
HAL Id: tel-01418124
https://theses.hal.science/tel-01418124v1

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Top-k search over rich web content
Raphaël Bonaque

To cite this version:
Raphaël Bonaque. Top-k search over rich web content. Databases [cs.DB]. Université Paris Saclay
(COmUE), 2016. English. �NNT : 2016SACLS291�. �tel-01418124�

https://theses.hal.science/tel-01418124v1
https://hal.archives-ouvertes.fr

NNT : 2016SACLS291

THÈSE DE DOCTORAT
DE

L’UNIVERSITÉ PARIS-SACLAY
PRÉPARÉE À

L’UNIVERSITÉ PARIS SUD

ÉCOLE DOCTORALE N°580
Sciences et technologies de l'information et de la communication

Spécialité de doctorat : Informatique

Par

M. Raphaël Bonaque

Recherche top-k pour le contenu du Web

Thèse présentée et soutenue à Saclay, le 30 septembre 2016 :

Composition du Jury :

M. Colazzo Dario Professeur, Université Paris-Dauphine Président du Jury
M. Amann Bernd Professeur, Université de Pierre et Marie Curie Rapporteur
Mme Hose Katja Associate Professor, Aalborg University Rapporteur
Mme Cohen Boulakia Sarah Maître de Conférences HDR, Université Paris-Sud Examinatrice
M. du Mouza Cédric Maître de Conférences HDR, CNAM Examinateur
Mme Manolescu Ioana Directeur de recherche, Inria Directrice de thèse
M. Cautis Bogdan Professeur, Université Paris-Sud Co-directeur de thèse
M. Goasdoué François Professeur, Université de Rennes 1 Co-directeur de thèse

Titre : Recherche top-k pour le contenu du Web

Mots clés : Web sémantique, réseaux sociaux, documents structurés, top-k, RDF, XML, JSON

Résumé : Les réseaux sociaux sont de plus en
plus présents dans notre vie de tous les jours et
sont en passe de devenir notre moyen de
communication et d'information principal. Avec
l'augmentation des données qu'ils contiennent
sur nous et notre environnement, il devient
décisif d'être en mesure d'accéder et d'analyser
ces données. Aujourd'hui la manière la plus
commune d'accéder à ces données est d'utiliser
la recherche par mots-clés : on tape une requête
de quelques mots et le réseau social renvoie un
nombre fixe de documents qu'il juge pertinents.
Dans les approches actuelles de recherche top-k
dans un contexte social, la pertinence d'un
documents dépend de deux facteurs : la
proximité sociale entre le document et
l'utilisateur faisant la requête et le recoupement
entre les mots-clés de la requête et les mots
contenus dans le document. Nous trouvons cela
limité et proposons de prendre en compte

les interactions complexes entres les utilisateurs
liés à ce document mais aussi sa structure et le
sens des mots qu'il contient, au lieu de leur
formulation. Dans ce but, nous identifions les
exigences propres à la création d'un modèle qui
intégrerait pleinement des données sémantiques,
structurées et sociales et proposons un nouveau
modèle, S3, satisfaisant ces exigences. Nous
rajoutons un modèle de requêtes à S3 et
développons S3k, un algorithme personnalisable
de recherche top-k par mots-clés sur S3. Nous
prouvons la correction de notre algorithme et en
proposons une implémentation. Nous la
comparons, à l'aide de jeux de données créés à
partir du monde réel, avec celle d'une autre
approche de recherche top-k par mots-clés dans
un contexte social et montrons les différences
fondamentales entre ces approches ainsi que les
avantages qu'on peut tirer de la nôtre.

Title : Recherche top-k pour le contenu du Web

Keywords : semantic Web, social network, structured documents, top-k, RDF, XML, JSON

Abstract : Social networks are increasingly
present in our everyday life and are fast
becoming our primary means of information
and communication. As they contain more and
more data about our surrounding and ourselves,
it becomes vital to access and analyze this data.
Currently, the primary means to query this data
is through top-k keyword search: you enter a
few words and the social network service sends
you back a fixed number of relevant
documents. In current top-k searches in a social
context the relevance of a document is
evaluated based on two factors: the overlapping
of the query keywords with the words of the
document and the social proximity between the
document and the user making the query. We
argue that this is limited and propose to take

into account the complex interactions between
the users linked to the document, its structure
and the meaning of the words it contains
instead of their phrasing. To this end we
highlight the requirements for a model
integrating fully structured, semantic and social
data and propose a new model, called S3,
satisfying these requirements. We introduce
querying capabilities to S3 and develop an
algorithm, S3k, for customizable top-k
keyword search on S3. We prove the
correctness of our algorithm and propose an
implementation for it. We compare this
implementation with another top-k keyword
search in a social context, using datasets
created from real world data, and show their
differences and the benefits of our approach.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Résumé en Français

French summary

Introduction

Dans sa proposition initiale pour le World Wide Web, Tim Berners-Lee imag-
ine un énorme graphe de n÷uds dispersés sur un réseau mais interconnectés et
accessibles grâce au protocole hypertexte, un protocole qui a évolué vers l'HTTP
qu'on connait. Ces n÷ud ne sont pas que des documents ; pages web ou ressources
mais aussi des concepts, des objets physiques, et des personnes. On pourrait voir
dans ces n÷uds, qui n'existent pas dans le protocole HTTP actuel, comme les lim-
ites de la clairvoyance d'un homme qui, en inventant le Web et en prédisant qu'il
s'étendrait pour devenir un système d'information universel à déjà fait beaucoup.

L'histoire pourrait s'arrêter là mais il semble de plus en plus probable qu'elle
continue : depuis 2004, Tim Berners-Lee travaille sur le Web Sémantique, une
expression qu'il a créée et qui désigne l'intégration dans le Web d'un des n÷uds
qu'il liste dans sa proposition initiale: les concepts. Avec des initiatives comme
Linked Open Data, la taille du Web Sémantique est en train d'exploser, sans doute
même plus vite que celle du Web en son temps. Depuis 2007, LOD en est venu à
intégrer plus de mille bases de données, qui contiennent entre elles des dizaines de
milliards de faits et des millions de concepts.

Par ailleurs, l'Internet of Things, l'idée selon laquelle les objets physiques de
la proposition de Tim Berners-Lee se connectent au Web, est en plein essor, avec
plus de vingt quatre mille articles publiés en 2015 sur le sujet.

A voir les progrès de l'intégration des objet physiques et des concepts sur le Web
il semble intéressant de se pencher sur l'évolution de l'intégration du dernier type
de n÷ud manquant : les personnes. Aucun standard ne s'est vraiment répandu
pour décrire les personnes comme des ressources du Web au même titre que des
pages web mais il existe néanmoins des e�orts comme OpenID qui est accepté par
de nombreux services même si il ne permet pas d'établir des connections entre
utilisateurs. D'un autre coté les réseaux sociaux ont, depuis leurs créations, acquis
une popularité très importante : on estime qu'un adulte passe en moyenne douze
heures par semaine sur les réseaux sociaux, avec l'important impact économique
et sociétale que cela entraine. Par example, les gros sites de réseaux sociaux ont
des revenus proches du PIB de petit pays. Les chi�res sont marquants, avec 82%
des 16-64 ayant accès à internet qui déclarent avoir un compte Facebook. Alors
même que Facebook se targue de posséder aussi WhatsApp avec ses un milliard
d'utilisateurs, ainsi que les 400 millions d'utilisateurs d'Instagram. Tencent's QQ
dit avoir 850 millions d'utilisateurs actifs, Wechat 700 milions, Twitter 310 et
LinkedIn 106.

iii

Tous ces sites avec plus d'utilisateurs que la plupart des pays du G8 ont moins
de 15 ans. Lorsqu'on compare aux 25 ans qu'a environ le Web il ne semble pas
irraisonnable que les personnes puissent accéder dans un future proche au même
statut que les pages web. De plus plus de services, comme youtube ou Tumblr qui
n'avaient pas au début vocation à être sociaux de sont mis à intégrer des fonction-
nalités sociales et les réseaux sociaux sont devenus le principal moyen de commu-
nication d'une part importante de la population et de nombreuses personnalités
publiques, artistes, hommes politiques, etc ...

Les réseaux sociaux s'avèrent être de très bons sujets de recherche, et pas seule-
ment dans le domaine de l'informatique, mais aussi en sociologie, ou dans la dé-
tection des catastrophes naturelles. Dans le cas des tremblements de terre par
example, les nouvelles se propagent bien plus vite par les réseaux sociaux que par
les canaux o�ciels.

Le Web est entrain de devenir dépositaire de l'ensemble du savoir de l'humanité,
et il est presque certain qu'il sera social.

Démarche

Les réseaux sociaux actuels sont plus qu'un ensemble de relations entre des
gens, ils sont construit autour d'un contenu. C'est particulièrement visible sur des
sites qui se sont développés à partir de plateformes de contenu comme des blogs, ou
des sites d'images ou de vidéos mais c'est aussi le cas pour les réseaux sociaux plus
traditionnels comme Facebook ou Twitter où la majorité des données prennent la
forme de documents (appelés post ou tweet pour ces sites).

Lorsqu'ils utilisent des réseaux sociaux, les utilisateurs s'attendent à trouver
des contenus liés à leurs relations présentes sur le site, par example des nouvelles
de leurs amis, des informations sur des associations qui les intéressent ou sur leurs
institutions locales. Ce contenu peut être fournis de manière semi automatique
par une page d'accueil, sur la page d'un utilisateur ou d'un groupe mais la grande
majorité de ces services (et tous les plus gros) proposent une fonctionnalité de
recherche par mots clés. Cette fonctionnalité prend souvent la forme d'une barre
de recherche où l'utilisateur peut taper des mots clés et, lorsqu'ils sont soumis, un
nombre déterminé de résultats sont proposés à l'utilisateur. Ce procédé, appelé
recherche top-k, est le principal moyen d'accès pour les utilisateurs aux données
des réseaux sociaux ; Facebook par example a�rme traiter plus de 1,5 milliards de
recherches de ce genre par jour. Il est di�cile de réaliser à quel point cette recherche
est devenue importante dans notre vie de tout les jours car de nombreux moteurs
de recherche sociaux peuvent paraitre ne pas traiter cette dimension sociale. Par
example depuis l'intégration de Google+ dans le moteur de recherche de Google
et de Youtube la recherche sur ces deux sites omniprésents (les deux plus utilisés
du monde) est devenue sociale et utilise des connaissances extraites de Google+

iv

pour adapter ses résultats. Cela in�ue tout les jours sur plus de la moitié de la
population mondiale connectée à Internet ailleurs qu'en Chine .

La fonctionnalité de recherche proposée par ces sites, dans la mesure où on ar-
rive à l'observer1, ou telle qu'elle est décrite dans la littérature scienti�que, s'appuie
essentiellement sur deux facteurs. Tout d'abord la présence dans les documents des
mots clés de la requête et de petites variations autour de ceux-ci (corrections or-
thographiques, forme plurielle ou singulière, féminine ou masculine, transformation
d'un adjectif en nom ou l'inverse ...). Ensuite, le voisinage social du demandeur
(l'utilisateur qui pose la requête), c'est à dire ses relations directes, les relations
directes de celles-ci ou les personnes populaires du réseau social en question. Les
résultats d'une requête contiennent donc des mots très proches de la formulation
de celle-ci et leurs auteurs doivent être directement reliés à une connaissance du
demandeur ou être une personnalité connue.

Au vu de l'importance de la recherche par mots clés et de son omniprésence dans
les contextes sociaux, cette approche parait limitée, en particulier elle limite les
résultats possibles car elle ne considère pas le sens de la requête mais sa formulation.
Cela peut marcher dans certaines niches mais est insu�sant face à la complexité et
la richesse des langues naturelles. Prenons un example très simple, une recherche
sur "chasse espèces menacées". Des documents contenant "la traque d'un lion
Asiatique", "le braconnage d'Ara hyacinthes" ou "la prise de raies requins" sont
pertinent pour cette requête et ne seront pourtant pas retenus par les moteurs
de recherches sociaux actuels à moins qu'ils ne contiennent aussi explicitement
des références à "chasse" et à "espèces menacées". Cela aboutit à de nombreux
utilisateurs n'obtenant que peu de résultats à leur recherche et devant la reformuler,
souvent pour de maigres résultats. Dans ce cas précis il existe de nombreux mots
pour désigner des actions ou des évènements impliquant une chasse et plus encore
pour les espèces menacées, aboutissant à un nombre de reformulations possibles
colossal.

Les fournisseurs de services de recherche par mots clés connaissent ces limita-
tions et prennent lentement des mesures pour essayer de les dépasser. L'un des
meilleurs exemple est sans doute la recherche par mots clés de Google en anglais,
le moteur de recherche top-k le plus utilisé du monde. Depuis 2009 Google a
commencé à intégrer des aspects sémantiques dans son moteur sous la forme de
special features qui s'activent lorsque certains termes sont présents dans une re-
quête. Ainsi la présence du mot etymology suivit d'un autre mot va a�cher chez
l'utilisateur un petit cadre décrivant l'étymologie du mot en question. Il existe ainsi
quelques dizaines de special features, pour la météo, l'heure, des calculs simples,
des traductions ... toutes retournant des informations sur le sens de la requête et
non sa formulation. C'est un progrès mais cela ne fonctionne que pour un petit
nombre de cas préprogrammés et ne retourne pas des documents pertinents pour

1Il est souvent impossible d'accéder au code des services web privés.

v

la requêtes de l'utilisateur, à la place cela construit un unique résultat limité à un
environnement bien contrôlé mais n'identi�e pas de document sur le Web. Google
étend aussi les requêtes des utilisateurs pour rajouter des termes qui sont soit des
synonymes soit des mots fortement corrélés par leur cooccurrence aux mots clés
originaux. Cela aussi est très limité : "lion Asiatique" n'est pas un synonyme
d'"espèces menacées" et leur corrélation est sans doute très faible vu le nombre
d'espèces menacées.

Une autre limitation des approches top-k actuelles est la prise en compte de la
structure des documents. Considérons un requête avec deux mots clés, k1 et k2 et
les deux réponses possibles suivantes:

� un texte t1 de plusieurs paragraphes, où k1 n'est présent que dans un para-
graphe et k2 est présent dans certains des paragraphes ou k1 n'est pas.

� un texte t2 ayant la même longueur, le même nombre de paragraphes et le
même nombre d'occurrences de k1 et de k2 mais cette fois-ci toujours dans le
même paragraphe, mettons le deuxième du texte.

D'une part il existe un paragraphe dans t2 qui contient les deux mots clés
simultanément ce qui suggère que le sujet de ce paragraphe les relie. D'autre part
il n'existe pas ce genre de relations entre k1 et k2 dans t1, les deux mots clés y sont
présents mais peuvent n'être que vaguement liés. Dans ce contexte il est probable
que t2 soit plus pertinent que t1 mais en poussant l'argument on pourrait même
dire que le deuxième paragraphe de t2 est en fait le meilleur candidat car il contient
uniquement la partie du texte la plus pertinente pour la requête.

Cette subtilité ne peut être perçue par les moteurs de recherche qui ignorent la
structure des documents, par exemple ceux qui fonctionnent sur le modèle du bag
of words dans lequel on considère uniquement le multi-ensemble des mots contenus
dans chaque document. Il existe bien des approches top-k qui tiennent compte de
la structure des documents mais jusqu'à présent jamais dans un contexte social.

La recherche par mots clés, en tant que moyen principal d'accéder aux contenus
sociaux, est omniprésente, il est donc crucial de la rendre la plus e�cace possible
et d'exploiter tous les aspects disponibles. La portée de cette problématique est
extrêmement vaste, dans cette thèse nous nous intéresserons uniquement à des
requêtes top-k exploitant au mieux la sémantique de la requête et des documents,
leur structures et les connections sociales entre utilisateurs.

Contributions

Dans le cadre de cette thèse nous présentons tout d'abord, les notions élémen-
taires de recherche top-k, de graphes de connaissance, de documents structurés et
semi-structurés et de réseaux sociaux. Nous parcourons ensuite l'état de l'art de la

vi

recherche top-k dans des contextes sociaux, structurels, sémantiques et, lorsqu'ils
existent, sur des modèles incluant plusieurs de ces dimensions.

Nous introduisons ensuite un ensemble de contraintes nécessaires à l'intégration
de données à la fois sémantiques, structurelles et sociales dans un modèle uni�é.
Nous présentons un nouveau modèle, S3 qui intègre ces contraintes et montrons
comment des instances d'autre modèles de données ayant une composante sociale,
structurelle ou sémantique peuvent être plongés dans S3.

Nous développons un moteur, S3k pour la recherche top-k sur S3, basé sur un
score attribué aux documents pour estimer leur pertinence. Nous avons voulu ce
score le plus générique possible pour s'adapter à tous les cas possibles en lui deman-
dant uniquement de respecter un petit ensemble de propriétés mathématiques pour
assurer un bon niveau de performances à notre moteur. En plus de la dé�nition de
notre moteur, nous proposons un algorithme réalisant S3k. Nous fournissons aussi
la preuve de la correction et la terminaison de cet algorithme.

Une implémentation concrète de cet algorithme est proposée et est évaluée sur
des données réelles puis comparée avec un autre système de recherche top-k dans
un contexte social.

En�n, nous concluons cette thèse et introduisons des perspectives pour l'utilisation
de S3 dans le domaine du journalisme de données.

vii

viii

Acknowledgements

I guess every PhD is an adventure, with some problems to slay and some papers
to rescue. This one was interesting, with a lots of old grimoires to read, some
mystical animals like the Python 27 and the DB Elephant, a good amount of
friendly encounters and travels to foreign places. Yet, I do fear that the tale before
you might be a little boring to read, and could contain some mistakes. This is my
fault alone for my advisors Ioana, Bogdan and François always tried to steer the
ship in the right direction, and sometime they had quite some wind to go against.
I'm thankful to them, to Ioana who was always there and never afraid to speak
her mind, to Bogdan who, the �rst, o�ered me the opportunity to do this PhD
and introduced me to social networks and top-k, and to François who was always
available and helpful, no matter the distance. I was glad I could do this PhD with
you and I hope you had some good moments too.

I thank the members of my jury and especially the reviewers, who spent a lot
of time in the midst of the summer holidays to read my manuscript, for accepting
to be part of my jury.

My companion, Nolwenn, and my family were a huge support during this PhD
and I certainly won't have done it without them, they deserve many thanks.

I would like to extend my thanks to my circle of friends and especially RxPz's:
Trolin, ZenithM, CPA, Masda, Levity, Milou (and Guillaume) and other friends
from Cachan: Poussinet, Harry, PEB, Ping and Jonas for providing me support
and fun moments.

I award a prize to all my �atmates: Ariane, Emeline, Emile, Fabrice, Lucas,
Marion, Martin and Nicolas that have accepted to live with me for some time, and
I tell you right away that I won't be taking the monkey painting, no need to try
and sneak it in.

Some of my teachers, Mr Belazreg, Ms. Benhamou and M. Tosel, were very
in�uential in my understanding of the world and they have all my gratitude.

Finally, I also thank the many people that were part of a team with me, even
if for a short time: Alessandro, Alexandra, Benjamin, Benoit, Camille, Celine,
Chantal, Damian, Danai, Elham, Emmanuel, Enhui, Fatiha, Francesca, Guillaume,
Hassan, Ioana, Javier, Jesús, Juan, Katerina, Martin, Meghyn, Michaël, Nathalie,

ix

Nicole, Oscar, Paul, Philippe, Rana, Rémi, Romain, �ejla, Silviu, Soudip, Stamatis,
Swen, Tianqi, Tien-Duc, Yanlei, Yifan, Yue and Zheng. It was a great pleasure to
meet and work with you.

x

Contents

1 Introduction 1

1.1 The rise of social networks . 1

1.2 Motivation . 2

1.3 Contributions and outline . 5

2 Preliminaries 7

2.1 The RDF model . 7

2.2 Semi-structured document models 10

2.3 Models for social data management 13

2.4 Conclusion . 17

3 State of the art 19

3.1 Top-k search . 19

3.1.1 Foundations of top-k search 19

3.1.2 Top-k search in relational databases 21

3.1.3 Top-k search in semi-structured documents 22

3.1.4 Top-k search in RDF graphs 24

3.1.5 Top-k search in a social context 25

3.2 Hybrid data models . 27

3.3 Conclusion . 28

4 S3: A model for structured, social and semantic data 29

4.1 Requirements . 29

4.2 Model de�nition . 31

4.2.1 Weighted RDF graphs . 31

4.2.2 Social network . 32

xi

4.2.3 Documents and fragments 33

4.2.4 Relations between structure, semantics, users 34

4.2.5 Social paths . 37

4.3 Relationships with existing models 39

4.4 Conclusion . 40

5 Top-k search in S3 43

5.1 Query model . 43

5.1.1 Queries . 43

5.1.2 Connecting query keywords and documents 44

5.1.3 Generic score model . 46

5.1.4 Concrete score . 49

5.2 Query answering algorithm . 55

5.2.1 Algorithm . 55

5.2.2 Sample run . 62

5.2.3 Correctness of the algorithm 65

5.3 Relationship with existing query models 71

5.4 Conclusion . 72

6 Implementation and evaluation 75

6.1 Implementation and optimisations 75

6.1.1 Implementation . 75

6.1.2 Data Layout . 78

6.1.3 Optimisations . 79

6.2 Datasets . 81

6.3 Queries . 82

6.4 Quantitative analysis . 84

6.5 Qualitative analysis . 87

6.6 Conclusion . 89

7 Conclusion and perspectives 91

7.1 Conclusion . 91

7.2 Perspectives . 92

xii

Chapter 1

Introduction

1.1 The rise of social networks

In his original proposal of the World Wide Web [94], Tim Berners-Lee en-
visioned a large graph of interconnected nodes, scattered across a network and
accessible through the hypertext protocol, a protocol that will evolve to become
HTTP. These nodes are not limited to documents such as web pages and resources,
but also include concepts, speci�c hardware objects and, �rst to be mentioned in
the proposal, people. One could see this as the limit of the vision that one man
can have: inventing the Web and predicting that it would go �toward[s] a universal
linked information system� is already a lot to be credited for, and the story might
stop here.

However, it now appears more likely that the story continues to unfold. Since
2004, Tim Berners-Lee has been working on the Semantic Web - an expression that
he coined -, which aims at integrating into the Web the �concepts� he listed in his
proposal. With initiatives like Linked Open Data, the size of the Semantic Web is
exploding, possibly even faster than the Web did in its time: since its inception in
2007, LOD has grown to include more than 1,000 datasets, containing collectively
dozens of billions of facts over millions of concepts.1

In parallel, the Internet of Things, i.e., the idea according to which the �speci�c
hardware objects� from Tim Berners-Lee's proposals become connected to the Web,
is booming, with more than 24,000 published articles containing �internet of things�

1Sources for this statement are, in this order: https://en.wikipedia.org/wiki/Linked_data and

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/, https://scholar.google.com/scholar?q=%22internet+of+things%22&

btnG=&hl=en&as_sdt=1%2C39&as_ylo=2015&as_yhi=2015&as_vis=1, http://www.globalwebindex.net/blog/gwi-social-facebook and https://blog.

whatsapp.com/616/One-billion and http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

and http://www.businessinsider.com/wechat-pay-fees-kick-in-2016-5?IR=T and https://about.twitter.com/company and

https://press.linkedin.com/site-resources/news-releases/2016/linkedin-announces-first-quarter-2016-results, http://www.

globalwebindex.net/blog/daily-time-spent-on-social-networks-rises-to-1-72-hours

1

https://en.wikipedia.org/wiki/Linked_data
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
https://scholar.google.com/scholar?q=%22internet+of+things%22&btnG=&hl=en&as_sdt=1%2C39&as_ylo=2015&as_yhi=2015&as_vis=1
https://scholar.google.com/scholar?q=%22internet+of+things%22&btnG=&hl=en&as_sdt=1%2C39&as_ylo=2015&as_yhi=2015&as_vis=1
http://www.globalwebindex.net/blog/gwi-social-facebook
https://blog.whatsapp.com/616/One-billion
https://blog.whatsapp.com/616/One-billion
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.businessinsider.com/wechat-pay-fees-kick-in-2016-5?IR=T
https://about.twitter.com/company
https://press.linkedin.com/site-resources/news-releases/2016/linkedin-announces-first-quarter-2016-results
http://www.globalwebindex.net/blog/daily-time-spent-on-social-networks-rises-to-1-72-hours
http://www.globalwebindex.net/blog/daily-time-spent-on-social-networks-rises-to-1-72-hours

1.2. MOTIVATION

in 2015 alone.1

Seeing how concepts and speci�c hardware objects are increasingly present on
the Web, it is interesting to look at the evolution of the integration of people on the
Web. No real standard has emerged to integrate people as basic web resources at
the same level as documents and concepts: there are some standardization e�orts
such as OpenID2 that is accepted by many services, but they are not currently
universally accepted, and lack connections between users. On the other hand, social
networking web sites have, since their inception, gained a huge popularity. An
average adult would spend more than 12 hours per week on social networks1,which
have a huge impact on the global economy: a big social services company may
have a revenue equivalent to the GDP of a small country. The �gures are striking:
82% of the 16-64 years old having access to internet outside China claim to have
at least one Facebook account, but Facebook also happens to own WhatsApp,
which claims more than 1 billion users and Instagram and its 400 million users.
Tencent's QQ claims 850 million active users, Wechat claims 700 millions, Twitter
310 millions and LinkedIn 106 millions1.

All these websites with more users than the population of most G8 countries
are less than 15 years old. Compared to the approximative 25 years of the Web it is
not a great leap of faith to say that people will achieve the same status as other web
resources in the near future: many web services that did not used to be social are
now integrating social services, such as for instance Youtube or Tumblr currently.
It can be con�dently said that social networks are already so common and widely
used, that they have become the main means of communication for a large part
of the population and for many public �gures such as artists or politicians and
entities, whether NGOs, governmental agencies or private companies.

Social networks also turn out to be great research �elds, even outside computer
sciences, for instance in sociology but also more diverse �elds like natural disas-
ter detection, e.g., earthquakes [67], where the information spreads much faster
through social networks than via the o�cial channels.

The Web is emerging as the repository of all the human knowledge, and with
very little doubt it will be social.

1.2 Motivation

Current social networks are more than just a series of relationships between
people: they are built around content. This is very visible for websites that grew
out of content-centric platforms such as blogs or image or video providers, but it
is also the case for more traditional social network services such as Facebook or
Twitter where the majority of the data takes the form of documents (called posts

2https://openid.net/

2

https://openid.net/

1.2. MOTIVATION

or tweets for these sites).

When using social network services, users expect to �nd content related to
their acquaintances on the service: news or information from their friends, NGOs
they are interested in, their local institutions, etc. This content can be provided
semi-automatically on a home page or on the page of a user or a group of users,
but the overwhelming majority of these services, and all the major ones, provide
a keyword-based search functionality. This functionality often takes the form of
a search bar: a text zone where the user can input keywords, and, when these
keywords are submitted, a �xed number of results are returned. This process,
known as top-k keyword search, is the primary means by which users access data
on social network services: for instance Facebook claims to have more than 1.5
billions of such searches per day. It is di�cult to realize how important this search
functionality has become in our daily life because numerous social search engines
might not appear to be social: for instance, since the integration of Google+ in
the Google search engine and in Youtube, the search on these two omnipresent
services (the two most used websites in the world3) has become social and uses
knowledge derived from the social network of Google+ to customize its results.
This impacts on a daily basis more than half the world population outside China
having an internet connection.

The search functionality provided by these services to the extent that we can
observe them4, or as they are described in the scienti�c literature, relies heavily on
two factors: (i) the presence in documents of the keywords of the query and their
simple variations (orthographic correction, plural from a singular or adjective from
a noun and vice versa), (ii) the social neighborhood of the seeker (the user making
the query), that is to say who are his or her direct relations, the direct relations
of his or her direct relations and the well-known people of the social network. The
results of a query therefore contain words that adhere strictly to the phrasing of the
query and they must originate in or be directly connected to someone the seeker
might know, either in his or her direct neighborhood or amongst public �gures.

Considering how important and pervasive keyword search in a social context
is, this functioning appears limited: in particular, it restricts the results because it
does not consider the meaning of the query but only the words it contains. This
works well on very specialised or formatted terms but falls short when confronted
with the complexity and richness of the real world language. Consider this very
simple example: a keyword search for �hunt endangered species�. Documents con-
taining �track of an Asiatic lion�, �hyacinth macaw's poachings� or �the catching of
blackchin guitar�sh� should be relevant for this query, but will not be returned by
current social search engines unless they also contain minor variations around �en-
dangered species� and �hunt�. This results in many users obtaining too few results

3source: http://www.alexa.com
4It is often impossible to have access to the code behind private web services.

3

http://www.alexa.com

1.2. MOTIVATION

and having to reformulate their queries, often several times, for limited outcomes.
In this particular case there exist many words for actions and events that imply
a hunt and even more for words designating endangered species, leading to a very
large number of possible reformulations.

Keyword search service providers are aware of this shortcoming, and are slowly
taking steps to try and �x it. The best example of this is probably Google search
in English5, the most used top-k keyword search engine in the world. Since 2009,
Google has started integrating semantics into its search engine in the form of
special features that are activated by the presence of a set of words or abbreviations
in the query. For instance the query �etymology� followed by another word will
return a card: a small rectangular area shown before the other results on the
screen of the client displaying text, images or diagrams, in this cases it shows
a short text explaining the etymology of the second word. Another example is
concatenating relations such as �date of death�, �spouse of� or �place of birth�
to the name of famous people, which will return a card with the names of the
associated persons, and possibly a place, a date or a picture. There exist a few
dozens of such handcrafted features: for the weather, time, simple computations,
translations, etc., all returning a card with information relevant to the semantics
of the query, and then documents relevant to the phrasing of the query. This is
a step forward but it only works for a small set of pre-programmed cases and it
does not actually return documents relevant to the semantics of the query. Rather,
it constructs a result in a well-controlled environment, but does not identify the
relevant documents on the Web. Google search also does query expansion, adding
to the query terms that are either synonyms or words statically correlated with
the query's keywords, yet this is also very limited: � Asiatic lion� is not a synonym
of �endangered species�, and their correlation is likely very low, given the number
of endangered species.

Another shortcoming of current top-k approaches in a social context is the
inclusion of structure. Consider a query with two keywords, k1 and k2, and the
following candidates for the top-k:

� a text t1 of several paragraphs, where k1 occurs only in one paragraph, and
k2 also has several occurrences, always in another paragraph,

� a text t2 of equal length and number of paragraphs, where k1 and k2 occur
as many times as in t1, but always in the second paragraph.

On the one hand, there exists a paragraph in t2 containing both keywords simul-
taneously, which suggests that the topic of this paragraph relates them to one
another. On the other hand, there is no such relation in t1: k1 and k2 are loosely

5Other social and non social search engines are following the same tracks, but it is simpler to
see this evolution on the Google search engine as it is well documented.

4

1.3. CONTRIBUTIONS AND OUTLINE

linked to the topic of the text but they could pertain to very di�erent aspects of
this topic and they are probably unrelated. In this context it is easy to argue that
t2 is more relevant than t1, but if we extend the argument we could say that the
second paragraph of t2 is in fact an even better candidate as it contains only the
relevant part of t2 for this query.

This subtlety is completely lost to a search engine ignoring the structure of
documents, for instance one operating on the so-called �bags of words� model,
which considers only the multiset of the words contained in the text. There exist
top-k approaches utilizing the structural aspect of the data they consider but, until
now, these kind of approaches have never been embedded into social search engines.

Last but not least, the metadata of the query and the documents, most speci�-
cally their timestamps and localisations, are useful for addressing queries related to
news, such as �strikes today�, or to local information, for instance �nearby restau-
rants�.

As keyword search is the primary means to access data in a social context,
and this data is everywhere in our society, it crucially needs to make full use
of all the available information: from the query, exploiting its semantics, from
the documents, using their content, structure and metadata, and from the social
network, with all the connections it contains. The scope of this problem is very
large and in this thesis we will ignore the metadata and focus on top-k keyword
search of documents in a social context, using fully the semantic, structured and
social aspects available. To this end, our goals are:

� to give a complete, formal, description of the problem and to create a uni�ed
data model encompassing, without loss, the three dimensions: semantics,
structure and social;

� to establish a formal framework for querying this data model and to imple-
ment it,

� to demonstrate that our query framework does indeed improve on the pre-
vious works, by taking into account these three dimensions had a positive
impact on the search results.

1.3 Contributions and outline

Below, we present the contributions of this thesis and its general organization:

Chapter 2 recalls basic notions for the standard representation and querying
of knowledge graphs, of structured and semi-structured documents and of social
data.

5

1.3. CONTRIBUTIONS AND OUTLINE

Chapter 3 surveys the literature to present the state of the art in terms of top-
k search in a social, semantic or structured context, as well as hybrid approaches
trying to query models integrating several of these dimensions.

Chapter 4 identi�es a set of requirements for a model integrating comprehen-
sively the social, semantic and structural aspects of the description of users, doc-
uments and their interactions with each other. It also provides a model, S3 that
meets these requirements. The main contributions of this chapter are:

� the S3 model and its diverse components;

� the explanation, with examples of how the instances of models presented in
the previous chapter can be mapped into S3.

Chapter 5 deals with querying S3 in a new, top-k keyword-based framework
that we introduce: S3k. The main contributions of this chapter are:

� the querying framework S3k;

� the notion of generic and concrete scores for this query model, and the math-
ematical properties attached to them;

� the algorithm we developed to implement this query model;

� the proof of termination and correctness of said algorithm.

Chapter 6 presents the technical details of implementation and the evaluation
of our algorithm S3k compared to another system for top-k keyword query in a
social context. The main contributions of this chapter are:

� a description of our implementation of S3k;

� the analysis of the performances of our implementation;

� the qualitative and quantitative comparisons with another system for top-k
keyword search in a social context.

Chapter 7 concludes this thesis and presents perspectives for future use of
S3. The main contribution of this chapter is the introduction of Tatooine, a
lightweight integration architecture for data journalism.

6

Chapter 2

Preliminaries

This chapter introduces the de-facto standard formalisms to model semantic,
structured and social data.

In Section 2.1 we present the Resource Description Framework, a universal
model on the Web to describe data and knowledge. Then, in Section 2.2, we recall
the two most accepted formats for semi-structured data, XML and JSON, and their
associated query languages. Finally, in Section 2.3 we survey models for popular
social networks.

2.1 The RDF model

URIs and literals We assume given a set U of Uniform Resource Identi�ers
(URIs, in short), as de�ned by the standard [92], and a set of literals (constants)
denoted L, disjoint from U .

Keywords We denote by K the set of all possible keywords: it contains all the
URIs, plus the stemmed version of all literals. For instance, stemming replaces
�graduation� with �graduate�.

An RDF graph (or graph, in short) is a set of triples of the form s p o, stating
that the subject s has the property p and the value of that property is the object
o. In relational notation (Figure 2.1), s p o corresponds to the tuple (s, o) in
the binary relation p, e.g., u1 hasFriend u0 corresponds to hasFriend(u1,u0). We
consider every triple is well-formed [84]: its subject belongs to U , its property
belongs to U , and its object belongs to K.

Notations We use s, p, o to denote a subject, property, and respectively, object
in a triple. Strings between quotes as in �string� denote literals.

7

2.1. THE RDF MODEL

Constructor Triple Relational notation
Class assertion s type o o(s)
Property assertion s p o p(s, o)

Constructor Triple Relational notation
Subclass constraint s ≺sc o s ⊆ o

Subproperty constraint s ≺sp o s ⊆ o

Domain typing constraint s ←↩d o Πdomain(s) ⊆ o

Range typing constraint s ↪→r o Πrange(s) ⊆ o

Figure 2.1: RDF (top) and RDFS (bottom) statements.

RDF types and schema The built in type property provided by the RDF stan-
dard is used to specify to which classes a resource belongs. This can be seen as a
form of resource typing.

A valuable feature of RDF is RDF Schema (RDFS), which allows enhancing the
resource descriptions provided by RDF graphs. An RDF Schema declares semantic
constraints between the classes and the properties used in these graphs, through
the use of four RDF built-in properties. These constraints can model:

� subclass relationships, which we denote by ≺sc; for instance, any M.S.Degree
is also a Degree;

� subproperty relationships, denoted ≺sp; for instance, workingWith someone
also means being acquaintedWith that person;

� typing of the �rst attribute (or domain) of a property, denoted ←↩d, e.g., the
domain of hasDegreeFrom is a Graduate;

� typing of the second attribute (or range) of a property, denoted ↪→r, e.g., the
range of hasDegreeFrom is an University.

Figure 2.1 shows the constraints we use, and how to express them. In this
�gure, domain and range denote respectively the �rst and second attributes of a
property. The �gure also shows the relational notation for these constraints, which
in RDF are interpreted under the open-world assumption [7], i.e., as deductive
constraints. For instance, if a graph includes the triples hasFriend ←↩d Person
and u1 hasFriend u0, then the triple u1 type Person holds in this graph even if it is
not explicitly present. This implicit triple is due to the←↩d constraint in Figure 2.1.

Figure 2.2 shows an example of RDF graph, describing some facts about the
Secretary-General of the United Nations, Ban Ki-moon, and some universities.

8

2.1. THE RDF MODEL

degree hasDegreeFrom studiedAt

M.S. degree graduate university

Q1253 Q13371

�Ban Ki-moon�foaf:person �Harvard University�

rdfs:subPropertyOf

rdfs:subClassOf rdfs:domain rdfs:range

hasDegreeFrom

rdf:type foaf:name foaf:name

Figure 2.2: Sample RDF graph.

Saturation RDF entailment is the RDF reasoning mechanism that allows making
explicit all the implicit triples that hold in an RDF graph G. It amounts to repeat-
edly applying a set of normative immediate entailment rules (denoted `iRDF) on
G: given some triples explicitly present in G, a rule adds some triples that directly
follow from them. For instance, continuing the previous example,

u1 hasFriend u0, hasFriend ↪→r Person `iRDF u0 type Person

Applying immediate entailment `iRDF repeatedly until no new triple can be
derived is known to lead to a unique, �nite �xpoint graph, known as the saturation
(a.k.a. closure) of G. RDF entailment is part of the RDF standard itself: the
answers to a query on G must take into account all triples in its saturation, since
the semantics of an RDF graph is its saturation [84].

In the following, we assume, without loss of generality, that all RDF graphs
are saturated; many saturation algorithms are known, including incremental [34]
or massively parallel ones [78].

SPARQL is a recursive acronym for SPARQL Protocol and RDF Query Language,
de�ned by the W3C [80]; in particular, SPARQL provides a query language for
RDF. The basic constructs of this language is the graph pattern: a set of triples
in which every subject, property, or object position can also be a variable. An
embedding of such a graph pattern into an RDF graph is an assignment of URIs
and literals to the query variables such that replacing the variables with these
URIs/literals in the graph pattern leads to a subgraph of the RDF graph.

Using selection, aggregation and construction operators it is then possible to
create and return either tuples of bindings or RDF graphs. For instance the query
in Figure 2.3 returns tuples of one element (person_name, univ_name) such that
person_name is the name of a person who studied at the university univ_name.

9

2.2. SEMI-STRUCTURED DOCUMENT MODELS

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?person_name ?univ_name
WHERE {

?x f o a f : name ?name ;
type f o a f : person .

?x studiedAt ?y .
? z rdf : type un i v e r s i t y ;

f o a f : name ?univ_name .
}

Figure 2.3: Sample SPARQL query.

2.2 Semi-structured document models

Extensible Markup Language, or XML for short, is a format of semi-structured
documents de�ned by the W3C [85] and omnipresent on the Web. An XML doc-
ument represents an ordered, unbounded, �nite tree.

XML tree nodes can be either elements, attributes, or text. An element has a
name, and may have: a set of attributes, and a list of element and/or text children.
A complete order holds over the element and text children of a given element,
whereas the order among the attributes of the same element node is unde�ned. An
attribute has only a name and a value, both of which are strings. A sample XML
document can be found in Figure 2.4.

A header called prolog contains an XML declaration describing for instance the
encoding or the language of the document, or the version of the XML speci�cation
in use.

Schema information describing the structured allowed in an XML document can
be speci�ed using various formalisms. The most commonly used for this task are
Document Type De�nitions (DTD) [86] and XML Schema De�nitions (XSD) [81,
82]. The former is an integral part of the speci�cation of SGML, a language that
generalises and precedes XML, and allows specifying the types of attributes, as
well as restricting which elements and attributes an element may have as children.
For instance, one can specify that only a certain number of a given element are
allowed as children of one parent element.

XML Schema, on the other hand, is a newer separate standard from W3C.
Almost all of the speci�cations using DTD can be translated into equivalent XML
Schema1. The main advantage of XSD with respect to DTD is that it is possible to
specify di�erent legal internal structures for an element depending on the context

1DTD supports entities, a feature similar to macros that doesn't exist in XSD.

10

2.2. SEMI-STRUCTURED DOCUMENT MODELS

<person f i rstName="John" lastName="Smith">
<address>

<s t r e e t>21 2nd S t r e e t</ s t r e e t>
<c i t y>New York</ c i t y>
<s t a t e>NY</ s t a t e>

</ address>
<address>

<s t r e e t>Rue d ' Argout</ s t r e e t>
<c i t y>Par i s</ c i t y>
<country>France</ s t a t e>

</ address>
<phone type="home">212 555−1234</phone>
<phone type=" o f f i c e ">646 555−4567</phone>

</person>

Figure 2.4: Example of XML document

of its occurrences. Thus, an author element may have certain constraints on its
structure if it appears within book, and other constraints if it appears within movie.
Further, XML Schema provides support for namespaces, allows specifying the order
of the children of a node, not just their number of occurrences, and provides a rich
typing system for literals [83].

XPath, the XML Path Language [87], is a query language for XML documents
based on the description of paths. Recent iterations of the speci�cations have
introduced higher level features but its core concept remains that of path expression,
which can be seen as a sequence of steps separated by / or //.

Each step contains an axis, for instance child, descendant, parent, preceding-
sibling. If no axis is speci�ed, it defaults to the child axis. Additionally a step
may contain a test such as testing for a speci�c node name or type and a list of
predicates, to be evaluated for instance over the value of a node.

The semantics of evaluating a path expression on an XML document is as
follows:

� Replace all occurrences of // with a step of axis descendant-or-self having
no test nor predicate.

� Create a set of nodes, the context items, containing initially only the root
of the document if the �rst character of the path expression is /. If there
is no initial /, the initial context items should be provided, for instance by
the evaluation of another path expression. Note that all the non initial / act
only as syntactical separators.

11

2.2. SEMI-STRUCTURED DOCUMENT MODELS

� For each step, following their order in the path expression: replace the context
items by the set of nodes reachable from its current elements using the current
step axis (the new context items are the children, descendants, parents etc.
of the nodes in the current context items). Prune from the context items the
nodes that fail the test or do not satisfy all the predicates in the predicate list
of the current step, then proceed to the next step. When there are no more
steps, the context items are returned as the evaluation of the path expression.

For instance, /person//phone[@type="home"] is an XPath expression con-
sisting of three steps: the �rst step selects all children of the root node labelled
�person�, the second, inserted by //, adds to the context items its descendants, and
the third step replaces the context items with the nodes labelled �phone�, children
of a node in the context items, having an attribute named �type� whose value is
�home�.

This expression evaluated on the document from Figure 2.4 yields as result the
one-element sequence:

<phone type="home">212 555−1234</phone>

XQuery is a query language using XPath expressions as building blocks and more
traditional programming operators such as for, if then else, try catch, where and
variables to construct and output XML documents [88].

Figure 2.5 shows an example of XQuery query that outputs an XML document
containing one item element for each child of the root of a document named �in-
ventory.xml�. The resulting items also get a name and a quantity child from the
original document.

Note that XQuery has many features of a functional language, including func-
tions as �rst class citizens, and is Turing complete.

JavaScript Object Notation or JSON for short, is another highly popular semi-
structured document format that arose from the use of JavaScript in particular in
Web site development. As of today, however, JSON has evolved as an independent
speci�cation [2, 1]. Similarly to XML, it can represent ordered unbounded �nite
trees, however JSON is more expressive: a JSON node can be either a dictionary (a
set of key-value pairs), an array, or a set of values, whereas XML element children of
the same node are always ordered. A JSON value can either be a node, or a typed
literal such as a boolean, a string or a number. In contrast, XML typing of leaf
(text) nodes can only be made through a �second� (external) schema speci�cation
such as a DTD or XML schema.

Figure 2.6 shows a simple JSON document.

JSON is becoming more present in web applications and is a default format for

12

2.3. MODELS FOR SOCIAL DATA MANAGEMENT

<inventory>
{
for $item in fn : doc ("inventory.xml")
l et $quant i ty := $item/ d e t a i l s / s tock /@quantity
return
<item>

<name>{$item/name}</name>
{ i f ($quant i ty !=1)
then return
<quantity >{$quant i ty}</quantity>

}
</item>

}
</inventory>

Figure 2.5: Sample XQuery query.

exchanging or retrieving information through web services, for instance from social
networks or content publishers.

Querying JSON Several query languages for JSON exist, such as JSONPath2,
that mimics XPath, Javascript3, JSON Pointer4, jaql5, JSONiq6, and JSONSelect7

but none of them has the status of a standard.

2.3 Models for social data management

The advent of social network systems has lead to very large amounts of interest-
ing data being exchanged through this medium. Research works have attempted
to propose models for such data oriented social networks.

User-item-tag models In a social context, one is interested both in modelling
the data posted by the users (which can be assimilated to documents), and the
relationships between users and the documents they interact with. User-item-
tag (UIT, in short) models represent social tagging applications, such as social
networks or social bookmarking services like Flickr, Reddit, Delicious etc. in

2http://goessner.net/articles/JsonPath/
3https://tc39.github.io/ecma262/
4https://tools.ietf.org/html/rfc6901
5https://code.google.com/archive/p/jaql/
6http://jsoniq.org/index.html
7http://jsonselect.org/

13

http://goessner.net/articles/JsonPath/
https://tc39.github.io/ecma262/
https://tools.ietf.org/html/rfc6901
https://code.google.com/archive/p/jaql/
http://jsoniq.org/index.html
http://jsonselect.org/

2.3. MODELS FOR SOCIAL DATA MANAGEMENT

{
"firstName" : "John" ,
"lastName" : "Smith" ,
"isAlive" : true ,
"age" : 25 ,
"height" : 171 .1 ,
"address" : {

"streetAddress" : "21 2nd Street" ,
"city" : "New York" ,
"state" : "NY" ,
"postalCode" : "10021-3100"

} ,
"phoneNumbers" : [

{
"type" : "home" ,
"number" : "212 555-1234"

} ,
{

"type" : "office" ,
"number" : "646 555-4567"

}
] ,
"children" : [] ,
"spouse" : null

}

Figure 2.6: Sample JSON document.

14

2.3. MODELS FOR SOCIAL DATA MANAGEMENT

d0

d1

d2

u0

u1

u2

u3
chicken, recipe

thermonuclear, engine

dangerous

camel, journey

friend

friend

boss
employee

Figure 2.7: Sample UIT graph.

terms of a graph of users and items, where users may author or tag documents
using keywords. The users may be linked one to another using named relations or
weighted links.

This generic model for social tagging can use explicit tags [97, 58], i.e., when
users manually enter textual tags on content, for instance in social networks like
Del.icio.us or Last.fm. Implicit tagging refers to a context where the tags are not
explicitly given but inferred from the users' behaviour. An example of implicit
tagging would be the query logs of a search engine, from which we can interpret
that a user tags with the query terms the search results that have been clicked
on [10].

A sample instance of this model can be seen in Figure 2.7, where four users tag
three documents.

Facebook is probably the most well known social network, being ranked as the
second most popular website after google.com by Alexa8 and the �rst by Similar-
Web9. Its model, called the social graph, is not known precisely, but the details
made available [18, 24] di�er signi�cantly from UIT models. The nodes of the so-

8http://www.alexa.com/siteinfo/facebook.com
9http://www.similarweb.com/website/facebook.com

15

http://www.alexa.com/siteinfo/facebook.com
http://www.similarweb.com/website/facebook.com

2.3. MODELS FOR SOCIAL DATA MANAGEMENT

cial graph are not necessarily users or documents: they can also be places, pages,
photos, groups etc. and are identi�ed using a common scheme. The edges of the
graph, that is the relationships between the nodes, are directed named relations
such as friend (between two users), like (between a user and a page), live-in (be-
tween a user and a place) etc. Note that only one relation of each type is possible
between two nodes: thus, a user cannot like twice the same page, or to live twice in
the same place at a given time. Both nodes and edges have a content made of (key,
value) pairs, for instance timestamps as values for the key �time�. While the �like�
tag behaves to some extent similarly to the UIT models (a relation from a user to a
page, characterized by the keyword �like�), the restriction to at most one edge with
the same source, target and relation makes tags with general keywords impracti-
cal, as it wouldn't be possible for a user to have several tag relations with di�erent
keywords to a document. Instead, new nodes are created to contain comments
and other tags, and each of these new nodes has one relation with the user and
one with the document. Another major conceptual di�erence between Facebook's
graph model and UIT is that the friend relation (the main relation between users)
is always symmetric. The social graph is typically sparse: there are only a few
hundreds out-edges per node, while there are billions of nodes. At the same time,
its diameter is very small: more than 99% of the nodes are in the same connected
component and within 6 or less hops one to each other [77, 4].

Twitter Among the 10 most popular social network websites at the time of writing,
Twitter also operates on a graph, but has fewer node and edge types than Facebook.
Twitter nodes are either users or status (i.e., tweets) and edges are either follower,
posted by, reply to status, or retweet [5]. To compensate for this smaller number
of objects, Twitter's nodes include directly information that would be in another
object in Facebook's social graph, for instance geographical information, or URLs.
A distinctive feature of Twitter is the brevity of its messages: 140 characters.
Another speci�city is the concept of hashtag : a list of characters following a hash
character (`#'), that allows tagging a status with this list of characters: Twitter
supports real-time search for posts labelled with a given hashtag.

Yelp! is another social network that focuses on reviewing businesses and estab-
lishing partnerships with such businesses, allowing to order or book online [56, 6].
Much like Twitter, it is closer to UIT models in that it has few nodes types; users,
businesses, and reviews, authored by a given user for a given business; review in
particular may feature rich content.

16

2.4. CONCLUSION

2.4 Conclusion

This chapter has introduced the standard formalisms to represent and query
data that is either of a semantic nature, with RDF and SPARQL, or that is
semi-structured, with XML queried using XPath and XQuery, or JSON and jaql,
JSONIQ, etc. We also exposed UIT, a generic but somewhat limited model for
social data, and surveyed the models of some of the most popular social networks.

17

2.4. CONCLUSION

18

Chapter 3

State of the art

This chapter presents the state of the art in the di�erent �elds that study the
core concepts used in this thesis: top-k search (Section 3.1) and social, semantic
and structured data (Section 3.2).

3.1 Top-k search

Top-k search aims at computing and returning the most relevant results to a
query instead of all its answers. Focusing on these particularly interesting results
both improves the user experience, and decreases the search e�ort.

Section 3.1.1 presents seminal contributions on top-k search both in the database
community, where there is a strong emphasis on the relations and the structure of
the data searched over, and in the information retrieval community, which focuses
more on the textual properties of the queried documents. These methods underlie
top-k search algorithms in several settings. A �rst setting, the one of objects stored
across several relations via foreign keys in relational databases, is presented in Sec-
tion 3.1.2. Section 3.1.3 focuses on top-k search over semi-structured data, building
on the top-k querying algorithms introduced in Section 3.1.1 and on the notions
of documents and their adapted query languages presented in Section 2.2. Sec-
tion 3.1.4 presents works on top-k search over RDF graphs. Finally, Section 3.1.5
presents works on top-k search looking for documents or users, based on the social
links between them.

3.1.1 Foundations of top-k search

Fagin's Threshold Algorithm Fagin, Lotem and Naor published an algorithm [28]
often referred to as Fagin's Threshold Algorithm (TA). This algorithm considers

19

3.1. TOP-K SEARCH

objects with several attributes, all scored beforehand within [0, 1]. These scores,
x1, . . . , xn, are aggregated into a single one using a function, t, given at the time
of the query. The role of the scoring function t is to compute objects' relevance
score (also in [0, 1], higher is better) with respect to the query: for instance if the
objects stand for pieces of text, and each xi is 1 if the word wi is present in this
object and 0 otherwise, then the query composed of the two words wi, wj could be
associated to the function t(X) =

xi+xj
2

. t would yield a score of 1 on a text having
both words, a score of 0.5 on a text having only one, and a score of 0 for a text
having none of them. One of the interests of this model is its generality: the xi
could also score other attributes than the presence of a word in a text, for instance
features on audio or video content, on web pages etc.

When the aggregation function is increasing monotonously over each attribute,
i.e., if X = (x1, . . . , xn) and X ′i = (x1, . . . , xi−1, x′i, xi−1, . . . , xn) with x′i ≥ xi then
t(X ′i) ≥ t(X), it is possible to �nd the k objects with the highest aggregated score
using inverted lists. For each attribute, a list of pairs (object, score) is created
for every object and the score it has for the attribute under consideration; each
such list is sorted in the decreasing order of its elements' scores. To �nd the top-k
objects, one can go through the inverted lists sequentially (and potentially gather
more information by looking for the objects' other attributes). Because the lists are
ordered, it is always possible to have an upper bound on each unexplored object's
attributes score. Moreover, t being monotonously increasing over each attribute,
it yields an upper bound on the score of unexplored objects. When the minimum
score of the k best-scored objects becomes higher than the best possible score of
the unexplored ones, the search may stop with the guarantee that the best k results
have been explored. This algorithm can be tuned to adapt to the cost of sequential
and random accesses, so that the overall cost of the algorithm is within a constant
factor of the optimal.

Top-k keyword search in Information Retrieval Top-k search in Information
Retrieval focuses on retrieving relevant data using its textual properties. Docu-
ments and queries are typically represented as multisets of words, and the score
of a documents for a query is a function of the size and intersection of their rep-
resentation, leading to two strategies: Term At A Time (TAAT), which inspects
documents once for each term in the query, and Document At A Time (DAAT),
where each document is inspected once, using all the terms of the query [76].

In [17], the authors introduce Weak AND (WAND), a DAAT method bearing
similarity with Fagin's TA and introduced in a similar timeframe. WAND proceeds
in two phases. In the �rst phase, document scores are computed approximately and
tested against a threshold, the k-th best score seen so far; documents scoring below
this threshold are pruned. In the second phase, the exact scores of the remaining
documents are computed, and the k best documents are returned.

20

3.1. TOP-K SEARCH

3.1.2 Top-k search in relational databases

Top-k keyword search is a powerful tool on relational databases, as it allows
users to easily obtain results without having to study the database schema in order
to formulate structured queries.

In [42], the authors propose a method for computing the top-k answers to
queries consisting of a set of keywords, over relational databases. It produces
ranked trees of tuples (sometimes called Joining Network of Tuples) found in the
database instance I. Such a tree of tuples (ti)i∈I is built as follows:

� each ti is a tuple from a relation Ri of the relational database;

� if ti is the child of tj then the primary key of Ri is a foreign key in the Rj

and the values of these keys coincide on ti and tj;

� each leaf of the tree must have a positive score with respect to the query.

The score of such a tree is a combination of the scores of its tuples, which
can for instance aggregate attribute scores like the Fagin's TA algorithm, or use
classical scores from other �elds such as information retrieval.

In this setting, the authors de�ne the tuple monotonicity property for scores:

� if T and T ′ are two results with the same number of nodes for a query q, and
it is possible to �nd a numbering of the nodes of T , (ti)i∈I , and a numbering
of the nodes of T ′, T ′ = (t′i)i∈I , such that for all i score(ti, q) ≤ score(t′i, q)

� then score(T, q) ≤ score(T ′, q).

Note that the two numberings need not be related: even if T and T ′ are iso-
morphic, ti does not necessarily map to t′i. This is a consequence of the fact that
score takes as input a set of nodes without any order. This property is similar to
the monotonicity property for Fagin's TA algorithm.

The top-k results for scores having the tuple monotonicity property can be
computed in a similar fashion to Fagin's TA. The method consists of iteratively (i)
examining new candidates created from the highest scored tuples of the database
relations, (ii) establishing an upper bound on the score of the unexplored tuple
trees, based on the tuples they may contain.

Extensions of this method include:

� mapping certain query keywords to predicates over the retrieved objects,
instead of trying to �nd the keywords in the objects themselves [31];

21

3.1. TOP-K SEARCH

� adding type-ahead search, to suggest completion while the user types the
query [51];

� ensuring a certain diversity in the results [79];

� performance-improving techniques [12, 64].

Another perspective for extension is to add user preferences to the search
queries. The qualitative approach to user preference is to explicitly de�ne relations
between items or keywords: in [32], users have a set of preferences over attributes,
stating for instance that they prefer �English� to �French� for certain columns of
certain relations. In [71], user pro�les consist of a set of pairs (C, k1 � k2) indicat-
ing that when all the keywords in the set C are in a query, results including the
keyword k1 are to be preferred over those including the keyword k2. The quantita-
tive approach [49, 50] relays instead the users preferences into the items score and
selects the best items accordingly.

Other approaches, such as [43], return graphs of database entries and focus on
the links between these entries using PageRank-like algorithms [62] to score them.
This approach is not limited to relational databases, and the database entries need
not be tuples, but may also be structured documents. As such, this allows more
general forms of Joining Network of Tuples, where the relation between two nodes
need not be the foreign key to primary key relationship, and can for instance be a
named relationship in a graph.

3.1.3 Top-k search in semi-structured documents

At the crossroad between keyword search on structured data (for instance re-
lational databases) and unstructured data, i.e., plain text, the search over semi-
structured documents fuses both approaches. In this context, the search can not
only return roots of documents but also their descendants, which are considered
as valid documents. Top-k search over semi-structured documents using the XML
format is introduced in [37]. The authors propose the idea that the more speci�c a
document is, the better it should be ranked. Further, if an element contains a key-
word of the query, then it is more speci�c than its ancestors for this query, unless
they contain additional keywords. In particular, if each keyword of the query is
present once in a tree, then the most speci�c result, and therefore the one returned,
is the lowest common ancestor, abbreviated LCA, of the nodes where the keywords
of the query occur.

In [37], the evaluation is done via an algorithm based on Fagin's TA: documents
and their subtrees are given a score for each keyword they contain, depending on
the query, and these scores are aggregated using a monotonous function into a
global score. The major di�erence with Fagin's TA settings is that the keyword

22

3.1. TOP-K SEARCH

l1 collection

l2 article

a author a′ author b title

Figure 3.1: A sample document to illustrate MLCAs

score, for a particular subtree, contains a decay factor, decayt−1, where t is the
depth of the keyword in the subtree, and decay is a constant between 0 and 1.

This framework also supports keyword proximity: if a keyword k1 not in the
query is registered as close to a keyword k2, part of the query, then the score for
k1 is taken into account, but reduced by a constant factor re�ecting the proximity
between k1 and k2. Because of keyword proximity, the score of a document for a
particular keyword may depend on multiple nodes within this document, bearing
proximate keywords. These nodes and keywords produce partial scores that are
aggregated using a function that must be speci�ed, for instance max or sum.

This initial approach has many natural extensions, notably variants of LCA.
For example, Meaningful LCA [54] gives a type to documents' nodes and considers
that for a query {k1, k2}, if within a single document a node a of type A contains
k1, and a node b of type B contains k2, their LCA is meaningful only if:

1. there exists no ancestor of a that is also a descendant of the LCA and has a
descendant of type B, and

2. there exists no ancestor of b that is also a descendant of the LCA and has a
descendant of type A.

For instance, Figure 3.1.3 depicts a documents with 2 nodes a and a′ of type
author, and one node b of type title. In this document, the node l1 is the lowest
common ancestor of a and b but it is not a Meaningful LCA because there exists l2:
an ancestor of b and descendant of l1 = LCA(a, b) having a descendant a′ of type
author. The intuition behind the de�nition of MLCA is that l2 associates elements
of type author and title more directly than l1 and that the association in l1 may be
incidental and not meaningful. Indeed in this case article are reasonable documents
to contain related title and author while this is less the case for collection.

Another variant is Smallest LCA [95], that also requires the LCA not to contain
a descendant with all the keywords of the query. Other notable works focus on pro-
viding search algorithms with better complexity, and improving the performances

23

3.1. TOP-K SEARCH

for di�erent variants of LCA [44, 98]. Going beyond classical XML documents, it
is also possible to consider probabilistic XML documents [52], where some nodes
have a given probability to appear.

Keyword search over structured documents can naturally be extended to incor-
porate structural constraints. The algorithms of [74] allow processing e�ciently
fuzzy XPath queries such as:

//book[about(., Information Retrieval XML) and about(.//reference, PageRank)]

//author[about(.//affiliation, Stanford)]

This query �nds the authors of books containing the terms �Information Re-
trieval XML� and having descendants tagged as reference and a�liation containing
the terms �PageRank� and �Stanford�, respectively. But it can also �nd books with
related contents, reference or a�liation using similarity measures coming from the
information retrieval community. This is closely related to graph pattern matching
with top-k [36]: given an input graph with some variables, the goal is to �nd an
assignment of the variables and a subgraph of the instance that correspond to the
query where the variables are replaced by their value, these assignments are ranked
and a given number of the ones with the highest scores must be returned.

3.1.4 Top-k search in RDF graphs

Top-k search on RDF graphs focuses on �nding minimal subgraphs of the search
instance � an RDF graph � that contains all the keywords of the query. Because
these subgraphs are minimal in terms of number of RDF triples included, they
cannot contain loops and are therefore trees. Most works focus on scoring such
trees and �nding the top-scored ones.

In [14] the score of a tree depends on two factors:

� The lengths of the paths from the tree root to the keywords. Notice that the
edges of the RDF graph may be weighted, in which case the length of a path
is the sum of the weights of the edges it traverses.

� The importance of the nodes of the graph, for instance computed using
PageRank [62] like algorithms.

Additional requirements can be imposed on the results, for instance that only the
best tree rooted in each node may be considered [40], or that the returned trees
should not overlap [55].

The exploration of the graph to �nd such trees can be done using several strate-
gies, such as directly following the RDF graph's edges: starting from the query

24

3.1. TOP-K SEARCH

keywords, and following the graph's directed edges, sets of potential roots for each
keyword are found and then intersected to �nd roots of trees linked to all the key-
words [14]. Alternatively, if the number of nodes related to one keyword is smaller
than the ones related to the other keywords of the query, it it possible to �nd
potential roots starting from this node and then check which of these candidates
are indeed linked to all the keywords [46]. More recent exploration strategies make
heavy use of precomputed indexes to alleviate the complexity: in [40], the authors
partition the graph into blocks of customizable size and record

� the node distances within each block,

� which blocks contain which keyword,

� how to reach one block from another.

With a good partitioning strategy, it is possible to use this stored information to
obtain a search complexity within a constant multiplicative factor of the optimal.

We distinguish two other approaches that don't return trees but nodes or gen-
eral subgraphs instead. The former roughly corresponds to only returning the
roots of the trees returned by the previous approaches [13]. The latter, studied
in [75], expand on the tree approaches and consider one result to be an aggregation
of paths between the query's keywords (or closely related terms such synonyms,
hyponyms and hypernyms as they can be fond in Wordnet [29]). Because for a
given result these paths link the same nodes, their aggregation is a subgraph that
may include cycles.

3.1.5 Top-k search in a social context

Top-k techniques can also be used to search over social data. One can simply
store this data into a relational database and use the methods discussed in Sec-
tion 3.1.2. However, several improvements can be made by taking into account
the social nature of the data. For instance one could add a reputation score to
the attributes of each user or to the documents they authored. Reputation, trust,
in�uence, authority, or other �people metrics� can be computed using implicit data
(such as links with PageRank-like algorithms [63]) or using explicit data (such
as user ratings [47]); such metrics are then integrated into top-k keyword search
engines [68].

The expansion of social networks have lead to a scenario where users asking
queries over social data are part of the social data itself. In this scenario, it is
possible to use the knowledge on users to return them personalized results. Early
takes on this approaches include personalized PageRank based on bookmarks [45]:
each user has a set of preferred pages P , and the importance of each page is

25

3.1. TOP-K SEARCH

computed using a modi�ed PageRank algorithm where the random walk, instead
of having a certain probability at each step to jump to a random page, jumps on
one of the preferred pages P of the user. Because the computation of this modi�ed
PageRank algorithm for each user (in real time) is not tractable, precomputations
are done on partial sets of preferred pages using an approximation of the graph,
which are then assembled at run time. An extension of this work is to automatically
infer this set of preferred pages [73].

Going beyond a pre-recorded set of preferences per user, it is possible to have the
user be part of the social graph. In [96], the authors introduce network-aware search
on a tagging network. This setting reproduces UIT models with a slight di�erence:
the users are either taggers, who behave like normal users in UIT models, tagging
items with keywords, or seekers who can only ask queries using a set of keywords.
Based on Fagin's TA, this work introduces a per-user network distance with the
searched items, and uses it as an attribute taken into account in the document
score. The exact computation being too expensive, the authors introduce clustering
techniques over the seekers to improve performance. While they show that �nding
optimal clusters of seekers is NP-Hard, they provide heuristics that work well in
practice. [57] introduces the TOPKS algorithm that generalises this approach to
UIT models, which allow seekers to also be taggers. It can use both approximate
and exact social distance, and provides a simple parameter, α ∈ [0, 1], to tweak
the importance of the social score with respect to the textual one. Network-aware
approaches can be extended with attributes for the time elapsed since a document
was created, or for the real world distance between the seeker and the authors of
documents [53].

While all the previous works focused on searching documents, it is also useful
to search for users. This is for instance the case on7 Facebook [24], where users are
treated as rich objects with linked to names, places, interests etc. Several works are
also interested in delegating the query of the user to another user of the network
that might be better suited to answer it [41], which is indeed a form of top-k
textual search for users in a social context. In [23], the authors consider network-
aware search of user: in this work the social distance from the seeker comes from
the paths leading from the seeker to the search candidates. The users along these
paths are decomposed into several categories depending on the topology of the set
of paths passing through them and the categories are used to score the paths.

Another approach known as Personalized Information Retrieval (PIR) stems
from classical IR systems, the main di�erence being that, in PIR, the results for a
query typically change from one user to another. This is achieved by expanding the
query's set of keywords with keywords representing the users' interests, interests
which are collected either in an implicit or an explicit manner. In the former
case, the information is learned from the user behaviour, for instance using the
previously submitted queries and clicked results [69, 70]. In the latter case, users'
interests are explicitly stated, either directly as in [59] or by giving feedback to

26

3.2. HYBRID DATA MODELS

proposed results [21, 11, 39].

PIR systems typically use only information from the user asking the query, but
it is possible to integrate a social context to determine users close to the seeker
and also exploit their interests. For instance, in [19], the neighborhood of the
querier is ranked using direct and indirect social links, and their known interests
are aggregated into the document scores, thus allowing top-k search integrating
social data. The real-world location of the the social entity can be also integrated
in the search [8].

3.2 Hybrid data models

We have seen in the previous chapter the common models for semantic, struc-
tured and social data taken separately. We focus in this section on models that
integrate several of this aspects, not necessarily in a top-k context.

There exist few hybrid models including social and semantics aspects, examples
of such models being mostly personal information management systems, where
RDF data is queried using social information from the user. For instance, in [33],
user recorded preferences are fed to a machine learning algorithm for training, and
this algorithm is used to evaluate the relevance of RDF graph's nodes based on the
preference of the user asking the query.

The rest of this section will focus on hybrid models including semantics and
structure as, to our knowledge, there is no model integrating both social and struc-
tural data into a coherent whole.

Most models including both semantics and structure put semantics on top of
structured documents: the semantics is either deduced from documents and used
as a medium to query them or recorded on the documents for later use. The former
direction is covered by document transformation and data integration, while the
latter direction is part of document annotation.

The transformation of structured documents into semantic instances, such as
XML documents into an RDF graph [30, 26], allows to use o�-the-shelf query lan-
guages for RDF, like SPARQL, to examine structured data, potentially completed
with semantic sources, natively in RDF.

The idea of extracting semantics from structured documents can also be used
in data integration, to interface multiple documents with heterogeneous schemas.
In [25], a set of rules on the labels and properties of HTML documents is used to
extract RDF-like triples and a query language analogous to SPARQL is used to
query the resulting ontology. More modern takes on data integration [22, 9], instead
of extracting the semantics from the documents and using only this semantics
afterwards, adopt a mediator approach: the documents are kept as they were
and the queries on the (virtual) resulting ontology are rewritten as queries on the

27

3.3. CONCLUSION

documents that account for the rules mapping structure to semantics.

Document annotations are a way for users to attach semantics to particular
nodes of structured documents such as Web pages, and to query these annotations.
Annotations take the form of RDF triples associated to a node within a document
and can be attached manually [38], semi-automatically [60], or directly by the
authors of Web pages using a W3C standard [89]. The querying capabilities of
document annotations models are often limited: typically they only provide a way
to retrieve documents annotated with a given keyword.

In contrast with models that put semantics on top of structured documents,
other approaches treat the two equally: this is the case for approaches that trans-
form semantic graphs into structured documents or that use a model [35] inte-
grating semantics and structure on an equal footing. Transforming RDF graphs
into XML documents can be useful to use query language not targeted at RDF,
such as XQuery [66], or to integrate an RDF graph and XML corpus by providing
both translation from XML to RDF and the other way around [15]. This allows to
handle both queries that may return XML document and queries that may return
RDF graph at the cost of a loss of information due to the translations.

In [35], the authors integrate structural and semantics aspects from XML and
RDF into a uni�ed model, XR, and provide a rich query language, combining
features from XQuery and SPARQL. An instance of this model is a set of XML
documents, and an RDF graph. Each node of each document is assigned a unique
URI that may be used as a subject or an object in the RDF data. Note that due
to the large number of such XML nodes, the assignment is not materialized. The
query language XRQ over this model is a combination of Basic Graph Patterns
over the RDF graph and of tree patterns over the XML documents.

3.3 Conclusion

In Chapter 2, we discussed the representation and querying of data that have
either a social, semantic or structured dimension. In this chapter, we build upon
those representations to introduce the most prominent models for top-k search on
at least one of those dimensions and for representing and querying data including
at least two of those dimensions.

In the next chapter we introduce our model S3, that includes the three dimen-
sions and in the following chapters we develop top-k querying an S3 instance.

28

Chapter 4

S3: A model for structured, social

and semantic data

4.1 Requirements

There exists currently no formal framework unifying the three dimensions of
structured, social, and semantic data. We �rst identify a list of requirements such
a framework should meet to fully exploit the content shared in social settings. We
illustrate our requirements using Figure 4.1.

R0. The model must capture explicit social connections between users,
e.g., u1 is a friend of u0 in Figure 4.1, and user endorsement (tags) of data
items, as UIT search algorithms exploit both the user endorsement and the social
connections to return items most likely to interest the seeker, given his social and

d0

d0.3.2

d0.5.1

d1

“When I got my M.S.
@UAlberta in 2012 ...”

d2

“A degree does give
more opportunities ... ”

u0u1 u2

u3

u4

posted by

friend

posted by

replies to

comments on
posted by

tagged with
′′university”

Figure 4.1: Motivating example for the data model requierements.

29

4.1. REQUIREMENTS

tagging behavior.

R1. The current wealth of ways to publishing and disseminate content on the
Web (through social networks, blogs, interlinked Web pages etc.) allows many
di�erent relations between items. For example, document d1 replies to document
d0 (think for instance of opposite-viewpoint articles in a heated debate), while
document d2 comments on the paragraph of d0 identi�ed by the URI d0.3.2. The
model must capture relations between items, in particular since they may
lead to implicit relations between users, according to their manipulations of
items. For instance, the fact that u2 posted d1 as a reply to d0, posted by u0, entails
that u2 at least read d0, and thus some form of exchange has taken place between
u0 and u2; if one looked for explicit social connections only, we may wrongly believe
that u0 and u2 have no relation to each other.

R2. Items shared in social media often have a rich structured content. For
instance, the article d0 comprises many sections, and paragraphs, such as the one
identi�ed by the URI d0.3.2. Document structure must be re�ected in the
model in order to return useful document fragments as query results, instead of a
very large document or a very small snippet of a few words (e.g., exactly the search
keywords). Document structure also helps discern when users have really interacted
through content. For instance, u3 has interacted with u0, since u3 comments on the
fragment d0.3.2 of u0's article d0. In contrast, when user u4 tags with �university�
the fragment d0.5.1 of d0, disjoint from d0.3.2, u4 may not even have read the same
text as u3, thus the two likely did not interact.

R3. Item and tag semantics must be modelled. Social Web data encapsu-
lates users' knowledge on a multitude of topics; ontologies, either general such as
DBPedia or Google's Knowledge Base, or application-speci�c, can be leveraged to
give query answers which cannot be found without relying on semantics. For in-
stance, assume u1 looks for information about university graduates : document d1
states that u2 holds a M.S. degree. Assume a knowledge base speci�es that a M.S.
is a degree and that someone having a degree is a graduate. The ability to return
as result the snippet of d1 most relevant to the query is directly conditioned by the
ability to exploit the ontology (and the content-based interconnections along the
path: u1 friend of u0, u0 posted d0, d1 replied to d0).

R4. In many contexts, tagging may apply to tags themselves, e.g., in anno-
tated corpora, where an annotation (tag) obtained from an analysis can further be
annotated with provenance details (when and how the annotation was made) or
analysed in its turn. Information from higher-level annotations is obviously still
related to the original document. The model should allow expressing higher-level
tags, to exploit their information for query answering.

R5. The data model and queries should have well-de�ned semantics, to
precisely characterize computed results, ensure correctness of the implementation,
and allow for optimization.

30

4.2. MODEL DEFINITION

U URIs L literals K keywords Ext(k) extension of k
Ω users D documents T tags I graph instance

Table 4.1: Main data model notations.

R6. The model should be generic (not tied to a particular social network
model), extensible (it should allow easy extension or customization, as social
networks and applications have diverse and rapidly evolving needs), and inter-
operable, i.e., it should be possible to get richer / more complete answers by
integrating di�erent sources of social connections, facts, semantics, or documents.
This ensures in particular independence from any proprietary social network view-
point, usefulness in a variety of settings, and a desirable form of �monotonicity�:
the more content is added to the network, the more its information value increases.

4.2 Model de�nition

We now describe our model integrating social, structured, and semantic-rich
content into a single weighted RDF graph, and based on a small set of S3-speci�c
RDF classes and properties. We present weighted RDF graphs in Section 2.1,
and show how they model social networks in Section 4.2.2. We add to our model
structured documents in Section 4.2.3, and tags and user-document interactions in
Section 4.2.4. Section 4.2.5 introduces our notion of social paths. Table 4.1 recaps
the main notations of our data model.

4.2.1 Weighted RDF graphs

In the following, we assume, without loss of generality, that all RDF graphs
are saturated; many saturation algorithms are known, including incremental [34]
or massively parallel ones [78].

Weighted RDF graph Relationships between documents, document fragments,
comments, users, keywords etc. naturally form a graph. We encode each edge from
this graph by a weighted RDF triple of the form (s, p, o, w), where (s, p, o) is a
regular RDF triple, and w ∈ [0, 1] is termed the weight of the triple. Any triple
whose weight is not speci�ed is assumed to be of weight 1.

We de�ne the saturation of a weighted RDF graph as the saturation derived
only from its triples whose weight is 1. Any entailment rule of the form a, b `iRDF c
applies only if the weight of a and b is 1; in this case, the entailed triple c also
has the weight 1. We restrict inference in this fashion to distinguish triples which
certainly hold (such as: �a M.S. is a degree�, �u1 is a friend of u0�) from others

31

4.2. MODEL DEFINITION

whose weight is computed, and carries a more quantitative meaning, such as �the
similarity between d0 and d1 is 0.5�

In other settings, it may be possible to generalize this to support inference over
triples of any weight, e.g., if u1 hasName “AntonioMarez′′ and hasName ←↩d Person
hold with weight 0.5, this could lead to u1 type Person with a weight of 0.25, in the
style of probabilistic databases. However this would also create new challenges as
a triple could be deduced in several ways, requiring to aggregate the probability of
a fact based on di�erent reasons for it to happens whose independence is unknown.

Graph instance I and S3 namespace We use I to designate the weighted RDF
instance we work with. The RDF Schema statements in I allow a semantic inter-
pretation of keywords, as follows:

De�nition 4.2.1 (Keyword extension). Given an S3instance I and a keyword
k ∈ K, the extension of k, denoted Ext(k), is de�ned as follows:

� k ∈ Ext(k)

� for any triple of the form b type k, b ≺sc k or b ≺sp k in I, we have b ∈
Ext(k).

For example, given the keyword degree, and assuming that M.S. ≺sc degree
holds in I, we have M.S. ∈ Ext(degree). The extension of k does not generalize
it, in particular it does not introduce any loss of precision: whenever k′ is in the
extension of k, the RDF schema in I ensures that k′ is an instance, or a specialization
(particular case) of k. This is in coherence with the principles behind the RDF
schema language1.

For our modeling purposes, we de�ne below a small set of RDF classes and
properties used in I; these are shown pre�xed with the S3 namespace. The next
sections show how I is populated with triples derived from the users, documents,
and their interactions.

4.2.2 Social network

We consider a set of social network users Ω ⊂ U , i.e., each user is identi�ed by
a URI. We introduce the special RDF class S3:user, and for each user u ∈ Ω, we
add: u type S3:user ∈ I.

To model the relationships between users, such as �friend�, �co-worker� etc.,
we introduce the special property S3:social, and model any concrete relationship

1One could also allow a keyword k′ ∈ Ext(k) which is only close to (but not a specialization
of) k, e.g., “student” in Ext(“graduate”), at the cost of a loss of precision in query results. We
do not pursue this alternative here, as we chose to follow standard RDF semantics.

32

4.2. MODEL DEFINITION

between two users by a triple whose property specializes S3:social. Alternatively,
one may see S3:social as the generalization of all social network relationships.

Weights are used to encode the strength w of each relationship going from a
user u1 to a user u2: u1 S3:social u2 w ∈ I. As customary in social network data
models, the higher the weight, the closer we consider the two users to be.

Extensibility Depending on the application, it may be desirable to consider that
two users satisfying some condition are involved in a social interaction. For in-
stance, if two people have worked the same year for a company of less than 10
employees (such information may be in the RDF part of our instance), they must
have worked together, which could be a social relationship. This is easily achieved
with a query that retrieves all such user pairs (in SPARQL or in a more elabo-
rate language [35] if the condition also carries over the documents), and builds a
u workedWith u′ triple for each such pair of users. Then it su�ces to add these
triples to the instance, together with the triple: workedWith ≺sp S3:social.

4.2.3 Documents and fragments

We consider that content is created under the form of structured, tree-shaped
documents, e.g., XML, JSON, etc. A document is an unranked, ordered tree of
nodes. Let N be a set of node names (for instance, the set of allowed XML element
and attribute names, or the set of node names allowed in JSON). Any node has
a URI. We denote by D ⊂ U the set of all node URIs. Further, each node has
a name from N , and a content, which we view as a set of keywords from K: we
consider that each text appearing in a document has been segmented into words,
stop words have been removed, and the remaining words have been stemmed to
obtain our version of the node's text content. For example, in Figure 4.1, the text
of d1 might become {“M.S.”, “UAlberta”, “2012”}.

We term any subtree rooted at a node in document d a fragment of d, implicitly
de�ned by the URI of its root node. The set of fragments (nodes) of a document
d is denoted Frag(d). We may use f to refer interchangeably to a fragment or its
URI. If f is a fragment of d, we say d is an ancestor of f .

To simplify, we use document and fragment interchangeably; both are identi�ed
by the URI of their unique root node.

Document-derived triplesWe capture the structural relationships between doc-
uments, fragments and keywords through a set of RDF statements using S3-speci�c
properties. We introduce the RDF class S3:doc corresponding to the documents,
and we translate:

� each d ∈ D into the I triple d type S3:doc,

33

4.2. MODEL DEFINITION

� each document d ∈ D and fragment rooted in a node n of d into n S3:partOf d,

� each node n and keyword k appearing in the content of n into
n S3:contains k,

� each node n whose name is m, into n S3:nodeName m.

Example 4.2.1. Based on the sample document shown in Figure 4.1, the following
triples are part of I:

d0.3.2 S3:partOf d0.3 d1 S3:contains “M.S.”
d0.3 S3:partOf d0 d1 S3:nodeName text

The following constraints, part of I, model the natural relationships between
the S3:doc class and the properties introduced above:

S3:partOf ←↩d S3:doc S3:partOf ↪→r S3:doc
S3:contains ←↩d S3:doc S3:nodeName ←↩d S3:doc

which read as follows: the relationship S3:partOf connects pairs of fragments (or
documents), S3:contains describes the content of a fragment, and S3:nodeName
associates names to fragments.

Fragment position We need in our model to assess how closely related a given
fragment is to one of its ancestor fragments. For that, we use a function pos(d, f)
that returns the position of fragment f within document d. Concretely, pos can
be implemented for instance by assigning Dewey-style IDs to document nodes, as
in [61, 72]. Then, pos(d, f) returns the list of integers (i1, . . . , in) such that the path
starting from d's root, then moving to its i1-th child, then to this node's i2-th child
etc. ends in the root of the fragment f . For instance, in Figure 4.1, pos(d0.3.2, d0)
may be (3, 2).

Example 4.2.2. Considering again Figure 4.1, sample outputs of the pos function
are:

pos(d0, d0.3.2) = [3, 2]
pos(d1, d2) = []

4.2.4 Relations between structure, semantics, users

We now show how dedicated S3 classes and properties are used to encode all
necessary kinds of connections between users, content, and semantics in a single
S3 instance.

34

4.2. MODEL DEFINITION

Tags A typical user action in a social setting is to tag a data item, re�ecting the
user's opinon that the item is related to some concept or keyword used as tag. We
introduce the special class S3:relatedTo to account for the multiple ways in which
a user may consider that a fragment is related to a keyword. We denote by T the
set of all tags.

For example, in Figure 4.1, u4 tags d0.5.1 with the keyword �university�, leading
to the triples:

a type S3:relatedTo a S3:hasSubject d0.5.1

a S3:hasKeyword “university” a S3:hasAuthor u4

In this example, a is a tag (or annotation) resource, encapsulating the various tag
properties: its content, the author, and the tagged ressource. The tag subject (the
value of its S3:hasSubject property) is either a document or another tag. The latter
allows to express higher-level annotations, when an annotation (tag) can itself be
tagged.

A tag may not necessarily consist of a keyword, i.e., it may have no S3:hasKeyword
property. Such no-keyword tags model endorsement (support), such as like on
Facebook, retweet on Twitter, or +1 on Google+.

Tagging may di�er signi�cantly from one social setting to another. Thus, in
a restaurant rating site, a tag ranges from ? (terrible) to ? ? ? ? ? (excellent);
in a collaborative question answering site, users tag questions with one of the
existing discussion topics, e.g., �clock� and �cpu-speed� for a question related to
CPU overclocking etc. Tags may also be produced by programs, e.g., a natural
language processing (NLP) tool may recognize a text fragment related to a person,
an image processing (IP) software may identify that an image is related to a certain
object, etc.

Just like the S3:social property can be specialized to model arbitrary social con-
nections between users, subclasses of S3:relatedTo can be used to model di�erent
kinds of tags. For instance, assuming a2 is a tag produced by an NLP software,
this leads to the I triples:

a2 type NLP:recognize
NLP:recognize ≺sc S3:relatedTo

User actions on documents Users post (or author, or publish) content, modeled
by the dedicated property S3:postedBy. Some of this content may be comments
on (or replies / answers to) other fragments; this is encoded via the property
S3:commentsOn. When user u posts document c, which comments on document d
and possibly cites part of it, each fragment copied (cited as such) from d into c is
now part of c and thus has a new URI.

35

4.2. MODEL DEFINITION

Class Semantics
S3:user the users (the set of its instances is Ω)
S3:doc the documents (the set of its instances is D)
S3:relatedTo generalization of item �tagging� with keywords (the set of all in-

stances of this class is T : the set of tags)

Property Semantics
S3:postedBy connects users to the documents they posted
S3:commentsOn connects a comment with the document it is about
S3:partOf connects a fragment to its parent nodes
S3:contains connects a document with the keyword(s) it contains
S3:nodeName asserts the name of the root node of document
S3:hasSubject speci�es the subject (document or tag) of a tag
S3:hasKeyword speci�es the keyword of a tag
S3:hasAuthor speci�es the poster of a tag
S3:social generalization of social relationships in the network

Table 4.2: Classes and properties in the S3 namespace.

Example 4.2.3. In Figure 4.1, d2 is posted by u3, as a comment on d0.3.2, leading
to the following I triples:

d2 S3:postedBy u3 d2 S3:commentsOn d0.3.2

As before, we view any concrete relation between documents e.g., answers to,
retweets, comments on, is an old version of etc. as a specialization (sub-property)
of S3:commentsOn; the corresponding connections lead to implicit S3:commentsOn
triples, as explained in Section 2.1. Similarly, forms of authorship connecting users
to their content are modeled by specializing S3:postedBy. This allows integrating
(querying together) many social networks over partially overlapping sets of URIs,
users, and keywords.

Inverse properties As syntactic sugar, to simplify the traversal of connections
between users and documents, we introduce a set of inverse properties, denoted re-
spectively S3:postedBy, S3:commentsOn, S3:hasSubject and S3:hasAuthor, with the straight-
forward semantics: s p̄ o ∈ I i� o p s ∈ I where p̄ is the inverse property of p. For
instance, u0 S3:friend u1 holds in the example of Figure 4.1.

Table 4.2 summarizes the previously discussed S3 classes and properties, while
Figure 4.2 illustrates an I instance.

36

4.2. MODEL DEFINITION

URI0

URI0.0

URI0.0.0

URI0.1 URI1

u0

u1

u2

u3

a0

k0 k1

k2

S3:postedBy, 1

S3:postedBy, 1

S3:postedBy, 1

S3:postedBy, 1

S3:commentsOn, 1

S3:commentsOn, 1

S3:hasSubject, 1

S3:hasSubject, 1 S3:hasAuthor, 1

S3:hasAuthor, 1

S3:hasKeyword, 1

S3:partOf, 1

S3:partOf, 1

S3:partOf, 1

S3:partOf, 1

S3:contains, 1 S3:contains, 1

S3:social, 0.3

S3:social, 0.5

S3:social, 0.5
S3:social, 0.7

Figure 4.2: Sample S3 instance I.

4.2.5 Social paths

We de�ne here a representation of the relations between users established either
through explicit social links, or through user interactions, that we call social paths.
To formulate their de�nition, we �rst identify the steps of the paths, denoted
network edges, and when two steps can be chained via a notion that we call vertical
neighborhood.

We call network edges those I edges encapsulating quantitative information on
the links between user, documents and tags, i.e., the set of edges whose properties
are in the namespace S3 other than S3:partOf, and whose subjects and objects are
either users, documents, or tags.

De�nition 4.2.2 (Network edges). We de�ne:

Inet = {s p o w | p ∈ S3 \ {S3:partOf}, s, o ∈ (Ω ∪D ∪ T)}

For instance, in Figure 4.2, u1 S3:social u3 0.5 and URI0 S3:postedBy u1 are net-
work edges; URI0.0 S3:contains k0 and URI0.1 S3:partOf URI0 are not. The intuition
behind the exclusion of S3:partOf is that structural relations between fragments,
or between fragments and keywords, solely describe data content and not an inter-
action. However, if two users comment on the same fragment, or one comments
on a fragment of a document posted by the other (e.g., u2 and u0 in Figure 4.1),
this is indeed a form of social interaction, one we account for.

But when two users interact with unrelated fragments of the same document,
such as u3 and u4 on disjoint subtrees of d0, this does not establish a social link

37

4.2. MODEL DEFINITION

between u3 and u4, since they may not even have read the same text2. We intro-
duce:

De�nition 4.2.3 (Document vertical neighborhood). Two documents are vertical
neighbors if one of them is a fragment of the other. The function neigh: U → 2U

returns the set of vertical neighbors of an URI.

In Figure 4.2, URI0 and URI0.0.0 are vertical neighbors, so are URI0 and URI0.1,
but URI0.0.0 and URI0.1 are not. In the sequel, due to the strong connections be-
tween nodes in the same vertical neighborhood, we consider (when describing
and exploiting social paths) that a path entering through any of them
can exit through any other; a vertical neighborhood acts like a single node
only and exactly from the perspective of a social path3. We can now de�ne social
paths:

De�nition 4.2.4 (Social path). A social path (or simply a path) in I is a chain
of network edges such that the end of each edge and the beginning of the next one
are either the same node, or vertical neighbors.

We may also designate a path simply by the list of nodes it traverses, when

the edges taken along the path are clear. In Figure 4.2, u2
u2 S3:hasAuthor a0 1−−−−−−−−−−−−−→

a0
a0 S3:hasSubject URI0.0.0 1−−−−−−−−−−−−−−−−→ URI0.0.0 99K URI0

URI0 S3:postedBy u0 1−−−−−−−−−−−−−−→ u0 is an example
of such a path (the dashed line: URI0.0.0 99K URI0, is not an edge in the path but
a connection between vertical neighbors, URI0.0.0 being the end of an edge and
URI0 the beginning of the next edge). Also, in this �gure, there is no social path
going from u2 to u1 avoiding u0, because it is not possible to move from URI0.1 to
URI0.0.0 through a vertical neighborhood.

Social path notations The set of all social paths from a node x (or one of its
vertical neigbours) to a node y (or one of its vertical neighbors) is denoted x y.
The length of a path p is denoted |p|. The restriction of x y to paths of length
exactly n is denoted x n y, while x ≤n y holds the paths of at most n edges.

Path normalization To harmonize the weight of each edge in a path depending on
its importance, we introduce path-based normalization, which modi�es the weights
of a path's edge as follows. Let n be the ending point of a social edge in a path,
and e be the next edge in this path. The normalized weight of e for this path,
denoted e.n_w, is de�ned as:

2To make such interactions count as social paths would only require simple changes to the
path normalization introduced below.

3In other contexts, e.g., to determine their relevance w.r.t. a query, vertical neigbors are
considered separately.

38

4.3. RELATIONSHIPS WITH EXISTING MODELS

e.n_w = e.w/
∑

e′∈out(neigh(n)) e
′.w

where e.w is the weight of e, and out(neigh(n)) the set of network edges outgoing
from any vertical neighbor of n. This normalizes the weight of e w.r.t. the weight
of edges outgoing from any vertical neighbor of n. Observe that e.n_w depends
on n, however e does not necessarily start in n, but in any of its vertical neigh-
bors. Therefore, e.n_w indeed depends on the path (which determines the vertical
neighbor n of e's entry point).

In the following, we assume all social paths are normalized.

Example 4.2.4. In Figure 4.2, consider the path:

p = u0
u0 S3:postedBy URI0 1−−−−−−−−−−−−−−→ URI0 99K URI0.0.0

URI0.0.0 S3:hasSubject a0 1−−−−−−−−−−−−−−−−−→ a0

Its �rst edge is normalized by the edges leaving u0: one leading to URI0 (weight
1) and the other leading to u3 (weight 0.3). Thus, its normalized weight is 1/(1 +
0/3) = 0.77.

Its second edge exits URI0.0.0 after a vertical neighborhood traversal URI0 99K
URI0.0.0. It is normalized by the edges leaving neigh(URI0), i.e., all the edges
leaving a fragment of URI0. Its normalized weight is 1/(1 + 1 + 1 + 1) = 0.25.

4.3 Relationships with existing models

We argue in this section that most existing data models, as described in the
state of the art (Chapter 3), can be integrated in S3.

Due to the way it is built, S3 includes natively RDF and models e�ortlessly
most structured and semi-structured document formats. There exist however a few
minor limitations to the �delity of the representation of XML and JSON documents
in S3:

� the order of siblings, in XML, or of the elements of an array, in JSON, is
not expressed in S3. Note however, that this information is only used rarely.
Indeed, it can be exploited by systems supporting the full expressivity of
XPath or JSON equivalents, but we found no evidence of it being actually
used in the literature and it has no e�ect on the score of documents or on
the value obtained by LCA or its variants.

� the content of the nodes are kept unordered: here again loosing the ordering
has no actual impact on the integration of existing models, where the de-
facto standard is to check if a keyword is included, and not to use its position
relatively to other keywords of the same node.

39

4.4. CONCLUSION

� schemas such as DTD or XSD (recall Section 2.2) can no longer be enforced
once a document is represented in S3. However, since we do not modify
documents, there is no need to check them again, and this is never an issue.

Including RDF, structured, and semi-structured documents allows to integrate
many models seamlessly, we discuss in the rest of this section the integration of
data models with other distinctive features.

Social data models Because of the lack of a well established standard to model
social relations each data model must me mapped manually to S3, we present here
a few examples.

In UIT models, such as [96], user can relate to each other via weighted relations
and can tag items with keywords. This translates easily in S3: items are mapped
to single node documents without contents, tags become S3tags, that is resources
of type S3:relatedTo and weighted relations between users are encoded using the
S3:social property in weighted triples.

In [23], the authors use simple directed link to connect the users, which are
annotated with keywords: this could be translated as a S3:social triple with weight
1, and one document with a single node per user, which they have authored and
that contain all the keywords they are annotated with.

Integration of relational databases in S3 While, for our purposes, integrating
relation database was not a priority, this can be done in a relatively straightfor-
ward manner, as relations can be interpreted as both RDF graphs or structured
documents. Thus one can export a relational database into S3, for instance by cre-
ating a class for each relation and a property for each attribute of the class: for the
relation R1(att1, att2) one could create the class R1 and the associated properties
att1 and att2 such that a tuple (x1, x2) ∈ R1 is mapped into the triples

b type R1 b att1 x1 b att2 x2

4.4 Conclusion

We have presented in this chapter a model: S3, that integrates social, semantic
and structural data into a single weighted RDF graph. S3 meets the requirements
(Section 4.1) for a model unifying these three dimensions, as we show here.

Genericity, extensibility and interoperability (R6) are guaranteed by the re-
liance on the Web standards RDF (Section 4.2.1) and XML/JSON (Section 4.2.3).
The small set of prede�ne S3 classes and properties can be specialized to models

40

4.4. CONCLUSION

many di�erent types of social and structural interactions, e.g., through application-
dependent queries (see Extensibility in Section 4.2.2). The modelling capacities of
S3 include most popular social networks and exiting data models (Section 4.3) and
can be used to unify several social networks into a single instance.

Our document model (Section 4.2.3) meets the requirement of rich structured
data (R2) where interactions such as comments target a speci�c part of the doc-
uments. The usage of RDF in documents and items ensures that they support a
rich semantics (R3). The relations between structure, semantics and users (Sec-
tion 4.2.4) allow stating the explicit relations within users and documents, while the
implicit relations between users are modelled via social paths (Section 4.2.5) satis-
fying R1. Higher-level tags (R4) also stem from the relations between documents.
For what concerns formal semantics (R5), the data model has been described for-
mally in this chapter and we will consider the description of queries in the next
one.

41

4.4. CONCLUSION

42

Chapter 5

Top-k search in S3

In this chapter, we study top-k keyword search within S3 instances.

In Section 5.1 we devise a ranking-based query model and provide concrete
examples of score functions. Then we propose a query answering algorithm for
this model in Section 5.2. Finally, we discuss the similarities and di�erences with
other query models from the literature in Section 5.3.

5.1 Query model

Users can search S3 instances through keyword queries; the answer consists
of the k top-score fragments, according to a joint structural, social, and semantic
score. Section 5.1.1 de�nes queries and their answers. After some preliminaries pre-
sented in Section 5.1.2, we introduce a generic score, which can be instantiated in
many ways, and a set of feasibility conditions on the score, which su�ces to ensure
the termination and correctness of our query answering algorithm (Section 5.1.3).
We present our concrete score function in Section 5.1.4.

5.1.1 Queries

S3 instances are queried as follows:

De�nition 5.1.1 (Query). A query is a pair (u, φ) where u is a user and φ is a
set of keywords.

We call u the seeker. We de�ne the top-k answers to a query as the k docu-
ments or fragments thereof with the highest scores, further satisfying the following
constraint: the presence of a document or fragment at a given rank precludes the
inclusion of its vertical neighbors at lower ranks in the results1.

1This assumption is standard in XML keyword search, e.g., [20].

43

5.1. QUERY MODEL

As customary, top-k answers are ranked using a score function: s(q, d) returns
for a document d and query q a value in R, based on the graph I. The top k
results are recursively de�ned as the top k − 1 best results, plus the best among
the documents which are neither fragments nor ancestors of the k− 1 best results.

De�nition 5.1.2 (Query answer). A top-k answer to the query q using the score
s, denoted Tk,s(q), is de�ned inductively over k as follows:

� T0,s(q) = ∅

� if k > 0, Tk,s(q) contains exactly Tk−1,s(q) plus any one document from

argmax(s(q, d))
d∈D\neigh(Tk−1,s(q))

that is: any document having the best possible scores among the ones not in
the vertical neighbourhood of the query answer Tk−1,s(q).

Here, argmax is not necessarily unique: there might be ties. If a group of
documents have identical scores, any of them can be in the query answer (ties are
broken in some non-deterministic way). For instance, if the graph consists of four
documents scored (d1, 0.8), (d2, 0.6), (d3, 0.6), (d4, 0.5) and we ask for the top 2
results, {d1, d2} as well as {d1, d3} are valid answers.

On the other hand when argmax is empty (i.e., less than k documents match
q) every relevant document is returned.

5.1.2 Connecting query keywords and documents

Answering queries over I requires �nding best-scoring documents, based on
the direct and indirect connections between documents, the seeker, and search
keywords. The connection can be direct, for instance, when the document contains
the keyword, or indirect, when a document is connected by a chain of relationships
to a search keyword k, or to some keyword from k's extension.

De�nition 5.1.3 (Connections between a document d and a keyword k). We de-
note the set of direct and indirect connections between a document d and a keyword
k by con(d, k). Each connection is a three-tuple (type, f, src) such that:

� type ∈ {S3:contains, S3:relatedTo, S3:commentsOn} is the type of the con-
nection,

� f ∈ Frag(d) is the fragment of d (possibly d itself) due to which d is involved
in this connection,

44

5.1. QUERY MODEL

� src ∈ Ω ∪D (users or documents) is the source (origin) of this connection
(see below).

Below we describe the possible situations which create connections. Let d, d′ be
documents or tags, and let f, f ′ be fragments of d and d′, respectively2. Further,
let k, k′ be keywords such that k′ ∈ Ext(k), and let src ∈ Ω ∪ D be a user or a
document.

Documents connected to the keywords of their fragments If the fragment
f contains a keyword k, i.e., f S3:contains k ∈ I, then:

(S3:contains, f, d) ∈ con(d, k)

which reads: �d is connected to k through a S3:contains relationship due to f �. This
connection holds even if f contains not k itself, but some k′ ∈ Ext(k). For example,
in Figure 4.1, if the keyword �university� appears in the fragment whose URI is
d2.7.5, then con(d2,�university") includes (S3:contains, d2.7.5, d2). Observe that a
given k′ and f may lead to many connections, if k′ specializes several keywords
and/or if f has many ancestors.

Connections due to tags For every tag a of the form

a type S3:relatedTo a S3:hasSubject f
a S3:hasAuthor src a S3:hasKeyword k′

con(d, k) includes (S3:relatedTo, f, src). In other words, whenever a fragment f
of d is tagged by a source src with a specialization of the keyword k, this leads
to a S3:relatedTo connection between d and k due to f , whose source is the tag
author src. For instance, the tag a of u4 in Figure 4.1 creates the connection
(S3:relatedTo, d0.5.1, u4) between d0 and �university�.

More generally, if a tag a on fragment f has any type of connection (not just
S3:hasKeyword) to a keyword k due to source src, this leads to a connection
(S3:relatedTo, f, src) between d and k. The intuition is that the tag adds its
connections to the tagged fragment and, transitively, to its ancestors. (As the next
section shows, the importance given to such connections decreases as the distance
between d and f increases.)

If the tag a on f is a simple endorsement (it has no keyword), the tag inherits
d's connections, as follows. Assume d has a connection of type type to a keyword
k: then, a also has a type connection to k, whose source is src, the tag author.

2We here slightly extend notations, since tags do not have fragments: if d is a tag, we consider
that its only fragment is d.

45

5.1. QUERY MODEL

The intuition is that when src endorses (likes, +1s) a fragment, src agrees with its
content, and thus connects the tag to the keywords related to that fragment and its
ancestors. For example, if a user u5 endorsed d0 in Figure 4.1 through a no-keyword
tag a5, the latter tag is related to �university� through: (S3:relatedTo, d0.5.1, u5).

Connections due to comments When a comment on f is connected to a key-
word, this also connects any ancestor d of f to that keyword; the connection source
carries over, while the type of d's connection is S3:commentsOn. For instance, in
Figure 4.1:

� since d2 is connected to �university� through (S3:contains, d2.7.5, d2), and

� since d2 is a comment on d0.3.2

� it follows that d0 is also related to �university� through (S3:commentsOn, d0.3.2, d2).

Formally, whenever d′ S3:commentsOn f and there exist type′, frag′, src such
that (type′, frag′, src) ∈ con(d′, k), we have:

(S3:commentsOn, f, src) ∈ con(d, k)

5.1.3 Generic score model

We now introduce a set of proximity notions, based on which we discuss the
scoring of candidate answers. Speci�cally, we shall state the conditions to be met
by a score function, for our query evaluation algorithm to compute a top-k query
answer.

Path proximity We consider a measure of proximity along one path, denoted
−−→prox, between 0 and 1 for any path, such that:

�
−−→prox(·) = 1, i.e., the proximity is maximal on an empty path (in other words,
from a node to itself),

� for any two paths p1 and p2, such that the start point of p2 is in the vertical
neighborhood of the end point of p1:

−−→prox(p1||p2) 6 min(−−→prox(p1),
−−→prox(p2)),

where || denotes path concatenation. This follows the intuition that proximity
along a concatenation of two paths is at most the one along each of these
two components paths: proximity can only decrease as the path gets longer.

46

5.1. QUERY MODEL

Social proximity associates to two vertices connected by at least one social path,
a comprehensive measure over all the paths between them. We introduce such
a global proximity notion, because di�erent paths traverse di�erent nodes, users,
documents and relationships, all of which may impact the relation between the two
vertices. Considering all the paths gives a qualitative advantage to our algorithm,
since it enlarges its knowledge to the types and strengths of all connections between
two nodes.

De�nition 5.1.4 (Social proximity). The social proximity measure prox : (Ω ∪
D ∪ T)2 → [0, 1], is an aggregation along all possible paths between two users,
documents or tags, as follows:

prox(a, b) = ⊕path({(−−→prox(p), |p|), p ∈ a b}),

where | · | is the number of vertices in a path, and ⊕path is a function aggregating
a set of values from [0, 1]× N into a single scalar value.

Observe that the set of all paths between two nodes may be in�nite, if the graph
has cycles; this is often the case in social graphs. For instance, in Figure 4.2, a
cycle can be closed between (u0, URI0, u0). Thus, in theory, the score is computed
over a potentially in�nite set of paths. However, in practice, our algorithm works
with bounded social proximity values, relying only on paths of a bounded length:

prox≤n(a, b) = ⊕path({(−−→prox(p), |p|), p ∈ a ≤n b})

Based on the proximity measure, and the connections between keywords and
documents introduced in Section 5.1.2, we de�ne the generic score as follows:

De�nition 5.1.5 (Generic score). Given a document d and a query q = (u, φ), the
score of d for q is:

score(d, (u, φ)) = ⊕gen ({(k, type, pos(d, f), prox(u, src))

|k ∈ φ, (type, f, src) ∈ con(d, k)})

where ⊕gen is a function aggregating a set of (keyword, relationship type, impor-
tance of fragment f in d, social proximity) tuples into a value from [0, 1].

Importantly, the above score re�ects the semantics, structure, and social content
of the S3 instance, as follows:

� First, ⊕gen aggregates over the keywords in φ. Recall that tuples from
con(d, k) account not only for k but also for keywords k′ ∈ Ext(k). This
is how semantics is injected into the score.

47

5.1. QUERY MODEL

� Second, the score of d takes into account the relationships between fragments
f of d, and keywords k, or k′ ∈ Ext(k), by using the sequence pos(d, f) (Sec-
tion 4.2.3) as an indication of the structural importance of the fragment
within the document. If the sequence is short, the fragment is likely a large
part of the document. Document structure is therefore taken into account
here both directly through pos, and indirectly, since the con tuples also prop-
agate relationships from fragments to their ancestors (Section 5.1.2).

� Third, the score takes into account the social component of the graph through
prox: this accounts for the relationships between the seeker u, and the various
parties (users, documents and tags), denoted src, due to which f may be
relevant for k.

Feasibility properties For our query answering algorithm to converge, the generic
score model must have some properties which we describe below.

1. Relationship with path proximity This refers to the relationship between
path proximity and score. First, the score should only increase if one adds
more paths between a seeker and a data item. Second, the contribution of
the paths of length n ∈ N to the social proximity can be expressed using
the contributions of shorter �pre�xes� of these paths, as follows. We denote
by ppSetn(a, b) the set of the path proximity values for all paths of length n
going from a to b:

ppSetn(a, b) = {−−→prox(p) | p ∈ a n b}

Then, the �rst property states that there exists a function Uprox with values
in [0, 1], taking as input:

� the bounded social proximity for paths of length at most n− 1 ,

� the proximity along paths of length n, and

� the length n, and such that:

prox≤n(a, b) = prox≤n−1(a, b)

+ Uprox(prox
≤n−1(a, b), ppSetn(a, b), n)

2. Long paths attenuation The in�uence of social paths should decreases as
they get longer; intuitively, the farther away two items are, the weaker their
connection and thus their in�uence on the score. More precisely, there exists
a bound B>n

prox tending to 0 as n grows, and such that:

48

5.1. QUERY MODEL

B>n
prox ≥ prox− prox≤n

3. Score soundness The score of a document should be positively correlated
with the social proximity from the seeker to the document fragments that
are relevant for the query.

Denoting score[g] the score where the proximity function prox is replaced by
a continuous function g having the same domain (Ω ∪D ∪ T)2, g 7→ score[g]
must be monotonically increasing and continuous for the uniform norm.

4. Score convergence This property bounds the score of a document and shows
how it relates to the social proximity. It requires the existence of a function
Bscore which takes a query q = (u, φ) and a number B ≥ 0, known to be
an upper bound on the social proximity between the seeker and any source:
for any d, query keyword k, and (type, f, src) ∈ con(d, k), we know that
prox(u, src) ≤ B. Bscore must be positive, and satisfy, for any q:

� for any document d, score(d, q) ≤ Bscore(q, B);

� limB→0(Bscore(q, B)) = 0 (tends to 0 like B).

We describe a concrete feasible score, i.e., having the above properties, in the
next section.

5.1.4 Concrete score

We start by instantiating −−→prox, prox and score.

Social proximity Given a path p, we de�ne −−→prox(p) as the product of the nor-
malized weights (recall Section 4.2.5) found along the edges of p. We de�ne our
concrete social proximity function prox(a, b) as a weighted sum over all paths from
a to b:

prox(a, b) = Cγ ×
∑

p∈a b

−−→prox(p)
γ|p|

where γ > 1 is a scalar coe�cient, and Cγ = γ−1
γ

is introduced to ensure that
prox ≤ 1. Recall that by De�nition 5.1.4, prox requires a ⊕path aggregation over
the (social proximity, length) pairs of the paths between the two nodes. Hence,
this concrete social proximity corresponds to choosing:

⊕path(S) = Cγ ×
∑

(sp,len)∈S

sp
γlen

49

5.1. QUERY MODEL

where (sp, len) is a (social proximity, length) pair from its input.

Example 5.1.1 (Social proximity). Let us consider in Figure 4.2 the social prox-
imity from u0 to URI0, using the −−→prox and ⊕path previously introduced. An edge
connects u0 directly to URI0, leading to the normalized path p:

p = u0
u0 S3:postedBy URI0 1

1+0.3−−−−−−−−−−−−−−−−→ URI0

which accounts for a partial social proximity:

prox≤1(u0, URI0) =
−−→prox(p)
γ|p|

= 1/(1+0.3)
γ1

Score function We de�ne a simple concrete S3 score function which, for a doc-
ument d, is the product of the scores of each query keyword in d. The score of a
keyword is summed over all the connections between the keyword and the docu-
ment. The weight for a given connection and keyword only depends on the social
distance between the seeker and the sources of the keyword, and the structural dis-
tance between the fragment involved in this relation and d, namely the length of
pos(d, f). Both distances decrease exponentially as the path length grows. For-
mally:

De�nition 5.1.6 (S3k score). Given a query (u, φ), the S3k score of a document
d for the query is de�ned as:

score(d, (u, φ)) =
∏
k∈φ

(∑
η|pos(d,f)| × prox(u, src)
(type,f,src)∈ con(d,k)

)
for some damping factor η < 1.

Recall from De�nition 5.1.5 that an aggregation function ⊕gen combines the
contributions of (keyword, relationship type, importance, social proximity) tuples
in the score. The above de�nition corresponds to the following ⊕gen aggregator:

⊕gen(S) =
∏
k∈φ

(∑
η|rel| × prox
rel,prox

∃type,(k,type,rel,prox)∈S

)

Note that if we ignore the social aspects and restrict ourselves to top-k search
on documents (which amounts to prox = 1), ⊕gen gives the best score to the lowest
common ancestor (LCA) of the nodes containing the query keywords. Thus, our
score extends typical XML IR works, e.g., [20] (see also Section 2.2).

Obviously, there are many possible ways to de�ne ⊕gen and ⊕path, depending on
the application. In particular, di�erent types of connections may not be accounted
for equally; our algorithm only requires a feasible score (with the feasibility prop-
erties).

50

5.1. QUERY MODEL

Lemma 5.1.1 (Score feasibility). The S3k score function (De�nition 5.1.6) has
the feasibility properties (Section 5.1.3).

Proof. (Lemma 5.1.1)

In this proof we examine all the feasibility properties, in the order they are
de�ned, and show that they apply on the concrete score, denoted score for the rest
of this proof.

Relationship with path proximity

For any path p, −−→prox(p) is the product of the normalized weights (which are
always non-negative, from De�nition 4.2.5) along p, therefore it is always non-
negative.

This implies that, for all a, b in an instance I, prox(a, b) = Cγ ×
∑

p∈a b

−−→prox(p)
γ|p|

increases if you add paths in I (more paths in I can only mean 0 or more new paths
in {p ∈ a b}, which can only increase prox, since paths add non-negative terms
to the summation). The score on any document and query, de�ned as:

score(d, (u, φ)) =
∏
k∈φ

(∑
η|pos(d,f)| × prox(u, src)
(type,f,src)∈ con(d,k)

)
also increases if there are more paths, since prox increases and η > 0. We have
shown the �rst part of this requirement: the score should only increase if one adds
more paths between a seeker and a data item.

We now need to exhibit a function Uprox with values in [0, 1], such that, for all
a, b ∈ I and n > 0:

Uprox(prox
≤n−1(a, b), ppSetn(a, b), n) = prox≤n(a, b)− prox≤n−1(a, b)

To this end, let us develop prox≤n(a, b)− prox≤n−1(a, b), as follows:

prox≤n(a, b)− prox≤n−1(a, b) =Cγ ×
∑

p∈a ≤nb

−−→prox(p)

γ|p|
− Cγ ×

∑
p∈a ≤n−1b

−−→prox(p)

γ|p|

=Cγ ×
∑

p∈a nb

−−→prox(p)

γ|p|

=
Cγ
γn

∑
(ppSetn(a, b))

51

5.1. QUERY MODEL

In particular, if we choose Uprox(x, pp, n) = Cγ
γn

∑
(pp), then:

prox≤n(a, b)− prox≤n−1(a, b) =Uprox(prox
≤n−1(a, b), ppSetn(a, b), n)

Note that the �rst argument of Uprox is not used here; it would be used,
for instance, for a function considering only the path with highest proximity: if
prox(a, b) = maxp∈a b(

−−→prox(p)) then Uprox(x, pp, n) = max({x} ∪ pp)− x.
We now only have to prove that Uprox, as we de�ned it, is in [0, 1]. Since Cγ

γn
=

γ−1
γn+1 ∈ [0, 1] and

∑
(ppSetn(a, b)) ≥ 0, it is enough to prove that

∑
(ppSetn(a, b)) ≤

1.

We actually prove a stronger result: we show by induction on n that for all
a ∈ I, n ≥ 0,

∑
b∈I

p∈a nb

−−→prox(p) ≤ 1, as follows:

� for n = 0, there exists only the empty path of length 0, and therefore∑
b∈I

p∈a 0b

−−→prox(p) = −−→prox(∅) =
∏
e∈∅

e.n_w = 1

� for n > 0, observe that a path of length n may be decomposed into a path of
length n− 1, followed by an optional jump between vertical neighbors (when
n > 1), and then a path of length 1 (a network edge):

∑
b∈I

p∈a nb

−−→prox(p) =
∑
b∈I

p∈a nb

∏
0≤i<n

p[i].n_w

=
∑
x∈I

p′∈a n−1x

∑
b∈I
e∈Inet

p=(p′:e)∈a nb

∏
0≤i<n

p[i].n_w

=
∑
x∈I

p′∈a n−1x

∏
0≤i<n−1

p′[i].n_w ×
∑
b∈I
e∈Inet

p=(p′:e)∈a nb

p[n− 1].n_w

Recall from the de�nition of path normalisation, Section 4.2.5, that if x is
the ending point of a social edge in a path, and e is the next edge in this
path, the normalized weight of e for this path, denoted e.n_w, is de�ned as:

e.n_w = e.w/
∑

e′∈out(neigh(x))
e′.w

52

5.1. QUERY MODEL

If we use this to compute the normalized weight of the last edge of paths of
length n, we obtain:

∑
b∈I

p∈a nb

−−→prox(p) =
∑
x∈I

p′∈a n−1x

∏
0≤i<n−1

p′[i].n_w ×
∑
b∈I
e∈Inet

p=(p′:e)∈a nb

(e.w/
∑

e′∈out(neigh(x))
e′.w)

=
∑
x∈I

p′∈a n−1x

−−→prox(p′) ×
∑
b∈I
e∈Inet

p=(p′:e)∈a nb

(e.w/
∑

e′∈out(neigh(x))
e′.w)

Here, {e ∈ Inet|b ∈ I, p = (p′ : e) ∈ a n b} is simply the set of network edges
e that can continue the path p′ (which is ending in x). If p′ is the empty path
and (p′ : e) is a path starting from a (note that a = x since x is the end of the
path p′ after starting from a and following 0 edge), then e must start from x
and e ∈ out(x) ⊂ out(neigh(x)). Otherwise, if p′ has a positive length, then
e must start from a vertical neighbor of x and e ∈ out(neigh(x)). In any
case, e ∈ out(neigh(x)), therefore we have:

∑
b∈I

p∈a nb

−−→prox(p) ≤
∑
x∈I

p′∈a n−1x

−−→prox(p′) ×
∑

e∈out(neigh(x))
(e.w/

∑
e′∈out(neigh(x))

e′.w)

≤
∑
x∈I

p′∈a n−1x

−−→prox(p′)

∑
b∈I

p∈a nb

−−→prox(p) ≤1

(The �rst implication accounts for when out(neigh(x)) = ∅, the last impli-
cation is the induction hypothesis).

This proves that for all a ∈ I, n ≥ 0,
∑
b∈I

p∈a nb

−−→prox(p) ≤ 1, and in particular that

the �rst feasibility property is veri�ed.

Long paths attenuation

We have just seen that for all a ∈ I, n ≥ 0,
∑
b∈I

p∈a nb

−−→prox(p) ≤ 1. In particular,

for all n ≥ 0, a, b ∈ I:

53

5.1. QUERY MODEL

prox(a, b)− prox≤n(a, b) =
∑
i>n

Cγ ×
∑

p∈a ib

−−→prox(p)

γi

≤Cγ ×
∑
i>n

1

γi

≤γ − 1

γ
× γ

(γ − 1)γn+1

prox(a, b)− prox≤n(a, b) ≤ 1

γn+1

Therefore, we can chose B>n
prox = 1

γn+1 , which obviously tends to 0 as n tends to
∞, and verify the second feasibility condition.

Score soundness

Let us consider f : g 7→ score[g]. We show that it is monotonically increasing
and continuous for the uniform norm.

First of all, let us explicit f , for all g ∈ (Ω ∪D ∪ T)2 → [0, 1]:

f(g) = d, (u, φ) 7→
∏
k∈φ

(∑
η|pos(d,f)| × g(u, src)
(type,f,src)∈ con(d,k)

)
Since f is de�ned only using projections, additions, multiplications, and ex-

ponentiations, it is continuous for the uniform norm. Let us now show that it is
monotonically increasing. Let g1, g2 ∈ (Ω ∪D ∪ T)2 → [0, 1], such that g1 > g2 for
the uniform norm. We have:

f(g1)−f(g2) = d, (u, φ) 7→
∏
k∈φ

(∑
η|pos(d,f)| × g1(u, src)
(type,f,src)∈ con(d,k)

)
−
∏
k∈φ

(∑
η|pos(d,f)| × g2(u, src)
(type,f,src)∈ con(d,k)

)

We observe that for all d, (u, φ), k ∈ φ, (type, f, src) ∈ con(d, k) we have:
η|pos(d,f)| × g1(u, src) ≥ η|pos(d,f)| × g2(u, src), this is because η ≥ 0 and g1 > g2.
Hence for all d, (u, φ): (f(g1)−f(g2))(d, (u, φ)) ≥ 0 and f(g1) ≥ f(g2). This proves
that f : g 7→ score[g] is monotonically increasing for the uniform norm and with it
the third feasibility property follows.

Score convergence

Let q = (u, φ) be a query and B ≥ 0 an upper bound on the social proximity
between the seeker and any source. For all documents d, we have:

54

5.2. QUERY ANSWERING ALGORITHM

score(d, (u, φ)) =
∏
k∈φ

(∑
η|pos(d,f)| × prox(u, src)
(type,f,src)∈ con(d,k)

)
≤
∏
k∈φ

(∑
1×B

(type,f,src)∈ con(d,k)

)
since η < 1 and prox < B,

≤(O ×B)|φ|

where O is the maximum number of connections a document may have in I (this
does not depend on the query, nor on B). If we chose Bscore((u, φ), B) = (O×B)|φ|,
as we have already shown that Bscore(q, B) ≥ score(d, q), it remains to show that
this also tends to 0 when B does.

When B ≤ 1/O: (O ×B)|φ| ≤ O ×B, therefore, independently of q:

lim
B→0

(Bscore(q, B)) ≤ lim
B→0

(O ×B) ≤ 0

and, since Bscore ≥ 0, we have limB→0(Bscore(q, B)) = 0, which proves the last
feasibility property.

5.2 Query answering algorithm

We describe in Section 5.2.1 our Top-k algorithm called S3k, which computes the
answer to a query over an S3 instance using scores with the feasibility properties.
We illustrate the functioning of our algorithm on a sample run in Section 5.2.2,
and formally state its correctness in Section 5.2.3.

5.2.1 Algorithm

The main idea, outlined in Algorithm 1, is the following. The instance is
explored starting from the seeker and going to other vertices (users, documents,
or resources) at increasing distance. At the n-th iteration, the I vertices explored
are those connected to the seeker by at least a path of length at most n. We term
exploration border the set of graph nodes reachable by the seeker through a path
of length exactly n. Clearly, the border changes as n grows.

During the exploration, documents are collected in a set of candidate answers.
For each candidate c, we maintain a score interval: its currently known lowest
possible score, denoted c.lower, and its highest possible score, denoted c.upper.
These scores are updated as new paths between the seeker and the candidates are
found. When a candidate document is reached, we are aware of at least one path

55

5.2. QUERY ANSWERING ALGORITHM

Algorithm 1: S3k � Top-k algorithm.
Input : a query q = (u, φ)
Output: the best k answers to q over an S3 instance I, Tk,s(q)

1 candidates← [] // initially empty list
2 discarded← ∅
3 borderPath← []

4 allProx← δu // δu[v] =

{
1 if v = u

0 otherwise
5 threshold←∞ // Best possible score of a document not yet explored,
updated in ComputeCandidatesBounds

6 n← 0
7 while not StopCondition(candidates) do
8 n← n+ 1
9 ExploreStep()

10 ComputeCandidatesBounds()
11 CleanCandidatesList()

12 return candidates[0, k − 1]

from the seeker to the document, but we may lack the complete information needed
to evaluate exactly its relevance with respect to the query, since there may be other
paths yet to be discovered between the two, and such paths may impact the relevance
bounds. Therefore, a key recurring task is to re�ne as tightly and as early as
possible our knowledge of the candidate documents scores. During the exploration,
candidates are kept sorted by their highest possible score; the exploration ends when
we are certain that no candidate document outside the current top-k candidates
may have an upper bound above the minimum lower bound within the top k ranks.

Further, the search algorithm relies on three tables:

� borderPath is a table storing, for a node v in I, the set of paths of length n
between u (the seeker) and v, where n is the current distance from u that
the algorithm has traversed.

� allProx is a table storing, for a node v in I, the proximity between u and v
taking into account all the paths known so far from u to v. Initially, its value
is 0 for any v 6= u.

� connect is a table storing for a candidate node c the set of the connections
(Section 5.1.2) discovered so far between the seeker and c.

These tables are updated during the search. While they are de�ned on all the
I nodes, we only compute them gradually, for the nodes on the exploration border,
which moves away from the seeker as the search progresses.

56

5.2. QUERY ANSWERING ALGORITHM

q = (u, φ) Query: seeker u and keyword set φ
k Required result size
n Number of iterations of the main loop of the algorithm
candidates Set of documents and/or fragments which are candidate query

answers at a given moment
discarded Set of documents and/or fragments which have been ruled out

of the query answer
borderPath[v] Paths from u to v explored at the last iteration (a n v)
allProx[v] Bounded social proximity (prox≤n) between the seeker u and

a node v, taking into account all the paths from u to v known
so far

connect[c] Connections between the seeker and the candidate c:
connect[c] = {(k, type, pos(d, f), src)|k ∈ φ, (type, f, src) ∈
con(c, k)}

threshold Upper bound on the score of the documents not visited yet

Table 5.1: Main variables used in our algorithms.

Algorithm 2: Algorithm StopCondition

Input : candidates set
Output: true if candidates[0, k − 1] is Tk,s(q), false otherwise

1 if ∃d, d′ ∈ candidates[0, . . . , k − 1], d ∈ neigh(d′) then
2 return false

3 if length(candidates) < k and candidates ∪ discard = D then
4 return true

5 min_topk_lower ←∞
6 foreach c ∈ candidates[0, . . . , k − 1] do
7 min_topk_lower ← min(min_topk_lower, c.lower)

8 max_non_topk_upper ← candidates[k].upper
9 return max(max_non_topk_upper, threshold) ≤ min_topk_lower //
Boolean result

Termination condition Of course, the search should not explore the whole graph,
but instead stop as early as possible, while returning the correct result. To this
aim, we maintain during the search an upper bound on the score of all documents
unexplored so far, named threshold. Observe that we do not need to return the
exact score of our results, and indeed we may never narrow down the (lower bound,
upper bound) intervals to single numbers or even order the returned results; we
just need to make sure that no document unexplored so far may be among the top
k. Algorithm 2 outlines the procedure to decide whether the search is complete.

First, if the current candidate set comprises two documents such that one is a

57

5.2. QUERY ANSWERING ALGORITHM

Algorithm 3: Algorithm ExploreStep

Update: borderPath and allProx
1 if n = 1 then
2 foreach network edge e in out(u) do
3 m← e.target
4 if m is a document or a tag then
5 GetDocuments(m)

6 BorderPath[m].add(e)

7 else
8 foreach v ∈ I do
9 newBorderPath[v]← ∅

10 foreach p ∈ borderPath do
11 foreach network edge e in out(neigh(p.end)) do
12 m← e.target
13 if m is a document or a tag then
14 GetDocuments(m)

15 newBorderPath[m].add(p||e)

16 borderPath← newBorderPath

17 foreach v ∈ I do
18 newAllProx[v]← allProx[v] + Uprox(allProx[v],
19 {−−→prox(p), p ∈ borderPath[v]}, n)

20 allProx← newAllProx

fragment of another, the search must continue (lines 1-2), since it follows from our
de�nition of query answers (De�nition 5.1.2) that such a (document, fragment)
pair cannot be returned in the result.

Next, the algorithm �nds the smallest lower-bound relevance value among the
top-k candidates, and compares it with the upper bound of the score of the best
document outside the current top-k. If it can be established that the �rst document
outside the current top-k is less relevant than all the documents currently in the
result, the search can stop.

Graph exploration Algorithm 3 describes one search step (iteration), which visits
nodes at a social distance n from the seeker. The algorithm updates the candidate
set, the set of examined and discarded candidate documents, the set of paths of
length n, and (most importantly) the seeker-centric proximity function allProx.
For the ones that are documents or tags, the GetDocuments algorithm (see hereafter)
looks for related documents that can also be candidate answers (these are added

58

5.2. QUERY ANSWERING ALGORITHM

Algorithm 4: Algorithm ComputeCandidateBounds

Input : loop counter n
Update: upper and lower bounds of the candidates, threshold

1 foreach c ∈ candidates do
2 c.lower ← ⊕gen({(kw, t, p, allProx[src])|
3 (kw, t, p, src) ∈ connect[c]})
4 c.upper ← ⊕gen({(kw, t, p, allProx[src]+
5 B>n

prox(u, src))|(kw, t, p, src) ∈ connect[c])
6 threshold← Bscore(q, B

>n
prox)

to candidates); discarded keeps track of related documents with scores too low for
them to be candidates.

The allProx table is also updated using the Uprox function, whose existence fol-
lows from the �rst score feasibility property (Section 5.1.3), to re�ect the knowledge
acquired from the new exploration border (borderPath). Observe that Algorithm 3
computes prox≤n(u, src) iteratively using the �rst feasibility property; at iteration
n, allProx[src] = prox≤n(u, src).

In some social networks, users can only have a limited knowledge of the social
interactions: for instance on Facebook, privacy settings may prevent a user, her
relations or her content to be seen by other users. S3k can take into account
this limited knowledge by exploring only the edges known by the seeker: out,
the network edges outgoing for a set of nodes, become dependent on the seeker
and is restricted to the network edges that she knows of. The publicly available
component of out may be pre-computed and the a priori much smaller component
speci�c to u added at run-time.

Computing candidate bounds The ComputeCandidateBounds algorithm (Algo-
rithm 4) maintains during the search the lower and upper bounds of the documents
in candidates as well as the best possible score of unexplored documents. A candi-
date's lower bound is computed as its score where its social proximity to the user3

is approximated by its bounded version, based only on the paths explored so far:

⊕gen({(kw, type, pos(d, f), allProx[src]) | kw ∈ φ,
(type, f, src) ∈ con(d, kw)})

This is a lower bound because, during exploration, a candidate can only get
closer to the seeker (as more paths are discovered).

3The actual (exact) social proximity requires a complete traversal of the graph; our algorithms
work with approximations thereof.

59

5.2. QUERY ANSWERING ALGORITHM

Algorithm 5: Algorithm CleanCandidatesList

Update: candidates and discarded
1 lower_bounds_list← [] // Initially empty list
2 max_rank = k
3 foreach c ∈ candidates do
4 if |lower_bounds_list| < max_rank or

c.lower ≥ lower_bounds_list[max_rank] then
5 lower_bound_list.insertSort(c.lower)

6 else if c.upper < lower_bounds_list[max_rank] then
7 candidates.remove(c)
8 discarded.add(c)

9 if No vertical neighbor of c may have a score equal or higher than c then
10 foreach f ∈ neigh(c) do
11 candidates.remove(f) // If f was a candidate
12 discarded.add(f)

13 else if |lower_bounds_list| < max_rank then
14 max_rank += 1

A candidate's upper bound is computed as its score, where the social proximity
to the user is replaced by the sum between the bounded proximity and the function
B>n
prox(u, src), whose existence follows from the long path attenuation property (Sec-

tion 5.1.3). The latter is guaranteed to o�set the di�erence between the bounded
and actual social proximity:

⊕gen({(kw, type, pos(d, f), allProx[src] +B>n
prox(u, src)) |

kw ∈ φ, (type, f, src) ∈ con(d, kw)})

The above bounds rely on con(d, k), the set of all connections between a can-
didate d and a query keyword k (Section 5.1.2); clearly, the set is not completely
known when the search starts. Rather, connections accumulate gradually in the
connect table (Algorithm GetDocuments), whose tuples are used as approximate
(partial) con(d, k) information in ComputeCandidateBounds.

Finally, ComputeCandidateBounds updates the relevance threshold using the known
bounds on score and prox. The new bound estimates the best possible score of
the unexplored documents4; it tends to 0 as n grows, due to the score convergence
feasibility property (Section 5.1.3).

4See the Threshold Correctness Lemma (5.2.2).

60

5.2. QUERY ANSWERING ALGORITHM

Algorithm 6: Algorithm GetDocuments

Input : Document or tag x
Update: candidates and discarded

1 foreach d such that there exists a chain of triples from x to d in I using
only S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject and
S3:hasSubject labels do

2 if d is a document and d /∈ (candidates ∪ discarded) then
3 connect[d]← ∅
4 kw_index← 0
5 while kw_index < length(φ) do
6 kw ← φ[kw_index]
7 if con(kw, d) is empty then
8 //A keyword from the query is missing
9 kw_index← length(φ)
10 discarded.add(d)

11 else
12 kw_index += 1
13 foreach (type, frag, source) ∈ con(kw, d) do
14 connect[d].add(
15 (kw, type, pos(d, frag), source))

16 candidates.add(d)

Cleaning the candidate set Algorithm 5 removes from candidates some docu-
ments that cannot be in the answer, i.e., those for which k candidates with better
scores are sure to exist, as well as those having a candidate neighbor with a better
score. In the former case, this translates into removing every document d whose
score is less than that of k other candidates which are neither (i) neighbors pairwise
nor (ii) neighbors with other candidates with scores greater than that of d.

Getting candidate documents Algorithm 6 checks whether every unexplored
document reachable from a given document or tag through a chain of triples la-
belled S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject, or S3:hasSubject

(i.e., any edge that may connect two documents or tags), is a candidate answer. If
yes, it is added to candidates and the necessary information to estimate its score,
derived from con, is recorded in connect.

Anytime termination Algorithm 7 can be used to make our query answering
algorithm (Algorithm 1) anytime. It outputs the k best candidate documents
known so far, based on their current upper bound score.

61

5.2. QUERY ANSWERING ALGORITHM

Algorithm 7: Algorithm AnytimeTermination

Output: A list of candidates
1 return_list← []
2 while length(return_list) < k and candidates 6= ∅ do
3 d← candidates[0] //candidates is kept sorted by upper bound
4 return_list.add(d)
5 candidates.remove(neigh(d))

6 return return_list

5.2.2 Sample run

We illustrate a run of S3k, using the motivating example from Section 4.1,
enriched with a query of two keywords originating from user u2, as shown in Fig-
ure 5.1.

d0

d0.3.2
d0.5.1

d1

d2

tag0

“diploma”,“university”
u0u1 u2

u3

u4“university”

“get”

“M.S.”“@UAlberta”
“2012”

“degree”“give”

“more”“opportunity”

S3:contains

S3:contains

S3:postedBy

S3:social, 0.8
S3:postedByS3:commentsOn

S3:commentsOn
S3:postedBy

S3:hasSubject

S3:hasAuthor
S3:hasKeyword

S3:partOfS3:partOf

asks

Figure 5.1: Graph for the sample run: data instance and a query.

For this run we consider that the expected number of results is k = 5, and the
query is φ = (u2, {�diploma� ,�university�}). The graph I is the one presented in
Figure 5.1 enriched with:

� typing of the URIs as suggested by the shape and color scheme: ux in yellow
circles are users (in S3:user), URIs of the form dx with a triangle are of type
S3:doc and tag0 is a tag i.e., a resource of type T .

� triples with inverse properties: recall from Section 4.2.4 that we introduced

62

5.2. QUERY ANSWERING ALGORITHM

S3:postedBy, S3:commentsOn, S3:hasSubject and S3:hasAuthor and triples s p̄ o ∈ I
whenever o p s ∈ I

To preserve the readability of the �gures we only show the inverse edges when
they are relevant in the �gure's context.

� triples from an ontology that don't contain S3 classes or properties. These
triples will only be used to compute the expansion of the query's keyword.
We have shown the relevant triples in Figure 5.2: �diploma� get mapped to
the URI diploma and because of the triple degree ≺sc diploma, degree ∈
Ext(�diploma�) holds.

Further, through RDFS entailment, degree ≺sc diploma and M.S. type degree
produce M.S. type diploma and M.S. ∈ Ext(�diploma�). This leads to Ext(�diploma�) =
{diploma, degree,M.S.}. Similarly the expansion of �university� is computed,
for the purpose of the demonstration it is here limited to Ext(�university�) =
{university}.

d0

d0.3.2
d0.5.1

d1

d2

tag0

“diploma”,“university”
u0u1

u2

u3

u4university

“get”

M.S. “@UAlberta”
“2012”

degree

degree “give”

“more”“opportunity”

diploma

S3:contains
rdf:type

S3:contains
rdfs:subClassOf

S3:postedBy

S3:social, 0.8

S3:
pos

ted
By

S3:commentsOn

S3:commentsOn
S3:postedBy

S3:hasSubject

S3:hasAuthor
S3:hasKeyword

S3:partOfS3:partOf

asks

Figure 5.2: Triples relevant for keyword expansion.

After the initialization phase of the main algorithm (Alorithm 1, lines 1-6),
there is no candidate and the threshold is in�nite, therefore the stop condition is not
veri�ed and Algorithm 1 enters it's main loop (lines 7-11), starting an exploration
step. Because this is the �rst time we execute Algorithm 3, the network edges
going out of the seeker, u2, are added to borderpath and the documents at the end
of those edges are considered via Algorithm 6: GetDocuments. out(u) contains

only one network edge: u2
u2 S3:postedBy d1 1−−−−−−−−−−−−→ d1, as shown on Figure 5.3.

63

5.2. QUERY ANSWERING ALGORITHM

d0

d0.3.2
d0.5.1

d1

d2

tag0

“diploma”,“university”
u0u1

u2

u3

u4“university”

“get”

“M.S.”“@UAlberta”
“2012”

“degree”“give”

“more”“opportunity”

S3:contains

S3:contains

S3:postedBy

S3:social, 0.8

S3:
pos

ted
By

S3
:po

ste
dB

y

S3:commentsOn

S3:commentsOn
S3:postedBy

S3:hasSubject

S3:hasAuthor
S3:hasKeyword

S3:partOfS3:partOf

asks

d0

d0.3.2
d0.5.1

d1

d2

tag0

“diploma”,“university”
u0u1

u2

u3

u4“university”

“get”

“M.S.”“@UAlberta”
“2012”

“degree”“give”

“more”“opportunity”

S3:contains

S3:contains

S3:postedBy

S3:social, 0.8

S3:
pos

ted
By

S3
:po

ste
dB

y

S3:commentsOn

S3:commentsOn
S3:postedBy

S3:hasSubject

S3:hasAuthor
S3:hasKeyword

S3:partOfS3:partOf

asks

d0

d0.3.2
d0.5.1

d1

d2

tag0

“diploma”,“university”
u0u1

u2

u3

u4“university”

“get”

“M.S.”“@UAlberta”
“2012”

“degree”“give”

“more”“opportunity”

S3:contains

S3:contains

S3:postedBy

S3:social, 0.8

S3:
pos

ted
By

S3
:po

ste
dB

y

S3:commentsOnS3:commentsOn

S3:commentsOn

S3:commentsOn

S3:postedBy

S3:hasSubject

S3:hasAuthor
S3:hasKeyword

S3:hasSubject

S3:partOfS3:partOf

asks

d0

d0.3.2
d0.5.1

d1

d2

tag0

“diploma”,“university”
u0u1

u2

u3

u4“university”

“get”

“M.S.”“@UAlberta”
“2012”

“degree”“give”

“more”“opportunity”

S3:contains

S3:contains

S3:postedBy

S3:postedBy
S3:social, 0.8

S3:
pos

ted
By

S3
:po

ste
dB

y

S3:commentsOnS3:commentsOn

S3:commentsOn

S3:commentsOn

S3:postedBy

S3:hasSubject

S3:hasAuthor
S3:hasKeyword

S3:hasSubject

S3:partOfS3:partOf

asks

Figure 5.3: Social paths starting from the seeker, u2, of length 1 (top left), 2 (top
right), 3 (bottom left) and 4 (bottom right).

The document d1 is the only document at a end of a network edge starting from
u2 and is therefore the only document tested by Algorithm 6: line 1 will select
all the d, connected to d1 using only S3:partOf, S3:commentsOn, S3:commentsOn,
S3:hasSubject and S3:hasSubject. This is the case of:

� d0, connected to d1 via S3:commentsOn;

� d0.3.2 and d0.5.1, connected to d0 with S3:partOf;

� tag0 via d0.3.2 and S3:hasSubject, and

� d2 through d0.3.2 and S3:commentsOn.

These 6 documents and tags are considered together because they might share
connections with the keywords of the query: after making sure that we didn't
test them already (line 2), Algorithm 6 proceeds to establish their connections
and store them in the connect table. If a document doesn't have a connection
with all the keywords of the query, the document is discarded (added to the
discarded set); otherwise it is added to candidates. Here, only d0 is not dis-
carded, since it has a connection to �university� from tag0 via its fragment d0.5.1
and two connections to �diploma�: one from d2 via its fragment d0.3.2 and one

64

5.2. QUERY ANSWERING ALGORITHM

from d1. More formally, con(d1,�university�) = {(S3:relatedTo, d0.5.1, u4)} and
con(d1,�diploma�) = {(S3:partOf, d0.3.2, d2), (S3:commentsOn, d0, d1)}, and there-
fore connect[d0] =
{(�university�, S3:relatedTo, d0.5.1, u4), (�diploma� , S3:partOf, d0.3.2, d2), (�diploma� ,
S3:commentsOn, d0, d1)}.

Once d0 is added to candidates and all the other documents and tags are
added to discarded, Algorithm 6 terminates and Algorithm 3 resumes at line 16,

establishing the new borderPath as a single path: u2
u2 S3:postedBy d1 1−−−−−−−−−−−−→ d1. Using

the �rst feasibility property we update the proximity of all the nodes in I to take
into account all paths of length at most n = 1. The next step in the main loop,
after Algorithm 3, is to compute the bounds of the candidates using Algorithm 4:
this simply updates the lower and upper bounds of each candidate (here only d0)
and the threshold using the feasibility properties and our complete knowledge of
the paths of length at most n (here 1). When this is done Algorithm 5 is triggered
to remove the candidates that have no chance to make it to the top-k.

We stress here that our running example does not illustrate all the aforemen-
tioned aspects, as only one possible candidate is present, no other candidates are
ever removed, and no new documents can ever be found. Each iteration of the
loop of Algorithm 1 will only increase n and compute all paths of length n and the
proximities with the seeker taking into account paths of lengths at most n then
recompute, through ComputeCandidateBound, the lower and upper bounds of the
only candidate, d0, using these proximities and re�ne the threshold.

The feasibility properties ensure that threshold = Bscore(q, B
>n
prox) tends to 0

while n increases and that the lower bound of d0:

⊕gen({(kw, t, p, allProx[src])|(kw, t, p, src) ∈ connect[d0]})
tends to the (positive) score of d1. When the lower bound of d1 becomes greater
than threshold, the best possible score of an unseen document, i.e., the stop con-
dition, Algorithm 2 returns True on line 9 and S3k terminates, returning its k best
candidates, that is {d0}.

Figure 5.4 shows the evolution, for a sample run with numerous ties, of the
number of candidates and their bounds as the number of iterations increases. The
algorithm discovers rapidly some potential candidates and keeps track of their
upper and lower bounds, then after a certain number of iterations (here approxi-
mately 10) all meaningful candidates have been found and the algorithm continues
to explore until it can break the ties and return k candidates.

5.2.3 Correctness of the algorithm

The theorems below state the correctness of our algorithm for any score function
having the feasibility properties identi�ed in Section 5.1.3.

65

5.2. QUERY ANSWERING ALGORITHM

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

sc
or

e

Top-k on k=5, u=2469330, φ=[516440L]

threshold

bounds of 1230835
bounds of 299784
bounds of 1755529

0 20 40 60 80 100
number of iterations

0

10

20

30

40

50
nodes seen
components seen
candidates remaining

Figure 5.4: Internal state of the algorithm run on a query with ties.

Lemma 5.2.1 (Bounds correctness and convergence). At the end of each iteration
of Algorithm 1, for every candidate c in candidates: c.upper ≥ score(c, q) ≥
c.lower. Furthermore, limn→+∞(c.upper) = score(c, q) and limn→+∞(c.lower) =
score(c, q) where n is the number of iterations.

Proof. (Lemma 5.2.1) c.upper and c.lower are only modi�ed in Algorithm 4, so at
the n-th iteration after the execution of Algorithm 4, we have:

66

5.2. QUERY ANSWERING ALGORITHM

c.upper =⊕gen ({(k, t, p, allProx(src)) | (k, t, p, src) ∈ connect[c]})
c.lower =⊕gen ({(k, t, p, allProx(src) +B>n

prox(u, src)) |
(k, t, p, src) ∈ connect[c]})

Since documents are added to candidates only through Algorithm 6 we know that
(k, t, p, src) ∈ connect[c]⇔ k ∈ φ, (t, f, src) ∈ con(c, k), p = pos(f, c).

Because we also know that allProx[src] = prox≤n(u, src) we have:

c.upper =score[prox≤n](c, q)

c.lower =score[prox≤n+B>nprox](c, q)

where score[f] denotes our score function (Section 5.1.3) using f as the social prox-
imity function. By de�nition, prox≤n ≤ prox and by the second feasibility property
we know that prox ≤ prox≤n +B>n

prox and limn→+∞(prox≤n − prox) = 0 =
limn→+∞(prox≤n +B>n

prox − prox). The third feasibility property ensures that g 7→
score[g] is monotonically increasing and continuous and therefore that c.lower ≤
score(c, q) ≤ c.upper and that limn→+∞(c.lower) = limn→+∞(c.upper) = score(c, q).

Lemma 5.2.2 (Threshold correctness). At any time, for any document d not in
candidates nor in discarded: threshold ≥ score(d, q).

Proof. (Lemma 5.2.2) Let d be a document neither in candidates nor in discarded,
at an iteration n > 05. Because d is not in candidates nor in discarded, there is no
path of length smaller than n−1 from u to a source for con(d, k), k ∈ φ (otherwise,
this path would have been found by Algorithm 6 and d would have been added to
candidates or discarded). Let src be such a source. Because prox≤n(u, src) = 0,
and due to the long path attenuation property on the score (Section 5.1.3), we
know that prox(u, src) ≤ B>n

prox. Therefore, thanks to the fourth score feasibility
property, score(d, q) ≤ Bscore(q, B

>n
prox). This is exactly the threshold value set by

Algorithm 4 at line 6.

We partition candidates into groups of documents. Two documents in candidates
are in the same group if and only if candidates comprises a list of nodes, containing
both documents, such that each node is a vertical neighbor of the next one in the
list. Observe that in particular candidates that are not part of the same document
are never in the same group. We call score of a group the highest score of its
elements, and lower bound of a group the highest lower bound of its elements.

5The theorem also holds if n = 0, as threshold =∞.

67

5.2. QUERY ANSWERING ALGORITHM

Lemma 5.2.3. The scores of the k groups with the best scores can only increase,
and only documents with a lower score than the score of the k-th group or having
vertical neighbors in the k groups with the best scores can be in discarded.

Proof. (Lemma 5.2.3)

Observe that the lemma's claim is true when discarded is empty. We show that
it is also true when documents are added to discarded or when the k best groups
change.

Unless a document's score is null and gets discarded by GetDocuments (line 10),
a document can only go to discarded by leaving candidates due to CleanCandi-
datesList (algorithm 5).

The document with the best score in each group only has neighbors with lower
scores than itself and therefore cannot be removed by lines 11-12. The only other
way of discarding documents from candidates (lines 7-8) removes documents having
an upper bound lower than the lower bound of the k-th group with the best lower
bound. Because lower bounds are always smaller than the scores the best elements
of the k groups with the best scores, they cannot be removed this way either.
Therefore, at each call of CleanCandidatesList, each document with the best score
in the k groups with the best scores remains in candidates, guaranteeing that the
scores of the k best group can only increase and that adding new documents to
discarded respects the lemma's claim.

As for the change of the k best groups, if a new group introduced in candidates
removes the current k-th best group from its k-th position then the score of the
new group is better than that of the removed one. Hence, documents which were
in discarded because they were a neighbor of some element of the removed group,
are now in discarded because they have a lower score than the new k-th best group
(documents that had a lower score than the previous k best groups continue to do
so with the new k ones).

Theorem 5.2.1 (Stop correctness). When a stop condition is met, the �rst k
elements in candidates are a query answer.

Proof. (Theorem 5.2.1)

Let us show by induction on i ∈ [0, k] that if the stop condition is met then the
i documents with the best scores among the �rst k elements of candidates form a
Ti,score(q): a top-i answer to the query.

For i = 0, the 0 highest scored elements of the k �rst candidates is the empty set
and we purposefully expand the notion of query answer such that: T0,score(q) = ∅.
For i > 0, given that the i − 1 documents with the best scores among the �rst
k elements of candidates form a Ti−1,score(q), we have to show that adding a i-th
document with the i-th best score among the �rst k elements of candidates, to this

68

5.2. QUERY ANSWERING ALGORITHM

Ti−1,score(q) forms a Ti,score(q). In order to do so, let d be a such a document. By the
de�nition of query answer, we only have to show that d is in D\neigh(Tk−1,score(q))
and has the maximum score (score(d, q)) on that set.

d is not in neigh(Tk−1,score(q)) since it follows from the stop condition that
@d, d′ ∈ candidates[0, . . . , k − 1], d ∈ neigh(d′) (lines 1-2) and from the induction
hypothesis that Tk−1,score(q) ⊂ candidates[0, . . . , k − 1]. Therefore, d is in D \
neigh(Tk−1,score(q)).

Let us show now that d maximizes the score over D \ neigh(Tk−1,score(q)), by
showing it does so over the intersection ofD\neigh(Tk−1,score(q)) with the following
partition of D:

� the k �rst elements of candidates: by construction d has the best score among
the k �rst elements of candidates which are not in Tk−1,score(q)

� the other elements of candidates: if d′ is a document in candidates, which is
not ranked among the �rst k, then:

d′.upper ≤ candidates[k].upper because candidates is kept sorted by upper
bound

candidates[k].upper ≤ minc∈candidadtes[0,k−1](c.lower) ≤ d.lower because of
the stop condition (line 9)

score(d′, q) ≤ d′.upper and d.lower ≤ score(d, q) by bounds correctness
(Lemma 5.2.1).

Hence score(d′, q) ≤ score(d, q).

� discarded: From Lemma 5.2.3, it follows that if d′ is a document in discarded
then either it has a lower score than d or it has a neighbor d” in candidates
such that score(d”, q) ≥ score(d′, q). In the latter case, if this neighbor
d” is not in Tk−1,score(q) then score(d”, q) ≤ score(d, q) and score(d′, q) ≤
score(d, q). In any case there exists no d′ in discarded \ neigh(Tk−1,score(q))
with a better score than d.

� D\(candidates∪discarded): from the Threshold correctness (Lemma 5.2.2),
we know that documents not in candidates nor in discarded have a score
lower than threshold, thus the line 9 in Algorithm 2 and bounds correctness
(Lemma 5.2.1) guarantee that score(d, q) ≥ threshold.

We have shown that the k documents with the best score among the �rst
k elements of candidates, i.e., the �rst k elements of candidates, are a query
answer.

We say the tie of two equal-score documents d, d′ is breakable if examining a
set of paths of bounded length su�ces to decide their scores are equal. (In terms of

69

5.2. QUERY ANSWERING ALGORITHM

our score feasibility properties, this amounts to B>n
prox = 0 for some n). Our generic

score function (De�nition 5.1.6) does not guarantee all ties are breakable. However,
any �nite-precision number representation eventually brings the lower and upper
bounds on d and d′'s scores too close to be distinguished, de facto breaking ties.

Theorem 5.2.2 (Correctness with breakable ties).
If there exists a query answer of size k and all ties are breakable then Algorithm 1
returns a query answer of size k.

Proof. (Theorem 5.2.2) If the algorithm terminates then it follows from Theo-
rem 5.2.1 that the algorithm returns an answer. Now, to exhibit a contradiction,
let us suppose that it does not terminate.

If there exists a query answer of size k then candidates will eventually contain at
least k groups; otherwise some documents from this query answer would have gone
to discarded, which by Lemma 5.2.3 is impossible if candidates doesn't contain at
least k groups with better scores than these of the k documents from this query
answer.

Because it is impossible to add new documents to candidates when all docu-
ments have been explored, after some time, the size of candidates will not change
and no document will leave it anymore.

By Lemma 5.2.3, at least one document in each of the k best groups remains in
candidates. Consider an element d with the best score in one the k best groups at a
time where candidates has reached its �nal size. Because of the bound correctness
and convergence lemma (Lemma 5.2.1), and the fact that all ties are breakable,
eventually ∀d′ ∈ neigh(d) d.lower ≥ d′.upper holds. Therefore, the CleanCan-
didatesList algorithm, at lines 11-12, remove documents from candidates if any
such d′ is in candidates. Hence, d has no neighbors in candidates and is the only
document in its group.

The k best groups are therefore k documents without neighbors in candidates,
with the k best scores in candidates, and by bound convergence the best lower
bounds eventually. This automatically triggers the stop condition and forces the
algorithm to terminate, which contradicts our hypothesis.

We have shown that if there exists a query answer and all ties are breakable
then the algorithm terminates and thus returns an answer (Theorem 5.2.1).

Theorem 5.2.3 (Anytime correctness). Using anytime termination, Algorithm 1
eventually returns a query answer.

Proof. (Theorem 5.2.3) Because (i) there is a �nite number of documents that can
be candidates and (ii) the simple convergence of bounds (Lemma 5.2.1) is actually
a uniform convergence: for any query q and positive value ε, after some number of
iterations, the lower and upper bounds of any candidate can di�er from its score
of at most ε.

70

5.3. RELATIONSHIP WITH EXISTING QUERY MODELS

If we choose for ε a value smaller than half the minimum positive di�erence
between two document scores, then eventually any two candidates with di�erent
scores will have their upper bounds ordered in the same way as their score. In
particular, after some time, argmax(c.upper) = argmax(score(q, c)) and therefore
the anytime termination algorithm (Algorithm 7) produces a query answer.

It is worth noting that in our experiments (Chapter 6), the threshold-based
termination condition was always met, thus we never needed to wait for convergence
of the lower and upper bound scores, in order to �nd the top-k answers.

5.3 Relationship with existing query models

Non-keyword based query models, for instance those inspired by XQuery or
SPARQL can not be translated into S3kkeyword queries. In this section, we brie�y
show how the state of the art top-k keyword query models can be expressed. De-
pending on the dimensions considered in the original work, the scores of the liter-
ature can be translated as distances in our model.

Structural distance

Approaches based on the Lowest Common Ancestor can be emulated by our
score model, this is the case for instance with the concrete score proposed in Sec-
tion 5.1.4: the damping factor η ensures that, when two documents have the same
connections' sources to the keywords of the query, then the one with the greater
depth in the tree will have a better score. For instance, consider Figure 5.5 with
the query (u, {k1, k2}): the connection between the nodes of the trees and the
keyword k2 are all through the fragment d0.0.0, and so are the connections with k1
all through the fragment d0.0.1. Since

score(d, (u, φ)) =
∏
k∈φ

(∑
η|pos(d,f)| × prox(u, src)
(type,f,src)∈ con(d,k)

)
and pos(d0.0, d0.0.1) = pos(d0.0, d0.0.0) = 1 while pos(d0, d0.0.1) = pos(d0, d0.0.0) = 2
we have:

score(d0, (u, φ)) = score(d0.0, (u, φ))× η
with η < 1 and the Lowest Common Ancestor indeed has a better score.

Social distance

The proposed concrete score realizes naturally the Katz distance [48] if we ignore
the semantic and structural aspects, that is if we consider that all documents have
one node, containing all their keywords.

71

5.4. CONCLUSION

d0 {}

d0.0 {}

d0.1 {k1} d0.0.1 {k1} d0.0.0 {k2}

u0

S3:postedBy

Figure 5.5: Sample structured document, posted by a user.

The other social distances presented in Section 3.1.5 are variations around the
shortest path, i.e.,

maxp∈u d Πedge∈p weight(edge)

As we shown in Section 5.1.3, this is a social distance that respects the feasibility
properties. Furthermore its ties are breakable since it only require a �nite number
of paths to give an exact score.

Semantics distance

By design we restricted our semantics distance to an all-or-nothing approach:
URIs are either inside or outside of the extension of the keywords of the query,
however the keywords used in the connections between the documents and the
keywords of the query are taken into account in the �nal score via ⊕gen:

score(d, (u, φ)) = ⊕gen ({(kw, type, pos(d, f), prox(u, src))

|kw ∈ φ, (type, f, src) ∈ con(d, kw)})

Therefore it is possible to integrate into ⊕gen a factor that depends on kw. By
adding similar keywords to query and restricting their extension it is possible to
mimic approaches where keywords are given a similarity value in [0, 1] that is used
multiplicatively with the score.

5.4 Conclusion

This chapter provides a top-k keyword query model for S3 instances, as well
as a query answering algorithm which we demonstrate on a sample run and for

72

5.4. CONCLUSION

which we prove the termination and correctness. Furthermore we showed that the
common top-k score functions on the three dimensions of S3 can be adapted to our
query model.

73

5.4. CONCLUSION

74

Chapter 6

Implementation and evaluation

We now consider the implementation and evaluation of our algorithm over
several scenario, on datasets extracted from real life social networks. Section 6.1.1
outlines our implementation and some practical optimizations we brought to the
search algorithm. We present the datasets used to test this implementation in
Section 6.2 and the query workloads in Section 6.3. We present a quantitative
analysis on the query times in Section 6.4 and study the quality of our returned
results in Section 6.5.

6.1 Implementation and optimisations

We describe our implementation in Section 6.1.1, the storage of S3instances in
a database in Section 6.1.2 and the optimizations we have brought in Section 6.1.3.

6.1.1 Implementation

Our algorithms were fully implemented in Python 2.7. The �rst implementation
represented the users and the connection between them and documents in memory
using python objects and accessed the documents using a PostgreSQL database.
While this provided a proof of concept, the runtimes were long and the scalability
poor.

The second generation of implementation introduced sparse matrices, using
the heavily optimized NumPy [3] library, to represent connections within I and
proximity between the seeker and other vertices: this allows to hold the entirety of
the connections in memory even for large instances, improving a lot on scalability
and runtime. The second implementation also introduced an optimized version for
the concrete score introduced in Section 5.1.4: while Algorithm 3 is supposed to
keep track of all social paths starting from the seeker, to accommodate for all the

75

6.1. IMPLEMENTATION AND OPTIMISATIONS

possible scores respecting the Feasibility properties, this not needed and is a waste
of resources in most practical cases. In practice, it is often possible to aggregate
all the proximities of the paths of a given length from the seeker to a node of I into
a single scalar. Since Algorithm 6 starts from a document and test all documents
d such that "there exists a chain of triples from x to d in I using only S3:partOf,
S3:commentsOn, S3:commentsOn, S3:hasSubject and S3:hasSubject labels" (line 1),
it is possible to regroup the documents that share this property into connected
components (connected via the above-mentioned properties in I) and test all the
documents within a component at once.

Finally, the third-generation implementation incorporates parallelism: Algo-
rithm 1 spends most of its runtime in a loop (lines 7-11) that increases n and
launches StopConditions, ExploreStep (which in turn calls GetDocuments),
ComputeCandidatesBound and CleanCandidatesList. However, it is in fact pos-
sible to partially execute several instances of this loop for di�erent n in parallel.

Figure 6.1 outlines the main modules of this third-generation implementation:

� ExploreStep mimics Algorithm 3, ExploreStep; it explores paths one step
further from the seeker, updating the proximities (AllProx and BorderProx
that replace BorderPath in the version optimized for the concrete score) and
the visited components. For this it requires the previous proximities, and the
knowledge of the graph.

� GetDocuments follows Algorithm 6, GetDocuments: it looks at the newly
visited components for unexplored documents and then based on the docu-
ments content and their sources (the last part requiring the graph connec-
tivity), it checks if they have keywords from the keyword extension of the
query. If they do, then it adds them to the candidates.

� ComputeBounds and CleanCandidates, as the name suggests, fuses the work
of Algorithms 4 and 5, using the threshold and the candidates bounds (com-
puted from the proximities of their sources with the seeker) to �lter the list
of candidate. It then updates the threshold by dividing it by γ.

� StopCondition computes if the spot condition is reached, as described by
Algorithm 2, using the candidates, the threshold and the known and previ-
ously known components. When the stop condition is reached, the k best
candidates are returned.

� The query is used to compute the �rst proximity (0 to everyone but the
seeker) and the keyword extension based on the keywords of the query.

This last implementation, including both the optimized version for the concrete
score and the capabilities to handle the generic scores, was refactored to a code

76

6.1. IMPLEMENTATION AND OPTIMISATIONS

Proximities Candidates

ExploreStep GetDocuments
ComputeBounds

and
CleanCandidates

StopCondition

Threshold

Keyword extension Graph connectivity
(using sparse matrices) Documents content

psycopg
(PostgreSQL wrapper for python)

results

S3 query

Visited
components

t v : thread t updates variable v
x t : thread t requieres x to run

Threads

Variables

Instance storage

Instance interface

Figure 6.1: Overview of the implementation, and the thread dependencies

length of around 6K lines of Python and PostgreSQL and is the one used in the
rest of the manuscript, and referred to as the implementation.

We store some data tables in PostgreSQL 9.3, while others are built in memory,
as we explain shortly. All our experiments were performed on a 4 cores Intel Xeon
E3-1230 V2 @3.30GHz with 16Go of RAM, running Debian 8.1.

Our system cannot be compared directly with existing systems, as we are the
�rst to consider �ne-granularity content search with semantics in a social network.
To get at least a rough performance comparison of our implementation with other
systems, we used the top-k social search system described in [58] and referred
to as TopkS in Section 3.1.5. We used the Java-based code provided by the
authors of [58]. As seen in Section 2.3, the data model of TopkS is rather basic,
since its documents (items) have no internal structure nor semantics; tags are all
independent, i.e., there is no semantic connection between them. Further, (user,

77

6.1. IMPLEMENTATION AND OPTIMISATIONS

user, weight) tuples re�ect weighted links between users. TopkS computes a social
score for each item, and separately a content-based score; the overall item score is
then obtained as

α × social score + (1− α) × content score

where α is a parameter of TopkS.

6.1.2 Data Layout

The instance is stored on disk using PostgreSQL. We describe below our data
layout; the underlined attributes denote a (clustering) primary key. For the key-
word extension part we store the following relations:

� text_association(name, id), with an additional on name and another one in
id;

� DBpediaURI_association(URI, id);

� keyword_extension(id, extended_id) with an additional index on id;

In the following, by the components of the S3 graph we mean the maximal
subgraphs of documents and tags connected by triples labelled by S3:partOf,
S3:commentsOn, S3:commentsOn, S3:hasSubject, or S3:hasSubject.

The documents and the connections they participate to are compiled into the
following set of tables:

� network_edges(source, target, weight, type of relation), with an additional
index on source;

� keyword_container(fragment or tag, component, keyword) stores the key-
words contained in the documents and tags, grouped by component;

� structure(root, JSON structure) stores for each document tree the URI of
the root of the tree and the position of the other URIs as a JSON expression;

� component(document, root of the document if exists, component), with an
additional index on the component attribute; this table associates to each
document the root of the document tree and the component it is in;

� raw_docs(URI, raw) associates documents with their URIs; this table is only
used to return actual documents to the querier (it is not used in the query
processing phase);

78

6.1. IMPLEMENTATION AND OPTIMISATIONS

� original(URI, optional external identi�er, type), where type is one of user,
document root, fragment, or tag, with two additional indexes, on exter-
nal identi�er and on type. This table helps �nding where the URIs in the
database come from and what they are, in term sof representation outside
the algorithm. It is not used in the query processing phase, but serves to
connect it it with the application using it.

6.1.3 Optimisations

We brie�y discuss our implementation, focusing on optimizations w.r.t. the
conceptual description in Section 5.2.

The �rst optimization concerns the computation of prox, required for the score
(De�nition 5.1.6). While the score involves connections between documents and
keywords found on any path, in practice S3k explores paths (and nodes) increas-
ingly far from the seeker, and stores such paths in borderPath, which may grow
very large (it can grows exponentially with n in the number of edges in I) and hurt
performance. To avoid storing borderPath, we compute for each explored vertex
v the weighted sum over all paths of length n from the seeker to this vertex:

borderProx(v, n) =
∑

p∈u v,|p|=n
−−→prox(p)
γn

and compute prox directly based on this value. Note that borderProx(v, n + 1)
can be computed from the borderProx(x, n+1), x ∈ I because of the form of social
distance: recall from the concrete score (Section 5.1.4) that

prox(u, v) = Cγ ×
∑

p∈u v

−−→prox(p)
γ|p|

and therefore that

borderProx(v, n) =Cγ ×
∑

p∈u v,|p|=n

−−→prox(p)

γ|p|

=Cγ ×
∑

p′∈x v,|p′|=1

∑
p∈u x,|p|=n−1

−−→prox(p)

γ|p|

=
∑

p′∈x v,|p′|=1

borderProx(x, n− 1)

can be computed using only paths of length 1 and borderProx at the previous
iteration.

79

6.1. IMPLEMENTATION AND OPTIMISATIONS

Furthermore, Algorithm GetDocuments considers documents reachable from x
through edges labeled S3:partOf, S3:commentsOn, S3:commentsOn, S3:hasSubject
or S3:hasSubject. Reachability by such edges de�nes a partition of the documents
into connected components. Further, by construction of con tuples (Section 5.1.2),
connections carry over from one fragment to another, across such edges. Thus, a
fragment matches the query keywords i� its component matches it, leading to an
e�cient pruning procedure: we compute and store the partitions, and test that
each keyword (or extension thereof) is present in every component (instead of
fragment). Partition maintenance is easy when documents and tags are added,
and more expensive for deletions, but luckily these are rarer.

The query answering algorithm creates a boolean vector indexed by the com-
ponents, initially all false. Further, it creates (in memory) the allProx vector and
two sparse matrices which are computed only once: distance matrix that encodes
the graph of network edges in I (accounting for the vertical neighborhood), and a
component matrix storing the component of each fragment or tag. This simpli�es
Algorithm 3, since computing allProx and �nding new components to explore can
be implemented using matrix and vector operations. For instance, the new distance
vector borderProx w.r.t. the seeker at step n+ 1 can be obtained by multiplying
the distance matrix with the previous distance vector from step n.

Last but not least, the search algorithm can be parallelized, in two independent
ways. First, within an iteration we discover new documents in parallel by splitting
the search across components. Second, an iteration can start executing before the
current one is �nished: as long as borderProx is available in the current iteration,
one can start computing the next borderProx using the (�xed) distance matrix.
More precisely, ExploreStep can be seen as consisting of two main blocks:

� (i) computing the new borderProx using the distance matrix and the previous
borderProx (lines 1- 16 except for line 14).

� (ii) computing allProx using the new borderProx and the previous allProx
(lines 17-20) plus the call to GetDocuments (line 14).

The latter algorithm can also be seen as consisting of two parts: (iii) identifying
the newly discovered components (line 1), and (iv) testing the documents they
contain (the remaining lines). In practice, slightly smaller grain separations are
possible, leading to 8 tasks of the forms (i)-(iv) above. A custom scheduler is
responsible for spawning and synchronize concurrent threads executing these tasks.
This has divided the query answering time on average by a factor of 2 on the testing
machine, but in a more parallel environment greater gain could be expected.

With all the optimization described before almost all the runtime of the algo-
rithm is spent in optimized NumPy-based matrix operation or in the PostgreSQL
query engine which are both hard to optimize further.

80

6.2. DATASETS

6.2 Datasets

We built three datasets, I1, I2, and I3, based respectively on content from
Twitter, Vodkaster and Yelp.

The instance I1 was constructed starting from tweets obtained through the
public streaming Twitter API, and based on the Tweepy library [91]. Over a one-
day interval (from May 2nd 2014 16h44 GMT to May 3rd 2014 12h44 GMT), we
gathered roughly one million tweets. From every tweet that is not a retweet, we
create a document having three nodes:

� text from the text �eld of the tweet, we extract named entities and words
(with the help of the twitter NLP tools library [65]) and match them against
a general-purpose ontology we created from DBpedia, as we explain below

� date, extracted from the created_at tweet �eld

� a geo node: if the tweet includes a human readable location, i.e., recognizable
keywords in the place �eld of the tweet (be it from a name or a full_name
property) we insert it in this node.

The RDF graph of our instance is built from four DBPedia datasets, namely:
Mapping-based Types, Mapping-based Properties, Persondata and DBpedia Lex-
icalizations Dataset. These were chosen as they were the most likely to contain
concepts (names, entities etc.) occurring in tweets.

Within the text �elds, we replace each word w for which a triple of the form
u http://xmlns.com/foaf/0.1/name w holds in the DBPedia knowledge base, by
the respective URI u.

When a tweet t′ authored by an user u is a retweet of another tweet t, and
further if t′ adds a hashtag h, then we add to Id1 the following triples:

a type S3:relatedTo a S3:hasSubject t
a S3:hasKeyword h a S3:hasAuthor u

Thus, a retweet that adds multiple keywords leads to the creating several tags.
If a tweet t′′ is a reply to another tweet t (as identi�ed by the in_reply_to_status_id
�eld), we consider that t′′ is a comment on t. If t is present in our dataset1, we
add the corresponding S3:commentsOn triple in I1.

For what concerns the social network, we set ΩI1 as the set of IDs of the users
having posted some tweets, and we create links between users as follows. We assign

1Sometimes our corpus contains a re-tweet of an original tweet that we did not capture. This
is unavoidable unless one has access to the full Twitter history.

81

6.3. QUERIES

to every pair of users (a, b) a similarity value u∼(a, b) between 0 and 1. u∼ is a
weighted sum of two Jaccard similarity coe�cients:

u∼(a, b) =

t× |keywords in comments from both a and b|
|keywords in comments from a|+ |keywords in comments fom b|

+ (1− t)× |keywords posted by both a and b|
|keywords posted by a|+ |keywords posted by b|

Whenever this similarity is above a certain threshold we create an edge with weight
u∼ between the two users. Based on experiments with the data, we set t = 0.5 and
the u∼(a, b) threshold for creating a link between a and b to 0.1.

The instance I2 uses data from Vodkaster, a French social network dedicated
to movies. The original social network data comprised follower relations between
the users and a list of comments on the movies, in French, along with their au-
thor. Whenever user u follows user v, we included u vdk:follow v 1 in I2, where
vdk:follow is a custom subproperty of S3:social expressing the act of following
someone in Vodkaster (vdk:follow ≺sp S3:social). The �rst comment on a movie
was translated in I2 as an original document; each additional comment on this �lm
was then considered a comment on the �rst. The textual content of each comment
was stemmed using Snowball algorithms [90] and each (stemmed) sentence was
made a fragment of the comment.

The instance I3 is based on Yelp [93], a crowd-sourced reviews website about
local businesses. This dataset contains a list of textual reviews of businesses, and
the friend list of each user. As for I2, we consider that the �rst review of a business
is commented on by the subsequent reviews of the same business and we introduce
a dedicated subproperty of S3:social: yelp:friend to express the friendship on Yelp:
if user u is friend with user v then we include u yelp:friend v 1 in I3. As for I1, we
use DBpedia to gain additional semantic on the extracted keywords.

Table 6.2 shows the main features of the three quite di�erent data instances. I1
is by far the largest. I2 was not matched with a knowledge base since its content
is in French; I2 and I3 have no tags.

6.3 Queries

For each instance we created workloads of 100 queries, based on three indepen-
dent parameters:

� f , the keyword frequency: either rare, denoted ‘−′ (among the 25% least
frequent in the document set), or common, denoted ‘+′ (among the 25%
most frequent)

82

6.3. QUERIES

I1 (Twitter)
Users 492,244
S3:social edges 17 544 347
Documents 467,710
Fragments (non-root) 1,273,800
Tags 609,476
Keywords 28,126,940
Tweets 999,370
Retweets 85%
Reply to users' status 6.9%
String-keyword associations extracted from DBpedia 3,301,425
S3:social edges per user having any (average) 317
Nodes (without keywords) 2 972 560
Edges (without keywords) 24 554 029

I2 (Vodkaster)
Users 5,328
S3:social edges (vdk:follow) 94,155
Documents (movie comments) 330,520
Fragments (non-root) 529,432
Keywords 3,838,662
Movies 20,022

I3 (Yelp)
Users 366,715
S3:social edges (yelp:friend) 3,868,771
Documents (reviews) 2,064,371
Keywords 59,614,201
Businesses 61,184

Figure 6.2: Statistics on our instances.

83

6.4. QUANTITATIVE ANALYSIS

� l, the number of keywords in the query: 1 or 5

� k, the expected number of results: 5 or 10

This lead to a total of 8 workloads, identi�ed by qsetf,l,k, for each dataset.
To further analyze the impact of varying k, we added 10 more workloads for I1,
where f ∈ {+,−}, l = 1, and k ∈ [1, 5, 10, 50] (used in Figure 6.6). We stress here
that injecting semantics in our workload queries, by means of keyword extensions
(De�nition 4.2.1), increased their size on average by 50%.

We adapted our instances into TopkS's simpler data model. From I1, we created
I′1 as follows:

� the relations between users were kept with their weight,

� every tweet was merged with all its retweets and replies into a single item,

� every keyword k in the content of a tweet that is represented by item i posted
by user u led to introducing the (user, item, tag) triple (u, i, k).

To obtain I′2 and I′3:

� the relations between the users are kept with their weight,

� each �lm or business becomes an item ,

� each word extracted from a user's review on a item becomes a tuple in the
(user, item, tag) relation.

6.4 Quantitative analysis

Figures 6.3 � 6.5 show the running times of S3k on our three instances. We
used di�erent values of the γ social proximity damping factor (Section 5.1.4), and
of α for TopkS. For each workload, we plot the average time (over its 100 queries).
All runs terminated by reaching the threshold-based stop condition (Algorithm 2).

A �rst thing to notice is that while all running times are comparable, TopkS
runs consistently faster. This is mostly due to the di�erent proximity functions:
our prox, computed from all possible paths, has a much broader scope than TopkS,
which explores and uses only one (shortest) path. In turn, as we show later, we
return a signi�cantly di�erent set of results, due to prox's broader scope and to
considering document structure and semantics.

Decreasing the γ in S3k reduces the running time. This is expected, as γ gives
more weight to nodes far from the seeker, whose exploration is costly. Similarly,

84

6.4. QUANTITATIVE ANALYSIS

+
, 1
, 5

+
, 1
, 1

0

+
, 5
, 5

+
, 5
, 1

0

−,
1,

5

−,
1,

10

−,
5,

5

−,
5,

10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n

ru
n

tim
e

(in
se

co
nd

)

S3k γ = 1.25

S3k γ = 1.5

S3k γ = 2

TopkS α = 0.75

TopkS α = 0.5

TopkS α = 0.25

Figure 6.3: Query answering times on I1 (Twitter).

increasing α in TopkS forces to look further in the graph, and a�ects negatively
its performance.

The in�uence of k is more subtle. When the number of candidates is low and
the exploration of the graph is not too costly, higher k values allow to include
most candidates among the k highest-scoring ones. This reduces the exploration
needed to re�ne their bounds enough to clarify their relative ranking. In contrast,
if the number of candidates is important and the exploration costly, a small k value
signi�cantly simpli�es the work. This can be seen in Figure 6.6 where, with frequent
keywords, increasing k does not a�ect the 3 fastest quartiles but signi�cantly slows

85

6.4. QUANTITATIVE ANALYSIS

+
, 1
, 5

+
, 1
, 1

0

+
, 5
, 5

+
, 5
, 1

0

−,
1,

5

−,
1,

10

−,
5,

5

−,
5,

10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

m
ed

ia
n

ru
n

tim
e

(in
se

co
nd

)

S3k γ = 1.25

S3k γ = 1.5

S3k γ = 2

TopkS α = 0.75

TopkS α = 0.5

TopkS α = 0.25

Figure 6.4: Query answering times on I2 (Vodkaster).

down the slowest quartile, since the algorithm has to look further in the graph to
re�ne the bounds.

The same �gure also shows that rare-keyword workloads (whose labels start by
−) are faster to evaluate than the frequent-keyword ones (workload labels starting
with +). This is because �nding rare keywords tends to require exploring longer
paths. Social damping at the end of such paths is high, allowing to decide that
possible matches found even farther from the seeker will not make it into the top-k.
In contrast, matches for frequent keywords are found soon, while it is still possible
that nearby exploration may signi�cantly change their relative scores. In this case,

86

6.5. QUALITATIVE ANALYSIS

Figure 6.5: Query answering times on I3 (Yelp).

more search and computations are needed before the top-k elements are discovered
and ranked correctly.

6.5 Qualitative analysis

We compare now the answers of our S3k algorithm and those of TopkS from a
qualitative angle. S3k follows links between documents to access further content,
while TopkS does not; we term graph reachability the fraction of candidates reached

87

6.5. QUALITATIVE ANALYSIS

+
, 1
, 1

+
, 1
, 5

+
, 1
, 1

0

+
, 1
, 5

0

+
, 1
, 5

0

−,
1,

1

−,
1,

5

−,
1,

10

−,
1,

50

−,
1,

50

10−1

100

101

m
in

im
um

,Q
1,

m
ed

ia
n,

Q
3

an
d

m
ax

im
um

ru
n

tim
e

(in
se

co
nd

)

S3k γ = 1.5

S3k γ = 4

Figure 6.6: Query answering times on I1 when varying k.

by our algorithm which are not reachable by the TopkS search. Further, while S3k
takes into account semantics by means of semantic extension (De�nition 4.2.1),
TopkS only relies on the query keywords. We call semantic reachability the ratio
between the number of candidates examined by an algorithm without expanding
the query, and the number of candidates examined with query expansion.

Observe that some S3k candidates may be ignored by TopkS due to the latter's
lack of support for both semantics and connections between documents.

Finally, we report two measures of distance between the results of the two
algorithms. The �rst is the intersection size i.e., the fraction of S3k results that

88

6.6. CONCLUSION

Measure \ Instance I1 I2 I3
Graph reachability 12% 23% 41%
Semantic reachability 83% 100% 78%
L1 8% 10% 4%
Intersection size 13.7% 18.4% 5.6%

Figure 6.7: Relations between the S3k and TopkS answers.

TopkS also returned. The second, L1, is based on Spearman's well-known foot
rule distance between lists [27]. Modulo normalisation to ensure that L1(τ, τ) = 1,
L1(τ1, τ2) = 0 if they share no elements and 0.5 if they have the same elements in
reverse order, L1 is de�ned as:

L1(τ1, τ2) = 2(k − |τ1 ∩ τ2|)(k + 1)+
∑

i∈τ1∩τ2
|τ1(i)− τ2(i)| −

∑
τ∈{τ1,τ2}
i∈τ\(τ1∩τ2)

τ(i)

where τj(i) is the rank of item i in the list τj.

The averages of these 4 measures over the 8 workloads on each instance appear
in Figure 6.7. The ratios are low, and show that di�erent candidates translate
in di�erent answers (the low L1 stands witness for this). Few S3k results can be
attained by an algorithm such as TopkS, which ignores semantics and relies only
on the shortest path between the seeker and a given candidate.

TopkS instances contain much less items than their S3k counterpart contain
documents. This is because all their structure and the social links between them is
collapsed into a single item. For instance I′1 contains approximately 11 times less
items than I1 contains documents and I′2 43 times less than I2, I′3 34 times less than
I3. In particular TopkS cannot return a document that was fused with another,
such as a reply to status or a retweet.

6.6 Conclusion

Our experiments have demonstrated, �rst, the ability of the S3 data model to
capture very di�erent social applications, and to query them meaningfully, account-
ing for their structure and enriching them with semantics.

Second, we have shown that S3k query answering can be quite e�cient, even
though considering all paths between the seeker and a candidate answer slows it
down w.r.t. simpler algorithms, which rely on a shortest-path model. We have
experimentally veri�ed the expected impact of the social damping factor γ and of
the result size k on running time.

89

6.6. CONCLUSION

Third, and most importantly, we have shown that taking into account in the
relevance model the social, structured, and semantic aspects of the instance bring
a qualitative gain, enabling meaningful results that would not have been reachable
otherwise.

90

Chapter 7

Conclusion and perspectives

In this �nal chapter, we give, in Section 7.1, a summary of the work proposed
through this thesis and we provide, in Section 7.2, a perspective on how this work
can be integrated in further developments.

7.1 Conclusion

In the introduction, we have shown that social networks are a crucial area of
research, impacting directly the lives of billions, and that more and more of our
daily life and our environment is being incorporated into available social data.
Keyword search is currently the most common way for users to access the wealth
of this social data, and therefore a fundamental feature of social networks. And
yet, top-k keyword search in a social context, as it can be found today, is severely
limited because there exists no framework that utilizes the three main aspects of
the data: its structure, semantics and social scope.

We have presented in Chapter 3 how the current approaches are integrating
separately structure, semantics and social aspects into top-k search and into hybrid
query systems. We highlighted their limitations and presented, in Chapter 4, a set
of requirements for a data model integrating the three dimensions we study. We
propose a new model, named S3, built to satisfy these requirements and overcome
the limitations of the previous models. S3 integrates the standards of the Web
for semantics, as it contains directly RDF graphs, for structured documents, as
it encodes easily XML, JSON, and more generally structured and semi-structured
documents, and �nally it integrates �exible social interactions encompassing the
behaviours of most social networks' users. S3 integrates the three dimensions
we mentioned: it allows explicit and implicit relations between users, for instance
through their interactions with documents, higher levels of tags and comments and
a rich and well-de�ned semantics while remaining generic enough to be extensible.

91

7.2. PERSPECTIVES

S3 can be queried using a top-k, keyword based, query model: S3k, introduced
in Chapter 5. In this model, a user inputs a set of keywords and is returned the
most relevant documents for these keywords, according to a customizable score
function. The restriction on the possible scores are based on relatively simple and
straightforward properties, such as that the score of a document increases with
the proximity between its author and the seeker (the user making the query).
These limitations are light enough that it is possible to emulate most other top-k
approaches for the state of the art on their respective dimensions. We provided
an algorithm realising S3k, shown how it works through examples, and proved its
termination and its correctness.

This algorithm is implemented and tested, in Chapter 6, on datasets extracted
from real life social networks. On these datasets we identi�ed the factors impacting
the performances of S3kand showed that it returns its results in a reasonable time
and that captures signi�cantly more results than a top-k system using only social
data: this is a direct consequence of the harmonious integration of the structured,
social, and semantic dimensions into S3.

7.2 Perspectives

The S3 model is generic and comprehensive, therefore it can be used in other
settings than top-k keyword search. We present here another track of possible
extension for S3 that remains to be fully explored: to be part of an integration
model for data journalism.

Journalism is evolving to integrate more digital data as a support for investiga-
tion. Such data may come from organisations and governmental agencies publish-
ing open data such as demographics, economics, stock quotes etc., or from social
network websites providing social and textual data on brands, big and small busi-
nesses or public �gures such as politicians and artists. There also exist large-scale
ontologies integrating manual and automatic e�ort such as DBpedia, GeoNames
or YAGO and other large sources of data may arise in particular cases, for instance
the 11.5 million of documents of the Panama Papers. Data journalists are aware
of the latent potential behind the usage of this data and would like to access it but
lack the tools to do so.

To address this problem, team members are currently collaborating to develop
Tatooine, a lightweight data integration prototype, Tatooine [16], devised based
on our discussions with Les Decodeurs, a fact-checking team of the major french
newspaper �Le Monde�1. Tatooine allows journalists to exploit heterogeneous
data sources of di�erent data models, which we view as a mixed data instance.
Within the instance, we distinguish sets of structured, un-structured, or semi-

1lemonde.fr/les-decodeurs

92

lemonde.fr/les-decodeurs

7.2. PERSPECTIVES

structured data sources, of various data models, each of with its own query system.
We present a mixed query engine as a mediator, running on top of the di�erent
data sources that we bridge using custom and application-dependent RDF data.
For instance using the S3 model, which is perfectly adapted to model social in-
teractions with users and documents. The engine evaluates mixed queries, which
combine sub-queries expressed in the query language(s) of several heterogeneous
sources, and RDF querying on the custom data. A sample query is, for instance:
�for a given hashtag and each political a�liation (left wing, right wing etc.), �nd
the most proli�c tweet authors of that a�liation having used that hashtag, and their
Facebook accounts�. Mixed queries can be used also to query dynamically discov-
ered datasets, e.g., the address of a relational database is found in an table and
part of the mixed query is shipped there for evaluation.

Writing such queries requires database skills, therefore Tatooine will also
include a keyword-based query engine, working on data source digests computed
from the data sources. Based on these digests, the keyword-based query engine
identi�es a set of mixed queries which, evaluated over the set of (joining) datasets,
return the results users are interested in.

Tatooine can be seen as an ad-hoc data integration platform (or mediator)
extending the S3 model to capture data of arbitrary models, and join them by
means of commonly-occuring names and URIs. Tatooine does not attempt to
solve the (hard) problems related to the identi�cation of same entities across dif-
ferent data sources; rather, it focuses on the ability to quickly set up integration
applications on top of di�erent datasets, taking advantage of the relative ease of
named entity recognition in online media content. Work on Tatooine is ongoing
as part of the ANR ContentCheck project (2016-2019).

93

7.2. PERSPECTIVES

94

Bibliography

[1] The Javascript Object Notation (JSON) Data Interchange Format. https:

//tools.ietf.org/html/rfc7159.

[2] The JSON Data Interchange Format. http://www.ecma-international.

org/publications/files/ECMA-ST/ECMA-404.pdf.

[3] NumPy. http://www.numpy.org/.

[4] Three and a half degrees of separation. https://research.facebook.com/

blog/three-and-a-half-degrees-of-separation/.

[5] Twitter Developers. https://dev.twitter.com/.

[6] Yelp! Dataset Challenge. https://www.yelp.com/dataset_challenge.

[7] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[8] M Albakour, Romain Deveaud, Craig Macdonald, Iadh Ounis, et al. Diversify-
ing contextual suggestions from location-based social networks. In Proceedings
of the 5th Information Interaction in Context Symposium, 2014.

[9] Bernd Amann, Irini Fundulaki, Michel Scholl, Catriel Beeri, and Anne marie
Vercoustre. Mapping XML Fragments to Community Web Ontologies. In
WebDB, 2001.

[10] Ioannis Antonellis, Hector Garcia-Molina, and Jawed Karim. Tagging with
queries: How and why? 2008.

[11] Fabio A Asnicar and Carlo Tasso. ifWeb: a Prototype of User Model-Based
Intelligent Agent for Document Filtering and Navigation in the World Wide
Web. In Sixth International Conference on User Modeling, 1997.

[12] Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Je�rey Naughton.
Toward scalable keyword search over relational data. VLDB, 2010.

95

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.numpy.org/
https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/
https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/
https://dev.twitter.com/
https://www.yelp.com/dataset_challenge

BIBLIOGRAPHY

[13] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In PVLDB, 2004.

[14] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
Shashank Sudarshan. Keyword searching and browsing in databases using
banks. In ICDE, 2002.

[15] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes, and Axel
Polleres. Mapping between RDF and XML with XSPARQL. Journal on Data
Semantics, 2012.

[16] Raphaël Bonaque, Tien-Duc Cao, Bogdan Cautis, François Goasdoué, Javier
Letelier, Ioana Manolescu, Oscar Mendoza, Swen Ribeiro, Xavier Tannier,
and Michaël Thomazo. Mixed-instance querying: a lightweight integration
architecture for data journalism. VLDB, 2016.

[17] Andrei Z Broder, David Carmel, Michael Herscovici, Aya So�er, and Jason
Zien. E�cient query evaluation using a two-level retrieval process. In Pro-
ceedings of the twelfth international conference on Information and knowledge
management, 2003.

[18] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Di-
mov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,
Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: How Facebook serves the social graph. SIGMOD,
2012.

[19] David Carmel, Naama Zwerdling, Ido Guy, Shila Ofek-Koifman, Nadav
Har'El, Inbal Ronen, Erel Uziel, Sivan Yogev, and Sergey Chernov. Per-
sonalized social search based on the user's social network. In CIKM, 2009.

[20] Liang Je� Chen and Yannis Papakonstantinou. Supporting top-k keyword
search in XML databases. In ICDE, 2010.

[21] Liren Chen and Katia Sycara. Webmate: a personal agent for browsing
and searching. In Proceedings of the second international conference on Au-
tonomous agents, pages 132�139. ACM, 1998.

[22] Vassilis Christophides, Sophie Cluet, and Jérome Simèon. On wrapping query
languages and e�cient XML integration. SIGMOD, 2000.

[23] Sara Cohen, Benny Kimelfeld, Georgia Koutrika, and Jan Vondrák. On prin-
ciples of egocentric person search in social networks. In VLDS, 2011.

[24] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Gri-
jincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram

96

BIBLIOGRAPHY

Sankar, et al. Unicorn: A system for searching the social graph. PVLDB,
2013.

[25] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer. Ontobroker:
Ontology based access to distributed and semi-structured information. 1999.

[26] Matthias Droop, Markus Flarer, Jinghua Groppe, Sven Groppe, Volker Linne-
mann, Jakob Pinggera, Florian Santner, Michael Schier, Felix Schöpf, Hannes
Sta�er, et al. Translating XPath queries into SPARQL queries. In On the
Move to Meaningful Internet Systems 2007: OTM 2007 Workshops.

[27] Ronald Fagin, Ravi Kumar, and D Sivakumar. Comparing top k lists. SIAM
Journal on Discrete Mathematics, 2003.

[28] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algo-
rithms for middleware. Journal of Computer and System Sciences, 66(4),
2003.

[29] Christiane Fellbaum. WordNet. Wiley Online Library.

[30] Matthias Ferdinand, Christian Zirpins, and David Trastour. Lifting XML
schema to OWL. In Web Engineering. 2004.

[31] Venkatesh Ganti, Yeye He, and Dong Xin. Keyword++: A framework to
improve keyword search over entity databases. Proceedings of the VLDB En-
dowment, 2010.

[32] Periklis Georgiadis, Ioannis Kapantaidakis, Vassilis Christophides, Elhadji
Nguer, and Nicolas Spyratos. E�cient rewriting algorithms for preference
queries. In ICDE, 2008.

[33] Giorgos Giannopoulos, Evmor�a Biliri, and Timos Sellis. Personalizing key-
word search on RDF data. In Research and Advanced Technology for Digital
Libraries. 2013.

[34] François Goasdoué, Ioana Manolescu, and Alexandra Roati³. E�cient query
answering against dynamic RDF databases. In EDBT, 2013.

[35] François Goasdoué, Konstantinos Karanasos, Yannis Katsis, Julien Leblay,
Ioana Manolescu, and Stamatis Zampetakis. Growing triples on trees: an
XML-RDF hybrid model for annotated documents. VLDB Journal, 2013.

[36] Gang Gou and Rada Chirkova. E�cient algorithms for exact ranked twig-
pattern matching over graphs. In SIGMOD, 2008.

[37] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
XRANK: Ranked keyword search over XML documents. In SIGMOD, 2003.

97

BIBLIOGRAPHY

[38] Siegfried Handschuh and Ste�en Staab. Authoring and annotation of web
pages in CREAM. In WWW, 2002.

[39] Donna Harman. Relevance feedback revisited. In SIGIR, 1992.

[40] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword
searches on graphs. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, 2007.

[41] Damon Horowitz and Sepandar D Kamvar. The anatomy of a large-scale social
search engine. In WWW, 2010.

[42] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. E�cient IR-
style keyword search over relational databases. In VLDB, 2003.

[43] Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou. Authority-
based keyword search in databases. ACM Transactions on Database Systems
(TODS), 2008.

[44] Vagelis Hristidis, Nick Koudas, Yannis Papakonstantinou, and Divesh Srivas-
tava. Keyword proximity search in XML trees. Knowledge and Data Engi-
neering, IEEE Transactions on, 2006.

[45] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW,
2003.

[46] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S Sudarshan, Rushi
Desai, and Hrishikesh Karambelkar. Bidirectional expansion for keyword
search on graph databases. In PVLDB, 2005.

[47] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The
eigentrust algorithm for reputation management in p2p networks. In WWW,
2003.

[48] Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18(1):39�43, 1953.

[49] Georgia Koutrika and Yannis Ioannidis. Personalized queries under a gener-
alized preference model. In ICDE, 2005.

[50] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F Ilyas, and Sumin Song.
RankSQL: query algebra and optimization for relational top-k queries. In
SIGMOD. ACM, 2005.

[51] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng. E�cient type-ahead
search on relational data: a tastier approach. In SIGMOD, 2009.

98

BIBLIOGRAPHY

[52] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang. Top-k keyword search
over probabilistic XML data. In ICDE, 2011.

[53] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan. Real time personal-
ized search on social networks. In ICDE, 2015.

[54] Yunyao Li, Cong Yu, and HV Jagadish. Schema-Free XQuery. In PVLDB,
2004.

[55] Chengfei Liu, Liang Yao, Jianxin Li, Rui Zhou, and Zhenying He. Finding
smallest k-compact tree set for keyword queries on graphs using mapreduce.
WWW, 2015.

[56] Michael Luca. Reviews, reputation, and revenue: The case of yelp. com. Com.
Harvard Business School NOM Unit Working Paper, 2011.

[57] Silviu Maniu and Bogdan Cautis. E�cient top-k retrieval in online social
tagging networks. arXiv preprint arXiv:1104.1605, 2011.

[58] Silviu Maniu and Bogdan Cautis. Network-aware search in social tagging
applications: instance optimality versus e�ciency. In CIKM, 2013.

[59] Alessandro Micarelli and Filippo Sciarrone. Anatomy and empirical evaluation
of an adaptive web-based information �ltering system. User Modeling and
User-Adapted Interaction, 2004.

[60] Saikat Mukherjee, Guizhen Yang, and IV Ramakrishnan. Automatic anno-
tation of content-rich html documents: Structural and semantic analysis. In
ISWC. 2003.

[61] Patrick E. O'Neil, Elizabeth J. O'Neil, Shankar Pal, Istvan Cseri, Gideon
Schaller, and Nigel Westbury. Ordpaths: Insert-friendly XML node labels. In
SIGMOD, 2004.

[62] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: bringing order to the web. 1999.

[63] Josiane Xavier Parreira and Gerhard Weikum. Jxp: Global authority scores
in a p2p network. In WebDB, 2005.

[64] Lu Qin, Je�rey Xu Yu, and Lijun Chang. Ten thousand SQLs: parallel key-
word queries computing. VLDB, 2010.

[65] Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. Named entity recognition
in tweets: An experimental study. In EMNLP, 2011.

99

BIBLIOGRAPHY

[66] Jonathan Robie, Lars Marius Garshol, Steve Newcomb, Michel Biezunski,
Matthew Fuchs, Libby Miller, Dan Brickley, Vassillis Christophides, and Gre-
gorius Karvounarakis. The syntactic web. Markup Lang., 2001.

[67] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes
twitter users: real-time event detection by social sensors. In Proceedings of
the 19th international conference on World wide web, pages 851�860, 2010.

[68] Karthikeyan Sankaralingam, Madhulika Yalamanchi, Simha Sethumadhavan,
and James C Browne. Pagerank computation and keyword search on dis-
tributed systems and p2p networks. Journal of Grid Computing, 2003.

[69] Barry Smyth and Evelyn Balfe. Anonymous personalization in collaborative
web search. Information retrieval, 2006.

[70] Micro Speretta and Susan Gauch. Personalized search based on user search
histories. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM
International Conference on, 2005.

[71] Kostas Stefanidis, Marina Drosou, and Evaggelia Pitoura. Perk: personalized
keyword search in relational databases through preferences. In Proceedings of
the 13th International Conference on Extending Database Technology, 2010.

[72] Igor Tatarinov, Stratis D Viglas, Kevin Beyer, Jayavel Shanmugasundaram,
Eugene Shekita, and Chun Zhang. Storing and querying ordered XML using
a relational database system. In SIGMOD, 2002.

[73] Jaime Teevan, Susan T Dumais, and Eric Horvitz. Personalizing search via
automated analysis of interests and activities. In SIGIR, 2005.

[74] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel, and
Gerhard Weikum. TopX: e�cient and versatile top-k query processing for
semistructured data. VLDB, 2008.

[75] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k
exploration of query candidates for e�cient keyword search on graph-shaped
(RDF) data. In ICDE, 2009.

[76] Howard Turtle and James Flood. Query evaluation: strategies and optimiza-
tions. Information Processing & Management, 1995.

[77] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The
anatomy of the facebook social graph. CoRR, 2011.

[78] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and
Henri E. Bal. WebPIE: A web-scale parallel inference engine using MapRe-
duce. J. Web Sem., 10, 2012.

100

BIBLIOGRAPHY

[79] Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat,
and Sihem Amer Yahia. E�cient computation of diverse query results. In
ICDE, 2008.

[80] W3C. SPARQL protocol and RDF query language. https://www.w3.org/

TR/rdf-sparql-query.

[81] W3C. W3C XML Schema De�nition Language (XSD) 1.1 Part 1: Structures.
https://www.w3.org/TR/xmlschema11-1/.

[82] W3C. W3C XML Schema De�nition Language (XSD) 1.1 Part 2: Datatypes.
https://www.w3.org/TR/xmlschema11-2/.

[83] W3C. W3C XML Schema De�nition Language (XSD) 1.1 Part 2:
Datatypes, Primitive Datatypes. https://www.w3.org/TR/xmlschema-2/

#built-in-primitive-datatypes.

[84] Resource Description Framework. https://www.w3.org/RDF.

[85] Extensible Markup Language (XML). https://www.w3.org/XML.

[86] Extensible Markup Language (XML) Prolog and Document Type Declaration.
https://www.w3.org/TR/xml/#sec-prolog-dtd.

[87] XML Path Language. https://www.w3.org/TR/xpath.

[88] XQuery 3.1: An XML Query Language. https://www.w3.org/TR/

xquery-3/.

[89] RDFa Primer. https://www.w3.org/TR/xhtml-rdfa-primer.

[90] Snowball stemming library for python. https://pypi.python.org/pypi/

PyStemmer.

[91] Tweepy library. http://www.tweepy.org/.

[92] Uniform Resource Identi�er. http://tools.ietf.org/html/rfc3986.

[93] Yelp Dataset Challenge. http://www.yelp.com/dataset_challenge.

[94] The original proposal of the WWW, htmlized. https://www.w3.org/

History/1989/proposal.html, March 1989.

[95] Yu Xu and Yannis Papakonstantinou. E�cient keyword search for smallest
LCAs in XML databases. In SIGMOD, 2005.

[96] Sihem Amer Yahia, Michael Benedikt, Laks VS Lakshmanan, and Julia Stoy-
anovich. E�cient network aware search in collaborative tagging sites. PVLDB,
2008.

101

https://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
https://www.w3.org/RDF
https://www.w3.org/XML
https://www.w3.org/TR/xml/#sec-prolog-dtd
https://www.w3.org/TR/xpath
https://www.w3.org/TR/xquery-3/
https://www.w3.org/TR/xquery-3/
https://www.w3.org/TR/xhtml-rdfa-primer
https://pypi.python.org/pypi/PyStemmer
https://pypi.python.org/pypi/PyStemmer
http://www.tweepy.org/
http://tools.ietf.org/html/rfc3986
http://www.yelp.com/dataset_challenge
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html

BIBLIOGRAPHY

[97] Zi-Ke Zhang, Tao Zhou, and Yi-Cheng Zhang. Personalized recommenda-
tion via integrated di�usion on user�item�tag tripartite graphs. Physica A:
Statistical Mechanics and its Applications, 2010.

[98] Rui Zhou, Chengfei Liu, and Jianxin Li. Fast ELCA computation for keyword
queries on XML data. In Proceedings of the 13th International Conference on
Extending Database Technology, 2010.

102

	Introduction
	The rise of social networks
	Motivation
	Contributions and outline

	Preliminaries
	The RDF model
	Semi-structured document models
	Models for social data management
	Conclusion

	State of the art
	Top-k search
	Foundations of top-k search
	Top-k search in relational databases
	Top-k search in semi-structured documents
	Top-k search in RDF graphs
	Top-k search in a social context

	Hybrid data models
	Conclusion

	S3: A model for structured, social and semantic data
	Requirements
	Model definition
	Weighted RDF graphs
	Social network
	Documents and fragments
	Relations between structure, semantics, users
	Social paths

	Relationships with existing models
	Conclusion

	Top-k search in S3
	Query model
	Queries
	Connecting query keywords and documents
	Generic score model
	Concrete score

	Query answering algorithm
	Algorithm
	Sample run
	Correctness of the algorithm

	Relationship with existing query models
	Conclusion

	Implementation and evaluation
	Implementation and optimisations
	Implementation
	Data Layout
	Optimisations

	Datasets
	Queries
	Quantitative analysis
	Qualitative analysis
	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives

