samples (e.g., Schiffman et 

al., 2006) cannot be assumed to be equal to those of the general edifice, as the latter is 
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generally highly affected by physical discontinuities, such as for instance successive lava 

flows (layering), sub-vertical dykes, columnar jointing, and pervasive fracturing. The shear 

strength values determined for natural joints (Thompson et al., 2008) fall within the range 0-

10 MPa, which is smaller than the results from tests performed in intact rock samples 

(Schiffman et al., 2006; Thompson et al., 2008), but closer to the range of values considered 

in the above mentioned works.   

 As indicated by Iverson (1995), the relevance of cohesion decreases with depth, i.e. 

with increasing lithostatic load. For instance, the maximum cohesion value of 8.6 MPa 

determined in the shear tests on natural joints (Thompson et al., 2008, Table A.1 in Appendix 

A) would be equivalent to 60-70% of the lithostatic load for a depth of 500 m, and equivalent 

to only 3-4% of the lithostatic load at depths of 9-10 kms. This decrease of the relative 

importance of cohesion with depth, being relevant for superficial zones of the wedge, has 

been addressed by Davis et al. (1983), Dahlen et al.(1984) and further developed in Costa et 

al. (in prep).  

 When extrapolating the strength values from intact rock to large-scale fractured rock-

masses, the maximum strength values are even smaller. Based on Rock Mass-Rating and 

Hoek-Brown criterion, and from strength data of volcanic rock samples ("lava flows, dykes 

and airfall tuffs"),  Thomas et al. (2004b) concluded that the general strength of the volcanic 

edifice is up to 96% smaller than the strength determined on intact rock samples. The 

estimated cohesion values for a volcanic edifice lie within the range 0.44 - 4.8 MPa, with an 

average of 1.3 MPa for the basaltic volcanic units on Tenerife (Canary Islands). The internal 

friction angles lie within the range of 28-38º (corresponding to coefficients of internal 

friction, µ, in the range 0.53-0.78). The consideration of an additional disturbance parameter 

(e.g., removal of lithostatic load) would imply a maximum decrease in cohesion of ca. 30%. 

 

3. Fluid overpressure in volcanic edifices 

 

 Fluid overpressure is the pressure of a fluid above the expected hydrostatic pressure 

(weight of a water column) at equivalent depth. It is commonly expressed as a "fluid 

overpressure ratio" (λ*, fluid overpressure divided by the lithostatic pressure).  

  In volcanic systems, λ* can present a large range of values, from practically 

equivalent to hydrostatic (λ* = 0) to above the lithostatic pressure (λ* > 1), depending on the 

permeability, the strength of the medium and on the pressurization of fluid at the source 

(Day, 1996).  
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 Studying the effects of the fluid overpressure on the destabilization of oceanic islands 

is pertinent, because there are: (a) great amounts of fluids (the edifices are saturated in sea 

and meteoric water); (b) internal and external factors capable of increasing the fluid pressure 

through mechanic and thermal processes; (c) potential sealing layers of low hydraulic 

conductivity in the structure of (or underlying) the volcanic edifices. These seal layers are 

developed due to reduction of the porosity of materials (e.g., Walder and Dun, 1984; Day, 

1996), through pore-collapse possibly enhanced through seismic loading, deformation (with 

fluid circulation along faults), and/or after mechanical degradation of the volcanic deposits 

due to hydrothermal alteration. 

 The build-up of fluid overpressures within a volcanic edifice is conditioned by the 

balance between generation/diffusion of the fluid overpressures within a volcanic edifice 

(permeability high enough to allow the spatial propagation of the pressurized fluid and a 

permeability low enough to prevent the fluid escape), by the distribution and contrasts in 

strength of the materials constituting the volcanic edifice, and by the deformation of the 

edifice (e.g., fracturing, changes in the stress field) (Day, 1996, Reid et al., 2004).  

 Internal and external mechanisms often considered as generators of fluid overpressure 

within volcanic edifices are: (1) magmatic degassing along the conduit of the edifice (Day, 

1996; Sparks, 1997; Thomas et al., 2004a). (2) Immediate mechanical effect of magma 

intrusions (Iverson, 1995; Elsworth and Voight, 1995,1996; Voight and Elsworth, 1997). (3) 

thermal heating of pore fluid due to magma intrusion (Elsworth and Voight, 1995,1996; Day, 

1996; Voight and Elsworth, 1997). The build-up of fluid overpressures associated with 

magmatic intrusions depends on the location, the configuration/geometry and the temperature 

of the intrusion (Reid et al., 2004). Thermal heating has an effect that lasts longer than the 

immediate mechanical effect of dike intrusion (Day, 1996; Elsworth and Voight, 1996; 

Voight and Elsworth, 1997; Reid et al., 2004). Despite this, the mechanical effect of intrusion 

in highly permeable media can be more efficient in generating fluid overpressure than 

thermal heating (Day, 1996). (4) Seismic loading (Elsworth and Voight, 1996; del Poltro et 

al., 2013), as strong fluid overpressure gradients have been shown to generate low-magnitude 

seismicity (Terakawa. et al., 2013). (5) Groundwater flow of infiltrated meteoric water, which 

has the potential for generation of shallow landsliding in a steep stratovolcano (Reid et al., 

2004). (6) Changing sea-level associated with (paleo-)climatic changes (Iverson, 1995; 

Quidelleur et al., 2008). 

 The generation of fluid overpressure is naturally connected to hydrothermal alteration, 

as both are consequences of fluid circulation within a volcanic edifice, and because 
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hydrothermal alteration has a deep effect on the permeability structure and strength 

distribution within the edifice. The impact of hydrothermal alteration in the stability of the 

edifice is more complex than the simple reduction of the edifice's strength with increasing 

degree of alteration (e.g., Siebert, 1984; López and Williams, 1993; van Wyk de Vries, et al., 

2000). Hydrothermal alteration varies spatially in the edifice (Watters et al., 2000) and the 

location of the altered masses has an impact on the stability of the edifice (Reid et al., 2001; 

Cecchi et al., 2005). Depending on the type of hydrothermal alteration and secondary 

minerals formed, there can be a more significant decrease of the strength of materials for 

smaller degrees of alteration (del Potro and Hürlimann, 2009). In some cases hydrothermal 

alteration may even strengthen the edifice,  e.g. through silicification and cementation 

(Watters et al., 2000; Zimbelman et al., 2004). A decrease in porosity/permeability and an 

increase of the strength with increasing degree of alteration has been reported (Walton and 

Schiffman, 2003; Schiffman et al., 2006; Thompson et al., 2008), but the opposite effect has 

been reported as well (Pola et al.,2012, 2014), with clear opposite implications for the 

potential generation of fluid overpressure within the edifice.  

 

4. Application of the cohesive model to volcanic systems 

4.1. Definition of variables and parameters   

 

 The maximum height of the volcanic sequence above the basal detachment (H, 

measured perpendicular to the basal detachment as seen in Figs. 1 and 2) can either represent: 

(a) the full height of the volcanic edifice (H), which therefore deforms along its basal surface; 

(b) the maximum height of a volcanic sequence above a more superficial basal detachment, 

e.g., rooted over a hyaloclastite layer. Here we use a maximum value of 5500m for H. This 

particular value would be equivalent to the approximate height of  Mauna Loa's upper 

volcanic sequence, which sits over a thick layer of hyaloclastites, as supported by the drill-

hole HSDP (DePaolo et al., 2001; Table A.1). Smaller values of H are tested (H = 1000 m 

and H = 2500 m), in order to assess the variation of the conditions necessary for failure to 

occur along basal detachments at different heights (Fig. 2). 

 The slope values of the wedge's upper surface (α) here used are: 7º, which is average 

of the lava dip values presented in Morgan and McGovern, 2005a for Kilauea, Hawaii; and 

15º, which is the dip expected for volcanic ridges as seen in the Azores (e.g., Costa et al., 

2014, submitted) and in the Canary Islands  (e.g., Mitchell et al., 2002). 
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Fig. 1. Representation of the configuration of the wedge, Cartesian coordinate system, and 
variables. Excerpt of Fig.2 in Costa et al. (in prep). 

 
Fig. 2. Tested dimensions of the wedge, defined by the maximum height above the basal 
detachment (H). 
 

 We consider as basal surface angles (β):  0º (first column of Fig. 3) and 2º (second and 

third columns of Fig. 3). For the null value, H is equivalent to the maximum vertical height of 

the volcanic sequence. For β = 2º, the discrepancy between H and the maximum vertical 

height of the volcanic sequence negligible (H = 5500 m measured perpendicularly to a basal 

surface tilted 2º, is equivalent to a vertical height of 5497 m). These two values are applied 

merely to illustrate the effect of tilting the basal detachment along which the wedge will 

deform.  

 The used fluid overpressure ratios λ* are the same within the wedge and along the 

basal detachment. The values considered for λ* range from 0 (null fluid overpressure) to 

higher than 1 (fluid overpressure higher than lithostatic pressure). 

 The value of the coefficient of internal friction (µ) for the wedge (µw) was 0.45 (angle 

of internal friction ϕw = 24.2º), which is the value determined with the direct shear test on 

natural joints of sub-aerial lava flows by Thompson et al. (2008) (Table A.1, tests performed 

in samples from HSDP core, Hawaii). The µ values used for the basal detachment (µb) were 

obtained from the results by Thompson (Table A.1) for: the uppermost hyaloclastite deposit, 
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0.32 (ϕb = 17.6º), and the smallest value determined for the hyaloclastite deposits, 0.18 (ϕb = 

10.2º) (Thompson et al., 2008).  

 The overall density of the volcanic edifice is considered to be 2500 kg/m3 (Oehler et 

al., 2005). 

 For each configuration, we tested different values of cohesion for both the wedge 

(Cow) and the basal detachment (Cob). The values used here were obtained from different 

approaches and altogether define distinct scenarios regarding the strength of the edifice: 

 Scenario 1 - practically non-cohesive wedge and basal detachment (Cow = Cob = 0.01 

Pa) - Figs. 3a to 3c. This scenario constitutes a reference that allows the assessment of the 

overall influence of non-negligible cohesion on the deformation of the edifice. 

 Scenario 2 - relatively small cohesion values: Cow = 1 MPa (approximate value 

estimated for the basaltic rock masses by Thomas et al., 2004b), and Cob = 0.08 MPa 

(cohesion value within the range determined for altered material - Watters et al., 2000 in 

Thomas et al., 2004b) -  Figs. 3d to 3f. 

 Scenario 3 - Larger cohesion values determined from direct shear tests on natural 

joints of samples from HSDP core, Hawaii (Thompson et al., 2008, Table A.1): Cow = 2.6 

MPa (value determined for the sub-aerial lava flows), and Cob= 0.9 MPa (value determined 

for the uppermost hyaloclastite deposit) - Figs. 3g to 3i. 

 

4.2. Application of the cohesive model: results 

 

 Through repeated comparison between the forces driving, Fd, and resisting, Fb, the 

downslope movement along the prescribed basal detachment, we determined the minimum λ* 

required for failure to occur along the basal detachment (λ*  required for Fd > Fb) (Figs. 3 

and 4). In Fig. 4, the dots correspond to the minimum λ* required for Fd > Fb: for an 

hypothetical basal detachments at deeper or shallower levels in the volcanic edifice (plotted 

at H = 1000 m; H = 2500 m; H = 5500 m), for different µb (different symbols), for different 

Cow (different colours of the symbols), for α = 7º (Fig. 4a), and α = 15º (Fig. 4b).  

 Through application of the expression presented in Costa et al. (in prep), we plot the 

values of λc* required to trigger internal failure of the wedge, parallel to the upper slope (α), 

as a function of maximum depth H (Eq. 1, colored curves in Fig. 4):  

(1) 
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Fig. 3. Comparison of forces driving (Fd) and resisting (Fb) the movement along the basal 
detachment: minimum λ* required for failure to occur along the basal detachment. Presented 
scenarios with different cohesion, α, β and µb. Theoretical schemes presented as Fig. 12 in 
Costa et al. (in prep a). 
 

 If λc* determined for a given H is higher than the λ* required for failure along the 

basal detachment at depth H, the failure will occur along the basal detachment (Costa et al., 

in prep, Fig. 5a). If λc* determined for a given H value is lower than the λ* required for 

failure along the basal detachment at depth H, the wedge will fail internally along shallower 

surfaces, ultimately parallel to the upper surface of the wedge (Costa et al., in prep, Fig. 5b).  

 Thus, the plot of the conditions of λ* required for failure along the basal detachment 

and within the wedge will determine the conditions for which deep-seated or shallow 

detachments are favored. The curves of λc* as a function of H are presented in different 

colors depending on the cohesion of the wedge material (Cow), for α = 7º (Fig. 4a) and α = 

15º (Fig. 4b).     

 Regarding the non-cohesive Scenario 1, as λ* rises the Fd and Fb curves approach, 

until they overlap (Figs. 3a to 3c). Thus, the failure could occur at any point of the basal  
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Fig. 4. Variation of λc* required for the fracture angle to become parallel to the upper surface 
of the wedge (slope α), as a function of depth H. We plot the results for different cohesion 
values (coloured lines). We plot the hypothetical depths of basal detachment H = 1000 m, H 
= 2500 m and H = 5500 m, and the λ* required for failure to occur along the basal 
detachment (coloured symbols), considering: different values of the wedge's cohesion 
(colours of the symbols), and different values of µb (µb = 0.18 - circles; µb = 0.32 - 
diamonds). (A) Plots for α = 7º. (B) Plots for α = 15º. For all the scenarios presented in this 
figure, we consider β = 2º, ρ´ = 2500 kg/m3, ϕw = 24.2º as constants. 
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Fig. 5. (A) For λ* < λc
*, the faults do not become parallel to the wedge's upper surface, and 

the failure will be deep-seated, along the basal detachment. (B) For λ* > λc
*, the faults become 

parallel to the wedge's upper surface, and the failure is shallower. Adapted from Costa et al. 
(in prep). 
 

detachment. In the non-cohesive system, the λ* required for failure along the basal 

detachment or λc* are independent of depth (Fig. 4).   

 For the cohesive Scenarios 2 and 3, the Fd and Fb curves approach and intersect as λ* 

increases, instead of overlapping (Fig. 3). These curves define a "stable" domain in the 

thinner part of the wedge, where Fb > Fd, making the failure to root in the thicker domains of 

the wedge, where Fd > Fb (beyond the Minimum Failure Length, in Fig. 12 of Costa et al., in 

prep).  

 We note that, for increasing depth, the difference in λ* and λc* between materials with 

different cohesion decreases with increasing depth (Fig. 4). Within the span of the cohesion 

value,s and for the α values here considered, we observe an accentuated decrease of λc* 

between the surface and H = 2500 m (Fig. 4). Beyond H = 2500 m, for cohesive materials, 

λc* is still higher than for a non-cohesive material, but the difference in values is minimal, 

and the value becomes practically stable as a function of depth.  

 The decrease of µb ( Fig. 4) results in the decrease of the fluid overpressure required 

to trigger failure. For increasing depths, we observe that the effect of changing µb becomes 

more important than the effect of changing cohesion (Fig. 5, see horizontal spacing between 

λ* values for different cohesions, comparatively to spacing between values of different µb). 

 The increase in the tilt of the basal surface (β, Fig. 3) results in the decrease of the 

fluid overpressure required for failure to occur. 
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 When changing the upper surface angle of the wedge α from 7º to 15º (Figs. 4a and 

4b, respectively), the decrease in the λ* required to produce failure along the basal 

detachment and within the wedge is very significant. For the scenarios with α = 7º (Fig. 5a), 

the value of λ* required for failure along the basal detachment is always smaller than λc*. 

However, for the steepened flank (α = 15º, Fig. 4b), for the strongest Cow and µb, and if H < 

2500 m, the λ* required for failure along the basal detachment is higher than λc* (question 

marks in Fig. 4b). 

 

5. Discussion 

 

5.1. Model interpretations and relevance to Hawaii, Canary and Azores islands 

 

 For higher values of cohesion of the wedge's material and basal detachment, a higher 

λ* value is required for failure to occur within the length of the basal detachment (Figs. 3 and 

4).  

 The convergence of required λ* and λc* between materials of different cohesions for 

increasing depth (Fig. 4) reflects the decrease of the influence of cohesion on the stability of 

the wedge for increasing depth, as discussed in Costa et al. (in prep).  

 The pronounced decrease of λc* between the surface and H = 2500 m, and the 

stability of λc* for different cohesions towards larger depths (Fig. 4) suggests that the 

stabilizing effect of cohesion decreases significantly for basal detachments up to 2500 m 

deep, becoming negligible for basal detachments deeper than 2500 m. The variable influence 

of cohesion as a function of depth suggests that it would be easier to generate deep-seated 

flank failures if the basal detachment were deeper, and, therefore, if the volcanic edifice were 

higher than ca. 2000 - 2500 m (Fig. 4). From several examples of volcanic edifices in islands 

and seamounts that grew on young oceanic lithosphere, Mitchell (2003) suggested that large-

scale flank collapses would be more frequent in volcanic islands that surpassed a threshold 

height of ca. 2500 m. Here, just considering the effect of cohesion as a function of depth, 

without considering the possible effect of "external forces" as the ones induced by dyke 

intrusions or enrichment in weaker materials in larger volcanic edifices, we reach a similar 

threshold of critical volcanic edifice dimensions.  

 We observe that the effect of changing µb becomes more important than the effect of 

changing cohesion (Fig. 4, see horizontal spacing between λ* values for different cohesions, 
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comparatively to spacing between values of different µb). This was expected given the much 

higher values of lithostatic load at these depths, comparatively to the cohesion values (Eq. 2). 

 (2) 

       
      

 

 The tests with different α values illustrate the effect of over-steepening, and the 

different conditions required for failure in low-slope shield volcanoes and steeper volcanic 

ridges and stratovolcanoes (Figs. 4a and 4b). The substantially smaller λ* required to produce 

failure in the test with the strongest slopes of 15º (Fig. 4b) illustrates the easier attainment of 

failure in the volcanic edifices with steep slopes than in flat shield volcanoes.    

 For the scenarios with α = 7º (Fig. 4a), the value of λ* required for failure along the 

basal detachment was always smaller than λc*, and thus the failure of the edifice would occur 

more easily along the basal detachment (Fig. 5a). However, for the steepened flank of α = 15º 

(Fig. 4b), for the strongest cohesion value and µb, and if H < 2500 m, the λ* required for 

failure along the basal detachment would be higher than λc* (question marks in Fig. 4b). 

Under these conditions, it would be more likely for shallower internal failure to occur, instead 

of failure along the basal detachment (Fig. 5b). The interpretation of the more likely 

occurrence of shallow landsliding in steeper volcanic ridges is compatible with the usual 

comparisons between the flatter shield volcanoes in Hawaii, affected by deep-seated 

collapses, and the steeper volcanic ridges in Canary Islands, with shallower flank failures 

(Carracedo, 1999; Mitchell et al., 2002; Morgan and McGovern, 2005a).  

 Although the smaller λ* required for failure in steep volcanic ridges suggests the 

potential for more frequent large-scale landslides in these edifices, it is necessary to take into 

account the different capacities for build-up of fluid overpressure in the different geological 

settings: e.g., the higher rate of volcanic growth in Hawaii (Carracedo, 1999), and the 

differences in composition of the sedimentary material underlying the volcanic edifices 

(Mitchell et al., 2002) suggest a higher potential for build-up of fluid overpressure than in the 

Canary Islands (Morgan and McGovern, 2005a). 

 The dimensions of the Azores Islands are much smaller than the dimensions of the 

Hawaii or Canary islands. Based on our model interpretations, the λ* values necessary to 

induce deep-seated gravitational destabilization in these small islands would be larger than 

those required in the larger Canary or Hawaiian edifices. 

 Despite the larger values of λ* required, large-scale collapses in the Azores islands 

have been increasingly recognized, and generally affect both shield volcanoes and volcanic 
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ridges that barely reach the threshold heights of ca. 2000-2500 m (e.g. Mitchell, 2003; 

Hildenbrand et al., 2012; Costa et al., 2014; Costa et al., submitted; Marques et al., 2013; 

Sibrant et al., 2014).  

 We saw for the steepest flanks (α = 15º), for the strongest cohesion and µb, and H < 

2500 m (question marks in Fig. 4b), that it would be more likely for shallower failure parallel 

to the flank surface to occur, instead of failure along a basal detachment (Fig. 5b). Such is the 

case of Azores, where the volcanic edifices are not only steep (as discussed for Canary 

Islands), but also barely reach the threshold heights of ca. 2000-2500.   

 We consider that the seismic activity associated with the tectonic setting in the Azores 

may have compensated the effect of the small dimensions of the edifices, allowing the 

occurrence of fluid overpressure "peaks" (Elsworth and Voight, 1996), and thus allowing the 

flank collapses to develop even in such relatively small volcanic edifices. 

 The quick development of the volcanic edifices for the Pico-Faial volcanic ridge 

(Costa et al., submitted), especially the growth of the volcanic ridge segment that suffered 

catastrophic collapses (Costa et al., 2014), suggests the occurrence of periods of intense 

volcanic activity, with potentially fast build-up of fluid overpressure within the edifices. 

Furthermore, the effect of dike intrusion, deeply explored in the literature but not considered 

in this model, should play an important role and could have also contributed to the 

destabilization of the Azorean volcanic edifices. 

 

5.2. Implications/ limitations of the model and the application presented 

 5.2.1. Scale (in)dependency of deformation - applied vs. gravitational forces 

 

 Works on fluid overpressures associated with magma intrusion, using a rigid-wedge 

approach, without considering cohesion (Iverson, 1995), or just considering it implicit in an 

apparent angle of friction (ϕ = 20-60º, Elsworth and Voight, 1996), report the scale-

dependency of the deformed mass as a function of the fluid overpressure.  For mechanical 

effects of the magma intrusion, Iverson (1995) alerted that, for non-negligible fluid 

overpressure, the safety factor (resisting forces divided by driving forces) decreases with 

increasing fluid overpressure, and this overpressure is directly proportional to the length of 

the deformed wedge. Considering both mechanical and thermal effects of the magmatic 

intrusion, Elsworth and Voight (1996) observed that the safety factor decreases exponentially 

with increasing width of the wedge. An exception was found for mechanically-induced 
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overpressures. Considering large intrusion rates, and for extremely wide wedges, the safety 

factor rises with increasing wedge width (Elsworth and Voight, 1996). 

 This interpretation of scale-dependency between deformed wedge and fluid 

overpressure, from rigid-wedge models in which the influence of cohesion is ignored or not 

explicitly considered, is not comparable with the interpretations resulting from the adaptation 

of the CCW to gravitational instabilities in a non-cohesive wedge (Mourgues et al., 2014). In 

this case, the CCW points to scale-independency of the deformation. 

 Both approaches are different, with different assumptions: e.g., Iverson (1995) 

(mechanical pressurization of fluids) and Elsworth and Voight (1996) (mechanical and 

thermal pressurization of fluids) address the destabilizing effect of a source of pressurization 

"external" to the rigid-wedge, i.e. magmatic intrusion on the backwall of the wedge. In turn,, 

the CCW adaptation to gravitational destabilization from Mourgues et al. (2014) just 

considers gravitational forces, and does not take into account forces external to the wedge. 

Therefore, these approaches are not directly comparable. Like Mourgues et al. (2014), we just 

consider gravitational forces, but we consider cohesive wedges (Costa et al., in prep). A 

major difference between our cohesive model and the non-cohesive model by Mourgues et al. 

(2014) is that in a cohesive wedge, the deformation involving gravitational forces alone 

becomes scale-dependent.  

 

 5.2.2. Topographic stresses  

 

 Morgan and McGovern (2005b) showed a variation of the orientation of the 

maximum compressive stress (σ1) within the volcanic edifice: σ1 is sub-vertical below the 

axis of the edifice and progressively rotates outwards, towards the more distal domains of the 

volcanic edifice (Fig. 6a). This variation in σ1 orientation is attributed to the effect of a 

triangular topography in cross-section (Morgan and McGovern, 2005b, in agreement with 

Fiske and Jackson, 1972; Dieterich, 1988). It implies an increment of the shear stress 

relatively to normal stress (increasing     
 ) towards the distal part of the edifice. 

 We here consider the following alternative expression of Amonton's Law for the basal 

surface: 

(3) 
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 Along the basal surface, a critical value of     
  can be reached, resulting in the 

gravitational destabilization limited to thinner/more distal domains, while the core of the 

edifice remains stable. We define this critical point as the Maximum Failure Length. As can 

be seen in Eq. 3, the critical value of     
  is smaller for simulations with smaller basal 

strength, leading to failures rooted more deeply in the edifice. 

 However, the original works on non-cohesive CCW by Davis, Dahlen and co-authors, 

as well as the recent reformulation presented in Mourgues et al. (2014) and the approximation 

of our cohesive analytical model to a practically null cohesion, show an orientation of σ1 

constant within the wedge (Fig. 6b). The ratio     
  is constant along the basal surface, thus 

not constraining the location of failure along the basal detachment.  

 For a non-negligible cohesion, the model of Costa et al. (in prep) shows a variation of 

σ1 orientation contrary to the variation induced by the topography (Morgan and McGovern, 

2005b), which is steeper in the front of the wedge and progressively less inclined towards the 

thicker sector of the wedge (Fig. 6c). As stated in Costa et al. (in prep), the effect of cohesion 

implies the stabilization of the most superficial/thinner sectors of the wedge (defining a 

Minimum Failure Length), an implication contrary to that of the topographic effect.  

 Mourgues et al. (2014) and Costa et al. (in prep) follow the assumption that the slope 

is infinite, not considering the effect of the peaked configuration on the stress field. Thus, 

although the wedge configuration corresponds geometrically to a slice of a volcanic edifice 

(Figs. 6b and 6c), it cannot be directly studied as a full edifice's flank. 

 Topography and cohesion have opposite effects on the spatial localization of the 

failure: topography imposes a Maximum Failure Length, i.e. contributes to a stable core and 

unstable distal domains, whereas cohesion imposes a Minimum Failure Length, and thus 

contributes to an unstable core and stable distal domains. The integration of the topography 

effect in the cohesive analytical model of the wedge (Costa et al., in prep), would: (a) 

improve the spatial constrain of the unstable domains in a cohesive edifice, constrained  

between the Maximum and Minimum Failure Lengths within the flank; (b) allow the study of 

the impact of fluid overpressure on this unstable domain. 

 As the topography effect inhibits the failure in the thickest part of the wedge, the 

minimum fluid overpressure ratio values required to trigger failure along the basal 

detachment in the cohesive scenario would be even higher than the values here presented.  
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Fig. 1. Orientation of the maximum compressive stress (σ1) within the volcanic edifice for: 
(A) Topographically-induced stresses; (B) non-cohesive CCW applied to gravitational 
destabilization; (C) cohesive CCW applied to gravitational destabilization. 
 

 5.2.3. Constant/Variable fluid overpressure ratio values for wedge and basal 

detachment  

 

 In the tests presented above, the  λ* was considered as constant for the basal 

detachment and wedge. The use of different λ*  values for the basal detachment and wedge, 

would allow the determination of the impact of permeability contrasts to the stability of the 

edifice. 

 In the model presented in Costa et al. (in prep), it was initially established that there 

would be no stress gradients along the x axis, parallel to the wedge's upper surface. The 

properties defined for the material/surface (i.e., fluid overpressure ratio - λ*, coefficient of 

internal friction - µ) can be different for the wedge and for the basal detachment, but do not 

vary within the wedge or along the basal detachment. 

 The establishment of these properties as constant seems far from the expected 

scenarios in volcanic systems, where lateral changes of basal strength (e.g., roughness) and 

fluid overpressure can be produced (increment or decrease of fluid overpressure ratio towards 

the core of the edifice) (Morgan and McGovern, 2005a). The variation of the fluid 

overpressure ratio along the basal detachment is dependent on: the edifice configuration, 
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permeability contrasts within the edifice, source location/shape, and rate of injected fluid. 

The application of a constant fluid overpressure ratio to the whole domain of the model 

would imply an underevaluation of the stability conditions in the domains (actually) not 

affected by such a high pore fluid pressure (del Potro et al., 2013). 

 

6. Conclusions 

 

 Under the values used in this work for the slope of the volcanic flanks (α = 7º and 

15º), the dip of the basal detachment (β between 0º and 2°), the height of the maximum 

wedge above the basal detachment (H, up to 5500 m), the cohesion of the volcanic wedge 

(Cow, from 0 to 2.6 MPa), the cohesion in the basal detachment (Cob from 0 to 0.9 MPa), the 

coefficient of internal friction of the volcanic wedge (µw = 0.45), the coefficient of internal 

friction of the basal detachment (µb in the range 0.18 and 0.32), and the fluid overpressure 

ratio (λ*, ranging from 0 to higher than 1), we conclude that: 

- The steepening of α and β lead to a decrease in the λ* necessary to produce failure. 

- The accentuated decrease of the stabilizing effect of Cow with increasing depth favors the 

occurrence of deep-seated large-scale gravitational destabilization in volcanic edifices higher 

than ca. 2000-2500 m. For smaller volcanic edifices, the λ* required to induce failure are 

comparatively larger and, for steep and stronger volcanic edifices, the occurrence of shallow 

failure is favored (parallel to the edifice flank surface), instead of deep-seated failure.  

- With increasing H, while the relative importance of Cow for the stability of the edifice 

decreases, the relative importance of µb increases. 

 

7. Perspectives  

 Add external forces to the model (e.g., lateral magma push).  

 Test the effect of contrasting permeabilities along the basal  detachment and within 

the wedge. This would reflect the permeability contrasts observed in the nature. 

 Test the impact of laterally varying fluid overpressure ratio and internal friction along 

the basal detachment on the stability of the edifice. 

 Assess the impact of different mechanical properties of the sediments underlying the 

volcanic edifice (Hawaii vs. Canary Islands vs. Azores). 

 Determine the potential to build-up fluid overpressure in shield-volcanoes and steep 

volcanic ridges, considering differences in the constituting materials (e.g., more abundance of 
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pyroclastic/porous/easily altered materials in steep volcanic ridges), different rates of 

volcanic growth and tectonic setting. 
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Appendix A 

 

Table A.1. Data from Thompson et al. (2008) regarding the shear strength on natural joints. 
Tests performed on the core samples from the 3098m deep drill-hole in Hawaii Island 
(DePaolo et al., 2001), cutting sub-aerial lava flows from Mauna Loa and sub-
aerial/submarine deposits from Mauna Kea.  Expected lithostatic stress for the samples' depth 
and considering two limit values for overall density of the rock column (minimum ρ=2500 
kg/m3 - e.g., Oehler et al., 2005, and a maximum of ρ=2900 kg/m3 - considering Moore, 
2001, that measured high density lava flows). Relative importance of the presented cohesion 
values determined by Thompson et al. (2008), comparatively to the values of lithostatic stress 
presented. 
 

Thompson et al. (2008) -Shear test on natural joints Lithostatic 

stress (MPa) 

% of Cohesion 

vs. lithostatic 

Rock type 
Alteration 

zone 
Depth(m) 

Cohesion 

(Mpa) 

Friction 

angle 

(º) 

 

ρ= 

2500 

kg/m3 

 

ρ= 

2900 

kg/m3 

ρ= 

2500 

kg/m3 

ρ= 

2900 

kg/m3 

Sub-aerial 

basalt flow 

(aa) 

Not 

altered 
1064.9 2.6 24.4 26.12 30.30 9.96 8.58 

Hyaloclastite 

Incipient 1321.5 0.9 17.6 32.41 37.60 2.78 2.39 

Smectitic 

1437.1 2.6 10.2 35.24 40.88 7.38 6.36 

1472.2 1.2 15.8 36.11 41.88 3.32 2.87 

1577.7 0.8 19.1 38.69 44.88 2.07 1.78 

Palagonitic 
1582.4 2 14.1 38.81 45.02 5.15 4.44 

1933.5 4.3 11.4 47.42 55.01 9.07 7.82 

Submarine 

pillow basalt 

Not 

altered 
2116.3 8.6 13.5 51.90 60.21 16.57 14.28 

Hyaloclastite Palagonitic 2179.4 2.8 13 53.45 62.00 5.24 4.52 

Submarine 

pillow basalt 

Not 

altered 
2368.1 4.7 23.4 58.08 67.37 8.09 6.98 

Hyaloclastite Palagonitic 2751 3.5 16.4 67.47 78.26 5.19 4.47 
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Oehler, J.F., van Wyk de Vries, B., Labazuy, P., 2005. Landslides and spreading of oceanic 
hot-spot and arc shield volcanoes on Low Strength Layers (LSLs): an analogue 
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Conclusions 
 

 Despite the steep configuration and the active tectonic setting of the Azores islands, 

prior to MEGAHazards Project (PTDC/CTE-GIX/108149/2008, funded by FCT, Portugal) 

large-scale flank failures were considered to be lacking. The present PhD work was focused 

on the steep Pico-Faial volcanic ridge, which sits on a major normal fault associated with the 

diffuse Nubia/Eurasia plate boundary. 

 Based on high-resolution sub-aerial and submarine Digital Elevation Models, new 

structural and stratigraphic data, and high-resolution K-Ar dating on separated volcanic 

groundmass we: (1) conclude unequivocally on the occurrence of large-scale flank collapses 

in the Pico-Faial volcanic ridge; (2) reconstruct with unprecedented resolution the growth and 

destruction of Pico and Faial islands, focusing specially on the large-scale flank failures that 

affected Pico Island during the last 200 kyr. 

 

The Pico-Faial volcanic ridge 

 

 The new volcanic stratigraphy, established during field work and calibrated with K/Ar 

dating, confirms that Pico Island comprises three main volcanic systems, from older to 

younger: (1) the Topo Volcano, (2) the Fissural System, and (3) the Pico Stratovolcano. (1) 

The Topo Volcano is partly exposed on Pico’s SE flank, and is here dated between 186 ± 5 

and 125 ± 4 or 115 ± 4 ka. It was significantly destroyed by a N-directed large-scale flank 

collapse between ca. 125 and 70 ka. Offshore, a debris deposit is here identified and 

interpreted as corresponding to this flank collapse. The deposit has a maximum length of 20 

km and covers an area of ca. 150 km2. It comprises hectometre blocks, it has an exposed 

volume here estimated between 4 and 10 km3, although the actual volume probably exceeds 

10 km3, and was channelized between the Pico-Faial and S.Jorge volcanic ridges. During the 

same period, gradual deformation started in the SE flank of the Topo Volcano, producing a 

composite collapse structure: (1) a slump complex in the west, which is still active, and (2) a 

catastrophic flank collapse in the east. A first episode of deformation most probably occurred 

between ca. 125 and 115 ka, along the master fault of the slump. Between ca. 115 and 75 ka, 

the scar was partially filled by volcanic products erupted from volcanic cones developed 

within the slump depression, and possibly from the early WNW-ESE Fissural System. 

Subsequent deformation in the slump area affected in part the filling units, leading to the 
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individualization of secondary curved faults. Between ca. 125 and 69 ka, the eastern distal 

part of Topo's SE flank and the early sub-aerial sequence of the Fissural System experienced 

a catastrophic flank collapse towards the S, which generated a large offshore debris deposit 

here identified with a minimum runout of ca. 17 km. More recent volcanic products have 

gradually masked the mass-wasting scars. The young Pico Stratovolcano grew in the 

westernmost sector of the island, at least since ca.  57 ka. Its southern flank has been partially 

destroyed by flank collapse(s), and subsequently covered by more recent volcano-

sedimentary products.  

 

 The evolution of the Pico-Faial volcanic ridge in the last 200 kyr has been marked by 

simultaneous volcanic growth and destruction in both Pico and Faial islands. While the Topo 

Volcano grew in Pico (ca. 186-125 ka) and was partially destroyed (ca. 125-115 ka), in Faial 

Island the period defined for major deformation in the Faial graben ended (ca. 360-115 ka), 

and a central volcano started growing inside the graben (ca. 130-115 ka). This rapid and 

simultaneous evolution of Pico and Faial islands constitutes evidence for the accommodation 

of extension associated with the Nu-Eu plate boundary on this ridge during the last 200 kyr. 

 

Analytical and analogue modeling of flank instabilities 

 

 We here present an analytical solution for the cohesive Coulomb Critical Wedge 

theory applied to gravitational instabilities, and associated analogue simulations to test some 

structural implications of the model. We investigated the impact of several variables on 

wedge stability, including: wedge configuration and dimensions, cohesion, coefficient of 

internal friction and fluid overpressure ratio (fluid overpressure divided by lithostatic 

pressure), focusing especially on the roles of cohesion and fluid overpressure.  We conclude 

that: (1) the stability of a cohesive wedge under fluid overpressure is size-dependent (the 

influence of cohesion is more significant for smaller wedges), while the stability of a non-

cohesive wedge under fluid overpressure is size-independent. (2) The stabilizing effect of 

cohesion is more significant for the most superficial domain of the wedge. The thickness of 

this stable superficial layer decreases with increasing fluid overpressure ratio. (3) Within the 

layer impacted by cohesion, the principal compressive stress rotates and the expected faults 

are listric. If the thickness limit expected for this layer is reached within the wedge (given the 

properties of the materials, the fluid overpressure ratio, and the configuration of the wedge), 
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the generated listric faults become parallel to the wedge's upper surface at the thickness limit. 

This limit means that the material strength reached the failure envelope.  

 We assessed the stability of the wedge along a basal detachment, through comparison 

of the forces driving and resisting the downslope movement. We verified that the stabilizing 

effect of cohesion is accentuated in the foremost thin domain of the wedge, defining a 

required Minimum Failure Length (MFL). This MFL decreases for smaller cohesions, smaller 

coefficients of internal friction, larger fluid overpressure ratios, steeper upper surface and 

basal detachment of the wedge.      

 Although this analytical model does not integrate the effects of topography in the 

stress field, we applied it to gravitational instabilities in volcanic systems, considering as 

variables: slope and dimensions of the volcanic edifice (volcanic flanks dipping 7-15°, basal 

detachment surfaces dipping 0-2°, maximum wedge height above the basal detachment up to 

5500 m), cohesion (volcanic wedge: from 0 to 2.6 MPa; basal detachment: from 0 to 0.9 

MPa), coefficient of internal friction (volcanic wedge: 0.45; basal detachment: 0.18 and 

0.32), and fluid overpressure (ranging from null to higher than the lithostatic pressure). We 

conclude that: (1) the steepening of the volcanic flanks and basal detachment lead to a 

decrease in the fluid overpressure ratio necessary to produce failure. (2) The decrease of the 

stabilizing effect of cohesion with increasing depth favours the occurrence of deep-seated 

large-scale gravitational destabilization in basal detachments deeper than (volcanic edifices 

higher than) ca. 2000-2500 m. For shallower basal detachments, the overpressure ratios 

required to induce failure are comparatively larger. For shallower basal detachments, steeper 

flanks and stronger edifice materials, shallow failure parallel to the flank surface is favoured, 

instead of deep-seated deformation. (3) With increasingly deeper basal detachments (possible 

in larger volcanic edifices), while the impact of cohesion diminishes, the relative importance 

of basal internal friction for the stability of the edifice increases. 

 

 This work is a contribution to MEGAHazards Project. The investigation of the 

occurrence of large-scale mass-wasting in the Azores islands, and the modelling of the 

variables controlling the stability of the volcanic edifices are only at their first steps, and will 

be further developed in the near future. 
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ify some important points and discuss significant problems regard-
ing their interpretations:

(1) On-land and offshore topographic data, indeed, provide useful
information regarding slope processes on oceanic islands
(e.g., Hildenbrand et al., 2006). However, they only give an in-
stantaneous picture of the present edifice morphology. In
In our recent paper (Hildenbrand et al., 2012a), we used a panel of
complementary approaches to reconstruct the architectural evolution
of Faial oceanic island over the last 1 Myr. We showed that the pres-
ent island has a complex architecture, which results from distinct and
brief (b50 kyr) episodes of volcanic construction separated by long
periods of volcanic inactivity, during which the edifices were exten-
sively dismantled by erosion and tectonics. The upper part of the
oldest volcanic system, especially, only crops out in the SE part of
the island, whereas most of the original volcano was deeply modified
by mass wasting processes and extensively covered by more recent
volcanic products. The combination of our K/Ar, morphologic, tectonic
and magnetic data suggests that the remnants of the old volcano are
presently under most of Faial, and that this volcano had an elongated
morphology slightly oblique with respect to the present WNW–ESE
elongation of the island. In their comment, Quartau and Mitchell point
out possible “problems” in our interpretations. Their only criticism
lies on the extent and morphology of the old volcano, which they draw
as a small conical edifice restricted to the eastern end of the island.
olgeores.2012.06.019.
IDES, UMR8148, 91405 Orsay,
15 48 91.

Hildenbrand).

rights reserved.
their comment, Quartau and Mitchell show the bathymetry
close to the Faial Island shorelines, and focus more specifically
on shallow insular shelves located a few hundred meters
away from the present sea cliffs. In their interpretation, the
distribution of these shelves would mimic the original slopes
of the old volcano. In this interpretation, they assume that
(a) the volcano has not experienced any subsequent morpho-
logical evolution throughout the lifetime of the island, and
(b) the present morphology of the upper proximal submarine
slopes is representative of the full geometry of the volcanic
edifice. In Fig. 1 of their comment, Quartau and Mitchell
present a close-up of the submarine flank, and draw two
main volcanoes with a circular shape in plan view. From the
extent of these circles, and consideration about statistical
slope distribution (Fig. 2 of their comment), they claim that
the 800 m isobath materializes the “bathymetric base” of the
island. However, they restrict their analysis to the upper subma-
rine slopes, especially in the southern sector, while deeper
features on the northern flank are ignored. Previous data by
Mitchell et al. (2003) provide amore coherent view at amore ap-
propriate scale (Fig. 1). These clearly show that Faial is only the
emerged western part of a much larger volcanic complex, the
Pico–Faial ridge, which sits on top of the Azores plateau, down
to depths between 1200 m and 1400 m below sea level. While
the morphology of the southern flank is disturbed by submarine
ridges parallel to the island, the distal bathymetry N of Faial
shows a large low-slope relief (Fig. 1), which could either
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Fig. 1. Topographic and bathymetricmap (contours every 200 mwith bold contours annotated every 1 km) showing the overallmorphology of the Pico-Faial volcanic ridge (afterMitchell
et al., 2003, modified). Arrows in the North show important deep submarine features not considered by Quartau andMitchell in their comment: (a) flat-top relief at the base of the island;
(b) oblique elongated feature in the prolongation of the “ridge-like” old volcano proposed in our original paper (Hildenbrand et al., 2012a).

128 A. Hildenbrand et al. / Journal of Volcanology and Geothermal Research 255 (2013) 127–130
represent deep remnants of the old volcanic system, or
remobilized material accumulated in response to destruction
of the central parts of the volcano. Furthermore, the map evi-
dences an oblique elongated ridge-like feature NW of Faial,
which lies in the prolongation of the oblique ridge inferred
Fig. 2. Unspiked K/Ar ages measured on the main volcanic units of Faial island (data from H
Quartau et al., (2010) and Quartau and Mitchell in their comment (red numbers, italic). Ba
from magnetic data (Hildenbrand et al., 2012a). Therefore,
the deep submarine evidence appears highly consistent with
onshore data, whereas the upper 800 m of the submarine flank
onwhich Quartau andMitchell focus their discussionmost likely
only records the younger evolution of the island.
ildenbrand et al., 2012a, black numbers) vs age of formation of the shelves inferred by
ckground image after Quartau and Mitchell (modified).
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(2) The age of formation of the shelves studied by Quartau et al.
(2010) and further considered by Quartau and Mitchell in their
comment is highly discussible (Fig. 2). From previous K/Ar
data (Féraud et al., 1980; Demande et al., 1982), the oldest vol-
canic system on Faial, the so-called “Galego volcano” (Féraud
et al., 1980) or the “Ribeirinha volcano” (Madeira, 1998), was
thought to be active between 800 ka and 560 ka. Based on these
previous data, Quartau et al. (2010) modelled shelf formation in
the NE sector of Faial over the last 800 kyr. They thus considered
that the shelves immediately started to formaround the emerging
volcano ca. 800 ka ago, and that all the lava flows from subse-
quent eruptions between 800 ka and 560 ka stopped close to
the shore level without significantly covering the shelves. Such a
hypothesis seems rather implausible, as volcano growth on
oceanic islands generally yield the accumulation of thick lava
successions in only a few tens of kyr (e.g., Hildenbrand et al.,
2004,2008; Boulesteix et al., 2012; Salvany et al., 2012; Silva
et al., 2012). Our new data (Hildenbrand et al., 2012a) show
that the whole NE slope of Faial is composed of more than
100 m-thick lava succession ca. 360 kyr old dipping towards
the N. Therefore, in our interpretation, it materializes the north-
ern slope of a relatively small edifice emplaced rapidly at that
time, which therefore provides a maximum age for the develop-
ment of the oldest shelves (Fig. 2). Similarly, we show that the
young large Central Volcano composing the central sub-aerial
part of Faial has been active during the last 130 kyr, instead
of the 470 kyr previously proposed (Demande et al., 1982). There-
fore, most of the shelves considered by Quartau et al. (2010) and
Quartau and Mitchell in their comment, are much younger
than supposed, which has a direct impact on shelf modelling
and geological interpretation. We are fully aware that Quartau
et al. (2010) used existing geochronological data available at
the time of their study. However, Quartau and Mitchell should
not claim in their present comment that shelf modelling is a
way to help dating the volcanic formations, because they now
know the revised age of the lavas (Hildenbrand et al., 2012a).
If the position and width of the shelf break can provide informa-
tion regarding the relative age between adjacent volcanoes, the
model still needs to integrate updated geochronological evi-
dence (Hildenbrand et al., 2012a) or, alternatively, to be cali-
brated by datable markers such as marine terraces including
fossils/microfossils.

(3) The insular shelves studied by Quartau et al. (2010) and Quartau
and Mitchell around the various sectors of Faial are presently lo-
cated between 211 m and 27 m below sea level. Quartau et al.
(2010) tentatively modelled shelf development assuming that
they have been formedmostly by surf erosion in response to eu-
static sea level variations, while the island is considered to have
remained at the same vertical position during the last 800 kyr.
This is a major problem, as most volcanic islands experience con-
siderable vertical movements during their growth (e.g., Ludwig et
al., 1991; Hildenbrand et al., 2003). We note that Quartau et al.
(2010) estimated possible local vertical movements from the
discrepancy between modelled shelves and actual shelf depth.
However, such interpretation is biased by the over-estimated
ages used in their modelling (see point (2)). The Pico–Faial ridge
has developed over a young oceanic lithosphere, about 10 Ma in
age (e.g.,Miranda et al., 1991; Luis et al., 1994). Significant thermal
subsidence due to lithosphere cooling is thus expected, at a typical
rate on the order of a fraction of a mm/yr from the equations of
Turcotte and Schubert (2002). Flexural load of the lithosphere by
the whole volcanic edifice and additional tectonic subsidence
must also be considered, and canbe significant. The central Azores,
indeed, have developed in a region subject to intense regional
deformation, marked by recurrent medium/high-magnitude
earthquakes (e.g., Catita et al., 2005; Borges et al., 2007), and by
the development of numerous volcano-tectonic structures. Faial
Island, specifically, is cut by a large graben bounded by numerous
normal faults, which have accumulated important vertical offset
over the last 400 kyr (Hildenbrand et al., 2012a). From the vari-
ous sources of subsidence here considered (thermal, flexural and
tectonic), an average long-term subsidence rate of 1 mm/yr ap-
pears plausible for Faial. Such value is a minimum, as present
movement measured by GPS and radar interferometry (Catalão
et al., 2011) show rates greater than or equal to 2 mm/yr for the
Pico–Faial ridge as a whole, plus faster movements (ca 1 cm/yr)
along some shorelines, especially on the northern coast of Faial
and also on Pico, where active slumping is displacing the SE
flank of the island at rates of up to 1 cm/yr (Hildenbrand et al.,
2012b). From our new geochronological and magnetic data
on Faial, the old volcano was completely built at ca 850 ka
(Hildenbrand et al., 2012a). Assuming a long-term (conserva-
tive) subsidence rate of ~1 mm/yr yields an integrated down-
ward movement of ca. 850 m. This suggests that the low-slope
deep portion referred to as the “bathymetric base” of Faial by
Quartau and Mitchell was formed close to shore level some
850 ka ago. It certainly cannot represent the bathymetric base
of the island, unless we consider that any portion below sea
level at a given time is not part of the volcanic edifice.

To summarize, the comment by Quartau and Mitchell addresses
important questions, but is based on a number of misleading assump-
tions. In particular, they have used unreliable K/Ar ages acquired on
whole-rock (see a review in Hildenbrand et al., 2012a) to support a
study that requires very accurate dating, and have ignored vertical
movements typical of volcanic islands built on top of young and
thin lithosphere. From the several lines of evidence exposed above,
in particular the new accurate geochronological data presented in
Hildenbrand et al. (2012a), different conclusions can be reached: (i)
the shelf at 211 m does not record the succession of construction
and destruction episodes over the last 850 kyr. (ii) the shelves stud-
ied by Quartau and co-workers most likely formed during the last
400 kyr, and most of them during the last 120 kyr. Therefore, their dis-
tribution does not reflect the geometry of the initial volcano. In fact,
they are parallel to the present island shape, which is not surprising,
since the latter was roughly acquired since 120 ka, except the western
end, which was active during the last 10 kyr. (iii) Average subsidence
rates, along with eustatic sea level variations must be taken into ac-
count in shelf modelling. (iv) The flat portion at a depth of ca. 800 m
around the island does not represent the base of the Pico–Faial ridge,
but may alternatively represent a shelf formed rapidly after the rapid
construction of the old volcano 850 ka ago, which then subsided
down to 800 m bsl. (vi) If such a hypothesis is correct, it means that
the old volcano was a large edifice (from the seafloor to asl), which
appears consistent with magnetic data and the general morphology of
oceanic islands. (vii) Bathymetric data at the full-scale of the whole
Pico–Faial ridge support an oblique-ridge geometry and significant
mass-wasting for the old Faial volcano. These clarificationswill hopeful-
ly illustrate that on-land and offshore data need to be considered
together, rather than separately to reconstruct, in a consistent way,
the long-term architectural evolution of rapidly evolving oceanic
islands like Faial. This is LGMT contribution 107.
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We thank Mitchell et al. (2013) for their Comment. It confi rms that 
there is actually present movement on Pico Island’s southeastern fl ank, 
and opens up the opportunity to clarify important points.

Mitchell et al. (2013) point out two eventual inaccuracies in our paper 
(Hildenbrand et al., 2012a): (1) in their opinion, we considered only one of 
the several options mentioned in their previous works. This is certainly not 
the case. In the section “Slump Mechanisms and Propagation” (p. 941), we 
fi rst state “previous studies have considered that the present confi guration 
of the southeastern fl ank of Pico could refl ect vertical caldera collapse.” A 
few lines after we state “lateral collapse has been proposed, but is consid-
ered as currently inactive,” again citing Mitchell and co-workers. There-
fore, the two main options they discussed have been clearly considered by 
us. (2) Mitchell fi rst identifi ed a submarine debris fi eld, but because it is 
not visible on the multibeam acquired in 2003, Mitchell et al. (2012) sug-
gested instead that the “traces” visible on the sidescan sonar data are from 
ancient material buried under a thin sedimentary cover, while the steep 
submarine slope of the island was created recently from lavas reaching the 
sea during the delta emplacement. The latter hypothesis is not inconsistent 
with our interpretation. We, indeed, proposed that the creation of the S3 
scarp by recurrent detachment of blocks is “consistent with the presence 
of a moderate-sized debris fi eld on the southern submarine slope of the 
ridge.” Partial concealing of the debris fi eld by fi ne-grained sediments and 
recent lava fl ows that cascaded on S3 seems plausible to us.

In their Comment, Mitchell et al. (2013) question the existence of 
an active slump and discuss the slumping mechanisms proposed by us. 
However, their arguments are rather disputable:

1) Mitchell et al. question the faults we mark as active, arguing that 
they did not fi nd evidence for recent activity. We remind Mitchell et al. 
that the absence of evidence is not evidence of absence. Active faults in 
the slump area are hard to detect because the steep topography and dense 
vegetation do not offer easy access to the lava fl ows cascading over the 
various scars. It is fairly obvious to us that most of the young volcanic 
cones developed along the trace of the structures (main failure, S1, and 
S2) are associated with recurrent movements along the faults over the past 
few thousand years. The youngest lava fl ows (Hildenbrand et al., 2012a, 
their fi gure 2), especially, have apparently been erupted from lateral fi s-
sures at the foot of S2. Some recent fl ows also show signs of deformation, 
and clastic breccia deposits are being produced/accumulated at the foot of 
the scars. Overall, this points to very recent/active fl ank movements.

2) Mitchell et al. claim that our SAR data do not show evidence for 
rigid body movement. In Hildenbrand et al. (2012a, their fi gure 4), the sec-
tor west of the main scar shows very limited downward movements (green 
and yellow circles), whereas the portion east of the scar shows pronounced 
subsidence (blue points), with overall higher displacements southeast of 
S2 (dark blue circles). Therefore, the bulk of our data clearly shows dif-
ferential movement. We did not say that present movement involves rigid 

body motion; instead, we stated that the main mode of deformation is 
creeping. Instantaneous measurements are rarely representative of long-
term behavior. For instance, short-term differential deformation recorded 
by GPS and SAR data on active slumps such as the Hilina in Hawaii ap-
pear rather complex. On the longer term, block rotation may develop over 
several kilometers across the island fl ank, but may appear rather subtle at 
the foot of the fault headwall where downward motion dominates.

3) We are very pleased to read that one of Mitchell et al.’s co-au-
thors measured deformation of a monument inside the slump area, and 
now concludes that GPS data acquired over 11 years confi rm that there 
is actually present-day movement. This seems to complement our study, 
and contrasts with Mitchell et al.’s present Comment. Unfortunately, 
these data are not shown in the Comment or published elsewhere, so it is 
impossible to check their signifi cance and examine in detail the possible 
mechanisms of present-day displacements. Noticeably, the now alleged 
horizontal displacement is in apparent contradiction with their argument 
of compaction.

4) In their Comment, and in previous papers, Mitchell et al. (2012, 
2013) use a shallow platform located a few hundreds of meters from the 
island shore to assess potential recent movements. They assign an age of 
7 ka to this platform, and claim that no visible fault in the platform reveals 
that any potential movement has to be very recent. If the abrasion shelf 
studied by Mitchell et al. (2012) were really 7 ka in age, which is merely 
speculative at this stage (absence of unambiguous datable markers), it cer-
tainly does not record the whole history of an island’s fl ank, as recently 
shown by Hildenbrand et al. (2012b) on the neighboring Faial Island. The 
development of a slump is most likely discontinuous; i.e., it may involve 
the gradual development of curved fault structures, with alternating phases 
of activity and quiescence. On Pico, the overall prominent morphology of 
the main scar, and the various lava successions cut by the several faults 
point to an incremental process initiated well before 7 ka. We agree that 
active movement recorded in our study likely reveals a renewed phase of 
downward motion that started recently. This therefore deserves particular 
attention, especially as potential sudden detachment of part of the fl ank 
cannot be ruled out.

We thank Mitchell et al. for their suggestion of deploying a network 
of continuously recording seismic and GPS stations, but we already in-
stalled a dense network of new tiltmeters, microseismic stations, and GPS 
stations in 2012.
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We use GPS, bathymetric/structural, and seismic data to define the pattern of present deformation along
the northern half of the Azores plateau, where the Nubia–Eurasia plate boundary terminates at the axis
of the Mid-Atlantic Ridge (MAR). New and existing campaign GPS velocities from the Azores islands
reveal extension oblique to a series of en échelon volcanic ridges occupied by Terceira, S. Jorge, Pico, and
Faial islands. In a frame of reference defined by 69 continuous GPS stations on the Eurasia plate, Terceira
Island moves 2 ± 1 mm/yr away from Eurasia, consistent with the island’s location within the Terceira
Rift and plate boundary structure. The volcanic ridges south of the Terceira Rift move toward WSW
at progressively faster rates, reaching a maximum of 3.5 ± 0.5 mm/yr (2-σ ) for the Pico/Faial volcanic
ridge. The hypothesis that the Terceira Rift accommodates all Nubia–Eurasia plate motion is rejected at
high confidence level based on the motions of sites on S. Jorge Island just west of Terceira Rift. All of
the islands move relative to the Nubia plate, with Pico Island exhibiting the slowest motion, only 1 ±
0.5 mm/yr (2-σ ). Detailed bathymetry from the interior of the hypothesized Azores microplate reveals
faults that crosscut young MAR seafloor fabric. These observations and the GPS evidence for distributed
deformation described above argue against the existence of a rigid or semi-rigid Azores microplate, and
instead suggest that Nubia–Eurasia plate motion is accommodated by extension across a ∼140-km-wide
zone east of the MAR axis, most likely bounded to the north by the northern shoulder of the Terceira
Rift. The MAR spreading rate along the western end of the Azores deformation zone (∼38.5◦N–39.5◦N) is
intermediate between the Eurasia–North America rate measured at 39.5◦N and the Nubia–North America
rate measured at 38.5◦N, consistent with the joint conclusions that the Nubia–Eurasia boundary is broad
where it intersects the MAR, and the Azores Triple Junction is diffuse rather than discrete.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Azores Triple Junction is located at the western end of the
Nubia–Eurasia plate boundary, where the North America, Eurasia
and Nubia plates meet (Fig. 1). Although its existence has long
been recognized, there is as yet no consensus regarding its location
and the nature of deformation in the vicinity of the triple junction
(e.g. Krause and Watkins, 1970; Searle, 1980; Miranda et al., 1991;
Luís et al., 1994; Lourenço et al., 1998; Luís and Miranda, 2008).
The triple junction is marked by a ∼15% decrease in MAR seafloor
spreading rates from 39.5◦N, where Eurasia–North America motion
occurs, to ∼38.5◦N, where Nubia–North America plate motion oc-
curs (DeMets et al., 2010). Along the ∼100-km-long stretch of the
ridge between ∼38.5◦N and 39.5◦N, the average seafloor spread-

* Corresponding author. Tel.: +351 217500000; fax: +351 217500064.
E-mail address: fomarques@fc.ul.pt (F.O. Marques).
0012-821X/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.epsl.2013.08.051
ing rate is intermediate between that for Eurasia–North America
and Nubia–North America motion (DeMets et al., 2010), suggesting
that either a rigid or nearly rigid Azores microplate rotates inde-
pendently east of the MAR axis between ∼38.5◦N and 39.5◦N, or
that distributed deformation occurs across a ∼140-km-wide zone
east of the MAR axis.

In this study, we present and interpret GPS observations from
sites in the Azores archipelago in the context of existing bathy-
metric/structural and seismic data to address three fundamental
questions related to the Azores Triple Junction: (1) Is the Nubia–
Eurasia plate boundary discrete or diffuse near the Azores Triple
Junction and, by implication, is the triple junction discrete or
diffuse? (2) Where is the present Nubia–Eurasia plate boundary
in this region? (3) Is there an Azores microplate? Previous au-
thors have used a variety of data to address some of these ques-
tions, including seafloor spreading magnetic lineations (e.g. Krause
and Watkins, 1970; Searle, 1980; Luís et al., 1994; Luís and Mi-
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Fig. 1. Sketch illustrating the tectonic setting of the Azores Triple Junction. Inset on top right corner for location. Inset on top left corner for the kinematics of the Nubia and
Eurasia lithospheric plates (DeMets et al., 2010). Dashed lines mark the boundaries of a hypothetical Azores microplate. Dash-dotted lines represent small circles around the
MORVEL Nubia–Eurasia pole. The nine Azores islands are, from W to E, Corvo (Cor), Flores (Flo), Faial (Fai), Pico (Pic), S. Jorge (SJo), Graciosa (Gra), Terceira (Ter), S. Miguel
(SMi), and Santa Maria (SMa).
randa, 2008), SONAR and marine bathymetry (e.g. Searle, 1980;
Madeira and Ribeiro, 1990; Lourenço et al., 1998), bathymetric and
seismic observations (Borges et al., 2007), and GPS (Fernandes et
al., 2006). A key goal of this paper is to use a critical subset of
observations to evaluate and refine the emerging view that Nubia–
Eurasia plate motion is accommodated by deformation distributed
across the northern half of the Azores plateau.

This paper is organized as follows. We first present and ana-
lyze the GPS observations that are the core of the study, including
descriptions of newly estimated Nubia and Eurasia plate angu-
lar velocities in the ITRF2008 reference frame, and the resulting
Nubia–Eurasia relative angular velocity. We next describe relevant
bathymetric observations and the information they suggest about
the character and location of regional deformation, albeit over time
scales significantly longer than for the GPS observations. Finally,
we discuss the implications of the GPS velocity field in the context
of bathymetric/structural observations and seismic data.

2. GPS data

The GPS observations used in this study consist of the follow-
ing: (1) new measurements at 35 campaign sites on Faial, Pico
and Terceira islands (shown by red circles in Fig. 2A), (2) mea-
surements at 117 continuous sites on the Nubia and Eurasia plates
(Figs. 3 and 4), and (3) velocities for 15 GPS stations on S. Jorge Is-
land from Mendes et al. (2013). Procedures for processing the new
campaign and continuous data are described below.

2.1. Campaign GPS data

The Azores central group GPS geodetic–geodynamic network
was established in 2001 in the aim of STAMINA and SARAZORES
projects (Navarro et al., 2003; Catalão et al., 2006). It consists of 35
rock-anchored benchmarks on Faial, Pico and Terceira islands (14,
8 and 13 marks, respectively), with an average spacing of 5 km
(Fig. 2A).

The principal data used for this study, from 35 stations on Faial,
Pico and Terceira islands (locations shown in Fig. 2A and listed in
Table 1), were acquired during seven surveys from 2001 to 2013.
During each survey, every benchmark was occupied for two-to-four
24 h sessions with a sampling rate of 30 s and elevation mask
of 15◦ . During each survey, at least six stations were observed
simultaneously and one station per island was measuring continu-
ously (FAIM for Faial, TOMA for Terceira and PPIL for Pico). For this
Fig. 2. A – locations of GPS sites used for this study and earthquake focal mech-
anisms for the study area. Bathymetry is a 1-km-resolution grid from J. Luis
(http://w3.ualg.pt/~jluis/misc/ac_plateau1km.grd). Legend indicates source of the
GPS velocities for Faial, Pico, S. Jorge and Terceira islands. Earthquake focal mech-
anisms are from the global centroid-moment tensor catalogue (Dziewonski et al.,
1981; Ekstrom et al., 2012) and Borges et al. (2007 – labeled 11.23.73 and 12.11.73).
Double-headed red arrow shows the average tension axis direction for the fo-
cal mechanisms of earthquakes in the diffuse deformation zone (29.5◦W–27.5◦W).
B – epicentres of M > 1 earthquakes for the period 1998–2013, from the Portuguese
IPMA catalogue, scaled by magnitude. Dashed rectangle indicates the region shown
in Fig. 6. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

12-yr-long time series, each station was visited at least four times
and observed for at least eight 24-h sessions.

GPS phase observations were analyzed using GAMIT software
version 10.4 (Herring et al., 2010). The processing and analysis
were made in two-step approach according to Dong et al. (1998).
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Fig. 3. Locations (map inset) and velocity components of 49 Nubia plate GPS
sites used to estimate the instantaneous Nubia plate angular velocity relative to
ITRF2008. Red arrows in map inset show GPS site velocities in ITRF2008. A – com-
ponent of GPS station velocities parallel to small circles around the best-fitting
Nubia-ITRF2008 pole. B – component of GPS station velocities orthogonal (radial)
to small circles around the best-fitting pole. Vertical bars indicate 1-σ rate uncer-
tainties. Stippled pattern shows 1-σ uncertainty in the predicted rates propagated
from the angular velocity covariances. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

First, GPS phase observations from each day were used to esti-
mate loosely constrained station coordinates, tropospheric zenith
delay parameters and orbital and earth orientation parameters and
associated variance–covariance matrices. We have included in the
analysis 117 IGS continuous operating GPS stations in order to
tie the regional measurements to a global reference frame. We
have selected IGS stations distributed worldwide and stations from
EUREF network. The GAMIT solution was computed using loose
constraints on the a priori station coordinate (0.5 m), a priori hy-
drostatic and wet models from Saastamoinen (1972a, 1972b, 1973)
and Global Mapping Functions (Böhm et al., 2006), solid earth tides
according to IERS conventions (Petit and Luzum, 2010), ocean tidal
loading from the FES2004 ocean tide model (Lyard et al., 2006) and
receiver and satellite antenna phase centre corrections were mod-
eled with IGS08 ANTEX files from IGS. We used SOPAC’s final orbits
generated under the scope of the IGS reprocessing analysis and co-
ordinates for all the stations expressed in the ITRF2005 (Altamimi
et al., 2007).

Following analysis of the raw GPS data, daily GAMIT solutions
were used as quasi-observations in GLOBK to obtain position time
series for all sites. In this solution, the regional daily solutions
were combined with global daily solution from the IGS1, IGS2, IGS3
and EURA networks computed by SOPAC, the h-files (GAMIT inter-
change format). Position time series were analyzed to detect and
remove outliers and detect possible vertical offsets caused by erro-
neous antenna height. After editing, site coordinates and velocities
Fig. 4. Locations (map inset) and velocity components of 69 Eurasia plate GPS
sites used to estimate the instantaneous Eurasia plate angular velocity relative to
ITRF2008. Red arrows in map inset show GPS site velocities in ITRF2008. A – com-
ponent of GPS station velocities parallel to small circles around the best-fitting
Eurasia-ITRF2008 pole. B – component of GPS station velocities orthogonal (radial)
to small circles around the best-fitting pole. Vertical bars indicate 1-σ rate uncer-
tainties. Stippled pattern shows 1-σ uncertainty in the predicted rates propagated
from the angular velocity covariances.

were estimated with respect to ITRF2008 reference frame from a
priori values of coordinates and velocities of IGS permanent sites.

A second iteration of this process was made using GLOBK esti-
mated coordinates and velocities as a priori in GAMIT, now with a
constraint of 5 cm for coordinates of the surveyed sites. The final
solution of site coordinates and velocities was computed by GLOBK
using generalized constraints by minimizing the velocity for a large
number of IGS stations and estimating a Helmert transformation.
The ITRF2008 reference frame was adopted in this last step. The fi-
nal solution combines seven survey-mode GPS campaigns with IGS
stations globally between 2001 and 2013. The weighted RMS of the
residual velocity for sites used to define the reference frame (IGS
sites) are 0.78, 0.66, 1.2 mm/yr for east, north and vertical com-
ponents, respectively. Table 1 gives the estimated velocities and
formal 1-σ uncertainties for GPS sites on Faial, Pico, and Terceira
islands. The campaign velocity uncertainties are the formal errors
derived from a weighted linear regression of each station time se-
ries. They depend on the time spanned by the observations as well
as the number of site occupations and estimated location uncer-
tainties.

The velocities for all campaign GPS sites on S. Jorge Island
were taken from Mendes et al. (2013), who process their cam-
paign GPS data with GAMIT using procedures the same as those
outlined above (including the underlying geodetic reference frame
ITRF2008). By implication, their velocities can be included with
ours without concerns about inconsistencies between the two.
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Table 1
GPS site velocities and 1-σ uncertainties (units mm/yr).

Long. Lat. ve vn 1-σ -ve 1-σ -vn

PRIB 331.801 38.39558 11.46 14.43 0.15 0.16
PPRN 331.796 38.47172 10.82 14.3 0.11 0.13
PBJQ 331.695 38.46891 11.47 14.77 0.10 0.11
PSLU 331.601 38.54895 11.15 15.14 0.14 0.16
PSMT 331.536 38.4324 11.6 14.69 0.11 0.12
PDRO 331.507 38.55444 11.28 14.75 0.12 0.13
PMAD 331.461 38.51932 11.46 14.86 0.09 0.1
PCAL 331.460 38.49515 11.24 15.02 0.12 0.13
TPVT 332.945 38.73359 12.91 16.15 0.16 0.19
TPOM 332.944 38.68715 13.27 15.07 0.12 0.14
TCAP 332.892 38.78465 12.19 15.56 0.11 0.12
TSBR 332.860 38.75664 12.37 15.6 0.14 0.17
TCAB 332.854 38.77781 13.15 14.84 0.11 0.12
TSER 332.843 38.64884 12.27 16.22 0.18 0.22
TGOL 332.839 38.72859 13.01 16.04 0.14 0.16
TQRB 332.793 38.78996 14.06 14.65 0.13 0.14
TOMA 332.776 38.65864 13.02 17.31 0.09 0.09
TBIS 332.747 38.79645 14.5 13.77 0.10 0.11
TCCD 332.713 38.6611 13.46 16.51 0.10 0.11
TRAM 332.648 38.77842 15.57 14.79 0.16 0.20
TPTE 332.635 38.73034 14.36 15.67 0.16 0.18
FFAR 331.398 38.59532 13.2 14.74 0.14 0.16
FPMG 331.388 38.56857 11.99 15.3 0.20 0.22
FAIM 331.371 38.52952 11.42 14.89 0.09 0.10
FCDR 331.303 38.63617 12.53 15.83 0.15 0.16
FCGO 331.285 38.57371 11.4 14.12 0.15 0.17
FPN2 331.282 38.6417 12.29 15.34 0.16 0.18
FCBR 331.253 38.52527 11.55 14.55 0.20 0.22
FPCD 331.250 38.59254 11.3 15.57 0.16 0.18
FFAJ 331.238 38.61159 11.1 14.88 0.15 0.16
FVAR 331.226 38.56446 11.96 15.98 0.12 0.14
FPDN 331.206 38.60598 11.55 15.13 0.23 0.27
FVUS 331.195 38.57873 12.43 16.37 0.23 0.26
FVUN 331.186 38.60447 12.1 15.24 0.14 0.16
FVUL 331.172 38.59247 12.65 16.11 0.21 0.23

2.2. Continuous GPS data for the Nubia and Eurasia plates

All of the continuous GPS data we used from sites on the Nubia
and Eurasia plates are in the public domain and were procured var-
iously from EUREF (epncb.oma.be), NGS (geodesy.noaa.gov/CORS),
SOPAC (www.sopac.ucsd.edu), TRIGNET (trignet.co.za), and UNAVCO
(unavco.org). The raw GPS data were processed with release
6.1 of the GIPSY software suite from the Jet Propulsion Labo-
ratory (JPL). No-fiducial daily GPS station coordinates were esti-
mated using a precise point-positioning strategy (Zumberge et al.,
1997), including constraints on a priori tropospheric hydrostatic
and wet delays from Vienna Mapping Function (VMF1) parame-
ters (http://ggosatm.hg.tuwien.ac.at), elevation- and azimuthally-
dependent GPS and satellite antenna phase centre corrections from
IGS08 ANTEX files (available via ftp from sideshow.jpl.nasa.gov),
and corrections for ocean tidal loading (http://holt.oso.chalmers.se).
Phase ambiguities were resolved using GIPSY’s single-station ambi-
guity resolution feature. Daily no-fiducial station location estimates
were transformed to IGS08, which conforms to ITRF2008 (Altamimi
et al., 2011), using daily seven-parameter Helmert transformations
from JPL. We assume that the geocentre as defined in ITRF2008
is stable and make no correction for possible geocentral motion
(Argus, 2007).

In light of compelling evidence that noise in the estimates of
daily station coordinates remains strongly correlated out to inter-
station distances of 3000 km (Marquez-Azua and DeMets, 2003),
we used a straightforward method outlined by these authors to es-
timate and reduce spatially correlated noise between GPS sites. In-
terested readers are referred to Marquez-Azua and DeMets (2003)
and references therein for details.

Prior to correcting any of our 119 GPS time series for spatially-
correlated noise, their 1-σ daily repeatabilities were 1.8 mm in
both the northing and easting components. Time-correlated noise
had average amplitudes of 4.4 mm and 4.5 mm in the north
and east components. After correcting each time series for their
spatially correlated noise, the average daily coordinate repeatabil-
ity was reduced to 1.5 mm in both horizontal components and
3.5 mm and 3.7 mm in the northing and easting components of
the time-correlated noise. Corrections for the common-mode noise
thus effected ∼20% reductions in the noise, which reduce the un-
certainties in the site velocities described next.

Uncertainties in the velocities of the continuous GPS sites were
estimated using an expression from Mao et al. (1999) that relates
the velocity uncertainty to the length of a GPS station’s time se-
ries, the number of time series measurements, and the magnitudes
of the white, flicker, and random-walk noise per site. We approxi-
mated the respective amplitudes of the white and time-correlated
noise at each site from the WRMS scatter of a site’s daily lo-
cations relative to its monthly-average locations and the average
amplitude of longer-period noise manifested in the site’s coordi-
nate time series. We assigned an average value of 1 mm/yr for
the magnitude of the random-walk noise. Using this algorithm,
the standard errors in the 119 continuous site velocities ranged
from ±0.24 mm/yr to ±2 mm/yr for time series that span 2 yr
to 19 yr. Inversions of the GPS velocities using these uncertainties
(see below) return values of reduced chi-square (i.e. chi-square per
degree of freedom) of 1.5 and 2.2, suggesting that the estimated
uncertainties may be modestly underestimated (20–50%).

2.3. Motion of Nubia relative to ITRF2008

We determined the angular velocity for the Nubia plate rela-
tive to ITRF2008 (Table 2) from an inversion of the velocities of
49 stations (Fig. 3) west of the East Africa Rift (see map inset for
Fig. 3) in nominally stable parts of the plate interior. The Nubia
site velocities span a large angular distance with respect to their
best-fitting pole (Fig. 3) and thus impose strong geometric con-
straints on both the pole location and angular rotation rate. The
components of the 49 site velocities around the pole (tangential
Table 2
GPS angular velocities.

Plate pair Angular velocity (ω) Angular velocity covariances (σ )

Latitude
(◦N)

Longitude
(◦E)

ω
(◦/Myr)

Sites σxx σyy σzz σxy σxz σyz

EU-ITRF08 54.5 −99.1 0.257 69 2.67 0.52 3.92 0.56 2.83 0.72
NU-ITRF08 49.1 −80.8 0.268 49 4.37 1.36 1.58 0.96 −1.20 −0.43
NU-EU −6.8 −26.5 0.058 118 7.08 1.88 5.55 1.53 1.67 0.30
NU-EU (1) 21.6 −20.4 0.131
NU-EU (2) −10.3 −27.7 0.103
NU-EU (3) −7.5 −21.1 0.061
NU-EU (4) −8.1 −19.8 0.053

Angular velocities describe counter clockwise rotation of the first plate relative to second. NU is Nubia plate; EU is Eurasia plate. Covariance units are 10−10 rad2/Myr2.
Nubia–Eurasia angular velocities are as follows: (1) MORVEL – DeMets et al. (2010); (2) Calais et al. (2003); (3) Argus et al. (2010); (4) Altamimi et al. (2011).
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component) and radial to the pole are well described by the best-
fitting angular velocity (Fig. 3) and have a weighted RMS misfit of
only 0.75 mm/yr. The GPS velocities are thus consistent with the
hypothesis that the interior of the Nubia plate deforms slowly or
not at all. Reduced chi-square for the 49 Nubia sites is 1.46, close
to the value of 1.0 expected if the plate is not deforming and the
GPS velocity uncertainties are approximately correct.

2.4. Motion of Eurasia relative to ITRF2008

The angular velocity for the Eurasia plate relative to ITRF2008
(Table 2) was determined from an inversion of the velocities of
69 stations (Fig. 4). The sites are distributed throughout the plate
interior, but are heavily weighted toward European stations. Sta-
tions from Fennoscandia are excluded due to significant isostatic
rebound in these areas (Nocquet et al., 2005). The components of
the 69 site velocities around the pole (tangential component) and
radial to the pole are well described by the best-fitting angular ve-
locity (Fig. 4) and have a weighted RMS misfit of only 0.68 mm/yr,
similar to that for the Nubia plate and consistent with little or no
deformation within the areas of the Eurasia plate that are sampled
by the 69 GPS sites. Reduced chi-square for the 29 Eurasia sites
is 2.2, ∼50% larger than expected if the GPS velocity uncertainties
were correct. Roughly half of the larger-than-expected misfit is at-
tributable to three poorly fit velocities for GPS sites in NE Asia.
Including or omitting these three site velocities has little impact
on the resulting best-fitting angular velocity – we thus elected to
use these three velocities.

2.5. Motion of Nubia relative to Eurasia

A simultaneous inversion of all 119 Eurasia and Nubia plate
GPS velocities gives a best-fitting angular velocity for Nubia rel-
ative to Eurasia (Table 2) that lies ∼3000 km south of the MORVEL
geologically-estimated Nubia–Eurasia pole (Table 2 and DeMets et
al., 2010), but agrees well with poles estimated by other authors
from GPS measurements on these two plates (Table 2). Despite
the large difference between pole locations determined from GPS
and that of the MORVEL geologic model, their respective angu-
lar velocities predict similar motions near the centre of the study
area (Fig. 5C). Our new GPS-based angular velocity predicts that
Nubia moves 4.6 ± 0.3 mm/yr toward S87.9◦W ± 3.3◦ (95% un-
certainties) relative to Eurasia. For comparison, MORVEL predicts
4.5±0.4 mm/yr toward S68.1◦W±2.8◦ . The difference in the pre-
dicted velocities is too small to affect any of the conclusions we
reach below.

3. GPS velocity fields for Faial, Pico, S. Jorge and Terceira islands

3.1. GAMIT/GIPSY velocity field combination and velocity uncertainties

In order to evaluate the consistency of our velocity solutions
from GAMIT and GIPSY, we compared the ITRF2008 velocities of 32
globally-distributed IGS stations for which we processed continu-
ous data with both software packages. On average, the Cartesian
components of the 32 station velocities differ by only −0.23, 0.17,
and −0.17 mm/yr for the X , Y and Z velocity components, re-
spectively. The close agreement between the two velocity solutions
validates our respective processing methodologies and our separate
realizations of the station velocities in ITRF08. From 38 continu-
ous stations common to both analyses, we estimated and applied
translational and rotational parameters to transform the GAMIT ve-
locity solution onto the GIPSY solution. This altered the GAMIT
velocities in the study area by only 0.07 mm/yr and 0.12 mm/yr in
the east and north velocity components, reflecting the high degree
of consistency in the solutions prior to their formal combination.
Whereas the uncertainties in the continuous GPS site veloci-
ties were estimated using a method that accounts for non-random
sources of noise in GPS time series (described above), estimating
realistic uncertainties for campaign site velocities is more difficult
since the noise characteristics of campaign sites are poorly known.
White-noise-only models, as assumed in estimating velocity un-
certainties via standard linear regressions of station position time
series, may underestimate velocity uncertainties by a factor of 5
to 11 (Mao et al., 1999). To approximate realistic velocity uncer-
tainties at the campaign sites, we first determined formal velocity
uncertainties via standard weighted linear regressions of the sta-
tion coordinate time series. The formal uncertainties were typically
±0.1 to ±0.2 mm/yr, smaller than the velocity uncertainties for
continuous sites with comparable time spans. We therefore in-
creased the formal velocity uncertainties for the campaign sites by
a factor of three, such that the adjusted velocity uncertainties were
larger than for continuous GPS sites with comparable observation
time spans (∼10 yr). Given the subjective nature of this adjust-
ment, we also repeated the kinematic tests described below while
using campaign velocity uncertainties that were increased by a fac-
tor of four. Using these more conservative error estimates did not
however significantly alter any of the results or conclusions pre-
sented below.

3.2. Island motions relative to Nubia and Eurasia plates and the
Pico–Faial volcanic ridge

In order to test a variety of hypotheses related to deformation
in the Azores, we analyzed the campaign site velocities in three
frames of reference, one fixed to the Eurasia plate (Figs. 5 C and D),
one fixed to a frame of reference that minimizes the motion of
stations on Pico and eastern Faial islands (Fig. 5a), and one fixed to
the Nubia plate (not shown, but discussed below). The results for
Terceira, S. Jorge, and Pico and Faial islands are described below.
Note that Pico and Faial islands occupy the same volcanic ridge.

3.3. Terceira Island

The 13 GPS sites on Terceira Island move systematically faster
to the west than predicted by the Eurasia plate angular velocity
(Fig. 5C), at rates that vary between 1 and 2.8 mm/yr (Fig. 5D). The
average rate near the centre of the island, 2 ± 1 mm/yr (2-σ ), is
nearly half of the Nubia–Eurasia rate at this location (Fig. 5d), con-
sistent with the island’s location inside the Terceira Rift and along
the plate boundary (Fig. 2). Further discussion of this velocity field
and its implications for the volcanotectonics of Terceira Island and
vicinity will be presented in a future paper.

We tested for statistically significant motion of Terceira Island
relative to the Eurasia plate using the Stein and Gordon (1984) test
for an additional plate boundary, as follows: separate inversions of
the 69 Eurasia plate site velocities and 13 Terceira site velocities
were used to estimate best-fitting angular velocities and least-
squares misfits for the Eurasia plate and an independently moving
Terceira Island. A simultaneous inversion of all 82 velocities was
used to a single angular velocity to describe Eurasia plate motion
including Terceira Island. We then use the F -ratio test to evaluate
whether the former, two-plate model improves the fit significantly
relative to the latter one-plate model. The outcome, F = 21.5 for 3
versus 158 degrees of freedom, indicates that the one-plate model
degrades the fit at high confidence level (much greater than 99%).
The kinematic evidence thus strongly supports significant motion
of Terceira Island relative to the Eurasia plate.

3.4. S. Jorge Island

On average, the 15 S. Jorge GPS sites move WSW away from
the Eurasia plate at 2.7 ± 0.7 mm/yr (2-σ ) (Figs. 5 B and C) and
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Fig. 5. A: GPS site velocities (red arrows) and Nubia plate motion (black arrow with 1-σ uncertainty) relative to Pico/Faial volcanic ridge (VR). Black arrow gives the scale.
Velocity error ellipses are omitted for clarity. Blue arrow indicates mean tensional axis for eight earthquakes shown in Fig. 2A (see text). B: Topography and bathymetry
along the dashed line in Part C. C: GPS site velocities (red arrows) relative to Eurasia plate. Bold red and black arrows show Nubia plate motion predicted by the best-fitting
GPS-derived Nubia–Eurasia angular velocity (Table 1) and MORVEL (DeMets et al., 2010). Blue velocity error ellipses are 1-σ . D: GPS site velocities collapsed onto a WSE-ENE
transect of the islands (indicated by dashed line in C). Circles show site velocities from Panel B rotated onto N67◦E, the Nubia–Eurasia plate slip direction predicted by
MORVEL in the study area. Error bars are 1-σ . Sites on Terceira Island move ∼1 mm/yr with respect to the Eurasia plate. Grey bars show weighted average rates and formal
1-σ uncertainties. Open circles show site velocities on Faial Island possibly biased by recent volcanic deformation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
∼1 mm/yr to the WSW away from Terceira Island (Fig. 5D). The
velocities of sites located in the NW and SE sectors of the is-
land differ by ∼1 mm/yr (Fig. 5A), indicating that slow intra-island
deformation occurs (Mendes et al., 2013). In Section 5.2, we use
velocities from S. Jorge to test the hypothesis that the Terceira Rift
accommodates all Nubia–Eurasia motion.

Relative to the Nubia plate, sites in the NW sector of S. Jorge
move 2–2.5 mm/yr toward the east, and sites in the SE sector
move 1.5–2 mm/yr toward the SE (not shown), consistent with re-
sults reported by Mendes et al. (2013). The island therefore does
not move with the Nubia plate, a conclusion that is independent
of which sector of the island best represents its long-term mo-
tion. We refer readers to Mendes et al. (2013) for a more complete
description of their GPS velocities and interpretation of the ve-
locity field in the context of the volcanotectonic setting of the
island.

3.5. Pico and Faial islands

Pico and Faial islands, which occupy the Pico/Faial volcanic
ridge, move WSW away from the Eurasia plate (Fig. 5C) at rates of
2–4 mm/yr (Fig. 5D). Relative to the Eurasia plate, the velocities of
the 8 Pico Island sites and 4 sites on the eastern half of Faial Island
average 3.5 ± 0.5 mm/yr (2-σ ), approximately 80% of the Nubia–
Eurasia plate rate (Fig. 5D) and ∼1 mm/yr faster than sites on
S. Jorge Island. To test for significant motion of the Pico/Faial vol-
canic ridge relative to the Nubia plate, we repeated the statistical
test for an additional plate using the 49 Nubia plate site velocities
and 12 velocities from Pico and eastern Faial islands. The differ-
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Fig. 6. Bathymetry of the western end of the TR, in its junction with the MAR axis.
Black heavy lines – ridge axes (MAR and TR). Long-dashed white line – north-
ern shoulder of the TR. Dashed white line – southern limit of deformation and
seismicity, here proposed as the southern boundary of the diffuse Nubia–Eurasia
boundary, based on extension-related structures, seismicity and GPS measurements.
Dash-dot lines – transform faults. Dotted lines mark the limits of a strip of con-
centrated N110◦normal faulting. Bas – basins. Lighting from N. Dashed rectangle
marks the region shown in Fig. 7. JPG image made available by Joaquim Luis
(http://w3.ualg.pt/~jluis/).

ence in the least-squares fits for models that fit these two velocity
subsets with one or two angular velocities is significant at a confi-
dence level much greater than 99%, with F = 23.7 for 3 versus 116
degrees of freedom. We conclude that the Pico/Faial volcanic ridge
moves relative to the Nubia plate (also see black arrow in Fig. 5A).

Given the similarity of the velocities of stations on Pico Island
and the eastern half of Faial Island, we inverted them together to
construct a frame of reference tied to the Faial/Pico volcanic ridge.
The resulting velocity field (Fig. 5a) clearly shows ∼1 mm/yr of
NE-directed extension between the Faial/Pico and S. Jorge volcanic
ridges. It also illustrates that sites in western Faial move relative
to the volcanic ridge farther east. Although the reasons for this
movement are unclear, their proximity to the 1957/58 eruption
that added 1.5 km2 to western Faial suggests a volcanic origin for
the anomalous GPS velocities.

4. Structural and seismic data

4.1. Structural data

In the mostly submarine Azores region, detailed bathymetric
maps are useful for interpreting recent seafloor deformation be-
cause faults are abundant, young (as evidenced by the abundance
of seismic activity), are clearly revealed due to low sedimenta-
tion rates, and are easily recognized due to their significant ver-
tical offsets. We thus invest significant effort below in interpreting
the available bathymetry to provide a framework for understand-
ing both the regional-scale deformation at the western end of the
Nubia–Eurasia boundary and for interpreting the GPS velocities.

The Nubia–Eurasia plate boundary in the Azores is defined by
the following series of features, which are described below and
illustrated in Figs. 6 and 7.
Fig. 7. Close up of Fig. 6, as marked by the dashed rectangle. Note: (1) the gradual
change in orientation of faults marked 1 to 3 in A; (2) the main structural orien-
tations – dominant faults striking N80–110◦ (dashed white lines in A) and N150◦
(long-dashed white line in A), N60◦ faults (e.g. dash-dotted line in A) bounding
some basins, and MAR linear fabric (dotted line in A); (3) the curved graben-horst
outlined in B; (4) suggested boundaries of western termination of the TR, with
deformation mostly by en échelon normal faulting and formation of basins (Bas)
(dashed thick white line in B); (5) the similarity between the shape and orientation
of the two basins marked Bas in black. Full black line in B – axis of the TR. Lighting
from N.

(1) The Terceira Rift is a prominent sigmoidal and deep graben,
which extends several hundred km from the MAR axis (at
ca. 39◦N, 29.89◦W) to the East Formigas Basin near the junc-
tion with the Azores–Gibraltar Fault (Figs. 1 and 6). The rift is
filled at regular spaces (ca. 80 km) by concentrated volcanism
forming islands or seamounts that rise near to the sea surface.

(2) A curved graben-horst structure (Figs. 6B and 7B), west of Faial
and S. Jorge islands, bounded by faults that gradually change
strike from azimuth N160◦ in the N to azimuth N110◦ in the S
(marked 4 in Fig. 7A). The grabens are here called S. Jorge
graben and Faial half-graben, and the intervening tectonic high
here called the S. Jorge–Faial horst (Fig. 7B). The main fault
scarps bounding these grabens are as high as 200 m.

(3) Smaller trapezoidal basins bounded on all four sides by faults
(marked Bas in Figs. 6 and 7). These basins occur along two
lineaments, mostly between Graciosa Island and MAR axis.

(4) Faults arranged en échelon in an ENE-WSW band running from
the N edge of the West Graciosa Basin to close to the MAR axis
(marked 1, 2 and 3 in Fig. 7A); fault strike varies gradually
from N100◦ in the E to N145◦ in the W. From their bathymet-
ric expressions, the faults appear to be normal faults dipping
to W (mostly) and E, thus defining grabens (e.g. the S. Jorge
graben), half grabens (e.g. the Faial half-graben) and horsts
(e.g. the S. Jorge/Faial horst) (Figs. 6 and 7).

(5) Faults with different trends, mostly concentrated along the
N110◦ (white dashed lines in Figs. 6 and 7), N150◦ long-
dashed line) and N60◦ (dash-dotted line) directions.

(6) Close to the MAR axis, fractures and faults are mostly per-
pendicular to the ridge axis (parallel to transforms), and thus
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Fig. 8. Proposed Nu–Eu plate boundary in the Azores. Shadowed area is the diffuse plate boundary inferred from GPS, bathymetric, structural and seismic data. Inset on top
left corner shows kinematics of the Nubia and Eurasia lithospheric plates (DeMets et al., 2010). Dotted lines represent transform faults. Background image is from Google.
strike between N80◦ and N110◦ . These fractures/faults are dis-
rupted by the N150◦ aults (marked 5 in Fig. 7).

(7) Linear volcanic ridges that seem to have grown mostly along
N110◦ fractures, at least during the last 400 kyr (Hildenbrand
et al., 2008, 2012a, 2012b, 2013). The S. Jorge Island lies on
top of the S. Jorge graben, and the Pico–Faial ridge sits on top
of the northern edge of the Faial half graben.

(8) Strip of N110◦ normal faulting stretching from the MAR axis to
the Faial-Pico ridge. This concentration of normal faulting can
be the result of MAR change in strike at around 39◦N (Fig. 6b).

Detailed bathymetric images of some of the major structures
described above, as well as detailed bathymetry around some of
the islands studied in the present work, can be found in Mitchell
et al. (2008, 2012), Quartau and Mitchell (2013), Quartau et al.
(2012), Stretch et al. (2006) and Tempera et al. (2012). Madeira
and Brum da Silveira (2003) reported on the inland expression of
some of the faults described above.

4.2. Seismic data

Earthquake epicentres and focal mechanisms offer useful infor-
mation about the local tectonics (Fig. 2). In general, the widespread
seismicity is consistent with the hypothesis that deformation in
the study area is distributed rather than concentrated along a well-
defined plate boundary. For example, earthquakes located west
of the Pico–Faial ridge are most likely the result of extension
within the Faial half-graben (Figs. 7 and 8), and earthquakes west
of S. Jorge are probably related to opening across the S. Jorge
graben (Figs. 7 and 8). Both support the GPS evidence for dis-
tributed oblique extension between Terceira, S. Jorge, and Pico/Faial
islands.

The few available earthquake focal mechanisms (Fig. 2A) define
two possible fault planes, N100–120◦ and N140–160◦ , both coin-
ciding with the dominant orientations of faults in the bathymetry
(Figs. 7 and 8). Analyses of body waves and aftershocks of the M =
7.2 1980 earthquake (Hirn et al., 1980; Grimison and Chen, 1988;
Borges et al., 2007) suggest that it ruptured an N150◦-striking
fault, thereby implying sinistral strike-slip motion (Fig. 2A). From
body-wave modeling, Borges et al. (2007) also proposed that the
Mw = 6.2 1998 Faial Island earthquake ruptured a N150◦-striking
fault. Matias et al. (2007) also suggested that the 1998 Faial earth-
quake was a shallow (<5 km depth) sinistral strike-slip earthquake
on a N150◦-striking fault. In contrast, Fernandes et al. (2002) were
unable to identify the rupture plane of the 1998 Faial earthquake
based on ground motion and numerical modeling.

Assuming that both of these strike-slip earthquakes ruptured
faults that strike ∼ N150◦ , the faults are oriented at a high angle to
the Nubia–Eurasia plate direction (Fig. 4B) and thus cannot accom-
modate Nubia–Eurasia motion by themselves. By inference, other
faults must accommodate some of the plate movement. Within the
study area, the tensional axes for the eight strike-slip and normal-
faulting earthquakes between 29.5◦W and 27.5◦W in Fig. 2A are
nearly all oriented NNE–SSW. The average T axis orientation for
these eight earthquakes, N22◦E (indicated by double-headed ar-
rows in Figs. 2 and 5B), is perpendicular to the volcanic ridges oc-
cupied by S. Jorge and Pico and Faial islands, which trend N110◦E.
The direction of principal instantaneous extensional strain indi-
cated by the earthquakes is thus consistent with (i.e. orthogonal
to) the trends of the main volcanic ridges. The average T axis is
however oriented 45◦ and 70◦ counter clockwise from the Nubia–
Eurasia directions predicted by the MORVEL and GPS angular ve-
locities for Nubia–Eurasia motion, respectively.

The discrepancy between the predicted plate motion and the
seismic deformation can be reconciled by one or more of the fol-
lowing: (1) The earthquakes recorded during the past few decades
may not fully characterize the long-term deformation in the study
area given the slow deformation rates, (2) crustal extension south
of the Terceira Rift may be accompanied by aseismic block rota-
tions, and (3) partitioning of the plate motion could occur, possibly
between structures in the Terceira Rift and the volcanic ridges SW
of Terceira Island.

In summary, well-constrained, high-magnitude earthquakes
summarized in Borges et al. (2007) and augmented by more recent
earthquakes (Fig. 2A) indicate that earthquakes are dominantly
normal-faulting or strike slip. At least some of the latter record
sinistral strike-slip motion along faults trending N150◦ , at high
angle to the predicted plate motion. The bulk of the evidence
suggests that deformation is diffuse and may include either block
rotations south of the Terceira Rift or partitioning of distinctly dif-
ferent motions within different domains of the study area in order
to accommodate the predicted motion between Nubia and Eura-
sia.
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5. Discussion

5.1. GPS constraints on inter-island motions

A comparison of the GPS velocities of Pico, Faial, S. Jorge and
Terceira islands with the Nubia–Eurasia velocity in the Azores
region (ca. 4.5 mm/yr, DeMets et al., 2010) shows that the is-
lands belong to neither the Eurasia nor Nubia plates. Relative to
Eurasia, Terceira moves ca. 2 mm/yr to the west, a likely result
of its location within the Terceira Rift. S. Jorge, which lies on
the southern shoulder of the Terceira Rift WSW of Terceira Is-
land, moves WSW at ca. 3 mm/yr relative to the Eurasia plate.
S. Jorge thus moves away from Terceira at ca. 1 mm/yr, as the re-
sult of aggregate opening across the Terceira Rift and the S. Jorge
graben (Figs. 5 and 8). Faial and Pico move to the WSW away
from Eurasia at ca. 3.5 mm/yr faster than both S. Jorge and
Terceira islands, and consistent with distributed oblique diver-
gence between the NE edge of the Terceira Rift and Pico/Faial
islands.

5.2. Is the Terceira Rift the Nubia–Eurasia plate boundary?

The new GPS velocities permit a strong test of the hypothesis
that the Terceira Rift is the sole plate boundary structure. Since
Terceira Island is located within the rift, GPS velocities from Ter-
ceira Island cannot be used for the test. Rather, GPS velocities
from S. Jorge, the nearest island WSW of the Terceira Rift, must
be used. As is shown in Fig. 5D, sites on S. Jorge Island move
to the WSW from 2 to 4 mm/yr and average 2.7 ± 0.7 mm/yr,
ca. 60% of the Nubia–Eurasia plate rate (Fig. 5D). A statistical test
for significant motion between S. Jorge and the Nubia plate passes
with high probability (�99% confidence level). The hypothesis that
all Nubia–Eurasia motion is accommodated by the Terceira Rift, as
suggested by Vogt and Jung (2004), is thus inconsistent with the
current GPS data. The available data instead suggest a lower bound
of 2 ± 1 mm/yr of extension across the Terceira Rift (Fig. 5D), and
an upper bound of 2.7 ± 0.7 mm/yr based on GPS sites motions
on S. Jorge Island and the unlikely assumption that no extension
occurs across the S. Jorge graben between S. Jorge and Terceira is-
lands.

5.3. Implications for Nubia–Eurasia plate boundary geometry

Taken together, the GPS, bathymetric, and seismic data define
the volcanic and tectonic framework of the western end of the
Nubia–Eurasia plate boundary. The central question of our analy-
sis is whether these data favor a model in which deformation is
distributed across a wide zone encompassing the northern half of
the Azores plateau or a model in which most or all of the plate
boundary slip is confined to a narrow zone. As described above,
the GPS observations reject a narrow boundary that coincides with
the prominent Terceira Rift. The existence of numerous ESE–WNW-
trending faults that cross-cut the young abyssal hill fabric of the
MAR between 38.4◦N and 39.3◦N (Figs. 7 and 8), within what
would otherwise be defined as the Azores microplate, strongly ar-
gues against a narrow-boundary (or rigid microplate) model. The
ESE-WNW-striking faults appear to connect the MAR to the zone
of distributed oblique extension defined by Terceira, S. Jorge, Faial,
and Pico islands, and thus define a diffuse boundary between the
Nubia and Eurasia plates. The distributed seismicity in the same
area as these crosscutting faults (Fig. 2B) constitutes additional
evidence for distributed deformation, although the epicentral lo-
cations are too imprecise to strictly assign the earthquakes to well
identified cross-cutting faults.

If the Nubia–Eurasia plate boundary were narrow at the triple
junction, seafloor spreading rates would change suddenly along
the MAR immediately north and south of the triple junction. The
spreading rates instead change gradually (see Fig. 22 in DeMets et
al., 2010), indicating there is either a rigid or nearly rigid Azores
microplate moving independently of Nubia and Eurasia east of the
MAR axis between ∼38◦N and 39.5◦N, or that distributed defor-
mation occurs across a ∼140-km-wide zone east of the MAR axis.
The evidence outlined in the previous paragraphs clearly favors the
latter possibility.

The pattern of GPS velocities and horst-and-graben morphology
between Terceira, S. Jorge, and Pico/Faial islands (Figs. 5, 7, 8) offer
further evidence for an accommodation of Nubia–Eurasia motion
across a wide rather than narrow zone. The GPS velocities clearly
show that WSW-directed extension (relative to the Eurasia plate)
is accommodated by a combination of opening across the Terceira
Rift and smaller scale grabens WSW of the rift (Fig. 5). GPS site
velocities only begin to reach the full Nubia–Eurasia plate rate at
a distance greater than 140 km south of the Terceira Rift. The GPS
velocities clearly show that the extension across the Terceira Rift
does not account for all of the plate motion, hence the Eurasia-
Nubia plate boundary is not discrete. Oblique extension is instead
distributed across a plate boundary at least 140 km wide spanning
the islands of Terceira, S. Jorge and Pico/Faial (Fig. 8).

Based on the GPS velocities, seismic data, and seafloor morphol-
ogy, we hypothesize that Nubia–Eurasia plate motion in the Azores
is accommodated by a wide zone of oblique extensional deforma-
tion limited by the MAR axis in the west, the northern shoulder of
the Terceira Rift in the north, and in the south, by a line that con-
nects the MAR axis at 38.4◦N, 30.5◦W to the East Formigas Basin
(36.9◦N, 23.6◦W), passing south of the Pico–Faial ridge and SE of
the S. Jorge Island. The southern boundary is defined by the transi-
tion from the concentration of faults and earthquakes in the north
to an area in the south where there are few signs of active defor-
mation.

The above interpretation implies that the Azores triple “point”
is better thought of as a diffuse triple junction.

5.4. Limitations due to elastic effects of locked faults and volcanic
processes

At least two factors limit our interpretations of the tectonic im-
plications of the GPS velocity field. First, the influences of volcanic
processes and mass wasting on the GPS velocity field are poorly
understood, but may be potentially important on an island-by-
island basis (Mendes et al., 2013; Miranda et al., 2012). Second,
widespread earthquake activity in the Azores islands (Borges et al.,
2007 and Fig. 2B) clearly suggests there are multiple locked faults
within our study area. Interseismic elastic deformation associated
with these faults and possible viscoelastic effects from large earth-
quakes during the past few decades both affect the GPS velocity
field in the study area to an unknown degree. Depending on the
spacing and geometry of the active faults, their elastic effects may
overlap and give rise to a GPS velocity field more characteristic of
continuous than discrete deformation.

Unfortunately, estimating these location-dependent elastic ef-
fects via forward modeling requires knowledge of the principal
active faults and their long-term slip rates. Neither are well known
– historic earthquakes near Pico, Faial, S. Jorge and Terceira islands
are dominantly strike-slip events on submarine faults distributed
within the study area (Fig. 2A and Borges et al., 2007). Given the
uncertainties in modeling the elastic deformation and the sensitiv-
ity of the predicted elastic deformation to the input parameters,
we elected not to model those effects.

Inverse modeling of the GPS velocity field and other kinematic
constraints such as earthquake focal mechanisms could conceivably
be used to discriminate between rigid or semi-rigid microplate and
continuum or distributed deformation models for this region (e.g.
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McCaffrey, 2002; Meade and Loveless, 2009). Such models however
require information about the locations and geometry of the prin-
cipal block-bounding faults, which, as noted above, remain poorly
known for the study area.

6. Conclusions

From newly determined GPS velocities from the Azores archi-
pelago, and Eurasia and Nubia plates, we find that oblique WSW-
ENE extension between the Nubia and Eurasia plates is accom-
modated across a series of horsts and grabens that include the
Pico/Faial volcanic ridge, which moves mostly with Nubia, Ter-
ceira Island, which moves mostly with Eurasia, and S. Jorge Island,
whose motion is intermediate between that of Nubia and Eura-
sia. From these observations and existing bathymetric and seismic
data, we conclude the following:

1. The Nubia–Eurasia plate boundary at the longitude of the
Azores is diffuse, comprising a ca. 140-km-wide zone of de-
formation shown in Fig. 8.

2. The opening rate in the Terceira Rift is much smaller than
previously thought, because it does not take up the whole de-
formation imposed by the motions of Nubia and Eurasia.

3. The Azores Triple Junction is diffuse, stretching along the MAR
axis between 38.3◦N, 30.3◦W and 39.4◦N, 29.7◦W, where
spreading rates decrease gradually from ca. 22.5 mm/yr N of
40◦N to 19.5 mm/yr S of 38◦N.

4. The new data do not require the existence of an independent
Azores microplate.
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Figs. 6 and 7 of this paper are images of high-resolution
bathymetry of the Azores Plateau, kindly provided to us by
Dr. Joaquim Luis. However, because these data are not yet released
or published, Dr. Luis did not intend to give formal permission to
include the images in our paper. We therefore regret our prema-
ture publication, in Figs. 6 and 7, of parts of the image offered by
Dr. Luis, and have revised our paper accordingly.

Below is the new text and new versions of Figs. 6 and 7,
which should take the place of the original figures and text. The
new figures were made using the low-resolution bathymetry made
available by Luis at http://w3.ualg.pt/~jluis/misc/ac_plateau1km.grd
(Lourenço et al., 1998).

4.1. Structural data

In the mostly submarine Azores region, bathymetric maps are
useful for interpreting recent seafloor deformation, because faults
are abundant, young (as evidenced by the abundance of seis-
mic activity), clearly revealed due to low sedimentation rates,
and easily recognized due to their significant vertical offsets. We
thus invest significant effort below in interpreting the available
bathymetry (http://w3.ualg.pt/~jluis/misc/ac_plateau1km.grd) to
provide a framework for understanding both the regional-scale de-
formation at the western end of the Nubia–Eurasia boundary and
for interpreting the GPS velocities. The Nubia–Eurasia plate bound-
ary in the Azores is defined by the following series of features:

DOI of original article: http://dx.doi.org/10.1016/j.epsl.2013.08.051.

* Corresponding author. Tel.: +351217500000; fax: +351217500064.
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0012-821X/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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(1) The Terceira Rift, which is a prominent sigmoidal and deep
graben that extends several hundred km from the MAR axis
(at ca. 39◦00′ N, 30◦02′ W) to the East Formigas Basin near
the junction with the Azores–Gibraltar Fault (Fig. 1 and Fig. 6).
The rift is filled at regular spaces (ca. 80 km) by concentrated
volcanism forming islands or seamounts that rise near to the
sea surface.

(2) A curved graben-horst structure (Figs. 6A and 7), west of Faial
and S. Jorge islands, bounded by faults that gradually change
strike from azimuth N160◦ in the N to azimuth N110◦ in the
S (Fig. 6B). The grabens are here called S. Jorge graben and
Faial Half-graben, and the intervening tectonic high here called
S. Jorge/Faial Horst (Fig. 7). The main fault scarps bounding
these grabens are as high as 400 m.

(3) Smaller trapezoidal basins bounded on all four sides by faults
(marked Ba in Fig. 6). These basins occur mostly between the
Graciosa Island and the MAR axis.

(4) Faults arranged en échelon in an ENE-WSW band running from
the N edge of the West Graciosa Basin to close to the MAR
axis (dashed lines in Fig. 6B). Fault strike varies gradually from
N100◦ in the E to N145◦ in the W. From their bathymetric
expressions, the faults appear to be normal faults dipping to W
(mostly) and E, thus defining grabens (e.g. the S. Jorge graben),
half grabens (e.g. the Faial Half-graben) and horsts (e.g. the
S. Jorge/Faial Horst) (Fig. 7).

(5) Faults with different trends, mostly concentrated along the az-
imuths N110◦ (long dashed lines in Fig. 6B) and N150◦ (long
dash-dotted lines). The MAR fabric (dotted lines) is disrupted
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Fig. 6. Bathymetry (A) and shaded relief (B) built using available bathymetry data (http://w3.ualg.pt/~jluis/misc/ac_plateau1km.grd). A – Bathymetry of the western end of
the Terceira Rift (TR), in its junction with the MAR axis. Note the succession of rhomboidal basins (black Ba) and seamounts/ridges making up the TR axis and shoulders,
respectively. White long-dashed line – TR axis. Black dashed-line – southern limit of deformation and seismicity, here proposed as the southern boundary of the diffuse
Nubia–Eurasia boundary, based on extension-related structures, seismicity and GPS measurements. Ba – basin. Dashed rectangle – position of B. B – Shaded relief (lighting
from NE) of the area marked by dashed rectangle in A. Dotted orange lines – MAR fabric. Dashed yellow lines – en échelon faults with strike varying from N110◦ to N160◦ .
Dash-dotted green lines – N150◦ fault system. Long-dashed white lines – N110◦ fault system, which also mark the limits of a strip of concentrated N110◦ normal faulting.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. 3D surface built using available bathymetry data (http://w3.ualg.pt/~jluis/misc/ac_plateau1km.grd). Note the prominent graben-horst structure close to the junction
between the TR and the MAR. The islands of Terceira (Ter), Graciosa (Gra), S. Jorge (SJo), Pico (Pic) and Faial (Fai) are shown. Con – Condor seamount. NSTR – northern
shoulder of the Terceira Rift (TR). SJG – S. Jorge Graben. SJFH – S. Jorge/Faial Horst. FHG – Faial Half-graben. Vertical lighting.
by the N110◦ and N150◦ faults. The S. Jorge/Faial Horst is
bounded by faults that gradually change direction from N160◦
to N110◦ (Figs. 6 and 7).

(6) Linear volcanic ridges that seem to have grown mostly along
N110◦ fractures/faults, at least during the last 400 kyr (Hilden-
brand et al., 2008, 2012a, 2012b, 2013). The S. Jorge Island lies
on top of the S. Jorge graben, and the Pico–Faial ridge sits on
top of the northern edge of the Faial Half-graben.

(7) Strip of N110◦ normal faulting stretching from the MAR axis
to the Faial–Pico ridge. This concentration of normal faulting
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can be the result of MAR change in strike at around 39◦ N
(Fig. 6B).

This proposed model of distributed deformation is consistent with
high-resolution bathymetry (Luis, personal communication, 2012),
which shows faults that crosscut the seafloor fabric.
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With very few exceptions, M N 4 tectonic earthquakes in the Azores show normal fault solution and occur away
from the islands. Exceptionally, the 1998 shockwas pure strike-slip and occurredwithin the northern edge of the
Pico–Faial Ridge. Fault plane solutions show two possible planes of rupture striking ENE–WSW (dextral) and
NNW–SSE (sinistral). The former has not been recognised in the Azores, but is parallel to the transform direction
related to the relative motion between the Eurasia and Nubia plates. Therefore, themain question we address in
the present study is: do transform faults related to the Eurasia/Nubia plate boundary exist in the Azores?
Knowing that the main source of strain is related to plate kinematics, we conclude that the sinistral strike-slip
NNW–SSE fault plane solution is not consistent with either the fault dip (ca. 65°, which is typical of a normal
fault) or the ca. ENE–WSWdirection ofmaximumextension; both are consistentwith a normal fault, as observed
in most major earthquakes on faults striking around NNW–SSE in the Azores. In contrast, the dextral strike-slip
ENE–WSW fault plane solution is consistent with the transform direction related to the anticlockwise rotation of
Nubia relative to Eurasia. Altogether, tectonic data, measured ground motion, observed destruction, and model-
ling are consistentwith a dextral strike-slip source fault striking ENE–WSW. Furthermore, the bulk clockwise ro-
tation measured by GPS is typical of bookshelf block rotations observed at the termination of suchmaster strike-
slip faults. Therefore, we suggest that the 1998 earthquake can be related to theWSW termination of a transform
(ENE–WSW fault plane solution) associated with the Nubia–Eurasia diffuse plate boundary.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Central Azores Islands (Faial, Pico, S. Jorge, Graciosa and Terceira
islands, Figs. 1 and 2) were born during the Quaternary at the Azores
Triple Junction (ATJ), more specifically within the boundary between
the Eurasia (Eu) and Nubia (Nu) plates. The ATJ is currently of the rift–
rift–rift type. The Middle-Atlantic Rift makes the northern and southern
arms, and the eastern arm is made of the Terceira Rift (TR), which
connects to the Gloria Fault and the Azores Gibraltar Fault Zone in the
east (Fig. 1). According toDeMets et al. (2010), there should be anAzores
microplate interacting differently with the neighbouring Eu and Nu
plates (Fig. 1): the Azores–Eu motion should be dextral oblique exten-
sion, and the Azores–Nu motion should be dextral strike-slip along an
ENE–WSW direction. Based on GPS, tectonic and seismic data, Marques
et al. (2013) concluded that the Nu–Eu boundary in the Azores is not
discrete, and therefore the existence of an intervening Azoresmicroplate
is unlikely. Instead, the boundary is diffuse in its western half, with
351 217500064.
deformation accommodated by a ca. 150 km wide strip extending
south of the western half of the TR. This has major implications in the
distribution of strain, because maximum extension (approximately
ENE–WSW) should be similar all over the diffuse boundary. The general
structure in the diffuse boundary (Central Azores) is that of a sequence of
WNW–ESE grabens and horsts (Fig. 2): the Graciosa and Terceira islands
grew inside the TR; the Pico–Faial volcanic ridge sits on the master fault
bounding the Faial Half-graben in the north; and the S. Jorge Island
developed in the middle of a narrow graben, the S. Jorge Graben.

With the exception of the very small area of the islands (Fig. 1), the
Azores crust lies below sea level, which is a strong limitation to directly
observe and characterise deformation. Moreover, appreciable surface
rupture related tomain tectonic andM N 4 earthquakes has not beenob-
served within the islands. Even if there were minor surface rupture, the
superficial effects of very slow deformation imposed by the hyper-slow
differentialmotion between Eurasia andNubia (ca. 4 mm/yr)would not
survive, because erosion, sedimentation and volcanic rates are much
faster than the tectonic rate. For instance, Costa et al. (2014) and
Hildenbrand et al. (2008, 2012a,b) have shown that major periods of
massive island destruction (mostly large-scale landslides and flank
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Fig. 1. Sketch of the general framework of theAzores Triple Junction. Black-rimmed red starmarks the 1998 Faial earthquake.MARand TR are theMid-Atlantic and Terceira rifts, respectively.
GF is the dextral strike-slip Gloria Fault. Full black arrows represent the velocity vectors of Eurasia (Eu) and Nubia (Nu) relative to North America (NA). Full white arrow represents the
velocity vector of Eu relative to Nu. Dotted black line marks the northern shoulder of the TR, which represents the northern Nu/Eu plate boundary for both the diffuse boundary and the
microplate scenarios. Black dashed and black long-dashed lines mark the southern boundaries of the hypothetical Azores microplate and the diffuse Nu/Eu plate boundary, respectively.
White dash-dotted lines represent small circles around the MORVEL Nu/Eu pole (DeMets et al., 2010), which represent the transform direction related to the Nu/Eu boundary. FromW to
E, the Azores Islands are Flores (Flo), Corvo (Cor), Faial (Fai), Pico (Pic), S. Jorge (SJo), Graciosa (Gra), Terceira (Ter), S. Miguel (SMi), and Santa Maria (SMa).
Background image built with data retrieved from http://topex.ucsd.edu/marine_topo/mar_topo.html (Smith and Sandwell, 1997).
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collapses) are intercalated with short periods of fast volcanic construc-
tion, which are able to mask intra-island evidence of the effects of
large-scale tectonics occurring in the underlying plateau.

The Azores earthquakes show a few characteristics that make the
1998 Faial shock unique: (1) it has been reported since the early 1930s
that very rare earthquakes (i.e. of tectonic origin, and M N 4) have seem-
ingly occurred inside the islands (e.g. Agostinho, 1931; Borges et al., 2007;
Machado, 1959). In fact, no major intra-island tectonic earthquake has
been recorded in the Azores since earthquakes can be measured instru-
mentally. Locally, earthquakes occur inside the islands, but they are
mostly related to volcanism rather than tectonics, which is the case, for
Fig. 2. 3D surface with interpreted main tectonic framework (viewed fromWNW). TR is
the Terceira Rift. Fai, Pic, SJo, Gra and Ter correspond to the islands of Faial, Pico, S. Jorge,
Graciosa and Terceira, respectively.
3D surface built using topographic data available at http://w3.ualg.pt/~jluis/misc/
ac_plateau1km.grd (Lourenço et al., 1998).
instance, of the ongoing seismic crisis in the S. Miguel Island (e.g. Silva
et al., 2012). (2) From a total of 24 major earthquakes for which the
focal mechanisms have been computed (e.g. Borges et al., 2007), very
few tectonic and M N 4 earthquakes are strike-slip (4 out of 24), and by
far the large majority shows normal fault kinematics (16 out of 24)
(e.g. Borges et al., 2007; Buforn et al., 1988, 2004; Grimison and Chen,
1988; Hirn et al., 1980; McKenzie, 1972; Miranda et al., 1998; Moreira,
1985; Udías et al., 1976 for a synthesis). (3) The main fault trends asso-
ciated with tectonic M N 4 earthquakes are the WNW–ESE and NNW–

SSE trends. The exception to this most common scenario can be the
Faial 1998 shock, because deformation propagated inland, and the
main source fault is pure strike-slip. Furthermore, this peculiar earth-
quake occurred within the Pico–Faial volcanic ridge (although close to
the northern edge) and it can be related to a different trend (ENE–
WSW), overlooked in the Azores, although of probable large-scale
tectonic meaning as argued in the present paper. These characteristics,
togetherwith the relationshipwith plate kinematics and strains, support
and justify the importance of studying the 1998 Faial shock.

The TR is a ca. 620 km-long sigmoidal graben filled at regular spaces
(ca. 80 km) by large-volume central volcanism making up islands and
large seamounts (Fig. 1). Here we hypothesise that the regular spacing
is due to concentrated volcanism at the intersection between the TR
and transform faults related to the Nu/Eu plate boundary, thus making
up privileged conduits. However, such transforms have never been
recognised, which could be due in part to the low resolution of the
bathymetry. Therefore, we looked for different evidence, in the form
of earthquakes, like the 1998 Faial earthquake, which can be related to
transform motion due to the Nu/Eu interaction in the Azores.

Given the premises and current knowledge outlined above, theques-
tions we address in this article are: (1) which was the fault responsible
for the earthquake? The sinistral NNW–SSE or the dextral ENE–WSW?
(2)Whichone is consistent (or inconsistent)with the knownplate kine-
matics in the Azores? (3) What kind of fault is it? Are there transform
faults associatedwith the Nu/Eu plate boundary? (4)What is themean-
ing of the measured ground deformation? (5) What are the sources of
strain/stress? Our ultimate objective is a better understanding of strain
(mostly faults) in the Azores Triple Junction, in terms of typology,
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distribution, geometry, kinematics, earthquake generation and sources
of stress.

In order to tackle these problems,we used: (1) a 50m resolutionDEM
to evaluate the topography and interpret the main tectonic lineaments;
(2) a detailed structural analysis to recognise and characterise the main
faults, and interpret their tectonic meaning; (3) GPS data to measure,
characterise and interpret the ground motion due to the main shock
and subsequent aftershocks; (4) seismic data to characterise the main
rupture and aftershocks in terms of position, nodal planes, and fault
geometry and kinematics; and (5) modelling to test the consistency
between fault plane solutions, aftershocks, tectonic data, and ground
motion measured from GPS data.

2. Geological setting

Faial constitutes one of the emerged parts of a single volcanic ridge,
the Pico–Faial Ridge, which is elongated along azimuthN110°. According
to Hildenbrand et al. (2012a,b), Faial has threemain volcanic complexes:
a dismantled volcano older than ca. 850 ka, unconformably overlain by
two volcanic complexes, one ca. 360 ka old, and another younger than
ca. 120 ka. The most prominent tectonic feature in Faial is the central
graben affecting the whole island. The fault scarps are clearly visible in
the Faial Graben (Fig. 3), but the actual fault surfaces are only visible
locally, mostly along sea cliffs. Faults and fault scarps strike N110°–120°
on average, and faults dip steeply (60°–70°) to the NNE (in the S) or
SSW (in the N). According to Hildenbrand et al. (2012a,b), the Faial
Graben is younger than 360 ka.

Themain geological features in theneighbourhood of the 1998 shock
are the prominent Faial Graben in Faial Island, and the Pico Volcano
(2351 m above sea level) in western Pico Island.

The 9th July 1998 earthquake (ML= 5.8) was shortly preceded by a
4.9 earthquake, and the combined effect of these two shocks impeded
the adequate registration of the events by the local seismic network.
Only 4 stations were able to record these events, and, as a consequence,
the available hypocentre solution still has a great uncertainty, particu-
larly the focal depth and the fault orientation (Matias et al., 2007).
Following the main shock, thousands of aftershocks were recorded by
the local seismic network in the following months. These data were
Fig. 3. Tectonic framework of the Faial Island, where the fault scarps making up the Faial Graben
view) on normal faults, which indicate a sinistral strike-slip component. Lighting from NE.
used by Matias et al. (2007) to relocate the main aftershocks, recorded
in the first 20 days following the main shock, by joint inversion of
hypocentres and 1D velocity models. After relocation, the aftershocks
present a complex shape, with the majority distributed along a main
N–S direction, therefore making an angle N20° with one of the fault
planes (N151°) of the centroidmoment tensor (CMT, Harvard Universi-
ty) solution for the main shock. Refined hypocentral solutions, derived
from 3D tomographic inversion, were later presented by Dias et al.
(2007), with decreased spatial dispersion and showing an aftershock
distribution in two main directions: N–S and ENE–WSW. In terms of
focal depth, most aftershocks are located between 3 and 13 km, with
shallower events occurring inland Faial. Events with focal depths less
than 6 km occur in the NE sector of the island, associated with the
main faults bounding the Faial Graben in the N.

Fernandes et al. (2002) used a set of GPS data acquired in 1997 and
1998 (onemonth after themain event) in a network of marks distribut-
ed all over Faial, in order to constrain the parameters that define the
fault that generated the main shock. They analysed two solutions, the
N61° dextral strike-slip, and the N151° sinistral strike-slip computed
by CMT, and concluded that, from geodetic data and statistical criteria,
it was not possible to decide for the strike direction of the main shock.
Anyway, Fernandes et al. (2002) estimated the fault geometry for both
hypotheses. In the model, triggering effects were not considered,
resulting in poor model fit to the observations in NE and SW Faial.
Neighbouring geodetic marks in NE Faial show opposite displacement di-
rections, which were interpreted by Fernandes et al. (2002) as a possible
interaction of themain rupturewith the Faial Graben. In the present study
weused tectonic and seismic data, and numericalmodelling to showhow
the main shock interacted with the two master faults bounding the Faial
Graben in the north.

Interferometric synthetic aperture radar (InSAR) was applied to the
available set of ERS images, aimed atmapping the deformation resulting
from the 1998 seismic crisis (Catita et al., 2005). Despite the adverse
circumstances, mainly due to the reduced number of SAR images and
large areas with vegetation, Catita et al. (2005) managed to build fringe
patterns with approximately 3 cm of range change between 1992 and
1998. Although correlation breaks down in many areas, the fringe
pattern is legible in NW Pico Island. The fringe pattern detected in this
stand out. RF— Ribeirinha Fault. LGF— Lomba Grande Fault. Arrowsmark bends (in plan
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part of Pico can be related to the synthetic model computed from the
fault parameters of Fernandes et al. (2002) (see Fig. 9), and Catita et al.
(2005) concluded that the observed interferometric fringes generally
agree with the synthetic models and, therefore, are coherent with the
available seismic and GPS data.

3. Data

3.1. GPS velocities

A dense geodetic network was installed on the islands of Faial and
Pico, in the early years of the 20th century. The network was first
surveyed with GPS, on regular campaigns, in 1995 (Pico Island) and
1997 (Faial). In 1998, one month after the earthquake, the network was
again surveyed with GPS, but only occupying 32 stations (29 on Faial
and 3 on Pico). All the surveys were performed with dual-frequency
GPS receivers, collecting data every 15 s and occupying stations for 1 to
4 h. The mean baseline length between stations is ca. 3000 m.

The GPS data were analysed and processed by Fernandes et al.
(2002) using Bernese software. The mean position of the geodetic
marks was estimated by least squares adjustment of the GPS baselines,
fixing the position of FAIM station (in Horta) on the three campaigns.
The displacement field was calculated as the difference between the
estimated coordinates for the 32 stations in 1995, 1997 and in 1998.
The displacement vectors are shown in Fig. 4.

3.2. Main earthquake and aftershocks

The CMT solution for the Faial earthquake (Figs. 5 and 6D) shows the
existence of twonodal planeswhere themain shockmayhave occurred:
N61° (ENE–WSW)andN151° (NNW–SSE). The fault plane solution indi-
cates vertical dip and almost pure strike-slip motion in both faults: left-
lateral in the NNW–SSE fault, and right-lateral in the ENE–WSW fault.

The relocation of aftershocks with the 3D tomographic model (Dias
et al., 2007, and thiswork) (Fig. 5) shows a pattern that is only seeming-
ly simple to interpret. Relocated aftershocks also show the reactivation
of the twoWNW–ESE main faults making up the northern boundary of
the Faial Graben. Two main trends strike approximately orthogonal to
each other: one ENE–WSW (blue line in Fig. 5), and the other NNW–

SSE (yellow line in Fig. 5). However, both trends are composed of two
main concentrations of aftershocks: (1) one offshore (where the main
Fig. 4. Themeasured displacements (blue arrows) show threemain features: (1) clockwise rotatio
displacements to south and north of the RF fault in NE Faial. (3) Counter clockwise rotation of we
shock occurred) that trends ENE–WSW, and the other onshore trending
WNW–ESE and reactivating the northernmost faults of the Faial Graben.
(2) The NNW–SSE trend shows two concentrations of aftershocks, both
offshore: one in the south,more linear and striking ca. N175° (black line
in Fig. 5), and the other in the north and approximately circular. Both
NNW–SSE and ENE–WSW trends show a wide distribution of after-
shocks, not the discrete linear concentration expected for single and
vertical faults (the CMT solution for the Faial earthquake). Therefore,
we made three seismic sections across the two main trends to find the
dip of the main faults (Fig. 6). The seismic sections show an ENE-
WSW fault dipping ca. 80° to the SSE (Fig. 6B), a NNW–SSE fault dipping
ca. 65° to theWSW (Fig. 6C), and aWNW–ESE fault (Faial Graben) dip-
ping ca. 65° to the SSW (Fig. 6A). The NNW–SSE and WNW–ESE faults
have the typical dip of normal faults, while the ENE–WSW fault dips
steeply like a strike-slip fault.
3.3. Seismic intensity

As shown by the isoseismal maps in Matias et al. (2007), Oliveira
et al. (2012), Senos et al. (1998) and Zonno et al. (2010), the main
destruction occurred in Faial, especially in the NE corner of the island
where destruction was maximal (Fig. 7). In contrast, damage in Pico
and S. Jorge islands was reduced or even minimal, and mainly concen-
trated on the capital village in westernmost Pico, and confined to a
small village in WNW S. Jorge.
4. Co-seismic modelling/GPS data inversion

The co-seismic displacementswere determined by coordinate differ-
ence of the GPS surveys carried out in 1995 (Pico, 3 geodetic marks),
1997 (Faial, 29 geodetic marks) (Catalão et al., 2006), and 1998 (in the
same geodetic marks, one month after the earthquake), assuming that
there were no other significant volcanic or seismic events in those
periods. For more detailed information see Fernandes et al. (2002).

The spatial distribution of the observations is asymmetric relative to
the ENE–WSWfault plane,with fewobservations on the northern block.
Moreover, the epicentre is in the ocean, on the northern flank of the
Pico–Faial Ridge, and so does most of the rupture surface. According to
the isoseismal information, the earthquake was weakly felt in S. Jorge
Island (NE of Faial), with minimal observed damage only in the NW
n of the island southwest of the fault that bounds the Faial Graben in the N (RF). (2) Opposite
stern Pico. GPS surveyed in 1997 and 1998.
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Fig. 5.Mapwith location of the main shock (yellow star) and respective fault plane solution (beach-ball, from Borges et al., 2007), representation of the relocated aftershocks (red dots),
seismic stations (blue and yellow triangles, the latter used to locate the main shock), and the seismic profiles shown in Fig. 6. The yellow, black and blue full lines represent the N155°,
N175° and N75° possible fault planes. Background DEM of the islands built from topographic data supplied by Instituto Geográfico do Exército (IGeoE, Portugal), with vertical and
horizontal resolutions of 10 m and 50 m, respectively.
Background bathymetry from Lourenço et al. (1998), with 100 m resolution.

Fig. 6. A, B and C— Seismic profiles B–B′, C–C′ and D–D′, respectively, showing the distribu-
tion of aftershocks at depth, overlying the tomographic model of Dias et al. (2007). Inferred
faults are represented by black full lines. D — Fault plane solution according to the CMT
solution of Harvard University.
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sector of the island (e.g. Matias et al., 2007); therefore, we can assume
that there was negligible deformation in S. Jorge.

In order to constrain the mathematical model, we used: (1) the
measured ground motion (Fernandes et al., 2002); (2) the direction
and dip of the faults inferred from the seismic data (this study);
(3) the structural data regarding onshore faults where seismicity was
observed (Hildenbrand et al., 2012a,b); (4) the depth estimated from
the seismic data (Dias et al., 2007; Matias et al., 2007); (5) the earth-
quake magnitude (Borges et al., 2007; Matias et al., 2007) to estimate
the corresponding rupture surface (e.g. Wells and Coppersmith, 1994,
their Fig. 16); and (6) the line of sight deformation measured with
SAR interferometry (Catalão et al., 2011; Catita et al., 2005). The inclu-
sion of these measurements in the model results in a directional and
positional constraint for the estimated fault parameters of the main
shock. Contrary to previous studies (Dias et al., 2007; Fernandes et al.,
2002; Matias et al., 2007), in this study we assume that the main event
interacted with the fault system of the Faial Graben, causing displace-
ment on its northern faults, as observed in the aftershocks. The problem
is the actual kinematics of these faults: the main component is that of
normal faults, but the horizontal component is not obvious. From the
bends marked with arrows in Fig. 3, we can deduce a left-lateral
strike-slip component, which is in agreement with the bookshelf struc-
ture expected at the termination of a strike-slip fault or fault rupture
(e.g. Lin et al., 2010; Ron et al., 1986, their Figure 6).

We modelled the observed coseismic displacement using a rectan-
gular model fault, along which the displacement is uniform and the
top is parallel to the Earth's surface, according to Okada's (1985) algo-
rithm. An elastic, homogeneous and isotropic half-space with a rigidity
of 30 GPa was assumed. The inversion was done using the non-linear
generalised inverse algorithm developed by Briole et al. (1986), which
estimates the parameters of the fault and fault plane displacement
that best fit the GPS data. The fault parameters were estimated using
weighted least squares inversion of the east and north displacement
vectors, with the data weighted by the reciprocal of the square of the
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Fig. 7.Macroseismic intensity (modifiedMercalli scale) inferred for the Faial and Pico islands (modified after Senos et al., 1998). Red star marks the location of the 1998 Faial main shock.
Black straight lines represent the nodal planes. Red lines mark the faults in the Faial Graben where aftershocks occurred. Yellow-rimmed black dots represent the relocated aftershocks.

120 F.O. Marques et al. / Tectonophysics 633 (2014) 115–125
estimated error. The estimated error for each campaign is between
1 mm and 7 mm for the horizontal component (with an average of
4 mm), and between 3 and 14 mm for the vertical component.

The inversion process was performed in three steps. (1) In the first
step, we used the initial solution given in the CMT catalogue and esti-
mated the 8 parameters describing the fault of themain event (location,
depth, length, width, strike, dip, strike-slip, dip-slip) by changing the
original position of the epicentre (latitude, longitude, depth) supplied
by SIVISA, which is feasible considering the uncertainties of ca. 5 km
associated with that solution (Matias et al., 2007). Given the geological
setting, the ground motion, and the isoseismal distribution, we consid-
ered for the initial solution the ENE–WSW right lateral fault (fault 1a in
Table 1). (2) In the second step, the residuals of the first inversion (com-
puted as the difference between GPS and modelled displacements)
were used to estimate the parameters of the two northernmost main
faults of the Faial Graben: the Ribeirinha and Lomba Grande faults,
which strike N120° and dip 60°–70° to the SSW (Hildenbrand et al.,
2012a,b). The evidence of the displacement on these structures is
given in Figs. 5 and 6. Some of the relocated seismic events are shallow
events (about 4 km) and inside the island. In the inversion process,
some of the parameters of these two faults were constrained: the posi-
tion, and strike and dip obtained by field measurements (Hildenbrand
et al., 2012a,b); the depth of the fault (ca. 4 km given in Dias et al.,
2007), and the length estimated by the trace at the surface. (3) In the
third step, the position, direction and size of the three faults were
fixed, and the slip parameters estimated on a single systemof equations.
The results are shown in Table 1. The measure of misfit, given by the
reduced chi-square, was computed as the ratio between the
weighted residual sum of squares and degrees of freedom (number
of data − number of parameters). The reduced chi-square was
Table 1
Fault parameters determined from inversion of GPS data. Depth refers to the top of the fault.

Fault Length (km) Width (km) Dip (°) Strike (°) Lat (°N) Lon

1a 12 5.5 83 264 38.6184 28
1b 6 5.5 89 175 38.5964 28
1c 10.6 5.5 89 155 38.6118 28
2 2 1 70 118 38.5986 28
3 2.2 1 70 118 38.5932 28

Using the same data uncertainties, the reduced chi-square is: fault 1a = 1.06; fault 1b = 1.6;
determined for the 3-faultmodel solution based on the data uncertainties
(10 mm for the horizontal and 21 mm for the vertical), and on the num-
ber of 32 stations and 9 parameters. For this model the reduced chi-
square was 1.8. Amisfit of 1 would indicate that the residuals are statisti-
cally consistent with the data errors. In this case we have assumed that
data uncertainties are too optimistic, and we decided to scale the uncer-
tainties by two (~1.8). The obtained reduced chi-square is now 1.06. If
we assume only the main event, and using the same data uncertainties,
the misfit increases to 1.4, meaning that this fault model does not fit the
physical phenomenon as well as the proposed 3-fault model.

The optimal uniform-slip dislocation closely follows the displace-
ment measured in the field, and is consistent with the alignment of
aftershocks. Furthermore, this 3-fault model is able to reproduce the
measured dislocation in NE Faial. In this model, the largest surface
deformation occurs onshore NE Faial, as confirmed by the high level of
destruction in this area (e.g. Oliveira et al., 2012). The geodetic moment
magnitude is Mw = 6.18, consistent with the CMT catalogue. The sur-
face projections of the three dislocations are shown in Figs. 8 and 9.
They closely follow the coseismic events relocated by Dias et al. (2007).

Following the same procedure, we alsomodelled the two other pos-
sible solutions, as indicated by the CMT fault plane solutions and the
aftershock sequence: the long N155° sinistral strike-slip fault (fault 1c
in Table 1, and red in Fig. 10), and the short N175° sinistral strike-slip
fault (fault 1b in Table 1, and green in Fig. 10).

5. Discussion

The motions between Azores–Eurasia (dextral oblique extension)
and Azores–Nubia (dextral strike-slip), shown by DeMets et al. (2010)
in a scenario with an Azores microplate, have to be reconfigured in a
(°W) Depth (km) Dip-slip (cm) Strike slip (cm) Kinematics

.5550 5 0 −117 Dextral

.5446 4 0 147 Sinistral

.5597 4 0 99 Sinistral

.6306 2 15 0 Normal/sinistral

.6573 2 34 14 Normal/sinistral

and fault 1c = 2.15.
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Fig. 8. Comparison of measured and modelled station displacements for the 3-fault model, with the main ENE–WSW fault. Blue arrows: displacement measured with GPS. Red arrows:
modelled displacement. Red lines: faults.
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scenario without the Azores microplate (Marques et al., 2013). The TR
seems to be taking up most of the oblique extension, as shown by the
prominent graben comprising the TR; therefore, the dextral strike-slip
motion (transform motion) should be taking place south of the TR,
where the boundary with Nubia is diffuse. Here, as in the case of the
Faial 1998 earthquake, the transform direction works as a dextral strike-
slip fault, similarly to the Gloria Fault (GF in Fig. 11), as expected from
the counter clockwise rotation of Nubia relative to Eurasia.

The aftershock sequence shows twomain lineaments, fromwhichwe
infer the position and geometry of twomain faultsmaking an angle of ca.
90° between them (ENE–WSW and NNW–ESE). However, classical rock
mechanics predicts conjugate faults at an angle of ca. 60°. Therefore, we
infer that the faults should be the result of a more complex stress field or
of mixing of structures inherited from the MARwith structures generat-
ed by the Nu/Eu kinematics. Two main fault systems have been
recognised in the Azores (WNW–ESE and NNW–SSE), and a third is
being proposed in the present work (ENE–WSW) (Fig. 11): (1) the
best-known fault system in Central Azores strikes WNW–ESE, which is
Fig. 9. Comparison of model fault location (represented by thick red lines) and seismic events (rep
for the 3-fault model.
responsible for the horst–graben structure shown in Fig. 2. (2) The
NNW–SSE fault system could be generated by the differential motion
between Eurasia and Nubia, and work as pure normal as shown by
most of the available fault plane solutions. (3) The ENE–WSW fault sys-
temhas not been recognised in the Azores, but it is predicted by the plate
velocities reported in DeMets et al. (2010), and in the fault plane solu-
tions of major earthquakes (e.g. Borges et al., 2007; Hirn et al., 1980).
The transform direction is produced by the rotation of Nubia relative to
Eurasia, and changes strike along the TR, as shown by the plate velocity
configuration in the Azores (DeMets et al., 2010). Locally, as in the case
of the Faial 1998 earthquake, the transform direction works as a dextral
strike-slip fault, similarly to the Gloria Fault (Fig. 11), as expected from
the counter clockwise rotation of Nubia relative to Eurasia.

The NNW–SSE faults in the Azores, dipping to the WSW or ENE, are
typically normal faults according to the fault plane solutions available
(cf. Figure 8 in Borges et al., 2007). This is consistentwith the relativemo-
tion between Eu and Nu (DeMets et al., 2010), because the NNW–SSE
trend is orthogonal to the principal extension in the diffuse Nu/Eu
resented by yellow-rimmed black dots). Coloured overlay is modelled station displacements

275

image of Fig.�8
image of Fig.�9


Fig. 10.Comparison ofmeasured andmodelled station displacements for a 3-faultmodel,with amain shortN175° sinistral strike-slip fault (green), or amain longN155° sinistral strike-slip fault
(red). Note that: (1) the long N155° fault model solution cannot reproduce the measured ground displacement (black arrows), with displacement directions everywhere at high angle to the
measured displacement; and (2) the short N175° fault model solution cannot reproduce themeasured ground displacement, with displacementmagnitude everywheremuch smaller than the
measured displacements.
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boundary. Given that the two NNW–SSE fault plane solutions correspond
to normal faults, it is not relevant if the normal fault dips to the ENE or to
the WSW; it is normal fault in any case. In contrast, when the fault plane
solution shows two vertical pure strike-slip faults, one sinistral (striking
NNW–SSE) and the other dextral (striking ENE–WSW), then a problem
of consistency arises: the NNW–SSE fault strikes orthogonal to the maxi-
mum extension, and thus should not be a pure strike-slip fault; it should
be a pure normal fault, as observed when the two fault plane solutions
trend NNW–SSE and dip around 65°. In fact, the NNW–SSE fault inferred
from the 1998 Faial aftershock sequence dips ca. 65°, which means that
it is consistent with normal faulting. The alternative, which is the main
thesis of the present paper, is that the main shock occurred on the fault
corresponding to the fault plane solution that trends ENE–WSW, which
is coincident with the transform direction related to the rotation of Nu
relative to Eu in the Azores, and therefore consistent with plate kine-
matics and induced strain. Similarly to the Gloria Fault (Fig. 11), the
Fig. 11. Schematic representation of plate distribution and kinematics (arrowswith reference to
the small circles related to rotation of Nu relative to Eu (dash-dot lines), andmain fault system
ENE–WSW marked by dash-dot green line). Strike-slip kinematics indicated by black half arr
represent the Mid-Atlantic and Terceira rifts, respectively.
faults trending ENE–WSW should be vertical and pure dextral
strike-slip.

Two main features stand out from the measured velocity field in
Faial (Fig. 4): (1) the opposite velocities in Faial's NE corner, to each
side of the RF and LGF faults, and (2) the concentric velocities in central
Faial. The possible kinematics of the faults making up the Faial Gra-
ben (WNW–ESE) are: (1) pure normal (as observed in fault plane so-
lutions of major earthquakes in the Azores); (2) normal/dextral as
inferred from the angular relationship between fault strike (WNW–

ESE) and direction of maximum extension (ENE–WSW) (Fig. 11); and
(3) normal/sinistral if there is clockwise bookshelf rotation related to
the differential motion between NA/Eu and NA/Nu. Note that the sinis-
tral strike-slip component is consistentwith the release bends shown in
Fig. 3. As shown by modelling, the velocities in NE Faial can only be
explained if there is oblique displacement on the northernmost faults
of the Faial Graben, i.e. only if a sinistral strike-slip component is
the involved plates, DeMets et al., 2010), Nu/Eu boundary (marked by dotted black lines),
s (NNW–SSE marked by long-dashed yellow line; WNW–ESEmarked by dashed blue line;
ows, and normal fault kinematics indicated by half white/half black circles. MAR and TR
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Fig. 12. Sketchwith kinematic interpretation of themeasured groundmotions and estimated
movement on themain fault. Note that theWNW–ESE fault system(making the Faial Graben
and sketched here) works as a bookshelf in response to the observed clockwise rotation
imposed by the dextral movement in the main ENE–WSW fault.
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added to the main normal component, which is consistent with the
tectonics inferred from fault geometry. Although not clearly reproduced
in themodel, the concentric velocity field in central Faial can be explained
if the Faial Graben corresponds to the termination of the ENE–WSW
dextral strike-slip fault (Fig. 12). Similar fault and kinematic configura-
tions (block rotations associatedwith the termination of strike-slip faults)
have been observed and reported by Ron et al. (1986), and measured by
GPS by Lin et al. (2010). Noticeably, the prominent faults onshore Faial are
not visible offshore in the channel between Faial andPico islands (Figure 4
in Tempera, 2009). This is consistent with our hypothesis of a fault termi-
nation, because in such a configuration the displacement on the WNW–

ESE graben faults is attenuated by the displacement on the ENE–WSW
fault. In contrast, it is not consistent with the N175° fault, because there
is no direct interaction with the Faial Graben faults.

The continuation of the ENE–WSW fault to the ENE, toward the TR, is
not clear. On the one hand, its strike may be affected by the local stress
field imposed by the massive Pico stratovolcano, deflecting it toward a
more E–W trend. On the other hand, there is no clear evidence of the
fault trace on the available bathymetry. However, in the nearby S. Jorge
Fig. 13. Schematic representation of themainvolcano/tectonic structures andGPS velocities. Not
Volcano, red circle), and that the line separating the jump inGPSvelocities in S. Jorge (greendash
et al., 2010) is alignedwith the Caldera in the Pico Volcano (red circle). The yellow lines through
tectonic horst/graben structure in the basement (Fig. 2). The red arrows correspond to theGPS ve
the Pico–Faial Ridge developed at the intersection between the WNW–ESE and the ENE–WSW
corner. Black full arrows represent the radial stresses induced by thePico volcanoon the surroun
of the Faial 1998 earthquake. PV-P is the topographic force exerted by the Pico Volcano, a volca
Island (to the ENE of the epicentre) there is a clean-cut jump inGPS veloc-
ities in the middle of the island (Marques et al., 2013; Mendes et al.,
2013), which could be explained by an ENE–WSW transform. GPS veloc-
ities in Figure 5a and c inMarques et al. (2013) show that there is dextral
strike-slip motion along a line passing where the 1998 shock occurred
and through the middle of the S. Jorge Island (Fig. 13). Coincidently, this
line is the transform direction predicted by Morvel for this region, and
also the direction of one of the fault plane solutions of the Faial 1998
shock, the ENE–WSW fault.

The N75° fault inferred from the aftershock sequence is at a small
angle to the local transform direction, which is closer to ENE–WSW in
the Faial area (DeMets et al., 2010). Based on the radial stress field
that develops around conical loads (e.g. Duran, 2000; Marques and
Cobbold, 2002, 2006), we argue that the N75° strike is a local deflection
of the general ENE–WSW transform direction, due to stresses born at
the massive Pico stratovolcano (Fig. 13). Such stresses could also be
responsible for the southwards dip of the N75° fault, by addition of a
vertical component of compression to the far field stresses.

According to the CMT fault plane solutions, the main rupture may
have occurred on two fault planes, the ENE–WSW or the NNW–SSE.
The aftershocks also occurred along two main lineaments, which strike
ca. N75° and N175°. From a geophysical point of view, the main shock
may have occurred on either of the two faults. However, the numerical
modelling using the three possible main faults (N155° long sinistral
fault, N175° short sinistral fault, and N84° dextral fault), constrained
by the aftershock sequence (Figs. 8 and 10), indicates that: (1) the
long N155° fault model solution is not consistent with the measured
ground displacement, because displacement directions are everywhere
at a high angle to the measured displacement (Fig. 10). (2) The short
N175° fault model solution cannot reproduce the measured ground
displacement, because displacement magnitude is everywhere much
smaller than the measured displacement (Fig. 10). (3) The N84° model
fault is the one that best reproduces the measured displacements, in
both direction and magnitude (Fig. 8). Furthermore: (1) the major
destruction was observed in NE Faial, to the W of the epicentre. (2) The
N175° fault deduced from the seismicity alignment shows no spatial
interaction with the Faial Graben faults (Fig. 13). (3) The N175° fault
can only generate an M ~ 6 event if we assume either that the fault
extends to the north (with the NW cluster deviated from it), or that the
fault ruptures the entire crust (which has a thickness here of ~14 km
according to Dias et al., 2007). The proposed ENE–WSW fault has the
e that the ENE–WSWfault (green full line) is alignedwith themainvolcano in Faial (Caldera
-dot line,which represents a small circle around theMORVELNubia–Eurasia pole—DeMets
themain volcanoes in Pico–Faial and S. Jorge ridges are the surface expressions of themain
locitieswith fixed Pico (Marques et al., 2013). It seems therefore that themain volcanoes in
fault systems. Morvel plate velocities (DeMets et al., 2010) are represented at the top-left
ding lithosphere. Blackhalf arrows indicate fault kinematics. The red starmarks the location
nic cone with top at 2351 m above sea level (asl).
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advantage of not requiring a rupture of the entire crust. (4) Last but
most importantly, the Morvel plate velocities and the GPS velocities
shown in Figure 5 of Marques et al. (2013) and reproduced in Fig. 13
are not consistent with a pure strike-slip motion on the NNW–SSE
fault, because maximum extension is orthogonal to the fault plane. In
fact, most of the ca. NNW–SSE fault plane solutions for tectonic earth-
quakes with M N 4 have normal fault kinematics (cf. Borges et al.,
2007), as expected from the known plate kinematics (ENE–WSW
extension). Putting all data together, we conclude that the main shock
occurred on the ENE–WSW fault. Knowing that the ENE–WSW fault is
approximately along the transform direction related to the Nu/Eu
plate boundary, we conclude that the fault responsible for the 1998
Faial earthquake strikes ENE–WSW and can be a transform associated
with the TR.

The differences betweenmeasured groundmotion andmodel veloc-
ities can be the result of model insufficiencies, mostly flat surface
(therefore lack of island topography effects), rigidity in the model, and
small number of faults in the model as compared to nature. The fact
that the NNW–SSE aftershock sequence is more prominent than the
ENE–WSW is not, by itself, guarantee that the main shock occurred on
a NNW–SSE fault. In fact, stress triggering has become a common obser-
vation. For instance, the 1992M=7.4 Landers earthquake changed the
failure stress on the southern San Andreas fault system (King et al.,
1994; Stein et al., 1992). Similarly, many other earthquakes have been
triggered by its predecessors (e.g. Freed, 2005; Stein, 1999; Stein et al.,
1994, 1997 for a review). We conclude that the concentration of after-
shocks along the N175° fault could well mean that it readjusted to mo-
tion along the N75° fault during the main earthquake.

From the complex geometry of the aftershock pattern and continued
seismicity from 1998 to present-day, the aftershock swarm could well
correspond to volcanic seismicity triggered by the main earthquake
and subsequent aftershocks.
6. Conclusions

The fault plane solution and the aftershock sequence of the 1998
Faial earthquake in the Azores show that the main shock occurred on
two possible vertical faults striking NNW–SSE (sinistral strike-slip)
and ENE–WSW (dextral strike-slip). Given that the main earthquake
and aftershocks occurred within the diffuse Nu/Eu plate boundary,
and that the maximum extension there is approximately orthogonal
to the NNW–SSE fault plane solution, we conclude that the vertical
and sinistral strike-slip NNW–SSE solution is inconsistent with the
known plate kinematics in the Azores. There, the main earthquakes on
faults trending close to NNW–SSE, for which the focal mechanisms are
known, show that the faults are neither vertical nor strike-slip; they
dip like classical normal faults, and have the kinematics of normal faults.
In contrast, the ENE–WSW fault is sub-vertical and dextral strike-slip,
thus consistent with the rotation of Nu relative to Eu and the transform
direction in the diffuse Nu/Eu boundary. Therefore, we conclude that
themain earthquake occurred on the ENE–WSW fault, which is a trans-
form related to the Nu/Eu diffuse boundary.

The tectonics observed onshore Faial, the measured displacements,
and the observed destruction, all point to the ENE–WSW fault as the
source fault of the 1998 Faial earthquake, and therefore corroborate
the conclusion reached from plate kinematics and strain. The dextral
clockwise motion and clockwise rotation measured by GPS are typical
of block rotations associated with the termination of strike-slip faults.
Based on the known plate kinematics, fault geometry and kinematics,
we conclude that the ENE–WSWdextral strike-slip fault can be a trans-
form associated with the Nubia–Eurasia plate boundary.

The numerical three-fault models used to test the consistency of
the possible fault planes with the measured ground displacement
indicate that the ENE–WSW dextral strike-slip fault is the best-
fitting solution.
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