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Chapter One

Introduction

  The prevalence of obesity around the world leads to a remarkable increase in the metabolic

syndrome and the metabolic related disorders, including insulin resistance, hyperglycemia,

dyslipidemia and hypertension[1,2]. The risks of diabetes mellitus and the cardiovascular

abnormalities associated with aforementioned factors are also increased. Patients of metabolic

syndrome have an about five-fold increase in the risk of diabetes mellitus[3,4]. Approximate 1

adult in 4 or 5 has metabolic syndrome, depending on different countries. In the United States

of America, approximately 47 million (24%) adult suffered from the metabolic syndrome in

2002[5]. The morbidity is increasing in both developed and developing countries[5,6]. With the

change of diet habits and physical exercise levels in modern life, together with the increasing

morbidity of obesity at an early age, the World Health Organization (WHO) projections in

2005 have alarmed for obesity and obesity related diseases, and regarded obesity as a global

public health problem[2]. Estimated by WHO, in 2015, approximately 2.3 billion adults are

overweight and among them, at least 700 million are obese (body mass index (BMI)  30

g/m2)[7]. Considering diabetes mellitus, WHO has stated that up to 347 million people

worldwide suffered from diabetes mellitus in 2008, and the incidence is so rapidly increasing

that estimating number will almost double by 2030[8].

Obesity has been regarded as an independent predictor of left ventricular (LV) diastolic

dysfunction and can cause depression of cardiac function[9,10]. Central obesity is one

independent risk factor for cardiovascular disease and is associated with metabolic

syndrome[11]. Obesity increases the risk of heart failure about two folds even when

hypertension and other related risk factors are corrected [12]. However, after the onset of heart

failure, obesity will be a positive predictor for survival, which is considered as �obesity

paradox� [13-15]. This phenomenon has also been observed in the perivascular and epicardial

white adipose tissues, which demonstrates a potential cardio - protective effects[15]. Diabetes

mellitus also increases the incidence of heart failure, despite correcting age, hypertension,

obesity, hypercholesterolemia and coronary artery disease [16]. The diabetic cardiomyopathy is

characterized as diastolic dysfunction followed by the systolic dysfunction [17]. From the

echocardiography of the diabetic patients without known cardiac disease, the damage of early

diastolic filling, prolonged isovolumic relaxation and increased atrial filling were observed [18].
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Metabolic syndrome, also as a major risk factor of cardiovascular disease, has been

considered as a direct precursor of diabetes mellitus [19-23]. The National Cholesterol

Education Program�s Adult Treatment Panel (ATP ) report has identified six components

of metabolic syndrome that related to cardiovascular disease, including abdominal obesity,

atherogenic dyslipidemia, hypertension, insulin resistance / glucose intolerance, and

proinflammatory and prothrombotic states[24].

Pathophysiologically, the onset and progression of obesity, diabetes mellitus and metabolic

syndrome are complicated and still not fully elucidated, among which the activation of

sympathetic nervous system and a marked adrenergic hyperactivity are mostly observed [2,25-

32]. Metabolic syndrome is associated with sympathetic activation, possibly attributed to the

neural mechanism (direct activation of sympathetic nerve system and renal afferent nerve

activation), genetic factors ( -adrenoceptor polymorphisms), metabolic factors

(hyperinsulinemia, insulin resistance and dysregulated production and secretion of

adipokines), reflex factors (an impairment to restrain the adrenergic cardiovascular drive in

the baroreflex), psychological stress, oxidative stress, obstructive sleep apnea and

inflammation[32,33], among which insulin resistance (IR) is proposed as a �driving force� of

the metabolic syndrome[34,35]. In the obese normotensive individuals, elevation of sympathetic

outflow was observed from the examinations of circulatory catecholamines, urine

norepinephrine, muscle sympathetic nerve activity (MSNA) of postganglionic sympathetic

nerve fibers, and renal norepinephrine spillover [36,37]. In obesity, the degree of the

sympathetic activation paralleled closely to the increase of body mass index (BMI)[31]. Most

studies have demonstrated that the -adrenoceptor polymorphisms accompanying the

sympathetic hyperactivity are associated with hypertension, obesity and diabetes mellitus[38,39].

In addition, the sympathetic overdrive can be observed in obese individuals predisposed to

metabolic syndrome before hypertension happens[32]. And there is also an evidence that

obesity  did not generalize sympathetic hyperactivity, but caused differential activation

of tissues sympathetic activities [40,41]. The importance of the sympathetic nervous system in

the cardiovascular disease has already been clarified from the cardiac arrhythmias,

hypertension, cardiomyopathy and progressive heart failure to the final death [2,42].

  Previous research about obesity-related cardiac dysfunction showed controversial results

from different animals or experimental models, such as obese rats or rabbits induced by

special dietary, genetic obese rats etc. [43-51]. There are complex alterations in cardiac structure

and function which occur in obesity and obesity-related diseases, including the reduced

myofilament calcium sensitivity, changed calcium handling proteins and calcium transients,
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and changed -adrenergic pathway [50,52-54]. But the mechanism responsible for those changes

has not been well understood. Several methods with different species have been used to

explore the influences of diabetes on the cardiac function, such as echocardiography, isolated

heart perfusion,  LV catheterization, LV papillary muscles and magnetic resonance

imaging (MRI)[16,55-60]. And many mechanisms were also studied to explain the cardiac

dysfunction in diabetes mellitus, including the metabolic disorders and structural remodeling

caused by hypertrophy, apoptosis, necrosis and fibrosis, changes in the cardiac autonomic

neuropathy and calcium handling[57,61-66]. Nevertheless, from those evidences, the responsible

factors for the myocardial dysfunction in diabetes are still incompletely established.

Although obesity is associated with lower perioperative mortality (mentioned as �obesity

paradox�), patients with the metabolic syndrome are exposed to a higher mortality risk during

the perioperative period [67]. Such obesity paradox has also been reported in critically ill

patients [68], including those with severe sepsis [69]. However, several large clinical studies

challenge the validity of the obesity paradox [70] and obese trauma patients are at risk of

higher mortality from persistent hemorrhage [71]. In diabetic patients, diastolic dysfunction

and a reduced response to -adrenoceptor stimulation are observed which may contribute to

hemodynamic instability during the perioperative period. Although metabolic syndrome is

associated with increasing catecholamine levels and sympathetic activity that chronically

stimulates -adrenoceptors[72], the -adrenoceptor signaling pathway has been inadequately

studied in this situation.

  Alterations in the -adrenoceptor signaling pathway have been observed in senescent[73] and

type 1 diabetic rats[55]. While an increase in sympathetic nervous system activation is an

important mechanism for maintaining cardiac output, the positive inotropic response to -

adrenoceptor stimulation is markedly altered in type 1 diabetic rats, in part, owing to the

down-regulation of 1-adrenoceptor and the up-regulation of 3-adrenoceptor, source of a

negative inotropic effect. Active efflux transporters, namely the multidrug resistance-

associated protein 4 (MRP4), acts also as an independent endogenous regulator of

intracellular cyclic nucleotide levels (3�-5�-cyclic adenosine monophosphate, cAMP), [74] and

has been recently shown to be involved in -adrenoceptor dysfunction during aging [75].

Zucker obese rat (fa/fa) is considered as a reliable model of metabolic syndrome.[76]

Moreover, this model enables us to study separately obesity and obesity associated with type

2 diabetic status[77]. Zucker obese rats develop metabolic syndrome characterized by obesity

because of the hyperphagia due to a mutation in the leptin receptor[76,78,79], insulin resistance,

hyperinsulinemia, hypertriglycemia and hypercholesterolemia[80]. Zucker obese diabetic
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(Zucker diabetic fatty, fa/fa) rats are originated from the selective breeding of Zucker rats

with high glucose, which develop hyperphagia due to the nonfunctional leptin receptor,

leading obesity and prediabetic state similar to humans[81].

The aim of this study was to compare the -adrenoceptor signaling pathway in Zucker lean,

Zucker obese, and Zucker obese diabetic rats. This pathway was assessed both  using

echocardiography and  using isolated LV papillary muscle. Our hypothesis was that

metabolic syndrome is associated with -adrenergic dysfunction to some degree, which is

aggravated when associated with diabetes. We precisely assessed the effects of -adrenergic

stimulation on both contraction and relaxation, and particularly focussed on the following

possible mechanisms involved,  down-regulation of 1-adrenoceptors, up- regulation of 3-

adrenoceptors, and up-regulation of MRP4[55,73-75].



7

Chapter Two

Background

  Heart works on the basis of the normal fundamental properties of the heart muscles and

numerous modifying, protecting and controlling effects under the nerves, chemicals and

mechanical mechanisms on them [82]. Control mechanisms are very important to achieve and

regulate the physiology of heart. These control mechanisms can be exerted at the central

nervous system levels or at the periphery levels, or through the integrative signals transmitted

by the local metabolites. Two divisions of the autonomic nervous system, along with their

primary messengers / neurotransmitters and two major types of specific receptors, conduct

different functions in the cardiovascular reactions[83]. The sympathetic nervous system /

adrenergic nervous system acts through the adrenergic receptors, while the parasympathetic

system acts through the cholinergic receptors. The adrenergic receptors / adrenoceptors are

associated with the strengthened contractility and heart rate ( -adrenoceptor) or the

enhancement of the arteriole tone ( -adrenoceptor). The cholinergic receptors react to their

primary messengers, acetylcholine, and exert the opposite effects of adrenergic stimulations.

As Rockman, et al. [84] concluded that �

�.

There are two main types of adrenergic receptors, -adrenoceptors and -adrenoceptors.

The density of 1-adrenoceptor in human heart is only 10% - 15% of the density of -

adrenoceptor. The maximal positive inotropic effect by the stimulation of 1-adrenoceptor is

far less than the effects under the stimulation to -adrenoceptor[85]. 2-adrenoceptor in human

heart is still not fully understood. However, it has been observed that stimulation to 2-

adrenoceptor could inhibit the norepinephrine release in the presynaptic component of

sympathetic nerve endings in human heart[85,86], thus affecting the plasma norepinephrine

levels, especially in patients with heart failure. -adrenergic receptors are class of G protein-

coupled receptors, with three subtypes 1-adrenoceptor, 2-adrenoceptor and 3-adrenoceptor.

1-adrenoceptor subtype is the main cardiac -adrenergic receptor, while most 2-

adrenoceptors are noncardiac receptor[87]. Although they have different distributions within

different tissues, organs and species, they can co-exist in the same ventricular cell and exert

the positive inotropic responses[88]. In the human heart, -adrenoceptors, such as 1-
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adrenoceptor and 2-adrenoceptor, play important roles not only in the physiological status,

but also in diseased conditions. Different cardiac receptors related pathways participate in the

regulation of cardiac performances: some receptors work via the Gs protein - adenylyl cyclase

pathway, such as -adrenoceptors and histamine receptors; some work via the Gi protein -

adenylyl cyclase pathway, such as muscarinic receptors and adenosine receptors; and some

others work via Gq/11 protein - phospholipase C - protein kinase C pathway, including 1-

adrenoceptor and angiotension  receptors[85].

1 Physiological and pathophysiological -adrenergic receptor signaling

pathway in the heart
1.1 The physiological characteristics of -adrenergic receptors signaling pathway in the heart

of animals and human

In human heart, 1-adrenoceptor and 2-adrenoceptor co-exist, 1-adrenoceptor being

predominant [89]. Both -adrenoceptor subtypes couple to Gs protein, increase the cAMP

levels and induce the positive inotropic and chronotropic effects , and . In atria,

stimulation to 1-adrenoceptor and 2-adrenoceptor can cause maximal physiological effects.

But in ventricles, only stimulation to 1-adrenoceptor can evoke maximal effects, and

stimulation to 2-adrenoceptor causes submaximal results[89]. In rats and murines hearts,

stimulation to 1-adrenoceptor can induce the positive inotropic and chronotropic effects, but

facilitate the cardiomyocytes apoptosis as well[90-94].

The post-receptor signaling pathway of 1-adrenoceptor is widely clarified to conduct the

positive inotropic effects, the lusitropic / relaxant effects, the chronotropic effects and the

dromotropic effects under the -adrenergic stimulation[82]. The cardiac inotropic effect is

regulated mostly by the amount of calcium ions entry into cytosol during the process of

activation. -adrenergic stimulation can enhance the force of contraction (positive inotropic

effect) and the rate of relaxation (lusitropic effect), then change the pattern of contraction and

relaxation (Fig. 2-1) [82].
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Fig. 2-1 The effects of -adrenergic stimulation on the pattern of cardiac contraction.

Reproduced from Opie [82]

-adrenergic stimulation to -adrenoceptor induces molecular changes, then the binding of

Gs protein to guanosine 5� � triphosphate (GTP) catalyses subunit of adenylyl cyclase to

produce cAMP from adenosine 5� � triphosphate (ATP). Positive inotropic effect in response

to -adrenergic stimulation involves some pathways: 1) -adrenergic stimulation increases

cAMP-mediated activation of protein kinase A (PKA) that subsequently increases the

phosphorylation of sarcolemmal protein of the calcium channels by PKA; thereby increases

the inward calcium current (Ica), causing a great rate of calcium-induced calcium ions release

through the ryanodine receptor (RyR). 2) -adrenoceptor stimulation increases cAMP-

mediated activation of PKA that subsequently increases the phosphorylation of

phospholamban (PLB), enhancing re-uptake of calcium into the sarcoplasmic reticulum (SR);

then, preloading the SR with more calcium ions will increase the amount of calcium ions

released in response to any amount of trigger calcium; thus, the contractile response will be

further stimulated[95]. 3) increase of intracellular free calcium ions enhances de - inhibition of

actin and myosin by interaction of calcium with troponin C, and promotes actin-myosin

interaction; 4) increase in intracellular free calcium ions accelerates splitting of ATP by

myosin ATPase to increase the rate of development of contractile forces; thus, -adrenoceptor

stimulation increases the crossbridge cycling[82,96].

-adrenergic stimulation can also enhance the rate of relaxation (lusitropic effect), then

change the pattern of contraction and relaxation[82]. Lusitropic effect is mostly induced at a
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subcellular level by the increased activity of calcium pump in the SR in response to the

phosphorylation of phospholamban by cAMP and PKA. Sarco(endo)plasmic reticulum Ca2+-

ATPase (SERCA) is a calcium uptake pump of sarcoplasmic reticulum, constituting about

40% of the protein component of SR with the major mechanism of reducing the cytosolic

calcium ion level and initiating diastole[82]. In the rabbit myocardium, nearly 75% of the

activator calcium is removed by calcium uptake pump of SR, and sodium / calcium exchanger

(NCX) removes nearly 25%, and only about 1% is removed by the calcium pump of

sarcolemma or transported into mitochondria[97]. Thus, the most majority of calcium released

from SR return to its origin site by the activity of SERCA. There are three different genes

encoding for SERCA, among which the SERCA2a is predominately expressed in cardiac

tissues (cardiac isoform, SERCA2a)[98]. The activity of SERCA2a depends on the amount of

SERCA2a proteins, and is normally inhibited by phospholamban[99]. -adrenergic stimulation

can relieve this inhibition via cAMP and PKA phosphorylating phospholamban, therefore the

calcium uptake is stimulated. Lusitropic effects of -adrenergic stimulation involve several

pathways: 1) -adrenergic stimulation, via cAMP and PKA, phosphorylates phospholamban,

increases the turnover and sensitivity of SERCA2a, and further increases the removal of

calcium out of cytosol; 2) phosphorylation of plasma member sodium pump could increase

the calcium efflux via sodium/calcium exchanger; 3) phosphorylation of troponin I could

reduce the calcium binding through decreasing the calcium sensitivity to the troponin I

complex, and further increase the rate of crossbridge detachment. 4) increased intracellular

calcium level, via calmodulin and calmodulin-dependent kinase (CaMK), enhances the

phosphorylation of phospholamban directly[82,96]. Thus, the contraction and relaxation rates

are both enhanced, which are the positive inotropic effects and the positive lusitropic effects.

1-adrenoceptor / Gs protein coupling pathway can also evoke PKA-independent, CaMK -

mediated apoptotic procedure. Figure 2-2 demonstrates the signaling pathway of 1-

adrenoceptor and 2-adrenoceptor in cardiomyocytes[100].
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Fig. 2-2 Signaling pathway of 1-adrenoceptor and 2-adrenoceptor in cardiomyocytes.

ARK-ct, a peptide inhibitor of Gi  signaling; LY294002, a PI3K inhibitor. PTX: pertussis

toxin; ARK: -adrenergic receptor kinase; PI3K: phosphatidylinositol 3-kinase; Akt: protein

kinase B; AC: adenylyl cyclase; cAMP: 3 ,5 -cyclic adenosine monophosphate; PKA: protein

kinase A; PLB: phospholamban; CaMK : calmodulin-dependent kinase .

Reproduced from Zheng et al. [100]

The role of cardiac 2-adrenoceptor has still not been fully understood. One early research,

using transgenic mice of over - expressing human 2-adrenoceptor (TG4 mice), first

confirmed the biochemical evidences that 2-adrenoceptor was coupled to both Gs protein and

Gi protein[101]. The ventricular myocytes of wild - type (WT) and TG4 mice did not develop

the increased contractile responses to the stimulation of 2-adrenoceptor agonists, unless the

Gi protein activity was inhibited by pertussis toxin (PTX). That was to say that the activation

of 2-adrenoceptor - Gi protein system would preclude the positive inotropic responses under

the 2-adrenoceptor stimulation. In WT mice pretreated with 1-adrenoceptor blockade or in

1-adrenoceptor knock-out mice, stimulation of isoproterenol (a mixed agonist) could not

induce positive inotropic responses[102,103]. These results indicate that the positive inotropic

responses under isoproterenol were mostly attributed to 1-adrenoceptor stimulations in WT

mice cardiac myocytes or [102,104,105], whereas 2-adrenoceptor - Gi protein coupling

induced a negative feedback to -adrenoceptor stimulations. Because of the concurrent

coupling to Gi protein, 2-adrenoceptor seems dormant and shows no significant function in

the regulation of contractions in cardiac myocytes or myocardiums of mice and other
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mammalian species[88,101,103,106]. Nevertheless, 2-adrenergic stimulation can still function via

the Gs protein - adenylyl cyclase - cAMP - PKA pathway, and exert the positive inotropic and

lusitropic effects similar to the 1-adrenoceptor stimulations. In all, 2-adrenoceptor is

coupled to Gs protein and Gi protein in rats and murines, and can cause anti - apoptotic

effects[90-94,107-109]. In isolated human atrium and ventricular myocardium, activation of 2-

adrenoceptor can induce similar effects as the stimulation to 1-adrenoceptor, including

increased contractile force, and enhanced relaxation through cAMP dependent

phosphorylation of phospholamban and troponin I[110-113]. These evidences show that 1-

adrenoceptor and 2-adrenoceptor in human heart are both coupled to Gs protein. However,

whether 2-adrenoceptor is coupled to Gi protein as in rats and murines hearts, it is still in

debate.

Researchers found that different 2-adrenoceptor agonists may activate different fashion of

pathway, either 2-adrenoceptor - Gs protein pathway or 2-adrenoceptor - Gs protein and 2-

adrenoceptor - Gi protein pathways[114-116]. An early study found that nebulised 2-

adrenoceptor agonist could cause different cardiovascular effects in healthy human heart,

which showed that fenoterol induced significantly greater chronotropic electrocardiographic

and inotropic effects than terbutaline did [117]. In animal experiment, terbutaline was observed

to couple to Gs protein and Gi protein, and fenoterol only coupled to Gs protein[116]. Another

research found that a 2-adrenoceptor antagonist (ICI118,551) worked as the agonist to Gi

protein in ventricular cardiomyocytes of human failing heart (increased Gi protein activity in

failing heart), which was the direct negative inotropic effects, whereas this did not occur in

non-failing human heart (normal Gi protein activity in healthy heart) [118]. Besides, 2-

adrenoceptor coupled to the inhibitory G protein Gi can activate the phospholipase A2 /

arachidonic acid pathway[119,120]. The coupling of 2-adrenoceptor to the inhibitory protein Gi

also activates the Gi protein - PI3K - Akt pathway, which can compartmentalize and

counteract the Gs protein - adenylyl cyclase - cAMP - PKA signaling pathway[100]. Thus

cardiac 2-adrenoceptor - Gi protein pathway might be more important in rodents than in

human. In the failing heart, the percentage of 2-adrenoceptor may double as that in the

normal ventricle, while the 1-adrenoceptor down-regulates. It has been suggested that the Gi

pathway is associated with an anti - apoptotic mechanism which benefits in the failing

heart[121,122]. Therefore, 2-adrenoceptor is regarded to work via both the stimulatory G protein

Gs and the inhibitory G protein Gi, with the former dominating physiologically and the latter

dominating pathologically (Fig. 2-2)[100,108].
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3-adrenoceptor mainly functions in the adipose tissues, and also acts in the heart. Unlike

1-adrenoceptor and 2-adrenoceptor, the cardiac 3-adrenoceptor is lack of the PKA

phosphorylation site and has fewer serine / threonine residues in the C - terminus tail[123]. So,

under the sustained adrenergic stimulations or high catecholamine levels, the 3-adrenoceptor

may preserve the responses, whereas 1-adrenergic and 2-adrenergic responses may diminish

them[119,124]. In human, the cardiac 3-adrenergic stimulations were found to reduce the

cardiac contractility and induce a negative inotropic response, but a positive chronotropic

effect[119,125,126]. However, this positive chronotropic effects  by 3-adrenergic

stimulation could be inhibited by 1-adrenoceptor and 2-adrenoceptor blockades, implying

that these effects might be attributed to the baroreflex activation resulting from the

vasodilation induced by 3-adrenergic stimulation [127]. The concentration - dependent

negative inotropic effects were observed under different 3-adrenergic stimulations in rabbit

ventricular cardiomyocytes and rat Langendorff - perfused heart[128-130]. Meanwhile, the 3-

adrenergic stimulation was found to induce a negative lusitropic effect, and counteract the

positive lusitropic effect by isoproterenol in rats[130]. These suggest that the lusitropic effects

by 3-adrenergic stimulation would counteract the excessive responses by 1-adrenergic and

2-adrenergic stimulation to keep a normal cardiac function. The cardiac effects of different

3-adrenergic stimulations are also variable among different tissues and species. The

responses of contractility by 3-adrenergic stimulations are significantly different between

artria and ventricles in rats, but not in human[119,124]. Absence or very low effects of 3-

adrenergic stimulations were observed in rats atria[119]. In the neonatal rats cardiomyocytes,

there are also lack of responses to 3-adrenergic stimulation[131]. Almost no 3-adrenoceptor

expression in heart was observed in rat myocardium[132]. The attenuation of cardiac responses

to the 3-adrenergic stimulations is suggested to involve the alterations in the excitation -

contraction coupling and transmembrane ions channels activities[119]. The post - receptor

signaling pathway of 3-adrenoceptor in heart is not coupled to Gs protein, but the Gi protein

(Fig. 2-3). In rodent adipocytes, 3-adrenoceptor is coupled to both Gs and Gi proteins[133,134].

In human ventricular myocardium, the activation of Gi protein causes the activation of the

nitric oxide (NO) pathway rather than the inhibition of adenylyl cyclase, suggesting that the

3-adrenoceptor - NO - guanylyl cyclase - cyclic guanosine monophosphate (cGMP) pathway

may function as a negative feedback to the positive inotropic effects under the -adrenergic

stimulations in heart[126,135]. And NO could also mediate the cardiac responses in a cGMP -

independent way through the covalent modifications of the key proteins[119]. Nevertheless, the
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negative inotropy induced by the cardiac 3-adrenoceptor still remains subtle in healthy

tissues[136].

Fig. 2-3 Signaling pathway of 3-adrenoceptor in cardiomyocytes. NOS: nitric oxide

synthase; NO: nitric oxide; GC: guanylate cyclase; cGMP: 3',5'-cyclic guanosine phosphate.

Reproduced from Rozec et al. [119]

Additionally, a �putative 4-adrenoceptor�, identified as a low - affinity state of 1-

adrenoceptor ( 1L-adrenoceptor), was found to exert positive inotropic effects and hastening

relaxation through Gs protein - cAMP - PKA pathway under the stimulation of non -

conventional partial agonist[137-139]. These agonists, originally as 1-adrenoceptor and 2-

adrenoceptor antagonists, induced the stimulant effects at a higher concentration than the

blockade concentration to 1-adrenoceptor and 2-adrenoceptor[137].

-adrenoceptor genetic polymorphisms play important roles in cardiac function, with two

functional important single nucleotide polymorphisms (SNPs) in 1-adrenoceptor gene:

Ser49Gly and Arg389Gly; and three important SNPs in 2-adrenoceptor gene: Arg16Gly,

Gln27Glu and Thr164Ile[85]. Although still conflicting, it seems that they act as risk factors

rather than disease causing genes in cardiovascular diseases, which could exert influences on

the development and progress of disease.

1.2 The pathophysiological changes of -adrenergic receptor signaling pathways in the heart

of two commn diseases

  The state of aging or chronic heart failure (CHF) both facilitate sympathetic activity, which

shows an increase of plasma norepinephrine / epinephrine levels but a diminished functional

responses to -adrenergic stimulations. The employment of -blockers, including carvedilol,
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metoprolol, bisopolol and nebivolol, has shown beneficial effects on the survival and left

ventricular remodeling in the chronic heart failure[140,141]. It further confirms the state of

enhanced adrenergic drive in the development of cardiac dysfunction. Although the exact

mechanisms still remain unclear, functions of -adrenoceptor signaling pathway might change

as following under both diseased conditions: 1) deficiency of the excitation - contraction

coupling mechanism; 2) down - regulation of 1-adrenoceptor, including reduced 1-

adrenoceptor density; 3) changes in the -adrenoceptor - G protein pathway, including

uncoupling or reduced reaction to the Gs protein - adenylyl cyclase - cAMP pathway, and

enhanced Gi protein; 4) an up - regulation of G protein-coupled receptor kinase (GRK) and -

adrenoceptor desensitization; 5) a decreased re-uptake of neuronal uptake transporter[85,142].

As mentioned about Gi protein, at least in rats, stimulations to cardiac -adrenoceptor can

exert proapoptotic effects via 1-adrenoceptor - Gs protein pathway, and anti - apoptotic

effects via 2-adrenoceptor - Gi protein pathway[142,143]. Meanwhile, cardiac Gi protein might

protect patients with chronic heart failure from catecholamine-related arrhythmias[144,145].

However, the influences of Gi protein in patients with chronic heart failure are still under

explorations.

In aging heart, the reduced responsiveness to -adrenoceptor stimulation is associated with

the deficiency in the -adrenoceptor signaling pathways of both 1-adrenoceptor and 2-

adrenoceptor, while the primary characteristics of excitation - contraction coupling is

unchanged[142]. Although conflicting results were observed in the selective reduction of

myocardial 1-adrenoceptors and 2-adrenoceptor in aging heart, some research still

confirmed non - selective reduced -adrenoceptor density in aged rats ventricular myocytes

and myocardium[142,146]. In senescent rats, the down - regulation of 1-adrenoceptor and 2-

adrenoceptor, and the up - regulation of 3-adrenoceptor have also been confirmed[73,142]. This

change is different from the condition in the failing heart, predominately down - regulation in

1-adrenoceptor but almost no change in 2-adrenoceptor density[147-149]. Meanwhile, the age -

related reduction in the cardiac adenylyl cyclase activity might also contribute to the

decreased responses to agonists of both -adrenoceptors. The sarcolemmal L - type calcium

channel was same between ventricular myocytes of young and aged rats[150]. Similar to the

hypertrophic or failing heart, the reduced contractile responses to 2-adrenoceptor

stimulations was observed due to the reduced amplification function of SR in the aged rats.

Considering the changes of Gi protein, there were also different findings in rats, but some

researchers still confirmed that age - related changes of -adrenoceptor signaling system were

not associated with the biochemical or functional alterations of pertussis toxin (PTX) -
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sensitive G protein (Gi protein) [142,151-153]. This is also different from the changes in the

failing heart, which demonstrated the elevated abundance and functional activity of Gi protein
[154,155].

Additionally, -adrenergic receptor kinase (a GRK), is up - regulated and can promote the

binding of -arrestins to the phosphorylated receptor in the failing hearts and hypertrophic

hearts[156-158]. This causes the uncoupling of -adrenoceptor to Gs protein pathway and

consequently the decreased responsiveness of -adrenoceptor to the agonist stimulation[85].

Actually, for most of the G protein coupled receptors, increased exposure to the stimulations

by agonists would lead to a reduction in responsiveness of receptors, which is called

desensitization. This desensitization might be initiated by the phosphorylation of GRK family

to the activated receptors[142]. Among which, GRK2 is the most common isoform and crucial

to myocardial function. However, the role of the GRKs is still not totally clarified in human

heart. The major stimuli to activate GRK2 are -adrenoceptor stimulations. In fact, some

animal and human experiments observed the decreases of GRK2 activation under -

adrenoceptor blockades in failing heart[89,159]. In animal models of heart failure, a C - terminal

domain of GRK2 ( ARKct) was found to inhibit GRK2 activity, reduce cardiac hypertrophy

and reduce the progressive worsening of myocardial function[160,161]. However, in aging heart,

no changes of GRK2 and its activity were found[142,162].

2 Obesity and diabetes mellitus related cardiomyopathy and the alterations

in the -adrenergic receptor signaling pathway
2.1 Obesity related cardiac dysfunctions and alterations in the -adrenergic receptor signaling

pathway

Obesity has been paid ever-increasing attentions not only for the obesity influences ,

but also for its prevalent co - morbidities, including diabetes mellitus and cardiovascular

disease[124,163]. In the obese human, there are cardiac hypertrophy, hyperkinetic circulation and

cardiac dysfunction[164-166]. Cardiovascular dysfunction in the clinically severe obesity was

first reported in the obese volunteers through cardiac catheterization, who showed decreased

left ventricular compliance and stroke work index, and increased LV end-diastolic

pressure[167].These abnormalities are all correlated to the severity of obesity[167]. And the

correlations between obesity and left ventricular mass, as well as the correlations between

body weight and diastolic dysfunction, have all been confirmed [168,169]. In the young healthy
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obese women, the systolic function, diastolic function, and cardiac efficiency are all

decreased[170,171].

As in obese human, Zucker obese rats showed declined left ventricular functions[172]. The

contractile dysfunction has been observed in several studies in Zucker obese rats or obese

rabbits[43,54,173,174]. Zucker obese rats were shown to develop diastolic dysfunction with

preserved left ventricular ejection fraction since 9 weeks of age[175,176]. This is in accordance

with the finding in isolated hearts of obese rabbits shown since a decrease in maximal rate of

pressure rise (+ dp/dt) and the maximal rate of pressure decline (� dp/dt) in response to the

stimulation of forskolin has been observed[96]. In young Zucker obese rats (12 - 15 weeks of

age), an increased LV end - systolic pressure[81], or higher LV developed pressure has been

observed[177,178]. Some researchers observed unchanged LV fractional shortening, cardiac

output, LV end - systolic pressure and LV end - systolic pressure - volume relation, along

with increases in the LV end - diastolic pressure, LV relaxation constant Tau and LV end -

diastolic pressure - volume relation in the Zucker obese rats at 24 weeks of age[172]. These

results demonstrate that the LV diastolic function is impaired but with relatively preserved

systolic function during obesity. A recent study used hypercaloric - diet Wistar rats for 30

weeks which exhibit obesity, slight hyperglycemia, hyperinsulinemia and hyperleptinemia,

but no differences in protein and lipid levels [7]. Meanwhile, these obese Wistar rats showed

no structural remodeling or changes in heart rate, systolic arterial blood pressure, and

performances of LV papillary muscles after inotropic maneuvers (myocardial stiffness,

postrest contraction, increase in extracellular calcium concentration, and change in heart rate).

These results are similar with previous studies, including isolated hearts of obese rabbits with

high - fat diet for 12 weeks and isolated cardiac myocytes of obese Sprague - Dauley rats with

high - carlorie diet for 14 weeks[47,49], but different with diverse general characteristics and /

or reduced myocardial mechanical functions in obese animals of other studies[10,48,179-182].

Meanwhile, in the research of LV papillary muscles , there were also functional

impairments in response to the progressively higher extracellular concentration of calcium

and post-rest contraction stimulus, shown by the lower responses of peak developed tension

and the lower maximum speed of the negative variation in developed tension (-dT/dt) in obese

Wistar rats[44]. In the obese hypertensive rabbits experiment, responses to -adrenoceptor

stimulation were decreased both in isolated heart and isolated papillary muscles[43].

Cardiac remodeling has been proposed as an adaptive trait of obesity[183]. It has been

observed in many researches about obesity, especially in long - term obesity[50,179,184,185]. It

could be elicited directly by the increases in cardiac preload and afterload, and indirectly



18

through the cardio - metabolic changes related to obesity, including dyslipidemia, insulin

resistance and diabetes[186,187]. As a core abnormality of obesity, insulin resistance, along with

hyperinsulinemia, could facilitate cardiac remodeling through the growth - promoting

property of insulin, or through reduced anti - apoptotic signaling pathway

(phosphatidylinositol 3 - kinase (PI3-K) / Akt pathway) evoked by the activation of insulin

receptor[188]. The cardiac remodeling in obesity may significantly influence the cardiovascular

functions. Some animal experiments have shown a decreased or unaltered systolic function

through echocardiography[45,189,190]. One observation, in the long - term high - fat diet induced

obese Wistar rats, showed elevated systolic function, including the increased endocardial and

midwall fractional shortenings and posterior wall shortening velocity (PWSV) [179]. One

explanation of these findings was the decreased afterload and left ventricular contractility

improvement. The diastolic dysfunction in obesity could be found as a higher A wave and a

lower E/A ratio using echocardiography, and the prolongation of isovolumic relaxation time

(IVRT), which directly shows an impairment of cardiac filling[191-196]. Diastolic filling

includes the active relaxation associated with calcium handling, and the passive properties of

myocardium related to the viscoelastic characteristics[97,197-200]. The diastolic dysfunction

might be attributed to the metabolic abnormalities (insulin resistance, hyperinsulinemia and

hyperglycemia), hemodynamic changes, and / or calcium handling homeostasis in

obesity[201,202]. However, a diet with moderate fat in the obesity - prone Sprague - Dawley rats

was only found to induce higher body weight, body fat gain, serum leptin and cholesterol[45].

In these obesity - prone rats, no differences were observed in the arterial blood pressure, left

ventricular systolic or diastolic function.

The basic mechanisms resulting in the cardiac dysfunction in obesity are still under debate,

including a changed -adrenergic signaling pathway. At first, researchers found that reduced

-adrenoceptor density was associated with the impaired contractile responses[54]. This early

experiment in Zucker obese rats aged 22 weeks showed that the impairment in response to -

adrenoceptor stimulation was associated with both reduction in the number of -

adrenoceptors and changed coupling between -adrenoceptor and Gs protein in heart tissue

membranes. Later, conflicting results were published, suggesting that the impaired inotropic

responses in obesity occurred with unchanged -adrenoceptor expression[203,204]. Experiments

in obese rabbits did not demonstrate differences in -adrenoceptor density or affinity[204]. In

the cardiomyocytes of  mice, the abundance of 1-adrenoceptor and 2-adrenoceptor was

not altered[203]. In obese hypertensive rats experiments, a decreased response to -

adrenoceptor stimulation was observed together with a decreases in -adrenoceptor number
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and affinity[174]. The decrease in -adrenoceptor number might also be attributed to slight

hypothyroidism in Zucker obese rats, since the thyroid hormone could elevate the -

adrenoceptor levels[205]. Responses to -adrenoceptor stimulation was reduced both in isolated

heart and LV papillary muscles in the obese hypertensive rabbits[43], and the possible defect

site may lie in post- -adrenoceptor signaling pathways[96].

The post- -adrenoceptor signaling pathways include series of components and cascade

reactions. The switching of Gs and Gi proteins mediated the isoproterenol - induced cardiac

hypertrophy in neonatal rats[206]. In the heart of mice, Gs protein and Gi protein levels

were both reduced, among which only Gs  protein (52kDa) could be restored after leptin

replenishments. It has been supported that, in the G proteins stimulating adenylyl cyclase, the

long splice Gs  protein - 52kDa showed greater potency and more basic activity than the

short splice Gs  protein - 45kDa[207]. The activity of adenylyl cyclase of the cardiomyocytes

in obesity shows different findings. The activity of adenylyl cyclase in the heart of diet -

induced obese rabbit or  mice was unaltered[203,204]. The findings in the  mice (10

weeks of age) demonstrated significantly impaired cardiac -adrenergic inotropic responses as

depressed responses to forskolin and dibutryl cAMP, whereas preserved adenylyl cyclase

activity and reduced PKA activity were observed[203]. Further, experiments in obese rabbits

did not demonstrate differences in the adenylyl cyclase activity or coupling of the -

adrenoceptor to adenylyl cyclase activation [204]. At the same time, the decreased response to

-adrenoceptor stimulation was also observed to be associated with reduction of cAMP

production and SR calcium uptake in the obese hypertensive rats[174]. The cardiac adenylyl

cyclase activity of Zucker obese rats under the stimulation to the -adrenoceptors exhibited a

marked age - dependent reduction[205]. One research[174], using ventricular myocytes of female

spontaneous hypertension-heart failure(SHHF)/Mcc-  and JCR:LA-  rats, found that

obesity  would not influence the accumulation of calcium in SR, but could reduce the

cAMP production. Nevertheless, if obesity is associated to hypertension, SR calcium

accumulation and cAMP production would both be depressed. PKA is very important in the

regulation to the downstream of cAMP mediated phosphorylations in the -adrenergic

signaling pathway[82], including the phosphorylation of PLB, which is pivotal for removing

the inhibition of PLB on SERCA2a, allowing increases in calcium re-uptake, and

consequently increased contractility. The PKA activity in the  mice was depressed, and

the production of phospho - phospholamban (P-PLB) was reduced [203]. Meanwhile, in the

 mice, SR calcium stores were depressed even under the seemingly compensatory up -

regulated SERCA2a expressions[203].
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Obesity related cardiac dysfunction is also related to the alterations in the intracellular

calcium handling. Several studies in obese Wistar rats induced by hypercaloric diet for 15

weeks, showed cardiac dysfunction [44,51]. This dysfunction suggested that obesity might

impair the regulatory calcium channels in the myocardium, especially the sodium / calcium

exchanger, L-type calcium channels of the sarcolemma, SR and myofilaments sensitivity to

calcium[44,163]. Besides, the decreased maximum speed of the positive variation in developed

tension (+dT/dt) under the -adrenergic stimulation was observed with a decreased

phosphorylation of phospholamban via calcium - CaMK in obese Wistar rats[44]. In high -

calorie diet induced obese Sprague - Dawley rats, there was also a cardiac contractile

depression due to the reduced phosphorylation of phospholamban, even though the increases

of proteins expression in SERCA2a and phospholamban were found[50]. Meanwhile, the

unchanged proteins expression of SERCA2a, RyR2 and phospholamban was observed in non

- obese rats with high - calorie diet [48], which further confirmed the influences of obesity, not

just high fat dietary, on the calcium related proteins expression. In hypercaloric - diet Wistar

rats (for 30 weeks), no changes of responses under the inotropic stimulations was noted [7].

The possible reasons for non - significant inotropic stimulation effects in those long - term

obesity rats might be the unaffected intracellular calcium - cycling related proteins levels (L -

type calcium channel, SERCA2a, calsequestrin), and further the preserved intracellular

calcium entry and resequestration even when the down - regulation of phospholamban

phosphorylation at Ser16 was observed[179]. The cardiac -adrenergic inotropic responses

were impaired in the  mice at 10 weeks of age[203]. This isolated cardiac myocytes model

showed reduced sarcomere shortening and calcium transient under the stimulation of

isoproterenol, and decreased calcium stores in SR in the obese mice. They also observed

decreased expressions of Gs  protein, Gi  proteins and P-PLB, and increased expressions of

SERCA2a. After replenishment of leptin to the cardiac myocytes, the inotropic responses,

PKA activity, levels of P-PLB and SR calcium strores could be restored back to the control

level[203]. These results suggest that the role of PKA activity on the SR calcium cycling

dysfunction, and the leptin - deficiency and resistance might be the cause of cardiac

dysfunction in obesity. In the obese Wistar rats, the up - regulation of the gene expression of

proteins in the left ventricles associated with calcium transport, SERCA2a, ryanodine receptor

(RyR2) and phospholamban, were observed[51]. While the gene expression of proteins related

to sarcolemmal calcium transport, L-type calcium channel (Cacna1c) and sarcolemmal

sodium / calcium exchanger, were unchanged. In the hypertrophied rat heart with pressure -

overload, diastolic dysfunction is an early abnormality associated with the reduced
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transcription of SERCA2 gene[208]. Those results implied that the cardiac dysfunction in

obesity is associated with changes in calcium transport related genes in the SR. Meanwhile, a

pathological cardiac hypertrophy with pressure and volume overload presents a myosin

isoform shift from V1 ( -  dimmer) type to V3 ( -  dimmer)[209].

2.2 Diabetic related cardiac dysfunctions and alterations in the -adrenergic receptor signaling

pathway

  The term �diabetic cardiomyopathy� was first defined as ventricular dysfunction which

occurs in diabetic patients in absence of coronary artery disease and hypertension[210,211]. Now

it is characterized by diastolic dysfunction, with a high prevelance of 60%, even in the well -

controlled type 2 diabetic patients[212,213]. Diastolic dysfunction is the inability to relax and

undergo appropriate filling during the diastolic phase of cardiac cycle. It is usually subclinical,

but may result in diastolic heart failure in the presence of near - normal systolic function[214].

The pathophysiological changes of diabetic cardiomyopathy has not been fully understood,

and some factors, including metabolic disturbances, structural changes, autonomic

dysfunctions, and changes in calcium handling have been proposed for the developments of

diabetic cardiomyopathy[61,63,215]. The pathological processes in the diastolic dysfunction

include myocardium stiffening due to cross - linking and extracellular matrix deposition,

hypertrophy, and neuronal abnormalities[216]. In the clinical studies, the diastolic and systolic

dysfunctions in the type 2 diabetic patients have been identified through Doppler imaging,

echocardiography, radionuclide angiography and other techniques [217]. These abnormalities

include decreased LV ejection fraction, decreased myocardial velocity at early diastole,

abnormal relaxation during the early filling phase, prolonged isovolumic relaxation, low peak

systolic and early diastolic velocity, impaired diastolic relaxation and filling, and reduced

peak filling rate depending on the age, time course and the severity of diabetes mellitus[218-221].

  The mechanisms responsible for cardiac dysfunctions in type 1 diabetes mellitus are still

unclarified, and several factors have been evoked, including decreased myocardial

adrenoceptor density, alterations in contractile proteins, or impaired calcium cellular

movements[222]. Streptozotocin (STZ) - induced type 1 diabetes models were observed to

develop the systolic and diastolic dysfunctions as the duration of diabetes increased. From the

echocardiography observations, researchers confirmed reduced rate of circumferential

shortening and fractional shortening[223,224]. In the analyses from LV catheterization, the

decreased LV systolic pressure and rate of pressure rise or fall during systole and diastole (±

dP/dt) were confirmed [225,226]. However, in our laboratory, previous study found a preserved
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systolic function in STZ induced diabetic rats as shown by the unaltered LV ejection fraction

and fractional shortening during echocardiography[55,56]. Diastolic dysfunction can be

observed in many kinds of type 1 diabetic animals[227], as shown by the prolongation of

isovolumic relaxation time, increased E / A ratio, E / Ea ratio, and LV end-diastolic pressure

in diabetic rats[55,56,228]. The cardiac dysfunction observed in the STZ - induced type 1 diabetic

rats has been regarded to be associated with an increased myocardial activity of inducible

nitric oxide synthase (iNOS), iNOS protein levels and expression of iNOS mRNA levels[55,222].

  In the type 2 diabetic animals, cardiac dysfunction also shows diverse performances[229-231].

The  mice exhibit cardiac hypertrophy with mild or no impairments in systolic

function[232]. The  (C57BL/Ks) mice exhibit cardiac hypertrophy, and marked contractile

dysfunction[233]. In mice (18 weeks of age), which exhibit severe stage of diabetes, left

ventricular systolic and diastolic functions were both preserved [16]. Some studies of the Goto

- Kakizaki (GK) rats also demonstrated cardiac dysfunctions, including decreased heart rate

and LV ejection fraction, and the prolongation of contraction /relaxation[234,235]. Nevertheless,

a previous study performed in the Goto - Kakizaki rats and using isolated heart and the

isolated cardiomyocytes, showed no significant differences compared to the controls[236].

The cardiac function observed in Zucker diabetic (type 2) fatty rats shows highly different

results[81,237-241]. Basically, the characteristics and severity of cardiac dysfunction is age

related. In the Zucker obese diabetic rats aged 10 weeks, researcher found the increased LV

end - diastolic volume and end - systolic volume, reduced LV ejection fraction, and reduced

velocity of circumferential shortening have been noted [81]. In the young Zucker obese

diabetic rats (14 weeks of age), LV dysfunction has been observed with increased end -

diastolic and end - systolic volume, increased end - systolic wall stress, decreased LV ejection

fraction and decreased velocity of circumferential shortening using echocardiography [81]. In

Zucker obese diabetic rats of 19 - 20 weeks of age, either impaired, improved, or unchanged

baseline cardiac functions has been observed using echocardiography or left ventricular

catheterization monitor[222,241-243]. One research performed in aged Zucker obese diabetic rats

(45 weeks of age), using LV magnetic resonance imaging and invasive catherization, showed

only slight impairment of LV diastolic function, whereas LV systolic function was preserved
[244]. Meanwhile, no cardiomyocyte hypertrophy was found in these aged Zucker obese

diabetic rats. This result was consistent with the unchanged cardiomyocyte cross - sectional

area, and unaltered mRNA expressions of hypertrophic markers brain natriuretic peptide

(BNP) and  skeletal actin ( SKA)[244]. This relatively slight cardiac dysfunction markedly

contrasts with the severity of diabetic status in these aged Zucker obese diabetic rats. At the
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same time, right ventricular (RV) dysfunction in Zucker obese diabetic rats was also studied,

which was related to the systematic insulin sensitivity and the decreased insulin - stimulated

glucose utilization in right ventricle[245]. This is consistent with the findings of impaired RV

systolic function in type 2 diabetic patients[246,247]. The remodeling of ventricles in Zucker

obese diabetic rats at 14 weeks of age showed left ventricular hypertrophy without ventricular

dilation, whereas, in the right ventricle, dilation without hypertrophy was noted [245,248]. The

changes in both ventricles and the systolic functions might result from ventricular

interdependence and diabetes influences. The myocardial activity of iNOS, iNOS protein

levels and nitrotyrosine (a biomarker for oxidative damage) were observed to be higher in the

Zucker obese diabetic rats at 20 weeks of age, which could lead to the reduced response to -

adrenoceptor stimulation and decreased contractile function[222]. This result suggests the role

of iNOS in the pathophysiological developments of type 2 diabetes.

The basic mechanisms resulting in the diabetic cardiomyopathy are still under research,

including the alterations in the -adrenergic signaling pathway. In the diabetic patient, a blunt

inotropic response was found under the stimulation of dobutamine, suggesting an impairment

in the cardiac -adrenergic pathway [249]. These authors also confirmed the down - regulation

of 1-adrenoceptor in diabetes mellitus[250,251]. Some previous studies about diabetic rats have

reported the markedly decreased positive inotropic effects of -adrenoceptor stimulations

 and [55,252-256]. In Zucker obese rats associated with diabetes, -adrenoceptor

density and affinity did not change at 6 weeks of age or 10 weeks of age compared with age-

matched Wistar rats, but a significant higher -adrenoceptor affinity was observed at 20

weeks of age[257]. A few studies suggested that the diabetic - related altered positive inotropic

effects were associated with the down - regulation of 1-adrenoceptor, 2-adrenoceptor, and

the up - regulation of 3-adrenoceptor[252,258]. In the hearts of chronic diabetic rats, the density

of 1-adrenoceptor and 3-adrenoceptor were decreased and increased respectively, as in heart

failure[259]. In our laboratory, previous studies have found a decreased expression of 1-

adrenoceptor proteins, and an increased expression of 3-adrenoceptor proteins in type 1

diabetic rats[55,56]. The  diabetic mice showed no significant changes of 1-adrenergic

receptor[16]. While some research showed the insignificant role of the cardiac 2-adrenoceptor

in diabetic ras[55,259]. In our previous studies of diabetic rats, our team already found that the

diastolic dysfunction developed in early and evolved diabetes , whereas the positive

lusitropic effects of -adrenoceptor stimulation were preserved [55,56,260,261]. 3-

adrenoceptor is involved in this impaired positive inotropic response to -adrenergic

stimulations via the endothelial NOS1 - derived NO pathway, and the positive lusitropic
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effects were preserved in spite of the effects of 3-adrenoceptor in the early and evolved

diabetic cardiomyopathy of rats  and [55,56]. These results suggest that the

influence of 3-adrenoceptor on the cardiac dysfunction may vary in different stage of

diabetes. At the early stage, the activation of 3-adrenoceptor may convey a protective effect

against the catecholamine - induced remodeling[124].

The post- -adrenoceptor signaling pathways in diabetic cardiomyopathy also include a

variety of components and interactions. The dual coupling of 2-adrenoceptor to Gs and Gi

proteins can also be found in the isolated cardiomyocytes from STZ - induced type 1 diabetic

rats[262]. The early research about heart tissue membranes of two genetic obese diabetic

animals (7-12 weeks of age), male obese  diabetic mice and obese diabetic CBA/Ca

mice, showed no differences in the response to -adrenergic stimulation, or adenylyl cyclase

activities compared to their controls respectively [54]. Meanwhile, this study did not observe

any alteration of Gs protein levels or the functional reactions between Gs protein and catalytic

unit of adenylyl cyclase. In the Zucker obese diabetic rats, adenylyl cyclase activity was not

elevated with age, and no significant differences were observed in unstimulated or maximum

forskolin stimulated activities of adenylyl cyclase between the two strains of rats[257]. This

result suggests that, although the adenylyl cyclase activity had the ability to be maximally

stimulated in obese diabetic rats , the attenuation of enzyme activity still exists

compared with control Wistar rats[257]. Furthermore, the basal cAMP levels reduced

progressively with age in obese diabetic rats, and were significantly lower at 20 weeks of age

compared with control Wistar rats. However, cAMP production in response to isoproterenol

in obese diabetic rats increased higher than in control rats, which suggests a defective

regulation of cAMP- phosphodiesterase in obese diabetic rats[257]. However, it has been

known that the increase contractile response is not just determined by the high level of

cAMP[82]. As the comparison between healthy Wistar rats and STZ - induced Wistar rats, a

down-regulation of -adrenoceptor population and reduced cAMP response to -adrenoceptor

stimulation were observed[257,263,264]. One  diabetic mice study showed no significant

changes in the gene expression of the SERCA2a, or PKA - mediated target proteins, whereas

a marked alteration in cardiac metabolic related gene expressions was observed[16]. This

research shows the role of metabolic changes involving the energy conversion in diabetic

cardiomyopathy, especially when cardiac workload is increased. The reduced cardiac

performance, whereas increased PKA mediated phosphorylation and the endogenous PKA

activity, were observed in the STZ-induced diabetic rats [265].
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Diabetic cardiomyopathy associated with reduced contractility and impaired relaxation,

results from the changes in intracellular calcium handling, including decreased expression and

activity of SERCA2a, reduced NCX expression, decreased calcium release and sequestration

in SR, and compromised mitochondrial calcium cycling [227,266]. There are several conflicting

researches about the SERCA2a or phospholamban of diabetic rats. In previous study, our

team found a decreased expression of SERCA2a and increased expression of phospholamban

in STZ - induced diabetic rats at 4 weeks or 12 weeks of age, which was associated with

myocardial relaxation dysfunction  and , whereas the positive lusitropic effects

to the -adrenoceptor stimulation was preserved[56]. The reduced cardiac performance,

decreased SR cycling proteins (including ryanodine receptor, SERCA2a and phospholamban),

and the depressed calcium uptake and release in SR, were observed in the STZ-induced

diabetic rats[265]. Further insulin treatment could improve cardiac performance, SR calcium

cycling proteins contents and calcium uptake / release in SR, which suggests the role of the

reduced content of calcium cycling proteins in the SR dysfunction of diabetic heart. In a

sucrose (SU) - fed insulin resistance rats model, normal SERCA2a protein content but

impaired SERCA activity were observed[267]. Further, the slow ventricular diastolic rate and

reduced SERCA2a level were observed in  (OLETF)

rats[268,269]. One previous research in the  mice showed deficiency in calcium signaling,

including decreased SR calcium stores and increased SERCA[203]. The cardiomyocytes of

 mice have increased intracellular resting calcium concentrations, prolonged

intracellular calcium decay, reduced responsiveness to extracellular calcium, and reduced

SERCA2a activities[270]. The cardiac calcium handling in  mice exhibited that calcium

transient, L - type calcium current and SR calcium load were all reduced[233]. One research

found that SERCA2a mRNA expression was not altered in Zucker obese diabetic rats[231]. In

young Zucker obese diabetic rats at aged of 9-13 weeks, longer time to maximum contraction

and relaxation in the cardiomyocytes in spite of the normal calcium flow amplitude were

observed, suggesting the reduction in the electric current density though L-type calcium

channels which was related to the changes of genes expression in the synthesis of myosin

heavy chain, L-type calcium channel, intracellular calcium transport and regulation

proteins[271]. This research also found that down - regulation of gene Atp2a2 (encoding

SERCA2) was companied with the preserved SR calcium transport[271]. However, a study of

Zucker obese diabetic rats at 19 weeks of age showed an increase of SERCA levels and

decreased phospholamban levels. Furthermore, in the aged Zucker obese diabetic rats (30-34

weeks), researchers found unchanged amplitude and duration of myocyte shortening and
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relaxation, and prolonged duration of intracellular calcium transient[217]. This might be the

consequence of the decreased L - type calcium current, even when the calcium content and

transport in SR was unchanged in the Zucker obese diabetic rats. Meanwhile, the preserved

contractility of cardiomyocytes might be associated with changing pattern in cardiac genes

expressions, which encode calcium channel proteins, sodium / calcium exchanger protein, SR

calcium transport proteins, cardiac muscle proteins and cardiac muscle contraction regulation

proteins. A significant 50% reduction in the gene expression of SERCA2a was observed in

Zucker obese diabetic rats at 45 weeks of age, which was in line with the diastolic

dysfunction observed in severe diabetes[244]. Despite the different strains and models of

animals, these results suggest the subtle changes in calcium regulation might exist prior to the

marked ventricular dysfunction and /or heart failure, and be common in many disorders

involving insulin resistance[272]. And in diabetes, the synthesis of -myosin heavy chain

increases and the contraction is slower [209].

  Because changes in contraction phase can correspondingly induce changes in relaxation

phase, variations in contraction and relaxation need to be considered simultaneously to

evaluate the changes in lusitropy under the -adrenergic stimulation, which is named as

contraction-relaxation coupling. Like our previous experiments about the LV papillary

muscles, the coeffient R1 (ratio of maximum shortening velocity and maximum lengthening

velocity, maxVc/ maxVr) and the coefficient R2 (ratio of the peak of the positive force derivative

at Lmax normalized by cross-sectional area and the peak of the negative force derivative at

Lmax normalized by cross-sectional area, +dF.dtmax-1.s-1 / � dF.dtmax-1.s-1) were used to

measure contraction - relaxation coupling[55,56,73,253,273,274]. R1 reflects the contraction -

relaxation coupling and thus lusitropy under low load, which tests sarcoplasmic reticulum

uptake calcium function in rat myocardium. R2 reflects the contraction - relaxation coupling

and thus lusitropy under high load, which indirectly reflects the myofilament calcium

sensitivity[275-277]. A decrease in R1 or R2 demonstrates a positive lusitropic effect. In diabetic

rats, R1 was preserved in response to -adrenergic stimulation under isotonic condition

because of the significant prolonging duration of contraction [56,253,274]. Under low load, the

SR plays a major role in the regulation of relaxation. So the preservation of R1 under -

adrenergic stimulation suggested the preservation of SR function of heart in diabetic rats. R2

did not change in response to -adrenergic stimulation under isometric condition, suggesting

the lack of alterations in myofilament calcium sensitivity in diabetic rats, compared with

control rats[56,274]. It was also confirmed that myofilament sensitivity to calcium was unaltered

in Zucker obese diabetic rats at ages of 9 to 13 weeks[271]. And further, a previous study about
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type 2 diabetic Goto - Kakizaki rats at ages of 18 months suggested the alteration of

myofilament calcium sensitivity during the later stages of diabetes[234].

3 Animal models of obesity, diabetes mellitus and metabolic syndrome
  Metabolic syndrome is a group of health conditions caused by genetic and environmental

factors. The main pathophysiological change of metabolic syndrome is insulin resistance,

which can induce many syndromes ultimately related to the cardiovascular disease and

coronary disease[278]. For the clinical diagnosis of the metabolic syndrome, the U.S. National

Health Institute made the definition as the following three or more risk factors: abdominal

obesity, high triglyceride, low high density lipoprotein (HDL), high fasting glucose level and

hypertension[279]. It is a challenge to find a completely adequate animal model of metabolic

syndrome to represent the different kinds of syndromes in patients with metabolic syndrome.

Meanwhile, using animal models for the research about cardiomyopathy, there still exist some

questions. For example, the length of cardiac cycle in mice is only one tenth of that in human,

so differences certainly exist in some expression of ion channel and contractile protein

isoforms[227]. However, there are still some strains of animals, especially rats, exhibiting the

characteristics similar to most of metabolic syndrome patients[278]. Rodent animal models of

obesity, insulin resistance and type 2 diabetes mellitus have been identified to exhibit LV

hypertrophy, diastolic dysfunction, increased cardiac fatty acid uptake and utilization, reduced

cardiac efficiency, impaired mitochondrial energetic, increased myocardial lipid storage, and

impaired calcium handling[63,280,281]. These animals can be used to evaluate the

pathophysiological changes, medications intervention and lifestyle treatments within the

metabolic syndrome.

  The most reliable rat strain to study metabolic syndrome seems to be Zucker obese rats,

which can also be used as an obesity animal model. Some other different experimental models

can be used to study metabolic syndrome for their similar abnormalities aforementioned,

mainly including rats derived from spontaneous hypertensive rats (SHR) [278]. Meanwhile,

some mice models, such as , leptin deficient mice ( ), and apoE -

deficient mice, could be studied for metabolic syndrome[278]. Because of the changing lifestyle

and increased intake of energy, high - fat / calorie induced obese animal models have also

been used as an appropriate model to study obesity and obesity - related diseases for decades,

which could reproduce the molecular, biochemical, morphological and functional alterations

closely remodeling human[45,282-284].
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3.1 Zucker rats strains

3.1.1 Zucker obese rats

In 1961, L.M. Zucker and T.F. Zucker reported an autosomal recessive mutation in fatty (fa)

gene, which was shown later to be the leptin receptor gene, on chromosome 5 in rats [76,285].

This mutation was found in a cross between Merck M strain and Sherman rats [76]. Zucker

obese rats are homozygous for  allele. The presentation in these animals is a mutation in the

leptin - receptor[286-288]. Leptin, generated by adipose tissue, can interact with leptin -

receptors in the brain, leading to the decrease in food intake and increase in energy

consumption[289-295]. The result of the leptin - receptor deficiency in Zucker obese rats is the

elevation of leptin level in the circulation [296,297]. This character, together with the increase in

some classical orexigenic peptides, such as neuropeptide Y, galanin, orexins and melanin -

concentrating hormones, determines obesity in Zucker obese rats[298-301].

  Zucker obese rats show hyperphagia, deficient non - shivering thermogenesis and

preferential deposition of energy in the adipose tissues since 17-day age[286,302]. These could

influence the body weight and the proportions of body lipids in rats[79,303.304]. At the same time,

some endocrinological abnormalities originated from insulin resistance can be observed as

early as 3 to 4-week age in Zucker obese rats, which are dyslipidemia, mild hyperglycemia

and hyperinsulinemia[79,303-310]. At 4 weeks of age, plasma insulin levels of Zucker obese rats

are 4.6 times higher than that in Zucker lean rats[205]. But the plasma insulin levels will return

to normal when this strain of rats live to 30 weeks of age[311]. Zucker obese rat expresses

obesity with subcutaneous fat accumulation early from 5 weeks of age on [285].

  One of the primary abnormalities attributed to  gene is the increase of the activity of an

enzyme, adipose tissue lipoprotein lipase. The change of its activity emerges and affects lipid

filling of the adipocytes since 12 days age, long before the visual obesity in Zucker obese

rats[312,313]. Their plasma fatty acid and cholesterol levels can be ten and four times more than

control animals respectively [278]. Zucker obese rats show the high low-density lipoprotein

(LDL) -cholesterol and HDL-cholesterol, with the latter to be a marker of good prognosis in

cardiovascular disease[177]. Moreover, the plasma cholesterol levels show different

classifications between male and female obese rats[314]. For the plasma glucose, Zucker obese

rats only show normal or just slightly higher levels, even though some research found the

vascular alterations like diabetes mellitus in rats[315]. The hypertensive state in Zucker obese

rats still shows conflicting results[316-327]. Hypertension could be observed since 24 weeks age

in Zucker obese rats[319]. The reason of the increased arterial blood pressure in Zucker obese

rats is not the increased renal Na+ retention, but the elevations of the proportion of adipose
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tissues, which could result in the increased production of angiotension  and reactive oxygen

species[319,328-330]. Those could promote hypertension and endothelial dysfunction.

Obesity and obesity co - morbidities may also be attributed to oxidative stress and

inflammatory responses. Several factors can cause oxidative stress, such as hyperglycemia,

hyperleptinemia, increased tissue lipid levels, deficiency of antioxidant defense, increased

formation of free radical and chronic systematic inflammations[331]. The analysis about plasma

markers of oxidative stress did not show that Zucker obese rats at 13 weeks of age are more

exposed to radical species, only the coronary vessels produced higher levels of superoxide

anion[177]. Zucker obese rats develop oxidative stress, as the oxidized lipids increased in

serum, urine and liver since 14 weeks of age[332-334]. The plasma antioxidant defense factors,

such as glutathione peroxidase, was damaged[333,335].

3.1.2 Zucker obese diabetic (Zucker diabetic fatty) rats

  A phenotype of Zucker obese rats with marked diabetes was found and designated as Zucker

obese diabetic rats[285]. This strain of rats is an inbred strain generated from the outbred

Zucker obese rats. Zucker obese diabetic rats develop obesity, insulin resistance,

hyperinsulinemia, hyperglycemia, hyperleptinemia, and hyperlipidemia. In the Zucker obese

diabetic rats, obesity could be observed since 3 weeks of age and develop severely by 5 weeks

of age[295]. Zucker obese diabetic rats demonstrate a higher body weight compared to the

controls when they are young (9-13 weeks of age) [271]. But the research about aged Zucker

obese diabetic rats at 30-34 weeks of age showed the similar body weight as the controls[217].

This is in line with the development in the diabetic patients, that is, with the age and severity

of diabetes progressing and the complications worsening, diabetic individual would become

more reliant on the utilization of lipids and lipid reserves to meet the metabolic

requirements[217]. Meanwhile, the female Zucker obese diabetic rats are less prone to develop

metabolic syndrome.[336,337] Although having high insulin level, Zucker obese diabetic rats

have been reported to become diabetics after 10 weeks of age[175,257]. The pancreatic -cell

mass in Zucker obese diabetic rats increases from 6 weeks to 16 weeks of age, and begin to

decline thereafter because of apoptosis. So plasma insulin levels increase rapidly from 6

weeks to 8 weeks of age, then decline thereafter that to the levels similar to that in 6 weeks of

age [338,339]. Zucker obese diabetic rats have a limit life span, and the mortality rises after 50

weeks of age [340,341]. The exact cause of the death is not clearly understood, but it has been

observed that the increased mortality is associated with the increased blood urea nitrogen and

renal insufficiency [340].
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  Although the model of type 2 diabetes mellitus has many similar features as in human type 2

diabetes mellitus, the presence of the leptin receptor mutation is not common in human.

However, this genetic animals is considered as a reliable model of metabolic syndrome for the

similarity to the development and maintenance of metabolic syndrome in human[175]. Rats

developing obesity with or without the onset of type 2 diabetes have insulin resistance, which

was observed in the two Zucker rat strains. Insulin resistance is associated with increased

adrenergic activity, either as a cause of the increase or the consequence[82]. The increased

sympathetic activity causes an increase in afterload and heart rate. And because of the greater

blood volume in obese rats, the preload is also increased. Thus the cardiac output tends to

increase in obese rats and obese diabetic rats. At the same time, Zucker obese diabetic rats do

not develop atherosclerosis and hypertension, which are usually present in human type 2

diabetes mellitus[244]. Thus, the strain of Zucker obese diabetic rats is also a good animal

model of diabetic cardiomyopathy without other co - morbidities.

3.2 Obese spontaneous hypertensive rats

  Spontaneous hypertensive (SHR) rats, a good model to study hypertension or insulin

resistance, also show hypertriglyceridemia, obesity, and hypertension[342,343]. Another

different strains of SHR rats, obese SHR rats, seems to be a better model of metabolic

syndrome, such as Koletsky rats, SHR/N-corpulent rats and SHR/NDmc- corpulent rats.

3.2.1 Koletsky rats

  Koletsky rats can also be named as obese SHR or SHROB rats. This strain of rats has

monogenetic obesity superimposed on hypertensive genetic background[317,344,345]. In this

strain of rats, the corpulent ( ) phenotype was first recognized from an autosomal recessive

mutation on the Lepr gene[317].  The mutation is a Thr2349Ala transversion, causing a

premature stop codon in leptin - receptors of extracellular domain. The obese SHR has two

alleles and shows leptin resistance. No matter what kind of diet, these animals show

hyperphagia, hyperlipidemia (significantly high triglyceridemia and moderate elevation of

cholesterol), hyperinsulinemia, hypertension, premature vascular disease and nephropathy[295].

Meanwhile, since the intake of calorie had a link with sympathetic activity, refeeding after

dietary restriction to obese SHR exhibited another animal model similar to essential

hypertension in obese human, which is refeeding obese SHR[316]. This strain of rats also

develops increased sympathetic activity, hyperinsulinemia, insulin resistance, increase in the

ventricular wall thickness and kidney diseases. They could be used to study the effects of

fluctuations in the nutrition intake on the obese hypertension.



31

3.2.2 N-corpulent rats

  These rats are a substrain of Koletsky rats, characterized as non - insulin - dependent

diabetes mellitus[295,346]. Obesity in this strain of rats is evident by 5-6 weeks of age[347,348].

These animals show hyperinsulinemia, hypercholesterolemia, hyperglycemia after oral

glucose load or postprandially, glycosuria and proteinuria. They develop impaired glucose

regulation from 2 months of age, and the glucose tolerance improves with aging[349,350]. The

hyperinsulinemic levels in this strain of rats develop from 4 weeks of age, and reach 6 times

higher than controls in 5 months of age[347,351]. However, there exist sex differences in the

nature of the strain of rats. Female SHR / N-  rats are less obese than males, but serum

triglyceride levels are higher than male rats, which might be associated with increased hepatic

lipogenic enzyme activities[351].

3.2.3 NDmc-corpulent rats

  These rats are an inbred subline of SHR/N-corpulent rats and homozygous of the  gene

( ). These animals exihibit hyperphagia, obesity, hypertension, hyperlipidemia, insulin

resistance and hyperinsulinemia, and diabetes mellitus[352,353].

3.2.4 Spontaneous hypertension - heart failure (SHHF) / Mcc -  rats

  SHHF / Mcc -  rats carry the recessive  or corpulent gene and develop obesity and the

spontaneous hypertension, consequently causing cardiac dysfunction and heart failure[174].

There exist sex differences in this strain of rats. Obese male rats develop obesity,

hypertension and non - insulin - dependent - diabetes mellitus, and emerge dilated

cardiomyopathy since 10 to 12 months of age. Male rats would finally evolve to heart failure

after 3 years old. However, obese female rats only have slight glucose tolerance abnormality

and develop fatal dilated cardiomyopathy between 14 and 16 months of age[174,354].

3.2.5 JCR: LA -  rats

  This strain of rats carry  gene[174]. They develop obesity, dyslipidemia, insulin resistance,

which are much more extreme than Zucker rats [355]. This strain of rats develop slight

hyperinsulinemia at 3 weeks of age, and rapidly progress to an evident level much more

severe than Zucker rats after 5 weeks of age, in which the insulin levels are higher in male rats

than that in females[356,357]. At 12 weeks of age, they develop so severe insulin resistance that

no insulin - mediated glucose uptake by skeletal muscle occurs. Meanwhile, they do not
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appear hyperglycemia due to islet -cell insulin hypersecretion, so the major drawback of this

rat as type 2 diabetes model is the absence of fasting hyperglycemia [357]. Elevation of

triglyceride levels can be observed from 4 weeks of age exclusively attributed to the increased

hepatic very low-density lipoprotein (VLDL) levels[358]. HDL levels increase in this strain of

rats[359] . But hyperlipidemia in female rats is more severe than that in males[356]. They

develop early atherosclerotic lesions in the major blood vessels and occlusive coronary

thrombi at later stages of disease[236].

3.3 Stroke - prone - spontaneous hypertensive fatty rats

  Stroke - prone spontaneous hypertensive rats (SHRSP) are an animal model developing

marked hypertension and hypertension related abnormalities, including atherosclerosis,

cardiac hypertrophy and nephropathy, and finally dying from stroke [360]. The stroke - prone

SHR rats exhibit insulin resistance, yet no obesity, higher total cholesterol or non - esterified

fatty acid (NEFA) compared with the control animals. Consequently, a new strain of rats was

produced under the genetic background of stroke - prone SHR rats to be a model of metabolic

syndrome[361]. This strain of rats, SHRSP fatty rats, is derived by crossing stroke - prone SHR

rats of the lzumo strain to Zucker obese (fa/fa) rats and has a missense mutation in leptin -

receptor gene. These rats show hypertension and obesity. And the plasma leptin concentration,

glucose, insulin, total cholesterol and triglyceride levels are significantly increased in these

animals.

3.4 Sterol - regulatory element - binding protein - spontaneously hypertensive rats

  This strain of rats came from a consideration that non - alcoholic fatty liver disease may be

one feature of metabolic syndrome[362]. Through the transgenic over - expression of a sterol -

regulatory element - binding protein in SHR rats, a non - obese model of rats with

hypertension, fatty liver, and several characteristics of metabolic syndrome, including

hyperinsulinemia, hyperglycemia, and hypertriglyceridemia, is established.

3.5 Wistar Ottawa Karlsburg W rats

  Wistar Ottawa Karlsburg W (WOKW) rats were produced as a new inbred strain of rats

model in 1995. This strain of rats is a good animal model of metabolic syndrome because of

their polygenic pathogenetic backgrounds similar to human conditions [363]. These animals

show hyperphagia, and exhibit almost complete traits of metabolic syndrome with obesity,

moderate hypertension, dyslipidemia, hyperinsulinemia and impaired glucose tolerance
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compared with their control animals, the dark agouti rats[364-366]. Those manifestations could

emerge between 8 and 10 weeks of age in rats[367]. Meanwhile, the metabolic syndrome in

WOKW also showed relations to coronary dysfunction[368].

3.6 Low - capacity runner rats

  This strain of rats was selectively bred according to their abilities to make a treadmill

endurance running[369]. Those who could only run relatively short distance are classified as

low - capacity runner (LCR) rats and selectively bred eleven generation. Then the LCR rats

exhibit hypertension, endothelial dysfunction, insulin resistance, hyperinsulinemia, visceral

adiposity, hypertriglyceridemia, and high NEFA.

3.7 The streptozotocin (STZ) model

  The STZ model is the most commonly used uncontrolled type 1 diabetes model. STZ

treatment intraperitoneal causes -cell toxicity and necrosis, and finally insulin deficiency[370].

According to the recommendations from the Animal Models of Diabetic Complications

Consortium (AMDCC), low - dose of STZ (50 mg/kg) administered five times consecutively

can induce hyperglycemia in the rodents within 7 to 14 days after the first injection. These

rodents exhibit increased serum fatty acid, triglyceride and cholesterol levels, whereas the

insulin levels decrease progressively with the development of diabetes[371]. This model can be

easily induced in different genetic background strains of animal and at different ages of

animals. One limitation of STZ induced model is the potential extrapancreatic genotoxic

effects[372]. STZ may directly damage the cardiac contractile function through p38 mitogen

activated protein (MAP) kinase - dependent oxidative stress mechanism[373]. And the disease

severity in this model may be diverse, with some developing ketosis, whereas others not.

3.8 Type 2 diabetic Goto - Kakizaki rats

  The Goto - Kakizaki (GK) rats are generated by the selective inbreeding of glucose

intolerant Wistar rats[374,375]. They have impaired insulin secretion at birth[81]. They could

develop type 2 diabetes within the first few weeks of age, with mild hyperglycemia,

hyperinsulinemia, impaired glucose induced insulin secretion, marked glucose intolerance,

hepatic glucose overproduction and insulin resistance, but without obesity, hypertension or

significant hyperlipidemia[374-376]. It has been recognized as one of the best characterized

genetic animal model for the research of type 2 diabetes, without the associated influences of

obesity or hypertension[236,377]. Meanwhile, type 2 diabetes mellitus is developed under a
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complex combination of environments and genetic factors. In the GK rats, at least six

independent genetic loci are responsible for the deficiency in glucose and insulin

metabolism[374]. So this polygenic animal model of spontaneous type 2 diabetes mellitus is

invaluable for the research of type 2 diabetes mellitus.

3.9 DahlS.Z- (Dahl salt - sensitive (DS)/obese) rats

  Researchers established an animal model of metabolic syndrome by crossing Dahl slat -

sensitive (DS) rats and Zucker rats[378,379]. The DS / obese rats develop similar features to the

human of metabolic syndrome, including obesity, hypertension, dyslipidemia, insulin

resistance and type 2 diabetes mellitus. They also develop LV hypertrophy, LV fibrosis, LV

diastolic dysfunction, cardiac oxidative stress and inflammation, and renal and liver

damages[378,379].

3.10 The  mouse

  In 1940s, diabetes was identified in  mouse, which has a single autosomal recessive

mutation on the obese gene ( , leptin encoding gene on chromosome 6, also known as )
[227,295]. This strain of mice has a high levels of leptin mRNA in adipocytes, whereas

completely lack of functional leptin[289,380]. Because of the leptin deficiency, this strain of

mice develops obesity and diabetes mellitus. The strain of mice has hyperphagia, increased

body fat content, decreased body temperature and energy expenditure. From 4 weeks of age,

these mice on the C57BL/6 background develop moderate obesity, hyperinsulimia and

impaired glucose tolerance, but not diabetes yet[381]. Since 15 weeks of age, they become

severely obese. They have increased serum fatty acid and triglyceride levels dependent on the

nutritional state and age. These mice die at about 14 months of age[382]. The administration of

leptin can correct several diabetic manifestations in this strain of mice. The corrections of

hyperinsulinamia and hyperglycemia occur before the correction of obesity[383-385], which

suggested that obesity in this model does not play an important role in the pathogenesis of

diabetic manifestations.

As a hallmark of type 2 diabetes, hyperglycemia in this strain of rats can only be observed

from 1 month of age, and begins to decline after 3 month of age[386,387]. This is in significant

contrast to human diabetes, in which hyperglycemia progresses slowly and severely. The

reasons of the difference might be the different causes of hyperglycemia in  mice and

human diabetes. In the former one, hyperglycemia is caused by leptin deficiency, and the

persist hyperinsulinemia limits the severity of hyperglycemia, but leads to obesity[388,389]. In
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the latter one, hyperglycemia develops when compensatory hyperinsulinemia in response to

insulin resistance cannot control blood glucose. The lack of leptin results in the high levels of

neuropeptide Y and increased cortisol levels, which underlies the muscular insulin

resistance[390]. The metabolic syndrome in human develops hyperleptinemia and leptin

resistance, which has been described as a key driver of obesity - related cardiovascular

dysfunction[391]. Thus, this strain of mice could be a good model for studying the effects of

leptin resistance in human obesity[227].

3.11 The  mouse

  The  mice have a single autosomal recessive mutation in the leptin receptor gene on

chromosome 4 ( ), resulting in the abnormal mRNA splicing and subsequent production

of a non - functional Ob-Rb protein[227,295] The deficiency of leptin receptor causes the over -

production of extracellular leptin, whereas lack of intracellular leptin action through Ob-Rb.

This strain of mice develops severe type 2 diabetes since 8 weeks of age and obesity equal to

 mice[381]. These mice have early hyperinsulinemia and increased serum fatty acid and

triglyceride levels[381,392]. The leptin receptor - deficient db/db mice develop hyperglycemia

since 2 months of age, but not all of them develop hyperglycemia[393]. At 10 weeks of age,

their fasting blood glucose levels can reach about 4 times to that of the control mice[394].

Plasma insulin begins to rise at 10 - 14 days and reaches to peak at 3 months of age[394,395].

This severe hyperinsulinemia is in contrast to the moderate conditions in human type 2

diabetes. And this strain of mice dies at about 10 months of age, with female living longer[396].

Insulin receptor tyrosine kinase is involved in the cellular insulin signaling process, which is

markedly reduced in the muscle and liver of type 2 diabetes patients and associated with the

developing of insulin resistance[397-399]. However, in the  mice, the activity of the

enzyme in muscle is not altered[400]. Furthermore, the  mice do not develop

atherosclerotic lesions despite the presences of obesity, hyperlipidemia, advanced kidney

disease and cardiomyopathy[216].
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Chapter Three

Experimental Studies

We performed two experiments about -adrenoceptor stimulation pathway in different

pathophysiological status. The first experiment is to explore the role of multidrug resistance

protein 4 (MRP4) in the regulation of intracellular cyclic adenosine monophosphate (cAMP)

concentration and the influence on -adrenergic dysfunction in the senescent rat (24-month

age) heart. We observed the echocardiography and isolated cardiomyocyte under baseline and

stimulation of isoproterenol, along with or without the pretreatment by MK571, a specific

MRP4 inhibitor. MRP4 was quantified in left ventricular homogenates by Western blotting.

We confirmed that the MRP4 overexpression contributes to the decrease of positive inotropic

response to -adrenoceptor stimulation in the senescent heart. The second experiment is to

compare the -adrenoceptor signaling pathway in Zucker lean, Zucker obese, and Zucker

obese diabetic rats, the reliable rat models of metabolic syndrome. The effects of -

adrenoceptor stimulation were investigated with echocardiography (baseline and isoproterenol

stimulation) and in isolated left ventricular papillary muscles (baseline, and stimulations

under isoproterenol, forskolin and dibutyryl cAMP). The expressions of 1-, 2-, 3-

adrenoceptors and MRP4 in left ventricular muscles were detected by Western Blotting. We

concluded that the positive inotropic effect of -adrenoceptor stimulation is slightly decreased

in Zucker obese rats and is more markedly decreased in Zucker obese diabetic rats. These

decreases are mainly related to 1- and 2-adrenoceptors down-regulation.
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Study No. 1

Overexpression of cyclic adenosine monophosphate effluent protein

MRP4 induces an altered response to -adrenergic stimulation in the

senescent rat heart. Carillion A, Feldman S, Jiang C, Atassi F, Na N, Mougenot N,

Besse S, Hulot JS, Riou B, Amour J. Anesthesiology, 2015, 122(2): 334-342.
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Study No. 2

Modification of the -adrenoceptor stimulation pathway in Zucker

obese and obese diabetic rat myocardium. Jiang C, Carillion A, Na N, de Jong

A, Feldman S, Lacorte JM, Bonnefont-Rousselot D, Riou B, Amour J. Crit Care Med, 2015,

in press.
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Chapter Four

Limitations

In our study, several limitations should be taken into consideration. Firstly, our study was

conducted in rat myocardium. It differs from human myocardium. In rat myocardium, a

negative staircase (increase in stimulation frequency decreases force) is observed, and the SR

is more developed than in human.[273] Thus, there would be some difficulties if applying our

results to human myocardium. Secondly, no animal model of obesity or diabetes mellitus

completely mimic diseases observed in human and thus it is important to acknowledge the

limitations of the leptin/leptin receptor-based rodent models. Zucker obese rats have only

moderate hypertension, do not develop premature atherosclerosis, and their endothelium-

dependent relaxation is not impaired. Zucker diabetic rats do not develop sympathetic

neuroaxonal dystrophy[295]. Thus further studies in humans are required to validate our results.

Thirdly, we did not study changes observed after treatment of diabetes or food restriction in

obesity. For example, it has been shown that food restriction may improve -adrenergic

stimulation in obese rats[205]. Fourthly, our study about rat myocardium  was

conducted at 29  because of the stability of the mechanical properties of the papillary

muscles at this temperature. Meanwhile, this isolated left ventricular papillary muscle

experiment can only observe the muscle performances without the inter-regulation of heart

rates, loads, or wall geometry of heart [401]. Fifthly, echocardiography was conducted

under isoflurane anesthesia, and previous studies reported that the halogenated anesthetic

agents can interfere with -adrenergic stimulation in healthy rats and many kinds of

cardiomyopathy[253,275,402]. Although the potentiation of -adrenoceptor stimulation was

reported to be preserved with isoflurane in diabetic rats, our difference was still considered as

the adjustment of neurohumoral compensatory mechanisms.
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Chapter Five

Perspectives

  Although the extrapolation of our experimental research into clinical practice should be

considered with caution, due to several limitations, these experiments shed a new light on the

cardiac dysfunction of obesity with or without type 2 diabetes mellitus. Our experiment

demonstrates one of the basic mechanisms related to the cardiac dysfunction in obesity and

diabetes mellitus, that is the alteration in the -adrenoceptor signaling pathway. There is a

slight decrease in the positive inotropic effects under the -adrenergic stimulation in the

myocardium of obese rats, and the decrease is more significant in the myocardium of type 2

diabetic rats, which are related to the down - regulation of 1- and 2-adrenoceptor proteins.

Meanwhile, previous researches in our laboratory already showed that the down - regulation

of 1-adrenoceptor and up - regulation of 3-adrenoceptor are associated with the decreased

positive inotropic responses in type 1 diabetes mellitus[55,56], which is mediated by NOS1-

derived NO.

  A recent study has shown the years of life lost from diabetes and cardiovascular disease in

the very obese people could be up to 8 years, which was 6 years in the obese people and 3

years in the overweight ones[403]. In addition, the worst prognosis was in those who gained

weight at young ages. So, it is urgent to further study the relative treatments to prevent the

obesity and metabolic syndrome. In our experiment, we have not studied the influences on the

cardiovascular functions after treatment to obesity or diabetes. It is worthwhile to continue the

researches of the cardiac -adrenergic signalling pathway under appropriate treatments.

Since the sympathetic nervous hyperactivity is one of the basic driving forces in human

obesity and obesity - related disease, treatments to inhibit hyperactivity of sympathetic

nervous system would be a useful method, including diet adjustments, physical exercises and

some pharmacological treatments. The dietary weight loss and physical exercises are still the

first line of therapy[2]. It has been shown that food restriction may improve -adrenergic

stimulation in obese rats[205]. The proportion of dietary components for the optimal cardiac

health is still under research. The unsaturated fat is conventionally regarded as a �healthier�

fat than saturated fat[46]. However, in the human with metabolic syndrome, researchers

recently found that high intake of saturated fat in the context of a low carbohydrate intake still

did not generate the accumulation of plasma saturated fat acid, which is a predictor of the
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increasing risk of diabetes and heart diseases [404]. Secondly, physical exercises, regardless of

low or high training volumes, have shown no effects on the decreased -adrenoceptor

responsiveness in the obese animals [405,406], even though the improvements in body fat,

circulatory norepinephrine and hemodynamic status could be observed. In one experiment on

the STZ - induced diabetic rats, researcher found that the exercise trainings initiated after the

onset of diabetes could delay the deterioration of myocardial contractility, reduce the loss of

1-adrenoceptor, and improve the responsiveness to the -adrenergic stimulations [251].

Thirdly, some drugs with neuroadrenergic effects showed different results in the metabolic

syndrome and heart diseases. For an instance, antihypertensive drug diuretics might worsen

the insulin resistance status and exacerbate the sympathetic hyperactivity in metabolic

syndrome[33,407]. The angiotensin - converting enzyme inhibitor (ACEI) or angiotensin

receptor blockade (ARB) can improve insulin sensitivity and cause sympathoinhibitory

effects[407]. Statins and some hypoglycemic drugs were also found to exert sympathoinhibitory

properities[408]. The -blockers, including carvedilol, metoprolol, bisopolol and nebivolol,

showed the beneficial influences on the survival and left ventricular remodeling in the chronic

heart failure[140,141]. Specific agonist or antagonist to 3-adrenoceptor might be one strategy

for different stage of heart failure[124]. As in our previous study, 3-adrenoceptor inhibitor

could partially restore the decreased positive inotropic effects under the -adrenergic

stimulations in diabetic rats [55].

Catecholamines are widely used in critically ill patients but considerable intra- and inter-

individual variability exists in the response. Most previous studies tried to elucidate

pharmacodynamics and pharmacodynamics difference in catecholamines response[409,410], but

very few considered differences linked to baseline characteristics of the patient. Recently,

Bauman et al.[411] demonstrated that ethnic differences may be associated with significant

difference in vasopressor requirements in patients with septic shock, but overlooked the

genetic or phenotypic characteristics that may explain these differences. This study reported

that the required doses of vasopressors were higher in Afro-American patients compared with

white patients. However, the proportion of diabetic patients was also markedly different (68

vs 32%), and it is likely that the proportion of obese patients may also have been different,

although this was not illustrated in the article. Future clinical research in ICU should focus not

only on the catecholamine requirements according to both genetic and phenotypic profile, but

also on the pathophysiological conditions that may both modify adrenoceptor signaling

pathway and catecholamine pharmacokinetics[409,410].
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Chapter Six

Conclusions

  In the present study, we mainly confirmed the following conclusions:

1. According to the baseline values of transthoracic echocardiography ( ) and isolated

left ventricular papillary muscles ( ), no alteration was observed in the baseline cardiac

function of Zucker obese and obese diabetic rats.

2. The positive inotropic effects in response to -adrenergic stimulations demonstrated a

slight impairment in Zucker obese rats  This decrease in the positive inotropic effects to -

adrenergic stimulations was more pronounced in Zucker obese diabetic (type 2) rats.

Comparing with the previous study of our laboratory, Zucker obese diabetic (type 2) rats

showed less severe change in the positive inotropic effects than that previously observed in

type 1 diabetic rats.

3. Those modifications were mainly associated with the down-regulation of 1- and 2-

adrenoceptor proteins, and without up-regulation of 3-adrenoceptor protein.

4. Subtle impairments also occur upstream and downstream of the adenylate cyclase level of

the -adrenergic stimulation pathway in Zucker obese and obese diabetic rats, besides the

down-regulation of 1- and 2-adrenoceptor.

5. Those modifications were not due to the over-expression of MRP4.
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RÉSUMÉ
Le système nerveux sympathique (SNS) a été identifié à être progressivement activé dans

de nombreuses maladies cardio-vasculaires, du processus chroniques différents, y compris
l'hypertension et de cardiomyopathie, à l'insuffisance cardiaque congestive[82,156,412-414].
L'hyperactivité du système nerveux sympathique peut modifier le nombre, la fonction et la
voie de signalisation en aval des récepteurs -adrénergiques. Bien qu'il n'yait pas de
mécanisme unifié pour interpréter ces découvertes divergentes, des anomalies de calcium ont
été reconnu comme une cause fondamental de la fonction systolique défectueuse du ventricule
gauche [82]. Le niveau de calcium intracellulaire est directement impliqué dans l'interaction
entre l'actine et la myosine, qui controle la contractilité du muscle. Les stimulations des
récepteurs -adrénergiques peuvent induire des réponses inotropes / lusitropes positifs par la
production d'adénosine monophosphate cyclique (AMPc) et l'activation de la protéine kinase
A (PKA). Le calcium de type transitoire est augmenté suite à la phosphorylation des protéines
ciblées (cannaux calciques, récepteurs de la ryanodine, SERCA2a et troponine). Dans les
conditions physiologique, la dysfonctionnement des récepteurs -adrénergiques peut être un
mécanisme commun de la réduction de la fonction cardiaque. Dans ce contexte, nous avons
effectué des expériences au sujet de la voie de stimulation -récepteurs adrénergiques en deux
états physiopathologiques différents, cardiomyopathie du syndrome métabolique et de
personnes âgées.

La première expérience est menée au sein de rats sénescents. Au coeur sénescent, un
dysfonctionnement diastolique et une réponse réduite à la stimulation -adrénergiques ont été
identifiés, qui sont associés à une sous-expression des  récepteurs 1- et 2-adrénergiques,
ainsi qu�à une sur-expression des récepteurs 3-adrénergiques.[73,415,416] Ces changements
permettent de réduire la production d'AMPc ou facilitent l'hydrolyse de l'AMPc. Ainsi, un
mécanisme complémentaire de la régulation de l'AMPc a été impliqué dans le c�ur. La
protéine de multirésistance 4 (MRP4) joue un rôle important dans la régulation de l'AMPc
intracellulaire et les réponses cardiaques stimulées par les récepteurs -adrénergiques. Mais le
rôle de MRP4 au coeur sénescent n'a jamais été étudié. Dans ce fait, nous avons mené de
l'expérience pour étudier l'expression de MRP4 et son influence sur le dysfonctionnement -
adrénergique dans le c�ur sénescent. L�expression de MRP4 a été quantifiée dans
ventriculaires gauches par Western Blotting. Les réponses des récepteurs -adrénergiques à
l'isoprotérénol ont été étudiés  (échocardiographie de stress) et
(raccourcissement des sarcomères et de calcium de type transitoire dans les cardiomyocytes
isolés par Ionoptix®) chez les rats jeunes (âgés de 3 mois) et les rats sénescents (âgés de 24
mois) prétraités ou non avec MK571, un inhibiteur spécifique de MRP4. En conséquence,
nous avons confirmé que la sur-expression de MRP4 contribue à la diminution de la réponse
inotrope positive du coeur sénescent à la stimulation de la -adrénorécepteurs. La deuxième
experience est menée au sein des rats du syndrome métabolique. Bien que le syndrome
métabolique est associé à une augmentation de l'activité sympathique qui stimule
chroniquement les récepteurs -adrénergiques, la voie de signalisation de ces récepteurs
impliqués dans cette situation a été très peu étudiée. En utilisant le model des rats Zucker
témoins, obèses et obèses diabétiques (de type 2), nous avons étudié la voie de signalisation
de ces récepteurs -adrénergique. Nous avons comparé la voie de signalisation des -
récepteurs adrénergiques dans les rats Zucker témoins, Zucker obèses, et Zucker obèses
diabétiques, qui sont les modèles de rats fiables du syndrome métabolique. Les effets de la
stimulation des récepteurs -adrénergiques ont été évalué avec l�échocardiographie
transthoracique et dans les muscles papillaires ventriculaires gauches des rats Zucker
témoins, obèses et obèse diabétiques. L�expression des récepteurs 1-, 2-, et 3-adrénergiques
et de la proteine 4 associée aux resistances multidrogues dans les muscles ventriculaires
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gauches a été quantifiée par Western Blotting. Les concentrations du triglycéride, du
cholestérol, de la leptine, de l�adiponectine, et du peptide-C dans le plasma sanguin ont été
mesurées avec la méthod enzymatique, ou la method immuno-enzymatique quantitative
ELISA. Les données sont présentées en moyenne ± SD. L�hyperlipidémie et des
concentrations élevées de la leptine et du peptide-C ont été observés dans des souches obèses
diabétiques et obèses, alors que l'hyperglycémie n�est présentée que dans la souche diabétique.
Aucune différence significative a été observée entre les souches en échocardiographie.

, l'effet inotrope positif de l'isoprotérénol est légèrement réduite chez les rats obèses
(183% ± 11% de la valeur de base,  = 0,003; n = 7) et nettement réduite chez les rats obèses
diabétiques (137% ± 18% de la valeur de base,  <0,001; n = 10) par rapport aux rats témoins
(210% ± 17% de la valeur de base; n = 9). L�expression du récepteur 1-adrénergique est
diminué chez les rats obèses (-41%,  = 0,02) et les rats diabétiques (-54%,  = 0,003) par
rapport aux rats témoins, et une diminution similaire a été observée en l�expression du
récepteur 2-adrénergique. Alors que l�expression des récepteurs 3-adrénergiques et la
protein 4 associée aux resistances multidrogues reste inchangée. L'effet lusitrope de
l'isoprotérénol n'est pas modifié entre les souches. L'effet inotrope positif de la forskoline est
légèrement diminué chez les rats obèses (148% ± 25% de la valeur de base,  = 0,005 ) et
nettement diminuée chez les rats obèses diabétiques (118% ± 12% de la valeur de base ,
<0,001 ) par rapport aux rats témoins (181% ± 23 % de la valeur de base). Lors de la
stimulation de la 3', 5'-adénosine monophosphate cyclique par le dibutyryl cAMP, l'effet
inotrope positif chez les rats témoins (185% ± 19% de la valeur de base ) est significativement
plus élevée que celui chez les rats obèses et chez les rats obèses diabétiques (158% ± 36 % et
155% ± 27 % de la valeur de base;  = 0,043 et  = 0,031, respectivement). Outre une
dimimution de l�expression du récepteur 1- et 2-adrénergique, la stimulation directe de
l'adénylate cyclase par la forskoline et l'administration de la 3', 5'-adénosine monophosphate
cyclique suggère une déficience subtiles s�est produit également au-dessus et au-dessous du
niveau de voie les -adrénergique chez les rats obèses et diabétiques. En somme, l'effet
inotrope positif de la stimulation des récepteurs -adrénergiques est légèrement diminué dans
les rats Zucker obèses et diminué plus nettement dans les rats Zucker obèses diabétiques. Ces
diminuations sont principalement liées à une sous-expression du récepteurs 1- et 2-
adrénergiques.

Mots clés récepteurs -adrénergiques; muscle cardiaque; catécholamines; l'obésité; le diabète
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ABSTRACT
The sympathetic nervous system (SNS) has been identified to be progressively activated in

many cardiovascular diseases, from different chronic process including hypertension and
cardiomyopathy, to congestive heart failure [82,156,412-414]. The hyperactivity of sympathetic
nervous system may change the number, function and downstream mechanisms of -
adrenoceptors. Although there is no unified mechanism to interpret those divergent findings,
calcium abnormalities has been recognized to be fundamental in the defective systolic
function in left ventricle [82]. The intracellular calcium level is directly involved in the
interaction of actin and myosin, thus reflects the contractility of muscle. -adrenergic
stimulation can induce the positive inotropic / lusitropic responses via the production of cyclic
adenosine monophosphate (cAMP) and the activation of protein kinase A (PKA). Thus
calcium transient is increased after phosphorylation of serials targeted proteins (calcium
channel, ryanodine receptor, SERCA2a, and troponin). Under the pathophysiological
condition, -adrenergic dysfunction may be a common mechanism of decreased cardiac
function. So, we performed experiments about -adrenoceptor stimulation pathway in two
different pathophysiological status, cardiomyopathy of the elderly and metabolic syndrome.
 The first experiment is conducted within senescent rat. In the senescent heart, diastolic

dysfunction and reduced response to -adrenergic stimulation have been identified, which are
associated with the down-regulation of 1- and 2-adrenoceptors, along with the up-regulation
of 3-adrenoceptor. [73,415,416] These changes either reduce the cAMP production or facilitate
the hydrolysis of cAMP. Meanwhile, a complementary mechanism of the regulation of cAMP
has been involved in heart. The multidrug resistance protein 4 (MRP4) plays an important
role in the regulation of intracellular cAMP and -adrenergic stimulated cardiac responses.
But the role of MRP4 in the senescent heart has never been studied. Thus, we conducted the
experiment to study the MRP4 expression and its influence on -adrenergic dysfunction in the
senescent rat heart. MRP4 was quantified in left ventricular homogenates by Western blotting.
The -adrenergic responses to isoproterenol were investigated  (stress
echocardiography) and  (sarcomere shortening and calcium transient of isolated
cardiomyocyte by Ionoptix®) in young (3-month age) and senescent (24-month age) rats
pretreated or not with MK571, a specific MRP4 inhibitor. As a result, we confirmed that the
MRP4 overexpression contributes to the decrease of positive inotropic response to -
adrenoceptor stimulation in the senescent heart. The second experiment is conducted within
metabolic syndrome rats. Although metabolic syndrome is associated with increased
sympathetic activity that chronically stimulates -adrenoceptors, the -adrenoceptor signaling
pathway has been poorly studied in this situation. We studied the -adrenoceptor signaling
pathway in Zucker lean, obese, and obese diabetic (type 2) rats. We compared the -
adrenoceptor signaling pathway in Zucker lean, Zucker obese, and Zucker obese diabetic rats,
the reliable rat models of metabolic syndrome. The effects of -adrenoceptor stimulation were
investigated with transthoracic echocardiography and  in isolated left
ventricular papillary muscles in Zucker lean (control), obese, and obese diabetic rats. The
expressions of 1-, 2-, 3-adrenoceptors and multidrug resistance-associated protein 4 in left
ventricular muscles were detected by Western Blotting. The plasma concentrations of
triglyceride, cholesterol, leptin, adiponectin, and C-peptide were measured using automated
enzymatic method, or quantitative enzyme-linked immunosorbent assay (ELISA) kits. Data
are presented as mean ± SD. Hyperlipidemia, high leptin, and C-peptide concentrations were
observed in obese and obese diabetic strains, whereas hyperglycemia occurred only in the
diabetic strain. No significant difference among strains was observed in echocardiography
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. , the positive inotropic effect of isoproterenol was slightly reduced in obese rat
(183% ± 11% of baseline, =0.003; n=7) and markedly reduced in obese diabetic rats (137%
± 18% of baseline, <0.001; n=10) when compared with control rats (210% ± 17% of
baseline; n=9). 1-adrenoceptor protein expression were down-regulated in obese (-41%,

=0.02) and diabetic rats (-54%, =0.003) when compared with control rats, and a similar
decrease was observed in 2-adrenoceptors protein expression. But 3-adrenoceptor and
multidrug resistance-associated protein 4 expressions remained unchanged. The lusitropic
effect of isoproterenol was not modified among strains. The positive inotropic effect of
forskolin slightly decreased in obese rats (148% ± 25% of baseline value, =0.005) and
markedly decreased in obese diabetic rats (118% ± 12% of baseline value, <0.001) when
compared with control rats (181% ± 23% of baseline value). Upon stimulation of 3 ,5 -cyclic
adenosine monophosphate by dibutyryl cAMP, the positive inotropic effect in control rats
(185% ± 19% of baseline value) was significantly higher than that in obese rats or obese
diabetic rats (158% ± 36%, 155% ± 27% of baseline value; =0.043, =0.031, respectively).
Direct stimulation of adenylate cyclase with forskolin and administration of 3 ,5 -cyclic
adenosine monophosphate suggests that subtle impairments also occur upstream and
downstream of the adenylate cyclase level of the -adrenergic pathway in obese and diabetic
rats, besides the down-regulation of 1- and 2-adrenoceptor. In conclusion, the positive
inotropic effect of -adrenoceptor stimulation is slightly decreased in Zucker obese rats and is
more markedly decreased in Zucker obese diabetic rats. These decreases are mainly related to

1- and 2-adrenoceptors down-regulation.

Key words -adrenoceptors; cardiac muscle; catecholamines; obesity; diabetes mellitus
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