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Recherche top-k pour le contenu du Web

Introduction

Dans sa proposition initiale pour le World Wide Web, Tim Berners-Lee imagine un énorme graphe de n÷uds dispersés sur un réseau mais interconnectés et accessibles grâce au protocole hypertexte, un protocole qui a évolué vers l'HTTP qu'on connait. Ces n÷ud ne sont pas que des documents ; pages web ou ressources mais aussi des concepts, des objets physiques, et des personnes. On pourrait voir dans ces n÷uds, qui n'existent pas dans le protocole HTTP actuel, comme les limites de la clairvoyance d'un homme qui, en inventant le Web et en prédisant qu'il s'étendrait pour devenir un système d'information universel à déjà fait beaucoup.

L'histoire pourrait s'arrêter là mais il semble de plus en plus probable qu'elle continue : depuis 2004, Tim Berners-Lee travaille sur le Web Sémantique, une expression qu'il a créée et qui désigne l'intégration dans le Web d'un des n÷uds qu'il liste dans sa proposition initiale: les concepts. Avec des initiatives comme Linked Open Data, la taille du Web Sémantique est en train d'exploser, sans doute même plus vite que celle du Web en son temps. Depuis 2007, LOD en est venu à intégrer plus de mille bases de données, qui contiennent entre elles des dizaines de milliards de faits et des millions de concepts.

Par ailleurs, l'Internet of Things, l'idée selon laquelle les objets physiques de la proposition de Tim Berners-Lee se connectent au Web, est en plein essor, avec plus de vingt quatre mille articles publiés en 2015 sur le sujet.

A voir les progrès de l'intégration des objet physiques et des concepts sur le Web il semble intéressant de se pencher sur l'évolution de l'intégration du dernier type de n÷ud manquant : les personnes. Aucun standard ne s'est vraiment répandu pour décrire les personnes comme des ressources du Web au même titre que des pages web mais il existe néanmoins des eorts comme OpenID qui est accepté par de nombreux services même si il ne permet pas d'établir des connections entre utilisateurs. D'un autre coté les réseaux sociaux ont, depuis leurs créations, acquis une popularité très importante : on estime qu'un adulte passe en moyenne douze heures par semaine sur les réseaux sociaux, avec l'important impact économique et sociétale que cela entraine. Par example, les gros sites de réseaux sociaux ont des revenus proches du PIB de petit pays. Les chires sont marquants, avec 82% iii Tous ces sites avec plus d'utilisateurs que la plupart des pays du G8 ont moins de 15 ans. Lorsqu'on compare aux 25 ans qu'a environ le Web il ne semble pas irraisonnable que les personnes puissent accéder dans un future proche au même statut que les pages web. De plus plus de services, comme youtube ou Tumblr qui n'avaient pas au début vocation à être sociaux de sont mis à intégrer des fonctionnalités sociales et les réseaux sociaux sont devenus le principal moyen de communication d'une part importante de la population et de nombreuses personnalités publiques, artistes, hommes politiques, etc ... Les réseaux sociaux s'avèrent être de très bons sujets de recherche, et pas seulement dans le domaine de l'informatique, mais aussi en sociologie, ou dans la détection des catastrophes naturelles. Dans le cas des tremblements de terre par example, les nouvelles se propagent bien plus vite par les réseaux sociaux que par les canaux ociels.

Le Web est entrain de devenir dépositaire de l'ensemble du savoir de l'humanité, et il est presque certain qu'il sera social.

Démarche

Les réseaux sociaux actuels sont plus qu'un ensemble de relations entre des gens, ils sont construit autour d'un contenu. C'est particulièrement visible sur des sites qui se sont développés à partir de plateformes de contenu comme des blogs, ou des sites d'images ou de vidéos mais c'est aussi le cas pour les réseaux sociaux plus traditionnels comme Facebook ou Twitter où la majorité des données prennent la forme de documents (appelés post ou tweet pour ces sites).

Lorsqu'ils utilisent des réseaux sociaux, les utilisateurs s'attendent à trouver des contenus liés à leurs relations présentes sur le site, par example des nouvelles de leurs amis, des informations sur des associations qui les intéressent ou sur leurs institutions locales. Ce contenu peut être fournis de manière semi automatique par une page d'accueil, sur la page d'un utilisateur ou d'un groupe mais la grande majorité de ces services (et tous les plus gros) proposent une fonctionnalité de recherche par mots clés. Cette fonctionnalité prend souvent la forme d'une barre de recherche où l'utilisateur peut taper des mots clés et, lorsqu'ils sont soumis, un nombre déterminé de résultats sont proposés à l'utilisateur. Ce procédé, appelé recherche top-k, est le principal moyen d'accès pour les utilisateurs aux données des réseaux sociaux ; Facebook par example arme traiter plus de 1,5 milliards de recherches de ce genre par jour. Il est dicile de réaliser à quel point cette recherche est devenue importante dans notre vie de tout les jours car de nombreux moteurs de recherche sociaux peuvent paraitre ne pas traiter cette dimension sociale. Par example depuis l'intégration de Google+ dans le moteur de recherche de Google et de Youtube la recherche sur ces deux sites omniprésents (les deux plus utilisés du monde) est devenue sociale et utilise des connaissances extraites de Google+ iv pour adapter ses résultats. Cela inue tout les jours sur plus de la moitié de la population mondiale connectée à Internet ailleurs qu'en Chine .

La fonctionnalité de recherche proposée par ces sites, dans la mesure où on arrive à l'observer 1 , ou telle qu'elle est décrite dans la littérature scientique, s'appuie essentiellement sur deux facteurs. Tout d'abord la présence dans les documents des mots clés de la requête et de petites variations autour de ceux-ci (corrections orthographiques, forme plurielle ou singulière, féminine ou masculine, transformation d'un adjectif en nom ou l'inverse ...). Ensuite, le voisinage social du demandeur (l'utilisateur qui pose la requête), c'est à dire ses relations directes, les relations directes de celles-ci ou les personnes populaires du réseau social en question. Les résultats d'une requête contiennent donc des mots très proches de la formulation de celle-ci et leurs auteurs doivent être directement reliés à une connaissance du demandeur ou être une personnalité connue.

Au vu de l'importance de la recherche par mots clés et de son omniprésence dans les contextes sociaux, cette approche parait limitée, en particulier elle limite les résultats possibles car elle ne considère pas le sens de la requête mais sa formulation.

Cela peut marcher dans certaines niches mais est insusant face à la complexité et la richesse des langues naturelles. Prenons un example très simple, une recherche sur "chasse espèces menacées". Des documents contenant "la traque d'un lion Asiatique", "le braconnage d'Ara hyacinthes" ou "la prise de raies requins" sont pertinent pour cette requête et ne seront pourtant pas retenus par les moteurs de recherches sociaux actuels à moins qu'ils ne contiennent aussi explicitement des références à "chasse" et à "espèces menacées". Cela aboutit à de nombreux utilisateurs n'obtenant que peu de résultats à leur recherche et devant la reformuler, souvent pour de maigres résultats. Dans ce cas précis il existe de nombreux mots pour désigner des actions ou des évènements impliquant une chasse et plus encore pour les espèces menacées, aboutissant à un nombre de reformulations possibles colossal.

Les fournisseurs de services de recherche par mots clés connaissent ces limitations et prennent lentement des mesures pour essayer de les dépasser. L'un des meilleurs exemple est sans doute la recherche par mots clés de Google en anglais, le moteur de recherche top-k le plus utilisé du monde. Depuis 2009 Google a commencé à intégrer des aspects sémantiques dans son moteur sous la forme de special features qui s'activent lorsque certains termes sont présents dans une requête. Ainsi la présence du mot etymology suivit d'un autre mot va acher chez l'utilisateur un petit cadre décrivant l'étymologie du mot en question. Il existe ainsi quelques dizaines de special features, pour la météo, l'heure, des calculs simples, des traductions ... toutes retournant des informations sur le sens de la requête et non sa formulation. C'est un progrès mais cela ne fonctionne que pour un petit nombre de cas préprogrammés et ne retourne pas des documents pertinents pour 1 Il est souvent impossible d'accéder au code des services web privés. v la requêtes de l'utilisateur, à la place cela construit un unique résultat limité à un environnement bien contrôlé mais n'identie pas de document sur le Web. Google étend aussi les requêtes des utilisateurs pour rajouter des termes qui sont soit des synonymes soit des mots fortement corrélés par leur cooccurrence aux mots clés originaux. Cela aussi est très limité : "lion Asiatique" n'est pas un synonyme d'"espèces menacées" et leur corrélation est sans doute très faible vu le nombre d'espèces menacées.

Une autre limitation des approches top-k actuelles est la prise en compte de la structure des documents. Considérons un requête avec deux mots clés, k 1 et k 2 et les deux réponses possibles suivantes: un texte t 1 de plusieurs paragraphes, où k 1 n'est présent que dans un paragraphe et k 2 est présent dans certains des paragraphes ou k 1 n'est pas. un texte t 2 ayant la même longueur, le même nombre de paragraphes et le même nombre d'occurrences de k 1 et de k 2 mais cette fois-ci toujours dans le même paragraphe, mettons le deuxième du texte. D'une part il existe un paragraphe dans t 2 qui contient les deux mots clés simultanément ce qui suggère que le sujet de ce paragraphe les relie. D'autre part il n'existe pas ce genre de relations entre k 1 et k 2 dans t 1 , les deux mots clés y sont présents mais peuvent n'être que vaguement liés. Dans ce contexte il est probable que t 2 soit plus pertinent que t 1 mais en poussant l'argument on pourrait même dire que le deuxième paragraphe de t 2 est en fait le meilleur candidat car il contient uniquement la partie du texte la plus pertinente pour la requête.

Cette subtilité ne peut être perçue par les moteurs de recherche qui ignorent la structure des documents, par exemple ceux qui fonctionnent sur le modèle du bag of words dans lequel on considère uniquement le multi-ensemble des mots contenus dans chaque document. Il existe bien des approches top-k qui tiennent compte de la structure des documents mais jusqu'à présent jamais dans un contexte social.

La recherche par mots clés, en tant que moyen principal d'accéder aux contenus sociaux, est omniprésente, il est donc crucial de la rendre la plus ecace possible et d'exploiter tous les aspects disponibles. La portée de cette problématique est extrêmement vaste, dans cette thèse nous nous intéresserons uniquement à des requêtes top-k exploitant au mieux la sémantique de la requête et des documents, leur structures et les connections sociales entre utilisateurs.

Contributions

Dans le cadre de cette thèse nous présentons tout d'abord, les notions élémentaires de recherche top-k, de graphes de connaissance, de documents structurés et semi-structurés et de réseaux sociaux. Nous parcourons ensuite l'état de l'art de la vi recherche top-k dans des contextes sociaux, structurels, sémantiques et, lorsqu'ils existent, sur des modèles incluant plusieurs de ces dimensions.

Nous introduisons ensuite un ensemble de contraintes nécessaires à l'intégration de données à la fois sémantiques, structurelles et sociales dans un modèle unié.

Nous présentons un nouveau modèle, S3 qui intègre ces contraintes et montrons comment des instances d'autre modèles de données ayant une composante sociale, structurelle ou sémantique peuvent être plongés dans S3.

Nous développons un moteur, S3 k pour la recherche top-k sur S3, basé sur un score attribué aux documents pour estimer leur pertinence. Nous avons voulu ce score le plus générique possible pour s'adapter à tous les cas possibles en lui demandant uniquement de respecter un petit ensemble de propriétés mathématiques pour assurer un bon niveau de performances à notre moteur. En plus de la dénition de notre moteur, nous proposons un algorithme réalisant S3 k . Nous fournissons aussi la preuve de la correction et la terminaison de cet algorithme.

Une implémentation concrète de cet algorithme est proposée et est évaluée sur des données réelles puis comparée avec un autre système de recherche top-k dans un contexte social.

Enn, nous concluons cette thèse et introduisons des perspectives pour l'utilisation de S3 dans le domaine du journalisme de données.
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In parallel, the Internet of Things, i.e., the idea according to which the specic hardware objects from Tim Berners-Lee's proposals become connected to the Web, is booming, with more than 24,000 published articles containing internet of things 1 Sources for this statement are, in this order:
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Seeing how concepts and specic hardware objects are increasingly present on the Web, it is interesting to look at the evolution of the integration of people on the Web. No real standard has emerged to integrate people as basic web resources at the same level as documents and concepts: there are some standardization eorts such as OpenID All these websites with more users than the population of most G8 countries are less than 15 years old. Compared to the approximative 25 years of the Web it is not a great leap of faith to say that people will achieve the same status as other web resources in the near future: many web services that did not used to be social are now integrating social services, such as for instance Youtube or Tumblr currently.

It can be condently said that social networks are already so common and widely used, that they have become the main means of communication for a large part of the population and for many public gures such as artists or politicians and entities, whether NGOs, governmental agencies or private companies.

Social networks also turn out to be great research elds, even outside computer sciences, for instance in sociology but also more diverse elds like natural disaster detection, e.g., earthquakes [START_REF] Sakaki | Earthquake shakes twitter users: real-time event detection by social sensors[END_REF], where the information spreads much faster through social networks than via the ocial channels.

The Web is emerging as the repository of all the human knowledge, and with very little doubt it will be social.

Motivation

Current social networks are more than just a series of relationships between people: they are built around content. This is very visible for websites that grew out of content-centric platforms such as blogs or image or video providers, but it is also the case for more traditional social network services such as Facebook or

Twitter where the majority of the data takes the form of documents (called posts 2 https://openid.net/ or tweets for these sites).

When using social network services, users expect to nd content related to their acquaintances on the service: news or information from their friends, NGOs they are interested in, their local institutions, etc. This content can be provided semi-automatically on a home page or on the page of a user or a group of users, but the overwhelming majority of these services, and all the major ones, provide a keyword-based search functionality. This functionality often takes the form of a search bar: a text zone where the user can input keywords, and, when these keywords are submitted, a xed number of results are returned. This process, known as top-k keyword search, is the primary means by which users access data on social network services: for instance Facebook claims to have more than 1.5 billions of such searches per day. It is dicult to realize how important this search functionality has become in our daily life because numerous social search engines might not appear to be social: for instance, since the integration of Google+ in the Google search engine and in Youtube, the search on these two omnipresent services (the two most used websites in the world 3 ) has become social and uses knowledge derived from the social network of Google+ to customize its results.

This impacts on a daily basis more than half the world population outside China having an internet connection.

The search functionality provided by these services to the extent that we can observe them 4 , or as they are described in the scientic literature, relies heavily on two factors: (i) the presence in documents of the keywords of the query and their simple variations (orthographic correction, plural from a singular or adjective from a noun and vice versa), (ii) the social neighborhood of the seeker (the user making the query), that is to say who are his or her direct relations, the direct relations of his or her direct relations and the well-known people of the social network. The results of a query therefore contain words that adhere strictly to the phrasing of the query and they must originate in or be directly connected to someone the seeker might know, either in his or her direct neighborhood or amongst public gures.

Considering how important and pervasive keyword search in a social context is, this functioning appears limited: in particular, it restricts the results because it does not consider the meaning of the query but only the words it contains. This works well on very specialised or formatted terms but falls short when confronted with the complexity and richness of the real world language. Consider this very simple example: a keyword search for hunt endangered species. Documents containing track of an Asiatic lion, hyacinth macaw's poachings or the catching of blackchin guitarsh should be relevant for this query, but will not be returned by current social search engines unless they also contain minor variations around endangered species and hunt. This results in many users obtaining too few results 3 source: http://www.alexa.com In this particular case there exist many words for actions and events that imply a hunt and even more for words designating endangered species, leading to a very large number of possible reformulations.

Keyword search service providers are aware of this shortcoming, and are slowly taking steps to try and x it. The best example of this is probably Google search in English 5 , the most used top-k keyword search engine in the world. Since 2009, Google has started integrating semantics into its search engine in the form of special features that are activated by the presence of a set of words or abbreviations in the query. For instance the query etymology followed by another word will return a card: a small rectangular area shown before the other results on the screen of the client displaying text, images or diagrams, in this cases it shows a short text explaining the etymology of the second word. Another example is concatenating relations such as date of death, spouse of or place of birth to the name of famous people, which will return a card with the names of the associated persons, and possibly a place, a date or a picture. There exist a few dozens of such handcrafted features: for the weather, time, simple computations, translations, etc., all returning a card with information relevant to the semantics of the query, and then documents relevant to the phrasing of the query. This is a step forward but it only works for a small set of pre-programmed cases and it does not actually return documents relevant to the semantics of the query. Rather, it constructs a result in a well-controlled environment, but does not identify the relevant documents on the Web. Google search also does query expansion, adding to the query terms that are either synonyms or words statically correlated with the query's keywords, yet this is also very limited: Asiatic lion is not a synonym of endangered species, and their correlation is likely very low, given the number of endangered species. On the one hand, there exists a paragraph in t 2 containing both keywords simultaneously, which suggests that the topic of this paragraph relates them to one another. On the other hand, there is no such relation in t 1 : k 1 and k 2 are loosely linked to the topic of the text but they could pertain to very dierent aspects of this topic and they are probably unrelated. In this context it is easy to argue that t 2 is more relevant than t 1 , but if we extend the argument we could say that the second paragraph of t 2 is in fact an even better candidate as it contains only the relevant part of t 2 for this query.

This subtlety is completely lost to a search engine ignoring the structure of documents, for instance one operating on the so-called bags of words model, which considers only the multiset of the words contained in the text. There exist top-k approaches utilizing the structural aspect of the data they consider but, until now, these kind of approaches have never been embedded into social search engines.

Last but not least, the metadata of the query and the documents, most specically their timestamps and localisations, are useful for addressing queries related to news, such as strikes today, or to local information, for instance nearby restaurants.

As keyword search is the primary means to access data in a social context, and this data is everywhere in our society, it crucially needs to make full use of all the available information: from the query, exploiting its semantics, from the documents, using their content, structure and metadata, and from the social network, with all the connections it contains. The scope of this problem is very large and in this thesis we will ignore the metadata and focus on top-k keyword search of documents in a social context, using fully the semantic, structured and social aspects available. To this end, our goals are:

to give a complete, formal, description of the problem and to create a unied data model encompassing, without loss, the three dimensions: semantics, structure and social;

to establish a formal framework for querying this data model and to implement it, to demonstrate that our query framework does indeed improve on the previous works, by taking into account these three dimensions had a positive impact on the search results.

Contributions and outline

Below, we present the contributions of this thesis and its general organization:

Chapter 2 recalls basic notions for the standard representation and querying of knowledge graphs, of structured and semi-structured documents and of social data.

Chapter 3 surveys the literature to present the state of the art in terms of topk search in a social, semantic or structured context, as well as hybrid approaches trying to query models integrating several of these dimensions.

Chapter 4 identies a set of requirements for a model integrating comprehensively the social, semantic and structural aspects of the description of users, documents and their interactions with each other. It also provides a model, S3 that meets these requirements. The main contributions of this chapter are:

the S3 model and its diverse components;

the explanation, with examples of how the instances of models presented in the previous chapter can be mapped into S3. In Section 2.1 we present the Resource Description Framework, a universal model on the Web to describe data and knowledge. Then, in Section 2.2, we recall the two most accepted formats for semi-structured data, XML and JSON, and their associated query languages. Finally, in Section 2.3 we survey models for popular social networks.

The RDF model

URIs and literals We assume given a set U of Uniform Resource Identiers (URIs, in short), as dened by the standard [START_REF]Uniform Resource Identier[END_REF], and a set of literals (constants) denoted L, disjoint from U . Keywords We denote by K the set of all possible keywords: it contains all the URIs, plus the stemmed version of all literals. For instance, stemming replaces graduation with graduate.

An RDF graph (or graph, in short) is a set of triples of the form s p o, stating that the subject s has the property p and the value of that property is the object o. In relational notation (Figure 2.1), s p o corresponds to the tuple (s, o) in the binary relation p, e.g., u 1 hasFriend u 0 corresponds to hasFriend(u 1 ,u 0 ). We consider every triple is well-formed [START_REF]Resource Description Framework[END_REF]: its subject belongs to U , its property belongs to U , and its object belongs to K. the semantics of an RDF graph is its saturation [START_REF]Resource Description Framework[END_REF].

Notations

In the following, we assume, without loss of generality, that all RDF graphs are saturated; many saturation algorithms are known, including incremental [START_REF] Goasdoué | Ecient query answering against dynamic RDF databases[END_REF] or massively parallel ones [START_REF] Urbani | WebPIE: A web-scale parallel inference engine using MapReduce[END_REF].

SPARQL is a recursive acronym for SPARQL Protocol and RDF Query Language, dened by the W3C [START_REF] W3c | SPARQL protocol and RDF query language[END_REF]; in particular, SPARQL provides a query language for RDF. The basic constructs of this language is the graph pattern : a set of triples in which every subject, property, or object position can also be a variable. An embedding of such a graph pattern into an RDF graph is an assignment of URIs and literals to the query variables such that replacing the variables with these URIs/literals in the graph pattern leads to a subgraph of the RDF graph.

Using selection, aggregation and construction operators it is then possible to create and return either tuples of bindings or RDF graphs. For instance the query in Figure 2.3 returns tuples of one element (person_name, univ_name) such that person_name is the name of a person who studied at the university univ_name. 

Semi-structured document models

Extensible Markup Language, or XML for short, is a format of semi-structured documents dened by the W3C [START_REF]Extensible Markup Language[END_REF] and omnipresent on the Web. An XML document represents an ordered, unbounded, nite tree.

XML tree nodes can be either elements, attributes, or text. An element has a name, and may have: a set of attributes, and a list of element and/or text children.

A complete order holds over the element and text children of a given element, whereas the order among the attributes of the same element node is undened. An attribute has only a name and a value, both of which are strings. A sample XML document can be found in Figure 2.4.

A header called prolog contains an XML declaration describing for instance the encoding or the language of the document, or the version of the XML specication in use.

Schema information describing the structured allowed in an XML document can be specied using various formalisms. The most commonly used for this task are Document Type Denitions (DTD) [START_REF]Extensible Markup Language (XML) Prolog and Document Type Declaration[END_REF] and XML Schema Denitions (XSD) [START_REF]W3C. W3C XML Schema Denition Language (XSD) 1.1 Part 1: Structures[END_REF][START_REF]W3C. W3C XML Schema Denition Language (XSD) 1.1 Part 2: Datatypes[END_REF]. The former is an integral part of the specication of SGML, a language that generalises and precedes XML, and allows specifying the types of attributes, as well as restricting which elements and attributes an element may have as children.

For instance, one can specify that only a certain number of a given element are allowed as children of one parent element.

XML Schema, on the other hand, is a newer separate standard from W3C.

Almost all of the specications using DTD can be translated into equivalent XML Schema 1 . The main advantage of XSD with respect to DTD is that it is possible to specify dierent legal internal structures for an element depending on the context Further, XML Schema provides support for namespaces, allows specifying the order of the children of a node, not just their number of occurrences, and provides a rich typing system for literals [START_REF]W3C. W3C XML Schema Denition Language (XSD) 1.1 Part 2: Datatypes, Primitive Datatypes[END_REF].

XPath, the XML Path Language [START_REF]XML Path Language[END_REF], is a query language for XML documents based on the description of paths. Recent iterations of the specications have introduced higher level features but its core concept remains that of path expression, which can be seen as a sequence of steps separated by / or //.

Each step contains an axis, for instance child, descendant, parent, precedingsibling. If no axis is specied, it defaults to the child axis. Additionally a step may contain a test such as testing for a specic node name or type and a list of predicates, to be evaluated for instance over the value of a node.

The semantics of evaluating a path expression on an XML document is as follows:

Replace all occurrences of // with a step of axis descendant-or-self having no test nor predicate.

Create a set of nodes, the context items, containing initially only the root of the document if the rst character of the path expression is /. If there is no initial /, the initial context items should be provided, for instance by the evaluation of another path expression. Note that all the non initial / act only as syntactical separators.

For each step, following their order in the path expression: replace the context items by the set of nodes reachable from its current elements using the current step axis (the new context items are the children, descendants, parents etc.

of the nodes in the current context items). Prune from the context items the nodes that fail the test or do not satisfy all the predicates in the predicate list of the current step, then proceed to the next step. When there are no more steps, the context items are returned as the evaluation of the path expression.

For instance, /person//phone[@type="home"] is an XPath expression consisting of three steps: the rst step selects all children of the root node labelled person, the second, inserted by //, adds to the context items its descendants, and the third step replaces the context items with the nodes labelled phone, children of a node in the context items, having an attribute named type whose value is home.

This expression evaluated on the document from Figure 2.4 yields as result the one-element sequence: <phone t y p e="home">2 1 2 555 -1234</ phone> XQuery is a query language using XPath expressions as building blocks and more traditional programming operators such as for, if then else, try catch, where and variables to construct and output XML documents [START_REF]An XML Query Language[END_REF]. Note that XQuery has many features of a functional language, including functions as rst class citizens, and is Turing complete.

JavaScript Object Notation or JSON for short, is another highly popular semistructured document format that arose from the use of JavaScript in particular in Web site development. As of today, however, JSON has evolved as an independent specication [START_REF]The JSON Data Interchange Format[END_REF][START_REF]The Javascript Object Notation (JSON) Data Interchange Format[END_REF]. Similarly to XML, it can represent ordered unbounded nite trees, however JSON is more expressive: a JSON node can be either a dictionary (a set of key-value pairs), an array, or a set of values, whereas XML element children of the same node are always ordered. A JSON value can either be a node, or a typed literal such as a boolean, a string or a number. In contrast, XML typing of leaf (text) nodes can only be made through a second (external) schema specication such as a DTD or XML schema. JSON is becoming more present in web applications and is a default format for <i n v e n t o r y > { for $ i t e m in f n : d o c ( "inventory.xml" ) l e t $ q u a n t i t y := $ i t e m / d e t a i l s / s t o c k / @ q u a n t i t y return <i t e m> <name>{$ i t e m /name}</name> { i f ( $ q u a n t i t y ! = 1 ) t h e n return <q u a n t i t y >{ $ q u a n t i t y }</ q u a n t i t y > } </i t e m> } </ i n v e n t o r y > Querying JSON Several query languages for JSON exist, such as JSONPath2 , that mimics XPath, Javascript 3 , JSON Pointer 4 , jaql 5 , JSONiq 6 , and JSONSelect 7

but none of them has the status of a standard.

Models for social data management

The advent of social network systems has lead to very large amounts of interesting data being exchanged through this medium. Research works have attempted to propose models for such data oriented social networks.

User-item-tag models In a social context, one is interested both in modelling the data posted by the users (which can be assimilated to documents ), and the relationships between users and the documents they interact with. User-itemtag (UIT, in short) models represent social tagging applications, such as social networks or social bookmarking services like Flickr, Reddit, Delicious etc. in { "firstName" : "John" , "lastName" : "Smith" , "isAlive" : true , "age" : 2 5 , "height" : 1 7 1 . 1 , "address" : { " streetAddress " : "21 2nd Street" , "city" : "New York" , "state" : "NY" , " postalCode " : "10021 -3100" } , " phoneNumbers " : [ { "type" : "home" , "number" : "212 555 -1234" } , { "type" : "office" , "number" : "646 555 -4567" } ] ,

"children" : [ ] ,

"spouse" : null } terms of a graph of users and items, where users may author or tag documents using keywords. The users may be linked one to another using named relations or weighted links. This generic model for social tagging can use explicit tags [START_REF] Zhang | Personalized recommendation via integrated diusion on useritemtag tripartite graphs[END_REF][START_REF] Maniu | Network-aware search in social tagging applications: instance optimality versus eciency[END_REF], i.e., when users manually enter textual tags on content, for instance in social networks like Del.icio.us or Last.fm. Implicit tagging refers to a context where the tags are not explicitly given but inferred from the users' behaviour. An example of implicit tagging would be the query logs of a search engine, from which we can interpret that a user tags with the query terms the search results that have been clicked on [START_REF] Antonellis | Tagging with queries: How and why?[END_REF].

A sample instance of this model can be seen in Figure 2.7, where four users tag three documents.

Facebook is probably the most well known social network, being ranked as the second most popular website after google.com by Alexa 8 and the rst by Similar- Web 9 . Its model, called the social graph, is not known precisely, but the details made available [START_REF] Bronson | TAO: How Facebook serves the social graph[END_REF][START_REF] Curtiss | Unicorn: A system for searching the social graph[END_REF] dier signicantly from UIT models. The nodes of the so-8 http://www.alexa.com/siteinfo/facebook.com 9 http://www.similarweb.com/website/facebook.com cial graph are not necessarily users or documents: they can also be places, pages, photos, groups etc. and are identied using a common scheme. The edges of the graph, that is the relationships between the nodes, are directed named relations such as friend (between two users), like (between a user and a page), live-in (between a user and a place) etc. Note that only one relation of each type is possible between two nodes: thus, a user cannot like twice the same page, or to live twice in the same place at a given time. Both nodes and edges have a content made of (key, value) pairs, for instance timestamps as values for the key time. While the like tag behaves to some extent similarly to the UIT models (a relation from a user to a page, characterized by the keyword like), the restriction to at most one edge with the same source, target and relation makes tags with general keywords impractical, as it wouldn't be possible for a user to have several tag relations with dierent keywords to a document. Instead, new nodes are created to contain comments and other tags, and each of these new nodes has one relation with the user and one with the document. Another major conceptual dierence between Facebook's graph model and UIT is that the friend relation (the main relation between users) is always symmetric. The social graph is typically sparse : there are only a few hundreds out-edges per node, while there are billions of nodes. At the same time, its diameter is very small: more than 99% of the nodes are in the same connected component and within 6 or less hops one to each other [START_REF] Ugander | The anatomy of the facebook social graph[END_REF][START_REF]Three and a half degrees of separation[END_REF]. Twitter Among the 10 most popular social network websites at the time of writing, Twitter also operates on a graph, but has fewer node and edge types than Facebook.

Twitter nodes are either users or status (i.e., tweets) and edges are either follower, posted by, reply to status, or retweet [START_REF]Twitter Developers[END_REF]. To compensate for this smaller number of objects, Twitter's nodes include directly information that would be in another object in Facebook's social graph, for instance geographical information, or URLs.

A distinctive feature of Twitter is the brevity of its messages: 140 characters.

Another specicity is the concept of hashtag : a list of characters following a hash character (`# '), that allows tagging a status with this list of characters: Twitter supports real-time search for posts labelled with a given hashtag.

Yelp! is another social network that focuses on reviewing businesses and establishing partnerships with such businesses, allowing to order or book online [START_REF] Luca | reputation, and revenue: The case of yelp[END_REF][START_REF]Yelp! Dataset Challenge[END_REF].

Much like Twitter, it is closer to UIT models in that it has few nodes types; users, businesses, and reviews, authored by a given user for a given business; review in particular may feature rich content. This chapter has introduced the standard formalisms to represent and query data that is either of a semantic nature, with RDF and SPARQL, or that is semi-structured, with XML queried using XPath and XQuery, or JSON and jaql, JSONIQ, etc. We also exposed UIT, a generic but somewhat limited model for social data, and surveyed the models of some of the most popular social networks.

Chapter 3

State of the art

This chapter presents the state of the art in the dierent elds that study the core concepts used in this thesis: top-k search (Section 3.1) and social, semantic and structured data (Section 3.2).

Top-k search

Top-k search aims at computing and returning the most relevant results to a query instead of all its answers. Focusing on these particularly interesting results both improves the user experience, and decreases the search eort. Section 3.1.1 presents seminal contributions on top-k search both in the database community, where there is a strong emphasis on the relations and the structure of the data searched over, and in the information retrieval community, which focuses more on the textual properties of the queried documents. These methods underlie top-k search algorithms in several settings. A rst setting, the one of objects stored across several relations via foreign keys in relational databases, is presented in Section 3.1.2. Section 3.1.3 focuses on top-k search over semi-structured data, building on the top-k querying algorithms introduced in Section 3.1.1 and on the notions of documents and their adapted query languages presented in Section 2.2. Section 3.1.4 presents works on top-k search over RDF graphs. Finally, Section 3.1.5 presents works on top-k search looking for documents or users, based on the social links between them.

Foundations of top-k search

Fagin's Threshold Algorithm Fagin, Lotem and Naor published an algorithm [START_REF] Fagin | Optimal aggregation algorithms for middleware[END_REF] often referred to as Fagin's Threshold Algorithm (TA). This algorithm considers objects with several attributes, all scored beforehand within [0, 1]. These scores, x 1 , . . . , x n , are aggregated into a single one using a function, t, given at the time of the query. The role of the scoring function t is to compute objects' relevance score (also in [0, 1], higher is better) with respect to the query: for instance if the objects stand for pieces of text, and each x i is 1 if the word w i is present in this object and 0 otherwise, then the query composed of the two words w i , w j could be associated to the function t(X) =

x i +x j 2

. t would yield a score of 1 on a text having both words, a score of 0.5 on a text having only one, and a score of 0 for a text having none of them. One of the interests of this model is its generality: the x i could also score other attributes than the presence of a word in a text, for instance features on audio or video content, on web pages etc.

When the aggregation function is increasing monotonously over each attribute,

i.e., if X = (x 1 , . . . , x n ) and X i = (x 1 , . . . , x i-1 , x i , x i-1 , . . . , x n ) with x i ≥ x i then t(X i ) ≥ t(X)
, it is possible to nd the k objects with the highest aggregated score using inverted lists. For each attribute, a list of pairs (object, score) is created for every object and the score it has for the attribute under consideration; each such list is sorted in the decreasing order of its elements' scores. To nd the top-k objects, one can go through the inverted lists sequentially (and potentially gather more information by looking for the objects' other attributes). Because the lists are ordered, it is always possible to have an upper bound on each unexplored object's attributes score. Moreover, t being monotonously increasing over each attribute, it yields an upper bound on the score of unexplored objects. When the minimum score of the k best-scored objects becomes higher than the best possible score of the unexplored ones, the search may stop with the guarantee that the best k results have been explored. This algorithm can be tuned to adapt to the cost of sequential and random accesses, so that the overall cost of the algorithm is within a constant factor of the optimal.

Top-k keyword search in Information Retrieval Top-k search in Information

Retrieval focuses on retrieving relevant data using its textual properties. Documents and queries are typically represented as multisets of words, and the score of a documents for a query is a function of the size and intersection of their representation, leading to two strategies: Term At A Time (TAAT), which inspects documents once for each term in the query, and Document At A Time (DAAT), where each document is inspected once, using all the terms of the query [START_REF] Turtle | Query evaluation: strategies and optimizations[END_REF].

In [START_REF] Broder | Ecient query evaluation using a two-level retrieval process[END_REF], the authors introduce Weak AND (WAND), a DAAT method bearing similarity with Fagin's TA and introduced in a similar timeframe. WAND proceeds in two phases. In the rst phase, document scores are computed approximately and tested against a threshold, the k-th best score seen so far; documents scoring below this threshold are pruned. In the second phase, the exact scores of the remaining documents are computed, and the k best documents are returned.

Top-k search in relational databases

Top-k keyword search is a powerful tool on relational databases, as it allows users to easily obtain results without having to study the database schema in order to formulate structured queries.

In [START_REF] Hristidis | Ecient IRstyle keyword search over relational databases[END_REF], the authors propose a method for computing the top-k answers to queries consisting of a set of keywords, over relational databases. It produces ranked trees of tuples (sometimes called Joining Network of Tuples) found in the database instance I. Such a tree of tuples (t i ) i∈I is built as follows:

each t i is a tuple from a relation R i of the relational database; if t i is the child of t j then the primary key of R i is a foreign key in the R j and the values of these keys coincide on t i and t j ; each leaf of the tree must have a positive score with respect to the query.

The score of such a tree is a combination of the scores of its tuples, which can for instance aggregate attribute scores like the Fagin's TA algorithm, or use classical scores from other elds such as information retrieval.

In this setting, the authors dene the tuple monotonicity property for scores:

if T and T are two results with the same number of nodes for a query q, and it is possible to nd a numbering of the nodes of T , (t i ) i∈I , and a numbering of the nodes of T , T = (t i ) i∈I , such that for all i score(t i , q) ≤ score(t i , q)

then score(T, q) ≤ score(T , q).

Note that the two numberings need not be related: even if T and T are isomorphic, t i does not necessarily map to t i . This is a consequence of the fact that score takes as input a set of nodes without any order. This property is similar to the monotonicity property for Fagin's TA algorithm.

The top-k results for scores having the tuple monotonicity property can be computed in a similar fashion to Fagin's TA. The method consists of iteratively (i) examining new candidates created from the highest scored tuples of the database relations, (ii) establishing an upper bound on the score of the unexplored tuple trees, based on the tuples they may contain.

Extensions of this method include:

mapping certain query keywords to predicates over the retrieved objects, instead of trying to nd the keywords in the objects themselves [START_REF] Ganti | Keyword++: A framework to improve keyword search over entity databases[END_REF]; adding type-ahead search, to suggest completion while the user types the query [START_REF] Li | Ecient type-ahead search on relational data: a tastier approach[END_REF]; ensuring a certain diversity in the results [START_REF] Vee | Ecient computation of diverse query results[END_REF]; performance-improving techniques [START_REF] Baid | Toward scalable keyword search over relational data[END_REF][START_REF] Qin | Ten thousand SQLs: parallel keyword queries computing[END_REF].

Another perspective for extension is to add user preferences to the search queries. The qualitative approach to user preference is to explicitly dene relations between items or keywords: in [START_REF] Georgiadis | Ecient rewriting algorithms for preference queries[END_REF], users have a set of preferences over attributes, stating for instance that they prefer English to French for certain columns of certain relations. In [START_REF] Stefanidis | Perk: personalized keyword search in relational databases through preferences[END_REF], user proles consist of a set of pairs (C, k 1 k 2 ) indicating that when all the keywords in the set C are in a query, results including the keyword k 1 are to be preferred over those including the keyword k 2 . The quantitative approach [START_REF] Koutrika | Personalized queries under a generalized preference model[END_REF][START_REF] Li | RankSQL: query algebra and optimization for relational top-k queries[END_REF] relays instead the users preferences into the items score and selects the best items accordingly.

Other approaches, such as [START_REF] Hristidis | Authoritybased keyword search in databases[END_REF], return graphs of database entries and focus on the links between these entries using PageRank-like algorithms [START_REF] Page | The pagerank citation ranking: bringing order to the web[END_REF] to score them. This approach is not limited to relational databases, and the database entries need not be tuples, but may also be structured documents. As such, this allows more general forms of Joining Network of Tuples, where the relation between two nodes need not be the foreign key to primary key relationship, and can for instance be a named relationship in a graph.

Top-k search in semi-structured documents

At the crossroad between keyword search on structured data (for instance relational databases) and unstructured data, i.e., plain text, the search over semistructured documents fuses both approaches. In this context, the search can not only return roots of documents but also their descendants, which are considered as valid documents. Top-k search over semi-structured documents using the XML format is introduced in [START_REF] Guo | XRANK: Ranked keyword search over XML documents[END_REF]. The authors propose the idea that the more specic a document is, the better it should be ranked. Further, if an element contains a keyword of the query, then it is more specic than its ancestors for this query, unless they contain additional keywords. In particular, if each keyword of the query is present once in a tree, then the most specic result, and therefore the one returned, is the lowest common ancestor, abbreviated LCA, of the nodes where the keywords of the query occur.

In [START_REF] Guo | XRANK: Ranked keyword search over XML documents[END_REF], the evaluation is done via an algorithm based on Fagin's TA: documents and their subtrees are given a score for each keyword they contain, depending on the query, and these scores are aggregated using a monotonous function into a global score. The major dierence with Fagin's TA settings is that the keyword score, for a particular subtree, contains a decay factor, decay t-1 , where t is the depth of the keyword in the subtree, and decay is a constant between 0 and 1.

This framework also supports keyword proximity: if a keyword k 1 not in the query is registered as close to a keyword k 2 , part of the query, then the score for k 1 is taken into account, but reduced by a constant factor reecting the proximity between k 1 and k 2 . Because of keyword proximity, the score of a document for a particular keyword may depend on multiple nodes within this document, bearing proximate keywords. These nodes and keywords produce partial scores that are aggregated using a function that must be specied, for instance max or sum.

This initial approach has many natural extensions, notably variants of LCA.

For example, Meaningful LCA [START_REF] Li | Schema-Free XQuery[END_REF] gives a type to documents' nodes and considers that for a query {k 1 , k 2 }, if within a single document a node a of type A contains k 1 , and a node b of type B contains k 2 , their LCA is meaningful only if:

1. there exists no ancestor of a that is also a descendant of the LCA and has a descendant of type B, and 2. there exists no ancestor of b that is also a descendant of the LCA and has a descendant of type A.

For instance, Figure 3.1.3 depicts a documents with 2 nodes a and a of type author, and one node b of type title. In this document, the node l 1 is the lowest common ancestor of a and b but it is not a Meaningful LCA because there exists l 2 : an ancestor of b and descendant of l 1 = LCA(a, b) having a descendant a of type author. The intuition behind the denition of MLCA is that l 2 associates elements of type author and title more directly than l 1 and that the association in l 1 may be incidental and not meaningful. Indeed in this case article are reasonable documents to contain related title and author while this is less the case for collection.

Another variant is Smallest LCA [START_REF] Xu | Ecient keyword search for smallest LCAs in XML databases[END_REF], that also requires the LCA not to contain a descendant with all the keywords of the query. Other notable works focus on providing search algorithms with better complexity, and improving the performances for dierent variants of LCA [START_REF] Hristidis | Keyword proximity search in XML trees[END_REF][START_REF] Zhou | Fast ELCA computation for keyword queries on XML data[END_REF]. Going beyond classical XML documents, it is also possible to consider probabilistic XML documents [START_REF] Li | Top-k keyword search over probabilistic XML data[END_REF], where some nodes have a given probability to appear.

Keyword search over structured documents can naturally be extended to incorporate structural constraints. The algorithms of [START_REF] Theobald | TopX: ecient and versatile top-k query processing for semistructured data[END_REF] This query nds the authors of books containing the terms Information Retrieval XML and having descendants tagged as reference and aliation containing the terms PageRank and Stanford, respectively. But it can also nd books with related contents, reference or aliation using similarity measures coming from the information retrieval community. This is closely related to graph pattern matching with top-k [START_REF] Gou | Ecient algorithms for exact ranked twigpattern matching over graphs[END_REF]: given an input graph with some variables, the goal is to nd an assignment of the variables and a subgraph of the instance that correspond to the query where the variables are replaced by their value, these assignments are ranked and a given number of the ones with the highest scores must be returned.

Top-k search in RDF graphs

Top-k search on RDF graphs focuses on nding minimal subgraphs of the search instance an RDF graph that contains all the keywords of the query. Because these subgraphs are minimal in terms of number of RDF triples included, they cannot contain loops and are therefore trees. Most works focus on scoring such trees and nding the top-scored ones.

In [START_REF] Bhalotia | Keyword searching and browsing in databases using banks[END_REF] the score of a tree depends on two factors:

The lengths of the paths from the tree root to the keywords. Notice that the edges of the RDF graph may be weighted, in which case the length of a path is the sum of the weights of the edges it traverses.

The importance of the nodes of the graph, for instance computed using PageRank [START_REF] Page | The pagerank citation ranking: bringing order to the web[END_REF] like algorithms.

Additional requirements can be imposed on the results, for instance that only the best tree rooted in each node may be considered [START_REF] Hao He | Blinks: ranked keyword searches on graphs[END_REF], or that the returned trees should not overlap [START_REF] Liu | Finding smallest k-compact tree set for keyword queries on graphs using mapreduce[END_REF].

The exploration of the graph to nd such trees can be done using several strategies, such as directly following the RDF graph's edges: starting from the query keywords, and following the graph's directed edges, sets of potential roots for each keyword are found and then intersected to nd roots of trees linked to all the keywords [START_REF] Bhalotia | Keyword searching and browsing in databases using banks[END_REF]. Alternatively, if the number of nodes related to one keyword is smaller than the ones related to the other keywords of the query, it it possible to nd potential roots starting from this node and then check which of these candidates are indeed linked to all the keywords [START_REF] Kacholia | Bidirectional expansion for keyword search on graph databases[END_REF]. More recent exploration strategies make heavy use of precomputed indexes to alleviate the complexity: in [START_REF] Hao He | Blinks: ranked keyword searches on graphs[END_REF], the authors partition the graph into blocks of customizable size and record the node distances within each block, which blocks contain which keyword, how to reach one block from another.

With a good partitioning strategy, it is possible to use this stored information to obtain a search complexity within a constant multiplicative factor of the optimal.

We distinguish two other approaches that don't return trees but nodes or general subgraphs instead. The former roughly corresponds to only returning the roots of the trees returned by the previous approaches [START_REF] Balmin | Objectrank: Authority-based keyword search in databases[END_REF]. The latter, studied in [START_REF] Tran | Top-k exploration of query candidates for ecient keyword search on graph-shaped (RDF) data[END_REF], expand on the tree approaches and consider one result to be an aggregation of paths between the query's keywords (or closely related terms such synonyms, hyponyms and hypernyms as they can be fond in Wordnet [START_REF] Fellbaum | WordNet[END_REF]). Because for a given result these paths link the same nodes, their aggregation is a subgraph that may include cycles.

Top-k search in a social context

Top-k techniques can also be used to search over social data. One can simply store this data into a relational database and use the methods discussed in Section 3.1.2. However, several improvements can be made by taking into account the social nature of the data. For instance one could add a reputation score to the attributes of each user or to the documents they authored. Reputation, trust, inuence, authority, or other people metrics can be computed using implicit data (such as links with PageRank-like algorithms [START_REF] Xavier | Jxp: Global authority scores in a p2p network[END_REF]) or using explicit data (such as user ratings [START_REF] Sepandar D Kamvar | The eigentrust algorithm for reputation management in p2p networks[END_REF]); such metrics are then integrated into top-k keyword search engines [START_REF] Sankaralingam | Pagerank computation and keyword search on distributed systems and p2p networks[END_REF].

The expansion of social networks have lead to a scenario where users asking queries over social data are part of the social data itself. In this scenario, it is possible to use the knowledge on users to return them personalized results. Early takes on this approaches include personalized PageRank based on bookmarks [START_REF] Jeh | Scaling personalized web search[END_REF]: each user has a set of preferred pages P , and the importance of each page is computed using a modied PageRank algorithm where the random walk, instead of having a certain probability at each step to jump to a random page, jumps on one of the preferred pages P of the user. Because the computation of this modied PageRank algorithm for each user (in real time) is not tractable, precomputations are done on partial sets of preferred pages using an approximation of the graph, which are then assembled at run time. An extension of this work is to automatically infer this set of preferred pages [START_REF] Teevan | Personalizing search via automated analysis of interests and activities[END_REF].

Going beyond a pre-recorded set of preferences per user, it is possible to have the user be part of the social graph. In [START_REF] Sihem Amer Yahia | Ecient network aware search in collaborative tagging sites[END_REF], the authors introduce network-aware search on a tagging network. This setting reproduces UIT models with a slight dierence:

the users are either taggers, who behave like normal users in UIT models, tagging items with keywords, or seekers who can only ask queries using a set of keywords.

Based on Fagin's TA, this work introduces a per-user network distance with the searched items, and uses it as an attribute taken into account in the document score. The exact computation being too expensive, the authors introduce clustering techniques over the seekers to improve performance. While they show that nding optimal clusters of seekers is NP-Hard, they provide heuristics that work well in practice. [START_REF] Maniu | Ecient top-k retrieval in online social tagging networks[END_REF] introduces the TOPKS algorithm that generalises this approach to UIT models, which allow seekers to also be taggers. It can use both approximate and exact social distance, and provides a simple parameter, α ∈ [0, 1], to tweak the importance of the social score with respect to the textual one. Network-aware approaches can be extended with attributes for the time elapsed since a document was created, or for the real world distance between the seeker and the authors of documents [START_REF] Li | Real time personalized search on social networks[END_REF].

While all the previous works focused on searching documents, it is also useful to search for users. This is for instance the case on7 Facebook [START_REF] Curtiss | Unicorn: A system for searching the social graph[END_REF], where users are treated as rich objects with linked to names, places, interests etc. Several works are also interested in delegating the query of the user to another user of the network that might be better suited to answer it [START_REF] Horowitz | The anatomy of a large-scale social search engine[END_REF], which is indeed a form of top-k textual search for users in a social context. In [START_REF] Cohen | On principles of egocentric person search in social networks[END_REF], the authors consider networkaware search of user: in this work the social distance from the seeker comes from the paths leading from the seeker to the search candidates. The users along these paths are decomposed into several categories depending on the topology of the set of paths passing through them and the categories are used to score the paths.

Another approach known as Personalized Information Retrieval (PIR) stems from classical IR systems, the main dierence being that, in PIR, the results for a query typically change from one user to another. This is achieved by expanding the query's set of keywords with keywords representing the users' interests, interests which are collected either in an implicit or an explicit manner. In the former case, the information is learned from the user behaviour, for instance using the previously submitted queries and clicked results [START_REF] Smyth | Anonymous personalization in collaborative web search[END_REF][START_REF] Speretta | Personalized search based on user search histories[END_REF]. In the latter case, users' interests are explicitly stated, either directly as in [START_REF] Micarelli | Anatomy and empirical evaluation of an adaptive web-based information ltering system[END_REF] or by giving feedback to
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proposed results [START_REF] Chen | Webmate: a personal agent for browsing and searching[END_REF][START_REF] Asnicar | ifWeb: a Prototype of User Model-Based Intelligent Agent for Document Filtering and Navigation in the World Wide Web[END_REF][START_REF] Harman | Relevance feedback revisited[END_REF].

PIR systems typically use only information from the user asking the query, but it is possible to integrate a social context to determine users close to the seeker and also exploit their interests. For instance, in [START_REF] Carmel | Personalized social search based on the user's social network[END_REF], the neighborhood of the querier is ranked using direct and indirect social links, and their known interests are aggregated into the document scores, thus allowing top-k search integrating social data. The real-world location of the the social entity can be also integrated in the search [START_REF] Albakour | Diversifying contextual suggestions from location-based social networks[END_REF].

Hybrid data models

We have seen in the previous chapter the common models for semantic, structured and social data taken separately. We focus in this section on models that integrate several of this aspects, not necessarily in a top-k context.

There exist few hybrid models including social and semantics aspects, examples of such models being mostly personal information management systems, where RDF data is queried using social information from the user. For instance, in [START_REF] Giannopoulos | Personalizing keyword search on RDF data[END_REF],

user recorded preferences are fed to a machine learning algorithm for training, and this algorithm is used to evaluate the relevance of RDF graph's nodes based on the preference of the user asking the query.

The rest of this section will focus on hybrid models including semantics and structure as, to our knowledge, there is no model integrating both social and structural data into a coherent whole.

Most models including both semantics and structure put semantics on top of structured documents: the semantics is either deduced from documents and used as a medium to query them or recorded on the documents for later use. The former direction is covered by document transformation and data integration, while the latter direction is part of document annotation.

The transformation of structured documents into semantic instances, such as XML documents into an RDF graph [START_REF] Ferdinand | Lifting XML schema to OWL[END_REF][START_REF] Droop | Translating XPath queries into SPARQL queries[END_REF], allows to use o-the-shelf query languages for RDF, like SPARQL, to examine structured data, potentially completed with semantic sources, natively in RDF.

The idea of extracting semantics from structured documents can also be used in data integration, to interface multiple documents with heterogeneous schemas.

In [START_REF] Decker | Ontobroker: Ontology based access to distributed and semi-structured information[END_REF], a set of rules on the labels and properties of HTML documents is used to extract RDF-like triples and a query language analogous to SPARQL is used to query the resulting ontology. More modern takes on data integration [START_REF] Christophides | On wrapping query languages and ecient XML integration[END_REF][START_REF] Amann | Mapping XML Fragments to Community Web Ontologies[END_REF], instead of extracting the semantics from the documents and using only this semantics afterwards, adopt a mediator approach: the documents are kept as they were and the queries on the (virtual) resulting ontology are rewritten as queries on the documents that account for the rules mapping structure to semantics.

Document annotations are a way for users to attach semantics to particular nodes of structured documents such as Web pages, and to query these annotations.

Annotations take the form of RDF triples associated to a node within a document and can be attached manually [START_REF] Handschuh | Authoring and annotation of web pages in CREAM[END_REF], semi-automatically [START_REF] Mukherjee | Automatic annotation of content-rich html documents: Structural and semantic analysis[END_REF], or directly by the authors of Web pages using a W3C standard [START_REF]RDFa Primer[END_REF]. The querying capabilities of document annotations models are often limited: typically they only provide a way to retrieve documents annotated with a given keyword.

In contrast with models that put semantics on top of structured documents, other approaches treat the two equally: this is the case for approaches that transform semantic graphs into structured documents or that use a model [START_REF] Goasdoué | Growing triples on trees: an XML-RDF hybrid model for annotated documents[END_REF] integrating semantics and structure on an equal footing. Transforming RDF graphs into XML documents can be useful to use query language not targeted at RDF, such as XQuery [START_REF] Robie | Vassillis Christophides, and[END_REF], or to integrate an RDF graph and XML corpus by providing both translation from XML to RDF and the other way around [START_REF] Bischof | Mapping between RDF and XML with XSPARQL[END_REF]. This allows to handle both queries that may return XML document and queries that may return RDF graph at the cost of a loss of information due to the translations.

In [START_REF] Goasdoué | Growing triples on trees: an XML-RDF hybrid model for annotated documents[END_REF], the authors integrate structural and semantics aspects from XML and RDF into a unied model, XR, and provide a rich query language, combining features from XQuery and SPARQL. An instance of this model is a set of XML documents, and an RDF graph. Each node of each document is assigned a unique URI that may be used as a subject or an object in the RDF data. Note that due to the large number of such XML nodes, the assignment is not materialized. The query language XRQ over this model is a combination of Basic Graph Patterns over the RDF graph and of tree patterns over the XML documents.

Conclusion

In Chapter 2, we discussed the representation and querying of data that have either a social, semantic or structured dimension. In this chapter, we build upon those representations to introduce the most prominent models for top-k search on at least one of those dimensions and for representing and querying data including at least two of those dimensions.

In the next chapter we introduce our model S3, that includes the three dimensions and in the following chapters we develop top-k querying an S3 instance. R1. The current wealth of ways to publishing and disseminate content on the Web (through social networks, blogs, interlinked Web pages etc.) allows many dierent relations between items. For example, document d 1 replies to document d 0 (think for instance of opposite-viewpoint articles in a heated debate), while document d 2 comments on the paragraph of d 0 identied by the URI d 0.3.2 . The model must capture relations between items, in particular since they may lead to implicit relations between users, according to their manipulations of items. For instance, the fact that u 2 posted d 1 as a reply to d 0 , posted by u 0 , entails that u 2 at least read d 0 , and thus some form of exchange has taken place between u 0 and u 2 ; if one looked for explicit social connections only, we may wrongly believe that u 0 and u 2 have no relation to each other.

R2. Items shared in social media often have a rich structured content. For instance, the article d 0 comprises many sections, and paragraphs, such as the one identied by the URI d 0.3.2 . Document structure must be reected in the model in order to return useful document fragments as query results, instead of a very large document or a very small snippet of a few words (e.g., exactly the search keywords). Document structure also helps discern when users have really interacted through content. For instance, u 3 has interacted with u 0 , since u 3 comments on the fragment d 0.3.2 of u 0 's article d 0 . In contrast, when user u 4 tags with university the fragment d 0.5.1 of d 0 , disjoint from d 0.3.2 , u 4 may not even have read the same text as u 3 , thus the two likely did not interact.

R3. Item and tag semantics must be modelled. Social Web data encapsulates users' knowledge on a multitude of topics; ontologies, either general such as DBPedia or Google's Knowledge Base, or application-specic, can be leveraged to give query answers which cannot be found without relying on semantics. For instance, assume u 1 looks for information about university graduates : document d 1 states that u 2 holds a M.S. degree. Assume a knowledge base species that a M.S. is a degree and that someone having a degree is a graduate. The ability to return as result the snippet of d 1 most relevant to the query is directly conditioned by the ability to exploit the ontology (and the content-based interconnections along the path: u 1 friend of u 0 , u 0 posted d 0 , d 1 replied to d 0 ). R4. In many contexts, tagging may apply to tags themselves, e.g., in annotated corpora, where an annotation (tag) obtained from an analysis can further be annotated with provenance details (when and how the annotation was made) or analysed in its turn. Information from higher-level annotations is obviously still related to the original document. The model should allow expressing higher-level tags, to exploit their information for query answering.

R5. R6. The model should be generic (not tied to a particular social network model), extensible (it should allow easy extension or customization, as social networks and applications have diverse and rapidly evolving needs), and interoperable, i.e., it should be possible to get richer / more complete answers by integrating dierent sources of social connections, facts, semantics, or documents. This ensures in particular independence from any proprietary social network viewpoint, usefulness in a variety of settings, and a desirable form of monotonicity: the more content is added to the network, the more its information value increases.

Model denition

We now describe our model integrating social, structured, and semantic-rich content into a single weighted RDF graph, and based on a small set of S3-specic RDF classes and properties. We present weighted RDF graphs in Section 2.1, and show how they model social networks in Section 4.2.2. We add to our model structured documents in Section 4.2.3, and tags and user-document interactions in Section 4.2.4. Section 4.2.5 introduces our notion of social paths. Table 4.1 recaps the main notations of our data model.

4.2.1

Weighted RDF graphs

In the following, we assume, without loss of generality, that all RDF graphs are saturated; many saturation algorithms are known, including incremental [START_REF] Goasdoué | Ecient query answering against dynamic RDF databases[END_REF] or massively parallel ones [START_REF] Urbani | WebPIE: A web-scale parallel inference engine using MapReduce[END_REF].

Weighted RDF graph Relationships between documents, document fragments, comments, users, keywords etc. naturally form a graph. We encode each edge from this graph by a weighted RDF triple of the form (s, p, o, w), where (s, p, o) is a regular RDF triple, and w ∈ [0, 1] is termed the weight of the triple. Any triple whose weight is not specied is assumed to be of weight 1.

We dene the saturation of a weighted RDF graph as the saturation derived only from its triples whose weight is 1. Any entailment rule of the form a, b i RDF c applies only if the weight of a and b is 1; in this case, the entailed triple c also has the weight 1. We restrict inference in this fashion to distinguish triples which certainly hold (such as: a M.S. is a degree, u 1 is a friend of u 0 ) from others whose weight is computed, and carries a more quantitative meaning, such as the similarity between d 0 and d 1 is 0.5

In other settings, it may be possible to generalize this to support inference over triples of any weight, e.g., if u 1 hasName "AntonioMarez and hasName ← d Person hold with weight 0.5, this could lead to u 1 type Person with a weight of 0.25, in the style of probabilistic databases. However this would also create new challenges as a triple could be deduced in several ways, requiring to aggregate the probability of a fact based on dierent reasons for it to happens whose independence is unknown. For example, given the keyword degree, and assuming that M.S. ≺ sc degree holds in I, we have M.S. ∈ Ext(degree). The extension of k does not generalize it, in particular it does not introduce any loss of precision: whenever k is in the extension of k, the RDF schema in I ensures that k is an instance, or a specialization (particular case) of k. This is in coherence with the principles behind the RDF schema language 1 .

Graph instance

For our modeling purposes, we dene below a small set of RDF classes and properties used in I; these are shown prexed with the S3 namespace. The next sections show how I is populated with triples derived from the users, documents, and their interactions.

Social network

We consider a set of social network users Ω ⊂ U , i.e., each user is identied by a URI. We introduce the special RDF class S3:user, and for each user u ∈ Ω, we add: u type S3:user ∈ I.

To model the relationships between users, such as friend, co-worker etc., we introduce the special property S3:social, and model any concrete relationship between two users by a triple whose property specializes S3:social. Alternatively, one may see S3:social as the generalization of all social network relationships.

Weights are used to encode the strength w of each relationship going from a user u 1 to a user u 2 : u 1 S3:social u 2 w ∈ I. As customary in social network data models, the higher the weight, the closer we consider the two users to be.

Extensibility Depending on the application, it may be desirable to consider that two users satisfying some condition are involved in a social interaction. For instance, if two people have worked the same year for a company of less than 10 employees (such information may be in the RDF part of our instance), they must have worked together, which could be a social relationship. This is easily achieved with a query that retrieves all such user pairs (in SPARQL or in a more elaborate language [START_REF] Goasdoué | Growing triples on trees: an XML-RDF hybrid model for annotated documents[END_REF] if the condition also carries over the documents), and builds a u workedWith u triple for each such pair of users. Then it suces to add these triples to the instance, together with the triple: workedWith ≺ sp S3:social.

Documents and fragments

We consider that content is created under the form of structured, tree-shaped documents, e.g., XML, JSON, etc. A document is an unranked, ordered tree of nodes. Let N be a set of node names (for instance, the set of allowed XML element and attribute names, or the set of node names allowed in JSON). Any node has a URI. We denote by D ⊂ U the set of all node URIs. Further, each node has a name from N , and a content, which we view as a set of keywords from K: we consider that each text appearing in a document has been segmented into words, stop words have been removed, and the remaining words have been stemmed to obtain our version of the node's text content. For example, in Figure 4.1, the text of d 1 might become {"M.S.", "UAlberta", "2012"}.

We term any subtree rooted at a node in document d a fragment of d, implicitly dened by the URI of its root node. The set of fragments (nodes) of a document d is denoted F rag(d). We may use f to refer interchangeably to a fragment or its URI. If f is a fragment of d, we say d is an ancestor of f .

To simplify, we use document and fragment interchangeably; both are identied by the URI of their unique root node.

Document-derived triples

We capture the structural relationships between documents, fragments and keywords through a set of RDF statements using S3-specic properties. We introduce the RDF class S3:doc corresponding to the documents, and we translate: Fragment position We need in our model to assess how closely related a given fragment is to one of its ancestor fragments. For that, we use a function pos(d, f ) that returns the position of fragment f within document d. Concretely, pos can be implemented for instance by assigning Dewey-style IDs to document nodes, as in [START_REF] O'neil | Ordpaths: Insert-friendly XML node labels[END_REF][START_REF] Tatarinov | Storing and querying ordered XML using a relational database system[END_REF]. Then, pos(d, f ) returns the list of integers (i 1 , . . . , i n ) such that the path starting from d's root, then moving to its i 1 -th child, then to this node's i 2 -th child etc. ends in the root of the fragment f . For instance, in Tags A typical user action in a social setting is to tag a data item, reecting the user's opinon that the item is related to some concept or keyword used as tag. We introduce the special class S3:relatedTo to account for the multiple ways in which a user may consider that a fragment is related to a keyword. We denote by T the set of all tags.

For example, in a type S3:relatedTo a S3:hasSubject d 0.5.1 a S3:hasKeyword "university" a S3:hasAuthor u 4

In this example, a is a tag (or annotation) resource, encapsulating the various tag properties: its content, the author, and the tagged ressource. The tag subject (the value of its S3:hasSubject property) is either a document or another tag. The latter allows to express higher-level annotations, when an annotation (tag) can itself be tagged.

A tag may not necessarily consist of a keyword, i.e., it may have no S3:hasKeyword property. Such no-keyword tags model endorsement (support), such as like on Facebook, retweet on Twitter, or +1 on Google+.

Tagging may dier signicantly from one social setting to another. Thus, in a restaurant rating site, a tag ranges from (terrible) to (excellent); in a collaborative question answering site, users tag questions with one of the existing discussion topics, e.g., clock and cpu-speed for a question related to CPU overclocking etc. Tags may also be produced by programs, e.g., a natural language processing (NLP) tool may recognize a text fragment related to a person, an image processing (IP) software may identify that an image is related to a certain object, etc.

Just like the S3:social property can be specialized to model arbitrary social connections between users, subclasses of S3:relatedTo can be used to model dierent kinds of tags. For instance, assuming a 2 is a tag produced by an NLP software, this leads to the I triples: 

Social paths

We dene here a representation of the relations between users established either through explicit social links, or through user interactions, that we call social paths.

To formulate their denition, we rst identify the steps of the paths, denoted network edges, and when two steps can be chained via a notion that we call vertical neighborhood.

We call network edges those I edges encapsulating quantitative information on the links between user, documents and tags, i.e., the set of edges whose properties are in the namespace S3 other than S3:partOf, and whose subjects and objects are either users, documents, or tags. Denition 4.2.2 (Network edges). We dene:

I net = {s p o w | p ∈ S3 \ {S3:partOf}, s, o ∈ (Ω ∪ D ∪ T )}
For instance, in Figure 4.2, u 1 S3:social u 3 0.5 and URI 0 S3:postedBy u 1 are network edges; URI 0.0 S3:contains k 0 and URI 0.1 S3:partOf URI 0 are not. The intuition behind the exclusion of S3:partOf is that structural relations between fragments, or between fragments and keywords, solely describe data content and not an interaction. However, if two users comment on the same fragment, or one comments on a fragment of a document posted by the other (e.g., u 2 and u 0 in Figure 4.1), this is indeed a form of social interaction, one we account for.

But when two users interact with unrelated fragments of the same document, such as u 3 and u 4 on disjoint subtrees of d 0 , this does not establish a social link between u 3 and u 4 , since they may not even have read the same text2 . We introduce: Denition 4.2.3 (Document vertical neighborhood). Two documents are vertical neighbors if one of them is a fragment of the other. The function neigh: U → 2 U returns the set of vertical neighbors of an URI.

In Figure 4.2, URI 0 and URI 0.0.0 are vertical neighbors, so are URI 0 and URI 0.1, but URI 0.0.0 and URI 0.1 are not. In the sequel, due to the strong connections between nodes in the same vertical neighborhood, we consider (when describing and exploiting social paths) that a path entering through any of them can exit through any other; a vertical neighborhood acts like a single node only and exactly from the perspective of a social path 3 . We can now dene social paths: Denition 4.2.4 (Social path). A social path (or simply a path) in I is a chain of network edges such that the end of each edge and the beginning of the next one are either the same node, or vertical neighbors.

We may also designate a path simply by the list of nodes it traverses, when the edges taken along the path are clear. In --------------→ u 0 is an example of such a path (the dashed line: URI 0.0.0 URI 0, is not an edge in the path but a connection between vertical neighbors, URI 0.0.0 being the end of an edge and URI 0 the beginning of the next edge). Also, in this gure, there is no social path going from u 2 to u 1 avoiding u 0 , because it is not possible to move from URI 0.1 to URI 0.0.0 through a vertical neighborhood.

Social path notations

The set of all social paths from a node x (or one of its vertical neigbours) to a node y (or one of its vertical neighbors) is denoted x y. The length of a path p is denoted |p|. The restriction of x y to paths of length exactly n is denoted x n y, while x ≤n y holds the paths of at most n edges.

Path normalization To harmonize the weight of each edge in a path depending on its importance, we introduce path-based normalization, which modies the weights of a path's edge as follows. Let n be the ending point of a social edge in a path, and e be the next edge in this path. The normalized weight of e for this path, denoted e.n_w, is dened as:

RELATIONSHIPS WITH EXISTING MODELS

e.n_w = e.w/ e ∈out(neigh(n)) e .w where e.w is the weight of e, and out(neigh(n)) the set of network edges outgoing from any vertical neighbor of n. This normalizes the weight of e w.r.t. the weight of edges outgoing from any vertical neighbor of n. Observe that e.n_w depends on n, however e does not necessarily start in n, but in any of its vertical neighbors. Therefore, e.n_w indeed depends on the path (which determines the vertical neighbor n of e's entry point).

In the following, we assume all social paths are normalized. Example 4.2.4. In Figure 4.2, consider the path:

p = u 0 u 0 S3:postedBy URI 0 1 --------------→ URI 0 URI 0.0.0 URI 0.0.0 S3:hasSubject a 0 1 -----------------→ a 0
Its rst edge is normalized by the edges leaving u 0 : one leading to URI 0 (weight 1) and the other leading to u 3 (weight 0.3). Thus, its normalized weight is 1/(1 + 0/3) = 0.77.

Its second edge exits URI 0.0.0 after a vertical neighborhood traversal URI 0 URI 0.0.0. It is normalized by the edges leaving neigh(URI 0), i.e., all the edges leaving a fragment of URI 0. Its normalized weight is 1/(1 + 1 + 1 + 1) = 0.25.

Relationships with existing models

We argue in this section that most existing data models, as described in the state of the art (Chapter 3), can be integrated in S3.

Due to the way it is built, S3 includes natively RDF and models eortlessly most structured and semi-structured document formats. There exist however a few minor limitations to the delity of the representation of XML and JSON documents in S3:

the order of siblings, in XML, or of the elements of an array, in JSON, is not expressed in S3. Note however, that this information is only used rarely.

Indeed, it can be exploited by systems supporting the full expressivity of XPath or JSON equivalents, but we found no evidence of it being actually used in the literature and it has no eect on the score of documents or on the value obtained by LCA or its variants.

the content of the nodes are kept unordered: here again loosing the ordering has no actual impact on the integration of existing models, where the defacto standard is to check if a keyword is included, and not to use its position relatively to other keywords of the same node.

schemas such as DTD or XSD (recall Section 2.2) can no longer be enforced once a document is represented in S3. However, since we do not modify documents, there is no need to check them again, and this is never an issue.

Including RDF, structured, and semi-structured documents allows to integrate many models seamlessly, we discuss in the rest of this section the integration of data models with other distinctive features.

Social data models Because of the lack of a well established standard to model social relations each data model must me mapped manually to S3, we present here a few examples.

In UIT models, such as [START_REF] Sihem Amer Yahia | Ecient network aware search in collaborative tagging sites[END_REF], user can relate to each other via weighted relations and can tag items with keywords. This translates easily in S3: items are mapped to single node documents without contents, tags become S3tags, that is resources of type S3:relatedTo and weighted relations between users are encoded using the S3:social property in weighted triples.

In [START_REF] Cohen | On principles of egocentric person search in social networks[END_REF], the authors use simple directed link to connect the users, which are annotated with keywords: this could be translated as a S3:social triple with weight 1, and one document with a single node per user, which they have authored and that contain all the keywords they are annotated with.

Integration of relational databases in S3 While, for our purposes, integrating relation database was not a priority, this can be done in a relatively straightforward manner, as relations can be interpreted as both RDF graphs or structured documents. Thus one can export a relational database into S3, for instance by creating a class for each relation and a property for each attribute of the class: for the relation R 1 (att 1 , att 2 ) one could create the class R 1 and the associated properties att 1 and att 2 such that a tuple (

x 1 , x 2 ) ∈ R 1 is mapped into the triples b type R 1 b att 1 x 1 b att 2 x 2

Conclusion

We have presented in this chapter a model: S3, that integrates social, semantic and structural data into a single weighted RDF graph. S3 meets the requirements (Section 4.1) for a model unifying these three dimensions, as we show here.

Genericity, extensibility and interoperability (R6) are guaranteed by the reliance on the Web standards RDF (Section 4.2.1) and XML/JSON (Section 4.2.3).

The small set of predene S3 classes and properties can be specialized to models many dierent types of social and structural interactions, e.g., through applicationdependent queries (see Extensibility in Section 4.2.2). The modelling capacities of S3 include most popular social networks and exiting data models (Section 4.3) and can be used to unify several social networks into a single instance.

Our document model (Section 4.2.3) meets the requirement of rich structured data (R2) where interactions such as comments target a specic part of the documents. The usage of RDF in documents and items ensures that they support a rich semantics (R3). The relations between structure, semantics and users (Section 4.2.4) allow stating the explicit relations within users and documents, while the implicit relations between users are modelled via social paths (Section 4.2.5) satisfying R1. Higher-level tags (R4) also stem from the relations between documents.

For what concerns formal semantics (R5), the data model has been described formally in this chapter and we will consider the description of queries in the next one.

Chapter 5 Top-k search in S3

In this chapter, we study top-k keyword search within S3 instances.

In Section 5.1 we devise a ranking-based query model and provide concrete examples of score functions. Then we propose a query answering algorithm for this model in Section 5.2. Finally, we discuss the similarities and dierences with other query models from the literature in Section 5.3.

Query model

Users can search S3 instances through keyword queries; the answer consists of the k top-score fragments, according to a joint structural, social, and semantic score. Section 5.1.1 denes queries and their answers. After some preliminaries presented in Section 5.1.2, we introduce a generic score, which can be instantiated in many ways, and a set of feasibility conditions on the score, which suces to ensure the termination and correctness of our query answering algorithm (Section 5.1.3).

We present our concrete score function in Section 5.1.4.

Queries

S3 instances are queried as follows:

Denition 5.1.1 (Query). A query is a pair (u, φ) where u is a user and φ is a set of keywords.

We call u the seeker. We dene the top-k answers to a query as the k documents or fragments thereof with the highest scores, further satisfying the following constraint: the presence of a document or fragment at a given rank precludes the inclusion of its vertical neighbors at lower ranks in the results

.

As customary, top-k answers are ranked using a score function: s(q, d) returns for a document d and query q a value in R, based on the graph I. The top k results are recursively dened as the top k -1 best results, plus the best among the documents which are neither fragments nor ancestors of the k -1 best results. Denition 5.1.2 (Query answer). A top-k answer to the query q using the score s, denoted T k,s (q), is dened inductively over k as follows:

T 0,s (q) = ∅ if k > 0, T k,s ( 
q) contains exactly T k-1,s (q) plus any one document from argmax(s(q, d))

d∈D\neigh(T k-1,s (q))
that is: any document having the best possible scores among the ones not in the vertical neighbourhood of the query answer T k-1,s (q).

Here, argmax is not necessarily unique: there might be ties. If a group of documents have identical scores, any of them can be in the query answer (ties are broken in some non-deterministic way). For instance, if the graph consists of four documents scored (d 1 , 0.8), (d 2 , 0.6), (d 3 , 0.6), (d 4 , 0.5) and we ask for the top 2 results, {d 1 , d 2 } as well as {d 1 , d 3 } are valid answers.

On the other hand when argmax is empty (i.e., less than k documents match q) every relevant document is returned.

Connecting query keywords and documents

Answering queries over I requires nding best-scoring documents, based on the direct and indirect connections between documents, the seeker, and search keywords. The connection can be direct, for instance, when the document contains the keyword, or indirect, when a document is connected by a chain of relationships to a search keyword k, or to some keyword from k's extension. Below we describe the possible situations which create connections. Let d, d be documents or tags, and let f, f be fragments of d and d , respectively2 . Further, let k, k be keywords such that k ∈ Ext(k), and let src ∈ Ω ∪ D be a user or a document.

Documents connected to the keywords of their fragments If the fragment

f contains a keyword k, i.e., f S3:contains k ∈ I, then:

(S3:contains, f, d) ∈ con(d, k)
which reads: d is connected to k through a S3:contains relationship due to f . This connection holds even if f contains not k itself, but some k ∈ Ext(k). For example, in Figure 4.1, if the keyword university appears in the fragment whose URI is d 2.7.5 , then con(d 2 ,university") includes (S3:contains, d 2.7.5 , d 2 ). Observe that a given k and f may lead to many connections, if k specializes several keywords and/or if f has many ancestors.

Connections due to tags For every tag a of the form a type S3:relatedTo a S3:hasSubject f a S3:hasAuthor src a S3:hasKeyword k con(d, k) includes (S3:relatedTo, f, src). In other words, whenever a fragment f of d is tagged by a source src with a specialization of the keyword k, this leads to a S3:relatedTo connection between d and k due to f , whose source is the tag author src. For instance, the tag a of u 4 in Figure 4.1 creates the connection (S3:relatedTo, d 0.5.1 , u 4 ) between d 0 and university.

More generally, if a tag a on fragment f has any type of connection (not just S3:hasKeyword) to a keyword k due to source src, this leads to a connection (S3:relatedTo, f, src) between d and k. The intuition is that the tag adds its connections to the tagged fragment and, transitively, to its ancestors. (As the next section shows, the importance given to such connections decreases as the distance between d and f increases.)

If the tag a on f is a simple endorsement (it has no keyword), the tag inherits d's connections, as follows. Assume d has a connection of type type to a keyword k: then, a also has a type connection to k, whose source is src, the tag author.

The intuition is that when src endorses (likes, +1s) a fragment, src agrees with its content, and thus connects the tag to the keywords related to that fragment and its ancestors. For example, if a user u 5 endorsed d 0 in Figure 4.1 through a no-keyword tag a 5 , the latter tag is related to university through: (S3:relatedTo, d 0.5.1 , u 5 ).

Connections due to comments When a comment on f is connected to a keyword, this also connects any ancestor d of f to that keyword; the connection source carries over, while the type of d's connection is S3:commentsOn. For instance, in Formally, whenever d S3:commentsOn f and there exist type , f rag , src such that (type , f rag , src) ∈ con(d , k), we have:

(S3:commentsOn, f, src) ∈ con(d, k)

Generic score model

We now introduce a set of proximity notions, based on which we discuss the scoring of candidate answers. Specically, we shall state the conditions to be met by a score function, for our query evaluation algorithm to compute a top-k query answer.

Path proximity We consider a measure of proximity along one path, denoted --→ prox, between 0 and 1 for any path, such that:

--→ prox(•) = 1, i.e., the proximity is maximal on an empty path (in other words, from a node to itself ), for any two paths p 1 and p 2 , such that the start point of p 2 is in the vertical neighborhood of the end point of p 1 :

--→ prox(p

1 ||p 2 ) min( --→ prox(p 1 ), --→ prox(p 2 )),
where || denotes path concatenation. This follows the intuition that proximity along a concatenation of two paths is at most the one along each of these two components paths: proximity can only decrease as the path gets longer.

Social proximity associates to two vertices connected by at least one social path, a comprehensive measure over all the paths between them. We introduce such a global proximity notion, because dierent paths traverse dierent nodes, users, documents and relationships, all of which may impact the relation between the two vertices. Considering all the paths gives a qualitative advantage to our algorithm, since it enlarges its knowledge to the types and strengths of all connections between two nodes.

Denition 5.1.4 (Social proximity). The social proximity measure prox : (Ω ∪

D ∪ T ) 2 → [0, 1]
, is an aggregation along all possible paths between two users, documents or tags, as follows:

prox(a, b) = ⊕ path ({( --→ prox(p), |p|), p ∈ a b}),
where | • | is the number of vertices in a path, and ⊕ path is a function aggregating a set of values from [0, 1] × N into a single scalar value.

Observe that the set of all paths between two nodes may be innite, if the graph has cycles; this is often the case in social graphs. For instance, in Figure 4.2, a cycle can be closed between (u 0 , URI 0, u 0 ). Thus, in theory, the score is computed over a potentially innite set of paths. However, in practice, our algorithm works with bounded social proximity values, relying only on paths of a bounded length:

prox ≤n (a, b) = ⊕ path ({( --→ prox(p), |p|), p ∈ a ≤n b})
Based on the proximity measure, and the connections between keywords and documents introduced in Section 5.1.2, we dene the generic score as follows:

Denition 5.1.5 (Generic score). Given a document d and a query q = (u, φ), the score of d for q is:

score(d, (u, φ)) = ⊕ gen ({(k, type, pos(d, f ), prox(u, src)) |k ∈ φ, (type, f, src) ∈ con(d, k)})
where ⊕ gen is a function aggregating a set of (keyword, relationship type, importance of fragment f in d, social proximity) tuples into a value from [0, 1].

Importantly, the above score reects the semantics, structure, and social content of the S3 instance, as follows:

First, ⊕ gen aggregates over the keywords in φ. Recall that tuples from con(d, k) account not only for k but also for keywords k ∈ Ext(k). This is how semantics is injected into the score.

Second, the score of d takes into account the relationships between fragments f of d, and keywords k, or k ∈ Ext(k), by using the sequence pos(d, f ) (Section 4.2.3) as an indication of the structural importance of the fragment within the document. If the sequence is short, the fragment is likely a large part of the document. Document structure is therefore taken into account here both directly through pos, and indirectly, since the con tuples also propagate relationships from fragments to their ancestors (Section 5.1.2).

Third, the score takes into account the social component of the graph through prox: this accounts for the relationships between the seeker u, and the various parties (users, documents and tags), denoted src, due to which f may be relevant for k.

Feasibility properties For our query answering algorithm to converge, the generic score model must have some properties which we describe below.

1. Relationship with path proximity This refers to the relationship between path proximity and score. First, the score should only increase if one adds more paths between a seeker and a data item. Second, the contribution of the paths of length n ∈ N to the social proximity can be expressed using the contributions of shorter prexes of these paths, as follows. We denote by ppSet n (a, b) the set of the path proximity values for all paths of length n going from a to b:

ppSet n (a, b) = { --→ prox(p) | p ∈ a n b}
Then, the rst property states that there exists a function U prox with values in [0, 1], taking as input:

the bounded social proximity for paths of length at most n -1 , the proximity along paths of length n, and the length n, and such that:

prox ≤n (a, b) = prox ≤n-1 (a, b) + U prox (prox ≤n-1 (a, b), ppSet n (a, b), n)
2. Long paths attenuation The inuence of social paths should decreases as they get longer; intuitively, the farther away two items are, the weaker their connection and thus their inuence on the score. More precisely, there exists a bound B >n prox tending to 0 as n grows, and such that: B score which takes a query q = (u, φ) and a number B ≥ 0, known to be an upper bound on the social proximity between the seeker and any source:

for any d, query keyword k, and (type, f, src) ∈ con(d, k), we know that prox(u, src) ≤ B. B score must be positive, and satisfy, for any q:

for any document d, score(d, q) ≤ B score (q, B);

lim B→0 (B score (q, B)) = 0 (tends to 0 like B).
We describe a concrete feasible score, i.e., having the above properties, in the next section.

Concrete score

We start by instantiating --→ prox, prox and score.

Social proximity Given a path p, we dene --→ prox(p) as the product of the normalized weights (recall Section 4.2.5) found along the edges of p. We dene our concrete social proximity function prox(a, b) as a weighted sum over all paths from a to b:

prox(a, b) = C γ × p∈a b --→ prox(p) γ |p|
where γ > 1 is a scalar coecient, and C γ = γ-1 γ is introduced to ensure that prox ≤ 1. Recall that by Denition 5.1.4, prox requires a ⊕ path aggregation over the (social proximity, length) pairs of the paths between the two nodes. Hence, this concrete social proximity corresponds to choosing:

⊕ path (S) = C γ × (sp,len)∈S sp γ len
where (sp, len) is a (social proximity, length) pair from its input.

Example 5.1.1 (Social proximity). Let us consider in Figure 4.2 the social proximity from u 0 to URI 0, using the --→ prox and ⊕ path previously introduced. An edge connects u 0 directly to URI 0, leading to the normalized path p:

p = u 0 u 0 S3:postedBy URI 0 1 1+0.3 ----------------→ URI 0
which accounts for a partial social proximity: for some damping factor η < 1.

prox ≤1 (u 0 , URI 0) = --→ prox(p) γ |p| = 1/(1+0.3)
Recall from Denition 5.1.5 that an aggregation function ⊕ gen combines the contributions of (keyword, relationship type, importance, social proximity) tuples in the score. The above denition corresponds to the following ⊕ gen aggregator:

⊕ gen (S) = k∈φ η |rel| × prox rel,prox ∃type,(k,type,rel,prox)∈S
Note that if we ignore the social aspects and restrict ourselves to top-k search on documents (which amounts to prox = 1), ⊕ gen gives the best score to the lowest common ancestor (LCA) of the nodes containing the query keywords. Thus, our score extends typical XML IR works, e.g., [START_REF] Liang | Supporting top-k keyword search in XML databases[END_REF] (see also Section 2.2).

Obviously, there are many possible ways to dene ⊕ gen and ⊕ path , depending on the application. In particular, dierent types of connections may not be accounted for equally; our algorithm only requires a feasible score (with the feasibility properties). In this proof we examine all the feasibility properties, in the order they are dened, and show that they apply on the concrete score, denoted score for the rest of this proof.

Relationship with path proximity

For any path p, --→ prox(p) is the product of the normalized weights (which are always non-negative, from Denition 4.2.5) along p, therefore it is always nonnegative.

This implies that, for all a, b in an instance I, prox(a, b)

= C γ × p∈a b --→ prox(p) γ |p|
increases if you add paths in I (more paths in I can only mean 0 or more new paths in {p ∈ a b}, which can only increase prox, since paths add non-negative terms to the summation). The score on any document and query, dened as:

score(d, (u, φ)) = k∈φ η |pos(d,f )| × prox(u, src) (type,f,src) ∈ con(d,k)
also increases if there are more paths, since prox increases and η > 0. We have shown the rst part of this requirement: the score should only increase if one adds more paths between a seeker and a data item.

We now need to exhibit a function U prox with values in [0, 1], such that, for all a, b ∈ I and n > 0:

U prox (prox ≤n-1 (a, b), ppSet n (a, b), n) = prox ≤n (a, b) -prox ≤n-1 (a, b)
To this end, let us develop prox ≤n (a, b)prox ≤n-1 (a, b), as follows:

prox ≤n (a, b) -prox ≤n-1 (a, b) =C γ × p∈a ≤n b --→ prox(p) γ |p| -C γ × p∈a ≤n-1 b --→ prox(p) γ |p| =C γ × p∈a nb --→ prox(p) γ |p| = C γ γ n (ppSet n (a, b))
In particular, if we choose U prox (x, pp, n) = Cγ γ n (pp), then:

prox ≤n (a, b) -prox ≤n-1 (a, b) =U prox (prox ≤n-1 (a, b), ppSet n (a, b), n)
Note that the rst argument of U prox is not used here; it would be used, for instance, for a function considering only the path with highest proximity: if

prox(a, b) = max p∈a b ( --→ prox(p)) then U prox (x, pp, n) = max({x} ∪ pp) -x.
We now only have to prove that U prox , as we dened it, is in [0

, 1]. Since Cγ γ n = γ-1 γ n+1 ∈ [0, 1] and (ppSet n (a, b)) ≥ 0, it is enough to prove that (ppSet n (a, b)) ≤ 1.
We actually prove a stronger result: we show by induction on n that for all a ∈ I, n ≥ 0, b∈I p∈a nb --→ prox(p) ≤ 1, as follows:

for n = 0, there exists only the empty path of length 0, and therefore

b∈I p∈a 0 b --→ prox(p) = --→ prox(∅) = e∈∅ e.n_w = 1
for n > 0, observe that a path of length n may be decomposed into a path of length n -1, followed by an optional jump between vertical neighbors (when n > 1), and then a path of length 1 (a network edge):

b∈I p∈a nb --→ prox(p) = b∈I p∈a nb 0≤i<n p[i].n_w = x∈I p ∈a n-1 x b∈I e∈Inet p=(p :e)∈a nb 0≤i<n p[i].n_w = x∈I p ∈a n-1 x 0≤i<n-1 p [i].n_w × b∈I e∈Inet p=(p :e)∈a nb p[n -1].n_w
Recall from the denition of path normalisation, Section 4.2.5, that if x is the ending point of a social edge in a path, and e is the next edge in this path, the normalized weight of e for this path, denoted e.n_w, is dened as: e.n_w = e.w/ e ∈out(neigh(x)) 

e .w

e .w)

Here, {e ∈ I net |b ∈ I, p = (p : e) ∈ a n b} is simply the set of network edges e that can continue the path p (which is ending in x). If p is the empty path and (p : e) is a path starting from a (note that a = x since x is the end of the path p after starting from a and following 0 edge), then e must start from x and e ∈ out(x) ⊂ out(neigh(x)). Otherwise, if p has a positive length, then e must start from a vertical neighbor of x and e ∈ out(neigh(x)). In any case, e ∈ out(neigh(x)), therefore we have:

b∈I p∈a nb --→ prox(p) ≤ x∈I p ∈a n-1 x --→ prox(p ) × e∈out(neigh(x))
(e.w/ e ∈out(neigh(x)) e .w)

≤ x∈I p ∈a n-1 x --→ prox(p ) b∈I p∈a nb --→ prox(p) ≤1
(The rst implication accounts for when out(neigh(x)) = ∅, the last implication is the induction hypothesis). This proves that for all a ∈ I, n ≥ 0, b∈I p∈a nb --→ prox(p) ≤ 1, and in particular that the rst feasibility property is veried.

Long paths attenuation

We have just seen that for all a ∈ I, n ≥ 0, b∈I p∈a nb --→ prox(p) ≤ 1. In particular, for all n ≥ 0, a, b ∈ I:

prox(a, b) -prox ≤n (a, b) = i>n C γ × p∈a i b --→ prox(p) γ i ≤C γ × i>n 1 γ i ≤ γ -1 γ × γ (γ -1)γ n+1 prox(a, b) -prox ≤n (a, b) ≤ 1 γ n+1
Therefore, we can chose B >n prox = 1 γ n+1 , which obviously tends to 0 as n tends to ∞, and verify the second feasibility condition.

Score soundness

Let us consider f : g → score [g] . We show that it is monotonically increasing and continuous for the uniform norm.

First of all, let us explicit f , for all g ∈ (Ω ∪ D ∪ T ) 2 → [0, 1]:

f (g) = d, (u, φ) → k∈φ η |pos(d,f )| × g(u, src) (type,f,src) ∈ con(d,k)
Since f is dened only using projections, additions, multiplications, and exponentiations, it is continuous for the uniform norm. Let us now show that it is monotonically increasing. Let g 1 , g 2 ∈ (Ω ∪ D ∪ T ) 2 → [0, 1], such that g 1 > g 2 for the uniform norm. We have:

f (g 1 )-f (g 2 ) = d, (u, φ) → k∈φ η |pos(d,f )| × g 1 (u, src) (type,f,src) ∈ con(d,k) - k∈φ η |pos(d,f )| × g 2 (u, src) (type,f,src) ∈ con(d,k)
We observe that for all d, (u, φ), k ∈ φ, (type, f, src) ∈ con(d, k) we have:

η |pos(d,f )| × g 1 (u, src) ≥ η |pos(d,f )| × g 2 (u, src), this is because η ≥ 0 and g 1 > g 2 .
Hence for all d, (u, φ): (f (g 1 )-f (g 2 ))(d, (u, φ)) ≥ 0 and f (g 1 ) ≥ f (g 2 ). This proves that f : g → score [g] is monotonically increasing for the uniform norm and with it the third feasibility property follows.

Score convergence

Let q = (u, φ) be a query and B ≥ 0 an upper bound on the social proximity between the seeker and any source. For all documents d, we have:

score(d, (u, φ)) = k∈φ η |pos(d,f )| × prox(u, src) (type,f,src) ∈ con(d,k) ≤ k∈φ 1 × B (type,f,src) ∈ con(d,k) since η < 1 and prox < B, ≤(O × B) |φ|
where O is the maximum number of connections a document may have in I (this does not depend on the query, nor on B). If we chose B score ((u, φ), B) = (O ×B) |φ| , as we have already shown that B score (q, B) ≥ score(d, q), it remains to show that this also tends to 0 when B does.

When B ≤ 1/O: (O × B) |φ| ≤ O × B, therefore, independently of q: lim B→0 (B score (q, B)) ≤ lim B→0 (O × B) ≤ 0
and, since B score ≥ 0, we have lim B→0 (B score (q, B)) = 0, which proves the last feasibility property.

Query answering algorithm

We describe in Section 5.2.1 our Top-k algorithm called S3 k , which computes the answer to a query over an S3 instance using scores with the feasibility properties.

We illustrate the functioning of our algorithm on a sample run in Section 5.2.2, and formally state its correctness in Section 5.2.3.

Algorithm

The main idea, outlined in Algorithm 1, is the following. The instance is explored starting from the seeker and going to other vertices (users, documents, or resources) at increasing distance. At the n-th iteration, the I vertices explored are those connected to the seeker by at least a path of length at most n. We term exploration border the set of graph nodes reachable by the seeker through a path of length exactly n. Clearly, the border changes as n grows.

During the exploration, documents are collected in a set of candidate answers.

For each candidate c, we maintain a score interval: its currently known lowest possible score, denoted c.lower, and its highest possible score, denoted c.upper.

These scores are updated as new paths between the seeker and the candidates are found. When a candidate document is reached, we are aware of at least one path q = (u, φ) Query: seeker u and keyword set φ k Bounded social proximity (prox ≤n ) between the seeker u and a node v, taking into account all the paths from u to v known so far

connect[c]

Connections between the seeker and the candidate c:

connect[c] = {(k, type, pos(d, f ), src)|k ∈ φ, (type, f, src) ∈ con(c, k)} threshold
Upper bound on the score of the documents not visited yet Termination condition Of course, the search should not explore the whole graph, but instead stop as early as possible, while returning the correct result. To this aim, we maintain during the search an upper bound on the score of all documents unexplored so far, named threshold. Observe that we do not need to return the exact score of our results, and indeed we may never narrow down the (lower bound, upper bound) intervals to single numbers or even order the returned results; we just need to make sure that no document unexplored so far may be among the top k. Algorithm 2 outlines the procedure to decide whether the search is complete. Graph exploration Algorithm 3 describes one search step (iteration), which visits nodes at a social distance n from the seeker. The algorithm updates the candidate set, the set of examined and discarded candidate documents, the set of paths of length n, and (most importantly) the seeker-centric proximity function allP rox.

if candidates[0, k -1] is T k,s (q), false otherwise 1 if ∃d, d ∈ candidates[0, . . . , k -1], d ∈ neigh(d ) then
For the ones that are documents or tags, the GetDocuments algorithm (see hereafter) looks for related documents that can also be candidate answers (these are added Algorithm 4: Algorithm ComputeCandidateBounds Input : loop counter n Update: upper and lower bounds of the candidates, threshold

1 foreach c ∈ candidates do 2 c.lower ← ⊕ gen ({(kw, t, p, allP rox[src])| 3 (kw, t, p, src) ∈ connect[c]}) 4 c.upper ← ⊕ gen ({(kw, t, p, allP rox[src]+ 5 B >n prox (u, src))|(kw, t, p, src) ∈ connect[c]) 6 threshold ← B score (q, B >n prox )
to candidates); discarded keeps track of related documents with scores too low for them to be candidates.

The allP rox table is also updated using the U prox function, whose existence follows from the rst score feasibility property (Section 5.1.3), to reect the knowledge acquired from the new exploration border (borderP ath). Observe that Algorithm 3 computes prox ≤n (u, src) iteratively using the rst feasibility property; at iteration n, allP rox[src] = prox ≤n (u, src).

In some social networks, users can only have a limited knowledge of the social interactions: for instance on Facebook, privacy settings may prevent a user, her relations or her content to be seen by other users. S3 k can take into account this limited knowledge by exploring only the edges known by the seeker: out, the network edges outgoing for a set of nodes, become dependent on the seeker and is restricted to the network edges that she knows of. The publicly available component of out may be pre-computed and the a priori much smaller component specic to u added at run-time.

Computing candidate bounds The ComputeCandidateBounds algorithm (Algorithm 4) maintains during the search the lower and upper bounds of the documents in candidates as well as the best possible score of unexplored documents. A candidate's lower bound is computed as its score where its social proximity to the user 3 is approximated by its bounded version, based only on the paths explored so far: Cleaning the candidate set Algorithm 5 removes from candidates some documents that cannot be in the answer, i.e., those for which k candidates with better scores are sure to exist, as well as those having a candidate neighbor with a better score. In the former case, this translates into removing every document d whose score is less than that of k other candidates which are neither (i) neighbors pairwise nor (ii) neighbors with other candidates with scores greater than that of d.

⊕ gen ({(kw, type, pos(d, f ), allP rox[src]) | kw ∈ φ, (type, f, src) ∈ con(d, kw)})
Getting candidate documents Algorithm 6 checks whether every unexplored document reachable from a given document or tag through a chain of triples labelled S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject, or S3:hasSubject (i.e., any edge that may connect two documents or tags), is a candidate answer. If yes, it is added to candidates and the necessary information to estimate its score, derived from con, is recorded in connect. ------------→ d 1 . Using the rst feasibility property we update the proximity of all the nodes in I to take into account all paths of length at most n = 1. The next step in the main loop, after Algorithm 3, is to compute the bounds of the candidates using Algorithm 4: this simply updates the lower and upper bounds of each candidate (here only d 0 ) and the threshold using the feasibility properties and our complete knowledge of the paths of length at most n (here 1). When this is done Algorithm 5 is triggered to remove the candidates that have no chance to make it to the top-k.

Anytime termination

We stress here that our running example does not illustrate all the aforementioned aspects, as only one possible candidate is present, no other candidates are ever removed, and no new documents can ever be found. Each iteration of the loop of Algorithm 1 will only increase n and compute all paths of length n and the proximities with the seeker taking into account paths of lengths at most n then recompute, through ComputeCandidateBound, the lower and upper bounds of the only candidate, d 0 , using these proximities and rene the threshold.

The feasibility properties ensure that threshold = B score (q, B >n prox ) tends to 0 while n increases and that the lower bound of d 0 :

⊕ gen ({(kw, t, p, allP rox[src])|(kw, t, p, src) ∈ connect[d 0 ]}) tends to the (positive) score of d 1 . When the lower bound of d 1 becomes greater than threshold, the best possible score of an unseen document, i.e., the stop condition, Algorithm 2 returns T rue on line 9 and S3 k terminates, returning its k best candidates, that is {d 0 }. 

Correctness of the algorithm

The theorems below state the correctness of our algorithm for any score function having the feasibility properties identied in Section 5.1.3. Because we also know that allP rox[src] = prox ≤n (u, src) we have:

c.upper =score [prox ≤n ] (c, q) c.lower =score [prox ≤n +B >n prox ] (c, q)
where score [f ] denotes our score function (Section 5.1.3) using f as the social proximity function. By denition, prox ≤n ≤ prox and by the second feasibility property we know that prox ≤ prox ≤n + B >n prox and lim n→+∞ (prox ≤nprox) = 0 = lim n→+∞ (prox ≤n + B >n proxprox). The third feasibility property ensures that g → score [g] is monotonically increasing and continuous and therefore that c.lower ≤ score(c, q) ≤ c.upper and that lim n→+∞ (c.lower) = lim n→+∞ (c.upper) = score(c, q). Lemma 5.2.2 (Threshold correctness). At any time, for any document d not in candidates nor in discarded: threshold ≥ score(d, q). Proof. (Lemma 5.2.2) Let d be a document neither in candidates nor in discarded, at an iteration n > 0 5 . Because d is not in candidates nor in discarded, there is no path of length smaller than n -1 from u to a source for con(d, k), k ∈ φ (otherwise, this path would have been found by Algorithm 6 and d would have been added to candidates or discarded). Let src be such a source. Because prox ≤n (u, src) = 0, and due to the long path attenuation property on the score (Section 5.1.3), we know that prox(u, src) ≤ B >n prox . Therefore, thanks to the fourth score feasibility property, score(d, q) ≤ B score (q, B >n prox ). This is exactly the threshold value set by Algorithm 4 at line 6.

We partition candidates into groups of documents. Two documents in candidates are in the same group if and only if candidates comprises a list of nodes, containing both documents, such that each node is a vertical neighbor of the next one in the list. Observe that in particular candidates that are not part of the same document are never in the same group. We call score of a group the highest score of its elements, and lower bound of a group the highest lower bound of its elements. 5 The theorem also holds if n = 0, as threshold = ∞. Lemma 5.2.3. The scores of the k groups with the best scores can only increase, and only documents with a lower score than the score of the k-th group or having vertical neighbors in the k groups with the best scores can be in discarded.

Proof. (Lemma 5.2.3) Observe that the lemma's claim is true when discarded is empty. We show that it is also true when documents are added to discarded or when the k best groups change.

Unless a document's score is null and gets discarded by GetDocuments (line 10), a document can only go to discarded by leaving candidates due to CleanCandi-datesList (algorithm 5).

The document with the best score in each group only has neighbors with lower scores than itself and therefore cannot be removed by lines 11-12. The only other way of discarding documents from candidates (lines 7-8) removes documents having an upper bound lower than the lower bound of the k-th group with the best lower bound. Because lower bounds are always smaller than the scores the best elements of the k groups with the best scores, they cannot be removed this way either. Therefore, at each call of CleanCandidatesList, each document with the best score in the k groups with the best scores remains in candidates, guaranteeing that the scores of the k best group can only increase and that adding new documents to discarded respects the lemma's claim.

As for the change of the k best groups, if a new group introduced in candidates removes the current k-th best group from its k-th position then the score of the new group is better than that of the removed one. Hence, documents which were in discarded because they were a neighbor of some element of the removed group, are now in discarded because they have a lower score than the new k-th best group (documents that had a lower score than the previous k best groups continue to do so with the new k ones). Theorem 5.2.1 (Stop correctness). When a stop condition is met, the rst k elements in candidates are a query answer.

Proof. (Theorem 5.2.1)

Let us show by induction on i ∈ [0, k] that if the stop condition is met then the i documents with the best scores among the rst k elements of candidates form a T i,score (q): a top-i answer to the query.

For i = 0, the 0 highest scored elements of the k rst candidates is the empty set and we purposefully expand the notion of query answer such that: T 0,score (q) = ∅.

For i > 0, given that the i -1 documents with the best scores among the rst k elements of candidates form a T i-1,score (q), we have to show that adding a i-th document with the i-th best score among the rst k elements of candidates, to this T i-1,score (q) forms a T i,score (q). In order to do so, let d be a such a document. By the denition of query answer, we only have to show that d is in D\neigh(T k-1,score (q)) and has the maximum score (score(d, q)) on that set.

d is not in neigh(T k-1,score (q)) since it follows from the stop condition that d, d ∈ candidates[0, . . . , k -1], d ∈ neigh(d ) (lines 1-2) and from the induction hypothesis that T k-1,score (q) ⊂ candidates[0, . . . , k -1]. Therefore, d is in D \ neigh(T k-1,score (q)).

Let us show now that d maximizes the score over D \ neigh(T k-1,score (q)), by showing it does so over the intersection of D\neigh(T k-1,score (q)) with the following partition of D:

the k rst elements of candidates: by construction d has the best score among the k rst elements of candidates which are not in T k-1,score (q) the other elements of candidates: if d is a document in candidates, which is not ranked among the rst k, then: Hence score(d , q) ≤ score(d, q). discarded: From Lemma 5.2.3, it follows that if d is a document in discarded then either it has a lower score than d or it has a neighbor d" in candidates such that score(d", q) ≥ score(d , q). In the latter case, if this neighbor d" is not in T k-1,score (q) then score(d", q) ≤ score(d, q) and score(d , q) ≤ score(d, q). In any case there exists no d in discarded \ neigh(T k-1,score (q)) with a better score than d. D \(candidates∪discarded): from the Threshold correctness (Lemma 5.2.2), we know that documents not in candidates nor in discarded have a score lower than threshold, thus the line 9 in Algorithm 2 and bounds correctness (Lemma 5.2.1) guarantee that score(d, q) ≥ threshold.

We have shown that the k documents with the best score among the rst k elements of candidates, i.e., the rst k elements of candidates, are a query answer.

We say the tie of two equal-score documents d, d is breakable if examining a set of paths of bounded length suces to decide their scores are equal. (In terms of our score feasibility properties, this amounts to B >n prox = 0 for some n). If there exists a query answer of size k then candidates will eventually contain at least k groups; otherwise some documents from this query answer would have gone to discarded, which by Lemma 5.2.3 is impossible if candidates doesn't contain at least k groups with better scores than these of the k documents from this query answer.

Because it is impossible to add new documents to candidates when all documents have been explored, after some time, the size of candidates will not change and no document will leave it anymore. By Lemma 5.2.3, at least one document in each of the k best groups remains in candidates. Consider an element d with the best score in one the k best groups at a time where candidates has reached its nal size. Because of the bound correctness and convergence lemma (Lemma 5.2.1), and the fact that all ties are breakable, eventually ∀d ∈ neigh(d) d.lower ≥ d .upper holds. Therefore, the CleanCan-didatesList algorithm, at lines 11-12, remove documents from candidates if any such d is in candidates. Hence, d has no neighbors in candidates and is the only document in its group.

The k best groups are therefore k documents without neighbors in candidates, with the k best scores in candidates, and by bound convergence the best lower bounds eventually. This automatically triggers the stop condition and forces the algorithm to terminate, which contradicts our hypothesis.

We have shown that if there exists a query answer and all ties are breakable then the algorithm terminates and thus returns an answer (Theorem 5.2.1). Theorem 5.2.3 (Anytime correctness). Using anytime termination, Algorithm 1 eventually returns a query answer.

Proof. (Theorem 5.2.3) Because (i) there is a nite number of documents that can be candidates and (ii) the simple convergence of bounds (Lemma 5.2.1) is actually a uniform convergence: for any query q and positive value , after some number of iterations, the lower and upper bounds of any candidate can dier from its score of at most .

RELATIONSHIP WITH EXISTING QUERY MODELS

If we choose for a value smaller than half the minimum positive dierence between two document scores, then eventually any two candidates with dierent scores will have their upper bounds ordered in the same way as their score. In particular, after some time, argmax(c.upper) = argmax(score(q, c)) and therefore the anytime termination algorithm (Algorithm 7) produces a query answer.

It is worth noting that in our experiments (Chapter 6), the threshold-based termination condition was always met, thus we never needed to wait for convergence of the lower and upper bound scores, in order to nd the top-k answers. 

Relationship with existing query models

Social distance

The proposed concrete score realizes naturally the Katz distance [START_REF] Katz | A new status index derived from sociometric analysis[END_REF] if we ignore the semantic and structural aspects, that is if we consider that all documents have one node, containing all their keywords. As we shown in Section 5.1.3, this is a social distance that respects the feasibility properties. Furthermore its ties are breakable since it only require a nite number of paths to give an exact score.

Semantics distance

By design we restricted our semantics distance to an all-or-nothing approach:

URIs are either inside or outside of the extension of the keywords of the query, however the keywords used in the connections between the documents and the keywords of the query are taken into account in the nal score via ⊕ gen :

score(d, (u, φ)) = ⊕ gen ({(kw, type, pos(d, f ), prox(u, src)) |kw ∈ φ, (type, f, src) ∈ con(d, kw)})
Therefore it is possible to integrate into ⊕ gen a factor that depends on kw. By adding similar keywords to query and restricting their extension it is possible to mimic approaches where keywords are given a similarity value in [0, 1] that is used multiplicatively with the score.

Conclusion

This chapter provides a top-k keyword query model for S3 instances, as well as a query answering algorithm which we demonstrate on a sample run and for possible scores respecting the Feasibility properties, this not needed and is a waste of resources in most practical cases. In practice, it is often possible to aggregate all the proximities of the paths of a given length from the seeker to a node of I into a single scalar. Since Algorithm 6 starts from a document and test all documents d such that "there exists a chain of triples from x to d in I using only S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject and S3:hasSubject labels" (line 1), it is possible to regroup the documents that share this property into connected components (connected via the above-mentioned properties in I) and test all the documents within a component at once.

Finally, the third-generation implementation incorporates parallelism: Algorithm 1 spends most of its runtime in a loop (lines 7-11) that increases n and launches StopConditions, ExploreStep (which in turn calls GetDocuments), ComputeCandidatesBound and CleanCandidatesList. However, it is in fact possible to partially execute several instances of this loop for dierent n in parallel. StopCondition computes if the spot condition is reached, as described by Algorithm 2, using the candidates, the threshold and the known and previously known components. When the stop condition is reached, the k best candidates are returned.

The query is used to compute the rst proximity (0 to everyone but the seeker) and the keyword extension based on the keywords of the query.

This last implementation, including both the optimized version for the concrete score and the capabilities to handle the generic scores, was refactored to a code original(URI, optional external identier, type), where type is one of user, document root, fragment, or tag, with two additional indexes, on external identier and on type. This table helps nding where the URIs in the database come from and what they are, in term sof representation outside the algorithm. It is not used in the query processing phase, but serves to connect it it with the application using it.

Optimisations

We briey discuss our implementation, focusing on optimizations w.r.t. the conceptual description in Section 5.2.

The rst optimization concerns the computation of prox, required for the score (Denition 5.1.6). While the score involves connections between documents and keywords found on any path, in practice S3 k explores paths (and nodes) increasingly far from the seeker, and stores such paths in borderP ath, which may grow very large (it can grows exponentially with n in the number of edges in I) and hurt performance. To avoid storing borderP ath, we compute for each explored vertex v the weighted sum over all paths of length n from the seeker to this vertex:

borderP rox(v, n) = p∈u v,|p|=n --→ prox(p) γ n
and compute prox directly based on this value. Note that borderP rox(v, n + 1) can be computed from the borderP rox(x, n+1), x ∈ I because of the form of social distance: recall from the concrete score (Section 5.1.4) that

prox(u, v) = C γ × p∈u v --→ prox(p) γ |p| and therefore that borderP rox(v, n) =C γ × p∈u v,|p|=n --→ prox(p) γ |p| =C γ × p ∈x v,|p |=1 p∈u x,|p|=n-1 --→ prox(p) γ |p| = p ∈x v,|p |=1 borderP rox(x, n -1) 
can be computed using only paths of length 1 and borderP rox at the previous iteration.

Furthermore, Algorithm GetDocuments considers documents reachable from x through edges labeled S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject or S3:hasSubject. Reachability by such edges denes a partition of the documents into connected components. Further, by construction of con tuples (Section 5.1.2), connections carry over from one fragment to another, across such edges. Thus, a fragment matches the query keywords i its component matches it, leading to an ecient pruning procedure: we compute and store the partitions, and test that each keyword (or extension thereof ) is present in every component (instead of fragment). Partition maintenance is easy when documents and tags are added, and more expensive for deletions, but luckily these are rarer.

The query answering algorithm creates a boolean vector indexed by the components, initially all false. Further, it creates (in memory) the allP rox vector and two sparse matrices which are computed only once: distance matrix that encodes the graph of network edges in I (accounting for the vertical neighborhood), and a component matrix storing the component of each fragment or tag. This simplies Algorithm 3, since computing allP rox and nding new components to explore can be implemented using matrix and vector operations. For instance, the new distance vector borderP rox w.r.t. the seeker at step n + 1 can be obtained by multiplying the distance matrix with the previous distance vector from step n.

Last but not least, the search algorithm can be parallelized, in two independent ways. First, within an iteration we discover new documents in parallel by splitting the search across components. Second, an iteration can start executing before the current one is nished: as long as borderP rox is available in the current iteration, one can start computing the next borderP rox using the (xed) distance matrix. More precisely, ExploreStep can be seen as consisting of two main blocks:

(i) computing the new borderP rox using the distance matrix and the previous borderP rox (lines 1-16 except for line 14).

(ii) computing allP rox using the new borderP rox and the previous allP rox (lines 17-20) plus the call to GetDocuments (line 14).

The latter algorithm can also be seen as consisting of two parts: (iii) identifying the newly discovered components (line 1), and (iv) testing the documents they contain (the remaining lines). In practice, slightly smaller grain separations are possible, leading to 8 tasks of the forms (i)-(iv) above. A custom scheduler is responsible for spawning and synchronize concurrent threads executing these tasks. This has divided the query answering time on average by a factor of 2 on the testing machine, but in a more parallel environment greater gain could be expected. With all the optimization described before almost all the runtime of the algorithm is spent in optimized NumPy-based matrix operation or in the PostgreSQL query engine which are both hard to optimize further.

Datasets

We built three datasets, I 1 , I 2 , and I 3 , based respectively on content from Twitter, Vodkaster and Yelp.

The instance I 1 was constructed starting from tweets obtained through the public streaming Twitter API, and based on the Tweepy library [START_REF]Tweepy library[END_REF]. Over a oneday interval (from May 2nd 2014 16h44 GMT to May 3rd 2014 12h44 GMT), we gathered roughly one million tweets. From every tweet that is not a retweet, we create a document having three nodes: text from the text eld of the tweet, we extract named entities and words (with the help of the twitter NLP tools library [START_REF] Ritter | Named entity recognition in tweets: An experimental study[END_REF]) and match them against a general-purpose ontology we created from DBpedia, as we explain below date, extracted from the created_at tweet eld a geo node: if the tweet includes a human readable location, i.e., recognizable keywords in the place eld of the tweet (be it from a name or a full_name property) we insert it in this node.

The RDF graph of our instance is built from four DBPedia datasets, namely:

Mapping-based Types, Mapping-based Properties, Persondata and DBpedia Lexicalizations Dataset. These were chosen as they were the most likely to contain concepts (names, entities etc.) occurring in tweets.

Within the text elds, we replace each word w for which a triple of the form u http://xmlns.com/foaf/0.1/name w holds in the DBPedia knowledge base, by the respective URI u.

When a tweet t authored by an user u is a retweet of another tweet t, and further if t adds a hashtag h, then we add to I d 1 the following triples: a type S3:relatedTo a S3:hasSubject t a S3:hasKeyword h a S3:hasAuthor u Thus, a retweet that adds multiple keywords leads to the creating several tags.

If a tweet t is a reply to another tweet t (as identied by the in_reply_to_status_id eld), we consider that t is a comment on t. If t is present in our dataset 1 , we add the corresponding S3:commentsOn triple in I 1 .

For what concerns the social network, we set Ω I 1 as the set of IDs of the users having posted some tweets, and we create links between users as follows. We assign 1 Sometimes our corpus contains a re-tweet of an original tweet that we did not capture. This is unavoidable unless one has access to the full Twitter history. The instance I 2 uses data from Vodkaster, a French social network dedicated to movies. The original social network data comprised follower relations between the users and a list of comments on the movies, in French, along with their author. Whenever user u follows user v, we included u vdk:follow v 1 in I 2 , where vdk:follow is a custom subproperty of S3:social expressing the act of following someone in Vodkaster (vdk:follow ≺ sp S3:social). The rst comment on a movie was translated in I 2 as an original document; each additional comment on this lm was then considered a comment on the rst. The textual content of each comment was stemmed using Snowball algorithms [START_REF]Snowball stemming library for python[END_REF] and each (stemmed) sentence was made a fragment of the comment.

The instance I 3 is based on Yelp [START_REF]Yelp Dataset Challenge[END_REF], a crowd-sourced reviews website about local businesses. This dataset contains a list of textual reviews of businesses, and the friend list of each user. As for I 2 , we consider that the rst review of a business is commented on by the subsequent reviews of the same business and we introduce a dedicated subproperty of S3:social: yelp:friend to express the friendship on Yelp: if user u is friend with user v then we include u yelp:friend v 1 in I 3 . As for I 1 , we use DBpedia to gain additional semantic on the extracted keywords. Table 6.2 shows the main features of the three quite dierent data instances. I 1 is by far the largest. I 2 was not matched with a knowledge base since its content is in French; I 2 and I 3 have no tags.

Queries

For each instance we created workloads of 100 queries, based on three independent parameters: f , the keyword frequency: either rare, denoted '-(among the 25% least frequent in the document set), or common, denoted '+ (among the 25% most frequent) l, the number of keywords in the query: 1 or 5 k, the expected number of results: 5 or 10

This lead to a total of 8 workloads, identied by qset f,l,k , for each dataset. To further analyze the impact of varying k, we added 10 more workloads for I 1 , where f ∈ {+, -}, l = 1, and k ∈ [START_REF]The Javascript Object Notation (JSON) Data Interchange Format[END_REF][START_REF]Twitter Developers[END_REF][START_REF] Antonellis | Tagging with queries: How and why?[END_REF][START_REF] Li | RankSQL: query algebra and optimization for relational top-k queries[END_REF] (used in Figure 6.6). We stress here that injecting semantics in our workload queries, by means of keyword extensions (Denition 4.2.1), increased their size on average by 50%.

We adapted our instances into TopkS's simpler data model. From I 1 , we created I 1 as follows: the relations between users were kept with their weight, every tweet was merged with all its retweets and replies into a single item, every keyword k in the content of a tweet that is represented by item i posted by user u led to introducing the (user, item, tag) triple (u, i, k).

To obtain I 2 and I 3 : the relations between the users are kept with their weight, each lm or business becomes an item , each word extracted from a user's review on a item becomes a tuple in the (user, item, tag) relation. [START_REF]Yelp! Dataset Challenge[END_REF].4 Quantitative analysis Figures 6.3 6.5 show the running times of S3 k on our three instances. We used dierent values of the γ social proximity damping factor (Section 5.1.4), and of α for TopkS. For each workload, we plot the average time (over its 100 queries).

All runs terminated by reaching the threshold-based stop condition (Algorithm 2).

A rst thing to notice is that while all running times are comparable, TopkS runs consistently faster. This is mostly due to the dierent proximity functions: our prox, computed from all possible paths, has a much broader scope than TopkS, which explores and uses only one (shortest) path. In turn, as we show later, we return a signicantly dierent set of results, due to prox's broader scope and to considering document structure and semantics.

Decreasing the γ in S3 k reduces the running time. This is expected, as γ gives more weight to nodes far from the seeker, whose exploration is costly. Similarly, increasing α in TopkS forces to look further in the graph, and aects negatively its performance.

The inuence of k is more subtle. When the number of candidates is low and the exploration of the graph is not too costly, higher k values allow to include most candidates among the k highest-scoring ones. This reduces the exploration needed to rene their bounds enough to clarify their relative ranking. In contrast, if the number of candidates is important and the exploration costly, a small k value signicantly simplies the work. This can be seen in Figure 6.6 where, with frequent keywords, increasing k does not aect the 3 fastest quartiles but signicantly slows down the slowest quartile, since the algorithm has to look further in the graph to rene the bounds.

The same gure also shows that rare-keyword workloads (whose labels start by -) are faster to evaluate than the frequent-keyword ones (workload labels starting with +). This is because nding rare keywords tends to require exploring longer paths. Social damping at the end of such paths is high, allowing to decide that possible matches found even farther from the seeker will not make it into the top-k.

In contrast, matches for frequent keywords are found soon, while it is still possible that nearby exploration may signicantly change their relative scores. In this case, more search and computations are needed before the top-k elements are discovered and ranked correctly.

Qualitative analysis

We compare now the answers of our S3 k algorithm and those of TopkS from a qualitative angle. S3 k follows links between documents to access further content, while TopkS does not; we term graph reachability the fraction of candidates reached TopkS only relies on the query keywords. We call semantic reachability the ratio between the number of candidates examined by an algorithm without expanding the query, and the number of candidates examined with query expansion.

+ , 1 , 1 + , 1 , 5 + , 1 , 1 0 + , 1 , 5 0 + , 1 , 5 0 - , 1 , 1 - , 1 , 5 - , 1 , 1 0 - , 1 
Observe that some S3 k candidates may be ignored by TopkS due to the latter's lack of support for both semantics and connections between documents.

Finally, we report two measures of distance between the results of the two algorithms. The rst is the intersection size i.e., the fraction of S3 TopkS also returned. The second, L 1 , is based on Spearman's well-known foot rule distance between lists [START_REF] Fagin | Comparing top k lists[END_REF]. Modulo normalisation to ensure that L 1 (τ, τ ) = 1, L 1 (τ 1 , τ 2 ) = 0 if they share no elements and 0.5 if they have the same elements in reverse order, L 1 is dened as:

L 1 (τ 1 , τ 2 ) = 2(k -|τ 1 ∩ τ 2 |)(k + 1) + i∈τ 1 ∩τ 2 |τ 1 (i) -τ 2 (i)| - τ ∈{τ 1 ,τ 2 } i∈τ \(τ 1 ∩τ 2 ) τ (i)
where τ j (i) is the rank of item i in the list τ j .

The averages of these 4 measures over the 8 workloads on each instance appear in Figure 6.7. The ratios are low, and show that dierent candidates translate in dierent answers (the low L 1 stands witness for this). Few S3 k results can be attained by an algorithm such as TopkS, which ignores semantics and relies only on the shortest path between the seeker and a given candidate.

TopkS instances contain much less items than their S3 k counterpart contain documents. This is because all their structure and the social links between them is collapsed into a single item. For instance I 1 contains approximately 11 times less items than I 1 contains documents and I 2 43 times less than I 2 , I 3 34 times less than I 3 . In particular TopkS cannot return a document that was fused with another, such as a reply to status or a retweet.

Conclusion

Our experiments have demonstrated, rst, the ability of the S3 data model to capture very dierent social applications, and to query them meaningfully, accounting for their structure and enriching them with semantics.

Second, we have shown that S3 k query answering can be quite ecient, even though considering all paths between the seeker and a candidate answer slows it down w.r.t. simpler algorithms, which rely on a shortest-path model. We have experimentally veried the expected impact of the social damping factor γ and of the result size k on running time.

Third, and most importantly, we have shown that taking into account in the relevance model the social, structured, and semantic aspects of the instance bring a qualitative gain, enabling meaningful results that would not have been reachable otherwise.

Chapter 7 Conclusion and perspectives

In this nal chapter, we give, in Section 7.1, a summary of the work proposed through this thesis and we provide, in Section 7.2, a perspective on how this work can be integrated in further developments.

Conclusion

In the introduction, we have shown that social networks are a crucial area of research, impacting directly the lives of billions, and that more and more of our daily life and our environment is being incorporated into available social data.

Keyword search is currently the most common way for users to access the wealth of this social data, and therefore a fundamental feature of social networks. And yet, top-k keyword search in a social context, as it can be found today, is severely limited because there exists no framework that utilizes the three main aspects of the data: its structure, semantics and social scope.

We have presented in Chapter 3 how the current approaches are integrating separately structure, semantics and social aspects into top-k search and into hybrid query systems. We highlighted their limitations and presented, in Chapter 4, a set of requirements for a data model integrating the three dimensions we study. We propose a new model, named S3, built to satisfy these requirements and overcome the limitations of the previous models. S3 integrates the standards of the Web for semantics, as it contains directly RDF graphs, for structured documents, as it encodes easily XML, JSON, and more generally structured and semi-structured documents, and nally it integrates exible social interactions encompassing the behaviours of most social networks' users. S3 integrates the three dimensions we mentioned: it allows explicit and implicit relations between users, for instance through their interactions with documents, higher levels of tags and comments and a rich and well-dened semantics while remaining generic enough to be extensible. S3 can be queried using a top-k, keyword based, query model: S3 k , introduced in Chapter 5. In this model, a user inputs a set of keywords and is returned the most relevant documents for these keywords, according to a customizable score function. The restriction on the possible scores are based on relatively simple and straightforward properties, such as that the score of a document increases with the proximity between its author and the seeker (the user making the query).

These limitations are light enough that it is possible to emulate most other top-k approaches for the state of the art on their respective dimensions. We provided an algorithm realising S3 k , shown how it works through examples, and proved its termination and its correctness. This algorithm is implemented and tested, in Chapter 6, on datasets extracted from real life social networks. On these datasets we identied the factors impacting the performances of S3 k and showed that it returns its results in a reasonable time and that captures signicantly more results than a top-k system using only social data: this is a direct consequence of the harmonious integration of the structured, social, and semantic dimensions into S3.

Perspectives

The S3 model is generic and comprehensive, therefore it can be used in other settings than top-k keyword search. We present here another track of possible extension for S3 that remains to be fully explored: to be part of an integration model for data journalism.

Journalism is evolving to integrate more digital data as a support for investigation. Such data may come from organisations and governmental agencies publishing open data such as demographics, economics, stock quotes etc., or from social network websites providing social and textual data on brands, big and small businesses or public gures such as politicians and artists. There also exist large-scale ontologies integrating manual and automatic eort such as DBpedia, GeoNames or YAGO and other large sources of data may arise in particular cases, for instance the 11.5 million of documents of the Panama Papers. Data journalists are aware of the latent potential behind the usage of this data and would like to access it but lack the tools to do so.

To address this problem, team members are currently collaborating to develop Tatooine, a lightweight data integration prototype, Tatooine [START_REF] Bonaque | Mixed-instance querying: a lightweight integration architecture for data journalism[END_REF], devised based on our discussions with Les Decodeurs, a fact-checking team of the major french newspaper Le Monde 1 . Tatooine allows journalists to exploit heterogeneous data sources of dierent data models, which we view as a mixed data instance.

Within the instance, we distinguish sets of structured, un-structured, or semi-1 lemonde.fr/les-decodeurs structured data sources, of various data models, each of with its own query system.

We present a mixed query engine as a mediator, running on top of the dierent data sources that we bridge using custom and application-dependent RDF data.

For instance using the S3 model, which is perfectly adapted to model social interactions with users and documents. The engine evaluates mixed queries, which combine sub-queries expressed in the query language(s) of several heterogeneous sources, and RDF querying on the custom data. A sample query is, for instance: for a given hashtag and each political aliation (left wing, right wing etc.), nd the most prolic tweet authors of that aliation having used that hashtag, and their Facebook accounts . Mixed queries can be used also to query dynamically discovered datasets, e.g., the address of a relational database is found in an table and part of the mixed query is shipped there for evaluation.

Writing such queries requires database skills, therefore Tatooine will also include a keyword-based query engine, working on data source digests computed from the data sources. Based on these digests, the keyword-based query engine identies a set of mixed queries which, evaluated over the set of (joining) datasets, return the results users are interested in.

Tatooine can be seen as an ad-hoc data integration platform (or mediator) extending the S3 model to capture data of arbitrary models, and join them by means of commonly-occuring names and URIs. Tatooine does not attempt to solve the (hard) problems related to the identication of same entities across different data sources; rather, it focuses on the ability to quickly set up integration applications on top of dierent datasets, taking advantage of the relative ease of named entity recognition in online media content. Work on Tatooine is ongoing as part of the ANR ContentCheck project (2016-2019).
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 16 64 ayant accès à internet qui déclarent avoir un compte Facebook. Alors même que Facebook se targue de posséder aussi WhatsApp avec ses un milliard d'utilisateurs, ainsi que les 400 millions d'utilisateurs d'Instagram. Tencent's QQ dit avoir 850 millions d'utilisateurs actifs, Wechat 700 milions, Twitter 310 et LinkedIn 106.

Chapter 5 2 Preliminaries

 52 deals with querying S3 in a new, top-k keyword-based framework that we introduce: S3 k . The main contributions of this chapter are: the querying framework S3 k ; the notion of generic and concrete scores for this query model, and the mathematical properties attached to them; the algorithm we developed to implement this query model; the proof of termination and correctness of said algorithm. Chapter 6 presents the technical details of implementation and the evaluation of our algorithm S3 k compared to another system for top-k keyword query in a social context. The main contributions of this chapter are: a description of our implementation of S3 k ; the analysis of the performances of our implementation; the qualitative and quantitative comparisons with another system for top-k keyword search in a social context. Chapter 7 concludes this thesis and presents perspectives for future use of S3. The main contribution of this chapter is the introduction of Tatooine, a lightweight integration architecture for data journalism.ChapterThis chapter introduces the de-facto standard formalisms to model semantic, structured and social data.
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 2 Figure 2.5 shows an example of XQuery query that outputs an XML document containing one item element for each child of the root of a document named inventory.xml . The resulting items also get a name and a quantity child from the original document.
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 1241 Figure 4.1: Motivating example for the data model requierements.

  I and S3 namespace We use I to designate the weighted RDF instance we work with. The RDF Schema statements in I allow a semantic interpretation of keywords, as follows: Denition 4.2.1 (Keyword extension). Given an S3instance I and a keyword k ∈ K, the extension of k, denoted Ext(k), is dened as follows: k ∈ Ext(k) for any triple of the form b type k, b ≺ sc k or b ≺ sp k in I, we have b ∈ Ext(k).

  each d ∈ D into the I triple d type S3:doc, each document d ∈ D and fragment rooted in a node n of d into n S3:partOf d, each node n and keyword k appearing in the content of n into n S3:contains k, each node n whose name is m, into n S3:nodeName m.Example 4.2.1. Based on the sample document shown in Figure 4.1, the following triples are part of I: d 0.3.2 S3:partOf d 0.3 d 1 S3:contains "M.S." d 0.3 S3:partOf d 0 d 1 S3:nodeName text The following constraints, part of I, model the natural relationships between the S3:doc class and the properties introduced above: S3:partOf ← d S3:doc S3:partOf → r S3:doc S3:contains ← d S3:doc S3:nodeName ← d S3:doc which read as follows: the relationship S3:partOf connects pairs of fragments (or documents), S3:contains describes the content of a fragment, and S3:nodeName associates names to fragments.
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 41 pos(d 0.3.2 , d 0 ) may be (3, 2).
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 422 Considering again Figure 4.1, sample outputs of the pos function are:pos(d 0 , d 0.3.2 ) = [3, 2] pos(d 1 , d 2 ) = [ ] 4.2.4Relations between structure, semantics, usersWe now show how dedicated S3 classes and properties are used to encode all necessary kinds of connections between users, content, and semantics in a single S3 instance.
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 41 u 4 tags d 0.5.1 with the keyword university, leading to the triples:

a 2

 2 type NLP:recognize NLP:recognize ≺ sc S3:relatedTo User actions on documents Users post (or author, or publish) content, modeled by the dedicated property S3:postedBy. Some of this content may be comments on (or replies / answers to) other fragments; this is encoded via the property S3:commentsOn. When user u posts document c, which comments on document d and possibly cites part of it, each fragment copied (cited as such) from d into c is now part of c and thus has a new URI.
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 42 Figure 4.2: Sample S3 instance I.
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 42221 ------------→a 0 a 0 S3:hasSubject URI 0.0.0 1 ----------------→ URI 0.0.0 URI 0 URI 0 S3:postedBy u 0 1
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 513 Connections between a document d and a keyword k). We denote the set of direct and indirect connections between a document d and a keyword k by con(d, k). Each connection is a three-tuple (type, f, src) such that: type ∈ {S3:contains, S3:relatedTo, S3:commentsOn} is the type of the connection, f ∈ F rag(d) is the fragment of d (possibly d itself ) due to which d is involved in this connection, src ∈ Ω ∪ D (users or documents) is the source (origin) of this connection (see below).
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 4 >n prox ≥ proxprox ≤n 3. Score soundness The score of a document should be positively correlated with the social proximity from the seeker to the document fragments that are relevant for the query. Denoting score [g] the score where the proximity function prox is replaced by a continuous function g having the same domain (Ω ∪ D ∪ T ) 2 , g → score [g] must be monotonically increasing and continuous for the uniform norm. Score convergence This property bounds the score of a document and shows how it relates to the social proximity. It requires the existence of a function

γ 1

 1 Score functionWe dene a simple concrete S3 score function which, for a document d, is the product of the scores of each query keyword in d. The score of a keyword is summed over all the connections between the keyword and the document. The weight for a given connection and keyword only depends on the social distance between the seeker and the sources of the keyword, and the structural distance between the fragment involved in this relation and d, namely the length of pos(d, f ). Both distances decrease exponentially as the path length grows. Formally: Denition 5.1.6 (S3 k score). Given a query (u, φ), the S3 k score of a document d for the query is dened as: score(d, (u, φ)) = k∈φ η |pos(d,f )| × prox(u, src) (type,f,src) ∈ con(d,k)

Lemma 5 . 1 . 1 (

 511 Score feasibility). The S3 k score function (Denition 5.1.6) has the feasibility properties (Section 5.1.3). Proof. (Lemma 5.1.1)

1 p

 1 If we use this to compute the normalized weight of the last edge of paths of length n, we obtain: b∈I p∈a nb --→ prox(p) = x∈I p ∈a n-1 x 0≤i<n-[i].n_w × b∈I e∈Inet p=(p :e)∈a nb (e.w/ e ∈out(neigh(x)) e .w) = x∈I p ∈a n-1 x --→ prox(p ) × b∈I e∈Inet p=(p :e)∈a nb (e.w/ e ∈out(neigh(x))

n

  Number of iterations of the main loop of the algorithm candidates Set of documents and/or fragments which are candidate query answers at a given moment discarded Set of documents and/or fragments which have been ruled out of the query answer borderP ath[v] Paths from u to v explored at the last iteration (a n v) allP rox[v]

  length(candidates) < k and candidates ∪ discard = D then 4 return true 5 min_topk_lower ← ∞ 6 foreach c ∈ candidates[0, . . . , k -1] do 7 min_topk_lower ← min(min_topk_lower, c.lower) 8 max_non_topk_upper ← candidates[k].upper 9 return max(max_non_topk_upper, threshold) ≤ min_topk_lower // Boolean result

First 5 GetDocuments

 5 , if the current candidate set comprises two documents such that one is a Algorithm 3: Algorithm ExploreStep Update: borderP ath and allP rox 1 if n = 1 then 2 foreach network edge e in out(u) do 3 m ← e.target 4 if m is a document or a tag then v ∈ I do 9 newBorderP ath[v] ← ∅ 10 foreach p ∈ borderP ath do 11 foreach network edge e in out(neigh(p.end)) do 12 m ← e.target 13 if m is a document or a tag then 14 GetDocuments(m) 15 newBorderP ath[m].add(p||e) 16 borderP ath ← newBorderP ath17 foreach v ∈ I do 18 newAllP rox[v] ← allP rox[v] + U prox (allP rox[v], 19 { --→ prox(p), p ∈ borderP ath[v]}, n) 20 allP rox ← newAllP rox fragment of another, the search must continue (lines 1-2), since it follows from our denition of query answers (Denition 5.1.2) that such a (document, fragment) pair cannot be returned in the result. Next, the algorithm nds the smallest lower-bound relevance value among the top-k candidates, and compares it with the upper bound of the score of the best document outside the current top-k. If it can be established that the rst document outside the current top-k is less relevant than all the documents currently in the result, the search can stop.

2 u 2

 22 Algorithm 7 can be used to make our query answering algorithm (Algorithm 1) anytime. It outputs the k best candidate documents known so far, based on their current upper bound score. from d 1 . More formally, con(d 1 ,university) = {(S3:relatedTo, d 0.5.1 , u 4 )} and con(d 1 ,diploma) = {(S3:partOf, d 0.3.2 , d 2 ), (S3:commentsOn, d 0 , d 1 )}, and therefore connect[d 0 ] = {(university, S3:relatedTo, d 0.5.1 , u 4 ), (diploma, S3:partOf, d 0.3.2 , d 2 ), (diploma, S3:commentsOn, d 0 , d 1 )}. Once d 0 is added to candidates and all the other documents and tags are added to discarded, Algorithm 6 terminates and Algorithm 3 resumes at line 16, establishing the new borderP ath as a single path: u S3:postedBy d 1 1

Figure 5 .

 5 Figure 5.4 shows the evolution, for a sample run with numerous ties, of the number of candidates and their bounds as the number of iterations increases. The algorithm discovers rapidly some potential candidates and keeps track of their upper and lower bounds, then after a certain number of iterations (here approximately 10) all meaningful candidates have been found and the algorithm continues to explore until it can break the ties and return k candidates.

  on k =5, u =2469330, φ =[516440L] threshold

Figure 5 . 4 :

 54 Figure 5.4: Internal state of the algorithm run on a query with ties.

  d .upper ≤ candidates[k].upper because candidates is kept sorted by upper bound candidates[k].upper ≤ min c∈candidadtes[0,k-1] (c.lower) ≤ d.lower because of the stop condition (line 9) score(d , q) ≤ d .upper and d.lower ≤ score(d, q) by bounds correctness (Lemma 5.2.1).

  Non-keyword based query models, for instance those inspired by XQuery or SPARQL can not be translated into S3 k keyword queries. In this section, we briey show how the state of the art top-k keyword query models can be expressed. Depending on the dimensions considered in the original work, the scores of the literature can be translated as distances in our model.Structural distanceApproaches based on the Lowest Common Ancestor can be emulated by our score model, this is the case for instance with the concrete score proposed in Section 5.1.4: the damping factor η ensures that, when two documents have the same connections' sources to the keywords of the query, then the one with the greater depth in the tree will have a better score. For instance, consider Figure5.5 with the query (u, {k1, k2}): the connection between the nodes of the trees and the keyword k2 are all through the fragment d 0.0.0 , and so are the connections with k1 all through the fragment d 0.0.1 . Since score(d, (u, φ)) = k∈φ η |pos(d,f )| × prox(u, src) (type,f,src) ∈ con(d,k) and pos(d 0.0 , d 0.0.1 ) = pos(d 0.0 , d 0.0.0 ) = 1 while pos(d 0 , d 0.0.1 ) = pos(d 0 , d 0.0.0 ) = 2 we have: score(d 0 , (u, φ)) = score(d 0.0 , (u, φ)) × η with η < 1 and the Lowest Common Ancestor indeed has a better score.
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 55 Figure 5.5: Sample structured document, posted by a user.

Figure 6 .

 6 Figure 6.1 outlines the main modules of this third-generation implementation:

  6.3. QUERIES to every pair of users (a, b) a similarity value u ∼ (a, b) between 0 and 1. u ∼ is a weighted sum of two Jaccard similarity coecients: u ∼ (a, b) = t × |keywords in comments from both a and b| |keywords in comments from a| + |keywords in comments fom b| + (1t) × |keywords posted by both a and b| |keywords posted by a| + |keywords posted by b| Whenever this similarity is above a certain threshold we create an edge with weight u ∼ between the two users. Based on experiments with the data, we set t = 0.5 and the u ∼ (a, b) threshold for creating a link between a and b to 0.1.

+ , 1

 1 run time (in second) S3 k γ = 1.25 S3 k γ = 1.5 S3 k γ = 2 TopkS α = 0.75 TopkS α = 0.5 TopkS α = 0.25

Figure 6 . 3 :

 63 Figure 6.3: Query answering times on I 1 (Twitter).

+ , 1

 1 median run time (in second)S3 k γ = 1.25 S3 k γ = 1.5 S3 k γ = 2 TopkS α = 0.75 TopkS α = 0.5 TopkS α = 0.25

Figure 6 . 4 :

 64 Figure 6.4: Query answering times on I 2 (Vodkaster).

Figure 6 . 5 :

 65 Figure 6.5: Query answering times on I 3 (Yelp).

  , median, Q3 and maximum run time (in second)S3 k γ = 1.5 S3 k γ = 4

Figure 6 . 6 :

 66 Figure 6.6: Query answering times on I 1 when varying k.
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  We use s, p, o to denote a subject, property, and respectively, object in a triple. Strings between quotes as in string denote literals. Person and u 1 hasFriend u 0 , then the triple u 1 type Person holds in this graph even if it is not explicitly present. This implicit triple is due to the ← d constraint in Figure2.1.

		Constructor	Triple	Relational notation rdfs:subPropertyOf
	degree	Class assertion	s type o o(s) hasDegreeFrom	studiedAt
	Property assertion rdfs:subClassOf rdfs:domain	s p o	p(s, o)	rdfs:range
	M.S. degree	graduate			university
	Constructor	Triple	Relational notation
	Subclass constraint Subproperty constraint Q1253 Domain typing constraint hasDegreeFrom s ≺ sc o s ⊆ o s ≺ sp o s ⊆ o s ← d o Π domain (s) ⊆ o Q13371 Range typing constraint Ban Ki-moon foaf:person s → r o Π range (s) ⊆ o rdf:type foaf:name	Harvard University foaf:name
	Figure 2.1: RDF (top) and RDFS (bottom) statements.
	RDF types and schema The built in type property provided by the RDF stan-Figure 2.2: Sample RDF graph.
	dard is used to specify to which classes a resource belongs. This can be seen as a form of resource typing. Saturation RDF entailment is the RDF reasoning mechanism that allows making
	explicit all the implicit triples that hold in an RDF graph G. It amounts to repeat-A valuable feature of RDF is RDF Schema (RDFS), which allows enhancing the edly applying a set of normative immediate entailment rules (denoted i RDF ) on resource descriptions provided by RDF graphs. An RDF Schema declares semantic constraints between the classes and the properties used in these graphs, through G: given some triples explicitly present in G, a rule adds some triples that directly
	the use of four RDF built-in properties. These constraints can model: follow from them. For instance, continuing the previous example,
	RDF u 0 type Person u 1 hasFriend u 0 , hasFriend → r Person i subclass relationships, which we denote by ≺ sc ; for instance, any M.S.Degree is also a Degree; Applying immediate entailment i RDF repeatedly until no new triple can be
	derived is known to lead to a unique, nite xpoint graph, known as the saturation
	(a.k.a. closure) of G. RDF entailment is part of the RDF standard itself: the subproperty relationships, denoted ≺ sp ; for instance, workingWith someone also means being acquaintedWith that person; answers to a query on G must take into account all triples in its saturation, since
	typing of the rst attribute (or domain) of a property, denoted ← d , e.g., the domain of hasDegreeFrom is a Graduate;
	typing of the second attribute (or range) of a property, denoted → r , e.g., the range of hasDegreeFrom is an University.
	Figure 2.1 shows the constraints we use, and how to express them. In this
	gure, domain and range denote respectively the rst and second attributes of a
	property. The gure also shows the relational notation for these constraints, which
	in RDF are interpreted under the open-world assumption [7], i.e., as deductive
	constraints. For instance, if a graph includes the triples hasFriend ← d Figure 2.2 shows an example of RDF graph, describing some facts about the
	Secretary-General of the United Nations, Ban Ki-moon, and some universities.

  URIs L literals K keywords Ext(k) extension of k Ω users D documents T tags I graph instance Table 4.1: Main data model notations.

The data model and queries should have well-dened semantics, to precisely characterize computed results, ensure correctness of the implementation, and allow for optimization. U

Table 5 .

 5 1: Main variables used in our algorithms.

	Algorithm 2: Algorithm StopCondition
	Input : candidates set Output: true

  This is a lower bound because, during exploration, a candidate can only get closer to the seeker (as more paths are discovered). Update: candidates and discarded 1 foreach d such that there exists a chain of triples from x to d in I using

	Algorithm 6: Algorithm GetDocuments
		Input : Document or tag x
		only S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject and
	2 3 4 5	S3:hasSubject labels do if d is a document and d / ∈ (candidates ∪ discarded) then connect[d] ← ∅ kw_index ← 0 while kw_index < length(φ) do
	6 7	kw ← φ[kw_index] if con(kw, d) is empty then
	8	//A keyword from the query is missing
	9 10	kw_index ← length(φ) discarded.add(d)
	11	else
	12	kw_index += 1

13 foreach (type, f rag, source) ∈ con(kw, d) do 14 connect[d].add( 15 (kw, type, pos(d, f rag), source)) 16 candidates.add(d)

  If there exists a query answer of size k and all ties are breakable then Algorithm 1 returns a query answer of size k.

	Our generic
	score function (Denition 5.1.6) does not guarantee all ties are breakable. However,
	any nite-precision number representation eventually brings the lower and upper
	bounds on d and d 's scores too close to be distinguished, de facto breaking ties.
	Theorem 5.2.2 (Correctness with breakable ties).
	Proof. (Theorem 5.2.2) If the algorithm terminates then it follows from Theo-
	rem 5.2.1 that the algorithm returns an answer. Now, to exhibit a contradiction,
	let us suppose that it does not terminate.

  Relations between the S3 k and TopkS answers.

	Measure \ Instance Graph reachability	I 1 12%	I 2 23%	I 3 41%
	Semantic reachability	83%	100%	78%
	L 1	8%	10%	4%
	Intersection size	13.7%	18.4%	5.6%
	Figure 6.7:			
				k results that

Other social and non social search engines are following the same tracks, but it is simpler to see this evolution on the Google search engine as it is well documented.

http://goessner.net/articles/JsonPath/

https://tc39.github.io/ecma262/

https://tools.ietf.org/html/rfc6901

https://code.google.com/archive/p/jaql/

http://jsoniq.org/index.html

http://jsonselect.org/

One could also allow a keyword k ∈ Ext(k) which is only close to (but not a specialization of ) k, e.g., "student" in Ext("graduate"), at the cost of a loss of precision in query results. We do not pursue this alternative here, as we chose to follow standard RDF semantics.

To make such interactions count as social paths would only require simple changes to the path normalization introduced below.

In other contexts, e.g., to determine their relevance w.r.t. a query, vertical neigbors are considered separately.

This assumption is standard in XML keyword search, e.g.,[START_REF] Liang | Supporting top-k keyword search in XML databases[END_REF].

We here slightly extend notations, since tags do not have fragments: if d is a tag, we consider that its only fragment is d.

The actual (exact) social proximity requires a complete traversal of the graph; our algorithms work with approximations thereof.
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Class Semantics

S3:user the users (the set of its instances is Ω) S3:doc the documents (the set of its instances is D) S3:relatedTo Input : a query q = (u, φ) Output: the best k answers to q over an S3 instance I, T k,s (q) from the seeker to the document, but we may lack the complete information needed to evaluate exactly its relevance with respect to the query, since there may be other paths yet to be discovered between the two, and such paths may impact the relevance bounds. Therefore, a key recurring task is to rene as tightly and as early as possible our knowledge of the candidate documents scores. During the exploration, candidates are kept sorted by their highest possible score; the exploration ends when we are certain that no candidate document outside the current top-k candidates may have an upper bound above the minimum lower bound within the top k ranks.

Further, the search algorithm relies on three tables: borderP ath is a table storing, for a node v in I, the set of paths of length n between u (the seeker) and v, where n is the current distance from u that the algorithm has traversed.

allP rox is a table storing, for a node v in I, the proximity between u and v taking into account all the paths known so far from u to v. Initially, its value is 0 for any v = u. connect is a table storing for a candidate node c the set of the connections (Section 5.1.2) discovered so far between the seeker and c.

These tables are updated during the search. While they are dened on all the I nodes, we only compute them gradually, for the nodes on the exploration border, which moves away from the seeker as the search progresses. 

The above bounds rely on con(d, k), the set of all connections between a candidate d and a query keyword k (Section 5.1.2); clearly, the set is not completely known when the search starts. Rather, connections accumulate gradually in the connect table (Algorithm GetDocuments), whose tuples are used as approximate (partial) con(d, k) information in ComputeCandidateBounds. candidates.remove(neigh(d))

6 return return_list

Sample run

We illustrate a run of S3 k , using the motivating example from Section 4.1, enriched with a query of two keywords originating from user u 2 , as shown in Fig- For this run we consider that the expected number of results is k = 5, and the query is φ = (u 2 , {diploma,university}). The graph I is the one presented in triples from an ontology that don't contain S3 classes or properties. These triples will only be used to compute the expansion of the query's keyword.

We have shown the relevant triples in Figure 5.2: diploma get mapped to the URI diploma and because of the triple degree ≺ sc diploma, degree ∈ Ext(diploma) holds.

Further, through RDFS entailment, degree ≺ sc diploma and M.S. type degree produce M.S. type diploma and M.S. ∈ Ext(diploma). This leads to Ext(diploma) = {diploma, degree, M.S.}. Similarly the expansion of university is computed, for the purpose of the demonstration it is here limited to Ext(university) = {university}. The document d 1 is the only document at a end of a network edge starting from u 2 and is therefore the only document tested by Algorithm 6: line 1 will select all the d, connected to d 1 using only S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject and S3:hasSubject. This is the case of: These 6 documents and tags are considered together because they might share connections with the keywords of the query: after making sure that we didn't test them already (line 2), Algorithm 6 proceeds to establish their connections and store them in the connect table. If a document doesn't have a connection with all the keywords of the query, the document is discarded (added to the discarded set); otherwise it is added to candidates. Here, only d 0 is not discarded, since it has a connection to university from tag 0 via its fragment d 0.5.1 and two connections to diploma: one from d 2 via its fragment d 0.3.2 and one Chapter 6

Implementation and evaluation

We now consider the implementation and evaluation of our algorithm over several scenario, on datasets extracted from real life social networks. Section 6.1.1 outlines our implementation and some practical optimizations we brought to the search algorithm. We present the datasets used to test this implementation in Section 6.2 and the query workloads in Section 6.3. We present a quantitative analysis on the query times in Section 6.4 and study the quality of our returned results in Section 6.5.

Implementation and optimisations

We describe our implementation in Section 6.1.1, the storage of S3instances in a database in Section 6.1.2 and the optimizations we have brought in Section 6.1.3.

Implementation

Our algorithms were fully implemented in Python 2.7. The rst implementation represented the users and the connection between them and documents in memory using python objects and accessed the documents using a PostgreSQL database.

While this provided a proof of concept, the runtimes were long and the scalability poor.

The second generation of implementation introduced sparse matrices, using the heavily optimized NumPy We store some data tables in PostgreSQL 9.3, while others are built in memory, as we explain shortly. All our experiments were performed on a 4 cores Intel Xeon E3-1230 V2 @3.30GHz with 16Go of RAM, running Debian 8.1.

Our system cannot be compared directly with existing systems, as we are the rst to consider ne-granularity content search with semantics in a social network.

To get at least a rough performance comparison of our implementation with other systems, we used the top-k social search system described in [START_REF] Maniu | Network-aware search in social tagging applications: instance optimality versus eciency[END_REF] and referred to as TopkS in Section 3.1.5. We used the Java-based code provided by the authors of [START_REF] Maniu | Network-aware search in social tagging applications: instance optimality versus eciency[END_REF]. As seen in Section 2.3, the data model of TopkS is rather basic, since its documents (items ) have no internal structure nor semantics; tags are all independent, i.e., there is no semantic connection between them. Further, (user, user, weight) tuples reect weighted links between users. TopkS computes a social score for each item, and separately a content-based score; the overall item score is then obtained as α × social score + (1α) × content score where α is a parameter of TopkS.

Data Layout

The instance is stored on disk using PostgreSQL. We describe below our data layout; the underlined attributes denote a (clustering) primary key. For the keyword extension part we store the following relations: text_association(name, id), with an additional on name and another one in id;

DBpediaURI_association(URI, id); keyword_extension(id, extended_id) with an additional index on id;

In the following, by the components of the S3 graph we mean the maximal subgraphs of documents and tags connected by triples labelled by S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject, or S3:hasSubject.

The documents and the connections they participate to are compiled into the following set of tables: network_edges(source, target, weight, type of relation), with an additional index on source; keyword_container(fragment or tag, component, keyword) stores the key- words contained in the documents and tags, grouped by component; structure(root, JSON structure) stores for each document tree the URI of the root of the tree and the position of the other URIs as a JSON expression; component(document, root of the document if exists, component), with an additional index on the component attribute; this table associates to each document the root of the document tree and the component it is in; raw_docs(URI, raw) associates documents with their URIs; this table is only used to return actual documents to the querier (it is not used in the query processing phase);